Developer's Guide for Oracle Business Intelligence Publisher (Oracle Fusion Applications Edition)
11g Release 1 (11.1.1)
E26385-01
January 2012
Explains how to incorporate Oracle Business Intelligence Publisher functionality into custom applications using the Java and Web services application programming interfaces.
Oracle Fusion Middleware Developer's Guide for Oracle Business Intelligence Publisher (Oracle Fusion Applications Edition), 11g Release 1 (11.1.1)
E26385-01
Copyright © 2010, 2012, Oracle and/or its affiliates. All rights reserved.
Primary Author: Leslie Grumbach Studdard
Contributors: Oracle Business Intelligence Publisher development, product management, and quality assurance teams
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle Business Intelligence Publisher (BI Publisher) is a comprehensive set of enterprise business intelligence tools and infrastructure, including a scalable and efficient query and data generation engine, enterprise reporting document generation, interactive report consumption, and scheduled report execution and delivery. Oracle BI Publisher is designed to author, generate, and deliver all the operational documents you need to run your organization and provide greater insight to a wide variety of users.
Oracle BI Publisher provides a common service-oriented architecture (SOA) and Java APIs for data access and generation, document generation and delivery, a security model and user preferences, and Web-based administration. Oracle BI Publisher provides scalability and performance with a multi-tier architecture that separates data generation from report generation and rendering. Oracle BI Publisher also provides sophisticated data and document caching services, and can be clustered for high availability or scaled out to support high volume requirements.
This guide contains information about developing custom applications through the Web services and Java APIs that Oracle BI Publisher provides for data access, document generation, and delivery.
This guide is intended for developers who want to use the Oracle BI Publisher Web services and Java APIs to develop custom applications.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following documents in the Oracle Business Intelligence Applications Enterprise Edition 11g Release 1 (11.1.1) documentation set:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
This part explains how to use the Oracle BI Publisher Web services. It includes the following chapters:	
This chapter provides an introduction to the Oracle BI Publisher Web services.	
It includes the following sections:	
Oracle BI Publisher Web services provide data types and services. Data types include base data types and complex data types. Oracle BI Publisher Web services also support XML-to-Java data type mappings. For more information on supported data types and mappings, see Chapter 2, "Data Types in Oracle BI Publisher Web Services."	
Oracle BI Publisher provides the following public Web services:	
Many of the methods in these services are provided in pairs. The first provides a stateless operation that requires login credentials. The second provides an "in session" operation that uses an existing user's session ID, which is obtained through the login() or impersonate() method of the SecurityService. For more information, see Section 1.2, "About In-Session Methods."	
Oracle BI Publisher Web services provide many "in session" methods, such as the deliveryServiceInSession() Method, createReportInSession() Method, and copyObjectInSession() Method. In-session methods enable your applications to perform a variety of operations for active user sessions. For this, these methods rely on the bipSessionToken string, which acts as a proprietary token and is generated at user login.	
To leverage in-session methods, the user must log in through the SecurityService login() Method or impersonate() Method. Upon successful user authentication from SecurityService, BI Publisher server generates a bipSessionToken string. This bipSessionToken string can be used to perform all in-session operations in this guide.	
As a Web services developer, you may need to see the SOAP request messages being used to invoke Web services along with the SOAP responses to those request messages. To do this, you can use the Apache Axis TCP Monitor utility. With this utility, you can monitor the SOAP message flow without requiring you to perform any special configuration, restarting the server, or gaining access to the computer where BI Publisher is running.	
To install TCP Monitor, go to the Apache website (apache.org), and download axis.jar to your computer.	
To start TCP Monitor, open a command window and cd to the directory where you downloaded axis.jar. Then, from the command line enter the following:	
% java -classpath axis.jar org.apache.axis.utils.tcpmon	
You should see the following screen:	
Figure 1-1 Sample Axis TCP Monitor Window	
To configure TCP Monitor:	
7777	
. mypublisher.foobar.com.example	
. 9704	
. Now you can start a browser, SOAP utility, or your application, and run commands against your local computer using the listen port on the local computer (for example, localmachine:7777/xmlpserver	
). TCP Monitor will route those requests to the target host and port. From there, you will see the SOAP request and response messages, which facilitates debugging.	
This chapter provides details on the data types that Oracle BI Publisher Web services use or define.	
It contains the following sections:	
Oracle BI Publisher Web services use the following base data types:	
Table 2-1 Base Data Types	
Base Type	Description
---	---
xsd:boolean	Boolean
xsd:dateTime	Date and Time
xsd:int	Integer
xsd:string	String
xsd:base64Binary	64-bit binary
BI Publisher Web Services use document/literal formats. The mapping between Web service XML schema data types and Java data types depends on the SOAP development environment. The following table shows mappings for the Oracle JDeveloper environment:	
Table 2-2 XML-to-Java Data Type Mappings	
Base Type	Oracle JDeveloper
---	---
xsd:boolean	java.lang.Boolean
xsd:dateTime	java.util.Date
xsd:int	java.lang.Integer
xsd:string	java.lang.String
xsd:base64Binary	java.lang.Byte
Oracle BI Publisher Web services define and use the following complex data types:	
Use this data type to hold an array of strings, such as for objects contained in the catalog.	
Use this data type to hold an array of EMailDeliveryOption objects.	
Table 2-4 Fields Provided by ArrayOfEMailDeliveryOption	
Field	Description
---	---
EMailDeliveryOption[] item	
Use this data type to hold an array of FaxDeliveryOption objects.	
Table 2-5 Fields Provided by ArrayOfFaxDeliveryOption	
Field	Description
---	---
FaxDeliveryOption[] item	
Use this data type to hold an array of FTPDeliveryOption objects.	
Table 2-6 Fields Provided by ArrayOfFTPDeliveryOption	
Field	Description
---	---
FTPDeliveryOption[] item	
Use this data type to hold an array of objects contained in the catalog.	
Table 2-7 Fields Provided by ArrayOfItemData	
Field	Description
---	---
ItemData[] item	
Use this data type to hold an array of JobInfo objects.	
Table 2-8 Fields Provided by ArrayOfJobInfo	
Field	Description
---	---
JobInfo[] item	
Use this data type to hold an array of JobOutput objects.	
Table 2-9 Fields Provided by ArrayOfJobOutput	
Field	Description
---	---
JobOutput[] item	
Use this data type to hold an array of JobOutputDelivery objects.	
Table 2-10 Fields Provided by ArrayOfJobOutputDelivery	
Field	Description
---	---
JobOutputDelivery[] item	
Use this data type to hold an array of LocalDeliveryOption objects.	
Table 2-11 Fields Provided by ArrayOfLocalDeliveryOption	
Field	Description
---	---
LocalDeliveryOption[] item	
Use this data type to hold an array of MetaData objects.	
Table 2-12 Fields Provided by ArrayOfMetaData	
Field	Description
---	---
MetaData[] item	
Use this data type to hold an array of ParamNameValue objects (field name-value pairs).	
Table 2-13 Fields Provided by ArrayOfParamNameValue	
Field	Description
---	---
ParamNameValue[] item	
Use this data type to hold an array of PrintDeliveryOption objects.	
Table 2-14 Fields Provided by ArrayOfPrintDeliveryOption	
Field	Description
---	---
PrintDeliveryOption[] item	
Use this data type to hold an array of strings.	
Use this data type to hold an array of TemplateFormatLabelValue objects (template label-value pairs).	
Table 2-16 Fields Provided by ArrayOfTemplateFormatLabelValue	
Field	Description
---	---
TemplateFormatLabelValue[] item	
Use this data type to hold an array of TemplateFormatsLabelValues objects. ArrayOfTemplateFormatsLabelValues is included in the ReportDefinition complex data type to contain the specific fields to describe the available template formats.	
Table 2-17 Fields Provided by ArrayOfTemplateFormatLabelValue	
Field	Description
---	---
TemplateFormatsLabelValues[] item	
Use this data type to hold an array of WebDAVDeliveryOption objects.	
Table 2-18 Fields Provided by ArrayOfWebDAVDeliveryOption	
Field	Description
---	---
WebDAVDeliveryOption[] item	
Use this data type to dynamically specify a data source when using the runReport() method. See Section 4.19, "runReport() Method."	
BIPDataSource is used by the ReportRequest complex data type.	
The following table lists the fields:	
Table 2-19 Fields Provided by BIPDataSource	
Field	Description
---	---
JDBCDataSource JDBCDataSource	Contains the elements to specify a JDBC data source. See Section 2.3.28, "JDBCDataSource."
FileDataSource fileDataSource	Contains the elements to specify a file data source. See Section 2.3.25, "FileDataSource."
Use this data type to hold objects contained in the catalog.	
Table 2-20 Fields Provided by CatalogContents	
Field	Description
---	---
ArrayOfItemData catalogContents	
Use this data type to return information about an object in the catalog. This data type is returned by the following methods:	
Table 2-21 Fields Provided by CatalogObjectInfo	
Field	Description
---	---
String accessPermissions	The permissions that are required to access the catalog object.
String[] availableLocales	The array of locales available to the catalog object.
long creationDate	The creation date of the catalog object.
String description	The description of the catalog object.
String displayName	The display name for the catalog object.
long lastModifiedDate	The date the catalog object was last modified.
String objectAbsolutePath	The absolute path to the catalog object.
String objectName	The name of the catalog object.
String objectSubType	The subtype of the catalog object. For Folder object, object type and subtype are Folder. For Report object, object type is ReportItem and subtype is xdo. For Data Model object, object Type is ReportItem and subtype is xdm. For Style Template object, object type is StyleTemplate and subtype is RTF or XSL. For Sub Template object, object Type is SubTemplate and subtype is RTF or XSL.
String objectType	The type of catalog object. Valid values are:
String owner	The owner of the catalog object.
Use this data type to define the specifications to deliver a report to multiple destinations.	
This data type is used by the DeliveryRequest and ScheduleRequest complex data types.	
The following table lists the fields:	
Table 2-22 Fields Provided by DeliveryChannels	
Field	Description
---	---
ArrayOfEMailDeliveryOption emailOptions	
ArrayOfFaxDeliveryOption faxOptions	
ArrayOfFTPDeliveryOption ftpOptions	
ArrayOfLocalDeliveryOption localOptions	
ArrayOfPrintDeliveryOption printOptions	
ArrayOfWebDAVDeliveryOption webDAVOption	
Use this data type to define the specifications to deliver a report to multiple destinations.	
The following table lists the fields:	
Table 2-23 Fields Provided by DeliveryRequest	
Field	Description
---	---
String contentType	The content type of the generated document. Possible values are: "text/html;charset=UTF-8" "text/plain;charset=UTF-8" "application/pdf" "application/vnd.ms-powerpoint" "application/vnd.ms-powerpoint" "application/vnd.ms-excel" "application/msword" "application/x-shockwave-flash" "text/xml" "message/rfc822"
DeliveryChannels deliveryChannels	
byte[] documentData	The output document.
BIPDataSource dynamicDataSource	
Use this data type to return data in the response for the getDeliveryServiceDefinition() Method. Use this method to obtain information about the delivery servers set up for BI Publisher.	
The following table lists the fields:	
Table 2-24 Fields Provided by DeliveryServiceDefinition	
Field	Description
---	---
ArrayOf_xsd_String EMailServerNames	The list of e-mail server names returned in the ArrayOf_xsd_string data type. See Section 2.3.1, "ArrayOf_xsd_string."
ArrayOf_xsd_String FTPServerNames	The list of FTP server names returned in the ArrayOf_xsd_stringdata type. See Section 2.3.1, "ArrayOf_xsd_string."
ArrayOf_xsd_String HTTPServerNames	The list of HTTP server names returned in the ArrayOf_xsd_string data type. See Section 2.3.1, "ArrayOf_xsd_string."
ArrayOf_xsd_String SFTPServerNames	The list of SFTP server names returned in the ArrayOf_xsd_string data type. See Section 2.3.1, "ArrayOf_xsd_string."
ArrayOf_xsd_String defaultServerNames	The list of the default server names for each defined type, returned in the ArrayOf_xsd_string data type. See Section 2.3.1, "ArrayOf_xsd_string."
ArrayOf_xsd_String faxServerNames	The list of fax server names returned in the ArrayOf_xsd_string data type. See Section 2.3.1, "ArrayOf_xsd_string."
ArrayOf_xsd_String printerNames	The list of printer names returned in the ArrayOf_xsd_stringdata type. See Section 2.3.1, "ArrayOf_xsd_string."
ArrayOf_xsd_Stringg webDAVServerNames	The list of WebDAV server names returned in the ArrayOf_xsd_string data type. See Section 2.3.1, "ArrayOf_xsd_string."
Use this data type to define the specifications to deliver a report through e-mail.	
This data type is used by the ArrayOfEMailDeliveryOption complex data type.	
The following table lists the fields:	
Table 2-25 Fields Provided by EMailDeliveryOption	
Field	Description
---	---
String emailBCC	The e-mail addresses to receive blind copies of the e-mail.
String emailBody	A text string that will appear as the body of the e-mail.
String emailCC	The e-mail addresses to receive copies of the e-mail.
String emailFrom	Required. The e-mail address that will appear as the From address. If this field is empty, a SOAP fault is thrown with the following message:
String emailReplyTo	The e-mail address to appear in the Reply-to field.
String emailServerName	The e-mail server name, for example: "Oracle Mail".
String emailSubject	The subject line of the e-mail.
String emailTo	Required. The addresses to which to send the e-mail. If this field is empty, a SOAP fault is thrown with the following message:
Use this data type to define the options to set for facsimile (fax) delivery of a report.	
This type is used in the ArrayOfFaxDeliveryOption complex data type.	
Table 2-26 Fields Provided by FaxDeliveryOption	
Field	Description
---	---
String faxNumber	Required. The number to which to send the fax (for example,
String faxServer	Required. The fax server (defined on the BI Publisher server) to which to send the fax (for example,
Use this data type to dynamically create a connection to a file data source when you run a report. You can specify a direct path to a location on your server, or indicate that the file is in the temporary directory	
This data type is used in the BIPDataSource complex data type.	
The following table lists the fields:	
Table 2-27 Fields Provided by FileDataSource	
Field	Description
---	---
String dynamicDataSourcePath	To specify a path to a data source that resides on an available server, specify the full path to the data source and set temporaryDataSource to "false". For example: "D:\BI\OracleBI\xmlp\XMLP\DemoFiles\Balance.xml")" If the file is located in the system temporary directory, set temporaryDataSource to true, and specify the file name here. For example: "Balance.xml".
boolean temporaryDataSource	Set to "true" when the file data source is in the system temporary directory. Set to "false" when dynamicDataSourcePath specifies the full path.
Use this data type to define the options to set for FTP delivery of a report.	
This type is used in the ArrayOfFTPDeliveryOption complex data type.	
Table 2-28 Fields Provided by FTPDeliveryOption	
Field	Description
---	---
String ftpServerName	Required. The FTP server name (for example,
String ftpUserName	A user name for the FTP server.
String ftpUserPassword	The password for the user entered.
String remoteFile	The name to assign the file on the server. For example: report.pdf.
boolean sftpOption	The value
Use this data type to return object metadata of an object stored in the catalog.	
Table 2-29 Fields Provided by ItemData	
Field	Description
---	---
String absolutePath	The path to the report object. For example: /HR Manager/ HR Reports/Employee Listing.xdo
dateTime creationDate	The creation date of the report object.
String displayName	The display name for the report object. For example: Employee Listing
String fileName	The file name for the report object (for example, Employee Listing.xdo).
dateTime lastModified	The last modified date for the report object.
String lastModifier	The user name of the last person to modify the report.
String owner	The user name of the owner of the report.
String parentAbsolutePath	The absolute path of the parent folder. For example, "/HR Manager/HR Reports" is the parentAbsolutePath for the report having the absolute path "/HR Manager/HR Reports/Employee Listing.xdo".
String type	The item type. Possible values are: "report" or "folder".
Use this data type to dynamically create a connection to a JDBC data source when you run a report.	
This data type is used by the BIPDataSource complex data type.	
The following table lists the fields:	
Table 2-30 Fields Provided by JDBCDataSource	
Field	Description
---	---
String JDBCDriverClass	The JDBC driver class for the data source (for example, oracle.jdbc.OracleDriver).
String JDBCDriverType	The driver type as defined in the BI Publisher data source definition page (for example, Oracle 9i/10g/11g).
String JDBCPassword	The password for the data source as defined in the BI Publisher data source definition page.
String JDBCURL	The connection string for the data source (for example, jdbc:oracle:thin:@mydatabase.foobar.com.example:1521: orcl).
String JDBCUserName	The user name for the data source as defined in the BI Publisher data source definition page.
String dataSourceName	The Data Source Name assigned to the data source in the BI Publisher data source definition page (for example, Oracle).
The collection of information about a job request.	
Table 2-31 Fields Provided by JobDetail	
Field	Description
---	---
boolean bursting	The value
String burstingParameters	The parameters for the bursting engine.
dateTime created	The date the job was created.
String dataLocator	When the storageType is DB, dataLocator is the primary key for retrieving the data from database.
boolean deleted	The value
String deliveryDescription	The description for the job delivery.
String deliveryParameters	The parameters for the delivery channels.
dateTime endDate	The date the job is scheduled to end.
int instanceId	The numeric identification for the job instance.
String issuer	The issuer of the job.
String jobGroup	The group to which the job belongs.
int jobId	The numeric identification for the job instance.
int jobSetId	Inactive. Do not use.
String jobType	The type of job.
dateTime lastUpdated	The date and time the job was last updated.
String locale	The locale to which the job belongs.
String notificationParameters	The notification parameters for the job.
String owner	The name of the job owner.
int parentJobId	The numeric identifier for the parent of the job.
boolean public	Whether the job is viewable by other users (true) or not (false).
String reportParameters	The parameters for the report.
String reportUrl	The URL to the job output.
String runType	The type of job (either Single or Recurring).
String scheduleContext	The context for the job schedule when external applications submit the report.
String scheduleDescription	The description of the job schedule.
String scheduleParameters	The parameters of the job schedule.
String scheduleSource	The source of the job schedule, which is used with the scheduleContext to provide information on external applications.
dateTime startDate	The date the job is scheduled to start or started.
String status	The status of the job.
String statusDetail	The details of the job status.
String storageType	The storage type for the job. Supported value is
String userDescription	A user-assigned description for the job.
String userJobName	The user-assigned named for the job.
boolean xmlDataAvailable	Whether XML data for the job is available (true) or not (false).
boolean xmlDataCompressed	A value of true indicates the XML data for the job is or will be compressed.
String xmlDataContentType	The content type of the XML data.
String xschurl	The URL of the report.
This data type is used by the following methods to define the filter criteria for a specific report job:	
The fields in this data type identify the specific report job or jobs about which you want information returned.	
Table 2-32 Fields Provided by JobFilterProperties	
Field	Description
---	---
String endTime	The time the job is scheduled to end or ended.
String endTimeOperator	The operator for endTime. Valid values are "Equals or Earlier Than", "Equals" or "Earlier Than".
long jobID	The numeric identification assigned by BI Publisher for the job request.
String jobName	The user-assigned job name. Valid values are "Contains" or "Equals".
String jobNameOperator	The operator of the jobName.
String owner	The name of the job's owner.
String ownerOperator	The operator for owner. Valid values are "Contains" or "Equals".
String reportName	The user-assigned named for the job.
String reportNameOperator	The operator for reportName. Valid values are "Contains" or "Equals".
String scope	The scope of the job. Valid values are "All", "Private" or "Public".
String startTime	The time the job is scheduled to start or started.
String startTimeOperator	The operator for startTime. Valid values are "Equals or Later Than", "Equals" or "Later Than".
String status	The current status for the job.
The collection of information about a job request.	
Table 2-33 Fields Provided by JobInfo	
Field	Description
---	---
boolean burstingJob	A value of
dateTime created	The date the job was created.
boolean deleted	The value of
dateTime endDate	The date the job is scheduled to end or ended.
long instanceId	The numeric identification for the scheduled job request.
long jobID	The numeric identification assigned by BI Publisher to the job request.
String jobType	The type of job.
dateTime lastUpdated	The date and time the job was last updated.
String owner	The owner of the job.
long parentJobId	The numeric identification for the parent of the scheduled job request.
boolean public	True indicates the report is a member of a report set. In the current implementation this will always return false.
String reportUrl	The report absolute path URL, for example: /HR Manager/Employee Reports/Employee Salary Report.xdo.
dateTime startDate	The date the job is scheduled to start or started.
String status	The status of the scheduled job request. Valid values are: Canceled", "Done", "Scheduled", "Suspended", or "Unknown".
String statusDetail	Additional details for the status.
String userJobName	The username of the user submitting the job request.
Use this data type to return an array of JobInfo objects.	
Table 2-34 Fields Provided by JobInfoList	
Field	Description
---	---
ArrayOfJobInfo jobInfoList	An array of JobInfo objects. See Section 2.3.6, "ArrayOfJobInfo.".
Use this data type to return a description of job outputs.	
Table 2-35 Fields Provided by JobOutput	
Field	Description
---	---
String burstKey	The key used to split the data for each bursted job.
dateTime created	The date the report job was created.
boolean deleted	The value "true" indicates the job output was deleted.
boolean documentDataAvailable	True indicates that the user selected the "Save Output" option when the report was scheduled.
boolean documentDataCompressed	True indicates that the document data is compressed.
String documentDataContentType	The content type of the generated document. Possible values are: "text/html;charset=UTF-8" "text/plain;charset=UTF-8" "application/pdf" "application/vnd.ms-powerpoint" "application/vnd.ms-excel" "application/msword" "application/x-shockwave-flash" "text/xml" "message/rfc822"
long jobID	The identification number assigned to the job by BI Publisher.
String jobName	The user-assigned job name.
dateTime lastUpdated	The date and time the job was last updated.
long outputID	The identification of the report in history. One scheduled JobID can be associated with multiple outputIDs or historyIDs. This is because one scheduled report can be executed or republished multiple times.
String outputName	The name assigned to the output.
long parentOutputId	The output ID of the parent request.
String status	Valid values are: "Completed", "Error", "Running", "Scheduled", "Suspended" and "Unknown"
String statusDetail	Detailed status information from the BI Publisher server.
Use this data type to return a description of job output.	
Table 2-36 Fields Provided by JobOutputDelivery	
Field	Description
---	---
dateTime created	The date the report job was created.
long deliveryID	The primary key to identify the job delivery.
byte[] deliveryParameters	The parameters for the deliverychannels.
dateTime lastUpdated	The date and time the job was last updated.
long outputID	The identification of the report in history. One scheduled JobID can be associated with multiple outputIDs or historyIDs. This is because one scheduled report can be executed or republished multiple times.
long parentDeliveryID	The delivery ID of the parent request.
String status	Valid values are: "Completed", "Error", "Running", "Scheduled", "Suspended" and "Unknown"
String statusDetail	Detailed status information from the BI Publisher server.
This data type is a wrapper class implemented to return an array of JobOutputDelivery objects.	
Table 2-37 Fields Provided by JobOutputDeliverysList	
Field	Description
---	---
ArrayOfJobOutputDelivery jobOutputDeliveryList	
Use this data type to return an array of JobOutput objects.	
Table 2-38 Fields Provided by JobOutputsList	
Field	Description
---	---
ArrayOfJobOutput jobOutputList	
Use this data type to return the status of a job request.	
Table 2-39 Fields Provided by JobStatus	
Field	Description
---	---
String jobID	The numeric identification assigned by BI Publisher to the job request.
String jobStatus	The current status of the job.
String message	Details on the job status.
The options to set for delivery of a report to the BI Publisher repository.	
This type is used in the ArrayOfLocalDeliveryOption complex data type.	
Table 2-40 Fields Provided by LocalDeliveryOption	
Field	Description
---	---
String destination	Required. The file path to the BI Publisher repository on the local server. This field supports concatenation of the directory path and the file path. If empty, a SOAP fault is thrown with the following message:
Use the data type to set the name-value pair for a MetaData object.	
Table 2-41 Fields Provided by MetaData	
Field	Description
---	---
String metaDataName	The name of the metadata.
String metaDataValue	The metadata content.
Use this data type to return a list of MetaData objects.	
Table 2-42 Fields Provided by MetaDataList	
Field	Description
---	---
ArrayOfMetaData metaDataList	
This data type describes parameters defined for a reports and templates in BI Publisher.	
The ParamNameValue data type is used in the ArrayOfParamNameValue, which is included in the ReportRequest, ReportDefinition, and JobInfo data types. ParamNameValue is also returned by the getTemplateParameters() Method and getReportParameters() Method.	
Table 2-43 Fields Provided by ParamNameValue	
Field	Description
---	---
String UIType	The type of parameter as defined in the BI Publisher data model user interface. Valid values include:
String dataType	Valid values include:
String dateFormatString	If UIType is "Date", this specifies the Date Format String. The date format string must be a Java date format (for example, MM-DD-YYYY).
String dateFrom	If UIType is "Date", this specifies the begin value of the date.
String dateTo	If UIType is "Date", this specifies the end value of the date.
String defaultValue	Specifies the default value of the parameter.
String fieldSize	For parameter types "Text" and "Date", specifies the text field size for the parameter.
String label	For all parameter types except "Hidden", specifies the display label for the parameter.
ArrayOfString lovLabels	If the parameter type is "Menu", specifies the values displayed in the list of values to the user.
boolean multiValuesAllowed	
String name	The parameter name.
boolean refreshParamOnChange	For parameter types "Text" and "Menu", a value of
boolean selectAll	For parameter type "Menu", a value of
boolean templateParam	A value of
boolean useNullForAll	For parameter type "Menu", a value of
ArrayOfString values	
This data type is a wrapper class that returns an array of ParamNameValue objects.	
Table 2-44 Fields Provided by ParamNameValues	
Field	Description
---	---
ArrayOfParamNameValue listOfParamNameValues	
Use this data type to set the options for printer delivery of a report.	
This type is used in the ArrayOfPrintDeliveryOption complex data type.	
Table 2-45 Fields Provided by PrintDeliveryOption	
Field	Description
---	---
String printNumberOfCopy	The number of copies to print.
String printOrientation	Valid values are "portrait" or "landscape".
String printRange	A range of pages to print. Separate multiple ranges with a comma (for example, "1,3-5,8-10").
String printSide	Valid values are "Single sided", "Double Sided Long Edge (Duplex)", and "Double Sided Short Edge (Tumble)".
String printTray	Valid values are "Default", "Tray 1", "Tray 2", and "Tray 3".
String printerName	Required. The name of the printer to which to send the report. If empty, a SOAP fault is thrown with the following message:
Use this data type to handle large report data sets, or to upload and download report data in smaller data chunks.	
Table 2-46 Fields Provided by ReportDataChunk	
Field	Description
---	---
byte[] reportDataChunk	Byte[] array representing binary report data transported between the BI Publisher client and server.
String reportDataFileID	The identifier for the data file of the report on the BI Publisher server.
long reportDataOffset	The offset value for the location of the previously downloaded report data file.
Use this data type to define a report object. This is the object returned by the getReportDefinition() Method.	
Table 2-47 Fields Provided by ReportDefinition	
Field	Description
---	---
boolean autoRun	True indicates that the report property Auto Run is turned on.
boolean cacheDocument	True indicates that the report property Enable document cache is turned on.
boolean controledByExtApp	Whether the report definition is controlled by an external application (true) or not (false).
String dataModelURL	The .xdm location from where to get the Data Model definition.
String defaultOutputFormat	The default output format. Valid values include:
String defaultTemplateId	The default template identified for the report.
boolean diagnostics	True indicates that diagnostics have been turned on for the report.
String ESSJobName	The Oracle Enterprise Scheduler Service (ESS) job name. Used with Oracle Fusion Applications only.
String ESSPackageName	The Oracle Enterprise Scheduler Service (ESS) package name. Used in conjunction with ESSJobName. Used with Oracle Fusion Applications only.
ArrayOfTemplateFormatsLabelValues listOfTemplateFormatsLabelValues	Passes the list of template format labels through the ArrayOfTemplateFormatsLabelValues data type. See Section 2.3.15, "ArrayOfTemplateFormatLabelValues."
boolean onLine	True indicates the property "Run report online" is turned on for the report.
boolean openLinkInNewWindow	True indicates the property "Open Links in New Window" is turned on for the report.
integer parameterColumns	The value of the report property "Parameters per line."
ArrayOfString parameterNames	Passes the parameter names defined for the report through the ArrayOfString data type. See Section 2.3.13, "ArrayOfString."
String reportDefnTitle	Inactive. Do not use.
String reportDescription	The user-assigned description of the report.
String reportName	The user-assigned name for the report.
ArrayOfParamNameValue reportParameterNameValues	Passes the report name-value pairs through the ArrayOfParamNameValue data type. See Section 2.3.11, "ArrayOfParamNameValue."
String reportType	Inactive. Do not use.
boolean showControls	True indicates the report property "Show controls" has been turned on.
boolean showReportLinks	True indicates the report property "Show report links" has been turned on.
ArrayOfString templateIds	Passes the layout names of the report templates through the ArrayOfString data type. See Section 2.3.13, "ArrayOfString."
Use this data type to define the settings needed to run a report. Note that allowable values for attributeFormat	
will vary according to the type of template used (for example, PDF templates can only generate PDF output.)	
Table 2-48 Fields Provided by ReportRequest	
Field	Description
---	---
String attributeCalendar	The formatting calendar to use for the report request. Valid values are: "Gregorian", "Arabic Hijrah", "English Hijrah", "Japanese Imperial", "Thai Buddha", and "ROC Official".
String attributeFormat	The output format of the requested report. Valid values are: pdf, rtf, html, excel, excel2000, mhtml, csv, data, flash, and powerpoint.
String attributeLocale	The locale selection for the report. Example: fr-FR
String attributeTemplate	The template to apply to the report. For example: Employeelisting.rtf.
String attributeTimeZone	Specifies the time zone to use for the request, using a supported Java time zone ID. For example: "America/Los_Angeles".
boolean byPassCache	True indicates to bypass document cache.
BIPDataSource dynamicDataSource	If the data source for the report is not defined, you can dynamically define it. See Section 2.3.17, "BIPDataSource."
boolean flattenXML	True indicates that the XML is to be flattened. This flag is used for the Analyzer for Microsoft Excel because Excel requires XML data type to be flattened.
ParamNameValues parameterNameValues	The parameter name-value pairs to be used in the submission of this report request, passed through the ParamNameValues data type. See Section 2.3.42, "ParamNameValues."
String reportAbsolutePath	The absolute path to the report in the BI Publisher repository. For example: /HR Manager/HR Reports/Employee Listing.xdo.
byte[] reportData	If you are providing the data directly for the report use this element to pass the data.
String reportOutputPath	Specifies the output path for the generated report.
String reportRawData	If raw XML data is used for the report, this element contains the XML data.
integer sizeOfDataChunkDownload	If you set flattenXML to true, or if you do not want to chunk the data, set this parameter to -1 to return all data back to the client.
MetaDataList XDOPropertyList	
Use this data type to define the settings needed to run a report. Note that allowable values for attributeFormat	
will vary according to the type of template used (for example, PDF templates can only generate PDF output.)	
Table 2-49 Fields Provided by ReportResponse	
Field	Description
---	---
MetaDataList metaDataList	
byte[] reportBytes	The report binary data output.
String reportContentType	The report content type. Possible values include: "text/html;charset=UTF-8" "text/plain;charset=UTF-8" "application/pdf" "application/vnd.ms-powerpoint" "application/vnd.ms-excel" "application/msword" "application/x-shockwave-flash" "text/xml" "message/rfc822"
String reportFileID	The numeric identification for the report file.
String reportLocale	The locale selected for the report (for example,
The options to schedule a report.	
Table 2-50 Fields Provided by ScheduleRequest	
Field	Description
---	---
boolean bookBindingOutputOption	Whether the book binding output is enabled (true) or not (false).
String dataModelUrl	The location of the .xdm file from which to obtain the Data Model definition.
DeliveryChannels deliveryChannels	
String endDate	The end date of the schedule.
String jobLocale	The locale to use for the scheduled requests. Example: fr-FR
String jobTZ	The time zone to use for the scheduled requests.
boolean mergeOutputOption	Whether the merge output option is enabled (true) or not (false).
String notificationPassword	The HTTP notification server password when scheduling notification through an HTTP server.
String notificationServer	The name of the HTTP server used for notification.
String notificationTo	E-mail addresses to which to send notifications.
String notificationUserName	The user name for the HTTP server used for notification.
boolean notifyHttpWhenFailed	True indicates to send a notification when the job request fails.
boolean notifyHttpWhenSuccess	True indicates to send a notification when the job request succeeds.
boolean notifyHttpWhenWarning	True indicates to send a notification when the job completes with a warning.
boolean notifyWhenFailed	True indicates to send a notification when the job request fails.
boolean notifyWhenSuccess	True indicates to send a notification when the job request succeeds.
boolean notifyWhenWarning	True indicates to send a notification when the job completes with a warning.
String recurrenceExpression	The expression that defines a recurring schedule.
String recurrenceExpressionType	The type of expression defined for a recurring schedule. Valid value is
integer repeatCount	The number of times to repeat the schedule. For the recursive scheduling of a report, startDate must not be null, and repeatCount repeatInterval should be greater than 0 for any meaningful schedule. The endDate can be null.
integer repeatInterval	The interval between two scheduled jobs in seconds.
ReportRequest reportRequest	Information about the request included through the ReportRequest data type. See Section 2.3.46, "ReportRequest."
boolean saveDataOption	True indicates that the report data from the scheduled request run will be saved.
boolean scheduleBurstingOption	True indicates that the scheduled requests will be burst.
boolean schedulePublicOption	True indicates that the scheduled requests are to be made public.
String startDate	The date on which the schedule starts.
boolean useUTF8Option	True indicates that the Use UTF8 option is enabled.
String userJobDesc	The user-entered description for the scheduled job.
String userJobName	The user-entered name for the scheduled job.
To specify the template format labels and values for a report. TemplateFormatLabelValue is included in the ArrayOfTemplateFormatLabelValue complex data type. The elements that comprise TemplateFormatLabelValue are as follows:	
Table 2-51 Fields Provided by TemplateFormatLabelValue	
Field	Description
---	---
String templateFormatLabel	The label that displays for a template format. Examples include: "HTML" "PDF" "Excel"
String templateFormatValue	The template format value that corresponds to the label. Examples include: "html" "pdf" "excel"
Provides detailed information about template formats stored in the BI Publisher repository. TemplateFormatsLabelValues is included in the ArrayOfTemplateFormatLabelValues complex data type.	
Table 2-52 Fields Provided by TemplateFormatsLabelValues	
Field	Description
---	---
boolean active	Whether the template is active (true) or not (false).
boolean applyStyleTemplate	Whether to apply the style template (true) or not (false).
boolean default	Whether the template is the default template (true) or not (false).
ArrayOfTemplateFormatLabelValue listOfTemplateFormatLabelValue	Contains the TemplateFormatLabelValue label-value pairs. See Section 2.3.14, "ArrayOfTemplateFormatLabelValue."
ArrayOfString templateAvailableLocales	The available locale options defined for a template passed in the ArrayOfString data type. See Section 2.3.13, "ArrayOfString."
String templateBaseLocale	The base locale options defined for a template.
String templateDefaultLocale	The default locale options defined for a template.
String templateID	The name assigned to the template in BI Publisher, for example: "Employee Listing".
String templateType	The type of template, for example: "rtf" or "pdf".
String templateURL	The template file name in the BI Publisher repository, for example: "Employee Listing.rtf".
boolean viewOnline	Whether the template can be viewed online (true) or not (false).
The options to set for Web-based Distributed Authoring and Versioning (WebDAV) delivery of a report.	
This type is used in the ArrayOfWebDAVDeliveryOption complex data type.	
Table 2-53 Fields Provided by WebDAVDeliveryOption	
Field	Description
---	---
String deliveryAuthType	Authentication type. Valid values are: None, Basic, Digest
String password	If a proxy server has been set up, the password required to access the proxy server.
String remoteFilePath	The path to directory on the remote server to which to deliver the report file.
String server	Required. The WebDAV server name (for example,
String userName	If a proxy server has been set up, the user name required to access the proxy server.
This chapter provides details on the ScheduleService methods that you can use to interact with the BI Publisher scheduler. This includes methods for scheduling report jobs, retrieving report outputs, and managing report histories.	
This chapter contains the following sections:	
Note: For information on debugging applications built with BI Publisher Web services, see Section 1.3, "Debugging Web Service Applications."	
Use the cancelSchedule() method to cancel a currently running scheduled job.	
Signature	
boolean cancelSchedule(String jobInstanceID, String userID, String password);	
Table 3-1 Parameters for cancelSchedule() Method	
Parameter	Description
---	---
String jobInstanceID	The ID assigned to the instance of the job to be canceled. The jobInstanceID is a string of integers.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Cancels the schedule associated with the bipSessionToken string for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
String cancelScheduleInSession(String jobInstanceID, String bipSessionToken);	
Table 3-2 Parameters for cancelScheduleInSession() Method	
Parameter	Description
---	---
String jobInstanceID	The ID assigned to the instance of the job that generated the output. The jobInstanceID is a string of integers.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the deleteJobHistory() method to perform a "soft" delete the historical information about a report job, as opposed to the purgeJobHistory() method, which performs a "hard" (permanent) deletion. The deleteJobHistory() method must precede the purgeJobHistory() method.	
boolean deleteJobHistory(String instanceJobID, String userID, String password);	
Signature	
Table 3-3 Parameters for deleteJobHistory() Method	
Parameter	Description
---	---
String instanceJobID	The ID assigned to the instance of the job that generated the output. The instanceJobID is a string of integers.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Deletes the job history associated with the bipSessionToken string for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean deleteJobHistoryInSession(String jobInstanceID, String bipSessionToken);	
Table 3-4 Parameters for deleteJobHistoryInSession() Method	
Parameter	Description
---	---
String jobInstanceID	The ID assigned to the instance of the job that generated the output. The jobInstanceID is a string of integers.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the deleteSchedule() method to delete a scheduled job from the scheduler queue.	
Signature	
boolean deleteSchedule(String jobInstanceID, String userID, String password);	
Table 3-5 Parameters for deleteSchedule() Method	
Parameter	Description
---	---
String jobInstanceID	The ID assigned to the instance of the job to be deleted. The jobInstanceID is a string of integers.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Deletes the schedule associated with the bipSessionToken string for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean deleteScheduleInSession(String jobInstanceID, String bipSessionToken);	
Table 3-6 Parameters for deleteScheduleInSession() Method	
Parameter	Description
---	---
String jobInstanceID	The ID assigned to the instance of the job that generated the output. The jobInstanceID is a string of integers.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the deliveryService() method to deliver a document from source to destination through the specified delivery channel.	
Signature	
String deliveryService(DeliveryRequest deliveryRequest, String userID, String password);	
Table 3-7 Parameters for deliveryService() Method	
Parameter	Description
---	---
DeliveryRequest deliveryRequest	The DeliveryRequest object. See Section 2.3.21, "DeliveryRequest."
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Delivers a document associated with the deliveryRequest and bipSessionToken string for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
String deliveryServiceInSession(String jobInstanceID, String bipSessionToken);	
Table 3-8 Parameters for deliveryServiceInSession() Method	
Parameter	Description
---	---
DeliveryRequest deliveryRequest	The DeliveryRequest object. See Section 2.3.21, "DeliveryRequest."
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Saves a report document into the local temporary directory of the BI Publisher server, and returns the fileID of the user for later downloads. This implementation is for performance concern in case that report data size is significant.	
Signature	
String downloadDocumentData(String JobOutputID, String userID, String password);	
Table 3-9 Parameters for downloadDocumentData() Method	
Parameter	Description
---	---
String jobOutputID	The ID assigned to the output. The jobOutputID is a string of integers.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Downloads the document report associated with the jobInstanceID and bipSessionToken string for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
String downloadDocumentDataInSession(String jobInstanceID, String bipSessionToken);	
Table 3-10 Parameters for downloadDocumentDataInSession() Method	
Parameter	Description
---	---
String jobInstanceID	The ID assigned to the instance of the job that generated the output. The jobInstanceID is a string of integers.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Returns XML data used to generate a report document. It returns raw data in XML format.	
Signature	
downloadXMLData(String jobInstanceID, String userID, String password);	
Table 3-11 Parameters for downloadXMLData() Method	
Parameter	Description
---	---
String jobInstanceID	The ID assigned to the XML data. The jobInstanceID is a string of integers.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Downloads the XML data for a document report associated with the bipSessionToken string for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
String downloadXMLDataInSession(String jobInstanceID, String bipSessionToken);	
Table 3-12 Parameters for downloadXMLDataInSession() Method	
Parameter	Description
---	---
String jobInstanceID	The ID assigned to the instance of the job that generated the output. The jobInstanceID is a string of integers.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the getAllScheduledReportInfo() method to return information about all scheduled report jobs that match filter criteria passed through the JobFilterProperties object.	
Signature	
JobInfosList getAllScheduledReportInfo(JobFilterProperties filter, int beginIdx, String userID, String password);	
Table 3-13 Parameters for getAllScheduledReport() Method	
Parameter	Description
---	---
JobFilterProperties filter	The JobFilterProperties object specifies the specific criteria for the report jobs you want to return information about. See Section 2.3.30, "JobFilterProperties."
int beginIdx	The starting point of the index (default is
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use the getAllScheduledReportHistory() method to return information about all scheduled report histories that match filter criteria passed through the JobFilterProperties object.	
Signature	
JobInfosList getAllScheduledReportHistory(JobFilterProperties filter, int beginIdx, String userID, String password);	
Table 3-14 Parameters for getAllScheduledReportHistory() Method	
Parameter	Description
---	---
JobFilterProperties filter	The JobFilterProperties object specifies the specific criteria for the report jobs you want to return information about. See Section 2.3.30, "JobFilterProperties."
int beginIdx	The starting point of the index (default is
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use the getAllScheduledReportHistoryInSession() method to return information about all scheduled report histories that match filter criteria passed through the JobFilterProperties object and that are based on the bipSessionToken string for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
JobInfosList getAllScheduledReportHistoryInSession(JobFilterProperties filter, int beginIdx, String bipSessionToken);	
Table 3-15 Parameters for getAllScheduledReportHistoryInSession() Method	
Parameter	Description
---	---
JobFilterProperties filter	The JobFilterProperties object specifies the specific criteria for the report jobs you want to return information about. See Section 2.3.30, "JobFilterProperties."
int beginIdx	The starting point of the index (default is
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the getAllScheduledReportInSession() method to return information about all scheduled reports that match filter criteria passed through the JobFilterProperties object and that are based on the bipSessionToken string for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
JobInfosList getAllScheduledReportInSession(JobFilterProperties filter, int beginIdx, String bipSessionToken);	
Table 3-16 Parameters for getAllScheduledReportInSession() Method	
Parameter	Description
---	---
JobFilterProperties filter	The JobFilterProperties object specifies the specific criteria for the report jobs you want to return information about. See Section 2.3.30, "JobFilterProperties."
int beginIdx	The starting point of the index (default is
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the getDeliveryServiceDefinition() method to get the delivery service definition for a given userID and password. See deliveryService() Method.	
Signature	
DeliveryServiceDefinition getDeliveryServiceDefinition(String userID, String password);	
Table 3-17 Parameters for getDeliveryServiceDefinition() Method	
Parameter	Description
---	---
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use the getDeliveryServiceDefinitionInSession() method to get the delivery service definition based on the bipSessionToken of a given user. See deliveryService() Method.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
DeliveryServiceDefinition getDeliveryServiceDefinitionInSession(String bipSessionToken);	
Table 3-18 Parameters for getDeliveryServiceDefinitionInSession() Method	
Parameter	Description
---	---
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the getDocumentData() method to return the document generated by a BI Publisher scheduled job. You can use the JobOutputID returned from the scheduleReport() method to retrieve the generated report document.	
Note, the getDocumentData() method returns the byte[] of a report document, while the downloadDocumentData() Method saves the report document onto BI Publisher server as a local file. The latter method returns the file ID, enabling the user to download the report document later through the Delivery Service. This is for performance concerns in cases where a report document size is quite large.	
Signature	
byte[] getDocumentData(String JobOutputID, String userID, String password);	
Table 3-19 Parameters for getDocumentData() Method	
Parameter	Description
---	---
String JobOutputID	Job output assigned to the output. The output ID is a string of integers.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Returns the byte[] of a report document based on the jobOutputID and bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
byte[] getDocumentDataInSession(String jobOutputID, String bipSessionToken);	
Table 3-20 Parameters for getDocumentDataInSession() Method	
Parameter	Description
---	---
String jobOutputID	The ID assigned to the output. The jobOutputID is a string of integers.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the getScheduledJobInfo() method to return a JobDetail object that provides the details about a submitted job, including report parameters and other properties. This method retrieves all information stored in the database for a given jobInstanceID, userID, and password.	
Signature	
JobInfo getScheduledJobInfo(int jobInstanceID, String userID, String password);	
Table 3-21 Parameters for getScheduledJobInfo() Method	
Parameter	Description
---	---
int jobInstanceID	The ID of the job for which to return job information.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Returns a JobDetail object that provides the details for the job that's associated with a given jobInstanceID and the bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
JobDetail getScheduledJobInfoInSession(String jobInstanceID, String bipSessionToken);	
Table 3-22 Parameters for getScheduledJobInfoInSession() Method	
Parameter	Description
---	---
String jobInstanceID	The ID assigned to the job instance. The jobInstanceID is a string of integers.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the getScheduledReportdeliveryInfo() method to retrieve information about the delivery of a scheduled job output. For each scheduled Job, it could have multiple outputIDs. For each outputID, there could be multiple delivery info. See Section 2.3.35, "JobOutputDeliverysList."	
Signature	
JobOutputDeliverysList getScheduledReportDeliveryInfo(String jobOutputID, String userID, String password);	
Table 3-23 Parameters for getScheduledReportDeliveryInfo() Method	
Parameter	Description
---	---
String jobOutputID	The ID assigned to the output of the job for which you want information. The jobOutputID is a string of integers.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Returns a JobOutputDeliverysList object that provides the details for a given jobOutputID and the bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
JobOutputDeliverysList getScheduledReportDeliveryInfoInSession(String jobOutputID, String bipSessionToken);	
Table 3-24 Parameters for getScheduledReportDeliveryInfoInSession() Method	
Parameter	Description
---	---
String jobOutputID	The ID assigned to the job output. The jobOutputID is a string of integers.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the getScheduledReportOutputInfo() method to return information about a specific scheduled report output.	
Signature	
JobOutputsList getScheduledReportOutputInfo(String jobInstanceID, String userID, String password);	
Table 3-25 Parameters for getScheduledReportOutputInfo() Method	
Parameter	Description
---	---
String jobInstanceID	The ID of the job for which to return job information.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use the getScheduledReportOutputInfo() method to return information about a specific scheduled report output based on its jobInstanceID and the bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
JobOutputsList getScheduledReportOutputInfoInSession(String jobInstanceID, String bipTokenSession);	
Table 3-26 Parameters for getScheduledReportOutputInfoInSession() Method	
Parameter	Description
---	---
String jobInstanceID	The ID of the job for which to return job information.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the getXMLData() method to return, in XML format, the data document generated by a BI Publisher scheduled job. You can use the JobOutputID returned from the scheduleReport() method to retrieve the generated XML document.	
Note, the getXMLData() method returns the byte[] of a report document, while the downloadXMLData() Method saves the XML data on the BI Publisher server as a local file. The latter method returns the file ID, enabling the user to download the XML-based document later through the Delivery Service. This is for performance concerns in cases where a report document size is quite large.	
Signature	
byte[] getXMLData(String JobInstanceID, String userID, String password);	
Table 3-27 Parameters for getXMLData() Method	
Parameter	Description
---	---
String JobInstanceID	The ID assigned to the instance of the job that generated the output. The JobInstanceID is a string of integers.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Returns the byte[] of XML data based on the jobInstanceID and bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
byte[] getXMLDataInSession(String jobInstanceID, String bipSessionToken);	
Table 3-28 Parameters for getXMLDataInSession() Method	
Parameter	Description
---	---
String jobInstanceID	The ID assigned to the job instance. The jobInstanceID is a string of integers.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the purgeHistory() method to perform a "hard" delete of the historical information about a report job. That is, to permanently purge the information from the database.	
You must precede the purgeJobHistory() method with the deleteJobHistory() method, otherwise the following SOAP fault is thrown:	
purgeJobHistory failed due to job is not deleted. You have to delete JobHistory first prior to purge.	
Signature	
boolean purgeJobHistory(String instanceJobID, String userID, String password);	
Table 3-29 Parameters for purgeJobHistory() Method	
Parameter	Description
---	---
String instanceJobID	The ID assigned to the instance of the job that generated the output. The instanceJobID is a string of integers.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Permanently purges the job history from the database for the given instanceJobID and bipSessionToken of the given user. This action must be preceded by a deleteJobHistoryInSession.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean purgeJobHistoryInSession(String instanceJobID, String bipSessionToken);	
Table 3-30 Parameters for purgeJobHistoryInSession() Method	
Parameter	Description
---	---
String instanceJobID	The ID assigned to the job instance. The instanceJobID is a string of integers.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the resendScheduledReport() method to resend a previously-defined scheduled report. The resend action is respective to the outputJobID. There's no need to define any delivery channels options, as the previously-defined delivery parameters are used to perform the resend action.	
Signature	
boolean resendScheduledReport(String outputJobID, String userID, String password);	
Table 3-31 Parameters for resendScheduledReport() Method	
Parameter	Description
---	---
String outputJobID	The ID of the scheduled job to resend.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Resends a previously-defined scheduled report based on its associated outputJobID and the bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean resendScheduledReportInSession(String outputJobID, String bipSessionToken);	
Table 3-32 Parameters for resendScheduledReportInSession() Method	
Parameter	Description
---	---
String outputJobID	The ID of the scheduled job to resend.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the resumeSchedule() method to resume a schedule job that has been suspended.	
Signature	
boolean resumeSchedule(String jobInstanceID, String userID, String password);	
Table 3-33 Parameters for resumeSchedule() Method	
Parameter	Description
---	---
String jobInstanceID	The ID assigned to the instance of the job to be resumed. The jobInstanceID is a string of integers.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Resumes a scheduled job that was previously suspended based on its jobInstanceID and the bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean resumeScheduleInSession(String outputJobID, String bipSessionToken);	
Table 3-34 Parameters for resumeScheduleInSession() Method	
Parameter	Description
---	---
String jobInstanceID	The ID assigned to the instance of the job to be resumed. The jobInstanceID is a string of integers.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the scheduleReport() method to schedule the reports that are in the BI Publisher catalog. You can submit and run the reports immediately or create a job to schedule the reports to run. When you schedule reports you can also deliver reports to any of delivery types that are set up in your BI Publisher Enterprise Server instance. The method will return a jobID of the scheduled job.	
Signature	
String scheduleReport(ScheduleRequest scheduleRequest, String userID, String password);	
Table 3-35 Parameters for scheduleReport() Method	
Parameter	Description
---	---
ScheduleRequest scheduleRequest	Specifies a ScheduleRequest object for the report that you want to run. See Section 2.3.48, "ScheduleRequest."
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Schedules a report based on the schedule request, delivery channel, and bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
String scheduleReportInSession(ScheduleRequest scheduleRequest, DeliveryChannel deliveryChannel, String bipSessionToken);	
Table 3-36 Parameters for scheduleReportInSession() Method	
Parameter	Description
---	---
ScheduleRequest scheduleRequest	Specifies a ScheduleRequest object for the report that you want to run. See Section 2.3.48, "ScheduleRequest.".
DeliveryChannel deliveryChannel	Specifies the delivery channels through which the report will be delivered. See Section 2.3.20, "DeliveryChannels."
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the suspendSchedule() method to suspend a schedule job.	
Signature	
boolean suspendschedule(String jobInstanceID, String userID, String password);	
Table 3-37 Parameters for suspendSchedule() Method	
Parameter	Description
---	---
String jobInstanceID	The ID assigned to the instance of the job to be suspended. The jobInstanceID is a string of integers.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Suspends a scheduled report based on its associated jobInstanceID and the bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean suspendScheduleInSession(String jobInstanceID, String bipSessionToken);	
Table 3-38 Parameters for suspendScheduleInSession() Method	
Parameter	Description
---	---
String jobInstanceID	The ID assigned to the instance of the job to be suspended. The jobInstanceID is a string of integers.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
This chapter provides details on the ReportService methods that you can use to interact with the BI Publisher Report object. This includes methods for designing and defining reports, report templates, run-time operations, and parameters.	
This chapter contains the following sections:	
Note: For information on debugging applications built with BI Publisher Web services, see Section 1.3, "Debugging Web Service Applications."	
Use the createReport() method to create a report in the BI Publisher catalog. The method enables you to set the path to the data model and supply template files and translation (XLIFF) files to the report definition.	
Signature	
String createReport(String reportName, String folderAbsolutePathURL, String dataModelURL, String templateFileName, byte[] templateData, String XLIFFFileName, byte[] XLIFFData, boolean updateFlag, String userID, String password);	
Table 4-1 Parameters for createReport() Method	
Parameter	Description
---	---
String reportName	The report name to create with the suffix ".xdo". For example, "myreport.xdo".
String folderAbsolutePathURL	The path to the folder in which to place the created report. For example: xmlp/Reports/financials
String dataModelURL	The path to the data model that will be used as the data source for this report. For example: xmlp/Reports/financials/Data Models/my data model.xdm
String templateFileName	The file name of the template to add the report definition.
byte[] templateData	The template file.
String XLIFFFileName	The file name of the XLIFF file.
byte[] XLIFFData	The XLIFF file.
boolean updateFlag	If
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use the createReport() method to create a report in the BI Publisher catalog based on the bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
String createReport(String reportName, String folderAbsolutePathURL, String dataModelURL, String templateFileName, byte[] templateData, String XLIFFFileName, byte[] XLIFFData, boolean updateFlag, String bipSessionToken);	
Table 4-2 Parameters for createReportInSession() Method	
Parameter	Description
---	---
String reportName	The report name to create with the suffix ".xdo". For example, "myreport.xdo".
String folderAbsolutePathURL	The path to the folder in which to place the created report. For example: xmlp/Reports/financials
String dataModelURL	The path to the data model that will be used as the data source for this report. For example: xmlp/Reports/financials/Data Models/my data model.xdm
String templateFileName	The file name of the template to add the report definition.
byte[] templateData,	The template file.
String XLIFFFileName	The file name of the XLIFF file.
byte[] XLIFFData	The XLIFF file.
boolean updateFlag	If
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use downloadReportDataChunk() method to download very large documents, so that the caller calls this method multiple times until all document content is downloaded. Each call to this method downloads one chunk of the document, where the beginIdx parameter refers to the file download starting point.	
See Section 2.3.44, "ReportDataChunk."	
Signature	
ReportDataChunk downloadReportDataChunk(String fileID, int beginIdx, int size);	
Table 4-3 Parameters for downloadReportDataChunk() Method	
Parameter	Description
---	---
String fileID	fileID is returned inside ReportResponse, which is returned when calling runReport() Method.
int beginIdx	The starting point of the index (default is
int size	The size of the file to download (in kilobytes).
Use downloadReportDataChunk() method to download very large documents using the bipSessionToken of a given user. The caller calls this method multiple times until all document content is downloaded. Each call to this method downloads one chunk of the document, where the beginIdx parameter refers to the file download starting point.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
ReportDataChunk downloadReportDataChunkInSession(String fileID, int beginIdx, int size, String bipSessionToken);	
Table 4-4 Parameters for downloadReportDataChunkInSession() Method	
Parameter	Description
---	---
String fileID	fileID is returned inside ReportRequest, which is returned when calling runReport() Method.
int beginIdx	The starting point of the index (default is
int size	The size of the file to download (in kilobytes).
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the getReportDefinition() method to get information about a report, such as the default template, output type, and a list of template IDs. With the list of template IDs, you can generate a report with a template other than the default.	
See Section 2.3.45, "ReportDefinition."	
Signature	
ReportDefinition getReportDefinition(String reportAbsolutePath, String userID, String password);	
Table 4-5 Parameters for getReportDefinition() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report for which to retrieve the report definition. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use the getReportDefinitionInSession() method to get information about a report using the bipSessionToken of a given user. This method returns report details such as the default template, output type, and a list of template IDs. With the list of template IDs, you can generate a report with a template other than the default.	
See Section 2.3.45, "ReportDefinition."	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
ReportDefinition getReportDefinitionInSession(String reportAbsolutePath, String bipSessionToken);	
Table 4-6 Parameters for getReportDefinitionInSession() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report for which to retrieve the report definition. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the getReportParameters() method to get an array of report parameters and their default values. With the list of parameters, you can set parameter values before running or scheduling a report.	
See Section 2.3.42, "ParamNameValues."	
Signature	
ParamNameValues getReportParameters(ReportRequest reportRequest, String userID, String password);	
Table 4-7 Parameters for getReportParameters() Method	
Parameter	Description
---	---
ReportRequest reportRequest	
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use the getReportParameters() method to get an array of report parameters and their default values based on the bipSessionToken of a given user. With the list of parameters, you can set parameter values before running or scheduling a report.	
See Section 2.3.42, "ParamNameValues."	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
ParamNameValues getReportParametersInSession(ReportRequest reportRequest, String bipSessionToken);	
Table 4-8 Parameters for getReportParametersInSession() Method	
Parameter	Description
---	---
ReportRequest reportRequest	
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the getReportSampleData() method to retrieve the sample data file stored with the report data model.	
Signature	
byte[] getReportSampleData(String reportAbsolutePath, String userID, String password);	
Table 4-9 Parameters for getReportSampleData() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report for which to retrieve the report data model sample data. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use the getReportSampleDataInSession() method to retrieve the sample data file stored with the report data model based on the bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
byte[] getReportSampleData(String reportAbsolutePath, String bipSessionToken);	
Table 4-10 Parameters for getReportSampleDataInSession() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report for which to retrieve the report data model sample data. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use getTemplate() method to retrieve a template from a report definition in the BI Publisher catalog.	
Signature	
byte[] getTemplate(String reportAbsolutePath, String templateID, String locale, String userID, String password);	
Table 4-11 Parameters for getTemplate() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report to which the template is associated. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String templateID	The ID of the template (for example,
String locale	The locale of the template to retrieve (for example,
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use getTemplateInSession() method to retrieve a template from a report definition in the BI Publisher catalog based on the bipTokenSession of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
byte[] getTemplateInSession(String reportAbsolutePath, String templateID, String locale, String bipSessionToken);	
Table 4-12 Parameters for getTemplateInSession() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report to which the template is associated. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String templateID	The ID of the template (for example,
String locale	The locale of the template to retrieve (for example,
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the getReportParameters() method to get the parameters for a template.	
See Section 2.3.41, "ParamNameValue."	
Signature	
ParamNameValue[] getTemplateParameters(String reportAbsolutePath, String templateID, String userID, String password);	
Table 4-13 Parameters for getTemplateParameters() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report for which to retrieve the report definition. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String templateID	The ID assigned to the template, for example: "Chart Layout".
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use the getReportParametersInSession() method to get the parameters for a template.	
See Section 2.3.41, "ParamNameValue."	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
ParamNameValue[] getTemplateParameters(String reportAbsolutePath, String templateID, String bipSessionToken);	
Table 4-14 Parameters for getTemplateParameterInSession() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report for which to retrieve the report definition. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String templateID	The ID assigned to the template, for example: "Chart Layout".
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use getXDOSchema() method to retrieve the XDO schema for a report definition in the BI Publisher catalog.	
Signature	
byte[] getXDOSchema(String reportAbsolutePath, String locale, String userID, String password);	
Table 4-15 Parameters for getXDOSchema() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report from which to retrieve the XDO schema. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String locale	The locale of the template to retrieve (for example,
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use getXDOSchemaInSession() method to retrieve the XDO schema for a report definition in the BI Publisher catalog based on a bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
byte[] getXDOSchemaInSession(String reportAbsolutePath, String locale, String bipSessionToken);	
Table 4-16 Parameters for getXDOSchemaInSession() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report from which to retrieve the XDO schema. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String locale	The locale of the template to retrieve (for example,
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use removeTemplateForReport() method to remove a template from a report definition in the BI Publisher catalog.	
Signature	
boolean removeTemplateForReport(String reportAbsolutePath, String templateFileName, String userID, String password);	
Table 4-17 Parameters for removeTemplateForReport() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report from which to remove the template. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String templateFileName	The file name of the template to remove.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use removeTemplateForReportInSession() method to remove a template from a report definition in the BI Publisher catalog based on the bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean removeTemplateForReportInSession(String reportAbsolutePath, String templateFileName, String bipSessionToken);	
Table 4-18 Parameters for removeTemplateForReportInSession() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report from which to remove the template. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String templateFileName	The file name of the template to remove.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the runReport() method to send a request to the BI Publisher server to run a specific report.	
See Section 2.3.46, "ReportRequest" and Section 2.3.47, "ReportResponse."	
Signature	
ReportResponse runReport(ReportRequest reportRequest, String userID, String password);	
Table 4-19 Parameters for runReport() Method	
Parameter	Description
---	---
ReportRequest reportRequest	
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use the runReportInSession() method to send a request to the BI Publisher server to run a specific report based on the bipSessionToken of a given user.	
See Section 2.3.46, "ReportRequest" and Section 2.3.47, "ReportResponse."	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
ReportResponse runReportInSession(ReportRequest reportRequest, String bipSessionToken);	
Table 4-20 Parameters for runReportInSession() Method	
Parameter	Description
---	---
ReportRequest reportRequest	
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use the updateReportDefinition() to update attributes of the report definition file (.xdo) and write the file back to the BI Publisher catalog.	
Signature	
boolean updateReportDefinition(String reportAbsPath, ReportDefinition newReportDefn, String userID, String password);	
Table 4-21 Parameters for updateReportDefinition() Method	
Parameter	Description
---	---
String reportAbsPath	The path to the report for which to update the report definition. For example: /HR Manager/Employee Reports/Employee Listing.xdo
ReportDefinition newReportDefn	
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use the updateReportDefinitionInSession() to update attributes of the report definition file (.xdo) based on the bipTokenSession of a given user, and then to write the file back to the BI Publisher catalog.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean updateReportDefinitionInSession(String reportAbsPath, ReportDefinition newReportDefn, String bipSessionToken);	
Table 4-22 Parameters for updateReportDefinitionInSession() Method	
Parameter	Description
---	---
String reportAbsPath	The path to the report for which to update the report definition. For example: /HR Manager/Employee Reports/Employee Listing.xdo
ReportDefinition newReportDefn	
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use updateTemplateForReport() method to update a template for a specific report in the BI Publisher catalog.	
Signature	
boolean updateTemplateForReport(String reportAbsolutePath, String templateName, String locale, byte[] templateData, String userID, String password);	
Table 4-23 Parameters for updateTemplateForReport() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report that contains the template to update. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String templateName	The name of the template to update (for example,
String locale	The locale of the template to update (for example,
byte[] templateData	The template file.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use updateTemplateForReportInSession() method to update a template for a specific report in the BI Publisher catalog based on the bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean updateTemplateForReportInSession(String reportAbsolutePath, String templateName, String locale, byte[] templateData, String bipSessionToken);	
Table 4-24 Parameters for updateTemplateForReportInSession() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report that contains the template to update. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String templateName	The name of the template to update (for example,
String locale	The locale of the template to update (for example,
byte[] templateData	The template file.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use updateXLIFFForReport() method to update a translation file (XLIFF) associated with a layout definition in the BI Publisher catalog.	
Signature	
boolean updateXLIFFForReport(String reportAbsolutePath, byte[] xliffData, String layoutFileName, String locale, String userID, String password);	
Table 4-25 Parameters for updateXLIFFForReport() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report to that contains the XLIFF file to update. For example: /HR Manager/Employee Reports/Employee Listing.xdo
byte[] xliffData	The XLIFF fie to upload.
String layoutFileName	The file name of the layout for which the XLIFF file is to be updated. For example: employee_listing.rtf.
String locale	The locale to assign to the XLIFF (for example,
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use updateXLIFFForReportInSession() method to update a translation file (XLIFF) associated with a layout definition in the BI Publisher catalog based on the bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean updateXLIFFForReportInSession(String reportAbsolutePath, byte[] xliffData, String layoutFileName, String locale, String bipSessionToken);	
Table 4-26 Parameters for updateXLIFFForReportInSession() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report to that contains the XLIFF file to update. For example: /HR Manager/Employee Reports/Employee Listing.xdo
byte[] xliffData	The XLIFF fie to upload.
String layoutFileName	The file name of the layout for which the XLIFF file is to be updated. For example: employee_listing.rtf.
String locale	The locale to assign to the XLIFF (for example,
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use uploadReportDataChunk() method to upload a report data chunk.	
Signature	
uploadReportDataChunk(String fileID, byte[] reportDataChunk, String reportRawDataChunk, String userID, String password);	
Table 4-27 Parameters for uploadReportDataChunk() Method	
Parameter	Description
---	---
String fileID	In the first call, you do not need to provide the fileID, after the successful uploading of the first chunk of XML data, it will return a fileID, for example: filename. On your subsequent calls, you can supply the same fileID to append the subsequent data chunks to the same file.
byte[] reportDataChunk	The XML data to upload.
String reportRawDataChunk	String representation of XML data, presenting as reportRawDataChunk. This is an alternative to reportDataChunk byte[].
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use uploadReportDataChunkInSession() method to upload a report data chunk based on the bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
uploadReportDataChunkInSession(String fileID, byte[] reportDataChunk, String reportRawDataChunk, String bipSessionToken);	
Table 4-28 Parameters for uploadReportDataChunkInSession() Method	
Parameter	Description
---	---
byte[] reportDataChunk	The XML data to upload.
String reportRawDataChunk	String representation of XML data, presenting as reportRawDataChunk. This is an alternative to reportDataChunk byte[].
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use uploadTemplateForReport() method to upload a template to a report definition in the BI Publisher catalog.	
Signature	
boolean uploadTemplateForReport(String reportAbsolutePath, String templateName, String templateType, String locale, byte[] templateData, String userID, String password);	
Table 4-29 Parameters for uploadTemplateForReport() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report to which to upload the template. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String templateName	The file name of the template to upload.
String templateType	The template type. Valid values are:
String locale	The locale to assign to the template (for example,
byte[] templateData	The contents of the template file to upload.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use uploadTemplateForReportInSession() method to upload a template to a report definition in the BI Publisher catalog based on the bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean uploadTemplateForReportInSession(String reportAbsolutePath, String templateName, String templateType, String locale, byte[] templateData, String bipSessionToken);	
Table 4-30 Parameters for uploadTemplateForReportInSession() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report to which to upload the template. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String templateFileName	The file name of the template to upload.
String templateName	The name of the template to upload.
String locale	The locale to assign to the template (for example,
byte[] templateData	The contents of the template file to upload.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use uploadXLIFFForReport() method to upload a translation file (XLIFF) to a layout definition in the BI Publisher catalog.	
Signature	
boolean uploadXLIFFForReport(String reportAbsolutePath, byte[] xliffData, String layoutFileName, String locale, String userID, String password);	
Table 4-31 Parameters for uploadXLIFFForReport() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report to which to upload the XLIFF. For example: /HR Manager/Employee Reports/Employee Listing.xdo
byte[] xliffData	The XLIFF fie to upload.
String layoutFileName	The file name of the layout to which to associate the XLIFF file. For example: employee_listing.rtf.
String locale	The locale to assign to the XLIFF (for example,
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use uploadXLIFFForReport() method to upload a translation file (XLIFF) to a layout definition in the BI Publisher catalog based on the bipSessionToken of a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean uploadXLIFFForReportInSession(String reportAbsolutePath, byte[] xliffData, String layoutFileName, String locale, String bipSessionToken);	
Table 4-32 Parameters for uploadXLIFFForReportInSession() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report to which to upload the XLIFF. For example: /HR Manager/Employee Reports/Employee Listing.xdo
byte[] xliffData	The XLIFF fie to upload.
String layoutFileName	The file name of the layout to which to associate the XLIFF file. For example: employee_listing.rtf.
String locale	The locale to assign to the XLIFF (for example,
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
This chapter provides details on the SecurityService methods to manage BI Publisher server security operations, such as authentication, impersonation, login, logout, and account management.	
This chapter contains the following sections:	
Note: For information on debugging applications built with BI Publisher Web services, see Section 1.3, "Debugging Web Service Applications."	
Note: SecurityService is available to the BI Publisher Security Model only. If your BI Publisher deployment uses another security model (for example, LDAP, Oracle E-Business Suite, or Oracle Fusion Apps), you cannot use the SecurityService API.	
Use assignRolesToUser() method to assign new roles to a user in BI Publisher.	
Signature	
String[] assignRolesToUser(String userName, String[] roleNames, String adminUser, String adminPassword);	
Table 5-1 Parameters for assignRolesToUser() Method	
Parameter	Description
---	---
String userName	The user to which to add the role or roles.
String[] roleNames	The name of the role to add to the user. For example, "Financial Users".
String adminUser	Specifies a BI Publisher user name for a user with administration privileges.
String adminPassword	Specifies the password for the administration user name.
Use createRole() method to create a role in BI Publisher.	
Signature	
boolean createRole(String roleName, String description, String adminUser, String adminPassword);	
Table 5-2 Parameters for createRole() Method	
Parameter	Description
---	---
String roleName	The name of the role to create. For example, "Financial Users".
String description	The description of the role.
String adminUser	Specifies a BI Publisher user name for a user with administration privileges.
String adminPassword	Specifies the password for the administration user name.
Use createUser() method to create a user in BI Publisher. This method returns a boolean value of the success of the method.	
Signature	
boolean createUser(String userName, String password, String adminUser, String adminPassword);	
Table 5-3 Parameters for createUser() Method	
Parameter	Description
---	---
String userName	The user name to create.
String password	The password for the newly created user.
String adminUser	Specifies a BI Publisher user name for a user with administration privileges.
String adminPassword	Specifies the password for the administration user name.
Use deleteRole() method to delete a role from BI Publisher. This method returns a boolean value of the success of the method.	
Signature	
boolean deleteRole(String roleName, String adminUser, String adminPassword);	
Table 5-4 Parameters for deleteRole() Method	
Parameter	Description
---	---
String roleName	The user name to delete.
String adminUser	Specifies a BI Publisher user name for a user with administration privileges.
String adminPassword	Specifies the password for the administration user name.
Use deleteUser() method to delete a user from BI Publisher. This method returns a boolean value of the success of the method.	
Signature	
boolean deleteUser(String userName, String adminUser, String adminPassword);	
Table 5-5 Parameters for deleteUser() Method	
Parameter	Description
---	---
String userName	The user name to delete.
String adminUser	Specifies a BI Publisher user name for a user with administration privileges.
String adminPassword	Specifies the password for the administration user name.
This method returns the number of seconds an HTTP session interval is.	
Signature	
int getBIPHTTPSessionInterval(void);	
This method extracts the report-level permissions (from security.xml) for a BIEE integrated catalog.	
Signature	
byte[] getObjectSecurityXML(String adminUsername, String adminPassword, String objectAbsolutePath, boolean isRecursive);	
Table 5-6 Parameters for getObjectSecurityXML() Method	
Parameter	Description
---	---
String adminUsername	The user name for a BI Publisher user with administrator privileges.
String adminPassword	The password associated with the adminUserName.
String objectAbsolutePath	The absolute path to security.xml.
boolean isRecursive	Whether or not objectAbsolutePath is recursive.
This method returns BI Publisher's security model in place.	
Signature	
String getSecurityModel(void);	
This method verifies if the specified user has access to the report object referenced by reportAbsolutePath. This method first authenticates user with the specified credentials. Upon successful authentication, it verifies the user's privileges to access the report object.	
Signature	
boolean hasObjectAccess(String reportAbsolutePath, String roleName, String userID, String password);	
Table 5-7 Parameters for hasObjectAccess() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the report object for which you want to verify the user's access privileges. For example: /HR Manager/Employee Reports/Employee Listing.xdo
String roleName	For future use. Ignore this parameter as it is not yet functional.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
This method verifies if a pre-authenticated bipSession has the privilege to access the report object relative to reportAbsolutePath.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean hasObjectAccessInSession(string reportAbsolutePath, string roleName, string bipSessionToken);	
Table 5-8 Parameters for hasObjectAccessInSession() Method	
Parameter	Description
---	---
String reportAbsolutePath	The absolute path to the report object.
String roleName	The role associated with the given user.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
This method enables an admin account to act on the behalf of a user account. This is very useful if the user doesn't have a known password to be authenticated by BI Publisher server. This method logs in using admin account privilege, then switches the owner of the BI Publisher server session to the passed-in username. Therefore, bipSession token later will be verified by passed-in username. All further BI Publisher operations are performed through give n username.	
Signature	
String impersonate(String adminUsername, String adminPassword,String username);	
Table 5-9 Parameters for impersonate() Method	
Parameter	Description
---	---
String adminUserName	Specifies a BI Publisher user name for a user with administration privileges
String adminPassword	Specifies the password for the administration user name.
String username	The username of the user account that will be granted administrator privileges.
Use isUserExists() method to test if a user name exists in the BI Publisher security model. This method returns the result as a boolean value.	
Signature	
boolean isUserExists(String userName, String adminUser, String adminPassword);	
Table 5-10 Parameters for isUserExists() Method	
Parameter	Description
---	---
String userName	The user name to test.
String adminUser	Specifies a BI Publisher user name for a user with administration privileges.
String adminPassword	Specifies the password for the administration user name.
Use the login() method to log in to BI Publisher and perform other BI Publisher actions using Web Services. The login() method returns a String, which will become the BI Publisher session ID	
Signature	
String login(String userID, String password);	
Table 5-11 Parameters for login() Method	
Parameter	Description
---	---
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
This method, in effect, logs the specified user out of the system by invalidating the user's bipSessionToken. After successful logout, the bipSessionToken string is no longer valid.	
Signature	
boolean logout(String bipSessionToken);	
This method is provided for BIEE user preference integration purpose only.	
Signature	
boolean notifyBIEEPreferencesupdated(bieeSessionID);	
Table 5-13 Parameters for notifyBIEEPreferencesUpdated() Method	
Parameter	Description
---	---
String bieeSessionID	The session ID for Oracle Business Intelligence/BI Publisher integration.
This method is provided for BIEE user preference integration purpose only.	
Signature	
boolean notifyBIEEPreferencesUpdatedWithString(String bieeSessionID, String userPrefesXML);	
Table 5-14 Parameters for notifyBIEEPreferencesUpdatedWithString() Method	
Parameter	Description
---	---
String bieeSessionID	The session ID for Oracle Business Intelligence/BI Publisher integration.
String userPrefesXML	The XML data that contain user preferences.
Use removeRolesFromUser() method to remove roles from a user in BI Publisher.	
Signature	
String[] removeRolesFromUser(String userName, String[] roleNames, String adminUser, String adminPassword);	
Table 5-15 Parameters for removeRolesFromUser() Method	
Parameter	Description
---	---
String userName	The user from which to delete the role or roles.
String[] roleNames	The name of the role to delete from the user. For example, "Financial Users".
String adminUser	Specifies a BI Publisher user name for a user with administration privileges.
String adminPassword	Specifies the password for the administration user name.
Use updateRole() method to update the description of a role that currently exists in BI Publisher.	
Signature	
boolean updateRole(String currentRoleName, String newDescription, String adminUser, String adminPassword);	
Table 5-16 Parameters for updateRole() Method	
Parameter	Description
---	---
String currentRoleName	The name of the role to update.
String newDescription	The updated description of the role to apply.
String adminUser	Specifies a BI Publisher user name for a user with administration privileges.
String adminPassword	Specifies the password for the administration user name.
Use updateUser() method to update a user's password in BI Publisher. This method returns a boolean value of the success of the method.	
Signature	
boolean updateUser(String currentUsername, String newPassword, String adminUser, String adminPassword);	
Table 5-17 Parameters for updateUser() Method	
Parameter	Description
---	---
String currentUserName	The user name to update.
String newPassword	The new password to assign to the user name.
String adminUser	Specifies a BI Publisher user name for a user with administration privileges.
String adminPassword	Specifies the password for the administration user name.
Use the validateLogin() method to validate that a UserID and Password have the privilege to access the Oracle BI Publisher report server.	
Signature	
boolean validateLogin(String userID, String password);	
Table 5-18 Parameters for validateLogin() Method	
Parameter	Description
---	---
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
This chapter describes the CatalogService methods to interact with the BI Publisher server top-level catalog. CatalogService manages all report objects, including folders, reports, data models, style templates, and sub-templates, and provides methods for common operations, such as create, delete, copy, and rename.	
This chapter contains the following sections:	
Note: For information on debugging applications built with BI Publisher Web services, see Section 1.3, "Debugging Web Service Applications."	
Use copyObject() method to copy an object in the BI Publisher catalog.	
Signature	
boolean copyObject(String srcOjectAbsolutePath, String destObjectAbsolutePath, String newName, String userID, String password);	
Table 6-1 Parameters for copyObject() Method	
Parameter	Description
---	---
String srcOjectAbsolutePath	The path to the catalog object to copy.
String destObjectAbsolutePath	The path to the location in the catalog to which to copy the object.
String newName	The name to assign the new object.
String userID	Specifies a BI Publisher user name.
String password	Specifies the password for the user name.
This method copies the report object referenced by srcObjectAbsolutePath to a destination folder specified by destFolderAbsolutePath.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean copyObjectInSession(String srcObjectAbsolutePath, String destFolderAbsolutePath, String newName, String bipSessionToken);	
Table 6-2 Parameters for copyObjectInSession() Method	
Parameter	Description
---	---
String srcOjectAbsolutePath	The path to the catalog object to copy.
String destObjectAbsolutePath	The path to the location in the catalog to which to copy the object.
String newName	The name to assign the new object.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use createFolder() method to create a folder in the BI Publisher catalog.	
Signature	
String createFolder(String folderAbsolutePath, String userID, String password);	
Table 6-3 Parameters for createFolder() Method	
Parameter	Description
---	---
String folderAbsolutePath	The path to the folder that you want to create. For example: /HR Manager/Employee Reports/
String userID	Specifies a BI Publisher user name.
String password	Specifies the password for the user name.
Use createFolderInSession() method to create a folder in the BI Publisher catalog for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
String createFolderInSession(String folderAbsolutePath, String bipSessionToken);	
Table 6-4 Parameters for createFolderInSession() Method	
Parameter	Description
---	---
String folderAbsolutePath	The path to the folder that you want to create. For example: /HR Manager/Employee Reports/
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use createObject() method to create an object in BI Publisher catalog.	
Signature	
String createObject(String objectAbsolutePathURL, String objectName, String objectType, String objectDescription, byte[] objectData, String accessPermission, String userID, String password);	
Table 6-5 Parameters for createObject() Method	
Parameter	Description
---	---
String objectAbsolutePathURL	The absolute path to the folder in the catalog in which to place the new object.
String objectName	The name of the new object.
String objectType	The type of catalog object. Valid values are:
String objectDescription	Specifies the description of the new object.
byte[] objectData	The byte data of the object.
String accessPermission	The access permissions to assign to the new object.
String userID	Specifies a BI Publisher user name.
String password	Specifies the password for the user name.
Use createObjectInSession() method to create an object in BI Publisher catalog for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
String createObjectInSession(String folderAbsolutePathURL, String objectName, String objectType, String objectDescription, byte[] objectData, String bipSessionToken);	
Table 6-6 Parameters for createObjectInSession() Method	
Parameter	Description
---	---
String objectAbsolutePathURL	The absolute path to the folder in the catalog in which to place the new object.
String objectName	The name of the new object.
String objectType	The type of catalog object. Valid values are:
String objectDescription	Specifies the description of the new object.
byte[] objectData	The byte data of the object.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use deleteObject() method to delete an object from the BI Publisher catalog.	
Signature	
boolean deleteObject(String reportObjectAbsolutePath, String userID, String password);	
Table 6-7 Parameters for deleteObject() Method	
Parameter	Description
---	---
String reportObjectAbsolutePath	The path to the object in the catalog to delete.
String userID	Specifies a BI Publisher user name.
String password	Specifies the password for the user name.
Use deleteObjectInSession() method to delete an object from the BI Publisher catalog for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean deleteObjectInSession(String objectAbsolutePath, String bipSessionToken);	
Table 6-8 Parameters for deleteObjectInSession() Method	
Parameter	Description
---	---
String objectAbsolutePath	The path to the object in the catalog to delete.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use downloadObject() method to download an object from the BI Publisher catalog. This method returns the requested object in binary.	
Signature	
byte[] downloadObject(String reportAbsolutePath, String userID, String password);	
Table 6-9 Parameters for downloadObject() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the object in the catalog to download.
String userID	Specifies a BI Publisher user name.
String password	Specifies the password for the user name.
Use downloadObjectInSession() method to download an object from the BI Publisher catalog for a given user. This method returns the requested object in binary.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
byte[] downloadObjectInSession(String reportAbsolutePath, String bipSessionToken);	
Table 6-10 Parameters for downloadObjectInSession() Method	
Parameter	Description
---	---
String reportAbsolutePath	The path to the object in the catalog to download.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use downloadXLIFF() method to download a translation file (XLIFF) from the catalog. This method returns the requested XLIFF file in binary.	
Signature	
byte[] downloadXLIFF(String objectAbsolutePath, String userID, String password);	
Table 6-11 Parameters for downloadXLIFF() Method	
Parameter	Description
---	---
String objectAbsolutePath	The path to the XLIFF object to download.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use downloadXLIFFInSession() method to download a translation file (XLIFF) from the catalog downloadXLIFFInSession a given user. This method returns the requested XLIFF file in binary.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
byte[] downloadXLIFFInSession(String objectAbsolutePath, String locale, String bipSessionToken);	
Table 6-12 Parameters for downloadXLIFFInSession() Method	
Parameter	Description
---	---
String objectAbsolutePath	The path to the XLIFF object to download.
String locale	The locale of the XLIFF object (for example,
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use getFolderContents to get all of the items in a folder. This will return all the reports and folders contained in the specified folder. You can then use these items to determine what reports you might want to execute or what folders you may want to further search to identify a report.	
See CatalogContents for a description of the return object.	
Signature	
CatalogContents getFolderContents(String folderAbsolutePath, String userID, String password);	
Table 6-13 Parameters for getFolderContents() Method	
Parameter	Description
---	---
String folderAbsolutePath	The path to the folder for which to retrieve the contents. For example: /HR Manager/Employee Reports/
String userID	Specifies a BI Publisher user name.
String password	Specifies the password for the user name.
Use getFolderContentsInSession() to get all of the items in a folder for a given user. This will return all the reports and folders contained in the specified folder. You can then use these items to determine what reports you might want to execute or what folders you may want to further search to identify a report.	
See CatalogContents for a description of the return object.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
CatalogContents getFolderContentsInSession(String folderAbsolutePath, String bipSessionToken);	
Table 6-14 Parameters for getFolderContentsInSession() Method	
Parameter	Description
---	---
String folderAbsolutePath	The path to the folder for which to retrieve the contents. For example: /HR Manager/Employee Reports/
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use getObject() method to download an object from the catalog. This method returns the requested object file in binary.	
Signature	
byte[] getObject(String reportObjectAbsolutePath, String locale, String userID, String password);	
Table 6-15 Parameters for getObject() Method	
Parameter	Description
---	---
String reportObjectAbsolutePath	The path to the object to download.
String locale	The locale of the object to get.
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use getObjectInfo() method to get information about an object in the BI Publisher catalog. This method returns the CatalogObjectInfo object. See CatalogObjectInfo.	
Signature	
CatalogObjectInfo getObjectInfo(String reportObjectAbsolutePath, String userID, String password);	
Table 6-16 Parameters for getObjectInfo() Method	
Parameter	Description
---	---
String reportObjectAbsolutePath	The path to the report object about which to get information.
String userID	Specifies a BI Publisher user name.
String password	Specifies the password for the user name.
Use getObjectInfoInSession() method to get information about an object in the BI Publisher catalog for a given user. This method returns the CatalogObjectInfo object. See CatalogObjectInfo.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
CatalogObjectInfo getObjectInfoInSession(String objectAbsolutePath, String bipSessionToken);	
Table 6-17 Parameters for getObjectInfoInSession() Method	
Parameter	Description
---	---
String reportObjectAbsolutePath	The path to the report object about which to get information.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use getObjectInSession() method to download an object from the catalog for a given user. This method returns the requested object file in binary.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
byte[] getObjectInSession(String objectAbsolutePath, String bipSessionToken);	
Table 6-18 Parameters for getObjectInSession() Method	
Parameter	Description
---	---
String reportObjectAbsolutePath	The path to the object to retrieve.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use objectExist() method to determine if an object exists in the BI Publisher catalog.	
Signature	
boolean objectExist(String reportObjectAbsolutePath, String userID, String password);	
Table 6-19 Parameters for objectExist() Method	
Parameter	Description
---	---
String reportOjectAbsolutePath	The path to the object to test for in the catalog. For example: /HR Manager/Employee Reports/Employee Data Model.xdm
String userID	Specifies a BI Publisher user name.
String password	Specifies the password for the user name.
Use objectExist() method to determine if an object exists in the BI Publisher catalog for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean objectExistInSession(String reportObjectAbsolutePath, String bipSessionToken);	
Table 6-20 Parameters for objectExistInSession() Method	
Parameter	Description
---	---
String reportOjectAbsolutePath	The path to the object to test for in the catalog. For example: /HR Manager/Employee Reports/Employee Data Model.xdm
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use renameObject() method to rename an object in the BI Publisher catalog.	
Signature	
boolean renameObject(String reportObjectAbsolutePath, String newName, String userID, String password);	
Table 6-21 Parameters for renameObject() Method	
Parameter	Description
---	---
String reportObjectAbsolutePath	The path to the object in the catalog to rename.
String newName	The new name to assign the object.
String userID	Specifies a BI Publisher user name.
String password	Specifies the password for the user name.
Use renameObject() method to rename an object in the BI Publisher catalog for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean renameObjectInSession(String objectAbsolutePath, String newName, String bipSessionToken);	
Table 6-22 Parameters for renameObjectInSession() Method	
Parameter	Description
---	---
String reportObjectAbsolutePath	The path to the object in the catalog to rename.
String newName	The new name for the object.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use updateObject() method to update an object in the BI Publisher catalog.	
Signature	
boolean updateObject(String reportObjectAbsolutePath, byte[] objectData, String userID, String password);	
Table 6-23 Parameters for updateObject() Method	
Parameter	Description
---	---
String reportOjectAbsolutePath	The path to the object to update in the catalog. For example: /HR Manager/Employee Reports/Employee Data Model.xdm
byte[] objectData	The data with which to update the object.
String userID	Specifies a BI Publisher user name.
String password	Specifies the password for the user name.
Use updateObject() method to update an object in the BI Publisher catalog for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean updateObjectInSession(String objectAbsolutePath, byte[] objectData, String bipSessionToken);	
Table 6-24 Parameters for updateObjectInSession() Method	
Parameter	Description
---	---
String reportOjectAbsolutePath	The path to the object to update in the catalog. For example: /HR Manager/Employee Reports/Employee Data Model.xdm
byte[] objectData	The data with which to update the object.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use uploadObject() method to upload a new object to the BI Publisher catalog.	
Signature	
String uploadObject(String reportObjectAbsolutePathURL, String objectType, byte[] objectZippedData, String userID, String password);	
Table 6-25 Parameters for uploadObject() Method	
Parameter	Description
---	---
String reportObjectAbsolutePathURL	The path to the object in the catalog.
String objectType	The type of object to upload. Valid values are:
byte[] objectZippedData	The object to upload in zipped format.
String userID	Specifies a BI Publisher user name.
String password	Specifies the password for the user name.
Use uploadObject() method to upload a new object to the BI Publisher catalog for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
String uploadObject(String reportObjectAbsolutePathURL, String objectType, byte[] objectZippedData, String userID, String bipSessionToken);	
Table 6-26 Parameters for uploadObjectInSession() Method	
Parameter	Description
---	---
String reportObjectAbsolutePathURL	The path to the object in the catalog.
String objectType	The type of object to upload. Valid values are:
byte[] objectZippedData	The object to upload in zipped format.
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
Use uploadXLIFF() method to upload a translation file (XLIFF) to the catalog.	
Signature	
boolean uploadXLIFF(String objectAbsolutePath, byte[] xliffData, String locale, String userID, String password);	
Table 6-27 Parameters for uploadXLIFF() Method	
Parameter	Description
---	---
String objectAbsolutePath	The path to the XLIFF object to upload.
byte[] xliffData	The XLIFF fie to upload.
String locale	The locale to assign to the XLIFF (for example,
String userID	Specifies the BI Publisher user name.
String password	Specifies the password for the user name.
Use uploadXLIFF() method to upload a translation file (XLIFF) to the catalog for a given user.	
For more information about in-session methods, see Section 1.2, "About In-Session Methods."	
Signature	
boolean uploadXLIFF(String objectAbsolutePath, byte[] xliffData, String locale, String bipSessionToken);	
Table 6-28 Parameters for uploadXLIFFInSession() Method	
Parameter	Description
---	---
String objectAbsolutePath	The path to the XLIFF object to upload.
byte[] xliffData	The XLIFF fie to upload.
String locale	The locale to assign to the XLIFF (for example,
String bipSessionToken	The proprietary token string generated for the user by the BI Publisher server. With the bipSessionToken string, the user no longer needs to provide user credentials. The BI Publisher server can validate this token string and restore the BI Publisher server session to perform needed operation.
The Oracle BI Publisher Java APIs provide developers the ability to embed the powerful document generation and delivery capabilities directly into custom applications. BI Publisher provides a collection of document generation APIs for the various template types that it supports. BI Publisher also provides APIs for merging documents and for delivering them to a wide range of destinations, including through custom delivery channels.	
This part contains the following chapters on the Oracle BI Publisher Java APIs:	
This chapter describes the BI Publisher Java APIs that can be called from a custom application to generate and process documents.	
It includes the following sections:	
Note: The information in this chapter is intended to be used with the Oracle Fusion Middleware Java API Reference for Oracle Business Intelligence Publisher, which is available in the Oracle Fusion Middleware Business Intelligence Documentation Library. This chapter assumes you are familiar with Java programming, XML, and XSL technologies.	
BI Publisher is made up of the following core API components:	
Merges a PDF template with XML data (and optional metadata) to produce PDF document output. See Section 7.4, "PDF Form Processing Engine."	
Converts an RTF template to XSL in preparation for input to the FO Engine. See Section 7.5, "RTF Processor Engine."	
Merges XSL and XML to produce any of the following output formats: Excel (HTML), PDF, RTF, or HTML. See Section 7.6, "FO Processor Engine."	
Provides optional postprocessing of PDF files to merge documents, add page numbering, and set watermarks. See Section 7.7, "PDF Document Merger."	
Converts RTF eText templates to XSL and merges the XSL with XML to produce text output for EDI and EFT transmissions. See Section 7.10, "eText Processor."	
Provides batch processing functionality to access a single API or multiple APIs by passing a single XML file to specify template names, data sources, languages, output type, output names, and destinations. See Section 7.11, "Document Processor Engine."	
The following diagram illustrates the template type and output type options for each core processing engine:	
Figure 7-1 Template and Output Types for BI Publisher Core Processing Engines	
To use the BI Publisher APIs, ensure that xdocore.jar	
is in your class path. xdocore.jar	
contains the main library for the BI Publisher APIs.	
In addition, the following libraries are required:	
If you are using Oracle JDeveloper, then the charting and XML Parser libraries are available to you. However, it is recommended that you create a directory with all of the required JAR files to use as a custom library in your project. This will help prevent unexpected errors after deployment.	
The easiest method to obtain the libraries is to download and install the Template Builder for Microsoft Word Add-in. Download the Template Builder for Word from the Home page, under Get Started, click Download BI Publisher Tools, then click Template Builder for Word.	
The JAR files are packaged with the Template Builder in the jlib library under the install directory.	
A sample path to jlib would be:	
C:\Program Files\Oracle\BI Publisher\BI Publisher Desktop\Template Builder for Word\jlib	
This section discusses how to use the RTP Processor Engine, and includes the following topics:	
The PDF Form Processing Engine creates a PDF document by merging a PDF template with an XML data file. This can be done using file names, streams, or an XML data string.	
As input to the PDF Processing Engine you can optionally include an XML-based Template MetaInfo (.xtm) file. This is a supplemental template to define the placement of overflow data.	
The FO Processing Engine also includes utilities to provide information about your PDF template. You can:	
XML data can be merged with a PDF template to produce a PDF output document in three ways:	
Input:	
Output:	
Example 7-1 Sample Code for Merging XML Data with PDF Templates Using Input/Output File Names	
Input:	
Output:	
Example 7-2 Sample Code for Merging XML Data with PDF Templates Using Input/Output Streams	
Input:	
Output:	
Example 7-3 Sample Code for Merging XML Data Strings with PDF Templates	
Use the FormProcessor.getFieldNames() API to retrieve the field names from a PDF template. The API returns the field names into an Enumeration object.	
Input:	
Output:	
Example 7-4 Sample Code for Retrieving a List of Field Names	
XML Forms Data Format (XFDF) is a format for representing forms data and annotations in a PDF document. XFDF is the XML version of Forms Data Format (FDF), a simplified version of PDF for representing forms data and annotations. Form fields in a PDF document include edit boxes, buttons, and radio buttons.	
Use this class to generate XFDF data. When you create an instance of this class, an internal XFDF tree is initialized. Use append() methods to append a FIELD element to the XFDF tree by passing a String name-value pair. You can append data as many times as you want.	
This class also enables you to append XML data by calling appendXML() methods. Note that you must set the appropriate XSL style sheet by calling setStyleSheet() method before calling appendXML() methods. You can append XML data as many times as you want.	
You can retrieve the internal XFDF document at any time by calling one of the following methods: toString(), toReader(), toInputStream(), or toXMLDocument().	
The following is a sample of XFDF data:	
Example 7-5 Sample XFDF Data	
The following code example shows how you can use the API:	
Example 7-6 Sample Code for Retrieving Internal XFDF Documents	
Use an XSL style sheet to convert standard XML to the XFDF format. Following is an example of the conversion of sample XML data to XFDF:	
Assume your starting XML has a ROWSET/ROW format as follows:	
From this XML you want to generate the following XFDF format:	
The following XSLT will perform the transformation:	
Example 7-7 Sample XLST for Transforming XML Data into XFDF Format	
You can then use the XFDFObject to convert XML to the XFDF format using an XSLT as follows:	
Example 7-8 Sample Code for Executing Transformation of XML Data into XFDF Format	
This section discusses how to use the RTP Processor Engine, and includes the following topics:	
The RTFProcessor can generate the pairing XLIFF file. The API example is as follows:	
Example 7-9 Sample Code for Generating Pairing XLIFF Files	
To generate the translated report, call FOProcessor as follows:	
Example 7-10 Sample Code for Generating Translated Reports	
The RTF processor engine takes an RTF template as input. The processor parses the template and creates an XSL-FO template. This can then be passed along with a data source (XML file) to the FO Engine to produce PDF, HTML, RTF, or Excel (HTML) output.	
Use either input/output file names or input/output streams as shown in the following examples:	
Input:	
Output:	
Example 7-11 Sample Code for Generating XSL with Input/Output File Names	
Input:	
Output:	
Example 7-12 Sample Code for Generating XSL with Input/Output Streams	
This section discusses how to use the FO Processor Engine, and includes the following topics:	
The FO Processor Engine provides the following features:	
BI Publisher utilizes the Unicode BiDi algorithm for BiDi layout. Based on specific values for the properties writing-mode, direction, and unicode bidi, the FO Processor supports the BiDi layout.	
The writing-mode property defines how word order is supported in lines and order of lines in text. That is: right-to-left, top-to-bottom or left-to-right, top-to-bottom. The direction property determines how a string of text will be written: that is, in a specific direction, such as right-to-left or left-to-right. The unicode bidi controls and manages override behavior.	
The FO Processor supports a two-level font fallback mechanism. This mechanism provides control over what default fonts to use when a specified font or glyph is not found. BI Publisher provides appropriate default fallback fonts automatically without requiring any configuration. BI Publisher also supports user-defined configuration files that specify the default fonts to use. For glyph fallback, the default mechanism will only replace the glyph and not the entire string.	
For headers and footers that require more space than what is defined in the template, the FO Processor extends the regions and reduces the body region by the difference between the value of the page header and footer and the value of the body region margin.	
This feature supports a "Z style" of horizontal table break. The horizontal table break is not sensitive to column span, so that if the column-spanned cells exceed the page (or area width), the FO Processor splits it and does not apply any intelligent formatting to the split cell.	
The following figure shows a table that is too wide to display on a single page:	
Figure 7-2 Example of Wide Table	
The following figure shows one option of how the horizontal table break will handle the wide table. In this example, a horizontal table break is inserted after the third column.	
Figure 7-3 Example of Horizontal Table Break on Wide Table	
The following figure shows another option. The table breaks after the third column, but includes the first column with each new page.	
Figure 7-4 Example of Horizontal Table Break and Column Repeating on Wide Table	
The FO Processor Engine is BI Publisher's implementation of the W3C XSL-FO standard. It does not represent a complete implementation of every XSL-FO component.	
The FO Processor can generate output in PDF, RTF, HTML, or Excel (HTML) from either of the following input types:	
Input types can be passed as file names, streams, or in an array. Set the output format by setting the setOutputFormat() method to one of the following:	
An XSL-FO utility is also provided that creates XSL-FO from the following inputs:	
The FO object output from the XSL-FO utility can then be used as input to the FO processor.	
The following example shows how to use the FO Processor to create an output file using file names.	
Input:	
Output:	
Example 7-13 Sample Code for Generating Output Using File Names	
The processor can also be used with input/output streams as shown in the following example:	
Input:	
Output:	
Example 7-14 Sample Code for Generating Output Using Streams	
An array of data and template combinations can be processed to generate a single output file from the multiple inputs. The number of input data sources must match the number of templates that are to be applied to the data. For example, an input of File1.xml, File2.xml, File3.xml and File1.xsl, File2.xsl, and File3.xsl will produce a single File1_File2_File3.pdf.	
Input:	
Output:	
Example 7-15 Sample Code for Generating Output from XSL Template Arrays and XML Data	
Use the XSL-FO Utility to create an XSL-FO output file from input XML and XSL files, or to merge two XSL-FO files. You can use the output from this utility to generate your final output. See Section 7.6.2, "Generating Output from an XML File and an XSL File."	
Input:	
Output:	
Example 7-16 Sample Code for Creating XSL-FO from XML and XSL Files	
Input:	
Output:	
Example 7-17 Sample Code for Creating XSL-FO from Two XML Files and Two XSL Files	
Input:	
Output:	
Example 7-18 Sample Code for Merging Two XSL-FO Files	
The FO Processor can also be used to process an FO object to generate your final output. An FO object is the result of the application of an XSL-FO style sheet to XML data. These objects can be generated from a third party application and fed as input to the FO Processor.	
The processor is called using a similar method to those already described, but a template is not required as the formatting instructions are contained in the FO.	
Input:	
Output:	
Example 7-19 Sample Code for Generating Output Using File Names	
Input:	
Output:	
Example 7-20 Sample Code for Generating Output Using Streams	
Pass multiple FO inputs as an array to generate a single output file. A template is not required, therefore set the members of the template array to null, as shown in the example.	
Input:	
Output:	
Example 7-21 Sample Code for Generating Output with an Array of FO Data	
The PDF Document Merger class provides a set of utilities to manipulate PDF documents. Using these utilities, you can merge documents, add page numbering, set backgrounds, and add watermarks.	
Many business documents are composed of several individual documents that need to be merged into a single final document. The PDFDocMerger class supports the merging of multiple documents to create a single PDF document. This can then be manipulated further to add page numbering, watermarks, or other background images.	
The following code demonstrates how to merge (concatenate) two PDF documents using physical files to generate a single output document.	
Input:	
Output:	
Example 7-22 Sample Code for Merging PDF Documents with Input/Output File Names	
Input:	
Output:	
Example 7-23 Merging PDF Documents with Input/Output Streams	
The following code demonstrates how to merge two PDF documents using input streams to generate a single merged output stream.	
To add page numbers:	
@pagenum@	
. Input:	
Output:	
Example 7-24 Sample Code for Merging PDF Documents with Background to Place Page Numbering	
The FO Processor supports page numbering natively through the XSL-FO templates, but if you are merging multiple documents you must use this class to number the complete document from beginning to end.	
The following code example places page numbers in a specific point on the page, formats the numbers, and sets the start value using the following methods:	
Input:	
Output:	
Example 7-25 Sample Code for Adding Page Numbers to Merged PDF Documents	
Some documents that are in a draft phase require that a watermark indicating "DRAFT" be displayed throughout the document. Other documents might require a background image on the document. The following code sample shows how to use the PDFDocMerger class to set a watermark.	
Use the SetTextDefaultWatermark() method to set a text watermark with the following attributes:	
Alternatively, use the SetTextWatermark() method to set each attribute separately. Use the SetTextWatermark() method as follows:	
The following example shows how to set these properties and then call the PDFDocMerger.	
Input:	
Output:	
Example 7-26 Sample Code for Setting a Text Watermark in PDF Documents	
An image watermark can be set to cover the entire background of a document, or just to cover a specific area (for example, to display a logo). Specify the placement and size of the image using rectangular coordinates as follows:	
float[] rct = {LowerLeft X, LowerLeft Y, UpperRight X, UpperRight Y}	
For example:	
float[] rct = {100f, 100f, 200f, 200f}	
The image will be sized to fit the rectangular area defined.	
To use the actual image size, without sizing it, define the LowerLeft X and LowerLeft Y positions to define the placement and specify the UpperRight X and UpperRight Y coordinates as -1f. For example:	
float[] rct = {100f, 100f, -1f, -1f}	
Input:	
Output:	
Example 7-27 Sample Code for Setting an Image Watermark in PDF Documents	
The PDFBookBinder processor is useful for the merging of multiple PDF documents into a single document consisting of a hierarchy of chapters, sections, and subsections and a table of contents for the document. The processor also generates PDF style "bookmarks"; the outline structure is determined by the chapter and section hierarchy. The processor is extremely powerful allowing you complete control over the combined document.	
The table of contents formatting and style is defined by an RTF template created in Microsoft Word. The chapters are passed into the program as separate PDF files (one chapter, section, or subsection corresponds to one PDF file). Templates may also be specified at the chapter level for insertion of dynamic or static content, page numbering, and placement of hyperlinks within the document.	
The templates can be in RTF or PDF format. RTF templates are more flexible by allowing you to leverage BI Publisher's support for dynamic content. PDF templates are much less flexible, making it difficult to achieve desirable effects such as the reflow of text areas when inserting page numbers and other types of dynamic content.	
The templates can be rotated (at right angles) or be made transparent. A PDF template can also be specified at the book level, enabling the ability to specify global page numbering, or other content such as backgrounds and watermarks. You can also pass as parameters a title page, cover page, and closing pages for each chapter or section.	
The structure of the book's chapters, sections, and subsections is represented as XML and passed in as a command line parameter; or it can also be passed in at the API level. All of the chapter and section files, and all the templates files and their respective parameters, are specified inside this XML structure. Therefore, the only two required parameters are an XML file and a PDF output file.	
You can also specify volume breaks inside the book structure. Specifying volume breaks will split the content up into separate output files for easier file and printer management.	
The structure of the XML control file is represented in the following diagram:	
Figure 7-5 Structure of XML Control File	
To specify template and content file locations in your XML structure, you can specify a path relative to your local file system or you can specify a URL referring to the template or content location. Secure HTTP protocol is supported, as are specially recognized BI Publisher protocols, such as:	
Following is an example of the command line usage:	
Example 7-28 Sample of Command Line Options	
where	
-xml <file>	
is the file name of the input XML file containing the table of contents XML structure.	
-pdf <file>	
is the final generated PDF output file.	
-tmp <directory>	
is the temporary directory for better memory management. (This is optional, if not specified, the system environment variable "java.io.tmpdir"	
will be used.)	
-log <file>	
sets the output log file (optional, default is System.out	
).	
-debug <true or false>	
turns debugging off or on.	
The following is an example of an API method call:	
Example 7-29 Sample API Method Call	
This section discusses how to use the PDF Digital Signature Engine, and includes the following topics:	
The PDF Digital Signature Engine creates signed PDF documents by processing unsigned PDF documents with a signature field name and a password-protected Personal Information Exchange (PFX) file. PFX files adhere to the Public Key Cryptography Standards #12 (PCKS-12) format and contain a digital certificate and a corresponding private key.	
To create signed PDF documents, see Section 7.9.2, "Signing PDF Documents."	
To distribute or deliver signed PDF documents, use the Schedule Service. See Chapter 3, "ScheduleService."	
To verify signed PDF documents, see Section 7.9.4, "Verifying Signed PDF Documents."	
Signing a PDF document requires the following items:	
After you obtain or create the items listed above, you are ready to sign a PDF document.	
To sign a PDF document, process your PDF file with your PFX file using the PDFSignature Java API that Oracle BI Publisher provides. Example 7-30 provides sample code for this purpose.	
Example 7-30 Sample Code for Creating Signed PDF Documents	
To distribute or deliver signed PDF documents, use the Schedule Service. See Chapter 3, "ScheduleService."	
You can verify signed PDF documents by processing them with your digital certificate. Example 7-31 provides sample code for this purpose.	
Example 7-31 Sample Code for Verifying Signed PDF Documents	
The eText Processor enables you to convert RTF eText templates to XSL, and merge the XSL with XML to produce text output for EDI and EFT transmissions.	
The following is an example of an API method call that converts an RTF eText template to XSL:	
Example 7-32 Sample Code for Converting RTF eText Templates to XSL	
The following is an example of an API method call that merges XSL with XML to produce eText output:	
Example 7-33 Sample Code for Producing Text Output for EDI and EFT Transmissions	
The Document Processor Engine provides batch processing functionality to access a single API or multiple APIs by passing a single XML instance document to specify template names, data sources, languages, output type, output names, and destinations.	
This solution enables batch printing with BI Publisher, in which a single XML document can be used to define a set of invoices for customers, including the preferred output format and delivery channel for those customers. The XML format is very flexible allowing multiple documents to be created or a single master document.	
This section:	
The Document Processor XML file has the following element hierarchy:	
This hierarchy is displayed in the following illustration:	
Figure 7-6 Hierarchy and Elements of the Document Processor XML File	
The following table describes each of the elements:	
Table 7-1 Elements in Document Processor XML File Hierarchy	
Element	Attributes
---	---
Root element must contain [The	
N/A	Element that contains the data and template processing definitions.
N/A	Defines where the generated output is sent.
Specify one output that can have several template elements. The pdf (Default) rtf html excel text	
Specify this element to save the output to the file system. Define the directory path in the	
The	
Specify a URI in the	
The	
Specify the outgoing mail server (SMTP) in the Specify the mail server port in the	
The You can specify multiple e-mail addresses in the The The	
If the background text is required on a specific page, then set the	
Specify the watermark text in the A	
The The "Helvetica" is used for the page number font. The The	
Contains template information. Valid values for the rtf xsl-fo etext The default value is "pdf".	
Define the If the	
Following are sample XML files that show:	
The following example shows how to define two data sources to merge with one template to produce one output file delivered to the file system:	
Example 7-34 Sample XML for Defining Two Data Sets	
The following example builds on the previous examples by applying two data sources to one template and two data sources to a second template, and then merging the two into a single output file. Note that when merging documents, the output-type	
must be "pdf".	
Example 7-35 Sample XML for Defining Multiple Templates and Data	
This sample is identical to the previous example, except in this case the two templates are retrieved over HTTP:	
Example 7-36 Sample XML for Retrieving Templates over HTTP	
This sample builds on the previous example and shows one template with two data sources, all retrieved through HTTP; and a second template retrieved through HTTP with its two data sources embedded in the XML:	
Example 7-37 Sample XML for Retrieving Data over HTTP	
The following sample shows the generation of two outputs: out_1.pdf	
and out_2.pdf	
. Note that a request	
element is defined for each output.	
Example 7-38 Sample XML for Generating More than One Output	
The following sample shows the use of the pagenumber	
element to define page numbers on a PDF output document. The first document that is generated will begin with an initial page number value of 1. The second output document will begin with an initial page number value of 3. The pagenumber	
element can reside anywhere within the document	
element tags.	
Note that page numbering that is applied using the pagenumber	
element will not replace page numbers that are defined in the template.	
Example 7-39 Sample XML for Defining Page Numbers	
The following code samples show how to invoke the document processor engine using an input file name and an input stream.	
Input:	
Example 7-40 Sample Code for Invoking Processors with Input File Names	
Input:	
Example 7-41 Sample Code for Invoking Processors with Input Streams	
The FO Processor supports PDF security and other properties that can be applied to your final documents. Security properties include making a document unprintable and applying password security to an encrypted document.	
Other properties allow you to define font subsetting and embedding. If your template uses a font that would not normally be available to BI Publisher at run time, you can use the font properties to specify the location of the font. At run time BI Publisher will retrieve and use the font in the final document. For example, this property might be used for check printing for which a MICR font is used to generate the account and routing numbers on the checks.	
The properties can be set in the following ways:	
To pass a property as a Property object, set the name/value pair for the property before calling the FO Processor, as shown in the following example:	
Input:	
Output:	
Example 7-42 Sample Code for Passing Properties to the FO Engine	
The following code shows an example of passing the location of a configuration file.	
Input:	
Output:	
Example 7-43 Sample Code for Passing a Configuration File to the FO Processor	
Input:	
Output:	
Example 7-44 Sample Code for Passing Properties to the Document Processor	
For the advanced formatting to work in the template, you must provide a Java class with the appropriate methods to format the data at run time. Many font vendors offer the code with their fonts to perform the formatting; these must be incorporated as methods into a class that is available to the BI Publisher formatting libraries at run time. There are some specific interfaces that you must provide in the class for the library to call the correct method for encoding.	
If you use one of the three barcodes provided with BI Publisher, you do not need to provide the Java class. For more information see "Using the Barcode Fonts Shipped with BI Publisher" in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business Intelligence Publisher.	
You must implement the following methods in this class:	
Place this class in the classpath for the middle tier JVM in which BI Publisher is running.	
For E-Business Suite users, the class must be placed in the classpath for the middle tier and any concurrent nodes that are present.	
If in the register-barcode-vendor command the barcode_vendor_id	
is not provided, BI Publisher will call the getVendorID() and use the result of the method as the ID for the vendor.	
The following is an example class that supports the code128 a, b, and c encodings:	
The following code sample can be copied and pasted for use in your system. Note that due to publishing constraints you will need to correct line breaks and ensure that you delete quotes that display as "smart quotes" and replace them with simple quotes.	
Example 7-45 Sample Code for Advanced Barcode Formatting	
Once you create the class and place it in the correct classpath, your template creators can start using it to format the data for barcodes. You must give them the following information to include in the template commands:	
In this example:	
oracle.xdo.template.rtf.util.barcoder.BarcodeUtil	
In this example: XMLPBarVendor	
In this example, code128a, code128b and code128c They can then use this information to successfully encode their data for barcode output.	
They can then use this information to successfully encode their data for barcode output.	
This chapter describes BI Publisher's delivery manager APIs.	
It contains the following sections:	
The Delivery Manager is a set of Java APIs that enables you to control the delivery of your BI Publisher documents. Use the Delivery Manager to:	
To use the Delivery Manager follow these steps:	
createRequest()	
method. submit()	
to submit the delivery request. One delivery request can handle one document and one destination. This facilitates monitoring and resubmitting, if necessary.	
DeliveryRequest enables you to set documents in the following two ways:	
submit()	
for the first time. The DeliveryRequest does not close the InputStream so you must ensure to close it. The Delivery Manager supports streamlined delivery when you set the direct mode. See Section 8.14, "Direct and Buffering Modes."	
The follow delivery channels are described in this document:	
The following sample demonstrates delivery through e-mail:	
Example 8-1 Sample Code for Delivering Documents through E-Mail	
The following table lists the supported properties:	
Table 8-1 Properties for E-Mail Delivery	
Property	Description
---	---
SMTP_TO_RECIPIENTS	Required Enter multiple recipients separated by a comma (example: "user1@foobar.com.example, user2@foobar.com.example")
SMTP_CC_RECIPIENTS	Optional Enter multiple recipients separated by a comma.
SMTP_BCC_RECIPIENTS	Optional Enter multiple recipients separated by a comma.
SMTP_FROM	Required Enter the e-mail address of the sending party.
SMTP_REPLY_TO	Optional Enter the reply-to e-mail address.
SMTP_SUBJECT	Required Enter the subject of the e-mail.
SMTP_CHARACTER_ENCODING	Optional Default is "UTF-8".
SMTP_ATTACHMENT	Optional If you are including an attachment, enter the attachment object name.
SMTP_CONTENT_FILENAME	Optional Enter the file name of the attachment (example: invoice.pdf)
SMTP_CONTENT_DISPOSITION	Content disposition of the attachment. Value should be either "inline" or "attachment". Default is "attachment".
SMTP_CONTENT_TYPE	Required Enter the MIME type.
SMTP_SMTP_HOST	Required Enter the SMTP host name.
SMTP_SMTP_PORT	Optional Enter the SMTP port. Default is 25.
SMTP_SECURE_CONNECTION	This property controls secure connection method to use. Valid values are:
SMTP_SMTP_USERNAME	Optional If the SMTP server requires authentication, enter your username for the server.
SMTP_SMTP_PASSWORD	Optional If the SMTP server requires authentication, enter the password for the username you entered.
SMTP_ATTACHMENT_FIRST	Optional If your e-mail contains an attachment and you want the attachment to appear first, enter "true". If you do not want the attachment to appear first, enter "false".
The e-mail delivery server channel supports multiple documents and multiple destinations per request. The following example demonstrates multiple TO and CC addresses:	
Example 8-2 Sample Code for Defining Multiple Recipients	
Use the Attachment utility class (oracle.apps.xdo.delivery.smtp.Attachment	
) to attach multiple documents into one request. Sample usage is as follows:	
Example 8-3 Sample Code for Attaching Multiple Documents to One Request	
You can attach HTML documents into one request. If you have references to image files located in the local file system in your HTML document, the Attachment utility automatically attaches those image files also. The sample usage is as follows:	
Example 8-4 Sample Code for Attaching HTML Documents	
If you want to show your attachment at the top of an e-mail, set the property SMTP_ATTACHMENT_FIRST to "true". Sample usage is as follows.	
Example 8-5 Sample Code for Displaying Attachments at the Top of E-Mail	
You can use a String object for the e-mail body. This may be useful if you want to include a message with your attached files. The following sample code will deliver the message "Please find the attached invoice." in the e-mail body and one PDF document "invoice.pdf" as an attachment.	
Example 8-6 Sample Code for Using a String Object as the E-Mail Body	
You can also use an HTML document for the e-mail body. The utility automatically resolves the local image references in your HTML document and attaches those images.	
Sample usage is as follows:	
Example 8-7 Sample Code for Using an HTML Document as the E-Mail Body	
If the SMTP server requires authentication, you can specify the username and password to the delivery request.	
Example 8-8 Sample Code for Providing User Name and Password for Authentication	
The Delivery Manager supports Internet Printing Protocol (IPP) as defined in RFC 2910 and 2911 for the delivery of documents to IPP-supported printers or servers, such as CUPS.	
Common Unix Printing System (CUPS) is a free, server-style, IPP-based software that can accept IPP requests and dispatch those requests to both IPP and non-IPP based devices, such as printers and fax machines. See http://www.cups.org/	
for more information about CUPS.	
To print out your document with the IPP, you need to transform your document into the format that the target IPP printers or servers can understand before the delivery. For example, if the target printer is a Postscript printer, you must transform your document to Postscript format. Usually, printers do not natively understand PDF, RTF, Excel or Word document formats. The Delivery API itself does not provide the document format transformation functionality, but it does offer document filter support for this purpose. See Section 8.16, "Document Filter Support."	
Following is a code sample for delivery to a printer:	
Example 8-9 Sample Code for Delivering Documents to a Printer	
The following properties are supported. A string value is required for each property, unless otherwise noted. Note that printer-specific properties such as IPP_SIDES, IPP_COPIES and IPP_ORIENTATION depend on the printer capabilities. For example, if the target printer does not support duplex printing, the IPP_SIDES setting will have no effect.	
Table 8-2 Properties for Delivering Documents to Printers	
Property	Description
---	---
IPP_HOST	Required Enter the host name.
IPP_PORT	Optional Default is 631.
IPP_PRINTER_NAME	Required Enter the name of the printer that is to receive the output.
IPP_AUTHTYPE	Optional Valid values for authentication type are: IPP_AUTHTYPE_NONE - no authentication (default) IPP_AUTHTYPE_BASIC - use HTTP basic authentication IPP_AUTHTYPE_DIGEST - use HTTP digest authentication
IPP_USERNAME	Optional Enter the username for HTTP authentication.
IPP_PASSWORD	Optional Enter the password for HTTP authentication.
IPP_ENCTYPE	Optional The encryption type can be set to either of the following: IPP_ENCTYPE_NONE - no encryption (default) IPP_ENCTYPE_SSL - use Secure Socket Layer
IPP_USE_FULL_URL	Optional Set to "true" to send the full URL for the HTTP request header. Valid values are "true" or "false" (default).
IPP_USE_CHUNKED_BODY	Optional Valid values are "true" (default) to use HTTP chunked transfer coding for the message body, or "false".
IPP_ATTRIBUTE_CHARSET	Optional Attribute character set of the IPP request. Default is "UTF-8".
IPP_NATURAL_LANGUAGE	Optional The natural language of the IPP request. Default is "en".
IPP_JOB_NAME	Optional Job name of the IPP request.
IPP_COPIES	Optional Define the number of copies to print (example: "1", "5", "10"). Default is 1.
IPP_SIDES	Optional Enable two-sided printing. This setting will be ignored if the target printer does not support two-sided printing. Valid values are:
IPP_ORIENTATIONS	Optional Sets the paper orientation. This setting will be ignored if the target printer does not support orientation settings. Valid values are: IPP_ORIENTATIONS_PORTRAIT (default) IPP_ORIENTATIONS_LANDSCAPE
IPP_DOCUMENT_FORMAT	Optional The target printer must support the specified format. Valid values are: IPP_DOCUMENT_FORMAT_POSTSCRIPT IPP_DOCUMENT_FORMAT_PLAINTEXT IPP_DOCUMENT_FORMAT_PDF IPP_DOCUMENT_FORMAT_OCTETSTREAM (default)
IPP_MEDIA	You can choose either the paper size or the tray number. If you do not specify this option, the default media of the target printer will be used. It will be ignored if the target printer doesn't support the media option. Valid values are:
IPP_PAGE_RANGES	Specify page ranges to print. By default, all pages are printed. Example valid values are:
To deliver documents to IPP printers or fax machines over an HTTP proxy server, you may encounter delivery problems due to differences in the HTTP implementations between CUPS and the proxy servers. Setting the following two properties can resolve most of these problems:	
If you use CUPS with the default setup, the typical property settings are as follows:	
IPP_HOST: <host-name>	
IPP_PORT: 631	
IPP_PRINTER_NAME: /printers/<printer-name>	
If you use the Microsoft Internet Information Service (IIS) with the default setup, the typical property settings are as follows:	
IPP_HOST: <host-name>	
IPP_PORT: 80	
IPP_PRINTER_NAME: /printers/<printer-name>/.printer	
The Delivery Manager supports delivery of documents to "local" printers attached to the system where the Delivery Manager runs.	
Following is a code sample for delivery to a local printer.	
Example 8-10 Sample Code for Delivering Documents to a Local Printer	
The following table lists the supported properties. Note that support of printer-specific properties such as PRINTER_SIDES, PRINTER_COPIES, PRINTER_MEDIA, PRINTER_ORIENTATION, PRINTER_PAGE_RANGES and PRINTER_SIDES depends on the printer and local printing system's capabilities. For example, on Windows, these properties are ignored unless a you also use a filter that supports adding these properties to your document.	
Table 8-3 Properties for Delivering Documents to Local Printers	
Property	Description
---	---
PRINTER_CONTENT_TYPE	Optional The document content type (example: "application/pdf").
PRINTER_COPIES	Optional Specify the number of copies to print (example: "1", "5", "10"). Default is 1.
PRINTER_HOST	Optional Printer name (name of the printer on the operating system or local printing system) to send the documents to. If HOST is not specified, the default local printer is used.
PRINTER_MEDIA	Optional You can choose either the paper size or the tray number. If you do not specify this option, the default media of the target printer will be used. It will be ignored if the target printer doesn't support the media option. Valid values are:
PRINTER_ORIENTATIONS	Optional Sets the paper orientation. This setting will be ignored if the target printer does not support orientation settings. Valid values are: PRINTER_ORIENTATIONS_PORTRAIT (default) PRINTER_ORIENTATIONS_LANDSCAPE
PRINTER_PAGE_RANGES	Specify page ranges to print. By default, all pages are printed. Example valid values are:
PRINTER_SIDES	Optional Enable two-sided printing. This setting will be ignored if the target printer does not support two-sided printing. Valid values are:
The delivery manager supports the delivery of documents to fax modems configured on CUPS. You can configure fax modems on CUPS with efax (http://www.cce.com/efax/	
) and FAX4CUPS (http://directory.fsf.org/wiki/Fax4CUPS	
).	
Sample code for fax delivery is as follows:	
Example 8-11 Sample Code for Delivering Documents to a Fax Server	
The supported properties are the same as those supported for printer documents, plus the following:	
Table 8-4 Properties for Delivering Documents to Fax Servers	
Property	Description
---	---
IPP_PHONE_NUMBER	Required Enter the fax number.
The Delivery Manager supports the delivery of documents to OpenText Fax Server, RightFax Edition (formerly Captaris RightFax) 9.3 or above. The XML interface on HTTP port must be enabled on RightFax server to enable this integration.	
Following is a code sample for delivery to RightFax server:	
Example 8-12 Sample Code for Delivering Documents to a RightFax Server	
The following table lists the supported properties:	
Table 8-5 Properties for Delivering Documents to RightFax Servers	
Property	Description
---	---
RIGHTFAX_HTTP_HOST	Required HTTP host of the RightFax server
RIGHTFAX_HTTP_PORT	Optional HTTP port of the RightFax server. Default=80.
RIGHTFAX_HTTP_REMOTE_DIRECTORY	Optional Enter the remote directory name (example: /RFWebCon.dll) of the RightFax XML interface.
RIGHTFAX_HTTP_AUTHTYPE	Optional HTTP authentication type of the RightFax server URL. Valid values are RIGHTFAX_HTTP_AUTHTYPE_NONE, RIGHTFAX_HTTP_AUTHTYPE_BASIC, RIGHTFAX_HTTP_AUTHTYPE_DIGEST. Default value is RIGHTFAX_AUTHTYPE_NONE.
RIGHTFAX_HTTP_USERNAME	Optional HTTP username for the RightFax server url. Required when RIGHTFAX_HTTP_AUTH_TYPE is set to values other than RIGHTFAX_HTTP_AUTHTYPE_NONE.
RIGHTFAX_HTTP_PASSWORD	Optional HTTP password for the RightFax server url. Required when RIGHTFAX_HTTP_AUTH_TYPE is set to values other than RIGHTFAX_HTTP_AUTHTYPE_NONE.
RIGHTFAX_HTTP_ENCTYPE	Optional The encryption type can be set to either of the following: RIGHTFAX_HTTP_ENCTYPE_NONE – no encryption (default) RIGHTFAX_HTTP_ENCTYPE_SSL – use Secure Socket Layer
RIGHTFAX_HTTP_USE_FULL_URL	Optional Set to "true" to send the full URL for the HTTP request header. Valid values are "true" or "false" (default).
RIGHTFAX_HTTP_USE_CHUNKED_BODY	Optional Valid values are "true" (default) to use HTTP chunked transfer coding for the message body, or "false".
RIGHTFAX_HTTP_TIMEOUT	Optional Enter a length of time in milliseconds after which to terminate the request if a connection is not made to the HTTP server. The default is 60000 (1 minute).
RIGHTFAX_HTTP_PROXY_HOST	Optional Enter the proxy server host name.
RIGHTFAX_HTTP_PROXY_PORT	Optional Enter the proxy server port number. Default=80.
RIGHTFAX_HTTP_PROXY_AUTHTYPE	Optional Valid value is either of the following. RIGHTFAX_HTTP_PROXY_AUTHTYPE_NONE – no authentication RIGHTFAX_HTTP_PROXY_AUTHTYPE_BASIC – Use HTTP basic authentication RIGHTFAX_HTTP_PROXY_AUTHTYPE_DIGEST – Use HTTP digest authentication.
RIGHTFAX_HTTP_PROXY_USERNAME	Optional Enter the username for proxy authentication.
RIGHTFAX_HTTP_PROXY_PASSWORD	Optional Enter the password for HTTP proxy authentication.
RIGHTFAX_SENDER_FROM_NAME	Optional Enter the name of the sender.
RIGHTFAX_SENDER_EMP_ID	Optional Enter the employee id of the sender.
RIGHTFAX_SENDER_FROM_COMPANY	Optional Enter the name of the sender's company.
RIGHTFAX_SENDER_FROM_DEPARTMENT	Optional Enter the name of the sender's department.
RIGHTFAX_SENDER_FROMO_PHONE	Optional Enter sender's phone number.
RIGHTFAX_SENDER_RETURN_EMAIL	Optional Enter sender's return email address.
RIGHTFAX_SENDER_BILLINFO1	Optional Enter the billing code of the fax owner.
RIGHTFAX_SENDER_BILLINFO2	Optional Enter the secondary billing code of the fax owner.
RIGHTFAX_SENDER_RF_USER	Required Enter the name of the sender's RightFax user name.
RIGHTFAX_FAX_TO_NUMBER	Required Enter the fax number where the document will be sent.
RIGHTFAX_FAX_TO_NAME	Optional Enter the recipient's name.
RIGHTFAX_FAX_TO_COMPANY	Optional Enter the recipient's company name.
RIGHTFAX_FAX_ALT_FAX_NUM	Optional Enter the alternative fax number.
RIGHTFAX_FAX_TO_CONTACTNUM	Optional Enter the contact phone number of the recipient.
RIGHTFAX_FAX_COVERSHEET	Optional Enter the cover sheet template for the current document. The file name can be either a full path on the RightFax server computer or a path relative to RightFax\Production\Covers.
RIGHTFAX_COVERTEXT	Optional Enter the text that should appear on the cover sheet.
RIGHTFAX_COVERTEXT_TYPE	Optional Enter the type of the cover sheet text. Valid values are:
RIGHTFAX_COVERTEXT_ENCODING	Optional Enter the encoding of the cover sheet text. Valid values are:
RIGHTFAX_DOCUMENT_FORMAT	Optional Valid values are:
The following is sample code for delivery to a Web-based Distributed Authoring and Versioning (WebDAV) server:	
Example 8-13 Sample Code for Delivering Documents to a WebDAV Server	
The following properties are supported. A String value is required for each, unless otherwise noted.	
Table 8-6 Properties for Delivering Documents to WebDAV Servers	
Property	Description
---	---
WEBDAV_CONTENT_TYPE	Required Enter the document content type (example: "application/pdf").
WEBDAV_HOST	Required Enter the server host name.
WEBDAV_PORT	Optional Enter the server port number. Default is 80.
WEBDAV_REMOTE_DIRECTORY	Required. Enter the remote directory name (example: "/myreports/").
WEBDAV_REMOTE_FILENAME	Required. Enter the remote file name.
WEBDAV_AUTHTYPE	Optional Valid values for authentication type are: WEBDAV_AUTHTYPE_NONE - no authentication (default) WEBDAV_AUTHTYPE_BASIC - use HTTP basic authentication WEBDAV_AUTHTYPE_DIGEST - use HTTP digest authentication
WEBDAV_USERNAME	Optional Enter the username for HTTP authentication.
WEBDAV_PASSWORD	Optional Enter the password for HTTP authentication.
WEBDAV_ENCTYPE	Optional Valid values for encryption type are: WEBDAV_ENCTYPE_NONE - no encryption (default) WEBDAV_ENCTYPE_SSL - use Secure Socket Layer
WEBDAV_USE_FULL_URL	Optional Set to "true" to send the full URL for the HTTP request header. Valid values are "true" or "false" (default).
WEBDAV_USE_CHUNKED_BODY	Optional Valid values are "true" (default) to use HTTP chunked transfer coding for the message body, or "false".
WEBDAV_URL_CHARACTER_ENCODING	Encoding of the URL. It will be used if you use non-ASCII characters in the URL. Set the Java-supported encoding string for the value.
The following is sample code for delivery to an FTP server:	
Example 8-14 Sample Code for Delivering Documents over FTP	
The following properties are supported. A String value is required unless otherwise noted.	
Table 8-7 Properties for Delivering Documents over FTP	
Property	Description
---	---
FTP_HOST	Required Enter the server host name.
FTP_PORT	Optional Enter the server port number. Default is 21.
FTP_USERNAME	Required Enter the login user name to the FTP server.
FTP_PASSWORD	Required Enter the login password to the FTP server.
FTP_REMOTE_DIRECTORY	Required Enter the directory to which to deliver the document (example: /pub/)
FTP_REMOTE_FILENAME	Required Enter the document file name for the remote server.
FTP_BINARY_MODE	Optional Valid values are "true" (default) or "false".
FTP_PASSIVE_MODE	Optional Valid values are "true" or "false" (default).
Secure FTP is the protocol based on the Secure Shell technology (ssh) and it is widely used to transfer files in a secure manner. Both Secure Shell and Secure FTP are defined by the Internet Engineering Task Force (IETF) and the specifications are available on their Web site: http://www.ietf.org	
. The delivery system supports the delivery of documents to secure FTP servers.	
The following tables lists the supported properties. A string value is required for each property unless otherwise noted.	
Example 8-15 Sample Code for Delivering Documents over SFTP	
Table 8-8 Properties for Delivering Documents over SFTP	
Property	Description
---	---
SFTP_HOST	Required Enter the target server host name.
SFTP_PORT	Optional Enter the target server SSH port number. Default is 22.
SFTP_USERNAME	Required Enter the login user name.
SFTP_PASSWORD	Required if you choose the SFTP_AUTH_TYPE_PASSWORD authentication type. Enter the login password.
SFTP_REMOTE_DIRECTORY	Required Enter the directory to which to deliver the document (example: /pub/). If no value is entered, the document will be delivered to the login directory.
SFTP_REMOTE_FILENAME	Required Enter the document file name on the remote server.
SFTP_AUTH_TYPE	Set either of the following: SFTP_AUTH_TYPE_PASSWORD (Default) Requires providing password at login. SFTP_AUTH_TYPE_PUBLIC_KEY - public key authorization type.
SFTP_PRIVATE_KEY_FILE	Enter the client private key file. Required if you choose SFTP_AUTH_TYPE_PUBLIC_KEY.
SFTP_PRIVATE_KEY_PASSWORD	Enter the client private key password. Required if you choose SFTP_AUTH_TYPE_PUBLIC_KEY.
SFTP_FILE_PERMISSION	Enter the permissions to set for the file being created. Default is 0755.
The secure FTP delivery supports two authentication modes: password authentication and public key authentication. Set the property SFTP_AUTH_TYPE to choose the mode. The default mode is password authentication.	
The password authentication mode requires the username and password to log in to the secure FTP server. The following example shows sample code:	
Example 8-16 Sample Code for Password Authentication	
The public key authorization mode requires the username, your private key and password for the private key. This is a more secure method than the password authentication. Note that to use the public key authentication mode, you must set up the public key in the ssh/secure FTP server in advance. The following example shows sample code:	
Example 8-17 Sample Code for Public Key Authentication	
The Delivery Manager supports delivery of documents to HTTP servers. The following sample sends a document through the HTTP POST method. Note that the receiving HTTP server must be able to accept your custom HTTP request in advance (for example through a custom servlet or CGI program).	
Example 8-18 Sample Code for Delivering Documents over HTTP	
The following table lists the properties that are supported. A String value is required for each property unless otherwise noted.	
Table 8-9 Properties for Delivering Documents over HTTP	
Property	Description
---	---
HTTP_METHOD	Optional Sets the HTTP request method. Valid values are: HTTP_METHOD_POST (Default) HTTP_METHOD_PUT
HTTP_CONTENT_TYPE	Optional The document content type (example: "application/pdf").
HTTP_HOST	Required Enter the server host name.
HTTP_PORT	Optional Enter the server port number. The default is 80.
HTTP_REMOTE_DIRECTORY	Required Enter the remote directory name (example: "/home/").
HTTP_REMOTE_FILENAME	Required Enter the file name to save the document as in the remote directory.
HTTP_AUTHTYPE	Optional Valid values for authentication type are: HTTP_AUTHTYPE_NONE - no authentication (default) HTTP_AUTHTYPE_BASIC - use basic HTTP authentication HTTP_AUTHTYPE_DIGEST - use digest HTTP authentication
HTTP_USERNAME	Optional If the server requires authentication, enter the username.
HTTP_PASSWORD	Optional If the server requires authentication, enter the password for the username.
HTTP_ENCTYPE	Optional Enter the encryption type: HTTP_ENCTYPE_NONE - no encryption (default) HTTP_ENCTYPE_SSL - use Secure Socket Layer
HTTP_USE_FULL_URL	Optional Set to "true" to send the full URL for the HTTP request header. Valid values are "true" or "false" (default).
HTTP_USE_CHUNKED_BODY	Optional Valid values are "true" (default) to use HTTP chunked transfer coding for the message body, or "false".
HTTP_TIMEOUT	Optional Enter a length of time in milliseconds after which to terminate the request if a connection is not made to the HTTP server. The default is 60000 (1 minute).
HTTP_URL_CHARACTER_ENCODING	Encoding of the URL. It will be used if you use non-ASCII characters in the URL. Set the Java-supported encoding string for the value.
AS2 is one of the standard protocols defined in the Electronic Data Interchange-Internet Integration (EDI-INT). AS2 is based on HTTP and other internet standard technologies and is designed to exchange data over the internet in a secure manner. The AS2 specification is defined in RFC4130 (available at http://www.ietf.org/	
). The delivery system supports the delivery of documents to AS2 servers. Sample code is as follows:	
Example 8-19 Sample Code for Delivering Documents over AS2	
The following table lists the supported properties. A string value is required for each property unless otherwise noted.	
Table 8-10 Properties for Delivering Documents over AS2	
Property	Description
---	---
AS2_FROM	Required. Enter the AS2 message sender.
AS2_TO	Required. Enter the AS2 message recipient.
AS2_SUBJECT	Required. Enter the message subject.
AS2_MESSAGE_COMPRESSION	Default value is False. Enter True to compress the message.
AS2_MESSAGE_SIGNATURE	Default value is False. Enter True to sign the message.
AS2_MESSAGE_ENCRYPTION	Default value is False. Enter True to encrypt the message.
AS2_CONTENT_TYPE	Required. Enter the content type of the document. Valid values are:
AS2_ENC_ALGO	The AS2 encryption algorithm. Set one of the following:
AS2_DIGEST_ALGO	Enter the AS2 digest algorithm for signing the messages. Set either of the following:
AS2_ASYNC_ADDRESS	Enter the asynchronous address to which MDN notifications should be set.
AS2_ASYNC_EMAIL_SERVER_HOST	Enter the email server host for asynchronous email MDN.
AS2_ASYNC_EMAIL_SERVER_PORT	Enter the email server port for asynchronous email MDN.
AS2_ASYNC_EMAIL_SERVER_USERNAME	Enter the email server USERNAME for asynchronous email MDN.
AS2_ASYNC_EMAIL_SERVER_PASSWORD	Enter the email server PASSWORD for asynchronous email MDN.
AS2_ASYNC_EMAIL_SERVER_FOLDER_NAME	Enter the IMAP folder name for asynchronous email MDN.
AS2_SENDER_PKCS12_FILE	Location of the sender's PKCS12 (public/private key) file.
AS2_SENDER_PKCS12_PASSWORD	Password for the sender's PKCS12 (public/private key).
AS2_RECEIVER_CERTIFICATES_FILE	Location of the receiver's certificates file.
AS2_DELIVERY_RECEIPT_DIRECTORY	Directory to store the delivery receipts. This directory must be specified if to receive delivery receipts.
AS2_HTTP_HOST	Required. Enter the server host name.
AS2_HTTP_PORT	Enter the server HTTP port number. The default is 80.
AS2_HTTP_REMOTE_DIRECTORY	Required. Enter the remote directory name. (Example: /home/)
AS2_HTTP_REMOTE_FILENAME	Required. Enter the remote file name.
AS2_HTTP_AUTHTYPE	Enter the HTTP authentication type. Valid values are:
AS2_HTTP_USERNAME	Enter the username for HTTP authentication.
AS2_HTTP_PASSWORD	Enter the password for HTTP authentication.
AS2_HTTP_ENCTYPE	Set the encryption type. Valid values are:
AS2_HTTP_TIMEOUT	Enter the time out allowance in milliseconds. Default is 60,000 (1 minute)
AS2_HTTP_PROXY_HOST	Required. Enter the proxy server host name.
AS2_HTTP_PROXY_PORT	Enter the proxy server port number. Default is 80.
AS2_HTTP_PROXY_AUTHTYPE	
AS2_HTTP_PROXY_USERNAME	Enter the username for proxy authentication.
AS2_HTTP_PROXY_PASSWORD	Enter the password for HTTP proxy authentication.
The AS2 server always issues an AS2 delivery receipt for each AS2 request. Set the AS2_DELIVERY_RECEIPT_DIRECTORY property to specify the location to store the delivery receipts. If you do not specify this directory, delivery receipts will be ignored. Sample code for setting the delivery receipt directory is as follows:	
Example 8-20 Sample Code for Setting the Delivery Receipt Directory	
You can send either synchronous or asynchronous delivery requests to the AS2 servers. By default, the request is synchronous so that you can see the Message Disposition Notification (MDN) immediately in the DeliveryResponse.	
If you set the AS2_ASYNC_ADDRESS to your request, the request will be asynchronous. You can specify either an HTTP URL or an e-mail address where the delivery receipt will be delivered after processing. You must set up the HTTP server or e-mail address to receive the delivery receipts.	
The Delivery API can track down the asynchronous request if you specify the e-mail address for the AS2_ASYNC_ADDRESS. If you provide the e-mail account information to the Delivery API, the Delivery API will periodically check the e-mail account to obtain the delivery receipt. Sample code for this is as follows:	
Example 8-21 Sample Code for Sending Asynchronous Delivery Requests	
Note that as shown in the preceding code, you must use the Delivery APIs asynchronous delivery request mechanism to track down the asynchronous requests. See Section 8.15, "Asynchronous Delivery Requests."	
The Delivery API enables you to sign a document for the secure transaction. This is based on the public key architecture, so you must set up the following:	
Sender must have sender's public/private keys in a PKCS12 standard file. The file extension is .p12. Place that file in your local system where you want to run the Delivery API.	
The receiver must have the sender's public key certificate. Installing certificates on the AS2 server can vary depending on your server. Generally, you must copy the .der or .cer certificates to a particular location. Consult your AS2 server manual for the procedure.	
Once you have completed the setup, you can sign your document by setting properties in the delivery request. Sample code for this is as follows:	
Example 8-22 Sample Code for Signing Documents	
The Delivery API enables you to encrypt documents for the secure transaction. This is based on the public key architecture, so you need to set up the following:	
The sender side must have the receiver's public key certificate file. The file extension is .der or .cer. Place that file in your local system where you want to run the Delivery API. Please consult the manual of your AS2 server for the procedure to obtain the AS2 server's public key certificate.	
The receiver side (AS2 Server) must have the receiver's public/private keys. Please consult the manual of your AS2 server for the procedure to set up keys.	
Once set up, you can encrypt your document by setting properties in the delivery request. The sample code is as follows:	
Example 8-23 Sample Code for Encrypting Documents	
The Delivery API supports the use of external, operating system (OS) native commands to deliver documents.	
Specify your OS native command with the {file}	
placeholder. At run time, this placeholder will be replaced with the document file name.	
The delivery status is determined by the exit value of the OS command. If the value is '0', the request is marked successful.	
Sample code is as follows:	
Example 8-24 Sample Code for Delivering Documents Using External Commands	
The following property is supported and defined in DeliveryPropertyDefinitions:	
Table 8-11 Properties for Delivering Documents Using External Commands	
Property	Description
---	---
EXTERNAL_DELIVERY_COMMAND	Required. Enter the OS native command for delivery.
The Delivery API supports the delivery of documents to the local file system where the Delivery API runs. The command copies the file to the location you specify.	
The following sample code copies the file /document/test.pdf to /destination/document.pdf:	
Example 8-25 Sample Code for Delivering Documents to Local File Systems	
The following property is supported and defined in DeliveryPropertyDefinitons:	
Table 8-12 Properties for Delivering Documents to Local File Systems	
Property	Description
---	---
LOCAL_DESTINATION	Required. Full path to the destination file name in the local file system.
The delivery system supports two modes: direct mode and buffering mode. Buffering mode is the default mode.	
Direct Mode offers full, streamlined delivery processing. Documents are delivered to the connection streams that are directly connected to the destinations. This mode is fast, and uses less memory and disk space. It is recommended for online interactive processing.	
To set the direct mode, set the BUFFERING_MODE property to "false". Following is a code sample:	
Example 8-26 Sample Code for Setting Direct Mode	
This mode does not offer document redelivery. For redelivery requirements, use the buffering mode.	
The buffering mode enables you to redeliver documents as many times as you want. The delivery system uses temporary files to buffer documents, if you specify a temporary directory (ds-temp-dir	
) in the delivery server configuration file. If you do not specify a temporary directory, the delivery system uses the temporary memory buffer. It is recommended that you define a temporary directory. For more information about the configuration file, see Section 8.21, "Configuration File Support."	
You can explicitly clear the temporary file or buffer by calling DeliveryRequest.close()	
after finishing your delivery request.	
Example 8-27 Sample Code for Setting Buffering Mode	
The Delivery API provides the ability to run the delivery requests asynchronously by registering the callback functions.	
You can create your own callback logic by implementing the DeliveryResponseListener interface. You must implement the resposeReceived() method. You can implement your logic in this method so that it will be called when the delivery request is finished. Sample code is as follows:	
Example 8-28 Sample Code for Implementing Callback Logic	
Once you implement the callback, you can pass your callback when you call the submit() method of your DeliveryRequest. If you call the submit() with the callback, the delivery process will start in the background and the submit() method will immediately return the control. Sample code follows:	
Example 8-29 Sample Code for Submitting Callback Logic	
The Delivery API supports the document filter functionality for all the supported protocols. This functionality enables you to call the native operating system (OS) command to transform the document before each delivery request. To specify the filter, pass the native OS command string with the two placeholders for the input and output filename: {infile}	
and {outfile}	
. You can set your filter in your delivery request as a delivery property. Following are two samples:	
Example 8-30 Sample Code for Setting Document Filter as Delivery Property	
Alternatively, you can also specify the filter for each server in the configuration file (see Section 8.21, "Configuration File Support"). In this case, the server will always use this filter for the requests to this server:	
Example 8-31 Sample Code for Setting Document Filter in Configuration File	
This is useful especially if you are trying to call IPP printers directly or IPP printers on Microsoft Internet Information Service (IIS) because those printers usually do not accept PDF documents, but only limited document formats. With this functionality, you can call any of the native operating system (OS) commands to transform the document to the format that the target printer can understand. For example, if you need to call the HP LaserJet printer setup on the Microsoft IIS from Linux, you can set Ghostscript as a filter to transform the PDF document into the format that the HP LaserJet can understand.	
Example 8-32 Sample Code for Setting Document Filter through OS Commands	
Note that to use this functionality you must set the buffering mode must be enabled and a temporary directory must be specified. See Section 8.21, "Configuration File Support."	
In addition, BI Publisher provides a PDF-to-Postscript Level 2 conversion filter. You do not need to set {infile} and {outfile} place holders to use this internal filter, instead, directly specify the filter class as shown below:	
Example 8-33 Sample for Setting the PDF-to-Postscript Level 2 Conversion Filter	
BI Publisher provides properties that support date expressions. Use date expressions if you want to name a file by the date, and have the date automatically set at run time.	
The following properties support date expressions:	
The supported date expressions are:	
For example, if you specify my_file_%y%m%d.txt	
for the filename, the actual filename will would be my_file_20051108.txt	
for November 8, 2005. All undefined expressions will be translated into 0 length string, for example, if you specify my_file_%a%b%c.txt	
, it would generate my_file_.txt	
. You can escape the '%' character by passing '%%'.	
The Delivery Server API supports following internationalization features for the listed delivery channels:	
You can define the global properties to the DeliveryManager so that all the delivery requests inherit the global properties automatically.	
The following global properties are supported:	
Table 8-13 Global Properties Supported by the DeliveryManager API	
Property	Description
---	---
BUFFERING_MODE	Valid values are "true" (default) and "false". See Section 8.14, "Direct and Buffering Modes."
TEMP_DIR	Define the location of the temporary directory.
CA_CERT_FILE	Define the location of the CA Certificate file generated by Oracle Wallet Manager. This is used for SSL connection with the Oracle SSL library. If not specified, the default CA Certificates are used.
Example 8-34 Sample Code for Setting Global Properties	
You can add custom delivery channels to the system by following the steps below:	
The following sections detail how to create a custom delivery channel by creating a sample called "File delivery channel" that delivers documents to the local file system.	
The first step to adding a custom delivery channel is to define the properties. These will vary depending on what you want your channel to do. You can define constants for your properties. Our example, a file delivery channel requires only one property, which is the destination.	
Sample code is:	
Example 8-35 Sample Code for Defining Delivery Channel Properties	
The value of each constant can be anything, if it is a String. It is recommend that you define the value in[property name]:[property value type]	
format so that the delivery system automatically validates the property value at run time. In the example, the FILE_DESTINATION	
property is defined to have a String value.	
DeliveryRequest represents a delivery request that includes document information and delivery metadata, such as destination and other properties. To implement oracle.apps.xdo.delvery.DeliveryRequest you can extend the class oracle.apps.xdo.delivery.AbstractDeliveryRequest.	
For example, to create a custom delivery channel to deliver documents to the local file system, the DeliveryRequest implementation will be as follows:	
Example 8-36 Sample Code for Delivering Documents to a Local File System through a Custom Delivery Channel	
DeliveryRequestHandler includes the logic for handling the delivery requests. A sample implementation of oracle.apps.xdo.delivery.DeliveryRequestHandler for the file delivery channel is as follows:	
Example 8-37 Sample Code for Implementing the DeliveryRequestHandler Interface	
Implement the DeliveryRequestFactory interface to register your custom delivery channel to the delivery system.	
A sample implementation of oracle.apps.xdo.delivery.DeliveryRequestFactory is as follows:	
Example 8-38 Sample Code for Implementing the DeliveryRequestFactory Interface	
The final step is to register your custom delivery channel to the delivery system. You can register your delivery channel in two ways:	
Use this method to register your delivery channel to the whole delivery system by specifying it in the configuration file. See Section 8.21, "Configuration File Support."	
Register the delivery channel to the Java VM instance by calling the Register API programmatically.	
Sample code to register the file delivery channel using the dynamic method and call the file delivery channel is as follows:	
Example 8-39 Sample Code for Registering and Calling File Delivery Channel Using the Dynamic Method	
The delivery systems supports a configuration file to set default servers, default properties, and custom delivery channels. The location of the configuration file is	
{XDO_TOP}/resource/xdodelivery.cfg	
where {XDO_TOP}	
is a Java system property that points to the physical directory.	
This system property can be set in two ways:	
-DXDO_TOP=/path/to/xdotop	
to the Java startup parameter java.lang.System.getProperties().put("XDO_TOP", "/path/to/xdotop")	
The system property must be defined before constructing a DeliveryManager object.	
Following is a sample configuration file:	
Example 8-40 Sample Configuration File	
You can define multiple server entries for each delivery channel. For example, the preceding sample configuration file has two server entries for the "ipp_printer" delivery channel ("myprinter1" and "myprinter2").	
Load a server entry for a delivery request by calling DeliveryRequest.setServer() method. Following is an example:	
Example 8-41 Sample Code for Defining Multiple Servers for a Delivery Channel	
To define a default server for a delivery channel, specify default="true". In the configuration file example above, "myprinter1" is defined as the default sever for the "ipp_printer" delivery channel. If a user does not specify the server properties for "ipp_printer" delivery, the server properties under the default server will be used.	
The following properties are supported in the <properties>	
section:	
ds-temp-dir	
: temporary directory location. ds-buffering	
: specify true or false for buffering mode. ds-ca-cert-file	
: specify the SSL certification file location. The following elements are supported for <server type="ipp_printer">	
and <server type="ipp_fax">	
The following elements are supported for <server type="smtp_email">	
The following elements are supported for <server type="rightfax">	
The following elements are supported for <server type="printer">	
The following elements are supported for <server type="webdav">	
The following elements are supported for <server type="ftp">	
The following elements are supported for <server type="sftp">	
The following elements are supported for <server type="http">	
The following elements are supported for <server type="as2">	
The following elements are supported for <server type="external">	
This chapter describes how to add a BI Publisher report to an ADF application using Oracle JDeveloper.	
It contains the following sections:	
Note: This chapter assumes familiarity with Oracle Application Development Framework (ADF) and Oracle JDeveloper. For more information about these see:	
A report designer uses Oracle BI Publisher to create content intended for inclusion in ADF applications. When a developer adds a BI Publisher report to an ADF page, that form contains a reference to the BI Publisher object and does not contain a copy of the object. When the report is modified within the BI Publisher application, any changes will appear in the ADF application the next time the user runs the form.	
The Oracle BIPublisher and ADF JDeveloper integration is available from the Oracle Fusion Applications Development Environment extension bundle. For more information about obtaining this bundle, see the Oracle Fusion Applications Developer's Guide.	
The following procedures describe how to add BI Publisher content to an ADF project:	
Perform this procedure to add the proper technology scopes to the ADF project.	
The BI Publisher region must reside on a JSF page. The page could be either JSP or JSPX. To add a JSF page to your project:	
Click OK. When the BI Publisher region is inserted, the following will occur:	
Figure 9-7 shows these items:	
To establish a connection to the catalog, update the xmlp-client-config.xml file under Project > Web Content > WEB-INF with the connection information as follows:	
Note that the username and password are for testing purposes only and are not needed in the production environment. In production, the OWSM layer, in conjunction with the server and client side policy, handles the security between the ADF BIP client and server.	
To deploy and run:	
oracle.xdo.runtime: $	
MW_HOME	
/jdeveloper/xdo/lib/xdoruntime.ea	
r oracle.xdo.webapp: $	
MW_HOME	
/jdeveloper/xdo/lib/xdowebapp.war	
weblogic.xml	
and weblogic-application.xml	
as shown in Figure 9-12 and Figure 9-13. The deployment completed message will display in the Log window.	
http://hostname:port/j2eeWebAppName/faces/report.jspx	
in the address field. Template, OutputFormat, and Locale fields display, as shown in Figure 9-15. The following properties are available in the Property Inspector:	
Table 9-1 Common Properties	
Property	Description
---	---
id	The unique ID for each BI Publisher region.
reportID	The path to the report in the BI Publisher catalog. A report will have the extension ".xdo". For example: "/HR Reports/Manager/EmployeeSalaryReport.xdo"
rendered	The control to show or hide the BI Publisher region when the page is rendered. The default is true (show).
Table 9-2 Advanced Properties	
Property	Description
---	---
TemplateId	Sets the default template id. The TemplateID is the layout name.
OutputFormat	Sets the default output format. For example: PDF, HTML.
Parameters	Allows to pass report parameters with Hashtable type.
ReportData	This enables to support push data model.
Table 9-3 Appearance Properties	
Property	Description
---	---
width	Sets the report region width. The unit can be either px or %
height	Sets the report region height. The unit can be either px or %.
RenderActionPanel	Controls whether to show or hide the action panel. The default is true. Note that if you set this to 'false', then you should set renderReportOnLoad to 'true'.
RenderFormatList	Controls whether to show or hide the Format List. Default is true.
RenderReportOnLoad	Determines whether a report is generated when the ADF page is launched. Default is true.
Table 9-4 Other Properties	
Property	Description
---	---
Locale	Sets a default locale for the report.
RenderLocaleList	Controls whether to show or hide the Locale List. The default is true.
This chapter describes the steps required to use a view object as a data source in BI Publisher.	
It contains the following sections:	
Note: This chapter assumes familiarity with Oracle Application Development Framework (ADF) and Oracle JDeveloper. For more information about these see:	
Oracle BI Publisher provides a mechanism to extract data from a remote server using Web service calls to a view object. Applications developers can define data sources as view objects in their application and then create a data model in BI Publisher to retrieve the data to use in their reports.
Following are the prerequisites for using the information in this chapter:
Using Oracle JDeveloper, configure the application module that contains the view object by following the steps in the remaining sections of this chapter.
Figure 10-1 Updating the web.xml File in JDeveloper
Figure 10-2 Updating the weblogic.xml File in JDeveloper
Deploy the application module to the WebLogic Server where BI Publisher is installed. Note the application context path.
providers.xml
file. The providers.xml
file is located in ${xdo.server.config.dir}/repository/Admin/Configuration
. providers.xml
file by providing a name
for this data source and supplying the application context path in the nonSSOUri
attribute as shown: The view object data source will now be available from the data model editor.
For instructions on how to create a data model for this data source, see the topic "Defining a View Object as a Data Set Type" in the Oracle Fusion Middleware Report Designer's Guide for Oracle Business Intelligence Publisher.
This chapter describes how to set up an after-report trigger using an HTTP servlet.
It contains the following sections:
BI Publisher enables you to set up an HTTP notification that will execute after-report generation as an after-report trigger. This enables you to integrate BI Publisher with other Oracle and third-party applications such as a BPEL process, Content Management applications, or other workflow applications.
BI Publisher supports Event triggers (Before Data and After Data triggers) in the Data Model Definition, which you can use to trigger programs during data generation. HTTP notification will trigger after the report is generated.
Note that immediately upon the generation of the report in BI Publisher, the notification will execute. There is currently no ability to call back or introduce a listener or process between the report generation and the HTTP notification to your servlet.
The following tasks are required to complete the setup of an after-report trigger for your report:
The servlet has to be made available bypassing security, therefore, the servlet mapping is required in web.xml (under WEB-INF folder).
When the report generation has completed BI Publisher will call the HTTP notification as a post-process and submit the URL (that you registered as an HTTP server) with the following additional parameters:
Values for status are "S" for success and "F" for failure.
Your remote application can then access these parameters using BI Publisher's APIs and Web services to access the job details, including report output and XML data as shown in the following code sample:
Example 11-1 Sample Code for Setting Up After-Report Triggers
Note that if the HTTP servlet is running inside the BI Publisher application on the same server, you must register it in web.xml (located in the WEB-INF folder). Update the web.xml file as follows:
Alternatively, you can create a JSP page instead of an HTTP Servlet to handle this HTTP notification. With JSP, you do not need to modify web.xml.
Following is a sample HTTP servlet that is called as an HTTP Notification. In this example, the servlet is deployed on the same server as the BI Publisher application. If your servlet is deployed on a remote server, use the BI Publisher Web service APIs to access the report details. For more information about the BI Publisher Web service APIs, see Oracle Fusion Middleware Java API Reference for Oracle Business Intelligence Publisher 11g.
In this sample, the servlet uses the information provided by the HTTP request as input to the BI Publisher Web services to retrieve the report output. This could then be used to insert in an approval workflow.
Example 11-2 Sample Program Code
Copyright © 2010, 2012, Oracle and/or its affiliates. All rights reserved. |