Fusion Developer's Guide for Oracle Application Development Framework
11g Release 1 (11.1.1.6.0)
B31974-11
November 2011
Documentation for Oracle Application Development Framework (Oracle ADF) developers that describes how to develop and deploy web-based applications using ADF Business Components, ADF task flows, and ADF Faces.
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework 11g Release 1 (11.1.1.6.0)
B31974-11
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.
Primary Authors: Ralph Gordon (Lead), Walter Egan, Peter Jew, Kathryn Munn, Landon Ott, and Robin Whitmore
Contributing Author: Odile Sullivan-Tarazi
Contributors: Steve Muench, Lynn Munsinger
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Welcome to the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
This document is intended for enterprise developers who need to create and deploy database-centric Java EE applications with a service-oriented architecture using the Oracle Application Development Framework (Oracle ADF). This guide explains how to build Fusion web applications using ADF Business Components, ADF Controller, ADF Faces, and JavaServer Faces.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following documents:
Oracle Fusion Middleware Performance and Tuning Guide
Oracle Fusion Middleware High Availability Guide
Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework
Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development
Oracle JDeveloper 11g Online Help
Oracle JDeveloper 11g Release Notes, included with your JDeveloper 11g installation, and on Oracle Technology Network
Oracle Fusion Middleware Java API Reference for Oracle ADF Model
Oracle Fusion Middleware Java API Reference for Oracle ADF Controller
Oracle Fusion Middleware Java API Reference for Oracle ADF Lifecycle
Oracle Fusion Middleware Java API Reference for Oracle ADF Faces
Oracle Fusion Middleware JavaScript API Reference for Oracle ADF Faces
Oracle Fusion Middleware Java API Reference for Oracle ADF Data Visualization Components
Oracle Fusion Middleware Java API Reference for Oracle ADF Share
Oracle Fusion Middleware Java API Reference for Oracle ADF Business Components Browser
Oracle Fusion Middleware Java API Reference for Oracle Generic Domains
Oracle Fusion Middleware interMedia Domains Java API Reference for Oracle ADF Business Components
Oracle Fusion Middleware Java API Reference for Oracle Metadata Service (MDS)
Oracle Fusion Middleware Tag Reference for Oracle ADF Faces
Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors
Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Faces
Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Skin Selectors
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements (for example, menus and menu items, buttons, tabs, dialog controls), including options that you select.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates language and syntax elements, directory and file names, URLs, text that appears on the screen, or text that you enter.
For Release 11.1.1.6.0, this guide has been updated in several ways. The following table lists the sections that have been added or changed.	
For changes made to Oracle JDeveloper and Oracle Application Development Framework (Oracle ADF) for this release, see the New Features page on the Oracle Technology Network at http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html	
.	
Sections	Change Description
---	---
Chapter 5 Defining SQL Queries Using View Objects	
Section 5.2.3, "How to Create an Expert Mode, Read-Only View Object"	Revised section to describe a best practice for specifying a key attribute when creating read-only view objects.
Chapter 10 Sharing Application Module View Instances	
Section 10.3.1, "How to Create a Base View Object Definition for a Lookup Table"	Revised section to include best practice of selecting a key attribute for read-only view objects that you create for lookup tables.
Chapter 13 Integrating Web Services Into a Fusion Web Application	
Section 13.3.2, "How to Include a Header Parameter for a Web Service Data Control"	Added section to describe how to include support for adding an enterprise ID to the HTTP header when invoking the SOAP request.
Chapter 17 Using Task Flows as Regions	
Section 17.5.1, "How to Configure the Refresh of an ADF Region"	Revised section to clarify that a parent component (for example, a popup or panelTabbed component) with a childCreation attribute effects the refresh behavior of an ADF region.
Chapter 18 Creating Complex Task Flows	
Section 18.7.3, "What You May Need to Know About the Database Table for Save Points"	Added section to describe the adfc_cleanup_save_point_table.sql and adfc_create_save_point_table.sql SQL scripts that can be used to manage save points in the ORADFCSAVPT database table.
Chapter 34 Customizing Applications with MDS	
Section 34.3.13.2, "Editing Resource Bundles in Customized Applications"	Revised section to describe the need for tagging the bundleId element in adf-config.xml with override="true" to make a resource bundle overrideable.
Chapter 36 Deploying Fusion Web Applications	
Section 36.3.7, "What You May Need to Know About JDBC Data Source for Oracle WebLogic Server"	Revised section to describe limitation about running an Oracle ADF application with a data source created for an XA database.
Chapter 37 Extending Business Component Functionality	
Section 37.8.3, "How to Display Customize Error Messages as Nested Exceptions"	Added section to describe how to override skipException() method in the custom error handler.
Chapter 39 Advanced View Object Techniques	
Section 39.6.2, "How To Create a View Object with a Polymorphic Entity Usage"	Revised section to update the procedure for creating a view object based on a polymorphic entity usage.
Section 39.10, "Programmatically Creating View Definitions and View Objects"	Added section to describe the use of the oracle.jbo.server.ViewDefImpl API.
Chapter 41 Tuning Application Module Pools and Connection Pools	
Section 41.2.7, "What You May Need to Know About Application Module Pool Parameters"	Revised section to add best practice when enabling failover passivation that involves configuring a pool parameter for Oracle WebLogic Server.
This chapter describes the architecture and key functionality of the Oracle Application Development Framework (Oracle ADF) when used to build a Fusion web application that uses ADF Business Components, ADF Model, ADF Controller, and ADF Faces rich client, along with high-level development practices.	
This chapter includes the following sections:	
The Oracle Application Development Framework (Oracle ADF) is an end-to-end application framework that builds on Java Platform, Enterprise Edition (Java EE) standards and open-source technologies. You can use Oracle ADF to implement enterprise solutions that search, display, create, modify, and validate data using web, wireless, desktop, or web services interfaces. Because of its declarative nature, Oracle ADF simplifies and accelerates development by allowing users to focus on the logic of application creation rather than coding details. Used in tandem, Oracle JDeveloper 11g and Oracle ADF give you an environment that covers the full development lifecycle from design to deployment, with drag-and-drop data binding, visual UI design, and team development features built in.	
You can download and view the Fusion Order demo application, which helps to illustrate the concepts and procedures in this guide (and other Fusion Middleware developer guides). The StoreFront module of this application is built using the Fusion web application technology stack, which includes ADF Business Components, ADF Model, ADF Controller, and JavaServer Faces pages with ADF Faces rich client components. Screenshots and code samples from this module are used throughout this guide to provide you with real-world examples of using the Oracle ADF technologies in an application that uses the Fusion web technology stack. For more information about downloading and using the StoreFront module of the Fusion Order Demo application, see Chapter 2, "Introduction to the ADF Sample Application."	
In line with community best practices, applications you build using the Fusion web technology stack achieve a clean separation of business logic, page navigation, and user interface by adhering to a model-view-controller architecture. As shown in Figure 1-1, in an MVC architecture:	
Figure 1-2 illustrates where each ADF module fits in the Fusion web application architecture. The core module in the framework is ADF Model, a data binding facility. The ADF Model layer enables a unified approach to bind any user interface to any business service, without the need to write code. The other modules that make up a Fusion web application technology stack are:	
Note: In addition to ADF Faces, Oracle ADF also supports using the Swing, JSP, and standard JSF view technologies. For more information about these technologies, refer to the JDeveloper online help. Oracle ADF also provides support for using Microsoft Excel as a view layer for your application. For more information, see the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework	
When building service-oriented Java EE applications, you implement your core business logic as one or more business services. These backend services provide clients with a way to query, insert, update, and delete business data as required while enforcing appropriate business rules. ADF Business Components are prebuilt application objects that accelerate the job of delivering and maintaining high-performance, richly functional, database-centric services. They provide you with a ready-to-use implementation of Java EE design patterns and best practices.	
As illustrated in Figure 1-3, Oracle ADF provides the following key components to simplify building database-centric business services:	
An entity object represents a row in a database table and simplifies modifying its data by handling all data manipulation language (DML) operations for you. It can encapsulate business logic to ensure that your business rules are consistently enforced. You associate an entity object with others to reflect relationships in the underlying database schema to create a layer of business domain objects to reuse in multiple applications.	
A view object represents a SQL query and simplifies working with its results. You use the SQL language to join, filter, sort, and aggregate data into the shape required by the end-user task being represented in the user interface. This includes the ability to link a view object with other entity objects to create master-detail hierarchies of any complexity. When end users modify data in the user interface, your view objects collaborate with entity objects to consistently validate and save the changes.	
An application module is the transactional component that UI clients use to work with application data. It defines an updateable data model along with top-level procedures and functions (called service methods) related to a logical unit of work related to an end-user task.	
Tip: If you have previously worked with Oracle Forms, note that this combined functionality is the same set of data-centric features provided by the form, data blocks, record manager, and form-level procedures or functions. The key difference in Oracle ADF is that the user interface is cleanly separated from data access and validation functionality. For more information, see Appendix G, "Performing Common Oracle Forms Tasks in Oracle ADF."	
The ADF Model layer abstracts the business service implementation, providing a single programming interface for different types of services. Data controls provide this interface by using standard metadata interfaces to describe the service's operations and data collections, including information about the properties, methods, and types involved. In JDeveloper, the functionality and attributes exposed by a business service are indicated by icons in the Data Controls panel. You can drag and drop onto a page to create UI components. JDeveloper automatically creates the bindings from the page and the UI components to the services. At runtime, the ADF Model layer reads the information describing your data controls and data bindings from appropriate XML files and implements the two-way connection between your user interface and your business service.	
Oracle ADF provides out-of-the-box data control implementations for the most common business service technologies. Using JDeveloper and Oracle ADF together provides you with a drag-and-drop data binding experience as you build your user interfaces. Along with support for ADF application modules, ADF Model also provides support for the following service technologies:	
In the controller layer, where handling page flow of your web applications is a key concern, ADF Controller provides an enhanced navigation and state management model on top of JSF. JDeveloper allows you to declaratively create task flows where you can pass application control between different types of activities, such as pages, methods on managed beans, case statements, or calls to other task flows.	
These task flows can be reused, and can also be nested, both within themselves and within pages. Task flows nested in pages become regions that contain their own set of navigatable pages, allowing users to view a number of different pages and functionality without leaving the main page.	
ADF Faces rich client (ADF Faces for short), is a set of standard JSF components that include built-in AJAX functionality. AJAX is a combination of asynchronous JavaScript, dynamic HTML (DHTML), XML, and XmlHttpRequest	
communication channels. This combination allows requests to be made to the server without fully rerendering the page. While AJAX allows rich client-like applications to use standard internet technologies, JSF provides server-side control, which reduces the dependency on an abundance of JavaScript often found in typical AJAX applications.	
ADF Faces provides over 100 rich components, including hierarchical data tables, tree menus, in-page dialogs, accordions, dividers, and sortable tables. ADF Faces also provides ADF Data Visualization components, which are Flash- and SVG-enabled components capable of rendering dynamic charts, graphs, gauges, and other graphics that can provide a real-time view of underlying data. Each component also supports customization and skinning, along with internationalization and accessibility.	
To achieve these front-end capabilities, ADF Faces components use a rendering kit that handles displaying the component and also provides the JavaScript objects needed for the rich functionality. This built-in support enables you to build rich applications without needing extensive knowledge of the individual technologies on the front or back end.	
ADF Faces can also be used in an application that uses the Facelets library. Facelets is a JSF-centric XML view definition technology that provides an alternative to using the JSP engine. For more information about ADF Faces, including the architecture and detailed information about each of the components, see the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.	
Along with ADF Faces, Oracle ADF also supports the following view technologies:	
Oracle ADF emphasizes the use of the declarative programming paradigm throughout the development process to allow users to focus on the logic of application creation without having to get into implementation details. Using JDeveloper 11g with Oracle ADF, you benefit from a high-productivity environment that automatically manages your application's declarative metadata for data access, validation, page control and navigation, user interface design, and data binding.	
At a high level, the development process for a Fusion web application usually involves the following:	
The first step in building a new application is to assign it a name and to specify the directory where its source files will be saved. When you create an application using the application templates provided by JDeveloper, it organizes your workspace into projects and creates and organizes many of the configuration files required by the type of application you are creating.	
One of these templates is the Fusion Web Application (ADF) template, which provides the correctly configured set of projects you need to create a web application that uses ADF Faces for the view, ADF Page Flow for the controller, and ADF Business Components for business services. When you create an application workspace using this template, JDeveloper automatically creates the JSF and ADF configuration files needed for the application.	
One part of the application overview is the Fusion Web Application Quick Start Checklist. This checklist provides you with the basic steps for creating a Fusion web application. Included are links to pertinent documentation, prerequisites, and the ability to keep track of status for each step in the checklist, as shown in Figure 1-4.	
JDeveloper also creates a project named Model	
that will contain all the source files related to the business services in your application, and a project named ViewController	
that will contain all the source files for your ADF Faces view layer, including files for the controller.	
JDeveloper adds the following libraries to the data model project:	
JDeveloper also adds the following libraries to the view project:	
Once you add a JSF page, JDeveloper adds the Oracle JEWT library.	
Once the projects are created for you, you can rename them as you need. You can then use JDeveloper to create additional projects, and add the packages and files needed for your application.	
Note: If you plan to reuse artifacts in your application (for example, task flows), then you should follow the naming guidelines presented in Chapter 33, "Reusing Application Components" in order to prevent naming conflicts.	
Tip: You can edit the default values used in application templates, as well as create your own templates. To do so, choose Application > Manage Templates.	
Figure 1-5 shows the different projects, packages, directories, and files for the StoreFrontModule	
application, as displayed in the Application Navigator.	
For more information, see "Managing Applications and Projects" in the "JDeveloper Basics" section of the JDeveloper online help.	
When you work with your files, you use mostly the editor window, the Structure window, and the Property Inspector, as shown in Figure 1-6. The editor window allows you to view many of your files in a WYSIWYG environment, or you can view a file in an overview editor where you can declaratively make changes, or you can view the source code for the file. The Structure window shows the structure of the currently selected file. You can select objects in this window and then edit the properties for the selection in the Property Inspector.	
In JDeveloper, after you create your application workspace, you can copy database objects from a database schema to an offline database or project where they become available as offline database objects, saved as .xml	
files. You can then create and edit database object definitions within a project using the same editors that you use to create and edit database objects on live database connections. You can also compare your offline database objects with other offline or live database schemas and generate SQL statements (including CREATE	
, REPLACE	
, and ALTER	
).	
For example, you can drag a table from a database connection that your application defines onto a database diagram and JDeveloper will give you the choice to model the database object live or offline (to create the .xml	
file representation of the object). Modeling database definitions, such as tables and foreign keys, visually captures the essential information about a schema. You can use the diagram to drag and drop columns and keys to duplicate, move, and create foreign key relationships. Working in offline mode, whenever you model a node on a diagram, JDeveloper creates the underlying offline object and lists it in the Application Navigator. Working with a live schema, JDeveloper updates the live database object as you amend the diagram. You can create multiple diagrams from the same offline database objects and spread your offline database across multiple projects.	
Using a database diagram like the one shown in Figure 1-7 you can visualize the following:	
In addition to using the diagram directly to create and edit database objects, you can work with specific database object editors. After you have finished working with the offline database objects, you can generate new and updated database definitions to online database schemas.	
When you work with the database diagram you can customize the diagram to change the layout, change how objects are represented and grouped, add diagram annotations to specify dependencies or links (such as URLs), and change visual properties, such as color and font of diagram elements.	
Specifically, the following customizations were made to the database diagram shown in Figure 1-7:	
DISCOUNT_TRANSLATIONS	
element show the table with constraints not displayed. DISCOUNTS_BASE	
element shows the table with some column definitions hidden (such as CREATED_BY	
, CREATION_DATE	
, and LASTUPDATED_BY	
) plus the diagram element has been sized to fit within the overall diagram (thus truncating some of the detail). DISCOUNT_TRANSLATIONS_SEQ	
element shows a sequence displayed in compact view in contrast to DISCOUNTS_SEQ	
which shows the sequence properties. COUPON_USAGES	
and ELIGIBLE_DISCOUNTS	
elements use different colors both in compact view and each identifies their database schema (FODOffline	
). DISCOUNTS	
element is a view displayed. The element identifies the tables that comprise the view in compact mode and the JOIN type (INNER JOIN). It also identifies the usage relationships on tables with a dotted line. DISCOUNTS_BASE	
and DISCOUNT_TRANSLATIONS	
elements show a foreign key relationship. DISCOUNT_SEQ	
element uses an annotation (dashed arrow) to represent the dependency with DISCOUNTS_BASE	
table. Payments Grouping	
element uses HTML link annotations (for example, Customer Memberships	
) to display other diagrams from the project. Payments Grouping	
element nests elements with group shapes (Click to Access	
). For more information about modeling database definitions with database diagrams, see "Creating, Editing, and Dropping Database Objects" in the "Designing Databases" section of the JDeveloper online help.	
After creating an application workspace, you may decide to begin the development process by doing use case modeling to capture and communicate end-user requirements for the application to be built. Figure 1-8 shows a simple diagram created using the UML modeler in JDeveloper. The diagram represents an end user viewing a list of his orders and then drilling down to view the details of an order. Using diagram annotations, you can capture particular requirements about what end users might need to see on the screens that will implement the use case. For example, in this use case, it is noted that the user will select order details for each order listed.	
For more information about creating use case diagrams, see "Modeling With Diagrams" in the "Designing and Developing Applications" section of the JDeveloper online help.	
By modeling the use cases, you begin to understand the kinds of user interface pages that will be required to implement end-user requirements. At this point, you can begin to design the flow of your application. In a Fusion web application, you use ADF task flows instead of standard JSF navigation flows. Task flows provide a more modular and transaction-aware approach to navigation and application control. Like standard JSF navigation flows, task flows contain mostly viewable pages. However, instead of describing navigation between pages, task flows facilitate transitions between activities. Aside from navigation, task flows can also have nonvisual activities that can be chained together to affect the page flow and application behavior. For example, these nonvisual activities can call methods on managed beans, evaluate an EL expression, or call another task flow. This facilitates reuse, as business logic can be invoked independently of the page being displayed.	
Figure 1-9 shows the checkout-task-flow	
task flow from the StoreFront module of the Fusion Order Demo application. In this task flow, order	
and orderSummary	
are view activities that represent pages, while reconcileShoppingCart	
is a method call activity. When the user enters this flow, the reconcileShoppingCart	
activity is invoked (because it is the entry point for the flow, as denoted by the green circle) and the corresponding method is called. From there, the flow continues to the order	
page. From the order	
page, control can be passed to the orderSummary	
page, or to the continueShopping	
return activity that is the exit point of the flow and passes control back to the home page.	
The ADF Controller provides a mechanism to define navigation using control flow rules. The control flow rule information, along with other information regarding the flow, is saved in a configuration file. Figure 1-10 shows the Structure window for the checkout-task-flow	
task flow. This window shows each of the items configured in the flow, such as the control flow rules. The Property Inspector (by default, located at the bottom right) allows you to set values for the different elements in the flow.	
Aside from pages, task flows can also coordinate page fragments. Page fragments are JSF JSP documents that are rendered as content in other JSF pages. You can create page fragments and the control between them in a bounded task flow as you would create pages, and then insert the entire task flow into another page as a region. Because it is simply another task flow, the region can independently execute methods, evaluate expressions, and display content, while the remaining content on the containing page remains the same. For example, before registering a new user, the application needs to determine what kind of user needs to be created. All the logic to do this is handled in the user-registration-task-flow	
task flow, which is used as a region in the registerUser	
page.	
Regions also facilitate reuse. You can create a task flow as a region, determine the pieces of information required by a task and the pieces of information it might return, define those as parameters and return values of the region, then drop the region on any page in an application. Depending on the value of the parameter, a different view can display.	
The chapters contained in Part III, "Creating ADF Task Flows" contain information about using task flows. For general information about task flows and creating them, see Chapter 14, "Getting Started with ADF Task Flows." For information about task flow activities, see Chapter 15, "Working with Task Flow Activities." If you need to pass parameters into or out of task flows, see Chapter 16, "Using Parameters in Task Flows." For more information about regions, see Chapter 17, "Using Task Flows as Regions." For information about advanced functionality that task flows can provide, such as transactional capabilities and creating mandatory sequences of pages (known as trains), see Chapter 18, "Creating Complex Task Flows." For information about using task flows to create dialogs, see Chapter 19, "Using Dialogs in Your Application."	
You may find that some aspects of your application can be reused throughout the application. For example, you may need the functionality of creating an address to appear both when a user registers and when a user creates an order. Or you may find throughout the development process that certain components of your application should be shared throughout the application. You can declaratively create ADF libraries that allow you to package artifacts and reuse them throughout the application. For example, you might create a task flow for the process of creating an address. You can then save this task flow and package it as a library. The library can be sent to other developers who can add it to their a resource catalog, from which they can drag and drop it onto any page where it's needed. Figure 1-11 shows the Resource Palette in JDeveloper.	
When designing the application, be sure to note all the tasks that can possibly become candidates for reuse. Chapter 33, "Reusing Application Components" provides more information about the ADF artifacts that can be packaged and reused as an ADF library, along with procedures both for creating and using the libraries.	
Typically, when you implement business logic as ADF Business Components, you do the following:	
The chapters contained in Part II, "Building Your Business Services" provide information on creating each of these artifacts. The chapters in Part VI, "Advanced Topics" provide additional information, such as extending business objects, tuning, and state management.	
Once you have an understanding of the data that will be presented and manipulated in your application, if you haven't already done so, you can build your database (for more information, see the "Designing Databases" topic in the "Designing and Developing Applications" section of the JDeveloper online help). Once the database tables are in place, you can create a set of entity objects that represents them and simplifies modifying the data they contain. When you use entity objects to encapsulate data access and validation related to the tables, any pages you build today or in the future that work with these tables are consistently validated. As you work, JDeveloper automatically configures your project to reference any necessary Oracle ADF runtime libraries your application will need at runtime.	
For example, the StoreFrontService	
project of the StoreFrontModule	
application contains the business services needed by the application. Figure 1-12 shows two of the entity objects that represent the database tables in that application.	
To create the business layer, you first create the entity objects based on your database tables. Any relationships between the tables will be reflected as associations between the corresponding entity objects. Alternatively, you can first create the entity objects, and the associations, and then create database tables from those objects.	
Once the entity objects are created, you can define control and attribute hints that simplify the display of the entities in the UI, and you can also add behaviors to the objects. For more information, see Chapter 4, "Creating a Business Domain Layer Using Entity Objects."	
Once the reusable layer of business objects is created, you can implement the application module. An application module provides a data-model and service methods with which a UI client can work.	
The application module's data model is composed of instances of the view object components you create that encapsulate the necessary queries. View objects can join, project, filter, sort, and aggregate data into the shape required by the end-user task being represented in the user interface. When the end user needs to update the data, your view objects reference entity objects in your reusable business domain layer. View objects are reusable and can be used in multiple application modules.	
When you want the data to display in a consistent manner across all view pages that access that data, you can configure metadata on the view object to determine display properties. The metadata allows you to set display properties in one place and then change them as needed, so that you make the change only in one place instead of on all pages that display the data. Conversely, you can also have the query controlled by the data the page requires. All display functionality is handled by the page. For more information, see Chapter 5, "Defining SQL Queries Using View Objects."	
For example, the StoreFrontService	
project contains the oracle.fodemo.storefront.store.queries	
package, which contains many of the queries needed by the StoreFrontModule	
application, as shown in Figure 1-13.	
Additionally, you may find that you need to expose functionality to external applications. You can do this by exposing this functionality through a service interface. For example, the StoreServiceAM	
application module is exposed as a web service. This web service exposes the CustomerInfo	
and OrderInfo	
view instances, as shown in Figure 1-14. For more information, see Chapter 11, "Integrating Service-Enabled Application Modules."	
While you develop your application, you can iteratively test your business services using the Business Component Browser. The browser allows you to test the queries, business logic, and validation of your business services without having to use or create a user interface or other client to test your services. Using the browser allows you to test out the latest queries or business rules you've added, and can save you time when you're trying to diagnose problems. For more information about developing and testing application modules, see Chapter 9, "Implementing Business Services with Application Modules."	
The browser also interacts with the ADF Declarative Debugger to allow debug your business services. You can set breakpoints on any custom methods you create. For more information, see Section 31.6, "Using the Business Component Browser for Testing and Debugging."	
From the page flows you created during the planning stages, you can double-click the page icons to create the actual JSP files. When you create a JSP for an ADF Faces application, you can choose to create an XML-based JSP document (which uses the extension *.jspx	
) rather than a *.jsp	
file.	
Best Practice: Using an XML-based document has the following advantages:	
If you want to use Facelets instead of JSP in your application, you can instead create XHTML files. Facelets is a JSF-centric XML view definition technology that provides an alternative to using the JSP engine.	
Tip: While Facelet pages can use any well formed XML file, including.jspx , when you create a Facelet page in JDeveloper, it is created as an XHTML file.	
Best Practice: Use Facelets to take advantage of the following:	
ADF Faces provides a number of components that you can use to define the overall layout of the page. JDeveloper contains predefined quick start layouts that use these components to provide you with an efficient way to correctly determine the layout of your pages. You can choose from one-, two-, or three-column layouts, and then determine how you want the columns to behave. You can also choose to apply themes to the layouts, which adds color to some of the components for you. For more information see the "Using Quick Layouts" section of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.	
Oracle ADF also allows you to create and use your own page templates. When creating templates, a developer can determine the layout of the page (either using one of the quick layout templates or creating the layout manually), provide static content that must appear on all pages, and create placeholder attributes that can be replaced with valid values for each page. Each time the template is changed, for example if the layout changes, any page that uses the template will reflect the update.	
Most pages in the StoreFrontModule	
application use the StoreFrontTemplate	
template, which provides an area for branding and navigation, a main content area divided into three panes, and a footer area. If the template designer decides to switch the location of the branding and the navigation, all pages that use the template will automatically reflect that change at runtime.	
The chapters in Part IV, "Creating a Databound Web User Interface" provide information on creating different types of UI functionality, from basic forms to more complex search capabilities.	
In JSF, you use a simple expression language (called EL) to bind to the information you want to present and/or modify (for more information, see http://java.sun.com/products/jsp/reference/techart/unifiedEL.html	
). Example expressions look like #{userInfoBean.principalName}	
to reference a particular user's name, or #{userInfoBean.principalName eq 'SKING'}	
to evaluate whether a user's name is SKING or not. At runtime, a generic expression evaluator returns the String	
and boolean	
value of these respective expressions, automating access to the individual objects and their properties without requiring code.	
At runtime, the value of certain JSF UI components is determined by the value	
attribute. While a component can have static text as its value, typically the value	
attribute will contain a binding that is an EL expression that the runtime infrastructure evaluates to determine what data to display. For example, an outputText	
component that displays the name of the currently logged-in user might have its value	
attribute set to the expression #{userInfoBean.principalName}	
. Since any attribute of a component can be assigned a value using an EL expression, it's easy to build dynamic, data-driven user interfaces. For example, you could hide a component when a user is not logged in by using a boolean-valued expression like #{userInfoBean.prinicpalName !=null}	
in the UI component's rendered	
attribute. If there is no principal name in the current instantiation of the userInfoBean	
, the rendered	
attribute evaluates to false	
and the component disappears from the page.	
In a typical JSF application, you would create objects like the userInfoBean	
object as a managed bean. The JSF runtime manages instantiating these beans on demand when any EL expression references them for the first time. However, in an application that uses the ADF Model layer, instead of binding the UI component attributes to properties or methods on managed beans, JDeveloper automatically binds the UI component attributes to the ADF Model layer, which uses XML configuration files that drive generic data binding features. It implements concepts that enable decoupling the user interface technology from the business service implementation: data controls and declarative bindings.	
Data controls use XML configuration files to describe a service. At design time, visual tools like JDeveloper can leverage that metadata to allow you to declaratively bind UI components to any data control operation or data collection, creating bindings. For example, Figure 1-15 shows the StoreServiceAMDataControl	
data control as it appears in the Data Controls panel of JDeveloper.	
Note that the collections that display in the panel represent the set of rows returned by the query in each view object instance contained in the StoreServiceAM	
application module. For example, the OrderPaymentOptions	
data collection in the Data Controls panel represents the OrderPaymentOptions	
view object instance in the StoreServiceAM's	
data model. The OrderBillingAddress	
data collection appears as a child, reflecting the master-detail relationship set up while building the business service. The attributes available in each row of the respective data collections appear as child nodes. The data collection level Operations node contains the built-in operations that the ADF Model layer supports on data collections, such as previous	
, next	
, first	
, last	
, and so on.	
Note: If you create other kinds of data controls for working with web services, XML data retrieved from a URL, JavaBeans, or EJBs, these would also appear in the Data Controls panel with an appropriate display. When you create one of these data controls in a project, JDeveloper creates metadata files that contain configuration information. These additional files do not need to be explicitly created when you are working with Oracle ADF application modules, because application modules are already metadata-driven components, and so contain all the information necessary to be exposed automatically as data controls.	
Using the Data Controls panel, you can drag and drop a data collection onto a page in the visual editor, and JDeveloper creates the necessary bindings for you. Figure 1-16 shows the CustomerRegistration	
collection from the StoreServiceAMDataControl	
data control being dragged from the Data Controls panel, and dropped as a form onto a JSF page.	
The first time you drop a databound component from the Data Controls panel on a page, JDeveloper creates an associated page definition file. This XML file describes the group of bindings supporting the UI components on a page. The ADF Model uses this file at runtime to instantiate the page's bindings. These bindings are held in a request-scoped map called the binding container. Each time you add components to the page using the Data Controls panel, JDeveloper adds appropriate binding entries into this page definition file. Additionally, as you perform drag-and-drop data binding operations, JDeveloper creates the required tags representing the JSF UI components on the JSF page. For more information about using the Data Controls panel, see Chapter 12, "Using ADF Model in a Fusion Web Application."	
Note: You can use dynamic UI components that create the bindings at runtime instead of design time. To use dynamic components, you set control hints on your view objects that determine how the data is to be displayed each time the view object is accessed by a page. This ensures that data is displayed consistently across pages, and also allows you to change in a single location, how the data is displayed instead of having to update each individual page. For more information, see Section 22.7, "Using a Dynamic Form to Determine Data to Display at Runtime."	
Figure 1-17 illustrates the architecture of a JSF application when you leverage ADF Model for declarative data binding. By combining ADF Model with JSF, you avoid having to write a lot of the typical managed bean code that would be required for real-world applications.	
Aside from forms and tables that display or update data, you can also create search forms, and databound charts and graphs. For more information about using data controls to create different types of pages, see the chapters contained in Part IV, "Creating a Databound Web User Interface". For more information about the Data Controls panel and how to use it to create any UI data bound component, see Chapter 12, "Using ADF Model in a Fusion Web Application."	
You can add validation to your business objects declaratively using the overview editors for entity and view objects. Figure 1-18 shows the Business Rules tab of the overview editor for the AddressEO	
entity object.	
Along with providing the validation rules, you also set the error messages to display when validation fails. To supplement this declarative validation, you can also use Groovy-scripted expressions. For more information about creating validation at the service level, see Chapter 7, "Defining Validation and Business Rules Declaratively."	
Additionally, ADF Faces input components have built-in validation capabilities. You set one or more validators on a component either by setting the required	
attribute or by using the prebuilt ADF Faces validators. You can also create your own custom validators to suit your business needs. For more information, see the "Validating and Converting Input" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.	
You can create a custom error handler to report errors that occur during execution of an ADF application. Once you create the error handler, you only need to register the handler in one of the application's configuration files. For more information, see Section 28.10, "Customizing Error Handling."	
Oracle ADF provides a security implementation that is based on Java Authentication and Authorization Service (JAAS). JAAS is a standard security Application Programming Interface (API) that is added to the Java language through the Java Community Process. It enables applications to authenticate users and enforce authorization. The Oracle ADF implementation of JAAS is permission-based. You define these permissions and then grant them on application roles that you associate with users of the application. For more information about securing your application, see Chapter 30, "Enabling ADF Security in a Fusion Web Application."	
Testing an Oracle ADF web application is similar to testing and debugging any other Java EE application. Most errors result from simple and easy-to-fix problems in the declarative information that the application defines or in the EL expressions that access the runtime objects of the page's Oracle ADF binding container. In many cases, examination of the declarative files and EL expressions resolve most problems.	
For errors not caused by the declarative files or EL expressions, JDeveloper includes the ADF Logger, which captures runtime trace messages from the ADF Model layer API. The trace includes runtime messages that may help you to quickly identify the origin of an application error. You can also search the log output for specific errors. JDeveloper also includes the ADF Declarative Debugger, a tool that allows you to set breakpoints. When a breakpoint is reached, the execution of the application is paused and you can examine the data that the Oracle ADF binding container has to work with, and compare it to what you expect the data to be. Chapter 31, "Testing and Debugging ADF Components" contains useful information and tips on how to successfully debug a Fusion web application.	
For testing purposes, JDeveloper provides integration with JUnit. You use a wizard to generate regression test cases. For more information, see Section 31.10, "Regression Testing with JUnit."	
Using JDeveloper, you can easily rename or move the different components in your application. For example, you may find that you need to change the name of your view objects after you have already created them. JDeveloper allows you to easily do this and then propagates the change to all affected metadata XML files. For more information, see Chapter 32, "Refactoring a Fusion Web Application."	
You can deploy a Fusion web application to either the integrated WebLogic server within JDeveloper or to a standalone instance. For more information about deployment, see Chapter 36, "Deploying Fusion Web Applications."	
You can integrate your Fusion web application with any existing or new applications using service-oriented architecture (SOA) principals provided by Oracle SOA Suite. Oracle SOA Suite includes declarative development tools that allow you to easily integrate multiple applications using services, events, business rules, business process flows, and other SOA technologies.	
You can build your Fusion web application so that it can easily integrate with other applications. You can publish your application modules as services.You can also create events that can be used for example, to initiate business processes. For more information, see Chapter 11, "Integrating Service-Enabled Application Modules." Your application modules can also call other web services directly. For more information, see Section 13.2, "Calling a Web Service from an Application Module." You can also integrate your application using task flows. For example, a task flow can be used to initiate a business process flow. For more information, see Section 18.13, "Using BPEL with Task Flows."	
For more information about Oracle SOA Suite, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.	
Often, applications are built in a team development environment. While a team-based development process follows the development cycle outlined in Section 1.3, "Developing with Oracle ADF,"many times developers are creating the different parts of the application simultaneously. Working productively means team members divide the work, understand how to enforce standards, and manage source files with a source control system, in order to ensure efficient application development.	
Before beginning development on any large application, a design phase is typically required to assess use cases, plan task flows and screens, and identify resources that can be shared.	
The following list shows how the work for a typical Fusion web application might be broken up once an initial design is in place:	
A DBA creates Ant scripts (or other script files) for building and deploying the finished application. SQL scripts are developed to create the database schema used by the application.	
In a large development environment, a separate development group builds all entity objects for the application. Because the rest of the application depends on these objects, entity objects should be one of the first steps completed in development of the application.	
Once the entity objects are finished, they can be shared with other teams using Oracle ADF libraries (see Section 33.2, "Packaging a Reusable ADF Component into an ADF Library" for more information). The other teams then access the objects by adding to them to a catalog in the Resource Palette. In your own application development process, you may choose not to divide the work this way. In many applications, entity objects and view objects might be developed by the same team (or even one person) and would be stored within one project.	
After the entity objects are created and provided either in a library or within the project itself, view objects can be created as needed to display data (in the case of building the UI) or supply service data objects (when data is needed by other applications in a SOA infrastructure).	
When building the Fusion Order Demo application, each developer of a particular page or service was in charge of creating the view objects for that page or service. This was needed because of the tight integration between the view object and its use by a page in the Fusion Order demo; the team who built the UI also built the corresponding view objects.	
During development, you may find that two or more view objects are providing the same functionality. In some cases, these view objects can be easily combined by altering the query in one of the objects so that it meets the needs of each developer's page or service.	
Once the view objects are in place, you can create the application module, data controls, and add any needed custom methods. The process of creating view objects, reviewing for redundancy, and then adding them to the application module can be an iterative one.	
With a UI design in place, the view objects in place and the data controls created, the UI can be built either by the team that created the view objects (as described in the previous bullet point) or by a separate team. You can also develop using a UI-first strategy, which would allow UI designers to create pages before the data controls are in place. Oracle ADF provides placeholder data controls that UI designers can use early in the development cycle. For more information, see Chapter 29, "Designing a Page Using Placeholder Data Controls."	
Because numerous individuals divided into separate teams will be developing the application, you should enforce a number of standards before development begins to ensure that all components of the application will work together efficiently. The following are areas within an application where it is important to have standardization in place when working in a team environment:	
So that more than one person can work efficiently in the code, it helps to follow specific code styles. JDeveloper allows you to choose how the built-in code editor behaves. While many of the settings affect how the user interacts with the code editor (such as display settings), others affect how the code is formatted. For example, you can select a code style that determines things like the placement of opening brackets and the size of indents. You can also import any existing code styles you may have, or you can create your own and export them for use by the team. For more information, see "Setting Preferences for the Source Editor" in the "JDeveloper Basics" section of the JDeveloper online help.	
You should determine not only how packages should be named, but also the granularity of how many and what kinds of objects will go into each package. For example, all managed beans in the StoreFront module are in the view.managed	
package. All beans that contain helper-type methods accessed by other beans are in util	
packages (one for Oracle ADF and one for JSF). All property files are in the common	
package.	
You can create templates to be used by all developers working on the UI, as described in Section 1.3.7, "Implementing the User Interface with JSF." This not only ensures that all pages will have the same look and feel, but also allows you to make a change in the template and have the change appear on all pages that use it. For more information, see Section 20.2, "Using Page Templates."	
Aside from using templates, you should also devise a naming standard for pages. For example, you may want to have names reflect where the page is used in the application. To achieve this goal, you can create subdirectories to provide a further layer of organization.	
When working in a team environment, you will need to use a source control system. By default, Oracle JDeveloper provides integrated support for both the CVS and Subversion source control systems, though others may be available through extensions. You can also create an extension that allows you to work with another system in JDeveloper. For information about using these systems within JDeveloper, see the "Using Versioning" topic in the "Designing and Developing Applications" section of the JDeveloper online help.	
Following are suggestions for using source control with a Fusion web application:	
Using JDeveloper, you can create a connection to the source control server and use the source control window to check out the source. When you work locally in the files, the pending changes window notifies you of any changed files. You can create a script using Apache Ant (which is integrated into JDeveloper). You can then use the script to build all application workspaces locally. This can ensure that the source files compile before you check the changed files into the source control repository. To find out how to use Apache Ant to create scripts, see "Building With Apache Ant" in the "Designing and Developing Applications" section of the JDeveloper online help.	
Consider running a continuous integration tool. Once files are checked into the source server, the tool can be used to recognize either that files have changed or to check for changed files at determined intervals. At that point, the tool can run an Ant script on the server that copies the full source (note that this should be a copy, and not a checkout), compiles those files, and if the compilation is successful, creates a zip file for consumers (not developers) of the application to use. The script should then clean up the source directory. Running a continuous integration tool will improve confidence in the quality of the code in the repository, encourage developers to update more often, and lead to smaller updates and fewer conflicts. Examples of continuous integration tools include Apache Gump and Cruise Control.	
When working with Subversion, updates and commits should be done at the Working Copy level, not on individual files. If you attempt to commit and update an individual file, there is a chance you will miss a supporting metadata file and thereby corrupt the committed copy of the application.	
When you add or remove business components in a JDeveloper ADF Business Components project, JDeveloper reflects it in the project file (.jpr	
). When you create (or refactor) a component into a new package, JDeveloper reflects that in the project file and in the ADF Business Components project file (.jpx	
). Although the XML format of these project control files has been optimized to reduce occurrences of merge conflicts, merge conflicts may still arise and you will need to resolve them using JDeveloper's Resolve Conflicts option on the context menu of each affected file.	
After resolving merge conflicts in any ADF Business Components XML component descriptor files, the project file (.jpr	
) for an ADF Business Components project, or the corresponding business components project file (.jpx	
), close and reopen the project to ensure that you're working with latest version of the component definitions. To do this, select the project in the Application Navigator, choose File > Close from the JDeveloper main menu, and then expand the project again in the Application Navigator.	
In addition to this developers guide, Oracle also offers the following resources to help you learn how you can best use Oracle ADF in your applications:	
As you'll learn throughout the rest of this guide, Oracle JDeveloper 11g and Oracle ADF give you a productive, visual environment for building richly functional, database-centric Java EE applications with a maximally declarative development experience. However, if you are used to working with tools like Oracle Designer that offer complete user interface generation based on a higher-level application structure definition, you may be looking for a similar facility for your Java EE development. If so, then the Oracle JHeadstart 11g application generator may be of interest to you. It is an additional extension for JDeveloper that uses Oracle ADF's built-in features to offer complete web-tier generation for your application modules. Starting with the data model you've designed for your ADF business service, you use the integrated editors that JHeadstart adds to the JDeveloper environment to iteratively refine a higher-level application structure definition. These editors controls the functionality and organization of the view objects' information in your generated web user interface. By checking boxes and choosing various options from dropdown lists, you describe a logical hierarchy of pages that can include multiple styles of search regions, list of values (LOVs) with validation, shuttle controls, nested tables, and other features. These declarative choices use terminology familiar to Oracle Forms and Designer users, further simplifying web development. Based on the application structure definition, you generate a complete web application that automatically implements the best practices described in this guide, easily leveraging the most sophisticated features that Oracle ADF and JSF have to offer.	
Whenever you run the JHeadstart application generator, rather than generating code, it creates (or regenerates) all of the declarative view and controller layer artifacts of your Oracle ADF-based web application. These artifacts use the ADF Model layer and work with your ADF application module as their business service. The generated files are the same kinds you produce when using JDeveloper's built-in visual editors. The key difference is that JHeadstart creates them in bulk, based on a higher-level definition that you can iteratively refine until the generated pages match your end users' requirements as closely as possible. The generated files include:	
Once you've generated a maximal amount of your application's web user interface, you can spend your time using JDeveloper's productive environment to tailor the results or to concentrate your effort on additional showcase pages that need special attention. Once you've modified a generated page, you can adjust a setting to avoid regenerating that page on subsequent runs of the application generator. Of course, since both the generated pages and your custom designed ones leverage the same ADF Faces UI components, all of your pages automatically inherit a consistent look and feel. For more information on how to get a fully functional trial of JHeadstart for evaluation, including details on pricing, support, and additional services, see the JHeadstart page on the Oracle Technology Network at	
.	
http://www.oracle.com/technetwork/developer-tools/jheadstart/overview/index.html	
This chapter describes the StoreFront module of the Fusion Order Demo (FOD) application created to demonstrate the use of the Fusion web application technology stack to create transaction-based web applications as required for a web shopping storefront. The demonstration application is used as an example throughout this guide to illustrate points and provide code samples.	
Before examining the individual components and their source code in depth, you may find it helpful to install and become familiar with the functionality of the Fusion Order Demo application.	
This chapter includes the following sections:	
In this sample application, electronic devices are sold through a storefront-type web application. Customers can visit the web site, register, and place orders for the products. In order to register customers and fulfill orders, currently only a single application is in place. In a future release, several applications, will cooperate. For a detailed description of how the application works at runtime, see Section 2.5, "Taking a Look at the Fusion Order Demo Application."	
In order to view and run the demo, you need to install Oracle JDeveloper 11g. You then need to download the application for this demonstration. Instructions to complete these tasks appear in this chapter. For complete details, see Section 2.2, "Setting Up the Fusion Order Demo Application."	
Once the application is installed and running, you can view the code using Oracle JDeveloper. You can view the application at runtime by logging in as an existing customer and placing an order.	
The Fusion Order Demo application runs using an Oracle database and Oracle JDeveloper 11g. The platforms supported are the same as those supported by JDeveloper.	
To prepare the environment and run the Fusion Order Demo application, you must:	
The Fusion Order Demo application requires an existing Oracle database. You run the Fusion Order Demo application using Oracle JDeveloper 11g.	
Do the following before installing the Fusion Order Demo application:	
Note: Ensure that you download and install 11g and that it is the Studio Edition, not the Java Edition. You can verify these details in Oracle JDeveloper from the Help > About menu option.	
FusionOrderDemo_R1PS	
x	
.zip	
). You can download the ZIP file from: The SQL scripts were written for an Oracle database, so you will need some version of an Oracle RDBMS, such as 11g, or XE. The scripts will not install into Oracle Lite. If you wish to use Oracle Lite or some other database, then you will need to modify the database scripts accordingly. You can download an Oracle database from:	
Specifically, the small footprint of the Oracle Express Edition (XE) is ideally suited for setting up the database on your local machine. You can download it from:	
You can download the Fusion Order Demo application from the Oracle Technology Network (OTN) web site.	
To download the demo and install the FOD schema to your database:	
http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fod1111-407812.html	
and download the ZIP file to a local directory. Table 2-1 Properties Required to Install the Fusion Order Demo Application	
Property	Description
---	---
The root directory where you have Oracle JDeveloper 11g installed. For example:	
The base JDBC URL for your database in the format	
The port for your database. For example:	
The SID of your database. For example:	
The administrative user for your database. For example:	
The table space name where FOD users will be installed. For example:	
Once you enter the password, the Ant build script creates the FOD users and populates the tables in the FOD schema. In the Apache Ant - Log window, you will see a series of SQL scripts and finally:	
buildAll:	
BUILD SUCCESSFUL	
Total time: nn minutes nn seconds	
For more information on the demo schema and scripts, see the README.txt	
file in the MasterBuildScript	
project.	
Figure 2-1 shows a simplified representation of the schema for the Fusion Order Demo application. The blue shapes in the diagram represent the four core tables. The other tables and views are shown as yellow shapes that sometimes represent several tables to help simplify the diagram. Some of the tables use sequences, but only those used by the core tables are shown.	
The core tables represented by the blue diagram elements include:	
PERSONS	
: This table stores all the users who interact with the system, including customers, staff, and suppliers. The first and last name, email address, and person type code of each user is stored. A user is uniquely identified by an ID. Other IDs provide foreign keys to tables with address information and, in the case of customer's, membership information. ORDERS	
: This table represents activity by specific customers. When an order is created, the date of the order, the total amount of the order, the ID of the customer who created it, and the status of the order are all recorded. After the order is fulfilled, the order status and order shipped date are updated. All orders are uniquely identified by a sequence-assigned ID. ORDER_ITEMS	
: For each order, there may be many order items recorded. The unit price and quantity of each order item are recorded. The order line item and its order ID uniquely identify each order item. PRODUCTS_BASE	
: This table stores all of the products available in the store. For each product, the name and cost are recorded. All products are uniquely identified by a sequence-assigned ID. The image of the product and its description are stored in separate tables, which each reference the product ID. The columns ATTRIBUTE	
x	
are reserved for future use with descriptive flexfields (commonly required by Oracle E-Business Suite schema). The sequences that the core tables use include:	
PERSON_SEQ	
: Populates the ID for for each new person. ORDER_SEQ	
: Populates the ID for each new order. ORDERS_ITEMS_SEQ	
: Populates the ID for each new order item. PRODUCTS_SEQ	
: Populates the ID for each product. The PL/SQL package USER_CONTEXT_PKG	
contains a procedure set_app_user_lang()	
used to illustrate a simple example of how to set per-user database state from inside an application module.	
Note the SHIPPING_OPTIONS	
view is reserved for future use and is not currently used in the Fusion Order Demo.	
To support tracking of change history in the Fusion Order Demo, every table contains the history column CREATED_BY	
, CREATION_DATE	
, LAST_UPDATED_BY	
, LAST_UPDATED_DATE	
, and OBJECT_VERSION_ID	
, as shown in Figure 2-2.	
To support localization of the Fusion Order Demo, the AVAILABLE_LANGUAGES	
table lists all available languages. In this table, only one row will have the DEFAULT_FLAG	
set to Y	
corresponding to the current user's language.	
Translations exist for the following base tables: PRODUCTS_BASE (PRODUCT_TRANSLATIONS)	
, PRODUCT_CATEGORIES_BASE (CATEGORY_TRANSLATIONS)	
, SHIPPING_OPTIONS_BASE (SHIPPING_OPTION_TRANSLATIONS)	
, MEMBERSHIPS_BASE (MEMBERSHIP_TRANSLATIONS)	
and DISCOUNTS_BASE (DISCOUNT_TRANSLATIONS)	
.	
Taking the Shipping Options group, as shown in Figure 2-3: SHIPPING_OPTION_TRANSLATIONS	
is fully populated so that each product has one row for each language. The column LANGUAGE	
holds the translation language identifier. The entry itself may not yet be translated, in which case the SOURCE_LANGUAGE	
column holds the language that the entry is currently in. When a value has been translated, SOURCE_LANGUAGE	
and LANGUAGE	
will hold the same value. The PL/SQL package USER_CONTEXT_PKG	
creates the custom USERENV('CLIENT_INFO')	
variable that specifies the runtime locale used to pull the correct translations from SHIPPING_OPTION_TRANSLATIONS	
into the SHIPPING_OPTIONS	
view along with the SHIPPING_OPTIONS_BASE	
table data. Each order has one set of Shipping Options associated with it.	
The code lookup table LOOKUP_CODES	
table contains codes that are used throughout the Fusion Order Demo application. For example, the PERSONS	
table contains the columns person_type_code	
, marital_status_code	
, and gender	
. These codes have corresponding rows in the LOOKUP_CODES	
table, discriminating on the lookup_type	
column. Foreign keys are not defined for these rows, but instead are enforced in the user interface by populating user interface components with LOOKUP_CODES	
values for a particular lookup type. For example, when creating a new registration (also known as a person) in the user interface, the values that can be used for the person_type_code	
are populated in a dropdown list from the lookup_code	
values with lookup_type=person_type_code	
.	
The LOOKUP_CODES	
table also supports the localization of the user interface. The table uses a combined key of code and language (obtained from runtime locale or preference) to determine the code's meaning. Each code has an entry for each supported language, as described in Section 2.2.3.1, "Translation Support in the Fusion Order Demo Schema."	
Using addresses as an example, as shown in Figure 2-4: PERSONS	
uses an intersection ADDRESS_USAGES	
to accommodate multiple address information. In addition ADDRESS_USAGES	
uses LOOKUP_CODES	
to store both OWNER_TYPE_CODE	
and USAGE_TYPE_CODE	
information, returning the MEANING	
(see table extract in Figure 2-5). ADDRESSES	
directly accesses COUNTRY_CODES	
to look up and use the COUNTRY_NAME	
associated with the COUNTRY_ID	
stored in ADDRESSES	
. The PERSONS	
table also directly stores PRIMARY_ADDRESS_ID	
by a direct lookup to ADDRESSES	
.	
The correct translation is applied by using the LANGUAGE	
columns in both LOOKUP_CODES	
and COUNTRY_CODES	
with the runtime locale/preference.	
The lookup table DEMO_OPTIONS	
defines the various options within the Fusion Order Demo application that are switched on. It also caches general configuration information such as email addresses and phone numbers to use as overrides in this demonstration scenario (for example, where email addresses are fictitious). This table is reserved for future use.	
The Fusion Order Demo application consists of a web user interface and a business components layer. Specifically, the following projects are part of the Fusion Order Demo application:	
StoreFrontService	
: Provides access to the storefront data and provides transaction support to update data for customer information and orders. StoreFrontUI	
: Provides web pages that the customer uses to browse the storefront, place orders, register on the site, view order information, and update the user profile. You run the StoreFront module of the Fusion Order Demo application in JDeveloper by running the home.jspx	
page in the StoreFrontUI	
project. The StoreFrontUI	
project uses JavaServer Faces (JSF) as the view technology, and relies on the ADF Model layer to interact with ADF Business Components in the StoreFrontService	
project. To learn more about the Fusion Order Demo application and to understand its implementation details, see Section 2.5, "Taking a Look at the Fusion Order Demo Application."	
A second module of the Fusion Order Demo application is available to process the orders that you place using the StoreFront module. For example, the WebLogic Fusion Order Demo module uses various internal and external applications, including a customer service application, a credit validation system, and both an internal vendor and external vendor. These composite services are the subject of another developer's guide and are not addressed in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. For details about the WebLogic Fusion Order Demo module used to demonstrate the capabilities of Oracle SOA Suite, see the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.	
You cannot run the WebLogic Fusion Order Demo module in JDeveloper. When you want to integrate the storefront portion with the composite services portion of the application, you must deploy the Fusion Order Demo application to a SOA-enabled Oracle WebLogic Server. Instructions to deploy any SOA web application to Oracle WebLogic Server, are addressed in the Fusion Order Demo home page on OTN at this link http://www.oracle.com/technetwork/developer-tools/jdev/index-095536.html	
.	
The easiest way to run the Fusion Order Demo application is to open only the StoreFront module in JDeveloper and run the home.jspx	
page in the StoreFrontUI	
project.	
To run the StoreFront module of the Fusion Order Demo application:	
Figure 2-6 shows the Application Navigator after you open the file for the application workspace. For a description of each of the projects in the workspace, see Section 2.5, "Taking a Look at the Fusion Order Demo Application."	
Table 2-2 Connection Properties Required to Run the Fusion Order Demo Application	
Property	Description
---	---
Host Name	The host name for your database. For example:
JDBC Port	The port for your database. For example:
SID	The SID of your database. For example:
Do not modify the user name and password fod/fusion. These must remain unchanged. Click OK.	
The Configure Default Domain dialog displays the first time you run the application and start a new domain in Integrated WebLogic Server. Use the dialog to define an administrator password for the new domain. Passwords you enter can be eight characters or more and must have a numeric character.	
The home.jspx	
page within the StoreFrontUI	
project is the default run target. When you run the default target, JDeveloper will launch the browser and display the Fusion Order Demo application home page.	
Once the home page appears, you can browse the web site as an anonymous user, or you can choose to log in and place orders (may require registering as a customer first). Because the Fusion Order Demo application implements ADF Security to manage access to Oracle Application Development Framework (Oracle ADF) resources, only the authenticated user will be able to view orders in their cart. Table 2-3 shows the users who are authorized as members of the fod-users	
role to log into the Fusion Order Demo application.	
Note: The Fusion Order Demo application ships with predefined user data. The schema for the application defines different types of users including customer, supplier, and staff types. All users are members of thefod-users role and are authorized to log in. However, only ngreenbe is the user type CUST (customer). When you log in as any other user, you will need to register as a customer before you can place an order. These additional users were created to support roles in other modules of the Fusion Order Demo application.	
Table 2-3 Supplied Users in the Fusion Order Demo Application	
Username	Password
---	---
Can add items to cart, check out, and view order information. This is the only user who is preregistered as a customer in the StoreFront module of Fusion Order Demo.	
Can add items to cart, but must register as a customer to check out and view order information. This user also has administration privileges (
Can add items to cart, but must register as a customer to check out and view order information. This user also has read-only privileges (
Can add items to cart, but must register as a customer to check out and view order information. These users may be added to to other roles in a future version of Fusion Order Demo.	
The Fusion Order Demo application includes a set of sample applications that allow you to investigate Oracle ADF functionality that does not appear in the StoreFront module. Collectively, these sample applications are referred to as standalone applications. The standalone sample applications appear in five application workspaces, each consisting of several projects, located in the StandaloneExamples directory where you extracted the demo ZIP file.	
In general, almost all of the standalone applications demonstrate concepts of ADF Business Components and data model projects. References to these standalone applications appear throughout the chapters contained in Part II, "Building Your Business Services" and Part VI, "Advanced Topics" of this developer's guide. As you read sections this guide, you may want to run the corresponding standalone application to investigate the concepts further. For a brief description of each application workspace and links to the documentation, refer to the tables in Section 2.4.2 through Section 2.4.5.	
How you use JDeveloper to run a standalone application depends on the individual application. Some applications are set up to use the interactive testing tool JDeveloper provides for the ADF Business Components data model project (this tool is known as the Business Component Browser). Other applications provide Java test clients (with file names like TestClient	
Xxx	
.java	
) that use the ADF Business Components API to execute queries and display results. In the case of the Business Component Browser, you work entirely in the tool, which essentially provides a convenient user interface for interacting with business components. In the case of the Java clients, the program files output their results and print statements to the JDeveloper Log window.	
Familiarize yourself with the following general procedures about how to run the standalone applications. The first procedure describes how to run an application with its provided test client. The second describes how to launch the Business Component Browser on the data model project's ADF application module. Then read Section 2.4.2 through Section 2.4.5 for more details about the individual standalone applications.	
Before you begin:	
Once you are through investigating a standalone application, you can use the script to back out the schema changes.	
To run a standalone application from its provided test client:	
.java	
) file. In some cases, the test client is added to a package located in the Application Sources folder. In other cases, the Resources folder contains the test client. For example, Figure 2-7 shows the expanded ApplicationModules project with the Java file node TestClientCustomInterface.java selected.	
For the names and location of the test clients provided with the standalone applications, see the tables in Section 2.4.2 through Section 2.4.5.	
The Configure Default Domain dialog displays the first time you run the application and start a new domain in Integrated WebLogic Server. Use the dialog to define an administrator password for the new domain. Passwords you enter can be eight characters or more and must have a numeric character.	
Refer to the referenced documentation for details about the expected results.	
When the standalone application does not provide a test client to programmatically exercise the ADF Business Components API, you will use the interactive testing tool, known as the Business Components Browser.	
To run a standalone application in the Business Component Browser:	
For example, Figure 2-8 shows the expanded ConditionalDelete project with the application module AppModule selected and a tooltip for the node displayed.	
For the names of the runnable application modules, see the tables in Section 2.4.2 through Section 2.4.5.	
The Configure Default Domain dialog displays the first time you run the application and start a new domain in Integrated WebLogic Server. Use the dialog to define an administrator password for the new domain. Passwords you enter can be eight characters or more and must have a numeric character.	
Refer to the referenced documentation for details about the application. For details about using the Browser to interact with the data model, see Section 6.3, "Testing View Object Instances Using the Business Component Browser."	
Two of the standalone applications in the application workspace DevGuideExamples	
use programmatic test clients to demonstrate concepts related to the ADF Business Components framework. The third application demonstrates framework functionality when you run the application in the Business Component Browser.	
Figure 2-9 shows the Application Navigator after you open the DevGuideExamples	
application workspace.	
Note that the test clients for the DevGuideExamples	
standalone applications provide a good starting point for understanding how to exercise methods of the ADF Business Components API. They also make good samples for test clients that you may want to create to test business component queries in a data model project. For background on working with test clients, see Section 6.4, "Testing View Object Instances Programmatically."	
Note: The ADF Business Components API is available when you need to generate custom classes to augment the default runtime behavior of the business components. For background about the ADF Business Components framework, see Section 3.5, "Overview of the Implementation Architecture."	
Table 2-4 describes the standalone applications in the DevGuideExamples	
application workspace. Examples from these applications appear throughout the chapters contained in Part II, "Building Your Business Services" of this guide.	
Table 2-4 Standalone Applications in the DevGuideExamples Application Workspace	
Project Name	Runnable Class or Project Target
---	---
Run TestClientCustomInterface.java in the Exercises custom methods of StoreFrontService application module's client interface and prints to the JDeveloper Log window to indicate the results.	For details about the test client, see Section 9.10.1, "How to Work Programmatically with an Application Module's Client Interface." For details about the methods of the client interface, see the examples in Section 4.12, "Working Programmatically with Entity Objects and Associations."
Launch the Business Component Browser on AppModule in the Application Sources folder. Overrides a method in the generated entity class that conditionally prevents deletion of entity rows. In the Business Component Browser, click Delete the Current Row and observe the exception statement. Then, click Insert a New Row and delete the new row.	For a description of overriding the
Run TestClient.java in the Resources folder. Programmatically iterates over the	For details about iterating over a collection, see Section 6.4.5, "How to Count the Number of Rows in a Row Set." For details about how to create test clients, see Section 6.4, "Testing View Object Instances Programmatically."
Run TestClient2.java in the Resources folder. Programmatically iterates over the	For details about iterating over a detail collection, see Section 5.6.6, "How to Access the Detail Collection Using the View Link Accessor." For more details about the test client, see Section 6.4.6, "How to Access a Detail Collection Using the View Link Accessor."
Run TestClient3.java in the Resources folder. Programmatically iterates over the	For details about iterating over a collection using the view row accessor attribute, see Section 39.3.1.3, "Exposing View Row Accessors to Clients."
Run TestClientBindVars.java in the Resources folder. Programmatically sets the	For details about setting bind variables, see Section 5.10.6, "How to Set Existing Bind Variable Values at Runtime." For more details about the test client, see Section 5.10.5, "How to Add a WHERE Clause with Named Bind Variables at Runtime."
Run TestClientViewCriteria.java in the Resources folder. Programmatically sets a view criteria for the	For details about the ADF Business Component's view criteria API, see Section 5.11.9, "What You May Need to Know About the View Criteria API." For more details about the test client, see Section 5.11.7, "How to Create View Criteria Programmatically."
The standalone applications assembled in the application workspace AdvancedExamples	
demonstrate advanced concepts that apply to the entire ADF Business Components framework.	
Figure 2-10 shows the Application Navigator after you open the AdvancedExamples	
application workspace.	
Table 2-5 describes the standalone applications in the AdvancedExamples	
application workspace. Examples from this application workspace are described in Chapter 37, "Advanced Business Components Techniques."	
Table 2-5 Standalone Applications in the AdvancedExamples Application Workspace	
Project Name	Runnable Class or Project Target
---	---
Run TestClient.java in the Application Sources folder.	For details about how to extend business components to create a customized versions of the original, see Section 37.9, "Creating Extended Components Using Inheritance."
Run the Launch the Business Component Browser on ProductModule in the Application Sources folder.	For details about how to provide an alternative message string for the builtin error codes in a custom message bundle, see Section 37.8, "Customizing Business Components Error Messages."
Not runnable. Programmatically iterates over the	For details about how to substitute business components, see Section 37.10, "Substituting Extended Components in a Delivered Application."
Not runnable. Provides template class files that you can use to modify your own generated ADF Business Components classes.	For details about framework extensions, see Section 37.2, "Creating a Layer of Framework Extensions."
Run TestClient.java in the Application Sources folder.	For details about how to communicate custom declarative information about business components to the generic code in framework extension classes, see Section 37.3, "Customizing Framework Behavior with Extension Classes."
Run the Run TestClient.java in the Application Sources folder.	For details about how to code custom Java classes for business components that invoke database stored procedures and functions, see Section 37.5, "Invoking Stored Procedures and Functions."
The standalone applications assembled in the application workspace AdvancedEntityExamples	
demonstrate advanced concepts that apply to ADF Business Components entity objects.	
Figure 2-11 shows the Application Navigator after you open the AdvancedEntityExamples	
application workspace.	
Table 2-6 describes the standalone applications in the AdvancedEntityExamples	
application workspace. Examples from this application workspace are described in Chapter 38, "Advanced Entity Object Techniques."	
Table 2-6 Standalone Applications in the AdvancedEntityExamples Application Workspace	
Project Name	Runnable Class or Project Target
---	---
Launch the Business Component Browser on ProductsModule in the Application Sources folder.	For details about controlling the posting order resulting from DML operations to save changes to a number of related entity objects, see Section 38.8, "Controlling Entity Posting Order to Avoid Constraint Violations."
Run the Launch the Business Component Browser on ProductsModule in the Application Sources folder.	For details about overriding the default DML processing event for an entity object to invoke methods in a PL/SQL API PL/SQL package that encapsulates insert, update, and delete access to an underlying table, see Section 38.5, "Basing an Entity Object on a PL/SQL Package API."
Run the Run TestEntityPolymorphism.java in the Resources folder. Also, run TestViewRowPolymorphism.java in the Resources folder.	For details about creating an entity object inheritance hierarchy, see Section 38.7, "Using Inheritance in Your Business Domain Layer."
Run the Launch the Business Component Browser on PersonModule in the Application Sources folder.	For details about creating custom data types, see Section 38.1, "Creating Custom, Validated Data Types Using Domains."
The standalone applications assembled in the application workspace AdvancedViewObjectExamples	
demonstrate advanced concepts that apply to ADF Business Components view objects.	
Figure 2-12 shows the Application Navigator after you open the AdvancedViewObjectExamples	
application workspace.	
Table 2-4 describes the standalone applications in the AdvancedViewObjectExamples	
application workspace. Examples from this application workspace are described in Chapter 39, "Advanced View Object Techniques."	
Table 2-7 Standalone Applications in the AdvancedViewObjectExamples Application Workspace	
Project Name	Runnable Class or Project Target
---	---
Launch the Business Component Browser on AppModule in the Application Sources folder.	For details about how to use custom metadata properties to control insert, update, or delete on a view object, see Section 39.11, "Declaratively Preventing Insert, Update, and Delete."
Launch the Business Component Browser on AppModule in the Application Sources folder. Illustrates using the in-memory sorting and filtering functionality from the client side using methods on the interfaces in the	For details about how to use view objects to perform in-memory searches and sorting to avoid unnecessary trips to the database, see Section 39.5, "Performing In-Memory Sorting and Filtering of Row Sets."
Launch the Business Component Browser on AppModule in the Application Sources folder.	For details about creating a view object with multiple updatable entities to support creating new rows, see Section 39.9, "Creating a View Object with Multiple Updatable Entities."
Run TestClientMultipleViewCriteria.java in the Application Sources folder.	For details about how to programmatically filter query results, see Section 39.4, "Working Programmatically with Multiple Named View Criteria."
Run TestClientReadXML.java in the Resources folder. Then run TestClientWriteXML.java in the Resources folder.	For details about how to produce XML from queried data, see Section 39.7, "Reading and Writing XML."
Run the Launch the Business Component Browser on OrdersModule in the Application Sources folder.	For details about how to use PL/SQL to open a cursor to iterate through the results of a query, see Section 39.8.4, "How to Create a View Object on a REF CURSOR."
Once you have opened the projects in Oracle JDeveloper, you can then begin to review the artifacts within each project. The development environment for the Fusion Order Demo application is divided into two projects: the StoreFrontService	
project and the StoreFrontUI	
project.	
The StoreFrontService	
project contains the classes that allow the product data to be displayed in the web application. Figure 2-13 shows the StoreFrontService	
project and its associated directories.	
The StoreFrontService	
project contains the following directories:	
Application Sources	
: Contains the files used to access the product data. Included are the metadata files used by Oracle Application Development Framework (Oracle ADF) to bind the data to the view. META-INF	
: Contains a file used in deployment. The StoreFrontUI	
project contains the files for the web interface, including the backing beans, deployment files, and JSPX files. Figure 2-14 shows the StoreFrontUI	
project and its associated directories.	
The StoreFrontUI	
project contains the following directories:	
Application Sources	
: Contains the code used by the web client, including the managed and backing beans, property files used for internationalization, and the metadata used by Oracle ADF to display bound data. Web Content	
: Contains the web files, including the JSP files, images, skin files, deployment descriptors, and libraries. You start the Fusion Order Demo application by running the home.jspx	
page in the StoreFrontUI	
project. For details about running the application using the default target, home.jspx	
page, see Section 2.3, "Running the Fusion Order Demo Application StoreFront Module."	
When you enter the storefront site, the site is available for anonymous browsing. You can use this page to browse the catalog of products without logging into an account. The initial view shows the featured products that the site wishes to promote and gives you access to the full catalog of items. Products are presented as images along with the name of the product. Page regions divide the product catalog area from other features that the site offers.	
Figure 2-15 shows the home page.	
Where to Find Implementation Details	
Following are the sections of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework that describe how to create a databound web page:	
The home page separates features of the site into regions that are implemented using a combination of ADF Faces templates and JavaServer Faces (JSF) page fragments. ADF Faces templates and the fragments allow you to add ADF databound components. For information about the steps you perform before adding databound user interface components to a web page, see Section 20.1, "Introduction to Developing a Web Application with ADF Faces."	
To support data binding, the featured items on the tabbed region of the home page use EL (Expression Language) expressions to reference ADF data control usages in the declarative ADF page definition file. The page definition file, which JDeveloper creates for you when you work with the Data Controls panel to drag and drop databound ADF Faces components, is unique to each web page or page fragment. The ADF data control usages enable queries to the database and ultimately work with the JSF runtime to render the databound ADF Faces components, such as the ADF Faces image component used to display images from the PRODUCT_IMAGES	
table. For information about creating a databound web page that references the ADF page definition file, see Section 22.1, "Introduction to Creating a Basic Databound Page."	
The home page is supported by an ADF unbounded task flow. In general, the Fusion web application relies on this ADF Controller feature to define entry points to the application. The unbounded task flow for the entire home page and its page fragments describes view activities for displaying the home page, displaying the orders page, displaying the register user page, and it defines a task flow reference to manage the checkout process. JDeveloper helps you to create the task flow with visual design elements that you drag and drop from the Component Palette. When you create an unbounded task flow, the elements allow you to identify how to pass control from one activity in the application to the next. Because a view activity must be associated with a web page or page fragment, JDeveloper allows you also to create the files for the web page or fragment directly from the task flow diagram. The process of creating a task flow adds declarative definitions to an ADF task flow configuration file. The resulting diagram lets you work with a visual control flow map of the pages and referenced task flows for your application. For more information about specifying the entry points to the application using an ADF unbounded task flows, see Section 14.1, "Introduction to ADF Task Flows."	
To view detailed product information, you can click the product name link for any product in the home page. The product information is laid out with collapsing nodes organized by categories.	
Figure 2-16 shows the detail dialog that you can view for a product.	
You can also select the Statistics subtab on the home page to view a graphical representation of the number of orders that customers have placed for the featured items. To present the information so that quantities are easily compared, the graph sorts the products by the number of items ordered, in descending order.	
Figure 2-17 shows the bar graph used to display the featured products' current order details.	
Where to Find Implementation Details	
Following are the sections of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework that describe how to develop the components used to support browsing product details:	
To display data from the data model, user interface components in the web page are bound to ADF Model layer binding objects using JSF Expression Language (EL) expressions. For example, when the user clicks on a link to display an informational dialog, the JSF runtime evaluates the EL expression for the dialog's UI component and pulls the value from the ADF Model layer. At design time, when you work with the Data Controls panel to drag an attribute for an item of a data collection into you web page, and then choose an ADF Faces component to display the value, JDeveloper creates all the necessary JSF tag and binding code needed to display and update the associated data. For more information about the Data Controls panel and the declarative binding experience, see Section 12.1, "Introduction to ADF Data Binding."	
JDeveloper allows you to create databound components declaratively for your JSF pages, meaning you can design most aspects of your pages without needing to look at the code. By dragging and dropping items from the Data Controls panel, JDeveloper declaratively binds ADF Faces UI components and ADF Data Visualization graph components to attributes on a data control using an ADF binding. For more information, see Section 26.1, "Introduction to Creating ADF Data Visualization Components."	
To begin browsing, click the Start Shopping tab in the home page. This action changes the region of the page used to display details about featured products to a region that displays a product categories tree. You can collapse and expand the branch nodes of the tree to view the various product categories that make up the product catalog. The tree displays the product categories in alphabetical order, by category names. When you want to view all the products in a particular category, click its category node in the tree (for example, click Electronics, Media, or Office). The site refreshes the product information region to display the list of products organized as they appear in the database with an image and an accompanying description.	
Figure 2-18 shows the home page with all the products in the Electronics category displayed.	
Where to Find Implementation Details	
Following are the sections of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework that describe how to use tables and forms to display master-detail related objects:	
You can create pages that display master-detail data using the Data Controls panel. The Data Controls panel displays master-detail related objects in a hierarchy that mirrors the one you defined in the ADF application module data model, where the detail objects are children of the master objects. All you have to do is drop the collections on the page and choose the type of component you want to use. For example, in the Fusion Order Demo application, the page home.jspx	
displays the master list of product categories in an af:tree	
component and displays the detail list of products in an af:table	
component. For more information about the data model, see Section 3.4, "Overview of the UI-Aware Data Model." For more information about various types of pages that display master-detail related data, see Section 24.1, "Introduction to Displaying Master-Detail Data."	
When you create an ADF Faces table component you bind the table to the complete collection or to a range of data objects from the collection. The specific components that display the data in the columns are then bound to the attributes of the collection. The iterator binding handles displaying the correct data for each object, while the table component handles displaying each object in a row. You can set the Sort property for any column when you want the iterator to perform an order-by query to determine the order. You can also specify an ORDER BY	
clause for the query that the view object in the data model project defines. For more information about binding table components to a collection, see Section 23.1, "Introduction to Adding Tables." For more information about creating queries that sort data in the data model, see Section 5.2, "Populating View Object Rows from a Single Database Table."	
To search the product catalog, you have several choices. You can begin either by clicking the disclosure icon (a + symbol) on the Search tab on the panel accordion or by clicking the Search for Deals tab in the main region. When you click either of these, the home page displays both regions at once to allow you to enter a search criteria and view the search results. You use the Search tab on the accordion panel to perform a simple keyword search against the attributes common to all products, such as product names or product descriptions. When you select the attribute to search on from the dropdown list, the panel renders a search field using an appropriate input component to accept the search criteria. For example, in the case of the default searchable attribute ProductId, where a numeric value is expected, the search field uses a spinbox (the ADF Faces component inputNumberSpinBox	
) to return the product ID.	
Figure 2-19 shows the home page with the search results returned for the product with an ID equal to 7.	
As an alternative to entering a simple search, you can use the advanced search feature to define and save search criteria based on any combination of searchable fields that you select for the product. Click the Advanced link to open the Advanced Search dialog. Developer-defined saved searches like Find Products By Name appear in the Saved Search dropdown list.	
Figure 2-20 shows the Advanced Search dialog with a single search criteria, Name, that the Find Products By Name saved search defines.	
In addition to the developer-defined saved searches available in the Advanced Search dialog, the end user can create saved searches that will persist for the duration of their session. Enter the product search criteria in the Advanced Search dialog, then click the Save button to open the Create Saved Search dialog.	
Figure 2-21 shows the Create Saved Search dialog that you use to specify how you want to save the search criteria you entered in the Advanced Search dialog. You can name the search, for example, Treo product name search, so that it will display in the Saved Search dropdown list of the Advanced Search dialog.	
You can also manage your saved searches by selecting the Personalize function in the Saved Search dropdown list of the Advanced Search dialog.	
Figure 2-22 shows the Personalize Saved Search dialog for the Find Products By Name search, with Show in Search List enabled so that it will appear in the Saved Search dropdown list. Note that because this search is not a user-defined saved search, the personalization options appear disabled.	
Where to Find Implementation Details	
Following are the sections of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework that describe how to define queries and create query search forms:	
A query is associated with an ADF Business Components view object that you create for the data model project to define a particular query against the database. In particular, a query component is the visual representation of the view criteria defined on that view object. If there are multiple view criteria defined, each of the view criteria can be selected from the Saved Search dropdown list. These saved searches are created at design time by the developer. For example, in the Fusion Order Demo application, the ProductsVO	
view object defines two view criteria. When the query associated with that view object is run, both view criteria are available for selection. For more information, see Section 27.1, "Introduction to Creating Search Forms."	
A quick query search form has one search criteria field with a dropdown list of the available searchable attributes from the associated data collection. By default, the searchable attributes are all the attributes in the associated view object. You can exclude attributes by setting the attribute's Display control hint to Hide in the view object. The user can search against the selected attribute or search against all the displayed attributes. The search criteria field type will automatically match the type of its corresponding attribute type. For more information, see Section 27.1.2, "Quick Query Search Forms."	
You create a query search form by dropping a named view criteria item from the Data Controls panel onto a page. You have a choice of dropping only a search panel, dropping a search panel with a results table, or dropping a search panel with a tree table. For more information, see Section 27.2, "Creating Query Search Forms."	
Normally, you would drop a query search panel with the results table or tree table. JDeveloper will automatically wire up the results table or tree table with the query panel. If you drop a query panel by itself and want a separate results component, you can set the query component's resultComponentId	
attribute to the relative expression of the results component. For example, in the Fusion Order Demo application, the page home.jspx	
displays an af:table	
with the ID searchT	
and the results ID of the advanced search dialog is assigned this ID. For more information, see Section 27.2.2, "How to Create a Query Search Form and Add a Results Component Later."	
Until you attempt to access secure resources in the storefront site, you are free to browse the product catalog and update the shopping cart as an anonymous user. However, when you click the My Orders or Checkout links that appear at the top of the home page, you will be challenged by the web container running the site to supply login credentials. The site requires that you enter a valid user name and password before it completes your request to display the linked page.	
Note: The Fusion Order Demo application supports the new customer registration process, but that user is not added to the security implementation. Thus, you must use a predefined customer's user name and password to log in, as shown in Table 2-3.	
Figure 2-23 shows the login page fragment that displays before you can view order details or purchase items from the store. For demonstration purposes, log in as a customer by entering ngreenbe	
and welcome1	
for the Username and Password, respectively.	
When you click the Log In button, the web container will compare your entries with the credential information stored in its identity store. If the web container is able to authenticate you (because you have entered the user name and password for a registered user), then the web container redirects to the web page specified by your link selection; otherwise, the site prompts you to create an account or to continue browsing as an unauthenticated user.	
Where to Find Implementation Details	
Following are the sections of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework that describe how to secure Oracle ADF resources so that users are required to log in to access those resources:	
ADF Security is a framework that provides a security implementation that is based on Java Authentication and Authorization Service (JAAS). The Oracle ADF implementation of JAAS is role-based. In JDeveloper, you define these roles and then make permission grants based on these roles to enable fine-grained security for Oracle ADF resources. JDeveloper supports declaratively defining the policy store for an ADF bounded task flow or individual web pages associated with their ADF page definition. For information about securing Oracle ADF resources, see Section 30.5, "Defining ADF Security Policies."	
When you use ADF Security, authentication is triggered automatically if the user is not yet authenticated and tries to access a page that is not granted to the anonymous-role	
role. After successfully logging in, another check will be done to verify if the authenticated user has view access to the requested page. For more information, see Section 30.3.5, "What You May Need to Know About ADF Authentication."	
At runtime, the security policy you define for ADF resources is enforced using standard JAAS permission authorization to determine the user's access rights. If your application requires it, you can use Expression Language (EL) to perform runtime permission checks within the web page to hide components that should not be visible to the user. For example, in the Fusion Order Demo application, the page myOrders.jpx	
uses an expression with the value userGrantedPermission	
to test the user's authorization privileges before displaying their account number. For more information, see Section 30.11.1, "Using Expression Language (EL) with ADF Security."	
You begin the order process by browsing the product catalog. When you click Add next to a product, the site updates the shopping cart region to display the item.	
Figure 2-24 shows the cart summary with a single item added. The summary shows a subtotal for the items that appear in the cart.	
When you are satisfied with the items in the cart, you can complete the order by clicking the Checkout link at the top of the home page. To check out and complete the order, you must become an authenticated user, as described in Section 2.5.2, "The Login Process."	
After you log in, the site displays the checkout page with order details, such as the name and address of the user you registered as. The order is identified by an Order Information number that is generated at runtime and assigned to the order. An Order Summary region displays the order items that comprise the new order. This region is similar to the cart summary on the home page, except that it adds the cost of shipping and deducts any discounts that apply to the order to calculate the total purchase amount.	
Figure 2-25 shows the checkout page with an order comprising four order items.	
You can use the checkout page to customize details of the order information. For example, click the Edit icon next to the Payment Option Code field to display and edit payment funding information for the order.	
Figure 2-26 shows the detail dialog for the Payment Option Code field.	
Many of the fields of the payment options dialog offer user interface hints that guide you to enter specific information.	
Figure 2-27 shows an example of a date entry (06-FEB-2009 10:47:21) that the format mask (dd-MMM-yyyy hh:mm:ss) defines for the Expiration Date field.	
The Card Type field displays a dropdown that allows you to select from a valid list of credit card types.	
Figure 2-28 displays the list of values for the Card Type field.	
If you close the payment options dialog and click the Submit Order button in the checkout page, the purchase order is created and sent into a process flow.	
After you place an order using the StoreFront module, a second module of the Fusion Order Demo application is available to process the order. For details about the WebLogic Fusion Order Demo module used to demonstrate the capabilities of Oracle SOA Suite, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. For information about running this portion of the Fusion Order Demo application, see Section 2.3, "Running the Fusion Order Demo Application StoreFront Module."	
Where to Find Implementation Details	
Following are the sections of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework that describe how to develop forms like the ones used in the order checkout process:	
When you want to create a basic form that collects values from the user, instead of having to drop individual attributes, JDeveloper allows you to drop all attributes for an object at once as an input form. You can create forms that display values, forms that allow users to edit values, and forms that collect values. For example, in the Fusion Order Demo application, the checkout page orderSummary.jspx	
displays one form to display user information and another form to collect shipping information for the user's order. For more information, see Section 22.6, "Creating an Input Form."	
Format masks help ensure the user supplies attribute values in the required format. To facilitate this task, ADF Business Components provides declarative support known as control hints for attributes in the data model project. For example, in the Fusion Order Demo application, the attribute for the CustomerPaymentOptionVO	
view object used to assign the user's credit card expiration date is configured with a format mask hint and enforced in the Payment Options page fragment paymentOptionsDetails.jsff	
. For information on defining format masks for input form components, see Section 5.13, "Defining Control Hints for View Objects."	
Input forms displayed in the user interface can utilize databound ADF Faces selection components to display a list of values (LOV) for individual attributes of the data collection. To facilitate this common design task, ADF Business Components provides declarative support to specify the LOV usage for attributes in the data model project. For example, in the Fusion Order Demo application, the three af:selectOneChoice	
components displayed in the Payment Options page fragment paymentOptionsDetails.jsff	
are bound to LOV-enabled attributes configured for the CustomerPaymentOptionVO	
view object. For more information about configuring attributes for LOV usage, see Section 5.12, "Working with List of Values (LOV) in View Object Attributes."	
When you create a data model project that maps attributes to columns in an underlying table, your ADF view objects can include transient attributes that display calculated values (for example, using Java or Groovy expressions) or that are value holders. For example, in the Fusion Order Demo application, the order summary page orderSummary.jspx	
displays the value of the InvoiceTotal	
attribute calculated by the expression defined on the OrderVO	
view object. For more information about defining transient attributes in the data model project, see Section 4.14, "Adding Transient and Calculated Attributes to an Entity Object."	
The site requires that you become an authenticated user before you can display the checkout page. To make it possible for new customers complete the order process, the site needs to provide a way to guide users through customer registration. To begin, click the registration link on the home page and then click Register as a customer.	
Customer registration progresses in steps, with one screen dedicated to each step. To represent the progression of these steps, the registration page displays a series of train stops labelled Basic Information, Address, Payment Options, and Review. To navigate the customer registration process, you can click certain train stops or you can click the Next button.	
Figure 2-29 shows the first screen in the customer registration process. The Basic Information stop of the train is enabled and selected to identify it as the current stop. Notice that the next train stop icon, Address, is enabled but not highlighted, while the Payment options and Review train stop icons appear disabled and grayed out. Together, these train stops signify that you must complete the activity in a sequential flow.	
Before you enter any information into the Basic Information form, click the Address train stop. The page displays an error dialog to inform you that specific fields require a value before you can progress to the next step.	
Figure 2-30 shows the error dialog with messages stating that the Basic Information form requires a user name and an email address.	
Click OK to dismiss the error dialog. Then enter a user name and email address. Be sure to confirm the email address in the form.	
Again, click Next to progress to the next task. This time, the site should display the Address screen with icon buttons that you can select to create a new address record in the database (or, in the case of an existing customer, to update an existing address record).	
Figure 2-31 shows the Address screen with one column for Address Label and no row information. Because you are entering information as a new customer, no address record currently exists, so no rows are available to display below these columns.	
Click New. The registration page changes to display an address input form and the current train stop remains on Address.	
Figure 2-32 shows the empty address input form.	
For the fields with an asterisk symbol (*), enter the address information specified. The asterisk symbol indicates that the value is required. Note that you must also select a country from the dropdown list since this information is required by the database. Then click Save & Return to create the new address record in the database.	
Figure 2-33 shows the Address screen with the row information for the new address record.	
This concludes the tour of the Fusion Order Demo application.	
Where to Find Implementation Details	
Following are the sections of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework that describe how to use complex components like the ADF Faces Train component used in the registration process:	
Every Fusion web application contains an unbounded task flow, which contains the entry points to the application. The application can then calls bounded task flows from activities within the unbounded task flow. For example, in the Fusion Order Demo application, the bounded task flow checkout-task-flow	
controls the flow of the checkout process and calls another bounded task flow customer-registration-task-flow	
to control the flow of the registration process. For information about the bounded task flow, see Section 14.1, "Introduction to ADF Task Flows."	
You configure train stops based on activities that you select in an ADF bounded task flow and then you add the af:train	
component to your JSF pages. For example, in the Fusion Order Demo application, the bounded task flow customer-registration-task-flow	
defines four train stops for the page fragments basicInformation.jsff	
, defineAddresses.jsff	
, paymentOptions.jsff	
, and reviewCustomerInfo.jsff	
. The page register.jspx	
displays the fragments and each page fragment displays the train component bound to the activities that define the four stops. For information about the bounded task flow and how you can use it to define train stops, see Section 18.9.3, "How to Create a Train."	
The input form displays attributes of a data collection that you drop from the Data Controls panel. You can set the required	
property of individual components in the form to control whether an attribute value is mandatory. For details about how to customize the required	
property, see Section 22.2, "Using Attributes to Create Text Fields." Alternatively, you can set a display control hint property directly on the attribute where it is defined by an ADF Business Components entity object. The entity object is a data model component that represents a row from a specific table in the database and that simplifies modifying its associated attributes. For details about using control hints to make an attribute mandatory, see Section 4.10, "Setting Attribute Properties."	
Part II contains the following chapters:	
This chapter describes the key features of the ADF Business Components layer of Oracle Application Development Framework (Oracle ADF).	
This chapter includes the following sections:	
ADF Business Components and JDeveloper simplify the development, delivery, and customization of business applications for the Java EE platform. With ADF Business Components, developers aren't required to write the application infrastructure code required by the typical Java EE application to:	
ADF Business Components addresses these tasks through its library of reusable software components and through the supporting design time facilities in JDeveloper. Most importantly, developers save time using ADF Business Components since the JDeveloper design time makes typical development tasks entirely declarative. In particular, JDeveloper supports declarative development with ADF Business Components to:	
The goal of ADF Business Components is to make the business services developer more productive.	
ADF Business Components provides a foundation of Java classes that allow your business-tier application components to leverage the functionality provided in the following areas:	
ADF Business Components implements the business service through the following set of cooperating components:	
An entity object represents a row in a database table and simplifies modifying its data by handling all data manipulation language (DML) operations for you. It can encapsulate business logic for the row to ensure that your business rules are consistently enforced. You associate an entity object with others to reflect relationships in the underlying database schema to create a layer of business domain objects to reuse in multiple applications.	
A view object represents a SQL query. You use the full power of the familiar SQL language to join, filter, sort, and aggregate data into exactly the shape required by the end-user task. This includes the ability to link a view object with others to create master-detail hierarchies of any complexity. When end users modify data in the user interface, your view objects collaborate with entity objects to consistently validate and save the changes.	
An application module is the transactional component that UI clients use to work with application data. It defines an updatable data model and top-level procedures and functions (called service methods) related to a logical unit of work related to an end-user task.	
While the base components handle all the common cases through built-in behavior, customization is always possible and the default behavior provided by the base components can be easily overridden or augmented.	
ADF Business Components provides components that implement functionality similar to that offered by enterprise 4GL tools. Several key components in ADF Business Components map to concepts that you may be familiar with in other 4GL tools.	
ADF Business Components implements all of the data-centric aspects of the familiar Oracle Forms runtime functionality, but in a way that is independent of the user interface. In Oracle Forms, each form contains both visual objects (like canvases, windows, alerts, and LOVs), as well as nonvisual objects (like data blocks, relations, and record groups). Individual data block items have both visual properties like Foreground Color	
and Bevel	
, as well as nonvisual properties like Data Type	
and Maximum Length	
. Even the different event-handling triggers that Forms defines fall into visual and nonvisual categories. For example, it's clear that triggers like WHEN-BUTTON-PRESSED	
and WHEN-MOUSE-CLICKED	
are visual in nature, relating to the front-end UI, while triggers like WHEN-VALIDATE-ITEM	
and ON-INSERT	
are more related to the backend data processing. While merging visual and nonvisual aspects definitely simplifies the learning curve, the flip side is that it can complicate reuse. With a cleaner separation of UI-related and data-related elements, it would be easier to redesign the user interface without disturbing backend business logic and easier to repurpose back-end business logic in multiple different forms.	
In order to imagine this separation of UI and data, consider reducing a form as you know it to only its nonvisual, data-related aspects. This reduces the form to a container of data blocks, relations, and record groups. This container would continue to provide a database connection for the data blocks to share and would be responsible for coordinating transaction commits or rollbacks. Of course, you could still use the nonvisual validation and transactional triggers to augment or change the default data-processing behavior as well. This nonvisual object you are considering is a kind of a "smart data model" or a generic application module, with data and business logic, but no user interface elements. The goal of separating this application module from anything visual is to allow any kind of user interface you need in the future to use it as a data service.	
Focus a moment on the role the data blocks would play in this application module. They would query rows of data from the database using SQL, coordinate master/detail relationships with other data blocks, validate user data entry with WHEN-VALIDATE-RECORD	
and WHEN-VALIDATE-ITEM	
triggers, and communicate valid user changes back to the database with INSERT	
, UPDATE	
, and DELETE	
statements when you commit the data service's transaction.	
Experience tells you that you need to filter, join, order, and group data for your end-users in a variety of ways to suit the many different tasks. On the other hand, the validation rules that you apply to your business domain data remain basically the same over time. Given these observations, it would be genuinely useful to write business entity validation exactly once, and leverage it consistently anywhere that data is manipulated by users in your applications.	
Enabling this flexibility requires further "factoring" of your data block functionality. You need one kind of "SQL query" object to represent each of the many different views of data your application requires, and you need another kind of "business entity" object to enforce business rules and communicate changes to your base table in a consistent way. By splitting things like this, you can have multiple "view objects" with specific SQL queries that present the same business data yet each working with the same underlying "entity object."	
Oracle ADF addresses the UI/data split by providing ready-to-use Java components that implement typical Forms functionality. Responsibilities between the querying and entity-related functions are cleanly separated, resulting in better reuse.	
The application module component is the "data portion" of the form. The application module is a smart data service containing a data model of master-detail-related queries that your client interface needs to work with. It also provides a transaction and database connection used by the components it contains. It can contain form-level procedures and functions, referred to as service methods, that are encapsulated within the service implementation. You can decide which of these procedures and functions should be private and which ones should be public.	
The entity object component implements the "validation and database changes" portion of the data block functionality. In the Forms runtime, this duty is performed by the record manager. The record manager is responsible for keeping track of which of the rows in the data block have changed, for firing the block-level and item-level validation triggers when appropriate, and for coordinating the saving of changes to the database. This is exactly what an entity object does for you. The entity object is a component that represents your business domain entity through an underlying database table. The entity object gives you a single place to encapsulate business logic related to validation, defaulting, and database modification behavior for that business object.	
The ViewObject	
component performs the "data retrieval" portion of the data block functionality. Each view object encapsulates a SQL query, and at runtime each one manages its own query result set. If you connect two or more view objects in master-detail relationships, that coordination is handled automatically. While defining a view object, you can link any of its query columns to underlying entity objects. By capturing this information, the view object and entity object can cooperate automatically for you at runtime to enforce your domain business logic, regardless of the "shape" of the business data required by the user's task.	
If you have developed solutions in the past with PeopleTools, you are familiar with the PeopleTools component structure. ADF Business Components implement the data access functionality you are familiar with from PeopleTools.	
Oracle ADF adheres to an MVC pattern and separates the model from the view. Pages, which you are familiar with in the PeopleTools Component, are defined in the view layer, using standard technologies like JSF and ADF Faces components for web-based applications or Swing for desktop-fidelity client displays.	
The ADF application module defines the data structure, just like the PeopleTools Component Buffer does. By defining master-detail relationships between ADF query components that produce row sets of data, you ensure that any application module that works with the data can reuse the natural hierarchy as required, similar to the scroll levels in the Component Buffer.	
Similar to the Component Interface you are familiar with, the application module is a service object that provides access to standard methods, as well as additional developer-defined business logic. In order to present a "headless" data service for a particular user interface, the Component Interface restricts a number of PeopleTools functions that are related to UI interaction. The application module is similar to the Component Interface in that it provides a "headless" data service, but in contrast it does not do this by wrapping a restricted view of an existing user interface. Instead, the application module is designed to deal exclusively with business logic and data access. Rather than building a Component Interface on top of the component, with ADF Business Components you first build the application module service that is independent of user interface, and then build one or more pages on top of this service to accomplish some end-user task in your application.	
The application module is associated with a transaction object in the same way that the PeopleTools Component Buffer is. The application module also provides a database connection for the components it contains. Any logic you associate today with the transaction as Component PeopleCode, in ADF Business Components you would define as logic on the application module.	
Logic associated with records in the transaction, that today you write as Component Record PeopleCode or Component Record Field PeopleCode, should probably not be defined on the application module. ADF Business Components has view objects that allow for better re-use when the same record appears in different components.	
In summary, PeopleTools uses the component for the container concept, whereas ADF Business Components uses the application module. That is where the similarity ends. Do not assume that all of your component code will migrate to an application module. First, understand the concept of the view object, which is the layer between the entity object and the application module. Then, decide which of your component code is suitable for an application module and which is suitable for view objects.	
The entity object is the mapping to the underlying data structure, just like the PeopleTools Record Definition maps to the underlying table or view. You'll often create one entity object for each of the tables that you need to manipulate your application.	
Similar to how you declare a set of valid values for fields like "Customer Status" using PeopleTools' translate values, in ADF Business Components you can add declarative validations to the individual attributes of an entity object. Any logic you associate with the record that applies throughout your applications, which today you write as Record PeopleCode or Record Field PeopleCode, can be defined in ADF Business Components on the entity object.	
Just like a PeopleTools row set, a view object can be populated by a SQL query. Unlike a row set, a view object definition can contain business logic.	
Any logic which you would find in Component Record PeopleCode is a likely candidate to define on the view object. Component Record PeopleCode is directly tied to the component, but a view object can be associated with different application modules. Whereas you can use the same record definition in many PeopleTools components, Oracle ADF allows you to reuse the business logic across multiple applications.	
The view object queries data in exactly the "shape" that is useful for the current application. Many view objects can be built on top of the same entity object.	
You can define relationships between view objects to create master-detail structures, just as you find them in the scroll levels in the PeopleTools component.	
If you have developed solutions in the past with Siebel Tools version 7.0 or earlier, you will find that ADF Business Components implements all of the familiar data access functionality you are familiar with, with numerous enhancements.	
Like the Siebel Table object, the ADF entity object describes the physical characteristics of a single table, including column names and physical data types. Both objects contain sufficient information to generate the DDL (data definition language) statements to create the physical tables in the database. In ADF Business Components you define associations between entity objects to reflect the foreign keys present in the underlying tables. These associations allow view object queries used by user interface pages to automatically join business information. ADF Business Components handles list of values (LOV) objects that you reference from data columns through a combination of declarative entity-level validation rules and view object attribute-level LOV definitions. You can also encapsulate other declarative or programmatic business logic with these entity object "table" handlers that is automatically reused in any view of the data you create.	
Like the Siebel Business Component, the ADF view object describes a logical mapping on top of the underlying physical table representation. Both the Siebel Business Component and the ADF view object allow you to provide logical field names, data, and calculated fields that match the needs of the user interface. As with the Siebel Business Component, with the ADF view object you can define view objects that join information from various underlying tables. The related ADF view link is similar to the Siebel Link object and allows you to define master-detail relationships. In ADF Business Components, your view object definitions can exploit the full power of the SQL language to shape the data as required by the user interface.	
The Siebel Business Object lets you define a collection of business components. The ADF application module performs a similar task, allowing you to create a collection of master-detail view objects that act as a "data model" for a set of related user interface pages. In addition, the application module provides a transaction and database connection context for this group of data views. You can make multiple requests to objects obtained from the application module and these participate in the same transaction.	
If you have developed solutions in the past with Visual Studio 2003 or 2005, you are familiar with using the ADO.NET framework for data access. ADF Business Components implements all of the data access functionality you are familiar with from ADO.NET, with numerous enhancements.	
The application module component plays the same role as the ADO.NET data set. It is a strongly typed service component that represents a collection of row sets called view object instances, which are similar to ADO.NET data tables. An application module exposes a service interface that surfaces the rows of data in a developer-configurable set of its view instances as an SDO-compatible service (accessible as a web service, or as an SCA composite). The application module works with a related transaction object to provide the context for the SQL queries that the view objects execute. The application module also provides the context for modifications saved to the database by the entity objects, which play the role of the ADO.NET data adapter.	
The entity object component is like a strongly-typed ADO.NET data adapter. It represents the rows in a particular table and handles the find-by-primary-key, insert, update, delete, and lock operations for those rows. In ADF Business Components, you don't have to specify these statements yourself, but you can override them if you need to. The entity object encapsulates validation or other business logic related to attributes or entire rows in the underlying table. This validation is enforced when data is modified and saved by the end user using any view object query that references the underlying entity object. One difference in ADF Business Components is that the arbitrary, flexible querying is performed by SQL statements at the view object instance level, but the view objects and entity objects coordinate automatically at runtime.	
The view object component encapsulates a SQL query and manages the set of resulting rows. It can be related to an underlying entity object to automatically coordinate validation and saving of modifications made by the user to those rows. This cooperation between a view object's queried data and an entity object's encapsulated business logic offers all of the benefits of the data table with the clean encapsulation of business logic into a layer of business domain objects. Like ADO.NET data tables, you can easily work with a view object's data as XML or have a view object read XML data to automatically insert, update, or delete rows based on the information it contains.	
JDeveloper includes comprehensive design time support for ADF Business Components. Collectively, these facilities let you create, edit, diagram, test, and refactor the business components.	
The first time you create a component, you'll see the Initialize Business Components Project dialog shown in Figure 3-1. You use this dialog to select a design time application resource connection to use while working on your business components in this data model project or to create a new application resource connection by copying an existing IDE-level connection.	
Since this dialog appears before you create your first business component, you also use it to globally control the SQL flavor that the view objects will use to formulate SQL statements. Although the default for an Oracle database connection is always the Oracle SQL flavor, other SQL flavors you can choose include OLite (for the Oracle Lite database), SQLServer for a Microsoft SQLServer database, DB2 for an IBM DB2 database, and SQL92 for any other supported SQL92- compliant database. Note that you cannot use the Project Properties dialog to change the SQL flavor after you've initialized a data model project, but you can you can override the SQL flavor in the overview editor for the adf-config.xml	
file. Specifying the database type in the adf-config.xml	
file supports generating SQL statements during runtime which can require the actual database type. You can locate the file in the Application Resources pane by expanding the Descriptors-ADF META-INF folder.	
The dialog also lets you determine which set of data types that you want the data model project to use. If JDeveloper detects you are using an Oracle database driver, it defaults the Type Map setting to the Oracle type map and will use the optimized types in the oracle.jbo.domain	
package. You can change this setting to globally use only the basic Java data types. Note that you cannot change the type map after you've initialized a data model project.	
Note: If you plan to have your application run against both Oracle and non-Oracle databases, you should select the SQL92 SQL flavor when you begin building your application, not later. While this sacrifices some of the Oracle-specific optimizations that are inherent in using the Oracle SQL flavor, it makes the application portable to both Oracle and non-Oracle databases.	
In the New Gallery in the ADF Business Components category, JDeveloper offers a wizard to create each kind of business component. Each wizard allows you to specify the component name for the new component and to select the package into which you'd like to organize the component. If the package does not yet exist, the new component becomes the first component in that new package.	
The wizard presents a series of panels that capture the necessary information to create the component type. When you click Finish, JDeveloper creates the new component by saving its XML component definition file. If you have set your Java generation options to generate classes by default, JDeveloper also creates the initial custom Java class files.	
Once a package exists in the Application Navigator, you can quickly create additional business components of any type in the package by selecting it in the Application Navigator and using one of the options on the context menu shown in Figure 3-2.	
Once a component exists, you can edit it using the respective overview editor that you access either by double-clicking the component in the Application Navigator or by selecting it and choosing the Edit option from the context menu. The overview editor presents the same editing options that you see in the wizard but it may arrange them differently. The overview editor allows you to change any aspect of the component. When you click OK, JDeveloper updates the components XML component definition file and, if necessary, any of its related custom Java files. Because the overview editor is a JDeveloper editor window, rather than a modal dialog, you can open and view the overview editor for as many components as you require.	
JDeveloper offers extensive UML diagramming support for ADF Business Components. You can drop components that you've already created onto a business components diagram to visualize them. You can also use the diagram to create and modify components. The diagrams are kept in sync with changes you make in the editors.	
To create a new business components diagram, use the Business Components Diagram item in the ADF Business Components category of the JDeveloper New Gallery. This category is part of the Business Tier choices.	
Once you have created an application module component, you can test it interactively using the built-in Business Component Browser. To launch the Business Component Browser, select the application module in the Application Navigator or in the business components diagram and choose either Run or Debug from the context menu.	
The Business Component Browser presents the view object instances in the application module's data model and allows you to interact with them using a dynamically generated user interface. The tool also provides a list of the application module's client interface methods that you can test interactively by double-clicking the application module node. This tool is invaluable for testing or debugging your business service both before and after you create the web page view layer.	
At any time, you can select a component in the Application Navigator and choose Refactor > Rename from the context menu to rename the component. The Structure window also provides a Rename context menu option for details of components, such as view object attributes or view instances of the application module data model, that do not display in the Application Navigator. You can also select one or more components in the navigator by using Ctrl + click and then choosing Refactor > Move from the context menu to move the selected components to a new package. References to the old component names or packages in the current data model project are adjusted automatically.	
One of the key simplifying benefits of using ADF Business Components for your business service implementation is the application module's support for a "UI-aware data model" of row sets. The data model defines the business objects specific to your application, while the row sets of each business object contain the data. In the UI portion of the application, the UI components interact with these business objects to perform retrieve, create, edit, and delete operations. When you use ADF Business Components in combination with the ADF Model layer and ADF Faces UI components, the data model is "UI aware" because your UI components will automatically update to reflect any changes to the row sets of these business objects	
Thus, the UI-aware data model represents a solution that works across application technology layers to ensure that the UI and data model remain synchronized.	
Using a typical Java EE business service implementation makes the client developer responsible for:	
Retrieving, creating, editing, deleting, and saving is a typical sequence of tasks performed during application development. As a result, the ADF application module represents a smarter, more generic solution. Using the application module for your business service, you simply bind client UI components like fields, tables, and trees to the active view object instances in the application module's data model. Your UI components in JSP or JSF pages for the web or mobile devices (as well as desktop-fidelity UIs comprising windows and panels that use Swing) automatically update to reflect any changes to the rows in the view object row sets of the data model. This active data notification also extends to custom business service methods that happen to produce changes to the data model.	
Under the covers, the application module component implements a set of generic service methods that allow users to leverage its UI-aware data model in a service-oriented architecture (SOA). Both web service and UI clients can easily access an application module's data model using simple APIs. These APIs enable you to search for and modify any information that the application module makes available.	
When you build UIs that take advantage of the ADF Model layer for declarative data binding, you generally won't need to write client-side code. Because the data model is UI-aware, your UI components will be bound declaratively to view objects in the data model and to custom business service methods.	
Without a UI-aware data model, you would need to write more code in the client to handle the straightforward, everyday CRUD-style operations. In addition, to keep pages up to date, you would need to manage "refresh flags" that clue the controller layer in to requesting a "repull" of data from the business service to reflect data that might have been modified. When using an ADF application module to implement your business service, you can focus on the business logic at hand, instead of the plumbing to make your business work as your end users expect.	
Consider the following three simple, concrete examples of the UI-aware data model:	
A customer logs into the Fusion Order Demo application and displays a list of items in their shopping cart. Then if the customer visits some product pages and creates a new order item, when they return back to display their shopping cart, the new item appears in their list without requiring the application to requery the database.	
A back office application causes an update to the order status. Business logic encapsulated in the Orders	
entity object in the business domain layer contains a simple rule that updates the last update date whenever the order status attribute is changed. The user interface updates to automatically reflect the last update date that was changed by the logic in the business domain layer.	
In a tree display, the user clicks on a specific node in a tree. This action declaratively invokes a business service method on your application module that requeries master-detail information and sets the current rows to an appropriate row in the row set. The display updates to reflect the new master-detail data and current row displayed.	
Because the application module supports the UI-aware data model, your client user interface will remain up to date. This means you will not need to write code in the client that is related to setting up or manipulating the data model.	
Another typical type of client-side code you no longer have to write using ADF Business Components is code that coordinates detail data collections when a row in the master changes. By linking the view objects, you can have the coordination performed automatically for you.	
However, when you do need to write custom code, encapsulate that code inside custom methods of your application module component. For example, whenever the programmatic code that manipulates view objects is a logical aspect of implementing your complete business service functionality, you should encapsulate the details by writing a custom method in your application module's Java class. This includes, but is not limited to, code that:	
By centralizing these implementation details in your application module, you gain the following benefits:	
Before you begin implementing specific ADF business components, it is a good idea to have some familiarity with the Oracle ADF business services layer's design and implementation.	
As is the case with all Oracle ADF technologies, ADF Business Components is implemented in Java. The working, tested components in the framework provide generic, metadata-driven functionality from a rich layer of robust code. ADF Business Components follows the Java EE community best practice of using cleanly separated XML files to store metadata that you define to configure each component's runtime behavior.	
Since ADF Business Components is often used for business critical applications, it's important to understand that the full source for Oracle ADF, including the ADF Business Components layer, is available to supported customers through Oracle Worldwide Support. The full source code for Oracle ADF can be an important tool to assist you in diagnosing problems, as described in Section 31.7, "Using the ADF Declarative Debugger." Working with the full source code for Oracle ADF also helps you understand how to correctly extend the base framework functionality to suit your needs, as described in Section 37.3, "Customizing Framework Behavior with Extension Classes."	
Applications built using ADF Business Components can run on any Java-capable application server, including any Java EE-compliant application server. Because business components are implemented using plain Java classes and XML files, you can use them in any runtime environment where a Java Virtual Machine is present. This means that services built using ADF Business Components are easy to use both inside a Java EE server — known as the "container" of your application at runtime — and outside.	
Customers routinely use application modules in such diverse configurations as command-line batch programs, web services, custom servlets, JSP pages, and desktop-fidelity clients built using Swing.	
You can also build applications that work with non-Oracle databases, as described in Section 3.3.1, "Choosing a Connection, SQL Flavor, and Type Map." However, applications that target Oracle databases will find numerous optimizations built into ADF Business Components.	
The ADF Business Components layer implements all of the popular Java EE design patterns that you would normally need to understand, implement, and debug yourself to create a real-world enterprise Java EE application. If it is important to you to cross-reference the names of these design patterns from the Java EE specifications with their ADF Business Components counterparts, you can refer to Appendix F, "ADF Business Components Java EE Design Pattern Catalog."	
Since ADF Business Components is implemented in Java, its classes and interfaces are organized into packages. Java packages are identified by dot-separated names that developers use to arrange code into a hierarchical naming structure.	
The classes and interfaces that comprise the source code provided by ADF Business Components reside in the oracle.jbo	
package and numerous subpackages. However, in day to day work with ADF Business Components, you'll work typically with classes and interfaces in these two key packages:	
oracle.jbo	
package, which contains all of the interfaces that are designed for the business service client to work with oracle.jbo.server	
package, which contains the classes that implement these interfaces Note: The term client here refers to any code in the model, view, or controller layers that accesses the application module component as a business service.	
Figure 3-3 shows a concrete example of the application module component. The client interface for the application module is the ApplicationModule	
interface in the oracle.jbo	
package. This interface defines the names and signatures of methods that clients can use while working with the application module, but it does not include any specifics about the implementation of that functionality. The class that implements the base functionality of the application module component resides in the oracle.jbo.server	
package and is named ApplicationModuleImpl	
.	
Since ADF Business Components is implemented in Java, the components of your application (including their classes, interfaces, and metadata files) will also be organized into packages.	
To ensure that your components won't clash with reusable components from other organizations, choose package names that begin with your organization's name or web domain name. So, for example, the Apache organization chose org.apache.tomcat	
for a package name related to its Tomcat web server, while Oracle picked oracle.xml.parser	
as a package name for its XML parser. Components you create for your own applications might reside in packages with names like com.	
yourcompany	
.	
yourapp	
and subpackages of these.	
As a specific example, the ADF Business Components that make up the main business service for the Fusion Order Demo application are organized into the oracle.fodemo.storefront	
package and its subpackages. As shown in Figure 3-4, these components reside in the StoreFrontService	
project in the StoreFrontModule	
application, and are organized broadly as follows:	
oracle.fodemo.storefront.account.queries	
contains the view objects used in the customer registration process oracle.fodemo.storefront.client	
contains test client .java	
files oracle.fodemo.storefront.entities	
contains the entity objects oracle.fodemo.storefront.lookups	
contains static data view objects and the LookupServiceAM	
shared application module oracle.fodemo.storefront.store.queries	
contains the view objects used to manage the storefront oracle.fodemo.storefront.store.service	
contains the StoreServiceAM	
application module In your own applications, you can choose any package organization that you believe best. In particular, keep in mind that you are not constrained to organize components of the same type into a single package.	
Because JDeveloper supports component refactoring, you can easily rename components or move them to a different package at any time. This flexibility allows you to easily incorporate inevitable changes into the application as your application evolves.	
There is no optimal number of components in a package. However, with experience, you'll realize that the best structure for your team falls somewhere between the two extremes of placing all components in a single package and placing each component in its own, separate package.	
One thing to consider is that the package in ADF Business Components is the unit of granularity that JDeveloper supports for reuse in other data model projects. So, you might factor this consideration into how you choose to organize components. For more information, see Section 37.7, "Working with Libraries of Reusable Business Components."	
Each kind of component in ADF Business Components comes with built-in runtime functionality that you control through declarative settings. These settings are stored in an XML component definition file with the same name as the component that it represents. When you need to write custom code for a component, for example to augment the component's behavior, you can enable an optional custom Java class for the component in question. Figure 3-5 shows how the Application Navigator displays the XML component definition and optional custom Java class for an application module.	
Figure 3-6 illustrates the XML component definition file for an application-specific component like an application module named YourService	
that you create in a package named com.	
yourcompany.yourapp	
. The corresponding XML component definition resides in a ./com/	
yourcompany/yourapp	
subdirectory of the data model project's source path root directory. That XML file records the name of the Java class it should use at runtime to provide the application module implementation. In this case, the XML records the name of the base oracle.jbo.server.ApplicationModuleImpl	
class provided by Oracle ADF.	
When used without customization, your component is completely defined by its XML component definition and it will be fully functional without custom Java code or even a Java class file for the component. If you have no need to extend the built-in functionality of a component in ADF Business Components, and no need to write any custom code to handle its built-in events, you can use the component in this XML-only fashion.	
When you need to add custom code to extend the base functionality of a component or to handle events, you can enable a custom Java class for any of the key types of ADF Business Components you create. You enable the generation of custom classes for a component on the Java page of its respective overview editor in JDeveloper. When you enable this option, JDeveloper creates a Java source file for a custom class related to the component whose name follows a configurable naming standard. This class, whose name is recorded in the component's XML component definition, provides a place where you can write the custom Java code required by that component. Once you've enabled a custom Java class for a component, you can navigate to it using a corresponding Go To componentName Class option in the component's Application Navigator context menu.	
Figure 3-7 illustrates what occurs when you enable a custom Java class for the YourService	
application module. A YourServiceImpl	
.java	
source code file is created in the same source path directory as your component's XML component definition file. The YourServiceImpl	
.xml	
file is updated to reflect the fact that at runtime the component should use the com.	
yourcompany.yourapp.YourServiceImpl	
class instead of the base ApplicationModuleImpl	
class.	
Note: The examples in this guide use default settings for generated names of custom component classes and interfaces. If you want to change these defaults for your own applications, use the Business Components: Class Naming page of the JDeveloper Preferences dialog. Changes you make only affect newly created components.	
The Java language provides a number of built-in data types for working with strings, dates, numbers, and other data. When working with ADF Business Components, you can use these types, but by default you'll use an optimized set of types in the oracle.jbo.domain	
and oracle.ord.im	
packages. These types, shown in Table 3-1, allow data accessed from the Oracle database to remain in its native, internal format. You will achieve better performance using the optimized data types provided by ADF Business Components by avoiding costly type conversions when they are not necessary. To work with string-based data, by default ADF Business Components uses the regular java.lang.String	
type.	
Table 3-1 Basic Data Types in the oracle.jbo.domain and oracle.ord.im Packages	
Data Type	Package
---	---
Any numerical data	
Date with optional time	
Sequential integer assigned by a database trigger	
Oracle database ROWID	
Timestamp value	
Timestamp value with time zone information	
Timestamp value with local time zone information retrieved from JavaVM or from the ADF Context when configured in the application's	
The EL expression will be evaluated to determine the time zone of the current user; otherwise, the value defaults to the time zone of the JavaVM.	
Binary File (BFILE) object	
Binary Large Object (BLOB)	
Character Large Object (CLOB)	
Oracle Intermedia Image (ORDIMAGE)	
Oracle Intermedia Audio (ORDAUDIO)	
Oracle Intermedia Video (ORDVIDEO)	
Oracle Intermedia Document (ORDDOC)	
User-defined object type	
User-defined collection type (e.g.	
Note: Theoracle.jbo.domain.Number class has the same class name as the built-in java.lang.Number type. Since the Java compiler implicitly imports java.lang.* into every class, you need to explicitly import the oracle.jbo.domain.Number class into any class that references it. Typically, JDeveloper will follow this practice for you, but when you begin to write more custom code of your own, you'll learn to recognize compiler or runtime errors related to "Number is an abstract class" as indicating that you are inadvertently using java.lang.Number instead of oracle.jbo.domain.Number . Adding the: import oracle.jbo.domain.Number; line at the top of your class, after the |
When working with application modules, view objects, and entity objects, you can choose to use a set of generic APIs or you can have JDeveloper generate code into a custom Java class to enable a strongly-typed API for that component. For example, when working with an view object, if you wanted to access the value of an attribute in any row of its result, the generic API would look like this:
Notice that using the generic APIs, you pass string names for parameters to the accessor, and you have to cast the return type to the expected type, as with Date
shown in the example.
Alternatively, when you enable the strongly typed style of working you can write code like this:
In this case, you work with generated method names whose return type is known at compile time, instead of passing string names and having to cast the results. Typically, it is necessary to use strongly typed accessors when you need to invoke the methods from the business logic code without sacrificing compile-time safety. This can also be useful when you are writing custom validation logic in setter methods, although in this case, you may want to consider using Groovy expressions instead of generating entity and view row implementation classes for Business Components. Subsequent chapters explain how to enable this strongly typed style of working by generating Java classes for business logic that you choose to implement using Java.
Only these components of the business service as visible to the client:
The entity objects in the business service implementation is intentionally not designed to be referenced directly by clients. Instead, clients work with the data queried by view objects as part of an application module's data model. Behind the scenes, the view object cooperates automatically with entity objects in the business domain layer to coordinate validating and saving data that the user changes. For more information about this runtime interaction, see Section 6.3.9, "What Happens at Runtime: When View Objects and Entity Objects Cooperate."
The Java interfaces of the oracle.jbo
package provide a client-accessible API for your business service. This package intentionally does not contain an Entity
interface, or any methods that would allow clients to directly work with entity objects. Instead, client code works with interfaces like:
ApplicationModule
, to work with the application module ViewObject
, to work with the view objects Row
, to work with the view rows When you begin adding custom code to your ADF Business Components that you want clients to be able to call, you can "publish" that functionality to clients for any client-visible component. For each of your components that publishes at least one custom method to clients on its client interface, JDeveloper automatically maintains the related Java interface file. So, assuming you were working with an application module like StoreServiceAM
in the Fusion Order Demo application, you could have custom interfaces like:
Client code can then cast one of the generic client interfaces to the more specific one that includes the selected set of client-accessible methods you've selected for your particular component.
Groovy is a scripting language with Java-like syntax for the Java platform. The Groovy scripting language simplifies the authoring of code by employing dot-separated notation, yet still supporting syntax to manipulate collections, Strings, and JavaBeans. Groovy language expressions in ADF Business Components differs from the Java code that you might use in a Business Components custom Java class because Groovy expressions are executed at runtime, while the strongly typed language of Java is executed at compile-time. Additionally, because Groovy expressions are dynamically compiled, they are stored in the XML definition files of the business components where you use it.ADF Business Components supports the use of the Groovy scripting language in places where access to entity object and view object attributes is useful, including attribute validators (for entity objects), attribute default values (for either entity objects or view objects), transient attribute value calculations (for either entity objects or view objects), bind variable default values (in view object query statements and view criteria filters), and placeholders for error messages (in entity object validation rules). Additionally, ADF Business Components provides a limited set of built-in keywords that can be used in Groovy expressions.
Specifically, the ADF Business Components framework provides support for the use of Groovy to perform the following tasks:
For more information about the Groovy language, refer to the following web site:
There is one top-level object named adf
that allows you access to objects that the framework makes available to the Groovy script. The accessible Oracle ADF objects consist of the following:
adf.context
- to reference the ADFContext
object adf.object
- to reference the object on which the expression is being applied (which can also be referenced using the keyword object
, without the adf
prefix). Other accessible member names come from the context in which the Groovy script is applied. EntityImpl
, and you can reference the attributes of the entity instance. JboValidatorContext
) merged with the entity on which the validator is applied. For details about keywords that you can use in this context, see Section 3.6.2.1, "Referencing Members of the Same Business Component." ViewRowImpl
, and you can reference the attributes of the view row instance as defined by the query row set. structureDef
property to access other information as well as the viewObject
property to access the view object in which the bind variable participates. However, access to view object attributes is not supported. object
keyword to reference the current object (for example, object.methodName()
). The object
keyword is equivalent to the this
keyword in Java. Without it, in transient expressions, the method will be assumed to exist on the dynamically compiled Groovy script object itself. adf.error
- in validation rules, to access the error handler that allows the validation expression to generate exceptions or warnings adf.userSession
- returns a reference to the ADF Business Components user session (which you can use to reference values in the userData
hashmap that is part of the session) You can also reference the current date (time truncated) or current date and time using the following expressions:
adf.currentDate
adf.currentDateTime
Groovy script language simplifies the authoring of code that you might write to access methods and attributes of your entity object and view objects.
The simplest example of referencing business component members, including methods and attributes that the entity object and view object define, is to reference attributes that exist in the same entity object or view object as the attribute that you apply the expression.
For example, you could define a Groovy expression to calculate the value of a transient attribute AnnualSalary
on an entity object with an attribute Sal
that specifies the employee's monthly salary:
Or, with Groovy you can write a simple validation rule to compare the attributes of a single view object using syntax like:
Using Java, this same comparison would look like:
Note that the current object is passed in to the script as the this
object, so you can reference an attribute in the current object by simply using the attribute name. For example, in an attribute-level or entity-level Script Expression validator, to refer to an attribute named "HireDate", the script can simply reference HireDate
.
Similar to referencing attributes, when you define custom methods in an entity implementation class, you can invoke those methods as part of your expression. For example, to define an attribute default value:
A method reference requires the prefix adf.object
which allows you to reference the same entity that defines the attribute on which the expression is applied. This same prefix also allows you to reference the methods of the base class of the entity implementation class (EntityImpl.java
) that your custom implementation class extends.
Note that when you want to reference the method of an entity implementation class in a validation rule, you use the source
prefix:
Use of the source
prefix is necessary in validators because the object
keyword implies the validation rule object instead of the entity object (where the method is defined).
To allow you to reference members of the validator object (JboValidatorContext
), you can use these keywords in your validation rule expression:
newValue
: in an attribute-level validator, to access the attribute value being set oldValue
: in an attribute-level validator, to access the current value of the attribute being set For example, you might use the following expression to specify a dynamic validation rule check of the salary for a salesman.
You can also reference the methods and attributes that entity objects and view objects defines in the expressions you apply to a different entity object attribute or validation rule. This is accomplished by referencing the accessor in the entity association.
For example, if you define an entity with a master-detail association for Dept
and Emp
, by default the accessor for the entity association will be named Dept
and Emp
, to identity the source and destination data source. Using that accessor in a Groovy expression to set the default value for a new employee's salary based on the location of their department:
This expression does not reference the entity even though it has the same name (Dept
) as the accessor for the association. Instead, assuming a master-detail relationship between departments and employees, referencing the accessor allows the Groovy expression for the employee entity object to walk back to the master department entity and pass in the value of Loc
from that master.
You can use the following built-in aggregate functions on Oracle Business Components RowSet
objects:
rowSetAttr
.sum(
GroovyExpr
)
rowSetAttr
.count(
GroovyExpr
)
rowSetAttr
.avg(
GroovyExpr
)
rowSetAttr
.min(
GroovyExpr
)
rowSetAttr
.max(
GroovyExpr
)
These aggregate functions accept a string-value argument that is interpreted as a Groovy expression that is evaluated in the context of each row in the row set as the aggregate is being computed. The Groovy expression must return a numeric value (or number domain).
For example, in a Dept
entity object you could add a transient attribute that displays the sum of all employee salaries that is calculated by this expression:
To reference the employees of a specific department, the expression supplies the name of the master-detail association's accessor for the destination Emp
entity. In this case, the accessor is EmployeesInDept
and salary is interpreted for each record of the Emp
entity object.
Or, assume that you want the calculation of the salary total for specific departments to include each employee's benefits package, which varies with job role:
This chapter describes how to use ADF entity objects to create a reusable layer of business domain objects for use in an ADF application.
This chapter includes the following sections:
An entity object is the ADF Business Components component that represents a row in the specified data source and simplifies modifying its associated attributes. Importantly, it allows you to encapsulate domain business logic to ensure that your business policies and rules are consistently validated.
Entity objects support numerous declarative business logic features to enforce the validity of your data. You will typically complement declarative validation with additional custom application logic and business rules to cleanly encapsulate a maximum amount of domain business logic into each entity object. Your associated set of entity objects forms a reusable business domain layer that you can exploit in multiple applications.
The key concepts of entity objects are the following:
If you already have a database schema to work from, the simplest way to create entity objects and associations is to reverse-engineer them from existing tables. When needed, you can also create an entity object from scratch, and then generate a table for it later.
To create one or more entity objects, use the Business Components from Tables wizard, which is available from the New Gallery.
To create one or more entity objects and associations from existing tables:
If this is the first component you're creating in the project, the Initialize Business Components Project dialog appears to allow you to select a database connection.
If the Auto-Query checkbox is selected, then the list of available tables appears immediately. In the Name Filter field, you can optionally enter a full or partial table name to filter the available tables list in real time. As an alternative to the auto-query feature, click the Query button to retrieve the list based on an optional table name filter. When no name filter is entered, JDeveloper retrieves all table objects for the chosen schema.
Once you have selected a table from the Available list, the proposed entity object name for that table appears in the Selected list with the related table name in parenthesis.
Best Practice: Since each entity object instance represents a single row in a particular table, name the entity objects with a singular noun (like Address, Order, and Person), instead of their plural counterparts. Figure 4-1 shows what the wizard page looks like after selecting theADDRESSES table in the FOD schema, setting a package name of oracle.fodemo.storefront.entities , and renaming the entity object in the singular. |
The Application Navigator displays the entity objects in the package you specified.
Best Practice: After you create associations, move all of your associations to a separate package so that you can view and manage them separately from the entity objects. In Figure 4-2, the associations have been moved to a subpackage (associations) and do not appear in the entities package in the Application Navigator. For more information, see Section 4.3.4, "How to Rename and Move Associations to a Different Package." |
To create a single entity object, you can use the Create Entity Object wizard, which is available in the New Gallery.
To create a single entity object and association:
If this is the first component you're creating in the project, the Initialize Business Components Project dialog appears to allow you to select a database connection.
Or, if you plan to create the table later, you can enter a name of a table that does not exist.
You can create the table manually or generate it, as described in Section 4.2.6, "How to Create Database Tables from Entity Objects."
When you create an entity object from an existing table, first JDeveloper interrogates the data dictionary to infer the following information:
USER_ID
-> UserId
) NOT NULL
constraints Note: Since an entity object represents a database row, it seems natural to call it an entity row. Alternatively, since at runtime the entity row is an instance of a Java object that encapsulates business logic for that database row, the more object-oriented term entity instance is also appropriate. Therefore, these two terms are interchangeable. |
JDeveloper then creates the XML component definition file that represents its declarative settings and saves it in the directory that corresponds to the name of its package. For example, when an entity named Order
appears in the genericbcmodel.entities
package, JDeveloper will create the XML file genericbcmodel/entities/Order.xml
under the project's source path. This XML file contains the name of the table, the names and data types of each entity attribute, and the column name for each attribute.
You can inspect the XML description for the entity object by opening the object in the overview editor and clicking the Source tab.
Note: If your IDE-level Business Components Java generation preferences so indicate, the wizard may also create an optional custom entity object class (for example,OrderImpl.java). |
In addition to the entity objects, the wizard also generates named association components that capture information about the relationships between entity objects. For example, the database diagram in Figure 4-3 shows that JDeveloper derives default association names like OrderItemsProductsFkAssoc
by converting the foreign key constraint names to a Java-friendly name and adding the Assoc
suffix. For each association created, JDeveloper creates an appropriate XML component definition file and saves it in the directory that corresponds to the name of its package.
By default the associations reverse-engineered from foreign keys are created in the same package as the entities. For example, for the association OrderItemsProductsFkAssoc
with entities in the fodemo.storefront.entities
package, JDeveloper creates the association XML file named ./fodemo/storefront/entities/OrderItemsProductsFkAssoc.xml
.
If a table has no primary key constraint, then JDeveloper cannot infer the primary key for the entity object. Since every entity object must have at least one attribute marked as a primary key, the wizard will create an attribute named RowID
and use the database ROWID
value as the primary key for the entity. If appropriate, you can edit the entity object later to mark a different attribute as a primary key and remove the RowID
attribute. When you use the Create Entity Object wizard and you have not set any other attribute as primary key, you will be prompted to use RowID
as the primary key.
When you create an entity object using the Business Components from Tables wizard or the Create Entity Object wizard, the object can represent an underlying table, synonym, or view. The framework can infer the primary key and related associations for a table or synonym by inspecting database primary and foreign key constraints in the data dictionary.
However, when your selected schema object is a database view, then neither the primary key nor associations can be inferred since database views do not have database constraints. In this case, if you use the Business Components from Tables wizard, the primary key defaults to RowID
. If you use the Create Entity Object wizard, you'll need to specify the primary key manually by marking at least one of its attributes as a primary key. For more information, see Section 4.2.3.2, "What Happens When a Table Has No Primary Key."
When your selected schema object is a synonym, there are two possible outcomes. If the synonym is a synonym for a table, then the wizard and editor behave as if you had specified a table. If instead the synonym refers to a database view, then they behave as if you had specified a view.
After you've created a new entity object or association, you can edit any of its settings in the overview editor. To launch the editor, choose Open from the context menu for the entity object or association in the Application Navigator or double-click the object. By clicking the different tabs of the editor, you can adjust the settings that define the object and govern its runtime behavior.
To create database tables based on entity objects, right-click the package in the Application Navigator that contains the entity objects and choose Create Database Objects from the context menu. A dialog appears to let you select the entities whose tables you'd like to create. This tool can be used to generate a table for an entity object you created from scratch, or to drop and re-create an existing table.
Caution: This feature does not generate a DDL script to run later. It performs its operations directly against the database and will drop existing tables. A dialog appears to confirm that you want to do this before proceeding. For entities based on existing tables, use with caution. |
In the overview editor for an association, the Use Database Key Constraints checkbox on the Association Properties page controls whether the related foreign key constraint will be generated when creating the tables for entity objects. Selecting this option does not have any runtime implications.
Inevitably you (or your DBA) might alter a table for which you've already created an entity object. Your existing entity will not be disturbed by the presence of additional attributes in its underlying table; however, if you want to access the new column in the table in your Java EE application, you'll need to synchronize the entity object with the database table.
For example, suppose you had done the following at the SQL*Plus command prompt to add a new SECURITY_QUESTION
column to the PERSONS
table:
Then you can use the synchronization feature to add the new column as an attribute on the entity object.
To synchronize an entity with changes to its database table:
The Synchronize with Database dialog shows the list of the actions that can be taken to synchronize the business logic tier with the database.
The synchronize feature does not handle dropped columns. When a column is dropped from the underlying database after an entity object has been created, you can delete the corresponding attribute from the entity object. If the attribute is used in other parts of your application, you must remove those usages as well.
To remove an entity attribute:
If there are other usages, the Delete Attributes dialog displays the message "Usages were found."
The Log window shows all usages of the attribute.
The synchronize feature does not handle changed data types. For a data type change in the underlying table (for example, precision increased), you must locate all usages of the attribute and manually make changes, as necessary.
To locate all usages of an entity attribute:
If there are other usages, they are displayed in the Log window.
Effective dated tables are used to provide a view into the data set pertaining to a specific point in time. Effective dated tables are widely used in applications like HRMS and Payroll to answer queries like:
In either case, the employee's data may have changed to a different value since then.
The primary difference between the effective dated entity type and the dated entity type is that the dated entity does not cause row splits during update and delete.
When you create an effective dated entity object, you identify the entity as effective dated and specify the attributes of the entity that represent the start and end dates. The start date and end date attributes must be of the Date type.
Additionally, you can specify an attribute that represents the sequence for the effective dated entity and an attribute that represents a flag for the sequence. These attributes allow for tracking of multiple changes in a single day.
To create an effective dated entity object
If necessary, choose Property Inspector from the View menu to display the Property Inspector.
If the Type category is not displayed in the Property Inspector, click the General tab in the overview editor to set the proper focus.
To display the context menu, click the down arrow next to the property field.
Without specifying the Effective Date Sequence and Effective Date Sequence Flag attributes, the default granularity of effective dating is one day. For this reason, multiple changes in a single day are not allowed. An attempt to update the entity a second time in a single day will result in an exception being thrown. After these two attributes are specified, the framework inserts and updates their values as necessary to track multiple changes in a single day.
Note: You can also identify the start and end date attributes using the Property Inspector for the appropriate attributes. To do so, select the appropriate attribute in the overview editor and set the IsEffectiveStartDate or IsEffectiveEndDate property to true in the Property Inspector. |
When you create an effective dated entity object, JDeveloper creates a transient attribute called SysEffectiveDate
to store the effective date for the row. Typically the Insert, Update, and Delete operations modify the transient attribute while the ADF Business Components framework decides the appropriate values for the effective start date and the effective end date.
Example 4-1 show some sample XML entries that are generated when you create an effective dated entity. For more information about working with effective dated objects, see Section 5.4, "Limiting View Object Rows Using Effective Date Ranges."
Example 4-1 XML Entries for Effective Dated Entities
The Business Components from Tables wizard makes it easy to quickly generate many business components at the same time. In practice, this does not mean that you should use it to immediately create entity objects for every table in your database schema just because it is possible to do so. If your application requires all of the tables, then that strategy might be appropriate. But because you can use the wizard whenever needed, you should create the entity objects for the tables that you know will be involved in the application.
Section 9.4, "Defining Nested Application Modules," describes a use case-driven design approach for your business services that can assist you in understanding which entity objects are required to support your application's business logic needs. You can always add more entity objects later as necessary.
If your database tables have no foreign key constraints defined, JDeveloper won't be able to infer the associations between the entity objects that you create. Since several ADF Business Components runtime features depend on the presence of entity associations, create them manually if the foreign key constraints don't exist.
To create an association, use the Create New Association wizard, which is available in the New Gallery.
To create an association:
For example, Figure 4-4 shows the selected OrderId
attribute from the OrderEO
entity object as the source entity attribute. Because the OrderItemEO
rows contain an order ID that relates them to a specific OrderEO
row, you would select this OrderId
foreign key attribute in the OrderItemEO
entity object as the destination attribute.
By default, the Bound checkbox is selected for both the source and destination attribute. This checkbox allows you to specify whether or not the value will be bound into the association SQL statement that is created internally when navigating from source entity to target entity or from target entity to source entity (depending on which side you select).
Typically, you would deselect the checkbox for an attribute in the relationship that is a transient entity attribute whose value is a constant and therefore should not participate in the association SQL statement to retrieve the entity.
For example, since the relationship between a OrderEO
row and its related OrderItemEO
rows is one-to-many, you can leave the default setting.
For example, Figure 4-5 shows an association that represents a bidirectional relationship, permitting either entity object to access the related entity row(s) on the other side when needed. In this example, this means that if you are working with an instance of an OrderEO
entity object, you can easily access the collection of its related OrderItemEO
rows. With any instance of a OrderItemEO
entity object, you can also easily access the Order
to which it belongs.
When you create an association, JDeveloper creates an appropriate XML component definition file and saves it in the directory that corresponds to the name of its package. For example, if you created an association named OrderItemsOrdersFkAssoc
in the oracle.fodemo.storefront.entities.associations
subpackage, then the association XML file would be created in the ./oracle/fodemo/storefront/entities/associations
directory with the name OrderItemsOrdersFkAssoc.xml
. At runtime, the entity object uses the association information to automate working with related sets of entities.
You should consider the default settings for the accessor names on the Association Properties page and decide whether changing the names to something more intuitive is appropriate. The default settings define the names of the accessor attributes you will use at runtime to programmatically access the entities on the other side of the relationship. By default, the accessor names will be the names of the entity object on the other side. Since the accessor names on an entity must be unique among entity object attributes and other accessors, if one entity is related to another entity in multiple ways, then the default accessor names are modified with a numeric suffix to make the name unique.
In an existing association, you can rename the accessor using the Association Properties dialog.
To rename the entity accessor in an association:
The Association Properties dialog displays the current settings for the association's accessors.
Since associations are a component that you typically configure at the outset of your project and don't change frequently thereafter, you might want to move the associations to a different package so that your entity objects are easier to see. Both renaming components and moving them to a different package is straightforward using JDeveloper's refactoring functionality.
To move a set of business components to a different package:
To rename a component:
When you refactor ADF Business Components, JDeveloper moves the XML and Java files related to the components, and updates any other components that might reference them.
Figure 4-6 shows what the Application Navigator would look like after renaming all of the associations and moving them to the oracle.fodemo.storefront.associations
subpackage. While you can refactor the associations into any package name you choose, picking a subpackage keeps them logically related to the entities, and allows you to collapse the package of associations to better manage which files display in the Application Navigator.
You can associate a custom view object with the source end or destination end (or both) of an entity association.
When you traverse entity associations in your code, if the entities are not already in the cache, then the ADF Business Components framework performs a query to bring the entity (or entities) into the cache. By default, the query performed to bring an entity into the cache is the find-by-primary-key query that selects values for all persistent entity attributes from the underlying table. If the application performs a lot of programmatic entity association traversal, you could find that retrieving all of the attributes might be heavy-handed for your use cases.
Entity associations support the ability to associate a custom, entity-based view object with the source entity or destination entity in the association, or both. The primary entity usage of the entity-based view object you supply must match the entity type of the association end for which you use it.
Using a custom view object can be useful because the custom view object's query can include fewer columns and it can include an ORDER BY
clause. This allows you to control how much data is retrieved when an entity is brought into the cache due to association traversal, as well as the order in which any collections of related entities will appear.
For more information about creating a custom view object, see Section 39.8.2, "How to Create an Entity-Based Programmatic View Object."
An association represents a relationship between entities, such as Person
referenced by an Order
or an OrderItem
contained in an Order
. When you create associations, it is useful to know about the kinds of relationships you can represent, and the various options.
Associations between entity objects can represent two styles of relationships depending on whether the source entity:
Figure 4-7 depicts an application business layer that represents both styles of relationships. For example, an OrderEO
entry references a PersonEO
. This relationship represents the first kind of association, reflecting that a PersonEO
or an OrderEO
entity object can exist independent from each other. In addition, the removal of an Order
does not imply the cascade removal of the Person
to which it was referring.
In contrast, the relationship between OrderEO
and its collection of related OrderItemEO
details is stronger than a simple reference. The OrderItemEO
entries comprise a logical part of the overall OrderEO
. In other words, an OrderEO
is composed of OrderItemEO
entries. It does not make sense for an OrderItemEO
entity row to exist independently from an OrderEO
, and when an OrderEO
is removed — assuming the removal is allowed — all of its composed parts should be removed as well. This kind of logical containership represents the second kind of association, called a composition. The UML diagram in Figure 4-7 illustrates the stronger composition relationship using the solid diamond shape on the side of the association which composes the other side of the association.
The Business Components from Tables Wizard creates composition associations by default for any foreign keys that have the ON DELETE CASCADE
option. You can use the Create Association wizard or the overview editor for the association to indicate that an association is a composition association. Select the Composition Association checkbox on either the Association Properties page of the Create Association wizard or the Relationships page of the overview editor.
Note: A composition association cannot be based on a transient attribute. |
An entity object offers additional runtime behavior in the presence of a composition. For the settings that control the behavior, see Section 4.10.13, "How to Configure Composition Behavior."
Since your layer of business domain objects represents a key reusable asset for your team, it is often convenient to visualize the business domain layer using a UML model. JDeveloper supports easily creating a diagram for your business domain layer that you and your colleagues can use for reference.
The UML diagram of business components is not just a static picture that reflects the point in time when you dropped the entity objects onto the diagram. Rather, it is a UML-based rendering of the current component definitions, that will always reflect the current state of affairs. What's more, the UML diagram is both a visualization aid and a visual navigation and editing tool. To open the overview editor for any entity object in a diagram, right-click the desired object and choose Properties from the context menu or double-click the desired object. You can also perform some entity object editing tasks directly on the diagram, like renaming entities and entity attributes, and adding or removing attributes.
To create a diagram of your entity objects, you can use the Create Business Components Diagram dialog, which is available in the New Gallery.
To create an entity diagram that models existing entity objects:
Business Domain Objects
. myproject.model.design
. After you have created the diagram you can use the Property Inspector to adjust visual properties of the diagram. For example you can:
You can also create an image of the diagram in PNG
, JPG
, SVG
, or compressed SVG
format, by choosing Publish Diagram from the context menu on the diagram surface.
Figure 4-8 shows a sample diagram that models various entity objects from the business domain layer.
When you create a business components diagram, JDeveloper creates an XML file *.oxd_bc4j
representing the diagram in a subdirectory of the project's model path that matches the package name in which the diagram resides.
By default, the Application Navigator unifies the display of the project contents paths so that ADF components and Java files in the source path appear in the same package tree as the UML model artifacts in the project model path. However, as shown in Figure 4-9, using the Navigator Display Options toolbar button on the Application Navigator, you can see the distinct project content path root directories when you prefer.
When you include a business component like an entity object to a UML diagram, JDeveloper adds extra metadata to a <Data>
section of the component's XML component descriptor as shown in Example 4-2. This additional information is used at design time only.
Example 4-2 Additional UML Metadata Added to an Entity Object XML Descriptor
On an entity diagram, the names of entity objects, attributes, and associations can be changed for clarity. Changing names on a diagram does not affect the underlying data names. The name change persists for the diagram only. The new name may contain spaces and mixed case for readability. To change the actual entity object names, attribute names, or association names, open the entity object or association in the overview editor.
A property set is a named collection of properties, where a property is defined as a name/value pair. Property sets are a convenience mechanism to group properties and then reference them from other ADF Business Components objects. Properties defined in a property set can be configured to be translatable, in which case the translations are stored in a message bundle file owned by the property set.
Property sets can be used for a variety of functions, such as control hints and error messages. A property set may contain control hints and other custom properties, and you can associate them with multiple attributes of different objects.
Note: Take care when defining property sets that contain translatable content. Be sure not to "overload" common terms in different contexts. For example, the term "Name" might be applied to both an object and a person in one language, but then translated into two different terms in a target language. Even though a term in several contexts might be the same in the source language, a separate distinguishable term should be used for each context. |
Property sets can be used with entity objects and their attributes, view objects and their attributes, and application modules.
To define a property set, you create a new property set using a dialog and then specify properties using the Property Inspector.
To define a property set:
Figure 4-10 Property Set in New Gallery
After you have created the property set, you can apply the property set to an entity object or attribute, and use the defined properties (or override them, if necessary).
To apply a property set to an entity object or view object:
To apply a property set to an attribute:
For view objects, it is the View Attribute node. For entity objects, it is the Entity Attribute node.
If you are familiar with previous versions of ADF business components, you may have used control hints. Control hints allow you to define label text, tooltip, and format mask hints for entity object attributes. The UI hints you define on your business domain layer are inherited by any entity-based view objects as well. You can also set additional control hints on view objects and application modules in a similar manner.
To add attribute control hints to an entity object, use the overview editor.
To add attribute control hints to an entity object:
For example, Figure 4-11 shows control hints defined for the attribute ExpireDate
of the PaymentOptionEO
entity object. The defined hints include the following:
Simple Date
yyyy-MM-dd
Note: Java defines a standard set of format masks for numbers and dates that are different from those used by the Oracle database's SQL and PL/SQL languages. For reference, see the Javadoc for thejava.text.DecimalFormat and java.text.SimpleDateFormat classes. |
When you define attribute control hints for an entity object, JDeveloper creates a resource bundle file in which to store them. The hints that you define can be used by generated forms and tables in associated view clients. The type of file and its granularity are determined by Resource Bundle options in the Project Properties dialog. For more information, see Section 4.7, "Working with Resource Bundles."
When you set the Format Type control hint (in the Edit Attribute dialog) for an attribute (for example, to Simple Date), you can also specify a format mask for the attribute to customize how the UI displays the value. If the mask you want to use is not listed in the Format dropdown list, you can simply type it into the field.
Not all formatters require format masks. Specifying a format mask is only needed if that formatter type requires it. For example, the date formatter requires a format mask, but the currency formatter does not. In fact the currency formatter does not support format mask at all.
The mask elements that you can use are defined by the associated Java format class. For information about the mask elements for the Simple Date format type, see the Javadoc for java.text.SimpleDateFormat
. For information about the mask elements for the Number format type, see the Javadoc for java.text.DecimalFormat
.
If you have a format mask that you will continue to use on multiple occasions, you can add it to the formatinfo.xml
file, so that it is available from the Format dropdown list in the Edit Attribute dialog. The entries in this file define the format masks and formatter classes for a domain class. Example 4-3 shows the format definitions for the java.util.Date
domain.
Note: You can find theformatinfo.xml file in the BC4J subdirectory of the JDeveloper system directory (for example, C:\Documents and Settings\ username \Application Data\JDeveloper\ system## \o.BC4J\formatinfo.xml). |
Example 4-3 Format Definitions for java.util.Date in formatinfo.xml
The definition of the format mask belongs to a formatter and a domain class, and includes the text specification of the mask as it appears in the Edit Attribute dialog. When you specify the Format Type (FORMATTER name
) for an attribute of a given type (DOMAIN CLASS
), the masks (FORMAT text
) appear in the Format dropdown list.
To map a formatter to a domain for use with control hints, you can either amend one of the default formatters provided in the oracle.jbo.format
package, or create a new formatter class by extending the oracle.jbo.format.Formatter
class. The default formatters provided with JDeveloper aggregate the formatters provided in the java.text
package.
It is not necessary to create new domain to map a formatter. You can use an existing domain when the business components project contains a domain of the same data type as the formatter.
To define a new format mask:
formatinfo.xml
file in a text editor. FORMAT
entry within the FORMATTER
element. After defining a format mask, you can select the new format mask from the Format dropdown list in the Edit Attribute dialog.
Note: If you create a new domain for the format mask, the XML definition of the formatter must include aDOMAIN CLASS (which can be a new or existing one), the FORMATTER (which includes the name and class), and the list of FORMAT definitions the formatter class specifies. |
When you define translatable strings (such as validator error messages, or attribute control hints for an entity object or view object), by default JDeveloper creates a project-level resource bundle file in which to store them. For example, when you define control hints for an entity object in the StoreFront
project, JDeveloper creates the message bundle file named StoreFrontBundle.
xxx
for the package. The hints that you define can be used by generated forms and tables in associated view clients.
The resource bundle option that JDeveloper uses is determined by an option on the Resource Bundle page of the Project Properties dialog. By default JDeveloper sets the option to Properties Bundle, which produces a .properties
file. For more information on this and other resource bundle options, see Section 4.7.1, "How to Set Message Bundle Options."
You can inspect the message bundle file for the entity object by selecting the object in the Application Navigator and looking in the corresponding Sources node in the Structure window. The Structure window shows the implementation files for the component you select in the Application Navigator.
Example 4-4 shows a sample message bundle file where the control hint information appears. The first entry in each String
array is a message key; the second entry is the locale-specific String
value corresponding to that key.
Example 4-4 Project Message Bundle Stores Locale-Sensitive Control Hints
The resource bundle option JDeveloper uses to save control hints and other translatable strings is determined by an option on the Resource Bundle page of the Project Properties dialog. By default JDeveloper sets the option to Properties Bundle which produces a .properties
file.
To set resource bundle options for your project
If you select Use Custom Settings, the settings apply only to your work with the current project. They are preserved between sessions, but are not recorded with the project and cannot be shared with other users. If you select Use Project Settings, your choices are recorded with the project and can be shared with others who use the project.
For more information on these options, click Help to see the online help.
The ListResourceBundle
class manages resources in a name/value array. Each ListResourceBundle class is contained within a Java class file. You can store any locale-specific object in a ListResourceBundle class.
A text file containing translatable text in name/value pairs. Property files (like the one shown in Example 4-4) can contain values only for String objects. If you need to store other types of objects, you must use a ListResourceBundle instead.
The XML Localization Interchange File Format (XLIFF) is an XML-based format for exchanging localization data.
When you define translatable strings (for example, for attribute control hints), the Select Text Resource dialog allows you to enter a new string or select one that is already defined in the default resource bundle for the object. You can also use a different resource bundle if necessary. This is helpful when you use a common resource bundle that is shared between projects.
To use strings in a nondefault resource bundle:
If the desired resource bundle is not included in the Resource Bundle dropdown list, click the Browse icon to locate and select the resource bundle you want to use.
The dialog displays the strings that are currently defined in the selected resource bundle.
If you entered a new string it is written to the selected resource bundle.
Internationalizing the model layer of an application built using ADF Business Components entails producing translated versions of each component message bundle file. For example, the Italian version of the OrdersImplMsgBundle
message bundle would be a class named OrdersImplMsgBundle_it
and a more specific Swiss Italian version would have the name OrdersImplMsgBundle_it_ch
. These classes typically extend the base message bundle class, and contain entries for the message keys that need to be localized, together with their localized translation.
Example 4-5 shows the Italian version of an entity object message bundle. Notice that in the Italian translation, the format masks for RequestDate
and AssignedDate
have been changed to dd/MM/yyyy HH:mm
. This ensures that an Italian user will see a date value like May 3rd, 2006, as 03/05/2006 15:55
, instead of 05/03/2006 15:55
, which the format mask in the default message bundle would produce. Notice the overridden getContents()
method. It returns an array of messages with the more specific translated strings merged together with those that are not overridden from the superclass bundle. At runtime, the appropriate message bundles are used automatically, based on the current user's locale settings.
Example 4-5 Localized Entity Object Component Message Bundle for Italian
Business logic groups allow you to encapsulate a set of related control hints, default values, and validation logic. A business logic group is maintained separate from the base entity in its own file, and can be enabled dynamically based on context values of the current row.
This is useful, for example, for an HR application that defines many locale-specific validations (like national identifier or tax law checks) that are maintained by a dedicated team for each locale. The business logic group eases maintenance by storing these validations in separate files, and optimizes performance by loading them only when they are needed.
Each business logic group contains a set of business logic units. Each unit identifies the set of business logic that is loaded for the entity, based on the value of the attribute associated with the business logic group.
For example, you can define a business logic group for an Employee
entity object, specifying the EmpRegion
attribute as the discriminator. Then define a business logic unit for each region, one that specifies a range validator for the employee's salary. When the application loads a row from the Employee
entity, the appropriate validator for the EmpSalary
attribute is loaded (based on the value of the EmpRegion
attribute).
In another example, from the StoreFront module of the Fusion Order Demo application, the PersonEO
entity object has a business logic group called PersonTypeCodeGroup
that uses PersonTypeCode
as the discriminator attribute. Because this attribute has three valid values (CUST
, STAFF
, and SUPP
), there are three corresponding business logic units.
In this scenario, each business logic unit contains new or modified business logic that pertains only to that person type:
CUST
business logic unit contains logic that pertains to customers. For example, it contains a validator that checks for a phone number because all customers must have a phone number. STAFF
business logic unit contains logic that pertains to staff members. For example, it contains a validator that constrains the credit limit. SUPP
business logic unit contains logic that pertains to suppliers. For example, it contains a validator that makes sure the ContactByAffiliatesFlag
attribute is set to N
, because suppliers cannot be contacted by affiliates. You create the business logic group for an entity object from the overview editor.
To create a business logic group:
Tip: To enhance the readability of your code, you can name the group to reflect the discriminator. For example, if the group discriminator attribute isPersonTypeCode , you can name the business logic group PersonTypeCodeGroup . |
The new business logic group is added to the table in the overview editor. After you have created the group, you can add business logic units to it.
You can create a business logic unit from the New Gallery, or directly from the context menu of the entity that contains the business logic group.
To create a business logic unit:
The name of each business logic unit must reflect a valid value of the group discriminator attribute with which this business logic unit will be associated. For example, if the group discriminator attribute is PersonTypeCode
, the name of the business logic unit associated with the PersonTypeCode
value of STAFF
must be STAFF
.
Note: The package for the business logic unit does not need to be the same as the package for the base entity or the business logic group. This allows you to develop and deliver business logic units separately from the core application. |
JDeveloper creates the business logic unit and opens it in the overview editor. The name displayed for the business logic unit in the Application Navigator contains the name of the entity object and business logic group in the format EntityName_BusLogicGroupName_BusLogicUnitName
. For example, when you create a business logic unit with the name CUST
in the PersonTypeCodeGroup
business logic group of the PersonEO
entity object, the displayed name of the business logic unit is PersonEO_PersonTypeCodeGroup_CUST
.
After you have created the unit, you can redefine the business logic for it.
After you have created a business logic unit, you can open it in the overview editor and add business logic (such as adding an entity-level validator) just as you would in the base entity.
To add an entity validator to a business logic unit:
For example, the PersonEO
entity object in the StoreFront module of the Fusion Order Demo application has a business logic unit called PersonEO_PersonTypeCodeGroup_CUST
. This business logic unit has an entity validator that checks for the presence of a phone number to ensure that all persons who are customers have a phone number.
When you view the Attributes page for the business logic unit (in the overview editor), you can see that the Extends column in the attributes table shows that the attributes are "extended" in the business logic unit. Extended attributes are editable only in the base entity, not in the business logic unit. To implement changes in the business logic unit rather than the base entity, you must define attributes as overridden in the business logic unit before you edit them.
To override attributes in a business logic unit:
After you make an attribute overridden, you can edit the attribute as you normally would by double-clicking the attribute to open it in the Edit Attribute dialog. You will notice that in an overridden attribute, you are limited to making modifications to only control hints, validators, and default values.
When you create a business logic group, JDeveloper adds a reference to the group in the base entity's XML file. Example 4-6 shows the code added to the base entity's XML file for the business logic group.
Example 4-6 XML Code in the Base Entity for a Business Logic Group
When you create a business logic unit, JDeveloper generates an XML file similar to that of an entity object. Example 4-7 shows XML code for a business logic unit.
Note: The package for the business logic unit does not need to be the same as the package for the base entity or the business logic group. This allows you to develop and deliver business logic units separately from the core application. |
Example 4-7 XML Code for a Business Logic Unit
When a row is loaded in the application at runtime, the entity object decides which business logic units to apply to it.
The base entity maintains a list of business logic groups. Each group references the value of an attribute on the entity, and this value determines which business logic unit to load for that group. This evaluation is performed for each row that is loaded.
If the logic for determining which business logic unit to load is more complex than just a simple attribute value, you can create a transient attribute on the entity object, and use a Groovy expression to determine the value of the transient attribute.
Entity objects offer numerous declarative features to simplify implementing typical enterprise business applications. Depending on the task, sometimes the declarative facilities alone may satisfy your needs. The declarative runtime features that describe the basic persistence features of an entity object are covered in this section, while declarative validation and business rules are covered in Chapter 7, "Defining Validation and Business Rules Declaratively."
Note: It is possible to go beyond the declarative behavior to implement more complex business logic or validation rules for your business domain layer when needed. In Chapter 8, "Implementing Validation and Business Rules Programmatically," you'll see some of the most typical ways that you extend entity objects with custom code. |
Also, it is important to note as you develop your application that the business logic you implement, either programmatically or declaratively, should not assume that the attributes of an entity object or view row will be set in a particular order. This will cause problems if the end user enters values for the attributes in an order other than the assumed one.
To configure the declarative runtime behavior of an entity object, use the overview editor.
To configure the declarative runtime behavior of an entity object:
Select an attribute and click the Edit icon to access the properties of the attribute. For information on how to set these properties, see Section 4.10, "Setting Attribute Properties."
Tip: If your entity has a long list of attribute names, there's a quick way to find the one you're looking for. In the Structure window with the Attributes node expanded, you can begin to type the letters of the attribute name and JDeveloper performs an incremental search to take you to its name in the tree. |
The declarative settings that describe and control an entity object's runtime behavior are stored in its XML component definition file. When you use the overview editor to modify settings of your entity, JDeveloper updates the component's XML definition file and optional custom Java files.
The declarative framework helps you set attribute properties easily. In all cases, you set these properties in the Edit Attribute dialog, which you can access from the Attributes page of the overview editor.
The Persistent
property controls whether the attribute value corresponds to a column in the underlying table, or whether it is just a transient value. If the attribute is persistent, the Database Column area lets you change the name of the underlying column that corresponds to the attribute and indicate its column type with precision and scale information (e.g. VARCHAR2(40)
or NUMBER(4,2)
). Based on this information, at runtime the entity object enforces the maximum length and precision/scale of the attribute value, and throws an exception if a value does not meet the requirements.
Both the Business Components from Tables wizard and the Create Entity Object wizard infer the Java type of each entity object attribute from the SQL type of the database column type of the column to which it is related.
Note: The project's Type Map setting also plays a role in determining the Java data type. You specify the Type Map setting when you initialize your business components project, before any business components are created. For more information, see Section 3.3.1, "Choosing a Connection, SQL Flavor, and Type Map." |
The Attribute Type field (in the Edit Attribute dialog) allows you to change the Java type of the entity attribute to any type you might need. The Database Column Type field reflects the SQL type of the underlying database column to which the attribute is mapped. The value of the Database Column Name field controls the column to which the attribute is mapped.
Your entity object can handle tables with various column types, as listed in Table 4-1. With the exception of the java.lang.String
class, the default Java attribute types are all in the oracle.jbo.domain
and oracle.ord.im
packages and support efficiently working with Oracle database data of the corresponding type. The dropdown list for the Attribute Type field includes a number of other common Java types that are also supported.
Table 4-1 Default Entity Object Attribute Type Mappings
Oracle Column Type | Entity Column Type | Entity Java Type |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Note: In addition to the types mentioned here, you can use any Java object type as an entity object attribute's type, provided it implements thejava.io.Serializable interface. |
When working with types that support defining a maximum length like VARCHAR2(n)
, the Database Column Type field (in the Edit Attribute dialog) includes the maximum attribute length as part of the value. For example, an attribute based on a VARCHAR2(10)
column in the database will initially reflect the maximum length of 10 characters by showing VARCHAR2(10)
as the database column type. If for some reason you want to restrict the maximum length of the String
-valued attribute to fewer characters than the underlying column will allow, just change the maximum length of the Database Column Type value.
For example, if the EMAIL
column in the PERSONS
table is VARCHAR2(50)
, then by default the Email
attribute in the Persons
entity object defaults to the same. But if you know that the actual email addresses are always 8 characters or fewer, you can update the database column type for the Email
attribute to be VARCHAR2(8)
to enforce a maximum length of 8 characters at the entity object level.
The same holds for attributes related to database column types that support defining a precision and scale like NUMBER(p[
,s
])
. For example, to restrict an attribute based on a NUMBER(7,2)
column in the database to instead have a precision of 5 and a scale of 1, just update the value of the Database Column Type field to be NUMBER(5,1)
.
The Updatable
property controls when the value of a given attribute can be updated. You can select the following values:
Note: In addition to the static declaration of updatability, you can also add custom code in theisAttributeUpdateable() method of the entity to determine the updatability of an attribute at runtime. |
Select the Mandatory checkbox if the field is required. The mandatory property is enforced during entity-level validation at runtime (and not when the attribute validators are run).
The Primary Key
property indicates whether the attribute is part of the key that uniquely identifies the entity. Typically, you use a single attribute for the primary key, but multiattribute primary keys are fully supported.
At runtime, when you access the related Key
object for any entity row using the getKey()
method, this Key
object contains the value of the primary key attribute for the entity object. If your entity object has multiple primary key attributes, the Key
object contains each of their values. It is important to understand that these values appear in the same relative sequential order as the corresponding primary key attributes in the entity object definition.
For example, if the OrderItemEO
entity object has multiple primary key attributes OrderId
and LineItemId
. On the Entity Attribute page of the overview editor, OrderId
is first, and LineItemId
is second. An array of values encapsulated by the Key
object for an entity row of type OrderItemEO
will have these two attribute values in exactly this order.
It is crucial to be aware of the order in which multiple primary key attributes appear on the Entity Attributes page. If you try to use findByPrimaryKey()
to find an entity with a multiattribute primary key, and the Key
object you construct has these multiple primary key attributes in the wrong order, the entity row will not be found as expected.
The Value field (in the Edit Attribute dialog) allows you to specify a static default value for the attribute when the Value Type is set to Literal. For example, you can set the default value of the ServiceRequest
entity object's Status
attribute to Open
, or set the default value of the User
entity object's UserRole
attribute to user
.
Note: When more than one attribute is defaulted for an entity object, the attributes are defaulted in the order in which they appear in the entity object's XML file. |
You can use a Groovy expression to define a default value for an attribute. This approach is useful if you want to be able to change default values at runtime, but if the default value is always the same, the value is easier to see and maintain using the Default field (in the Edit Attribute dialog). For general information about using Groovy, see Section 3.6, "Overview of Groovy Support."
To define a default value using a Groovy expression:
When you define a default value using a Groovy expression, a <TransientExpression>
tag is added to the entity object's XML file within the appropriate attribute. Figure 4-11 shows sample XML code for an Groovy expression that gets the current date for a default value.
If you know that the underlying column value will be updated by a database trigger during insert or update operations, you can enable the respective Insert or Update checkboxes in the Refresh After area (in the Edit Attribute dialog) to ensure the framework automatically retrieves the modified value and keeps the entity object and database row in sync. The entity object will use the Oracle SQL RETURNING INTO
feature, while performing the INSERT
or UPDATE
to return the modified column back to your application in a single database roundtrip.
Note: If you create an entity object for a synonym that resolves to a remote table over a DBLINK, use of this feature will give an error at runtime like:JBO-26041: Failed to post data to database during "Update" ## Detail 0 ## ORA-22816: unsupported feature with RETURNING clause Section 38.6, "Basing an Entity Object on a Join View or Remote DBLink" describes a technique to circumvent this database limitation. |
One common case for refreshing an attribute after insert occurs when a primary key attribute value is assigned by a BEFORE INSERT FOR EACH ROW
trigger. Often the trigger assigns the primary key from a database sequence using PL/SQL logic. Example 4-9 shows an example of this.
Example 4-9 PL/SQL Code Assigning a Primary Key from a Database Sequence
In the Edit Attribute dialog, you can set the value of the Type field to the built-in data type named DBSequence
and the primary key will be assigned automatically by the database sequence. Setting this data type automatically selects the refresh after Insert checkbox.
Note: The sequence name shown on the Sequence tab is used only at design time when you use the Create Database Tables feature described in Section 4.2.6, "How to Create Database Tables from Entity Objects." The sequence indicated here will be created along with the table on which the entity object is based. |
When you create a new entity row whose primary key is a DBSequence
, a unique negative number is assigned as its temporary value. This value acts as the primary key for the duration of the transaction in which it is created. If you are creating a set of interrelated entities in the same transaction, you can assign this temporary value as a foreign key value on other new, related entity rows. At transaction commit time, the entity object issues its INSERT
operation using the RETURNING INTO
clause to retrieve the actual database trigger-assigned primary key value. In a composition relationship, any related new entities that previously used the temporary negative value as a foreign key will get that value updated to reflect the actual new primary key of the master.
You will typically also set the Updatable property of a DBSequence-valued primary key to Never. The entity object assigns the temporary ID, and then refreshes it with the actual ID value after the INSERT
operation. The end user never needs to update this value.
For information on how to implement this functionality for an association that is not a composition, see Section 38.8.3.3, "Understanding Associations Based on DBSequence-Valued Primary Keys."
Note: For a metadata-driven alternative to the DBSequence approach, see Section 4.12.5, "Assigning the Primary Key Value Using an Oracle Sequence." |
At runtime, the framework provides automatic "lost update" detection for entity objects to ensure that a user cannot unknowingly modify data that another user has updated and committed in the meantime. Typically, this check is performed by comparing the original values of each persistent entity attribute against the corresponding current column values in the database at the time the underlying row is locked. Before updating a row, the entity object verifies that the row to be updated is still consistent with the current state of the database. If the row and database state are inconsistent, then the entity object raises the RowInconsistentException
.
You can make the lost update detection more efficient by identifying any attributes of your entity whose values you know will be updated whenever the entity is modified. Typical candidates include a version number column or an updated date column in the row. The change-indicator attribute's value might be assigned by a database trigger you've written and refreshed in the entity object using the Refresh After Insert and Refresh After Update options (in the Edit Attribute dialog). Alternatively, you can indicate that the entity object should manage updating the change-indicator attribute's value using the history attribute feature described in Section 4.10.12, "How to Track Created and Modified Dates Using the History Column." To detect whether the row has been modified since the user queried it in the most efficient way, select the Change Indicator option to compare only the change-indicator attribute values.
If you need to keep track of historical information in your entity object, such as when an entity was created or modified and by whom, or the number of times the entity has been modified, you specify an attribute with the History Column option selected (in the Edit Attribute dialog).
If an attribute's data type is Number
, String
, or Date
, and if it is not part of the primary key, then you can enable this property to have your entity automatically maintain the attribute's value for historical auditing. How the framework handles the attribute depends which type of history attribute you indicate:
getUserPrincipalName()
method on the Session
object. An entity object exhibits composition behavior when it creates (or composes) other entities, such as an OrderEO
entity creating a OrderItemEO
entity. This additional runtime behavior determines its role as a logical container of other nested entity object parts. Because of this relationship, a composition association cannot be based on a transient attribute.
Note: Composition also affects the order in which entities are validated. For more information, see Section 7.2.3, "Understanding the Impact of Composition on Validation Order." |
The features that are always enabled for composing entity objects are described in the following sections:
The additional features, and the properties that affect their behavior, are described in the following sections:
When a composed entity object is created, it performs an existence check on the value of its foreign key attribute to ensure that it identifies an existing entity as its owning parent entity. At create time, if no foreign key is found or else a value that does not identify an existing entity object is found, the entity object throws an InvalidOwnerException
instead of allowing an orphaned child row to be created without a well-identified parent entity.
Note: The existence check finds new pending entities in the current transaction, as well as existing ones in the database if necessary. |
Composition behavior ensures that the sequence of data manipulation language (DML) operations performed in a transaction involving both composing and composed entity objects is performed in the correct order. For example, an INSERT
statement for a new composing parent entity object will be performed before the DML operations related to any composed children.
When a new entity row having a primary key configured to refresh on insert is saved, then after its trigger-assigned primary value is retrieved, any composed entities will have their foreign key attribute values updated to reflect the new primary key value.
There are a number of additional composition related features that you can control through settings on the Association Properties page of the Create Association wizard or the overview editor. Figure 4-12 shows the Relationships page for the OrderItemsOrdersFkAssoc
association between two entity objects: OrderItemEO
and OrderEO
.
You can either enable or prevent the deletion of a composing parent while composed children entities exist. When the Implement Cascade Delete option (see Figure 4-12) is deselected, the removal of the composing entity object is prevented if it contains any composed children.
When selected, this option allows the composing entity object to be removed unconditionally together with any composed children entities. If the related Optimize for Database Cascade Delete option is deselected, then the composed entity objects perform their normal DELETE
statement at transaction commit time to make the changes permanent. If the option is selected, then the composed entities do not perform the DELETE
statement on the assumption that the database ON DELETE CASCADE
constraint will handle the deletion of the corresponding rows.
Select the Cascade Update Key Attributes option (see Figure 4-12) to enable the automatic update of the foreign key attribute values in composed entities when the primary key value of the composing entity is changed.
Select the Lock Top-Level Container option (see Figure 4-12) to control whether adding, removing, or modifying a composed detail entity row should attempt to lock the composing entity before allowing the changes to be saved.
Select the Update Top-Level History Columns option (see Figure 4-12) to control whether adding, removing, or modifying a composed detail entity object should update the Modified By and Modified On history attributes of the composing parent entity.
Sometimes a single database table stores information about several different kinds of logically related objects. For example, a payroll application might work with hourly, salaried, and contract employees all stored in a single EMPLOYEES
table with an EMPLOYEE_TYPE
column. In this case, the value of the EMPLOYEE_TYPE
column contains values like H
, S
, or C
to indicate respectively whether a given row represents an hourly, salaried, or contract employee. And while it is possible that many attributes and behavior are the same for all employees, certain properties and business logic may also depend on the type of employee.
In situations where common information exists across related objects, it may be convenient to represent these different types of entity objects using an inheritance hierarchy. For example, attributes and methods common to all employees can be part of a base Employee
entity object, while subtype entity objects like HourlyEmployee
, SalariedEmployee
, and ContractEmployee
extend the base Employee
object and add additional properties and behavior. The Discriminator attribute setting is used to indicate which attribute's value distinguishes the type of row. Section 38.7, "Using Inheritance in Your Business Domain Layer," explains how to set up and use inheritance.
Database primary keys are often generated from a sequence and may not be data you want to expose to the user for a variety of reasons. For this reason, it's often helpful to have alternate key values that are unique. For example, you might want to enforce that every customer have a unique email address. Because a customer may change their email address, you won't want to use that value as a primary key, but you still want the user to have a unique field they can use for login or other purposes.
Alternate keys are useful for direct row lookups via the findByKey
class of methods. Alternate keys are frequently used for efficient uniqueness checks in the middle tier. For information on how to find out if a value is unique, see Section 7.4.1, "How to Ensure That Key Values Are Unique."
To define an alternate key, you use the Create Entity Constraint wizard.
To define alternate key values:
For more information about the Key Properties options, press the F1 key or click Help.
Business events raised from the model layer are useful for launching business processes and triggering external systems synchronization by way of the Oracle Mediator.
Oracle Mediator supports declarative subscriptions which map business events to actions. In other words, you can define and publish a business event (such as a new customer being created) in one component, and then subscribe to that event in another component so that a business process is notified when it occurs. You can then, in the subscribing component, proceed with an action you assign to that event (such as sending a welcome new customer email).
You declaratively define business events at the entity level. You may also specify conditions under which those events should be raised. Business events that meet the specified criteria are raised upon successful commit of the changed data. A business event is raised to the Mediator on a successful create, update, or delete of an entity object.
To implement a business event, you first create an event definition, then map that event definition to an event point, then publish that definition. After the business event is published, you can subscribe to the event from another component.
An event definition describes an event that will be published and raised with an event system Mediator. An event definition is stored in an entity object's XML file with the elements shown in Table 4-2.
An event point is a place from which an event can be raised. On a successful commit, one of the event points shown in Table 4-3 can be raised to the Mediator for each entity in a transaction.
Table 4-3 Example Event Points Raised to the Mediator
DML Type | Event Name | Event Description |
---|---|---|
CREATE | EntityCreated | A new Entity has been created. |
UPDATE | EntityUpdated | An existing Entity has been updated. |
DELETE | EntityDeleted | An existing Entity has been deleted. |
Note that no events are raised by default; all events are custom. When you create the event, you can specify the name and DML operation appropriately.
For each event point, you must specify which event definitions should be raised on a particular event point. In other words, you must declaratively map each event definition to an event point.
Transactional event delivery, where event delivery is part of the transaction, is not supported by the framework.
Synchronous events, where the publisher waits for further processing until the subscriber has confirmed event reception, is not supported by the framework.
To create a business event, use the Business Events page of the overview editor.
To create a business event:
EmployeeContactInfoChanged
. Alternatively, you can double-click the cell and pick the attributes you want.
Note: Only attributes of supported types are displayed in the Entity Attribute column. While ClobDomain attributes are supported, very large clob data can impact performance. |
The Only if changed option provides the best performance because the attribute will be considered optional for the payload. If you leave the default Always, the payload will require the attribute whether or not the value has changed. For more details about payload efficiency, see Section 4.11.6, "What You May Need to Know About Payload Size."
The order that the attributes appear in defines their order in the generated XSD. Since you'll be using the XSD to build your Fabric mediator and BPEL process, you might want the most frequently accessed attributes at the top.
Repeat the procedure for each business event that you want to define. To publish an event, see Section 4.11.7, "How to Publish a Business Event."
When you create a business event, the entity object's XML file is updated with the event definition. Example 4-10 shows an example of the XML code for a business event. JDeveloper also generates an associated XSD file for the event schema that allows specification of required attributes and optional attributes. Required attributes correspond to Value Sent - Always in the Create Business Event Definition dialog, whereas optional attributes are those for which you changed Value Sent to Only if changed.
Example 4-10 XML Code for a Business Event
Example 4-11 shows an example of the XSD event schema for a business event.
Example 4-11 XSD Event Schema for a Business Event
Example 4-12 shows an example of the EDL event definition for the entity object.
Example 4-12 EDL Event Definition for the Entity Object
The attributes of the associated entity object constitute the payload of a business event. The payload attributes for a business event are defined by the creator of the event. It isn't automatically optimized. When the event is defined, an attribute can be marked as sent Always or Only if changed. For events fired during creation, only new values are sent. For events fired during an update or delete, the new and old values are sent and only the attributes that should be based on the Value Sent setting. For best performance, you should include only the primary key attribute for delete events.
To support composition scenarios (such as a purchase order with line items), a child entity can raise events defined on the parent entity, and events defined on the child entity can include attributes from the parent entity. When a child entity raises an event on a parent entity, only a single event is raised for a particular top-level entity per transaction, regardless of how many times the child entity raises it.
In the case of entity subtypes (for example, a Manager
entity object is a subtype of the User
entity), ADF Business Components does not support overriding of business events. Because the subscriber to a business event listens to the event using the event name, overriding of events could cause the event subscriber to receive payload data unintended for that subscriber. Therefore, this capability is not supported.
When defining business events, remember that while ClobDomain attributes are supported, very large clob data can have performance implications.
To publish a business event, use the Business Events page of the entity objects overview editor.
To publish a business event:
After you have created a business event, you can subscribe and respond to the event.
Before you begin:
To subscribe to a business event:
The resulting mediator (.mplan
file) is displayed in the overview editor.
You may not always need or want UI-based or programmatic clients to work directly with entity objects. Sometimes, you may just want to use an external client program to access an application module and work directly with the view objects in its data model. Chapter 5, "Defining SQL Queries Using View Objects" describes how to easily combine the flexible SQL-querying of view objects with the business logic enforcement and automatic database interaction of entity objects to build powerful applications. The combination enables a fully updatable application module data model, designed to meet the needs of the current end-user tasks at hand, that shares the centralized business logic in your reusable domain business object layer.
However, it is important first to understand how view objects and entity objects can be used on their own before learning to harness their combined power. By learning about these objects in greater detail, you will have a better understanding of when you should use them alone and when to combine them in your own applications.
Since clients don't work directly with entity objects, any code you write that works programmatically with entity objects will typically be custom code in a custom application module class or in the custom class of another entity object.
To access an entity row, you use a related object called the entity definition. At runtime, each entity object has a corresponding entity definition object that describes the structure of the entity and manages the instances of the entity object it describes. After creating an application module and enabling a custom Java class for it, imagine you wanted to write a method to return a specific order. It might look like the retrieveOrderById()
method shown in Example 4-13.
To find an entity object by primary key:
You obtain the entity definition object for the OrderEO
entity by passing its fully qualified name to the static getDefinitionObject()
method imported from the EntityDefImpl
class. The EntityDefImpl
class in the oracle.jbo.server
package implements the entity definition for each entity object.
You build a Key
object containing the primary key attribute that you want to look up. In this case, you're creating a key containing the single orderId
value passed into the method as an argument.
You use the entity definition's findByPrimaryKey()
method to find the entity object by key, passing in the current transaction object, which you can obtain from the application module using its getDBTransaction()
method. The concrete class that represents an entity object row is the oracle.jbo.server.EntityImpl
class.
Example 4-13 show example code for a retrieveOrderById()
method developed using this basic procedure.
Example 4-13 Retrieving an OrderEO Entity Object by Key
Note: Theoracle.jbo.Key object constructor can also take an Object array to support creating multiattribute keys, in addition to the more typical single-attribute value keys. |
You can create a method to access an associated entity based on an accessor attribute that requires no SQL code. For example, the method findOrderCustomer()
might find an order, then access the associated PersonEO
entity object representing the customer assigned to the order. For an explanation of how associations enable easy access from one entity object to another, see Section 4.3, "Creating and Configuring Associations."
To avoid a conflict with an existing method in the application module that finds the same associated entity using the same accessor attribute, you can refactor this functionality into a helper method that you can then reuse anywhere in the application module it is required. For example, the retrieveOrderById()
method (shown in Example 4-13) refactors the functionality that finds an order.
To access an associated entity object using the accessor attribute:
The findOrderCustomer()
method uses the retrieveOrderById()
helper method to retrieve the OrderEO
entity object by ID.
Using the attribute getter method, you can pass in the name of an association accessor and get back the entity object on the other side of the relationship. (Note that Section 4.3.3, "How to Change Entity Association Accessor Names," explains that renaming the association accessor allows it to have a more intuitive name.)
The findOrderCustomer()
method uses the getter methods on the returned PersonEO
entity to return the assigned customer's name by concatenating their first and last names.
Notice that you did not need to write any SQL to access the related PersonEO
entity. The relationship information captured in the ADF association between the OrderEO
and PersonEO
entity objects is enough to allow the common task of data navigation to be automated.
Example 4-14 shows the code for findOrderCustomer()
that uses the helper method.
Example 4-14 Accessing an Associated Entity Using the Accessor Attribute
Once you've got an entity row in hand, it's simple to update it or remove it. You could add a method like the updateOrderStatus()
shown in Example 4-15 to handle the job.
To update an entity row:
Using the retrieveOrderById()
helper method, the updateOrderStatus()
method retrieves the OrderEO
entity object by Id.
Using the EntityImpl
class' setAttribute()
method, the updateOrderStatus()
method updates the value of the Status
attribute to the new value passed in.
Using the application module's getDBTransaction()
method, the updateOrderStatus()
method accesses the current transaction object and calls its commit()
method to commit the transaction.
Example 4-15 Updating an Existing Entity Row
The example for removing an entity row would be the same, except that after finding the existing entity, you would use the following line instead to remove the entity before committing the transaction:
In addition to using the entity definition to find existing entity rows, you can also use it to create new ones. In the case of product entities, you could write a createProduct()
method like the one shown in Example 4-16 to accept the name and description of a new product, and return the new product ID assigned to it. This example assumes that the ProductId
attribute of the ProductBaseEO
entity object has been updated to have the DBSequence
type (see Section 4.10.10, "How to Get Trigger-Assigned Primary Key Values from a Database Sequence"). This setting ensures that the attribute value is refreshed to reflect the value of the trigger from the corresponding database table, assigned to it from the table's sequence in the application schema.
To create an entity row:
Using the getDefinitionObject()
method, the createProduct()
method finds the entity definition for the Product
entity.
Using the createInstance2()
method on the entity definition, the createProduct()
method creates a new instance of the entity object.
Note: The method name has a2 at the end. The regular createInstance() method has protected access and is designed to be customized as described Section E.2.4, "EntityImpl Class" of Appendix E, "Most Commonly Used ADF Business Components Methods." The second argument of type AttributeList is used to supply attribute values that must be supplied at create time; it is not used to initialize the values of all attributes found in the list. For example, when creating a new instance of a composed child entity row using this API, you must supply the value of a composing parent entity's foreign key attribute in the AttributeList object passed as the second argument. Failure to do so results in an InvalidOwnerException . |
Using the attribute setter methods on the entity object, the createProduct()
method assigns values for the Name
, Status
, and other attributes in the new entity row.
Calling commit()
on the current transaction object, the createProduct()
method commits the transaction.
Using the attribute getter method to retrieve the value of the ProductId
attribute as a DBSequence
, and then calling getSequenceNumber().longValue()
, the createProduct()
method returns the sequence number as a long
value to the caller.
Example 4-16 Creating a New Entity Row
As an alternative to using a trigger-assigned value (as described in Section 4.10.10, "How to Get Trigger-Assigned Primary Key Values from a Database Sequence"), you can assign the value to a primary key when creating a new row using an Oracle sequence. This metadata-driven approach allows you to centralize the code to retrieve the primary key into a single Java file that can be reused by multiple entity objects.
Example 4-17 shows a simple CustomEntityImpl
framework extension class on which the entity objects are based. Its overridden create()
method tests for the presence of a custom attribute-level metadata property named SequenceName
and if detected, populates the attribute's default value from the next number in that sequence.
Example 4-17 CustomEntityImpl Framework Extension Class
To assign the primary key value using an Oracle sequence:
CustomEntityImpl.java
file in your project, and insert the code shown in Example 4-17. SequenceName
for the name. For example, a Dept
entity could define the custom property SequenceName
on its Deptno
attribute with the value DEPT_TABLE_SEQ
.
As described in this chapter, all of the database interaction and a large amount of declarative runtime functionality of an entity object can be achieved without using custom Java code. When you need to go beyond the declarative features to implement custom business logic for your entities, you'll need to enable custom Java generation for the entities that require custom code. Appendix E, "Most Commonly Used ADF Business Components Methods," provides a quick reference to the most common code that you will typically write, use, and override in your custom entity object and entity definition classes.
To enable the generation of custom Java classes for an entity object, use the Java page of the overview editor.
To generate a custom Java class for an entity object:
When you select one or more custom Java classes to generate, JDeveloper creates the Java file(s) you've indicated. For example, assuming an entity object named fodemo.storefront.entities.OrderEO
, the default names for its custom Java files will be OrderEOImpl.java
for the entity object class and OrderEODefImpl.java
for the entity definition class. Both files are created in the same ./fodemo/storefront/entities
directory as the component's XML component definition file.
The Java generation options for the entity object continue to be reflected on subsequent visits to the Java page of the overview editor. Just as with the XML definition file, JDeveloper keeps the generated code in your custom Java classes up to date with any changes you make in the editor. If later you decide you didn't require a custom Java file for any reason, disabling the relevant options on the Java page causes the custom Java files to be removed.
When you enable the generation of a custom entity object class, if you also enable the Accessors option, then JDeveloper generates getter and setter methods for each attribute in the entity object. For example, an OrderEO
entity object that has the corresponding custom OrderEOImpl.java
class might have methods (like those shown in Example 4-18) generated in it.
Example 4-18 Getter and Setter Methods from OrderEOImpl.java
These methods allow you to work with the row data with compile-time checking of the correct data type usage. That is, instead of writing a line like this to get the value of the CustomerId
attribute:
you can write the code like:
You can see that with the latter approach, the Java compiler would catch a typographical error had you accidentally typed CustomerCode
instead of CustomerId
:
Without the generated entity object accessor methods, an incorrect line of code like the following cannot be caught by the compiler:
It contains both an incorrectly spelled attribute name, as well as an incorrectly typed cast of the getAttribute()
return value. When you use the generic APIs on the Row
interface, which the base EntityImpl
class implements, errors of this kind raise exceptions at runtime instead of being caught at compile time.
As shown in Figure 4-14, when you've enabled generation of custom Java classes, they also appear as child nodes under the Application Sources node for the entity object. As with all ADF components, when you select an entity object in the Application Navigator, the Structure window provides a structural view of the entity. When you need to see or work with the source code for a custom Java file, there are two ways to open the file in the source editor:
See the following sections for additional information about custom Java classes.
When you use an XML-only entity object, at runtime its functionality is provided by the default ADF Business Components implementation classes. Each custom Java class that is generated will automatically extend the appropriate ADF Business Components base class so that your code inherits the default behavior and you can easily add to or customize it. An entity object class will extend EntityImpl
, while the entity definition class will extend EntityDefImpl
(both in the oracle.jbo.server
package).
Some developers are hesitant to add their own code to generated Java source files. Each custom Java source code file that JDeveloper creates and maintains for you includes the following comment at the top of the file to clarify that it is safe for you to add your own custom code to this file.
JDeveloper does not blindly regenerate the file when you click OK or Apply in an edit dialog. Instead, it performs a smart update to the methods that it needs to maintain, leaving your own custom code intact.
You can generate custom Java classes for your view objects when you need to customize their runtime behavior or when you simply prefer to have strongly typed access to bind variables or view row attributes.
To configure the default settings for ADF Business Components custom Java generation, you can choose Preferences from the Tools menu and open the Business Components page to set your preferences to be used for business components created in the future. Developers getting started with ADF Business Components should set their preference to generate no custom Java classes by default. As you run into a specific need for custom Java code, you can enable just the bit of custom Java you need for that one component. Over time, you'll discover which set of defaults works best for you.
The entity object is designed to function based on XML only or as an XML component definition combined with a custom Java class. To support this design choice, attribute values are not stored in private member fields of an entity's class (a file that is not present in the XML-only situation). Instead, in addition to a name, attributes are also assigned a numerical index in the entity's XML component definition based on the zero-based, sequential order of the <Attribute>
and association-related <AccessorAttribute>
tags in that file. At runtime, attribute values in an entity row are stored in a sparse array structure managed by the base EntityImpl
class, indexed by the attribute's numerical position in the entity's attribute list.
For the most part, this private implementation detail is unimportant, since as a developer using entity objects, you are shielded from having to understand this. However, when you enable a custom Java class for your entity object, this implementation detail relates to some of the generated code that JDeveloper maintains in your entity object class. It is sensible to understand what that code is used for. For example, in the custom Java class for a OrderEO
entity object, each attribute or accessor attribute has a corresponding generated integer enum. JDeveloper ensures that the values of these enums correctly reflect the ordering of the attributes in the XML component definition.
You'll also notice that the automatically maintained, strongly typed getter and setter methods in the entity object class use these attribute enums, as shown in Example 4-19.
Example 4-19 Getter and Setter Methods Using Attribute Constants in the Custom Entity Java Class
Another aspect of the automatically maintained code related to entity attribute enums are the getAttrInvokeAccessor()
and setAttrInvokeAccessor()
methods. These methods optimize the performance of attribute access by numerical index, which is how generic code in the EntityImpl
base class typically accesses attribute values when performing generic processing. An example of the getAttrInvokeAccessor()
method is shown in Example 4-20. The companion setAttrInvokeAccessor()
method looks similar.
Example 4-20 getAttrInvokeAccessor() Method in the Custom Entity Java Class
The rules of thumb to remember about this generated attribute-index related code are the following.
JDeveloper changes the Java signature of getter and setter methods, as well as the related XML component definition for you.
getAttrInvokeAccessor()
and setAttrInvokeAccessor()
methods. Note: If you need to manually edit the generated attribute enums because of source control merge conflicts or other reasons, you must ensure that the zero-based ordering reflects the sequential ordering of the<Attribute> and <AccessorAttribute> tags in the corresponding entity object XML component definition. |
To better evaluate the difference of using custom generated entity classes versus working with the generic EntityImpl
class, Example 4-21 shows a version of methods in a custom entity class (StoreFrontServiceImpl.java
) from a custom application module class (StoreFrontService2Impl.java
). Some important differences to notice are:
getDefinitionObject()
method in your custom entity class allows you to avoid working with fully qualified entity definition names as strings. createPrimaryKey()
method in your custom entity class simplifies creating the Key
object for an entity. Example 4-21 Programmatic Entity Examples Using Strongly Typed Custom Entity Object Classes
In addition to having attributes that map to columns in an underlying table, your entity objects can include transient attributes that display values calculated (for example, using Java or Groovy) or that are value holders. For example, a transient attribute you create, such as FullName
, could be calculated based on the concatenated values of FirstName
and LastName
attributes.
Once you create the transient attribute, you can perform a calculation in the entity object Java class, or use a Groovy expression in the attribute definition to specify a default value.
If you want to be able to change the value at runtime, you can use a Groovy expression. If the calculated value is not likely to change (for example, if it's a sum of the line items), you can perform the calculation directly in the entity object Java class.
Use the Attributes page of the overview editor to create a transient attribute.
To add a transient attribute to an entity object:
When you add a transient attribute, JDeveloper updates the XML component definition for the entity object to reflect the new attribute.
The <Attribute>
tag of a transient attribute has no TableName
and a ColumnName
of $none$
, as shown in Example 4-22.
Example 4-22 XML Code for a Transient Attribute
In contrast, a persistent entity attribute has both a TableName
and a ColumnName
, as shown in Example 4-23.
When creating a transient attribute, you can use a Groovy expression to provide the default value.
To create a transient attribute based on a Groovy expression:
Expressions that you define are evaluated using the Groovy scripting language, as described in Section 3.6, "Overview of Groovy Support." Groovy lets you insert expressions and variables into strings. The expression is saved as part of the entity object definition.
Attributes that you reference can include any attribute that the entity object defines. Do not reference attributes in the expression that are not defined by the entity object.
If you select Always (default), the expression is evaluated each time any attribute in the row changes. If you select Never, the expression is evaluated only when the row is created.
For example, the following expression in the Based on the following expression field causes the attribute to be recalculated when either the Quantity
attribute or the UnitPrice
attribute are changed:
In Figure 4-15, the Quantity
and UnitPrice
attributes are selected, which causes the attribute to be recalculated when either attribute is changed.
Note: If either the value expression or the optional recalculate expression that you define references an attribute from the base entity object, you must define this as a dependency on the Dependencies page of the Edit Attribute dialog. In the Dependency page, locate the attributes in the Available list and shuttle each to the Selected list. |
When you base a transient attribute on a Groovy expression, a <TransientExpression>
tag is added to the entity object's XML file within the appropriate attribute, as shown in Example 4-24.
A transient attribute is a placeholder for a data value. If you change the Updatable property of the transient attribute to While New or Always, then the end user can enter a value for the attribute. If you want the transient attribute to display a calculated value, then you'll typically leave the Updatable property set to Never and write custom Java code that calculates the value.
After adding a transient attribute to the entity object, to make it a calculated attribute you need to:
For example, after generating the view row class, the Java code to return the transient attribute's calculated value would reside in the getter method for the attribute (such as FullName
), as shown in Example 4-25.
Example 4-25 Getter Method for a Transient Attribute
To ensure that the transient attribute is reevaluated whenever the attributes to be concatenated (such as LastName
and FirstName
) might be changed by the end user, specify the dependent attributes for the transient attribute. On the Dependencies page of the Edit Attribute dialog, locate the attributes in the Available list and shuttle each to the Selected list.
This chapter describes how to create ADF view objects that join, filter, sort, and aggregate data for use in an ADF application.
This chapter includes the following sections:
A view object is an Oracle Application Development Framework (Oracle ADF) component that encapsulates a SQL query and simplifies working with its results. There are several types of view objects that you can create in your ADF Business Components project:
An entity-based view object can be configured to support updatable rows when you create view objects that map their attributes to the attributes of one or more existing entity objects. The mapped entity object is saved as an entity usage in the view object definition. In this way, entity-based view objects cooperate automatically with entity objects to enable a fully updatable data model. The entity-based view object queries just the data needed for the client-facing task and relies on its mapped entity objects to automatically validate and save changes made to its view rows. Like the read-only view object, an entity-based view object encapsulates a SQL query, it can be linked into master-detail hierarchies, and it can be used in the data model of your application modules.
View objects with no entity usage definition are always read-only. They do not pick up entity-derived default values, they do not reflect pending changes, and they do not reflect updated reference information. In contrast to entity-based view objects, read-only view objects require you to write the query using the SQL query language. The Create View Object wizard and overview editor for entity-based view objects, on the other hand, simplify this task by helping you to construct the SQL query declaratively. For this reason, it is almost always preferable to create a non-updatable, entity-mapped view object, even when you want to create a view object just to read data. Additionally, as an alternative to creating view objects that specify a SQL statement at design time, you can create entity-mapped view objects that dynamically generate SQL statements at runtime.
There remain a few situations where it is still preferable to create a non-entity-mapped view object to read data, including SQL-based validation, Unions, and Group By queries.
This chapter helps you understand these view object concepts as illustrated in Figure 5-1:
RowSet
object). When a view object has one or more underlying entity usages, you can create new rows, and modify or remove queried rows. The entity-based view object coordinates with underlying entity objects to enforce business rules and to permanently save the changes to the database. In addition, entity-based view objects provide these capabilities that do not exist with read-only view objects:
This chapter explains how instances of entity-based view objects contained in the data model of your application module enable clients to search for, update, insert, and delete business domain layer information in a way that combines the full data shaping power of SQL with the clean, object-oriented encapsulation of reusable domain business objects. And all without requiring a line of code.This chapter helps you to understand these entity-based view object concepts as illustrated in Figure 5-2:
View objects provide the means to retrieve data from a data source. In the majority of cases, the data source will be a database and the mechanism to retrieve data is the SQL query. ADF Business Components can work with JDBC to pass this query to the database and retrieve the result.
When view objects use a SQL query, query columns map to view object attributes in the view object. The definition of these attributes, saved in the view object's XML definition file, reflect the properties of these columns, including data types and precision and scale specifications.
Performance Tip: If the query associated with the view object contains values that may change from execution to execution, use bind variables. Using bind variables in the query allows the query to reexecute without needing to reparse the query on the database. You can add bind variables to the view object in the Query page of the overview editor for the view object. For more information, see Section 5.10, "Working with Bind Variables." |
Using the same Create View Object wizard, you can create view objects that either map to the attributes of existing entity objects or not. Only entity-based view objects automatically coordinate with mapped entity objects to enforce business rules and to permanently save data model changes. Additionally, you can disable the Updatable feature for entity-based view objects and work entirely declaratively to query read-only data. Alternatively, you can use the wizard or editor's expert mode to work directly with the SQL query language, but the view object you create will not support the transaction features of the entity-based view object.
While there is a small amount of runtime overhead associated with the coordination between view object rows and entity object rows, weigh this against the ability to keep the view object definition entirely declarative and maintain a customizable view object. Queries that cannot be expressed in entity objects, and that therefore require expert-mode query editing, include Unions and Group By queries. Expert mode-based view objects are also useful in SQL-based validation queries used by the view object-based Key Exists validator. Again, it is worth repeating that, by definition, using expert mode to define a SQL query means the view object must be read-only.
For more information about the differences between entity-based view objects and read-only view objects, see Section 5.1.2, "Runtime Features Unique to Entity-Based View Objects."
Creating an entity-based view object is the simplest way to create a view object. It is even easier than creating an expert-mode, read-only view object, since you don't have to type in the SQL statement yourself. An entity-based view object also offers significantly more runtime functionality than its expert-mode counterpart.
In an entity-based view object, the view object and entity object play cleanly separated roles:
Because view objects and entity objects have cleanly separated roles, you can build a hundred different view objects — projecting, filtering, joining, sorting the data in whatever way your user interfaces require, application after application — without any changes to the reusable entity object. In fact, it is possible that the development team responsible for the core business domain layer of entity objects might be completely separate from another team responsible for the specific application modules and view objects needed to support the end-user environment. This relationship is enabled by metadata that the entity-based view object encapsulates. The metadata specifies how the SELECT
list columns are related to the attributes of one or more underlying entity objects.
Your entity-based view object may be based on more than one database table. To use database joins to add multiple tables to the view object, see Section 5.5, "Working with Multiple Tables in Join Query Results."
To create an entity-based view object, use the Create View Object wizard, which is available from the New Gallery.
Before you begin:
Create the desired entity objects as described in Section 4.2.1, "How to Create Multiple Entity Objects and Associations from Existing Tables."
To create an entity-based view object from a single table:
If this is the first component you're creating in the project, the Initialize Business Components Project dialog appears to allow you to select a database connection.
An entry in this list is known as an entity usage, since it records the entity objects that the view object will be using. Each entry could also be thought of as an entity reference, since the view object references attributes from that entity. For information about working table joins to create additional entity usages, see Section 5.5, "Working with Multiple Tables in Join Query Results."
For example, Figure 5-3 shows the result after shuttling the PersonEO
entity object into the Selected list.
For example, Figure 5-4 shows the attributes have been selected from the PersonEO
.
For more information about any of the attribute settings, press F1 or click Help.
WHERE
and ORDER BY
clause to the query to filter and order the data as required. JDeveloper automatically generates the SELECT statement based on the entity attributes you've selected. Do not include the WHERE
or ORDER BY
keywords in the Where and Order By field values. The view object adds those keywords at runtime when it executes the query.
For example, Figure 5-5 shows the ORDER BY
clause is specified to order the data by first name, last name, and email.
When you want to allow the client to work with all of the attributes of an underlying entity object, you can use the Create View Object wizard as described in Section 5.2.1.1, "Creating an Entity-Based View Object from a Single Table." After selecting the entity object, simply select all of its attributes on the Attributes page. However, for this frequent operation, there is an even quicker way to perform the same task in the Application Navigator.
Before you begin:
Create the desired entity objects as described in Section 4.2.1, "How to Create Multiple Entity Objects and Associations from Existing Tables."
To create a default entity-based view object:
In the Create Default View Object dialog you can click Browse to select the package name from the list of existing packages. For example, in Figure 5-6, clicking Browse locates oracle.fodemo.storefront.enties
package on the classpath for the StoreFrontService
project in the StoreFrontModule
application.
The new entity-based view object created will be identical to one you could have created with the Create View Object wizard. By default, it will have a single entity usage referencing the entity object you selected in the Application Navigator, and will include all of its attributes. It will initially have neither a WHERE
nor ORDER BY
clause, and you may want to use the overview editor for the view object to:
WHERE
clause ORDER BY
clause When you create a view object, JDeveloper creates the XML component definition file that represents the view object's declarative settings and saves it in the directory that corresponds to the name of its package. For example, the view object Orders
, added to the queries
package, will have the XML file ./queries/Orders.xml
created in the project's source path.
To view the view object settings, expand the desired view object in the Application Navigator, select the XML file under the expanded view object, and open the Structure window. The Structure window displays the list of definitions, including the SQL query, the name of the entity usage, and the properties of each attribute. To open the file in the editor, double-click the corresponding .xml
node.
Note: If your IDE-level Business Components Java generation preferences so indicate, the wizard may also create an optional custom view object classOrdersImpl.java and/or a custom view row class OrdersRowImpl.java class. |
Figure 5-7 depicts the entity-based view object OrderItemsInfoVO
and the three entity usages referenced in its query statement. The dotted lines represent the metadata captured in the entity-based view object's XML component definition that map SELECT
list columns in the query to attributes of the entity objects used in the view object. The query of the entity-based view object joins data from a primary entity usage (OrderItemEO
) with that from secondary reference entity usages (ProductBaseEO
and SupplierEO
).
When you need full control over the SQL statement, the Create View Object wizard lets you specify that you want a view object to be read-only. In this case, you will not benefit from the declarative capabilities to define a non-updatable entity-based view object. However, there are a few situations where it is desirable to create read-only view objects using expert mode. Primarily, the read-only view object that you create will be useful when you need to write Unions or Group By queries. Additionally, you can use a read-only view object if you need to create SQL-based validation queries used by the view object-based Key Exists validator, provided that you have marked a key attribute.
Best Practice: Unlike entity-based view objects, read-only view objects that you create in expert mode, will not define a key attribute by default. While it is possible to create a read-only view object without defining its key attribute, in expert mode it is a best practice to select the attribute that corresponds to the queried table's primary key and mark it as the key attribute. The presence of a key attribute ensures the correct runtime behavior for row set navigation. For example, the user interface developer may create an LOV component based on the read-only view object collection. Without a key attribute to specify the row key value, the LOV may not behave properly and a runtime error can result. |
For more information about the tradeoffs between working with entity-based view objects that you define as non-updatable and strictly read-only view objects, see Section 39.2.2, "Consider Using Entity-Based View Objects for Read-Only Data."
To create a read-only view object, use the Create View Object wizard, which is available from the New Gallery.
To create a read-only view object:
If this is the first component you're creating in the project, the Initialize Business Components Project dialog appears to allow you to select a database connection.
WHERE
clause and an Order By
clause. For example, Figure 5-8 shows a query statement that uses a WHERE
clause and an Order By
clause to query a list of country codes in the language used by the application. Note: If the Entity Objects page displays instead of the Query page, go back to Step 1 of the wizard and ensure that you've selected Read-only Access. |
Because the read-only view object is not based on an entity object, the Create View Object wizard does not define a key attribute by default. Failure to define the key attribute can result in unexpected runtime behavior for ADF Faces components with a data control based on the read-only view object collection. In the case of read-only view objects, define the key attribute, as shown in Figure 5-9.
Note: In the ADF Business Components wizards and editors, the default convention is to use camel-capped attribute names, beginning with a capital letter and using uppercase letters in the middle of the name to improve readability when the name comprises multiple words. |
When you create a view object, JDeveloper first parses the query to infer the following from the columns in the SELECT list:
CountryName
instead of COUNTRY_NAME
) By default, the wizard creates Java-friendly view object attribute names that correspond to the SELECT
list column names, as shown in Figure 5-10.
For information about using view object attribute names to access the data from any row in the view object's result set by name, see Section 6.4, "Testing View Object Instances Programmatically."
Each part of an underscore-separated column name like SOME_COLUMN_NAME
is turned into a camel-capped word (like SomeColumnName
) in the attribute name. While the view object attribute names correspond to the underlying query columns in the SELECT
list, the attribute names at the view object level need not match necessarily.
Tip: You can rename the view object attributes to any names that might be more appropriate without changing the underlying query. |
JDeveloper then creates the XML component definition file that represents the view object's declarative settings and saves it in the directory that corresponds to the name of its package. For example, the XML file created for a view object named CountriesVO
in the lookups
package is ./lookups/CountriesVO.xml
under the project's source path.
To view the view object settings, expand the desired view object in the Application Navigator, select the XML file under the expanded view object, and open the Structure window. The Structure window displays the list of definitions, including the SQL query, the name of the entity usage, and the properties of each attribute. To open the file in the editor, double-click the corresponding .xml
node.
Note: If your IDE-level Business Components Java generation preferences so indicate, the wizard may also create an optional custom view object classCountriesVOImpl.java and/or a custom view row class CountriesVORowImpl.java class. |
After you've created a view object, you can edit any of its settings in the overview editor for the view object.
Performance Tip: How you configure the view object to fetch data plays a large role in the runtime performance of the view object. For information about the tuning parameters that you can edit to optimize performance, see Section 6.3.10, "What You May Need to Know About Optimizing View Object Runtime Performance." |
To edit a view object definition:
One interesting aspect of entity-based view objects is that each attribute that relates to an underlying entity object attribute inherits that attribute's properties. Figure 5-11 shows the Edit Attribute dialog with the inherited attribute selected. You can see that fields like the Java attribute type and the query column type are disabled and their values are inherited from the related attribute of the underlying entity object to which this view object is related. Some properties like the attribute's data type are inherited and cannot be changed at the view object level.
Other properties like Queryable
and Updatable
are inherited but can be overridden as long as their overridden settings are more restrictive than the inherited settings. For example, the attribute from underlying entity object might have an Updatable setting of Always. As shown Figure 5-11, the Edit Attribute dialog allows you to set the corresponding view object attribute to a more restrictive setting like While New or Never. However, if the attribute in the underlying entity object had instead an Updatable setting of Never, then the editor would not allow the view object's related attribute to have a less restrictive setting like Always.
When you display a particular attribute of the view object in the Edit Attribute dialog, you can see and change the values of the declarative settings that control its runtime behavior. One important property is the Type in the Query Column section, shown in Figure 5-11. This property records the SQL type of the column, including the length information for VARCHAR2
columns and the precision and scale information for NUMBER
columns.
JDeveloper tries to infer the type of the column automatically, but for some SQL expressions the inferred value might default to VARCHAR2(255)
. You can update the Type value for this type of attribute to reflect the correct length if you know it. In the case of read-only view objects, this property is editable in the Edit Attribute dialog you display from the overview editor for the view object. In the case of entity-based view objects, you must edit the Type property in the Edit Attribute dialog that you display for the entity object, as described in Section 4.10.2, "How to Indicate Data Type Length, Precision, and Scale."
For example, VARCHAR2(30)
which shows as the Type for the FirstName
attribute in Figure 5-12 means that it has a maximum length of 30 characters. For a NUMBER
column, you would indicate a Type of NUMBER(7,2)
for an attribute that you want to have a precision of 7 digits and a scale of 2 digits after the decimal.
Performance Tip: Your SQL expression can control how long the describe from the database says the column is. Use theSUBSTR() function around the existing expression. For example, if you specify SUBSTR(yourexpression , 1, 15) , then the describe from the database will inform JDeveloper that the column has a maximum length of 15 characters. |
When you use the Create View Object wizard to create a read-only view object, by default the attributes of the view object will not be updateable. Later you may decide to convert the view object to one that permits updates to its SQL-mapped table columns. However, this cannot be accomplished by merely changing the attribute's Updateable property. To convert a read-only view object to one that is updateable, you must add an entity usage that maps to the same table as the one used to create the read-only view object. Choosing an entity usage that defines the same table ensures that you can then remap the SQL-derived view attributes to entity usage attributes corresponding to the same table columns.
To modify a read-only view object to allow updates:
The entity object that you double-click will appear in the Selected list as an entity usage. You will need to remap the SQL-derived attributes to corresponding attributes defined by the entity usage.
Figure 5-13 Specifying an Entity-Derived Attribute in the Edit Query Dialog
When you edit view objects in the overview editor, you can customize the Attributes page of the overview editor to make better use of the attributes table displayed for the view object.
Customization choices that you make for the attributes table include the list of attribute properties to display as columns in the attributes table, the order that the columns appear (from left to right) in the attributes table, the sorting order of the columns, and the width of the columns. The full list of columns that you can choose to display correspond to the attribute properties that you might edit in the view object's Edit Attributes dialog.
For example, you can add the Updatable property as a column to display in the attributes table when you want to quickly determine which attributes of your view object are updatable. Or, you can add the attributes' Label property as a column and see the same description as the end user. Or, you might want to view the list of attributes based on their entity usages. In this case, you can display the Entity Usage column and sort the entire attributes table on this column.
When you have set up the attributes table with the list of columns that you find most useful, you can apply the same set of columns to the attributes table displayed for other view objects by right-clicking the attributes table and choose Apply to All View Objects.
To customize the attributes table display:
This feature is particularly useful when you want to focus on a particular column. For example, in the case of an entity-based view object, you can click the Entity Usage column header to group attributes in the attributes table by their underlying entity objects. To save this setting across all view objects that you display in the overview editor, click the dropdown menu to the right of the column headers and choose Apply to All View Objects.
This feature lets you easily hide columns when you want to simplify the attributes table display in the current view object overview editor.
This feature allows you to easily compare the same attributes across view objects. The overview editor will apply the column selections (and order) that you make in the Select Columns dialog and the current attributes table's column sorting and column widths to all view objects that you edit. View objects that are currently displayed in an open overview editor are not updated with these settings; you must close the open view object overview editor and then reopen the view object to see these settings applied.
After you create a view object definition, you may decide to change the order of the attributes queried by the view object. This view object editing feature allows you to easily change the order that the attributes will appear in the attributes table displayed on the Attributes page of the view object overview editor. Because this feature acts on specific attributes and alters the XML definition of the current view object, it does not apply to other view objects that you may edit. Alternatively, you can sort the display of attributes on the Attribute page of the view object overview editor without affecting the source file by clicking any column header in the overview editor's attributes table.
To modify the order of attributes in the view object source file:
This feature has no affect on other view objects that you may edit; it only affects the current view object.
JDeveloper's UML diagramming lets you create a Business Components diagram to visualize your business domain layer. In addition to supporting entity objects, JDeveloper's UML diagramming allows you to drop view objects onto diagrams as well to visualize their structure and entity usages. For example, if you create a new Business Components Diagram named StoreFrontService Data Model
in the oracle.fodemo.storefront
package, and drag the CustomerAddressVO
view object from the Application Navigator onto the diagram, its entity usages would display, as shown in Figure 5-14. When viewed as an expanded node, the diagram shows a compartment containing the view objects entity usages.
For information about creating the diagram, see Section 4.4, "Creating an Entity Diagram for Your Business Layer."
ADF Business Components lets you create view objects in your data model project with rows that you populate at design time. Typically, you create view objects with static data when you have a small amount of data to maintain and you do not expect that data to change frequently. The decision whether to use a lookup table from the database or whether to use a static view object based on a list of hardcoded values depends on the size and nature of the data. The static view object is useful when you have no more than 100 entries to list. Any larger number of rows should be read from the database with a conventional table-based view object. The static view object has the advantage of being easily translatable. However, all of the rows of a static view object will be retrieved at once and therefore, using no more than 100 entries yields the best performance.
Best Practice: When you need to create a view object to access a small list of static data, you should use the static view object rather than query the database. The static view object is ideal for lists not exceeding 100 rows of data. Because the Create View Object wizard saves the data in a resource message file, these data are easily translatable. |
Static list view objects are useful as an LOV data source when it is not desirable to query the database to supply the list of values. Suppose your order has the following statuses: open, closed, pending. You can create a static view object with these values and define an LOV on the static view object's status attribute. Because the wizard stores the values of the status view object in a translatable resource file, the UI will display the status values using the resource file corresponding to the application's current locale.
You use the Create View Object wizard to create static view objects. The wizard lets you define the desired attributes (columns) and enter as many rows of data as necessary. The wizard displays the static data table as you create it.
Note: Because the data in a static view object does not originate in database tables, the view object will be read-only. |
You can also use the Create View Object wizard to create the attributes based on data from a comma-separated value (CSV) file format like a spreadsheet file. The wizard will attempt to create the attributes that you define in the wizard with data from the first row of the flat file.
To manually create attributes for a static view object:
If this is the first component you're creating in the project, the Initialize Business Components Project dialog appears to allow you to select a database connection.
Using the Import feature of the Create View Object wizard, you can create a static data view object with attributes based on data from a comma-separated value (CSV) file format like a spreadsheet file. The wizard will use the first row of a CSV flat file to identify the attributes and will use the subsequent rows of the CSV file for the data for each attribute. For example, if your application needs to display choices for international currency, you might define the columns Symbol, Country, and Description in the first row and then add rows to define the data for each currency type, as shown in Figure 5-15.
To create attributes of a static view object based on a flat file:
If this is the first component you're creating in the project, the Initialize Business Components Project dialog appears to allow you to select a database connection.
When the static data will be loaded from a CSV flat file, you can optionally skip this step. If you do not create the attributes yourself, the wizard will attempt to use the first row of the CSV file to create the attributes. However, if you create the attributes in the wizard, then the attributes you create must match the order of the columns defined by the flat file. If you have created fewer attributes than columns, the wizard will ignore extra columns during import. Conversely, if you create more attributes than columns, the wizard will define extra attributes with the value NULL
.
To edit an attribute value, double-click in the value field.
To enter values for the attributes of a new row, double-click in the value field.
When you create a static view object, the overview editor for the view object displays the rows of data that you defined in the wizard. You can use the editor to define additional data, as shown in Figure 5-16.
The generated XML definition for the static view object contains one transient attribute for each column of data. For example, if you import a CSV file with data that describes international currency, your static view object might contain a transient attribute for Symbol
, Country
, and Description
, as shown in Example 5-1.
Example 5-1 XML Definition for Static View Object
Because the data is static, the overview editor displays no Query page and the generated XML definition for the static view object contains no query statement. Instead, the <ResourceBundle>
element in the XML definition references a resource bundle file. The resource bundle file describes the rows of data and also lets you localize the data. When the default resource bundle type is used, the file ModelName
Bundle.properties
appears in the data model project, as shown in Example 5-2.
Example 5-2 Default Resource Bundle File for Static View Object
When you need to make changes to the static list table, double-click the view object in the Application Navigator to open the overview editor for the view object. You can add and delete attributes (columns in the static list table), add or delete rows (data in the static list table), sort individual rows, and modify individual attribute values. The editor will update the view object definition file and save the attribute names in the message bundle file.
The static list view object has a limited purpose in the application module's data model. Unlike entity-based view objects, static list view objects will not be updatable. You use the static list view object when you want to display read-only data to the end user and you do not want to create a database table for the small amount of data the static list table contains.
Applications that need to query data over a specific date range can generate date-effective row sets. To define an date-effective view object you must create an entity-based view object that is based on an date-effective entity object. User control over the view object's effective date usage is supported by metadata on the view object at design time. At runtime, ADF Business Components generates the query filter that will limit the view rows to an effective date.
Whether or not the query filter for an effective date will be generated depends on the value of the Effective Dated property displayed in the Property Inspector for the view object (to view the property, select any tab in the overview editor for the view object other than Attributes).
Note: Because the date-effective view object must be based on an date-effective entity object, setting a view object's Effective Dated property to True without an underlying date-effective entity object, will result in a runtime exception. |
The overview editor for the view object does not display the date-effective query clause in the WHERE
clause. You can use the Explain Plan dialog or Test Query dialog to view the clause. A typical query filter for effective dates looks like this:
(:Bind_SysEffectiveDate BETWEEN Person.EFFECTIVE_START_DATE AND Person.EFFECTIVE_END_DATE)
At runtime, the bind value for the query is obtained from a property of the root application module. In order to set the effective date for a transaction, use code similar to the following snippet:
am.setProperty(ApplicationModule.EFF_DT_PROPERTY_STR, new Date("2008-10-01));
If you do not set EFF_DT_PROPERTY_STR
on the application module, the current date is used in the query filter, and the view object returns the effective rows filtered by the current date.
The view object has its own transient attribute, SysEffectiveDate
, that you can use to set the effective date for view rows. Otherwise, the SysEffectiveDate
attribute value for new rows and defaulted rows is derived from the application module. ADF Business Components propagates the effective date from the view row to the entity object during DML operations only.
Before you begin:
The view object you create should be based on the effective dated entity object you created. In the Attributes page of the wizard, be sure to add the date-effective attributes that specify the start date and end date on the entity object to the Selected list for the view object.
To enable effective dates for a view object using the SysEffectiveDate attribute:
If the Name category is not displayed in the Property Inspector, click the General navigation tab in the overview editor to set the proper focus.
No additional steps are required once you have confirmed that the view object has inherited the desired attributes from the date-effective entity object.
Creating (inserting) date-effective rows is similar to creating or inserting ordinary view rows. The start date and end date can be specified as follows:
In either case, during entity validation, the new row is checked to ensure that it does not introduce any gaps or overlaps. During post time, ADF Business Components will acquire a lock on the previous row to ensure that the gap or overlaps are not created upon the row insert.
You can update view rows by using API calls like Row.setAttribute()
. ADF Business Components supports various modes to initiate the row update.
To set the update mode, invoke the Row.setEffectiveDateMode(int mode)
method with one of the following mode constants.
CORRECTION
(Correction Mode) The effective start date and effective end dates remain unchanged. The values of the other attributes may change. This is the standard row update behavior.
UPDATE
(Update Mode) The effective end date of the row will be set to the effective date. All user modifications to the row values are reverted on this row. A new row with the modified values is created. The effective start date of the new row is set to the effective date plus one day, and the effective end date is set to end of time. The new row will appear after the transaction is posted to the database.
UPDATE_OVERRIDE
(Update Override Mode) The effective end date of the modified row will be set to the effective date. The effective start date of the next row is set to effective date plus one day.
UPDATE_CHANGE_INSERT
(Change Insert Mode) The effective end date of the modified row should be set to the effective date. All user modifications to the row values are reverted on this row. A new row with the modified values will be created. The effective start date of the new row is set to effective date plus one day, and the effective end date is set to effective start date of the next row minus one day. The new row will appear after the transaction is posted to the database.
ADF Business Components supports various modes to initiate the row deletion. You can mark view rows for deletion by using API calls like RowSet.removeCurrentRow()
or Row.remove()
.
To set the deletion mode, invoke the Row.setEffectiveDateMode(int mode)
method with one of the following mode constants.
DELETE
(Delete Mode) The effective date of the row is set to the effective date. The operation for this row is changed from delete to update. All rows with the same noneffective date key values and with an effective start date greater than the effective date are deleted.
DELETE_NEXT_CHANGE
(Delete Next Change Mode) The effective end date of the row is set to the effective end date of the next row with the same noneffective date key values. The operation for this row is changed from delete to update. The next row is deleted.
FUTURE_CHANGE
(Delete Future Change Mode) The effective end date of the row is set to the end of time. The operation for this row is changed from delete to update. All future rows with the same noneffective date key values are deleted.
ZAP
(Zap Mode) All rows with the same non-effective date key values are deleted.
The effective date mode constants are defined on the row interface as well.
When you create an date-effective view object, the view object inherits the transient attribute SysEffectiveDate
from the entity object to store the effective date for the row. Typically, the insert/update/delete operations modify the transient attribute while Oracle ADF decides the appropriate values for effective start date and effective end date.
The query displayed in the overview editor for the date-effective view object does not display the WHERE
clause needed to filter the effective date range. To view the full query for the date-effective view object, including the WHERE
clause, edit the query and click Explain Plan in the Edit Query dialog. The following sample shows a typical query and query filter for effective dates:
Example 5-3 shows sample XML entries that are generated when you create an date-effective view object.
Example 5-3 XML Definition for Date-Effective View Object
Effective dated associations and view links allow queries to be generated that take the effective date into account. The effective date of the driving row is passed in as a bind parameter during the query execution.
While it is possible to create a noneffective dated association between two entities when using the Create Association wizard or Create View Link wizard, JDeveloper will by default make the association or link effective dated if one of the ends is effective dated. However, when the association or view link exists between an effective dated and a noneffective dated object, then at runtime ADF Business Components will inspect the effective dated nature of the view object or entity object before generating the query clause and binding the effective date. The effective date is first obtained from the driving row. If it is not available, then it is obtained from the property EFF_DT_PROPERTY_STR
of the root application module. If you do not set EFF_DT_PROPERTY_STR
for the application module, the current date is used in the query filter on the driving row and applied to the other side of the association or view link.
Many queries you will work with will involve multiple tables that are related by foreign keys. In this scenario, you join the tables in a single view object query to show additional descriptive information in each row of the main query result. You use the Create View Object wizard to define the query using declarative options. Whether your view object is read-only or entity-based determines how you can define the join:
WHERE
clause. You can declaratively specify the type of join you want to result from the entity objects. Inner join (equijoin) and outer joins are both supported. WHERE
clause. In this case, you must select the columns from the tables that you want to join. Figure 5-18 illustrates the rows resulting from two tables queried by a view object that defines a join query. The join is a single flattened result.
It is extremely common in business applications to supplement information from a primary business domain object with secondary reference information to help the end user understand what foreign key attributes represent. Take the example of the OrderItems
entity object. It contains foreign key attribute of type Number
like:
ProductId
, representing the product to which the order item pertains From experience, you know that showing an end user exclusively these "raw" numerical values won't be very helpful. Ideally, reference information from the view object's related entity objects should be displayed to improve the application's usability. One typical solution involves performing a join query that retrieves the combination of the primary and reference information. This is equivalent to populating "dummy" fields in each queried row with reference information based on extra queries against the lookup tables.
When the end user can change the foreign key values by editing the data, this presents an additional challenge. Luckily, entity-based view objects support easily including reference information that's always up to date. The key requirement to leverage this feature is the presence of associations between the entity object that act as the view object's primary entity usage and the entity objects that contribute reference information.
To include reference entities in a join view object, use the Create View Object wizard. The Create View Object wizard lets you specify the type of join:
Select when you want the view object to return all rows between two or more entity objects, where each entity defines the same primary key column. The inner join view object will not return rows when a primary key value is missing from the joined entities.
Select when you want the view object to return all rows that exist in one entity object, even though corresponding rows do not exist in the joined entity object. Both left and right outer join types are supported. The left and right designation refers to the source (left) and destination (right) entity object named in an association. For details about changing the default inner join to an outer join, see Section 5.5.5, "How to Modify a Default Join Clause to Be an Outer Join When Appropriate."
Both inner joins and outer joins are supported with the following options:
Select when you want the data from the entity object to be treated as reference information for the view object. Automatic lookup of the data is supported and attribute values will be dynamically fetched from the entity cache when a controlling key attribute changes.
Deselect when you want to prevent the view object from modifying any entity attributes in the entity object. By default, the first entity object (primary) in the Selected list is updatable and subsequent entity objects (secondary) are not updatable. To understand how to create a join view object with multiple updatable entity usages, see Section 39.9, "Creating a View Object with Multiple Updatable Entities."
Select when you have defined the entity as updatable and you want the action of removing rows in the UI to delete the participating reference entity object. This option is disabled for the primary entity. For example, while it may be possible to delete an order item, it should not be possible to delete the order when a remove row is called from the join view object.
Before you begin:
Create the desired entity objects as described in Section 4.2.1, "How to Create Multiple Entity Objects and Associations from Existing Tables."
To create a view object that joins entity objects:
When you want to modify an existing view object that you created to include reference information from its related entity objects, double-click the view object and open the Entity Objects page in the overview editor for the view object.
The list is not limited to a single, primary entity usage.
The Association dropdown list shows you the name of the association that relates the selected secondary entity usage to the primary one. For example, Figure 5-19 shows the result of adding one secondary reference entity usage, ShippingOptionTranslationEO
, in addition to the primary ShippingOptionBaseEO
entity usage. The association that relates to this secondary entity usage is ShippingOptionTranslationFkAssociation
.
For each secondary entity usage, the Reference option is enabled to indicate that the entity provides reference information and that it is not the primary entity. The Updatable option is disabled. This combination represents the typical usage. However, when you want to create a join view object with multiple, updatable entity usages, see Section 39.9, "Creating a View Object with Multiple Updatable Entities."
Secondary entity usages that are updatable can also have the Participate in row delete option enabled. This will allow secondary entity attributes to appear NULL
when the primary entity is displayed.
The same attribute name often results when the reference and secondary entity objects derive from the same table. Figure 5-20 shows the attribute ShippingOptionId1
in the Select Attribute dropdown list, which has been renamed to ShippingOptionTranslationId
in the Name field.
After adding secondary entity usages, you can use the overview editor for the view object to select the specific, additional attributes from these new usages that you want to include in the view object.
Tip: The overview editor lets you sort attributes displayed in the Attributes page by their entity usages. By default, the attributes table displays attributes in the order they appear in the underlying entity object. To sort the attributes by entity usage, click the header for the Entity Usage column of the attributes table. If the Entity Usage column does not appear in the attributes table, click the dropdown menu icon on the top-right corner of the table (below the button bar) and choose Select Columns to add the column to the Selected list. |
To select attributes from a secondary entity usage:
Note that even if you didn't intend to include them, JDeveloper automatically verifies that the primary key attribute from each entity usage is part of the Selected list. If it's not already present in the list, JDeveloper adds it for you. When you are finished, the overview editor Query page shows that JDeveloper has included the new columns in the SELECT
statement.
The view object attribute corresponding to the primary key attribute of the primary entity usage acts as the primary key for identifying the view row. When you add secondary entity usages, JDeveloper marks the view object attributes corresponding to their primary key attributes as part of the view row key as well. When your view object consists of a single updatable primary entity usage and a number of reference entity usages, the primary key attribute from the primary entity usage is enough to uniquely identify the view row. Further key attributes contributed by secondary entity usages are not necessary and you should disable their Key Attribute settings.
For example, based on the view object with primary entity usage ShippingOptionEO
, you could disable the Key Attribute property for the ShippingOptionTranslationEO
entity usage so that this property is no longer selected for this additional key attribute: ShippingTranslationsId
.
To remove unnecessary key attributes:
Since you generally won't want to display the primary key attributes that were automatically added to the view object, you can set the attribute's Display Hint property in the Control Hints page of the Edit Attribute dialog to Hide.
To hide the primary key attribute:
When you add a secondary entity usage to a view object, the entity usage is related to an entity usage that precedes it in the list of selected entities. This relationship is established by an entity association displayed in the Association dropdown list in the Entity Objects page of the overview editor for the view object. You use the Association dropdown list in the editor to select the entity association that relates the secondary entity usage to the desired preceding entity usage in the Selected list. The name of the preceding entity usage is identified in the Source Usage dropdown list.
When JDeveloper creates the WHERE
clause for the join between the table for the primary entity usage and the tables for related secondary entity usages, by default it always creates inner joins. You can modify the default inner join clause to be a left or right outer join when appropriate. The left designation refers to the source entity object named in the selected association. This is the entity identified in the Source Usage dropdown list. The right designation refers to the current secondary entity usage that you have selected in the Selected list.
In the left outer join, you will include all rows from the left table (related to the entity object named in the Source Usage list) in the join, even if there is no matching row from the right table (related to the current secondary entity object selection). The right outer join specifies the reverse scenario: you will include all rows from the right table (related to the entity object named in the Source Usage list) in the join, even if there is no matching row from the left table (related to the current secondary entity object selection).
For example, assume that a person is not yet assigned a membership status. In this case, the MembershipId
attribute will be NULL
. The default inner join condition will not retrieve these persons from the MEMBERSHIPS_BASE
table. Assuming that you want persons without membership status to be viewable and updatable through the MembershipDiscountsVO
view object, you can use the Entity Objects page in the overview editor for the view object to change the query into an left outer join to the MEMBERSHIPS_BASE
table for the possibly null MEMBERSHIP_ID
column value. When you add the person entity to the view object, you would select the left outer join as the join type. As shown in Figure 5-21, the association PersonsMembershipsBaseFkAssoc
identifies a source usage MembershipBaseEO
on the left side of the join and the selected PersonEO
entity usage on the right side. The view object MembershipDiscountsVO
joins the rows related to both of these entity objects and defines a left outer join for PersonEO
to allow the view object to return rows from the table related to MembershipBaseEO
even if they do not have a match in the table related to PersonEO
.
The view object's updated WHERE
clause includes the addition (+)
operator on the right side of the equals sign for the related table whose data is allowed to be missing in the left outer join:
Before you begin:
Create the desired entity objects and associations as described in Section 4.2.1, "How to Create Multiple Entity Objects and Associations from Existing Tables."
To change an inner join type to an outer join:
The entity object you select represents the table on the right side of the join.
The entity object you select represents the table on the right side of the join.
The entity object in the Source Usage dropdown list that you choose through the association selection represents the table on the left side of the join.
The Source Usage dropdown list is the left side of the join and the current entity usage in the Selected list is the right side.
When you create a join view object to include secondary entity usages by reference, JDeveloper updates the view object's XML component definition to include information about the additional entity usages. For example, the ShippingOptionsVO.xml
file for the view object includes an additional reference entity usage. You will see this information recorded in the multiple <EntityUsage>
elements. For example, Example 5-0 shows an entity usage entry that defines the primary entity usage.
Example 5-4 Primary Entity Usage
The secondary reference entity usages will have a slightly different entry, including information about the association that relates it to the primary entity usage, like the entity usage shown in Example 5-5.
Example 5-5 Secondary Reference Entity Usage
Each attribute entry in the XML file indicates which entity usage it references. For example, the entry for the ShippingOptionId
attribute in Example 5-6 shows that it's related to the ShippingOptionBaseEO
entity usage, while the ShippingMethod
attribute is related to the ShippingOptionTranslationEO
entity usage.
Example 5-6 Entity Usage Reference of View Object Attribute
The Create View Object wizard uses this association information at design time to automatically build the view object's join WHERE
clause. It uses the information at runtime to enable keeping the reference information up to date when the end user changes foreign key attribute values.
To create a read-only view object joining two tables, use the Create View Object wizard.
To create a read-only view object joining two tables:
To test the new view object, edit the application module and on the Data Model page add an instance of the new view object to the data model. Then, use the Business Component Browser to verify that the join query is working as expected. For details about editing the data model and running the Business Component Browser, see Section 6.3, "Testing View Object Instances Using the Business Component Browser."
The Quick-pick objects page of the SQL Statement dialog lets you view the tables in your schema, including the foreign keys that relate them to other tables. To include columns in the select list of the query, shuttle the desired columns from the Available list to the Selected list. For example, Figure 5-22 shows the result of selecting the PRODUCT_ID
, PRODUCT_NAME
, and COST_PRICE
columns from the PRODUCTS
table, along with the SUPPLIER_NAME
column from the SUPPLIERS
table. The column from the second table appears, beneath the PRODUCTS_SUPPLIERS_FK
foreign key in the Available list. When you select columns from tables joined by a foreign key, the query builder automatically determines the required join clause for you.
Optionally, use the WHERE
clause page of the SQL Statement dialog to define the expression. To finish creating the query, click OK in the SQL Statement dialog. The Edit Query dialog will show a query like the one shown in Example 5-7.
Example 5-7 Creating a Query Using SQL Builder
You can use the Attributes page of the Create View Object wizard to rename the view object attribute directly as part of the creation process. Renaming the view object here saves you from having to edit the view object again, when you already know the attribute names that you'd like to use. As an alternative, you can also alter the default Java-friendly name of the view object attributes by assigning a column alias, as described in Section 5.9.2, "How to Name Attributes in Expert Mode."
Many queries you will work with will involve multiple tables that are related by foreign keys. In this scenario, you can create separate view objects that query the related information and then link a "source" view object to one or more "target" view objects to form a master-detail hierarchy.
There are two ways you might handle this situation. You can either:
In either case, you use the Create View Link wizard to define the relationship.
Figure 5-23 illustrates the multilevel result that master-detail linked queries produce.
When you want to show the user a set of master rows, and for each master row a set of coordinated detail rows, then you can create view links to define how you want the master and detail view objects to relate. For example, you could link the Persons
view object to the Orders
view object to create a master-detail hierarchy of customers and the related set of orders they have placed.
To create the view link, use the Create View Link wizard.
Before you begin:
Create the desired read-only view objects as described in Section 5.2.3, "How to Create an Expert Mode, Read-Only View Object."
To create a view link between read-only view objects:
OrdersPlacedBy
is a valid name. Click Next. For example, Figure 5-24 shows the PersonId
attribute selected from the PersonsVO
view object to perform this role. Click Next.
For example, if you want the detail query to show orders that were placed by the currently selected customer, select the CustomerId
attribute in the OrdersVO
to perform this role.
Figure 5-24 shows just one (PersonId
,CustomerId
) pair. However, if you require multiple attribute pairs to define the link between master and detail, repeat the steps for the View Objects page to add additional source-target attribute pairs.
By default, the accessor name will match the name of the destination view object. For example, you might change the default accessor name OrdersVO
to CustomerOrders
to better describe the master-detail relationship that the accessor defines.
By default, a view link is a one-way relationship that allows the current row of the source (master) to access a set of related rows in the destination (detail) view object. For example, in Figure 5-25, the checkbox settings indicate that you'll be able to access a detail collection of rows from OrdersVO
for the current row in PersonsVO
, but not vice versa. In this case, this behavior is specified by the checkbox setting in the Destination Accessor group box for the OrdersVO
(the Generate Accessor In View Object: PersonsVO box is selected) and checkbox setting in the Source Accessor group box for PersonsVO
(the Generate Accessor In View Object: OrdersVO box is not selected).
By default the view link will not be added to the application module's data model. Later you can add the view link to the data model using the overview editor for the application module.
Just as with read-only view objects, you can link entity-based view objects to other view objects to form master-detail hierarchies of any complexity. The only difference in the creation steps involves the case when both the master and detail view objects are entity-based view objects and their respective entity usages are related by an association. In this situation, since the association captures the set of source and destination attribute pairs that relate them, you create the view link just by indicating which association it should be based on.
To create an association-based view link, you use the Create View Link wizard.
Before you begin:
Create the desired entity-based view objects as described in Section 5.2.1, "How to Create an Entity-Based View Object."
To create an association-based view link
To avoid having to type in the package name in the Create View Link wizard, you can choose New View Link on the context menu of the links package node in the Application Navigator.
For entity-based view objects, notice that in addition to the view object attributes, relevant associations also appear in the list.
For example, Figure 5-26 shows the same OrderItemsOrdersFkAssoc
association in both Source and Destination trees selected.
When you create a view link or an association-based view link, JDeveloper creates the XML component definition file that represents its declarative settings and saves it in the directory that corresponds to the name of its package. For example, if the view link is named OrderInfoToOrderItemsInfo
and it appears in the queries.links
package, then the XML file created will be ./queries/link/OrderInfoToOrderItemsInfo.xml
under the project's source path. This XML file contains the declarative information about the source and target attribute pairs you've specified and, in the case of an association-based view link, contains the declarative information about the association that relates the source and target view objects you've specified.
In addition to saving the view link component definition itself, JDeveloper also updates the XML definition of the source view object in the view link relationship to add information about the view link accessor you've defined. As a confirmation of this, you can select the source view object in the Application Navigator and inspect its details in the Structure window. As shown in Figure 5-27, you can see the defined accessor in the ViewLink Accessors node for the OrderItemsInfoVO
source view object of the OrderInfoToOrderItemsInfo
view link.
Note: A view link defines a basic master-detail relationship between two view objects. However, by creating more view links you can achieve master-detail hierarchies of any complexity, including:
The steps to define these more complex hierarchies are the same as the ones covered in Section 5.6.2, "How to Create a Master-Detail Hierarchy for Entity-Based View Objects," you just need to create it one view link at time. |
When you enable programmatic navigation to a row set of correlated details by defining a view link as described in Section 5.6.2, "How to Create a Master-Detail Hierarchy for Entity-Based View Objects," the view link plays a passive role, simply defining the information necessary to retrieve the coordinated detail row set when your code requests it. The view link accessor attribute is present and programmatically accessible in any result rows from any instance of the view link's source view object. In other words, programmatic access does not require modifying the application module's data model.
However, since master-detail user interfaces are such a frequent occurrence in enterprise applications, the view link can be also used in a more active fashion so you can avoid needing to coordinate master-detail screen programmatically. You opt to have this active master-detail coordination performed by explicitly adding an instance of a view-linked view object to your application module's data model.
To enable active master-detail coordination, open the application module in the overview editor and select the Data Model page.
Before you begin:
Create the desired view objects as described in Section 5.2.1, "How to Create an Entity-Based View Object" and Section 5.2.3, "How to Create an Expert Mode, Read-Only View Object."
To add a detail instance of a view object:
Note that the list shows the detail view object twice: once on its own, and once as a detail view object via the view link. For example, in Figure 5-28 you would select the detail view object OrderItemsInfoVO via OrderInfoToOrderItemInfo
instead of the view object labeled as OrderItemsInfoVO
(which, in this case, appears beneath the highlighted view object).
For example, Figure 5-28 shows the name OrderItemsDetailVO
for the instance of the OrderItemsInfoVO
view object that is a detail view.
For example, in Figure 5-29, the Data Model list shows a master-detail hierarchy of view object instances with OrderItemsDetailVO
as the detail view object.
To test active master-detail coordination, launch the Business Component Browser on the application module by choosing Run from its context menu in the Application Navigator. The Business Component Browser data model tree shows the view link instance that is actively coordinating the detail view object instance with the master view object instance. You can double-click the view link instance node in the tree to open a master-detail data view page in the Business Component Browser. Then, when you use the toolbar buttons to navigate in the master view object — changing the view object's current row as a result — the coordinated set of details is automatically refreshed and the user interface stays in sync.
If you double-click another view object that is not defined as a master and detail, a second tab will open to show its data; in that case, since it is not actively coordinated by a view link, its query is not constrained by the current row in the master view object.
For information about editing the data model and running the Business Component Browser, see Section 6.3, "Testing View Object Instances Using the Business Component Browser."
To work with view links effectively, you should also understand that view link accessor attributes return a RowSet
object and that you can access a detail collection using the view link accessor programmatically.
At runtime, the getAttribute()
method on a Row
object allows you to access the value of any attribute of that row in the view object's result set by name. The view link accessor behaves like an additional attribute in the current row of the source view object, so you can use the same getAttribute()
method to retrieve its value. The only practical difference between a regular view attribute and a view link accessor attribute is its data type. Whereas a regular view attribute typically has a scalar data type with a value like 303
or ngreenbe
, the value of a view link accessor attribute is a row set of zero or more correlated detail rows. Assuming that curUser
is a Row
object from some instance of the Orders
view object, you can write a line of code to retrieve the detail row set of order items:
Note: If you generate the custom Java class for your view row, the type of the view link accessor will beRowIterator . Since at runtime the return value will always be a RowSet object, it is safe to cast the view link attribute value to RowSet . |
Once you've retrieved the RowSet
object of detail rows using a view link accessor, you can loop over the rows it contains just as you would loop over a view object's row set of results, as shown in Example 5-8.
Example 5-8 Programmatically Accessing a Detail Collection
For information about creating a test client, see Section 6.4.6, "How to Access a Detail Collection Using the View Link Accessor."
A recursive data model is one that utilizes a query that names source and destination attributes in a master-detail relationship based on a single table. In a typical master-detail relationship, the source attribute is supplied by the primary key attribute of the master view object and the destination attribute is supplied by foreign key attribute in the detail view object. For example, a typical master-detail relationship might relate the DepartmentId
attribute on the DEPARTMENT
table and the corresponding DepartmentId
attribute on the EMPLOYEE
table. However, in a recursive data model, the source attribute EmployeeId
and the target attribute ManagerId
both exist in the EMPLOYEE
table. The query for this relationship therefore involves only a single view object. In this scenario, you create the view object for a single base entity object that specifies both attributes and then you define a self-referential view link to configure this view object as both the "source" and the "target" view object to form a master-detail hierarchy.
After you create the view link, there are two ways you can handle the recursive master-detail hierarchy in the data model project. You can either:
tree
or treeTable
component, you would use this approach, as described in Section 24.4.1, "How to Display Master-Detail Objects in Trees." In a recursive master-detail hierarchy, the attributes of the view object that you select for the source and destination in the view link will typically be the same pair of attributes that define the self-referential association between the underlying entity object, if this association exists. While this underlying association is not required to create the view link, it does simplify the creation of the view link, so you will first create a foreign key association for the base entity object of the view object.
To create an association, you use the Create Association wizard. Then the association will appear as a selection choice when you use the Create View Link wizard. The view link will be self-referential because the association you select for the source and the destination view object names the same entity object, which is derived from a single database table.
Before you begin:
For example, assume the recursive master-detail hierarchy displays a list of employees based on their management hierarchy. In this scenario, you would create the association based on the Employees
entity object. On the Entity Objects page of the Create Association wizard, you would select Employees.EmployeeId
as the source attribute and Employee.ManagerId
as the destination attribute. The entity object Employees
supplies both attributes to ensure the association is self-referential.
For example, in a recursive hierarchy of managers and employees, you would create the entity-based view object EmployeesView
. After you create the view object in the Create View Object wizard, you can use the Query page of the overview editor to create a bind variable and view criteria which allow you to identify the employee or employees that will be seen at the top of the hierarchy. If only a single employee should appear at the root of the hierarchy, then the view criteria in this scenario will filter the employees using a bind variable for the employee ID (corresponding to the source attribute) and the WHERE
clause shown in the Create View Criteria dialog would look like ((Employees.EMPLOYEE_ID = :TheEmployeeId))
, where TheEmployeeId
is the bind variable name. For more information on creating a view criteria that uses a bind variable to filter the view object, see Section 5.12.2.1, "Creating a Data Source View Object to Control the Cascading List."
When you are ready to expose the employees view object in your project's data model, you will configure the view instance in the data model to use this view criteria to filter the initial employee in the root of the tree. You'll configure the bind variable to specify the employee ID of the employee that you want to be the root value of the entire hierarchy. For example, the root value of the recursive hierarchy of managers and employees would be the employee ID of the highest level manager in the organization.
To create an association-based, self-referential view link:
To avoid having to type in the package name in the Create View Link wizard, you can choose New View Link on the context menu of the links package node in the Application Navigator.
For entity-based view objects, notice that in addition to the view object attributes, relevant associations also appear in the list.
For example, Figure 5-30 shows the same EmpManagersFkAssoc
association in both Source and Destination trees selected. The view link is self-referential because the definition of the association names the source and destination attribute on the same entity object (in this case, Employees
).
For example, Figure 5-31 shows the destination accessor has been renamed from EmployeesView
to StaffList
. This name will be exposed in the binding editor when the user interface developer populates the ADF Faces tree component by selecting this accessor. The name you provide will make clear to the UI developer the purpose of the accessor; in this case, to generate a list of employees associated with each manager.
To define the view object instance in an existing application module:
The New View Instance field below the list shows the name that will be used to identify the next instance of that view object that you add to the data model.
Figure 5-32 shows the view object EmployeesView
has been renamed to Employees
before it was shuttled to the Data Model list.
Figure 5-33 shows the view object ByEmployeeId
view criteria with the bind parameter TheEmployeeId
set to the value 100
corresponding to the employee that is at the highest level of the hierarchy.
When you create an self-referential view link, JDeveloper creates the XML component definition file that represents its declarative settings and saves it in the directory that corresponds to the name of its package. This XML file contains the declarative information about the source and target attribute pairs that the association you selected specifies and contains the declarative information about the association that relates the source and target view object you selected.
Example 5-9 shows how the EmpManagerFkLink
defines the same view object EmployeesView
for the source and destination in its XML component definition file.
Example 5-9 Self-Referential View Link Defined in XML
In addition to saving the view link component definition itself, JDeveloper also updates the XML definition of the view object to add information about the view link accessor you've defined. As a confirmation of this, you can select the view object in the Application Navigator and inspect its details in the Structure window. As shown in Figure 5-34, you can see the defined accessor in the ViewLink Accessors node for the EmployeesView
view object of the EmpManagerFkLink
view link.
At runtime, when ADF Business Components works with JDBC to pass a query to the database and retrieve the result, the mechanism to retrieve the data is the SQL query. As an alternative to creating view objects that specify a SQL statement at design time, you can create entity-based view objects that contain no SQL statements. This capability of the ADF Business Components design time and runtime is known as declarative SQL mode. When the data model developer works with the wizard or editor for a view object in declarative SQL mode, they require no knowledge of SQL. In declarative SQL mode, the view object's metadata causes the ADF Business Components runtime to generate the SQL query statements as follows:
SELECT
and FROM
lists based on the rendered web page's databound UI components' usage of one or more entity objects' attributes Specifying the runtime query statement based solely on databound UI component attribute usage is an optimization that you control at the level of each view object attribute by changing the attribute's IsSelected
property setting. By default, the property setting is IsSelected=true
for each attribute that you add to the view object in declarative SQL mode. The default setting specifies the added attribute will be selected in the SQL statement regardless of whether or not the attribute is exposed in the UI by a databound component. For details about changing the property setting to optimize the runtime query statement, see Section 5.8.1, "How to Create SQL-Independent View Objects with Declarative SQL Mode."
WHERE
clause based on a view criteria that you add to the view object definition ORDERBY
clause based on a sort criteria that you add to the view object definition. WHERE
clause to support table joins based on named view criteria that you add to the view object definition WHERE
clause to support master-detail view filtering based on a view criteria that you add to either the source or destination of a view link definition Additionally, the SQL statement that a declarative SQL mode view object generates at runtime will be determined by the SQL flavor specified in the Business Components page of the Project Properties dialog.
Note: Currently, the supported flavors for runtime SQL generation are SQL92 (ANSI) style and Oracle style. For information about setting the SQL flavor for your project, see Section 3.3.1, "Choosing a Connection, SQL Flavor, and Type Map." |
Declarative SQL mode selection is supported in JDeveloper as a setting that you can apply either to the entire data model project or to individual view objects that you create. The ADF Business Components design time also allows you to override the declarative SQL mode project-level setting for any view object you create.
The alternatives to declarative SQL mode are normal mode and expert mode. When you work in either of those modes, the view object definitions you create at design time always contain the entire SQL statement based on the SQL flavor required by your application module's defined database connection. Thus the capability of SQL independence does not apply to view objects that you create in normal or expert mode. For information about using the wizard and editor to customize view objects when SQL is desired at design time, see Section 5.2, "Populating View Object Rows from a Single Database Table."
All view objects that you create in JDeveloper rely on the same design time wizard and editor. However, when you enable declarative SQL mode, the wizard and editor change to support customizing the view object definition without requiring you to display or enter any SQL. For example, the Query page of the Create View Object wizard with declarative SQL mode enabled lacks the Generated SQL field present in normal mode.
Additionally, in declarative SQL mode, since the wizard and editor do not allow you to enter WHERE
and ORDERBY
clauses, you provide equivalent functionality by defining a view criteria and sort criteria respectively. In declarative SQL mode, these criteria appear in the view object metadata definition and will be converted at runtime to their corresponding SQL clause. When the databound UI component has no need to display filtered or sorted data, you may omit the view criteria or sort criteria from the view object definition.
Otherwise, after you enable declarative SQL mode, the basic procedure to create a view object with ensured SQL independence is the same as you would follow to create any entity-based view object. For example, you must still ensure that your view object encapsulates the desired entity object metadata to support the intended runtime query. As with any entity-based view object, the columns of the runtime-generated FROM
list must relate to the attributes of one or more of the view object's underlying entity objects. In declarative SQL mode, you automatically fulfill this requirement when working with the wizard or editor when you add or remove the attributes of the entity objects on the view object definition.
If you prefer to optimize the declarative SQL query so that the SELECT
and FROM
clauses of the SQL query statement are based solely on whether or not the attributes you add to the view object are rendered at runtime by a databound UI component, then you must disable the Selected in Query checkbox (sets IsSelected=false
for the view object definition) for all added attributes. By default, the IsSelected
property is true
for any attribute that you add to the view object in declarative SQL mode. The default setting means the added attribute will be selected in the SQL statement regardless of whether or not the attribute is exposed by a databound UI component. When you create a new view object in declarative SQL mode, you can use the Attribute Settings page of the Create View Object wizard to change the setting for each attribute. If you need to alter this setting after you generate the view object, you can use the Property Inspector to change the Selected in Query property setting for one or more attributes that you select in the Attributes page of the view object editor.
Performance Tip: A view object instance configured to generate SQL statements dynamically will requery the database during page navigation if a subset of all attributes with the same list of key entity objects is used in the subsequent page navigation. Thus performance can be improved by activating a superset of all the required attributes to eliminate a subsequent query execution. |
Thus there are no unique requirements for creating entity-based view objects in declarative SQL mode, nor does declarative SQL mode sacrifice any of the runtime functionality of the normal mode counterpart. You can enable declarative SQL mode as a global preference so that it is the Create View Object wizard's default mode, or you can leave the setting disabled and select the desired mode directly in the wizard. The editor for a view object also lets you select and change the mode for an existing view object definition.
To enable declarative SQL mode for all new view objects:
To predetermine how the FROM
list will be generated at runtime you can select Include all attributes in runtime-generated query, as described in Section 5.8.4, "How to Force Attribute Queries for Declarative SQL Mode View Objects."
To create an entity-based view object in declarative SQL mode, use the Create View Object wizard, which is available from the New Gallery.
Before you begin:
Create the desired entity objects as described in Section 4.2.1, "How to Create Multiple Entity Objects and Associations from Existing Tables."
To create declarative SQL-based view objects:
Any other choice for the data selection will disable declarative SQL mode in the Create View Object wizard.
When you want to create a view object that joins entity objects, you can add secondary entity objects to the list. To create more complex entity-based view objects, see Section 5.5.1, "How to Create Joins for Entity-Based View Objects."
You should select any attribute that you intend to customize (in the Attribute Settings page) or any attributes that you intend to use in a view criteria or sort criteria (in the Query page). Additionally, the tables that appear in the FROM
list of the runtime-generated query will be limited to the tables corresponding to the attributes of the entity objects you select.
By default, the Selected in Query checkbox is enabled for all view object attributes that you add in declarative SQL mode. This default setting will generate a SQL statement with all added attributes selected. When you deselect the checkbox for an attribute, the IsSelected
property is set to false
and whether or not the attribute is selected will be determined at runtime by the databound UI component's usage of the attribute.
If you did not select Enable declarative SQL mode for new objects, in the Preferences dialog, the wizard displays the default query mode, Normal. Changing the mode to Declarative in the wizard allows you to override the default mode for this single view object.
Click Edit next to the Where field to define the view criteria you will use to filter the data. The view criteria you enter will be converted at runtime to a WHERE
clause that will be enforced on the query statement. For information about specifying view criteria, see Section 5.11, "Working with Named View Criteria."
In the Order By field select the desired attribute in the Available list and shuttle it to the Selected list. Attributes you do not select will not appear in the SQL ORDERBY
clause generated at runtime. Add additional attributes to the Selected list when you want the results to be sorted by more than one column. Arrange the selected attributes in the list according to their sort precedence. Then for each sort attribute, assign whether the sort should be performed in ascending or descending order. Assigning the sort order to each attribute ensures that attributes ignored by the UI component still follow the intended sort order.
For example, as shown in Figure 5-35, to limit the CustomerCardStatus
view object to display only the rows in the CUSTOMERS
table for customers with a specific credit card code, the view criteria in the Where field limits the CardTypeCode
attribute to a runtime-determined value. To order the data by customer ID and the customer's card expiration date, the Order By field identifies those attributes in the Selected list.
When you create an entity-based view object you can reference more than one entity object in the view object definition. In the case of view objects you create in declarative SQL mode, whether the base entity objects are activated from the view object definition will depend on the requirements of the databound UI component at runtime. If the UI component displays attribute values from multiple entity objects, then the SQL generated at runtime will contain a JOIN
operation to query the appropriate tables.
Just as with any view object that you create, it is possible to filter the results from table joins by applying named view criteria. In the case of normal mode view objects, all entity objects and their attributes will be referenced by the view object definition and therefore will be automatically included in the view object's SQL statement. However, by delaying the SQL generation until runtime with declarative SQL mode, there is no way to know whether the view criteria should be applied.
Note: In declarative SQL mode, you can define a view criteria to specify theWHERE clause (optional) when you create the view object definition. This type of view criteria when it exists will always be applied at runtime. For a description of this usage of the view criteria, see Section 5.8.1, "How to Create SQL-Independent View Objects with Declarative SQL Mode." |
Because a SQL JOIN
may not always result from a view object defined in declarative SQL mode with multiple entity objects, named view criteria that you define to filter query results should be applied conditionally at runtime. In other words, named view criteria that you create for declarative SQL-based view objects need not be applied as required, automatic filters. To support declarative SQL mode, named view criteria that you apply to a view object created in declarative SQL mode can be set to apply only on the condition that the UI component is bound to the attributes referenced by the view criteria. The named view criteria once applied will, however, support the UI component's need to display a filtered result set.
You use the Edit View Criteria dialog to create the named view criteria and enable its conditional usage by setting the appliedIfJoinSatisfied property in the Property Inspector.
To define a view criteria to filter only when the join is satisfied:
The property value true means you want the view criteria to be applied only on the condition that the UI component requires the attributes referenced by the view criteria. The default value false means that the view criteria will automatically be applied at runtime. In the case of declarative SQL mode-based view objects, the value true ensures that the query filter will be appropriate to needs of the view object's databound UI component.
Just as with normal mode view objects, you can link view objects that you create in declarative SQL mode to other view objects to form master-detail hierarchies of any complexity. The steps to create the view links are the same as with any other entity-based view object, as described in Section 5.6.2, "How to Create a Master-Detail Hierarchy for Entity-Based View Objects." However, in the case of view objects that you create in declarative SQL mode, you can further refine the view object results in the Source SQL or Destination SQL dialog for the view link by selecting a previously defined view criteria in the Create View Link wizard or the overview editor for the view link.
To define a view criteria for view link source or view link destination:
Figure 5-35 shows a view criteria that filters the master view object based on customer IDs.
Figure 5-36 Filtering a View Link in Declarative SQL Mode
If the overview editor does not display a dropdown list for view criteria selection, then the view objects you selected for the view link were not created in declarative SQL mode. For view objects created in normal or expert mode, you must edit the WHERE
clause to filter the data as required.
Typically, when you define a declarative SQL mode view object, the attributes that get queried at runtime will be determined by the requirements of the databound UI component as it is rendered in the web page. This is the runtime-generation capability that makes view objects independent of the design time database's SQL flavor. However, you may also need to execute the view object programmatically without exposing it to an ADF data binding in the UI. In this case, you can enable the Include all attributes in runtime-generated query option to ensure that a programmatically executed view object has access to all of the entity attributes.
Note: Be careful to limit the use of the Include all attributes in runtime-generated query option to programmatically executed view objects. If you expose the view object with this setting enabled to a databound UI component, the runtime query will include all attributes. |
The Include all attributes in runtime-generated query option can be specified as a global preference setting or as a setting on individual view objects. Both settings may be used in these combinations:
To set the global preference to include all attributes in the query:
Enabling this option sets a flag in the view object definition but you will still need to add entity object selections and entity object attribute selections to the view object definition.
You can change the view object setting in the Tuning section of the overview editor's General page. The overview editor only displays the Include all attributes in runtime-generated query option if you have created the view object in declarative SQL mode.
To set the view object-specific preference to include all attributes in the query:
You can verify this in the overview editor. In the overview editor, click the Query navigation tab and click the Edit SQL Query button along the top of the page. In the Edit Query dialog, verify that the SQL Mode dropdown list shows the selection Declarative.
Enabling this option forces all attributes of the view object's underlying entity objects to participate in the query. When enabled, it sets a flag in the view object definition but you will still need to add entity object selections and entity object attribute selections to the view object definition.
When you create the view object in declarative SQL mode, three properties get added to the view object's metadata: SelectListFlags
, FromListFlags
, and WhereFlags
. Properties that are absent in declarative SQL mode are the normal mode view object's SelectList
, FromList
, and Where
properties, which contain the actual SQL statement (or, for expert mode, the SQLQuery
element). Example 5-10 shows the three view object metadata flags that get enabled in declarative SQL mode to ensure that SQL will be generated at runtime instead of specified as metadata in the view object's definition.
Example 5-10 View Object Metadata with Declarative SQL Mode Enabled
Similar to view objects that you create in either normal or expert mode, the view object metadata also includes a ViewAttribute
element for each attribute that you select in the Attribute page of the Create View Object wizard. However, in declarative SQL mode, when you "select" attributes in the wizard (or add an attribute in the overview editor), you are not creating a FROM
or SELECT
list in the design time. The attribute definitions that appear in the view object metadata only determine the list of potential entities and attributes that will appear in the runtime-generated statements. For information about how ADF Business Components generates these SQL lists, see Section 5.8.6, "What Happens at Runtime: When a Declarative SQL Mode Query is Generated."
Example 5-11 shows the additional features of declarative SQL mode view objects, including the optional declarative WHERE
clause (DeclarativeWhereClause
element) and the optional declarative ORDERBY
clause (SortCriteria
element).
Example 5-11 View Object Metadata: Declarative View Criteria and Sort Criteria
At runtime, when a declarative SQL mode query is generated, ADF Business Components determines which attributes were defined from the metadata ViewCriteria
element and SortCriteria
element. It then uses these attributes to generate the WHERE
and ORDERBY
clauses. Next, the runtime generates the FROM
list based on the tables corresponding to the entity usages defined by the metadata ViewAttribute
elements. Finally, the runtime builds the SELECT
statement based on the attribute selection choices the end user makes in the UI. As a result, the view object in declarative SQL mode generates all SQL clauses entirely at runtime. The runtime-generated SQL statements will be based on the flavor that appears in the project properties setting. Currently, the runtime supports SQL92 (ANSI) style and Oracle style flavors.
JDeveloper lets you control declarative SQL mode for all new view objects you add to your data model project or for individual view objects you create or edit. These settings may be used in these combinations:
To edit the SQL mode for a view object you have already created, open the Query page in the Edit Query dialog and select Declarative from the SQL Mode dropdown list. To display the Edit Query dialog, open the view object in the overview editor, select Query from the navigation list and click the Edit SQL Query button. The same option appears in the Query page of the Create View Object wizard.
As a convenience to developers, the view object implementation API allows individual attributes to be selected and deselected programmatically. This API may be useful in combination with the view objects you create in declarative SQL mode and intend to execute programmatically. Example 5-12 shows how to call selectAttributeDefs()
on the view object when you want to add a subset of attributes to those already configured with SQL mode enabled.
Example 5-12 ViewObjectImpl API with SQL Mode View Objects
The call to selectAttributeDefs()
adds the attributes in the array to a private member variable of ViewObjectImpl
. A call to executeQuery()
transfers the attributes in the private member variable to the actual select list. It is important to understand that these ViewObjectImpl
attribute calls are not applicable to the client layer and are only accessible inside the Impl
class of the view object on the middle tier.
Additionally, you might call unselectAttributeDefs()
on the view object when you want to deselect a small subset of attributes after enabling the Include all attributes in runtime-generated query option. Alternatively, you can call selectAttributeDefs()
on the view object to select a small subset of attributes after disabling the Include all attributes in runtime-generated query option.
Caution: Be careful not to expose a declarative SQL mode view object executed with this API to the UI since only the value of the Include all attributes in runtime-generated query option will be honored. |
When defining entity-based view objects, you can fully specify the WHERE
and ORDER BY
clauses, whereas, by default, the FROM
clause and SELECT
list are automatically derived. The names of the tables related to the participating entity usages determine the FROM
clause, while the SELECT
list is based on the:
When you require full control over the SELECT
or FROM
clause in a query, you can enable expert mode.
Tips: The view object editors and wizard in the JDeveloper provide full support for generating SQL from choices that you make. For example, two such options allow you to declaratively define outer joins and work in declarative SQL mode (where no SQL is generated until runtime). |
To enable expert mode, select Expert Mode from the SQL Mode dropdown list on the Query panel of the Create View Object wizard. You can also modify the SQL statement of an existing entity-based view object in the view object overview editor. In the overview editor, navigate to the Query page and click the Edit SQL Query button. In the Edit Query dialog, select Expert Mode from the SQL Mode dropdown list.
If your SQL query includes a calculated expression, use a SQL alias to assist the Create View Object wizard in naming the column with a Java-friendly name. Example 5-13 shows a SQL query that includes a calculated expression.
Example 5-13 SQL Query with Calculated Expression
Example 5-14 uses a SQL alias USER_SHORT_NAME
to assist the Create View Object wizard in naming the column with a Java-friendly name. The wizard will display UserShortName as the name of the attribute derived from this calculated expression.
When you enable expert mode, the read-only Generated Statement section of the Query page becomes a fully editable Query Statement text box, displaying the full SQL statement. Using this text box, you can change every aspect of the SQL query.
For example, Figure 5-38 shows the Query page of the Edit Query dialog for the OrderItems
view object. It's an expert mode, entity-based view object that references a PL/SQL function decode
that obtains its input values from an expression set on the ShippingCost
attribute.
When you define a SQL query using expert mode in the Edit Query dialog, you type a SQL language statement directly into the editor. Using this mode places some responsibility on the Business Components developer to understand how the view object handles the metadata resulting from the query definition. Review the following information to familiarize yourself with the behavior of the Edit Query dialog that you use in expert mode.
The automatic cooperation of a view object with its underlying entity objects depends on correct attribute-mapping metadata saved in the XML component definition. This information relates the view object attributes to corresponding attributes from participating entity usages. JDeveloper maintains this attribute mapping information in a fully automatic way for normal entity-based view objects. However, when you decide to use expert mode with a view object, you need to pay attention to the changes you make to the SELECT
list. That is the part of the SQL query that directly relates to the attribute mapping. Even in expert mode, JDeveloper continues to offer some assistance in maintaining the attribute mapping metadata when you do the following to the SELECT
list:
JDeveloper reorders the corresponding view object attribute and maintains the attribute mapping.
JDeveloper converts the corresponding SQL-calculated or entity-mapped attribute related to that expression to a transient attribute.
However, if you rename a column alias in the SELECT
list, JDeveloper has no way to detect this, so it is treated as if you removed the old column expression and added a new one of a different name.
After making any changes to the SELECT
list of the query, visit the Attribute Mappings page to ensure that the attribute-mapping metadata is correct. The table on this page, which is disabled for view objects in normal mode, becomes enabled for expert mode view objects. For each view object attribute, you will see its corresponding SQL column alias in the table. By clicking into a cell in the View Attributes column, you can use the dropdown list that appears to select the appropriate entity object attribute to which any entity-mapped view attributes should correspond.
Note: If the view attribute is SQL-calculated or transient, a corresponding attribute with a "SQL" icon appears in the View Attributes column to represent it. Since neither of these type of attributes are related to underlying entity objects, there is no entity attribute related information required for them. |
When you disable expert mode for a view object, it will return to having its SELECT
and FROM
clause be derived again. JDeveloper warns you that doing this might cause your custom edits to the SQL statement to be lost. If this is what you want, after acknowledging the alert, your view object's SQL query reverts back to the default.
Consider a Products
view object with a SQL-calculated attribute named Shortens
whose SQL expression you defined as SUBSTR(NAME,1,10)
. If you switch this view object to expert mode, the Query Statement box will show a SQL query similar to the one shown in Example 5-15.
Example 5-15 SQL-Calculated Attribute Expression in Expert Mode
If you go back to the attribute definition for the Shortens
attribute and change the SQL Expression field from SUBSTR(NAME,1,10)
to SUBSTR(NAME,1,15)
, then the change will be saved in the view object's XML component definition. Note, however, that the SQL query in the Query Statement box will remain as the original expression. This occurs because JDeveloper never tries to modify the text of an expert mode query. In expert mode, the developer is in full control. JDeveloper attempts to adjust metadata as a result of some kinds of changes you make yourself to the expert mode SQL statement, but it does not perform the reverse. Therefore, if you change view object metadata, the expert mode SQL statement is not updated to reflect it.
Therefore, you need to update the expression in the expert mode SQL statement itself. To be completely thorough, you should make the change both in the attribute metadata and in the expert mode SQL statement. This would ensure — if you (or another developer on your team) ever decides to toggle expert mode off at a later point in time — that the automatically derived SELECT
list would contain the correct SQL-derived expression.
Note: If you find you had to make numerous changes to the view object metadata of an expert mode view object, you can avoid having to manually translate any effects to the SQL statement by copying the text of your customized query to a temporary backup file. Then, you can disable expert mode for the view object and acknowledge the warning that you will lose your changes. At this point JDeveloper will rederive the correct generated SQL statement based on all the new metadata changes you've made. Finally, you can enable expert mode once again and reapply your SQL customizations. |
When changing the SELECT
list expression that corresponds to entity-mapped attributes, don't introduce SQL calculations into SQL statements that change the value of the attribute when retrieving the data. To illustrate the problem that will occur if you do this, consider the query for a simple entity-based view object named Products
shown in Example 5-16.
Example 5-16 Query Statement Without SQL-Calculated Expression
Imagine that you wanted to limit the name column to display only the first ten characters of the name of a product query. The correct way to do that would be to introduce a new SQL-calculated field, such as ShortName
with an expression like SUBSTR(Products.NAME,1,10)
. One way you should avoid doing this is to switch the view object to expert mode and change the SELECT
list expression for the entity-mapped NAME column to the include the SQL-calculate expression, as shown in Example 5-17.
Example 5-17 Query Statement With SQL-Calculated Expression
This alternative strategy would initially appear to work. At runtime, you see the truncated value of the name as you are expecting. However, if you modify the row, when the underlying entity object attempts to lock the row it does the following:
SELECT FOR UPDATE
statement, retrieving all columns as it tries to lock the row. If you see an error like this at runtime even though you are the only user testing the system, it is most likely due to your inadvertently introducing a SQL function in your expert mode view object that changed the selected value of an entity-mapped attribute. In Example 5-17, the SUBSTR(Products.NAME,1,10)
function introduced causes the original selected value of the Name
attribute to be truncated. When the row-lock SQL statement selects the value of the NAME
column, it will select the entire value. This will cause the comparison shown in Example 5-17 to fail, producing the "phantom" error that another user has changed the row.
The same thing would happen with NUMBER
-valued or DATE
-valued attributes if you inadvertently apply SQL functions in expert mode to truncate or alter their retrieved values for entity-mapped attributes.
Therefore, if you need to present altered versions of entity-mapped attribute data, introduce a new SQL-calculated attribute with the appropriate expression to handle the task.
When you change a view object to expert mode, its XML component definition changes from storing parts of the query in separate XML attributes, to saving the entire query in a single <SQLQuery>
element. The query is wrapped in an XML CDATA
section to preserve the line formatting you may have done to make a complex query be easier to understand.
If your expert-mode view object:
ORDERBY
clause specified in the Order By field of the Query Clauses page at design time, or WHERE
clause or ORDERBY
clause applied at runtime using setWhereClause()
or setOrderByClause()
then its query gets nested into an inline view before applying these clauses. For example, suppose your expert mode query was defined like the one shown in Example 5-18.
Example 5-18 Expert Mode Query Specified At Design Time
Then, at runtime, when you set an additional WHERE
clause like email = :TheUserEmail
, the view object nests its original query into an inline view like the one shown in Example 5-19.
Example 5-19 Runtime-Generated Query With Inline Nested Query
And, the view object adds the dynamic WHERE
clause predicate at the end, so that the final query the database sees looks like the one shown in Example 5-20.
Example 5-20 Runtime-Generated Query With Dynamic WHERE Clause
This query "wrapping" is necessary in general for expert mode queries, because the original query could be arbitrarily complex, including SQL UNION
, INTERSECT
, MINUS
, or other operators that combine multiple queries into a single result. In those cases, simply "gluing" the additional runtime WHERE
clause onto the end of the query text could produce unexpected results. For example, the clause might apply only to the last of several UNION
'ed statements. By nesting the original query verbatim into an inline view, the view object guarantees that your additional WHERE
clause is correctly used to filter the results of the original query, regardless of how complex it is.
Inline view wrapping of expert mode view objects, limits a dynamically added WHERE
clause to refer only to columns in the SELECT
list of the original query. To avoid this limitation, when necessary you can disable the use of the inline view wrapping by calling setNestedSelectForFullSql(false)
.
When you modify a view object query to be in expert mode after you have already created the view links that involve that view object or after you created other view objects that extend the view object, JDeveloper will warn you with the alert shown in Figure 5-39. The alert reminds you that you should revisit these dependent components to ensure their SQL statements still reflect the correct query.
For example, if you were to modify the OrdersVO
view object to use expert mode, because the OrdersByStatusVO
view object extends it, you need to revisit the extended component to ensure that its query still logically reflects an extension of the modified parent component.
Bind variables provide you with the means to supply attribute values at runtime to the view object or view criteria. All bind variables are defined at the level of the view object and used in one of the following ways:
WHERE
clause of your view object's query to include values that might change from execution to execution. In this case, bind variables serve as placeholders in the SQL string whose value you can easily change at runtime without altering the text of the SQL string itself. Since the query doesn't change, the database can efficiently reuse the same parsed representation of the query across multiple executions, which leads to higher runtime performance of your application. If the view criteria is to be used in a seeded search, you have the option of making the bind variable updatable by the end user. With this updatable option, end users will be expected to enter the value in a search form corresponding to the view object query.
Bind variables that you add to a WHERE
clause require a valid value at runtime, or a runtime exception error will be thrown. In contrast, view criteria execution need not require the bind variable value if the view criteria item for which the bind variable is assigned is not required. To enforce this desired behavior, the Bind Variable dialog lets you can specify whether a bind variable is required or not.
You can define a default value for the bind variable or write scripting expressions for the bind variable that includes dot notation access to attribute property values. Expressions are based on the Groovy scripting language, as described in Section 3.6, "Overview of Groovy Support."
To add a named bind variable to a view object, use the Query page of the overview editor for the view object. You can define as many bind variables as you need.
Before you begin:
Create the desired view objects as described in Section 5.2.1, "How to Create an Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode, Read-Only View Object."
To define a named bind variable:
Because the bind variables share the same namespace as view object attributes, specify names that don't conflict with existing view object attribute names. As with view objects attributes, by convention bind variable names are created with an initial capital letter, but you can rename it as desired.
WHERE
clause using a bind variable in the clause, select the Required checkbox. This ensures that a runtime exception will be thrown if the value is not supplied. For more information, see Section 5.10.8.3, "Errors Related to Naming Bind Variables." WHERE
clause or when you want to use the bind variable as the assigned value of a view criteria item that is specifically defined as required by a view criteria that is applied to a view object. When Required is unselected this ensures that the value is optional and that no runtime exception will be thrown if the bind variable is not resolved. For example, view criteria with bind variables defined can be used to create Query-by-Example search forms in the user interface. For more information, see Section 5.11, "Working with Named View Criteria." The view layer will use bind variable control hints when you build user interfaces like search pages that allow the user to enter values for the named bind variables. The Updatable checkbox controls whether the end user will be allowed to change the bind variable value through the user interface. If a bind variable is not updatable, then its value can only be changed programmatically by the developer.
After defining the bind variables, the next step is to reference them in the SQL statement. While SQL syntax allows bind variables to appear both in the SELECT
list and in the WHERE
clause, you'll typically use them in the latter context, as part of your WHERE
clause. For example, Example 5-21 shows the bind variables LowUserId
and HighUserId
introduced into a SQL statement created using the Query page in the overview editor for the view object.
Example 5-21 Bind Variables in the WHERE Clause of View Object SQL Statement
Notice that you reference the bind variables in the SQL statement by prefixing their name with a colon like :TheName
or :LowUserId
. You can reference the bind variables in any order and repeat them as many times as needed within the SQL statement.
You can use the Groovy expression adf.context.securityContext.userName
to set the default value for the named bind variable that you use to provide the current user in a view instance filter. Specifically, you can use the bind variable in a named view criteria that you define to filter a view object instance in the data model for the project. For example, in the StoreFront module of the Fusion Order Demo application, the named bind variable userPrincipal
is defined for the PersonsVO
view object, as shown in Figure 5-40.
The PersonsVO
view object also defines the AuthenticatedUserByPrincipalCriteria
view criteria. This view criteria defines a filter for the PrincipalName
attribute of the PersonsVO
with the bind variable userPrincipal
providing the value. In this example, the bind variable userPrincipal
is defined with Updatable enabled. This ensures that the view criteria is able to set the value obtained at runtime from the ADF security context. Since the bind variable is not used in the SQL WHERE
clause for the PersonsVO
view object, the Required field is unselected. This ensures that the value is optional and that no runtime exception will be thrown if the bind variable is not resolved.
Then in the data model for the StoreFrontService
project, where the PersonsVO
specifies the view definition for the usage AuthenticatedUser
, the view criteria AuthenticatedUserByPrincipalCriteria
with the named bind variable is defined as the view usage's runtime filter. For details about creating view instances for your project's data model, see Section 9.2.3.3, "Customizing a View Object Instance that You Add to an Application Module."
Once you've added one or more named bind variables to a view object, you gain the ability to easily see and set the values of these variables at runtime. Information about the name, type, and default value of each bind variable is saved in the view object's XML component definition file. If you have defined UI control hints for the bind variables, this information is saved in the view object's component message bundle file along with other control hints for the view object.
The Business Component Browser allows you to interactively inspect and change the values of the named bind variables for any view object, which can really simplify experimenting with your application module's data model when named bind parameters are involved. For more information about editing the data model and running the Business Component Browser, see Section 6.3, "Testing View Object Instances Using the Business Component Browser."
The first time you execute a view object in the Business Component Browser to display the results in the data view page, a Bind Variables dialog will appear, as shown in Figure 5-41.
The Bind Variables dialog lets you:
:id
" If you defined the bind variable in the Bind Variables dialog with the Reference checkbox deselected (the default), you will be able to test view criteria and supply the bind variable with values as needed. Otherwise, if you selected the Reference checkbox, then you must supply a value for the bind variable in the Business Component Browser. The Business Component Browser will throw the same exception seen at runtime for any view object whose SQL statement use bind variables that do not resolve with a supplied value.
Using the view object's setWhereClause()
method, you can add an additional filtering clause at runtime. This runtime-added WHERE
clause predicate does not replace the design-time generated predicate, but rather further narrows the query result by adding to the existing design time WHERE
clause. Whenever the dynamically added clause refers to a value that might change during the life of the application, you should use a named bind variable instead of concatenating the literal value into the WHERE
clause predicate.
For example, assume you want to further filter the PersonList
view object at runtime based on the value of the PERSON_TYPE_CODE
column in the table. Also assume that you plan to search sometimes for rows where PERSON_TYPE_CODE = 'CUST'
and other times for rows where PERSON_TYPE_CODE = 'SUPP'
. While slightly fewer lines of code, Example 5-22 is not desirable because it changes the WHERE
clause twice just to query two different values of the same PERSON_TYPE_CODE
column.
Example 5-22 Incorrect Use of setWhereClause() Method
Instead, you should add a WHERE
clause predicate that references named bind variables that you define at runtime as shown in Example 5-23.
Example 5-23 Correct Use of setWhereClause() Method and Bind Variable
This allows the text of the SQL statement to stay the same, regardless of the value of PERSON_TYPE_CODE
you need to query on. When the query text stays the same across multiple executions, the database will return the results without having to reparse the query.
If you later need to remove the dynamically added WHERE
clause and bind variable, you should do so the next time you need them to be different, just before executing the query. This will prevent the type of SQL execution error as described in Section 5.10.8.1, "An Error Related to Clearing Bind Variables." Avoid calling removeNamedWhereClauseParam()
in your code immediately after setting the WHERE
clause. For a useful helper method to assist with this removal, see Section 5.10.8.2, "A Helper Method to Remove Named Bind Variables."
An updated test client class illustrating these techniques would look like what you see in Example 5-24. In this case, the functionality that loops over the results several times has been refactored into a separate executeAndShowResults()
method. The program first adds an additional WHERE
clause of person_id = :ThePersonId
and then later replaces it with a second clause of person_type_code = :ThePersonType
.
Example 5-24 TestClient Program Exercising Named Bind Variable Techniques
However, if you run this test program, you may actually get a runtime error like the one shown in Example 5-25.
Example 5-25 Runtime Error Resulting From a SQL Parsing Error
The root cause, which appears after the ## Detail 0 ##
in the stack trace, is a SQL parsing error from the database reporting that PERSON_TYPE_CODE
column does not exist even though the PERSONS
table definitely has a PERSON_TYPE_CODE
column. The problem occurs due to the mechanism that view objects use by default to apply additional runtime WHERE
clauses on top of read-only queries. Section 5.10.7, "What Happens at Runtime: When a Read-Only View Object WHERE Clause is Set," explains a resolution for this issue.
To set named bind variables at runtime, use the setNamedWhereClauseParam()
method on the ViewObject
interface. In JDeveloper, you can choose Refactor > Duplicate to create a new TestClientBindVars
class based on the existing TestClient.java
class as shown in Section 6.4.2, "How to Create a Command-Line Java Test Client." In the test client class, you can set the values of the bind variables using a few additional lines of code. For example, the setNamedWhereClauseParam()
might take as arguments the bind variables HighUserId
and TheName
as shown in Example 5-26.
Example 5-26 Setting the Value of Named Bind Variables Programmatically
Running the test client class shows that your bind variables are filtering the data. For example, the resulting rows for the setNamedWhereClauseParam()
method shown in Example 5-26 may show only two matches based on the name alex
as shown in Example 5-27.
Whenever a view object's query is executed, you can view the actual bind variable values in the runtime debug diagnostics like the sample shown in Example 5-28.
Example 5-28 Debug Diagnostic Sample With Bind Variable Values
This information that can be invaluable when debugging your applications. Notice that since the code did not set the value of the LowUserId
bind variable, it took on the default value of 0
(zero) specified at design time. Also notice that the use of the UPPER()
function in the WHERE
clause and around the bind variable ensured that the match using the bind variable value for TheName
was performed case-insensitively. The sample code set the bind variable value to "alex%
" with a lowercase "a
", and the results show that it matched Alexander
.
If you dynamically add an additional WHERE
clause at runtime to a read-only view object, its query gets nested into an inline view before applying the additional WHERE
clause.
For example, suppose your query was defined as shown in Example 5-29.
Example 5-29 Query Specified At Design Time
At runtime, when you set an additional WHERE
clause like person_type_code = :ThePersonType
as the test program did in Example 5-24, the framework nests the original query into an inline view like the sample shown in Example 5-30.
Example 5-30 Runtime-Generated Query With Inline Nested Query
Then the framework adds the dynamic WHERE
clause predicate at the end, so that the final query the database sees is like the sample shown in Example 5-31.
Example 5-31 Runtime-Generated Query With Dynamic WHERE Clause
This query "wrapping" is necessary in the general case since the original query could be arbitrarily complex, including SQL UNION
, INTERSECT
, MINUS
, or other operators that combine multiple queries into a single result. In those cases, simply "gluing" the additional runtime WHERE
clause onto the end of the query text could produce unexpected results because, for example, it might apply only to the last of several UNION
'ed statements. By nesting the original query verbatim into an inline view, the view object guarantees that your additional WHERE
clause is correctly used to filter the results of the original query, regardless of how complex it is. The consequence (that results in an ORA-00904
error) is that the dynamically added WHERE
clause can refer only to columns that have been selected in the original query.
The simplest solution is to add the dynamic query column names to the end of the query's SELECT
list on the Edit Query dialog (click the Edit SQL Query button on the Query page of the overview editor for the view object). Just adding the new column name at the end of the existing SELECT
list — of course, preceded by a comma — is enough to prevent the ORA-00904
error: JDeveloper will automatically keep your view object's attribute list synchronized with the query statement. Alternatively, Section 5.9.4.7, "Limitation of Inline View Wrapping at Runtime" explains how to disable this query nesting when you don't require it.
The test client program in Example 5-24 now produces the results shown in Example 5-32.
There are several things you may need to know about named bind variables, including the runtime errors that are displayed when bind variables have mismatched names and the default value for bind variables.
You need to ensure that your application handles changing the value of bind variables properly for use with activation and passivation of the view object instance settings at runtime. For example, before you deploy the application, you will want to stress-test your application in JDeveloper by disabling application module pooling, as described in Section 40.10, "Testing to Ensure Your Application Module is Activation-Safe." Following the instructions in that section effectively simulates the way your application will manage the passivation store when you eventually deploy the application.
When the application reactivates the pending state from the passivation store upon subsequent requests during the same user session, the application will attempt to set the values of any dynamically added named WHERE
clause bind variables. Changing the values to null before passivation take places will prevent the bind variable values from matching the last time the view object was executed and the following error will occur during activation:
Do not change the value of the bind variables (or other view object instance settings) just after executing the view object. Rather, if you will not be re-executing the view object again during the same block of code (and therefore during the same HTTP request), you should defer changing the bind variable values for the view object instance until the next time you need them to change, just before executing the query. To accomplish this, use the following pattern:
setWhereClause(null)
to clear WHERE
clause setWhereClauseParam(null)
to clear the WHERE
clause bind variables setWhereClause()
that references n bind variables setWhereClauseParam()
to set the n values for those n bind variables executeQuery()
The helper method clearWhereState()
that you can add to your ViewObjectImpl
framework ensures that declaratively defined bind variables are not removed. Example 5-33 shows the use of clearWhereState()
to safely remove named bind variables that have been added to the view instance at runtime.
Example 5-33 Helper Method to Clear Named Bind Variables Values Programmatically
You need to ensure that the list of named bind variables that you reference in your SQL statement matches the list of named bind variables that you've defined in the Bind Variables section of the overview editor's Query page for the view object. Failure to have these two agree correctly can result in one of the following two errors at runtime.
If you use a named bind variable in your SQL statement but have not defined it, you'll receive an error like this:
On the other hand, if you have defined a named bind variable, but then forgotten to reference it or mistyped its name in the SQL, then you will see an error like this:
To resolve either of these errors, double-check that the list of named bind variables in the SQL matches the list of named bind variables in the Bind Variables section of the overview editor's Query page for the view object. Additionally, open the Bind Variables dialog for the bind variable and verify that the Reference checkbox is not still deselected (the default). To use the bind variable in a SQL statement, you must select the Reference checkbox.
If you do not supply a default value for your named bind variable, it defaults to the NULL
value at runtime. This means that if you have a WHERE
clause like:
and you do not provide a default value for the ThePersonId
bind variable, it will default to having a NULL
value and cause the query to return no rows. Where it makes sense for your application, you can leverage SQL functions like NVL()
, CASE
, DECODE()
, or others to handle the situation as you require. For example, the following WHERE
clause fragment allows the view object query to match any name if the value of :TheName
is null
.
A view criteria you define lets you specify filter information for the rows of a view object collection. The view criteria object is a row set of one or more view criteria rows, whose attributes mirror those in the view object. The view criteria definition comprises query conditions that augment the WHERE
clause of the target view object. Query conditions that you specify apply to the individual attributes of the target view object.
The key difference between a view object row of query results and a view criteria row is that the data type of each attribute in the view criteria row is String
. This key difference supports Query-by-Example operators and therefore allows the user to enter conditions such as "OrderId > 304
", for example.
The Edit View Criteria dialog lets you create view criteria and save them as part of the view object's definition, where they appear as named view criteria. You use the Query page of the overview editor to define view criteria for specific view objects.
Additionally, view criteria have full API support, and it is therefore possible to create and apply view criteria to view objects programmatically.
You create named view criteria definitions when you need to filter individual view object results. View criteria that you define at design time can participate in these scenarios where filtering results is desired at runtime:
For example, the end user might input the value of a customer name and the date to filter the results in a web page that displays the rows of the CustomerOrders
view object. The web page designer will see the named view criteria in the JDeveloper Data Controls panel and, from them, easily create a search form. For more information about the utilizing the named view criteria in the Data Controls panel, see Section 27.2, "Creating Query Search Forms."
The web page designer will see the attributes of the view object in the JDeveloper Data Controls panel and, from them, easily create LOV controls. For more information about utilizing LOV-enabled attributes in the Data Controls panel, see Section 25.3, "Creating a Selection List."
For more information about create view accessor validators, see Section 10.4.2, "How to Validate Against a View Accessor."
The single view object query modified by view criteria is useful with look up data that must be shared across the application. In this case, a base view object definition queries the lookup table in the database and the view criteria set the lookup table's TYPE
column to define application-specific views. To define view instances in the data model using the view criteria you create for a base view object definition, see Section 10.3.3, "How to Define the WHERE Clause of the Lookup View Object Using View Criteria."
To define view criteria for the view object you wish to filter, you open the view object in the overview editor and use the View Criteria section of the Query page. A dedicated editor that you open from the View Criteria section helps you to build a WHERE
clause using attribute names instead of the target view object's corresponding SQL column names. You may define multiple named view criteria for each view object.
Each view criteria definition consists of the following elements:
Expressions are based on the Groovy scripting language, as described in Section 3.6, "Overview of Groovy Support."
When you define a view criteria, you control the source of the filtered results. You can limit the results of the filtered view object to:
Filtering on both database tables and the view object's in-memory results allows you to filter rows that were created in the transaction but not yet committed to the database.
View criteria expressions you construct in the Edit View Criteria dialog use logical conjunctions to specify how to join the selected criteria item or criteria group with the previous item or group in the expression:
AND
conjunctions specify that the query results meet both joined conditions. This is the default for each view criteria item you add. OR
conjunctions specify that the query results meet either or both joined conditions. This is the default for view criteria groups. Additionally, you may create nested view criteria when you want to filter rows in the current view object based on criteria applied to view-linked detail views. A nested view criteria group consists of an arbitrary number of nested view criteria items. You can use nested view criteria when you want to have more controls over the logical conjunctions among the various view criteria items. The nested criteria place restrictions on the rows that satisfy the criteria under the nested criteria's parent view criteria group. For example, you might want to query both a list of employees with (Salary > 3000
) and belonging to (DeptNo = 10
or DeptNo = 20
). You can define a view criteria with the first group with one item for (Salary > 3000
) and a nested view criteria with the second group with two items DeptNo = 10
and DeptNo =20
.
Before you begin:
To define a named view criteria:
You can limit the view criteria to filter the database table specified by the view object query, the in memory row set produced by the query, or both the database table and the in-memory results.
Choosing Both may be appropriate for situations where you want to include rows created as a result of enforced association consistency. In this case, in-memory filtering is performed after the initial fetch.
OR
conjunction into the hierarchy. You can change the conjunction as desired. AND
conjunction into the hierarchy. You can change the conjunction as desired. Each time you add another view criteria, the editor nests the new view criteria beneath the current view criteria selection in the hierarchy. The root node of the hierarchy defines the named view criteria that you are currently editing. Search forms that the UI designer will create from view criteria are not able to use directly nested view criteria. For more information about defining nested expressions for use with search forms, see Section 5.11.4, "What You May Need to Know About Nested Expressions."
Optionally, you can add a nested view criteria inline when a view link exists for the current view object you are editing. The destination view object name will appear in the Attribute dropdown list. Selecting a view object lets you filter the view criteria based on view criteria items for the nested view criteria based on a view link relationship. For example, AddressVO
is linked to the PaymentOptionsVO
and a view criteria definition for PaymentOptionsVO
will display the destination view object AddressVO
. You could define the nested view criteria to filter payment options based on the CountryId
attribute of the current customer, as specified by the CustomerId
criteria item, as shown in Figure 5-42.
The list displays only the operators that are appropriate for the selected attribute or view object. In the case of a view object selection, the exists operator applies to a view criteria that you will define (or reference) as an operand. In the case of Strings and Date type attributes, the Between and Not between operators require you to supply two operand values to define the range. In the case of Date type attributes, you can select operators that test for a date or date range (with date values entered in the format YYYY-MM-DD). For example, for December 16th, 2010, enter 2010-12-16.
JDeveloper does not support the IN
operator. However, you can create a view criteria with the IN
operator using the API, as described in Section 5.11.7, "How to Create View Criteria Programmatically."
*
or %
. When you define bind variables on the view object for use by the view criteria, you must specify that the variable is not required by the SQL query that the view object defines. To do this, deselect the Required checkbox in the Bind Variables dialog, as explained in Section 5.10.1, "How to Add Bind Variables to a View Object Definition."
For further discussion about view criteria use cases for bind variables and literals, see Section 5.11.3, "What You May Need to Know About Bind Variable Options."
WHERE
clause. WHERE
clause is valid. The criteria item can be a literal value that you define or a runtime parameter that the end user supplies. This option is supported for attributes of type String only. The default disables case sensitive searches.
WHERE
clause. WHERE
clause will ignore the view criteria item at runtime if no value is supplied and there exists at least one criteria item at the same level that has a criteria value. Otherwise, an exception is thrown. WHERE
clause only if the value is non-NULL
. The default Optional for each new view criteria item means no exception will be generated for null values. WHERE
clause will fail to execute and an exception will be thrown when no value is supplied for the criteria item. IS NULL
condition is the generated in the WHERE
clause. This field is enabled only if you have selected Optional for the validation of the bind variable. countryID
as the child list's controlling attribute. In this case, the default behavior for the view criteria execution returns the list of all states if the user makes no selection in the parent LOV (an empty countryId
field). The generated WHERE
clause would look similar to (((CountryEO.COUNTRY_ID =:bvCountryId) OR (:bvCountryId IS NULL)))
, where the test for a null value guarantees that the child list displays a result even when the bind variable is not set. When validation is set to Required or Optionally Required, the view criteria expects to receive a value and thus this option to ignore null values is disabled. countryID
field. In this case, the generated WHERE
clause would look similar to ((CountryEO.COUNTRY_ID=:bvCountryId))
, where the test for null is not performed, which means the query is expected to function correctly with a null value bind variable. Note that the validation settings Required or Optionally Required also remove the null value condition but support a different use case. They should be used in combination with Ignore Null Values feature to achieve the desired runtime behavior. For more details about the interaction of these features, see Section 5.11.3, "What You May Need to Know About Bind Variable Options."
The Create View Criteria dialog in JDeveloper lets you easily create view criteria and save them as named definitions. These named view criteria definitions add metadata to the XML component definition file that represents the target view object's declarative settings. Once defined, named view criteria appear by name in the Query page of the overview editor for the view object.
To view the view criteria, expand the desired view object in the Application Navigator, select the XML file under the expanded view object, open the Structure window, and expand the View Criteria node. Each view criteria definition for a view object contains one or more <ViewCriteriaRow>
elements corresponding to the number of groups that you define in the Create View Criteria dialog. Example 5-34 shows the ProductsVO.xml
file with the <ViewCriteria>
definition FindByProductNameCriteria
and a single <ViewCriteriaRow>
that defines a developer-seeded search for products using the bind variable :bvProductName
. Any control hints that you selected to customize the behavior of a developer-seeded search will appear in the <ViewCriteria>
definition as attributes of the <CustomProperties>
element. For details about specific control hints for view criteria, see Section 5.11.5, "How to Set User Interface Hints on View Criteria."
Example 5-34 FindByProductNameCriteria View Criteria in the ProductsVO View Object Definition
Additionally, when you create view objects and specify them as instances in an application module, JDeveloper automatically creates a data control to encapsulate the collections (view instances) that the application module contains. JDeveloper then populates the Data Controls panel with these collections and any view criteria that you have defined, as shown in Section 12.2.1.3, "How View Objects Appear in the Data Controls Panel."
The view criteria filter that you define using a bind variable expects to obtain its value at runtime. This can be helpful in a variety of user interface scenarios. To support a particular use case, familiarize yourself with the combination of the Validation and Ignore Null Values settings shown in Table 5-1.
Table 5-1 Use Cases for Bind Variable Options in View Criteria
Validation	Ignore Null Values	Use Cases	Notes
Configure cascading List of Values (LOV) where the parent LOV value is optional. Generate an optional search field in a search form.	This combination generates the SQL query When used for cascading LOVs, no selection in the parent LOV returns all rows in the child LOV. Note that the preferred implementation for an optional search field is a view criteria item with a literal operand type.		
Configure cascading LOVs where the parent LOV value is required.	This combination generates the SQL query When used for cascading LOVs, no selection in the parent LOV returns no rows in the child LOV. Avoid this combination for search forms, because when the user leaves the search field blank the search will attempt to find rows where this field is explicitly NULL. A better way to achieve this is for the user to explicitly select the "IS NULL" operator in advanced search mode.		
Generate a required search field in a search form.	This combination generates the SQL query Avoid this setting for cascading LOVs, because no selection in the parent LOV will cause a validation error. Note that the preferred implementation for a required search field is a view criteria item with a literal operand (not a bind variable) type.		
Search forms that the UI designer will create from view criteria are not able to work with all types of nested expressions. Specifically, search forms do not support expressions with directly nested view criteria. This type of nested expression defines one view criteria as a direct child of another view criteria. Query search forms do support nested expressions where you nest the view criteria as a child of a criteria item which is itself a child of a view criteria. For more information about using view criteria to create search forms, see Section 27.1.5, "Implicit and Named View Criteria."			
Named view criteria that you create for view object collections can be used by the web page designer to create Query-by-Example search forms. Web page designers select your named view criteria from the JDeveloper Data Controls panel to create search forms for the Fusion web application. In the web page, the search form utilizes an ADF Faces query search component that will be bound initially to the named view criteria selected in the Data Controls panel. At runtime, the end user may select among all other named view criteria that appear in the Data Controls panel. Named view criteria that the end user can select in a search form are known as developer-seeded searches. The query component automatically displays these seeded searches in its Saved Search dropdown list. For more information about creating search forms and using the ADF query search component, see Section 27.2, "Creating Query Search Forms."			
Note: By default, any named view criteria you create in the Edit View Criteria dialog will appear in the Data Controls panel. As long as the Show In List option appears selected in the UI Hints page of the Edit View Criteria dialog, JDeveloper assumes that the named view criteria should be available as a developer-seeded search. When you want to create a named view criteria that you do not want the end user to see in search forms, deselect the Show In List option in the dialog. For example, you might create a named view criteria only for an LOV-enabled attribute and so you would need to deselect Show In List.			
Because developer-seeded searches are created in the data model project, the UI Hints page of the Edit View Criteria dialog lets you specify the default properties for the query component's runtime usage of individual named view criteria. At runtime, the query component's behavior will conform to the selections you make for the following seeded search properties:			
Search Region Mode: Select the mode that you want the query component to display the seeded search as. The Basic mode has all features of Advanced mode, except that it does not allow the end user to dynamically modify the displayed search criteria fields. The default is Basic mode for a view criteria you define in the Edit View Criteria dialog.			
Query Automatically: Select when you want the query associated with the named view criteria to be executed and the results displayed in the web page. Any developer-seeded search with this option enabled will automatically be executed when the end user selects it from the query component's Saved Search list. Deselect when the web page designer prefers not to update the previously displayed results until the end user submits the search criteria values on the form. Additionally, when a search form is invoked from a task flow, the search form will appear empty when this option is deselected and populated when enabled. By default, this option is disabled for a view criteria you define in the Edit View Criteria dialog.			
Show Operators: Determine how you want the query component to display the operator selection field for the view criteria items to the end user. For example, select Always when you want to allow the end user to customize the operators for criteria items (in either basic or advanced modes) or select Never when you want the view criteria to be executed using the operators it defines. Note that the end user cannot change the operator for criteria items that you specify with a bind variable because bind variables may be used in more than one criteria item.			
Show Match All and Match Any: Select to allow the query component to display the Match All and Match Any radio selection buttons to the end user. When these buttons are present, the end user can use them to modify the search to return matches for all criteria or any one criteria. This is equivalent to enforcing AND			
(match all) or OR			
(match any) conjunctions between view criteria items. Deselect when you want the view criteria to be executed using the conjunctions it defines. In this case, the query component will not display the radio selection buttons.			
Rendered Mode: Select individual view criteria items from the view criteria tree component and choose whether you want the selected item to appear in the search form when the end user toggles the query component between basic mode and advanced mode. The default for every view criteria item is All. The default mode permits the query component to render an item in either basic or advanced mode. By changing the Rendered Mode setting for individual view criteria items, you can customize the search form's appearance at runtime. For example, you may want basic mode to display a simplified search form to the end user, reserving advanced mode for displaying a search form with the full set of view criteria items. In this case, you would select Advanced for the view criteria item that you do not want displayed in the query component's basic mode. In contrast, when you want the selected view criteria item to be rendered only in basic mode, select Basic. Set any item that you do not want the search form to render in either basic or advanced mode to Never.			
Note: When your view criteria includes an item that should not be exposed to the user, use the Rendered Mode setting Never to prevent it from appearing in the search form. For example, a view criteria may be created to search for products in the logged-in customer's cart; however, you may want to prevent the user from changing the customer ID to display another customer's cart contents. In this scenario, the view criteria item corresponding to the customer ID would be set to the current customer ID using a named bind variable. Although the bind variable definition might specify the variable as not required and not updatable, with the control hint property Display set to Hide, only the Rendered Mode setting determines whether or not the search form displays the value.			
Support Multiple Value Selection: Select when you want to allow the end user to make multiple selections for an individual criteria item that the query component displays. This option is only enabled when the view object attribute specified by the view criteria item has a List of Values (LOV) defined. Additionally, multiple selections will only be supported by the query component when the end user selects the operator equal to or not equal to. For example, if the criteria item names an attribute CountryId			
and this attribute derives its values from a list of country IDs accessed by the attribute's associated LOV, then selecting this option would allow the end user to submit the query with multiple country selections. At runtime, the query component will generate the appropriate query clause based on the end user's operator selection.			
Show In List: Select to ensure that the view criteria is defined as a developer-seeded query. Deselect when the named view criteria you are defining is not to be used by the query search component to display a search form. Your selection determines whether the named view criteria will appear in the query search component's Saved Search dropdown list of available seeded searches. By default, this option is enabled for a view criteria you define in the Edit View Criteria dialog.			
Display Name: Enter the name of the seeded search that you want to appear in the query component's Saved Search dropdown list or click the ... button (to the right of the edit field) to select a message string from the resource bundle associated with the view object. The display name will be the name by which the end user identifies the seeded search. When you select a message string from the resource bundle, JDeveloper saves the string's corresponding message key in the view object definition file. At runtime, the UI locates the string to display based on the end user's locale setting and the message key in the localized resource bundle. When you do not specify a display name, the view criteria name displayed in the Edit View Criteria dialog will be used by default.			
To create a seeded search for use by the ADF query search component, you select Show In List in the UI Hints page of the Edit View Criteria dialog. You deselect Show In List when you do not want the end user to see the view criteria in their search form.			
Before you begin:			
To customize a named view criteria for the user interface:			
This selection determines whether or not the query component will display the seeded search in its Saved Search dropdown list.			
When left empty, the view criteria name displayed in the Edit View Criteria dialog will be used by the query component.			
By default, no search results will be displayed.			
By default, all view criteria items defined by the seeded search will be displayed in either mode.			
If a rendered criteria item is of type Date			
, you must also define UI hints for the corresponding view object attribute. Set the view object attribute's Format Type hint to Simple Date and set the Format Mask to an appropriate value, as described in Section 5.13.1, "How to Add Attribute-Specific Control Hints." This will allow the search form to accept date values.			
To test the view criteria you added to a view object, use the Business Component Browser, which is accessible from the Application Navigator.			
The Business Component Browser, for any view object instance that you browse, lets you bring up the Business Components View Criteria dialog, as shown in Figure 5-43. The dialog allows you to create a view criteria comprising one or more view criteria rows.			
To apply criteria attributes from a single view criteria row, click the Specify View Criteria toolbar button in the browser and enter Query-by-Example criteria in the desired fields, then click Find.			
To test view criteria using the Business Component Browser:			
Alternatively, after you double-click a view instance, you can click the Specify View Criteria toolbar button to test the view criteria.			
d			
" and placed an order in the amount greater than 100			
. Example 5-35 shows the main()			
method finds the PersonList			
view object instance to be filtered, creates a view criteria for the attributes of this view object, and applies the view criteria to the view object.			
To create a view criteria programmatically, follow these basic steps (as illustrated in Example 5-35):			
You can use the single method setAttribute()			
on the view criteria rows to set attribute name, comparison operator, and value to filter on. Alternatively, use ensureCriteriaItem()			
, setOperator()			
, and setValue()			
on the view criteria rows to set attribute name, comparison operator, and value to filter on individually.			
The last step to execute the query is important, since a newly applied view criteria is applied to the view object's SQL query only at its next execution.			
Example 5-35 Creating and Applying a View Criteria			
Running the TestClientViewCriteria			
example produces the results shown in Example 5-35:			
When you apply a view criteria containing one or more view criteria rows to a view object, the next time it is executed it augments its SQL query with an additional WHERE			
clause predicate corresponding to the Query-by-Example criteria that you've populated in the view criteria rows. As shown in Figure 5-44, when you apply a view criteria containing multiple view criteria rows, the view object augments its design time WHERE			
clause by adding an additional runtime WHERE			
clause based on the non-null			
example criteria attributes in each view criteria row.			
A corollary of the view criteria feature is that each time you apply a new view criteria (or remove an existing one), the text of the view object's SQL query is effectively changed. Changing the SQL query causes the database to reparse the statement the next time it is executed. You can eliminate the reparsing and improve the performance of a view criteria as described in Section 5.11.10, "What You May Need to Know About Query-by-Example Criteria."			
When you need to perform tasks that the Edit View Criteria dialog does not support, review the View Criteria API. For example, programmatically, you can alter compound search conditions using multiple view criteria rows, search for a row whose attribute value is NULL			
, search case insensitively, and clear view criteria in effect.			
The setWhereClause()			
method allows you to add a dynamic WHERE			
clause to a view object, as described in Section 6.4.1, "ViewObject Interface Methods for Working with the View Object's Default RowSet." You can also use setWhereClause()			
to pass a string that contains literal database column names like this:			
In contrast, when you use the view criteria mechanism, shown in Example 5-35, you must reference the view object attribute name instead, like this:			
The view criteria rows are then translated by the view object into corresponding WHERE			
clause predicates that reference the corresponding column names.			
When you want to set the value of a view criteria item to a bind variable, use setIsBindVarValue(true)			
, like this:			
When you add multiple view criteria, you can call the setConjunction()			
method on a view criteria to alter the conjunction used between the predicate corresponding to that view criteria and the one for the previous view criteria. The legal constants to pass as an argument are:			
ViewCriteriaComponent.VC_CONJ_AND			
ViewCriteriaComponent.VC_CONJ_NOT			
ViewCriteriaComponent.VC_CONJ_UNION			
ViewCriteriaComponent.VC_CONJ_OR			
(default) The NOT			
value can be combined with AND			
or OR			
to create filter criteria like:			
or			
The syntax to achieve compound search conditions requires using Java's bitwise OR			
operator like this:			
Performance Tip: Use theUNION value instead of an OR clause when the UNION query can make use of indices. For example, if the view criteria searches for sal > 2000 or job = 'CLERK' this query may turn into a full table scan. Whereas if you specify the query as the union of two inner view criteria, and the database table has an index on sal and an index on job , then the query can take advantage of these indices and the query performance will be significantly better for a large data set.			
The limitation for the UNION			
clause is that it must be defined over one view object. This means that the SELECT			
and the FROM			
list will be the same for inner queries of the UNION			
clause. To specify a UNION			
query, call setConjunction()			
on the outer view criteria like this:			
The outer view criteria should contain inner queries whose results will be the union. For example, suppose you want to specify the union of these two view criteria:			
MyEmpJob			
, which searches for Job = 'SALESMAN'			
. MyEmpSalary			
, which searches for Sal = 1500			
. To create the UNION			
query for these two view criteria, you would make the calls shown in Example 5-36.			
Example 5-36 Applying the Union of Two View Criteria			
When this view criteria is applied, it will return rows where Job			
is SALESMAN			
or Sal			
is greater than 1500			
.			
When you use a UNION			
view criteria, be sure that only one of the applied view criteria has the UNION			
conjunction. Other view criteria that you apply will be applied to each inner query of the UNION			
query.			
To search for a row containing a NULL			
value in a column, populate a corresponding view criteria row attribute with the value "IS NULL			
" or use ViewCriteriaItem.setOperator("ISBLANK")			
.			
To search for all rows with a value in a column that matches any value in a list of values that you specify, populate a corresponding view criteria row attribute with the comma-separated list of values and use the IN			
operator. For example, to filter the list of persons by IDs that match 204 and 206, set:			
vcr.setAttribute("PersonId","IN (204,206)");			
Note that there must be a space between the IN			
operator and the brace:			
IN (204,206)			
is correct. IN(204,206)			
throws a SQLSyntaxErrorException			
error. To search case-insensitively, call setUpperColumns(true)			
on the view criteria row to which you want the case-insensitivity to apply. This affects the WHERE			
clause predicate generated for String			
-valued attributes in the view object to use UPPER(COLUMN_NAME)			
instead of COLUMN_NAME			
in the predicate. Note that the value of the supplied view criteria row attributes for these String			
-valued attributes must be uppercase or the predicate won't match. In addition to the predicate, it also possible to use UPPER()			
on the value. For example, you can set UPPER(ename) = UPPER("scott")			
.			
To clear any view criteria in effect, you can call getViewCriteria()			
on a view object and then delete all the view criteria rows from it using the remove()			
method, passing the zero-based index of the criteria row you want to remove. If you don't plan to add back other view criteria rows, you can also clear all the view criteria in effect by simply calling applyViewCriteria(null)			
on the view object.			
For performance reasons, you want to avoid setting a bind variable as the value of a view criteria item in these two cases:			
NULL			
to NULL			
. In this case, the SQL statement for the view criteria will be regenerated each time the value changes from non-NULL			
to NULL			
.			
In the case of optional view criteria items, an additional SQL clause OR (:Variable IS NULL)			
is generated, and the clause does not support using column indices.			
In either of the following cases, you will get better performance by using a view object whose WHERE			
clause contains the named bind variables, as described in Section 5.10.1, "How to Add Bind Variables to a View Object Definition." In contrast to the view criteria filtering feature, when you use named bind variables, you can change the values of the search criteria without changing the text of the view object's SQL statement each time those values change.			
Edit forms displayed in the user interface portion of your application can utilize LOV-enabled attributes that you define in the data model project to predetermine a list of values for individual input fields. When the user submits the form with their selected values, ADF data bindings in the ADF Model layer update the value on the view object attributes corresponding to the databound fields. To facilitate this common design task, ADF Business Components provides declarative support to specify the LOV usage in the user interface.			
Defining an LOV for attributes of a view object in the data model project greatly simplifies the task of working with list controls in the user interface. Because you define the LOV on the individual attributes of the view object, you can customize the LOV usage for an attribute once and expect to see the list component in the form wherever the attribute appears.			
Note: In order for the LOV to appear in the UI, the LOV usage must exist before the user interface designer creates the databound form. Defining an LOV usage for an attribute referenced by an existing form will not change the component that the form displays to an LOV.			
You can define an LOV for any view object attribute that you anticipate the user interface will display as a selection list. The characteristics of the attribute's LOV definition depend on the requirements of the user interface. The information you gather from the user interface designer will determine the best solution. For example, you might define LOV attributes in the following cases:			
For example, define LOV attributes to display the list of suppliers in a purchase order form.			
For example, define LOV attributes to display the list of supplier addresses in a purchase order form but limit the addresses list based on the current supplier.			
If you wish, you can enable a second LOV to drive the value of the parameter based on a user selection. For example, you can let the user select the current supplier to drive the supplier addresses list. In this case, the two LOVs are known as a cascading list.			
Before you can define the LOV attribute, you must create a data source view object in your data model project that queries the eligible rows for the attribute value you want the LOV to display. After this, you work entirely on the base view object to define the LOV. The base view object is the one that contains the primary data for display in the user interface. The LOV usage will define the following additional view object metadata:			
The general process for defining the LOV-enabled attribute relies on the Edit Attribute dialog that you display for the base view object attribute.			
To define the LOV-enabled attribute, follow this general process:			
Optionally, you can filter the view accessor by creating a view criteria using a bind variable that obtains its value from any attribute of base view object's current row.			
This maps the attribute you select to the current attribute of the base view object.			
Note: If you create a view criteria to filter the data source view object, you may also set an LOV on the attribute of the base view object that you use to supply the value for the view criteria bind variable. You set cascading LOV lists when you want the user's selection of one attribute to drive the options displayed in a second attribute's list.			
Once you create the LOV-enabled attribute, the user interface designer can create the list component in the web page by dragging the LOV-enabled attribute's collection from the Data Controls panel. For further information about creating a web page that display the list, see Chapter 25, "Creating Databound Selection Lists and Shuttles." Specifically, for more information about working with LOV-enabled attributes in the web page, see Section 25.3.2, "How to Create a Model-Driven List."			
When an edit form needs to display a list values that is not dependent on another selection in the edit form, you can define a view accessor to point to the list data source. For example, assume that a purchase order form contains a field that requires the user to select the order item's supplier. In this example, you would first create a view accessor that points to the data source view object (SuppliersView			
). You would then set the LOV on the SupplierDesc			
attribute of the base view object (PurchaseOrdersView			
). Finally, you would reference that view accessor from the LOV-enabled attribute (SupplierDesc			
) of the base view object and select the data source attribute (SupplierDesc			
).			
You will use the Create List of Values dialog to define an LOV-enabled attribute for the base view object. The dialog lets you select an existing view accessor or create a new one to save with the LOV-attribute definition.			
Before you begin:			
Create the desired view objects as described in Section 5.2.1, "How to Create an Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode, Read-Only View Object."			
To define an LOV that displays values from a view object attribute:			
Use the Create List of Values dialog to create the LOV on the attribute you have currently selected in the attribute list of the overview editor. JDeveloper assigns a unique name to identify the LOV usage. For example, the metadata for the attribute SupplierDesc			
will specify the name SupplierDescLOV			
to indicate that the attribute is LOV enabled.			
Alternatively, you can expand List Data Source and select among the existing view accessors. The dropdown list displays all view accessors that you have added to the view object you are editing.			
By default, the view accessor you create will display the same name as the view object. You can edit the accessor name to supply a unique name. For example, assign the name SuppliersViewAccessor			
for the SuppliersView			
view object.			
The view instance is a view object usage that you have defined in the data model of a shared application module. For more information about using shared view instances in an LOV, see Section 10.4.4, "How to Create an LOV Based on a Lookup Table."			
The editor creates a default mapping between the list data source attribute and the LOV-enabled attribute. For example, the attribute SuppliersDesc			
from the PurchaseOrdersView			
view object would map to the attribute SuppliersDesc			
from the SuppliersViewAccessor			
view accessor.			
The editor does not allow you to remove the default attribute mapping for the attribute for which the list is defined.			
Supplemental attribute return values are useful when you do not require the user to make a list selection for the attributes, yet you want those values, as determined by the current row, to participate in the update. For example, to map the attribute SupplierAddress			
from the PurchaseOrdersView			
view object, you would choose the attribute SupplierAddress			
from the SuppliersViewAccessor			
view accessor.			
When the application user interface requires a list of values in one input field to be dependent on the user's entry in another field, you can create attributes that will display as cascading lists in the user interface. In this case, the list of possible values for the LOV-enabled attributes might be different for each row. As the user changes the current row, the LOV values vary based on the value of one or more controlling attribute values in the LOV-enabled attribute's view row. To apply the controlling attribute to the LOV-enabled attribute, you will create a view accessor to access the data source view object with the additional requirement that the accessor filters the list of possible values based on the current value of the controlling attribute. To filter the LOV-enabled attribute, you can edit the view accessor to add a named view criteria with a bind variable to obtain the user's selection.			
For example, assume that a purchase order form contains a field that requires the user to select the supplier's specific site and that the available sites will depend on the order's already specified supplier. To implement this requirement, you would first create a view accessor that points to the data source view object. The data source view object will be specific to the LOV usage, because it must perform a query that filters the available supplier sites based on the user's supplier selection. You might name this data source view object definition SupplierIdsForCurrentSupplierSite			
to help distinguish it from the SupplierSitesView			
view object that the data model already contains. The data source view object will use a named view criteria (SupplierCriteria			
) with a single view criteria item set by a bind variable (TheSupplierId			
) to obtain the user's selection for the controlling attribute (SupplierId			
).			
You would then set the LOV on the SupplierSiteId			
attribute of the base view object (PurchaseOrdersView			
). You can then reference the view accessor that points to the data source view object from the LOV-enabled attribute (PurchaseOrdersView.SupplierSiteId			
) of the base view object. Finally, you must edit the LOV-enabled attribute's view accessor definition to specify the corresponding attribute (SupplierIdsForCurrentSupplierSite.SupplierSiteId			
) from the view object as the data source and, importantly, source the value of the bind variable from the view row's result using the attribute SupplierId			
.			
The data source view object defines the controlling attribute for the LOV-enabled attribute. To make the controlling attribute accessible to the LOV-enabled attribute of the base view object, you must define a named view criteria to filter the data source attribute based on the value of another attribute. Because the value of the controlling attribute is expected to change at runtime, the view criteria uses a bind variable to set the controlling attribute.			
To define the view criteria for the data source to be referenced by the LOV-enabled attribute:			
For example, if the LOV-enabled attribute SupplierSiteId			
depends on the controlling attribute SupplierId			
value, you might have created the data source view object SupplierIdsForCurrentSupplierSite			
to query the list of all supplier sites.			
For example, for a data source view object SupplierIdsForCurrentSupplierSite			
used to query the list of all supplier sites, you would create the bind variable TheSupplierId			
, since it will be the controlling attribute for the LOV-enabled attribute.			
By default, the view accessor you create will display the same name as the view object instance. You can edit the accessor name to supply a unique name. For example, assign the name CurrencyLookupViewAccessor			
for the CurrencyLookupView			
view object instance.			
SupplierCriteria			
for the SupplierIdsForCurrentSupplierSite			
. SupplierSiteId			
attribute from the SupplierIdsForCurrentSupplierSite			
. Optional from the Validation menu and deselect Ignore Null Values when you want to configure cascading LOVs where the parent LOV value is required. This combination supports the cascading LOV use case where no selection in the parent LOV returns no rows in the child LOV. The WHERE			
clause shown in the Edit View Criteria dialog should look similar to ((SupplierIdsForCurrentSupplierSite.SUPPLIER_ID = :TheSupplierId))			
.			
Optional from the Validation menu and leave Ignore Null Values selected (default) when you want to configure cascading LOVs where the parent LOV value is optional. This combination supports the cascading LOV use case where no selection in the parent LOV returns all rows in the child LOV. The WHERE			
clause shown in the Edit View Criteria dialog should look similar to (((SupplierIdsForCurrentSupplierSite.SUPPLIER_ID = :TheSupplierId) OR (:TheSupplierId IS NULL)))			
.			
For more details about these settings, see Section 5.11.3, "What You May Need to Know About Bind Variable Options." Do not select Required for the Validation option for cascading LOVs, because no selection in the parent LOV will cause a validation error.			
To populate the cascading LOV-enabled attribute, you must first set up a named view criteria on a data source view object. To make the LOV-enabled attribute of the base view object dependent on the controlling attribute of the data source view object, you then add a view accessor to the LOV-enabled attribute of the base view object and reference the previously defined data source view object's named view criteria.			
Before you begin:			
Create the data source view object and named view criteria as described in Section 5.12.2.1, "Creating a Data Source View Object to Control the Cascading List."			
To create a view accessor that filters display values for an LOV-enabled attribute based on the value of another attribute in the same view row:			
For example, the base view object PurchaseOrdersView			
might contain the attribute SupplierSiteId			
that will depend on the value of the controlling attribute SupplierId			
.			
Alternatively, you can expand List Data Source and select among the existing view accessors. The dropdown list displays all view accessors that you have added to the view object you are editing.			
SupplierCriteria			
from the SupplierIdsForCurrentSupplierSite			
view object definition. PurchaseOrdersView			
contains the LOV-enabled attribute SupplierSiteId			
that depends on the value of the controlling attribute SupplierId			
, you would enter SupplierId			
for the bind variable value. The editor creates a default mapping between the view object attribute and the LOV-enabled attribute. You use separate attributes in order to allow the bind variable (set by the user's controlling attribute selection) to filter the LOV-enabled attribute. For example, the LOV-enabled attribute SupplierId			
from the PurchaseOrdersView			
view object would map to the controlling attribute SupplierSiteId			
for the SupplierIdsForCurrentSupplierSiteViewAccessor			
. The runtime automatically supports these two cascading LOVs where the row set and the base row attribute differ.			
Another way to vary the list of values that your application user interface can display is to define multiple list of values for a single LOV-enabled view object attribute. In contrast to a cascading list, which varies the list contents based on a dependent LOV list selection, an LOV-enabled switcher attribute with multiple LOVs lets you vary the entire LOV itself. The LOV choice to display is controlled at runtime by the value of an attribute that you have defined specifically to resolve to the name of the LOV to apply.			
For example, you might want to define one LOV to apply in a create or edit form and another LOV to apply for a search component. In the first case, the LOV-enabled attribute that the form can use is likely to be an entity-based view accessor that is shared across all the view objects that reference the entity. The entity-based view accessor is useful for user interface forms because a single accessor definition can apply to each instance of the LOV in the forms. However, in the case of the search component, LOV definitions based on view accessors derived from an underlying entity will not work. The LOV definitions for search components must be based on view accessors defined in the view object. Note that when the user initiates a search, the values in the criteria row will be converted into WHERE			
clause parameters. Unlike a regular view row displayed in create or edit type forms, the criteria row is not backed by an entity. In this scenario, one LOV uses the entity-based accessor as a data source and a second LOV uses the view object-based accessor as a data source.			
To address this requirement to define multiple LOV lists that access the same attribute, you add a switcher attribute to the base view object. For example, you might add a ShipperLOVSwitcher			
attribute for the Orders			
view object that resolves through an expression to the name of the LOV to display. Such an expression can specify two LOVs that may apply to the ShipperID			
attribute:			
(adf.isCriteriaRow) ? "LOV_ShipperID_ForSearch" : "LOV_ShipperID"			
This expression would appear in the Value field of the switcher attribute. At runtime, in the case of the search component, the expression resolves to the value that identifies the view object-based accessor LOV. In the case of the create or edit form, the expression resolves to the value that identifies the entity-based accessor LOV.			
You will use the Create List of Values dialog to add multiple LOV lists to an attribute of the base view object. You will also use the List of Values section in the Attributes page of the overview editor for the base view object to define the default LOV to display and the switcher attribute to apply.			
Before you begin:			
Create the first LOV list for the attribute as described in Section 5.12.1, "How to Define a Single LOV-Enabled View Object Attribute."			
To specify additional LOV lists for a view object attribute with an existing LOV:			
When you define the LOV, change the name of the LOV to match the value returned by the attribute that you will use to determine which LOV your application applies to the LOV-enabled attribute.			
If you have selected the correct attribute from the Attributes page of the overview editor, the List of Values section should display your previously defined LOV.			
The name of each LOV must correspond to a unique value returned by the attribute that determines which LOV to apply to the LOV-enabled attribute.			
You can define the LOV using any accessor and any attribute. There are no restrictions on the type of LOV lists that you can add to an attribute with multiple LOV lists specified.			
After you finish defining the second LOV, the List of Values section changes to display additional features that you will use to control the selection of the LOV.			
The dropdown list displays the attributes of the base view object. If you want your application to dynamically apply the LOV from the LOVs you have defined, your view object must define an attribute whose values resolve to the names of the LOVs you defined. If you have not added this attribute to the view object, be sure that the dropdown list displays <None Specified>. In this case, at runtime your application will display the LOV-enabled attribute with the default LOV and it will not be possible to apply a different LOV.			
The default LOV selection determines which list of values your application will display when the List of Values Switcher dropdown list displays <None Specified>. Initially, the first LOV in the overview editor List of Values section is the default.			
The component you select will apply to all LOV lists. For a description of the available components, see Table 5-2.			
When you know how the view object attribute that you define as an LOV should appear in the user interface, you can specify additional properties of the LOV to determine its display characteristics. These properties, or UI hints, augment the attribute hint properties that ADF Business Components lets you set on any view object attribute. Among the LOV UI hints for the LOV-enabled attribute is the type of component the user interface will use to display the list. For a description of the available components, see Table 5-2. (Not all ADF Faces components support the default list types, as noted in the Table 5-2.)			
Table 5-2 List Component Types for List Type Control Hint			
LOV List Component Type	Usage		
---	---		
Choice List	This component does not allow the user to type in text, only select from the dropdown list.		
Combo Box	This component allows the user to type text or select from the dropdown list. This component sometimes supports auto-complete as the user types. This component is not supported for ADF Faces.		
Combo Box with List of Values	This component is the same the as the combo box, except that the last entry (More...) opens a List of Values lookup dialog that supports query with filtering when enabled for the LOV attribute in its UI hints. The default UI hint enables queries on all attributes. This component is not supported for ADF Faces. Note that when the LOV attribute appears in a table component, the list type changes to an Input Text with List of Values component.		
Input Text with List of Values	This component displays an input text field with an LOV button next to it. The List of Values lookup dialog opens when the user clicks the button or enters an invalid value into the text field. The List of Values lookup dialog for this component supports query with filtering when enabled in the UI hints for the LOV attribute. The default UI hint enables queries on all attributes. This component may also support auto-complete when a unique match exists.		
List Box	This component takes up a fixed amount of real estate on the screen and is scrollable (as opposed to the choice list, which takes up a single line until the user clicks on it).		
Radio Group	This component displays a radio button group with the selection choices determined by the LOV attribute values. This component is most useful for very short, fixed lists.		
Before you begin:			
Create the LOV list for the attribute as described in Section 5.12.1, "How to Define a Single LOV-Enabled View Object Attribute."			
To set view object attribute UI hints for an LOV-enabled attribute:			
For a description of the available components, see Table 5-2.			
The list component displayed by the web page and the view object's default list type must match at runtime or a method-not-found runtime exception results. To avoid this error, confirm the desired list component with the user interface designer. You can also edit the default list type to match, so that, should the user interface designer subsequently change the component used in the web page, the two stay in sync.			
The list of additional attributes is derived from the LOV-enabled attribute's view row. The additional attribute values can help the end user select an item from the list.			
Because Query Limit also controls the number of rows the view object will fetch (its sets the view object definition ListRangeSize			
property), specifying a large value for Query Limit is not recommended. The end user can open the component's LOV lookup dialog to access the full set of records (by clicking the component's lookup icon). Query Limit is disabled for all other component types and those components place no restriction on the number of rows that the LOV will access.			
For details about the ListRangeSize			
property, see Section 5.12.9, "What Happens at Runtime: When an LOV Queries the List Data Source."			
For example, your form might display a choice list of SupplierId			
values to drive a purchase order form. In this case, you can allow the user to select from a list of their most recently viewed suppliers, where the number of supplier choices is determined by the count you enter. The default count 0			
(zero) for the choice list displays all values for the attribute.			
When you enable Filter Combo Box Using, the dropdown list displays the existing view criteria from the view object definition related to the LOV's view accessor. If the dropdown list displays no view criteria, then the data source view object defines no view criteria. When you do not enable this feature, the Combo Box with List of Values component derives its values from the full row set returned by the view accessor. The filtered Combo Box with List of Values is a useful feature when you want to support the use of an LOV with popup search dialog or LOV with a dropdown list that has a limited set of valid choices. For details about using the Combo Box with List of Values component in user interfaces, see Section 27.1.6, "List of Values (LOV) Input Fields."			
NULL			
value choice to display in the list component. This option is not enabled for every list component type that you can select. If you enable Include "No Selection" Item, you can also determine how the NULL			
value selection should appear in the list by making a selection from the dropdown list. For example, when you select Labeled Item, you can enter the desired label in the edit field to the right of the dropdown list or you can click the ... button (to the right of the edit field) to select a message string from the resource bundle associated with the view object. When you select a message string from the resource bundle, JDeveloper saves the string's corresponding message key in the view object definition file. At runtime, the UI locates the string to display based on the current user's locale setting and the message key in the localized resource bundle.			
When the LOV-enabled attribute of the view object is bound to date information (such as the attribute OrderShippedDate			
), by default Oracle ADF assumes a format for the field like yyyy-MM-dd hh:mm:ss			
, which combines date and time. This combined date-time format is specified by the ADF Business Components Date domain class (jbo.domain.Date			
) and creates a conversion issue for the ADF Faces component when the user selects a date supplied by the LOV-enable attribute. When the ADF Faces component is unable to convert the domain type to the Date type, the user interface invalidates the input field and displays the message Error: The date is not in the correct format			
.			
To avoid this potential conversion error, configure a UI hint setting for the date value attribute of the view object that you want to enable for an LOV. The UI hint you specify will define a date-only mask, such as yyyy-MM-dd			
. Subsequently, any ADF Faces component that references the attribute will perform the conversion based on a pattern specified by its EL value-binding expression (such as #{bindings.Hiredate.format			
) and will reference the UI hint format instead of the ADF Business Components domain date-time. The conversion error results when the EL expression evaluates to null because no format mask has been specified. For more information about control hints, see Section 5.13, "Defining Control Hints for View Objects."			
To set a control hint to match the date format for the LOV-enable attribute:			
Alternatively, display the Property Inspector for the selected attribute and select the UI Hints navigation tab. The Property Inspector provides a way to customize the attribute's control hints without using the Edit Attribute dialog.			
Mapping of the ADF Business Components domain type to it's available formatters is provided in the formatinfo.xml			
file in the BC4J subdirectory of the JDeveloper system directory (for example, C:\Documents and Settings\<username>\Application Data\JDeveloper\system<version#>\o.BC4J.\formatinfo.xml			
).			
If you need to ensure that your view accessor always queries the latest data from the database table, you may be able to set the Auto Refresh property on the data source view object. This property allows the view object instance to refresh itself after a change in the database. You can enable this feature for any view instance that your application modules define. Once you enable this property on a view object, it ensures that changes a user commits to a database table will become available to any other user working with the same database table. A typical use case is to enable auto refresh for the data source view object when you define a view accessor for a LOV-enabled view object attribute.			
Because the auto-refresh feature relies on the database change notification feature, observe these restrictions when enabling auto-refresh for your view object:			
grant change notification to <user name>			
. When you enable auto refresh for the view object, at runtime, prior to executing the view object query, the framework will use the JDBC API to register the view object query to receive Oracle database change notifications for underlying data changes. When the view object receives a notification (because its underlying data has changed), the row sets of the view object are marked as dirty and the framework will refresh the row set on the next server trip from the client to the middle tier. At that point, the dirty collections will be discarded and the request for the updated data will trigger a new query execution by the view object. For example, assume that a user can create or edit a calendar entry but cannot edit calendar entries added by other users. When the user creates a new entry, then in the same server trip the calendar entries that other users modified or entered will be updated. But when another user creates a calendar entry, the view object receives a notification and waits for the next server trip before it refreshes itself; the delay to perform the update prevents contention among various users to read the same data.			
Best Practice: Use optimistic row locking for web applications. Optimistic locking, the default configuration setting, assumes that multiple transactions can complete without affecting each other. Optimistic locking therefore allows auto-refresh to proceed without locking the rows being refreshed. Pessimistic row locking, prevents the row set refresh and causes the framework to throw an exception anytime the row set has a transaction pending (for example, a user may be in the process of adding a new row). To ensure that the application module configuration uses optimistic row locking, open the Properties tab of the Business Components Configuration dialog and confirm thejbo.locking.mode property is set to optimistic .			
To register a view object to receive data change notifications:			
To test the LOV you created for a view object attribute, use the Business Component Browser, which is accessible from the Application Navigator.			
The Business Component Browser, for any view object instance that you browse, will display any LOV-enabled attributes using one of two component types you can select in the UI Hints page of the List of Values dialog. Currently, only a Choice List component type and Input Text with List of Values component type are supported. Otherwise, the Business Component Browser uses the default choice list type to display the LOV-enabled attribute.			
To test an LOV using the Business Component Browser:			
Figure 5-45 shows an LOV-enabled attribute, TypeCouponCode			
for the OrdersVO			
, that specifies an input text field and List of Values dialog as the UI hint list type. The Input Text with List of Values component is useful when you want to display the choices in a separate LOV dialog. Other list types are not supported by the Business Component Browser.			
When you define an LOV for a view object attribute, the view object metadata defines the following additional information, as shown in Example 5-37 for the OrdersVO.TypedCouponCode			
attribute in the Fusion Order Demo application.			
<ViewAttribute>			
element names the attribute, points to the list binding element that defines the LOV behavior, and specifies the component type to display in the web page. For example, the LOV-enabled attribute TypedCouponCode			
points to the list binding named LOV_TypedCouponCode			
and defines the CONTROLTYPE			
input text field with list (input_text_lov			
) to display the LOV data. When the user interface designer creates the web page using the Data Controls panel, the <CONTROLTYPE Value="			
namedType			
"/>			
definition determines the component that JDeveloper will add to the web page. When the component type definition in the data model project does not match the component type displayed in the web page, a runtime exception will result. For more information, see Section 5.12.9, "What Happens at Runtime: When an LOV Queries the List Data Source."			
<ListBinding>			
element defines the behavior of the LOV. It also identifies a view accessor to access the data source for the LOV-enabled attribute. The view accessor is the ADF Business Components mechanism that lets you obtain the full list of possible values from the row set of the data source view object. For example, ListVOName="Coupon"			
points to the Coupons			
view accessor, which accesses the view object CouponsVO			
. <ListBinding>			
element maps the list data source attribute to the LOV-enabled attribute. For example, the ListAttrNames			
item EasyCode			
is mapped to the LOV-enabled attribute TypedCouponCode			
. <ListBinding>			
element defines supplemental values that the data source may return to attributes of the base view object other than the data source attribute for which the list is defined. For example, DerivedAttrNames			
item CouponId			
is a supplemental value set by the ListAttrNames			
item DiscountId			
. <ListBinding>			
element also identifies one or more attributes to display from the current row and provides a few options that are specific to the choice list type component. For example, the ListDisplayAttrNames			
item EasyCode			
is the only attribute displayed by the LOV-enabled attribute TypedCouponCode			
. In this example, the value none			
for NullValueFlag			
means the user cannot select a blank item from the list. Example 5-37 View Object MetaData For LOV-Attribute Usage			
The ADF Business Components runtime adds view accessors in the attribute setters of the view row and entity object to facilitate the LOV-enabled attribute behavior. In order to display the LOV-enabled attribute values in the user interface, the LOV facility fetches the data source, and finds the relevant row attributes and mapped target attributes.			
The number of data objects that the LOV facility fetches is determined in part by the ListRangeSize			
setting in the LOV-enabled attribute's list binding definition which is specified in the Edit List of Values dialog that you display on the attribute from the view object overview editor. If the number of records fetched is very large, the default value for ListRangeSize			
may truncate the values available to the dropdown list component used to display the records. The default number of fetched records for LOV queries depends on the type of list component used to display the records. In the case of the Combo Box with List of Values component and the Input Text with List of Values component, the default value for ListRangeSize			
is 10			
. In the case of all other types of list components that you can select (including choice list, combo box, list box, and radio button group), the default value for ListRangeSize			
is set to -1			
. The value -1			
means that the user will be able to view all the data objects from the data source. The ListRangeSize			
value has no effect on the records that the end user can search on in the lookup dialog displayed for the two List of Values type components. For more information about how each list component displays values, see Section 5.12.4, "How to Set User Interface Hints on a View Object LOV-Enabled Attribute."			
Note that although you can alter the ListRangeSize			
value in the metadata definition for the <ListBinding>			
element, setting the value to a discrete number of records (for example, ListRangeSize="5"			
) most likely will not provide the user with the desired selection choices. Instead, if the value is -1			
(default for simple list components without a LOV dialog), then no restrictions are made to the number of records the list component will display, and the user will have access to the full set of values.			
Performance Tip: To limit the set of values a LOV displays, use a view accessor to filter the LOV binding, as described in Section 5.12.1, "How to Define a Single LOV-Enabled View Object Attribute." Additionally, in the case of component types that display a choice list, you can change the Most Recently Used Count setting to limit the list to display the user's previous selections, as described in Section 5.12.4, "How to Set User Interface Hints on a View Object LOV-Enabled Attribute."			
Note, a runtime exception will occur when a web page displays a UI component for an LOV-enabled attribute that does not match the view object's CONTROLTYPE			
definition. When the user interface designer creates the page in JDeveloper using the Data Controls panel, JDeveloper automatically inserts the list component identified by the Default List Type selection you made for the view object's LOV-enabled attribute in the List UI Hint dialog. However, if the user interface designer changes the list type subsequent to creating the web page, you will need to edit the selection in the List UI Hint dialog to match.			
There are several things you may need to know about LOVs that you define for attributes of view objects, including how to propagate LOV-enabled attributes from parent view objects to child view objects (by extending an existing view object) and when to use validators instead of an LOV to manage a list of values.			
When a view object extends another view object, you can create the LOV-enabled attribute on the base object. Then when you define the child view object in the overview editor, the LOV definition will be visible on the corresponding view object attribute. This inheritance mechanism allows you to define an LOV-enabled attribute once and later apply it across multiple view objects instances for the same attribute.			
You can also use the overview editor to extend the inherited LOV definition. For example, you may add extra attributes already defined by the base view object's query to display in selection list. Alternatively, you can define a view object that uses a custom WHERE			
clause to query the supplemental attributes not already queried by the based view object. For information about customizing entity-based view objects, see Section 5.10, "Working with Bind Variables."			
If you have created an LOV-enabled attribute for a view object, there is no need to validate the attribute using a List Validator. You only use an attribute validator when you do not want the list to display in the user interface, but still need to restrict the list of valid values. List validation may be a simple static list or it may be a list of possible values obtained through a view accessor you define. Alternatively, you might prefer to use Key Exists validation when the attribute displayed in the UI is one that references a key value (such as a primary, foreign, or alternate key). For information about declarative validation in ADF Business Components, see Chapter 7, "Defining Validation and Business Rules Declaratively."			
One of the built-in features of ADF Business Components is the ability to define control hints on view objects and attributes of view objects. Control hints are settings that the view layer can use to automatically display the queried information to the user in a consistent, locale-sensitive way. For example, in web pages, a UI developer may access control hint values by entering EL expressions utility methods defined on the bindings			
name space and specified for ADF binding instance names.			
JDeveloper stores the hints in resource bundle files that you can easily localize for multilingual applications.			
To create control hints for attributes of a view object, use the overview editor for the view object, which is accessible from the Application Navigator. You can also display and edit control hints using the Property Inspector that you display for an attribute.			
Before you begin:			
Create the desired view objects as described in Section 5.2.1, "How to Create an Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode, Read-Only View Object."			
To customize view object attribute with control hints:			
Alternatively, display the Property Inspector for the selected attribute and select the UI Hints navigation tab. The Property Inspector provides a way to customize the attribute's control hints without using the Edit Attribute dialog.			
For example, for an attribute UserId			
, you might enter a value for its Label Text hint like "Id			
" or set the Format Type to Number, and enter a Format mask of 00000			
.			
Note: Java defines a standard set of format masks for numbers and dates that are different from those used by the Oracle database's SQL and PL/SQL languages. For reference, see the Javadoc for thejava.text.DecimalFormat and java.text.SimpleDateFormat classes.			
To create control hints for attributes of a view object, use the overview editor for the view object, which is accessible from the Application Navigator. You can also display and edit several additional control hints using the Property Inspector that you display for the view object.			
Before you begin:			
It may be helpful to have an understanding of control hints. For more information, see Section 5.13, "Defining Control Hints for View Objects."			
You will need to complete this task:			
To customize view objects with control hints:			
For example, for a view object OrdersVO			
, you might enter a value for its Display Name hint like "Order			
".			
For example, for a view object OrdersVO			
, you might enter a value for the Display Name (Plural) hint like "Orders			
" and, for the Description hint, you might enter a value like "customer orders			
".			
A UI developer can access control hints using EL expressions and display the hint values as data in a web page. The UI developer may access control hints through the ADF binding instances that they create after dropping databound components into their web pages.			
In the case of the view object hints, the UI developer accesses the view object hints through the iterator binding defined for the view object. For example, assume that you have configured the view object control hints as follows.			
OrdersVO			
view object Display Name hint = Order			
OrdersVO			
view object Display Name (Plural) hint = Orders			
OrdersVO			
view object Description hint = customer orders			
The UI developer might display a header that makes use of these hints like this:			
Example 5-38 shows that the EL expression that produces the above text. In this EL expression the iterator binding OrdersVO1Iterator			
provides access to the view object hints. The names of the EL expression utility methods match the property names defined in the view object XML definition file for the control hints. For example, the view object property name labelPlural			
, which defines the Display Name (Plural) hint, corresponds to the utility method name used in the expression bindings.OrdersVO1Iterator.hints.labelPlural			
.			
When you define control hints for a view object or view object attributes, by default JDeveloper creates a project-level resource bundle file in which to store them. For example, when you define control hints for a view object in the StoreFront			
project, JDeveloper creates the message bundle file named StoreFrontBundle.			
xxx			
for the package. The hints that you define can be used by generated forms and tables in associated view clients.The type of resource bundle file that JDeveloper uses and the granularity of the file are determined by settings on the Resource Bundle page of the Project Properties dialog. By default, JDeveloper sets the option to Properties Bundle and generates one .properties			
file for the entire data model project.			
Alternatively, if you select the option in the Project Properties dialog to generate one resource bundle per file, you can inspect the message bundle file for any view object by selecting the object in the Application Navigator and looking in the corresponding Sources node in the Structure window. The Structure window shows the implementation files for the component you select in the Application Navigator. You can inspect the resource bundle file for the view object by expanding the parent package of the view object in the Application Navigator, as shown in Figure 5-46.			
For more information on the resource bundle options you can select, see Section 4.7.1, "How to Set Message Bundle Options."			
Example 5-39 shows a sample message bundle file where the control hint information appears. The first entry in each String			
array is a message key; the second entry is the locale-specific String			
value corresponding to that key.			
Example 5-39 Resource File With Locale-Sensitive Control Hints			
Internationalizing the model layer of an application built using ADF Business Components entails producing translated versions of each component's resource bundle file. For example, the Italian version of the QueryDataWithViewObjectsBundle.properties			
file would be a file named QueryDataWithViewObjectsBundle_it.properties			
, and a more specific Swiss Italian version would have the name QueryDataWithViewObjectsBundle_it_ch.properties			
.			
Resource bundle files contain entries for the message keys that need to be localized, together with their localized translation. For example, assuming you didn't want to translate the number format mask for the Italian locale, the Italian version of the QueryDataWithViewoObjects			
view object message keys would look like what you see in Example 5-40. At runtime, the resource bundles are used automatically, based on the current user's locale settings.			
Example 5-40 Localized View Object Component Resource Bundle for Italian			
In addition to having attributes that map to underlying entity objects, your view objects can include calculated attributes that don't map to any entity object attribute value. The two kinds of calculated attributes are known as:			
A view object can include an entity-mapped attribute which itself is a transient attribute at the entity object level.			
You use the overview editor for the view object to add a SQL-calculated attribute.			
Before you begin:			
Create the desired view objects as described in Section 5.2.1, "How to Create an Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode, Read-Only View Object."			
To add a SQL-calculated attribute to a view object:			
For example, to change the order of first name and last name, you could write the expression LAST_NAME		', '	
, as shown in Figure 5-47.			
When you add a SQL-calculated attribute in the overview editor for the view object, JDeveloper updates the XML component definition for the view object to reflect the new attribute. The entity-mapped attribute's <ViewAttribute>			
tag looks like the sample shown in Example 5-41. The entity-mapped attribute inherits most of it properties from the underlying entity attribute to which it is mapped.			
Example 5-41 Metadata For Entity-Mapped Attribute			
Whereas, in contrast, a SQL-calculated attribute's <ViewAttribute>			
tag looks like sample shown in Example 5-42. As expected, the tag has no EntityUsage			
or EntityAttrName			
property, and includes datatype information along with the SQL expression.			
Example 5-42 Metadata For SQL-Calculated Attribute			
Note: The' is the XML character reference for the apostrophe. You reference it by its numerical ASCII code of 39 (decimal). Other characters in literal text that require similar construction in XML are the less-than, greater-than, and ampersand characters.			
Transient attributes are often used to provide subtotals or other calculated expressions that are not stored in the database.			
Before you begin:			
Create the desired view objects as described in Section 5.2.1, "How to Create an Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode, Read-Only View Object."			
To add a transient attribute to a view object:			
For example, a calculated attribute that concatenates a first name and a last name would have the type String			
, as shown in Figure 5-48.			
To create a transient attribute based on an expression:			
A transient attribute does not include a SQL expression.			
Expressions you define will be evaluated using the Groovy Expression Language. Groovy lets you insert expressions and variables into strings. The expression will be saved as part of the view object definition. For more information about Groovy, see Section 3.6, "Overview of Groovy Support."			
Attributes that you reference can include any attribute that the base entity objects define. Do not reference attributes in the expression that are not defined by the view object's underlying entity objects.			
If you select Always (default), the expression is evaluated each time any attribute in the row changes. If you select Never, the expression is evaluated only when the row is created.			
For example, the following expression in the Based on the following expression field causes the attribute to be recalculated when either the Quantity attribute or the UnitPrice			
attribute are changed:			
A view object can include an entity-mapped attribute which itself is a transient attribute at the entity object level.			
To add a transient attribute from an entity object to an entity-based view object:			
If you use the Business Component Browser to test the data model, you can see the usage of your transient attributes. Figure 5-49 shows three attributes that were created using a SQL-calculated attribute (LastCommaFirst			
), a transient attribute (FirstDotLast			
) and an entity-derived transient attribute (FullName			
).			
Attribute-level validation rules are triggered for a particular view object transient attribute when either the end user or the program code attempts to modify the attribute's value. Since you cannot determine the order in which attributes will be set, attribute-level validation rules should be used only when the success or failure of the rule depends exclusively on the candidate value of that single attribute.			
The process for adding a validation rule to an view object transient attribute is similar to create declarative validation rules, and is done using the Add Validation Rule dialog. You can open this dialog from the overview editor for the view object by clicking the Add Validation Rule icon on the Attributes page. You must first select the transient attribute from the attributes list.			
To add a validation rule for a transient attribute:			
When you add a new validation rule, the Add Validation Rule dialog appears.			
The controls will change depending on the kind of validation rule you select. For more information about the different validation rules, see Section 7.4, "Using the Built-in Declarative Validation Rules."			
When you add a transient attribute in the overview editor for a view object, JDeveloper updates the XML component definition for the view object to reflect the new attribute. A transient attribute's <ViewAttribute>			
tag in the XML is similar to the SQL-calculated one, but it lacks an Expression			
property.			
When you base a transient attribute on a Groovy expression, a <TransientExpression>			
tag is created within the appropriate attribute, as shown in Example 5-43.			
A transient attribute is a placeholder for a data value. If you change the Updatable property of the transient attribute to While New or Always, the end user can enter a value for the attribute. If you want the transient attribute to display a calculated value, then you'll typically leave the Updatable property set to Never and write custom Java code that calculates the value.			
After adding a transient attribute to the view object, to make it a calculated transient attribute you need to enable a custom view row class and choose to generate accessor methods, in the Java dialog that you open clicking the Edit icon on the Java page of the overview editor for the view object. Then you would write Java code inside the accessor method for the transient attribute to return the calculated value. Example 5-43 shows the StaffListRowImpl.java			
view row class contains the Java code to return a calculated value in the getLastCommaFirst()			
method.			
The view object includes the SQL expression for your SQL-calculated attribute in the SELECT			
list of its query at runtime. The database is the one that evaluates the expression, and it returns the result as the value of that column in the query. The value is reevaluated each time you execute the query.			
This chapter describes how to interactively test ADF view objects query results using the Business Component Browser provided in JDeveloper. This chapter also explains how to use the Business Components API to access view object instances in a test client outside of JDeveloper.			
This chapter includes the following sections:			
JDeveloper includes an interactive application module testing tool that you can use to test all aspects of its data model without having to use your application user interface or write a test client program. Running the Business Component Browser can often be the quickest way of exercising the data functionality of your business service during development.			
Note: When you want to test an application module programmatically, you can write a test client. For more information, see Section 6.4.2, "How to Create a Command-Line Java Test Client."			
Using the Business Component Browser, you can simulate an end user interacting with your application module data model before you have started to build any custom user interface of your own. Even after you have your UI pages constructed, you will come to appreciate using the Business Component Browser to assist in diagnosing problems when they arise. You can reproduce the issues in the Business Component Browser to discover if the issue lies in the view or controller layers of the application, or is instead a problem in the business service layer application module itself.			
Before you can test view objects that you create in your data model project, you must create an application module where you will define instances of the view objects you want to test. The application module is the transactional component that the Business Component Browser (or UI client) will use to work with application data. The set of view objects used by an application module defines its data model, in other words, the set of data that a client can display and manipulate through a user interface.			
To test the view objects you added to an application module, use the Business Component Browser, which is accessible from the Application Navigator. For details about using the Business Component Browser, see Section 6.3, "Testing View Object Instances Using the Business Component Browser."			
To create an application module that will define instances of individual view objects, use the Create Application Module wizard, which is available in the New Gallery.			
Before you begin:			
Create the desired view objects, as described in Section 5.2.1, "How to Create an Entity-Based View Object" and Section 5.2.3, "How to Create an Expert Mode, Read-Only View Object."			
To create an application module to test individual view object instances:			
Instead of accepting the default instance name shown in the Data Model page, you can change the instance name to something more meaningful (for example, instead of the default name OrderItems1			
you can rename it to AllOrderItems			
).			
You can also use the Create Application Module wizard to create a hierarchy of view objects for an application module, based on master-detail relationships that the view objects represent.			
Before you begin:			
Create hierarchical relationships between view objects, as described in Section 5.6, "Working with Multiple Tables in a Master-Detail Hierarchy."			
To create an application module based on view object relationships:			
The master view object will appear with a plus sign in the list indicating the available view links for this view object. The view link must exist to define a master-detail hierarchy.			
For example, Figure 6-1 shows PersonsVO			
selected and renamed AuthenticatedUser			
in the New View Instance field.			
For example, Figure 6-2 shows the newly created master view instance AuthenticatedUser			
in the Data Model list after you add it to the list.			
For example, Figure 6-3 shows the detail OrdersVO			
indented beneath master PersonsVO			
with the name OrdersVO via PersonsToOrders			
. The name identifies the view link PersonsToOrders			
, which defines the master-detail hierarchy between PersonsVO			
and OrdersVO			
. The detail view instance is renamed to MyOrders			
.			
Figure 6-4 shows the newly created detail view instance MyOrders			
is a detail of the AuthenticatedUser			
in the data model.			
Your data model can contain as many levels of hierarchy as your view object relationships support. For example, Figure 6-5 shows the Data Model list with instance AuthenticatedUser			
(renamed for PersonsVO			
) as the master of MyOrders			
(renamed for OrdersVO via PersonsToOrders			
), which in turn is a master for MyOrderItems			
(renamed from OrderItemsVO via OrdersToOrderItems			
). The detail view object MyOrderItems			
is the last level of the hierarchy possible because this view object is itself not a master for another view object.			
Using the Business Component Browser, you can simulate an end user interacting with your application module data model before you have started to build any custom user interface of your own. Even after you have your UI pages constructed, you will come to appreciate using the Business Component Browser to assist in diagnosing problems when they arise. You can reproduce the issues in the Business Component Browser to discover whether the problem lies in the view or controller layers of the application, or whether there is instead a problem in the business service layer application module itself.			
To test the view objects you added to an application module, use the Business Component Browser, which is accessible from the Application Navigator.			
To test view objects in an application module configuration:			
Alternatively, choose Debug when you want to run the application in the Business Component Browser with debugging enabled. JDeveloper opens the debugger process panel in the Log window and the various debugger windows. For example, when debugging using the Business Component Browser, you can view status message and exceptions, step in and out of source code, and manage breakpoints.			
For information about receiving diagnostic messages specific to ADF Business Component debugging, see Section 6.3.8, "How to Enable ADF Business Components Debug Diagnostics".			
By default, an application module has only its default configurations, named AppModuleName			
Local			
and AppModuleName			
Shared			
. For example, Figure 6-6 shows the StoreFrontModuleLocal			
configuration used by the application module to connect to the database.			
If you have created additional configurations for your application module and want to test it using one of those instead, just select the desired configuration from the Business Component Configuration Name dropdown list on the Configuration dialog before clicking Connect.			
Note that the view object instance may already appear executed in the testing session. In this case, the Business Component Browser data view page on the right already displays query results for the view object instance. The fields in the Business Component Browser data view page of a read-only view object will always appear disabled since the data it represents is not editable. For example, in Figure 6-7, data for the view instance Products			
appears in the Browser. Fields like Product Id, Language, and Category appear disabled because the attributes themselves are not editable.			
You test entity-based view objects interactively in the same way as read-only ones. Just add instances of the desired view objects to the data model of some application module, and then test that application module using the Business Component Browser.			
You'll find the Business Component Browser invaluable for quickly testing and debugging your application modules. Table 6-1 gives an overview of the operations that the Business Component Browser toolbar buttons perform when you display an entity-based view object.			
Table 6-1 Business Component Browser Toolbar Buttons			
Button	Operation	Usage	
---	---	---	
Move to ... row	Changes the current row displayed by the Business Component Browser. Moves to the first, previous, next, or last row.		
Insert a new row	Creates and inserts a new row.		
Delete the current row	Deletes the current row.		
Save changes to the database	Posts and commits changes that you made in the ADF Business Components cache.		
Discard all changes since last save	Discards changes that you made in the ADF Business Components cache and restores the original values, rolling back any changes posted to the database.		
Specify view criteria	Displays the Business Component View Criteria dialog that you can use to create and apply view criteria to the master view object instance.		
Validate row	Validates the current row by applying validation rules defined for all entity object instances. Disabled unless at least one field is editable.		
Edit bind variables	Displays the Bind Variable dialog that you can use to enter values for bind parameters used in the view object query. Disabled unless the view object query uses bind parameters in the query statement.		
To test the entity-based view objects you added to an application module, use the Business Component Browser, which is accessible from the Application Navigator.			
To test entity-based view objects using an application module configuration:			
Unlike the fields of a read-only view object, the fields displayed in the data view page will appear enabled, because the data it represents is editable.			
In the case of a view instance with referenced entities, you can change the foreign key value and observe that the referenced part changes.			
For further discussion about simulating end-user interaction in the data view page, see Section 6.3.5, "How to Simulate End-User Interaction in the Business Component Browser".			
Normally, changes that you make to the data model project will not be picked up automatically by running the Business Component Browser. You can, however, force the Business Component Browser to reload metadata from the data model project any time you want to synchronize the displayed data model and the data model project. This option is an alternative to quitting the Business Component Browser, editing your project, and rerunning the Business Component Browser to view the latest changes.			
Using the Reload Application option saves time, especially as you work iteratively between the Business Component Browser and JDeveloper. For example, while running the Business Component Browser you might determine the need to modify the data model with a new view instance or you might find that a view instance is missing an LOV attribute definition. You can return to JDeveloper and use the Business Components overview editors to make the changes that alter the data model metadata. Then, after you recompile the project (a necessary step), you can return to the Business Component Browser to reload the updated metadata from the project's class path.			
To reload the data model metadata in the running Business Component Browser:			
Although the metadata changes that you make are not involved in compiling the project, the compile step is necessary to copy the metadata to the class path and to allow the Business Component Browser to reload it.			
Alternatively, you can choose Reload Application from the File menu of the Business Component Browser.			
When you launch the Business Component Browser, JDeveloper starts the tool in a separate process and the Business Component Browser appears. The tree at the left of the dialog displays all of the view object instances in your application module's data model. After you double-click the desired view object instance, the Business Component Browser will display a data view page to inspect the query results. For example, Figure 6-7 shows the view instance Products			
that has been double-clicked in the expanded tree to display the data for this view instance in the data view page on the right.			
The data view page will appear disabled for any read-only view objects you display because the data is not editable. But even for a read-only view object, the tool affords some useful features:			
For example, as shown in Figure 6-9, you can select a view criteria like CustomerInfoVOCriteria			
and enter a query criteria like "H%			
" for a LastName			
attribute and click Find to narrow the search to only those users with a last name that begins with the letter H			
.			
The Business Component Browser becomes even more useful when you create entity-based view objects that allow you to simulate inserting, updating, and deleting rows, as described in Section 6.3.2, "How to Test Entity-Based View Objects Interactively."			
When you launch the Business Component Browser, the tree at the left of the display shows the hierarchy of the view object instances that the data model of your application module defines. If the data model defines master-detail view instance relationships, the tree will display them as parent and child nodes. A node between the master-detail view instances represent the view link instance that performs the active master-detail coordination as the current row changes in the master. For example, in Figure 6-10 the tree is expanded to show the master-detail relationship between the master ProductByCategory1			
view instance and the detail ProductStockLevelsByLocation1			
view instance. The selected node, ProductWarehousesLevelsLink1			
, is the view link instance that defines the master-detail relationship.			
Double-clicking the view link instance executes the master object and displays the master-detail data in the data view page. For example, in Figure 6-11, double-clicking the ProductWarehousesLevelsLink1			
view link instance in the tree executes the ProductsByCategory			
master view instance in the top portion of the data view page and the ProductStockLevelsByLocation1			
view instance in the bottom portion of the data view page. Additional context menu items on the view object node allow you to reexecute the query if needed, remove the view object from the data model panel, and perform other tasks.			
In the master-detail data view page, you can scroll through the query results. Additionally, because instance of entity-based view objects are fully editable, Instead of displaying disabled UI controls showing read-only data for a read-only view object, the data view page displays editable fields. You are free to experiment with creating, inserting, updating, validating, committing, and rolling back.			
For example, you can view multiple levels of master-detail hierarchies, opening multiple data view pages at the same time. Use the Detach context menu item to open any tab into a separate window and visualize multiple view object's data at the same time.			
Using just the master-detail data view page, you can test several functional areas of your application.			
When you click the navigation buttons on the Business Component Browser toolbar, you can see that the rows for the current master view object are correctly coordinated. For example, Figure 6-11 shows a master-detail hierarchy with products and warehouses. If you click the Next Row button in the master panel, the master panel will display the next product (identified by a product ID) and the detail panel will update to display the list of warehouses and quantities available for the product.			
The entity-based view object attributes inherit their control hints from those on the underlying entity object attribute. The prompts displayed in the data view page help you see whether you have correctly defined a user-friendly label text control hint for each attribute. For details on setting up the hint on your entity object, see Section 5.13, "Defining Control Hints for View Objects."			
Depending on the validation rules you have defined, you can try entering invalid values to trigger and verify validation exceptions. For example, when you have defined a range validation rule, enter a value outside the range and see an error similar to:			
Click the rollback button in the toolbar to revert data to the previous state.			
When your application defines alternative languages in your resource message bundles, you can configure the Business Component Browser to recognize these languages. In the Business Component Browser, you can then display the Locale menu and select among the available language choices.			
To specify a default language for the Business Component Browser:			
Alternatively, you can configure the default language choice by setting ADF Business Components runtime configuration properties. These runtime properties also determine which language the Business Component Browser will display as the default. In the Select Business Component Browser Configuration dialog, select the Properties tab and enter the desired country code for the country and language. For example, to specify the Italian language, you would enter IT			
and it			
for these two properties:			
jbo.default.country			
= IT			
jbo.default.language			
= it			
Testing the language message bundles in the Business Component Browser lets you verify that the translations of the entity object control hints are correctly located. Or, if the message bundle defines date formats for specific attributes, the tool lets you verify that date formats change (like 04/12/2007			
to 12/04/2007			
).			
By scrolling through the data — or using the Specify View Criteria button in the Business Component Browser toolbar to search — you can verify whether you have correctly altered the WHERE			
clause in an entity-based view object's query to use an outer join. The rows should appear as expected.			
You also can try changing a primary key attribute of a master view object. This will allow you to verify that the corresponding reference information is automatically updated to reflect the new primary key value.			
Use the Business Component Browser to verify that control hints defined at the view object level override the ones it would normally inherit from the underlying entity object. If you notice that several attributes share the same label text, you can edit the control hint for the desired attributes at the view object level. For example, you can set the Label Text hint to Member Since for the RegisteredDate			
attribute and Provisioned? for the ProvisionedFlag			
attribute.			
When displaying an entity-based view object, click the Create Row button in the Business Component Browser toolbar for the view object instance to create a new blank row. Any fields that have a declarative default value will appear with that value in the blank row. If the a DBSequence			
-valued attribute is used, a temporary value will appear in the new row. After entering all the required fields, click the Commit button to commit the transaction. The actual, trigger-assigned primary key should appear in the field after successful commit.			
If you click Create Row in the Business Component Browser toolbar to try adding a new row to an existing detail entity-based view object instance, you'll notice that the view link automatically ensures that the foreign key attribute value in the new row is set to the value of the current master view instance row.			
When view objects and entity objects cooperate at runtime, two exceptions can occur when you run the application in a multiuser environment. To anticipate these exceptions, you can simulate a multiuser environment for testing purposes using the Business Component Browser. For example, when the application displays edit forms for view object queries, what is the expected behavior when two users attempt to modify the same attribute in their forms?			
To understand the expected behavior, open two instances of the Business Component Browser on the application module to simulate two users editing the same view object attribute. Keep both instances open and perform the following two tests to demonstrate how multiuser exceptions can arise:			
oracle.jbo.AlreadyLockedException			
. You can then change the value of jbo.locking.mode			
to be pessimistic			
on the Properties page of the Business Component Browser Connect dialog and try repeating the test (the default mode is set to pessimistic			
). You'll see the error occurs for the second user immediately after changing hte value instead of after commiting the change.			
oracle.jbo.RowInconsistentException			
. The row has been modified and committed by another user since the second user retrieved the row into the entity cache. Using the Select Business Components Configuration dialog, you can select a predefined configuration to run the tool using that named set of runtime configuration properties. The Select Configuration dialog also features a Properties tab that allows you to see the selected configurations settings and to override any of the configuration's settings for the current run of the browser. For example, you could alter the default language for the UI control hints for a single instance of the Business Component Browser by opening the Properties tab and setting the following two properties with the desired country code (in this case, IT			
for Italy):			
jbo.default.country = IT			
jbo.default.language = it			
Tip: If you wanted to make the changes to your configuration permanent, you could use the Configuration Manager to copy the current configuration and create a new configuration in which you set the desired properties set. For example, anytime you wanted to test in Italian you could simply choose to use theUserServiceLocalItalian configuration, instead of the default UserServiceLocal .			
When launching the Business Component Browser, if your data model project's current run configuration is set to include the Java System parameter jbo.debugoutput=console			
, you can enable ADF Business Components debug diagnostics with messages directed to the JDeveloper Log window.			
Note: Despite the similar name, the JDeveloper project's run configurations are different from the ADF application module's configurations. The former are part of the project properties, the latter are defined along with your application module component in itsbc4j.xcfg file and edited using the Edit Business Components Configuration dialog.			
To set the system debug output property, open the Run/Debug/Profile page in the Project Properties dialog for your data model project. Click Edit to edit the chosen run configuration, and add following string to the Java Options field in the page.			
The next time you run the Business Component Browser and double-click the view object, you'll see detailed diagnostic output in the console, as shown in Example 6-1. Using the diagnostics will allow you to visualize everything the framework components are doing for your application.			
Example 6-1 Diagnostic Output of Business Component Browser			
Other legal values for this property are silent			
(the default, if not specified) and file			
. If you choose the file option, diagnostics are written to the system temp			
directory.			
Tip: You can create separate JDeveloper run configurations, one with the ADF Business Components debug diagnostics enabled, and another without it. By choosing the appropriate project run configuration, you can easily run JDeveloper with or without debug diagnostics.			
On their own, view objects and entity objects simplify two important jobs that every enterprise application developer needs to do:			
Entity-based view objects can query any selection of data that you want the end user to be able to view and modify. Any data the end user is allowed to change will be validated and saved by your reusable business domain layer. The key ingredients you provide as the developer are the ones that only you can know:			
These are the things that make your application unique. The built-in functionality of your entity-based view objects handles the rest of the implementation details.			
Note: Understanding row keys and what role the entity cache plays in the transaction are important concepts that help to clarify the nature of the entity-based view objects. These two concepts are addressed in Section 6.4.1, "ViewObject Interface Methods for Working with the View Object's Default RowSet."			
After adding an instance of an entity-based view object to the application module's data model, you can see what happens at runtime when you execute the query. Like a read-only view object, an entity-based view object sends its SQL query straight to the database using the standard Java Database Connectivity (JDBC) API, and the database produces a result set. In contrast to its read-only counterpart, however, as the entity-based view object retrieves each row of the database result set, it partitions the row attributes based on which entity usage they relate to. This partitioning occurs by creating an entity object row of the appropriate type for each of the view object's entity usages, populating them with the relevant attributes retrieved by the query, and storing each of these entity rows in its respective entity cache. Then, rather than storing duplicate copies of the data, the view row simply points at the entity row parts that comprise it.			
Figure 6-12 illustrates how the entity cache partitions the result set attributes of two entity-based view objects. In this example, the highlighted row in the database result set is partitioned into an Order			
entity row with primary key 112			
and a CustomerInfo			
entity row with primary key 301			
.			
As described in Section 6.4.1.2, "The Role of the Entity Cache in the Transaction," the entity row that is brought into the cache using findByPrimaryKey()			
contains all attributes of the entity object. In contrast, an entity row created by partitioning rows from the entity-based view object's query result contains values only for attributes that appear in the query. It does not include the complete set of attributes. This partially populated entity row represents an important runtime performance optimization.			
Since the ratio of rows retrieved to rows modified in a typical enterprise application is very high, you can save memory by bringing only the attributes into memory that you need to display instead of bringing all attributes into memory all the time.			
By partitioning queried data this way into its underlying entity row constituent parts, the first benefit you gain is that all of the rows that include some data queried will display a consistent result when changes are made in the current transaction. In other words, if one view object allows the PaymentType			
attribute of customer 301			
to be modified, then all rows in any entity-based view object showing the PaymentType			
attribute for customer 301			
will update instantly to reflect the change. Since the data related to customer 301			
is stored exactly once in the CustomerInfo			
entity cache in the entity row with primary key 301			
, any view row that has queried the order's PaymentType			
attribute is just pointing at this single entity row.			
Luckily, these implementation details are completely hidden from a client working with the rows in a view object's row set. The client works with a view row, getting and setting the attributes, and is unaware of how those attributes might be related to entity rows behind the scenes.			
When a user attempts to update the attribute of a view row, a series of steps occur to automatically coordinate this view row attribute modification with the underlying entity row. These steps ensure that a validation rule defined on the entity-mapped attribute will be triggered before the value is changed.			
Figure 6-13 illustrates the basic steps that occur at runtime when the user attempts to update an entity-mapped attribute. In this example, the modified attribute Status			
is mapped to an entity usage where a validation rule is defined.			
Status			
attribute to the value Ship			
. Status			
is an entity-mapped attribute from the Order			
entity usage, the view row delegates the attribute set to the appropriate underlying entity row in the Order			
entity cache having primary key 112			
. Status			
attribute of the Order			
entity object are evaluated and the modification attempt will fail if any rule does not succeed. Assume that some validation rule for the Status			
attribute programmatically references the ShipDate			
attribute (for example, to enforce a business rule that an Order			
cannot be shipped the same day it is placed). The ShipDate			
was not one of the Order			
attributes retrieved by the query, so it is not present in the partially populated entity row in the Order			
entity cache.			
Order			
entity object attributes for the entity row being modified using the primary key (which must be present for each entity usage that participates in the view object). ORDERS			
table before allowing the first attribute to be modified. Status			
attribute in the row succeeds and the value is changed in the entity row. Note: Thejbo.locking.mode configuration property controls how rows are locked. The default value is optimistic . Typically, Fusion web applications will use the default setting optimistic , so that rows aren't locked until transaction commit time. In pessimistic locking mode, the row must be lockable before any change is allowed to it in the entity cache.			
When a user attempts to update a foreign key attribute, a series of steps occur to automatically coordinate this view row attribute modification with the underlying entity row. These steps ensure that a validation rule defined on the foreign key, entity-mapped attribute will be triggered before the value is changed. They also ensure that the view row for the changed foreign key attribute reflects the correct attributes of all referenced entity objects.			
Figure 6-14 illustrates the basic steps that occur at runtime when the user attempts to update a foreign key, entity-mapped attribute. In this example, the modified attribute CustomerInfoId			
is mapped to an entity usage Order			
where the attribute is associated with another entity object CustomerInfo			
.			
CustomerInfoId			
attribute to the value 300			
. CustomerInfoId			
is an entity-mapped attribute from the Order			
entity usage, the view row delegates the attribute set to the appropriate underlying entity row in the Order			
entity cache, which has primary key 112			
. CustomerInfoId			
attribute of the Order			
entity object are evaluated and the modification attempt will fail if any rule does not succeed. CustomerInfoId			
attribute in the row succeeds and the value is changed in the entity row. CustomerInfoId			
attribute on the Order			
entity usage is associated with the CustomerInfo			
entity object, this change of foreign key value causes the view row to replace its current entity row part for customer 301			
with the entity row corresponding to the new CustomerInfoId = 300			
. This effectively makes the view row for order 112			
point to the entity row for 300			
, so the value of the PaymentType			
in the view row updates to reflect the correct reference information for this newly assigned customer. Suppose the user is satisfied with the changes, and commits the transaction. As shown in Figure 6-15, there are two basic steps:			
Transaction			
object validates any invalid entity rows in its pending changes list. The figure depicts a loop in Step 1 before the act of validating one modified entity object might programmatically affect changes to other entity objects. Once the transaction has processed its list of invalid entities on the pending changes list, if the list has entities, the transaction will complete another pass. It will attempt up to ten passes through the list. If by that point there are still invalid entity rows, it will throw an exception because this typically means you have an error in your business logic that needs to be investigated.			
When you reexecute a view object's query, by default the view rows in its current row set are "forgotten" in preparation for reading in a fresh result set. This view object operation does not directly affect the entity cache, however. The view object then sends the SQL to the database and the process begins again to retrieve the database result set rows and partition them into entity row parts.			
Note: Typically when the view object requeries data, you expect it to retrieve the latest database information. If instead you want to avoid a database roundtrip by restricting your view object to querying only over existing entity rows in the cache, or over existing rows already in the view object's row set, see Section 39.5, "Performing In-Memory Sorting and Filtering of Row Sets."			
As part of the entity row partitioning process during a requery, if an attribute on the entity row is unmodified, then its value in the entity cache is updated to reflect the newly queried value.			
However, if the value of an entity row attribute has been modified in the current transaction, then during a requery the entity row partitioning process does not refresh its value. Uncommitted changes in the current transaction are left intact so the end-user's logical unit of work is preserved. As with any entity attribute value, these pending modifications continue to be consistently displayed in any entity-based view object rows that reference the modified entity rows.			
Note: End-user row inserts and deletes are also managed by the entity cache, which permits new rows to appear and deleted rows to be skipped during requerying. For more information about new row behavior, see Section 39.1.2, "Maintaining New Row Consistency in View Objects Based on the Same Entity."			
For example, Figure 6-16 illustrates the scenario where a user "drills down" to a different page that uses the Orders			
view object instance to retrieve all details about order 112			
and that this happens in the context of the current transaction's pending changes. That view object has two entity usages: a primary Orders			
usage and a reference usage for CustomerInfo			
. When its query result is partitioned into entity rows, it ends up pointing at the same Order			
entity row that the previous OrderInfo			
view row had modified. This means the end user will correctly see the pending change, that the order is assigned to sking			
in this transaction.			
Two different view objects can retrieve two different subsets of reference information and the results are merged whether or not they have matching sets of attributes. For example, Figure 6-16 also illustrates the situation, where the Orders			
view object queries the user's Email			
, while the OrderInfo			
view object queried the user's PaymentOption			
. The figure shows what happens at runtime: if while partitioning the retrieved row, the entity row part contains a different set of attributes than does the partially populated entity row that is already in the cache, the attributes get "merged". The result is a partially populated entity row in the cache with the union of the overlapping subsets of user attributes. In contrast, for jchen			
(user 302), who wasn't in the cache already, the resulting new entity row contains only the Email			
attribute, but not the PaymentOption			
.			
The view object provides tuning parameters that let you control how SQL is executed and how data is fetched from the database. These tuning parameters play a significant role in the runtime performance of the view object. If the fetch options are not tuned correctly for the application, then your view object may fetch an excessive amount of data and may make too many roundtrips to the database.			
You can use the Tuning section of the General page of the overview editor to configure the fetch options shown in Table 6-2.			
Table 6-2 Parameters to Tune View Object Performance			
Fetch Tuning Parameters	Usage		
---	---		
Fetch Mode	The default fetch option is the All Rows option, which will be retrieved As Needed (
Fetch Size	In conjunction with the Fetch Mode option, the in Batches of field controls the number of records fetched at one time from the database (
Max Fetch Size	The default max fetch size for a view object is -1, which means that there is no limit to the number of rows the view object can fetch. In cases where the result set should contain only n rows of data, the option Only up to row number should be selected and set to n. The developer can alternatively call For view objects whose As mentioned earlier, setting a maximum fetch size of 0 (zero) makes the view object insert-only. In this case, no select query will be issued, so no rows will be fetched. When you want to specify a global threshold for all view object queries in the application, you can configure the Row Fetch Limit property in the		
Forward-only Mode	If a data set will only be traversed going forward, then forward-only mode can help performance when iterating through the data set. This can be configured by programmatically calling		
When you tune view objects, you should also consider these issues:			
setRangeSize(
n			
)			
followed by setAccessMode(RowSet.RANGE_PAGING)			
on the view object where n is the number of rows contained within one page. When the user navigates to a specific page in the data set, the application can call scrollToRangePage(P)			
on the view object to navigate to page P. Range paging fetches and caches only the current page of rows in the view object row cache at the cost of another query execution to retrieve each page of data. Range paging is not appropriate where it is beneficial to have all fetched rows in the view object row cache (for example, when the application needs to read all rows in a dataset for an LOV or page back and forth in records of a small data set. jbo.use.pers.coll=true			
. Enabling spillover can have a large performance impact. -Djbo.SQLBuilder="SQL92"			
to the JVM upon startup. Additionally, you have some options to tune the view objects' associated SQL for better database performance:			
When you are ready to test a working application module containing at least one view object instance, you can build a simple test client program to illustrate the basics of working programmatically with the data in the contained view object instances.			
From the point of view of a client accessing your application module's data model, the API's to work with a read-only view object and an entity-based view object are identical. The key functional difference is that entity-based view objects allow the data in a view object to be fully updatable. The application module that contains the entity-based view objects defines the unit of work and manages the transaction. This section presents four simple test client programs that work with the StoreFrontAM			
application module in the Fusion Order Demo to illustrate:			
The ViewObject			
interface in the oracle.jbo			
package provides the methods to easily perform any data-retrieval task. Some of these methods used in the example include:			
executeQuery()			
, to execute the view object's query and populate its row set of results setWhereClause()			
, to add a dynamic predicate at runtime to narrow a search setNamedWhereClauseParam()			
, to set the value of a named bind variable hasNext()			
, to test whether the row set iterator has reached the last row of results next()			
, to advance the row set iterator to the next row in the row set getEstimatedRowCount()			
, to count the number of rows a view object's query would return Typically, when you work with a view object, you will work with only a single row set of results at a time. To simplify this overwhelmingly common use case, as shown in Figure 6-17, the view object contains a default RowSet			
, which, in turn, contains a default RowSetIterator			
. The default RowSetIterator			
allows you to call all of the data-retrieval methods directly on the ViewObject			
component itself, knowing that they will apply automatically to its default row set.			
Note: Chapter 39, "Advanced View Object Techniques" presents situations when you might want a single view object to produce multiple distinct row sets of results. You can also find scenarios for creating multiple distinct row set iterators for a row set. Most of the time, however, you'll need only a single iterator.			
The phrase "working with the rows in a view object," when used in this guide more precisely means working with the rows in the view object's default row set. Similarly, the phrase "iterate over the rows in a view object," more precisely means you will use the default row set iterator of the view object's default row set to loop over its rows.			
When you work with view rows you use the Row			
interface in the oracle.jbo			
package. As shown in Figure 6-18, the interface contains a method called getKey()			
that you can use to access the Key			
object that identifies any row. Notice that the Entity			
interface in the oracle.jbo.server			
package extends the Row			
interface. This relationship provides a concrete explanation of why the term entity row is so appropriate. Even though an entity row supports additional features for encapsulating business logic and handling database access, you can still treat any entity row as a Row			
.			
An entity-based view object delegates the task of finding rows by key to its underlying entity row parts.			
Recall that both view rows and entity rows support either single-attribute or multiattribute keys, so the Key			
object related to any given Row			
will encapsulate all of the attributes that comprise its key. Once you have a Key			
object, you can use the findByKey()			
method on any row set to find a row based on its Key			
object. When you use the findByKey()			
method to find a view row by key, the view row proceeds to use the entity definition's findByPrimaryKey()			
method to find each entity row contributing attributes to the view row key.			
In the case of a read-only view object with no underlying entity row to which to delegate this task, the view object implementation automatically enables the manageRowsByKey			
flag when at least one primary key attribute is detected. This ensures that the findByKey()			
method is successful in the case of read-only view objects. If the manageRowsByKey			
flag is not enabled, then UI operations like setting the current row with the key, which depend on the findByKey()			
method, would not work.			
Note: When you define an entity-based view object, by default the primary key attributes for all of its entity usages are marked with their Key Attribute property set totrue . In any nonupdatable reference entity usages, you should disable the Key Attribute property for the key attributes. Since view object attributes related to the primary keys of updatable entity usages must be part of the composite view row key, their Key Attribute property cannot be disabled.			
An application module is a transactional container for a logical unit of work. At runtime, it acquires a database connection using information from the named configuration you supply, and it delegates transaction management to a companion Transaction			
object. Since a logical unit of work may involve finding and modifying multiple entity rows of different types, the Transaction			
object provides an entity cache as a "work area" to hold entity rows involved in the current user's transaction. Each entity cache contains rows of a single entity type, so a transaction involving two or more entity objects holds the working copies of those entity rows in separate caches.			
By using an entity object's related entity definition, you can write code in an application module to find and modify existing entity rows. As shown in Figure 6-19, by calling findByPrimaryKey()			
on the entity definition for the Order			
entity object, you can retrieve the row with that key. If it is not already in the entity cache, the entity object executes a query to retrieve it from the database. This query selects all of the entity object's persistent attributes from its underlying table, and finds the row using an appropriate WHERE			
clause against the column corresponding to the entity object's primary key attribute. Subsequent attempts to find the same entity row by key during the same transaction will find it in the cache, preventing the need for a trip to the database. In a given entity cache, entity rows are indexed by their primary key. This makes finding an entity row in the cache a fast operation.			
When you access related entity rows using association accessor methods, they are also retrieved from the entity cache. If related entity rows are not in the cache, then they are retrieved from the database. Finally, the entity cache is also the place where new entity rows wait to be saved. In other words, when you use the createInstance2()			
method on the entity definition to create a new entity row, it is added to the entity cache.			
When an entity row is created, modified, or removed, it is automatically enrolled in the transaction's list of pending changes. When you call commit()			
on the Transaction			
object, it processes its pending changes list, validating new or modified entity rows that might still be invalid. When the entity rows in the pending list are all valid, the Transaction			
issues a database SAVEPOINT			
and coordinates saving the entity rows to the database. If all goes successfully, it issues the final database COMMIT			
statement. If anything fails, the Transaction			
performs a ROLLBACK TO SAVEPOINT			
to allow the user to fix the error and try again.			
The Transaction			
object used by an application module represents the working set of entity rows for a single end-user transaction. By design, it is not a shared, global cache. The database engine itself is an extremely efficient shared, global cache for multiple, simultaneous users. Rather than attempting to duplicate all the work of fine-tuning that has gone into the database's shared, global cache functionality, ADF Business Components consciously embraces it. To refresh a single entity object's data from the database at any time, you can call its refresh()			
method. You can setClearCacheOnCommit()			
or setClearCacheOnRollback()			
on the Transaction			
object to control whether entity caches are cleared at commit or rollback. The defaults are false			
and true			
, respectively. The Transaction			
object also provides a clearEntityCache()			
method you can use to programmatically clear entity rows of a given entity type (or all types). When you clear an entity cache, you allow entity rows of that type to be retrieved from the database fresh the next time they are either found by primary key or retrieved by an entity-based view object.			
To the create a test client program, use the Create Java Class wizard, which is accessible from the New Gallery.			
When you use the Create Java Class wizard to create the test client program, JDeveloper will open your program file in the source editor and allow you to add code from a predefined code template to complete the test client.			
To generate a skeleton Java test client:			
TestClient			
, a package name, like oracle.fodemo.storefront.client			
, and ensure that the Extends field shows java.lang.Object			
. The .java			
file opens in the source editor to show the skeleton code, as shown in Example 6-2.			
After you generate skeleton code for the test client, you can proceed to edit the file using the predefined bc4jclient			
code template available from JDeveloper.			
To insert the bc4jclient code template:			
main()			
method and use the bc4jclient			
code template to create the few lines of necessary code. bc4jclient			
followed Ctrl + Enter. JDeveloper will expand the class file with the template as shown in Example 6-3.			
amDef			
andconfig			
variables to reflect the names of the application module definition and the configuration that you want to use, respectively. For the Example 6-3, the changed lines look like this:			
findViewObject()			
to the one you want to work with. Specify the name exactly as it appears in the Data Model tree on the Data Model page of the overview editor for the application module. For the Example 6-3, the changed line looks like this:			
Example 6-3 Expanded Skeleton Code for TestClient.java			
Your skeleton test client for your application module should contain source code like what you see in Example 6-4.			
Note: The examples throughout Section 9.10, "Working Programmatically with an Application Module's Client Interface" expand this test client sample code to illustrate calling custom application module service methods, too.			
Example 6-4 Working Skeleton Code for an Application Module Test Client Program			
Replace // Work with your appmodule and view object here			
, with code that will execute the view objects you want to test. For example, to execute the view object's query, display the number of rows it will return, and loop over the result to fetch the data and print it out to the console, you can adapt the code shown in Example 6-5 for your model project components.			
Example 6-5 Looping Over Master-Detail View Objects and Printing the Results to the Console			
The first line calls the executeQuery()			
method to execute the view object's query. This produces a row set of zero or more rows that you can loop over using a while			
statement that iterates until the view object's hasNext()			
method returns false			
. Inside the loop, the code puts the current Row			
in a variable named person			
, then invokes the getAttribute()			
method twice on that current Row			
object to get the value of the Email			
and Orders			
attributes to print order information to the console. A second while			
statement performs the same task for the line items of the order.			
The call to createRootApplicationModule()			
on the Configuration			
object returns an instance of the application module to work with. As you might have noticed in the debug diagnostic output, the ADF Business Components runtime classes load XML component definitions as necessary to instantiate the application module and the instance of the view object component that you've defined in its data model at design time. The findViewObject()			
method on the application module finds a view object instance by name from the application module's data model. After the loop shown in Example 6-5, the test client executes releaseRootApplicationModule()			
on the Configuration			
object. This signals that you're done using the application module and it allows the framework to clean up resources, like the database connection that was used by the application module.			
The createRootApplicationModule()			
and releaseRootApplicationModule()			
methods are very useful for command-line access to application module components. However, you typically won't need to write these two lines of code in the context of an ADF-based web or Swing application. The ADF Model data binding layer cooperates automatically with the ADF Business Components layer to acquire and release application module components for you in those scenarios.			
The getEstimatedRowCount()			
method is used on a RowSet			
to determine how many rows it contains:			
The implementation of the getEstimatedRowCount()			
initially issues a SELECT COUNT(*)			
query to calculate the number of rows that the query will return. The query is formulated by "wrapping" your view object's entire query in a statement like:			
The SELECT COUNT(*)			
query allows you to access the count of rows for a view object without necessarily retrieving all the rows themselves. This approach permits an important optimization for working with queries that return a large number of rows, or for testing how many rows a query would return before proceeding to work with the results of the query.			
Once the estimated row count is calculated, subsequent calls to the method do not reexecute the COUNT(*)			
query. The value is cached until the next time the view object's query is executed, since the fresh query result set returned from the database could potentially contain more, fewer, or different rows compared with the last time the query was run. The estimated row count is automatically adjusted to account for pending changes in the current transaction, adding the number of relevant new rows and subtracting the number of removed rows from the count returned.			
You can also override getEstimatedRowCount()			
to perform a custom count query that suits your application's needs.			
Once you've retrieved the RowSet			
of detail rows using a view link accessor, as described in Section 5.6.6.2, "Programmatically Accessing a Detail Collection Using the View Link Accessor,", you can loop over the rows it contains using the same pattern used by the view object's row set of results, as shown in Example 6-6.			
Example 6-6 Pattern Used to Access a Detail Collection			
Example 6-7 shows the main()			
method sets a dynamic WHERE			
clause to restrict the PersonList			
view object instance to show only persons whose person_type_code			
has the value CUST			
. Additionally, the executeAndShowResults()			
method accesses the view link accessor attribute and prints out the request number (PersonId			
) and Email			
attribute for each one.			
To access the a detail collection using a view link accessor, follow these basic steps (as illustrated in Example 6-7):			
Performance Tip: If the code you write to loop over the rows does not need to display them, then you can call thecloseRowSet() method on the row set when you're done. This technique will make memory use more efficient. The next time you access the row set, its query will be reexecuted.			
Example 6-7 Programmatically Accessing Detail Rows Using the View Link Accessor			
Running TestClient2.java			
produces output in the Log window, as shown in Example 6-8. Each customer is listed, and for each customer that has some orders, the order total appears beneath their name.			
Example 6-8 Results of Running TestClient.java			
If you run TestClient2.java			
with debug diagnostics enabled, you will see the SQL queries that the view object performed. The view link WHERE			
clause predicate is used to automatically perform the filtering of the detail service request rows for the current row in the PersonList			
view object.			
To iterate over a master-detail with an additional level of nesting, follow these basic steps (as illustrated in Example 6-9):			
Other than having one additional level of nesting, Example 6-9 uses the same API's used in the TestClient			
program that was iterating over master-detail read-only view objects in Section 6.4.6, "How to Access a Detail Collection Using the View Link Accessor."			
If you use JDeveloper's Refactor > Duplicate functionality on an existing TestClient.java			
class, you can quickly "clone" it to create a TestClient2.java			
class. For example, the TestClient.java			
class in Example 6-8 is suited to this technique.			
Example 6-9 Iterating Master/Detail/Detail Hierarchy			
Running the program produces the output shown in Example 6-10.			
Example 6-10 Results of Running TestClient2.java			
To find a row and update a foreign key value, follow these basic steps (as illustrated in Example 6-11):			
Key			
object to look up the row for the view instance. findByKey()			
to find the row. Example 6-11 shows the main()			
method finds and updates a foreign key value to find a row of the Orders			
view object instance. The sample then prints out the existing value of the OrderStatusCode			
attribute before changing the value on the row.			
Example 6-11 Finding and Updating a Foreign Key Value			
Running this example produces the output shown in Example 6-12.			
To create a new view row instance, follow these basic steps (as illustrated in Example 6-13):			
Example 6-13 shows the main()			
method finds the Orders			
view object instance and inserts a new row into the row set. Because the Orders			
view object is entity-based, the CreatedBy			
attribute derives its value from the mapped entity object attribute. The sample then sets values for the remaining attributes before committing the transaction.			
Example 6-13 Creating a New Order			
Running this example produces the results shown in Example 6-14.			
To retrieve a row key to identify a row, follow these basic steps (as illustrated in Example 6-15):			
Example 6-15 shows the main()			
method finds the Orders			
view object instance and constructs a row key to find an order number. The findByKey()			
method find the Orders			
rows with the specified key. The sample then displays the key of the row, accesses the row set using the OrderItems			
view link accessor, and iterates over the rows to display the key of each OrderItems			
row.			
Example 6-15 Retrieving the Row Key Identifying a Row			
Running the example produces the results shown in Example 6-16. Notice that the serialized string format of a key is a hexadecimal number that includes information in a single string that represents all the attributes in a key.			
This chapter explains the key ADF entity object features for implementing the most common kinds of validation rules in an ADF application.			
This chapter includes the following sections:			
The easiest way to create and manage validation rules is through declarative validation rules. Declarative validation rules are defined using the overview editor, and once created, are stored in the entity object's XML file. Declarative validation is different from programmatic validation (covered in Chapter 8, "Implementing Validation and Business Rules Programmatically"), which is stored in an entity object's Java file.			
Oracle ADF provides built-in declarative validation rules that satisfy many of your business needs. If you have custom validation rules you want to reuse, you can code them and add them to the IDE, so that the rules are available directly from JDeveloper. Custom validation rules are an advanced topic and covered in Section 38.9, "Implementing Custom Validation Rules." You can also base validation on a Groovy expression, as described in Section 7.5, "Using Groovy Expressions For Validation and Business Rules."			
When you add a validation rule, you supply an appropriate error message and can later translate it easily into other languages if needed. You can also define how validation is triggered and set the severity level.			
One benefit of using declarative validation (versus writing your own validation) is that the validation framework takes care of the complexities of batching validation exceptions, which frees you to concentrate on your application's specific validation rule logic.			
Note: It is possible to go beyond the declarative behavior to implement more complex validation rules for your business domain layer when needed. Section 8.2, "Using Method Validators" explains how to use the Method validator to invoke custom validation code and Section 38.9, "Implementing Custom Validation Rules" details how to extend the basic set of declarative rules with custom rules of your own.			
In an ADF Business Components application, most of your validation code is defined in your entity objects. Encapsulating the business logic in these shared, reusable components ensures that your business information is validated consistently in every view object or client that accesses it, and it simplifies maintenance by centralizing where the validation is stored.			
In the model layer, ADF Model validation rules can be set for the attributes of a collection. Many of the declarative validation features available for entity objects are also available at the model layer, should your application warrant the use of model-layer validation in addition to business-layer validation.			
When you use the ADF Business Components application module data control, you do not need to use model-layer validation. Consider defining all or most of your validation rules in the centralized, reusable, and easier to maintain entity objects of your business layer. With other types of data controls, model-layer validation can be more useful.			
Each entity row tracks whether or not its data is valid. When an existing entity row is retrieved from the database, the entity is assumed to be valid. When the first persistent attribute of an existing entity row is modified, or when a new entity row is created, the entity is marked invalid.			
When an entity is in an invalid state, the declarative validation you have configured and the programmatic validation rules you have implemented are evaluated again before the entity can be considered valid again. You can determine whether a given entity row is valid at runtime by calling the isValid()			
method on it.			
Note: Because attributes can (by default) be left blank, validations are not triggered if the attribute contains no value. For example, if a user creates a new entity row and does not enter a value for a given attribute, the validation on that attribute is not run. To force the validation to execute in this situation, set the Mandatory flag on the attribute.			
Entity object validation rules fall into two basic categories: attribute-level and entity-level.			
Attribute-level validation rules are triggered for a particular entity object attribute when either the end user or the program code attempts to modify the attribute's value. Since you cannot determine the order in which attributes will be set, attribute-level validation rules should be used only when the success or failure of the rule depends exclusively on the candidate value of that single attribute.			
The following examples are attribute-level validations:			
OrderDate			
of an order should not be a date in the past. ProductId			
attribute of a product should represent an existing product. All other kinds of validation rules are entity-level validation rules. These are rules whose implementation requires considering two or more entity attributes, or possibly composed children entity rows, in order to determine the success or failure of the rule.			
The following examples are entity-level validations:			
OrderShippedDate			
should be a date that comes after the OrderDate			
. ProductId			
attribute of an order should represent an existing product. Entity-level validation rules are triggered by calling the validate()			
method on a Row			
. This occurs when:			
As part of transaction commit processing, entity-level validation rules can fire multiple times (up to a specified limit). For more information, see Section 7.2.4, "Avoiding Infinite Validation Cycles."			
Transaction commit processing happens in three basic phases:			
If you have business validation logic in your entity objects that executes queries or stored procedures that depend on seeing the posted changes in the SELECT			
statements they execute, they should be coded in the beforeCommit()			
method described in Section 8.5.3, "What You May Need to Know About Row Set Access with View Accessors." This method fires after all DML statements have been applied so queries or stored procedures invoked from that method can "see" all of the pending changes that have been saved, but not yet committed.			
Caution: don't use the transaction-levelpostChanges() method in web applications unless you can guarantee that the transaction will definitely be committed or rolled-back during the same HTTP request. This method exists to force the transaction to post unvalidated changes without committing them. Failure to heed this advice can lead to strange results in an environment where both application modules and database connections can be pooled and shared serially by multiple different clients.			
Because a composed child entity row is considered an integral part of its composing parent entity object, any change to composed child entity rows causes the parent entity to be marked invalid. For example, if a line item on an order were to change, the entire order would now be considered to be changed, or invalid.			
Therefore, when the composing entity is validated, it causes any currently invalid composed children entities to be validated first. This behavior is recursive, drilling into deeper levels of invalid composed children if they exist.			
If your validation rules contain code that updates attributes of the current entity or other entities, then the act of validating the entity can cause that or other entities to become invalid. As part of the transaction commit processing phase that attempts to validate all invalid entities in the pending changes list, the transaction performs multiple passes (up to a specified limit) on the pending changes list in an attempt to reach a state where all pending entity rows are valid.			
The maximum number of validation passes is specified by the transaction-level validation threshold setting. The default value of this setting is 10. You can increase the threshold count to greater than one if the entities involved contain the appropriate logic to validate themselves in the subsequent passes.			
If after 10 passes, there are still invalid entities in the list, you will see the following exception:			
This is a sign that you need to debug your validation rule code to avoid inadvertently invalidating entities in a cyclic fashion.			
To change the validation threshold, use the SetValidationThreshold()			
method as shown in Example 7-1. In this example, the new threshold is 12.			
When an entity object's validation rules throw exceptions, the exceptions are bundled and returned to the client. If the validation failures are thrown by methods you've overridden to handle events during the transaction postChanges			
processing, then the validation failures cause the transaction to roll back any database INSERT			
, UPDATE			
, or DELETE			
statements that might have been performed already during the current postChanges			
cycle.			
Note: The bundling of exceptions is the default behavior for ADF Model-based web applications, but not for Business Component Browser or Swing bindings. Additional configuration is required to bundle exceptions for the Business Component Browser or Swing clients.			
When an entity row is in memory, it has an entity state that reflects the logical state of the row. Figure 7-1 illustrates the different entity row states and how an entity row can transition from one state to another. When an entity row is first created, its status is New			
. You can use the setNewRowState()			
method to mark the entity as being Initialized			
, which removes it from the transaction's list of pending changes until the user sets at least one of its attributes, at which time it returns to the New			
state. This allows you to create more than one initialized row and post only those that the user modifies.			
The Unmodified			
state reflects an entity that has been retrieved from the database and has not yet been modified. It is also the state that a New			
or Modified			
entity transitions to after the transaction successfully commits. During the transaction in which it is pending to be deleted, an Unmodified			
entity row transitions to the Deleted			
state. Finally, if a row that was New			
and then was removed before the transaction commits, or Unmodified			
and then successfully deleted, the row transitions to the Dead			
state.			
You can use the getEntityState()			
and getPostState()			
methods to access the current state of an entity row in your business logic code. The getEntityState()			
method returns the current state of an entity row with regard to the transaction, while the getPostState()			
method returns the current state of an entity row with regard to the database after using the postChanges()			
method to post pending changes without committing the transaction.			
For example, if you start with a new row, both getEntityState()			
and getPostState()			
return STATUS_NEW			
. Then when you post the row (before commit or rollback), the row will have entity state of STATUS_NEW			
and a post state of STATUS_UNMODIFIED			
. If you subsequently remove that row, the entity state will remain STATUS_NEW			
because for the transaction the row is still new. But the post state will be STATUS_DEAD			
.			
An application module provides a feature called bundled exception mode which allows web applications to easily present a maximal set of failed validation exceptions to the end user, instead of presenting only the first error that gets raised. By default, the ADF Business Components application module pool enables bundled exception mode for web applications.			
You typically will not need to change this default setting. However it is important to understand that it is enabled by default since it effects how validation exceptions are thrown. Since the Java language and runtime only support throwing a single exception object, the way that bundled validation exceptions are implemented is by wrapping a set of exceptions as details of a new "parent" exception that contains them. For example, if multiple attributes in a single entity object fail attribute-level validation, then these multiple ValidationException			
objects will be wrapped in a RowValException			
. This wrapping exception contains the row key of the row that has failed validation. At transaction commit time, if multiple rows do not successfully pass the validation performed during commit, then all of the RowValException			
objects will get wrapped in an enclosing TxnValException			
object.			
When writing custom error processing code, you can use the getDetails()			
method of the JboException			
base exception class to recursively process the bundled exceptions contained inside it.			
Note: All the exception classes mentioned here are in theoracle.jbo package.			
The process for adding a validation rule to an entity object is similar for most of the validation rules, and is done using the Add Validation Rule dialog. You can open this dialog from the overview editor by clicking the Add icon on the Business Rules page.			
It is important to note that when you define a rule declaratively using the Add Validation Rule dialog, the rule definition you provide specifies the valid condition for the attribute or entity object. At runtime, the entry provided by the user is evaluated against the rule definition and an error or warning is raised if the entry fails to satisfy the specified criteria. For example, if you specify a Length validator on an attribute that requires it to be Less Than or Equal To 12			
, the validation fails if the entry is more than 12 characters, and the error or warning is raised.			
To add a declarative validation rule to an entity object, use the Business Rules page of the overview editor.			
To add a validation rule:			
When you add a new validation rule, the Add Validation Rule dialog appears.			
The controls will change depending on the kind of validation rule you select. For more information about the different validation rules, see Section 7.4, "Using the Built-in Declarative Validation Rules."			
Note: For Key Exists and Method entity validators, you can also use the Validation Execution tab to specify the validation level.			
The Business Rules page of the overview editor for entity objects displays the validation rules for an entity and its attributes in a tree control. To see the validation rules that apply to the entity as a whole, expand in the Entity node. To see the validation rules that apply to an attribute, expand the Attributes node and then expand the attribute.			
The validation rules that are shown on the Business Rules page of the overview editor include those that you have defined as well as database constraints, such as mandatory or precision. To open a validation rule for editing, double-click the rule or select the rule and click the Edit icon.			
When you add a validation rule to an entity object, JDeveloper updates its XML component definition to include an entry describing what rule you've used and what rule properties you've entered. For example, if you add a range validation rule to the DiscountAmount			
attribute, this results in a RangeValidationBean			
entry in the XML file, as shown in Example 7-2.			
Example 7-2 Range Validation Bean			
At runtime, the rule is enforced by the entity object based on this declarative information.			
Declarative validation enforces both entity-level and attribute-level validation, depending on where you place the rules. Entity-level validation rules are enforced when a user tries to commit pending changes or navigates between rows. Attribute-level validation rules are enforced when the user changes the value of the related attribute.			
The Unique Key validator (described in Section 7.4.1, "How to Ensure That Key Values Are Unique") can be used only at the entity level. Internally the Unique Key validator behaves like an attribute-level validator. This means that users see the validation error when they tab out of the key attribute for the key that the validator is validating. This is done because the internal cache of entities can never contain a duplicate, so it is not allowed for an attribute value to be set that would violate that. This check needs to be performed when the attribute value is being set because the cache consistency check is done during the setting of the attribute value.			
Best Practice: If the validity of one attribute is dependent on one or more other attributes, enforce this rule using entity validation, not attribute validation. Examples of when you would want to do this include the following:			
Entity object validators are triggered whenever the entity, as a whole, is dirty. To improve performance, you can indicate which attributes play a role in your rule and thus the rule should be triggered only if one or more of these attributes are dirty. For more information on triggering attributes, see, Section 7.6, "Triggering Validation Execution."			
The built-in declarative validation rules can satisfy many, if not all, of your business needs. These rules are easy to implement because you don't write any code. You use the user-interface tools to choose the type of validation and how it is used.			
Built-in declarative validation rules can be used to:			
The Unique Key validator ensures that primary key values for an entity object are always unique. The Unique Key validator can also be used for a non-primary-key attribute, as long as the attribute is defined as an alternate key. For information on how to define alternate keys, see Section 4.10.15, "How to Define Alternate Key Values."			
Whenever any of the key attribute values change, this rule validates that the new key does not belong to any other entity object instance of this entity object class. (It is the business-logic tier equivalent of a unique constraint in the database.) If the key is found in one of the entity objects, a TooManyObjectsException			
is thrown. The validation check is done both in the entity cache and in the database.			
There is a slight possibility that unique key validation might not be sufficient to prevent duplicate rows in the database. It is possible for two application module sessions to simultaneously attempt to create records with the same key. To prevent this from happening, create a unique index in the database for any unique constraint that you want to enforce.			
To ensure that a key value is unique:			
Best Practice: While it is possible to add a precondition for a Unique Key validator, it is not a best practice. If a Unique Key validator fails to fire, for whatever reason, the cache consistency check is still performed and an error will be returned. It is generally better to add the validator and a meaningful error message.			
When you use a Unique Key validator, a <UniqueKeyValidationBean>			
tag is added to the entity object's XML file. Example 7-3 shows the XML for a Unique Key validator.			
The Compare validator performs a logical comparison between an entity attribute and a value. When you add a Compare validator, you specify an operator and something to compare with. You can compare the following:			
When you use a Compare validator with a literal value, the value in the attribute is compared against the specified literal value. When using this kind of comparison, it is important to consider data types and formats. The literal value must conform to the format specified by the data type of the entity attribute to which you are applying the rule. In all cases, the type corresponds to the type mapping for the entity attribute.			
For example, an attribute of column type DATE maps to the oracle.jbo.domain.Date			
class, which accepts dates and times in the same format accepted by java.sql.TimeStamp			
and java.sql.Date			
. You can use format masks to ensure that the format of the value in the attribute matches that of the specified literal. For information about entity object attribute type mappings, see Section 4.10.1, "How to Set Database and Java Data Types for an Entity Object Attribute." For information about the expected format for a particular type, refer to the Javadoc for the type class.			
When you use this type of validator, the SQL query is executed each time the validator is executed. The validator retrieves the first row from the query result, and it uses the value of the first column in the query (of that first row) as the value to compare. Because this query cannot have any bind variables in it, this feature should be used only when selecting one column of one row of data that does not depend on the values in the current row.			
When you use this type of validator, the view object's SQL query is executed each time the validator is executed. The validator retrieves the first row from the query result, and it uses the value of the selected view object attribute from that row as the value to compare. Because you cannot associate values with the view object's named bind variables, those variables can only take on their default values. Therefore this feature should be used only for selecting an attribute of one row of data that does not depend on the values in the current row.			
When defining the view accessor, you can assign row-specific values to the validation view object's bind variables.			
For information on the expression option, see Section 7.5, "Using Groovy Expressions For Validation and Business Rules."			
The entity attribute option is available only for entity-level Compare validators.			
To validate based on a comparison:			
Figure 7-2 shows what the dialog looks like when you use an entity-level Compare validator with a entity attribute.			
When you use a Compare validator, a <CompareValidationBean>			
tag is added to an entity object's XML file. Example 7-4 shows the XML code for the Email			
attribute in the PersonEO			
entity object.			
The List validator compares an attribute against a list of values (LOV). When you add a List validator, you specify the type of list to choose from:			
Best Practice: When using a List validator, the view accessor is typically the most useful choice because you can define a view criteria on the view accessor to filter the view data when applicable; and when defining an LOV on a view attribute, you typically use a view accessor with a view criteria.			
To validate using a list of values:			
Figure 7-3 shows what the dialog looks like when you use a List validator with a view accessor attribute.			
When you validate using a list of values, a <ListValidationBean>			
tag is added to an entity object's XML file. Example 7-5 shows the PaymentOptionEO.PaymentTypeCode			
attribute, which uses a view accessor attribute for the List validator.			
The List validator is designed for validating an attribute against a relatively small set of values. If you select the Query Result or View Object Attribute type of list validation, keep in mind that the validator retrieves all of the rows from the query before performing an in-memory scan to validate whether the attribute value in question matches an attribute in the list. The query performed by the validator's SQL or view object query does not reference the value being validated in the WHERE			
clause of the query.			
It is inefficient to use a validation rule when you need to determine whether a user-entered product code exists in a table of a large number of products. Instead, Section 8.5, "Using View Objects for Validation" explains the technique you can use to efficiently perform SQL-based validations by using a view object to perform a targeted validation query against the database. See also Section 5.12.10.2, "Using Validators to Validate Attribute Values."			
Also, if the attribute you're comparing to is a key, the Key Exists validator is more efficient than validating a list of values; and if these choices need to be translatable, you should use a static view object instead of the literal choice.			
The Range validator performs a logical comparison between an entity attribute and a range of values. When you add a Range validator, you specify minimum and maximum literal values. The Range validator verifies that the value of the entity attribute falls within the range (or outside the range, if specified).			
If you need to dynamically calculate the minimum and maximum values, or need to reference other attributes on the entity, use the Script Expression validator and provide a Groovy expression. For more information, see Section 3.6.1, "Referencing Business Components Objects in Groovy Expressions" and Section 3.6.3, "Manipulating Business Component Attribute Values in Groovy Expressions."			
To validate within a certain range:			
When you validate against a range, a <RangeValidationBean>			
tag is added to the entity object's XML file. Example 7-6 shows the PersonEO.CreditLimit			
attribute with a minimum credit limit of zero and a maximum of 10,000.			
The Length validator validates whether the string length (in characters or bytes) of an attribute's value is less than, equal to, or greater than a specified number, or whether it lies between a pair of numbers.			
To validate against a number of bytes or characters:			
When you validate using length, a <LengthValidationBean>			
tag is added to the entity object's XML file, as shown in Example 7-7. For example, you might have a field where the user enters a password or PIN and the application wants to validate that it is at least 6 characters long, but not longer than 10. You would use the Length validator with the Between operator and set the minimum and maximum values accordingly.			
The Regular Expression validator compares attribute values against a mask specified by a Java regular expression.			
If you want to create expressions that can be personalized in metadata, you can use the Script Expression validator. For more information, see Section 7.5, "Using Groovy Expressions For Validation and Business Rules."			
To validate using a regular expression			
Note: You can add your own expressions to the list of predefined expressions. To add a predefined expression, add an entry in thePredefinedRegExp.properties file in the BC4J subdirectory of the JDeveloper system directory (for example, C:\Documents and Settings\ username \Application Data\JDeveloper\ system## \o.BC4J\PredefinedRegExp.properties).			
Figure 7-4 shows what the dialog looks like when you select a Regular Expression validator and validate that the Email			
attribute matches a predefined Email Address expression.			
When you validate using a regular expression, a <RegExpValidationBean>			
tag is added to the entity object's XML file. Example 7-8 shows an Email			
attribute that must match a regular expression.			
You can use collection validation on the average, count, sum, min, or max of a collection. This validator is available only at the entity level. It is useful for validating the aggregate calculation over a collection of associated entities by way of an entity accessor to a child entity (on the many end of the association). You must select the association accessor to define the Collection validator.			
To validate using an aggregate calculation:			
The accessor you choose must be a composition association accessor. Only accessors of this type are displayed in the dropdown list.			
When you validate using a Collection validator, a <CollectionValidationBean>			
tag is added to the entity object's XML file, as in Example 7-9.			
The Key Exists validator is used to determine whether a key value (primary, foreign, or alternate key) exists.			
There are a couple of benefits to using the Key Exists validator:			
Department			
and then you want to link an Employee			
to that new department. To determine whether a value exists:			
If you want the Key Exists validator to be used for all view objects that use this entity attribute, select Entity Object.			
If you are searching for an attribute that does not exist in the Validation Target Attributes list, it is probably not defined as a key value. To create alternate keys, see Section 4.10.15, "How to Define Alternate Key Values."			
Figure 7-5 shows a Key Exists validator that validates whether the MembershipId			
entered in the PersonEO			
entity object exists in the MembershipBaseEO			
entity object.			
When you use a Key Exists validator, an <ExistsValidationBean>			
tag is created in the XML file for the entity object, as in Example 7-10.			
When using declarative validators you must consider how your validation will interact with expected input. The combination of declarative validators and view accessors provides a simple yet powerful alternative to coding. But, as powerful as the combination is, you still need to consider how data composition can impact performance.			
Consider a scenario where you have the following:			
ServiceRequestEO			
entity object with Product			
and RequestType			
attributes, and a view accessor that allows it to access the RequestTypeVO			
view object RequestTypeVO			
view object with a query specifying the Product			
attribute as a bind parameter The valid list of RequestType			
s varies by Product			
. So, to validate the RequestType			
attribute, you use a List validator using the view accessor.			
Now lets add a set of new service requests. For the first service request (row), the List validator binds the value of the Product			
attribute to the view accessor and executes it. For each subsequent service request the List validator compares the new value of the Product			
attribute to the currently bound value.			
Product			
matches, the current RowSet object is retained. Product			
has changed, the new value is bound and the view accessor re-executed. Now consider the expected composition of input data. For example, the same products could appear in the input multiple times. If you simply validate the data in the order received, you might end up with the following:			
In this case, the validator will execute 5 queries to get 3 distinct row sets. As an alternative, you can add an ORDER BY			
clause to the RequestTypeVO			
to sort it by Product			
. In this case, the validator would execute the query only once each for Washing Machine and Dryer.			
A small difference on a data set this size, but multiplied over larger data sets and many users this could easily become an issue. An ORDER BY			
clause is not a solution to every issue, but this example illustrates how data composition can impact performance.			
Groovy expressions are Java-like scripting code stored in the XML definition of an entity object. Because Groovy expressions are stored in XML, you can change the expression values even if you don't have access to the entity object's Java file. You can even change or specify values at runtime.			
For more information about using Groovy script in your entity object business logic, see Section 3.6, "Overview of Groovy Support."			
You can call methods on the current entity instance using the source			
property of the current object. The source			
property allows you to access to the entity instance being validated.			
If the method is a non-boolean type and the method name is getXyzAbc()			
with no arguments, then you access its value as if it were a property named XyzAbc			
. For a boolean-valued property, the same holds true but the JavaBean naming pattern for the getter method changes to recognize isXyzAbc()			
instead of getXyzAbc()			
. If the method on your entity object does not match the JavaBean getter method naming pattern, or if it takes one or more arguments, then you must call it like a method using its complete name.			
For example, say you have an entity object with the four methods shown in Example 7-11.			
Example 7-11 Sample Entity Object Methods			
Then the following Groovy validation condition would trigger them all, one of them being triggered twice, as shown in Example 7-12.			
Example 7-12 Groovy Script Calling Sample Methods			
By running this example and forcing entity validation to occur, you would see the diagnostic output shown in Example 7-13 in the log window:			
Example 7-13 Output From Sample Groovy Script			
Notice the slightly different syntax for the reference to a method whose name matches the JavaBeans property getter method naming pattern. Both newRow			
and source.newRow			
work to access the boolean-valued, JavaBeans getter-style method that has no arguments. But because the testWhetherRowIsNew			
method does not match the JavaBeans getter method naming pattern, and the second isRowNew			
method takes an argument, then you must call them like methods using their complete name.			
You can use a Groovy expression to return a true/false statement. The Script Expression validator requires that the expression either return true			
or false			
, or that it calls the adf.error.raise			
/warn()			
method. A common use of this feature would be to validate an attribute value, for example, to make sure that an account number is valid.			
Note: Using theadf.error.raise/warn() method (rather than simply returning true or false) allows you to define the message text to show to the user, and to associate an entity-level validator with a specific attribute. For more information, see Section 7.7.3, "How to Conditionally Raise Error Messages Using Groovy."			
To validate using a true/false expression:			
The sample code in Example 7-14 comes from the PaymentOptionEO			
entity object. The code validates account numbers based on the Luhn algorithm, a checksum formula in widespread use.			
Example 7-14 Validating an Account Number Using an Expression			
When you create a Groovy expression, it is saved in the entity object's XML component. Example 7-15 shows the RegisteredDate			
attribute in the PersonEO.xml			
file. The Groovy expression is wrapped by a <TransientExpression>			
tag.			
Example 7-15 XML Code for RegisteredDate Attribute on the PersonEO Entity Object			
newValue <= (new java.sql.Timestamp(System.currentTimeMillis()))			
This tag can take one of several forms. For some Groovy expressions, the <TransientExpression>			
tag is wrapped by an <ExpressionValidationBean>			
tag as well. Figure 7-6 shows the validation expression in the Edit Validation Rule dialog.			
JDeveloper allows you to select the attributes that trigger validation, so that validation execution happens only when one of the triggering attributes is dirty. In previous releases of JDeveloper, an entity-level validator would fire on an attribute whenever the entity as a whole was dirty. This feature is described in Section 7.6.1, "How to Specify Which Attributes Fire Validation."			
JDeveloper also allows you to specify a precondition for the execution of a validator (as described in Section 7.6.3, "How to Set Preconditions for Validation") and set transaction-level validation (described in Section 7.6.4, "How to Set Transaction-Level Validation").			
When defining a validator at the entity level, you have the option of selecting one or more attributes of the entity object that, when changed, trigger execution of the validator.			
Note: When the validity of one attribute is dependent on the value in another attribute, the validation should be performed as entity validation, not attribute validation. You can set validation execution order on the entity level or attribute level.			
If you do not specify one or more dependent attributes, the validator will fire whenever the entity is dirty. Firing execution only when required makes your application more performant.			
To specify which attributes fire validation:			
For example, in the StoreFront module of the Fusion Order Demo application, the OrderEO			
entity object has an entity-level validator that constrains the length of the GiftwrapMessage			
attribute. As shown in Figure 7-7, this validator is set to be executed on the entity object only when either the GiftwrapMessage			
attribute or the GiftwrapFlag			
attribute has been changed.			
When you specify triggering attributes on the Validation Execution tab of the Edit Validation Rule dialog, JDeveloper adds an <OnAttributes>			
tag to the validator definition in the entity object's XML file. Example 7-16 shows the XML code for the entity-level validator for the OrderEO			
entity object in the StoreFront module of the Fusion Order Demo application.			
Example 7-16 OnAttributes element in XML validation code			
<OnAttributes>			
<Item Value="GiftwrapMessage"/>			
<Item Value="GiftwrapFlag"/>			
</OnAttributes>			
The Validation Execution tab (on the Add/Edit Validation Rule dialog) allows you to add a Groovy expression that serves as a precondition. If you enter an expression in the Conditional Execution Expression box, the validator is executed only if the condition evaluates True			
.			
Best Practice: While it is possible to add a precondition for a Unique Key validator, it is not a best practice. If a Unique Key validator fails to fire, for whatever reason, the cache consistency check is still performed and an error will be returned. It is generally better to add the validator and a meaningful error message.			
Performing a validation during the transaction level (rather than entity level) means that the validation will be performed after all entity-level validation is performed. For this reason, it may be useful if you want to ensure that a validator is performed at the end of the process.			
In addition, the Key Exists validator is more performant with bulk transactions if it is run as a transaction level validator since it will be run only once for all entities in the transaction (of the same type), rather than once per entity. This will result in improved performance if the validator has to go to the database.			
Note: Transaction-level validation is only applicable to Key Exists and Method entity validators.			
To specify entity-level or transaction-level validation:			
You cannot control the order in which attributes are validated – they are always validated in the order they appear in the entity definition. You can order validations for a given attribute (or for the entity), but you cannot reorder the attributes themselves.			
Validation error messages provide important information for the user: the message should convey what went wrong and how to fix it.			
When you create or edit a validation rule, enter text to help the user determine what caused the error.			
To create validation error messages:			
You can also define error messages in a message bundle file. To select a previously defined error message or to define a new one in a message bundle file, click the Select Message icon.			
Note: The Script Expression validator allows you to enter more than one error message. This is useful if the validation script conditionally returns different error or warning messages. For more information, see Section 7.7.3, "How to Conditionally Raise Error Messages Using Groovy."			
Figure 7-8 shows the failure message for a validation rule in the PaymentOptionEO			
entity object that contains message tokens. For more information on this feature, see Section 7.7.4, "How to Embed a Groovy Expression in an Error Message."			
The error message is a translatable string and is managed in the same way as translatable UI control hints in an entity object message bundle class. To view the error message for the defined rule in the message bundle class, locate the String			
key in the message bundle that corresponds to the ResId			
property in the XML component definition entry for the validator. For example, Example 7-17 shows a message bundle where the NAME_CANNOT_BEGIN_WITH_U			
key appears with the error message for the default locale.			
Example 7-17 Message Bundle Contains Validation Error Messages			
Resource bundles can be created for your applications as a list resource bundle (as shown in Example 7-17), as a properties bundle, or as an XLIFF resource bundle. For more information about using translatable strings in a resource bundle, see Section 4.7, "Working with Resource Bundles."			
You can use the adf.error.raise()			
and adf.error.warn()			
methods to conditionally raise one error message or another depending upon branching in the Groovy expression. For example, if an attribute value is x, then validate as follows, and if the validation fails, raise error messageA; whereas if the attribute value is y, then instead validate a different way and if validation fails, raise error messageB.			
If the expression returns false			
(versus raising a specific error message using the raise()			
method), the validator calls the first error message associated with the validator.			
The syntax of the raise()			
method takes one required parameter (the msgId			
to use from the message bundle), and optionally can take the attrName			
parameter. If you pass in the AttrName			
, the error is associated with that attribute even if the validation is assigned to the entity.			
You can use either adf.error.raise()			
or adf.error.warn()			
methods, depending on whether you want to throw an exception, or whether you want processing to continue, as described in Section 7.8, "Setting the Severity Level for Validation Exceptions."			
A validator's error message can contain embedded expressions that are resolved by the server at runtime. To access this feature, simply enter a named token delimited by curly braces (for example, {2}			
or {errorParam}			
) in the error message text where you want the result of the Groovy expression to appear.			
After entering the token into the text of the error message (on the Failure Handling tab of the Edit Validation Rule dialog), the Token Message Expressions table at the bottom of the dialog displays a row that allows you to enter a Groovy expression for the token. Figure 7-8 shows the failure message for a validation rule in the PaymentOptionEO			
entity object that contains message tokens.			
The expressions shown in Figure 7-8 are Groovy expressions that return the labels of the specified fields. You can also use Groovy expressions to access attribute values and other business components objects. You can use the Groovy expression newValue			
to return the entered value, as shown in the Rule validator for the RoutingIdentifier			
attribute of the PaymentOptionEO			
entity object in the StoreFront module of the Fusion Order Demo application.			
The Groovy syntax to retrieve a value from a view accessor is accessorName			
.currentRow.			
AttributeName			
. For example, the Groovy expression MyEmpAccessor.currentRow.Job			
returns the value of the Job			
attribute in the current row of the MyEmpAccessor			
view accessor.			
The Groovy expression can also be more complex, as in Example 7-18, which shows an expression in the error message for the List validation rule for the OwnerTypeCode			
attribute in the AddressUsageEO			
entity object.			
Example 7-18 Groovy Script in the OwnerTypeCode Validation Error Message			
For more information about accessing business components objects using Groovy, see Section 3.6, "Overview of Groovy Support."			
You can set the severity level for validation exceptions to two levels, Informational Warning and Error. If you set the severity level to Informational Warning, an error message will display, but processing will continue. If you set the validation level to Error, the user will not be able to proceed until you have fixed the error.			
Under most circumstances you will use the Error level for validation exceptions, so this is the default setting. However, you might want to implement a Informational Warning message if the user has a certain security clearance. For example, a store manager may want to be able to make changes that would surface as an error if a clerk tried to do the same thing.			
To set the severity level for validation exceptions, use the Failure Handling tab of the Add Validation Rule dialog.			
To set the severity level of a validation exception:			
To improve the performance of batch-load applications, such as data synchronization programs, the ADF framework employs bulk validation for primary keys (including alternate keys) and foreign keys.			
When the Key Exists validator is configured to defer validation until the transaction commits, or when the rows are being updated or inserted through the process			
XXX			
methods of the ADF business components service layer, the validation cache is preloaded. This behavior uses the normal row-by-row derivation and validation logic, but uses validation logic that checks a memory cache before making queries to the database. Performance is improved by preloading the memory cache using bulk SQL operations based on the inbound data.			
This chapter explains the key ADF entity object events and features for implementing the most common kinds of business rules in an ADF application.			
This chapter includes the following sections:			
Complementing the built-in declarative validation features, entity objects and view objects have method validators and several events you can handle to programmatically implement encapsulated business logic using Java code. These concepts are illustrated in Figure 8-1.			
create()			
, to assign default values when a row is created initDefaultExpressionAttributes()			
, to assign defaults either when a row is created or when a new row is refreshed remove()			
, to conditionally disallow deleting isAttributeUpdateable()			
, to make attributes conditionally updatable setAttribute()			
, to trigger attribute-level method validators validateEntity()			
, to trigger entity-level method validators prepareForDML()			
, to assign attribute values before an entity row is saved beforeCommit()			
, to enforce rules that must consider all entity rows of a given type afterCommit()			
, to send notifications about a change to an entity object's state Note: When coding programmatic business rules, it's important to have a firm grasp of the validation cycle. For more information, see Section 7.2, "Understanding the Validation Cycle."			
Method validators are the primary way of supplementing declarative validation rules and Groovy-scripted expressions using your own Java code. Method validators trigger Java code that you write in your own validation methods at the appropriate time during the entity object validation cycle. There are many types of validation you can code with a method validator, either on an attribute or on an entity as a whole.			
You can add any number of attribute-level or entity-level method validators, provided they each trigger a distinct method name in your code. All validation method names must begin with the word validate			
; however, following that rule you are free to name them in any way that most clearly identifies the functionality. For an attribute-level validator, the method must take a single argument of the same type as the entity attribute. For an entity-level validator, the method takes no arguments. The method must also be public, and must return a boolean value. Validation will fail if the method returns false			
.			
Note: Although it is important to be aware of these rules, when you use JDeveloper to create method validators, JDeveloper creates the correct interface for the class.			
At runtime, the Method validator passes an entity attribute to a method implemented in your entity object class.			
In Example 8-1, the method accepts strings that start with a capital letter and throws an exception on null values, empty strings, and strings that do not start with a capital letter.			
Example 8-1 Method That Validates If the First Letter Is a Capital			
To create an attribute-level Method validator:			
The Java page shows the Java generation options that are currently enabled for the entity object. If your entity object does not yet have a custom entity object class, then you must generate one before you can add a Method validator. To generate the custom Java class, click the Edit icon, then select Generate Entity Object Class, and click OK to generate the *.java			
file.			
The Add Validation Rule dialog displays the expected method signature for an attribute-level validation method. You have two choices:			
validate			
. When you click OK, JDeveloper adds the method to your entity object's custom Java class with the appropriate signature. When you add a new method validator, JDeveloper updates the XML component definition to reflect the new validation rule. If you asked to have the method created, the method is added to the entity object's custom Java class. Example 8-2 illustrates a simple attribute-level validation rule that ensures that the OrderShippedDate			
of an order is a date in the current month. Notice that the method accepts an argument of the same type as the corresponding attribute, and that its conditional logic is based on the value of this incoming parameter. When the attribute validator fires, the attribute value has not yet been set to the new value in question, so calling the getOrderShippedDate()			
method inside the attribute validator for the OrderShippedDate			
attribute would return the attribute's current value, rather than the candidate value that the client is attempting to set.			
Example 8-2 Simple Attribute-Level Method Validator			
Note: The return value of thecompareTo() method is zero (0) if the two dates are equal, negative one (-1) if the first date is less than the second, or positive one (1) if the first date is greater than the second.			
To create an entity-level method validator:			
The Java page shows the Java generation options that are currently enabled for the entity object. If your entity object does not yet have a custom entity object class, then you must generate one before you can add a Method validator. To generate the custom Java class, click the Edit icon, then select Generate Entity Object Class, and click OK to generate the *.java			
file.			
The Add Validation Rule dialog displays the expected method signature for an entity-level validation method. You have two choices:			
validate			
. When you click OK, JDeveloper adds the method to your entity object's custom Java class with the appropriate signature. When you add a new method validator, JDeveloper updates the XML component definition to reflect the new validation rule. If you asked to have the method created, the method is added to the entity object's custom Java class. Example 8-3 illustrates a simple entity-level validation rule that ensures that the OrderShippedDate			
of an order comes after the OrderDate			
.			
Like the locale-specific UI control hints for entity object attributes, the validation rule error messages are added to the entity object's component message bundle file. These entries in the message bundle represent the strings for the default locale for your application. To provide translated versions of the validation error messages, follow the same steps as for translating the UI control hints, as described in Section 4.7, "Working with Resource Bundles."			
When declarative defaulting falls short of your needs, you can perform programmatic defaulting in your entity object:			
The create()			
method provides the entity object event you can handle to initialize default values the first time an entity row is created. Example 8-4 shows the overridden create method of the OrderEO			
entity object in the StoreFront module of the Fusion Order Demo. It calls an attribute setter methods to populate the OrderDate			
attribute in a new order entity row.			
You can also define default values using a Groovy expression. For more information, see Section 4.10.6, "How to Define a Static Default Value."			
Example 8-4 Programmatically Defaulting Attribute Values for New Rows			
Note: Calling thesetAttribute() method inside the overridden create() method does not mark the new row as being changed by the user. These programmatically assigned defaults behave like declaratively assigned defaults.			
You should override the initDefaultExpressionAttributes()			
method for programmatic defaulting logic that you want to fire both when the row is first created, and when it might be refreshed back to initialized status.			
If an entity row has New			
status and you call the refresh()			
method on it, then the entity row is returned to an Initialized			
status if you do not supply either the REFRESH_REMOVE_NEW_ROWS			
or REFRESH_FORGET_NEW_ROWS			
flag. As part of this process, the entity object's initDefaultExpressionAttributes()			
method is invoked, but not its create()			
method again.			
Section 4.10.9, "How to Synchronize with Trigger-Assigned Values," explains how to use the DBSequence			
type for primary key attributes whose values need to be populated by a database sequence at commit time. Sometimes you may want to eagerly allocate a sequence number at entity row creation time so that the user can see its value and so that this value does not change when the data is saved. To accomplish this, use the SequenceImpl			
helper class in the oracle.jbo.server			
package in an overridden create()			
method as shown in Example 8-5. It shows code from the custom Java class of the WarehouseEO			
entity object in the StoreFront module of the Fusion Order Demo. After calling super.create()			
, it creates a new instance of the SequenceImpl			
object, passing the sequence name and the current transaction object. Then it calls the setWarehouseId()			
attribute setter method with the return value from SequenceImpl			
's getSequenceNumber()			
method.			
Note: For a metadata-driven alternative to this approach, see Section 4.12.5, "Assigning the Primary Key Value Using an Oracle Sequence."			
Example 8-5 Eagerly Defaulting an Attribute's Value from a Sequence at Create Time			
If you want to assign programmatic defaults for entity object attribute values before a row is saved, override the prepareForDML()			
method and call the appropriate attribute setter methods to populate the derived attribute values. To perform the assignment only during INSERT			
, UPDATE			
, or DELETE			
, you can compare the value of the operation			
parameter passed to this method against the integer constants DML_INSERT			
, DML_UPDATE			
, DML_DELETE			
respectively.			
Example 8-6 shows an overridden prepareForDML()			
method that assigns derived values.			
Example 8-6 Assigning Derived Values Before Saving Using PrepareForDML			
To assign derived attribute values whenever another attribute's value is set, add code to the latter attribute's setter method. Example 8-7 shows the setter method for an AssignedTo			
attribute in an entity object.			
Example 8-7 Setting the Assigned Date Whenever the AssignedTo Attribute Changes			
After the call to setAttributeInternal()			
to set the value of the AssignedTo			
attribute, it uses the setter method for the AssignedDate			
attribute to set its value to the current date and time.			
Note: It is safe to add custom code to the generated attribute getter and setter methods as shown here. When JDeveloper modifies code in your class, it intelligently leaves your custom code in place.			
You can use the refresh(int flag)			
method on a row to refresh any pending changes it might have. The behavior of the refresh()			
method depends on the flag that you pass as a parameter. The three key flag values that control its behavior are the following constants in the Row			
interface:			
REFRESH_WITH_DB_FORGET_CHANGES			
forgets modifications made to the row in the current transaction, and the row's data is refreshed from the database. The latest data from the database replaces data in the row regardless of whether the row was modified or not. REFRESH_WITH_DB_ONLY_IF_UNCHANGED			
works just like REFRESH_WITH_DB_FORGET_CHANGES			
, but for unmodified rows. If a row was already modified by this transaction, the row is not refreshed. REFRESH_UNDO_CHANGES			
works the same as REFRESH_WITH_DB_FORGET_CHANGES			
for unmodified rows. For a modified row, this mode refreshes the row with attribute values at the beginning of this transaction. The row remains in a modified state if it had been previously posted but not committed in the current transaction prior to performing the refresh operation. By default, any entity rows with New			
status that you refresh()			
are reverted back to blank rows in the Initialized			
state. Declarative defaults are reset, as well as programmatic defaults coded in the initDefaultExpressionAttributes()			
method, but the entity object's create()			
method is not invoked during this blanking-out process.			
You can change this default behavior by combining one of the flags in Section 8.4 with one of the following two flags (using the bitwise-OR			
operator):			
REFRESH_REMOVE_NEW_ROWS			
, new rows are removed during refresh. REFRESH_FORGET_NEW_ROWS			
, new rows are marked Dead			
. You can cause a refresh()			
operation to cascade to composed child entity rows by combining the REFRESH_CONTAINEES			
flag (using the bitwise-OR			
operator) with any of the valid flag combinations described in Section 8.4 and Section 8.4.1. This causes the entity to invoke refresh()			
using the same mode on any composed child entities it contains.			
When your business logic requires performing SQL queries, the natural choice is to use a view object to perform that task. Keep in mind that the SQL statements you execute for validation will "see" pending changes in the entity cache only if they are entity-based view objects. Read-only view objects will only retrieve data that has been posted to the database.			
Since entity objects are designed to be reused in any application scenario, they should not depend directly on a view object instance in any specific application module's data model. Doing so would prevent them from being reused in other application modules, which is highly undesirable.			
Instead, you should use a view accessor to validate against a view object. For more information, see Section 10.4.1, "How to Create a View Accessor for an Entity Object or View Object."			
Using a view accessor, your validation code can access the view object and set bind variables, as shown in Example 8-8.			
Example 8-8 Using a Validation View Object in a Method Validator			
Best Practice: Any time you access a row set programmatically, you should consider creating a secondary iterator for the row set. This ensures that you will not disturb the current row set of the default row set iterator that may be utilized when your expose your view objects as data controls to the user interface project. You can callcreateRowSetIterator() on the row set you are working with to create a secondary named row set iterator. When you are through with programmatic iteration, your code should call closeRowSetIterator() on the row set to remove the secondary iterator from memory.			
As the sample code suggests, view objects used for validation typically have one or more named bind variables in them. In this example, the bind variables are set using the setNamedBindParameter()			
method. However, you can also set these variables declaratively in JDeveloper using Groovy expressions in the view accessor definition page.			
Depending on the kind of data your view object retrieves, the "/* some condition */			
" expression in the example will look different. For example, if your view object's SQL query is selecting a COUNT()			
or some other aggregate, the condition will typically use the rs.first()			
method to access the first row, then use the getAttribute()			
method to access the attribute value to see what the database returned for the count.			
If the validation succeeds or fails based on whether the query has returned zero or one row, the condition might simply test whether rs.first()			
returns null			
or not. If rs.first()			
returns null			
, there is no "first" row. In other words, the query retrieved no rows. In other cases, you may be iterating over one or more query results retrieved by the view object to determine whether the validation succeeds or fails.			
The beforeCommit()			
method is invoked on each entity row in the pending changes list after the changes have been posted to the database, but before they are committed. This can be a useful method in which to execute view object based validations that must assert some rule over all entity rows of a given type.			
Note: You can also do this declaratively using a transaction-level validator (see Section 7.6.4, "How to Set Transaction-Level Validation").			
If your beforeCommit()			
logic can throw a ValidationException			
, you must set the jbo.txn.handleafterpostexc			
property to true			
in your configuration to have the framework automatically handle rolling back the in-memory state of the other entity objects that may have already successfully posted to the database (but not yet been committed) during the current commit cycle.			
If your entity object or view object business logic iterates over its own view accessor row set, and that view accessor is not also used by a model-defined List of Values, then there is no need to use a secondary row set iterator. For example, if an entity object has a view accessor named AirportValidationVA			
for a view object that takes one named bind parameter, it can iterate its own view accessor row set using either Groovy script or Java. Example 8-9 show a Groovy script that iterates over a view accessor row set.			
Example 8-9 Using a View Accessor in Groovy Script			
Example 8-10 shows a Java method validator that iterates over a view accessor row set.			
To access information from related entity objects, you use an association accessor method in your entity object's custom Java class. By calling the accessor method, you can easily access any related entity row — or set of entity rows — depending on the cardinality of the association.			
You can use an association accessor to access related entity rows. Example 8-11 shows code from the ControllingPostingOrder			
project in the AdvancedEntityExamples			
module of the Fusion Order Demo that shows the overridden postChanges()			
method in the ProductsBase			
entity object's custom Java class. It uses the getSupplier()			
association accessor to retrieve the related supplier for the product.			
Example 8-11 Accessing a Parent Entity Row In a Create Method			
getSupplier()			
;If the cardinality of the association is such that multiple rows are returned, you can use the association accessor to return sets of entity rows.			
Example 8-12 illustrates the code for the overridden postChanges()			
method in the Suppliers			
entity object's custom Java class. It shows the use of the getProductsBase()			
association accessor to retrieve the RowSet			
object of ProductsBase			
rows in order to update the SupplierId			
attribute in each row using the setSupplierId()			
association accessor.			
Example 8-12 Accessing a Related Entity Row Set Using an Association Accessor			
getProductsBase()			
;setSupplierId(newSupplierId)			
;If you have run the Configure ADF Security wizard on your application to enable the ADF authentication servlet to support user login and logout, the oracle.jbo.server.SessionImpl			
object provides methods you can use to get information about the name of the authenticated user and about the roles of which they are a member. This is the implementation class for the oracle.jbo.Session			
interface that clients can access.			
For information about how to access information about the authenticated user, see Section 30.11.3.3, "How to Determine the Current User Name, Enterprise Name, or Enterprise ID" and Section 30.11.3.4, "How to Determine Membership of a Java EE Security Role".			
For more information about security features in Oracle Fusion Web Applications, read Chapter 30, "Enabling ADF Security in a Fusion Web Application."			
If an entity attribute's value has been changed in the current transaction, when you call the attribute getter method for it you will get the pending changed value. Sometimes you want to get the original value before it was changed. Using the getPostedAttribute()			
method, your entity object business logic can consult the original value for any attribute as it was read from the database before the entity row was modified. This method takes the attribute index as an argument, so pass the appropriate generated attribute index enums that JDeveloper maintains for you.			
If you need to store information related to the current user session in a way that entity object business logic can reference, you can use the user data hash table provided by the Session			
object.			
When a new user accesses an application module for the first time, the prepareSession()			
method is called. As shown in Example 8-13, the application module overrides prepareSession()			
to retrieve information about the authenticated user by calling a retrieveUserInfoForAuthenticatedUser()			
method on the view object instance. Then, it calls the setUserIdIntoUserDataHashtable()			
helper method to save the user's numerical ID into the user data hash table.			
Example 8-13 Overriding prepareSession() to Query User Information			
Example 8-14 shows the code for the view object's retrieveUserInfoForAuthenticatedUser()			
method. It sets its own EmailAddress			
bind variable to the name of the authenticated user from the session and then calls executeQuery()			
to retrieve the additional user information from the USERS			
table.			
Example 8-14 Accessing Authenticated User Name to Retrieve Additional User Details			
One of the pieces of information about the authenticated user that the view object retrieves is the user's numerical ID number, which that method returns as its result. For example, the user sking			
has the numeric UserId			
of 300			
.			
Example 8-15 shows the setUserIdIntoUserDataHashtable()			
helper method — used by the prepareSession()			
code in Example 8-13 — that stores this numerical user ID in the user data hash table, using the key provided by the string constant CURRENT_USER_ID			
.			
Example 8-15 Setting Information into the UserData Hashtable for Access By Entity Objects			
The corresponding entity objects in this example can have an overridden create()			
method that references this numerical user ID using a helper method like the one in Example 8-16 to set the CreatedBy			
attribute programmatically to the value of the currently authenticated user's numerical user ID.			
The top-level adf			
object allows you access to objects that the framework makes available to Groovy script. The adf.userSession			
object returns a reference to the ADF Business Components user session, which you can use to reference values in the userData			
hash map that is part of the session.			
Example 8-17 shows the Groovy script you would use to reference a userData			
hash map key named MyKey			
.			
You might find it useful to reference the current date and time in your entity object business logic. You can reference the current date or current date and time using the following Groovy script expressions:			
adf.currentDate			
— returns the current date (time truncated) adf.currentDateTime			
— returns the current date and time For more information about using Groovy script in your entity object business logic, see Section 3.6, "Overview of Groovy Support."			
The afterCommit()			
method is invoked on each entity row that was in the pending changes list and got successfully saved to the database. You can use this method to send a notification on a commit.			
A better way to send notifications upon a successful commit is by declaring a business event. For more information on how to create a business event, see Section 4.11, "Creating Business Events."			
Before an entity row is removed, the remove()			
method is invoked on an entity row. You can throw a JboException			
in the remove()			
method to prevent a row from being removed if the appropriate conditions are not met.			
For example, you can add a test in the remove()			
method that determines the state of the entity object and allows the removal only if it is a new record. Example 8-18 demonstrates this technique.			
Note: This example is in theAddressesImpl.java file in the ConditionalDelete project of the DevGuideExamples workspace in the StandaloneExamples module of the Fusion Order Demo application.			
Example 8-18 Overriding the remove() Method to Verify Entity Status Before Removal			
Note: The entity object offers declarative prevention of deleting a master entity row that has existing, composed children rows. You configure this option on the Relationship page of the overview editor for the association.			
You can override the isAttributeUpdateable()			
method in your entity object class to programmatically determine whether a given attribute is updatable or not at runtime based on appropriate conditions.			
Example 8-19 shows how an entity object can override the isAttributeUpdateable()			
method to enforce that its PersonTypeCode			
attribute is updatable only if the current authenticated user is a staff member. Notice that when the entity object fires this method, it passes in the integer attribute index whose updatability is being considered.			
You can implement conditional updatability logic for a particular attribute inside an if			
or switch			
statement based on the attribute index. Here PERSONTYPECODE			
is referencing the integer attribute index enums that JDeveloper maintains in your entity object custom Java class.			
Example 8-19 Conditionally Determining an Attribute's Updatability at Runtime			
Note: Entity-based view objects inherit this conditional updatability as they do everything else encapsulated in your entity objects. Should you need to implement this type of conditional updatability logic in a way that is specific to a transient view object attribute, or to enforce some condition that involves data from multiple entity objects participating in the view object, you can override this same method in a view object's view row class to achieve the desired result.			
This chapter describes how to create ADF application modules to encapsulate a data model using view objects in an ADF application. This chapter also describes how to combine business service methods with that data model to implement a complete business service.			
This chapter includes the following sections:			
An application module is an ADF Business Components component that encapsulates the business service methods and UI-aware data model for a logical unit of work related to an end-user task.			
In the early phases of application development, architects and designers often use UML use case techniques to create a high-level description of the application's planned end-user functionalities. Each high-level, end-user use case identified during the design phase typically depends on:			
The identified domain objects involved in each use case help you identify the required entity objects from your business domain layer. The user-oriented view of the required business data helps to define the right SQL queries captured as view objects and to retrieve the data in the exact way needed by the end user. For best performance, this includes retrieving the minimum required details necessary to support the use case. In addition to leveraging view object queries to shape the data, you've learned how to use view links to set up natural master-detail hierarchies in your data model to match exactly the kind of end-user experience you want to offer the user to accomplish the use case.			
The application module is the "work unit" container that includes instances of the reusable view objects required for the use case in question, related through metadata to the underlying entity objects in your reusable business domain layer whose information the use case is presenting or modifying.			
This chapter illustrates the following concepts illustrated in Figure 9-1, and more:			
Transaction			
object that acquires a database connection and coordinates saving or rolling back changes made to entity objects. Session			
object provides runtime information about the current application user. In a large application, you typically create one application module to support each coarse-grained end-user task. In a smaller-sized application, you may decide that creating a single application module is adequate to handle the needs of the complete set of application functionality. Section 9.4, "Defining Nested Application Modules" provides additional guidance on this subject.			
Any view object you create is a reusable component that can be used in the context of one or more application modules to perform the query it encapsulates in the context of that application module's transaction. The set of view objects used by an application module defines its data model, in other words, the set of data that a client can display and manipulate through a user interface.			
To create an application module, use the Create Application Module wizard, which is available in the New Gallery.			
Before you begin:			
Create the desired view objects as described in Section 5.2.1, "How to Create an Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode, Read-Only View Object."			
To create an application module:			
Note: In Fusion web applications, the reserved wordsdata , bindings , security , and adfContext must not be used to name your application module. Also, avoid using the "_ " (underscore) at the beginning of the name. For more information, see Section 9.2.5, "How to Edit an Existing Application Module."			
Initially, you may want to generate only the application module XML definition component. After you complete the wizard, you can subsequently use the overview editor to generate the application module class files when you require programmatic access. For details about the programmatic use of the application module, see Section 9.7, "Customizing an Application Module with Service Methods."			
For more step by step details, see Section 9.2.3.2, "Adding Master-Detail View Object Instances to an Application Module."			
When you create an application module, JDeveloper creates the XML component definition file that represents its declarative settings and saves it in the directory that corresponds to the name of its package. For example, given an application module named StoreServiceAM			
in the storefront.model			
package, the XML file created will be ./storefront/model/StoreServiceAM.xml			
under the project's source path. This XML file contains the information needed at runtime to re-create the view object instances in the application module's data model.			
If you are curious to view its contents, you can see the XML file for the application module by double-clicking the StoreServiceAM			
node in the Application Navigator to open the overview editor. In the editor window, click the Source tab to view the XML so that you can inspect it. The Structure window shows the structure of the XML file.			
When you create business components, JDeveloper automatically creates a data control that contains all the functionality of the application module. Data controls are an ADF Model abstraction layer that provides supplemental metadata to describe the application module's operations and data collections (row sets of view object instances), including information about the attributes, methods, and types involved. Developers can then use the representation of the data control displayed in JDeveloper's Data Controls panel to create UI components that are automatically bound to the application module. At runtime, the ADF Model layer reads the metadata describing the data controls and bindings from appropriate XML files and implements the two-way connection between the user interface and the business service.			
For example, the StoreServiceAMDataControl			
application module implements the business service layer of the StoreFront module application. Its data model contains numerous view object instances, including several master-detail hierarchies. The view layer of the Fusion Order Demo application consists of JSF pages whose UI components are bound to data from the view object instances in the StoreServiceAMDataControl			
's data model, and to built-in operations and service methods on its client interface. For details about how the Data Controls panel exposes the application module to UI developers, see Section 12.2, "Exposing Application Modules with ADF Data Controls."			
You can add a view object to an application module as you are creating the application module with the Create Application Module wizard, or you can add it later.			
For information about using the Create Application Module wizard, see Section 9.2.1, "How to Create an Application Module."			
You can add a view object to an application module that you have already created. To add a view object to an existing application module, and optionally, customize the view object instance, use the Data Model Components page of the overview editor for the application module.			
Before you begin:			
Create the desired view objects as described in Section 5.2.1, "How to Create an Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode, Read-Only View Object."			
To add a view object instance to an existing application module:			
The New View Instance field below the list shows the name that will be used to identify the next instance of that view object that you add to the data model.			
Figure 9-2 shows the view object AddressVO			
has been renamed to Address			
before it was shuttled to the Data Model list.			
You can use the data model that the application module overview editor displays to create a hierarchy of view instances, based on existing view links that your project defines. If you have defined view links that establish more than one level of master-detail hierarchy, then you can proceed to create as many levels of master-detail view instances as your application supports.			
Before you begin:			
Create hierarchical relationships between view objects as described in Section 5.6, "Working with Multiple Tables in a Master-Detail Hierarchy."			
To add master-detail view object instances to a data model:			
The master view object will appear with a plus sign in the list indicating the available view links for this view object. The view link must exist to define a master-detail hierarchy.			
Figure 9-3 shows PersonsVO			
selected and renamed AuthenticatedUser			
in the New View Instance field.			
Figure 9-4 shows the newly created master view instance AuthenticatedUser			
in the Data Model list.			
Figure 9-5 shows the detail OrdersVO			
indented beneath master PersonsVO			
with the name OrdersVO via PersonsToOrders			
. The name identifies the view link PersonsToOrders			
, which defines the master-detail hierarchy between PersonsVO			
and OrdersVO			
. Notice also that the OrdersVO			
will have the view instance name MyOrders			
when added to the data model.			
Figure 9-6 shows the newly created detail view instance MyOrders			
as a detail of the AuthenticatedUser			
in the data model.			
Figure 9-7 shows the Data Model list with instance AuthenticatedUser			
(renamed from PersonsVO			
) as the master of MyOrders			
(renamed from OrdersVO via PersonsToOrders			
), which is, in turn, a master for MyOrderItems			
(renamed from OrderItemsVO via OrdersToOrderItems			
).			
You can optionally customize the view object instance by using the Data Model Components page of the overview editor for the application module. For example, you might want to apply a filter to set the controlling attribute for a master-detail view object relationship.			
To customize a view object instance that you add to an existing application module:			
WHERE			
clause to the instance query. For details about defining view criteria, see Section 5.11, "Working with Named View Criteria." Figure 9-8 shows the Edit View Instance dialog opened for the AuthenticatedUser			
view usage with the AuthenticatedUserByPrincipalCriteria			
selected. No default value is supplied for the bind variable userPrincipal			
since the value will be provided at runtime through the evaluation of a Groovy expression that obtains the current user from the ADF security context. The data model for the project defines a master-detail relationship with the PrincipalName			
attribute as the controlling attribute for AuthenticatedUser			
view usage. The controlling attribute, when set by the view criteria filter, provides a way to retrieve only the view rows for the current user.			
While adding a view object to an application module, you use instances of a view object component to define its data model. Figure 9-9 shows a JDeveloper business components diagram of a PersonService			
application module.			
The sample application module contains two instances of the Persons			
view object component, with member names of PersonList			
and AnotherPersonList			
to distinguish them. At runtime, both instances share the same PersonsVO			
view object component definition—ensure that they have the same attribute structure and view object behavior—however, each might be used independently to retrieve data about different users. For example, some of the runtime properties, like an additional filtering WHERE			
clause or the value of a bind variable, might be different on the two distinct instances.			
Example 9-1 shows how the PersonService			
application module defines its member view object instances in its XML component definition file.			
Example 9-1 Member View Object Instances Defined in XML			
After you've created a new application module, you can edit any of its settings by using the Edit Application Module dialog. To launch the editor, choose Open from the context menu in the Application Navigator, or double-click the application module. By visiting the different pages of the editor, you can adjust the data model to determine whether or not to reference nested application modules, specify Java generation settings, client interface methods, remote deployment options, runtime instantiation behavior, and custom properties.			
If you edit the name of your application module, choose a name that is not among the reserved words that Oracle Application Development Framework (Oracle ADF) defines. In particular, reserved words are not valid for a data control usage name which JDeveloper automatically assigns based on your application module's name. In Fusion web applications, these reserved words consist of data			
, bindings			
, security			
, and adfContext			
. For example, you should not name an application module data			
. If JDeveloper creates a data control usage with an ID that collides with a reserved word, your application may not reliably access your data control objects at runtime and may fail with a runtime ClassCastException			
.			
Do not name the application module with an initial underscore (_			
) character to prevent a potential name collision with a wider list of reserved words that begin with the underscore.			
Application module names that incorporate a reserved word into their name (or that change the case of the reserved word) will not conflict. For example, Product_Data			
, Product_data			
, or just Data			
are all valid application module names since the whole name does not match the reserved word data			
.			
By default, an application module will appear in the Data Controls panel as a data control named AppModuleName			
DataControl			
. The user interface designer uses the Data Controls panel to bind data from the application module to the application's web pages. For example, if the application module is named StoreServiceAM			
, the Data Controls panel will display the data control with the name StoreServiceAMDataControl			
. You can change the default data control name to make it shorter or to supply a more preferable name.			
When the user interface designer works with the data control, they will see the data control name for your application module in the DataBindings.cpx			
file in the user interface project and in each data binding page definition XML file. In addition, you might refer to the data control name in code when needing to work programmatically with the application module service interface. For this reason, if you plan to change the name of your application module, do this change before you begin building your view layer.			
For complete information about the application module data control, see Chapter 12, "Using ADF Model in a Fusion Web Application."			
Note: If you decide to change the application module's data control name after you have already referenced it in one or more pages, you will need to open the page definition files andDataBindings.cpx file where it is referenced and update the old name to the new name manually.			
To change the application module data control name:			
A common question related to application modules is, "How big should my application module be?" In other words, "Should I build one big application module to contain the entire data model for my enterprise application, or many smaller application modules?" The answer depends on your situation.			
In general, application modules should be as big as necessary to support the specific use case you have in mind for them to accomplish. They can be assembled from finer-grained application module components using a nesting feature, as described in Section 9.4, "Defining Nested Application Modules." Since a complex business application is not really a single use case, a complex business application implemented using Oracle ADF will typically not be just a single application module.			
In actual practice, you may choose any granularity you wish. For example, in a small application with one main use case and a "backend" supporting use case, you could create two application modules. However, for the sake of simplicity you can combine both use cases, rather than create a second application module that contains just a couple of view objects.			
While designing an application module, you use instances of a view object component to define its data model. Just as the user interface may contain two instances of a Button			
component with member names of myButton			
and anotherButton			
to distinguish them, your application module contains two instances of the Persons			
view object component, with member names of PersonList			
and AnotherPersonList			
to distinguish them.			
You configure your application module to use a database connection by identifying either a Java Database Connectivity (JDBC) URL or a JDBC data source name in the Connection Type section of the Edit Business Components Configuration dialog. A data source is a vendor-independent encapsulation of a database server connection.			
You can use either the JDBC URL and the JDBC data source connection type to run the application module in any context where Java can run. Your application is not restricted to running inside a Java Enterprise Edition (Java EE) application server. For example, although the Business Component Browser is a standalone Java tool and does not run within the context of a Java EE application server, you can use either connection type to test your business components in the Business Component Browser.			
The JDBC data source offers advantages that the JDBC URL connection type does not. When you define a connection type based on a data source, you reconfigure the data source without changing the deployed application. The data source is also centrally defined at the application server level, whereas JDBC URL connections are not. Although the default connection type for the application module is the JDBC URL, the Edit Business Components Configuration dialog lets you select among the existing application resources connections that appears in the Database Navigator.			
The default YourAppModuleName			
Local			
configuration uses a JDBC URL connection. It is based on the named connection definition set on the Business Components page of the Project Properties dialog for the project containing your application module. Figure 9-10 shows what this section would look like in a configuration using a JDBC URL connection.			
Note: If you are using a non-Oracle JDBC driver, make sure that you set the appropriate properties for the driver on the Properties page of the Edit Business Components Configuration dialog to avoid runtime exceptions.For example, if you are using a Sybase JDBC driver, you must set the			
Note: See Section 41.1.1.2, "Database Connection Pools," and Section 41.2.9, "What You May Need to Know About Database Connection Pool Parameters" for more information on how database connection pools are used and how you can tune them.			
The other type of connection you can use is a JDBC data source. You define a JDBC data source as part of your application server configuration information, and then the application module looks up the resource at runtime using a logical name. Figure 9-11 shows what this section would look like in a configuration using a JDBC data source connection			
Figure 9-11 JDBC DataSource Connection Type Setting in Edit Business Components Configuration Dialog			
Example 9-2 shows the <resource-ref>			
tags in the web.xml			
file of a Fusion web application. These define two logical data sources named jdbc/FODemoDS			
and jdbc/FODemoCoreDS			
. The Edit Business Components Configuration dialog references this logical connection name after the prefix java:comp/env			
in the JDBC Datasource Name field. For example, the JDBC data source connection name for the same Fusion web application would display the value java:comp/env/jdbc/FODemoDS			
that you can select. Therefore the JDBC Datasource Name field is prepopulated with the JNDI name for all available application resources connection names.			
Example 9-2 Logical Data Source Resource Names Defined in web.xml			
You can directly edit the JDBC Datasource Name field when you want to specify a connection name for a global data source that is required to run the application on a target standalone application server. When you deploy to Oracle WebLogic Server, by default, the application-specific data source is not packaged with the application and Oracle WebLogic Server is configured to find a global data source named jdbc/			
applicationConnectName			
DS			
using the look up java:comp/env/jdbc/			
applicationConnectName			
DS			
. Therefore, by following this naming convention, you enable a single data source connection name to work correctly when running the application in JDeveloper using an application-specific data source or when running on the deployed standalone server using a global data source.			
When you select the database connection in the Edit Business Components Configuration dialog, JDeveloper updates the application module configuration file, bc4j.xcfg			
in the ./common			
subdirectory relative to the application module's XML component definition. The file defines configurations for all of the application modules in a single Java package. For example, if you look at the bc4j.xcfg			
file in the ./classes/oracle/fodemo/storefront/store/service/common			
directory of the Fusion Order Demo application's StoreFront			
project, you will see the three named configurations for its StoreServiceAM			
application module.			
The configurations defined by the bc4j.xcfg			
file allow the Fusion web application to interact with specific, deployed application modules. In addition to the database connection details for the application module, the bc4j.xcf			
file contains metadata information about application module names and it contains the runtime parameters that are configured for the application module.			
Example 9-3 displays a sample bc4j.xcfg			
file from the Fusion Order Demo application. The configurations StoreServiceAMLocal			
and StoreServiceAMLocalWeb			
both reference a JDBC connection (named FOD			
) in the JDBCName			
attribute. The JDBC connection string for the JDBC connection is defined in the Connections folder of the Application Navigator and saved in the application's connection.xml			
file. The configuration StoreFrontService			
references a data source that will eventually be defined on the target application server. The JDBCDataSource			
attribute in the StoreFrontService			
configuration specifies the JNDI name for the application resources connection name in the form of java:comp/env/jdbc/			
applicationConnectName			
DS			
, where applicationConnectName			
is the name of the application resources database connection defined in JDeveloper (in this case, FOD			
). This JNDI naming convention (with the application-specific name space java:comp/env/jdbc/			
and DS			
appended to the application resources database connection name) ensures that a deployed Fusion web application will run on Oracle WebLogic Server using the application's global data source and no changes will be required. The global data source is typically defined by the application server administrator using the Oracle WebLogic Server Administration Console.			
Example 9-3 Application Module Database Configurations in the bc4j.xcfg File			
In addition to creating the application module XML component definition, JDeveloper also adds a default configuration named appModuleName			
Local			
to the bc4j.xcfg			
file in the subdirectory named common			
, relative to the directory containing the application module XML component definition file. The bc4j.xcfg			
file does not appear in the Application Navigator. To view the default settings or to change the application module's runtime configuration settings, you can use the Manage Configurations dialog shown in Figure 9-12.			
To manage your application module's configuration:			
appModuleName			
Local			
and click Edit. appModuleName			
Local			
in the displayed list. When you are developing applications, you may have a number of different users or schemas that you want to switch between. You can do this by changing the connection properties of the project that contains the business components. The selection you make will automatically update the connection name for each configuration that your project's bc4j.xcfg			
file defines.			
To change the connection used by your application module's configuration:			
Application modules support the ability to create software components that mimic the modularity of your use cases, for which your higher-level functions might reuse a "subfunction" that is common to several business work flows. You can implement this modularity by defining composite application modules that you assemble using instances of other application modules. This task is referred to as application module nesting. That is, an application module can contain (logically) one or more other application modules, as well as view objects. The outermost containing application module is referred to as the root application module.			
Declarative support for defining nested application modules is available through the overview editor for the application module, as shown in Figure 9-14. The API for application modules also supports nesting of application modules at runtime.			
When you nest an instance of one application module inside another, you aggregate not only the view objects in its data model, but also any custom service methods it defines. This feature of "nesting," or reusing, an instance of one application module inside of another is one of the most powerful design aspects of the ADF Business Components layer of Oracle ADF for implementing larger-scale, real-world application systems.			
Using the basic logic that an application module represents an end-user use case or work flow, you can build application modules that cater to the data required by some shared, modular use case, and then reuse those application modules inside of other more complicated application modules that are designed to support a more complex use case. For example, imagine that after creating the application modules StoreServiceAM			
and ProductService			
, you later need to build an application that uses both of these services as an integral part of a new CompositeService			
application module. Figure 9-13 illustrates what this CompositeService			
would look like in a JDeveloper business components diagram. Notice that an application module like CompositeService			
can contain a combination of view object instances and application module instances.			
To specify a composite root application module that nests an instance of an existing application module, use the overview editor for the application module. All of the nested component instances (contained by the application module instance) share the same transaction and entity object caches as the root application module that reuses an instance of them.			
Tip: If you leverage nested application modules in your application, be sure to read Section 12.2.1.4, "How Nested Application Modules Appear in the Data Controls Panel" to avoid common pitfalls when performing data binding involving them.			
Before you begin:			
Create the desired application modules as described in Section 9.2.1, "How to Create an Application Module."			
To define a nested application module:			
The New App Module Instance field below the list shows the name that will be used to identify the nested application module that you add to the data model.			
Figure 9-14 shows the application module LookupServiceAM			
has been renamed to NestedLookupServiceAM			
before it was shuttled to the Selected list.			
At runtime, your application works with a main — or what's known as a root — application module. Any application module can be used as a root application module; however, in practice the application modules that are used as root application modules are the ones that map to more complex end-user use cases, assuming you're not just building a straightforward CRUD application. When a root application module contains other nested application modules, they all participate in the root application module's transaction and share the same database connection and a single set of entity caches. This sharing is handled for you automatically by the root application module and its Transaction			
object.			
Additionally, when you construct an application using an ADF bounded task flow, to declaratively manage the transactional boundaries, Oracle ADF will automatically nest application modules used by the task flow at runtime. For details about bounded task flows and transactions, see Section 18.3, "Managing Transactions."			
As you develop the business service's data model, it is often convenient to be able to visualize it using a UML model. JDeveloper supports easily creating a diagram for your application module that other developers can use for reference.			
You can perform a number of tasks directly on the diagram, such as editing the application module, controlling display options, filtering methods names, showing related objects and files, publishing the application, and launching the Business Component Browser.			
To create an application module diagram, use the Create Business Components Diagram dialog, which is available in the New Gallery.			
To create a diagram of your application module:			
Master			
"/"Detail			
") After completing these steps, the diagram looks similar to the diagram shown in Figure 9-15.			
When you create a business components diagram, JDeveloper creates a .adfbc_diagram			
file to represents the diagram in a subdirectory of the project's model path that matches the package name in which the diagram resides.			
By default, the Application Navigator unifies the display of the project content's paths so that ADF components and Java files in the source path appear in the same package tree as the UML model artifacts in the project model path. You can use the Navigator Display Options > Show Directories toolbar option in the Application Navigator to switch between the unified directory view and a more distinct directory path view of the project content.			
The UML diagram of business components is not just a static picture that reflects the point in time when you dropped the application module onto the diagram. Rather, it is a UML-based rendering of the current component definitions, so it will always reflect the current state of affairs. The UML diagram is both a visualization aid and a visual navigation and editing tool.			
You can bring up the overview editor for any application module in a diagram by choosing Properties from the context menu (or by double-clicking the application module).			
You can also perform some application module editing tasks directly on the diagram, tasks such as renaming view object instances, dropping view object definitions from the Application Navigator onto the data model to create a new view object instance, and removing view object instances by pressing the Delete key.			
Note: Deleting components from the diagram only removes their visual representation on the diagram surface. The components and classes remain on the file system and in the Application Navigator.			
After you display the application module in the diagram, you can use the Property Inspector to control its display options.			
In the Display Options category, toggle properties like the following:			
<<application module>>			
") Note: The term operation is a more generic, UML name for methods.			
In the Operations category, consider changing the following properties depending on the amount of detail you want to provide in the diagram:			
By default, all operations of the application module are fully displayed, as shown by the Property Inspector settings in Figure 9-16.			
On the context menu of the diagram, you can also select to View As:			
Initially, if you show the operations for the application module, the diagram displays all the methods. Any method it recognizes as an overridden framework method displays in the <<Framework>> operations category. The rest display in the <<Business>> methods category.			
The Name Filter property in the Operations category of the Property Inspector is a regular expression that you can use to filter out methods you don't want to display on the diagram. For example, by setting the Name Filter property to:			
you can filter out all of the following application module methods:			
findLoggedInUserByEmail			
retrieveOrderById			
After selecting the application module on the diagram — or any set of individual view object instances in its data model — you can choose Show > Related Elements from the context menu to display related component definitions on the diagram. In a similar fashion, choosing Show > Implementation Files will include the files that implement the application module on the diagram. You can repeat these options on the additional diagram elements that appear until the diagram includes the level of detail you want to convey.			
Figure 9-17 illustrates how the diagram displays the implementation files for an application module. You will see the related elements for the application module's implementation class (StoreServiceAMImpl			
). The diagram also draws an additional dependency line between the application module and the implementation class. If you have cast the application module instance to a specific custom interface, the diagram will also show that.			
While interacting with your Fusion web application, end users might:			
The application module pooling and state management features simplify implementing scalable, well-performing applications to address these requirements.			
Note: ADF bounded task flows can represent a transactional unit of work. You can specify options on the task flow to determine how to handle the transaction. For details about the declarative capabilities of ADF bounded task flows, see Section 18.3, "Managing Transactions."			
To simulate what the state management functionality does, you can launch two instances of Business Component Browser on an application module in the Application Navigator.			
To simulate transaction state passivation using the Business Component Browser:			
A Passivated Transaction State dialog appears, indicating a numerical transaction ID number. Make a note of this number.			
At this point, you'll see that your pending changes are reflected again in the rows you modified. If you commit the transaction now, your changes are permanently saved to the database.			
Applications you build that leverage an application module as their business service take advantage of an automatic application module pooling feature. This facility manages a configurable set of application module instances that grows and shrinks as the end-user load on your application changes during the day. Due to the natural "think time" inherent in the end user's interaction with your application user interface, the number of application module instances in the pool can be smaller than the overall number of active users using the system.			
As shown in Figure 9-18, as a given end user visits multiple pages in your application to accomplish a logical task, with each page request an application module instance in the pool is acquired automatically from the pool for the lifetime of that one request. At the end of the request, the instance is automatically returned to the pool for use by another user session. In order to protect the end user's work against application server failure, the application module supports the ability to freeze the set of pending changes in its entity caches to a persistent store by saving an XML snapshot describing the change set. For scalability reasons, this state snapshot is typically saved in a state management schema that is a different database schema than the one containing the application data.			
The pooling algorithm affords a tunable optimization whereby a certain number of application module instances will attempt to stay "sticky" to the last user session that returned them to the pool. The optimization is not a guarantee, but when a user can benefit from the optimization, they continue to work with the same application module instance from the pool as long as system load allows. When load is too high, the pooling algorithm uses any available instance in the pool to service the user's request and the frozen snapshot of their logical unit of work is reconstituted from the persistent store to allow the new instance of the application module to continue where the last one left off. The end user continues to work in this way until they commit or roll back their changes.			
Using these facilities, the application module delivers the productivity of a stateful development paradigm that can easily handle multipage work flows, in an architecture that delivers the runtime performance near that of a completely stateless application. You will learn more about these application module features in Chapter 40, "Application State Management" and about how to tune them in Chapter 41, "Tuning Application Module Pools and Connection Pools."			
Note: This application module pooling and state management is also available for thin-client, desktop-fidelity Swing applications and web-style user interfaces.			
An application module can expose its data model of view objects to clients without requiring any custom Java code. This allows client code to use the ApplicationModule			
, ViewObject			
, RowSet			
, and Row			
interfaces in the oracle.jbo			
package to work directly with any view object in the data model. However, just because you can programmatically manipulate view objects any way you want to in client code doesn't mean that doing so is always a best practice.			
Whenever the programmatic code that manipulates view objects is a logical aspect of implementing your complete business service functionality, you should encapsulate the details by writing a custom method in your application module's Java class. This includes code that:			
By centralizing these implementation details in your application module, you gain the following benefits:			
To add a custom service method to your application module, you must first enable a custom Java class for it. If you have configured your IDE-level Business Components Java generation preferences to automatically generate an application module class, a custom class will be present. If you're not sure whether your application module has a custom Java class, open the overview editor for the application module node in the Application Navigator. The Java Classes page of the editor displays the complete list of classes generated for the application module in the project. If the file exists because someone created it already, then the Java Classes page will display a linked file name identified as the Application Module Class. To open an existing file in the source editor, click the corresponding file name link.			
You can also check the application module node's context menu for the Go to Application Module Class option, as shown in Figure 9-19. When this option is present in the menu, you can use it to quickly navigate to your application module's custom class. If you don't see the option in the menu, then your application module is currently an XML-only component.			
If no Java class exists in your project, you can generate one using the Java Classes page of the overview editor for the application module.			
Before you begin:			
Create the desired application module as described in Section 9.2.1, "How to Create an Application Module."			
To generate a Java file for your application module class:			
The new .java			
file will appear in the Java Classes page.			
When you generate a custom class for an application module, JDeveloper creates the file in the same directory as the component's XML component definition file. The default name for its custom Java file will be AppModuleName			
Impl.java			
.			
The Java generation option choices you made for the application module persist on the Java Classes page on subsequent visits to the overview editor for the application module. Just as with the XML definition file, JDeveloper keeps the generated code in your custom Java classes up to date with any changes you make in the editor. If later you decide you do not require a custom Java file, from the Java Classes page open the Select Java Options dialog and deselect Generate Application Module Class to remove the custom Java file from the project.			
By default, the application module Java class will look similar to what you see in Example 9-4 when you've first enabled it. Of interest, it contains:			
main()			
method allowing you to debug the application module using the Business Component Browser Example 9-4 Default Application Module Generated Code			
As shown in Figure 9-20, your application module class extends the base ADF ApplicationModuleImpl			
class to inherit all the default behavior before adding your custom code.			
To add a custom service method to an application module, simply navigate to the application module's custom class and enter the Java code for a new method into the application module's Java implementation class. Use the following guidelines to decide on the appropriate visibility for the method:			
private			
. protected			
. public			
. Note: TheStoreServiceAM application module examples in this chapter use the strongly typed, custom entity object classes that you saw illustrated in the StoreServiceAMImpl2.java example at the end of Chapter 4, "Creating a Business Domain Layer Using Entity Objects."			
Example 9-5 shows a private retrieveOrderById()			
helper method in the StoreServiceAMImpl.java			
class for the StoreServiceAM			
application module. It uses the static			
getDefinition()			
method of the OrdersEOImpl			
entity object class to access its related entity definition, it uses the createPrimaryKey()			
method on the entity object class to create an appropriate Key object to look up the order, and then it uses the findByPrimaryKey()			
method on the entity definition to find the entity row in the entity cache. It returns an instance of the strongly typed OrdersEOImpl			
class, the custom Java class for the OrderEO			
entity object.			
Example 9-5 Private Helper Method in Custom Application Module Class			
Example 9-6 shows a public createProduct()			
method that allows the caller to pass in a name and description of a product to be created. It uses the getDefinition()			
method of the ProductImpl			
entity object class to access its related entity definition, and it uses the createInstance2()			
method to create a new ProductImpl			
entity row, whose Name			
and Description			
attributes it populates with the parameter values passed in before committing the transaction.			
Example 9-6 Public Method in Custom Application Module Class			
When you are ready to test the methods of your custom application module, you can use JDeveloper to generate JUnit test cases. With JUnit, you can use any of the programmatic APIs available in the oracle.jbo package			
to work with the application module and invoke the custom methods. For details about using JUnit with ADF Business Components, see Section 31.10, "Regression Testing with JUnit."			
As an alternative to JUnit test cases, a common technique to test your custom application module methods is to write a simple test case. For example, you could build the testing code into an object and include that code in the static main()			
method. Example 9-7 shows a sample main()			
method you could add to your custom application module class to test the sample methods you will write. You'll make use of a Configuration			
object (see Section 6.4.2, "How to Create a Command-Line Java Test Client") to instantiate and work with the application module for testing.			
Note: The fact that thisConfiguration object resides in the oracle.jbo.client package suggests that it is used for accessing an application module as an application client. Because a main() method is a kind of programmatic, command-line client, so this is an acceptable practice. Furthermore, even though you typically would not cast the return value of createRootApplicationModule() directly to an application module's implementation class, it is legal to do so in this one situation since despite being a client to the application module, the main() method's code resides right inside the application module implementation class itself.			
A glance through the code in Example 9-7 shows that it exercises the four methods created in the previous examples to:			
Example 9-7 Sample Main Method to Test a Custom Application Module from the Inside			
Running the custom application module class calls the main()			
method in Example 9-7, and shows the following output:			
Notice that the first attempt to call createProduct()			
with a null for the product name raises an exception due to the built-in mandatory validation on the Name			
attribute of the Product			
entity object.			
Note: For an explanation of how you can use the client application to invoke the custom service methods that you create in your custom application module, see Section 9.9, "Publishing Custom Service Methods to UI Clients."			
Any time your application logic accesses a row set to perform programmatic iteration, you should use a secondary row set iterator when working with view object instances in an application module's data model, or view link accessor row sets of these view object instances, since they may be bound to user interface components. To create a secondary iterator, use the createRowSetIterator()			
method on the row set you are working with. When you are done using it, call the closeRowSetIterator()			
method on the row set to remove the secondary iterator from memory. Example 9-8 shows a typical application module custom method that correctly uses a secondary row set iterator for programmatic iteration, because the EmpView1			
view object instance in its data model may be bound to a user interface (either now or at a later time).			
Example 9-8 Using a Secondary Row Set Iterator in an Application Module Custom Method			
Note: The same recommendation holds for custom code in a view object's implementation class that iterates its own default row set using that row set's default row set iterator.			
There are two important reasons to follow this recommendation. Failing to do so can lead to confusion for the end user when the current row unexpectedly changes or it can introduce subtle business logic errors because the first or last row, or both rows get skipped.			
The iterator bindings determine what row the end-user sees as the current row in the row set. If your own programmatic logic iterates through the row set using the same default row set iterator that the iterator binding uses, you may inadvertently change the current row the user has selected, leaving the user confused.			
Iterator bindings force their row set iterator to be on a valid row to guarantee that UI components display data when the row set is not empty. This has the side-effect of preventing your custom logic from navigating to the slot either before the first row or to the slot after the last row (when it is using the same row set iterator as an iterator binding). In concrete terms, this means that a typical while (rowset.hasNext())			
iteration loop will either be skipped or start by processing the second row instead of the first as shown in Example 9-9.			
Example 9-9 Consequences of Using the Default Row Set Iterator			
The ADF application module does not have a resource bundle of its own and there is no design time in JDeveloper to associate one with the application module. However, if you do want to register a .properties			
file that contains your custom message strings, you can set a resource bundle definition in the definition class file that you generate for the application module.			
To generate the custom definition class file for the application module, use the Select Java Options dialog, which you open for the application module on the Java Classes page of the application module overview editor. You can use this file to override the built-in framework method finishedLoading()			
.			
Before you begin:			
.properties			
file and add the message key and message, as described in .Section 4.7, "Working with Resource Bundles." The .properties			
file you create can reference attribute properties by their fully-qualified package name and custom method exception messages. For example, you might define message keys and strings as follows:			
For example, if you defined a message for the method foo()			
that to replace the exception message INVALID			
, your interface might define this method to invoke the message from the resource bundle as:			
To generate the definition class and override the finishedLoading method:			
If the Source menu is not displayed in the JDeveloper toolbar, be sure the definition class file is open and the source editor is visible.			
For example, if your file is MyAMBundle			
in the test			
package, your code would look like:			
In this example, the finishedLoading()			
method creates a message bundle definition and then sets the custom message bundle on the definition.			
When you generate a custom definition class for an application module, JDeveloper creates the file in the same directory as the component's XML component definition file. The default name for its custom Java file will be AppModuleName			
DefImpl.java			
.			
Because you override the built-in finishedLoading()			
method in the definition class file, after the application is loaded at runtime, the framework will invoke the method and automatically load the named .properties			
file.			
When you add a public			
custom method to your application module class, if you want your application's UI to be able to invoke it, you need to include the method on the application module's UI client interface.			
To include a public method from your application module's custom Java class on the client interface, use the Java Classes page of the overview editor for the application module, and then click the Edit icon in the Client Interface section of the page to display the Edit Client Interface dialog. Select one or more desired methods from the Available list and click the Add button to shuttle them into the Selected list. Then click OK to close the editor. Figure 9-21 shows multiple public methods added to the client interface.			
When you publish custom service methods on the client interface, as shown in Figure 9-22, JDeveloper creates a Java interface with the same name as the application module in the common			
subpackage of the package in which your application module resides. For an application module named StoreServiceAM			
in the fodemo.model			
package, this interface will be named StoreServiceAM			
and reside in the fodemo.model.common			
package. The interface extends the base ApplicationModule			
interface in the oracle.jbo			
package, reflecting that a client can access all of the base functionality that your application module inherits from the ApplicationModuleImpl			
class.			
As shown in Example 9-10, the StoreServiceAM			
interface includes the method signatures of all of the methods you've selected to be on the client interface of your application module.			
Example 9-10 Custom Client Interface Based on Methods Selected in the Client Interface Panel			
Each time you add or remove methods in the Client Interface section, the corresponding client interface file is updated automatically. JDeveloper also generates a companion client proxy class that is used when you deploy your application module for access by a remote client. For the StoreServiceAM			
application module in this example, the client proxy file is called StoreServiceAMClient			
and it is created in the devguide.model.client			
subpackage.			
Note: After adding new custom methods to the client interface, if your new custom methods do not appear to be available when you use JDeveloper's code insight context-sensitive statement completion, try recompiling the generated client interface. To do this, select the application module in the Application Navigator, select the source file for the interface of the same name in the Structure window, and choose Rebuild from the context menu. Consider this tip for new custom methods added to view objects and view rows as well.			
In addition to generating a client interface for your application module, it is also possible to generate strongly typed client interfaces for working with the other key client objects that you can customize. For example, you can open Java page in the overview editor for a view object, you can then expand the Client Interface section and the Client Row Interface section and add custom methods to the view object client interface and the view row client interface, respectively.			
If for the Products			
view object in the devguide.model.queries			
package you were to enable the generation of a custom view object Java class and add one or more custom methods to the view object client interface, JDeveloper would generate the ProductsImpl			
class and Products			
interface, as shown in Figure 9-23. As with the application module custom interface, notice that it gets generated in the common			
subpackage.			
Likewise, if for the same view object you were to enable the generation of a custom view row Java class and add one or more custom methods to the view row client interface, JDeveloper would generate the ProductsRowImpl			
class and ProductsRow			
interface, as shown in Figure 9-24.			
You can test the methods of your custom application module in the Business Component Browser after you have published them on the client interface, as described in Section 9.9, "Publishing Custom Service Methods to UI Clients."			
To test the service methods that you have published:			
Alternatively, choose Debug when you want to run the application in the Business Component Browser with debugging enabled. JDeveloper opens the debugger process panel in the Log window and the various debugger windows. When debugging using the Business Component Browser, you can use these windows to view status message and exceptions, step in and out of source code, and manage breakpoints.			
For information about receiving diagnostic messages specific to ADF Business Component debugging, see Section 6.3.8, "How to Enable ADF Business Components Debug Diagnostics."			
Do not select a master view instance in the data model tree since view row operations are not permitted on master view objects. Always select a detail view instance or a view instance that is not specified in a master-detail hierarchy, as shown in Figure 9-25.			
Tip: In the case of a detail view instance, you can open the master view instance to navigate to the detail with the desired row. The Business Component Browser automatically synchronizes the data displayed in the open overview panel with the master view instance that you navigate to.			
Notice that the method testing panel displays the parameter names to help you identify where to enter the values to pass. This is particularly useful when the method signature defines multiple parameters of the same data type.			
You can view the return value (if any) and test result. The result displayed in the Business Component Browser will indicate whether or not the method executed successfully.			
You can include any custom method in the client interface that obeys these implementation rules:			
void			
return type, the type must be serializable. JboException			
in the oracle.jbo			
package. In other words, all the types in its method signature must implement the java.io.Serializable			
interface, and any checked exceptions must be JboException			
or its subclass. Your method can throw any unchecked exception — java.lang.RuntimeException			
or a subclass of it — without disqualifying the method from appearing on the application module's client interface.			
Note that method signatures of type java.util.List			
are allowed as long as the implementing class for the interface is serializable. For example, java.util.ArrayList			
and java.util.LinkedList			
are both serializable implementing classes. The same requirement applies to element types within the collection. The ADF Business Components runtime will produce an error if you instantiate a class that implements the interface yet does not implement the java.io.Serializable			
interface.			
Note: If the method you've added to the application module class doesn't appear in the Available list, first verify that it doesn't violate any of the method implementation rules. If it seems like it should be a legal method, try recompiling the application module class before visiting the overview editor for the application module again.			
The private implementation of an application module custom method can easily refer to any view object instance in the data model using the generated accessor methods. By calling the getCurrentRow()			
method on any view object, it can access the same current row for any view object that the client user interface sees as the current row. As a result, while writing application module business service methods, you may not need to pass in parameters from the client. This is true if you would be passing in values only from the current rows of other view object instances in the same application module's data model.			
For example, the custom application module method in Example 9-11 accepts no parameters. Internally, the createOrderItem()			
method calls getGlobals().getCurrentRow()			
to access the current row of the Globals			
view object instance. Then it uses the strongly typed accessor methods on the row to access the values of the Description			
and LineItemId			
attributes to set them as the values of corresponding attributes in a newly created OrderItem			
entity object row.			
Example 9-11 Using View Object Accessor Methods to Access a Current Row			
After publishing methods on your application module's client interface, you can invoke those methods from a client.			
To work programmatically with an application module's client interface, do the following:			
ApplicationModule			
to the more specific client interface. Note: For simplicity, this section focuses on working only with the custom application module interface; however, the same downcasting approach works on the client to use aViewObject interface as a view object interface like Orders or a Row interface as a custom view row interface like OrdersRow .			
Example 9-12 illustrates a TestClientCustomInterface			
class that puts these two steps into practice. You could also use the main()			
method of this class to test application module methods, as described in Section 9.7.5, "How to Test the Custom Application Module Using a Static Main Method." Here you use it to call all of the same methods from the client using the StoreFrontService			
client interface.			
Note: If you work with your application module using the defaultApplicationModule interface in the oracle.jbo package, you won't have access to your custom methods. Make sure to cast the application module instance to your more specific custom interface like the StoreFrontService interface in this example.			
The basic logic of Example 9-12 follows these steps:			
Example 9-12 Using the Custom Interface of an Application Module from the Client			
Running the test client in Example 9-12 calls the custom methods of the client interface, and shows the following output:			
Notice that the first attempt to call createProduct()			
with a null for the product name raises an exception due to the built-in mandatory validation on the Name			
attribute of the Product			
entity object			
If the client layer accessing your application module will be located in the same tier of the Java EE architecture, the application module will be deployed in what is known as local mode. In local mode, the client interface is implemented directly by your custom application module Java class. Typically, you access an application module in local mode when you need to:			
In contrast, when the client layer accessing your application module is located in a different tier of the Java EE architecture, the application module will be deployed in what is known as remote mode. In remote mode, the generated client proxy class implements your application module client interface on the client side, and the class handles all of the communications details of working with the remotely deployed application module service. You typically access the application module in remote mode only when a thin-client Swing application needs to access the application module on a remote application server.			
A unique feature of ADF Business Components is that by adhering to the interface-only approach for working with client service methods, you can be sure your client code works unchanged regardless of your chosen deployment mode. Even if you plan to work only in local mode, the Java EE development community favors the interface-based approach to working with services. Using application modules, it's extremely easy to follow this approach in your applications.			
Note: Whether you plan to deploy your application modules in local mode or remote mode, as described in Section 9.9.5, "What You May Need to Know About Method Signatures on the Client Interface," the JDeveloper design time ensures that your custom interface methods will use serializable types. This allows you to switch at any time between local mode or remote mode, or to support both at the same time, with no code changes.			
The Configuration			
class in the oracle.jbo.client			
package makes it very easy to get an instance of an application module for testing. This eases writing test client programs like the test client program described in Section 31.10, "Regression Testing with JUnit" as part of the JUnit regression testing fixture.			
Because it is easy, it is tempting for developers to use the class createRootApplicationModule()			
and releaseApplicationModule()			
methods anywhere to access an application module. However, for Fusion web applications you should resist this temptation because there is an even easier way.			
When working with Fusion web applications using the ADF Model layer for data binding, JDeveloper configures a servlet filter in your user interface project called the ADFBindingFilter			
. It orchestrates the automatic acquisition and release of an appropriate application module instance based on declarative binding metadata, and ensures that the service is available to be looked up as a data control using a known action binding or iterator binding, specified by any page definition file in the user interface project. You may eventually want to read about the ADF binding container, data controls, page definition files, and bindings, as described in Chapter 12, "Using ADF Model in a Fusion Web Application." For now, it is enough to realize that you can access the application module's client interface from this DCBindingContainer			
by naming an ADF action binding or an ADF iterator binding. You can reference the binding context and call methods on the custom client interface in a JSF managed bean, as shown in Example 9-13 for an action binding and Example 9-14 for an iterator binding.			
To access the custom interface of your application module using an action binding, follow these basic steps (as illustrated in Example 9-13):			
Example 9-13 Accessing the Application Module Client Interface in a JSF Backing Bean Using a Named Action Binding			
To access the custom interface of your application module using an iterator binding, follow these basic steps (as illustrated in Example 9-14):			
Example 9-14 Accessing the Application Module Client Interface in a JSF Backing Bean Using a Named Iterator Binding			
These backing bean examples depend on the helper method shown in Example 9-15.			
Example 9-15 Helper Method for Backing Bean Class			
If you create the backing bean class by overriding a button that is declaratively bound to an ADF action, then JDeveloper will automatically generate this method in your class. Otherwise, you will need to add the helper method to your class yourself.			
The ApplicationModuleImpl			
base class provides a number of built-in methods that implement its functionality. While Appendix E, "Most Commonly Used ADF Business Components Methods" provides a quick reference to the most common code that you will typically write, use, and override in your custom application module classes, this section focuses on helping you understand the basic steps to override one of these built-in framework methods to augment the default behavior.			
To override a built-in framework method for an application module, use the Override Methods dialog, which you select for the application module Java class from the main menu.			
Before you begin:			
Create the desired application module as described in Section 9.2.1, "How to Create an Application Module."			
To override an application module framework method:			
JDeveloper opens the class file in the source editor.			
If the Source menu is not displayed, be sure that the desired Java class file is open and that the source editor is visible.			
The Override Methods dialog allows you to select any number of methods to override simultaneously.			
For example, if you wanted to override the application module's prepareSession()			
method to augment the default functionality when a new user session begins working with an application module service component for the first time, you would select the checkbox next to the prepareSession(Session)			
method, as shown in Figure 9-26.			
When you dismiss the Override Methods dialog, you return to the source editor with the cursor focus on the overridden method, as shown in Figure 9-27. Notice that the method appears with a single line that calls super.prepareSession()			
. This is the syntax in Java for invoking the default behavior that the base class would have normally performed for this method. By adding code before or after this line in the custom application module class, you can augment the default behavior before or after the default functionality.			
Also notice that when you override a method using the Override Methods dialog, the source editor inserts the JDK @Override			
annotation just before the overridden method. This causes the compiler to generate a compile-time error if the method in the application module class does not match the signature of any method in the superclass.			
Be careful when you add method names to your class to override a method in the superclass; you must have the signature exactly the same as the base class method you want to override. Be sure to add the @Override			
annotation just before the method. This way, if your method does not match the signature of any method in the superclass, the compiler will generate a compile-time error. Also, when you write code for a method instead of calling the superclass implementation, you should have a thorough understanding of what built-in code you are suppressing or replacing.			
Since the prepareSession()			
method is invoked by the application module when it is used for the first time by a new user session, it's a useful method to override in your custom application module class to perform setup tasks that are specific to each new user that uses your application module. Example 9-16 illustrates an overridden prepareSession()			
method in the oracle.fodemo.storefront.adfextensions.FODApplicationModuleImpl			
class that invokes a setCurrentUserLanguage()			
helper method to initialize the language used by the application.			
Example 9-16 Initializing the Language to Use for Current User Session			
This chapter describes how to organize your ADF Business Components data model project to most efficiently utilize read-only data accessed from lookup tables or other static data source, such as a flat file.			
This chapter includes the following sections:			
Web applications often utilize data that is required across sessions and does not change very frequently. An example of this type of static data might be displayed in the application user interface in a lookup list. Each time your application accesses the static data, you could incur an unnecessary overhead when the static data caches are repopulated from the database for each application session on every request. In order to optimize performance, a common practice when working with ADF Business Components is to cache the shared static data for reuse across sessions and requests.			
Declarative support for shared data caches is available in JDeveloper through the Project Properties dialog. Creating a shared application module allows requests from multiple sessions to share a single application module instance which is managed by an application pool for the lifetime of the web server virtual machine.			
Best Practice: Use a shared application module to group view instances when you want to reuse lists of static data across the application. The shared application module can be configured to allow any user session to access the data or it can be configured to restrict access to just the UI components of a single user session. For example, you can use a shared application module to group view instances that access lookup data, such as a list of countries. The use of a shared application module allows all shared resources to be managed in a single place and does not require a scoped managed bean for this purpose.			
As shown in Figure 10-1, the Project Properties dialog lets you specify application-level or session-level sharing of the application module's data model. In the case of application-level sharing, any HTTP user session will be able to access the same view instances contained in the shared application module. In contrast, the lifecycle of the session-level shared application module extends to an application module session (SessionImpl			
) that is in use by a single HTTP user session and applies to a single root application module. In this case, each distinct root application module used by a given HTTP user session will get its own distinct instance of a session-scoped shared application module. In other words, distinct root application modules used by the same HTTP session do not share data in a session-scoped shared application module.			
When you create the data model for the application module that you intend to share, be sure that the data in cached row sets will not need to be changed either at the application level or session level. For example, in the application-level shared application module, view instances should query only static data such as state codes or currency types. If a view object instance queries data that depends on the current user, then the query can be cached at the session level and shared by all components that reference the row-set cache. For example, the session-level shared application module might contain a view instance with data security that takes a manager as the current user to return the list of direct reports. In this case, the cache of direct reports would exist for the duration of the manager's HTTP user session. The ADF Business Components application module pool will recreate the session-scoped application module should an HTTP user session be assigned a recycled application module from the pool. This ensures that the duration of the session-scoped application module is tied to the HTTP session for as long as the HTTP session is able to continue to use the same root application module instance. Note that the cache of direct reports of the session-level shared application module cannot be accessed across distinct root application modules.			
To create a shared application module instance, use the Project Properties dialog. You define a logical name for a distinct, separate root application module that will hold your application's read-only data.			
Before you begin:			
Create the application module that you will share as described in Section 9.2.1, "How to Create an Application Module."			
To create a shared application module instance:			
The shared application module instance (of either scope) must have a unique instance name. Supplying a meaningful name will also help to clarify which shared application module instance a given usage is referencing.			
JDeveloper automatically creates the AppModuleName			
Shared			
configuration when you create an application module. The presence of this configuration in the bc4j.xcfg			
file informs JDeveloper that the application module is a candidate to be shared, and allows JDeveloper to display the application module in the Available Application Modules list of the Project Properties dialog's Application Module Usage page.			
The AppModuleName			
Shared			
configuration sets these properties on the application module to enable sharing and help to maintain efficient use of the shared resource at runtime:			
jbo.ampool.isuseexclusive			
is set to false			
to specify that requests from multiple sessions can share a single instance of the application module, which is managed by the application pool for the lifetime of the web server virtual machine. When you do not enable application module sharing, JDeveloper sets the value true			
to repopulate the data caches from the database for each application session on every request. jbo.ampool.maxpoolsize			
is set to 1			
(one) to specify that only a single application module instance will be created for the ADF Business Components application module pool. This setting enforces the efficient use of the shared application module resource and prevents unneeded multiple instances of the shared application module from being created at runtime. You can view the shared application module's configuration by choosing Configurations from the context menu on the application module in the Application Navigator. JDeveloper saves the bc4j.xcfg			
file in the ./common			
subdirectory relative to the application module's XML component definition. If you remove the configuration or modify the values of the jbo.ampool			
runtime properties (isuseexclusive			
, maxpoolsize			
), the application module will not be available to use as a shared application module instance.			
For example, if you look at the bc4j.xcfg			
file in the ./src/oracle/fodemo/storefront/lookups/common			
directory of the Fusion Order Demo application's StoreFrontService			
project, you will see the two named configurations for the LookupServiceAM			
application module, as shown in Example 10-1. Specifically, the LookupServiceAMShared			
configuration sets the jbo.ampool			
runtime properties on the shared application module instance. For more information about the ADF Business Components application module pooling and runtime configuration of application modules, see Chapter 41, "Tuning Application Module Pools and Connection Pools."			
Example 10-1 LookupServiceAMShared Configuration in the bc4j.xcfg File			
Because the shared application module can be accessed by any Business Components project in the same application workspace, JDeveloper maintains the scope of the shared application module in the Business Components project configuration file (.jpx			
). This file is saved in the src			
directory of the project. For example, if you look at the StoreFrontService.jpx			
file in the ./src			
directory of the Fusion Order Demo application's StoreFrontService			
project, you will see that the SharedLookupService			
application module's usage definition specifies SharedScope = 2			
, corresponding to application-level sharing, as shown in Example 10-2. An application module that you set to session-level sharing will show SharedScope = 1			
.			
Example 10-2 Application Module Usage Configuration in the .jpx File			
Defining the shared application module in the Project Properties dialog makes the application module's data model available to other Business Components projects of the same application workspace only. When you want to make the data model available beyond the application workspace, you can publish the data model as an ADF Library, as described in Chapter 33, "Reusing Application Components."			
When viewing a data control usage from the DataBindings.cpx			
file in the Structure window, do not set the Configuration property to a shared application module configuration. By default, for an application module named AppModuleName, the Property Inspector will list the configurations named AppModuleNameShared and AppModuleNameLocal. At runtime, Oracle Application Development Framework (Oracle ADF) uses the shared configuration automatically when you configure an application as a shared application module, but the configuration is not designed to be used by an application module data control usage. For more information about data control usage, see Section 12.4, "Working with the DataBindings.cpx File."			
In JDeveloper, you must define view accessors on the business component definition for the project that will permit access to view instances of the shared application module. The view accessor lets you point from an entity object or view object definition in one Business Components project to a view object definition or view instance in a shared application module. For details about creating view accessors for this purpose, see Section 10.4, "Accessing View Instances of the Shared Service."			
Similar to the way application module pooling works in ADF Business Components, shared query collections are stored in a query collection pool. To manage the query collection pool, the ADF Business Components framework removes query collections based on a maximum idle time setting. This behavior limits the growth of the cache and prevents rarely-used query collections from occupying memory space.			
As in application module and connection pooling, a query collection pool monitor wakes up after a user-specified sleep interval and then initiates the cleanup operation. Any query collection that exceeds the maximum idle time (length of time since it was last used), will be removed from the pool.			
You can change the default values for the maximum idle time for the shared query collection (default is 900000 ms/15 min) and the sleep period for its pool monitor (default is 1800000 ms/30 min). To configure these values, open the Edit Business Components Configuration dialog, select the AppModuleNameShared configuration, and set these properties in the Properties page of the editor:			
jbo.qcpool.monitorsleepinterval			
the time (ms) that the shared query collection pool monitor should sleep between pool checks. jbo.qcpool.maxinactiveage			
the maximum amount of time (ms) that a shared query collection may remain unused before it is removed from the pool. The default connection behavior for all application modules is to allow each root application module to have its own database connection. When your application defines more than one shared application module, you can change the default to optimize database connection usage by defining a named transaction for each root application module to use. The transaction name is an arbitrary string that you set on the jbo.shared.txn			
property in the Properties page of the editor for the bc4j.xcfg			
file of the root application module. At runtime, the root application modules with the same jbo.shared.txn			
property setting (identified by the string you supply) will share the same database connection and entity cache. This optimization can reduce the database resources that the application uses and is particularly useful in shared application modules cases because they are read only and have longer life than transactional application modules.			
Currently, the application module configuration parameter jbo.doconnectionpooling=true			
is not supported for use with shared application modules. This feature is available to configure non-shared application modules when it is desirable to release JDBC connection objects to the database connection pool.			
This feature is intentionally not supported for shared application modules to prevent decreases in performance that would result from managing state for shared access. Instead, the default use of jbo.doconnectionpooling=false			
is enforced.			
The default connection pooling configuration ensures that each shared application module instance holds onto the JDBC connection object that it acquires from the pool until the application module instance is removed from the application module pool. For more information about the jbo.doconnectionpooling			
parameter and connection pool behavior, see Section 41.2.6, "What You May Need to Know About How Database and Application Module Pools Cooperate."			
When your application needs to display static data, you can define a shared application module with view instances that most likely will access lookup tables. A lookup table is a static, translated list of data to which the application refers. Lookup table data can be organized in the database in various ways. While it is possible to store related lookup data in separate tables, it is often convenient to combine all of the lookup information for your application within a single table. For example, a column LOOKUP_TYPE			
created for the ORDERS_LOOKUPS			
table would serve to partition one table that might contain diverse codes such as FWK_TBX_YES_NO			
for the values yes and no, FWK_TBX_COUNTRY			
for country names, and FWK_TBK_CURRENCY			
for the names of national currencies.			
When your database schema organizes lookup data in a single database table, you want to avoid creating individual queries for each set of data. Instead, you will use the overview editor to define a single, base view object that maps the desired columns of the lookup table to the view object attributes you define. Since only the value of the LOOKUP_TYPE			
column will need to change in the query statement, you can add view criteria on the view object definition to specify a WHERE			
clause that will set the LOOKUP_TYPE			
value. In this way, your application encapsulates access to the lookup table data in a single view object definition that will be easy to maintain when a LOOKUP_TYPE			
value changes or your application needs to query additional lookup types.			
The base view object that queries columns of the lookup table will be a read-only view object, since you do not need to handle updating data or require any of the benefits provided by entity-based view objects. (For a description of those benefits, see Section 5.1.2, "Runtime Features Unique to Entity-Based View Objects.")			
Note: While read-only view objects you create to access lookup tables are ideal for inclusion in a shared application module, if you intend to share the view object in a shared application module instance, you must create the view object in the same package as the shared application module.			
To create a read-only view object, use the Create View Object wizard, which is available from the New Gallery.			
To create a base view object for a lookup table:			
When naming the package, consider creating a separate package for the lookup.			
Your query names the columns of the lookup table, similar to the SQL statement shown in Figure 10-2 to query the LOOKUP_CODE			
, MEANING			
, and DESCRIPTION			
columns in the LOOKUP_CODES			
table.			
By default, the wizard creates Java-friendly view object attribute names that correspond to the SELECT			
list column names.			
Because the read-only view object is not based on an entity object, the Create View Object wizard does not define a key attribute by default. Failure to define the key attribute can result in unexpected runtime behavior for ADF Faces components with a data control based on the read-only view object collection. In the case of read-only view objects, define the key attribute, as shown in Figure 10-3.			
For example, the Fusion Order Demo application renames the default attributes LookupType			
and LookupCode			
to Type			
and Value			
respectively. Changes you make to the view object definition will not change the underlying query.			
The shared application module data model will include view instances based on view criteria that you add to the base view object definition. In this way, you do not need to create an individual view object to query each LOOKUP_TYPE			
value. For details about adding the view object instances to the data model, see Section 9.2.3.2, "Adding Master-Detail View Object Instances to an Application Module."			
When you create the view object definition for the lookup table, JDeveloper first describes the query to infer the following from the columns in the SELECT			
list:			
LookupType			
instead of LOOKUP_TYPE			
) By default, the wizard creates Java-friendly view object attribute names that correspond to the SELECT			
list column names.			
JDeveloper then creates the XML component definition file that represents the view objects's declarative settings and saves it in the directory that corresponds to the name of its package. For example, the XML file created for a view object named LookupsBaseVO			
in the lookups			
package is ./lookups/LookupsBaseVO.xml			
under the project's source path.			
To view the view object settings, expand the desired view object in the Application Navigator, select the XML file under the expanded view object, and open the Structure Window. The Structure window displays the list of definitions, including the SQL query and the properties of each attribute. To open the file in the editor, double-click the corresponding .xml			
node. As shown in Example 10-3, the LookupsBaseVO.xml			
file defines one <SQLQuery>			
definition and one <ViewAttribute>			
definition for each mapped column. Without a view criteria to filter the query results, the view object query returns the LOOKUP_CODE			
, LOOKUP_MEANING			
, and LOOKUP_DESCRIPTION			
and maps them to view instance attribute values for Value, Name, and Description respectively. Key attributes are defined to ensure proper row set navigation when the base view object collection is bound to an ADF Faces component.			
Example 10-3 LookupsBaseVO SQL Query and Attribute Mapping Definition			
You create named view criteria definitions in the data model project when you need to filter view object results. View criteria that you define at design time can participate in UI scenarios that require filtering of data.			
Use the Edit View Criteria dialog to create the view criteria definition for the lookup base view object you defined to query the lookup table. The editor lets you build a WHERE			
clause using attribute name instead of the target view object's corresponding SQL column names. The resulting definition will include:			
Type			
attribute. Type			
attribute name, the Equal operator, and the value of the LOOKUP_TYPE			
that will filter the query results. Because a single view criteria is defined, no logical conjunctions are needed to bracket the WHERE			
clause conditions.			
To create LOOKUP_TYPE view criteria for the lookup view object:			
LOOKUP_TYPE			
column). MARITAL_STATUS_CODE			
corresponding to the LOOKUP_TYPE			
column. Leave all other settings unchanged.			
The view object WHERE			
clause shown in the editor should display a simple criteria similar to the one shown in Figure 10-4, where the value MARITAL_STATUS_CODE			
is set to filter the LOOKUP_TYPE			
column.			
LOOKUP_TYPE			
that you wish to query. The Create View Criteria dialog in JDeveloper lets you easily create view criteria and save them as named definitions. These named view criteria definitions add metadata to the target view object's own definition. Once defined, named view criteria appear by name in the Query page of the overview editor for the view object.			
JDeveloper then creates the XML component definition file that represents the view objects's declarative settings and saves it in the directory that corresponds to the name of its package. For example, the XML file created for a view object named LookupsBaseVO			
in the lookups			
package is ./lookups/LookupsBaseVO.xml			
under the project's source path.			
To view the view criteria, expand the desired view object in the Application Navigator, select the XML file under the expanded view object, open the Structure window, and expand the View Criteria node. As shown in Example 10-4, the LookupsBaseVO.xml			
file specifies the <ViewCriteria>			
definition that allows the LookupsBaseVO			
to return only the marital types. Other view criteria added to the LookupsBaseVO			
are omitted from this example for brevity.			
Example 10-4 listMaritalStatusTypes View Criteria in the Lookup View Object Definition			
When you create a view instance based on a view criteria, the next time the view instance is executed it augments its SQL query with an additional WHERE			
clause predicate corresponding to the view criteria that you've populated in the view criteria rows.			
View accessors in ADF Business Components are value accessor objects that point from an entity object attribute (or view object) to a destination view object or shared view instance in the same application workspace. The view accessor returns a row set that by default contains all rows from the destination view object. You can optionally filter this row set by applying view criteria to the view accessor. The base entity object or view object on which you create the view accessor and the destination view object need not be in the same project or application module, but they must be in the same application workspace.			
Because view accessors give you the flexibility to reach across application modules to access the queried data, they are ideally suited for accessing view instances of shared application modules. For details about creating a data model of view instances for a shared application module, see Section 10.2.1, "How to Create a Shared Application Module Instance."			
This ability to access view objects in different application modules makes view accessors particularly useful for:			
Validation rules with accessors are useful when you do not want the UI to display a list of values to the user, but you still need to restrict the list of valid values. Alternatively, consider defining an LOV for view object attributes to simplify the task of working with list controls in the user interface. Because you define the LOV on the individual attributes of business components, you can customize the LOV usage for an attribute once and expect to see the list control in the form wherever the attribute appears.			
Entity-based view objects inherit view accessors that you define on their base entity objects. Thus, defining the view accessor once on the entity object itself allows you to reuse the same view accessor, whether you want to define validation rules for entity object attributes or to create LOV-enabled attributes for that entity object's view object. However, when you do not anticipate using view accessors for validation rules, you can add the view accessor directly to the view object that defines the LOV-enabled attribute.			
For example, in the StoreFrontModule			
package of the Fusion Order Demo application, the AddressEO			
entity object defines the Shared_CountriesVA			
view accessor and the AddressesVO			
view object inherits this view accessor. In this case, defining the view accessor on the entity object is useful: the accessor for AddressEO			
defines a validation rule on the CountryId			
attribute and the same accessor for AddressesVO			
enables an LOV on its CountryId			
attribute.			
When you create a view accessor that accesses a view instance from a shared application module, you may want to use a prefix like Shared_			
to name the view accessor. This naming convention will help you identify the view accessor when you need to select it for the entity object or view object.			
You can further refine the list returned by a view accessor by applying view criteria that you define on the view object. To create view criteria for use with a view accessor, see Section 10.3.3, "How to Define the WHERE Clause of the Lookup View Object Using View Criteria."			
To create the view accessor:			
Whether you create the view accessor on the entity object or on the view object will depend on the view accessor's intended usage. Generally, creating view accessors on the entity object ensures the widest possible usage.			
For example, the View Accessors dialog in the Fusion Order Demo application shows the shared application module LookupServiceAM			
with the list of view instances, as shown in Figure 10-5.			
The dialog will display all view objects and view instances from your application. If you have not yet enabled application module sharing, you must do so before selecting the view instance. For details, see Section 10.2.1, "How to Create a Shared Application Module Instance."			
By default, the view accessor you create will display the same name as the view object instance (or will have an integer appended when it is necessary to distinguish it from a child view object of the same name). You can edit Accessor Name to give it a unique name.			
For example, the View Accessors dialog in Figure 10-5 shows the view accessor SharedLookupService_AddressUsageTypesVA			
for the AddressUsageTypes			
view instance selection in the shared application module LookupServiceAM			
. This view accessor is created on the base entity object AddressUsagesEO			
and accesses the row set of the AddressUsageTypes			
view instance.			
In the Edit View Accessor dialog, click Edit and perform the following steps to apply the view criteria:			
You can add additional view criteria to apply multiple filters (a logical AND operation will be performed at runtime).			
Unlike view criteria that you set directly on a view object (to create a view instance, for example), the controlling attribute of the view accessor's view criteria derives the value from the view accessor's base view object.			
View accessors that you create to access the view rows of a destination view object may be used to verify data that your application solicits from the end user at runtime. For example, when the end user fills out a registration form, individual validation rules can verify the title, marital status, and contact code against lookup table data queried by view instances of the shared application module.			
You can apply view accessors you have defined on the entity object to these built-in declarative validation rules:			
Equals			
, NotEquals			
, GreaterThan			
, LessThan			
, LessOrEqualTo			
, GreaterOrEqualTo			
operator you select to compare against the values returned by the view accessor. In			
or NotIn			
operator you select against the values returned by the view accessor. Validation rules that you define to allow runtime validation of data for entity-based view objects are always defined on the attributes of the entity object. You use the editor for the entity object to define the validation rule on individual attributes. Any view object that you later define that derives from an entity object with validation rules defined will automatically receive attribute value validation.			
Before you begin:			
Create the desired entity objects as described in Section 4.2.1, "How to Create Multiple Entity Objects and Associations from Existing Tables."			
To validate against a view accessor comparison, list, or collection type:			
Figure 10-6 shows what the dialog looks like when you use a List validator to select a view accessor attribute.			
When you use a List validator, a <ListValidationBean>			
tag is added to an entity object's XML file. Example 10-5 shows the XML code for the CountryId			
attribute in the Address			
entity object. A List validator has been used to validate the user's entry against the list of country ID values as retrieved by the view accessor from the Countries			
view instance.			
Example 10-5 List Validator with View Accessor List Type XML Code			
View accessors that you create to access the view rows of a destination view object may be used to display a list of values to the end user at runtime. You first create a view accessor with the desired view instance as its data source, and then you can add the view accessor to an LOV-enabled attribute of the displaying view object. You will edit the view accessor definition for the LOV-enabled attribute so that it points to the specific lookup attribute of the view instance. Because you want to populate the row set cache for the query with static data, you would locate the destination view instance in a shared application module.			
While the list usage is defined on the attribute of a view object bound to a UI list control, the view accessor definition exists on either the view object or the view object's base entity object. If you choose to create the view accessor on the view object's entity object, the View Accessors page of the overview editor for the view object will display the inherited view accessor, as shown in Figure 10-7. Alternatively, if you choose to create the view accessor on the attribute's view object, you can accomplish this from either the editor for the LOV definition or from the View Accessors page of the overview editor.			
For additional examples of how to work with LOV-enabled attributes, see Section 5.12, "Working with List of Values (LOV) in View Object Attributes."			
Before you begin:			
Create the desired view objects as described in Section 5.2.1, "How to Create an Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode, Read-Only View Object."			
To create an LOV that displays values from a lookup table:			
Validation rules that you define are always defined on the attributes of the view object's base entity object. It may therefore be convenient to define view accessors at the level of the base entity objects when you know that you will also validate entity object attributes using a view accessor list.			
For details about creating a view accessor, see Section 10.4.1, "How to Create a View Accessor for an Entity Object or View Object."			
The view accessor you select, will be the one created for the lookup table view object instances to use as the data source.			
The editor creates a default mapping between the view object attribute and the LOV-enabled attribute. In this use case, the attributes are the same. For example, the attribute OrderId			
from the OrdersView			
view object would map to the attribute OrderId			
from the Shared_OrdersVA			
view accessor.			
For example, to map the attribute StartDate			
from the OrdersView			
view object, you would choose the attribute StartDate			
from the Shared_OrdersVA			
view accessor. Do not remove the default attribute mapping for the attribute for which the list is defined.			
When you add an LOV to a view object attribute, JDeveloper updates the view object's XML file with an LOVName			
property in the <ViewAttribute>			
element. The definition of the LOV appears in a new <ListBinding>			
element. The metadata in Example 10-6 shows that the MaritalStatusCode			
attribute refers to the MaritalStatusLOV			
LOV and sets the choice			
control type to display the LOV. The LOV definition for MaritalStatusLOV			
appears in the <ListBinding>			
element.			
Example 10-6 View Object with LOV List Binding XML Code			
If you need to ensure that your view accessor always queries the latest data from the lookup table, you can set the Auto Refresh property on the destination view object. This property allows the view object instance to refresh itself after a change in the database. The typical use case is when you define a view accessor for the destination view object.			
Because the auto-refresh feature relies on the database change notification feature, observe these restrictions when enabling auto-refresh for your view object:			
grant change notification to <user name>			
. When these restrictions are observed, the refresh is accomplished through the Oracle database change notification feature. Prior to executing the view object query, the framework will use the JDBC API to register the query for database notifications. When a notification arrives, the row sets of the corresponding view object instance are marked for refresh during the next checkout of the application module. Because the shared application module waits until the next checkout, the row set currency of the current transaction is maintained and the end user is not hampered by the update.			
For example, assume that an LOV displays a list of zip codes that is managed in read-only fashion by a database administrator. After the administrator adds a new zip code as a row to the database, the shared application module detects a time when there are no outstanding requests and determines that a pending notification exists for the view instance that access the list of zip codes; at that point, the view object refreshes the data and all future requests will see the new zip code.			
To enable auto-refresh for a view instance of a shared application module:			
The ADF Business Components runtime adds functionality in the attribute setters of the view row and entity object to facilitate the LOV-enabled attribute behavior. In order to display the LOV-enabled attribute values in the user interface, the LOV facility fetches the data source, and finds the relevant row attributes and mapped target attributes.			
Unlike entity-based view objects, read-only view objects that you create in expert mode, will not define a key attribute by default. While it is possible to create a read-only view object without defining its key attribute, in expert mode it is a best practice to select the attribute that corresponds to the queried table's primary key and mark it as the key attribute. The presence of a key attribute ensure the correct runtime behavior for row set navigation. For example, the user interface developer may create a LOV component based on the read-only view object collection. Without a key attribute to specify the row key value, the LOV may not behave properly and a runtime error can result.			
When one view object extends another, you can create the LOV-enabled attribute on the base object. Then when you define the child view object in the overview editor, the LOV definition will be visible on the corresponding view object attribute. This inheritance mechanism allows you to define an LOV-enabled attribute once and apply it later across multiple view objects instances for the same attribute. For details about extending a view object from another view object definition, see Section 37.9.2, "How To Extend a Component After Creation."			
You can also use the overview editor to extend the inherited LOV definition. For example, you may add extra attributes already defined by the base view object's query to display in selection list. Alternatively, you can create a view object instance that uses a custom WHERE			
clause to query the supplemental attributes not already queried by the base view object. For information about customizing entity-based view objects, see Section 5.10, "Working with Bind Variables."			
If you have created an LOV-enabled attribute for a view object, there is no need to validate the attribute using a List validator. You use an attribute validator only when you do not want the list to display in the user interface but still need to restrict the list of valid values. A List validator may be a simple static list or it may be a list of possible values obtained through a view accessor you define. Alternatively, you might prefer to use a Key Exists validator when the attribute displayed in the UI is one that references a key value (such as a primary, foreign, or alternate key). For information about declarative validation in ADF Business Components, see Chapter 7, "Defining Validation and Business Rules Declaratively."			
JDeveloper includes an interactive application module testing tool that you can use to test all aspects of its data model without having to use your application user interface or write a test client program. Running the Business Component Browser can often be the quickest way of exercising the data functionality of your business service during development.			
The application module is the transactional component that the Business Component Browser (or UI client) will use to work with application data. The set of view objects used by an application module defines its data model, in other words, the set of data that a client can display and manipulate through a user interface. You can use the Business Component Browser to test that the accessors you defined yield the expected validation result and that they display the correct LOV attribute values.			
To create an application module, use the Create Application Module wizard, which is available in the New Gallery. For more information, see Section 9.2, "Creating and Modifying an Application Module."			
To test the view objects you added to an application module, use the Business Component Browser, which is accessible from the Application Navigator.			
To test view objects in an application module configuration:			
Alternatively, choose Debug when you want to run the application in the Business Component Browser with debugging enabled. For example, when debugging using the Business Component Browser, you can view status message and exceptions, step in and out of source code, and manage breakpoints. JDeveloper opens the debugger process panel in the Log window and the various debugger windows.			
For details about receiving diagnostic messages specific to ADF Business Components debugging, see Section 6.3.8, "How to Enable ADF Business Components Debug Diagnostics."			
By default, an application module has only its default configurations, named AppModuleName			
Local			
and AppModuleName			
Shared			
. If you have created additional configurations for your application module and want to test it using one of those instead, just select the desired configuration from the Business Components Configuration dropdown list on the Connect dialog before clicking Connect.			
Note that the view object instance may already appear executed in the testing session. In this case, the tester panel on the right already displays query results for the view object instance, as shown in Figure 10-8. The fields in the tester panel of a read-only view object will always appear disabled since the data it represents is not editable.			
To test the LOV you created for a view object attribute, use the Business Component Browser, which is accessible from the Application Navigator. For details about displaying the Browser and the supported control types, see Section 5.12.7, "How to Test LOV-Enabled Attributes Using the Business Component Browser."			
When you launch the Business Component Browser, JDeveloper starts the tester tool in a separate process and the Business Component Browser appears. The tree at the left of the dialog displays all of the view object instances in your application module's data model. Figure 10-8 shows just one instance in the expanded tree, called ProductImages			
. After you double-click the desired view object instance, the Business Component Browser will display a panel to inspect the query results, as shown in Figure 10-8.			
The test panel will appear disabled for any read-only view objects you display because the data is not editable. But even for the read-only view objects, the tool affords some useful features:			
The Business Component Browser becomes even more useful when you create entity-based view objects that allow you to simulate inserting, updating, and deleting rows, as described in Section 6.3.2, "How to Test Entity-Based View Objects Interactively."			
When a shared application module with application scope is requested by an LOV, then the ADF Business Components runtime will create an ApplicationPool			
object for that usage. There is only one ApplicationPool			
created for each shared usage that has been defined in the Business Components project file (.jpx			
). The runtime will then use that ApplicationPool			
to acquire an application module instance that will be used like a user application module instance, to acquire data. The reference to the shared application module instance will be released once the application-scoped application module is reset. The module reference is released whenever you perform an unmanaged release or upon session timeout.			
Since multiple threads will be accessing the data caches of the shared application module, it is necessary to partition the iterator space to prevent race conditions between the iterators of different sessions. This will help ensure that the next request from one session does not change the state of the iterator that is being used by another session. The runtime uses ADF Business Components support for multiple iterators on top of a single RowSet			
to prevent these race conditions. So, the runtime will instantiate as many iterators as there are active sessions for each RowSet			
.			
An application-scoped shared application module lifecycle is similar to the lifecycle of any application module that is managed by the ApplicationPool			
object. For example, once all active sessions have released their shared application module, then the application module may be garbage-collected by the ApplicationPool			
object. The shared pool may be tuned to meet specific application requirements.			
Session-scoped shared application modules are simply created as nested application module instances within the data model of the root, user application module. For details about nested application modules, Section 9.4, "Defining Nested Application Modules."			
This chapter describes how to publish ADF application modules to make them available as external services in a Fusion web application, and how to incorporate the published application module as an external service in a Fusion web application.			
This chapter includes the following sections:			
Service-enabled application modules are ADF application modules that you advertise through a service interface to service consumers. There are three scenarios for service consumers to consume a published service-enabled application module: web service access, Service Component Architecture (SCA) composite access, and access by another ADF application module.			
Note: For background about web services and Oracle WebLogic Server support for web services, see Oracle Fusion Middleware Introducing Web Services.			
Service Component Architecture (SCA) provides an open, technology-neutral model for implementing remotable services that are defined in terms of business functionality and that make middleware functions more accessible to application developers. ADF Business Components supports an SCA-compliant solution through application modules you can publish with a service interface. Any development team can publish a service-enabled application module to contribute to the composite Fusion web application. The Fusion web application assembled from remote services also does not require the participating services to run on a single application server.			
Although composite applications often run on separate application servers, the appearance that SCA provides is one of a unified application. Consuming client projects use the ADF service factory lookup mechanism to access the data and any business methods encapsulated by the service-enabled application module. At runtime, the calling client and the ADF service may or may not participate in the same transaction, depending on the protocol used to invoke the service (either SOAP or RMI). Only the RMI protocol and a Java Transaction API (JTA) managed transaction support the option to call the service in the same transaction as the calling client. By default, to support the RMI protocol, the ADF service is configured to participate in the same transaction.			
When you service-enable your application module, JDeveloper generates the necessary artifacts comprising: 1) The Java interface defining the service, 2) an EJB 3.0 session bean that implements this Java interface, 3) a WSDL file that describes the service's operations, and (4) an XML Schema Document (XSD) that defines the service's data structures. The service interface is described for Fusion web application clients in a language-neutral way by the combination of WSDL and XSD.			
Note: SCA defines two kinds of service:			
ADF Business Components services fall into the first category, and should only be used as remoteable services. For local service support, use the ApplicationModule interface and ViewObject interface support described in Section 9.10, "Working Programmatically with an Application Module's Client Interface."			
Services, including data access and method calls, defined by the remote application modules are interoperable with any other application module. This means the same application module can support interactive web user interfaces using ADF data controls and web service clients.			
The common mechanism for invoking components such as a BPEL process is used by the ADF connection architecture to invoke a replaced service implementation (see Section 13.2, "Calling a Web Service from an Application Module") and a generic web service provider handles any application invocation that takes DataObject			
arguments and returns DataObject			
.			
For information about the SCA and SDO standards, see the Open SOA web site at http://www.osoa.org			
.			
The application module is ADF Business Components framework component that encapsulates business logic as a set of related business functions. Application modules are mapped to services. You use the overview editor for your application module to enable a web service interface and publish rows of view object data as Service Data Object (SDO) components. The SDO framework upon which these components are based abstracts the data of the view object and standardizes the way that data structures are passed between Java and XML. This data abstraction simplifies working with heterogeneous data sources in a service-oriented architecture (SOA) and lets you selectively service-enable view objects using the same view object to support interactive web user interfaces and web service clients.			
JDeveloper allows you to expose application modules as web services which use SDOs to standardize the way that data structures are passed between Java and XML. JDeveloper also generates the WSDL service description that is used by the web service client in the consuming application.			
The service-enabled application module exposes the view objects, custom methods, built-in data manipulation operations, and specialized find methods based on named view criteria to be used by the client. Once you have enabled the application module service interface, you will need to create an ADF Business Components Service Interface deployment profile and deploy it to the target application server.			
You can also expose the view instance data manipulation operations for use with a Business Process Execution Language (BPEL) process service component. BPEL is a language for composing multiple services into an end-to-end business process. For details about how to delegate data operations to the SDO data provider through the use of the BPEL entity variable, see the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.			
Note: It is important to note that you don't implement methods with SDO parameters directly. The SDO framework is used to wrap the view row types during runtime only.			
You edit the application module in JDeveloper to create a web service interface that exposes the top-level view objects and defines the available service operations it supports. The top-level view objects that you select are service-enabled automatically and will be accessible by the service client.			
The primary purpose of the standard service operations is to expose data manipulation operations on the view objects. Any business logic that you have defined on the underlying framework objects (for example, business rule validation) will be applied when you invoke a standard service operation. Table 11-1 shows the list of standard operations that service view instances support.			
Table 11-1 Standard View Instance Data Manipulation Operations			
Operation	Method Name	Operation Description	
---	---	---	
Creates a single ADF Business Components view row.			
Updates a single ADF Business Components view row.			
Deletes a single ADF Business Components view row.			
Updates a ADF Business Components view row if one exists; otherwise, creates a new one.			
Gets a single ADF Business Components view row by primary key.			
Finds and returns a list of ADF Business Components view rows based on the selected view object's query statement. Note that the query must not specify a bind variable defined as required for the query to execute. The service interface does not expose required bind variables at runtime. For details about creating a find method for this scenario, see Section 11.2.8, "How to Expose a Declarative Find Operation Filtered By a Required Bind Variable."			
Finds and returns a list of single ADF Business Components view rows by SDO-based view criteria. This is the preferred way to filter the ADF Business Components view rows that rely on a required bind variable.			
Performs a Create, Update, Delete, or Merge operation on a list of ADF Business Components view rows. The specified operation is applied to all objects in the given list.			
Performs a Create, Update, or Delete operation on a list of ADF Business Components view rows. Different operations may be applied to different objects, depending on what is specified in the			
Note: When you enable the service interface on a parent view object, JDeveloper automatically enables the service interface for view instances that extend the parent in a polymorphic collection. For details about polymorphic view objects, see Section 39.6.5, "Working with Polymorphic View Rows." |
For information on how to create SDO classes to selectively service-enable child view objects, see Section 11.2.4, "How to Service-Enable Individual View Objects."
Before you begin:
Create the desired application module as described in Section 9.2.1, "How to Create an Application Module."
To create the web service:
Use the Create Service Interface wizard to configure the desired options.
The target namespace is a URI for the service that you can assign to group similar services together by entering the same URI.
When you enable this option, the wizard adds the getDfltCtrlHints()
method to the service interface. The service interface client can invoke this method to resolve UI hints on the server without requiring a database roundtrip. The method takes the view object name and a locale and returns the base UI hints for that locale.
By default, the web service supports synchronous service methods. This forces the invoking client application to wait for the response to return before it can continue with its work. In cases where the response returns immediately, this method of invoking the web service is common. However, because request processing can be delayed, it is often useful for the client application to continue its work and to handle the response later on.
The parameters and non-void return value of the custom service methods you enable must be one of the supported data types, such as a primitive Java type, oracle.jbo.server.ViewRowImpl
, java.util.List<ViewRowImpl>
, oracle.jbo.AttributeList
, or java.util.List<AttributeList>
.
Note that although both ViewRowImpl
and AttributeList
data types expose the identical row structure to the web service client, at runtime there will be a fundamental difference. For a description of the supported data types, see Section 11.2.3, "What You May Need to Know About Method Signatures on the Service Interface."
After selecting a qualifying custom method to appear in the service interface, for each parameter and return value using the ViewRowImpl
or AttributeList
data type, you must in turn select the name of the view object instance corresponding to the row structure:
ViewRowImpl
or AttributeList
, enter the view object instance name to identify the row structure in Element View Object. For example, if you define a custom method to return a single row of the CustomerInfo
view object instance, you would need a custom method signature like this:
Then, after selecting the findCustomerInfo()
custom method to appear in the service interface, you would select its return value in the tree and configure its View Object property to be CustomerInfo
, the view instance name whose row structure should be used at runtime.
View object subtypes of the top-level view instance will automatically be service-enabled.
Also, on this page, you can set the available data manipulation operations supported on the exposed methods, as shown in Figure 11-1.
The primary purpose of the standard service operations is to expose data manipulation operations on the view objects. Any business logic that you have defined on the underlying framework objects (for example, business rule validation) will be applied when you invoke the service operations. For a description of the operations that service view instances support, see Table 11-1.
In the case of the find method operation that you can select, the find method must not reference a required bind variable in the view object's query statement. A required bind variable is one that makes the query execution dependent on the availability of a valid value for the bind variable. The service interface does not expose required bind variables at runtime. For details about defining a find operation for this scenario, see Section 11.2.8, "How to Expose a Declarative Find Operation Filtered By a Required Bind Variable."
You can define custom find operations when you want the service to support executing a predefined query. For information about defining a named view criteria, see Section 5.11, "Working with Named View Criteria."
Caution: The service interface find operations are based on specific view criteria that your project defines. This means that that the bind variables of the view criteria must match the parameters of the corresponding find operation method. If you change the number or order of the bind variables after the find operation is defined and service interface generated, the corresponding method will not execute at runtime. Therefore, after changing the underlying view criteria, you must regenerate the service interface. |
The dialog displays the list of view criteria exposed by the referenced view object. For example, OrderInfoVO
defines OrderInfoVOCriteria
with a bind variable OrdId
that specifies the order ID, as shown in Figure 11-2.
JDeveloper generates the service interface class and enables any view instance options you have chosen, as shown in Figure 11-3.
The following types of files are generated and are listed in the Application Navigator in the Projects panel, under the application module's serviceinterface node, as shown in Figure 11-4.
StoreFrontService.java
StoreFrontService.xsd
StoreFrontService.wsdl
StoreFrontServiceImpl.java
In addition, the connections.xml
file is created when you first create an ADF Business Components service. This file appears in the Application Navigator in the Application Resources panel, under the Descriptors and ADF META-INF folders.
The remote common interface uses metadata annotations specified by the web service specification (JSR-181) to indicate how the interface should be exposed as a web service. This example shows part of StoreFrontService.java
, which is the remote common class for the StoreServiceAM
application module in the StoreFront module of the Fusion Order Demo.
Example 11-1 Remote Common Interface in Fusion Order Demo
The remote service schema file is an XML schema file which represents the web service schema, as shown in Figure 11-5.
The remote service definition file is a XML-structured document file that conforms to the Web Service Definition Language (WSDL) specification that describes the generated web service as a collection of endpoints, or ports. A port is defined by associating a network address with a reusable binding. The client application that connects to the web service reads the WSDL to determine what functions are available on the server. The WSDL also specifies the endpoint for the service itself, which you can use to locate and test your deployed service.
Figure 11-6 shows the WSDL for the web service generated for the StoreServiceAM
application module in the WSDL visual editor. You can see the WSDL as an XML document by selecting the Source tab.
The remote server class is an EJB 3.0 stateless session bean that implements the remote common interface and extends the ServiceImpl
class, the generic service engine for ADF Business Components. Example 11-2 shows part of StoreFrontServiceImpl.java
, which is the remote server class for the StoreServiceAM
application module in the StoreFront module of the Fusion Order Demo.
Example 11-2 Remote Server Class Implements the Remote Common Interface
The ADF Business Components service factory is the mechanism that allows the service client to look up the service. The service factory relies on ADF connection architecture and the connections.xml
file to manage service endpoint locations. The connections.xml
file is created when you first create an ADF Business Components service. This file appears in the Application Navigator in the Application Resources panel, under the Descriptors and ADF META-INF folders.
Example 11-3 shows the initial connections.xml
entry created by JDeveloper when you first create an ADF Business Components service.
Example 11-3 connections.xml File Generated by JDeveloper
You can define two different kinds of interfaces for an application module: the client interface and the service interface. The client interface is used by the ADF Model layer for UI clients. The service interface is for application integration and is used by external web services or other application services (either programmatically or automatically using the service-enabled entity feature).
An application module can support no interface at all, only client interfaces, only service interfaces, or both client interfaces and service interfaces combined. However, be aware that the two kinds of interfaces differ in the data types that are supported for the parameters and/or return values of your custom methods that you define for the respective interfaces. The types supported on the client interface are described in Section 9.9.5, "What You May Need to Know About Method Signatures on the Client Interface."
The service interface, in contrast to the client interface, supports a more narrow set of data types for custom method parameters and return values and is limited to:
int
, Integer
) java.lang.String
java.math.BigDecimal
java.math.BigInteger
java.sql.Date
java.sql.Time
java.sql.Timestamp
java.util.Date
oracle.jbo.AttributeList
oracle.jbo.domain.BlobDomain
oracle.jbo.domain.Char
oracle.jbo.domain.ClobDomain
oracle.jbo.domain.DBSequence
oracle.jbo.domain.Date
oracle.jbo.domain.NClobDomain
oracle.jbo.domain.Number
oracle.jbo.domain.Timestamp
oracle.jbo.domain.TimestampLTZ
oracle.jbo.domain.TimestampTZ
oracle.jbo.server.ViewRowImpl
or any subtype java.util.List<
aType
>
, where aType
is any of the service-interface supported data types You can define a custom method that returns a type of AttributeList
when you want the client developer to work with the list of service-enabled entity object or view object attributes to perform custom operations without the need to involve framework behavior before running the custom method. As an alternative, when the client developer wants the framework to manage rows (create, find, and populate), define custom methods that return ViewRowImpl
instead. In summary, if your method signature defines ViewRowImpl
as the data type, then the application automatically:
Whereas, if your method signature defines the AttributeList
data type, then no automatic behavior is provided, and the actions performed and data modified by the custom method will be limited to your custom method's code.
As a result of enabling the web service interface using the overview editor for the application module, JDeveloper automatically enables your parent view instance selections as Service Data Object (SDO) components. The generated SDO components for each view instance will reference the same namespace and will be configured with the same settings for options such as whether or not warnings are supported. You can use the Java page of the overview editor to customize the SDO definition of these existing service-enabled view objects. You can also use the Java page to service-enable view objects that were not added already to the service interface. For example, if you selected a parent view object that represents the master in a master-detail relationship, the child view object will not be automatically service-enabled. You can use the Java page of the overview editor for the child view object to individually add it to the service interface.
You use the Java page of the overview editor for the view object to configure the SDO name and namespace for a view object, or to selectively service-enable child view objects.
Before you begin:
Create the desired view objects, as described in Section 5.2.1, "How to Create an Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode, Read-Only View Object."
To set the SDO name and namespace for a view object:
The target namespace is a URI for the SDO that you can assign to group similar SDOs together by entering the same URI.
A default SDO namespace is created for you based on the SDO's package name with periods replaced by "/". If you have defined a prefix for the namespace in the View Objects page of the Preferences dialog, the prefix will be added at runtime to the beginning of the namespace. For example, Figure 11-7 shows the default namespace based on the package name.
You can use the overview editor for the view object to customize the SDO component definition of the service-enabled view object. By default, all attributes of the service-enabled view object will be exposed as SDO properties. By customizing the view object definition, you can exclude individual SDO properties from participating in the service interface. In the case of SDO properties that define numeric values, you can associate two properties so they appear as a single complex type in the service interface. For example, you can associate one property that defines a currency code or unit of measure with another property that displays the numeric value. Currently, only the complex service types AmountType
(a currency code) and MeasureType
(a unit of measure) are supported.
As a result of enabling the web service interface using the overview editor for the application module, JDeveloper automatically enables your parent view instance selections as SDO components. Additionally, you can selectively service-enable individual child view objects and generate SDO components. By default, generated SDO components expose all attributes of their base view object definition as SDO properties. You can hide any attribute that you do not want the service interface to return as an SDO property.
You use the Attributes page of the overview editor to select the view object attribute that you want to exclude from the service interface. You use the Edit Attribute dialog that you display from the Attributes page of the overview editor for the view object to hide the selected attribute from the SDO component.
Before you begin:
It may be helpful to have an understanding of how the SDO framework supports service-enabled ADF view objects and enables web service clients to access rows of data and perform service operations. For more information, see Section 11.2, "Publishing Service-Enabled Application Modules."
You will need to complete these tasks:
To exclude an SDO property from a service-enabled view object:
As a result of service-enabling the view object, JDeveloper automatically exposes SDO properties as XSD-defined service types that correspond to the data types of the underlying view object's attributes. In the case of attributes that define numeric values, you can change the SDO property's service type to associate a related property using one of these predefined service types:
AmountType
service type, for use with any property that defines a currency code MeasureType
service type, for use with any property that defines a unit of measure When you change the service type of an SDO property to either of these complex types, the service interface associates the two properties together and returns them as a single XML element. Both properties of the SDO component must be defined by attributes in the base service-enabled view object.
For example, suppose that your view object defines the OrderTotal
attribute and a CurrencyCode
attribute to specify the currency code of allowed countries. By default, the service interface exposes these attributes as SDO properties and returns each property as a separate XML element:
If you change the type of the OrderTotal
property (assume that the XSD file defines this property as a decimal
type) to the complex type AmountType
and then associate the CurrencyCode
property, the service interface will return them as one XML element:
Also, when you generate a web service proxy, as described in Section 13.2.5.4, "Invoking Application Modules with a Web Service Proxy Class," the class treats the two values as one object:
You use the Attributes page of the overview editor to select the view object attribute whose service type you want to customize. You use the Edit Attribute dialog that you display from the Attributes page of the overview editor to associate SDO properties for the selected attribute and select the predefined complex service type.
Before you begin:
It may be helpful to have an understanding of how the SDO framework supports service-enabled ADF view objects and enables web service clients to access rows of data and perform service operations. For more information, see Section 11.2, "Publishing Service-Enabled Application Modules."
Complete these tasks:
To associate SDO properties in a service-enabled view object:
The attribute you select must define a numeric type. For example, to associate a currency code with the attribute that displays the amount paid by a customer, you might select the OrderTotal
attribute in the Orders
service-enabled view object.
If the XSD Type field is not enabled, return to the overview editor and select an attribute of type numeric. Attributes whose values are not a numeric type cannot be associated with the available complex service types.
The SDO framework supports the complex service types AmountType
and MeasureType
. Choose AmountType when the property you want to associate specifies currency information. Choose MeasureType when the property you want to associate specifies a unit of measure.
The dialog changes to display the dropdown list appropriate to the XSD type selection. You can choose any numeric attribute that the view object defines.
When your data model defines master-detail relationships between parent and child view objects, the service operations that you enable for the master view object will not automatically be executed on the detail view object. You will need to enable support for nested processing for these methods in the service interface:
SERVICE_PROCESS_CHILDREN
must be defined in one of these two situations: SERVICE_PROCESS_CHILDREN=true
defined. SERVICE_PROCESS_CHILDREN=true
defined. Normally, post operations on the detail view object would only be supported when the primary entity object of the master view object is composed with the primary entity object of the detail view object. The custom property provides an alternative that makes it convenient to support nested processing for any view objects with a view link defined. You can define SERVICE_PROCESS_CHILDREN
as a custom property in the overview editor for either the view link or the view link's association (when present).
Before you begin:
If the view link is based on an association, then the destination accessor must be exist for the association's destination entity object. To generate one, use the Relationship page of the overview editor for the association. For more information about associations, see Section 4.3, "Creating and Configuring Associations."
To support nested processing in a master-detail hierarchy:
You can confirm how the view link was created in the Relationship page of the overview editor. The Attributes section names the source and destination attributes. When the view link is based on an association, the attribute hyperlinks will contain the names of the association. Otherwise, the hyperlinks will contain the names of the base entity objects.
The overview editor for the view link and the association both display these same selections.
SERVICE_PROCESS_CHILDREN
for the property and enter true
for the property value, as shown in Figure 11-8. When you create SDO classes, the following files are generated and appear in the Application Navigator under the owning view object:
The view object SDO interface contains strongly typed accessors for the SDO properties, as shown in Example 11-4.
The view object SDO class implements the view object SDO interface and extends the SDODataObject
class, which is Oracle's implementation of the SDO specification.
At runtime an instance of an SDO object represents a row in memory.
The SDO class is similar to the view row class, as shown in Example 11-5.
The view object SDO schema file, as shown in Figure 11-13, is an XML Schema file which represents the SDO schema.
Figure 11-9 Generated SDO Schema
The view object SDO result class is a container object that allows a service method to return a list of view rows (wrapped in service data objects) and a list of warnings associated with these view rows. You can use the generated method result interface to extract warnings and exceptions. Note that a service-enabled view object throws service exceptions rather than ADF Business Components exceptions (JboException
object). To remedy this, the service interface adapter attempts to reconstitute ServiceException
to JboException
, where possible.
The view object SDO result class, as shown in Example 11-6, is similar to the view row class.
Example 11-6 SDO Result Class Defines Methods to Get Warnings from List
The ADF service interface framework allows you to expose declarative find operations to execute the query define by a view object you select. However, when that query uses a bind variable to filter the query results, the bind variable must not be specified as Required and Updatable. Because the service interface does not expose required, updatable bind variables, a find operation that you execute for such a view object would fail to return any result.
When you want to filter a query result using bind parameters, use the view criteria and expose it as a find operation on the service interface. A service interface find operation based on a view criteria that you create can specify required bind variables.
Before you begin:
To expose a find operation for a view criteria with required bind variable:
Alternatively, you can select Edit Service Custom Methods if you have already defined the service interface.
The dialog displays the bind variable for the selected view criteria.
As an alternative to exposing a declarative find operation that relies on a view criteria, you can define a service method in your data model project's application module implementation class. The class you create for this purpose allows you to encapsulate business service functionality into a single method that you implement. For details about the purpose of the custom application module implementation class, see Section 9.7, "Customizing an Application Module with Service Methods."
Example 11-7 shows a custom find method implemented in the AppModuleName
Impl.java
file to set the bind variable and execute the view object instance query. It uses setNamedWhereClauseParam()
on the view object instance to set the bind variable. Before executing the query, the find method sets the view object in forward-only mode to prevent caching the view rows that the find method iterates over. For more information about programmatically filtering a query result, see Section 5.10.5, "How to Add a WHERE Clause with Named Bind Variables at Runtime."
Example 11-7 Find Method Added to Application Module Implementation Class
Before you begin:
Create the custom application module class as described in Section 9.7.1, "How to Generate a Custom Class for an Application Module."
To expose a find method that sets a required bind variable:
Alternatively, you can select Edit Service Custom Methods if you have already defined the service interface.
By default, the web service supports synchronous service methods. This forces the invoking client application to wait for the response to return before it can continue with its work. In cases where the response returns immediately, this method of invoking the web service is common. However, because request processing can be delayed, it is often useful for the client application to continue its work and to handle the response later on.
For more information about invoking the web service using asynchronous request-response, see Oracle Fusion Middleware Concepts Guide for Oracle Infrastructure Web Services.
Before you can deploy an asynchronous web service, you must configure the queues used to store the request and response. For information about configuring the request and response queues, see the Oracle Fusion Middleware Concepts Guide for Oracle Infrastructure Web Services.
Before you begin:
Create the desired application module as described in Section 9.2.1, "How to Create an Application Module."
To expose asynchronous web service methods:
JDeveloper generates the remote common interface for the service and enables the asynchronous service operation. As shown in Example 11-8, the class annotation @AsyncWebService
declares the EmpService
service interface asynchronous and for each synchronous method in the interface, the service exposes an asynchronous method with the same method name and "Async
" appended.
Exposing both synchronous and asynchronous methods in the same interface allows the web service client developer to decide how to invoke the operation through a web service proxy: by calling the appropriately named method. Note that developers should not invoke asynchronous methods through the ADF Business Components service proxy directly.
In this example, because the EmpService
service is enabled for asynchronous operation, the interface exposes the getEmployeeAsync()
method and declares the getEmployee()
method synchronous using the method annotation @CallbackMethod(exclude=true)
to override the default operation (it is the exclude=true
part that declares a method in the asynchronous service as synchronous). No annotation is required to declare the asynchronous service methods when the class annotation @AsyncWebService
is present.
Example 11-8 Remote Common Interface with Asynchronous Service Methods
The duplicate asynchronous methods delegate to the synchronous methods in the service implementation, as shown in Example 11-9. This ensures that the underlying business logic is the same for operations declared as either synchronous or asynchronous.
Example 11-9 Remote Server Class Implements Asynchronous Service Methods
From the client's point of view, an asynchronous call consists of two one-way message exchanges. The sequence diagram in Figure 11-10 depicts the following flow:
To receive the response at the client side, the client must have some kind of HTTP listener, for example, a servlet or a web service.
The module in step 3 on the server side acts like a client to the callback service and so is referred as the callback client.
You have additional control of the service generated by JDeveloper. You can set JDeveloper preferences to use a default suffix for the names of generated SDO classes, modifying the default subpackage where the service common interface and classes go.
To set the SDO class name suffix:
SDO
. To set the default subpackage for the generated service interface:
common
. serviceinterface
. For example, if you enter common
for Service Interface and serviceinterface
for Service Interface Subpackage (the defaults), service interfaces for data model components in the data model package oracle.storefront.store.service
will be placed in the subpackage oracle.storefront.store.service.common.serviceinterface
.
To set the default namespace prefix for the generated SDO schema and web service:
http://example.com/
. At runtime, the web service client will invoke the service-enable methods of the application module through the SOAP protocol. You can configure a Oracle Web Service Manager (Oracle WSM) security policy to enable authentication and authorization on the service. The security policy that you select will require the SOAP client call to provide credential information (or SAML token) as part of the SOAP header. You can also configure other policies to enable message protection (integrity and confidentiality) for inbound SOAP requests, for instance. For information about the predefined policies supported by Oracle WSM, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
You can enable authentication to require users to supply credentials before they have access to the service methods on the service interface. The type of authentication required is configured on the remote server class using an Oracle WSM authentication policy. For details about the available authentication policies, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
To configure an authentication policy:
AppModule
ServiceImpl.java
file). In the web service generated from the StoreServiceAM
application module in the StoreFrontModule
application of the Fusion Order Demo, the remote server class is StoreFrontServiceImpl.java
.
@PortableWebService
annotation. For example, StoreFrontService.wsdl
shows the annotation for the service as follows:
For details about the available security policies supported by Oracle WSM, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
@SecurityPolicy
has been added. The @SecurityPolicy
annotation that you define for the remote server class specifies the security requirements to potential clients. For example, if you had selected oracle/wss_username_token_service_policy in the dialog, the following @SecurityPolicy
annotation would appear below the @PortableWebService
annotation:
For details about configuring an authorization policy to require users to have sufficient access rights in order to invoke methods on the service, see Section 11.2.14.2, "Enabling Authorization for SOAP Clients."
You can enable permission checking to enable only users with sufficient privileges to invoke a service method on the service interface. This permission checking is configured on the remote server class using this Oracle Web Services Manager (Oracle WSM) authorization policy:
binding_permission_authorization_policy
This policy provides simple permission-based authorization for the request based on the authenticated Subject at the SOAP binding level. This policy ensures that the Subject has permission to perform the operation. This policy should follow an authentication policy where the Subject is established and can be attached to any SOAP-based endpoint.
As an alternative to the permission checking policy, you can configure one of these role-based Oracle WSM security policies:
binding_authorization_denyall_policy
This policy provides simple role-based authorization for the request based on the authenticated Subject at the SOAP binding level. This policy denies all users with any roles. It should follow an authentication policy where the Subject is established and can be attached to any SOAP-based endpoint.
binding_authorization_permitall_policy
This policy provides a simple role-based authorization for the request based on the authenticated Subject at the SOAP binding level. This policy permits all users with any roles. It should follow an authentication policy where the Subject is established and can be attached to any SOAP-based endpoint.
For further details about these authorization policy, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
Before you begin:
To configure a permission-based authorization policy:
AppModule
ServiceImpl.java
file). In the web service generated from the StoreServiceAM
application module in the StoreFrontModule
application of the Fusion Order Demo, the remote server class is StoreFrontServiceImpl.java
.
@PortableWebService
annotation. For example, StoreFrontService.wsdl
shows the annotation for the service as follows:
For details about the security policies supported by Oracle WSM, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
@SecurityPolicy
is configured. The @SecurityPolicy
annotation that you define for the remote server class specifies the security requirements to potential clients. In this example, the annotation shows both the permission-checking authorization policy (oracle/binding_permission_authorization_policy
) and an authentication policy:
For details about configuring an authentication policy to require the client to supply credentials in order to access the service, see Section 11.2.14.1, "Enabling Authentication for SOAP Clients."
Because the ADF web service is implemented as an EJB and deployed on Oracle WebLogic Server as Oracle Web Service's PortableWebService
, the client application can invoke the service-enable methods of the application module through the RMI protocol.
When the ADF service is invoked through RMI, authentication is handled with the common JAAS login module. The login module can be passed the principal and credential as part of the JNDI initial context for the EJB in the calling application. If you do not define the JNDI context properties, the login module will attempt to obtain the caller's current security context.
When you choose to define remote JNDI context information, then these four JNDI context properties need to be added to the connections.xml
file.
Note: When you intend to test the service in JDeveloper using Integrated WebLogic Server, before deploying the service you can edit the JNDI context properties in theconnections.xml file directly. However, when you deploy the service to standalone Oracle WebLogic Server, you will use Oracle Enterprise Manager to configure the JNDI context properties. |
jndiFactoryInitial
should be set to weblogic.jndi.WLInitialContextFactory
. jndiProviderURL
is the JNDI provider URL that indicates the location of the JNDI server. The URL should be composed as t3://
<hostname>
:
<server port>
. When you test the service in JDeveloper, and your service is deployed to Integrated WebLogic Server, specify the JNDI provider URL of Integrated WebLogic Server: t3://
<hostname>
:7101.
When you deploy the service to remote Oracle WebLogic Server, specify a URL like: t3://localhost:8888
, where t3
is the Oracle WebLogic protocol, localhost
is the host name that the remote Oracle WebLogic Server instance runs in, 8888
is the port number.
jndiSecurityPrincipal
specifies the principal (user name) with permission to access the remote JNDI. As Example 11-10 shows, when you test the service in JDeveloper Integrated WebLogic Server, you should omit this context property since no security is configured for the JNDI server on Integrated WebLogic Server.
As Example 11-11 and Example 11-12 show, when you deploy the service to standalone Oracle WebLogic Server, the user name can be read from the file.
jndiSecurityCredentials
specifies the credentials (password) to be used for the security principal. As Example 11-10 shows, when you test the service in JDeveloper Integrated WebLogic Server, you should omit this context property since no security is configured for the JNDI server on Integrated WebLogic Server.
As Example 11-11 shows, when you deploy the service to standalone Oracle WebLogic Server in a test environment, you can specify credentials in plain text for the JNDI provider. For example, you can specify weblogic
/weblogic1
which are the default administrator user name/password credentials with sufficient privileges to access JNDI provider for Oracle WebLogic Server.
When you deploy the service to a production environment, you must remove the plain text password to avoid creating a security vulnerability. As Example 11-12 shows, the connections.xml
file must contain <SecureRefAddr addrType="jndiSecurityCredentials"/>
with no password. To configure the service password for standalone Oracle WebLogic Server, you must use Oracle Enterprise Manager, which will store the encrypted password in Oracle's credential store.
To configure JNDI context properties to handle authentication:
connections.xml
file. If you are testing the service in JDeveloper's Integrated WebLogic Server, you only need to specify the jndiProviderURL
property, as shown in Example 11-10.
Example 11-10 JNDI Properties for JDeveloper Integrated WebLogic Server
If you are deploying the service for testing purposes to standalone Oracle WebLogic Server, you can use the connections.xml
file to specify credentials for the JNDI provider. For example, as shown in Example 11-11, you can specify weblogic
/weblogic1
which are the default administrator user name/password credentials with sufficient privileges to access JNDI provider for Oracle WebLogic Server.
Example 11-11 JNDI Properties for a Test Environment
If you are deploying the service to production Oracle WebLogic Server, you can use the connections.xml
file to specify the user name. As shown in Example 11-12, you must not specify the password.
Example 11-12 JNDI Properties for a Production Environment
You can enable permission checking to enable only users with sufficient privileges to invoke a service method on the service interface. In order enable permission checking, the ADF web service framework provides an EJB interceptor named ServicePermissionCheckInterceptor
. This EJB interceptor ensures permission checking is enforced at runtime. Currently, the interceptor is configured to use the Oracle Web Services Manager (Oracle WSM) authorization policy binding_permission_authorization_policy
. For further details about this authorization policy, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
Before you begin:
connections.xml
file of the client application (the one invoking the service), as described in Section 11.2.15.1, "Enabling Authentication for RMI Clients." To configure a permission-based authorization policy:
ejb-jar.xml
file. JpsInterceptor
definition required by the EJB for application roles evaluation. AppModule
ServiceImpl.java
) file. ServicePermissionCheckInterceptor
to enable permission checking at runtime. After you have have configured the authorization policy for the service, you must configure the Oracle Platform Security Services (OPSS) security provider to specify which users can invoke method on the service. At design time, you perform this task by editing the jazn-data.xml
configuration file to create application roles and make an invoke permission grant to the desired application roles. Then when you deploy the service, the administrator for the target Oracle WebLogic Server will associate enterprise users with the application roles you specify. This allows you to confer the right to invoke a service method to any user who is a member of that application role. Users who are members of a role that has not been granted the invoke permission, will denied access to the service method. For more information about the OPSS security provider and application roles, see the Oracle Fusion Middleware Security Guide.
To configure the jazn-data.xml
file with test users that you can use to run the application in Integrated WebLogic Server, see Section 30.6, "Creating Test Users."
The invoke permission for Oracle Web Services is defined by the oracle.wsm.security.WSFunctionPermission
class. You can grant the invoke permission to the application roles you define for all the methods of the service or just to individual methods.
Before you begin:
jazn-data.xml
deployment descriptor as described in "Creating and Editing a Deployment Descriptor" in the Deploying Applications section of the JDeveloper online help. Note that in JDeveloper you open the New Gallery, expand General, select Deployment Descriptors and then Oracle Deployment Descriptors, and click OK.
To grant the web service permission to application roles in the jazn-data.xml file:
Before you begin this procedure, you need to create the application roles that you want to make grants to, as described in Section 30.4, "Creating Application Roles." If you are testing in JDeveloper, you can also populate the application roles with test users, as described in Section 30.6, "Creating Test Users."
jazn-data.xml
file, select the Source tab. jazn-data.xml
file, expand the <policy-store>
element to view all ADF security policies that you already defined for your application. Currently, this release does not provide an editor to create an application security policy; you will need to manually create the policy in the source for the jazn-data.xml
file.
<jazn-policy>
element, create a <grant>
element that defines the <grantee>
with the desired application role and the <permission>
with the fully qualified class name of the Oracle WSM permission class (oracle.wsm.security.WSFunctionPermission
), the permission target name that uniquely identifies the service method, and the invoke method action that you want to grant to the application role principal. Your finished source should look similar to this:
The <principal>
element is defined by the application role class name oracle.security.jps.service.policystore.ApplicationRole
and an application role name that you already created. For example, if you created an application role customers
and you want to grant invoke service method permission to the members of that role, then enter customers
.
The <permission>
element is defined by the Oracle WSM class name oracle.wsm.security.WSFunctionPermission
and the permission target name. The permission target name is formed by appending /
serviceInterfaceName
and #
serviceMethodName
(or wildcard character) to the service target namespace.
Tip: You can find the target namespace and service name from the WSDL definition file for the service. In the Application Navigator, double-click the WSDL file in the serviceinterface folder to view thename and targetNamespace definitions. |
For example, in the Fusion Order Demo, the WSDL definition file defines the following name and namespace:
Assume that you want to grant a permission to allow authorized users to invoke a CreateAccount
service method on the service interface with these Fusion Order Demo name and namespace, you would enter the target name like this:
Alternatively, you can enter the target name using the wildcard character * to grant all operations of the service interface in a single permission:
The actions that you can enter are defined by the permission class. In this case, oracle.wsm.security.WSFunctionPermission
defines the single action invoke
.
jazn-data.xml
file. The ADF service interface framework supports using Message Transmission Optimization Mechanism (MTOM) to handle sending binary data in any service method that operates on a ViewRow
with a BlobDomain
/ClobDomain
attribute. This permits binary data to accompany XML messages, for example when images are required to document an insurance claim. The SDO data objects of the service-enabled application module maps BlobDomain
/ClobDomain
to javax.activation.DataHandler
. These DataHandler
properties could be passed as attachments during SDO data object marshalling/unmarshalling when the web service is called using the SOAP protocol.
To enable MTOM support for your SOAP protocol, you must add the @MTOM
annotation to the service interface implementation class (for example, StoreFrontServiceImpl.java
) and your method must operate on a ViewRow with BlobDomain/ClobDomain attribute.
To enable support for sending binary data attachments:
AppModule
ServiceImpl.java
) file. In the web service generated from the StoreServiceAM
application module in the StoreFrontModule
application of the Fusion Order Demo, the remote server class is StoreFrontServiceImpl.java
.
For example, in the StoreFrontServiceImpl.java
the annotation section for the service is:
JDeveloper adds the @MTOM
annotation to the annotations section of the file.
You can run the web service in JDeveloper using Integrated WebLogic Server. You can also deploy the web service to Oracle WebLogic Server to test the service.
To run and test using Integrated WebLogic Server:
AppModule
ServiceImpl.java
) file. In the web service generated from the StoreServiceAM
application module in the StoreFrontModule
application of the Fusion Order Demo, the remote server class is StoreFrontServiceImpl.java
.
The Configure Default Domain dialog displays the first time you run the application and start a new domain in Integrated WebLogic Server. Use the dialog to define an administrator password for the new domain. Passwords you enter can be eight characters or more and must have a numeric character.
JDeveloper initializes the server instance, and then deploys the application and starts the web service. During this time, the output from these processes is displayed in the Running tab of the Log window. After the web service has started, the target URL is also displayed in the Log window.
http://
) from the Log window. For example, if the Log window displays:
http://130.35.103.93:8888/ADFServiceDemo-ADFModel-context-root
and the name of the service is AppModuleService
, the target URL would look like this:
http://130.35.103.93:8888/ADFServiceDemo-ADFModel-context-root/AppModuleService
The Test Results page displays the XML Soap format of the information returned by the operation.
When you test the web service you may find that some of your custom methods exceed the established timeout limitation established by the Java Transaction API (JTA). The JTA timeout setting establishes an execution boundary for service methods that by default may not exceed 30 seconds. You could use the Administration Console for Oracle WebLogic Server to increase the JTA timeout setting. If you still receive a timeout exception or you anticipate that the custom methods of the service interface may be long running, you can specify an EJB transaction attribute for the stateless session bean to prevent the EJB from executing those methods in a JTA transaction.
To make a custom method exempt from timing out, you set TransactionAttributeType.NOT_SUPPORTED
in the Property Inspector specifically for that method. Because a method with this transaction attribute setting will not be executed in the JTA transaction, it is your responsibility to enforce control over the transaction using the ADF Business Components methods of the oracle.jbo.ApplicationModule
and oracle.jbo.Transaction
interfaces. For instance, on the methods of the implementation class of the application module that you service-enabled, you will need to call am.getDBTransaction().commit()
or rollback()
in order to complete the transaction.
You should not change the default transaction attribute setting for the standard service methods generated for the service interface (see Table 11-1). The standard methods will execute within the default execution boundary set for the JTA transaction.
To prevent custom methods from executing in a JTA transaction:
AppModule
ServiceImpl.java
) file. In the web service generated from the StoreServiceAM
application module in the StoreFrontModule
application of the Fusion Order Demo, the remote server class is StoreFrontServiceImpl.java
.
JDeveloper updates the method by adding the annotation @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
.
For example, for the custom service method updateCustomerInterests()
it would look like this:
AppModule
Impl.java
) file. The implementation class defines the custom methods that the you exposed through the service interface. In the Fusion Order Demo, the application module implementation class is StoreServiceAMImpl.java
.
For example, if you configured the TransactionAttribute property on the service method named updateCustomerInterests()
, then you would open the implementation class for the application module, locate the custom method updateCustomerInterests()
, and add am.getDBTransaction().commit()
and rollback()
as part of the method's try
and catch
statements like this:
You can deploy the web service to Oracle WebLogic Server, for example to perform a second stage of testing the service. The procedure to deploy the web service will depend on whether or not you have enabled authorization for the web service. If you have enabled authorization, then preliminary steps to modify the web.xml
file in the packaged application's EAR file must be performed. These steps are required only if you have enabled an authorization policy, as described in Section 11.2.14.2, "Enabling Authorization for SOAP Clients."
Caution: Follow the procedure outlined in this section to modify theweb.xml of the packaged EAR file for a web service with authorization enabled, but do not use JDeveloper to deploy the EAR file since this will overwrite the web.xml file on the target server. Instead, use a tool like the Administration Console for Oracle WebLogic Server to manually deploy the packaged application's EAR file. For details about deploying secure web service applications outside of JDeveloper, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services. |
Before you begin:
weblogic-application.xml
file to define application ID parameters. This file appears in the Application Navigator in the Application Resources panel, under the Descriptors and META-INF folders. Add the following <application-param>
definition as the first element:
Note that the ApplicationName
that you enter must match the name identified in the jazn-data.xml
policy store definition:
ejb-jar.xml
file to add the following JpsInterceptor
definition required by the EJB for application roles evaluation. This file appears in the Application Navigator under the META-INF folder of the web service project. Note that ApplicationName
must also match the application name identified in the jazn-data.xml
policy store definition.
To deploy to Oracle WebLogic Server:
web.xml
file. Note: If you did not configure security for the web service, you can skip this step and the manual editing tasks it describes. You can deploy the EAR as described in step 4.
StoreFrontService
, the EAR file is found here: Unjar this EAR file and locate the WAR file for the service interface project. For example, the WAR file might be named StoreFrontService-MiddleTier_web.war
.
web.xml
file and add the following JPSWlsFilter
definitions: When you configure the JPSWlsFilter
, the application name value must match the application name set in jazn-data.xml
and weblogic-application.xml
files. For the filter mapping, enter the <servlet-name>
that will match the servlet name already present in your web.xml
. Note the filter name must match the filter name set for the JpsFilter
.
web.xml
file on the target server. Instead, use a tool like the Administration Console for Oracle WebLogic Server to manually deploy the application EAR file. For details about deploying secure applications outside of JDeveloper, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services. ADF Business Components application modules offer built-in support for web services and for publishing rows of view object data as service data objects (SDOs). Entity objects that you create in your local data model project can utilize the SDO services that the service-enabled application module exposes on its service interface. By creating service-backed entity objects in your local project, you avoid having to work directly with the service proxy and SDOs programmatically for all common remote service data access tasks.
The Create Entity Object wizard makes it easy for you to choose between a local database and the remote ADF Business Components service when you create the entity object, as described in Section 11.3.1, "How to Use Service-Enabled Entity Objects and View Objects." In this way, service-enabled application modules provide an alternative way to access data that is not available locally in the database.
Once you create the service-backed entity object, you will be able to create view objects, view links, and view criteria to filter the data at runtime. You will also be able to utilize these view objects in your data model as though you were working with locally available data accessed from database tables.
The following sections describe how to augment your data model project using a service-enabled ADF application module.
You will want to use the service-backed components as part of your application design strategy when one of the following conditions is true:
In the first case, you provide both sides of the service. In the second case, you may not know what the external service looks like and you may need to perform the following:
connections.xml
file of the client project containing the service-enabled business components based on this service interface to use this "plugged" version instead. For details about how to expose an application module as a web service, see Section 11.2, "Publishing Service-Enabled Application Modules."
You create the service-backed entity object using the Create Entity Object wizard by specifying the URL for the WSDL document that describes the deployed service already running on an application server. The wizard uses the WSDL service description to display the list of available service view instances. In the wizard, you select among the displayed view instances to specify the entity object's data source. At the time you run the wizard, the service endpoint must be accessible in order to locate the WSDL document.
To create the entity object that uses a service view instance as its data source:
The wizard will attempt to connect with the service endpoint and populate the list from the WSDL service description. If the endpoint is unavailable, the list will remain empty.
For example, on the Attributes page, you can remove an attribute when you do not want the service-backed entity object to reference it.
For example, on the Attributes Settings page, you can enable the Refresh After Insert and Refresh After Update options for attributes that you anticipate will be modified whenever the entity is modified. Typical candidates include a version number column or an updated date column in the row.
After you add the service-backed entity object to your project, you can create service-backed view objects to query and optionally filter the data from the remote service for use in the user interface. A service-backed view object is a view object whose single entity usage references an entity object that is backed an SDO service. In JDeveloper you cannot make existing view objects service-backed. Instead, when you create the view object in JDeveloper, the new view object will automatically be service-backed if its entity usage is a service-backed entity object.
Before you begin:
Create the service-backed entity object as described in Section 11.3.1.1, "Creating Entity Objects Backed by SDO Services."
To create a view object from the service-backed entity object:
The generated view object will contain the same attributes as the entity object. You can optionally edit the view object in the overview editor to customize the query. You can also define view criteria for the view object when you want to filter the data from the remote service. For details about filtering query results, see Section 5.11, "Working with Named View Criteria."
The service-backed entity object is an entity object that encapsulates the details of accessing and, if necessary, modifying a row of data from a remote ADF Business Components service. After you use the Create Entity Object wizard to create the service-backed entity object, JDeveloper saves additional service-related metadata in the <Datasource>
element of the entity component definition, as shown in Example 11-13.
The service-backed view object references the single, service-backed entity object in its metadata just as any entity-based view object does. You can use the service-backed view object just as you would use any other view object. For details about working with view objects, see Chapter 5, "Defining SQL Queries Using View Objects." The ADF runtime handles the interaction with the remote ADF Business Components service.
Example 11-13 Entity Object Metadata Shows Service View as Data Source
Because the service interface exposes individual view instances, you are responsible for defining hierarchical relationships between service-backed entity objects (through associations) and service-backed view objects (through view links) in your consuming project. View links and associations are not automatically created when you create the service-backed business component. For example, if the application module of the published ADF Business Components service defines a master-detail relationship that you want to utilize, then you must define a view link for the corresponding view objects in your own project to preserve this hierarchy.
Furthermore, while you can create view links between view objects that query their data locally and service-backed view objects (and the other way around), once you define the view link, you will not be able to create entity-based view objects with the following entity object usages:
The same restrictions apply to associations in the client project between regular entity objects and service-backed entity objects: while you can create the associations, you will not be able to create view objects.
You use the Create View Link wizard to specify relationships between the view objects that your project defines, as shown in Figure 11-14. For details about creating view links, see Section 5.6.2, "How to Create a Master-Detail Hierarchy for Entity-Based View Objects."
View links you create may define relationships between service-backed view objects and view objects that query locally accessed database tables. For example, you might choose to drive a database-derived detail view object with a service-backed master view object. You can create view links with the combinations shown in Table 11-2.
Table 11-2 Supported View Link Combinations Involving Service-Backed View Objects
Use Case	Master View Object Type	View Linked Detail View Object Type	View Link Cardinality
Local master rows with remote details	Query-based	Service-backed	One-to-many
Remote master rows with local details	Service-backed	Query-based	One-to-many
Local master rows with remote reference information	Query-based	Service-backed	Many-to-one
Remote master rows with local reference information	Service-backed	Query-based	Many-to-one
Once you have defined the desired view hierarchy, using the Create View Link wizard, you use the overview editor for your project's application module to define new view instances on the data model, as shown in Figure 11-15. The updated data model allows you to expose the view objects as ADF data controls that enable databinding with the user interface components of the Fusion web application. For details about updating the data model, see Section 9.2.3.2, "Adding Master-Detail View Object Instances to an Application Module."			
Before you can run your application and interact with the published service-enabled ADF application module to invoke service operations, you need to describe the published service, including the service's endpoint provider type and other configuration information. The ADF Business Components ServiceFactory			
class (oracle.jbo.client.svc.ServiceFactory			
) returns a proxy for the service, then uses the service proxy to invoke the service operations. The service factory can return proxies for three different service endpoint providers, to support these transport protocols:			
To configure the consuming application to invoke published service operations:			
bcProfileName			
_Common.jar			
file for the SDO's generated classes to the client project's classpath. connections.xml			
file in the client project's .adf/META-INF			
folder to describe the published ADF Business Components service. The updates you make to the file will depend on the transport protocol your application uses: EJB RMI protocol, SOA Fabric SDO binding, or SOAP protocol (for JAX-WS clients).			
Before your application can access the published service, the service consuming project must have access to the generated SDO classes and their schema definitions. These files are packaged in the bcProfileName			
_Common.jar			
file generated by the development team responsible for publishing the service.			
To make the SDO classes available to your application, obtain the bcProfileName			
_Common.jar			
file from the service-provider team and place this JAR file in a folder of your local project. For example, you may copy the JAR file into your project's deploy folder. You can then use JDeveloper to add the JAR file to your project's classpath with a SDO client library you create. For steps to generate the SDO classes JAR file, see Section 11.2.20, "How to Deploy Web Services to Oracle WebLogic Server."			
To add the SDO client library to the classpath:			
bcProfileName			
_Common.jar			
file and select the file to view it in the Create Library dialog. The Select Path Entry dialog lets you browse the file system or local area network to locate the JAR file. If you cannot browse the deploy folder of the service-provider's application workspace to obtain the JAR file, you must obtain the file and copy it into your own project's folder. For example, you may have copied the JAR file into your project's deploy folder.			
Figure 11-16 shows the SDO client library with the name ServiceProvider_Common.jar			
selected. In this case, the library name is the same as the JAR file name. Optionally, you can edit the library name in the Create Library dialog.			
When the service endpoint provider is ADF Business Components, the service factory will return an EJB object proxy bound to a stateless session bean running in the EJB container. You must provide the JNDI context information to allow the consuming application to look up the published service.			
Lookup information that you provide to register the published ADF Business Components service appears in the consuming Fusion web application's connections.xml			
file, located in the .adf/META-INF			
folder relative to the application. The ADF connection architecture uses this file to encapsulate the details of the service endpoint provider.			
The JNDI lookup information you provide will depend on whether the published service runs locally (in the same JVM) with the consuming application or runs remotely on a separate server from the consuming application. Typically, the ADF Business Components service is in a different application from the consuming application and is therefore run remotely.			
To register the published service with your client application, update the connections.xml			
file following the example in Example 11-14. When the ADF Business Components service runs local to the consuming application (as occurs when you run within JDeveloper), the service factory needs only the JNDI name to look up the service.			
Note: When you deploy the calling application to standalone Oracle WebLogic Server, you will use Oracle Enterprise Manager to configure the JNDI context properties instead of editing theconnections.xml file. For instructions, refer to the online documentation in Oracle Enterprise Manager.			
Example 11-14 Client connections.xml File Registers the Local EJB ADF Business Components Service			
When the ADF Business Components service runs remotely to the calling client, then remote JNDI context information needs to be added to the connections.xml			
file. You can edit these JNDI context properties in the connections.xml			
file, as shown in Example 11-15:			
jndiFactoryInitial			
should be set to weblogic.jndi.WLInitialContextFactory			
. jndiProviderURL			
is the JNDI provider URL that indicates the location of the JNDI server. The URL should be composed as t3://			
<hostname>			
:			
<server port>			
. For example, specify a URL like: t3://localhost:8888			
, where t3			
is the Oracle WebLogic protocol, localhost			
is the host name that the remote Oracle WebLogic Server instance runs in, 8888			
is the port number.			
jndiSecurityPrincipal			
specifies the principal (user name) with permission to access the remote JNDI. When you deploy the service to standalone Oracle WebLogic Server, the user name can be read from the file.			
jndiSecurityCredentials			
specifies the credentials (password) to be used for the security principal. As Example 11-11 shows, when you deploy the service to standalone Oracle WebLogic Server in a test environment, you can specify credentials in plain text for the JNDI provider. For example, you can specify weblogic			
/weblogic1			
which are the default administrator user name/password credentials with sufficient privileges to access JNDI provider for Oracle WebLogic Server.			
When you deploy the service to a production environment, you must remove the plain text password to avoid creating a security vulnerability. As Example 11-15 shows, the connections.xml			
file must contain <SecureRefAddr addrType="jndiSecurityCredentials"/>			
with no password. To configure the service password for standalone Oracle WebLogic Server, you must use Oracle Enterprise Manager, which will store the encrypted password in Oracle's credential store.			
Example 11-15 Client connections.xml File Registers the Remote EJB ADF Business Components Service			
When the service endpoint provider is SOAP, the service factory will create a dynamic JAX-WS client proxy. You must provide the WSDL URL and port name to allow the consuming application to look up the published service. Additionally, for the SOAP client, Oracle Web Service Manager (Oracle WSM) client security policy can be attached as part of the SOAP header.			
Lookup information that you provide to register the published ADF Business Components service appears in the consuming Fusion web application's connections.xml			
file, located in the .adf/META-INF			
folder relative to the application. The ADF connection architecture uses this file to encapsulate the details of the service endpoint provider.			
Note: When you deploy the calling application to standalone Oracle WebLogic Server, you will use Oracle Enterprise Manager to configure the JNDI context properties instead of editing theconnections.xml file. For instructions, refer to the online documentation in Oracle Enterprise Manager.			
To register the published service with your client application for the SOAP protocol, depending on whether your application uses identity propagation or identity switching, update the connections.xml			
file following the example in either Example 11-16 or Example 11-17. Identity propagation and switching are similar in that each process involves propagating an identity. In Fusion web applications, identity propagation involves propagating the identity that is currently executing code. Identity switching, on the other hand, involves propagating an application identity that is different from that currently executing code.			
To register the published service with your client application so the the user identity will be switched based on the credential key, specify the clientside policy oracle/wss11_username_token_with_message_protection_client_policy			
in the connections.xml			
file following the example in Example 11-16.			
Note: Theconnections.xml file supports Oracle WSM security policy client overrides. When the security policy is oracle/wss11_username_token_with_message_protection_client_policy , the csf-key property can be overridden to specify the consuming application's credentials.			
Example 11-16 Client connections.xml File Registers the Remote Business Components Service for the SOAP Protocol Using Identify Switching			
To register the published service with your client application so the the user identity will be propagated to the caller, specify the clientside policy oracle/wss11_saml_token_with_message_protection_client_policy			
in the connections.xml			
file following the example in Example 11-17.			
Example 11-17 Client connections.xml File Registers the Remote Business Components Service for the SOAP Protocol Using Identify Propagation			
When the service endpoint provider is SOA Fabric, the service factory will return a SOA Fabric composite proxy and call the service running inside a Fabric composite through Fabric's SDO binding. You must provide the name of the Fabric composite to allow the consuming application to look up the published service.			
Lookup information that you provide to register the published ADF Business Components service appears in the consuming Fusion web application's connections.xml			
file, located in the .adf/META-INF			
folder relative to the application. The ADF connection architecture uses this file to encapsulate the details of the service endpoint provider.			
Note: When you deploy the calling application to standalone Oracle WebLogic Server, you will use Oracle Enterprise Manager to configure the JNDI context properties instead of editing theconnections.xml file. For instructions, refer to the online documentation in Oracle Enterprise Manager.			
To register the published service with your client application for the Fabric protocol, update the connections.xml			
file following the example in Example 11-18, where fabricAddress			
is the name of the Fabric composite for the published service.			
Example 11-18 Client connections.xml File Registers the Remote Business Components Service for the SOA Fabric Protocol			
Before you can launch the Business Component Browser, your project must meet the runtime requirements as described in Section 11.3.4, "How to Configure the Service-Backed Business Components Runtime." The Business Component Browser will display the view objects you create from the remote service and allow you to interact with the service to perform standard CRUD operations.			
Because the application module that you run can access locally queried data and remotely queried data together, service-backed view objects and database-derived view objects will display in the same Browser. If the endpoint is unavailable at the time you select the service-backed view object in the Business Component Browser, you will get a runtime exception.			
For details about running the Business Component Browser, see Section 6.3.1, "How to Run the Business Component Browser."			
The ADF Business Components service interface requires that you return a service proxy to ensure that operations you invoke use the transport protocol specified by the published service.			
Before you begin:			
You need to ensure that the consuming application has the correct libraries on the classpath. In the Application Navigator, double-click the project and in the Project Properties dialog, select Libraries and Classpath and confirm the following libraries appear:			
As Example 11-19 shows, when you invoke the operation, you perform the following tasks:			
oracle.jbo.client.svc.ServiceFactory			
class and published service class. getServiceProxy()			
on the service factory object and pass in the service name in the form <serviceName>			
.NAME			
. The ADF service factory embeds a SDOHelperContext			
ID in the service proxy object returned by this method to ensure delivery of the latest ADF Business Component service schema metadata to the SDO. The schema (.xsd			
files) for the service object may be stored in MDS and may have been extended for example to add more business component attributes, extend existing types, or define new types. The local helper context allows customization of individual service's schema definitions without affecting other service's SDO metadata or requiring restarting the application.			
create()			
on a data factory object, where the proxy object is obtained from the getServiceProxy()			
call. Example 11-19 Obtaining and Invoking a Service Proxy in the Consuming Application			
The ADF runtime obtains the data source information from the service-backed entity object XML definition to automate interactions with the service interface methods as needed. By using the service-backed entity object, you avoid having to work directly with the service proxy and service data objects programmatically for all common remote service data access tasks. The ADF service factory looks up the service and then uses the service interface you specified in the connections.xml			
to invoke the service methods.			
When your application accesses a remote ADF Business Components service, each remote call is stateless, and the remote service will not participate in the same transaction as the business component that uses a service-enabled application module's service interface.			
In the majority of the cases, calls to remote services will be informational in nature and will not make changes to remote objects. However, if you must use a remote service to make changes, then keep these points in mind:			
You will use some web services to access reference information. However, other services you call may modify data. This data modification might be in your own company's database if the service was written by a member of your own or another team in your company. If the web service is outside your firewall, of course the database being modified will be managed by another company. In either of these situations, it is important to understand that any data modifications performed by a web service you invoke will occur in its own distinct transaction unrelated to the service-enabled application module's current unit of work. For example, if you have invoked a web service that modifies data and then you later call rollback()			
to cancel the pending changes in the application module's current unit of work, rolling back the changes has no effect on the changes performed by the web service you called in the process. You may need to invoke a corresponding web service method to perform a compensating change to account for your rollback of the application module's transaction.			
At runtime, ADF handles the interaction with the remote ADF Business Components service. However, you should be aware that service-backed business components have the following design time restrictions that may restrict your application's runtime behavior. For more details about how these restrictions apply at design time, see Section 11.3.3, "How to Update the Data Model for Service-Backed Business Components."			
For more details about how these restrictions apply at design time, see Section 11.3.3, "How to Update the Data Model for Service-Backed Business Components."			
This chapter describes how an ADF application module's data model and business service interface methods appear at design time for drag and drop data binding, how they are accessible at runtime by the ADF Model data binding layer using the application module data control, and how developers can use the Data Controls panel to create databound pages.			
This chapter includes the following sections:			
ADF Model implements concepts that enable decoupling the user interface technology from the business service implementation: data controls and declarative bindings.			
Data controls abstract the implementation technology of a business service by using standard metadata interfaces to describe the service's operations and data collections, including information about the properties, methods, and types involved. In an application that uses business components, a data control is automatically created when you create an application module, and it contains all the functionality of the application module. Developers can then use the representation of the data control displayed in JDeveloper's Data Controls panel to create UI components that are automatically bound to the application module. At runtime, the ADF Model layer reads the information describing the data controls and bindings from appropriate XML files and implements the two-way connection between the user interface and the business service.			
Declarative bindings abstract the details of accessing data from data collections in a data control and of invoking its operations. There are three basic kinds of declarative binding objects:			
Figure 12-1 shows how bindings connect UI components to data control collections and methods.			
The group of bindings supporting the UI components on a page are described in a page-specific XML file called the page definition file. The ADF Model layer uses this file at runtime to instantiate the page's bindings. These bindings are held in a request-scoped map called the binding container, accessible during each page request using the EL expression #{bindings}			
. This expression always evaluates to the binding container for the current page.			
You can design a databound user interface by dragging an item from the Data Controls panel and dropping it on a page as a specific UI component. When you use data controls to create a UI component, JDeveloper automatically creates the various code and objects needed to bind the component to the data control you selected.			
Note: Using the ADF Model layer to perform business service access ensures that the view and the business service stay in sync. For example, while you could.call a method on an application module by class-casting the data control reference to the application module instance and then calling the method directly, doing so would bypass the model layer and it would then become unaware of any changes.			
The application module data control is a thin adapter over an application module pool that automatically acquires an available application module instance at the beginning of the request. During the current request, the application module data control holds a reference to the application module instance on behalf of the current user session. At the end of the request, the data control releases the instance back to the pool. Importantly, the application module component directly implements the interfaces that the binding objects expect for data collections, built-in operations, and service methods. This optimized interaction allows the bindings to work directly with the application module instances in its data model in the following ways:			
Tip: You can also use the iterator binding to bind to a secondary named row set that you have created. To bind to a secondary row set, you need to use theRSIName attribute on the binding. For more information about the difference between the default row set and secondary row sets and how to create them, see Section 39.1.9, "Working with Multiple Row Sets and Row Set Iterators."			
Figure 12-2 illustrates the pool management role the application module data control plays and highlights the direct link between the bindings and the application module instance.			
Figure 12-2 Bindings Connect Directly to View Objects and Methods of an Application Module from a Pool			
You use the Data Controls panel to create databound HTML elements (for JSP pages), and databound UI components (for JSF JSP pages) by dragging and dropping icons from the panel onto the visual editor for a page. Figure 12-3 shows the Data Controls panel displaying the data controls for the StoreFront module.			
The Data Controls panel lists all the data controls that have been created for the application's business services and exposes all the collections (row sets of data objects), methods, and built-in operations that are available for binding to UI components.			
Note: If you've configured JDeveloper to expose them, any view link accessor returns are also displayed. For more information, see Section 5.6, "Working with Multiple Tables in a Master-Detail Hierarchy." To view the accessor methods:			
For example, in an application that uses ADF Business Components to define the business services, each data control on the Data Controls panel represents a specific application module, and exposes the view object instances in that application's data model. The hierarchy of objects in the data control is defined by the view links between view objects that have specifically been added to the application module data model. For information about creating view objects and view links, see Chapter 5, "Defining SQL Queries Using View Objects." For information about adding view links to the data model, see Section 5.6.4, "How to Enable Active Master-Detail Coordination in the Data Model."			
Tip: You can open the overview editor for a view object by right-clicking the associated data control object and choosing Edit Definition.			
For example, the StoreServiceAMDataControl			
application module implements the business service layer of the StoreFront module application. Its data model contains numerous view object instances, including several master-detail hierarchies. The view layer of the ADF sample application consists of JSF pages whose UI components are bound to data from the view object instances in the StoreServiceAMDataControl			
's data model, and to built-in operations and service methods on its client interface.			
Each view object instance appears as a named data collection whose name matches the view object instance name. Figure 12-4 illustrates how the Data Controls panel displays the view object instances in the StoreServiceAMDataControl			
's data model (note that for viewing simplicity, the figure omits some details in the tree that appear for each view object). The Data Controls panel reflects the master-detail hierarchies in your application module data model by displaying detail data collections nested under their master data collection.			
The Data Controls panel also displays each custom method on the application module's client interface as a named data control custom operation whose name matches the method name. If a method accepts arguments, they appear in a Parameters node as operation parameters nested inside the operation's node.			
The application module data control exposes two data control built-in operations named Commit			
and Rollback,			
as shown in Figure 12-5 (note that the Operations node in the data controls tree omits all of the data collections and custom operations for a more streamlined view). At runtime, when these operations are invoked by the data binding layer, they delegate to the commit()			
and rollback()			
methods of the Transaction			
object associated with the current application module instance.			
Note: In an application module with many view object instances and custom methods, you may need to scroll the Data Controls panel display to find the Operations node that is the direct child node of the data control. This node is the one that contains these built-in operations.			
The view object attributes are displayed as immediate child nodes of the corresponding data collection, as are any custom methods you've created. Figure 12-6 shows how each view object instance in the application module's data model appears in the Data Controls panel. If you have selected any custom methods to appear on the view object's client interface, they appear as custom methods immediately following the view object attributes at the same level. If the method accepts arguments, these appear in a nested Parameters node as operation parameters.			
By default, implicit view criteria are created for each attribute that is able to be queried on a view object. They appear as the All Queriable Attributes node under the Named Criteria node, as shown in Figure 12-6. If any named view criteria were created for the view object, they appear under the Named Criteria node. The View Criteria expressions (both implicit and named) appear as method returns. The conjunction used in the query, along with the criteria items and if applicable, any nested criteria, are shown as children. These items are used to create quick search forms, as detailed in Chapter 27, "Creating ADF Databound Search Forms."			
As shown in Figure 12-6, the Operations node under the data collection displays all its available built-in operations. If an operation accepts one or more parameters, then those parameters appear in a nested Parameters node. At runtime, when one of these data collection operations is invoked by name by the data binding layer, the application module data control delegates the call to an appropriate method on the ViewObject			
interface to handle the built-in functionality. The built-in operations fall into three categories: operations that affect the current row, operations that refresh the data collection, and all other operations.			
Operations that affect the current row:			
Create			
: Creates a new row that becomes the current row, but does not insert it. CreateInsert			
: Creates a new row that becomes the current row, and inserts the new blank row into the data source. Create			
with Parameters			
: Creates a new row taking parameter values. The passed parameters can supply the create-time value of the discriminator or composing parent's foreign key attributes that are required at create time for polymorphic view object and for a composed child view object row when not created in the context of a current view linked parent row, respectively. For more information about polymorphic view objects, see Section 39.6, "Using View Objects to Work with Multiple Row Types." Delete			
: Deletes the current row. First			
: Sets the current row to be the first row in the row set. Last			
: Sets the current row to be the last row in the row set. Next			
: Sets the row to be the next row in the row set. Next Set			
: Navigates forward one full set of rows. Previous			
: Sets the current row to be the previous row in the row set. Previous			
Set			
: Navigates backward one full set of rows. setCurrentRowWithKey			
: Tries to finds a row using the serialized string representation of row key passed as a parameter. If found, that row becomes the current row. setCurrentRowWithKeyValue			
: Tries to finds a row using the primary key attribute value passed as a parameter. If found, that row becomes the current row. Operations that refresh the data collection:			
Execute			
: Refreshes the data collection by executing or reexecuting the view object's query, leaving any bind parameters at their current values. ExecuteWithParams			
: Refreshes the data collection by first assigning new values to the named bind variables passed as parameters, then executing or reexecuting the view object's query. Note: TheexecuteWithParams operation appears only for view objects that have defined one or more named bind variables at design time.			
All other operations:			
removeRowWithKey			
: Tries to finds a row using the serialized string representation of row key passed as a parameter. If found, the row is removed. Find			
: Toggles "Find Mode" on and off for the data collection. If you build composite application modules by including nested instances of other application modules, the Data Controls panel reflects this component assembly in the tree hierarchy. For example, assume that, in addition to the StoreServiceAMDataControl			
application module, you have also created the following application modules in the same package:			
ProductService			
, and renamed its data control to ProductService			
CompositeService			
, and renamed its data control to CompositeService			
Then assume that you've added two view object instances named OtherViewObject			
and AnotherViewObject			
to the data model of CompositeService			
and that on the Application Modules page of the Edit Application Module dialog you have added an instance of the StoreServiceAMDataControl			
application module and an instance of the ProductService			
application module to reuse them as part of CompositeService			
. Figure 12-7 illustrates how your CompositeService			
would appear in the Data Controls panel (note that much of the structure of the nested StoreServiceAMDataControl			
has been omitted for clarity). The nested instances of StoreServiceAMDataControl			
and ProductService			
appear in the panel tree display nested inside of the CompositeService			
data control. The entire data model and set of client methods that the nested application module instances expose to clients are automatically available as part of the CompositeService			
that reuses them.			
One possibly confusing point is that even though you have reused nested instances of StoreServiceAMDataControl			
and ProductService			
inside of CompositeService			
, the StoreServiceAMDataControl			
and ProductService			
application modules also appear themselves as top-level data control nodes in the panel tree. JDeveloper assumes that you might want to sometimes use StoreServiceAMDataControl			
or ProductService			
on their own as separate data controls from CompositeService			
, so it displays all three of them. You need to be careful to perform your drag-and-drop data binding from the correct data control. If you want your page to use a view object instance from the nested StoreServiceAMDataControl			
instance's data model that is an aggregated part of the CompositeService			
data control, then ensure that you select the data collection that appears as part of the CompositeService			
data control node in the panel.			
It is important to do the drag -and-drop operation that corresponds to your intended usage. When you drop a data collection from the top-level StoreServiceAMDataControl			
data control node in the panel, at runtime your page will use an instance of the StoreServiceAMDataControl			
application module acquired from a pool of StoreServiceAMDataControl			
components. When you drop a data collection from the nested instance of StoreServiceAMDataControl			
that is part of CompositeService			
, at runtime your page will use an instance of the CompositeService			
application module acquired from a pool of CompositeService			
components. Since different types of application module data controls will have distinct transactions and database connections, inadvertently mixing and matching data collections from both a nested application module and a top-level data control will lead to unexpected runtime behavior.			
The Data Controls panel is a panel within the Application Navigator, located at the top left of JDeveloper. To view its contents, click the panel header to expand the panel. If you do not see the panel header, then the Application Navigator may not be displaying.			
To open the Application Navigator and Data Controls panel:			
Any time changes are made to the application module or underlying services, you need to manually refresh the data control in order to view the changes. To refresh the application module data control, click the Refresh icon in the header of the Data Controls panel, as shown in Figure 12-9.			
When you click Refresh, the Data Controls panel looks for all available data controls, and therefore will now reflect any structural changes made to the data control.			
You can package up data controls so that they can be used in another project. For example, one development group might be tasked with creating the services and data controls, while another development group might be tasked with creating the UI. The first group would create the services and data controls, and then package them up as an Oracle ADF Library and send it to the second group. The second group can then add the data controls to their project using the Resource Palette. For more information, see Chapter 33, "Reusing Application Components."			
You can design a databound user interface by dragging an item from the Data Controls panel and dropping it on a page as a specific UI component. When you use data controls to create a UI component, JDeveloper automatically creates the various code and objects needed to bind the component to the data control you selected.			
In the Data Controls panel, each data control object is represented by a specific icon. Table 12-1 describes what each icon represents, where it appears in the Data Controls panel hierarchy, and what components it can be used to create.			
Table 12-1 Data Controls Panel Icons and Object Hierarchy			
Icon	Name	Description	Used to Create...
---	---	---	---
Data Control	Represents a data control. You cannot use the data control itself to create UI components, but you can use any of the child objects listed under it. Depending on how your business services were defined, there may be more than one data control. Usually, there is one data control for each application module. However, you may have additional data controls that were created for other types of business services (for example, for web services). For information about creating data controls for web services, see Chapter 13, "Integrating Web Services Into a Fusion Web Application."	Serves as a container for the other object and is not used to create anything.	
Collection	Represents a named data collection. A data collection represents a set of data objects (also known as a row set) in the data model. Each object in a data collection represents a specific structured data item (also known as a row) in the data model. Throughout this guide, data collection and collection are used interchangeably. For application modules, the data collection is the default row set contained in a view object instance. The name of the collection matches the view object instance name. A view link creates a master-detail relationship between two view objects. If you explicitly add an instance of a detail view object (resulting from a view link) to the application module data model, the collection contained in that detail view object appears as a child of the collection contained in the master view object. For information about adding detail view objects to the data model, see Section 5.6.4, "How to Enable Active Master-Detail Coordination in the Data Model." The children under a collection may be attributes of the collection, other collections that are related by a view link, custom methods that return a value from the collection, or built-in operations that can be performed on the collection. If you've configured JDeveloper to display viewlink accessor returns, then those are displayed as well.	Forms, tables, graphs, trees, range navigation components, and master-detail components. For more information about using collections on a data control to create forms, see Chapter 22, "Creating a Basic Databound Page." For more information about using collections to create tables, see Chapter 23, "Creating ADF Databound Tables." For more information about using master-detail relationships to create UI components, see Chapter 24, "Displaying Master-Detail Data." For information about creating graphs, charts, and other visualization UI components, see Chapter 26, "Creating Databound ADF Data Visualization Components."	
Attribute	Represents a discrete data element in an object (for example, an attribute in a row). Attributes appear as children under the collections or method returns to which they belong. Only the attributes that were included in the view object are shown under a collection. If a view object joins one or more entity objects, that view object's collection will contain selected attributes from all of the underlying entity objects.	Label, text field, date, list of values, and selection list components. For information about using attributes to create fields on a page, see Section 22.2, "Using Attributes to Create Text Fields." For information about creating lists, see Chapter 25, "Creating Databound Selection Lists and Shuttles."	
Structured Attribute	Represents a returned object that is neither a Java primitive type (represented as an attribute) nor a collection of any type. An example of a structured attribute would be a domain, which is a developer-created data type used to simplify application maintenance. For more information about domains, see Section 38.1, "Creating Custom, Validated Data Types Using Domains."	Label, text field, date, list of values, and selection list components.	
Method	Represents an operation in the data control or one of its exposed structures that may accept parameters, perform some business logic and optionally return single value, a structure, or a collection. In application module data controls, custom methods are defined in the application module itself and usually return either nothing or a single scalar value. For more information about creating custom methods, see Chapter 9, "Implementing Business Services with Application Modules."	Command components For methods that accept parameters: command components and parameterized forms. For more information about using methods that accept parameters, see Section 28.2.2.2, "Using Parameters in a Method."	
Method Return	Represents an object that is returned by a custom method. The returned object can be a single value or a collection. If a custom method defined in the application module returns anything at all, it is usually a single scalar value. Application module methods do not need to return a set of data to the view layer, because displaying the latest changes to the data is handled by the view objects in the data model (for more information, see Section 3.4, "Overview of the UI-Aware Data Model"). However, custom methods in non-application module data controls (for example, a data control for a CSV file) can return collections to the view layer. A method return appears as a child under the method that returns it. The objects that appear as children under a method return can be attributes of the collection, other methods that perform actions related to the parent collection, or operations that can be performed on the parent collection.	The same components as for collections and attributes. For named criteria: query or quick query forms. For more information, see Chapter 27, "Creating ADF Databound Search Forms." When a single-value method return is dropped, the method is not invoked automatically by the framework. You need either to create an invoke action as an excecutable, or to drop the corresponding method as a button to invoke the method. For more information about executables, see Section 12.6.2.2, "Executable Binding Objects."	
Operation	Represents a built-in data control operation that performs actions on the parent object. Data control operations are located in an Operations node under collections or method returns, and also under the root data control node. The operations that are children of a particular collection or method return operate on those objects only, while operations under the data control node operate on all the objects in the data control. If an operation requires one or more parameters, they are listed in a Parameters node under the operation.	UI command components, such as buttons, links, and menus. For more information, see Section 22.4, "Incorporating Range Navigation into Forms," and Section 22.5, "Creating a Form to Edit an Existing Record."	
Parameter	Represents a parameter value that is declared by the method or operation under which it appears. Parameters appear in the Parameters node under a method or operation.	Label, text, and selection list components.	
JDeveloper provides you with a predefined set of UI components from which to choose for each data control item you can drop.			
To use the Data Controls panel to create UI components:			
Tip: If you need to drop an operation or method onto a method activity in a task flow, you can simply drag and drop it onto the activity in the diagram.			
Tip: You can use the Filter icon in the Data Controls Panel header to search for a specific item, as shown in Figure 12-10.			
When you drag an item from the Data Controls panel and drop it on a page, JDeveloper displays a context menu of all the default UI components available for the item you dropped. The components displayed are based on the libraries in your project.			
Figure 12-11 shows the context menu displayed when a data collection from the Data Controls panel is dropped on a page.			
Depending on the component you select from the context menu, JDeveloper may display a dialog that enables you to define how you want the component to look. For example, if you select ADF Read-only Table from the context menu, the Edit Table Columns dialog launches. This dialog enables you to define which attributes you want to display in the table columns, what the column labels are, what types of text fields you want use for each column, and what functionality you want to include, such as row selection or column sorting. For more information about creating tables, see Chapter 23, "Creating ADF Databound Tables."			
The UI components selected by default are determined first by any UI control hints set on the corresponding business object. If no control hints have been set, then JDeveloper uses input components for standard forms and tables, and output components for read-only forms and tables. Components for lists are determined based on the type of list you chose when dropping the data control object.			
Once you select a component, JDeveloper inserts the UI component on the page in the visual editor. For example, if you drag a collection from the Data Controls panel and choose ADF Read-only Table from the context menu, a read-only table appears in the visual editor, as shown in Figure 12-12.			
By default, the UI components created when you use the Data Controls panel use ADF Faces components, are bound to attributes in the ADF data control, and may have one or more built-in features, including:			
The default components are fully functional without any further modifications. However, you can modify them to suit your particular needs. Each component and its various features are discussed further in Section 19.3.8, "Creating a Databound Web User Interface."			
Tip: If you want to change the type of ADF databound component used on a page, the easiest method is to delete the component and drag and drop a new one from the Data Controls panel. When you delete a databound component from a page, if the related binding objects in the page definition file are not referenced by any other component, JDeveloper automatically deletes those binding objects for you.			
When an Oracle ADF web application is built using the JSF framework, it requires a few additional application object definitions to render and process a page containing ADF databound UI components. If you do not use the Data Controls panel, you will have to manually configure these various files yourself. However, when you use the Data Controls panel, JDeveloper does all of the following required steps:			
DataBindings.cpx			
file in the default package for the project (if one does not already exist), and adds an entry for the page. DataBindings.cpx			
files define the binding context for the application. The binding context is a container object that holds a list of available data controls and data binding objects. For more information, see Section 12.3.3, "What Happens at Runtime: How the Binding Context Works." Each DataBindings.cpx			
file maps individual pages to the binding definitions in the page definition file and registers the data controls used by those pages. For more information, see Section 12.4, "Working with the DataBindings.cpx File."			
adfm.xml			
file in the META-INF directory. This file creates a registry for the DataBindings.cpx			
file, which allows the application to locate it at runtime so that the binding context can be created. web.xml			
file. The ADF binding filter preprocesses any HTTP requests that may require access to the binding context. For more information about the binding filter configuration, see Section 12.5, "Configuring the ADF Binding Filter."			
orion-application.xml			
file and adds a reference to the Oracle ADF shared libraries needed by the application view.pageDefs			
in the adfmsrc			
directory. The page definition file (pageName			
PageDef.xml			
) defines the ADF binding container for each page in an application's view layer. The binding container provides runtime access to all the ADF binding objects for a page. In later chapters, you will see how the page definition files are used to define and edit the binding object definitions for specific UI components. For more information about the page definition file, see Section 12.6, "Working with Page Definition Files."			
These prebuilt components include ADF data binding expression language (EL) expressions that reference the binding objects in the page definition file. For more information, see Section 12.7, "Creating ADF Data Binding EL Expressions."			
When a page contains ADF bindings, at runtime the interaction with the business services initiated from the client or controller is managed by the application through a single object known as the binding context. The binding context is a runtime map (named data and accessible through the EL expression #{data}			
) of all data controls and page definitions within the application.			
The ADF lifecycle creates the Oracle ADF binding context from the application module, DataBindings.cpx			
, and page definition files, as shown in Figure 12-13. The union of all the DataControls.dcx			
files and any application modules in the workspace define the available data controls at design time, but the DataBindings.cpx			
files define what data controls are available to the application at runtime. A DataBindings.cpx			
file lists all the data controls that are being used by pages in the application and maps the binding containers, which contain the binding objects defined in the page definition files, to web page URLs. The page definition files define the binding objects used by the application pages. There is one page definition file for each page.			
The binding context does not contain real live instances of these objects. Instead, the map contains references that become data control or binding container objects on demand. When the object (such as a page definition) is released from the application, for example when a task flow ends or when the binding container or data control is released at the end of the request, data controls and binding containers turn back into reference objects. For information about the ADF lifecycle, see Chapter 21, "Understanding the Fusion Page Lifecycle."			
The DataBindings.cpx			
files define the binding context for the entire application and provide the metadata from which the Oracle ADF binding objects are created at runtime. An application may have more than one DataBindings.cpx			
file if a component, for example a region, was created outside of the project and then imported. These files map individual pages to page definition files and declare which data controls are being used by the application. At runtime, only the data controls listed in the DataBindings.cpx			
files are available to the current application.			
The first time you use the Data Controls panel to add a component to a page or an operation to an activity, JDeveloper automatically creates a DataBindings.cpx			
file in the default package of the view project. It resides in the adfmsrc			
directory for the project. Once the DataBindings.cpx			
file is created, JDeveloper adds an entry for the first page or task flow activity. Each subsequent time you use the Data Controls panel, JDeveloper adds an entry to the DataBindings.cpx			
for that page or activity, if one does not already exist.			
Tip: JDeveloper supports refactoring. That is, you can safely rename or move many of the objects referenced in theDataBindings.cpx file, and the references will be updated. For more information, see Chapter 32, "Refactoring a Fusion Web Application."			
Once JDeveloper creates a DataBindings.cpx			
file, you can open it in the overview editor. Figure 12-14 shows the DataBindings.cpx			
file from the StoreFront module application, as viewed in the overview editor (note that it's been truncated).			
Example 12-1 shows an excerpt from the .cpx			
file in the StoreFront module application.			
Example 12-1			
The Page Mappings section of the editor maps each JSF page or task flow activity to its corresponding page definition file using an ID. The Page Definition Usages section maps the page definition ID to the absolute path for page definition file in the application. The Data Control Usages section identifies the data controls being used by the binding objects defined in the page definition files. These mappings allow the binding container to be initialized when the page is invoked.			
You can use the overview editor to change the ID name for page definition files or data controls by double-clicking the current ID name and editing inline. Doing so will update all references in the application. Note, however, that JDeveloper updates only the ID name, it does not update the file name. Be sure that you do not change a data control name to a reserved word. For more information, see Section 9.2.5, "How to Edit an Existing Application Module."			
You can also click an element in the Structure window and then use the Property Inspector to change property values. For more information about the elements and attributes in the DataBindings.cpx			
file, see Section A.7, "DataBindings.cpx."			
The ADF binding filter is a servlet filter that is an instance of the oracle.adf.model.servlet.ADFBindingFilter			
class. ADF web applications use the ADF binding filter to preprocess any HTTP requests that may require access to the binding context. To do this, the ADF binding filter must be aware of all DataBindings.cpx			
files that exist for an application.			
The first time you add a databound component to a page using the Data Controls panel, JDeveloper automatically configures the filter for you in the application's web.xml			
file.			
To configure the binding filter, JDeveloper adds the following elements to the web.xml			
file:			
javax.servlet.Filter			
interface. The ADF binding filter is defined in the web.xml			
file, as shown in Example 12-2. The filter-name			
element must contain the value adfBindings			
, and the filter-class			
element must contain the fully qualified name of the binding filter class, which is oracle.adf.model.servlet.ADFBindingFilter			
.			
At runtime, when a mapped resource is requested, a filter is invoked. Filter mappings are defined in the web.xml			
file, as shown in Example 12-3. The filter-name			
element must contain the value adfBindings			
.			
Example 12-3 Filter Mapping Defined in the web.xml File			
Tip: If you have multiple filters defined in theweb.xml file, be sure to list them in the order in which you want them to run. At runtime, the filters are executed in the sequence in which they appear in the web.xml file. The adfBindings filter should appear before any filters that depend on the ADF context to be initialized.			
At runtime, the ADF binding filter performs the following functions:			
web.xml			
file. The parameter name of the filter init-param			
element is encoding			
. ADFContext			
object, which is the execution context for a Fusion web application and contains context information about ADF, including the security context and the environment class that contains the request and response object. DataBindings.cpx			
file in the current project's adfmsrc			
directory. If the application contains DataBindings.cpx			
files that were imported from another project, those files are present in the application's class path. The filter additively loads any auxiliary .cpx			
files found in the class path of the application. Page definition files define the binding objects that populate the data in UI components at runtime. For every page that has ADF bindings, there must be a corresponding page definition file that defines the binding objects used by that page. Page definition files provide design time access to all the ADF bindings. At runtime, the binding objects defined by a page definition file are instantiated in a binding container, which is the runtime instance of the page definition file.			
Note: When multiple windows are open to the same page, the ADF Controller assigns each window its ownDataControlFrame . This ensures that each window has its own binding container.			
The first time you use the Data Controls panel, JDeveloper automatically creates a page definition file for that page and adds definitions for each binding object referenced by the component. For each subsequent databound component you add to the page, JDeveloper automatically adds the necessary binding object definitions to the page definition file.			
By default, the page definition files are located in the view.PageDefs			
package in the Application Sources directory of the view project. If the corresponding JSF page is saved to a directory other than the default (public_html			
), or to a subdirectory of the default, then the page definition will also be saved to a package of the same name. For example, if you save your JSF file to the public_html\myDirectory			
directory, the page definition will be saved to the myDirectory			
package. You can change the location of the page definition files using the ADF Model Settings page of the Project Properties dialog.			
JDeveloper names the page definition files using the following convention:			
pageName			
PageDef.xml			
where pageName			
is the name of the JSF page. For example, if the JSF page is named home.jsp			
, the default page definition file name is homePageDef.xml			
. If you organize your pages into subdirectories, JDeveloper prefixes the directory name to the page definition file name using the following convention:			
directoryName			
_			
pageName			
PageDef.xml			
For example, in the StoreFront module, the name of the page definition file for the updateUserInfo			
page, which is in the account			
subdirectory of the Web Content node is account_updateUserInfoPageDef.xml			
.			
Tip: Page definitions for task flows follow the same naming convention.			
To open a page definition file, you can right-click directly on the page or activity in the visual editor, and choose Go to Page Definition, or for a JSF page, you can click the Bindings tab of the editor and click the Page Definition File link.			
Tip: While JDeveloper automatically creates a page definition for a JSF page when you create components using the Data Controls panel, or for a task flow when you drop an item onto an activity, it does not delete the page definition when you delete the associated JSF page or task flow activity (this is to allow bindings to remain when they are needed without a JSF page, for example when using desktop integration). If you no longer want the page definition, you need to delete the page definition and all references to it manually. Note however, that as long as a corresponding page or activity is never called, the page definition will never be used to create a binding context. It is therefore not imperative to remove any unused page definition files from your application.			
When JDeveloper creates a paged definition file, it is displayed in the overview editor. Figure 12-15 shows the page definition file in the overview editor that was created for the myOrders.jspx			
page in the StoreFront module application.			
The overview editor contains the following tabs, which allow you to view and configure bindings, contextual events, and parameters for a page:			
OrderDate1			
attribute uses the MyOrdersIterator			
iterator to get its value. The iterator accesses the MyOrders			
collection on the StoreServiceAMDataControl			
data control. For more information, see Section 12.6.2.2, "Executable Binding Objects." By default, the model binding objects are named after the data control object that was used to create them. If a data control object is used more than once on a page, JDeveloper adds a number to the default binding object names to keep them unique. In Section 12.7, "Creating ADF Data Binding EL Expressions," you will see how the ADF data binding EL expressions reference the binding object names.			
Table 12-2 shows the icons for each of the binding objects, as displayed in the overview editor (note that while parameter objects are shown in the Parameter section of the editor, they are also considered binding objects).			
Table 12-2 Binding Object Icons			
Binding Object Type	Icon	Description	
---	---	---	
Parameter		Represents a parameter binding object.	
Bindings		Represents an attribute value binding object.	
Represents a list value binding object.			
Represents a tree value binding object.			
Represents a method action binding object			
Bindings/		Represents an action binding object. Also represents an invoke action executable binding object and an event.	
Executables		Represents an iterator binding object.	
Represents a task flow executable binding object.			
register.jspx			
page contains two regions. One region contains the customer registration task flow, and the other contains the informational topic task flow. A contextual event is passed from the customer registration region to the informational topic region so that the informational topic task flow can display the correct information topic. At design time, the event name, producer region, consumer region, consumer handler, and other information is stored in the event map section of the page definition file. For more information about contextual events, see Section 28.7, "Creating Contextual Events." Example 12-4 shows how parameter binding objects can be defined in a page definition file.			
Example 12-4 parameters Element of a Page Definition File			
The value of the filedBy			
parameter is defined by a binding on the userID			
data attribute, which would be an attribute binding defined later in the bindings			
element. The value of the status			
parameter is defined by an EL expression, which assigns a static value.			
Tip: By default, JDeveloper uses the dollar sign ($), which is a JSP EL syntax standard, as the prefix for EL expressions that appear in the page definition file. However, you can use the hash sign (#) prefix, which is a JSF EL syntax standard, as well.			
For more information about passing parameters to methods, see Section 28.3, "Setting Parameter Values Using a Command Component."			
When you click an item in the overview editor (or the associated node in the Structure window), you can use the Property Inspector to view and edit the attribute values for the item, or you can edit the XML source directly by clicking the Source tab. Example 12-5 shows abbreviated XML code for the page definition file shown in Figure 12-15.			
Example 12-5 Page Definition File			
In later chapters, you will see how the page definition file is used to define and edit the bindings for specific UI components. For a description of all the possible elements and attributes in the page definition file, see Section A.8, "pageNamePageDef.xml."			
There are three types of Bindings binding objects used to bind UI components to objects on the data control:			
Collectively, the binding objects are referred to as control binding objects, because they work with the UI controls on a page.			
Example 12-6 shows a sample bindings			
element, which defines one action binding called Commit			
, one attribute binding for a text field called PaymentOptionID1,			
and one list binding called PaymentTypeCode			
.			
Example 12-6 bindings Element of a Page Definition File			
The binding object defined in the action element encapsulates the information needed to invoke the built-in commit			
operation on the StoreServiceAMDataControl			
data control. The value of true			
in the RequiresUpdateModel			
attribute specifies that the model layer needs to be updated before the operation is executed.			
If this operation also raised a contextual event, an event definition would appears well. If the page contained bindings that consumed an event, the event mapping would also appear. For more information, see Section 28.7, "Creating Contextual Events."			
The attributeValues			
element defines the value bindings for the text fields on the page. In the example, the PaymentOptionId1			
attribute binding will display the value of the PaymentOptionId			
, which is defined in the AttrNames			
element. The IterBinding			
attribute references the iterator binding that manages the data to be displayed in the text field (for more information, see Section 12.6.2.2, "Executable Binding Objects").			
The PaymentTypeCode			
element defines the list binding used to display the list of payment type codes by accessing the LOV created on the PaymentOptions			
view object. For more information about creating lists using LOVs on view objects, see Chapter 25, "Creating Databound Selection Lists and Shuttles."			
There are seven types of executable binding objects:			
When you drop a collection or an attribute of a collection on the page, an iterator binding is automatically added as an executable. Iterator binding objects bind to an underlying ADF RowSetIterator			
object, which manages the current object and current range information. The iterator binding exposes the current object and range state to the other binding objects used by the page. The iterator range represents the current set of objects to be displayed on the page. The maximum number of objects in the current range is defined in the rangeSize			
attribute of the iterator. For example, if a collection in the data control contains products and the iterator range size is 25, the first 25 products in the collection are displayed on the page. If the user scrolls down, the next set of 25 is displayed, and so on. If the user scrolls up, the previous set of 25 is displayed. If your view object uses range paging, then you can configure the iterator binding to return a set of ranges at one time. For more information, see Section 39.1.5, "Efficiently Scrolling Through Large Result Sets Using Range Paging."			
Note: If you have two pages each with an iterator binding bound to the iterator on the same view object (which you will if you drop the same collection, for example, on two different pages), then you should ensure that therangeSize attribute is the same for both pages' iterator bindings. If not, the page with a smaller range size may cause the iterator to reexecute, causing unexpected results on the other page.			
A method iterator binding is always related to a method action binding object. The method action binding encapsulates the details about how to invoke the method and what parameters (if any) the method is expecting. The method action binding is itself bound to the method iterator, which provides the data.			
You will see method iterator executable binding objects only if you drop a method return collection or an attribute of a method return collection from a custom method on the data control. If you are using only application module data controls, you will see only iterator binding objects.			
Page variables are local to the binding container and exist only while the binding container object exists. When you use a data control method (or an operation) that requires a parameter that is to be collected from the page, JDeveloper automatically defines a variable for the parameter in the page definition file. Attribute bindings can reference the page variables.			
A variable iterator can contain one of two types of variables: variable			
and variableUsage			
. A variable			
type variable is a simple value holder, while a variableUsage			
type variable is a value holder that is related to a view object's named bind parameter. Defining a variable as a variableUsage			
type allows it to inherit the default value and UI control hints from the view object named bind variable to which it is bound.			
Tip: If you know you want a method to execute before the page is rendered, you should use a method call activity in the task flow to invoke the method, rather than an invoke action in the page definition file. Using the method call activity makes invoking page logic easier, and allows you to show more information on the task flow, making the diagram more readable and useful to anyone else who might be using it. However, if you need the method to be executed in more than one phase of the page's lifecycle, or if you plan to reuse the page and page definition file and want the method to be tied to the page, or if your application does not use ADFc, then you should use an invoke action to invoke the method.			
Note: You can also use the page element to bind to another page definition file. However, at runtime, only the current incoming page's (or if the rendered page is different from the incoming, the rendered page's) binding container is automatically prepared by the framework during the current request. Therefore, to successfully access a bound value in another page from the current page, you must programmatically prepare that page's binding container in the current request (for example, using a backing bean). Otherwise, the bound values in that page may not be available or valid in the current request.			
At runtime, executable bindings are refreshed based on the value of their Refresh			
attribute. Refreshing an iterator binding reconnects it with its underlying RowSetIterator			
object. Refreshing an invoke action binding invokes the action. Before refreshing any bindings, the ADF runtime evaluates any Refresh			
and RefreshCondition			
attributes specified in the executables. The Refresh			
attribute specifies the ADF lifecycle phase within which the executable should be invoked. The RefreshCondition			
attribute specifies the conditions under which the executable should be invoked. You can specify the RefreshCondition			
value using a boolean EL expression. If you leave the RefreshCondition			
attribute blank, it evaluates to true			
.			
By default, the Refresh			
value is set to deferred			
. This means the binding will not be executed unless its value is accessed (for example by an EL expression on a JSF page). Once called, it will not reexecute unless any parameter values for the binding have changed, or if the binding itself has changed.			
For more information about how bindings are refreshed and how to set the Refresh			
and RefreshCondition			
attributes, see Section 21.2, "The JSF and ADF Page Lifecycles."			
Example 12-7 shows an example of executable binding objects.			
Example 12-7 executable Binding Objects in a Page Definition File			
The iterator binding named MyOrderItems			
was created by dropping the MyOrderItems			
collection on the page as a table. The iterator binding named MyOrders			
was created by dropping the MyOrders			
collection, which has a master-detail relationship with the MyOrderItems			
collection. For more information, see Chapter 24, "Displaying Master-Detail Data."			
The Binds			
attribute of the iterator			
element defines the collection the iterator will iterate over. The RangeSize			
attribute defines the number of objects the iterator is to display on the page at one time. A RangeSize			
value of -1			
causes the iterator to display all the objects from the collection.			
Tip: Normally, an iterator binding's default range size is 25. However, when an iterator binding is created from the Edit List Binding dialog, the range size defaults to-1 so that all choices display in the list, not just the first 25.			
Performance Tip: When you want to reduce the number of roundtrips the iterator requires to fetch the data objects from the view object in the ADF Business Components layer, you can set therangeSize attribute to -1 , and the objects will be fetched in a single round trip to the server, rather than in multiple trips as the user navigates through the objects.			
To display data from the data model, web page UI components are bound to binding objects using JSF Expression Language (EL) expressions. These EL expressions reference a specific binding object in a binding container. At runtime, the JSF runtime evaluates an EL expression and pulls the value from the binding object to populate the component with data when the page is displayed. If the user updates data in the UI component, the JSF runtime pushes the value back into the corresponding binding object based on the same EL expression.			
Tip: There may be cases when you need to use EL expressions within managed beans. For information on working with EL expressions within managed beans, see the "Creating EL Expressions" section in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.			
When you use the Data Controls panel to create a component, the ADF data binding expressions are created for you. The expressions are added to every component attribute that will either display data from or reference properties of a binding object. Each prebuilt expression references the appropriate binding objects defined in the page definition file. You can edit these binding expressions or create your own, as long as you adhere to the basic ADF binding expression syntax. ADF data binding expressions can be added to any component attribute that you want to populate with data from a binding object.			
In JSF pages, a typical ADF data binding EL expression uses the following syntax to reference any of the different types of binding objects in the binding container:			
where:			
bindings			
is a variable that identifies that the binding object being referenced by the expression is located in the binding container of the current page. All ADF data binding EL expressions must start with the bindings			
variable. BindingObject			
is the ID, or for attributes the name, of the binding object as it is defined in the page definition file. The binding objectID			
or name is unique to that page definition file. An EL expression can reference any binding object in the page definition file, including parameters, executables, or value bindings. propertyName			
is a variable that determines the default display characteristics of each databound UI component and sets properties for the binding object at runtime. There are different binding properties for each type of binding object. For more information about binding properties, see Section 12.7.2, "What You May Need to Know About ADF Binding Properties." For example, in the following expression that might appear on a JSF page:			
#{bindings.ProductName.inputValue}			
the bindings			
variable references a bound value in the current page's binding container. The binding object being referenced is ProductName			
, which is an attribute binding object. The binding property is inputValue			
, which returns the value of the first ProductName			
attribute.			
Tip: While the binding expressions in the page definition file can use either a dollar sign ($) or hash sign (#) prefix, the EL expressions in JSF pages can use only the hash sign (#) prefix.			
As stated previously, when you use the Data Controls panel to create UI components, these expressions are built for you. However, you can also manually create them if you need to. The JDeveloper Expression Builder is a dialog that helps you build EL expressions by providing lists of binding objects defined in the page definition files, as well as other valid objects to which a UI component may be bound. It is particularly useful when creating or editing ADF databound expressions because it provides a hierarchical list of ADF binding objects and their most commonly used properties. For information about binding properties, see Section 12.7.2, "What You May Need to Know About ADF Binding Properties."			
You can select an item in the visual editor, and then create EL expressions for specific attributes using the Property Inspector.			
To open the Expression Builder from the Property Inspector:			
Once the Expression Builder is open, you can use it to create EL expressions.			
To use the Expression Builder:			
To narrow down the tree, you can either use the dropdown filter or enter search criteria in the search field. Double-click an item in the tree to move it to the Expression box.			
Tip: You can also type the expression directly in the Expression box.			
Table 12-3 Icons Under the ADF Bindings Node of the Expression Builder			
Icon	Description		
---	---		
Represents the			
Represents the			
Represents an action binding object. Opening a node that uses this icon exposes a list of valid action binding properties.			
Represents an iterator binding object. Opening a node that uses this icon exposes a list of valid iterator binding properties.			
Represents an attribute binding object. Opening a node that uses this icon exposes a list of valid attribute binding properties.			
Represents a list binding object. Opening a node that uses this icon exposes a list of valid list binding properties.			
Represents a table or tree binding object. Opening a node that uses this icon exposes a list of valid table and tree binding properties.			
Represents an ADF binding object property. For more information about ADF properties, see Section 12.7.2, "What You May Need to Know About ADF Binding Properties."			
Represents a parameter binding object.			
Represents a JavaBean.			
Represents a method.			
When you create a databound component using the Expression Builder, the EL expression might reference specific ADF binding properties. At runtime, these binding properties can define such things as the default display characteristics of a databound UI component or specific parameters for iterator bindings. The ADF binding properties are defined by Oracle APIs. For a full list of the available properties for each binding type, see Appendix B, "Oracle ADF Binding Properties."			
Values assigned to certain properties are defined in the page definition file. For example, iterator bindings have a property called RangeSize			
, which specifies the number of rows the iterator should display at one time. The value assigned to RangeSize			
is specified in the page definition file, as shown in Example 12-8.			
While the Data Controls panel enables you to design and create bound components in a single drag-and-drop action, in some cases, it may be preferable to create the basic UI components first and add the bindings later. For example, if your page will use declarative components, you will first need to drop the declarative component, and then bind it to the correct ADF control. Declarative components are reusable, composite UI components that are made up of other ADF Faces components. Once imported into a project, declarative components can be dropped onto a page from the Component Palette, similar to standard ADF Faces components. While the entire declarative component cannot use ADF data binding, you can use ADF data binding on the individual components that make up the declarative component, once the declarative component is dropped on the page. For more information about declarative components, see the "Using Declarative Components" section of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.			
Note: If you know the UI components on your page will eventually use ADF data binding, but you need to develop the pages before the data controls are ready, then you should consider using placeholder data controls, rather than manually binding the components. Using placeholder data controls will provide the same declarative development experience as using developed data controls. For more information, see Chapter 29, "Designing a Page Using Placeholder Data Controls."			
When designing web pages, keep in mind that ADF bindings can be added only to certain ADF Faces tags or their equivalent JSF HTML tags. Table 12-4 lists the ADF Faces and JSF tags to which you can later add ADF bindings.			
Tip: To enable the use of JSF Reference Implementation UI component tags with ADF bindings, you must choose the Include JSF HTML Widgets for JSF Databinding option in the ADF View Settings of the project properties. However, using ADF Faces tags, especially with ADF bindings, provides greater functionality than does using the reference implementation JSF tags.			
Table 12-4 Tags That Can Be Used for ADF Bindings			
ADF Faces Tags Used in ADF Bindings	Equivalent JSF HTML Tags		
---	---		
Text Fields			
af:i			
n/a			
Tables			
Actions			
n/a			
n/a			
Selection Lists			
n/a			
h:selectBooleanCheckbox			
Queries			
n/a			
n/a			
Trees			
n/a			
n/a			
Before adding binding to the UI components, ensure that you follow these guidelines:			
This option turns off JDeveloper's auto-binding feature, which automatically associates every UI component in the page to a corresponding property in the backing bean for eventual programmatic manipulation. If you intend to add ADF bindings to a page, do not use the auto-binding feature. If you use the auto-binding feature, you will have to remove the managed bean bindings later, after you have added the ADF bindings. The managed bean UI component property bindings do not affect the ADF bindings, but their presence may be confusing in the JSF code. For information about managed beans, see Section 20.4, "Using a Managed Bean in a Fusion Web Application."			
While you can add ADF bindings to JSF components, the ADF Faces components provide greater functionality, especially when combined with ADF bindings.			
You apply ADF model binding to components using the Structure window.			
To apply ADF Model data binding:			
The component must be one of the tags listed in Table 12-4. When you select a component in the visual editor, JDeveloper simultaneously selects that component tag in the Structure window, as shown in Figure 12-16.			
Note: Your project must already contain data controls for the Bind to ADF Control menu option to appear. If yours does not, you should consider using placeholder data controls, as described in Chapter 29, "Designing a Page Using Placeholder Data Controls."			
When you use the Data Controls panel all of the required ADF objects are automatically created for you, as described in Section 12.3.2, "What Happens When You Use the Data Controls Panel."			
This chapter describes how to call a third-party web service in a Fusion web application and work directly with the service proxy and service data objects (SDOs) programmatically for all common remote service data access tasks. It also describes how to create ADF data controls for third-party web services when you want to work with the web service in the user interface.			
This chapter includes the following sections:			
Web services allow enterprises to expose business functionality irrespective of the platform or language of the originating application because the business functionality is exposed in such a way that it is abstracted to a message composed of standard XML constructs that can be recognized and used by other applications.			
Web services are modular business services that can be easily integrated and reused, and it is this that makes them ideally suited as components within SOA. JDeveloper helps you to create top-down web services (services created starting from a WSDL), bottom-up web services (created from the underlying implementation such as a Java class or a PL/SQL stored procedure in a database), and services created from existing functionality such as exposing an application module as a service.			
You can consume web services in web applications, and common reasons for wanting to do so are:			
In a service-oriented architecture, your Oracle ADF application module may need to take advantage of functionality offered by a web service that is not based on an application module. A web service can be implemented in any programming language and can reside on any server on the network. Each web service identifies the methods in its API by describing them in a standard, language-neutral XML format. This XML document, whose syntax adheres to the Web Services Description Language (WSDL), enables JDeveloper to understand the names of the web service's methods, as well as the data types of the parameters they might expect and their eventual return value.			
Note: Application modules can also be exposed as web services so that they can be consumed across modules of the deployed Fusion web application. For details about reusing ADF Business Components using external services, see Chapter 11, "Integrating Service-Enabled Application Modules."			
JDeveloper's built-in web services wizards make this an easy task. Create a web service proxy class using the wizard, then call the service using method calls you add to a local Java object.			
To call a web service from an application module, you create a web service proxy class for the service you want to invoke. A web service proxy is a generated Java class that represents the web service inside your application. It encapsulates the service URL of the web service and handles the lower-level details of making the call.			
To work with a web service, you need to know the URL that identifies its WSDL document. If you have received the WSDL document as an email attachment, for example, and saved it to your local hard drive, the URL could be similar to:			
SomeService			
.wsdlAlternatively, the URL could be an HTTP-based URL like:			
someserver			
.somecompany			
.com/SomeService			
/SomeService			
.wsdlSome web services make their WSDL document available by using a special parameter to modify the service URL. For example, a web service that expects to receive requests at the HTTP address of http://			
someserver.somecompany			
.com/			
SomeService			
might publish the corresponding WSDL document using the same URL with an additional parameter on the end, like this:			
someserver			
.somecompany			
.com/SomeService			
?WSDLSince there is no established standard, you will just need to know what the correct URL to the WSDL document is. With the URL information, you can then create a web service proxy class to call the service.			
ADF Business Components services have URLs to the service of the following formats:			
http://host:port/EJB-context-root/@WebService-name?WSDL			
, for example: http://host:port/context-root/@WebService-name?WSDL			
, for example: The web service proxy class presents a set of Java methods that correspond to the web service's public API. By using the web service proxy class, you can call any method in the web service in the same way as you work with the methods of any other local Java class.			
To call a web service from an application module using a proxy class, you perform the following tasks:			
To create a web service proxy class for a web service you need to call, use the Create Web Service Proxy wizard.			
To create a web service proxy class to programmatically access the service:			
If the Next button does not enable, click Why Not? to understand what problem JDeveloper encountered when trying to read the WSDL document. If necessary, fix the problem after verifying the URL and repeat this step.			
After you create the web service proxy, you must implement the methods in the proxy class to access the desired web services.			
To call the web service proxy template to invoke the service:			
port_name			
Client.java			
, in the source editor, and locate the comment // Add your own code to call the desired methods			
, which is in the main method. After you've generated the web service proxy class, you can use it inside a custom method of your application module, as shown in Example 13-1. The method creates an instance of the web service proxy class and calls the web service method from the web service proxy class for the result.			
Example 13-1 Web Service Proxy Class Calls Web Service Method			
YourModuleImpl			
.javaAfter developing a web service proxy, you can generate additional connections for the proxy that you can use in testing and deployment situations. For example, you might want to create a connection that includes user name and password for testing purposes.			
The connection information is stored in the connections.xml			
file along with the other connections in your application. This abstraction of the endpoint URL also allows you to edit the connection after deployment using Enterprise Manager without requiring modification to the client code.			
To create a new web service connection:			
The New ADF Web Service Connection dialog displays the default settings for a connection associated with the selected proxy.			
WARNING: If you create a new web service connection with the same name as an existing connection, the existing connection will be overwritten with the new information.			
After you create a new web service connection, you can modify your client to use this connection. You could use code similar to that shown in Example 13-2 to access the connection from your client.			
Example 13-2 Accessing a Web Service Connection from a Client			
MyAppModuleService			
");MyAppModuleService			
proxy = wsc.getJaxWSPort(MyAppModuleService			
.class);The argument that you pass to the lookup()			
method is the name that you gave to the web service connection. In this example, it is MyAppModuleService			
.			
JDeveloper generates the web service proxy class in the package you've indicated with a name that reflects the name of the web service port it discovered in the WSDL document. The web service port name might be a human-readable name like StockQuoteService			
, or could be a less-friendly name like StockQuoteServiceSoapHttpPort			
. The port name is decided by the developer that published the web service you are using. If the port name of the service were StockQuoteServiceSoapHttpPort			
, for example, JDeveloper would generate a web proxy class named StockQuoteServiceSoapHttpPortClient			
.			
The web service proxy displays in the Application Navigator as a single, logical node called WebServiceName			
Proxy			
. For example, the node for the StockQuoteService			
web service would appear in the navigator with the name StockQuoteServiceProxy			
. As part of generating the proxy class, in addition to the main web service proxy class that you use to invoke the server, JDeveloper generates a number of auxiliary classes and interfaces. You can see these files in the Application Navigator under the WebServiceName			
Proxy			
node. The generated files are used as part of the lower-level implementation of invoking the web service.			
The only auxiliary generated classes you need to reference are those created to hold structured web service parameters or return types. For example, imagine that the StockQuoteService			
web service has a quoteForSymbol()			
method that accepts one String			
parameter and returns a floating-point value indicating the current price of the stock. If the designer of the web service chose to return a simple floating-point number, then the web service proxy class would have a corresponding method like this:			
If instead the designer of the web service thought it useful to return multiple pieces of information as the result, then the service's WSDL file would include a named structure definition describing the multiple elements it contains. For example, assume that the service returns both the symbol name and the current price as a result. To contain these two data elements, the WSDL file might define a structure named QuoteInfo			
with an element named symbol			
of string type and an element named price			
of floating-point type. In this situation, when JDeveloper generates the web service proxy class, the Java method signature would instead look like this:			
The QuoteInfo			
return type references one of the auxiliary classes that comprises the web service proxy implementation. It is a simple bean whose properties reflect the names and types of the structure defined in the WSDL document. In a similar way, if the web service accepts parameters whose values are structures or arrays of structures, then you will work with these structures in your Java code using the corresponding generated beans.			
When you invoke a web service from an application module, the web service proxy class handles the lower-level details of using the XML-based web services protocol described in SOAP. In particular, it does the following:			
HTTP POST			
request If the method you invoke has a return value, your code receives it as an appropriately typed object to work with in your application module code.			
When you are implementing web service proxies in an application, you might want to use a try-catch block to handle web service exceptions or invoke an application module with a web service proxy class. The following sections contain additional information you might need to know about these and other features with regard to web service proxies.			
By using the generated web service proxy class, invoking a remote web service becomes as easy as calling a method in a local Java class. The only distinction to be aware of is that the web service method call could fail if there is a problem with the HTTP request involved. The method calls that you perform against a web service proxy should anticipate the possibility that the request might fail by wrapping the call with an appropriate try...catch			
block. Example 13-3 improves on the simpler example (shown in Section 13.2.1.3, "Calling a Web Service Method Using the Proxy Class in an Application Module") by catching the web service exception. In this case, it simply rethrows the error as a JboException			
, but you could implement more appropriate error handling in your own application.			
Example 13-3 Wrapping Web Service Method Calls with a Try-Catch Block			
You will use some web services to access reference information. However, other services you call may modify data. This data modification might be in your own company's database if the service was written by a member of your own team or another team in your company. If the web service is outside your firewall, of course the database being modified will be managed by another company.			
In either of these situations, it is important to understand that any data modifications performed by a web service you invoke will occur in their own distinct transaction, unrelated to the application module's current unit of work. For example, if you have invoked a web service that modifies data and then you later call rollback()			
to cancel the pending changes in the application module's current unit of work, this has no effect on the changes performed by the web service you called in the process. You may need to invoke a corresponding web service method to perform a compensating change to account for your rollback of the application module's transaction.			
If the web service you need to call resides outside your corporate firewall, you need to ensure that you have set the appropriate Java system properties to configure the use of an HTTP proxy server. The Java system properties to configure are:			
http.proxyHost			
— Set this to the name of the proxy server. http.proxyPort			
— Set this to the HTTP port number of the proxy server (often 80). http.nonProxyHosts			
— Optionally set this to a vertical-bar-separated list of servers not requiring the user of a proxy server (for example, localhost	127.0.0.1	*.	
yourcompany			
.com			
). Within JDeveloper, you can configure an HTTP proxy server on the Web Browser and Proxy page of the Preferences dialog. When you run your application, JDeveloper includes appropriate -D			
command-line options to set these three system properties based on the settings you've indicated in this dialog.			
If you use a web service proxy class to invoke an Oracle ADF service-based application module, you lose the ability to optimize the call when the calling component and the service you are calling are colocated. As an alternative, you can use the service interface approach described in Chapter 11, "Integrating Service-Enabled Application Modules."			
The most common way of using web services in an application developed using Oracle ADF is to create a data control for an external web service. A typical reason for doing this is to add functionality that is readily available as a web service, but which would be time consuming to develop with the application, or to access an application that runs on a different architecture.			
Additionally, you can reuse components created by Oracle ADF to make them available as web services for other applications to access.			
JDeveloper allows you to create a data control for an existing web service using just the WSDL for the service. You can browse to a WSDL on the local file system, locate one in a UDDI registry, or enter the WSDL URL directly.			
Note: If you are working behind a firewall and you want to use a web service that is outside the firewall, you must configure the Web Browser and Proxy settings in JDeveloper. For more information, see Section 13.2.5.3, "Setting Browser Proxy Information."			
To create a web service data control:			
If you want to include header parameters when invoking the SOAP request, select Include Http Header Parameter. For more information, see Section 13.3.2, "How to Include a Header Parameter for a Web Service Data Control."			
When using a web service data control, you may want to add an enterprise ID to the HTTP header when invoking the SOAP request. This enterprise ID in the request allows the web service data control to specify which cloud service the request will be directed to.			
To configure the web service data control to use a header parameter, you select Include Http Header Parameter on the Data Control Operations page of the Create Web Service Data Control wizard. After creating the data control, you will be able to see the HttpHeader parameter in the Data Controls panel under the Parameters node of the web service data control's methods. You will also notice that AdapterDataControl			
element for the web service data control (in the .dcx			
file) contains an <httpHeaders paramName="HttpHeader"/>			
element.			
To use the HttpHeader			
parameter, you will need to create a backing bean in the view controller project for the web service data control. The value for the HttpHeader			
parameter is provided through the backing bean. The backing bean must have a property of the type Map			
and the name/value pairs for the http headers should be added to that property. Additionally, the Map			
must be of type <String, List<String>>			
or <String,String>			
, and you should expose the property with getter and setter methods, as shown Example 13-4.			
Example 13-4 Backing Bean to Support Http Header Parameters in a Web Service Data Control			
When you drag and drop the operation from the Data Controls panel onto a page as an ADF Parameter Form, remove the HttpHeader from the list of fields. Then, in the Edit Action Binding dialog, under the Parameters section specify the value for HttpHeader parameter by giving providing an expression that points to the backing bean Map			
property.			
After developing a web service data control, you can modify the endpoint. This is useful, for example, when you migrate the application from a test environment to production.			
To change the endpoint for a web service data control:			
.dcx			
file for the web service data control. After creating a web service data control, you might find that a web service operation has changed in its method signature, return type, or structure. When this happens, you can update the data control without having to re-create it.			
To refresh an operation in a web service data control:			
.dcx			
file for the web service data control. JDeveloper queries the web service and updates the web service data control to reflect the current state of the selected operation.			
As with other kinds of data controls, you can design a databound user interface by dragging an item from the Data Controls panel and dropping it on a page as a specific UI component. For more information, see Section 12.3.1, "How to Use the Data Controls Panel."			
In the Data Controls panel, each data control object is represented by an icon. Table 13-1 describes what each icon represents, where it appears in the Data Controls panel hierarchy, and what components it can be used to create.			
Table 13-1 Data Controls Panel Icons and Object Hierarchy for Web Services			
Icon	Name	Description	Used to Create...
---	---	---	---
Data Control	Represents a data control. You cannot use the data control itself to create UI components, but you can use any of the child objects listed under it. Depending on how your web services are defined, there may be more than one data control. Typically, there is one data control for each web service. However, you may have additional data controls that were created for other types of business services (for example, application modules). For information about creating data controls for application modules, see Chapter 12, "Using ADF Model in a Fusion Web Application."	Serves as a container for other objects and is not used to create anything	
Collection	Represents a named data collection. A data collection represents a set of data objects (also known as a row set) in the data model. Each object in a data collection represents a specific structured data item (also known as a row) in the data model. Throughout this guide, data collection and collection are used interchangeably. For more information about using collections on a data control to create forms, see Chapter 22, "Creating a Basic Databound Page." For more information about using collections to create tables, see Chapter 23, "Creating ADF Databound Tables." For more information about using master-detail relationships to create UI components, see Chapter 24, "Displaying Master-Detail Data." For information about creating graphs, charts, and other visualization UI components, see Chapter 26, "Creating Databound ADF Data Visualization Components."	Forms, tables, graphs, trees, range navigation components, and master-detail components.	
Attribute	Represents a discrete data element in an object (for example, an attribute in a row). Attributes appear as children under the collections or method returns to which they belong. For information about using attributes to create fields on a page, see Section 22.2, "Using Attributes to Create Text Fields." For information about creating lists, see Chapter 25, "Creating Databound Selection Lists and Shuttles."	Label, text field, date, list of values, and selection list components.	
Structured Attribute	Represents a returned object that is not one of the Java primitive types (which are represented as attributes) and is also not a collection of any type. An example of a structured attribute would be a domain, which is a developer-created data type used to simplify application maintenance. For more information about domains, see Section 38.1, "Creating Custom, Validated Data Types Using Domains."	Label, text field, date, list of values, and selection list components	
Method	Represents an operation in the data control or one of its exposed structures that may accept parameters, perform some business logic and optionally return single value, a structure or a collection of those. For more information about using methods that accept parameters, see Section 28.2.2.2, "Using Parameters in a Method."	Command components For methods that accept parameters: command components and parameterized forms	
Method Return	Represents an object that is returned by a custom method. The returned object can be a single value or a collection. If a custom method returns anything at all, it is usually a single scalar value. However, some custom methods can return collections. A method return appears as a child under the method that returns it. The objects that appear as children under a method return can be attributes of the collection, other methods that perform actions related to the parent collection, and operations that can be performed on the parent collection. When a single-value method return is dropped, the method is not invoked automatically by the framework. You either need to also create an invoke action as an executable, or drop the corresponding method as a button to invoke the method. For more information about executables, see Section 12.6.2.2, "Executable Binding Objects."	The same components as for collections and attributes. For named criteria: query or quick query forms. For more information, see Chapter 27, "Creating ADF Databound Search Forms."	
Operation	Represents a built-in data control operation that performs actions on the parent object. Data control operations are located in an Operations node under collections or method returns, and also under the root data control node. The operations that are children of a particular collection or method return operate on those objects only, while operations under the data control node operate on all the objects in the data control. If an operation requires one or more parameters, they are listed in a Parameters node under the operation. The standard operations supported by the web service data control are for form navigation: First, Last, Next, and Previous. Because the web service data control is not an updateable data control, you cannot use built-in operations like commit, rollback, and execute.	UI command components, such as buttons, links, and menus. For more information, see Section 22.4, "Incorporating Range Navigation into Forms," and Section 22.5, "Creating a Form to Edit an Existing Record."	
Parameter	Represents a parameter value that is declared by the method or operation under which it appears. Parameters appear in the Parameters node under a method or operation. Array and structured parameters are exposed as updateable structured attributes and collections under the data control, which can be dropped as an ADF form or an updateable table on the UI. You can use the UI to build a parameter that is an array or a complex object (not a standard Java type).	Label, text, and selection list components.	
Web services allow applications to exchange data and information through defined application programming interfaces. SSL (Secure Sockets Layer) provides secure data transfer over unreliable networks, but SSL only works point to point. Once the data reaches the other end, the SSL security is removed and the data becomes accessible in its raw format. A complex web service transaction can have data in multiple messages being sent to different systems, and SSL cannot provide the end-to-end security that would keep the data invulnerable to eavesdropping.
Any form of security for web services has to address the following issues:
Throughout this section the "client" is the web service data control, which sends SOAP messages to a deployed web service. The deployed web service may be:
The WS-Security specification unifies multiple security technologies to make secure web services interoperable between systems and platforms. You can view the specification at http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
.
WS-Security addresses the following aspects of web services security issues:
The identity of the sender of the data is verified, and the security system ensures that the sender has privileges to perform the data transaction.
The type of authentication can be a basic username/password pair transmitted in plain text, or trusted X509 certificate chains. SAML assertion tokens can also be used to allow the client to authenticate against the service, or allow it to participate in a federated SSO environment, where authenticated details are shared between domains in a vendor-independent manner.
XML digital signatures, which use industry-standard messages, digest algorithms to digitally sign the SOAP message.
XML encryption that uses industry-standard encryption algorithms to encrypt the message.
Defines XML structures to time-stamp the SOAP message. The server uses the time stamp to invalidate the SOAP message after a defined interval.
A web service data control can be configured for message-level security using either Java Key Store (JKS) or the Oracle Wallet. For information on setting up and using Oracle Wallet, see the Oracle Technology Network at http://www.oracle.com/technetwork
.
For more information about creating and using key stores for message protection, see the section about managing keystores, wallets, and certificates in the Oracle Fusion Middleware Administrator's Guide, and the section about configuring policies in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
After you create a web services data control in a JDeveloper project, you can define security for the data control using the Edit Data Control Policies dialog.
To define security for a web service data control:
.dcx
file. JDeveloper displays the Edit Data Control Policies dialog, which shows the Policy Store location. To select an alternative policy store, use the WS Policy Store page of the Preferences dialog.
For more information about predefined policies and configuring policies and their properties, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
This chapter describes how to create ADF task flows that enable navigation, encapsulation, reuse, managed bean lifecycles, and transactions within an application. It includes the basic steps for creating a task flow diagram, adding activities and control flows to it, and running the finished task flow.
This chapter includes the following sections:
ADF task flows provide a modular approach for defining control flow in an application. Instead of representing an application as a single large JSF page flow, you can break it up into a collection of reusable task flows. Each task flow contains a portion of the application's navigational graph. The nodes in the task flows are activities. An activity node represents a simple logical operation such as displaying a page, executing application logic, or calling another task flow. The transactions between the activities are called control flow cases.
Figure 14-1 shows two view activities called Create
and Confirm
. These view activities are similar to page nodes within a JSF page flow.
Task flows can invoke managed beans. For more information about defining managed beans for use with a task flow, the supported memory scopes, and other related information, see Section 14.2.4, "What You May Need to Know About Memory Scope for Task Flows" and Section 20.4, "Using a Managed Bean in a Fusion Web Application".
ADF task flows offer significant advantages over standard JSF page flows, as described in Table 14-1.
Table 14-1 ADF Task Flow Advantages
JSF Page Flow | ADF Task Flow |
---|---|
The entire application must be represented in a single page navigation file (| The application can be broken up into a series of modular flows that call one another. |
All nodes within a JSF page flow must be JSF pages. No other types of objects can exist within the JSF page flow. | You can add to the task flow diagram nodes such as views, method calls, and calls to other task flows. |
Navigation is only between pages. | Navigation is between pages as well as other activities, including routers. For more information, see Section 15.4, "Using Router Activities". |
Application fragments cannot be reused. | ADF task flows are reusable within the same or an entirely different application. After you break up your application into task flows, you may decide to reuse task flows containing common functionality. For more information see Chapter 33, "Reusing Application Components". |
There is no shared memory scope between multiple requests except for session scope. | Shared memory scope (for example, page flow scope) enables data to be passed between activities within the task flow. Page flow scope defines a unique storage area for each instance of an ADF bounded task flow. |
The two types of ADF task flow are:
For a description of the activity types that you can add to an ADF unbounded or bounded task flow see Chapter 15, "Working with Task Flow Activities".
A bounded task flow is also known as a task flow definition. By default, JDeveloper proposes the following filename for the source file of a bounded task flow:
task-flow-definition
N
.xml
where N is a number that increments each time that you create a new bounded task flow.
The file contains the metadata for the bounded task flow. Multiple task flow definitions (bounded task flows) can be included within the same task flow definition file.
A typical application is a combination of an unbounded and one or more bounded task flows. For example, JDeveloper, by default, creates an empty unbounded task flow (source file name is adfc-config.xml
) when you create a Fusion web application using the Fusion Web Application template. At runtime, the Fusion web application can call bounded task flows from activities that you added to this unbounded task flow.
As shown in Figure 14-2, the first activity to execute in an application is often a view activity within an ADF unbounded task flow. A view activity represents a JSF page that displays as part of the application. The activity shown in Figure 14-2 starts with the Home
view activity and then calls a bounded task flow. The calltoLogin_taskFlow
activity calls a bounded task flow that enables a user to log into the application.
You can also design an application in which all application activities reside within the ADF unbounded flow. This mimics a Struts or JSF application, but doesn't take advantage of ADF bounded task flow functionality. To take full advantage of task flow functionality, use ADF bounded task flows.
A Fusion web application always contains an ADF unbounded task flow, which contains the entry point or points to the application. Figure 14-3 displays the diagram for the unbounded task flow from the Fusion Order Demo Application. This task flow contains a number of view activities that are all entry points to the application.
You typically use an unbounded instead of a bounded task flow if:
Pages are associated with view activities. The icon for a view activity displays a page image like this:
An unbounded task flow cannot declaratively specify parameters. In addition, it cannot contain a default activity, an activity designated as the first to run in the unbounded task flow. This is because an unbounded task flow does not have a single point of entry. To perform any of these requires an ADF bounded task flow.
In order to take advantage of completely declarative ADF Controller transaction and reentry support, use a bounded rather than an unbounded task flow.
An ADF bounded task flow is used to encapsulate a reusable portion of an application. A bounded task flow is similar to a Java method in that it:
The checkout-task-flow
activity in Figure 14-3 is a call to an ADF bounded task flow. An unbounded task flow can call an ADF bounded task flow, but cannot be called by another task flow. A bounded task flow can call another bounded task flow, which can call another and so on. There is no limit to the depth of the calls.
The checkout process is created as a separate ADF bounded task flow, as shown in Figure 14-4.
The reasons for creating the checkout-task-flow
activity as a called bounded task flow are:
In the checkout task flow, the activity labeled reconcileShoppingCart
invokes a method that returns a list of items that an anonymous user (one who has not yet logged in to the application) may have chosen to purchase. Any items chosen before authentication are included in the shopping cart after the user has logged in. Because it is the default activity, the method is always invoked before the shopping cart order page displays.
checkout-task-flow
is reusable. For example, it can be included in other applications requiring an item checkout process. The bounded task flow can also be reused within the same application. checkout-task-flow
can be specified in page flow scope, so are isolated from the rest of the application. The main features of ADF bounded task flows are summarized in Table 14-2.
Table 14-2 ADF Bounded Task Flow Features
Feature | Description |
---|---|
Well-defined boundary | An ADF bounded task flow consists of its own set of private control flow rules, activities, and managed beans. A caller requires no internal knowledge of such things as page names, method calls, child bounded task flows, managed beans, and control flow rules within the bounded task flow boundary. Input parameters can be passed into the bounded task flow, and output parameters can be passed out on exit of the bounded task flow. Data controls can be shared between task flows. |
Single point of entry | An ADF bounded task flow has a single point of entry, a default activity that executes before all other activities in the task flow. For more information, see Section 14.2.3, "What You May Need to Know About the Default Activity in an ADF Bounded Task Flow". |
Page flow memory scope | You can specify page flow scope as the memory scope for passing data between activities within the ADF bounded task flow. Page flow scope defines a unique storage area for each instance of an ADF bounded task flow. Its lifespan is the ADF bounded task flow, which is longer than request scope and shorter than session scope. For more information, see Section 14.2.4, "What You May Need to Know About Memory Scope for Task Flows". |
Addressable | You can access an ADF bounded task flow by specifying its unique identifier within the XML source file for the bounded task flow and the file name of the XML source file. For more information, see Section 15.6.8, "What Happens When You Add a Task Flow Call Activity". |
Reuse | You can identify an entire group of activities as a single entity, an ADF bounded task flow, and reuse the bounded task flow in another application within an ADF region. For example, the Hot Items and Start Shopping tabs on the home page of the Fusion Order Demo application reuse the same task flow embedded in a region. Different parameters are passed to each region to determine the lists of products that display.For more information, see Section 17.2, "Creating an ADF Region". You can also reuse an existing bounded task flow simply by calling it. For example, one task flow can call another bounded task flow using a task flow call activity or a URL. In addition, you can use task flow templates to capture common behaviors for reuse across different ADF bounded task flows. For more information, see Section 18.11, "Creating a Task Flow Template". |
Parameters and return values | A caller can pass input parameters to an ADF bounded task flow and accept return values from it. For more information, see Section 16.3, "How to Pass Parameters to an ADF Bounded Task Flow". In addition, you can share data controls between bounded task flows. For more information, see Section 16.4, "Sharing Data Control Instances". |
Transaction management | An ADF bounded task flow can represent a transactional unit of work. You can declaratively specify options on the bounded task flow that determine whether, when entering the task flow, the task flow creates a new transaction, joins an existing one or is not part of the existing transaction. For more information, see Section 18.3, "Managing Transactions". |
Reentry | You can specify options on the bounded task flow that determine whether or not it can be reentered. For more information, see Section 18.4, "Reentering a Bounded Task Flow". |
On-demand loading of metadata | ADF bounded task flow metadata is loaded on demand when entering an ADF bounded task flow. |
Security | You can secure an ADF bounded task flow by defining the privileges that are required for someone to use it. |
A task flow consists of activities and control flow cases that define the transitions between activities. In Figure 14-5, the control flow labeled toView2
defines the transition between ViewActivity1
and ViewActivity2
. ViewActivity1
displays before ViewActivity2
when the task flow in Figure 14-5 executes.
Figure 14-5 contains a method call (methodCall1
) that invokes after ViewActivity2
and before it calls the taskflowCall1
bounded task flow. In a task flow, you invoke an activity such as a method before or after a page renders. Invoking a method outside of a particular page can facilitate reuse because you can reuse the page in other contexts that don't require the method (for example, a different task flow).
Control flow rules are based on JSF navigation rules, but capture additional information. JSF navigation is always between pages, whereas control flow rules describe transitions between activities. For example, a control flow rule can indicate a transition between a view activity and a subsequent method call activity. Or, it can indicate that control passes from the page to another task flow.
Save point restore, task flow return, and URL view activities cannot be the source of a control flow rule.
The basic structure of a control flow rule mimics a JSF navigation rule. Table 14-3 describes how metadata maps from JSF navigation rules to control flow rules.
Table 14-3 Mapping of JSF Navigation Rules to Control Flow Rules
JSF Navigation Rule | Control Flow Rule |
---|---|
Navigation Rule | Control Flow Rule |
From View ID | From Activity ID |
Navigation Case | Control Flow Case |
From Action | From Action |
From Outcome | From Outcome |
To View ID | To Activity ID |
Note: When using ADF task flows, perform all application navigation using ADF Controller control flow rules instead of using navigation rules infaces-config.xml .ADF Controller delegates navigation handling when no matching control flow cases are found in ADF Controller metadata. However, not all ADF Controller functionality is guaranteed to work correctly if navigation is performed by a non-ADF Controller NavigationHandler. |
A wildcard control flow rule represents a control flow from-activity-id
that contains a trailing wildcard (foo*
) or a single wildcard character (*
). Use the single wildcard character when you want to pass control from any activity in the task flow to the wildcard control flow rule. Alternatively, use a trailing wildcard when you want to constrain the activities that can pass control to the wildcard control flow rule.
In Figure 14-6, the wildcard control flow rule contains a single wildcard character, indicating that control can pass to the activities connected to it in the task flow diagram from any activity within the task flow.
The trailing wildcard in Figure 14-7 indicates that control flow can pass to the loginPage
view from any valid source activity whose activity-id
begins with the characters storefront
.
A task flow is made up of the task flow itself, plus a number of activities with control flow rules between those activities. In most cases, the majority of the activities are view activities which represent the different pages in the flow. When some method or operation needs to be called, for example before a page is rendered, you use a method call activity with a control flow rule from that activity to the appropriate next activity. When you want to call another task flow, you use a task flow call activity. If the flow requires some sort of branching, you use a router activity. At the end of a bounded task flow, you use a return activity which allows the flow to exit and control is sent back to the flow that called this bounded task flow.
Note: If your application uses Facelets XHTML files in the view layer, you manually configure navigation in a task flow's source file between the view activities that reference these Facelets XHTML files. |
For more detailed information and procedures regarding the individual components of a task flow, including the metadata created for each and additional configuration that you can set, see Section 14.3, "Adding Activities to a Task Flow."
The processes for creating ADF bounded and unbounded task flows are similar. The main difference is that you select the Create as Bounded Task Flow checkbox in the Create Task Flow dialog to create an ADF bounded task flow.
Note: When you create the project, you may not need to create an unbounded task flow for it. If ADF Page Flow is specified as a selected technology on the Technology Scope page of the Project Properties dialog, the newadfc-config.xml source file is automatically created within the project. The adfc-config.xml source file is the main source file for an unbounded task flow. |
To create a task flow:
The dialog shown in Figure 14-8 displays.
Deselecting the checkbox automatically changes the default value in the File Name field. This value will be used to name the XML source file for the ADF task flow you are creating. The XML source file contains metadata describing the activities and control flow rules in the task flow.
Tip: The default name for an unbounded task flow isadfc-config.xml . The default name for the source file for a bounded task flow matches the value specified in the Task Flow ID field. |
Because a single project can contain multiple task flows, a number may be added to the default value in the File Name field in order to give the source file a unique name, for example, task-flow-definition3.xml
.
Clear the Create with Page Fragments checkbox that is selected by default if you want the view activities that you add to the task flow to reference JSF pages. Leave the Create with Page Fragments checkbox selected if you want the view activities that you add to the task flow to reference page fragments files (.jsff
).
A diagram representing the task flow displays in the editor.
Tip: You can view a thumbnail of the entire task flow diagram by clicking the diagram and then choosing View > Thumbnail from the main menu. |
You can also use the Structure window to update the task flow.
Tip: There are other ways to create task flows, for example, by refactoring the contents of an existing ADF task flow into a new task flow. For more information, see Section 14.5, "Refactoring to Create New ADF Task Flows and Templates". |