Developer's Guide for Oracle WebCenter Portal
11g Release 1 (11.1.1.6.0)
E10148-18
February 2012
Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Portal, 11g Release 1 (11.1.1.6.0)
E10148-18
Copyright © 2007, 2012, Oracle and/or its affiliates. All rights reserved.
Primary Author: William Witman
Contributing Authors: Ingrid Snedecor, Jennifer Shipman, Joan Carter, Lalithashree Rajesh, Michele Cyran, Peter Jacobsen, Promila Chitkara, Rosie Harvey, Sarah Bernau, Savita Thakur, Sue Highmoor, Tom Maremaa
Contributor: Randy Akl, Maheswaran Anantharaman, Sivakumar Balagopalan, Rahmathulla Baig, Ravishankar Belavadi, Chris Broadbent, Steve Burns, Chris Carter, Chung Cheng, Demetris Christou, Vicki Chun, Ross Clewley, Manish Devgan, Marcus Diaz, Sumit Dubey, Frans Effendi, Paul Encarnacion, Gaurav Mittal, Jeni Ferns, Robin Fisher, Michael Freedman, Nick Greenhalgh, Christian Hauser, Harsha Huddar, Hsing Huang, Clayton Jung, Medini Kakade, Hrishikesh Karambelkar, Seshan Kennan, Sanjay Khanna, Vasant Kumar, Paul Lin, Yueh-Hong Lin, Alison Macmillan, George Maggessy, Pankaj Mittal, Dan Mullen, Lei Oh, Nicolas Pombourcq, Prabhakar Munnangi Reddy, Puvanenthiran Subbaraj, Rajesh Ramachandran, Sripathy Rao, Shubha Rangarajan, Shakeb Sagheer, Raghu Sampathkrishna, Andrew Sefkow, Jennifer Shu, Ved Singh, Vidhya Sundaram, Paul Spencer, Stephen Thornhill, Deepthi Umakanth, Kundan Vyas, Alistair Wilson, Stewart Wilson, Hui Zeng, Brad Posner, Steve Roth, Greg Smith, Tanya Saarva, Chris Bales, Ray Polk, Jeff Mueller, Pankash Kapasi, Sameer Sawant, Ken Young, Leevar Williams, Arun Tharakkal, Don Hayler, Cindy McMullen, Phil Griffin, Tom Porcaro, Dawn Tyler, Jordan Douglas
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This guide explains how to build portal applications using WebCenter Portal: Framework and provides in-depth information for all of the following tasks:
Note: For the portable document format (PDF) version of this manual, when a URL breaks onto two lines, the full URL data is not sent to the browser when you click it. To get to the correct target of any URL included in the PDF, copy and paste the URL into your browser's address field. In the HTML version of this manual, you can click a link to directly display its target in your browser. |
This guide assumes the audience has already read and performed the steps in the Oracle Fusion Middleware Tutorial for Oracle WebCenter Portal Developers.
This manual is written for all of the following developers:
This guide also assumes that the audience has already read the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework and is familiar with the following technologies:
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following documents in the Oracle Fusion Middleware 11g Release 1 (11.1.1.6.0) documentation set or on Oracle Technology Network (OTN) at http://www.oracle.com/technology/index.html
.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
What's new in Release 11.1.1.6? Faster performance, simplified connection interfaces, and enhanced design-time experience to name a few. Read this quick-reference page for a concise summary of what's new in this release and for pointers to more detailed information.	
Note: Release 11.1.1.6.0 is part of a patch set. A patch set is a single-installation collection of patches that are designed to be applied together. Patching involves copying a small collection of files over an existing installation. A patch is normally associated with a particular version of an Oracle product and involves updating from one minor version of the product to a newer minor version of the same product (for example, from Release 11.1.1.5.0 to Release 11.1.1.6.0). All users must install the Release 11.1.1.6.0 patch set for continued support.	
The following table lists and describes new features in this release and provides links to more detailed information in our guides.	
Feature	Description
---	---
Blogs	More special characters allowed in blog names:
Enhanced commenting:	
Certification	More technologies certified against the WebCenter Portal application platform:
Discussions service	
Documents service	
Events service	
Notifications	
Pagelet Producer	More robust Pagelet Producer:
Pages	
Performance	Accelerated performance at design time and runtime:
—	
Portlet producers	
Publisher	
Search service	
Security	
Tags service	
Wikis	
Part I contains the following chapters:	
As a developer, if you are preparing to build a WebCenter Portal: Framework application for the first time, you need a good roadmap that shows you where to start and helps guide your initial experience. This chapter provides guidance, best practices, and tips for Framework application developers setting up their development environment for the first time.	
Tip: If you are just getting started, we recommend that you look at Section 1.1, "WebCenter Portal Developer's FAQ" first.	
This chapter includes the following sections:	
Table 1-1 addresses basic questions to help you get started with Framework application development.	
Tip: Before you begin to design and build a Framework application, we recommend that you read Chapter 9, "Understanding Framework Applications." This chapter presents an overview of Oracle WebCenter Portal: Framework, and provides tips and links to more detailed information.	
Table 1-1 WebCenter Portal Developer's FAQ	
Question	Answer
---	---
What software do I need to install before getting started?	At a minimum, you need Oracle JDeveloper and the WebCenter Portal extension for Oracle JDeveloper (a JDeveloper add-in that includes WebCenter Portal functionality). Typical portal environments also include database, content repository, and search engine installations. See Section 1.2, "Installing Required Software."
How do I set up source control for my team?	JDeveloper can integrate with a variety of source control systems. See Section 1.3, "Preparing for Team Development."
What can I do to increase my team's productivity?	The best way to improve your team's productivity is by enabling iterative development. With iterative development enabled, you can see portal file changes updated in runtime by simply refreshing the browser. See Section 1.5, "Preparing for Iterative Development."
How do I create a new Framework application?	WebCenter Portal provides an out-of-the-box template that creates a pre-configured Framework application for you. This basic portal application includes all of the features you need to get started including a default set of pages, out-of-the-box page templates, and navigation. See Section 1.4, "Creating a New Framework Application."
The default Framework application includes files and features I do not intend to use. Can I remove them?	Yes, you can add and remove Framework application components. For more information, see Section 6.1, "Manually Configuring a Framework Application With Technology Scopes."
How do I make database and content repository connections?	JDeveloper provides a connection wizard that lets you create these kinds of connections. These connections seamlessly integrate with certain components that you may use in a portal, like the Content Presenter task flow. See Chapter 27, "Managing Content Repository Connections."
I'd like to create a highly customized navigation UI for my portal. Is that possible?	Yes, you can control all aspects of how the navigation UI is rendered using the APIs provided by WebCenter Portal: Framework. A popular technique is to use EL to customize how the navigation UI is rendered. For example, you can hide certain links based on the user's role or change the look and feel of a link based on specified criteria. For more information, see Chapter 14, "Visualizing Your Portal Navigation."
How is portal security configured by default?	By default, a Framework application is configured with ADF security. A default username and password (weblogic/weblogic1) are created automatically for you, and you can use this username/password combination for testing purposes immediately. See also Chapter 69, "Securing Your WebCenter Portal: Framework Application."
How do I customize the way content is displayed in my portal?	One common technique is to use the Content Presenter task flow. Content Presenter lets you add content to a page and customize the way the content is displayed using templates. For more information, see Chapter 26, "Introduction to Integrating and Publishing Content."
How do I create a consistent layout for the pages in my portal?	The page template feature allows you to create a layout that any page in your portal can share. In addition to the basic page layout, you can also add features like navigation user interfaces to the template. See Section 1.7, "Planning the Portal Layout."
There are so many ADF components. How do I figure out which ones to use?	WebCenter Portal: Framework provides the WebCenter Portal – Framework Catalog. This catalog includes a collection of components commonly used for building portals. For more information, see Chapter 16, "Creating and Managing Resource Catalogs."
I'd like to change the default skin. How do I do that?	A skin is a style sheet that defines the look of your portal. WebCenter Portal: Framework provides a portal skin that you can conveniently edit in JDeveloper. For more information, see Section 1.8, "Working with Skins."
Can developers modify or add new portal features that have been deployed into production?	WebCenter Portal provides a solution for round-trip development. See Section 1.9, "Preparing for Round-Trip Development."
What do I need to know about moving the portal from the development environment to the testing, staging, and production environments?	The portal life cycle describes the path a portal takes from development and testing environments to a staging environment and, ultimately, a production environment. For detailed information on managing the life cycle, see Chapter 10, "Understanding the WebCenter Portal Life Cycle."
Where can I get more background information on developing Framework application?	We recommend that you review Chapter 9, "Understanding Framework Applications." This chapter presents an overview of Oracle WebCenter Portal: Framework, and provides tips and links to more detailed information.
A typical development environment includes these components:	
See also the Oracle Fusion Middleware Installation Guide for Oracle WebCenter Portal.	
It's important to consider the overall team development environment. To be useful, a team development environment must be configured to allow developers to share common resources, like databases, content repositories, and source code. A well-planned team environment allows you to quickly and consistently develop, build, and update your WebCenter Portal: Framework applications.	
Tip: Typically, one member of the development team creates a new Framework application and checks it in to the source code repository. You can create any required database or content repository connections and check those in as well.	
For more detailed information on team development topics like source control and file sharing, see Chapter 4, "Working Productively in Teams."	
WebCenter Portal: Framework provides a wizard for creating new portal applications. The wizard uses an out-of-the-box WebCenter Portal – Framework Application template that ensures the appropriate application components are included.	
After the Framework application is created, you can then configure database and content repository connections and check those in to the source control system as well.	
If you wish, you can manually configure the Framework application. For example, you might decide to remove some components from the framework application if you know you will never need them.	
For detailed information on creating, extending, and modifying Framework applications, see Chapter 5, "Creating Framework and Portlet Producer Applications." For more information on managing connections, see Section 1.6, "Creating Application Resource Connections."	
This section discusses WebCenter's iterative development feature.	
Iterative development lets you make changes to your Framework application while it is running on the Integrated WebLogic Server and immediately see the effect of those changes simply by refreshing the current page in your browser. The iterative development feature works by disabling certain optimization features. Iterative development allows developers to work more quickly and efficiently when building a Framework application.	
For example, iterative development lets you see changes to these components almost instantly upon a browser refresh:	
The following kinds of operations are not supported by iterative development. These operations require you to re-run the application:	
*pages.xml	
file is created. web.xml	
or adfc-config.xml	
. Iterative development works by turning off certain MDS and runtime layer caches. Because these performance optimization features are disabled, you might notice some slower performance when running your application in a development environment.	
Note: When an application is deployed to the Integrated WebLogic Server, the	
When iterative development is enabled, the following changes to application configuration occur:	
0	
. This setting causes all metadata files to be re-loaded on each request. For skin development, you can set the application to use uncompressed skins. This setting is not the default and should only be used in a development environment. You can update web.xml	
to enable this functionality with the following context parameter:	
Note: When consuming Oracle JSF Portlet Bridge Portlets in your application, ADF attempts to share the skin between the consumer and producer. Therefore, if you are disabling compression on the consumer, you should also do that on the producer. Otherwise, the producer will not generate the correct code to match the uncompressed IDs generated by the consumer. See also Chapter 59, "Creating Portlets with the Oracle JSF Portlet Bridge."	
Note that if you edit the base definition (source) of a resource at runtime while the portal is running in the Integrated WebLogic Server, iterative development will not work as expected: if you edit the resource file in JDeveloper and save, you will not see the change when the running page is refreshed. The reason is because when a resource is edited at runtime at the base document level in the Integrated WebLogic Server, a copy of the resource's base document is created in the MDS write directory. From that point forward, this copied version will be used, and the version of the base document in JDeveloper will be ignored. If you run into this issue and want to pick up changes made to the file in JDeveloper, you will need to re-run the application after taking the following steps:	
This section explains how to enable iterative development, if it has been disabled.	
Note: The iterative development feature is enabled by default when you create a new Framework application.	
Figure 1-1 Enabling Iterative Development	
This section explains how to turn off iterative development. Iterative development is enabled by default; however, it's a good practice to turn off iterative development for testing purposes before you deploy your application to a production server.	
Connections allow the Framework application to access external data and services. For example, if you wish to use the Content Presenter task flow to display content from an Oracle WebCenter Content Server repository, you need to configure a connection to the repository. If you intend to consume portlets from a portlet producer, you need to configure the producer connection.	
Tip: A good practice is to create and test your connections once and check them into your source control system. Then, other developers on your team can check out the connections and use them. This technique also allows your team to keep in sync whenever a connection changes.	
This section describes the different ways to access the wizards for creating new connections. See also Section 1.6.3, "Where Can I Learn More About Connections?."	
Depending on how you invoke a wizard to create a connection, connections are placed in one of the following locations:	
Connections created here can be used in the current application only. This is the most common way to create a repository connection.	
For certain services, you can drag and drop a connection from Application Resources onto a page to create different types of task flow regions. To learn more, refer to the individual WebCenter Portal: Services chapters.	
Connections created here can be reused across Framework applications. To use these connections in an application, you just have to drag and drop the connection from the Resource Palette onto the Connections node in that application.	
To access a connection wizard from the New Gallery:	
Depending on your selection, the Create <Connection_Type> Connection dialog opens.	
You can select IDE Connections to create a connection in the Resource Palette.	
To access a connection wizard from the Application Navigator:	
The Create Connection in option is set to Application Resources by default.	
To access a connection wizard from the Resource Palette:	
The Create Connection in option is set to IDE Connections by default.	
For information about creating and consuming connections, see:	
You can use page templates to control the layout of your portal. A page template is a JSPX file that specifies the look and feel of your portal's pages. The template defines header, footer, content, and navigation regions within the page. You can apply the template to any number of pages, resulting in a consistent look and feel.	
WebCenter Portal: Framework provides several default page templates to help you get started. For more information, see Chapter 9, "Understanding Pages, Page Templates, and the Portal Page Hierarchy."	
A skin is a CSS file that defines the overall look of a portal, including color schemes, fonts, and the display characteristics of ADF Faces components. WebCenter Portal: Framework also provides a portal skin file that you can conveniently edit in JDeveloper. This file lets you override settings in the default skin. Just open the file, uncomment any components you wish to modify, and save the file when you are finished making changes. For details, see Chapter 15, "Creating and Managing Skins."	
Round-trip development refers to features and techniques that allow you to retrieve resources from a deployed, runtime portal back to JDeveloper for maintenance or enhancement. After modifying a resource in JDeveloper, you can use the Resource Manager to upload the resource back to the deployed portal. WebCenter Portal's round-trip development features provide a simple, convenient way to modify portal resources without redeploying the entire application.	
For more information on round-trip development, see Section 17.3, "Enabling Runtime Administration of Your Portal" and Section 17.4, "Enabling Round-Trip Development of Resources."	
A number of automatically generated configuration files are placed under the WEB-INF	
and Page Flows	
folders of a portal project when you create a Framework application.	
Tip: For a complete listing of portal configuration files, see Appendix H, "Manually Migrating a Framework Application."	
This section briefly describes these file:	
Part of Framework application configuration is determined by the content of its J2EE application deployment descriptor file: web.xml	
. The web.xml	
file defines many application settings that are required by the application server.	
Note: Rather than being specified in	
Typical runtime settings include initialization parameters, custom tag library location, and security settings. Depending on the technology you use, other settings may be added to web.xml	
as appropriate.	
Note: For standard Java EE files like	
The web.xml	
file is located in the /public_html/WEB-INF	
directory relative to the project in your Framework application.	
When you first create your Framework application, configuration settings for JSF servlet and mapping and for resource servlet and mapping are automatically added to the starter web.xml	
file.	
The Faces Servlet	
entry inside <servlet></servlet>	
tags provides information about the JSF servlet, javax.faces.webapp.FacesServlet	
. This servlet manages the request processing life cycle for web applications that use JSF to construct the user interface. The configuration setting maps the JSF servlet to a symbolic name, Faces Servlet.	
The resources	
entry inside <servlet></servlet>	
tags provides information about the ADF resource servlet used to serve up web application resources (images, style sheets, JavaScript libraries) by delegating to a ResourceLoader	
.	
The <servlet-mapping></servlet-mapping>	
tags map the URL pattern to a servlet's symbolic name. You can use either a path prefix or an extension suffix pattern.	
By default, JDeveloper uses the path prefix /faces/*	
. That is, when a URL, for example, http://localhost:8080/SRDemo/faces/index.jsp	
, is issued, the URL activates the JSF servlet, which strips off the faces	
prefix and loads the file /SRDemo/index.jsp	
.	
Note: If you prefer to use the extension <context-param> <param-name>javax.faces.DEFAULT_SUFFIX</param-name> <param-value>.jsf</param-value> </context-param> Then add a servlet mapping in	
To edit web.xml	
in Oracle JDeveloper, right-click web.xml	
in the Application Navigator and choose Open from the context menu. This opens web.xml	
in the Web Application Deployment Descriptor editor, in Overview mode. If you are familiar with configuration element names, then you can also use the XML editor to modify web.xml	
.	
For information about the configuration elements you can use in the web.xml	
file, see "Oracle ADF XML Files" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Use the faces-config.xml	
file to register a Framework application's resources, such as custom validators and managed beans, and to define all page-to-page navigation rules. The default name of this file is faces-config.xml	
, though this naming convention is not required.	
Depending on how resources are packaged, an application can have one or multiple faces-config.xml	
files. For example, you can create individual JSF configuration files for:	
For more information about creating multiple faces-config.xml	
files, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Example 1-1 illustrates the default faces-config.xml	
file provided through the WebCenter Portal: Framework Application template. This file is located in the /public_html/WEB-INF	
directory relative to the project in your Framework application.	
Example 1-1 Default faces-config.xml File Provided Through the Framework Application Template	
To edit the faces-config.xml	
file, double-click it in the Application Navigator. By default, the file is opened in the Editor window in Diagram mode, as indicated by the active Diagram tab at the bottom of the Editor window. When creating or modifying JSF navigation rules, Diagram mode enables you to visually create and manage page flows. For more information, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
To create or modify configuration elements other than navigation rules, use the Editor's Overview mode. Enter this mode by clicking the Overview tab at the bottom of the Editor window.	
JSF allows multiple <application>	
elements in a single faces-config.xml	
file. When you use the JSF Configuration Editor, you can edit only the first instance. For any other <application>	
elements, you must edit the file directly using the XML editor. To use the XML editor, open the faces-config.xml	
file and go to the Source tab in the Editor window.	
For reference information about the configuration elements you can use in the faces-config.xml	
file, see "ADF Faces Configuration" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
The default trinidad-config.xml	
file, available when you create a Framework application, contains information about the application skin family. Additionally, it can contain information about the level of page accessibility support, page animation, time zone, enhanced debugging output, and the URL for Oracle Help for the Web (OHW). Like faces-config.xml	
, the trinidad-config.xml	
file has a simple XML structure that enables you to define element properties using JSF Expression Language (EL) or static values.	
Example 1-2 illustrates the default trinidad-config.xml	
file provided through the WebCenter Portal: Framework Application template. This file is located in the /public_html/WEB-INF	
directory relative to the project in your Framework application.	
Example 1-2 Default trinidad-config.xml File Provided Through the Framework Application Template	
In addition to the skin family, you can define the following application values in the trinidad-config.xml	
file:	
For reference information about the trinidad-config.xml	
file, see "ADF Faces Configuration" in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.	
The adfc-config.xml	
file is the configuration file for an ADF unbounded task flow. This file contains metadata about the activities and control flows contained in the unbounded task flow. The default name for this file is adfc-config.xml	
, though this naming convention is not required.	
If ADF Page Flow is specified as a Selected Technology on the Technology Scope page of the Project Properties dialog, a new adfc-config.xml	
source file is automatically created within the project. The adfc-config.xml	
file is the main source file for an unbounded task flow.	
The adfc-config.xml	
file is located in the /public_html/WEB-INF	
directory relative to the project in your Framework application.	
Note: If you do not plan to use task flows in your Framework application, you can delete the	
For more information about task flows and the adfc-config.xml	
file, see "Oracle ADF XML Files" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Certain Oracle WebCenter Portal components require schemas that must be installed in a supported database. For details, see Section 3.5, "Installing Database Schemas."	
This chapter introduces you to Oracle WebCenter Portal and helps you understand what you must consider when using WebCenter technology to build an application.	
This chapter includes the following sections:	
Audience	
This chapter is intended for developers of Framework applications. Developers should review this chapter carefully to determine what options are available to them.	
Oracle WebCenter Portal provides design time and runtime tools for building enterprise portals, transactional web sites, and social networking sites. Typical WebCenter use cases include employee intranets, customer extranets, dashboards, blogs and wikis, community discussion forums, online stores, and many others. WebCenter provides the tools you'll need to create these kinds of applications.	
Figure 2-1 provides an overview of the Oracle WebCenter Portal architecture, showing the major components that comprise the product.	
Figure 2-1 Overview of Oracle WebCenter Portal Architecture	
The Oracle WebCenter Portal: Framework provides portal-specific features to a Framework application. These features include page hierarchies, navigation models, delegated security, customization, and others. Portals can also include features like portlets, content management system integration, personalization, social computing services, search, analytics, and more.	
From the perspective of an end user, a portal is a web site with pages that are organized by tabs or some other form of navigation. Each page can contain portlets, static content, dynamic content, and task flows. Authorized users can also customize their view of a portal by adding their own pages, adding portlets of their choosing, and changing the Look And Feel of the interface.	
For a complete overview of the Oracle WebCenter Portal: Framework, Chapter 9, "Understanding Framework Applications."	
This section discusses a few of the major features that can be used in a Framework application. These features support integration of remote applications, page customization, content integration, personalization, security, and others.	
This section discusses two technologies–portlets and pagelets–that let you integrate remote applications into your portal pages.	
A portlet is a reusable Web component that can draw content from many different sources. Portlets provide a means of presenting data from multiple sources in a meaningful and related way. Portlets can display excerpts of other web sites, generate summaries of key information, perform searches, and access assembled collections of information from a variety of data sources. Because different portlets can be placed on a common page, the user receives a single-source experience. In reality, the content may be derived from multiple sources.	
For information about the different ways you might create portlets and how you might use portlets, including the pre-built portlets available with WebCenter Portal, see Chapter 58, "Overview of Portlets." For information about consuming portlets on pages and linking them, see Chapter 64, "Consuming Portlets."	
A pagelet is a reusable user interface component similar to a portlet, but while portlets were designed specifically for portals, pagelets can be run on any web page, including within a portal or other web application. Pagelets can be used to expose platform-specific portlets in other web environments.Any HTML fragment can be a pagelet, but pagelet developers can also take advantage of many of the features available to portlet developers to write pagelets that are parameterized and configurable, to dynamically interact with other pagelets, and respond to user input using Ajax patterns.	
Oracle WebCenter Portal's Pagelet Producer provides a collection of useful tools and features that facilitate dynamic pagelet development. For detailed information about pagelet development and configuration using the Pagelet Producer, see Chapter 63, "Creating Pagelets with Oracle WebCenter Portal's Pagelet Producer."	
As explained in Section 2.3.1.1, "What Are Portlets?," portlets are reusable Web components that can draw content from many different sources. Portlets can manage and display anything from static HTML to Java controls to complex web services and process-heavy applications.	
A single portlet can also have multiple instances—in other words, it can appear on a variety of different pages within a single portal, or even across multiple portals if the portlet is enabled for Web Services for Remote Portlets (WSRP). You can customize portlets to meet the needs of specific users or groups.	
Task flows let you build customizable applications with reusable units of business logic. They represent a modular approach for defining control flow in an application. Each task flow represents a reusable piece of business logic. With isolated memory and transaction scopes, task flows are decoupled from the surrounding application. This decoupling allows task flows to be included in Oracle WebCenter Portal's Composer, for instance.	
A task flow encapsulates control flow rules, activities, and managed beans to implement business modules. Task flows are easily reusable within WebCenter Portal applications. You can drag and drop task flows onto any customizable WebLogic Portal application page. In this sense, you can think of a task flow as a "local portlet" that can be reused and dropped into any ADF application.	
While task flows are high-level implementations of business processes, they do not host data-access or business logic. Task flows must interact with data controls and declarative bindings for these purposes. These data controls and bindings in turn interact with the ADF Business Components framework.	
Following the Oracle-submitted standard JSR 329, you can expose your task flows as standards based portlets. In this way, one application encompasses both the base application functionality and the portlets to be consumed for integration. When you revise your application, the portlets are naturally and automatically updated right along with it, rather than requiring a separate development project. To support JSR 329, the Oracle WebCenter Portal: Framework provides the Oracle JSF Portlet Bridge. For more information about the Oracle JSF Portlet Bridge, see Chapter 59, "Creating Portlets with the Oracle JSF Portlet Bridge."	
In addition to consuming task flows as portlets, you can consume task flows as shared libraries in a JSF application to enable you to embed these JSF fragments directly. You can wrap the transactions around the task flows along with the other functionality in their application. For more information, see Chapter 14, Getting Started with ADF Task Flows" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Composer is an easy, browser-based environment that you can add to existing JSF applications. End users can then use Composer to edit the page at runtime to create their own mashups. To make pages editable at runtime in this way, you simply add Composer design time components to a page in JDeveloper. If you create a blank page in JDeveloper with just Composer components, users have the ability to redesign the page while in Edit mode using Composer. Some of the tasks they can perform include:	
The Composer tag library provides the components that you can add to make a page editable at runtime and define the behavior of content on the page (for example, move, sequence, or hide components).	
In Composer, the Component Catalog dialog box, which is displayed by clicking the Add button on the page, displays the default runtime Resource Catalog Viewer. Users can browse the components in the viewer and then add them to the page. By default, the viewer displays the default Resource Catalog, which contains all of the Oracle ADF components and portlets available to the application. To control what components are visible to users in the viewer, you can modify the default Resource Catalog, or create one or more of your own Resource Catalogs. Resource Catalogs can contain items such as portlets, layout components, task flows, documents, and Oracle ADF Faces components.	
For more information about implementing Composer components in your application, see Chapter 20, "Enabling Runtime Editing of Pages Using Composer."	
JCR (Java Content Repository API, also known as JSR 170) adapters enable you to make data stored in content management systems, such as Oracle WebCenter Content, Oracle Portal, or even your file system, available to your application.	
Using JDeveloper, you can use the prebuilt JCR data control to grab the content and drop it onto your page. You can leverage the provided prebuilt user interface to display the content in your Framework application. This architecture enables you to build your user interface once and then at deployment time or during runtime, switch to whatever back end is required without having to recompile or rebuild the application. In addition, you do not need to learn the intricacies of each content management system's custom APIs. For example, you could create a data control that selects content from any JCR 1.0 compliant repository or file system. When the data control is created, you can drop it onto a JSP document as a table.	
If you retrieve data from a content repository other than Oracle Portal, Oracle WebCenter Content, or the file system, then you can create your own JCR adapter. From the Content Repository Configuration page of the Create Data Control wizard, you can choose the content repository from which you want to retrieve data.	
The Content Presenter task flow lets you conveniently add content to your application. Content Presenter allows you to select a single item of content, multiple content items, or query for content, and then select a template to render the content on a page in a Framework application. In addition, you can design custom display templates for Content Presenter. See Chapter 29, "Creating Content Presenter Display Templates." For more information, see also "Adding Content Using Content Presenter" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces and Chapter 27, "Managing Content Repository Connections."	
Search is one of the most common and useful features of any web application. Oracle WebCenter Portal: Framework has a unified, extensible Search framework that enables the discovery of information and people through an intuitive user interface. The powerful Search framework enables you to seamlessly include enterprise-wide search capabilities into your application. With all relevant and secure information easily navigable, users do not need to switch between applications performing multiple searches. See Chapter 45, "Integrating the Search Service."	
The Resource Catalog provides a federated view of the contents of one or more otherwise unrelated repositories within a unified search and browse user interface. Resources are created and published in their source repository, then exposed to the developer through the JDeveloper Resource Palette and to the end user through the Resource Catalog Viewer. The Resource Palette contains the WebCenter Portal Catalog, which includes elements that are commonly used in portal development.	
Resource Catalogs can contain the following components:	
Box,	
which is a container that can hold all other types of components. At runtime, you must have a Box	
into which you can drag and drop components. You can also add and arrange child components and delete components from a Box.	
See the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. Text,	
Image,	
Page Link,	
Web Page,	
and Website Link	
components to your page. These are analogous to the JDeveloper design time components Rich Text Editor,	
Image,	
Command Link,	
Web Page,	
and Go Link,	
respectively. The Text	
component enables you to add rich text on the page. Adding this component invokes a text editor that can be resized and is similar to an HTML editor. You can add text and format it using the options available in the editor. See the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.	
With the Oracle ADF extensions provided in Oracle WebCenter Portal, you can define security for an entire application, a page hierarchy, part of a page hierarchy, navigational components, or a single page. You can define security for individual actions provided by customizable components. In addition, for Oracle WebCenter Portal: Services that connect to back-end servers using web services, you can provide secure identity propagation with WS-Security.	
Because Oracle WebCenter Portal security is based on the JAAS and J2EE standards, enterprise roles defined in the existing identity management store can be leveraged directly when securing a Framework application. You need not synchronize roles within the application being built. It just references and uses the defined users and roles directly. Note also that you can use file-based security for the development phase of the application and then easily switch over to enterprise identity management at deployment time.	
Oracle WebCenter Portal also provides application roles that you can use to represent the policy of an application. By associating permissions with an application role defined within the policy store, you can keep them self contained within the application. On deployment, you can then associate users and enterprise roles with the application roles to grant those permissions to end users.	
In some cases, it is desirable to leverage existing applications that have their own authentication mechanism, such as email. The email system is often on a different authentication system (with different user names and passwords) than the new application. The application must map the email user to the application user such that end users do not have to enter their user names and passwords each time they need information. Oracle WebCenter Portal: Framework provides the means to securely manage these user names and passwords with the External Application functionality.	
For more information about options for securing your Framework application, see Chapter 69, "Securing Your WebCenter Portal: Framework Application."	
Oracle WebCenter Portal: Services expose social networking and personal productivity features through services, which, in turn, expose subsets of their features and functionality through task flows.	
Table 2-1 describes each of the available services.	
Table 2-1 Oracle WebCenter Portal: Services	
Service	Description
---	---
Activity Graph	Leverages collective intelligence to benefit search and social applications.
Analytics	Enables you to display usage and performance metrics for your Framework application.
Announcements	Provides the ability to post announcements about important activities and events to all authenticated users.
Blog	Provides easy integration of a blog application within the context of your application.
Discussions	Provides the ability to create threaded discussions, posing and responding to questions and searching for answers. Also provides an effective group communication mechanism for important activities and events.
Documents	Provides content management and storage capabilities, including content upload, file and folder creation and management, file check out, versioning, and so on.
Events	Provides the ability to create and maintain a schedule of events relevant to a wider group of users. Events are published to all authenticated users.
Instant Messaging and Presence (IMP)	Provides the ability to observe the status of other authenticated users (whether online, offline, busy, or away) and to contact them instantly.
Links	Provides the ability to view, access, and associate related information; for example you can link to a solution document from a discussion thread.
Lists	Provides the ability to create, publish, and manage lists. Users can create lists from prebuilt structures or create their own custom lists.
Provides easy integration with IMAP and SMTP mail servers to enable users to perform simple mail functions such as reading messages, creating messages with attachments, replying to or forwarding existing messages, and deleting messages.	Chapter 36, "Integrating the Mail Service"
Notes	Provides the ability to "jot down" and retain quick bits of personally relevant information. Note: This service is available only in Oracle WebCenter Portal: Spaces.
Notifications	Provides a means of subscribing to services and application objects and, when those objects change, receiving notification across one or more selected messaging channels.
People Connections	Provides social networking capabilities, such as creating a personal profile, displaying current status, and viewing other users' recent activities.
Polls	Enables you to survey your audience (such as their opinions and their experience level), check whether they can recall important information, and gather feedback.
Personalization	Enables you to deliver content within your application to targeted application users based on selected criteria.
Recent Activities	Provides a summary view of recent changes to documents, discussions, and announcements.
RSS	Provides the ability to access the content of many different web sites from a single location—a news reader.
Search	Provides the ability to search services, the application, or an entire site.(This includes integrating Oracle Secure Enterprise Search for WebCenter Portal searches.)
Tags	Provides the ability to assign one or more personally relevant keywords to a given page or document.
Wiki	Provides the ability for geographically diverse teams to originate and collaborate on web documents.
Worklists	Provides a personal, at-a-glance view of business processes that require attention (including a request for document review, and other types of business process that come directly from enterprise applications).
WebCenter provides task flows for these services through the Oracle WebCenter Portal: Services Catalog. For information about how to prepare your application to consume these task flows, see Chapter 7, "Preparing Your Application for WebCenter Portal Services."	
How Oracle WebCenter Portal: Services Integrate with Each Other	
WebCenter Portal: Services are designed to be integrated with each other. Here are some examples of the ways WebCenter Portal: Services work together:	
You can access many of the WebCenter Portal services through their REST APIs. REST APIs allow you to create rich, interactive client-side applications. REST commands use standard HTTP methods as requests to point to the resource being used. Every request returns a response, indicating the status of the operation. If the request results in an object being retrieved, created, or updated, the response includes a standard representation of that object.	
For more information and a complete list of the services that include REST APIs, see Chapter 54, "Using Oracle WebCenter Portal REST APIs."	
This section briefly introduces Oracle ADF and discusses how WebCenter Portal benefits from Oracle ADF technology.	
The Oracle Application Development Framework (Oracle ADF) is an end-to-end application framework that builds on Java Platform, Enterprise Edition (Java EE) standards and open-source technologies to simplify and accelerate implementing service-oriented applications. Used in tandem, Oracle JDeveloper and Oracle ADF give you an environment that covers the full development life cycle from design to deployment, with drag-and-drop data binding, visual UI design, and team development features built in.	
You can build portals using a variety of different technologies and approaches, and WebCenter supports a variety of open industry standards for portal-building. Oracle ADF provides a solid foundation for WebCenter Portal development, which allows integration with the entire Oracle Fusion Middleware stack. Oracle WebCenter Portal lets you build portals that plug into this overall architecture, leveraging features provided by the rest of the stack.	
Oracle ADF uses a set of standard JSF components that include built-in Ajax functionality. Ajax is a combination of asynchronous JavaScript, dynamic HTML (DHTML), and XML. This combination allows requests to be made to the server without fully re-rendering the page. While Ajax allows rich client-like applications to use standard Internet technologies, JSF provides server-side control.	
Oracle ADF provides over 150 rich components, including hierarchical data tables, tree menus, in-page dialogs, accordions, dividers, and sortable tables. Oracle ADF also provides data visualization components, which are Flash and SVG-enabled and capable of rendering dynamic charts, graphs, gauges, and other graphics that can provide a real-time view of underlying data. Each component also supports skinning, along with internationalization and accessibility.	
ADF task flows represent a critical component for you to understand and use in your application development. They provide a modular approach for defining control flow in an application. Instead of representing an application as a single large JSF page flow, you can break it up into a collection of reusable task flows. In each task flow, you identify application activities, the work units that must be performed in order for the application to be complete. An activity represents a piece of work that can be performed when running the task flow. Task flows also have the advantage of being able to be packaged and deployed with the application, rather than requiring a separate deployment like remote portlets. For more information about task flows, see the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Oracle JDeveloper is an integrated development environment (IDE) for building service oriented applications using the latest industry standards for Java, XML, web services, portlets, and SQL. JDeveloper supports the complete software development life cycle, with integrated features for modeling, coding, debugging, testing, profiling, tuning, and deploying applications. JDeveloper's visual and declarative approach and Oracle ADF work to simplify application development and to reduce mundane coding tasks. For example, code for many standard user interface widgets, such as buttons, lists of values, and navigation bars, are prepackaged for you. All you need to do is select the appropriate widget from the Component Palette and drop it into your application.	
WebCenter Portal's extension for Oracle JDeveloper includes all the development functionality you need for building Framework applications. Oracle WebCenter Portal components are readily accessible from a catalog of resources.	
Figure 2-2 Oracle JDeveloper and the WebCenter Portal Extension	
The WebCenter Portal extension also provides several wizards to help you with essential development tasks such as building portlets, consuming an existing portlet, creating a data control to a content repository, and securing your application. By significantly reducing the amount of coding you do, JDeveloper and the WebCenter Portal extension dramatically increase your productivity as a developer.	
In JDeveloper, the easiest way to ensure that you properly define an application and its projects with the appropriate technology scope is to apply an application template. An application template automatically partitions the application into projects that reflect a logical separation of the overall work. The WebCenter Portal extension provides two templates optimally configured for building Framework applications:	
It is not required that you use these templates. If you prefer, you can create your own Framework applications and portlet applications by manually scoping the application technologies and creating the relevant projects. For more information, see Chapter 3, "Preparing Your Development Environment."	
For more information about JDeveloper, access the many educational aids from the JDeveloper Start Page, accessible from JDeveloper's Help menu.	
The portal life cycle describes the path a portal takes from development through production. Phases of the life cycle include development, testing, staging, and production. For detailed information on the life cycle, see Chapter 10, "Understanding the WebCenter Portal Life Cycle."	
When you design your Framework application, you must consider the needs of your audience. In particular, it is important to think about what features and capabilities your Framework application end users, administrators, and developers need. Before you begin to actually build a Framework application, take a look through the questions listed below and use the answers to help plan your application.	
This section includes the following subsections:	
The following list suggests questions you should ask about the end users of your Framework application:	
To help you decide which Oracle Application Server configuration best supports your Framework application, see the Oracle Fusion Middleware Enterprise Deployment Guide for Oracle WebCenter Portal.	
When you design your application, you must choose where to insert the Composer components to make those areas of the page editable. Components that allow users to add to the page must appear in a Resource Catalog at runtime. You can also choose to have different catalogs available depending upon the context of the application or the user's privileges.	
If you choose to allow page editing, the application must be able to associate the customizations with particular users, which means some form of authentication is required for users of the application. Furthermore, since the user's customizations are stored in Metadata Storage (MDS), you must ensure that your deployment system has access to MDS for the storage and retrieval of customizations.	
For more information about the Composer and exposing resource catalogs, see Chapter 20, "Enabling Runtime Editing of Pages Using Composer."	
If you choose to implement customization, then you must also implement some form of security for the application consuming the portlet. Only authenticated and authorized users can customize an application.	
In considering portlet customization, you should also consider whether the portlets are load balanced. If they are load balanced, then you must use database backed customization to ensure that all of your middle tiers can access to the user's customization data. Otherwise, the user has to personalize the same portlet multiple times.	
For more information, see Chapter 58, "Overview of Portlets."	
For more information, see Table 2-1, "Oracle WebCenter Portal: Services" and Chapter 7, "Preparing Your Application for WebCenter Portal Services."	
Use the portal page hierarchy editor to set delegated administration security policies on individual pages or on multiple pages. For more information, see Section 9.5.2, "Securing Your Portal Pages."	
The following list suggests questions you should ask about the administrators of your application:	
Note: It is critical that the Framework application administrator and the developers communicate when the application is under construction. At design time, developers must make many choices that determine what the administrator can do to the application at runtime. For example, if the developers choose not to implement skins, then the administrator has no control over the look and feel of the application. Hence, the administrator and the developers should ensure that they consult over these decisions at design time.	
For information about how to implement skins, see Chapter 19 "Customizing the Appearance Using Styles and Skins" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework and Chapter 15, "Creating and Managing Skins."	
For information about customizable components, see Chapter 20, "Enabling Runtime Editing of Pages Using Composer."	
For more information about portlets, see Chapter 58, "Overview of Portlets."	
The following list suggests questions you should ask about the developers who will contribute to your application:	
For information about including content through JCR data controls and adapters, see Chapter 27, "Managing Content Repository Connections."	
Furthermore, with Composer, you can allow users to edit the content within the application. Again, you must consider whether you want to restrict that capability to certain users and, if so, you must factor that into your security model.	
For more information about implementing a security model for your Framework application, see Chapter 69, "Securing Your WebCenter Portal: Framework Application."	
For more information about accessing external applications from your Framework application, see Chapter 69, "Securing Your WebCenter Portal: Framework Application."	
If you have legacy external application portlets that were built for Oracle Portal, then you can reuse those portlets in a Framework application. This feature allows users to view these portlets from their Framework application rather than having to open each application separately or go back to Oracle Portal. When building such portlets, though, you must remember that they typically must authenticate themselves to the external application before retrieving and displaying any data. As previously mentioned, such authentication requires a credential vault, where the Framework application can store the credentials necessary for logging into the external application. Oracle WebCenter Portal: Framework provides choices in Oracle JDeveloper for incorporating portlets based on external applications.	
For more information about external application portlets, see Section 69.13.3, "Managing External Applications."	
For more information about team development, see Chapter 4, "Working Productively in Teams." See also Chapter 1, "Developer's Quick Start Guide."	
Accessibility involves making your application usable by persons with disabilities such as low vision or blindness, deafness, or other physical limitations. In the simplest of terms, this means creating applications that can be used without a mouse (keyboard only), used with a screen reader for blind or low-vision users, and used without reliance on sound, color, or animation and timing.	
Oracle software implements the standards of Section 508 and WCAG 1.0 AA using an interpretation of the standards at http://www.oracle.com/accessibility/standards.html	
.	
This section describes accessibility features that are specific to WebCenter Portal. For general information about creating accessible ADF Faces pages, see the Developing Accessible ADF Faces Components and Pages section in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. For information about accessibility features in JDeveloper, see the help topics available by selecting the JDeveloper Accessibility node under JDeveloper Basics in the online help table of contents.	
WebCenter Portal provides several Composer components that you can add to your application pages to make them editable at runtime. These components provide attributes that are used to generate accessible HTML. To ensure that the pages you create are accessible, you must set these attributes, listed in Table 2-2.	
Table 2-2 Accessibility Attributes for WebCenter Portal's Composer Components	
Component	Accessibility Attributes
---	---
No accessibility attributes.	
No accessibility attributes.	
No accessibility attributes	
No accessibility attributes	
When you enable users to customize a page at runtime, you must ensure that any customizations are also accessible to all users. For all components that users can create at runtime, all accessibility-related attributes are shown in the Property Inspector where users can set them appropriately.	
For a list of accessibility-related attributes for WebCenter Portal-specific components, see Table 2-2. For a list of accessibility-related attributes for other components, see the Developing Accessible ADF Faces Components and Pages section in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.	
IFrames are not very well accommodated by today's screen readers and so are not permitted by some accessibility standards.	
Note: Portlets created using the Oracle JSF Portlet Bridge have the	
WebCenter Portal provides an optional attribute in the adf:portlet	
tag called renderPortletInIFrame	
. You can set this attribute to false to avoid ever using IFrames. For detailed information, see Section 64.4.12, "What You May Need to Know About IFRAMEs."	
This chapter discusses tasks you may need to perform to set up your development environment.	
Tip: If you are just getting started, we recommend that you look at Section 1.1, "WebCenter Portal Developer's FAQ" first.	
This chapter includes the following sections:	
Oracle JDeveloper provides an integrated development environment for developing WebCenter Portal: Framework applications. For information on obtaining and installing Oracle JDeveloper, see the Oracle JDeveloper page on OTN at:	
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html	
Before you can begin to develop Framework applications, you need to install the WebCenter Portal's extension for Oracle JDeveloper. The WebCenter Portal extension is a JDeveloper add-in that provides the complete set of WebCenter capabilities and features to the JDeveloper Studio Edition.	
To install the WebCenter Portal extension:	
JDeveloper is now configured to create WebCenter Portal: Framework and Portlet Producer applications.	
For more information on obtaining and installing Oracle WebCenter Portal: Framework, see the Oracle WebCenter Portal page on OTN at:	
Oracle strongly recommends that you set an environment variable for the user home directory that is referenced by JDeveloper. By setting this variable, you can avoid receiving long pathname errors that are known to occur in some circumstances.	
For detailed instructions on setting this variable on Windows, Linux, UNIX, and Mac OS X operating systems, see "Setting the User Home Directory" in the Oracle Fusion Middleware Installation Guide for Oracle JDeveloper.	
Installation of Oracle WebCenter Portal: Framework reconfigures the Integrated WebLogic Server (WLS) domain in JDeveloper to include additional libraries and several prebuilt portlets. This section discusses the Integrated WLS, including how to start and stop it, and describes some of the preconfigured portlet producers and prebuilt portlets it provides. It contains the following subsections:	
Options for starting Integrated WLS are available in the Run menu in Oracle JDeveloper.	
Running the service in debug mode helps in debugging the service.	
There are a couple of ways to determine if Integrated WLS is running and to stop it.	
Figure 3-1 The Terminate Menu Shows What Is Running	
Note: Sometimes WebLogic Server is not accessible (for example, if a user tries to restart WebLogic Server too quickly, before it has successfully shut down). In this case, you may have to manually shut down or stop the Java process.	
Integrated WebLogic Server (Integrated WLS) is a preconfigured WebLogic Server that provides a complete Java 2 Enterprise Edition (Java EE) 1.4-compliant environment. It is written entirely in Java and executes on the Java Virtual Machine (JVM) of the standard Java Development Kit (JDK). You can run WebLogic Server on the standard JDK provided with your operating system or the one provided with Oracle JDeveloper.	
You can use Integrated WLS as a platform for pretesting Framework application deployments on your local computer by establishing an application server connection to it from Oracle JDeveloper. When you run the application in Integrated WLS, it is actually deployed as if you were deploying it to a WebLogic Server instance in an application server. For more information about Integrated WLS, see Section 70.3, "Deploying a Framework Application to a WebLogic Managed Server."	
Note: You can specify the Java Virtual Machine (JVM) settings for a Framework application running on the Integrated WLS in the JDEV_SYSTEM_DIRECTORY/DefaultDomain/bin/ The default memory values are: -Xmx512m -XX:PermSize=128m -XX:MaxPermSize=512m When creating or referring to the	
The WebCenter Preconfigured Server Read Me file contains valuable information about how to use Integrated WLS. Additionally, it contains links to the preconfigured portlet producers. You can access the Preconfigured Server Read Me file by selecting WebCenter Preconfigured Server Readme from the Oracle JDeveloper Help menu.	
The WebCenter preconfigured server provides a variety of ready-to-use portlets that you can add to your application pages. Simply register the producers contained in the default server with your Framework application, and then select the producers' portlets from Oracle JDeveloper's Application Resources panel.	
This section provides a brief description of the preconfigured producers and some of the portlets they provide. It contains the following subsections:	
For information about registering portlet producers, see Section 64.2, "Registering Portlet Producers with a WebCenter Portal: Framework Application." For information about adding portlets to pages, see Section 64.3, "Adding Portlets to a Page."	
The Integrated WLS contains PortalTools, which provides access to the design time at runtime OmniPortlet and Web Clipping portlet. Design time at runtime means that users define portlet content after the portlet is placed on an application page and the page is run. This concept is explained more fully in Section 58.2.6, "Portlet Creation Style."	
To access OmniPortlet and Web Clipping portlet producers:	
This opens the PortalTools Welcome page.	
Note: For information about registering a portlet producer, see Section 64.2, "Registering Portlet Producers with a WebCenter Portal: Framework Application."	
Once you have registered a producer, its portlets become available on Oracle JDeveloper's Application Resources panel. In the Application Resources panel, under the Connections node, select a producer name to list its portlets, then drag a portlet onto a Framework application page. (For information about adding portlets to pages, see Section 64.3, "Adding Portlets to a Page.".)	
The PortalTools Welcome page contains producer URLs for three producers:	
The Integrated WLS includes sample WSRP portlet producers and portlets you can use with your application. For more information on WSRP portlet producers, see Section 58.2.3.2, "WSRP Producers."	
Note: You can find the source code for the sample portlets is in the following EAR file:	
where	
To access WSRP sample portlet producers:	
Both links open different WSRP Producer Test Pages—one that has Parameter Form and Parameter Display portlets, the other for different WSRP producer versions of sample portlets.	
Use the copied link as the producer URL in the WSRP Producer Registration Wizard.	
Note: For information about registering a portlet producer, see Section 64.2, "Registering Portlet Producers with a WebCenter Portal: Framework Application."	
Depending on where the portlet producer connection was registered, its portlets appear either under Application Resources or in the Resource Palette. From here, you can drag and drop a variety of sample portlets onto your Framework application pages.	
The Integrated WLS includes sample PDK-Java portlet producers and portlets you can use with your application. Use the PDK-Java sample portlets to familiarize yourself with the types of functionality that are available through PDK-Java portlets.	
To access PDK-Java sample portlet producers:	
Use the copied link as the producer URL in the Oracle PDK-Java Portlet Producer Registration Wizard.	
Note: For information about registering a portlet producer, see Section 64.2, "Registering Portlet Producers with a WebCenter Portal: Framework Application".	
Depending on where the portlet producer connection was registered, its portlets appear either under Application Resources or in the Resource Palette. From here, you can drag and drop a variety of sample portlets onto your Framework application pages.	
To use certain Oracle WebCenter Portal components, you must install schemas into a supported database. This section discusses the schema installation for Oracle, SQL Server, and DB2 databases.	
For information on which databases that WebCenter supports, see the document "Oracle Fusion Middleware Supported System Configurations" on OTN.	
Table 3-1 lists the schemas that are used with WebCenter and the methods by which you can install them. The Repository Creation Utility (RCU) is the recommended approach for all the schemas. However, for WebCenter Portal's schema, you have the option of installing with a SQL script, as explained below.	
Table 3-1 Database Schema Summary	
Schema	Description
---	---
WebCenter	To use the Tag, Links, Lists, Polls, and People Connections services, you must have WebCenter Portal's schema installed in your database.
Portlets	For storing customizations in portlet producers.
Activities	For Activity Graph and Analytics products.
Discussions/WebCenter Portal Discussions Crawler	Used as the back end for the Discussions and Announcements services.
Oracle recommends that you use RCU to install all WebCenter database schemas. For detailed information, see "Creating Schemas" in the Oracle Fusion Middleware Repository Creation Utility User's Guide.	
To use the Tag, Links, and People Connections services, you must have the WebCenter Portal schema installed in your database. You can do this by using the built-in SQL Worksheet utility that you used in the previous step.	
To install the WebCenter Portal schema:	
SYS	
(using the SYSDBA	
role) then click OK. where JDEV_HOME	
is the location where JDeveloper is installed on your machine.	
webcenter	
as the name for the schema and a password for the schema, such as welcome1	
. The name of the schema must be webcenter	
. users	
and temp	
, then accept them. Before you configure the Oracle WebCenter Portal adapter for SharePoint as described in Section 27.2.3, "How to Create a Content Repository Connection Based on the Oracle WebCenter Adapter for SharePoint," you must install it in JDeveloper.	
The adapter files are located in the Oracle WebCenter Portal Companion DVD in the ofm_wc_generic_jcr_sharepoint_adapter_11.1.1.4.0.zip	
file. When you extract this ZIP file to a temporary location, you will find the adapter files in the TEMP_LOCATION	
/WebCenter/services/content/adapters	
directory.	
To install the adapter:	
oracle.webcenter.content.jcr.sharepoint.ear	
from the TEMP_LOCATION	
/WebCenter/services/content/adapters	
directory. This is the temporary directory in which you extracted the contents of the ofm_wc_generic_jcr_sharepoint_adapter_11.1.1.4.0.zip	
file from Oracle WebCenter Portal Companion DVD. This chapter contains information for a team development environment, where developers are sharing files in Oracle JDeveloper. It includes information about source (or version) control systems, namely Subversion.	
Tip: Typically, one member of the development team creates a new portal application and checks it in to the source code repository. You can create any required connections and check those in as well.	
This chapter includes the following sections:	
You can use source control in a Framework application similar to the way you would use source control in any other development environment.	
JDeveloper includes Subversion for source control. Oracle also provides free extensions to other source support systems, such as Concurrent Versions System (CVS), Dimensions, and ClearCase. You can install these extensions directly from inside JDeveloper through the Help - Check for Updates menu option, which is the recommended way install extensions. If you cannot connect to the internet from your JDeveloper instance, then download the extension from Oracle Technology Network (OTN) at http://www.oracle.com/technetwork/index.html	
. Point the Check for Updates wizard to the local file you download.	
Note: You may need to configure a proxy server to access the extensions. To set up a proxy server:	
There are two ways to use Subversion, or any other installed source control system: In JDeveloper, either click the Versioning menu or use the Versioning Navigator (click View - Team - Versioning Navigator). The Versioning Navigator is shown in Figure 4-1.	
For detailed information about Subversion, see the Oracle JDeveloper online help system and the "Using a Source Control System" section in the Oracle Application Development Framework Developer's Guide.	
To create a Subversion repository:	
Note: An alternative way to create a connection is to right-click Subversion in the Versioning Navigator and select New Repository Connection.	
Oracle Team Productivity Center is an Application Lifecycle Management tool that enables software development teams to collaborate and work productively when developing applications using JDeveloper. This also is a free extension to JDeveloper.	
Oracle Team Productivity Center integrates task, bug, and defect repositories, such as JIRA, Bugzilla, and its own built-in task repository into the IDE. It provides a chat interface inside JDeveloper and other team working benefits, such as recording details of files checked into the source control system against tasks and developer productivity aids, such as saving the context of your IDE.	
For more information, or to download Oracle Team Productivity Center, go to Oracle Technology Network (OTN) at http://www.oracle.com/technetwork/index.html	
.	
An important aspect of working with any source control system is understanding which files are affected by any particular action. Without this knowledge, you may inadvertently corrupt the source by checking in or checking out either too few or too many files given the actions you are performing on the project. This section helps you understand what files are needed for the main actions you may perform while building a WebCenter Portal: Framework application.	
This section contains the following subsections:	
The main objects with which you work in a Framework application are as follows:	
Each of these are fairly complex objects, made up of several different metadata files.	
For information about page metadata files, see the "Introduction to the ADF Metadata Files" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. For information about portlet and producer metadata files, see Appendix A, "Files for WebCenter Portal: Framework Applications."	
Table 4-1 lists developer actions and the files that are affected by these actions. Take this information into account while managing your files.	
Table 4-1 Developer Actions Affecting Metadata Files	
Action	Files Affected
---	---
Creating or editing the following connection:	
Adds or updates:	
An external application connection, and all connections that require an external application connection (including Mail, Content Repository, and Instant Messaging and Presence) also add or update the following files:	
Note: All secure data specified for connections is stored in	
Creating a WebCenter Portal data control	Adds or updates following data control files under
Updates	
Adding or updating pages in a page hierarchy	
Adding or updating or removing resources in site resources	Updates
Registering an Oracle PDK-Java or WSRP portlet producer	Adds or updates Adds:
Adds or updates Updates:	
Copies the keystore file to	
De-registering an Oracle PDK-Java or WSRP portlet producer	Updates Removes producer-related files from Note: Although the producer is removed from the application, you may need to manually remove the metadata files, portlet view tag, and portlet bindings from the application. Everything else should be left alone in case other producers rely on
Adding or removing a portlet from a page Adding or removing a portlet on a page from a portlet producer connection in the Resource Palette	When adding a portlet from a portlet producer in the Resource Palette, WebCenter Portal first registers the producer with the application (if it is not registered). See the "De-registering an Oracle PDK-Java or WSRP portlet producer" row for files affected. It then adds or removes the portlet from the page, affecting the files described in this row. Adds or updates:
Adds:	
Updates:	
Dragging a file or folder from a content repository connection to a page Dragging a content repository data control on a page	Updates:
Adds or updates all connection-related files for any service that requires connections Copies over any required connection that was not present in the application, which updates Note: The Recent Activities, Search, and Tags services add the search extension to	
Creating a JSR 286 portlet application or adding a portlet to an existing application that uses JSP file	Adds or updates:
Adds Java and JSP source files for the portlet	
Creating a JSR 286 portlet application or adding a portlet to an existing application that uses the ADF/JSPX option	A portlet application generated with this option uses the Oracle Portlet Bridge to access a Faces application. Adds or updates:
Adds:	
Creating a PDK portlet producer application	Adds or updates:
Adds Java and JSP files for the portlet	
Registering a secure WSRP producer (WS-Security)	Updates Notes: The The secure ref attributes in
Configuring ADF Security for a project	Adds or updates:
Adding a component or service on a page	Updates:
Notes: Some services also affect additional files or have a design time dependency on other services. These services are listed in the following rows. The	
Activity Streaming	Dependent Services: External Application, IMP
Announcements	Updates:
Dependent Services: External Application, IMP, Links, Search	
Composer	Updates:
Adds	
Discussions	Updates:
Dependent Services: External Application, IMP, Links, Search	
Documents, Wikis and Blogs	Updates:
Dependent Services: External Application, IMP, Links, Search, Tags	
External Application	Updates
Events	Updates Dependent Services: External Application, Links, Search
Instant Messaging and Presence (IMP)	Updates:
Dependent Services: External Application	
Links	Updates
Lists	Updates Dependent Services: External Application, IMP, Links, Search
Updates Dependent Services: External Application, IMP	
Page | Updates:
Dependent Services: Links, Search, Composer |
People Connections | Dependent Services: External Application, IMP, Composer, Activity Streaming |
Polls | Updates Dependent Services: External Application, IMP |
Recent Activity | Updates Dependent Service: Search |
RSS | Updates
Dependent Service: External Application |
Search | Updates Adds |
Tags | Updates Dependent Services: External Application, IMP, Search, Links |
Worklist | Updates Dependent Services: Search, Links |
It is good practice for the project administrator to implement any common developer requirements one time and then check in that version for all to use. By planning ahead and having the administrator take care of these common requirements up front, you can reduce redundancy and error.
For example, suppose two developers must add OmniPortlet on different pages of an application. If the project administrator has registered the OmniPortlet producer, then it is available for both of them to use. If not, then each developer likely registers the OmniPortlet producer separately, leading to unnecessary duplication and confusion.
Another example: suppose many developers need content from the same content repository. One person should set up and check in the needed connection first. Other developers then can simply reuse the same data control.
When working in a team environment, bear in mind the following considerations pertaining to portlet producers:
When building an EAR file for your project, connections are loaded for the entire application rather than individual projects. For example, suppose you have an application with two projects: P1 and P2. P1 has 100 registered producers and P2 has no producers. When you build an EAR file for either project, all 100 of P1's producer connections are loaded into connections.xml
. Note, though, that you can also edit connections.xml
manually.
When you run the predeployment tool to create a targeted EAR file, all of the connections in connections.xml
must be accessible. Hence, in our example, the generation of a targeted EAR file for either project would fail if any of the 100 portlet producer connections for P1 are unavailable for some reason. Given this behavior, you must carefully consider how you plan to subdivide your overall development effort into applications and projects.
While Oracle WebCenter Framework lets you register two portlet producers under the same name, it generally is better to avoid this situation. For example, if two developers working on the same application inadvertently register a portlet producer with the same name, then usually it is best to change one name to be unique. If you have two portlet producers registered under the same name, then it becomes very difficult to distinguish between them when debugging errors or performing administrative tasks on the portlet producers.
In some cases, you might have multiple developers building portlets and ultimately you want those portlets to be combined under a single portlet producer. The developers must be conscious of some potential issues.
portlet
n
\html\
mode_name
, where n
is a number that increments for each portlet you create. To avoid directory and file name clashes, portlet developers should change the directory name on the Content Type and Portlet Modes page of the Portlet wizard. Select the portlet mode and then change the directory name in the corresponding field to something unique. portlet.xml
and oracle-portlet.xml
files are generated automatically starting from portlet1
. When you manually merge multiple portlet descriptor files into one, you must change any portlet identifiers that clash with one another. provider.xml
are automatically generated starting from 1
. When you manually merge multiple provider.xml
files, you must change any portlet identifiers that clash with one another. web.xml
) changes; for example, security role information. .properties
files. If you receive error messages like these, then ensure that all *.pxml
files from the development environment are copied over to the deployed environment.
oracle\adf\portlet\<
portletInstanceName
>.pxml
file is correct and that it refers to the proper *.pxml
files. WebCenter Portal provides templates for creating two kinds of applications: Framework applications and Portlet Producer applications. A Framework application is an ADF web application that is configured for building portal Web applications that include navigations, social computing services, and runtime customization. A Portlet Producer application is configured for building and deploying standards-based portlets.
This chapter includes these topics:
To readily find and use the appropriate components in your Framework or Portlet Producer application, you must ensure that the right technology scopes are set, tag libraries added, and required Java classes are added to the class path. Once you do this, relevant components are included in the Component Palette and relevant context menus become available in JDeveloper.
Fortunately, Oracle provides out-of-the-box application templates to ensure that scopes are set properly and the right tag and Java libraries are added to create Framework or Portlet Producer applications.
Using the WebCenter Portal – Framework Application template generates default WebCenter Portal: Framework projects with unique technology scopes, libraries, and default files. Additionally, the template limits the types of options that are exposed in the JDeveloper user interface to those appropriate for Framework projects.
Note: In addition to populating the application with default files and folders, the template populates the Resource Palette with the WebCenter Portal – Framework Catalog and the WebCenter Portal – Services Catalog. The Services Catalog contains data controls and task flows that you can use to integrate WebCenter Portal services in your application. The WebCenter Portal – Framework Catalog contains a collection of components that are most commonly used for building portals. For more information see Chapter 16, "Creating and Managing Resource Catalogs." |
Application templates provide a means of easily creating an application with a pre-defined set of projects and technology scopes. Templates also provide a means of partitioning an application into projects that reflect a logical separation of the overall work.
The application templates include:
It is not required that you use these templates. If you prefer, you can create your own Framework or Portlet Producer applications by manually scoping the application technologies and creating the relevant projects. For more information, see Section 6.1, "Manually Configuring a Framework Application With Technology Scopes."
If you are working with an existing application that was created with some other template, you can also extend it with WebCenter Portal components. To do this, you must manually add any required projects, technology scopes, and tag libraries. For information about extending existing applications, see Section 6.2, "Extending Non-WebCenter Portal: Framework Applications to Include WebCenter Capabilities."
This section describes how to create an application using the WebCenter Portal – Framework Application template.
Note: Technology scopes control the options that appear by default in the New Gallery dialog. They can also be used to control the context menus that appear in JDeveloper and to add tag libraries to the project so that tags appear in the Component Palette. |
This section explains how to create a WebCenter Portal: Framework application. A Framework application is a portal created with a special template called the WebCenter Portal – Framework Application template. For more information about portals, see Chapter 9, "Understanding Framework Applications."
Tip: The WebCenter Portal – Framework Application template prepopulates the Framework application with a single portal project that includes features like site navigation, page hierarchies, delegated administration, security, page templates, and runtime customization. For more information, see Section 9.12, "How are WebCenter Portal Files Organized?." |
A Framework application is a portal you create using the WebCenter Portal – Framework Application template. To create a portal with this template:
Access the application creation wizard. JDeveloper provides several ways for you to access this wizard. For example:
Note: At this point, you are on the first page of the Create WebCenter Portal – Framework Application wizard. The wizard includes four pages, which are explained in the following steps. |
Figure 5-2 Create WebCenter Portal – Framework Application Wizard Step 1 of 5
For example:
Optionally, click the Browse button to navigate to the desired directory.
Note: Depending on how you launched the wizard, you might see an Application Template list. If you do see this list, make sure WebCenter Portal – Framework Application is selected. |
Tip: At this point, you could click Finish to create a project with default Framework features, including page hierarchies and navigations. We'll continue and review the rest of the wizard pages. |
Figure 5-3 Create WebCenter Portal – Framework Application Wizard Step 2 of 5
Figure 5-4 Create WebCenter Portal – Framework Application Wizard Step 3 of 5
Figure 5-5 Create WebCenter Portal – Portal Framework Wizard Step 4 of 5
Note: If you want your application to include the features of Oracle WebCenter Portal: Framework, like page hierarchies and navigations, leave the first box checked (Configure the application with standard Portal features). If you uncheck this box, the result is that you will create a traditional Oracle Fusion Web Application that does not contain Framework features. For detailed information on the effect of checking or unchecking this box, see Section 6.1, "Manually Configuring a Framework Application With Technology Scopes." Oracle recommends that you leave the first checkbox selected, unless you know for sure that you do not want to use the Oracle WebCenter Portal: Framework features. The second checkbox, Enable automatic grants to all objects, allows you to create a special role called test-all with View access on all taskflows and pages. This option is primarily added to make testing the application easier. It is unchecked by default. |
Figure 5-6 Create WebCenter Portal: Framework Application Wizard Step 5 of 5
The WebCenter Portal – Framework Application template populates a new portal application with several pages. This section explains how to add new pages to your portal application. See also Section 9.5.1, "Understanding Pages, Page Templates, and the Portal Page Hierarchy."
Note: Always create portal pages in JDeveloper as JSP documents (|
pages
folder (Web Content/oracle/webcenter/portalapp/pages
) in your portal project and select New. For information about the other settings in this dialog that are not specific to Framework application pages, see the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
This section discusses the PortalWebAssets project. If you wish, you can place static resources like HTML files and images in this project. The PortalWebAssets project is created, by default, in new Framework applications.
Static resources for a web application, like HTML and image files, are typically bundled and deployed with the application. Requests for both dynamic and static resources are generally handled by the host application server. One way to optimize server performance is to separate the static resources from the application and deploy them on a different (possibly less expensive and more scalable) server. Framework applications support this scenario with a static application resources project, which can include static resources like HTML and images. By default, this project is called PortalWebAssets, but you can rename the project if you wish. See Figure 5-8.
To use the static resources project, simply add content (like HTML or image files) to the project. You can do this directly from the file system, by adding files under the ../PortalWebAssets/public_html
directory, or by adding in JDeveloper. For instance, to add an HTML file, select New from the File menu, and use the New Gallery wizard to create the resource.
Note: CSS files used for skins must remain in the Framework application project. Do not attempt to place skin CSS files in the static application resources project. |
By default, a portal project includes the static application resources project (PortalWebAssets) as a dependency. This means they are built together and deployed to the same server. If you do not wish to deploy static resources to another server, then you do not need to take any action with respect to the static resources project.
If you wish to decouple the PortalWebAssets project from the Portal project, do the following:
Portal.ear
and PortalWebAssets.jar
), and deploy them to separate servers. See Section 5.4.3, "Deployment Options." The Portal.ear
file is typically deployed to the application's managed server. The PortalWebAssets.jar
file can be deployed to any J2EE compliant server container, usually by creating a WAR deployment profile in the PortalWebAssets project and including it in an EAR deployment profile. Another, simpler, option is to unzip the JAR file into an Apache web server. See also Chapter 70, "Deploying and Testing Your WebCenter Portal: Framework Application."
Developers can use EL expressions to dynamically generate the target URL for static resources. You have two options for using EL. With the first option, you need to define a base URL preference. The second allows you to map URLs dynamically.
This solution provides a single preference that uses a "base" URL to redirect resources to a desired server. With this option, EL expressions take a format that is illustrated by the following sample:
To configure this option, add a preference to the adf-config.xml
file as follows:
The only limitation of this technique is that you can only map values to one server. There is only one preference value that can be returned. If you want to dynamically configure URLs, choose the technique described in the next section, Section 5.4.4.2, "Mapping URLs Dynamically."
This solution lets you construct URLs dynamically through the ability to specify multiple namespaces. With this option, resources become a parameter to the preference, allowing the resources to be mapped to the correct namespace.
This solution supports two ADF component categories:
The first category includes static resources referenced by ADF Faces components. This type of call is illustrated by the following sample:
The second category includes static resources referenced through the inlineStyle
of ADF Faces components. This type of call is illustrated by the following sample:
The EL expression:
#{preferenceBean.staticResourceURL['<resource path>']}
performs a resource namespace lookup to derive the resource URL prefix. The input to the lookup is the path of the resource (for example: /oracle/webcenter/portalapp/static/images/globe.png
). To establish the mappings between resource namespaces and URLs, edit the <portal:resource-mappings>
section of the adf-config.xml
file.
To configure this option, add a preference to the adf-config.xml
file as follows:
The lookup yields the prefix of the resource URL. The final value of the resource URL is derived by concatenating the URL prefix with the path to the resource. For example,
/oracle/webcenter/portalapp/static/images/globe.png
yields:
At development time, the url-prefix lookup always resolves to the application's context URL, for example: http://<server>:<port>/<context root>
.
Example 5-1 shows a sample mapping configuration in adf-config.xml
:
Example 5-1 Sample Namespace Lookup Mapping
A portlet producer application is configured to build standards-based (JSR286) and Oracle PDK-Java portlets. This section explains how to create a portlet application using the Portlet Producer Application template. See also Chapter 58, "Overview of Portlets."
For information about extending an existing application to enable portlet creation, see Section 6.2, "Extending Non-WebCenter Portal: Framework Applications to Include WebCenter Capabilities."
This section includes these topics:
The Portlet Producer Application template consists of a single project, Portlets. Use the Portlets project to create JSR 286 (standards-based) and Oracle PDK-Java portlets.
To create an application using the Portlet Producer Application template:
Access the application creation wizard in any of the following ways:
For example:
Optionally, click the Browse button to navigate to the desired directory.
Note: The Application Template list appears only when you invoke the wizard by clicking New Application in the Application Navigator as described in step 1. |
Using the Portlet Producer Application template generates the default Portlets project with the Java, JSP and Servlets, and Portlet technology scopes. It limits the types of options that are exposed in the JDeveloper user interface to those appropriate for creating portlets.
When you right-click this new project, options to create JSR 286 and Oracle PDK-Java portlets are provided.
By default, a WebCenter Portal: Framework application is configured with ADF security. A default username and password (weblogic/weblogic1) are created automatically for you, and you can use this username/password combination for testing purposes immediately.
Default login and logout pages are also provided with the WebCenter Portal: Framework Application template.
For more information on ADF security, see Chapter 69, "Securing Your WebCenter Portal: Framework Application." See also the section on Enforcing ADF Security in a Fusion Web Application in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
This chapter discusses techniques for manually configuring and extending a WebCenter Portal: Framework application. This chapter includes the following sections:
This section discusses how to manually configure a WebCenter Portal: Framework application by adding or removing technology scopes.
Framework applications are comprised of a collection of project technologies and features or technology scopes. Each scope has associated libraries that provide specific features to the application. You can manually add or remove technology scopes to manually configure your application. For example, you may wish to remove some components from your Framework application that you know you will never use.
You can add or remove technology scopes (and their associated libraries) in the following ways.
First, you can modify the defaults when you create a new application. Figure 6-1 shows the list of available and selected technology scopes presented in the Create WebCenter Portal – Framework Application wizard. The scopes in the Selected column indicate the default set of technology scopes that comprise a framework application. For more information on this wizard, see Section 5.2, "Creating a Framework Application."
Figure 6-1 Create WebCenter Portal: Framework Application Wizard Step 2 of 5
You can also adjust technology scopes in the Project Properties dialog. Select Project Properties from the Application menu. Then, select Technology Scope from the tree. The dialog lets you move project technologies in and out of the project, as shown in Figure 6-2.
Tip: Click on a scope in the dialog to display a short description at the bottom of the dialog. |
When you create a Framework application using the Create WebCenter Portal – Framework Application wizard, you have one other opportunity to determine the default configuration of the application that is created, and its technology scopes. The final screen of the wizard includes a checkbox labeled Configure the application with standard Portal features, shown in Figure 6-3.
Figure 6-3 Create WebCenter Portal: Framework Application Wizard Step 4 of 5
Checked by default, this option tells the wizard to add the Oracle WebCenter Portal: Framework features, like navigations, page hierarchies, delegated administration, and so on, to the application. If you uncheck this box, your application will not include these features. Essentially, you will create an application that is functionally equivalent to a WebCenter PS2 (WebCenter 11g Release 1 11.1.1.2.0) application.
Table 6-1 lists the default technology scopes and libraries that are included with applications created with the WebCenter Portal – Framework Application template. The Oracle WebCenter Portal: Framework technology scope is the only scope that is portal-application specific. This scope provides navigations, page hierarchies, delegated administration, and the rest of the portal features described in Chapter 9, "Understanding Framework Applications."
Note: The Oracle WebCenter Portal: Framework technology scope is added by default to an application created with the Framework application template. The Framework application creation wizard gives you a chance to omit this technology scope if you unselect the Configure the application with standard Portal features checkbox in the Framework application creation wizard (Figure 6-3). In this case, you will create an application that is functionally equivalent to a WebCenter PS2 (WebCenter 11g Release 1 11.1.1.2.0) application. |
Table 6-1 Default Technology Scopes and Associated Libraries
Default Technology Scopes | Associated Libraries |
---|---|
ADF Faces ADF Page Flow Documents Service Events Service HTML Instant Messaging and Presence (IMP) Service Java JSF JSP and Servlets Links Service Oracle WebCenter Portal's Composer WebCenter Portal – Framework Portlet Bridge Service Portlet View Smart Tag Tags Service WebCenter Portal's Customizable Components WebCenter Portal: Services XML | JSF Core JSF HTML ADF Faces Runtime 11 ADF Common Runtime ADF Web Runtime MDS Runtime MDS Runtime Dependencies Commons Beanutils 1.6.1 Commons Logging 1.0.3 Commons Collections 2.1 ADF Page Flow Runtime ADF Controller Runtime JSP Runtime |
When the Configure the application with standard Portal features checkbox is selected in the Framework application creation wizard (Figure 6-3), the Oracle WebCenter Portal: Framework technology scope is added to the application in addition to the rest of the application technology scopes. If you were to unselect this checkbox, the Oracle WebCenter Portal: Framework technology scope would not be added.
This case is not supported. If you want to create a Framework application, you must start with the WebCenter Portal: Framework Application template. For details, see Section 5, "Creating Framework and Portlet Producer Applications."
One possible solution is to create a new Framework application, then turn your existing Framework application into an ADF Library. Then, include the ADF Library in the WebCenter Portal: Framework Application.
The recommended best practice for migration is to create a new (PS3) Framework application using the WebCenter Portal: Framework Application template and then manually migrate the content, configurations, and logic from your old PS2 application to the new framework application. If it is not possible to follow this recommended practice, then follow the procedures described in Appendix H, "Manually Migrating a Framework Application."
Tip: Another possible solution is to create a new Framework application, and then turn your existing Framework application into an ADF Library. Then, include the ADF Library in the Framework application. |
If your business requirement is to create a non-Framework application, say a Fusion web application, but you want to also include WebCenter capabilities in that application, you can do so by adding the required technology scopes and libraries. For example, you could add features like web services, task flows, and search to the application.
Note: You cannot create a Framework application simply by adding the Oracle WebCenter Portal: Framework technology scope to a non-portal application. This use case is not supported, as explained in Section 6.1.5, "Can I Create a WebCenter Portal: Framework Application by Adding the Oracle WebCenter Portal: Framework Technology Scope Later?." |
The technology scopes limit user interface options to those appropriate to the type of application project you are building. The libraries provide the components and elements useful in constructing application content. You can extend an existing application to integrate content from various repositories, create portlets, or consume portlets and WebCenter Portal services. You can extend ADF applications from the current release or from a 10.1.x.x release.
While extending your application, you may decide to create projects that are optimized for specific WebCenter capabilities. This section steps you through the process of manually creating projects like those provided with the WebCenter templates and adding the required technology scopes and libraries to projects.
To enable WebCenter capabilities in an application:
Click Yes if you are prompted to migrate your application settings.
Note: If you migrated a 10.1.3.x Framework application, then the application continues to have the Model, ViewController, and Portlets projects. |
For example View
.
Right-click a project and select Project Properties.
Follow this procedure if you have an existing WAR file you want to import into your application environment through JDeveloper. Once the project is imported, you can configure it with WebCenter Portal features manually, as described in Section 6.1, "Manually Configuring a Framework Application With Technology Scopes."
Note: Connection information is stored in the application-level EAR file and is not automatically imported with a project-level WAR file. Therefore, when you import a project-level WAR file, you must reconfigure any connections upon which the application relies. |
To import a WAR file into JDeveloper:
This chapter describes how to prepare your application to consume services in Oracle WebCenter Portal.
This chapter includes the following sections:
Oracle WebCenter Portal Services enrich existing portals and Web sites with enterprise 2.0 capabilities, including social computing services, personal productivity services, online awareness and communications, content integration, and Web analytics.
See Also:
|
This section summarizes the key technologies available in services. This can help you determine which services to implement and the best way to customize your user interface.
This section includes the following subsections:
Some services in WebCenter Portal are considered horizontal services in that they interact with other services across an application.
Table 7-1 lists service integration in Oracle WebCenter Portal: Framework.
Table 7-1 Service Integration in WebCenter Portal
WebCenter Portal Services | RSS | Search | Tags | Links | Comments and Likes | Activity Stream | Activity Graph | Notifications | Analytics |
---|---|---|---|---|---|---|---|---|---|
Activity Graph | X | n/a | X | ||||||
Announcements | X | X | X | X | X | ||||
Blogs | X | X | X | X | X | X | X | X | |
Discussions | X | X | X | X | X (replies on topics) | X | X (replies) | X | |
Documents, including wikis | X | X | X | X | X | X | X | X | |
Events | X partial | X | X | X | |||||
Instant Messaging and Presence (IMP) | X | ||||||||
Lists | X | X | X | X | X | X | |||
| X | ||||||||
Notes | X | X | |||||||
People Connections | X partial | X partial | X (Activity Stream, Message Board) | X (Message Board, Profiles, Feedback | X (Message Board) | X | X | ||
Polls | |||||||||
Recent Activities | X | ||||||||
Search | n/a | X | X partial | X | |||||
Tags | X | n/a | X |
Notes: Notes, space Events and Favorites are available only in WebCenter Portal: Spaces applications. The Search service (listed in the table) uses WebCenter Portal search adapters to search each available service. However, large-scale implementations should be configured to use Oracle SES search for best performance. Oracle SES searches applications for the following resources:
For more information, see Chapter 45, "Integrating the Search Service." |
This section describes the APIs available for WebCenter Portal services.
Note the following considerations when multiple customization options are available:
Table 7-2 lists services with available APIs. For services that use a 3rd-party back end, it includes available back end APIs.
Table 7-2 Supported Technologies for Services
See Also: Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal for more information about Expression Language APIs |
Several services provide data controls for building a customized user interface with a Framework application or task flow. Deploying this task flow into an ADF library allows for a portable consumption of the task flow; for example, you could add it to a Spaces application Resource Catalog (Composer) to build site templates.
You do not need to integrate a service before you can use its data control to edit the user interface. An application is configured for the respective service when one of its data controls or task flows is used.
Note: Oracle ADF architecture provides data controls for the user interface to understand the structure of your data. Metadata describes data collections, properties, methods, and types. When you drag and drop attributes, collections, and methods onto a page, JDeveloper automatically creates the bindings from the page to the associated services. |
To use a built-in data control:
Figure 7-1 Data Controls in the Resource Palette
Note: There are two other ways to add data controls to your application:
|
This section describes the steps you must take to prepare your application to use WebCenter Portal Web services. It includes the following subsections:
You can configure any application to include a service. When you create an application in JDeveloper, you can choose to base the application on a template. Although not a requirement, WebCenter Portal's Framework application template makes all the appropriate connection wizards and tag libraries readily visible and available in the New Gallery and Component palette. When you consume a service task flow or component, the necessary libraries are automatically added to the project.
Depending upon the service you plan to consume, your application must meet certain prerequisites. For example, if the service must know the identity of users, then your application must provide some level of security with user authentication.
This section includes the following subsections:
Some services must know the identity of the user (for example, the Search service needs the user's identity for saving searches). For these services, you must at least configure your application to authenticate users such that they have distinct identities for the purposes of user customization and preferences.
ADF security is configured by default if you created your application using WebCenter Portal's Framework application template.
See Also:
|
After you configure ADF security for your application, you can open the jazn-data.xml
file and modify your sample user's privileges for each task flow. To open the ADF Security Policies Editor, locate the file in the Application Resources panel and double-click its name, or select Application - Secure - Resource Grants (Figure 7-2). The Resource Type dropdown controls the set of grants that are shown in the table. You can show only the grants for a particular permission type by selecting it from the list.
Figure 7-2 ADF Security Policies in the jazn-data.xml File
If you are setting up a connection in JDeveloper for a service, and the connection is being made to an SSL-protected endpoint (with a valid certificate from a trusted certificate authority) then you need prepare your environment accordingly.
Note: This Preferences setting change is required only for connections made using Integrated WLS as the default server. If you are deploying to a Managed Server, this settings change is not required. |
To set preferences for SSL-protected service connections:
The Preferences dialog displays (Figure 7-3).
where <JAVA_HOME>
is the location of the Java home directory.
Many services require a connection to a database schema where relevant information is stored. For example, with the Links service, relationship mapping information, such as what object is linked to what other object, is stored in the database.
Table 7-3 lists the services that require a database connection.
Table 7-3 Associated Data Source
Service | Data Source |
---|---|
Activity Graph | Activities |
Activity Stream | WebCenter Portal |
Analytics | Activities |
Blogs | WebCenter Portal |
Comments | WebCenter Portal |
Documents (including wikis and blogs) that want to include Comments and Activity Stream | WebCenter Portal |
Links | WebCenter Portal |
Lists | WebCenter Portal |
Oracle Portal Adapter | PORTAL (name of the Oracle Portal schema) |
People Connections | WebCenter Portal |
Polls | WebCenter Portal |
Tags | WebCenter Portal |
See Also:
|
To create the database connection:
webcenter/CustomPortal
or activities/CustomPortal
Note: Oracle recommends that you use these names for ease of deployment to a Framework managed server.
|
Oracle (JDBC)
username
password
localhost
1521
ORCL
Note: If the Save Password checkbox is not selected, then when deploying from JDeveloper to a managed server or the Integrated WebLogic Server, you must manually create the data source after deployment. For detailed information on how to create a JDBC data source for Oracle WebLogic Server, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
webcenter/CustomPortal
, then select to associate this connection to the WebCenter Portal schema. activities/CustomPortal
, then select to associate this connection to the Activities schema. Click OK (Figure 7-6).
Figure 7-6 Associating to Data Source from the Connection Wizard
The data source association applies separately to each project in the workspace. If there is more than one WebCenter Portal project in the workspace, then the dialog displays a dropdown list allowing the user to choose which project to configure.
Note: While you can set up the connections to back-end servers at design time in Oracle JDeveloper, you can later add, delete, or modify connections in your deployed environment using Enterprise Manager Fusion Middleware Control. See Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal for more information. |
For existing database connections, you can associate data sources by right-clicking the connection and selecting Associate to Data Source (Figure 7-7).
Figure 7-7 Associating to Data Source for Existing Connections
When a service interacts with an application that handles its own authentication, you can associate that application with an external application definition to allow for credential provisioning.
The following services permit the use of an external application to connect with the service and define authentication for it:
See Also:
|
This section introduces the Resource Action Handling Framework and describes how to register a resource viewer. It includes the following subsections:
Custom components, just like out-of-the-box services, manage and own resources. As such, they must make declarations that enable their resources to be accessible to the services that invoke other services (for example, the Search, Tags, Links, and Recent Activities services). WebCenter Portal provides a Resource Action Handling framework for custom components and services that expose resources to be viewed, searched, and tagged.
For example, the Resource Action Handling framework enables the Search service to look up and follow the mechanism to render a resource for any given service. Other facilities of the Resource Action Handling framework allow for authorization of resources to be declared and enforced when access is made.
The following resources invoke resource viewers using the Resource Action Handling framework:
The following resources own task flows that can be invoked by the Resource Action Handling framework.
/webcenter/spaces/Space1Name
) See Also: Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal for more information on the Resource Action Handling and rewriter interfaces |
You must register a resource viewer to enable custom resources to be rendered using Search or Tags, or to make the resources linkable to and from each other.
In the service-definition.xm
l file, you can define a resource viewer for any service to render that service's resources. The viewer can be a task flow or a URL rewriter acting on the resource ID.
For example, suppose a discussion forum message is found through the Search service. Clicking the result link launches the resource viewer that was declared for the Discussions service (by looking up the service-definition.xml
of the Discussions service). By default, the target is rendered in a dialog.
You can declare a resource mini-view to specify a resource viewer that is used for any inline popups displayed for this service. If the mini-view is not specified, then the resource view is used for inline popups.
Note: A sample |
To register a custom resource viewer:
order-viewer.xml
. The Task Flow ID should automatically update to order-viewer
(Figure 7-8). Figure 7-8 Create Task Flow Dialog for Resource Viewer
Ensure that the order-viewer.xml
file is created under ..\public_html\WEB-INF
.
order-viewer
, and click in an open area of the canvas to accept the change. af:outputText
tag inside of the jsp:root
element. Example 7-1 provides a very simple resource viewer. You could create a much more complex viewer.
resourceId
input parameter to the task flow, and set the value to #{pageFlowScope.resourceId}
. service-definition.xml
file. In the Application Navigator, expand Application Resources, Descriptors and ADF META-INF. service-definition.xml
to open it in the editor. <!--
and -->
tags around it. id
attribute to the service identifier. For example, the service identifier used when defining the Tagging Button could be mycompany.myproduct.myapp.mycomponent
.
taskFlowId
in the <resource-view>
element to /WEB-INF/order-viewer.xml#resource-viewer
. This identifier is the task flow path and file name concatenated with the task flow identifier declared in the Create Task Flow dialog. You can omit the remaining tags.
<resource-view>
declaration has a class specification for the Resource Authorizer. This provides various ways to specify the resource view and determine which tagged objects are visible (and searchable) to users. Example 7-2 Specifying a Task Flow ID in a resource-view Declaration
The Search, Tags, and Discussions services use this type of declaration. Instead of having a view ID (JSPX page), the service supplies a task flow to render the resource.
taskFlowId
signifies that the renderer is a task flow. resourceId
input parameter and uses that to render the resource. Example 7-3 Specifying a URL Rewriter Class Name (1)
or
Example 7-4 Specifying a URL Rewriter Class Name (2)
or
Example 7-5 Specifying a URL Rewriter Class Name (3)
Some services use a URL rewriter to treat the resource ID as a URL and rewrite the URL in an appropriate fashion. A URL rewriter changes the resource ID into a URL that can be launched with a goLink
. Two ResourceUrlRewriters
are provided:
oracle.webcenter.framework.resource.IdentityResourceUrlRewriter
is for Search with Oracle SES. It takes the resourceId
value as a URL as is. oracle.webcenter.framework.resource.MessageFormatResourceUrlRewriter
is for Documents. It takes in a message
parameter (in the service-definition
). The message
parameter contains a {0}, which is replaced with the value of the resourceId
. The urlExternal
parameter applies to all URL rewriters. This parameter's value determines whether the JSPX that consumes a resource action handler link should open a new window.
Some resources, like pages and wikis, can have no resource viewer but may allow dubbing their resource IDs as page view IDs (Example 7-6).
Example 7-7 Sample Service Definition for Resource View
service-definition.xml
file. The Resource Authorizer interface uses Java interfaces and classes to return useful information about service resources. For example, the oracle.webcenter.framework.resource.ResourceAuthorizer
interface contains a method that returns the status (available or not available) for a unique resource ID (Example 7-8).
Example 7-8 Method for Returning Status Against a Unique Resource ID
The oracle.webcenter.framework.resource.ResourceInfo
interface exposes the following method:
The oracle.webcenter.framework.resource.ResourceInfo.ResourceStatus
enumeration includes the following possible values:
Example 7-9 Possible ResourceStatus Values
The only method in the oracle.webcenter.framework.resource.ResourceUrlRewriter
interface writes the URL, after a unique identifier is passed in. This URL can be an absolute URL or it can be one relative to the faces context root of the owning application.
Example 7-10 Resource URL Rewriter Method
You can develop your own resource action view handler -- for example, to cause resources to display in a new tab on the current page -- and specify whether you want to use the ADF inline popup, navigate using the DefaultResourceActionHandler (which opens in the same browser window to display the resource full screen navigation) or use the PopUpResourceActionHandler (which opens a new browser popup window).
Clicking a RAH-enabled link or button in a Framework application invokes the built-in default resource action view handler. This opens the resource in a resource viewer task flow by navigating from the browser to the resource using the same browser window.
You can change this behavior in adf-config.xml
by specifying either the built-in popup view handler or a custom view handler in the <resource-handler>
element. Additionally, you can specify whether the default action should invoke the view handler or display as an ADF inline popup in the current window.
Example 7-11 shows the XML added to adf-config.xml
to declare that MyAppResourceActionHandler
should be used as the view handler and that in the first instance, the resources should be displayed using an ADF inline popup.
Example 7-11 Specifying a Custom View Handler
where the wpsC:
namespace is defined as follows:
Along with the DefaultResourceActionHandler
, the RAH framework also includes the PopUpResourceActionHandler
, which invokes a new browser popup when navigating, rather than performing a full browser window navigation. This is similar to the behavior of WebCenter Portal applications in previous releases.
Example 7-12 shows how to specify the popup view handler.
Example 7-12 Specifying the PopUp View Handler
Applications can invoke their own resource action view handlers by creating a class implementing the ResourceActionHandler
interface or by extending the AbstractResourceActionHandler
base class and specifying the new view handler in the class attribute of <resource-handler>
in adf-config.xml
. In the following scenarios, the custom view handler class is invoked when a RAH link is clicked:
See Also: Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal for the service framework for more information about creating a custom resource action view handler; in particular, the |
In the <resource-handler>
tag, the display-as-popup
attribute defines the initial behavior for actioning an RAH link. This can be overridden on the RAH link itself in the resourceActionBehavior
tag using the useResourcePopup
attribute with the values of always
, never
or appDefined
.
If useResourcePopup
is not set, or if it is set to appDefined
on the RAH link, then the display-as-popup
attribute in adf-config.xml
is considered. If this is set to true
, then RAH invokes the ADF inline popup instead of invoking the resource action view handler. This displays a mini-resource-view of the resource in an ADF inline popup within the current page. The user can close or maximize this. If the user clicks the Maximize button, then the popup is closed and the resource action view handler is invoked.
By default, the ADF inline popup is used in Framework applications only for specific cases for some task flows where a full navigation does not make sense. For example, search results may include the resource's author. When you click this user name link, you see the popup summary profile of the author without navigating away from the search result.
These task flows have useResourcePopup
set to always
in their resourceActionBehavior
tags. You can change this by customizing the task flow.
In deployed applications, the <resource-handler>
settings in adf-config.xml
can be added and updated using WLST commands. For command syntax and examples, see the sections, "setWebCenterServiceFrameworkConfig" and "getWebCenterServiceFrameworkConfig" in Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.
Optionally, you can enable users to set the time zone, the date and time format, the language (locale), and the accessibility mode for the services you add to your application. You can provide these capabilities through the WebCenter Portal General Settings service. This service contains values that you can access either directly from the JSF page(s) in your Framework application or indirectly through an API. The General Settings service covers the following areas:
java.util.Timezone
; for example, GMT+0800
. It also supports the format Region/Country
; for example, Europe/Amsterdam
. java.text.DateFormat.SHORT
. This is based on java.text.DateFormat
; for example, java.text.DateFormat.MEDIUM
. Supported values are SHORT
, MEDIUM
, LONG
and FULL
. java.util.Locale
; for example, fr-CA
. accessibility-mode
setting in the trinidad-config.xml
file. Valid values are default
, inaccessible
, or screenReader
. skin-family
setting in the trinidad-config.xml
file. This is based on the Trinidad skin-family
attribute. Valid values are defined by skins included with the application. To use the service directly from your application, use Expression Language in your JSF pages to access the generalSettings
managed bean. The style is based on the java.util.Timezone
, and the pattern is based on java.text.SimpleDateFormat
.
When you add generalSettings
as the value attribute of an ADF component, for example af:activeOutputText
, you can open the Expression Builder, then navigate to JSF Managed Beans > generalSettings to view the preference values for the bean.
The General Settings service supports both pattern-based and style-based formats. If a pattern is not specified, then the style is used. By default, the patterns are not specified or null.
Figure 7-9 shows the Insert EL Expression dialog with General Settings.
Figure 7-9 Expression Builder for the generalSettings JSF Managed Bean
Table 7-4 describes the preference values for the General Settings service.
Table 7-4 General Settings Managed Bean Preference Values and Descriptions
General Settings Preference Value | Description |
---|---|
| Displays the current date in the user's selected locale. |
| Displays the current date and time in the user's selected locale. |
| Displays the current time in the user's selected locale. |
| Preferred accessibility mode (|
| Java date style to be used in |
| Java time style to be used in |
| Java date pattern to be used when displaying dates, and not times.The pattern must be a valid |
| Java time pattern to be used when displaying times, and not dates. This takes precedence over |
| Java date/time pattern to be used when displaying dates and times. This takes precedence over |
| Java time zone to be used in |
| Preferred skin name to use with the |
For example, to display the current date and time in the user's selected locale, time zone, and format, add the following to your page:
Example 7-13 Code for Displaying Current Date and Time in User's Locale
Or, to display a specific date and time:
Example 7-14 Code for Displaying Specified Date and Time
To take advantage of the preferred accessibility mode, you must add an EL (Expression Language) expression to the application's trinidad-config.xml
file to set the accessibility mode; for example:
Example 7-15 Setting the Accessibility Mode in trinidad-config.xml
You can build a user interface using the General Settings API to enable users to either accept the default settings or apply their desired settings. The API contains the same preference values described in Table 7-4.
Any service in WebCenter Portal that displays a date and time uses the settings configured in the General Settings service. For information on using the General Settings Service API to build a preferences user interface, see the Javadoc for oracle.webcenter.generalsettings
. Specifically, the oracle.webcenter.generalsettings.model
package contains APIs to get and set preference values for each of the settings. Use these APIs to build a custom user interface to allow users to view and set their preferred values.
By default, ADF obtains the user's locale from the user's browser settings. You can change this behavior to have the user's preferred locale be set in the application using a Preferences UI.
To make the behavior change, include oracle.webcenter.generalsettings.model.filter.GeneralSettingsLocaleFilter
as a servlet filter in web.xml
and adfBindings
. This servlet filter sets the default locale (ADF Locale) from the General Settings service Locale preference instead of from the user's browser.
Add the General Setting locale filter to web.xml
with the following rules:
Define the filter. For example:
Add the filter after the adfBindings
filter with the same servlet-name. For example:
If this filter is not set, then the locale is sourced first from the client browser locale setting, and then from the ADF locale setting.
If this filter is set, then the locale is sourced from the General Settings service. If the General Settings locale preference does not exist, then it reverts to the non-filter default behavior.
As a companion to this guide, a sample enterprise application was developed using Oracle Fusion Middleware 11g Release 1 (11.1.1.5), which includes Oracle WebCenter Portal: Framework and Oracle WebCenter Portal: Spaces. The application, called the AviTrust Portal Demonstration for WebCenter Portal, is referenced in various chapters throughout this guide to illustrate points and provide typical use cases for Oracle developers. It is intended to serve as a powerful learning tool for understanding the new portal features and services available in the latest release of WebCenter Portal.
In this chapter, you'll learn about these features and services, as well as take a quick, high-level tour of the components that were built using WebCenter Portal: Framework.
This chapter includes the following sections:
The AviTrust Portal Demo for WebCenter is a robust, rich-media portal application built for the enterprise, which demonstrates some of the advanced features available in Oracle Fusion Middleware, as well as WebCenter Portal: Framework. The application is based on a hypothetical online banking and financial services website -- the AviTrust Listening Bank.
Using this public-facing, extranet portal (shown in Figure 8-2), customers can browse and navigate various banking services offered by the AviTrust Bank, such as opening checking and savings accounts or applying for loans, through the bank website. Customers can also take advantage of a wide range of banking and financial services tailored for both small businesses and larger commercial enterprises, like setting up custom online accounts for access to the portal.
In this portal application, WebCenter Portal and WebCenter Portal: Framework are used to provide a host of Web 2.0 capabilities that include content-driven navigation, personalization scenarios, and integration of new WebCenter Portal: Services, including polls, blogs, RSS, discussion forums, tags, links, social networking and activity streams. These services are directly embedded into the AviTrust sample portal application.
By design, the AviTrust banking portal application was created (hypothetically) to reduce transaction costs and offer a wide range of convenient banking services to its online customers.
For example, the AviTrust banking portal allows authenticated customers to:
To view and run the demo application, you need to install Oracle JDeveloper 11g (11.1.1.4) and the Oracle WebCenter Portal extension (11.1.1), as described in Section 3.2, "Installing WebCenter Portal's Extension for Oracle JDeveloper." You then need to download the application for this demonstration. Once the application is installed and running, you can view the application at design time in Oracle JDeveloper and at runtime by logging in as a user or administrator.
The AviTrust Portal Demo source distribution is available via the WebCenter Oracle Technology Network (OTN) page for Demos and Samples.
Sample files to import into your WebCenter Portal application, which include both project and archive files, available for download as a ZIP (or tgz) archive, will be made available here.
http://www.oracle.com/technetwork/middleware/webcenter/portal/documentation/avitrust-522536.html
The ZIP archive also includes instructions on how to load and install the project content.
Sample code for developers and administrators is available at http://www.oracle.com/technetwork/indexes/samplecode/index.html
Release downloads for Oracle WebCenter Portal Developers are available at
http://www.oracle.com/technetwork/middleware/webcenter/portal/downloads/index.html
Once you have downloaded and installed the AviTrust sample portal application, you can run the application and navigate to the components that were built using WebCenter Portal. This section will take you on a visual tour of the application and show you how the components were built using WebCenter: Framework.
The section focuses on how the various Oracle WebCenter Portal components display at runtime. You can examine the application at design time in Oracle JDeveloper. For more information on how you can add a service or feature to your application, refer to the appropriate chapter in this guide.
In broad outline, some of the new features illustrated by the AviTrust sample application in this release of WebCenter Portal include:
To understand how the components of the banking portal were constructed, you can begin by launching and deploying the application in JDeveloper and then taking a look at the AviTrust Sample Portal Home page, as displayed in a web browser. The Home page will serve to illustrate some of the powerful, new features available in WebCenter Portal.
To view these features:
Portal [webcenterpm1.us.oracle.com]
project and right-click the Run icon, as shown in Figure 8-1. Figure 8-1 The AviTrust Sample Portal Application Launched in Oracle JDeveloper
If the Integrated WebLogic Server is not running, this action starts the server and (re)deploys the application. By default, the file index.html
(or another page that it redirects to) displays in the browser.
The Home page of the sample portal application now appears in a web browser, as shown in Figure 8-2.
Figure 8-2 The AviTrust Home Page Displayed in a Web Browser
On the portal Home page, secure user login is provided for authenticated bank customers by two points of entry:
In addition, administrators can set up security for authenticated users and provide delegated administration, while users manage their account and banking transactions. For more information, see Chapter 69, "Securing Your WebCenter Portal: Framework Application."
Figure 8-3 Secure Customer Login to Accounts in the AviTrust Home Page
Tabbed navigation provides banking customers with the most flexible and intuitive way of exploring the site.
The navigation model, rendered as a fly out menu on the template header, is based on an HTML template and a Cascading Style Sheet (CSS) file created by the AviTrust graphics design team. With four tabs embedded in the navigational bar (shown in Figure 8-4), customers can easily browse and access other pages and levels of information and services available on the banking website.
Figure 8-4 The Navigation Bar on the Home Portal Page with Four Tabs
To navigate the site using tabs:
Note that as you move your cursor over this and the other tabs in the navigation bar (illustrated subsequently in Figure 8-6, Figure 8-7, and Figure 8-8), the AviTrust Portal Application uses a different site template. There is a notable switch from the horizontal top-level, tab-style navigation to a hybrid model. This model uses horizontal tabs on the top and vertical links for side navigation. The WebCenter navigation components here are designed to be flexible yet easy to manage for purposes of branding partner and sub sites.
For information on how to create the navigation model for your portal, refer to Chapter 11, "Building a Navigation Model for Your Portal."
Figure 8-5 The Personal Tab Selected in the Navigation Bar with Links to Other Pages and Services
Figure 8-6 The Small Business Tab Selected in the Navigation Bar with Links to Other Pages and Services
Figure 8-7 The Commercial Tab Selected in the Navigation Bar with Links to Other Pages and Services
Figure 8-8 The Customer Support Tab Selected with HTML Contents Displayed
In each case, customers browsing and accessing the AviTrust portal will find ease of access in navigating to pages for information that are relevant to their various banking needs.
The bread crumb on the top of the page lets you identify your current location within the site, and also provides users with easy access back to the top-level pages.
Figure 8-9 The America's Support Page Following the Bread Crumb from the Contact Us Link
The AviTrust Portal application demonstrates how users or administrators with appropriate privileges can easily manage portal resources at runtime.
At runtime, the Resource Manager provides access to administration tools for the resources available to the portal. For example, using the Resource Manager, the site administrator can perform the following tasks:
For more information, see Chapter 13, "Adding Resources to Your Portal."
To access and use the Resource Manager at runtime:
Figure 8-10 The Login Page Displayed in a Web Browser
Username: weblogic
Password: welcome1
The Administration Console now appears in the web browser. As an administrator, you can make changes at runtime and manage portal resources accordingly.
For more information, see Section 9.11.2, "Runtime WebCenter Portal Administration Console."
Figure 8-11 The Administration Console with Pages Selected
Figure 8-12 The AviTrust Skin Selected in the Look and Layout Menu
For more information, see Chapter 15, "Creating and Managing Skins."
Figure 8-13 The Content Presenter Node Selected in the Look and Layout Menu
For more information, see Chapter 29, "Creating Content Presenter Display Templates."
Figure 8-14 The Content Node Selected in the Services & Portlet Producers Menu
The Services tab with Contribution folder selected enables you to access content stored in Oracle WebCenter Content on Oracle Server.
Figure 8-15 The Security Tab Selected in the Administrator Node
Figure 8-16 The Configuration Tab Selected in the Preferences Menu
All portals need to enable content authors to make changes quickly and easily at runtime. Using WebCenter Portal's direct integration with Oracle Enterprise Content Management (ECM), authors can create and edit HTML documents with a minimum of effort.
For example, you can retrieve a template entry for a press release and then ensure that your new press release follows your corporate standard, thus easily evolving the site at runtime and still professionally managing the source content for your entire site.
To accomplish this, you log in to the AviTrust Portal as a content author who has privileges to edit content in a web browser, following these steps:
Username: contentadmin
Password: welcome1
CTRL+SHIFT+C
on your keyboard. This takes you into content contribution mode for runtime editing. A dotted line appears around the content to be edited, shown in Figure 8-17.
Figure 8-17 In-Context Editing Enabled on the AviTrust Customer Support Page
Figure 8-18 The Edit Pencil Selected to Enable Runtime Editing of Web Content
Note that you can easily replace the images or edit text through the Site Studio Contributor.
Figure 8-19 Oracle Site Studio Contributor With the Content to be Edited
customer
in the ECM console, as shown in the Figure 8-21, and select the image customer_relationship_manager2.png
. You will now be able to search any new images uploaded by the content management team and choose an image from the list. Figure 8-21 Searching for the Keyword Customer in the ECM Console
Figure 8-22 The Save and Close Button Selected in Oracle Site Studio Contributor
You can now refresh the content to see the new image.
CTRL+SHIFT+C
again on your keyboard. Since you have finished in-context editing of the content stored in ECM, you can come out of contribution mode. The newly edited banner image and content now appears on the AviTrust Customer Support page, as shown in Figure 8-24.
Figure 8-24 The Newly Edited Banner Image and Content on the Customer Support Page
WebCenter Portal exposes a comprehensive set of social computing services. These include ready-to-use task flows and portlets, enabling developers to become more productive. These services are designed to work together, so that you can add polls, blogs, threaded discussions, wikis and other social computing services to your site with a minimum of effort at runtime.
The Polls service lets you create, edit, and take online polls on your application pages. Polls let you survey your audience (such as their opinions and their experience level), check whether they can recall important information, and gather feedback on the efficacy of presentations.For more information, see Chapter 37, "Integrating the Polls Service."
In one scenario, for example, let's suppose an executive at the AviTrust Listening bank wants to poll members of the Online Small Business Community. The executive asks the website administrator to create a new Poll at runtime on the Polls Administration tab. The website administrator creates the poll and puts it on the home page of the community. A customer then takes the poll and the bank executive views the results. In this case, the poll is implemented at runtime, without having to make changes in JDeveloper at design time.
In another scenario, a small business customer may want to host an event for other customers. In the AviTrust banking portal, the customer creates an Event wiki page, using a specific template to define when and where the event is supposed to take place. Another customer can edit the wiki page by adding a requested agenda item or other information about the event.
The Wiki service provides a means for customers to work simultaneously on documents and share ideas, either in the context of communities or as individuals. Customers can use wiki syntax directly, or edit wiki pages as you would any text in a word processor. All changes and versions are tracked within Oracle ECM. Thus, wiki content becomes a true enterprise content resource.
For more information, refer to Chapter 32, "Integrating Wikis and Blogs."
The AviTrust sample application illustrates how easily you can add a Discussion Forum, similar to adding other social computing services, like polls, blogs and wikis, to your portal at runtime.
For more information, refer to Section 25.3.2, "Examples: Customizing Task Flows for Custom Framework Applications."
To create, edit and manage the content for a Small Business Forum in the AviTrust banking portal:
Username: contentadmin
Password: welcome1
Figure 8-25 The Forums Link in the Small Business Page
As the content administrator, you can create a topic for the forum, edit its contents and observe the customer activity, such as replies and exchanges, on the forum itself.
Figure 8-26 The Forum Page to Create a Topic and Edit the Content of a Forum Discussion
Now that you've taken a brief tour of the AviTrust Portal Demo for WebCenter, you can check out these features in depth and use them yourself by referring to the relevant chapters in this guide.
Table 8-1 describes at a high level the Oracle WebCenter Portal features that are included in the AviTrust Portal Demo for WebCenter.
To learn more about the different features, refer to the relevant chapter.
Table 8-1 WebCenter Portal Framework Features in the AviTrust Portal Demo for WebCenter
Feature | Location in the Demo | Chapter |
---|---|---|
Portal Navigation | Users can navigate the portal using tabs in the navigation bar. Developers can add content-driven navigational links to the portal, like pages, portlets, task flows, files, external applications or web pages in the navigation model. | |
Content Integration | Authenticated users can edit in-context HTML documents stored on Oracle Content Server, as well as in-context editing of Site Studio definition files. | |
Personalization | Administrators can render content based on a personalization scenario, using the Content Presenter. Content can be based on a query result derived from the a scenario deployed in the Personalization engine. | Chapter 67, "Personalizing WebCenter Portal Applications." |
Resource Management | Portal resources, like pages, catalogs, and skins, can be managed at runtime, using Administration capabilities. | |
Integration of WebCenter Services | Administrators can take advantage of social computing services, like polls, blogs, forums and wikis. | Chapter 32, "Integrating Wikis and Blogs." |
Part II contains the following chapters:
This chapter introduces the architecture, components, and features of a WebCenter Portal: Framework application. This chapter includes these topics:
A WebCenter Portal: Framework application is a portal. From an end user perspective, a portal is a web site with pages that are organized by tabs or some other form(s) of navigation. Each page can contain a nesting of sub-pages that are related hierarchically. Any page can contain multiple portlets, task flows, or other elements, giving users access to different information and tools in a single place. An administrator can modify a portal at runtime by, for example, adding new pages or changing the look and feel. If authorized through delegated administration, individual users can modify their view of a portal as well.
Figure 9-1 shows an example portal. It includes navigation (tabs, bread crumbs, links), content (portlets, task flows, images), administration features, and so on.
Figure 9-1 Example WebCenter Portal: Framework Application
Portal end users may also see personalized views of a portal page. A personalized view is a view that has been modified with content that is based on information collected about that user. For example, a site that sells books might "remember" that you recently purchased several detective novels, and based on that information, recommend several other similar kinds of detective novels when you next log in to that site. See Chapter 67, "Personalizing WebCenter Portal Applications."
A portal presents diverse content and applications to users through a consistent, unified web-based interface. Portal administrators and users can customize portals, and content can be presented based on user preferences or personalization. Each portal is associated with a web application that contains all of the resources required to run portals on the web.
As you can see, some key elements of portals include pages and sub-pages, navigation, delegated administration and other security features, runtime customization, and personalization.
Portals also typically include features like:
Oracle WebCenter Portal: Framework adds a number of portal-specific features to a Framework application, like page hierarchies and navigation models, as explained in this section.
If you create a Framework application using the WebCenter Portal: Framework Application template, the framework is automatically included. No further steps are required. See also Section 5.2, "Creating a Framework Application."
Note: Migrating a non-portal Framework application to a Framework application is not supported. |
Oracle WebCenter Portal: Framework adds a number of portal-specific features to a Framework application. These features are included by default when you create a new application using the WebCenter Portal: Framework Application template. See also Section 5.1, "What Are Application Templates?."
The basic features provided by the framework include:
JDeveloper includes tooling for portal development. This tooling includes editors for creating and modifying page hierarchies, navigation models, catalogs and the catalog registry, page templates, page styles, skins, and delegated administration. In addition, runtime tools are provided to allow end users and administrators to perform some of these functions. See also Section 9.11.2, "Runtime WebCenter Portal Administration Console."
The portal life cycle describes the process of creating a portal from development through deployment to a production server. Many actors participate in the life cycle including software developers, content modelers, content contributors, IT administrators, portal site administrators. For detailed information on managing all the stages of the portal life cycle, see Chapter 10, "Understanding the WebCenter Portal Life Cycle."
Use the WebCenter Portal: Framework Application template to create a new framework application in JDeveloper. Application templates are a standard JDeveloper feature, and the portal template simply configures the application with the required portal components and features.
Tip: The Framework application template is basically identical to the Framework application template in earlier versions of WebCenter, but with certain portal-specific features added in. In addition to these portal features, framework applications include all of the features you'll find in a traditional Framework application, like task flows, data controls, security features, ADF Faces layout components, and so on. |
The basic steps for creating a framework application are described in Section 5, "Creating Framework and Portlet Producer Applications."
This section discusses some of the main portal features you'll need to know about.
This section introduces three related pieces of the Oracle WebCenter Portal: Framework: pages, page templates, and page hierarchies.
A portal consists of one or more pages, and pages play a crucial role in a portal's structure and organization. Generally, a page is a container for one or more entities like task flows, portlets, and content. Pages also typically include a navigation interface, like a navigation tree, tabs, or bread crumbs. In a Framework application, you can find a set of default pages in the Portal project under the folder oracle/webcenter/portalapp/pages
, as shown in Figure 9-2. The placement of these pages is for organizational purposes, and new pages do not necessarily need to be created under the pages folder.
Note: For important information on the organization of files in Framework applications, see Section 9.12, "How are WebCenter Portal Files Organized?." |
Note: For pages to be used in the page hierarchy, they must be located under |
A page template lets you specify view elements that you wish to be common to all of your pages. A page template is a JSPX file that includes ADF layout components and other elements. Typically, page templates define a page layout, with headers, footers, and content areas. In addition, the page template usually specifies the positioning and style of the navigation UI for your pages. For example, if you want all of your pages to include the same set of tabs, or if you want each page to have a tree navigation panel and bread crumbs, you can add these components to the template.
Tip: Page templates are referenced by the pages that use them. If you change the underlying page template, all the pages that reference the template automatically inherit the change. |
You can find the page template folder in oracle/webcenter/portalapp/pagetemplates
, as shown in Figure 9-3. Notice that the folder contains two default page templates that are included out of the box.
Figure 9-3 Contents of the pagetemplates Folder
A page hierarchy is a logical structure that arranges pages through a set of parent-child relationships, where any page can have one or more sub pages. This hierarchical model not only helps define the overall structure of the portal, but also allows child pages to inherit the security policies specified by their parent. The ability for pages to propagate security policies down the hierarchy is particularly convenient for very large portals with dozens or even hundreds of pages: you don't have to set security for every page. Note that when you create a new page, its security policy is automatically set based on where it resides in the page hierarchy.
You can find the page hierarchy files in the oracle/webcenter/portalapp/pagehierarchy
folder, as shown in Figure 9-4.
Figure 9-4 Contents of the pagehierarchy Folder
Note: The page hierarchy files are XML files that contain the metadata that define the page hierarchy structure. It is not recommended that you attempt to edit these files directly; rather, use the Page Hierarchy editor to create and work with page hierarchies, as explained below. |
A basic page hierarchy model is included with applications created from the WebCenter Portal: Framework Application template. You can modify the page hierarchy with the Page Hierarchy editor in JDeveloper. To access this editor:
pagehierarchy
folder. Tip: You can also bring up the Page Hierarchy editor by right-clicking a portal page file (JSPX file) and selecting Edit Page Hierarchy from the menu or by opening a page hierarchy file directly. |
After you have created pages for your portal, use the editor to build up the site structure. You can drag and drop pages (one or several at a time) from anywhere in the oracle/webcenter/portalapp
folder in the Application Navigator directly into the Page Hierarchy editor and position them in the hierarchy as you wish.
Alternatively, you can use the Add button located above the hierarchy pane. Clicking this button pops up a dialog that allows you to choose a page from within your project. This page is added as a child of the page that is currently selected in the editor, as shown in Figure 9-5.
Figure 9-5 Adding a Page to the Page Hierarchy
In the editor, you can rearrange page nodes within the tree display simply by dragging and dropping them. For large hierarchies, you may also find it useful to use the Change Parent dialog by right-clicking a page in the hierarchy and choosing Change Parent Page. This dialog allows you to choose a new parent for the selected page from a separate window, instead of having to scroll through a hierarchy that may be too large to view all at once.
Tip: Right-click a node in the Page Hierarchy editor and select Go to Page to open the associated JSPX (portal page) file. |
Note: For each new level you create in the page hierarchy, a |
Figure 9-6 shows the structure of a simple human resources site that includes top level pages Benefits, Careers, Payroll, and Location. The Benefits, Careers, and Location pages each have multiple child pages.
Notice how this hierarchy is realized when you run the portal, shown in Figure 9-7. In this example, the pages use the default page template, which includes a navigation bar. The bar is rendered as tab-like links across the page. Because this navigation UI was added to the page template, it will appear consistently on all pages that use the template. In addition to the default navigation component, you could add a navigation tree, bread crumbs, or other styles of navigation UI to the page template. In many cases, the template will include two or more navigation components.
For more information on page templates, see Section 12, "Designing the Look and Feel of Your Portal." For more information on the default navigation model and on creating navigation models and user interfaces, see Section 11, "Building a Navigation Model for Your Portal."
For more information on page hierarchies, see Section 69.6.2, "Building a Page Hierarchy."
At design time, you can set up security for your portal's pages in the Page Hierarchy editor. As mentioned previously, the page hierarchy defines the structural relationships between pages (parent-child) and it allows for child pages to inherit the security policies of their parents.
Note: You can secure pages either through the ADF page security model or through the hierarchical WebCenter Portal page security model. When a page is added to the page hierarchy, it implies that it's secured through the hierarchical security model. See also Section 69.6, "Using the Page Hierarchy Security Editor." |
As shown in Figure 9-8, the Page Hierarchy editor includes a Security section that lets you specify role-based security policies for pages. The security interface lets you decide whether you want the policies to be inherited or delegated. If you specify inheritance, then the security policies for that page will be inherited from its parent page. If you delegate security, then that policy will override the parent's security and the policy will be propagated to all child pages that are inheriting security.
Tip: A small padlock icon appears next to pages for which the inherited security settings are overwritten. In other words, you'll see this icon to indicate pages that have delegated security set on them. |
For example, in Figure 9-8, the Payroll page is configured so that Administrators have full access to the page, while authenticated users can only view and personalize the page. Anonymous users cannot access the page at all. Later, in Section 9.5.3, "Understanding the Navigation Model and the Navigation Registry," we'll discuss how the security policy set for a page also affects the appearance of the navigation UI. In this example, because the Payroll page is only available to Administrators and authenticated users, the navigation UI will only show the Payroll page link to authenticated users and Administrators. For all other users, the Payroll link will not show up at all.
Figure 9-8 Security Setting for the Payroll Page
It's important to distinguish the navigation model from the page hierarchy. First, the page hierarchy specifies a parent-child relationship between pages. As discussed previously, pages can have one or more child pages. Secondly, the page hierarchy allows for security policies to be inherited from parent pages to child pages, or sub pages, down through the hierarchy. Note that page hierarchy only specifies a relationship between pages; other resources, like task flows, portlets, and external links cannot be included in a page hierarchy.
The page hierarchy provides a security inheritance model that allows administrators to easily control security on portals that have a very large number of pages. For example, if your portal has 100 pages, you can specify security policies on the root of the page hierarchy, and all 100 pages will inherit those policies. Then, if you wish to modify the settings on any page below the root, you can do that, and those settings will propagate to any of that page's sub-pages. You can also override the inherited settings and apply security settings to individual pages anywhere in the hierarchy.
The navigation model, by contrast, defines a navigational structure, keeps track of navigational data, and provides that data to the view layer of the application. While a page hierarchy only consists of pages, a navigation model can consist of a variety of resources, like task flows, pages, external links, and others.
It's important to note that the navigation model is aware of the security policies that have been applied to the elements (pages, links, task flows, and so on) that the navigation model controls. If the authenticated user is not authorized to see a particular page, the navigation model, by default, hides any navigational links to that page. For any resources that do not have security defined in the portal, like external links, the developer has to control visibility manually. One way to do this is to add an EL expression to the page or page template to control visibility (show/hide) of the resource. For more information, see Chapter 14, "Visualizing Your Portal Navigation."
For example, if your portal pages include a tree navigation UI, that UI asks the navigation model questions like: what pages or other elements can the user navigate to and what is the current navigational state of the portal. The first question informs which links the UI can display. The second informs the UI how to display those links. If the navigation view is a tree, the model tells the UI, for example, which page is currently selected. This allows the tree UI to display the node representing that page correctly, as an open folder for example, or as a selected page.
In JDeveloper, use the Navigation Editor to modify the navigation model. To open the editor, double-click the file default-navigation-model.xml
in the navigations
folder, shown in Figure 9-9.
Figure 9-9 Contents of the navigations Folder
The navigation-registry.xml
file is used by the Resource Manager when a user creates or edits a navigation model. The registry defines the superset of all items that are available to be included in a model that you create or edit. You can create multiple navigation models for an application, but an application can only have one navigation registry file. For more information on the navigation model, the Navigation Editor, and the registry, see Chapter 11, "Building a Navigation Model for Your Portal."
The default navigation model, shown in Figure 9-10, includes one node called Page Hierarchy. By default, this node points to the default page hierarchy file, pages.xml
, in the pagehierarchy folder. This node tells the navigation model to refer to the page hierarchy's structure and communicate that structure to the navigation UI so that it can be rendered. As seen previously in Figure 9-7, the default UI displays the page hierarchy as tab-like links. The information provided by the model allows each link to display its sub-page links in a drop-down menu whenever the mouse pointer hovers over it.
The navigation model can include several kinds of navigation elements. As we've seen, the model can include both page hierarchies and single pages. But you can also create navigation to other elements, like links to external web pages or specific content.
Figure 9-11 Adding a Link to the Navigation Model
For more information, see Chapter 11, "Building a Navigation Model for Your Portal."
A catalog specifies a collection of an otherwise unrelated group of elements, like layout components, task flows, portlets, documents, and others, that an authorized user can add to a portal at runtime. Oracle WebCenter Portal's Composer uses catalogs at runtime to determine which elements an authorized user can add to a portal page.
The Framework application template includes a default resource catalog (default-catalog.xml
) and a catalog registry file (catalog-registry.xml
). These files are located in oracle/webcenter/portalapp/catalogs
.
When a user edits pages at runtime using Composer, the default catalog file specifies all of the items that are available to be added to a page. The catalog registry file is used by the Resource Manager when a user creates or edits a resource catalog. The registry defines the superset of all items that are available to be included in a catalog that you create or edit.
You can create multiple catalogs for an application, but an application can only have one catalog registry file. For more information, see Chapter 16, "Creating and Managing Resource Catalogs."
At development time, you can edit existing catalogs using the Resource Catalog editor. To open the editor, open the catalog file (for example, default-catalog.xml
) in the catalogs
folder in Application Navigator, as shown in Figure 9-12.
To create a new catalog, select New from the File menu. In the New Gallery dialog, select Portal under the Web Tier node. Then, select Application Resource Catalog and click OK. Use the Create Application Resource Catalog dialog to create the new catalog.
Tip: You can also edit navigation registries using the Resource Catalog editor. |
Figure 9-12 Contents of the catalogs Folder
The Resource Catalog editor is shown in Figure 9-13.
Figure 9-13 Resource Catalog Editor in JDeveloper
Figure 9-14 shows the resource catalog editor in the runtime administration tool.
Figure 9-14 Resource Catalogs Editor at Runtime
For example you can create separate catalogs for each of several departments.
Tip: Individual catalog entries can be shown or hidden based on user roles. |
Other folders you'll see in the Application Navigator at design time are:
adfc-config.xml
config file. By default, a few files are excluded from view in the Application Navigator. These files are excluded because it is unlikely you'll ever need to edit them. However, because there are some use cases where you might want to edit them, you need to be able to add them back to the JDeveloper UI.
To locate the excluded files:
As an example, the navigation-renderer.jspx
file is used to render resources in the context of a page template. If you wanted to change the way an external URL is displayed within a page, you would first remove the navigation-renderer.jspx
file from the excluded list in order for it to appear under the pages
folder in the Application Navigator. Then, you could open the page and edit it as desired.
You can design the look and feel by adding certain presentation elements, such as banners, navigations, and footers, around the content area. Once you settle on a look and feel that is suitable for your portal structure, you can save these settings as a page template, which can be used to create a portal. In addition, you may want use the same settings across pages in your portal. With the use of page templates and page styles, you can achieve some consistency across pages in your portal. See Chapter 12, "Designing the Look and Feel of Your Portal."
You can also develop custom skins for your portal. A skin is a style sheet based on the CSS 3.0 syntax specified in one place for an entire application. Instead of providing a style sheet for each component in your application or inserting a style sheet on each page, you can create one skin for the entire application. Every component automatically uses the styles as described by the skin. When you use a skin, you do not have to make design-time changes to portal pages to change their appearance. See Chapter 15, "Creating and Managing Skins."
Although the basic look and feel design can be created in JDeveloper at design time, the Resource Manager enables administrators and users with the appropriate privileges to continue developing the portal's look and feel after the application has been deployed. For example, the Resource Manager lets you add and remove pages, add navigation user interfaces, and change the page templates, skins, and page styles. For more information about these and other Resource Manager features, see Chapter 17, "Adding and Using the Resource Manager."
A Framework application includes a set of preferences that specify certain default portal components. This section describes these preferences and explains how to change their default values.
Table 9-1 lists the portal preferences and their default settings.
Table 9-1 Default Preferences
Preference | Default Setting |
---|---|
Navigation Model |
|
Resource Catalog |
|
Page Template |
|
Navigation Renderer |
|
Skin |
|
To change the default preferences at design time, directly edit the adf-config.xml
file. To locate this file in JDeveloper, open the Application Resources part of the Application Navigator. Then, open the Descriptors folder and the ADF META-INF folder, as shown in Figure 9-16.
Figure 9-16 Location of the adf-config.xml File in JDeveloper
For example, to change the default navigation model file, edit the value of this preference:
Preferences can also be changed at runtime under the Configurations tab of the Administration page. From this page, you can configure the default page template, skin, resource catalog, and navigation component in a runtime application. For details, see "Configuring Application Defaults" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Iterative development is a productivity feature that helps speed up the development process. Iterative development lets you make and save changes to your Framework application in JDeveloper while the app is running on the Integrated WebLogic Server and immediately see the effect of those changes simply by refreshing the current page in your browser. The iterative development feature is enabled by default in a framework application. For more information, see Section 1.5.3, "Enabling Iterative Development."
Round-trip development refers to features and techniques that allow you to retrieve resources from a deployed, runtime portal back to JDeveloper for maintenance or enhancement. After modifying a resource in JDeveloper, you can use the Resource Manager to upload the resource back to the deployed portal. WebCenter Portal's round-trip development features provide a simple, convenient way to modify portal resources without redeploying the entire application.
For more information on round-trip development, see Section 17.3, "Enabling Runtime Administration of Your Portal" and Section 17.4, "Enabling Round-Trip Development of Resources."
The Application Sources folder appears as one of two top-level portal project folders generated by JDeveloper when you create a portal. In addition to any Java classes you write for your application, Application Sources includes:
JDeveloper provides several ways to run an application:
Tip: You can change the default portal home page. For details, see Section 9.13, "Changing the Default Home Page and Login/Logout Target Pages." |
Oracle WebCenter Portal: Framework provides a number of interesting runtime features.
If you are using the Integrated WebLogic Server in a development environment (running the portal through JDeveloper) any changes you make to the portal at runtime (using the Resource Manager) are discarded upon redeployment by default. For example, if you use the Resource Manager to make changes like adding entitlements to a page, changing the layout, or modifying the navigation model, these changes will not be preserved the next time you redeploy the application. For more information on the Resource Manager, see Chapter 17, "Adding and Using the Resource Manager."
Note: The information in this section only applies to a portal that is running with the Integrated WebLogic Server in a development environment. When you deploy the portal to a production environment, runtime changes are never discarded. |
Note: Customizations are not preserved by default as a convenience for developers working in the JDeveloper environment. When you modify a file at runtime, a new version of the file is written to the MDS write directory. This new version then takes precedence over the version in JDeveloper. At that point, if you change a setting in JDeveloper and click Refresh in your browser, the change will not show up. Therefore, while you're working in JDeveloper, it's much more convenient and natural not to preserve runtime customizations. |
It is possible to change the default behavior, and preserve runtime customizations between runs. For example, you may wish to do this to enable certain testing scenarios. To allow customizations to be preserved between application deployments (runs):
Figure 9-19 Selecting Preserve Customizations Across Application Runs
The WebCenter Portal Administration Console lets you work with resources, services, security, and portal configurations. The WebCenter Portal Administration Console is located at this URL: http
://<server
>:<port
>/<context_root
>/admin
, and is shown in Figure 9-20.
Figure 9-20 The WebCenter Portal Administration Console
Tip: You can change the default URL for the WebCenter Portal Administration Console by editing the |
For more information on the Resource tab (the Resource Manager), see Section 9.11.4, "Runtime Editing of Portal Resources" and Chapter 17, "Adding and Using the Resource Manager." Security topics are discussed in Chapter 69, "Securing Your WebCenter Portal: Framework Application."
Role based security policies control which pages, resources, and navigational elements visitors can see and manipulate (create, delete, update, and so on). The design time (JDeveloper) page editor lets you set these policies on pages or hierarchies of pages, as discussed in Section 9.5.2, "Securing Your Portal Pages." Oracle WebCenter Portal: Framework respects these security polices in the following ways:
The WebCenter Portal Administration Console includes a Resources tab that lets you work with several portal-specific features at runtime:
Using the Resource Manager, portal users can also download resources, or an entire application, from the runtime environment, edit them in JDeveloper, and then upload them back into the deployed application. For more information on downloading and uploading resources, see Section 17.3, "Enabling Runtime Administration of Your Portal" and Section 17.4, "Enabling Round-Trip Development of Resources."
The Edit Source feature in the Resource Manager lets you edit the source code of resources in the runtime application. For example, if you upload a portal resource (like a page template), you can then edit it directly in the Resource Manager. Just select the resource, and choose Edit Source from the Edit menu. A source editing window appears, as shown in Figure 9-21.
Note: Some resources, like the |
Figure 9-21 Editing a Page Template Source File at Runtime
When you run through the Framework application wizard, a large number of project artifacts are configured and installed in the project directory. JDeveloper presents a streamlined view of your project. You can also view your portal project directly on your filesystem.
This section explains how a Framework application is organized, and then why it is organized the way it is.
When you create a new Framework application in JDeveloper, a large number of files are automatically placed in the project. You can see these files organized in the Application Navigator view in JDeveloper.
Looking at the Application Navigator, the first thing you will notice is that a framework application consists of one project, which is called (by default) Portal, as shown in Figure 9-22. You can, of course, change this name when you create the application or anytime afterwards. Most of the files in a project are placed in the <application_root>/<project_root>/public_html/oracle/webcenter/portalapp
directory.
Figure 9-22 WebCenter Portal: Framework Application in the Application Navigator
It is important to understand the following distinctions between files that are stored in your application:
Note: It is important to understand these distinctions because some files, like XML files, you might not expect to find under |
<application_root>/<project_root>/public_html/oracle/webcenter/portalapp
directory: <application_root>/<project_root>/public_html
: It is important to understand that a Framework application is structured this way specifically so that you can make informed decisions when you create your own pages. In some cases, specifically with JSPX pages, you might not want to create a page under oracle/webcenter/portalapp
. It depends on the intended use of the page in your application.
The simplest way to locate your project files on the file system is to select a file or folder in the Application Navigator and then select Copy Path from the Edit menu. This function places the path to the file or folder on the clipboard, which you can then paste into a command shell or file browser.
Figure 9-23 shows the filesystem organization of a sample Framework application. Many of the project's files are organized under the public_html
folder.
Figure 9-23 Sample WebCenter Portal: Framework Application on the Filesystem
As you will see, JDeveloper presents a somewhat different, more streamlined view of your project, as discussed in the next section, Section 9.12.3, "Viewing Your Portal Project in JDeveloper."
The intent of the project view in JDeveloper is to present the project files that a developer is likely to work with. These files include pages, page hierarchies, navigation models, page templates, catalogs, XML configuration files, Java source files, images, and so on.
In JDeveloper, portal projects are organized into two folders: Application Sources and Web Content, as shown in Figure 9-24.
Figure 9-24 Organization of a Portal Project in JDeveloper
The Application Sources folder is primarily a repository for source code and page definition files. See also Section 9.9, "What is the Application Sources Folder?."
The Web Content folder contains all of the files that make up your web project, like pages, page hierarchies, navigation models, and so on. These are the files that you will actively create and modify as you develop your Framework application.
Figure 9-25 shows the basic structure of the Web Content folder. Note that many of the files you will create and modify are located in the oracle/webcenter/portalapp
sub folder. This folder's contents – catalogs, navigations, page hierarchy, pages, skins, and pagetemplates – make up the basic components of a portal. For detailed information on these portal components, see Section 9.12.1, "Understanding the Organization of a WebCenter Portal: Framework Application."
Tip: If you prefer to view the local file system hierarchy in the Application Navigator, click the Navigator Display Options icon in the Projects panel and select Group by Directory. |
The PortalWebAssets project includes static application resources like HTML and image files. By separating the static resources into a separate project, it is possible to deploy those resources to a dedicated server. For more information, see Section 5.4, "Understanding the PortalWebAssets Project.".
The file oracle/portalapp/pages/home.jspx
is the default home page for a new Framework application. This section explains how to change this default home page to another page or any navigable resource like a URL, portlet, or task flow.
The default Framework application includes an index.html
file, which is located in the portal project directory. This index file contains the following redirect statement:
Note: The redirect statement in |
The URL element pages_home
refers to the "home" page specified in the page hierarchy. (The prefix "pages_
" is added to the folder name simply to ensure a unique ID.) As Figure 9-26 shows, the Insert Folder Contents checkbox is selected in the Navigation dialog. The Insert Folder Contents option replaces the specified folder ("home
" in this case) with the contents of the folder. Therefore, in this example, the portal looks for a folder called "home
" in the page hierarchy. Note too that Page Hierarchy is specified as an element in the navigation model.
To help you understand how the default portal home page is specified, note that in the navigation model a default node called pages
is created by default. This node's navigation path points to the page hierarchy file, pages.xml
, as shown in Figure 9-26.
Upon navigating to pages.xml
, the node called home
is located, and that node's path is /oracle/webcenter/portalapp/pages/home.jspx
, as shown in Figure 9-27.
To change the default home page, simply change the redirect statement in index.html
to the pretty URL of another resource that is referenced in the navigation model. For example, you might create a new home page and redirect to it – a common use case. Simply specify the new page to be your portal's home page by changing the redirect in index.htm
l
to the new page's pretty URL. (You can drag the new page in the navigation model to create a page link element.) For example, if the link ID in the navigation model is TheHomePage
:
where.faces/TheHomePage
is the pretty URL that points to the link element defined in the navigation model.
Figure 9-28 Navigation Model with New Home Page Element
Using this example, if access the portal in a browser using this URL:
the portal will render a home page that contains the content from the new home page, as shown in Figure 9-29.
Figure 9-29 The Oracle Website Displays as the Content for the Portal Home Page
The default index page for the Integrated Weblogic Server instance is index.html
. A new portal project includes this file, by default, in the Web Content
folder.
To change the default index file, index.html
to another file, you have two choices. One way to change this default index file is to edit the <welcome-file-list>
element in the web.xml
file:
Another way to change the default index page is to use the Edit Run Configuration "Default" dialog box. To access this dialog, open the project properties dialog, then, select the Run/Debug/Profile option. Click Edit to bring up the Edit Run Configuration "Default" dialog where you can change the default index page, as shown in Figure 9-30.
Figure 9-30 Edit Run Configuration "Default" Dialog
To specify the target page after a login or logout, edit the <navigation-rule>
element in the WebContent/WEB-INF/faces-config.xml
configuration file in your portal project, as shown in Example 9-1. You can change the target pages to any other navigation resource's pretty URL or Faces page.
Example 9-1 Specifying the Target Page for Login and Logout
For example, to redirect the user to a post-logout page follow these steps:
faces-config.xml
. For example: After a successful logout, the user is redirected to the specified page.
This section lists some of the basic tasks involved with developing Framework applications.
This chapter discusses tasks, tools, and techniques for managing a WebCenter Portal: Framework application throughout its life cycle.
The portal life cycle refers to the path a portal takes from development through production. The phases of the life cycle typically include development, testing, staging, and production. Each phase requires certain tasks to be performed. Some tasks are performed only once, like setting up a content repository. Others are performed more frequently, like nightly builds. The phases of the portal life cycle are described in Table 10-1.
Table 10-1 Portal Life Cycle Phases
Life Cycle Phase | Primary Actors/Roles | Description |
---|---|---|
Development |
| The development portal is primarily source control and file-based. Developers work locally in JDeveloper and deploy to the Integrated WebLogic server. The development portal typically employs test data and content. Some of the features that are developed in this phase of the life cycle include:
The code from the development environment is built (usually nightly) and deployed to a clean, independent, targeted environment. WebCenter provides a build script that can be adapted for this purpose. See Section 10.7, "Configuring a Nightly Build Script." |
Testing |
| The development portal is built (usually nightly) and deployed to an independent testing environment. The test environment typically includes a Metadata Service (MDS) and policy store that are database-based, and a dedicated Oracle WebCenter Content instance. The testing environment may contain test data and test content that will not become part of the production portal. Portlet producers may be shared between the test and development environments. However, if the usage load is high, Oracle recommends that separate instances be created. See also Chapter 62, "Testing and Deploying Your Portlets." |
Staging |
| The staging environment provides a stable environment where final configuration and testing takes place before the portal is moved to production. Content contributors add content and refine the portal structure. Typically, the staging environment includes a dedicated Oracle WebCenter Content server, as well as dedicated portlet producer server(s). The staging server is often maintained as a mirror of the production site. |
Production |
| A production portal is live and available to end users. A portal in production can be modified with tools like the Resource Manager and Oracle WebCenter Portal's Composer. For instance, an administrator might add additional portlets to a portal or reconfigure the contents of a portal. Individual users with proper authorization can also customize their view. See Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. WebCenter provides a propagation tool for migrating metadata to the production environment. See Section 10.13, "Using the Propagation Tool to Propagate From Staging to Production." Content is provisioned using Oracle WebCenter Content replication tools. See Section 10.14, "Propagating Content From Oracle WebCenter Content." WebCenter provides WLST commands for importing and exporting portlet preferences. For more information, see Section 10.16, "Migrating Portlet Preferences." |
Each phase of the life cycle requires actors (developers, administrators, content contributors, and others) to perform certain tasks. This provides an overview of the kinds of tasks that are performed during each phase of the portal life cycle.
You must perform certain preparatory steps to set up the development, build/test, stage, and production environments. Table 10-2 provides a general list of these preliminary setup tasks and the environments to which they apply. See also Section 10.7, "Configuring a Nightly Build Script" and Section 10.8, "Setting Up a Staging or Production Environment for the First Time."
Table 10-2 Typical One-Time Setup Tasks
Setup Task | Development | Build/Test | Stage | Production |
---|---|---|---|---|
Install JDeveloper | Yes | No | No | No |
Install Oracle WebCenter Portal | Yes | Yes | Yes | Yes |
Install Oracle WebLogic Server; create a domain and managed servers | No | Yes | Yes | Yes |
Create required database schemas using RCU | No | Yes | Yes | Yes |
Install and configure Oracle WebCenter Content | Yes | Yes | Yes | Yes |
Install identity management components, such as Oracle Access Manager | No | Yes | Yes | Yes |
Create the required Oracle Platform Security Services policies in the policy store | No | Yes | Yes | Yes |
Create required user credentials in the credential store | No | Yes | Yes | Yes |
Create connections to back end servers | Yes | Yes | Yes | Yes |
Create build scripts | Yes | No | No | No |
Create deploy and configure scripts | No | No | Yes | Yes |
Integrate/configure Personalization for WebCenter Portal | Yes | Yes | Yes | Yes |
* For more information on Personalization for WebCenter Portal, see "Managing Personalization for WebCenter Portal" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal and Chapter 67, "Personalizing WebCenter Portal Applications."
Another technique for setting up an environment for the first time is to clone an existing instance. Typically, this strategy is used to clone a production instance from a stage instance. For detailed information on this "test to production" technique, see "Moving from a Test to a Production Environment" in the Oracle Application Server Administrator's Guide.
In a development environment, each developer has a local JDeveloper instance that is connected to a source control system and a shared Oracle WebCenter Content repository. Developers store metadata and code in source control. Portlets are deployed independently to a producer server and consumed by the portal.
In a development environment, developers typically build and run the application locally using the Integrated WebLogic Server. Both MDS and the Policy Store are file-based in the local development environment.
For more information, see Chapter 1, "Developer's Quick Start Guide," Chapter 3, "Preparing Your Development Environment," and Chapter 4, "Working Productively in Teams."
On a daily basis, developers work in JDeveloper and run code changes locally on the Integrated WebLogic Server, and code changes are checked into a source control system.
If you wish to set up a build environment that produces a clean environment that is built each night, there are certain tasks that must be performed with each build, including:
WebCenter provides sample build scripts that you can modify and use for your environment. See Section 10.7, "Configuring a Nightly Build Script." Nightly builds are usually made available to people within the organization, like QA engineers, technical writers, managers, and others. See also Section 10.4, "Understanding the Build and Test Environments."
For information on integrating Personalization for WebCenter Portal into your development environment, see Section 67.2, "Integrating Personalization in Your Application."
Usually, the testing environment is a mirror of the nightly build environment that is accessed by QA engineers. The tasks involved in providing a clean test environment are usually the same as creating a clean build environment. See also Section 10.4, "Understanding the Build and Test Environments."
Runtime tools play a bigger role in the staging environment than in the development environment. Nonetheless, occasional updates from development will need to be deployed to the stage environment. To facilitate these more intermittent updates, WebCenter provides a set of deploy and configure scripts that you can copy and modify to suit your environment. The deploy and configure scripts isolate the information that is variable between environments, like the server names, ports, content management connections, and so on. For more information, see Section 10.5.1, "Provisioning the Staging Environment" and Section 10.11, "Deploying and Configuring the Application on Targeted Servers." See also Chapter 62, "Testing and Deploying Your Portlets."
For information on integrating and configuring Personalization, see "Personalization for WebCenter Portal Prerequisites" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
When changes are tested and approved in the stage environment, they need to be pushed to the production environment. WebCenter provides a Propagation tool in the WebCenter Portal Administration Console that moves all portal metadata from the staging to the production server. For more information, see Section 10.13, "Using the Propagation Tool to Propagate From Staging to Production."
WebCenter provides WLST commands for importing and exporting portlet preferences. For more information, see Section 10.16, "Migrating Portlet Preferences."
Many different people participate in the portal life cycle. In general, these people (the primary actors in Table 10-1) fall into one or more of these general roles:
Although developers typically build and run locally, an automated nightly build environment is recommended. The build environment represents a clean deployment of the Framework application.
To set up the build environment, back end servers and connections must be installed and created once. For example, the build environment requires WebLogic Server instance, and typically includes access to an installed Oracle WebCenter Content instance. In addition, the build environment includes a database-based MDS and policy store.
Figure 10-1 illustrates the general flow from development to build to test environments.
Note: Figure 10-1 does not depict all possible portal features. For example, Personalization for WebCenter Portal is not depicted in the diagram. For more information, see Section 10.12, "Building and Deploying Personalization for WebCenter Portal Files." |
Figure 10-1 Flow from Development to Build to Test Environments
A common practice is to use Ant-based build scripts to construct the EAR from source control and deploy it. The EAR includes metadata, code, and seeded policies. The build script also packages into the EAR metadata customizations made to portlets. See Section 10.7, "Configuring a Nightly Build Script." Some tasks performed by the build scripts include:
The best practice is to use Oracle WebCenter Content archive tools to move Oracle WebCenter Content test content and web assets between the environments. See Section 10.14, "Propagating Content From Oracle WebCenter Content." For information on deploying portlets, see Chapter 62, "Testing and Deploying Your Portlets."
For information on integrating Personalization for WebCenter Portal into your development environment, see Section 67.2, "Integrating Personalization in Your Application."
This section discusses the staging and production phases of the portal life cycle. Figure 10-2 illustrates the general flow from staging to production environments.
Note: Figure 10-2 does not depict all possible portal features. For example, Personalization for WebCenter Portal is not depicted in the diagram. For more information, see Section 10.12, "Building and Deploying Personalization for WebCenter Portal Files." |
Figure 10-2 Flow from Staging to Production Environments
The staging environment provides a stable environment where final configuration and testing takes place before the portal is moved to production. Typically, the staging environment includes a dedicated Oracle WebCenter Content server, as well as dedicated portlet producer server(s). For a list of typical setup tasks, see Table 10-2.
If you are setting up the staging environment for the first time, see Section 10.8, "Setting Up a Staging or Production Environment for the First Time." For information on making incremental changes to the staging environment, see Section 10.11, "Deploying and Configuring the Application on Targeted Servers."
If you wish, you can move Oracle WebCenter Content content and web assets between the testing and staging environment using Oracle WebCenter Content archive tools. See Section 10.14, "Propagating Content From Oracle WebCenter Content." For information on migrating portlets, see Section 10.16, "Migrating Portlet Preferences."
For a complete list of requirements, dependencies, and options for Personalization, see "Personalization for WebCenter Portal Prerequisites" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Content developers can add content directly to the staging server using Oracle WebCenter Content content contribution tools and/or the Documents service. Content workflow features of Oracle WebCenter Content can be used to manage content approvals. WebCenter also provides runtime tools for creating and editing content. For example, you can:
In addition, the Documents service provides folder-based creation and editing of HTML content and other file types. See also Chapter 30, "Integrating the Documents Service."
Once the staging environment is fully provisioned and tested, it can be moved to the production environment and made accessible to users. In a live production environment, you can make incremental updates to metadata, content, and web assets using automated scripts and/or replication techniques.
Typically, these updates are performed by a site manager rather than by individual content contributors. For more information, see Section 10.13, "Using the Propagation Tool to Propagate From Staging to Production."
Any content model or region definition changes can be pushed to the production server by the site manager. Oracle WebCenter Content Replication can be used to replicate content between the stage and production server. See Section 10.14, "Propagating Content From Oracle WebCenter Content."
WebCenter provides WLST commands for importing and exporting portlet preferences. For more information, see Section 10.16, "Migrating Portlet Preferences."
WebCenter Portal is built on top of JDeveloper and Oracle ADF, which provide several benefits in the life cycle management of your application:
Note: WebCenter Portal: Services typically require some back end, such as Oracle WebCenter Portal's Discussions Server, to be available in the deployment environment. |
When you create a Framework application, an Ant build script and properties file are created automatically for you in the main application directory on the filesystem. These files are:
build.xml
– Includes a standard set of targets for cleaning, compiling, building, and deploying the application. You can check this file into source control so that it is available to the developers. build.properties
– Specifies the location of the JDeveloper workspace file (.jws
file) for your application and the output folder for the application WAR file. Note that the build.xml
file includes the build.properties
file, which enables build.xml
to pick up these environment-specific variables. You can customize the properties file to match the setup and environment variables used in your build environment. Before running the build script, be sure JAVA_HOME
and ANT_HOME
environment variables are set properly. For example:
path_to_your_java_installation
/jdkpath_to_your_ant_installation
To build and deploy your application, use the ant target all
. For example:
If you are using Personalization for WebCenter Portal to provide personalization features for your portal, you must perform a manual update to the build.xml
file. For details, see Section 10.12.1, "Building the WCPS MAR File."
For detailed information on setting up and provisioning a staging or production environment for the first time, see "Moving Oracle WebCenter Portal to a New Production Environment," in the Oracle Application Server Administrator's Guide. See also Section 10.15, "Managing Security Through the Life Cycle" for information on moving security policies and credentials to an environment for the first time.
In this scenario, you have a working production environment with Oracle WebCenter Portal installed and configured and you want to test changes in your applications or configuration before rolling those changes into the production environment. For example, you have modified existing security policies or configuration.
Oracle recommends that you use the deploy and configure scripts to update existing environment. Sample scripts are provided with WebCenter, and you are free to modify them to suit your environment. For detailed information, see Section 10.11, "Deploying and Configuring the Application on Targeted Servers" and Section 10.12, "Building and Deploying Personalization for WebCenter Portal Files."
WebCenter provides a Propagation tool that is built in to the WebCenter Portal Administration Console. The Propagation tool is for moving your application from the staging environment to the production environment. See Section 10.13, "Using the Propagation Tool to Propagate From Staging to Production."
For information on moving Oracle WebCenter Content content, see Section 10.14, "Propagating Content From Oracle WebCenter Content."
For information on moving security policies and credentials, see Section 10.15, "Managing Security Through the Life Cycle."
For more information, see "Moving Oracle WebCenter Portal to an Existing Production Environment," in the Oracle Application Server Administrator's Guide.
Framework application developers working in JDeveloper typically deploy their application locally to the Integrated WebLogic Server. For other phases of the life cycle – testing, staging, and production – deployment to a suitable managed server is recommended. Or, for portlet development, you need to deploy to the Services Producer Managed Server. For more information on deploying to managed servers, see Section 70.3, "Deploying a Framework Application to a WebLogic Managed Server." See also "Templates for WebCenter Portal or Portlet Producer Applications" in the Oracle Fusion Middleware Installation Guide for Oracle WebCenter Portal and "Creating and Provisioning a WebLogic Managed Server Instance" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
During its life cycle, a typical portal is deployed to testing, staging, and production servers. This section describes a technique for deploying and configuring a Framework application on a targeted server.
WebCenter provides a configurable script that allows you to easily deploy and configure your application to these server instances. The build and deploy script takes a simple properties file parameter that specifies the server and connection information for the targeted server. You only need to create this properties file one time for each targeted server. Then, you execute the deploy and configure script with the appropriate properties file as a parameter.
Oracle recommends that you use the scripts described in this section to deploy your application rather than using ojdeploy. The best practice is to use the Ant task provided by JDeveloper to build your application, and then to use the scripts described in this section to deploy and configure the application. The ojdeploy command-line utility allows you to deploy your application from JDeveloper without starting the JDeveloper IDE.
Note: The propagation tool, described in Section 10.13, "Using the Propagation Tool to Propagate From Staging to Production," is primarily used by site administrators to push approved site structure changes to production without incurring any downtime. |
Tip: The build and deploy script isolates the information that is variable between environments, like the server names, ports, content management connections, database connections, and so on. Most aspects of the Framework application do not need to change when you redeploy it to another server. For example, the name of the application doesn't change. |
The deploy and configure script described in this section is primarily used when the production application is mostly read only and live. In this scenario, content contributors make active changes to the staged application and receive content approval before that content is moved to production. Oracle recommends that you use automatic content replication so that content is moved from stage to production after appropriate workflow approvals. See Section 10.14, "Propagating Content From Oracle WebCenter Content."
Security changes are not affected by the deploy and configure scripts. To push site structure changes to production, administrators can use the propagation tool, as described in Section 10.13, "Using the Propagation Tool to Propagate From Staging to Production." See also Section 10.15, "Managing Security Through the Life Cycle."
To deploy and configure your application to a target environment:
create_profile.csh
and deploy_and_config.csh
. These files reside in WEBCENTER_HOME/webcenter/scripts/stage2prod
, where WEBCENTER_HOME
is the directory where WebCenter is installed. Note: The deploy and configure scripts in |
setup.properties
file, like the target server URL, user name, and password. Simply open the file setup.properties
and add the appropriate values for the target environment. A sample file is shown in Example 10-1. Note: For WebLogic Sever deployments, you can ignore properties listed under WebSphere Server properties. See also, "Using the Deploy and Configure Script for Applications Deployed on WebSphere" in the Oracle Fusion Middleware Third-Party Application Server Guide. |
create_profile.csh
and deploy_and_config.csh
to reflect the deployed environment. WC_HOME
is the WebCenter Home and SCRIPTS_DIR
is where the scripts are located. By default, the scripts are here: $WC_HOME/webcenter/scripts/stage2prod
. If you copied the scripts to another location, then set SCRIPTS_DIR
to that location.
create_profile
script. The input to this script is the setup.properites
file. For example, in a Linux environment, enter: This script examines your application environment and produces an output properties file called profile.properties
.
profile.properties
to a name that reflects the target environment. For example, if the target environment is your stage environment, you might call the file output file wstage.properties
. The profile.properties
file specifies all the configuration information needed to run the portal on the target environment. For example, it includes settings for content management repository, omni portlet, WSRP producers, Personalization for WebCenter Portal and others. Example 10-2 shows a sample profile.properties
file.
Example 10-2 Sample profile.properties File
Note: All properties in the |
create_profile
to create a properties file for each of your target environments. For example, you might create one each for your test, stage, and production environments. deploy_and_confg
script. The input to this script is the profile.properties
file (or whatever you renamed the file). For example, in a Linux environment, might enter: The deploy_and_config
script takes one of two "modes" as input. These modes are deploy_config
and p13n_metadata
. For example:
The deploy_config
mode is the default mode if no input is passed to deploy_and_config.csh
. The deploy_config
mode does the deployment and configuration tasks. If you only need to update the update of personalization metadata, you can override the default behavior by passing in p13n_metadata
as the input to the script.
This script deploys and configures the Framework application to run on the target environment.
All WebCenter Portal configuration changes performed after the application is deployed are stored as customizations in MDS. For example, if your application had some connections defined in connections.xml
, and you then deployed the application on another managed server, and performed configurations using Oracle Enterprise Manager Fusion Middleware Control Console or WLST, then these changes are stored in MDS as customizations. Subsequently, if you deploy a newer EAR file, the connection changes you performed earlier would still be in effect, and will override the connection definition within the EAR file. The configuration changes performed with the Fusion Middleware Control Console or WLST persist after a redeployment. See also "Oracle WebCenter Portal Administration Tools" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Note: Portlet Producer application customizations are also stored in MDS. When you deploy a portlet producer, the customizations are uploaded to the currently configured producer connection. Oracle recommends that you use the deploy and configure scripts to manage the producer connections (rather than reconfiguring them after deployment and then redeploying the application). The deploy and configure scripts ensure that the producer customizations are redeployed correctly whenever the connection information changes. |
This section explains how to build and deploy Personalization for WebCenter Portal files.
Note: For information on integrating and configuring Personalization, see "Personalization for WebCenter Portal Prerequisites" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. |
WebCenter provides an Ant task for building the WCPS MAR file. Oracle recommends that you add this task to your nightly build script if you are using WCPS.
build.xml
file in an editor. build-mar
task to the build.xml
file, as shown in Example 10-3. Note: The Ant task supports nested |
Example 10-3 Example deploy-wcps-mar Target Element
depends
attribute on the all
target. For example: build.xml
file. This build-ma
r
Ant task supports the attributes listed in Table 10-3.
Table 10-3 Attributes Supported by the Ant Task
Attribute | Required | Description |
---|---|---|
destfile | Yes | The location of the |
appname | Yes | The application name. Typically, the base name of the |
scenarionamespace | No | The scenario namespace. Defaults to the application name, same (just as JDeveloper does). |
failonfilescanerror | No | (Boolean) Specifies whether to have the task fail the build if it cannot scan a specified file. Defaults to true. |
fileonempty | No | (Boolean) Specifies whether to have the task fail the build if no WCPS files are found. Defaults to |
Note that if you do not set failonfilescanerror="false"
, you might see errors similar to this one:
Either narrow your file sets (for example, use *.xml
) or specify failonfilescanerror="false"
, in which case it will just display a warning.
To deploy WCPS files to a server:
Note: Optionally, click the Add button to add a server to the list. |
You can deploy your WCSP files to a metadata archive (MAR) file on the file system. To deploy to a MAR file:
The MAR file can then be updated to the server using command line utilities described in Section 10.12.4, "Importing and Exporting MAR Files."
To update a WCPS server with new files from a Metadata Archive (MAR) file, use the following WLST commands to connect to the server and import the metadata.
To export the WCPS from the server into a MAR file on the filesystem, use these WLST commands to connect to the server and export the metadata:
For more information on MDS WLST commands, refer to the Oracle Fusion Middleware WebLogic Scripting Tool Command Reference on the Oracle Technology Network.
If you're running on the IntegratedWebLogicServer in a development environment, the connect URL is t3://localhost:7101
and the server is DefaultServer
.
The WebCenter Portal Administration Console includes a propagation tool for moving portal metadata from a staging to a production server. Site administrators use this tool occasionally to push approved site structure changes to the production server without incurring any downtime.
Note: The Propagation tool supports propagating portal metadata and Personalization for WebCenter Portal files. For more information, see Section 10.13.4, "Propagating WCPS Files." |
Note: WebCenter provides WLST commands for importing and exporting portlet preferences. Use these commands to replicate portlet preference data between the stage and production servers. For more information, see Section 10.16, "Migrating Portlet Preferences." |
WebCenter provides a propagation tool to move a portal metadata from staging to production. In practice, the staging environment and the production remain identical until changes are made to the staged portal. When the changes are tested and approved, an administrator uses the propagation tool to "push" the changes to the production server. This transfer does not require the production server to be restarted.
When properly configured, the Propagation tool shows up as a tab in the WebCenter Portal Administration Console, as shown in Figure 10-4.
The Label History part of the Propagation tab lists the labels that were created for each propagation, labels created outside of the Propagation tab, such as labels created during deployment and labels created using WLST. Each label includes a list of files that change since the last propagation was performed. To view the contents of a label, click the arrow button to the left of the label name, as shown in Figure 10-5.
Figure 10-5 The Propagation Tab with Labels Opened
Note: If you are using the Propagation tool and if any of the MDS document file names contain multi-byte NLS characters, the stage machine should be configured for that NLS. |
The Propagation tab only shows up in the WebCenter Portal Administration Console if the portal deployed to the staging server has a URL Connection configured. This URL connection must point to the production server and it must be named ProductionURLConnection
.
You have two choices for configuring the URL Connection: you can use the Fusion Middleware Control Console or Oracle WebLogic Scripting Tool (WLST). This section explains both techniques.
To configure the URL Connection with the Fusion Middleware Control Console:
Figure 10-6 Selecting the Application in the Fusion Middleware Control Console
ProductionURLConnection
as the Connection Name. See Figure 10-7. Note: You must name the connection |
ProductionRealm
. You can accept the default values for the remaining fields. See Figure 10-8.
You can use a Oracle WebLogic Scripting Tool (WLST) command to create the URL Connection. Note that the parameters to the command are equivalent to the values entered in the URL Connection dialog in the Fusion Middleware Control Console, described in the previous section, Section 10.13.2.1, "Configuring the URL Connection With Oracle Enterprise Manager Fusion Middleware Control Console."
The following is an example of the WLST command with sample values specified for each parameter. Replace these values with values that pertain to your production server:
For information on WLST, see the Oracle Fusion Middleware WebLogic Scripting Tool Command Reference on the Oracle Technology Network.
Use the propagation tool when you want to move changes made on the staging portal to the production portal.
http
://<server
>:<port
>/<context_root
>/admin
For more information on using the WebCenter Portal Administration Console, see "Using the WebCenter Portal Administration Console" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Note: If you don't see the Propagation tab it could be because you don't have administrator's privileges or the propagation tool was not configured properly as explained in Section 10.13.2, "Configuring the Propagation Tool." |
The propagation tool supports moving Personalization for WebCenter Portal files from staging to production. The propagation tool automatically exports metadata from the application's MDS repository on the source server, then imports the metadata to the application's MDS repository on the target server.
The ability for the propagation tool to move WCPS files depends on the following conditions:
mds-wcpsDS
datasource. This is the default configuration. See, for example, Figure 10-2 for a general illustration. In general, propagation will work correctly if you do not change the default database configuration. wcps-services
. In a standard portal configuration, this partition is webcenter-portal
. Note: Typically, there is a one to two minute delay between when the propagation tool is initialized and when the WCPS REST services are notified of the MDS changes. This delay does not occur when you use the WLST commands to propagate WCPS files, as explained in Section 10.12.4, "Importing and Exporting MAR Files." |
Oracle recommends that you use either manual or automated replication to move content from one environment to another. Another option is to manually propagate content; however, this option is only recommended if the source and target servers are unable to communicate with each other.
For detailed information on the tools and options for propagating Oracle WebCenter Content content, see "Managing System Migration and Archiving" in the Oracle WebCenter Content System Administrator's Guide for Content Server. That chapter explains how to propagate Oracle WebCenter Content content by exporting and importing archive files. In addition, the chapter explains how to set up and use replication. Replication can automate the export, import, and transfer functions. For example, you can use replication to automatically export from one content server instance, transfer the archive to another computer, and import to another content server instance.
This section discusses techniques for migrating security policies and credentials from one environment to another. Migration can be either automatic or manual. Automatic migration is typically used when the application is first deployed. Manual migration is used on redeployment.
When jazn-data.xml
with application policies is packaged in the EAR file, Oracle Platform Security Services (OPSS) performs policy migration based on the application configuration settings in weblogic-application.xml
. Example 10-4 shows the recommended settings in weblogic-application.xml
to achieve automatic policy migration for first-time deployment.
Example 10-4 Settings for Automatic Policy Migration (weblogic-application.xml)
JpsApplicationLifecycleListener must be specified in weblogic-application.xml
to enable policy and credential migration. Oracle recommends that jps.policystore.migration
should be set to MERGE
. With this configuration, polices packaged in jazn-data.xml
will be always migrated during fist time deployment. Oracle also recommends that jps.policystore.removal
should be set to OFF
so that application policies are not deleted from the policy store when the application is undeployed.
On redeployment, it is important to avoid overwriting policy changes made on the production system. When jps.policystore.migration
parameter is set to MERGE
, all new policies from the stage environment will be merged with production policies. With this setting, any changes made to existing policies, such as changing permissions for a role, deleting a role, or removing membership of a role, will not be migrated during redeployment, because such migration would cause a conflict.
If you want to overwrite the production policies with the staging environment security policies packaged in jazn-data.xml
, use the migrateSecurityStore
WLST command. See Oracle Fusion Middleware Application Security Guide for details on migrateSecurityStore
command.
Application credential migration support is similar to application policy migration. JpsApplicationLifecycleListener supports credential migration in application deployment and redeployment with extra security enforcements.
With application credentials in cwallet.sso and packaged in an EAR file in the META-INF/
directory, OPSS will perform credential migration to system credential store based on the configuration settings in weblogic-application.xml
.
Example 10-4 shows the recommended settings in weblogic-application.xml
to achieve automatic credential migration for first-time deployment.
Example 10-5 Settings for Automatic Credential Migration (weblogic-application.xml)
Oracle recommends that jps.credstore.migration
should be set to MERGE
so that at deployment and redeployment time all new credentials will be migrated. This setting will only migrate new credential key/value from cwallet.sso
. Modification done to existing credential keys will not be migrated.
If credentials are modified on stage and need to be moved to production, use the command migrateSecurityStore
to migrate modified credentials. See Oracle Fusion Middleware Application Security Guide for details on migrateSecurityStore
command.
WebCenter provides WLST commands for importing and exporting portlet preferences. Exported preferences (customizations and personalizations) can be imported into a target application – for example, exported from the staging application and imported into the production application. For more information, see exportPortletClientMetadata
and importPortletClientMetadata
in "Oracle WebCenter Portal Custom WLST Commands" in the Oracle Fusion Middleware WebLogic Scripting Tool Command Reference. Also ensure that export and import are enabled. See Chapter 61, "Coding Portlets."
In rare instances, it might be necessary to roll back changes that are pushed to the production server from staging. The propagation model described in this chapter assumes that you are making a small number of changes to the staging instance and then pushing them to production using the propagation tool. If you ever need to roll back those changes, Oracle recommends that you manually undo the changes on the staging instance and push the modified staging instance back to production, after adequate validation and testing. By this process, you will have "rolled back" the original changes and the production system will be reverted to its original state.
This chapter describes how to create the navigation model in your WebCenter Portal: Framework application. Navigation models define the content, structure, and metadata of your portal navigation.
This chapter includes the following sections:
For information about how to expose the navigation model in your portal, see Chapter 14, "Visualizing Your Portal Navigation."
Typically, portals provide information from various different sources. Information may be provided by pages, portlets, task flows, content repositories, and external pages. Users need a way to easily move through this information and quickly access the specific information that they need. You provide this access to information through your portal navigation.
The navigation model defines the content, structure, and metadata of the navigation. When you create the navigation model, you specify the items to include and the hierarchy of those items. Navigation models can include the following resources:
For more information, see Section 11.3, "Adding Resources to a Navigation Model."
You can also add resources that are dynamically generated. These are:
For more information, see Section 11.3.7, "How to Extend Navigation Model Data."
When you create a new Framework application, a navigation model is created for you (default-navigation-model.xml
). You can build on this seeded navigation model or create your own. You might even want to create different navigation models for different user types.
Note: If you create your own navigation model, rather than extend the seeded navigation model, we recommend that you set your navigation model as the default navigation model. For more information, see Section 11.4, "Selecting the Default Navigation Model." |
After you have created your navigation model, you can expose it on any page template in your portal either through the built in navigation task flows, or through your own navigation UI. For more information, see Chapter 14, "Visualizing Your Portal Navigation."
If the default navigation model provided out of the box does not meet your requirements, you can create your own navigation model.
To create a navigation model:
/oracle/webcenter/portalapp/navigations
) and choose New. myNavigation.xml
. Note: In a Framework application, to expose the new navigation model in the runtime Resource Manager, you must create the navigation model under the |
Note: This option is available only if the directory you entered is the |
Tip: If you do not select this option now, you can add the navigation model to the resources registry later by right clicking it and choosing Create Portal Resource. |
The new navigation model opens in Design view (Figure 11-2).
Figure 11-2 A Navigation Model in Design View
oracle.adf.rc.spi.plugin.catalog.CatalogDefinitionFilter
interface. Resources are automatically filtered based on security. If a user does not have access to a particular resource, it is not displayed when the navigation model is rendered on a page.
Note: You can also conditionally hide individual resources in the model by specifying an EL expression in the Visible field for the resource. |
#{true}
, which means the navigation model can be used by other users and is available in dropdown lists of navigation models. Now that you have created the navigation, you can add resources to it. For more information, see Section 11.3, "Adding Resources to a Navigation Model."
To define the content of your navigation model you can add resources to the default navigation model, default-navigation-model.xml
. The default navigation model is created automatically when you create an application using WebCenter Portal's Framework application template.
You can also create your own custom navigation model and add resources to that. For more information, see Section 11.2, "Creating a Navigation Model."
You can add resources to a navigation model in two ways:
In the Design view for the navigation model you can also modify and remove existing resources.
This section includes the following subsections:
You can add the following resources to a navigation model by dragging and dropping them onto the desired location in the Design view for navigation model:
In your navigation model, you can include links to individual content items within an existing content repository connection, or you can include a folder to provide access to all its contents.
You can also include a set of documents that match particular query criteria to a navigation model. For more information, see Section 11.3.3, "How to Add Content Based on the Results of a Query to a Navigation Model."
To add a content item:
Tip: To add a content item to a navigation model you can also drag and drop it into the Design view for the navigation model. |
If the resource is at the top level of the navigation model, the ID must not be wc_navtitle
or wcnav_externalId
; these IDs are reserved.
Tip: If the ID is not unique, or you enter any invalid characters in the ID, the border of the field becomes red. |
Figure 11-4 Adding a Content Item to a Navigation Model
content://
Content_Connection_Id
/
Document_Id
Note: If the following is true, you must make sure that an appropriate connection is added to the application (in the Application Resources pane) to ensure that the resource is available at runtime:
|
Select Redirect to URL, to overwrite the current page with the resource when it is selected in the navigation.
#{true}
, which means the resource is displayed to all users at all times. Enter false
or #{false}
to hide the resource from all users at all times, or enter an EL expression to specify the conditions under which the resource is displayed. If the field is empty, the value defaults to true
. Note: Resources are automatically filtered based on security. If a user does not have access to a particular resource, it is not displayed when the navigation model is rendered on the page. |
Note: If you display a wiki page in a Framework application using a Content Presenter display template, by default any links within that wiki page are displayed in the Document Viewer. If you want to display wiki page links using Content Presenter, you must edit the |
You can add a content query to a navigation model to include all documents that match specific search criteria.
Note: To add a single file, or all the files within a particular folder, to a navigation model, see Section 11.3.4, "How to Add a Page, Portlet, Task Flow, External Application, or Web Page to a Navigation Model." |
To add a content query:
If the resource is at the top level of the navigation model, the ID must not be wc_navtitle
or wcnav_externalId
; these IDs are reserved.
Tip: If the ID is not unique, or you enter any invalid characters in the ID, the border of the field becomes red. |
Figure 11-5 Adding a Content Query to a Navigation Model
Note: If the following is true, you must make sure that the appropriate connection is added to the application (in the Application Resources pane) to ensure that the resource is available at runtime:
|
For more information about how to format the query and for more examples, see Oracle Fusion Middleware Content Management REST Service Developer's Guide.
#{true}
, which means the resource is displayed to all users at all times. Enter false
or #{false}
to hide the resource from all users at all times, or enter an EL expression to specify the conditions under which the resource is displayed. If the field is empty, the value defaults to true
. Note: Resources are automatically filtered based on security. If a user does not have access to a particular resource, it is not displayed in the navigation when it is rendered on the page. |
Note: If you display a wiki page using a Content Presenter display template, by default any links within that wiki page are displayed in the Document Viewer. If you want to display wiki page links using Content Presenter, you must edit the |
Note: If you include links to the same portlet twice in a navigation model, the first link specifying parameter values and the second not, any parameters set for the first link are retained and also used for the second. To ensure that parameters are not used for the second link, you must explicitly set the parameter values to null. |
You can add links to the following types of resources to a navigation model:
Note: If you use the External Link option to include a |
This option enables you to add a link to a single page to the navigation model. For information about how to include an entire page hierarchy, see Section 11.3.5, "How to Add a Page Hierarchy to a Navigation Model."
Note: If you provide navigation directly to a task flow in this way, users cannot customize the task flow. If you want users to be able to customize the task flow, add it to a page and add that page to the navigation model. |
Note: If you provide navigation directly to a portlet in this way, users cannot customize the portlet. If you want users to be able to customize the portlet, add it to a page and add that page to the navigation model. |
To add a link to a page, portlet, task flow, external application, or web page:
Tip: To add a portlet, task flow, external application, or web page to a navigation model you can also drag and drop it into the Design view for the navigation model. To add a link to a single page, drag the page into the Design view for the navigation model and choose Page Link from the popup menu. |
If the resource is at the top level of the navigation model, the ID must not be wc_navtitle
or wcnav_externalId
; these IDs are reserved.
Tip: If the ID is not unique, or you enter any invalid characters in the ID, the border of the field becomes red. |
Figure 11-6 Adding a Link to a Navigation Model
Note: If you are adding a resource of type Other, the Factory Class field is editable and you must enter the factory class of the resource. For more information, see Section 11.3.7.1, "How to Add a Link to a Custom Resource." |
Table 11-1 Format for URL Different Resource Types
Resource Type | Location in Application | URL Format |
---|---|---|
External Link | None | Absolute or relative path to web page Note: If you use the External Link option to include a |
External Application | External application connection in the Application Resources pane | extapp://External_Application_Id |
Page | Application Navigator | page://Path_to_Page/Page_Name For example: page://oracle/webcenter/portalapp/pages/myPage.jspx |
Task Flow from an ADF Library | Resource Palette | taskflow://Path_to_TaskFlow/TaskFlow_Definition_File_Name#TaskFlow_Id |
Task Flow Within the Application | Application Navigator | taskflow://Path_to_TaskFlow/TaskFlow_Definition_File_Name#TaskFlow_Id |
Portlet | Portlet producer connection in the Application Resources pane or in the Resource Palette | portlet://Producer_Id/Portlet_Id |
Note: If the following is true, you must make sure that an appropriate connection is added to the application (in the Application Resources pane) to ensure that the resource is available at runtime:
|
Select Redirect to URL, to overwrite the current page with the resource when it is selected in the navigation.
#{true}
, which means the resource is displayed to all users at all times. Enter false
or #{false}
to hide the resource from all users at all times, or enter an EL expression to specify the conditions under which the resource is displayed. If the field is empty, the value defaults to true
. Note: Resources are automatically filtered based on security. If a user does not have access to a particular resource, it is not displayed when the navigation model is rendered on the page. |
You can add a hierarchy of pages to the navigation model. All pages below the selected page in the hierarchy are included in the navigation model.
Although there is only a single page hierarchy within an application, in a navigation model you can use any node within the application page hierarchy as the starting point.
Note: If you just want to include a single page in the navigation model, use the Link navigation type. For more information, see Section 11.3.4, "How to Add a Page, Portlet, Task Flow, External Application, or Web Page to a Navigation Model." |
To add a page hierarchy:
Tip: To add a section of the page hierarchy to a navigation model, you can drag and drop a page (which has been added to the page hierarchy) from the Application Navigator into the Design view for the navigation model. Choose Page Query from the popup menu that appears. |
If the resource is at the top level of the navigation model, the ID must not be wc_navtitle
or wcnav_externalId
; these IDs are reserved.
Tip: If the ID is not unique, or you enter any invalid characters in the ID, the border of the field becomes red. |
Figure 11-7 Adding a Page Query to a Navigation Model
Scope is used in WebCenter Portal: Spaces to determine whether to display all the pages in the Home space or a specific space if a particular page is not specified as the root of the page query.
#{true}
, which means the resource is displayed to all users at all times. Enter false
or #{false}
to hide the resource from all users at all times, or enter an EL expression to specify the conditions under which the resource is displayed. If the field is empty, the value defaults to true
. Note: Resources are automatically filtered based on security. If a user does not have access to a particular resource, it is not displayed in the navigation when it is rendered on the page. |
You can nest navigation models within each other. For example, if you have a complex navigation model, it might be easier to break it down into several separate models and then nest them all within a single overarching navigation model. You can also use nested navigation models to delegate the development of navigation models to different users or to control access to different parts of the navigation.
To embed another navigation model within a navigation model:
Tip: To embed another navigation model within a navigation model you can also drag and drop the navigation model that you want to embed from the Application Navigator into the Design view for the navigation model. |
If the resource is at the top level of the navigation model, the ID must not be wc_navtitle
or wcnav_externalId
; these IDs are reserved.
Tip: If the ID is not unique, or you enter any invalid characters in the ID, the border of the field becomes red. |
Figure 11-8 Embedding Another Navigation Model Within a Navigation Model
#{true}
, which means the resource is displayed to all users at all times. Enter false
or #{false}
to hide the resource from all users at all times, or enter an EL expression to specify the conditions under which the resource is displayed. If the field is empty, the value defaults to true
. Note: Resources are automatically filtered based on security. If a user does not have access to a particular resource, it is not displayed in the navigation when it is rendered on the page. |
As well as adding known resources to your navigation model, you can also add resources to the model that are dynamically generated at runtime.
This section includes the following subsections:
You can add links to various WebCenter Portal-supported resources, such as pages, portlets, and task flows, by adding a link of the appropriate Type and identifying the URL of the resource. For more information, see Section 11.3.4, "How to Add a Page, Portlet, Task Flow, External Application, or Web Page to a Navigation Model."
If you want to link to a third party resource, you can do so by adding a link of type Other, and specifying the third-party URLResourceFactory
implementation class.
To add a link to a custom resource:
If the resource is at the top level of the navigation model, the ID must not be wc_navtitle
or wcnav_externalId
; these IDs are reserved.
Tip: If the ID is not unique, or you enter any invalid characters in the ID, the border of the field becomes red. |
Figure 11-9 Adding a Custom Resource to a Navigation Model
URLResourceFactory
implementation class that can resolve the URL for the custom resource. Select Redirect to URL, to overwrite the current page with the resource when it is selected in the navigation.
#{true}
, which means the resource is displayed to all users at all times. Enter false
or #{false}
to hide the resource from all users at all times, or enter an EL expression to specify the conditions under which the resource is displayed. If the field is empty, the value defaults to true
. Note: Resources are automatically filtered based on security. If a user does not have access to a particular resource, it is not displayed in the navigation when it is rendered on the page. |
You can add a custom component to a navigation model. You can add a variety of components, such as simple ADF Faces components, compound objects containing two or more components, and JSF Verbatim tags that let you add arbitrary HTML content inside them. An example for arbitrary HTML that you can add to your catalog is a YouTube video.
To add a custom component:
If the resource is at the top level of the navigation model, the ID must not be wc_navtitle
or wcnav_externalId
; these IDs are reserved.
Tip: If the ID is not unique, or you enter any invalid characters in the ID, the border of the field becomes red. |
Figure 11-10 Adding a Custom Component to a Navigation Model
oracle.adf.rc.component.ComponentFactory
interface and creates an instance of the component based on a set of parameters, for example, oracle.adf.rc.component.XmlComponentFactory
. As you type the name, the field autocompletes with valid factory classes from the classpath.
For more information, see Section C.4, "Factory Classes Available for Adding Dynamic Resources to the Catalog."
#{true}
, which means the resource is displayed to all users at all times. Enter false
or #{false}
to hide the resource from all users at all times, or enter an EL expression to specify the conditions under which the resource is displayed. If the field is empty, the value defaults to true
. Note: Resources are automatically filtered based on security. If a user does not have access to a particular resource, it is not displayed in the navigation when it is rendered on the page. |
For example, if you are adding an XML component, click the Add icon in the Parameters section and select xml. In the new row that is displayed, specify the XML code for the component in the Value field.
Note: The xml parameter is displayed only if you selected |
To ensure that the component works properly, you must specify the custom component ID to be #
, and provide the namespace, as shown in the following example:
The #
value ensures that a unique ID is generated dynamically for the component.
You can add a custom folder to a navigation model that is configured to display its content dynamically at runtime. A custom folder is not added as a folder with resources; it contains only a reference to the factory class, which displays the resources dynamically.
To add a custom folder:
If the resource is at the top level of the navigation model, the ID must not be wc_navtitle
or wcnav_externalId
; these IDs are reserved.
Tip: If the ID is not unique, or you enter any invalid characters in the ID, the border of the field becomes red. |
Figure 11-11 Adding a Custom Folder to a Navigation Model
javax.naming.spi.InitialContextFactory
interface and generates the folder based on a set of parameters. For more information, see Section C.4, "Factory Classes Available for Adding Dynamic Resources to the Catalog."
#{true}
, which means the resource is displayed to all users at all times. Enter false
or #{false}
to hide the resource from all users at all times, or enter an EL expression to specify the conditions under which the resource is displayed. If the field is empty, the value defaults to true
. Note: Resources are automatically filtered based on security. If a user does not have access to a particular resource, it is not displayed in the navigation when it is rendered on the page. |
A custom content provider dynamically generates zero or more navigation items at runtime. It is very similar to a custom folder, except that, for custom folders, the folder is always displayed when the navigation model is rendered at runtime, even if it is empty. With custom content providers however, the folder is displayed at runtime only if it has content inside it.
To add custom content provider:
If the resource is at the top level of the navigation model, the ID must not be wc_navtitle
or wcnav_externalId
; these IDs are reserved.
Tip: If the ID is not unique, or you enter any invalid characters in the ID, the border of the field becomes red. |
Figure 11-12 Adding a Custom Content Provider to a Navigation Model
oracle.adf.rc.spi.plugin.catalog.CustomContentProviderV2
interface. For more information, see Section C.4, "Factory Classes Available for Adding Dynamic Resources to the Catalog."
#{true}
, which means the resource is displayed to all users at all times. Enter false
or #{false}
to hide the resource from all users at all times, or enter an EL expression to specify the conditions under which the resource is displayed. If the field is empty, the value defaults to true
. Note: Resources are automatically filtered based on security. If a user does not have access to a particular resource, it is not displayed in the navigation when it is rendered on the page. |
Note: Typically for custom content, you will not need to specify any attributes, because the attributes for the resources generated by the content provider will be specified by the content provider. |
CustomContentProviderV2
implementation. You can add folders to your navigation model to create subsets of resources or to group similar resources. You can also add separators to divide the navigation model into distinct groupings of resources. Folders and separators enable you to break up the items in the navigation model when it is rendered on in a page, making it easier to locate items.
You can also rearrange items within the navigation model by dragging them up and down in relation to each other and dragging them inside other items to indicate hierarchy.
To organize resources:
If the resource is at the top level of the navigation model, the ID must not be wc_navtitle
or wcnav_externalId
; these IDs are reserved.
Tip: If the ID is not unique, or you enter any invalid characters in the ID, the border of the field becomes red. |
#{true}
, which means the resource is displayed to all users at all times. Enter false
or #{false}
to hide the resource from all users at all times, or enter an EL expression to specify the conditions under which the resource is displayed. If the field is empty, the value defaults to true
. You can specify various display options for resources to determine their appearance and behavior when the navigation is rendered on a page. The display options available depend on the type of the resource.
To set display options for a resource:
Table 11-2 Resource Attributes
Attribute | Description |
---|---|
Title | The title displayed for the resource when the navigation model is rendered on a page. |
AccessKey | A key mnemonic (single character) that users can enter to access the resource without using the mouse. |
Description | A description of the resource. |
IconURI | An icon to visually represent the resource. This is displayed next to the Title when the navigation model is rendered on a page. |
Subject | Keywords to facilitate searching of the resource. |
Target | The location on the container page where the resource is displayed when it is selected, either in the same browser window (Note: Popups are not supported for pages. |
ToolTip | Text that displays to provide additional information about the resource when users hover the mouse over the Title. |
Modified | The date of the last modification of the resource. This attribute is used for site map creation. |
ChangeFrequency | How frequently the resource is likely to change: |
Significance | The priority of this resource relative to other resources in the navigation model, within the range |
ExternalId | An ID to enable a direct reference to a node in the navigation model from a static link in the page. Nodes in the default navigation model with this attribute defined can be accessed using To directly access a node in a non-default navigation model, you must specify the path of the navigation model by setting the wcnav.modelPath URL parameter, for example: /faces/wcnav_externalId/myNavigationItem?wcnav .modelPath=/oracle/webcenter/siteresources/scopedMD/ s7f446cab_f622_4b68_a83e_b7eaf28b52ec/navigation/gsr0271c712_721a_4565_9f0e_755784a7093b/ myProjectNavigationModel.xml |
The default navigation model provides a convenient way to select a navigation model that should be used by default by an application. Page template designers can then reference this default navigation model without having to know its actual name. For example, in navigation EL expressions, the default navigation model is often referenced, such as in #{navigationContext.defaultNavigationModel}
.
When you first create a Framework application, the seeded navigation model, default-navigation-model.xml
, is set as the default navigation model. If you subsequently create your own navigation model, rather than having to explicitly reference this navigation model whenever you want to use it, you can set it as the default.
You can set the default navigation model for an application by editing the oracle.webcenter.portalapp.navigation.model
preference in the adf-config.xml
file.
To select the default navigation model:
Tip: To locate the |
id
: value
attribute to the path of the navigation model that you want to use as the default for the portal, for example: Example 11-1 shows an example of the complete preference element.
Example 11-1 The Default Navigation Model ADF Preference
adf-config.xml
file. The navigation renderer is a JSPX page renders non-page navigation resources, including:
To change how these resources are rendered, you can edit the navigation renderer page. For example, you may also want to add an image before or after the navigation renderer task flow or change from a flow to a stretch layout.
The navigation renderer page is hidden by default, so you must first show it in your application before you can edit it.
Note: In the vast majority of cases, you should be able to edit the existing navigation renderer to meet your requirements. However, if required, you can create your own navigation renderer page. For example, the navigation renderer expects a If you choose to create your own navigation renderer page, it must include a navigation renderer region that contains the navigation renderer task flow. To set your page as the navigation renderer for the application, edit the navigation renderer ADF preference (|
To edit the navigation renderer:
navigation-renderer.jspx
) and click Remove to remove it from the list of excluded files. The navigation renderer JSPX file is now listed in the Application Navigator under the following node:
navigation-renderer.jspx
file. If your application does not use partial page refresh (PPR), the URL in the browser changes whenever a user navigates to a resource in the navigation model. However, the URL shown by the browser does not reflect the current page; it shows the URL of the last page shown.
To enable the browser to display the URL of the current page, you can set the oracle.webcenter.navigationframework.REDIRECT_OPTIONS
context parameter in the web.xml
file.
Note: Setting the |
To set the REDIRECT_OPTIONS context parameter:
oracle.webcenter.navigationframework.REDIRECT_OPTIONS
. toPrettyURL
. This adds the following to the web.xml
file:
web.xml
file. The Resource Manager in a Framework application enables users with administrative privileges to create and modify portal resources, including navigation models, at runtime. By exposing navigations in the Resource Manager, you allow administrators to manage these navigations at runtime. If you want to create and expose more navigations after deploying the application, you can export them from JDeveloper to the runtime application.
Note: If you create a navigation model at runtime and do not import it back into the design time environment, your new navigation model may be lost when the application is redeployed. For more information, see the "Preserving Resource Customizations" section in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. |
To expose a navigation in the Resource Manager, see Section 17.2.1, "How to Add a Resource to the Resource Manager."
You can also control exactly which resources users can add to navigation models at runtime by editing the navigation registry file, navigation-registry.xml
.
For more information about the runtime features of navigation models, see the chapter "Working with Navigations" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
This section includes the following subsections:
The navigation registry is a Resource Catalog specifically for registering which resources users can add to navigation models at runtime. Each Framework application contains one navigation registry file, navigation-registry.xml
, which is created when you create the application. You can edit this file to change which resources to include. For example, if you do not want users to be able to embed other navigation models at runtime, you can remove the Navigation Reference resource from the navigation registry.
To edit the navigation registry:
navigation-registry.xml
file. Tip: You can find this file under |
You can add the following resources to the navigation registry:
You can also modify and remove existing resources in the navigation registry, and rearrange resources in the registry.
navigation-registry.xml
file. Seeded navigation models cannot be modified or deleted in the Resource Manager. Users with administrative privileges can make a copy of a seeded navigation model and edit or delete it, or they can create their own navigation models.
If users create or edit navigation models at runtime, you may find that you need to bring them back into JDeveloper for further enhancement. You can do this by downloading the navigation model from the deployed application, editing it in JDeveloper, and uploading it back to the application. At design time, this type of round-trip development includes importing the downloaded navigation model, editing it in JDeveloper, and exporting it so that it can be uploaded back to the deployed application.
In addition, if you create a new navigation model after you have deployed your application, you can export the navigation model from JDeveloper and upload it into the deployed application.
This section describes how to import and export navigation models in JDeveloper. It includes the following subsections:
For more information about round-trip development, see Section 17.4, "Enabling Round-Trip Development of Resources."
When you download a navigation model from the Resource Manager, an EAR file is created. On importing the EAR file in JDeveloper, the files from the EAR file are extracted to the folder Application_Root
/Portal/public_html/oracle/webcenter/siteresources/scopedMD/
scope_GUID
. You can open the navigation model and edit it as you would any other navigation model at design time. The updated navigation model must then be exported to the deployed application.
For detailed steps to import a resource, see Section 17.4.2, "How to Import a Portal Resource into JDeveloper."
You would need to perform an export for the following reasons:
When you export a navigation model from JDeveloper, an EAR file is created. Users with administrator privileges can then upload this EAR file to a deployed application using the Resource Manager.
For detailed steps to export a resource, see Section 17.4.3, "How to Export a Portal Resource from JDeveloper."
Out of the box, WebCenter Portal: Spaces provides seeded navigation models that you can use in your spaces. If these default navigation models do not suit your requirements, you can build your own navigation models within WebCenter Portal: Spaces. For more information, see the section "Working with Navigation" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
However, WebCenter Portal: Spaces may not provide all the controls to create a navigation model that provides all the functionality that you require. In such cases, in JDeveloper you can edit navigation models originally created in WebCenter Portal: Spaces, and then upload them back into WebCenter Portal: Spaces.
WebCenter Portal provides a special JDeveloper workspace (DesignWebCenterSpaces.jws
) to help you develop and upload resources, such as navigation models, to WebCenter Portal: Spaces. Chapter 56, "Extending the Spaces Application Using JDeveloper" tells you where to find the sample workspace and explains how to use the WebCenterSpacesResources
project to build custom navigation models and other types of resources for WebCenter Portal: Spaces.
When working with WebCenter Portal: Spaces navigation models in JDeveloper, you should consider the following:
page://
pathToXmlFile
. When building a portal, it is important to decide on a look and feel for your portal. You may also want to ensure that the look and feel is consistent across the portal. You can achieve this kind of consistency across portal pages by using page templates and page styles.
This chapter provides information about creating and managing page templates and page styles. It also explains how to create mashup styles that can be used to create task flows at runtime. It includes the following subsections:
Page templates define how individual pages and groups of pages display on a user's screen. When you use page templates to display pages, the pages are always consistent in structure and layout across the application. For example, a Side Navigation - Flow page template provides a navigation panel on the left side of the page, and the size of every component in the main content area is calculated based on the size of its children.
Page styles, on the other hand, determine the layout, and at times the initial content, for a new page in your portal. For example, the Web Page style provides a one-column layout and enables users to expose external web content in their application; a Blank page style provides a one-column layout and has few restrictions on the types of content users can add to the pages that are based on it.
Page templates and page styles are JSPX pages that you can create and publish in JDeveloper. While page templates can be used to create portal pages at design time and runtime, page styles are used only when creating pages at runtime. This section describes the different page templates and styles that you can create at design time. It includes the following subsections:
Note: Skins also contribute to the look and feel of your portal by specifying the application background color, screen fonts, and, with some skins, the shapes and images used for application buttons and icons. However, skins are not discussed in this chapter. For information, see Chapter 15, "Creating and Managing Skins." |
A page template typically defines the layout and default navigation model for pages in a portal application. It provides a uniform look and feel. Figure 12-1 shows a sample portal based on a page template, which provides the following:
Figure 12-1 Sample Portal that Uses a Page Template
Page templates are reference-based and use inheritance. That is, if you change the page template, then all pages that reference that template automatically inherit the change. You can create and publish page templates in JDeveloper, and they can be used to create pages both at design time and runtime. At design time, you can choose a page template in the Create JSF Page dialog, shown in Figure 12-2.
At runtime, you can apply a page template by selecting it in the application's Configuration page, as shown in Figure 12-3.
An administrator or delegate can manage the exposed page templates in the Resource Manager, shown in Figure 12-4.
Figure 12-4 Page Templates in the Resource Manager
For more information, see Section 12.2, "Working with Page Templates."
A page style is a JSPX page used for pages created at runtime. It describes the layout of a newly created page and may also dictate the type of content that the page supports.
When a user creates a page using a page style, the layout and initial content are copied from the page style to the newly created page. Unlike page templates, page styles are not reference-based, that is, if you change a page style, the change is not inherited in pages that use the style.
Typically, a page style contains components that enhance the usefulness and appearance of a given page. These include an in-place HTML text editor, images, layout boxes, hyperlinks, and so on. Content contributors can further populate the page with content. Figure 12-5 shows a sample portal page that is based on a page style.
You create page styles in JDeveloper, but they are only used at runtime to create pages. Page styles that you expose in the application can be used and managed as follows:
Figure 12-6 Page Styles in the Resource Manager
Page - Create New
task flow. When a user clicks the Create Page option, the Create Page dialog displays a set of predefined styles, as shown in Figure 12-7. The user can choose a style and create a page based on that. As the layout is already in place in the new page, the user only needs to add content to different areas of the page. Figure 12-7 Create Page Dialog with Default Styles
For more information about creating page styles in JDeveloper, see Section 12.3, "Working with Page Styles." For information about managing page styles at runtime, see "Working with Page Styles" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Mashup styles are not very different from page styles, except that they are used at runtime to create task flows, also known as business mashups.
Mashup styles are used only at runtime to create mashups, but they can be created and published in JDeveloper. For more information, see Section 12.4, "Working with Mashup Styles."
Only an administrator or delegate can create and manage the exposed mashup styles in the runtime Resource Manager, shown in Figure 12-8.
Figure 12-8 Mashup Styles in the Resource Manager
Mashup styles are displayed in the Create New Task Flow dialog box (Figure 12-9), which is invoked by clicking Create on the Resource Manager - Task Flows page. The user can choose a style and create a mashup based on that style. For more information, see "Creating and Managing Task Flows" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Figure 12-9 Create New Task Flow Dialog with Default Styles
Content Presenter display templates are used to define how Content Presenter renders content items on a Framework application page. Similar to page styles and mashup styles, Content Presenter templates can also be managed at runtime in the Resource Manager. These templates are not discussed in this chapter. For details, see Chapter 29, "Creating Content Presenter Display Templates."
You can create any number of custom page templates and expose them to users in the Create JSF Page dialog. This section provides information about creating page templates and enabling runtime administration of page templates. It includes the following subsections:
When you create an application using the WebCenter Portal Application template, and select the Configure the application with standard Portal features option, two seeded templates are added to your application: pageTemplate_globe.jspx
and pageTemplate_swooshy.jspx
.
Figure 12-10 The Seeded Page Templates in the Application Navigator
These templates both offer essentially the same functionality but with different graphics. They include the following:
Figure 12-11 shows the pageTemplate_globe.jspx
page template with each of the above features called out.
Figure 12-11 The pageTemplate_globe.jspx Seeded Page Template
You can edit this default page template to meet your particular requirements, or, more typically, you can create your own. If you choose to create your own page template, the seeded page templates are still a useful tool for you to discover the different things you can achieve in your own templates.
The following section focuses on the aspects of page templates that are specific to WebCenter Portal applications. For general information about JSF page templates, see the section "Using Page Templates" in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
To create a page template:
/oracle/webcenter/portalapp/pagetemplates
) and choose New. myCompanyPageTemplate.jspx
. The file name identifies the page template in the Application Navigator.
Figure 12-12 The Create JSF Page Template Dialog
Note: In a WebCenter Portal application, to expose the new page template in the runtime Resource Manager, you must create the page template in the |
The display name is shown in the Page Template dropdown list of the Create JSF Page wizard to enable users to select this template to use for a newly created page. For this reason, you should make the page template name something that helps users quickly identify which type of pages this template should be used for.
Associating a page definition with the page template enables you to include objects that have model elements to them (for example, task flows and portlets) in the page template. It also enables users to switch to a different page template at runtime.
Note: The seeded page templates all have associated page definitions, therefore it is highly recommended that you select this option when creating page templates in WebCenter Portal applications. Within an application page templates must either all have associated page definitions or none have associated page definitions. If you have a combination of page templates with and without associated page definitions, users will not be able to switch templates at runtime. |
After selecting this option, you can click the Model Parameters tab and click the New icon to define the model parameters for data bound components set with the ADFm declarative data binding layer. The values for these parameters can be set at runtime by the calling page.
Note: By default, the page template definition name is based on the page template name. Do not create the page definition with a different name. |
content
. content
. Main content area
. Example 12-1 shows the content
facet definition in the <af:xmlContent>
section of the pageTemplate_globe.jspx
seeded WebCenter Portal application page template.
Example 12-1 Content Facet in the Globe Seeded Page Template
For example, the pageTemplate_globe.jspx
seeded WebCenter Portal application page template includes a link to the seeded Administration page. If the current page is the Administration page, then this link does not need to be displayed. The template uses an attribute, called isAdminPage
, to identify whether the current page is the seeded Administration page. The value of this attribute, set by pages that use the template, determines whether or not to display the link to the Administration page.
Example 12-2 shows the isAdminPage
attribute definition in the page template.
Example 12-2 Attribute Definition in the Globe Seeded Page Template
Example 12-3 shows how the page template uses the value of the isAdminPage
attribute to determine whether or not to render the link to the seeded Administration page.
Example 12-3 Conditional Value for Rendering the Administration Page Link
Example 12-4 shows how the seeded Administration page sets the isAdminPage
attribute to true
, ensuring that the page template does not render the link when users are viewing the Administration page.
Example 12-4 Setting the Value of a Page Template Attribute
The seeded page templates include the following additional attributes:
The page template is created and opened in the visual editor.
Navigation UI is a very important aspect of a page template. For information about adding navigation UI to your page template, see Chapter 14, "Visualizing Your Portal Navigation."
For information about adding other resources to your page template, for example, portlets, task flows, or content, see Chapter 13, "Adding Resources to Your Portal."
Other features you might want to provide in your page template include a login/logout area or a search field. The seeded page templates include an example of a login form.
Throughout your page templates, you can use expression language (EL) expressions to specify a variable value instead of a constant value. For descriptions of common EL expressions, see Appendix G, "Expression Language Expressions."
For areas on the page template where users can place their own content in pages based on the template:
Example 12-5 shows how the content facet is included in the pageTemplate_globe.jspx
seeded WebCenter Portal application page template.
Example 12-5 The content Facet in the Globe Seeded Page Template
When creating page templates for use in WebCenter Portal applications, consider the following:
/oracle/webcenter/portalapp
directory. Out of the box there is already a pagetemplates
subdirectory in which you can store your page templates. Therefore, because the seeded page templates provided with the WebCenter Portal Application template have associated page definitions, for page template switching to work, any other page templates created within the application must also have associated page definitions for page template.
content
. mailto:
links, you must explicitly handle these in the page template. Example 12-6 uses JSTL to inspect the navigation item's externalURL
to see if it starts with the string mailto:
. If it does, an ADF Faces goLink
component is used to render the link. datasource
: connection_name
#dDocName:content_ID
datasourceType
: dsTypeSingleNode
taskFlowInstId
: A unique identifier For more information about Content Presenter task flow properties, see Table 31-4, "Content Presenter Task Flow Parameters".
In addition, as a best practice, it is recommended to store dependent objects in resource-specific subdirectories under the shared
directory. For example, images for a page template named Template1
could be stored in:
This avoids any potential conflict when additional resources are imported from runtime.
When adding the resource as a portal resource, you must ensure that the Content Directory points to the appropriate shared
directory.
To reference dependent objects in your page template, use the following format:
For example:
When you create a page, you select a specific page template to use for that page. This adds a static reference to the page template to the JSPX file for the page. For example:
A binding of the page template is created in the page's page definition file. For example:
To use a different page template for the page, you must change both these references.
You can also change these references to use EL expressions to enable runtime switching of the page template.
Note: You can switch between page templates at runtime only if the page template was created with an associated page definition. |
To enable runtime switching of page templates:
with:
with:
adf-config.xml
file, and choose Open. Tip: To locate the |
value
attribute to the page template to apply to the page. For example: You can make changes to your page template after its initial creation. Any changes you make are automatically rolled out to any pages that use the page template.
To edit a page template:
af:pageTemplateDef
tag in the Structure window and use the Property Inspector. If iterative development is enabled, any changes that you make to page templates can be seen immediately in the running application. For more information about iterative development, see Section 1.5, "Preparing for Iterative Development."
If a page template is no longer required within your portal, you can delete it. When you delete a page template, attempting to run any page that has a direct reference to the page template will produce exceptions.
To delete a page template:
You can use this information to determine whether you really want to delete the template.
The Resource Manager in a WebCenter Portal application enables users with administrative privileges to create and modify portal resources, including page templates, at runtime. By exposing page templates in the Resource Manager, you allow administrators to manage these templates at runtime. If you want to create and expose more page templates after deploying the application, you can export them from JDeveloper to the runtime application.
Note: If you create a page template at runtime and do not import it back into the design time environment, your new page template may be lost when the application is redeployed. For more information, see the "Preserving Resource Customizations" section in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. |
To expose a page template in the Resource Manager, see Section 17.2.1, "How to Add a Resource to the Resource Manager."
For more information about the runtime features of page templates, see the chapter "Working with Page Templates" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Seeded page templates cannot be modified or deleted in the Resource Manager. However, users with administrative privileges can make a copy of a seeded page template and edit or delete it, or they can create their own page templates.
If users create or edit page templates at runtime, you may find that you need to bring them back into JDeveloper for further enhancement. You can do this by downloading the page template from the deployed application, editing it in JDeveloper, and uploading it back to the application. At design time, this type of round-trip development includes importing the downloaded page template, editing it in JDeveloper, and exporting it so that it can be uploaded back to the deployed application.
In addition, if you create a new page template after you have deployed your application, you can export the page template from JDeveloper and upload it into the deployed application.
This section describes how to import and export page templates in JDeveloper. It includes the following subsections:
For more information about round-trip development, see Section 17.4, "Enabling Round-Trip Development of Resources."
When you download a page template from the Resource Manager, an EAR file is created. On importing the EAR file in JDeveloper, the files from the EAR file are extracted to the folder Application_Root
/Portal/public_html/oracle/webcenter/siteresources/scopedMD/scope_GUID
. You can open the page template and edit it as you would edit any other page template at design time. The updated page template must then be exported to the deployed application.
For detailed steps to import a resource, see Section 17.4.2, "How to Import a Portal Resource into JDeveloper."
You would need to perform an export for the following reasons:
When you export a page template from JDeveloper, an EAR file is created. Users with administrator privileges can then upload this EAR file to a deployed application using the Resource Manager. Once uploaded, the page template can be managed and used to create application pages.
For detailed steps to export a resource, see Section 17.4.3, "How to Export a Portal Resource from JDeveloper."
Out of the box, WebCenter Portal: Spaces provides seeded page templates that you can use in your spaces. If these default page templates do not suit your requirements, you can build your own page templates within WebCenter Portal: Spaces. For more information, see the chapter "Working with Page Templates" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
However, WebCenter Portal: Spaces may not provide all the controls to create a page template that provides all the functionality that you require. In such cases, you can create your own page template in JDeveloper and then upload it to WebCenter Portal: Spaces. You can also download an existing page template from WebCenter Portal: Spaces, edit it in JDeveloper, or use one of the sample page templates as your starting point, and then upload it back into WebCenter Portal: Spaces.
WebCenter Portal provides a special JDeveloper workspace (DesignWebCenterSpaces.jws
) to help you develop and upload resources, such as page templates, to WebCenter Portal: Spaces. Chapter 56, "Extending the Spaces Application Using JDeveloper" tells you where to find the sample workspace and explains how to use the WebCenterSpacesResources
project to build custom page templates and other types of resources for WebCenter Portal: Spaces. For details, see Section 56, "Extending the Spaces Application Using JDeveloper."
When creating or editing page templates in JDeveloper for use in WebCenter Portal: Spaces, consider the following:
content
. class="WCPGTEMPLATE"
. The runtime editing of skins enables the targeting of the template background in a basic tab; it depends on this style being there. Page styles are JSPX pages. You can create any number of custom page styles and expose these to users in the Create Page dialog. This section provides information about creating page styles and enabling runtime administration of page styles. It includes the following sections:
You can either create a page style from scratch or use an ADF page template to create it, then design it with the required layout components. However, there are a few prerequisites for creating a page style to be used in a custom application.
Requirements for Page Styles Exposed as Portal Resources
/oracle/webcenter/portalapp
directory. You can either create a subdirectory for page styles, for example pagestyles
, or save the page style in the pages
directory that is available out-of-the-box. A page style can be exposed in the runtime Resource Manager only if it is present within the /oracle/webcenter/portalapp/
structure.
content
facet, or any other facet defined in the page template, to contain page content. Page Customizable
component within the content facet. As the Page Customizable
contains a child Panel Customizable
component by default, users can add content to the page at runtime. pageTemplate
. Set the value
attribute with an EL expression to a managed bean method that returns the page template ID, as shown in the following example: This is useful in scenarios where the ADF template to be used is determined based on criteria such as the current user or scope.
Section 19.6.1, "How to Create Templates for Pages Created at Runtime" describes in detail how to create a page style.
Example 12-7 shows the code for a sample page style, /oracle/webcenter/portalapp/pages/pageStyles/TemplateFlowingTwoColumn.jspx
, which creates a basic page designed to flow and provide two columns that are 35 percent and 65 percent in proportion. Example 12-8 shows the associated page definition file, /oracle/webcenter/portalapp/pages/pageStyles/TemplateFlowingTwoColumnPageDef.jspx
.
See Also: Section 19.3.4.2, "Custom Styles" for information about where custom page styles and their page definitions can be stored and how to ensure that these styles show up in the Create Page dialog at runtime. |
Example 12-7 Source Code of a Custom Page Style
Example 12-8 Page Definition of the Custom Page Style
By exposing page styles in the Resource Manager, you allow administrators to manage them at runtime. You can create and export additional page styles even after deploying the application, without having to redeploy it. At runtime, the Resource Manager provides an option to upload the page styles that you exported.
Note: If you create a page style at runtime and do not import it back into the design time environment, your new page style may be lost when the application is redeployed. For more information, see the "Preserving Resource Customizations" section in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. |
To expose a page style in the Resource Manager, it must have a valid entry in the application's generic-site-resources.xml
file. Use the following options on the context menu of a page style JSPX file to register or deregister a page style in the Resource Manager:
Note: The Resource Manager-specific options are displayed on the context menu only if you created the page style in the |
generic-site-resources.xml
file. While creating an entry, you must set the attributes described in Table 12-1. The attributes in this table are specific to page styles. For the generic steps that are common to all resources, see Section 17.2.1, "How to Add a Resource to the Resource Manager."
Table 12-1 Page Style Properties
Property | Description |
---|---|
Display Name | The display name for the page style. |
Resource Type | The type of resource being exposed. This is a read-only field that is populated automatically based on certain internal validations on the JSPX file. |
Icon URL | The path to the image that you want to display alongside the page style name in the Create Page dialog. This is an optional setting. Specify the absolute path to the image file. For example, for a page style that is imported from WebCenter Portal: Spaces, the Icon URL is of the following format: APPLICATION_ROOT/oracle/webcenter/siteresources/scopedMD/shared/FILE_NAME |
Description | A description for the page style. |
Content Directory | The directory containing dependent objects of the page style, such as images, JavaScripts, style sheets, or HTML files. Objects associated with a resource are rendered only if they are stored in the |
generic-site-resources.xml
file. For more information, see Section 17.2.4, "How to Remove a Resource from the Resource Manager." Seeded page styles cannot be modified or deleted at runtime. However, users with administrator privileges can make a copy of a seeded page style and edit its properties or delete it.
The Edit Source option in the Resource Manager enables users to modify the content of a copied or custom page style at runtime. However, as text editing is easier in JDeveloper than in the runtime source editor, users may choose to download a page style, edit it in JDeveloper, and upload it back to the deployed application. At design time, this type of round-trip development includes importing the downloaded page style, editing it in JDeveloper, and exporting it so that it can be uploaded back to the deployed application.
This section describes how to import and export page styles in JDeveloper.
When you download a page style from the Resource Manager, an EAR file is created containing the following objects:
generic-site-resources.xml
file oracle/webcenter/siteresources/scopedMD/shared
. The EAR file will not contain this folder if the shared directory has no content. The generic-site-resources.xml
file contains metadata that helps identify the type of resource being imported. The metadata is also used when you export the page style back to the runtime application.
On importing the EAR file in JDeveloper, the files from the EAR are extracted to the folder Application_Root
/Portal/public_html/oracle/webcenter/siteresources/scopedMD/<
scope_GUID
>
. You can open the page style and edit it as you would edit any other page at design time. The updated page style must then be exported to the deployed application.
Note: If you imported a page style from WebCenter Portal: Spaces but want to use it in a Framework application, ensure that you delete the WebCenter Portal: Spaces-specific privilege mapping from the page definition file. This means that you remove the |
For the detailed steps to import a resource, see Section 17.4.2, "How to Import a Portal Resource into JDeveloper."
You would need to perform an export for the following reasons:
When you export a page style from JDeveloper, an EAR file is created containing the page style JSPX, its page definition file, the generic-site-resources.xml
file, and a shared
folder containing the images associated with the page style. Users with administrator privileges can then upload this EAR file to a deployed application using the Resource Manager. Once uploaded, the page style can be managed and used to create application pages.
For the detailed steps to import a resource, see Section 17.4.3, "How to Export a Portal Resource from JDeveloper."
Out of the box, Spaces provides several seeded page styles. If these default styles do not suit your requirements, you can build your own page styles within Spaces. For more information, see the chapter "Working with Page Styles" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
However, Spaces may not provide all the controls to create a page style that provides all the functionality that you require. In such cases, you can create your own page style in JDeveloper and then upload it to Spaces. You can also download an existing page style from Spaces, edit it in JDeveloper, or use one of the sample page styles as your starting point, and then upload it back into Spaces. In JDeveloper, you can create a page style just like any other JSPX page and upload it to Spaces.
Oracle WebCenter Portal provides a special JDeveloper workspace (DesignWebCenterSpaces.jws
) to help you develop and upload resources, such as page styles, to Spaces. Chapter 56, "Extending the Spaces Application Using JDeveloper" tells you where to find the sample workspace and explains how to use the WebCenterSpacesResources
project to build custom page styles and other types of resources for Spaces.
The primary tasks of creating and editing page styles are the same for Framework applications and Spaces applications, but you must make a few additional considerations for Spaces applications. This section covers the special considerations for page styles to be consumed in Spaces.
Requirements for Page Styles Used in Spaces
Use the CustomPagePermission
class to map permissions explicitly for the page style, as shown in the following example:
For the general page style prerequisites, see "Requirements for Page Styles Exposed as Portal Resources". For the procedure to create a page style, see Section 12.3.1, "How to Create a Page Style."
Mashup styles are ADF task flows that can be used as templates to create new task flows at runtime. However, a mashup style can have only a single view fragment. In addition, if the mashup style refers to code, for example, using an EL value, then that code must be present in the deployed application.
You may choose to create mashup styles for the following purposes:
The Resource Manager provides a Task Flows page in which users with administrative privileges can create and manage task flows. When a user clicks Create on the Task Flows page, The Create new Task Flow dialog, shown in Figure 12-13, displays the seeded mashup styles available to users.
Note: Managing ADF Task Flows Just like how you manage mashup styles at runtime, you can create and manage task flows also in the Resource Manager. The Resource Manager - Task Flows page enables users to create, edit, delete, import, and export task flows. You cannot export a custom task flow created in JDeveloper as a portal resource, but you can import a task flow created at runtime, modify it, and export it back to the runtime application. The steps to import, modify, and export task flows are the same as those for mashup styles. Therefore, the export, import, and edit tasks in this section are applicable for task flows and mashup styles. For information about adding and exporting custom task flows, see Section 13.3, "Adding Custom Task Flows to Your Portal." |
This section describes how to create mashup styles and configure them to be exposed at runtime. It contains the following tasks:
Creating a mashup style is the same as creating a task flow, but you create mashup styles only so that they can be used as templates to create task flows at runtime. Mashup styles can be consumed at runtime only if you expose them in the Resource Manager.
Requirements for Mashup Styles Exposed as Portal Resources
To expose a mashup style in the Resource Manager, you must consider the following requirements when creating a mashup style in JDeveloper:
/oracle/webcenter/portalapp
directory. You can either create a subdirectory for mashup styles, for example mashupstyles
, or save the mashup style directly in the portalapp
directory. Panel Customizable
component to the view fragment from the Composer tag library. This ensures that task flows based on this mashup style can be populated at runtime. Example 12-9 shows the code for a sample mashup style that enables records from a bug details database to be listed in the Activity Stream format. The style is created based on knowledge of the data source being accessed and the columns available in the data source. In this example:
dataPresenter.dummyData.collectionModel
is a null data source that must be replaced with the appropriate data control reference when the mashup style is used at runtime. #{row.
COLUMN
}
entries are placeholders that will reference data columns from the data controls when the mashup style used. #{empty row.COLUMN ? '#{row.COLUMN}' : row.COLUMN}
is used to display #{row.COLUMN}
in the task flow created using this mashup style until dataPresenter.dummyData.collectionModel
is replaced and data is properly bound. Using a construct like this ensures that task flows created from this mashup style give users a hint about the available data slots. Example 12-9 Sample Mashup Style
For detailed information about ADF task flows, see "Creating ADF Task Flows" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
By exposing mashup styles in the Resource Manager, you allow administrators to manage these styles and create task flows based on these styles. You can also export selected mashup styles from JDeveloper so that administrators can modify or delete them at runtime.
Managing mashup styles at runtime is similar to managing page styles. For more information, see "Working with Page Style Resources" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Note: If you create a mashup style at runtime and do not import it back into the design time environment, your new mashup style may be lost when the application is redeployed. For more information, see the "Preserving Resource Customizations" section in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. |
To expose a mashup style in the Resource Manager, it must have a valid entry in the application's generic-site-resources.xml
file. Use the following options on the context menu of a task flow definition XML file to register or deregister the mashup style in the Resource Manager:
Note: The Resource Manager-specific options are displayed on the context menu only if you created the mashup style in the |
generic-site-resources.xml
file. While creating an entry, you must set the attributes described in Table 12-2. The attributes in this table are specific to mashup styles. For the generic steps that are common to all resources, see Section 17.2.1, "How to Add a Resource to the Resource Manager."
Table 12-2 Mashup Style Properties
Property	Description
Display Name | The display name for the style. |
Resource Type | The type of resource being exposed. You must select |
Icon URL | The path to the image that you want to display alongside the mashup style name in the Create a new Task Flow dialog. This is an optional setting. Ensure that the image is in the class path and can be accessed at runtime. |
Description | A description for the mashup style. |
generic-site-resources.xml
file. For more information, see Section 17.2.4, "How to Remove a Resource from the Resource Manager." Seeded mashup styles cannot be modified or deleted in the Resource Manager. However, users with administrator privileges can make a copy of a seeded mashup style and edit its properties or delete it.
The Edit Source option in the Resource Manager enables users to modify the content of a copied or custom mashup style at runtime. However, as text editing is easier in JDeveloper than in the runtime source editor, users may choose to download a mashup style, edit it in JDeveloper, and upload it back to the deployed application. At design time, this type of round-trip development includes importing the downloaded mashup style, editing it in JDeveloper, and exporting it so that it can be uploaded back to the deployed application.
This section describes how to export and import mashup styles in JDeveloper.
When you download a mashup style from the Resource Manager, an EAR file is created containing the following objects:
generic-site-resources.xml
file oracle/webcenter/siteresources/scopedMD/shared
. The EAR file will not contain this folder if the shared
directory has no content The generic-site-resources.xml
file contains metadata that helps identify the type of resource being imported. This metadata is also used when you export the mashup style back to the runtime application.
On importing the EAR file in JDeveloper, the files from the EAR are extracted to the folder Application_Root
/Portal/public_html/oracle/webcenter/siteresources/scopedMD/<
scope_GUID
>
. You can open the mashup style and edit it as you would edit any other task flow at design time. The updated mashup style must then be exported to the runtime application.
Note: When updating a runtime mashup style in JDeveloper, if the icon URL points to a location in the application classpath, you may see an error message prompting you to place the icon in the |
For the detailed steps to import a resource, see Section 17.4.2, "How to Import a Portal Resource into JDeveloper."
You would need to perform an export for the following reasons:
When you export a mashup style from JDeveloper, an EAR file is created containing the task flow definition file, the view fragment JSFF, its page definition file, the generic-site-resources.xml
file, and a shared
folder containing the image used for the mashup style. Users with administrator privileges can then upload this EAR file to a deployed application using its Resource Manager. Once uploaded, the mashup style can be managed and used to create task flows.
For the detailed steps, see Section 17.4.3, "How to Export a Portal Resource from JDeveloper."
Out of the box, Spaces provides several seeded mashup styles. If these default styles do not suit your requirements, you can build your own mashup styles within Spaces. For more information, see the chapter "Managing Mashup Styles" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
However, Spaces may not provide all the controls to create a mashup style that provides all the functionality that you require. In such cases, you can create your own mashup style in JDeveloper and then upload it to Spaces. You can also download an existing mashup style from Spaces, edit it in JDeveloper, or use one of the sample mashup styles as your starting point, and then upload it back into Spaces.
Oracle WebCenter Portal provides a special JDeveloper workspace (DesignWebCenterSpaces.jws
) to help you develop and upload resources, such as mashup styles, to Spaces. Chapter 56, "Extending the Spaces Application Using JDeveloper" tells you where to find the sample workspace and explains how to use the WebCenterSpacesResources
project to build custom mashup styles and other types of resources for Spaces.
The primary tasks of creating and editing mashup styles are the same for Framework applications and Spaces applications. For the procedure to create a mashup style, see Section 12.4.1, "How to Create a Mashup Style."
For the general mashup style prerequisites, see "Requirements for Mashup Styles Exposed as Portal Resources".
When building up the content of your WebCenter Portal: Framework application, you can bring in content from various resources, including:
Adding content to your Framework application is no different from adding content to any other web application.
This chapter includes the following sections:
A portal is made up of pages that provide the structure of the portal and expose the content. If you create your portal using WebCenter Portal's Framework application template, a home page and several other pages are created for you. You can create your own pages to construct the rest of your portal.
For more information, see Section 5.3, "Adding Pages to a Portal."
After creating the pages, you can organize them into a page hierarchy to determine the structure of the pages. The page hierarchy also determines the security for those pages.
For more information, see Section 69.6, "Using the Page Hierarchy Security Editor."
If you want users to be able to edit pages at runtime, you can add Composer components to the pages.
For more information, see Chapter 20, "Enabling Runtime Editing of Pages Using Composer."
WebCenter Portal services enrich portals and web sites with enterprise 2.0 capabilities, including social computing services, personal productivity services, online awareness and communications, content integration, and web analytics. WebCenter Portal services expose their functionality through task flows. For more information about WebCenter Portal services and task flows, see Section 2.4, "Introducing Oracle WebCenter Portal: Services."
If you create your portal using WebCenter Portal's Framework application template, all the appropriate WebCenter Portal service connection wizards and tag libraries are readily visible and available in the New Gallery and Component Palette. When you consume a WebCenter Portal service task flow or component, the necessary libraries are automatically added to the project. Depending on the service you plan to consume, your application must meet certain prerequisites. For example, if the service must know the identity of users, then your application must provide some level of security with user authentication. For more information, see Chapter 7, "Preparing Your Application for WebCenter Portal Services."
For more information about the individual WebCenter Portal services and their task flows, refer to Table 13-1.
Table 13-1 WebCenter Portal Services - More Information
Task flows, like pages, are containers in which you can add components such as portlets, content, and other task flows. You can add task flows to pages or other task flows. Task flows created in JDeveloper can be included in Resource Catalogs so that users can add them to pages or other task flows at runtime.
You can drag and drop a custom task flow into a Resource Catalog so that it is available to users to add to pages or task flows at runtime. For more information, see Section 16.2.3.7, "Dragging and Dropping a Resource into the Catalog." When you deploy the application, the task flow is also deployed to the target instance.
For detailed information about creating different types of ADF task flows, see "Creating ADF Task Flows" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Exposing Task Flows Created in JDeveloper to a Deployed Application
If you created a custom task flow in JDeveloper and want to expose it in an already deployed application, you must deploy the project containing the task flow as an ADF shared library to the runtime application. Once the library containing the task flow is accessible to the application, it is displayed in the runtime Resource Registry and can be added to custom Resource Catalogs from there.
Note: Permissions to view or edit a task flow are not provisioned by default when you create the task flow. To ensure that a task flow is visible at runtime, prior to deploying as a shared library, you must grant at least the View privilege on the task flow. For more information, see Section 24.6.1, "Granting Permissions on Task Flows." |
For the steps to deploy an application to a Framework application, see "Deploying the Application to a WebLogic Managed Server" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. However, while running the Install Application Assistant, on the Choose targeting style page, select Install this deployment as a library.
For the steps to deploy an application to a WebCenter Portal: Spaces instance, see Section 56.2.3, "Rebuilding the Spaces Shared Library List."
To provide access to the content in your Content Server content repository, you must create a connection to the Content Server. For more information, see Section 27.2.1, "How to Create a Content Repository Connection Based on the Oracle Content Server Adapter."
With a connection to Content Server established, you can use the Documents service, which includes task flows that provide a user-friendly interface to manage, display, and search documents at runtime. For more information, see Chapter 30, "Integrating the Documents Service."
Next, add one of the content task flows to your portal to expose the content from Content Server. Content task flows include Content Presenter and the Documents service task flows:
For more information about the Content Presenter task flow, see Section 31.1, "Understanding the Content Presenter Task Flow." For more information about the Documents service task flows, see Section 31.2, "Understanding the Documents Service Task Flows."
If you use the Content Presenter task flow, you may also want to create your own Content Presenter display templates. Content Presenter display templates define how content repository items should be rendered on a page. For more information, see Chapter 29, "Creating Content Presenter Display Templates."
A portlet is a reusable web component that can draw content from many different sources. Portlets provide a way of presenting data from multiple sources in a meaningful and related way. For more information about portlets, see Chapter 58, "Overview of Portlets."
To add a portlet to your portal, you must first register the portlet's producer with the Framework application. For more information, see Section 64.2, "Registering Portlet Producers with a WebCenter Portal: Framework Application."
After you have registered the portlet producer, you can then simply drag and drop any portlets that you want to include in your portal onto the appropriate page. For more information, see Section 64.3, "Adding Portlets to a Page."
For information about how to create portlets, see Chapter 60, "Creating Portlets with the Portlet Wizard."
A pagelet is similar to a portlet, but while portlets were designed specifically for portals, pagelets can be run on any web page, including within a portal or other web application. Pagelets can be used to expose platform-specific portlets in other web environments.
For more information about adding pagelets to your portal, see Section 63.2, "Using Pagelets in Web Applications."
If the resources you add to your portal require access to applications that define their own authentication processes, you can add external applications to replicate a single sign-on experience for users.
For example, your portal might include portlets that point to applications that require a separate login. Or, if your portal includes the Mail service, you must identify an external application to map the mail server user to the portal user so that the user does not have to log in separately every time.
The first time a portal user accesses the external application, he or she is prompted for a user name and password for the application. These credentials are then mapped to the portal user and stored securely in a credential store. The credential store subsequently supplies these credentials during authentication to the external application. Unless the external application's credentials change, the user supplies the credentials only once as the mapped information is read from the credential store for future requests.
For more information, see Section 69.13, "Working with External Applications."
Data controls are used to retrieve information from different data sources and create user interface (UI) components within your Framework application. A data control provides you with easy-to-use methods that you can drag and drop onto JSF pages to publish content as ADF components, such as URLs, files, and folders. To add content from the data sources to JSF pages, you must first create connections to the data sources, then use the connections to create data controls based on the repositories.
You can create custom data controls to connect different data sources and add them to your application pages or task flows. For detailed information about data controls, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Some WebCenter Portal services provide data controls for creating customized visualizations of the services. For information about consuming these data controls in your application, see Section 7.1.3, "Using WebCenter Portal Data Controls."
Exposing Data Controls for Consumption in an Already Deployed Application
The runtime Resource Registry in a Framework application or WebCenter Portal: Spaces contains a Design Time Data Controls
folder by default. This folder exposes the seeded WebCenter Portal service data controls and any other data controls that were added to the application before it was deployed. To expose a new data control in an already deployed Framework application or WebCenter Portal: Spaces, you must deploy the project containing the data control as an ADF shared library to the runtime application. Once the library containing the data control is accessible to the application, it is displayed in the runtime Resource Registry and can be added to custom Resource Catalogs from there.
For the steps to deploy an application to a Framework application, see "Deploying Applications Using the WLS Administration Console" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. However, while running the Install Application Assistant, on the Choose targeting style page, select Install this deployment as a library.
For the steps to deploy an application to a WebCenter Portal: Spaces instance, see Section 56.2.3, "Rebuilding the Spaces Shared Library List."
This chapter shows you how to take the navigation model that has been defined for your WebCenter Portal: Framework application and expose it in the pages of the portal.
This chapter includes the following sections:
For an introduction to navigation in WebCenter Portal: Framework applications, see Section 11, "Building a Navigation Model for Your Portal."
For information about how to define the navigation model for your portal, see Section 11.2, "Creating a Navigation Model" and Section 11.3, "Adding Resources to a Navigation Model."
The navigation visualization determines how the navigation appears in the portal. For example, navigation can be provided as a set of tabs along the top of each page, or perhaps as a tree structure along the side of the page. Another common navigation visualization is to provide a "master-detail" navigation, for example, tabs along the top of the page, with each tab having additional navigation provided as a tree structure along the side of the page.
Typically, you add navigation visualization to page templates, so that it can be defined in one place and propagated consistently across the whole portal. However, you can also add navigation visualization to individual pages.
WebCenter Portal provides several built-in navigation task flows that you can add to your portal's page templates to visualize the navigation. For more information, see Section 14.2, "Adding Built-in Navigation Task Flows to a Page Template."
The built-in navigation task flows provide a quick way to test your navigation model, but they provide a fairly simple navigation visualization. It is more likely that you will require a more advanced visualization. To do this, you must create your own navigation UI using ADF navigation components and the WebCenter Portal navigation APIs. For more information, see Section 14.3, "Programmatically Adding Navigation to a Page Template."
You can add navigation to a page template by dragging one of the built-in navigation task flows from the Resource Palette onto the appropriate location of the template.
WebCenter Portal provides three navigation task flows to help visualize portal navigation. These are:
Note: The Navigation Menu task flow can render only two levels of navigation. |
Figure 14-3 Navigation - Breadcrumb Task Flow
Additional navigation task flows are available to download from Oracle Technology Network, at:
http://www.oracle.com/technetwork/middleware/webcenter/samples-196325.zip
The zip file contains the following navigation task flows:
Download the zip file and extract its contents locally. You can then upload one or more of the EAR files to your application, as described in Section 17.4.4, "How to Upload a Resource Using the Resource Manager."
This section includes the following subsections:
The steps for adding a navigation task flow are the same for all navigation task flows.
To add a navigation task flow:
You may be prompted to add the Navigation Task Flows library to the project. Confirm by clicking Add Library.
Note: You can use EL expressions as values of any of the navigation task flow binding parameters. For more information, see Appendix G, "Expression Language Expressions." |
Figure 14-4 The Edit Task Flow Binding dialog for the Navigation - Menu Task Flow
Table 14-1 lists and describes task flow binding parameters applicable to the Navigation - Tree task flow.
Note: You can use EL expressions for the values of any of the navigation task flow binding parameters. For more information, see Appendix G, "Expression Language Expressions." |
Table 14-1 Navigation - Tree Task Flow Binding Parameters
Parameter	Default Value	Description
The navigation model to associate with this task flow. You can provide the actual navigation model definition file, omitting the /oracle/webcenter/portalapp/navigations/myNavigationModel You can also enter an EL expression, for example: #{navigationContext.defaultNavigationModel}		
The point in the navigation model at which to start the navigation. For example:		
Specifies whether to render the starting point of the navigation (root) in the tree. Enter one of the following:		
The number of levels shown when the tree is initially rendered. Enter one of the following:		
Note: This parameter applies only if the		
The style of the navigation. Enter one of the following:		
Note: Entering		
Specifies whether to render icons for each resource. Enter		
Not used	Not used	
Table 14-2 lists and describes task flow binding parameters applicable to the Navigation - Menu task flow.		
Table 14-2 Navigation - Menu Task Flow Binding Parameters		
Parameter	Default Value	Description
---	---	---
The navigation model to associate with this task flow. You can provide the actual navigation model definition file, omitting the /oracle/webcenter/portalapp/navigations/myNavigationModel You can also enter an EL expression, for example: #{navigationContext.defaultNavigationModel}		
The point in the navigation model at which to start the navigation. For example:		
Not used	Not used	
The style for rendering the first level of resources. Enter one of the following: Notes:		
The style for rendering the second level of navigation items if applicable. If If		
Specifies whether to render icons for each resource. Enter		
Table 14-3 lists and describes task flow binding parameters applicable to the Navigation - Breadcrumb task flow.		
Table 14-3 Navigation - Breadcrumb Task Flow Binding Parameters		
Parameter	Default Value	Description
---	---	---
The navigation model to associate with this task flow. You can provide the actual navigation model definition file, omitting the /oracle/webcenter/portalapp/navigations/myNavigationModel You can also enter an EL expression, for example: #{navigationContext.defaultNavigationModel}		
The point in the navigation model at which to start the navigation. For example:		
Specifies whether to show the start node (root) in the breadcrumbs. Enter		
Specifies whether to display breadcrumbs horizontally or vertically. Enter		
WebCenter Portal provides a style class for each of the navigation task flows that you can use to change the appearance of the task flows. To use these style classes, add them to the skin CSS file used by the application, for example portal-skin.css		
.		
WCTreeNav		
—Use to change the appearance of the Navigation - Tree task flow WCMenuNav		
—Use to change the appearance of the Navigation - Menu task flow WCBreadcrumbNav		
—Use to change the appearance of the Navigation - Breadcrumb task flow. Example 14-1 shows what to add to the skin CSS file to change the background color for the Navigation - Menu task flow.		
Example 14-1 Changing the Background Color of the Navigation - Menu Task Flow		
For more information about skins, see Chapter 15, "Creating and Managing Skins."		
If the built-in navigation task flows do not meet your requirements, you can use the APIs provided with WebCenter Portal to create your own UI for your navigation model.		
Note: Any task flow that uses the navigation model to trigger navigation within an application must include a <parent-action id="wcnav_parentAction"> <root-outcome>wcnav_outcome</root-outcome> </parent-action>		
WebCenter Portal provides two sets of APIs for adding navigation to your portal:		
This section includes the following subsections:		
WebCenter Portal provides a set of expression language (EL) APIs that you can use to obtain the navigation model and represent that navigation model as a runtime model. The runtime models can be bound directly to ADF Faces navigation components.		
The available navigation EL expressions are listed in full in Section G.5, "ELs Related to Navigation."		
This section includes the following subsections:		
Note: This section includes some examples of how to use the navigation EL APIs. For a full working example, see the default page templates (
The Navigation Context is the entry point to access all navigation elements within your system. Specifically, it enables you to access navigation models via preference, state, and direct reference, as well as providing the hooks to create custom UI to actually navigate to the resource.		
Navigation Model Access		
oracle.webcenter.portalapp.navigation.model		
in the adf-config.xml		
file. This enables you to define the general model to be used throughout your application and enables you to change the value in one place rather than having to go to each page and page template to set the value. The EL expression to retrieve the default navigation model is: Note: For more information about how to set the		
Using this expression enables you to have a single value within a page template (for example, for displaying breadcrumbs) and have it display the correct value without having to select a specific navigation model.		
where path		
is the path to the navigation model definition file, for example:		
Note: You do not need to include the		
Resource Navigation		
Use these ELs for core bean operations for binding the navigation model to the UI component's actionListener		
attribute. For example:		
Examples		
Example 14-2 creates a simple tree UI using the Navigation Context to access the current navigation model and render the tree using <af:outputText/>		
.		
Example 14-2 Simple Tree Navigation UI		
Example 14-3 uses the Navigation Context's processAction		
listener to handle navigation for an ADF commandImageLink		
component, passing in the current node as the parameter called node		
as an attribute to the actionListener		
.		
Example 14-3 Binding the Navigation Model to the UI Component		
The Navigation Runtime Model exposes the underlying XML definition as runtime models, as well as providing direct access to individual nodes. The runtime models take into account such factors as security and visibility to produce a session-specific representation that can be bound to UI objects.		
Note: Note the difference between the navigation model that you create to define the content, structure, and metadata of the navigation and the navigation runtime model that determines how the navigation model behaves at runtime.		
You can access the whole model by using the default runtime model (defaultTreeModel		
, defaultListModel		
, defaultMenuModel		
, and defaultSiteMap		
), or access a specific sub-tree using the various parameters when creating the runtime model. For example:		
For more information about the underlying ADF Faces MenuModel, TreeModel, and ListModel, see the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.		
Model Access		
You can create the following runtime models based on the underlying navigation model:		
Resource (or Node) Access		
You can access specific nodes within the navigation model using the follow EL expressions:		
#{navigationContext.defaultNavigationModel.currentSelection}		
#{navigationContext.defaultNavigationModel.rootNode}		
#{navigationContext.defaultNavigationModel.node['		
path		
']}		
Examples		
Example 14-4 renders the current navigation model's menu model as a breadcrumb.		
Example 14-4 Rendering the Navigation Model as a Menu Model		
Example 14-5 produces a Sitemap for the application based on the default navigation model.		
Example 14-5 Producing a Sitemap		
For more information about Sitemaps, see Section 14.4, "Using Portal Navigation to Create a Sitemap."		
The Navigation Resource provides access to individual properties against each node within the navigation model. These fall into the following categories:		
_self		
), a new window (_blank		
), or a popup (_popup		
), or any other location supported by the navigation UI. For a complete list, see Section G.5, "ELs Related to Navigation."		
Examples		
Example 14-6 renders an ADF commandImageLink		
component with various attributes.		
Example 14-6 Rendering a commandImageLink with Attributes		
Example 14-7 accesses values passed from a resource to the corresponding page through parameters.		
Example 14-7 Passing Node Values to Page Parameters		
Example 14-8 conditionally displays breadcrumb links based on whether you can navigate to the node. It also bases the UI component on the type of the node.		
Example 14-8 Conditionally Displaying Navigation Nodes		
One common way to visualize a portal's navigation is as a list of links. Clicking a link navigates to the resource associated with it.		
Example 14-9 retrieves the list model for the current navigation model and renders it vertically on the page. The code iterates through the navigation model, binding each node in turn to an ADF commandImageLink		
component. If a node contains children, a second iterator renders those children on the page. If a node is not navigable, it is not rendered as a link. The currently selected node is displayed in bold.		
Example 14-9 Navigation as a List of Links		
Another common way to visualize portal navigation is as a tree structure. A navigation tree is typically listed down the side of the page, so it is a useful way of displaying the entire navigation hierarchy. Users can navigate immediately to any node in the navigation. The advantage of using a tree structure over a simple list of links, is that users can expand and collapse the different nodes of the navigation model.		
To include a tree structure in your page template, you can bind the ADF Faces tree		
navigation component to your navigation model. Example 14-10 shows how to do this.		
Example 14-10 Navigation as a Tree		
You can also render your navigation as a menu. In a menu, the top level of navigation is displayed. When the user hovers the mouse over a particular node, if that node has children, they are displayed as a popup menu.		
Figure 14-4 retrieves the list model for the current navigation model and renders it vertically on the page. The code iterates through the navigation model. If a node contains children, then a second iterator iterates through those children. Nodes without children are rendered as menu items. In the second level of the navigation model, if any of the nodes have children, then a third iterator is executed. Again, nodes without children are rendered as menu items. At the third level of the navigation mode, nodes are rendered as menu items. Non-navigable nodes are not rendered as links. The currently selected node is displayed in bold.		
Example 14-11 Navigation as a Menu		
To provide users with a quick way of orientating themselves within the portal navigation, you can provide a trail of breadcrumbs on the page. Breadcrumbs show the current location in the portal and the path taken through the navigation to get there. Users can then quickly return to any point along that path. Breadcrumbs are typically used on a page in addition to other forms of navigation.		
To include breadcrumbs in your page template, you can bind the ADF Faces breadCrumbs		
navigation component to your navigation model. Example 14-12 shows how to do this.		
Example 14-12 Navigation as Breadcrumbs		
Often portals provide a "master-detail" navigation visualization, for example, as tabs along the top of the page, with each tab having additional navigation provided as a tree structure along the side of the page.		
The master-detail navigation in Example 14-13 uses the same navigation model for the master and detail navigation. The master navigation renders the top level of the navigation model as a list of links along the top of the page. The detail navigation renders the children of the currently selected top level node as a tree.		
Example 14-13 Master-Detail Navigation Using a Single Navigation Model		
The example above can also be written to use two different navigation models, one for the master navigation, and one for the detail navigation. Example 14-14 shows how.		
Example 14-14 Master-Detail Navigation Using Multiple Navigation Models		
Oracle WebCenter Portal provides REST APIs to access and manipulate the navigation model of your application. Use the navigation REST APIs to create your own interface for visualizing the navigation model. You would typically use REST when creating Rich Internet Applications that are client-side scripted and require the ability to interact with data from a server-side application. For example, the WebCenter Portal iPhone App uses WebCenter Portal REST APIs to interact with a WebCenter Portal: Spaces application.		
For an introduction to the REST APIs, see Chapter 54, "Using Oracle WebCenter Portal REST APIs."		
The starting point for using the navigation REST APIs, as with other WebCenter Portal REST APIs, is to send a GET		
request to the Resource Index:		
The response to this request provides the entry point URI (href		
) for the navigation REST APIs, identified by the link element with the following resourceType		
:		
Sending a GET		
request to this entry point URI returns a list of navigation models within the application, for example:		
Using this information, you can start to retrieve information about specific navigation models and the resources within them, using the URIs listed in Table 14-4.		
Table 14-4 REST URI Model for Navigation		
REST URI	Returns	
---	---	
.../api/navigations	All navigation models in the application.	
.../api/navigations/default-navigation-model	The properties of the default navigation model.	
.../api/navigations/pathToModel/modelId	The properties of the specified navigation model (
.../api/navigations/pathToModel/modelId/resources	All root resources under the specified navigation model (
.../api/navigations/pathToModel/modelId/resources/pathToResource/resourceId	The specified resource (
...api/navigations/pathToModel/modelId/resources/pathToResource/resourceId/children	A navigation tree listing all the children of the specified resource (
.../api/navigations/pathToModel/modelId/resources/pathToResource/resourceId/children?depth=dep	A navigation tree listing the children of the specified resource (
Each navigable resource has a prettyURL		
element that you can use to drill down further in the navigation model hierarchy.		
When a search engine crawls a web site, it parses the HTML for standard links (for example, text		
). However, ADF-based web sites generate links as JavaScript, which when executed in a browser, cause the page change or navigation. These JavaScript links cannot be interpreted by search engines.		
Some popular search engines, such as Google and Bing, support Sitemaps. A Sitemap is an XML file that lists URLs for a site along with additional metadata about each URL (for example, when it was last updated, how often it usually changes, and how important it is relative to other URLs in the site), so that search engines can more intelligently crawl the site. By submitting a Sitemap to a search engine, or by referencing the Sitemap in your robots.txt		
file, you can feed a list of pages into the search engine for indexing.		
For more information about Sitemaps, go to:		
WebCenter Portal applications can provide a Sitemap URL that you can register with search engines to get them to index your set of pages. If the user-agent of the search engine matches one supported by ADF, the HTML is returned for the request instead of the JavaScript.		
Note: Currently, the only user-agent registered with ADF is Google's googlebot.		
You can create a Sitemap for your application based on a navigation model, as shown in Example 14-15.		
Skins define the appearance of an application. You can use skins to achieve some level of consistency across pages in your application, and to get your company's preferred look and feel.		
This chapter describes how to create and manage skins. It includes the following sections:		
Skins help you define the colors, fonts, images, and some dimensional details like the height and width of your application components to represent your company's preferred look and feel.		
Skins are based on the Cascading Style Sheet (CSS) specification. A skin is a CSS file containing various skin selectors that define the styles of your application components. You can adjust the look and feel of any component by changing its style-related properties. Use of a skin in an application helps you to avoid specifying styles for each component individually or inserting a style sheet on each page. Every component automatically uses the styles defined in the skin. Skins help you to change an application's appearance without changing the portal pages themselves.		
ADF Faces skins drive the look and feel of WebCenter Portal applications. Out-of-the-box, ADF Faces provides various built-in skins, such as fusion		
, blafplus-rich		
, blafplus-medium		
, and simple		
. By default, Framework applications use the portal		
skin, which extends the fusionFx-v1.desktop		
skin.		
If the built-in skin available in your application does not meet your business requirements, you can create your own custom skins in Oracle JDeveloper. While working with custom skins, you may need to edit the following skin-related files: adf-config.xml		
, trinidad-config.xml		
, and trinidad-skins.xml		
. For information about these files, see Section 15.10, "Files Relates to Skins."		
Oracle WebCenter Portal supports runtime administration of skins to help application users continue developing a portal even after the application has been deployed. When you enable runtime administration, authorized application users can create and manage skins at runtime, without redeploying the application. You can bring runtime-created skins back into design time, edit them, and upload them into the deployed application. For information, see Section 15.4, "Enabling Runtime Administration of Skins."		
In JDeveloper, you can create new skins for use in WebCenter Portal's Spaces application. In JDeveloper, you can also edit skins originally created in Spaces, and upload the edited skins back into Spaces. For information, see Section 15.6, "How to Create and Manage Spaces Skins."		
By default, Framework applications use the portal		
skin, which is defined in the portal-skin.css		
file. You can easily edit this file to suit your requirements. However, if you want to use a custom skin in your application, you must create a CSS file and define the required skin selectors.		
This section includes the following subsections:		
When you create a CSS file, by default, JDeveloper places it under the APPLICATION_ROOT		
/Portal/public_html/css		
folder on the file system. In Application Navigator, the skin is displayed in the folder hierarchy as shown in Figure 15-1.		
Figure 15-1 A Skin Created at the Default Location in JDeveloper		
However, skins created at this default location cannot be managed at runtime. To enable authorized application users to be able to manage a skin at runtime, you must expose it as a portal resource in the Resource Manager. For a skin to be exposed as a portal resource, you must create it at the following path:		
APPLICATION_ROOT		
/Portal/public_html/oracle/webcenter/portalapp/skinsIn Application Navigator, the skin is listed in the folder hierarchy as shown in Figure 15-2.		
Figure 15-2 A Skin Created as a Portal Resource		
After creating a CSS file, you must define the required ADF Faces skin selectors for the required components in your application. For example, you can use the .AFDefaultFontFamily:alias		
selector to specify the font family for your application as follows:		
The images related to a skin exposed as a portal resource must be stored at the following location:		
APPLICATION_ROOT		
/Portal/public_html/oracle/webcenter/portalapp/sharedTo avoid any conflicts or images getting overwritten, as a best practice you can store images in a subdirectory under the shared		
directory. To add image reference, you can use the format shown in the following example:		
images/image1.gif		
');To create a CSS file:		
Note: In a Framework application, to be able to expose a skin in the runtime Resource Manager, you must create the skin under the		
The skin's CSS file opens in the Source View.		
You can now define the required skin selectors for the skin. For information, see Section 15.2.3, "How to Define Skin Selectors."		
Use the ADF Faces skin selectors to define the look and feel of the different components in your application.		
For information about:		
This section includes the following subsections:		
By default, a Framework application is configured to use the portal-skin.css		
skin file. This skin file provides a skeleton structure of various useful skin selectors, and contains commented-out entries that describe the purpose of each skin selector (Figure 15-3).		
You can easily modify portal-skin.css		
to customize the default skin settings as per your requirements. You can add any new skin selectors to the file. You can also override the default settings of a skin selector by specifying the required values. For example, to set a font size of 16px for your application content, search for the .AFDefaultFont:alias		
skin selector and add the code marked in bold in the following example:		
To edit portal-skin.css		
:		
portal-skin.css		
and choose Open. For information about skin selectors, see Section 15.2.3, "How to Define Skin Selectors."		
portal-skin.css		
. This section includes the following subsections:		
The Resource Manager in a Framework application enables users with administrative privileges to create and modify portal resources, including skins, at runtime. By exposing skins in the Resource Manager, you allow administrators to manage these skins at runtime. If you want to create and expose more skins after deploying the application, you can export them from JDeveloper to the runtime application. At runtime, the Resource Manager provides an option to upload the skins that you exported.		
Note: If you create a skin at runtime and do not import it back into the design time environment, your new skin may be lost when the application is redeployed. For more information, see the "Preserving Resource Customizations" section in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.		
To enable runtime administration of a skin, you must add it as a portal resource to the Resource Manager. For a skin to be added as a portal resource, it must be located in the APPLICATION_ROOT		
/Portal/public_html/oracle/webcenter/portalapp/skins		
directory.		
While exposing a skin as a portal resource, you must set certain attributes (Figure 15-4). Table 15-1 describes the attributes that are specific to skins. For information about generic attributes, refer to Section 17.2.1, "How to Add a Resource to the Resource Manager."		
Note: The Content Directory field must point to		
Figure 15-4 Creating a Skin as a Portal Resource		
Table 15-1 Skin-Specific Attributes		
Property	Description	
---	---	
Specifies the unique identifier of a skin. Typically, it is a combination of the skin family and the render kit, for example		
Specifies the family to which a skin belongs. It is an identifier that can be used by a number of skins with different renderkits. For example, you could have a family named Skin Family is really the value that You must ensure that the		
Specifies the ID of the skin being extended. If creating a new skin, Table 15-2 lists the skin IDs of the built-in skins available in Spaces.		
Note: Skins are identified internally by skin IDs. While adding an existing custom skin as a portal resource in JDeveloper, you must not change the values of the |
Extending Spaces Skins
You can bring your Spaces skins into JDeveloper for further development (Section 15.6, "How to Create and Manage Spaces Skins"). You can also create new skins in JDeveloper for use in the Spaces application. You create a new skin by extending an existing skin. In JDeveloper, you can extend a built-in ADF Faces skin like blafplus-rich.desktop
, fusion.desktop
, or fusionFx-v1.desktop
. You can also choose to extend one of the built-in skins available in Spaces. Table 15-2 lists the skin IDs of the built-in skins available in Spaces.
Use the following options on the context menu of a skin's CSS file to register, update, or deregister a skin in the Resource Manager:
generic-site-resources.xml
file. At runtime, the skin is then available for selection. For information, see Section 17.2.1, "How to Add a Resource to the Resource Manager." While creating a skin entry, you must specify the skin-specific attributes described in Table 15-1.
generic-site-resources.xml
file. For information, see Section 17.2.4, "How to Remove a Resource from the Resource Manager." When you enable runtime administration of resources, authorized users can create new skins and modify existing ones at runtime. If users create or edit skins at runtime, you may find that you need to bring them back into JDeveloper for further enhancement. This type of round-trip development involves:
This section describes how to import and export skins in JDeveloper. It includes the following sections:
For generic information about downloading and uploading a resource in a deployed application, see the sections "Downloading a Resource" and "Uploading a Resource" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
When you download a skin from a deployed application, an EAR file is created containing the skin's CSS file and the generic-site-resources.xml
file, which contains the metadata specific to the downloaded skin.
After downloading a skin, you must import the EAR file into JDeveloper. On importing, the CSS file is extracted to the following path:
APPLICATION_ROOT
/Portal/public_html/oracle/webcenter/siteresources/scopedMD/scope_GUID
/For detailed steps to import a resource, see Section 17.4.2, "How to Import a Portal Resource into JDeveloper."
After importing a skin, you can edit its CSS file as you would any other skin file at design time. For information about editing a skin, see Section 15.2.3, "How to Define Skin Selectors." The updated skin must then be exported to the deployed application.
Note: If you download a skin from a deployed application and then import and modify it in JDeveloper, you must not change values of the following attributes: |
Note: If you edit or add images (or other dependant objects like JavaScripts and HTML files) in an imported skin, the images must be placed at the following path, which is the default content directory for skins created at runtime: APPLICATION_ROOT /Portal/public_html/oracle/webcenter/siteresources/scopedMD/shared/Images must always be placed directly under or in a subdirectory of the directory set as the content directory of a portal resource. You can find out the content directory path from the Update Portal Resource dialog. To prevent any conflicts, you may want to put your images in a subdirectory under the Once you add your images, you can reference them in the CSS file as shown in the following example: .AFBrandingBarLogo { background-image:url('/oracle/webcenter/siteresources/scopedMD/shared/skins/images/image1.gif');} For more information, see Section 15.2.1, "What You Should Know About Skin Creation." |
You may need to export a skin in the following situations:
When you export a skin in JDeveloper, an EAR file is created containing the skin's CSS file and the generic-site-resources.xml
file. Users with administrator privileges can then upload this EAR file to a deployed application by using the Resource Manager. Once uploaded, the skin can be managed and applied at runtime.
For detailed steps to export a resource, see Section 17.4.3, "How to Export a Portal Resource from JDeveloper."
Even after you have deployed your Framework application, you can create new skins at design time and make them available at runtime. This involves the following steps:
With runtime administration enabled in your Framework application, authorized users can use the Resource Manager to perform the following tasks: create a new skin, edit a skin, edit the source code, copy, set security, show or hide, set attributes, delete, upload, and download a skin.
Figure 15-5 shows the Resource Manager, with the Edit menu for a skin displayed.
For information about how to access the Resource Manager, see Section 17.3.2, "How to Use the Resource Manager at Runtime." The procedures for working with skins in a deployed Framework application are same as those in the Spaces application. For generic information about creating and managing a skin at runtime, see the "Working with Skins" chapter in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
You can choose to apply a different skin to your Framework application. If runtime administration is enabled, authorized users can change the skin at runtime.
This section includes the following subsections:
At design time, to switch to a different skin that has been created as a portal resource, directly edit the adf-config.xml
file. For information about the attributes that you can set in adf-config.xml
, see Section 15.10.1, "adf-config.xml."
To apply a skin created as a portal resource to your Framework application at design time:
adf-config.xml
of your application. To locate this file, in the Application Navigator, expand Application Resources > Descriptors > ADF META-INF.
<portal:preferences>
, search for the following skin properties: value
property, specify the family name of the skin that you want to apply to your application. This value must be same as the value specified for the Skin Family
attribute in the Create Portal Resource or Update Portal Resource dialog of the required skin.
desc
property, specify a description of the skin you want to apply. adf-config.xml
. Note: If you want to apply a skin created at any other location other than |
If you enable runtime administration of resources, you do not necessarily need to manually register a skin for your application. You can apply the desired skin at runtime in your deployed application.
To apply a skin at runtime in a deployed Framework application:
Out-of-the-box, WebCenter Portal's Spaces application provides certain default skins. If these default skins do not suit your requirements, you can build your own skins within Spaces. For information, see the chapter "Working with Skins" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
However, Spaces may not provide all the controls to create a skin with all the functionality that you require. In such cases, you can create your own skin in JDeveloper and then upload it into Spaces. You can also download an existing skin from Spaces and edit it in JDeveloper, or use one of the sample skins as your starting point, and then upload it back into Spaces.
WebCenter Portal provides a special JDeveloper workspace (DesignWebCenterSpaces.jws
) to help you develop and upload resources, including skins, to Spaces. Chapter 56, "Extending the Spaces Application Using JDeveloper" tells you where to find the sample workspace and explains how to use the WebCenterSpacesResources
project to build custom skins and other types of resources for Spaces.
When you use a custom skin for your Framework application, as a best practice you must deploy the custom skin as a separate shared library. This is especially important when you want your Framework application to consume a portlet that renders using the same skin as your application.
WebCenter Portal: Framework provides various default skins. All WebCenter Portal skin artifacts are available in the shared library, oracle.webcenter.skin
. The shared library is packaged as an EAR, and includes several skin JARs that contain the following types of files:
.css
file, the skin selector file .png
, the image files .js
, the javascript file trinidad-skins.xml
, the skin definition file By default, the oracle.webcenter.skin
shared library is referenced by all Framework applications and Portlet Producer applications. Therefore, all skins are available through the classpath. When you use a portlet in your Framework application, the portlet is rendered using the skin defined for your application. Therefore, to achieve skin sharing, the same skin must be accessible through the shared library, to both the Framework application and the Portlet Producer application.
However, there may be a case where you modified portal-skin.css
in your Framework application. So, the skin available in the shared library is not the same as the updated version available in the Framework application. If the skin's version in the Framework application is not identical to the skin in the shared library, skin sharing between Framework application and Portlet Producer application will fail because the Portlet producer can access only the original version of the skin packaged in the shared library, while the Framework application uses the modified skin. The Framework application renders with the latest skin changes, while the portlet within the same application renders with the original skin from the shared library. This behavior is called skin coordination.
Instead of using the default skin, you may create a new custom skin in your Framework application, either as a portal resource or define it in the trinidad-skins.xml
with a unique skin family ID. If your application uses a portlet, the portlet producer will not be able to find the custom skin in the shared library. This causes a skin mismatch problem, and the portlet is rendered with a bare bone, simple skin rather than the custom skin used by the Framework application.
Therefore, whenever you modify a skin or create a custom skin for your Framework applications, you must deploy the new or modified skin as a shared library.
To deploy a skin as a shared library:
trinidad-skins.xml
is available in the WEB-INF
folder of your Framework application. If not, create a new one. trinidad-skins.xml
to point to the newly created skin CSS file. MANIFEST.MF
file in the project and provide the details for the new shared library. The following is a sample code in a MANIFEST.MF
file:
trinidad-skins.xml
and the desired skin CSS file in the shared library. /META-INF/weblogic-application.xml
for both the Framework application and the Portlet Producer application to reference the custom skin shared library. Custom_Library_Name
</library-name>Library_Version
</specification-versi on>The custom skin can now be shared between these applications.
Note: The custom skin shared library must be deployed, and must appear as "Active" on the WebLogic Server console before true skin sharing can be achieved. If there is any issue with the shared library JAR (like incorrect manifest or incorrect version), the deployed shared library will not show up in the WebLogic Server console as "Active". |
Note: If you have multiple skin files, you can put all skin artifacts into one shared library JAR, and merge the two |
You can assign different skins per user, page, application, and so on, without impacting the actual application logic. To conditionally set a skin, you use the <skin-family>
entry in the trinidad-config.xml
file.
You can use EL expressions that can be evaluated dynamically to determine the skin to display. For example, if you want to use the German skin when the user's browser is set to the German locale, and to use the English skin otherwise, use the following <skin-family>
entry in the trinidad-config.xml
file:
<skin-family>#{facesContext.viewRoot.locale.language=='de' ? 'german' : 'english'}</skin-family>
For more information, see the "How to Configure a Component for Changing Skins Dynamically" section in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
Note: The default value of |
You can also use the SkinSetting
API to set the skin for a user conditionally. Refer to the API for information about the calls you can use. The API is available here:
This section provides information to assist you in troubleshooting problems you may encounter while using skins.
Problem
Your application does not reflect skin changes made at design time.
Solution
During development, after you make changes to a skin, you can see your CSS changes without restarting the server. The CHECK_FILE_MODIFICATION
context parameter requires the server to check the timestamp on a skin and reload it if the skin has changed. This setting is automatically set to true
if iterative development is enabled for your application. If iterative development is not enabled, ensure that CHECK_FILE_MODIFICATION
is set to true
in WEB-INF/web.xml
, as shown in the following example:
Problem
Skin selectors appear encoded and compressed when you open a skin's CSS file in a browser.
Solution
By default, class names in a CSS file are compressed to reduce the overall size of the file. So, the skin selectors you see, for example in the Firebug extension of Firefox, are encoded values bearing little relationship to the original names. For example, a CSS file may contain an entry that looks like:
.x123 {color: #534741}
It is easier to examine a CSS file when the compression is turned off. You can disable compression by setting the value of DISABLE_CONTENT_COMPRESSION
context parameter to true
in WEB-INF/web.xml
, as shown in the following code:
With the compression turned off, the entry may look like:
For better performance, it is recommended that you turn on CSS compression in a production environment. If you turn off CSS compression, it may lead to skin mismatching, as described in the next problem scenario.
Problem
When you run a page containing a portlet, the portlet is rendered without any styles or formatting.
Solution
When your application consumes a portlet based on an ADF application, the portlet producer tries to match the skin of your application. If the skins match, the producer uses your application's skin.
Skin compression is not taken into account during skin matching. If the skin compression settings differ but the skins match, the producer returns IDs like ".x123" and expects to find these values in your application; whereas your application may return values like ".af_panelFormLayout_label-cell". Therefore, no styles are found and the portlet rendering fails.
Your application and portlet producers must use the same skin compression settings. If your application uses an uncompressed skin, your portlet producer also must use an uncompressed skin.
Problem
Style sheet files (CSS) within the MDS folder structure (oracle/webcenter/portalapp
) do not take effect as specified in trinidad-skins.xml
.
Solution
For style sheet files (CSS) within the MDS folder structure, prefix "mds:
" to the path in trinidad-skins.xml
, as shown in the following example:
This section includes the following subsections that describe the files that are created or modified when you create or modify skins:
You can leverage the Framework application's preference mechanism, and there is built-in support for defining a preference for skins to be used at runtime, in adf-config.xml
. This file is located in the META-INF
directory. Example 15-1 shows the default skin preferences available in adf-config.xml
.
Example 15-1 Skin Preferences in adf-config.xml
In adf-config.xml
, you can define the following properties for your skin:
preference id
- the hard-coded value used in the Portal Preferences API as a key to lookup the preference value of the skin to be used in an application. desc
- description of the skin. At runtime, this value shows up as the display name of the skin. value
- the family name of the skin used in the application. This value must be same as the value specified for the Skin Family
attribute in the Create Portal Resource or Update Portal Resource dialog of the required skin. If you want your application to use a different skin, specify the required skin family name here. resourceType
- the type of the resource; in this case, a skin. display
- specifies whether the skin is listed in the skin picker at runtime. In JDeveloper, when you create a Framework application, a starter trinidad-config.xml
file is automatically created in the /WEB-INF
directory. Example 15-2 shows a starter trinidad-config.xml
file.
Example 15-2 Starter trinidad-config.xml File Created by JDeveloper
In the trinidad-config.xml
, you can set <skin-family>
that determines which skin to use, and if necessary, under what conditions. The trinidad-config.xml
file has a simple XML structure that enables you to define element properties using the JSF Expression Language (EL) or static values.
Note: The default value of |
The trinidad-skins.xml
file is required for any skin that is provided as a JAR. The file is usually bundled with each skin JAR to provide a lookup between skin ID and the actual path of the skin. However, for a skin created as a portal resource in a Framework application, a separate runtime API is used to lookup the location of a skin. Therefore, this file is not needed for such skins.
For more information about trinidad-skins.xml
, see the chapter "Customizing the Appearance Using Styles and Skins" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
Resource Catalogs define and organize the resources available for inclusion in a page, page template, or task flow. You can create them in JDeveloper so that they are deployed with the application. Resource Catalogs can also be created and edited in the runtime Resource Manager. This chapter describes the default Resource Catalog and explains how to customize this catalog and create new catalogs in JDeveloper.
For information about managing Resource Catalogs at runtime, see "Working with Resource Catalogs" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
This chapter contains the following sections:
The Resource Catalog, also known as Oracle Business Dictionary, provides a consolidated view of the contents of one or more otherwise unrelated repositories in a unified search and browse user interface. Resources originate in their source repository and are then exposed through the Resource Catalog as shown in Figure 16-1.
When using JDeveloper, you see two types of Resource Catalogs—design time Resource Catalogs and runtime Resource Catalogs.
Design time Resource Catalogs are available in the Resource Palette and are like favorites lists for developers. The WebCenter Portal - Services Catalog is a design time catalog that is available out-of-the-box when you install the WebCenter Portal extension bundle. You can add task flows and data controls from this catalog to a Framework application. In addition to the WebCenter Portal - Services Catalog, you can define connections and create catalogs to organize resources exposed by those connections. Such resources can be re-used in any application that you are developing.
See Also:
|
Runtime Resource Catalogs are available for populating pages or page templates and task flows in deployed Spaces and Framework applications. In Spaces applications, the Resource Catalogs determine the resources available when populating pages and task flows in Composer. In addition to this, the Resource Catalogs in Framework applications also determine the resources available when creating page templates and other Resource Catalogs in the Resource Manager.
Default Resource Catalog Configuration
When you add a Page Customizable
component to the page, a default Resource Catalog with the catalog definition file, default-catalog.xml
, is configured in the application. Depending on the type of application you created, the catalog definition file is created in one of the following folders:
default-catalog.xml
file is located in the APPLICATION_ROOT
/Portal/public_html/oracle/webcenter/p
ortalapp/catalogs
directory. The Resource Catalog in this case contains the folders shown in Figure 16-2. default-catalog.xml
file is located in the APPLICATION_ROOT
/Portal/src/p
ortal
directory. The Resource Catalog in this case contains the ADF Faces Components folder, which contains ADF Faces components that a user can add to the page. If you have registered a portlet producer with your application, then that producer's portlets are displayed in a Portlets folder in the Resource Catalog. If you have not registered any producer, the Portlets folder is hidden.
You can create custom catalogs or modify the default catalog and include components relevant to your business. For more information, see Section 16.2, "Creating a Custom Resource Catalog" and Section 16.2.3, "How to Manage Content in the Resource Catalog."
Most businesses may require that users and groups have access to only those resources that they can add to a page. To address this need, you can configure multiple Resource Catalogs in your application. To configure multiple Resource Catalogs, you must first create custom catalogs with all the required resources.
This section describes how to create a custom Resource Catalog. It contains the following subsections:
The New Gallery dialog provides an option to create a Resource Catalog. Using this option, you can create a blank catalog and populate it with resources of your choice.
To create a catalog definition:
users-catalog.xml
. Catalog definition files must be saved in the Resource Catalog root directory or a subdirectory of the root. The default root directory in a Framework application is APPLICATION_ROOT
/Portal/public_html/oracle/webcenter/p
ortalapp/catalogs
, and in a non-Framework application is APPLICATION_ROOT
/Portal/src/p
ortal
.
Note: In a Framework application, to expose the new catalog in the runtime Resource Manager, you must create the catalog in the |
For example, if the Resource Catalog root is:
You could create your catalog here or create a subdirectory for it. For example:
Note: This option is displayed in a Framework application if you specified the directory to be |
The new catalog definition file opens in the Overview Editor.
#{true}
, which means that the catalog is displayed to all users at all times. Note: Catalog attributes are defined within the |
You can now populate your catalog with resources. See Section 16.2.3, "How to Manage Content in the Resource Catalog" for details about adding different types of resources.
Tip: If you do not want to add resources from scratch, as a starting point, you could copy the contents of |
Many resources, such as WebCenter Portal services and portlets, are accessed through connections defined in your application's connections.xml
file. Therefore, you must create connections before adding such resources to the Resource Catalog.
You can create connections to resources in different ways. This section describes how to create a connection from the Resource Palette. For information about additional ways to create connections, see Section 7.2, "Preparing Your Framework Application to Consume Services" and Section 64.2, "Registering Portlet Producers with a WebCenter Portal: Framework Application."
To create a connection from the Resource Palette:
The wizard for your connection type appears.
When you click Finish, the connection should appear in the Resource Palette under Connections.
Alternatively, you can drag and drop the connection from the Resource Palette to the Application Resources panel of the Application Navigator.
You can add or remove catalog resources as required by your business.
Tip: If you are creating a Resource Catalog from scratch, you can refer to the default catalog definition file to get an idea of how resources are included in the catalog. |
Typically, catalog definition files are available in the APPLICATION_ROOT
/Portal/public_html/oracle/webcenter/p
ortalapp/catalogs
directory. The Design view of a catalog definition file, shown in Figure 16-3, provides options to add, modify, and delete catalog content.
Figure 16-3 Catalog Definition File Design View
You can add resources to a catalog in two ways:
The left half of the XML editor contains the Catalog section, which displays the hierarchical structure of components in the catalog. The right half of the page provides fields to define attributes and parameters on a selected resource.
Note: If you are using a standalone version of Composer (that is, Composer without WebCenter Portal: Framework), you can add a resource to the catalog by directly adding a |
See Also: For details about the catalog definition file and its attributes: |
This section explains how to manage catalog resources. It contains the following sections:
You can create folders to group similar resources, thereby organizing the catalog better.
To add a folder:
This file is typically available in the APPLICATION_ROOT
/Portal/public_html/oracle/webcenter/p
ortalapp/catalogs
directory.
A folder
element is added to the catalog. The right side of the page displays fields to define the new folder's attributes and parameters.
Id
field is populated with the value folder
by default. You can specify a different value, but the ID must be unique within the catalog definition file. Visible
field, you can specify an EL value to conditionally display this folder to specific users or groups. This attribute takes an EL value. The default value is #{true}
, which means that the resource is displayed in the catalog at all times. Selecting an option on the Add menu creates a new row in the Folder Attributes table. You can use this row to specify the name, type, and value for the new attribute.
You can add the following types of links to a catalog:
To add a link:
A url
element is added to the catalog. The right side of the page displays fields to define the new link's attributes and parameters.
Id
field is populated with the value url
by default. You can specify a different value, but the ID must be unique within the catalog definition file. Taskflow
, Portlet
, Content
, and Other
. Notes:
|
Factory Class
value is populated as soon as you select the type. The factory classes for the available resource types are as follows:
oracle.webcenter.portalframework.sitestructure.rc.TaskFlowResourceFactory
oracle.webcenter.portalframework.sitestructure.rc.PortletResourceFactory
oracle.webcenter.content.model.rc.ContentUrlResourceFactory
For more information, see Section C.4, "Factory Classes Available for Adding Dynamic Resources to the Catalog."
Table 16-1 URL Format for the Different Resource Types
Resource Type | Location in the Application | URL Format |
---|---|---|
Task Flow from an ADF Library. | Resource Palette | taskflow://Path_to_Task_Flow/Task_Flow_Definition_File_Name#Task_Flow_ID |
Task Flow Within the Application. | Application Navigator | taskflow://Path_to_Task_Flow/Task_Flow_Definition_File_Name#Task_Flow_ID |
Portlet | Portlet producer connection in the Application Resources pane or in the Resource Palette | portlet://Producer_ID/Portlet_ID |
Content | Content Repository connection in the Application Resources pane | content://Content_Connection_ID/Document_ID |
Click the Browse icon next to the URL field to open the Choose Resource dialog, which enables you to add a resource of the selected type from the application or the Resource Palette.
Note: If you entered the URL for a portlet or content type resource manually, and if the connection for that resource is available only in the Resource Palette, then ensure that you first add the connection to the application. |
Visible
field, you can specify a true or false value, or an EL value to conditionally display this link to specific users or groups. The default value is #{true}
, which means that the resource is displayed in the catalog at all times. Selecting an option on the Add menu creates a new row in the Folder Attributes table. You can use this row to specify the name, type, and value for the new attribute.
You can include another Resource Catalog inside the selected catalog. When you add another catalog, only a pointer to this catalog is included in the catalog definition file. The actual catalog contents are inserted only at runtime.
To add a Resource Catalog:
A new node titled catalog
is added to the catalog. The right side of the page displays fields to define the new folder's attributes and parameters.
Id
field is populated with the value catalog
by default. You can specify a different value, but the ID must be unique within the catalog definition file. \oracle\webcenter\portalapp\catalogs\custom-catalog.xml
. You can use the Browse icon to browse application folders and select the catalog definition file.
Visible
field, you can specify an EL value to conditionally display this catalog to specific users or groups. This attribute takes an EL value. The default value is #{true}
, which means that this resource is displayed in the catalog at all times. Selecting an option on the Add menu creates a new row in the Catalog Attributes table. You can use this row to specify the name, type, and value for the new attribute.
You can add a custom component to the catalog. You can add a variety of components, such as simple ADF Faces components, compound objects containing two or more components, and JSF Verbatim tags that let you add arbitrary HTML content inside them. An example for arbitrary HTML that you can add to your catalog is a YouTube video.
To add a custom component:
A component
element is added to the catalog. The right side of the page displays fields to define the component's attributes and parameters.
Id
field is populated with the value component
by default. You can specify a different value, but the ID must be unique within the catalog definition file. oracle.adf.rc.component.ComponentFactory
interface and creates an instance of the component based on a set of parameters, for example, oracle.adf.rc.component.XmlComponentFactory
. As you type the name, the field auto-completes with valid factory classes from the classpath. You can also use the Browse icon to select a class.
For more information, see Section C.4, "Factory Classes Available for Adding Dynamic Resources to the Catalog."
Visible
field, you can specify an EL value to conditionally display this component to specific users or groups. This attribute takes an EL value. The default value is #{true}
, which means that this resource is displayed in the catalog at all times. Selecting an option on the Add menu creates a new row in the Catalog Attributes table. You can use this row to specify the name, type, and value for the new attribute.
For example, if you are adding an XML component, click the Add icon in the Parameters section and select xml. In the new row that is displayed, specify the XML code for the component in the value field.
Note: The xml option is displayed only if you selected |
To ensure that the component works properly, you must specify the custom component ID to be #
, and provide the namespace, as shown in the following example:
The #
value ensures that a unique ID is generated dynamically for the component.
You can add a folder using a Resource Catalog adapter so that the folder is populated dynamically. A custom folder is not added as a folder with resources to the catalog; it contains only a reference to the factory class, which displays the resources dynamically.
To add a custom folder:
A customFolder
element is added to the catalog. The right side of the page displays fields to define the folder's attributes and parameters.
Id
field is populated with the value customFolder
by default. You can specify a different value, but the ID must be unique within the catalog definition file. javax.naming.InitialContextFactory
interface and generates the folder based on a set of parameters. For more information, see Section C.4, "Factory Classes Available for Adding Dynamic Resources to the Catalog."
Visible
field, you can specify an EL value to conditionally display this folder to specific users or groups. This attribute takes an EL value. The default value is #{true}
, which means that this resource is displayed in the catalog at all times. Selecting an option on the Add menu creates a new row in the Catalog Attributes table. You can use this row to specify the name, type, and value for the new attribute.
You may see a dropdown menu on the Add icon if the factory class exposes parameters, for example, Content Presenter-specific factory classes provide a templateView
parameter.
A custom content provider dynamically generates zero or more catalog entries at runtime. Catalog entries include folders, links, custom folders, components, and so on. When you add a Custom Folder, a folder is created in the catalog and is displayed at runtime even if it is empty. However, when you add a Custom Content element, a folder is created in the catalog, but is displayed at runtime only if it has components inside it. Except for this difference, a custom content provider is similar to a custom folder.
To add a custom content provider:
A customContent
element is added to the catalog. The right side of the page displays fields to define the folder's attributes and parameters.
Id
field is populated with the value customFolder
by default. You can specify a different value, but the ID must be unique within the catalog definition file. oracle.adf.rc.spi.plugin.catalog.CustomContentProviderV2
. You can use the Browse icon to see a list of classes that implement this interface. Also, see Section C.4, "Factory Classes Available for Adding Dynamic Resources to the Catalog."
Visible
field, you can specify an EL value to conditionally display this folder to specific users or groups. This attribute takes an EL value. The default value is #{true}
, which means that this resource is displayed in the catalog at all times. Selecting an option on the Add menu creates a new row in the Catalog Attributes table. You can use this row to specify the name, type, and value for the new attribute.
CustomContentProviderV2
implementation. Click the Add icon in the Parameters section to create a new row in the Parameters table. In addition to the resources mentioned in the previous sections, you can add the following resources by dragging them and dropping them onto a selected folder in the catalog definition file:
Note: If you add an ADF task flow to the catalog and want to export the catalog to an already deployed application, then you must deploy the task flow as a shared library to the deployed application. For more information, see Section 13.3, "Adding Custom Task Flows to Your Portal." |
To edit a resource, select it in the Catalog section of the catalog definition file. The resource's attributes and parameters are displayed in the right half of the page. You can edit values for these attributes and parameters and save the catalog definition file. For details about a resource's attributes and parameters, see the section about adding that resource to the catalog.
To delete a resource, select it in the Catalog section of the catalog definition file and click the Remove selected node icon, shown in Figure 16-6.
While organizing resources in the catalog, you can move a resource to a different folder in the hierarchy. You can rearrange resources in the following ways:
To rearrange a resource using the Change Parent option:
Note: The OK button is enabled only when you select a valid location for the resource. |
Oracle WebCenter Portal: Framework exposes a large number of service data controls that can be added to application pages and task flows. In addition, you may have created SQL or Web Services data controls in JDeveloper. To enable users to add these data controls to pages and task flows, you must expose the data controls in the Resource Catalog. For this, you must add a customFolder
entry in your catalog definition file, as shown in the following example and Figure 16-8:
To expose the customFolder
as a translatable resource in the catalog, the folder's string attributes must be stored as resource strings in a resource bundle. For this, the catalog definition file must have a resourceBundle
attribute and each translatable attribute must have an isKey
attribute. Then the attribute value is saved in a resource bundle, as shown in the following example:
The resourceBundle attribute on the catalog definition:
The isKey
attribute defined on the attributes of a translatable resource:
For more information about using resource bundles, see Section 22.12, "Configuring Runtime Resource String Editing."
At runtime, the catalog displays a folder titled Design Time Data Controls
irrespective of whether the application has any design-time data controls.
In a deployed application, the Resource Manager allows you to add design-time data controls individually to custom catalogs. Out-of-the-box catalogs cannot be edited at runtime. For more information, see "Adding Resources" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Exposing Custom Data Controls in an Already Deployed Application
If you created SQL or Web Services data controls in your application, and want to expose them in an already deployed application, you must perform the following steps:
When you perform this configuration, the deployed data controls are available in the Design Time Data Controls folder in the runtime Resource Registry. Users can add the data controls from the registry to any custom Resource Catalog, from where they can be consumed in pages and task flows.
Users can create data controls at runtime in the Resource Manager. If you want your Resource Catalog to dynamically display data controls created at runtime, add a customFolder
entry in your catalog definition file, as shown in the following example:
To expose this folder as a translatable resource, the folder's string attributes must be stored as resource strings in a resource bundle. See Section 16.2.4, "How to Expose Data Controls Created at Design Time" for an example of how to create translatable resources.
At runtime, the catalog displays a folder titled Runtime Data Controls
irrespective of whether the folder has any data controls.
Out-of-the-box, a Resource Catalog displays portlets from all the available producers irrespective of whether the portlets are secured or not. As a result, users are allowed to consume even secured portlets to which they do not have access. When a user adds such a portlet to a page, the portlet component is added, but it does not display any content. To ensure that users view and consume only those portlets that they can access, you can control the visibility of portlets in the Resource Catalog. Implement the PortletItemSecurityHelper
interface to display portlets conditionally in the Resource Catalog, based on the user's permissions.
To control portlet visibility:
PortletItemSecurityHelper
interface in your own item security helper class, for example, CustomPortletSecurityHelper.java
. Example 16-1 shows a sample implementation of the PortletItemSecurityHelper
interface. The following assumptions are made for the purpose of this example:
PortletVisibilityPermission
, is defined to check a user's permissions on the portlet. Example 16-1 Sample Implementation of PortletItemSecurityHelper
rc_ext.xml
file in the application's META-INF
directory, and add the following code to register the implementation with the Resource Catalog: At runtime, when a user clicks Add Content in Composer, the Resource Catalog displays only those portlets on which the user has permissions.
You can configure the default catalog at the application and page levels in the following ways:
adf-config.xml
file. This is an application-wide setting. For more information, see "Registering the Catalog in the adf-config.xml File". CatalogSelector
, which includes the logic to determine which catalog is shown for a specific page or locale. For more information, see Section 16.5.1, "How to Configure Multiple Resource Catalogs." Catalog
attribute on the Page Customizable
component. You can specify a static or EL value. For more information, see Section B.1.1, "Page Customizable." Registering the Catalog in the adf-config.xml File
To register a Resource Catalog in the adf-config.xml
file so that it is used as the default catalog for the application:
adf-config.xml
file. catalog-name
attribute value in the <rcv:rcv-config>
element and specify the custom catalog name, as shown in the following example: The catalog-name
attribute identifies the catalog to be used as the default one.
The path you specify is relative to the Resource Catalog root directory, for example, if you saved your new catalog definition as C:\JDeveloper\mywork\RCSampleApp\Portal\Public_Html\oracle\webcenter\portalapp\catalogs\myCustomCatalog.xml
, then the catalog-name
value would be /oracle/webcenter/portalapp/catalogs/myCustomCatalog.xml
. The name uses the /
separator because it represents a part of an MDS path.
Note: For information about the Resource Catalog-specific configurations you can make in |
adf-config.xml
file. To correctly implement Resource Catalogs, you must know where the application looks for the definitions and the XML schema upon which the definitions are based. See Appendix B, "Composer Component Properties and Files" for further information.
At runtime, when you add a task flow from the Resource Catalog to your application page in Composer, the task flow is automatically enclosed in a Show Detail Frame
component. You can initialize attributes, such as the title, height, or width, associated with the enclosing Show Detail Frame
by defining those attributes in the catalog definition file that contains the task flow. To differentiate the task flow's properties from the enclosing Show Detail Frame
's properties, you must use attr.
as a prefix for Show Detail Frame
properties.
For example, if a user adds a task flow to a page with a dark background setting, the task flow continues to use the background setting of the enclosing Show Detail Frame
component. This may not be the look the user wants. To enable the user to change the Show Detail Frame
's background property, you must initialize and expose the background attribute in the Resource Catalog. At runtime, while editing the task flow's properties, a user can also change the Show Detail Frame
's background attribute.
Similarly, you can also initialize task flow parameters. You can define such parameters in the catalog definition file using an EL expression. At runtime, while editing the task flow's properties, a user can also change values for the exposed parameters. To differentiate the task flow's properties from the initialized parameters, you must use parameter.
as a prefix for such parameters.
To initialize task flow parameters and Show Detail Frame
properties:
<url>
or <resource>
element, add an <attribute>
entry for each parameter and Show Detail Frame
attribute you want to define. The attributeId
for a parameter must contain the parameter name along with a prefix of parameter.
; the attributeId
for a Show Detail Frame
attribute must contain the attribute name along with a prefix of attr.
as shown in the following example:
Note: Include the |
The Resource Manager in a Framework application enables users with administrative privileges to create and modify application resources at runtime. By exposing catalogs in the Resource Manager, you allow administrators to manage these catalogs at runtime. You can also export selected catalogs from JDeveloper so that administrators can modify or delete them at runtime
This section outlines the tasks you can perform in JDeveloper to enable runtime administration of your catalogs. It contains the following sections:
In JDeveloper, use the Resource Manager-specific options on the context menu on a catalog definition file as follows:
You must set certain attributes while creating an entry. Optionally, you can specify who can revise and delete the selected catalog in the Resource Manager. For more information, see Section 17.2.1, "How to Add a Resource to the Resource Manager."
Out-of-the-box Resource Catalogs cannot be modified or deleted at runtime. However, users with administrator privileges can make a copy of an out-of-the-box Resource Catalog and edit its properties or delete it.
Note: If you create a resource catalog at runtime and do not import it back into the design time environment, your new resource catalog may be lost when the application is redeployed. For more information, see the "Preserving Resource Customizations" section in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. |
The Edit Source option in the Resource Manager enables users to modify the content of a copied or custom Resource Catalog at runtime. However, as text editing is easier in JDeveloper than in the runtime source editor, users may choose to download a Resource Catalog, edit it in JDeveloper, and upload it back to the deployed application. At design time, this type of round-trip development includes importing the downloaded Resource Catalog, editing it in JDeveloper, and exporting it so that it can be uploaded back to the deployed application.
This section describes how to import and export Resource Catalogs in JDeveloper. For information about modifying catalog content, see Section 16.2.3, "How to Manage Content in the Resource Catalog."
To expose a Resource Catalog in an already deployed application, you must export it from JDeveloper, then upload to the application using the runtime Resource Manager. When you export a catalog in JDeveloper, an EAR file is created with the catalog definition file and the generic-site-resources.xml
file. The generic-site-resources.xml
file contains metadata that helps identify the type of resource, a Resource Catalog in this case, so that the resource is displayed under the correct category in the Resource Manager.
For generic information, see Section 17.4.3, "How to Export a Portal Resource from JDeveloper."
When you expose a Resource Catalog at runtime, users with privileges can add or delete components to suit their business requirements. However, to perform more complex tasks, such as applying catalog filters or adding custom resources that are not available in the deployed application, the runtime catalog must be downloaded, imported into JDeveloper and edited, exported from JDeveloper, and uploaded back to the runtime application.
Note: To expose custom resources, such as task flows created in JDeveloper, that are not available in the deployed application, along with exporting the catalog you must also deploy the resource as a shared library. |
When a user downloads a catalog from a deployed application, an EAR file is created containing the catalog definition XML file and the generic-site-resources.xml
file. The generic-site-resources.xml
file contains metadata specific to the Resource Catalog. This helps in identifying the type of resource, a Resource Catalog in this case. To edit the Resource Catalog in JDeveloper, you must first import the EAR file. On importing, the catalog definition file is extracted to the siteResources
folder.
If the resource was downloaded from WebCenter Portal: Spaces, it is extracted to APPLICATION_ROOT
/oracle/webcenter/siteresources/scopedMD/guid
, where guid
is the GUID of the space from which the resource was downloaded. Otherwise, the imported resource is created in APPLICATION_ROOT
/oracle/webcenter/
portalapp
. You can open the catalog definition file and edit it as you would any other catalog at design time. The updated catalog must then be exported to the runtime application.
For generic information, see Section 17.4.2, "How to Import a Portal Resource into JDeveloper."
For information about downloading a catalog from the deployed application, see "Uploading and Downloading a Resource Catalog" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Out-of-the-box, WebCenter Portal: Spaces provides several default Resource Catalogs for people to use. If these default catalogs are not suitable, you can build catalogs of your own within WebCenter Portal: Spaces. For details, see the chapter "Working with the Resources that Compose a Portal or Community" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.If you want to create a Resource Catalog that is beyond the editing capabilities of WebCenter Portal: Spaces, you can create the catalog in JDeveloper and then upload it to WebCenter Portal: Spaces. You do not have to develop the catalog from scratch, you can export an existing catalog from WebCenter Portal: Spaces and edit it in JDeveloper, or use one of the out-of-the-box catalogs as your starting point.
Oracle WebCenter Portal provides a special JDeveloper workspace (DesignWebCenterSpaces.jws
) to help you develop and upload resources, such as Resource Catalogs, to WebCenter Portal: Spaces. Chapter 56, "Extending the Spaces Application Using JDeveloper" tells you where to find the sample workspace and explains how to use the WebCenterSpacesResources
project to build custom catalogs and other types of resources for WebCenter Portal: Spaces. For details, see Section 56, "Extending the Spaces Application Using JDeveloper."
If you want to arrange catalog content so that it is essentially the same for all users, but displays different subsets of the content to different users, then you can configure your Resource Catalog to filter out selected items based on specific criteria.
For example, if two users A
and B
have different privileges on a page, you can configure your application to display the entire catalog to user A
and only a subset of items in the catalog to user B
.
You can filter resources in the catalog either at the catalog level or at the individual resource level. This section explains both procedures. It contains the following sections:
You can display a resource conditionally by specifying an EL value for the Visible
attribute on the resource. For information about editing the Visible attribute, see Section 16.2.3, "How to Manage Content in the Resource Catalog."
To apply a filter on the catalog, you must implement the oracle.adf.rc.spi.plugin.catalog.CatalogDefinitionFilter
interface. Additionally, you must associate this filter with the Resource Catalog.
To implement the CatalogDefinitionFilter
:
CatalogFilter
. oracle.adf.rc.spi.plugin.catalog.CatalogDefinitionFilter
interface. Note: When implementing the filter logic it is common to want information about the current user and current page. This information can be obtained from the |
Example 16-2 shows a sample CatalogDefinitionFilter
implementation. It is configured to hide the Discussions
folder (forumsFolder
) for user jdoe
from the custom catalog, users-catalog.xml
, described in Section 16.2, "Creating a Custom Resource Catalog." The entire catalog, with the ADF Faces Components
and Discussions
folders, is shown to all other users.
Example 16-2 Sample Showing CatalogDefinitionFilter Implementation
webcenter.CatalogFilter
. This adds a definitionFilter
attribute in Source view of the file.
You can expose different catalogs to different users based on specific criteria, such as the page being edited, the user, or the user role. This section describes how to associate multiple Resource Catalogs with your application. It contains the following subsections:
To use multiple catalogs, you must implement the ResourceCatalogSelector
API to select the appropriate catalog for the user and the page being edited. You must include the catalog-selector
entry in your application's adf-config.xml
file to specify the name of your ResourceCatalogSelector
class. If you do not specify a catalog-selector
, the default catalog is used for all editable pages and all users see the same content. If you specify a catalog-selector
, the default catalog is used only when the specified selector returns null.
To implement multiple Resource Catalogs:
oracle.adf.rc.model.config.ResourceCatalogSelector
interface in your own Resource Catalog selector class, for example, CatalogSelector.java
. Example 16-3 shows a catalog selector implementation where a custom Resource Catalog, admin-catalog.xml
, is shown to ahunold
who has administrator privileges, and users-catalog.xml
is shown to users sking
and jdoe
. If there is a problem with rendering either of these catalogs, then the default catalog is shown to users.
Example 16-3 Sample ResourceCatalogSelector Showing Entries for Multiple Resource Catalogs
adf-config.xml
file, enter the name of the class you created for selecting a Resource Catalog with the <rcv:catalog-selector>
tag as show in the following example: The value for catalog-name
corresponds to the default catalog definition file with the MDS path.
Note: For information about the Resource Catalog-specific configurations you can make in |
Different catalogs are displayed to users based on the criteria you specified.
Based on the ResourceCatalogSelector
implementation in Example 16-3, Figure 16-9 and Figure 16-10 show the two catalogs that are shown to user sking
or jdoe
and to administrator ahunold
respectively.
Figure 16-9 Catalog Displayed to sking and jdoe
Figure 16-10 Resource Catalog Displayed to the ahunold
This section provides information to assist you in troubleshooting problems you may encounter while using the Resource Catalog.
For information about configuring logging, see "Configuring ADF Logging for Composer".
Problem
Resource Catalog is empty.
Solution
The default catalog is not available to MDS. Ensure that the deployment profile contains the necessary entries to copy the default catalog file. Also, ensure that in the MDS section of adf-config.xml
, a namespace entry points to the default catalog file.
Problem
A project task flow does not appear in the Resource Catalog.
Solution
The task flow must be packaged as an ADF Library (JAR file) and added to the project. You must also ensure that the task flow ID is given in the following format:
This chapter explains how to enable users to administer portal resources at runtime using the Resource Manager.
Using the Resource Manager users can also download runtime portal resources (from WebCenter Portal: Framework applications or WebCenter Portal: Spaces) and import them into Oracle JDeveloper for further development. These resources can then be exported from JDeveloper and uploaded back into the deployed application. Portal resources can also be created from scratch in JDeveloper and uploaded to the deployed application.
This chapter includes the following subsections:
For information about using the Resource Manager to administer portal resources at runtime, see the chapter "Working with the Resources that Compose a Portal or Community" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
A portal is a constantly evolving application. While the initial framework for the portal is designed prior to deployment, this really acts as a starting point. The design of the portal is likely to be enhanced by the actual users of the portal.
This runtime resource management provides:
WebCenter Portal enables runtime resource management through the Resource Manager. Using the Resource Manager, users with the appropriate privileges can continue developing the portal after the application has been deployed (Figure 17-1).
Figure 17-1 The Resource Manager in a WebCenter Portal: Framework Application
At runtime, users with the appropriate privileges can create and edit:
Using the Resource Manager, portal users can also download resources, or an entire application, from the runtime environment, edit them in JDeveloper, and then upload them back into the deployed application.
Users can also create resources from scratch in JDeveloper, export them as portal resources, and then upload them into the deployed portal. This is a very useful way of creating more fully functional portal resources for use in WebCenter Portal: Spaces.
This process is known as round-trip development. For more information, see Section 17.4, "Enabling Round-Trip Development of Resources."
For a resource to be included in the Resource Manager and therefore available for runtime administration, it must be created as a portal resource.
To create a resource as a portal resource it must be located in the oracle/webcenter/portalapp
directory of the application project.
This section includes the following subsections:
To enable runtime administration of a resource it must be included in the Resource Manager. To do this, you need to identify the resource as a portal resource.
To add a resource to the Resource Manager:
Note: If you do not see the Create Portal Resource option in the context menu, the resource is not under the |
This is the name that is listed in the Resource Manager at runtime, so make sure that users are able to easily identify the resource from the display name.
Figure 17-2 The Create Portal Resource Dialog
For page styles, this icon is displayed in the Create Page dialog.
The description is displayed in the About dialog for the resource and in the Resource Manager at runtime.
Note: The folder specified here is included in the export archive when the resource is exported, so any dependent objects created under the folder are pushed into the target system. This field appears only for resources that can include such dependent objects. |
Resource-level security enables you to override the application-level security for individual resources to specify who can edit and delete the resource at runtime.
Figure 17-3 Create Portal Resource - Security Tab
Select the Update checkbox to grant the permission to edit the resource at runtime. Users with the role can edit the resource, but they cannot delete it.
Note: The user must also have the appropriate permissions to access the Resource Manager. For more information, see Section 17.3.1, "How to Add the Resource Manager Task Flow." |
Click OK.
The resource is added to the Resource Manager and users with the appropriate privileges can manage the resource at runtime.
If you are making a resource available for runtime management, any dependent objects referenced by the resource, such as images, JavaScripts, style sheets, or HTML files, must be stored under the following directory:
In addition, as a best practice, it is recommended to store dependent objects in resource-specific directories under the shared
directory. For example, images for a page template named Template1
could be stored in:
This avoids any potential conflict when additional resources that include dependent objects are imported from runtime.
To reference dependent objects in a resource, use the following format:
For example:
When adding the resource as a portal resource (as described in Section 17.2.1, "How to Add a Resource to the Resource Manager"), you must ensure that the Content Directory points to the appropriate shared
directory.
Note: For runtime-created resources, the default content directory is |
You can update the details of resources in the Resource Manager.
To update portal resource properties:
For information about the fields in this dialog, see Section 17.2.1, "How to Add a Resource to the Resource Manager."
If you no longer want users to be able to administer a particular resource at runtime, you can remove it from the Resource Manager.
To remove a resource from the Resource Manager:
The resource is removed from the Resource Manager and can no longer be edited or downloaded at runtime. The resource itself is not deleted, so it is still available for use within the Framework application.
You can enable portal administrators to manage resources at runtime by adding the Resource Manager to a page in your portal.
If you use WebCenter Portal's Framework application template to create your application, an Administration page is automatically included in the application. This page includes a tab for the Resource Manager.
If you prefer, you can add the Resource Manager to any other page in your application by adding the List of Resource Types task flow to that page.
This section includes the following subsections:
For applications created using WebCenter Portal's Framework application template, the Resource Manager task flow is available out of the box through the WebCenter Portal Administration Console (Resources tab). For details, see the section "Managing Application Resources" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
In addition, just like other task flows, you can add the Resource Manager task flow to your application pages. This might be especially useful if you are not using WebCenter Portal's Framework application template, and the WebCenter Portal Administration console is therefore not part of your project.
When you add the Resource Manager task flow to a page, anyone with view access to the page can view the task flow and perform view related operations on resources, such as viewing resource properties, previewing resources, and so on. For users to be able to perform other operations on resources, such as creating new resources, editing resources, or deleting resources, they must have the appropriate permissions on the type of resource they want to work with. These permissions can be provisioned using the Role Manager task flow. For more information, see Section 69.4, "Using the Role Manager Task Flow." By default, the Administrator
role has manage access on all resource types exposed in the Resource Manager task flow.
To add the Resource Manager task flow:
You may be prompted to add the Resource Manager library to the project. Confirm by clicking Add Library.
usesUpload
property for the form that contains the Resource Manager task flow must be set to true: At runtime, the Resource Manager provides access to administration tools for the resources available to the portal. For example, the administrator can create new resources (navigation models, page templates, mashup styles, and so on), edit existing resources, upload resources exported from other applications, and so on.
Table 17-1 lists the types of resources that you can manage at runtime and provides links to the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces where you can find out more about working with these resources at runtime.
Table 17-1 WebCenter Portal Resources That Can Be Managed at Runtime
Resource | Description | Documentation |
---|---|---|
Pages | Create and manage pages for your application. | |
Page Templates | Define how individual pages and groups of pages display on a user's screen | |
Navigation Models | Define how to link together information from multiple sources, such as spaces, pages, content repositories, and even external Web pages | |
Resource Catalogs | Define the components and connections that WebCenter Portal: Spaces users can add to their pages, page templates, and task flows. | |
Skins | Define the appearance and look and feel, including colors and fonts, of a specific space or the entire application. | |
Page Styles | Define the layout of a newly created page and may also dictate the type of content the page supports. | |
Content Presenter Display Templates | Manage the templates for presenting content. | |
Mashup Styles | Manage the templates available for creating task flows | |
Data Controls | Create and manage data controls, which connect to and read data from external repositories, particularly for use in business mashups. | |
Task Flows | Create and manage task flows based on a selected mashup style. |
This section includes the following subsections:
Note: The process for working with pages at runtime is different from other resources. For more information, see the section "Working with Pages" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal |
To access the Resource Manager at runtime, users can navigate to the built-in Administration page (if it is available in the application) and click the Resources tab. If the Administration page is not included in the application, you must direct users to the page that includes the Resource Manager.
Users may want to create custom resources at runtime if the resources available in the Framework application do not meet their requirements.
At runtime, users can create certain resources from scratch. There are some resources that users can create only by extending an existing resource. For example, at runtime, users can create a task flow from scratch, but can create a skin only by extending an existing skin. Other resources, such as Content Presenter display templates, cannot be created at runtime.
Table 17-2 describes the support available for creating resources at runtime.
Table 17-2 Support for Creating Resources at Runtime
Resource | Users Can Create the Resource at Runtime? | How Can the Resource Be Created? |
---|---|---|
Pages | Yes | From scratch and by creating a copy of an existing page |
Page Templates | Yes | Only by creating a copy of an existing page template |
Navigation Models | Yes | From scratch and by creating a copy of an existing navigation model |
Resource Catalogs | Yes | From scratch and by creating a copy of an existing Resource Catalog |
Skins | Yes | Only by creating a copy of an existing skin |
Page Styles | Yes | Only by creating a copy of an existing page style and editing the source |
Content Presenter Display Templates | No | NA |
Mashup Styles | Yes | Only by creating a copy of an existing mashup style and editing the source |
Data Controls | Yes | From scratch and by creating a copy of an existing data control |
Task Flows | Yes | From scratch and by creating a copy of an existing task flow |
To create a resource:
These details depend on the type of resource you are creating. For links to the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces where you can find out more about creating resources at runtime, see Table 17-1.
The newly created resource is listed in the Resource Manager. The gray icon next to a resource indicates that it is not yet published an hence is not available to users for use. For information about publishing resources, see Section 17.3.2.8, "Showing or Hiding a Resource."
Note: If you create resources at runtime and do not import them back into the design time environment, your new resources may be lost when the application is redeployed. For more information, see the "Preserving Resource Customizations" section in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. |
The Upload and Download options enable post-deployment, round-trip application development. These actions greatly simplify the process of bringing new or revised resources from JDeveloper into your application and pushing them back into development from your application to JDeveloper as needed.
For more information, see Section 17.4, "Enabling Round-Trip Development of Resources."
Authorized users can edit Framework application resources using the Resource Manager, regardless of whether they were created at design time or runtime, or have been uploaded to the application after deployment.
To edit a resource:
These details depend on the type of resource you are editing. For links to the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces where you can find out more about editing resources at runtime, see Table 17-1.
At runtime, users can create a copy of a resource. This feature is useful for:
You can create a copy of all types of resources except pages and Content Presenter display templates. When you create a copy of a resource, the copy is marked as hidden.
To copy a resource:
Users can use security settings to specify who can revise and remove a selected resource. By default, resource access is controlled by application-level permissions. The Security Settings dialog provides a way of overriding application-level permissions and defining specific permissions on a selected resource.
To set security for a resource:
To inherit access settings from those defined for the application, select Use Application Permissions.
Select the Update checkbox to grant the permission to edit the resource. Such users can edit the resource, but they cannot delete it.
When a resource is no longer required in an applications, users may delete it. Users can delete resources created at runtime or design time, and uploaded resources.
To delete a resource:
All resources, whether created at runtime or design time, can be marked as hidden or available. For all resources that are available for use, a green tick mark and the word "Available" appear next to the resource's name in the Resource Manager. A gray icon and the word "Hidden" next to a resource's name indicate that the resource is marked as hidden and cannot be used in the application.
When you create or upload a resource, by default it is marked as hidden. A hidden resource is not available for use in the application. You can still use hidden resources in the Resource Manager, for example, to copy them or to use them as the starting point for another resource.
To show or hide a resource:
If the resource was previously hidden, the Show option displays in the Edit menu. When you choose Show, the resource becomes available for use in the application (indicated by a green tick mark and the word "Available" next to the resource)
If the resource was previously shown, the Hide option displays in the Edit menu. When you choose Hide, the resource becomes unavailable for use in the application (indicated by a gray icon and the word "Hidden" next to the resource).
To give you more control over resource editing at runtime, the Resource Manager provides the Edit Source option. You can use this option to edit the underlying source code of all your resources except data controls. The changes are saved to the MDS, and available immediately.
You may want to edit a resource's source code to make advanced edits to its code without having to having to go through the entire round-trip development cycle. For more information about round-trip development, see Section 17.4, "Enabling Round-Trip Development of Resources."
You can even use the Edit Source option to create a resource from scratch, by creating the resource and then replacing its default source code with your own original code. Note, however, that due to the heavy hand-coding requirement, this scenario is not recommended.
To edit the source code of a resource:
The XML syntax in the code is validated and an error message is displayed if you miss any tags or add them incorrectly. Validation is not performed for non-XML files, such as CSS files.
Each type of resource has certain associated properties that define its display properties, availability, and attributes. Authorized users can edit these properties for resources created or uploaded at runtime by using the Edit Properties dialog. Users cannot edit properties for resources created at design time.
To set properties on a resource:
You can either specify an absolute URL or a relative URL that points to an image located somewhere in the application.
You can preview page templates, mashup styles, and task flows to check how they look while you are editing them.
To preview a resource:
If you enable runtime administration of your portal resources, you need to be able to pull those resources back into JDeveloper. For example, if a portal user adds a new navigation model, you may want to further refine it. To do this, you need to download the resource from the deployed application, using the Resource Manager. You then import the resource into JDeveloper, carry out your development work, export the resource, and finally upload it back into the deployed application. This is known as round-trip development.
You can do this with resources in any deployed WebCenter Portal application that includes the Resource Manager, including WebCenter Portal: Spaces.
Note: WebCenter Portal provides a special JDeveloper workspace (|
The process for round-trip development works as follows:
Users add/edit resources and add content to the portal at runtime
See Section 17.4.1, "How to Download a Resource Using the Resource Manager"
See Section 17.4.2, "How to Import a Portal Resource into JDeveloper"
See Section 17.4.3, "How to Export a Portal Resource from JDeveloper"
See Section 17.4.4, "How to Upload a Resource Using the Resource Manager"
In addition, after the deployment of the application, developers can continue to create and edit resources in JDeveloper and upload those resources to the deployed application periodically.
Figure 17-4 illustrates the round-trip development process described above.
This section includes the following subsections:
To edit a resource in JDeveloper, you first need to use the Resource Manager in the deployed application to create an EAR file that contains all the metadata for the resource.
To download a resource:
If you selected Save to my computer, you may be prompted to save the file and select the location for the saved file.
When you have the EAR file, you must then import it into JDeveloper, where you can edit it.
You must import the resource into an application that uses WebCenter Portal's Framework application template or that includes the appropriate technology scopes.
Note: When you import a portal resource into JDeveloper, if the resource already exists, the resource in JDeveloper is overwritten with the one from the archive. The original resource is saved to a temporary location, which is identified in the log. |
To import a portal resource into JDeveloper:
Figure 17-6 The Import Portal Resource Dialog
The imported resource is created in:
The resource is automatically created as a portal resource.
After editing the resource, you must export it to create an EAR file that can be uploaded to the deployed application.
Note: If you edit or add dependent objects to an imported runtime-created resource, those objects must be placed at the following path, which is the default content directory for resources created at runtime: /oracle/webcenter/siteresources/scopedMD/shared Dependent objects must always be placed directly under or in a subdirectory of the directory set as the content directory of a portal resource. You can find out the content directory path from the Update Portal Resource dialog. To prevent any conflicts, you may want to place dependent objects in a subdirectory under the shared directory. For example, images for a page template named You can reference dependent objects in a portal resource as shown in the following example: <af:image source="/oracle/webcenter/siteresources/scopedMD/shared/pageTemplates/Template1/logo1.gif" id="pt_12"> |
To export a a portal resource from JDeveloper:
In the Application Navigator, right-click the resource that you want to export and choose Export Portal Resource.
Note: If you do not see the Export Portal Resource option in the context menu, the resource is not a portal resource. For information about how to create the resource as a portal resource, see Section 17.2.1, "How to Add a Resource to the Resource Manager." |
If you select an existing file, the contents of the file will be overwritten.
Figure 17-7 The Export Portal Resource Dialog
Note: This checkbox appears only for portal resources that point to a valid content directory. The entire resource content directory is included in the export archive file; you cannot select individual files. On import, if a content directory is detected in the archive file, the user can specify whether to overwrite all files in the target content directory, or just add any new ones. |
The export archive contains the files that make up the resource, for example, the .jspx
file, the page definition, and (optionally) the content directory pointed to by the resource, if it is not empty. The archive also contains the generic-site-resources.xml
file and the registry file with just the information about the exported resource.
The final step is to take the EAR file of the updated resource and use the Resource Manager to upload the resource back into the deployed application.
To upload a resource:
Part III contains the following chapters:
Oracle WebCenter Portal's Composer is a fully-integrated page editor for adding and editing page content at application runtime. This chapter introduces Composer and describes the various tasks it supports at runtime.
To understand the functions of Composer, let us first look at a typical application development lifecycle, which comprises the following stages:
Design time traditionally represents an IDE-based environment for creating or editing applications. For WebCenter Portal, Oracle JDeveloper provides the design-time environment.
Runtime represents a browser-based environment used for accessing web applications.
You can see that each stage involves different categories of users. Many times, some or all of these users may want to modify pages at runtime. For example, consider a dashboard-like application that displays information pertaining to the logged-in user, for example a worklist and a mail task flow. The page developer creates the dashboard page and populates it with the required components and task flows. An application administrator deploys the application to a customer site. At the customer site, people at different levels in the organization view the dashboard and make the following requests:
In addition, content contributors, moderators, and end users may want to add, delete, or modify page artifacts based on the business needs. In a typical application development environment, these requests are passed on to the page developer. The developer modifies the application in the development environment and redeploys it to the customer site.
Rather than pushing simple modifications back to the developer, Composer, in conjunction with Metadata Services (MDS), provides an editing tool that enables business users to edit application pages at runtime. Changes made at runtime are saved as metadata, separate from the base application definitions. This concept of editing application pages at runtime is referred to as design time at runtime. It minimizes the need to modify the application at design time and redeploy it.
Composer provides components for controlling an application's design time at runtime behavior. This chapter describes the basic concepts and terminology you'll need to use Composer effectively. It includes the following subsections:
When a user modifies a page at runtime, the changes are typically available only to that user. You can configure your application to make runtime modifications available to all or a subset of users accessing the page. Consider an example of a dashboard page displaying details about the expenses incurred by the members of an LOB. If the LOB administrator modifies the page and adds some expensing guidelines, the changes must be visible to all members. To address such requirements, Composer enables you to edit pages in different modes so that changes are saved as user customizations (that affect only the individual user's view of the page) or application customizations (that affect everyone's view of the page).
To save a user's changes as user or application customizations requires that they be saved separately at the back end. In the metadata domain, MDS allows for the saving of customizations in separate layers on top of the base application definitions. Depending on the business requirement, you can save changes in a single layer or in multiple layers.
In a single-layer configuration, changes are saved as application customizations to a common layer that is accessible to all users. In this case, you cannot allow for changes to be saved as user customizations.
In a multiple-layer configuration, changes are saved at separate locations based on specified criteria such as the mode in which the page is edited, the user editing the page, or the user role. In this type of configuration, each customization layer is insulated from the other, but the layers can be stacked over each other to provide flexibility during upgrades. For example, a user may want to change the default theme of the page being viewed. It is expected that this change be saved only for this user, without affecting others' view of the page. Therefore, you can set up things so that changes made by end users who have Personalize privilege on the page are saved as user customizations, and changes made by logged-in users with customization-level privileges are saved as application customizations. You can decide which tasks are available to users with Personalize and Customize/Edit privileges respectively.
For more information about MDS and customization layers, see Section 23.1, "Introduction to MDS."
When a user opens an application page in a browser, the page opens in View mode. Additionally, Composer provides access to another mode called Edit mode to enable users with appropriate privileges to edit application pages. These modes can be described as follows:
Composer enables users to customize pages in View and Edit modes. This section provides an overview of user customization tasks you can enable for users in page View mode. Such tasks include rearranging components, collapsing and expanding components, and changing the page layout. You can enable the capabilities described in this section by adding the following Composer design-time components to a page: Panel Customizable
, Show Detail Frame
, Custom Actions
, and Layout Customizable
. For information about these components, see Section 18.6, "Composer Components." Changes made to a page in View mode are available only to the user making these changes.
This section includes the following subsections:
Note: For a detailed description of the editing tasks that you can perform on a page, see "Building Pages" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces. |
This capability allows users to organize page components so that the content most useful to them displays at the top of the page. Users can rearrange components in two ways:
Users can rearrange components by dragging and dropping them within the Panel Customizable
component or across Panel Customizable
components on the page. As it is difficult to identify a Panel Customizable
component in View mode, users can simply drag the component over the spot they want to place it. A solid box indicates a receptive drop location.
The Move actions on a Show Detail Frame
or portlet component enable users to move these components within a parent Panel Customizable
component. If a Panel Customizable
has multiple child components, then a child Show Detail Frame
or portlet can be moved to the left and right or above and below, relative to the position of other child components. Figure 18-1 shows a sample Show Detail Frame
component with Move Up and Move Down actions. In this example, selecting Move Down moves the Latest News component immediately below the Press Release component.
Figure 18-1 Actions Menu on a Show Detail Frame
This capability allows users to switch between a set of predefined layouts provided by Composer. Through the use of the Change Layout icon, users can choose among eight different layouts to suit their needs and preferences. The Layout Customizable
component in the Composer library enables the display of a Change Layout icon on the page, as shown in Figure 18-2.
Figure 18-3 shows the layout options available with the Layout Customizable
component. A gray colored border highlights the layout currently applied to the page or area.
By enabling expand and collapse components on a page, you can include more detailed information on a page without cluttering its visual appearance. Users can collapse and expand the components as desired.
A Collapse icon on the header of a Show Detail Frame
or portlet enables users to collapse such a component and display only its header. Figure 18-4 shows the Collapse icons on three Show Detail Frame
components.
Figure 18-4 Collapse Icon on a Show Detail Frame
The Expand icon on a collapsed component enables users to disclose the component so that it displays the header and content. Figure 18-5 shows the Expand icons on two collapsed Show Detail Frame
components.
Figure 18-5 Expand Icon on a Show Detail Frame
Composer's Edit mode provides a wide range of application customization capabilities. In Edit mode users can add content, edit page and component properties, delete components, rearrange components, change the page layout, and so on.
You can provide the capabilities described in this section to your application by adding the following Composer design-time components to a page: Change Mode Link
or Change Mode Button
, Page Customizable
, Panel Customizable
, Show Detail Frame
, Custom Actions
, and Layout Customizable
. For more information about these components, see Section 18.6, "Composer Components."
The Change Mode Link
or Change Mode Button
switches the page to Edit mode. In Edit mode, users can add content to the page, edit component properties, edit page properties, and so on. The Page Customizable
component on a page enables these editing capabilities.
Figure 18-6 shows a Change Mode Link
on an application page. When users click the Change Mode Link
or Change Mode Button
, the page opens in Composer.
The default Composer toolbar displays the name of the page being edited, a status indicator, View menu, Page Properties button, Reset Page button, and a Close icon. The View menu (Figure 18-7) provides two viewing options—Design and Source. Users can perform various editing tasks in these views.
Design view (shown in Figure 18-8) is the default page view that provides a WYSIWYG rendering of the page and its content, where Edit and Delete controls are directly selectable on each component. In Design view users can also perform such tasks as adding content, editing page and component properties, changing page layout, and deleting components.
For information about the Source view, see Section 18.5, "Editing Capabilities in Source View in Page Edit Mode."
This section describes the editing capabilities that Composer provides in the Design view in page Edit mode. It contains the following topics:
Note: You can restrict users from performing all or some of these tasks by securing the application and applying customization restrictions on components. For more information, see Section 18.7, "Security and Composer." |
Composer provides most of these capabilities in the Source view as well. The individual sections mention whether a capability is available in both modes or only in Design mode.
For a detailed description of the runtime editing tasks that users can perform on a page, see "Building Pages" and "Adding and Configuring Page Layout Components" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Users may want to add custom content to the page, such as a portlet displaying news, for example, or stock updates. Composer enables users to add content within any container in page Design view and Source view. WebCenter Portal's Resource Catalog, also known as Oracle Business Dictionary, contains resources that users can add to a page. These include documents, Oracle ADF components, portlets, and task flows. The catalog can be invoked in the following ways:
Notes: If you restrict customization on a container component, then users cannot add components inside it at runtime. See Section 24.1, "Applying Component-Level Restrictions by Defining Customization Policies" for more information. |
Figure 18-9 shows the default catalog available in a Framework application that is not configured with portal features.
The Resource Catalog contains folders and components. An Open link next to an item in the catalog indicates that the item is a folder. Users can drill down into the folder by clicking this link. An Add link next to an item indicates that the item can be added to the page. An Add link can appear next to a component or a folder. The component is added as the first child in the container on which the Add Content link was clicked.
Note: The Top icon in the Resource Catalog enables users to return to a top-level folder. |
If you configure drop handlers for adding resources to the page, the Add link shows a context menu with different options for adding the component to the page (Figure 18-10). For more information, see Section 21.6, "Configuring Event Handlers for Composer UI Events."
Figure 18-10 Context Menu with Drop Handlers for Adding a Component
Depending on its configuration, the Resource Catalog exposes all or a subset of the following components to users:
Note: For information about Resource Catalog configurations, see Chapter 16, "Creating and Managing Resource Catalogs." |
The ADF Faces Components folder provides Box
and Movable Box
components that are analogous to the JDeveloper design time components Panel Customizable
and Show Detail Frame
. In JDeveloper, these components are available in the Composer tag library.
Note:
|
This folder also provides Image
, HTML Markup
, Hyperlink
, Text
, and Web Page
components that are analogous to the JDeveloper design time components Go Image Link
, Output Text
, Go Link
, Rich Text Editor
, and Inline Frame
respectively. In JDeveloper, these components are available in the ADF Faces tag library.
The ADF Faces Components folder in the catalog contains these components, as shown in Figure 18-11.
Figure 18-11 ADF Faces Components You Can Add to the Page
Users can add custom task flows and out-of-the-box WebCenter Portal service task flows to the page. A task flow added to a page is automatically enclosed in a Movable Box
component. As a result, the task flow displays a header with options to move or delete the component.
Note: The Movable Box component surrounding a task flow is displayed only if the task flow is displayed on the page. That is, if you do not grant even View permission on a task flow, the Movable Box surrounding it is also not displayed on the page. |
The Portlets folder lists all the registered producers. Users can navigate to the required portlet and add it to the page. The Portlets folder exposes portlets from any Java-PDK or WSRP producer that was registered in Oracle JDeveloper. For information about registering portlet producers, see Chapter 64, "Consuming Portlets."
The Content Management folder lists documents and folders from the Documents service that users can add to the page.
See "Adding and Configuring Page Layout Components" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces for detailed information.
The toolbar on the Box
component provides an option (Figure 18-12) to add a tab or a set of tabs to the Box
component. Use tabs to add content regions as separate layers on the page. Each new tab is placed as a layer below the currently selected tab and contains a region that can be populated with content.
Figure 18-12 Add Tab Set or a Tab Icon on a Box Component
When a user clicks the Add a Tab Set or a Tab icon on the Box component, Composer adds a tab around the Box
component. In the Source view, the Box
component is nested inside a Show Detail Item
component, which in turn is nested inside a Panel Tabbed
component, as shown in Figure 18-13. Users can add any number of tabs in this way.
Figure 18-13 Tab Component in Source View
The first tab that a user adds will surround the selected Box
component. Each subsequent tab will contain a new Box
component inside it.
Users can delete a tab by clicking the Delete icon on a tab in Design view. On deleting the last tab, the Panel Tabbed
component is deleted from the page. Alternatively, the tab set can be deleted by deleting the Panel Tabbed
component in the Source view. To delete only the tab without deleting the Box
inside it, users must move (cut and paste) the Box
outside the Panel Tabbed
component first and then delete the Panel Tabbed
component.
A toolbar on the Box
component in Design view provides options to add another Box
component before or after the component. This capability enables users to modify the layout of components on the page.
When a user clicks an Add icon on the Box
component, Composer adds another Box
component before or after it and surrounds both Box
components with a Panel Group Layout
. Depending on the icon used, the new Box
component is added to the left, right, above, or below the original Box
component, and the layout
attribute on the parent Panel Group Layout
component is set to horizontal
or vertical
. Users can add many contiguous Box
components in this way. Every time the orientation changes for new a Box
component, a new Panel Group Layout
with the appropriate layout setting (horizontal or vertical) is added around the new and the existing Box
components.
Note: The Add icons are not rendered on the component if:
For more information, see Chapter 24, "Modifying Default Security Behavior of Composer Components." |
Users can delete Box
components that they added using the Add icons, in both Design and Source view.
Note: If the |
The Box
component toolbar contains the following Add Box icons in addition to the Edit icon:
Clicking the Add Box Above icon (Figure 18-14) adds a Box
component above the selected Box
component. The layout
attribute on the Panel Group Layout
is set to vertical
.
Figure 18-14 Add Box Above Icon on a Box Component
Figure 18-15 shows how the Box
component appears in Source view before adding another Box
component adjacent to it.
Figure 18-15 Box Component Before Adding Another One Adjacent to It
Figure 18-16 shows the two Box
components vertically aligned in the component navigator.
Users can click the Add Box Above icon repeatedly to add many contiguous Box
components vertically within the same parent Panel Group Layout
.
Clicking the Add Box Below icon (Figure 18-17) adds a Box
component below the selected Box
component. The layout
attribute on the Panel Group Layout
is set to vertical
.
Figure 18-17 Add Box Below Icon on a Box Component
Figure 18-18 shows the two Box
components vertically aligned in the component navigator.
Users can click the Add Box Below icon repeatedly to add many contiguous Box
components vertically within the same parent Panel Group Layout
.
Clicking the Add Box Left icon (Figure 18-19) adds another Box
component to the left of the selected Box
component. The layout
attribute on the Panel Group Layout
is set to horizontal
.
Figure 18-19 Add Box Left Icon on a Box Component
Figure 18-20 shows the two Box
components horizontally aligned in the component navigator.
Figure 18-20 Box Component Added to the Left
Users can click the Add Box Left icon repeatedly to add many contiguous Box
components horizontally within the same parent Panel Group Layout
.
Clicking the Add Box Right icon (Figure 18-21) adds another Box
component to the right of the selected Box
component. The layout
attribute on the Panel Group Layout
is set to horizontal
.
Figure 18-21 Add Box Right Icon on a Box Component
Figure 18-22 shows the two Box
components horizontally aligned in the component navigator.
Figure 18-22 Box Component Added to the Right
Users can click the Add Box Right icon repeatedly to add many contiguous Box
components horizontally within the same parent Panel Group Layout
.
This capability allows users to organize page components based on where they are easiest to use; for example, users can move content most useful to them to the top of the page. In Design view, users can rearrange content on the page in the following ways:
Panel Customizable
component or across Panel Customizable
(or Box
) components on the page. Show Detail Frame
or portlet to move it within the parent Panel Customizable
component. Depending on the number of child components in the Panel Customizable
and how these components are oriented, a component can be moved to the left and right, or up and down. Notes: A component on which customization is restricted, can be rearranged inside its parent container if the parent is customizable. The Child Components tab displays a list of direct child components at the top (Components list) of the tab, followed by a list of all facets defined for the component (Fixed Components list). There are no up and down arrows against facet components as these components cannot be rearranged. The Fixed Components list is displayed only if the component contains facets. |
Figure 18-23 Resequencing Options on the Child Components Tab of a Container
The Component Properties dialog enables users to edit component properties and the parameters associated with components, such as portlets and task flows. The Component Properties dialog is accessible in both Design view and Source view.
Note: A component cannot be edited if:
|
In Design view, clicking the Edit icon on a component displays the Component Properties dialog, shown in Figure 18-24.
The Display Options tab enables users to edit visual properties, such as background and title.
The Parameters tab (Figure 18-25) enables users to edit parameters for components such as portlets and task flows.
Figure 18-25 Parameters tab in the Component Properties Dialog
Visual Indication of Component Property Customization
An icon next to a property on the Display Options tab indicates that the property has been edited at runtime. Two different icons are used to indicate changes made in the current context and in a different layer. Figure 18-26 shows the two different icons used to indicate that the property was updated.
Note: Visual indication of property customization is relevant only if you have configured multiple customization layers in your application. For information, see Section 23.3, "Adding Customization Layers to View and Edit Modes: Example." |
Figure 18-26 Visual Indication of Property Customization
The Component Properties dialog also enables users to reset visual properties in the current context. For more information, see Section 18.4.4, "Reset and Override Component Properties in the Current Layer."
Users can reset and override application customizations made to a component's properties in the current layer. The Component Properties dialog provides options to reset a particular property or all properties on that panel in the Component Properties dialog.
An Override option on the context menu for a property (Figure 18-27) enables users to use a value from another layer as a fixed value for the current layer. For example, a user edits the Short Desc
property on a Movable Box
component in layer X
and sets it to First Frame
. A user editing this component in another layer, Y
, can choose First Frame
as the fixed value for Short Desc
in layer Y
. All users that are accessing the component in layer Y
will see this value henceforth. The value for Short Desc
does not change in layer Y
even if it is changed in layer X
. When a user enters a value for a property, the Override option for that property is grayed out.
Figure 18-27 Reset and Override Options in the Component Properties Dialog
A Reset option on the context menu for a property enables users to reset that property to its original state. The Reset option is grayed out when the property has not yet been edited in that layer, or when the user has chosen to override the property with the displayed value, which comes from another layer.
A Reset All button enables users to reset all properties on the Display Options tab. Users can reset only application customizations applied to visual properties, which are rendered on the Display Options tab.
Note: The Reset option and the Reset All button are not available if the component was created newly or none of the attributes were modified in the current layer. |
Component properties edited in Composer are available only in the current language. For example, if you add a task flow to your page, the task flow title you enter in Composer is available only in the current language. As a result, users in different locales do not see the translated values for such properties. To provide language support for component properties edited at runtime, Composer enables users to edit resource strings for properties that take String values. This is similar to the resource string editor feature provided by JDeveloper. Changes made to resource strings in Composer are saved into an application override bundle. This bundle is sent for translation and the translated versions are imported back into the application. This way, users are able to see the property values in their language.
For more information about the override bundle and configuring resource string editing in existing (release 11.1.1) Framework applications, see Section 22.12, "Configuring Runtime Resource String Editing."
At runtime, for component display options that can take String values, the Edit menu next to the property field provides a Select Text Resource option, as shown in Figure 18-28. Users can select this option to edit resource strings for properties.
Figure 18-28 Select Text Resource Option on an Attribute
The Select Text Resource dialog (Figure 18-29) provides options to search existing resources, edit or delete resource keys, and add new resource key/value pairs.
The Select Text Resource dialog displays the following:
The key name is automatically prefixed with the MDS layer to which the resource belongs. The prefix helps distinguish keys created at runtime from those created at design time.
The Edit and New Key/Value icons (Figure 18-30), displayed for existing keys, enable users to perform the following tasks:
Figure 18-30 Icons for Creating and Editing Resource String Keys
Users can edit only strings that were created in the same MDS layer. Other strings appear as read-only, as shown in Figure 18-31.
Note: When you try to override the default content in the resource bundle by directly entering values in the Select Text Resource dialog, the changes do not take effect and the page may appear blank. Therefore, it is recommended that you create a new resource string instead of directly entering values in the Select Text Resource dialog. |
Figure 18-31 Read-Only Resource Strings in the Select Text Resource Dialog
Users can edit strings that were created in the same layer. Other strings created at design time or in a different MDS layer can only be used for the property, but not edited.
A link or a status indicator toggle displays in the last column and enables users to promote a string to be the active, to-be-translated resource (Figure 18-32) or identifies a string as the active resource (Figure 18-33).
Figure 18-32 Use Link on a Resource String
Figure 18-33 Active Status on a Resource String
Note: When searching for resource strings created at design time, Composer searches for the The following example shows the <c:set var="portalBundle" value="#{compBundle['test.resource.ComposerBundle']}"/> |
Figure 18-34 Fields for Creating a New Resource String in the Search Results Table
Users can just create inactive strings that get saved to the override bundle. Clicking the Use button in the last column selects this string for use as the current property value.
Notes
If the EL value for an ADF resource is referenced in a page definition parameter such as page parameter, task flow parameter, or portlet parameter, then the binding EL returns an empty value. Users must avoid referencing ADF resource EL values in page definition parameters.
Users can choose to show and hide components selectively on the page using various options. Users can hide or show a component in the following ways:
Note: Show or hide behavior is tied to the component's |
Figure 18-35 Show Component Option in the Component Properties Dialog
Checking the Show Component check box and clicking Apply or OK in the dialog renders the component on the page again.
Figure 18-36 Hide Component Link in a Container's Component Properties Dialog
When a component is hidden, the Component Properties dialog for its container displays a Show Component link against that component. Clicking this link and then clicking Apply or OK in the dialog displays the component again.
Users can delete a component from the page by clicking the Delete icon on its header.
A Delete dialog prompts users to confirm deletion.
Note: If you defined customization restrictions on a component, then the Delete icon is disabled for the component at runtime. For more information, see Section 24.1.1, "How to Define Type-Level Customization Policies." |
In Design view, the Change Layout icon enables users to select a layout from a set of eight predefined layouts. The default page layout is threeColumn
.
In Source view, users can select the Layout Customizable
component and view its properties. The layout options are displayed in the Component Properties dialog. Users can select any predefined layout and click Apply or OK.
Note: Predefined layout options are available to users only if you have added a |
Users can access the Page Properties dialog from both Design view and Source view. In this dialog, users can create or edit a page's parameters and display properties. For pages created at runtime in a secured application, a Security tab enables users with Grant privilege to edit page access privileges for other users.
Figure 18-37 shows the Security tab in the Page Properties dialog.
Figure 18-37 Security Tab on the Page Properties Dialog
On the Parameters tab (Figure 18-38), users can create page parameters that can be linked to component properties, thereby enabling any component on the page to adapt to the page context. For example, suppose that a page has a parameter called SYMBOL
with the default value ORCL
. This page contains the Stock Chart, Stock Price, and Company Info task flows. The task flows can be linked with the page parameter so that all the task flows respond to a change in the value of SYMBOL
and are updated accordingly.
Figure 18-38 Parameters Tab on the Page Properties Dialog
See "Building Pages" and "Wiring Pages, Task Flows, Portlets, and UI Components" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces for detailed information about editing page settings.
Composer enables users to link portlets and task flows with page parameters so that these components can read the page parameters and change their behavior accordingly.
Users can wire portlet and task flow parameters to page parameters using the Component Properties dialog. For more information, see "Wiring Pages, Task Flows, Portlets, and UI Components Together" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
In addition to wiring components and page parameters, Composer also enables users to pass values for display options and parameters through page URLs. For more information, see "Passing Parameter Values Through the Page URL" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
The Reset Page button is available on the page in both Design view and Source view. This button invokes the Reset Page dialog that provides options to remove edits made to a page in the current layer or tip layer and reset it to a previously saved version or its original, out-of-the-box state.
Note: The Reset Page button is a default add-on rendered on the Composer toolbar. You can disable this button if you do not want users to reset the page. For information, see Section 21.2.5, "How to Selectively Display Add-Ons." |
Roll Back to a Specific Label
If your application is configured to use a database store, a new version of the page is generated each time a user saves application customizations. If a sandbox is configured for your application, by creating a label with the SAVE_LABEL_%
convention you can ensure that Composer resets the page as follows:
SAVE_LABEL_%
convention, then Composer resets the page to its state in that label. SAVE_LABEL_%
convention, then Composer resets the page to its original, out-of-the-box state. SAVE_LABEL_%
convention, then Composer resets the page to its state in the latest label among these. To roll back to a specific label, you must have configured your application to use a sandbox. Specifically, the namespace of the page being customized must be defined in the <metadata-namespaces>
section in the application's adf-config.xml
file. For more information, see Section 23.2.1, "How to Enable Composer Sandbox Creation."
Rolling back to a specific label is useful if your application has dependencies on the customization metadata and resetting the page to its original state can cause issues.
Notes:
|
Example 18-1 shows the sample code to create a label with a SAVE_LABEL_
prefix.
Example 18-1 Code to Create a Label Prefixed with SAVE_LABEL_
Composer provides a mechanism to alert users to customization errors that may cause a page to break. Users are alerted about errors in the following ways:
Figure 18-39 Error Dialog Prompting Users to Discard Changes
Figure 18-40 Error Dialog Informing Users About Page Reload
Errors occurring while performing the following operations may cause the page to break:
Show Detail Frame
components on the page using the drag-and-drop method. A Save and Label button on the Composer toolbar, shown in Figure 18-41, enables users to save their application customizations in a new label. Labels created in Composer are stored with a prefix of composer_
, that is, a label created with the name myLabel
is stored as composer_myLabel
.
Creating labels enables users to reset customizations on a selected object to those from a selected label. This can be achieved using the Promote link in Customization Manager. For more information, see the section titled Promote Customization Metadata.
Note: The Save and Label button is displayed only if you have configured a sandbox with an MDS database store for your application and set the |
Figure 18-41 Save and Label Button on the Composer Toolbar
The Customization Manager is a Composer add-on panel that enables users to manage customization metadata for objects such as XML documents, pages, page fragments, and task flows on the page. It displays a list of all such objects on the page, and provides details about the layers in which these objects are customized. Users can download customization metadata for a selected object, edit it, and upload the revised metadata file. Additionally, the Customization Manager also provides options to delete customizations and promote customizations from a previously saved label.
The Customization Manager is not available by default in your custom application. You can enable it by performing certain configurations. For more information, see Section 21.2.4, "How to Display the Customization Manager Add-On." If you configure your application to display the Customization Manager add-on, the Composer toolbar displays a Customization Manager button, as shown in Figure 18-42.
Figure 18-42 Customization Manager Button
Clicking the Customization Manager button invokes the Customization Manager dialog, shown in Figure 18-43.
Figure 18-43 Customization Manager Dialog
The Customization Manager displays Delete, Promote, Download, and Upload links against each customized page, fragment, or XML document in each layer. Users can specify a JSPX, JSFF, or XML file name in the search field to view customization details about objects in that file and manage those customizations. To search for a file, you must specify the absolute path to the file, for example, /oracle/webcenter/portalapp/pages/home.jspx
.
Note: In case of a deeply nested task flow or a task flow with a cyclic dependency, Customization Manager displays a maximum depth of ten task flows. |
Users can manage customizations in the current MDS context in which the application is running. The Current Context column displays options to manage customizations in the selected layer. The dropdown menu lists the layers in which the page or fragment was customized. This column is useful for all users who want to manage customizations they have made. The All Layers column displays options to manage customizations in all layers in the application. This column is useful for administrators who want to manage customizations made in all layers.
Notes:
|
This section describes the capabilities provided by the Customization Manager. It contains the following subsections:
Download Customization Metadata
A Download link enables users to download the customization document for the selected page, fragment, or XML document from the selected layer. This is useful if a user wants to edit customization metadata for a component or inspect the customization metadata. For example, if a page displays errors, the user can download the customizations, review them, and send them to Oracle Support Services, if required. This helps in diagnosing any customization issues on the page.
The Save dialog lets users select a location for saving the document. Users can edit this file locally and upload it to the site again. For information about uploading files, see Upload Customization Metadata.
Download Customization Metadata for All Customized Objects
The Download Customizations for All Layers link at the bottom of the page enables users to download a ZIP file containing all customization documents shown in the Customization Manager.
Upload Customization Metadata
An Upload link enables users to upload a customization document for the selected artifact, such as page, fragment or XML document, in a specific layer. Figure 18-44 shows the Upload Customization dialog that lets users select the file they want uploaded.
The artifact is then customized based on the metadata in the uploaded document.
Note: The |
Delete Customization Metadata
A Delete link enables users to delete the customization document for the selected artifact from a specific layer.
Promote Customization Metadata
While customizing a page, users can save application customizations at any point and create a new label to save those customizations. A Promote link in the Customization Manager enables users to select a label and reset application customizations on the selected page or task flow to those from the label.
Notes: The Promote option is available only in sandbox-enabled applications. For more information about the Save and Label option in Composer, see Section 18.4.13, "Create Labels On Saving Application Customizations." |
The Promote link invokes the Promote Documents dialog, which lists all available labels and the files that will be promoted, as shown in Figure 18-45.
Users can select a label and promote that label to the sandbox for the selected artifact. This means that application customizations for the selected artifact are reset to those from the specified label. If a task flow is selected, then all page fragments and page definitions are promoted. If a page or fragment is selected, then the page or fragment and its page definition are promoted. Users can select a label from any available layer and promote customizations from that label. For example, if an application has layers MCOOPER, JDOE, and SITE, and a user working in the MCOOPER layer clicks the Promote link for a page, the Promote dialog lists all labels available in all three layers.
Source view (Figure 18-46) provides a WYSIWYG and a hierarchical rendering of page components in a component navigator. Add Content, Edit, Delete, Cut, and Paste controls are available on the Source view toolbar provide specific operations in Composer. In Source view, users can access and modify properties of components that are not otherwise selectable in Design view. For example, many ADF Faces components can be edited only in Source view. Users can also edit components within a task flow.
By default, the component navigator displays at the top of the page within Composer. Users can choose to display it at the bottom, left, or right using the Source Position option on the View menu (Figure 18-47). Users can also drag the border on the edge of the component navigator to alter its height or width.
Figure 18-47 Source Position Option on the View Menu
At the root of the component navigator is the direct child of the Page Customizable
component at design time. When a node is selected in the component navigator, the corresponding component is selected on the page. Similarly, when a component is selected directly on the page, the corresponding node is selected in the component navigator.
A gray area located between the component navigator and the page displays a bread crumb trail for the selected component (Figure 18-48). The bread crumb trail shows how the component is nested on the page. When no component is selected, the bread crumb bar displays just the page name. The container names are links that when clicked highlight the selected component.
Figure 18-48 Bread Crumbs for a Component Selected in Page Source View
Task flows that can be edited have Edit Task Flow links next to them. On clicking an Edit Task Flow link, the component navigator displays the hierarchy of components within the task flow's page or fragment. Users can edit this page or fragment and click Close to zoom out of the task flow. For more information, see Section 18.5.2, "Edit Content Inside a Task Flow." Similarly, declarative components display Open links that enable users to edit components inside the selected declarative component's facets.
Similar to Design view, in Source view also users can perform such tasks as adding components, editing page and component properties, changing page layout, and deleting components. Users can select a component on the page or in the component navigator and click the buttons on the Source view toolbar to perform these tasks. To edit or delete a component, users can also select options on the context menu for the component. In addition to these tasks, users can perform the following tasks in page Source view:
Notes:
|
Users can rearrange components on a page using the Cut and Paste options on the Source view toolbar (Figure 18-49). A Paste menu enables users to paste a component into, before, or after any other component in the component navigator.
Figure 18-49 Cut and Paste Options on the Source View Toolbar
The Cut and Paste buttons are grayed out if the user selects a component that does not support a cut or paste operation. Cut and paste operations are not supported under the following conditions:
Notes: A component on which customization is restricted can be rearranged inside its parent container if the parent is customizable. |
Example
If your customizable page contains an ADF Faces Table
component, then in Composer's Source view, users can resequence or move columns within or across tables and column groups. Consider a sample application created for selling computer accessories. The application home page has two tables containing details about the software and hardware offerings. The Hardware Options table contains four columns. The Hard disk column in turn contains the Magnetic disks and Solid State columns inside a column group, as shown in Figure 18-50.
Figure 18-50 Table in the Sample Application
Users can switch to Source view and resequence the Magnetic disks and Solid State columns within the Hard disk column or move them out of the column group and paste them next to any other column (the Wireless column, for example). Figure 18-51 shows the table structure in the component navigator.
Figure 18-51 Table Columns in Source View
Users can select a column and click Cut, then select another column and click Paste Before or Paste After.
Oracle ADF Task flows consist of one or more views and each view in a task flow is associated with a page or page fragment. When you add a task flow to your page, the content on the fragment associated with the current view is displayed on the page. Composer enables users to edit components on the page or fragment used for the current view of a task flow. Since changes are made to the task flow's page or fragment, they are reflected in all places where the task flow's page or fragment is used.
The Source view provides an option to open a task flow and display only components on its page or fragment in the component navigator. Users can edit the page or fragment and close the task flow to navigate back to the page containing the task flow.
Users with Customize permission on a task flow can edit its page or fragment.
Each task flow in the component navigator displays an Edit Task Flow link next to it, as shown in Figure 18-52.
Figure 18-52 Edit Task Flow Link on a Task Flow
Clicking the Edit Task Flow link results in the Source view zooming in to display the task flow's page and its components, as shown in Figure 18-53.
Figure 18-53 Components Within a Task Flow
Users can select components on the task flow's page and edit them in Composer just like editing any other page components. However, Composer does not support moving components from one task flow to another.
If multiple users attempt to edit the same task flow at the same time, a concurrency warning appears in Composer that alerts each user to the others. However, this warning is displayed only if a sandbox is configured in the application. For information about how changes are saved in such cases, see "What Happens During Concurrent Edits".
Clicking the Up arrow or Close link next to an open task flow (Figure 18-54) results in the component navigator displaying the page containing the task flow.
Figure 18-54 Options to Zoom Out of a Task Flow
The Reset Task Flow button on the Source view toolbar (Figure 18-55) invokes the Reset Task Flow dialog that provides options to remove application customizations made to a task flow and reset it to a previously-saved version or to its original out-of-the-box state. You can ensure that the task flow is reset to its state in a previously-saved label only if your application is configured to use a database store. The Reset Task Flow button is rendered only on zooming into a task flow.
Note: If you disable the Reset Page button in your application, the Reset Task Flow button is also disabled. Users cannot reset task flows after they make changes. For more information, see Section 18.4.11, "Reset Page." |
Roll Back to a Specific Label
If your application is configured to use a database store, a new version of the task flow is generated each time a user saves application customizations. If a sandbox is configured for your application, by creating a label with the SAVED_LABEL_%
convention you can ensure that Composer resets the task flow as follows:
SAVED_LABEL_%
convention, then Composer resets the task flow to its state in that label. SAVED_LABEL_%
convention, then Composer resets the task flow to its original, out-of-the-box state. SAVED_LABEL_%
convention, then Composer resets the task flow to its state in the latest label among these. To roll back to a specific label, you must have configured your application to use a sandbox. Specifically, the namespace of the task flow being customized must be defined in the <metadata-namespaces>
section in the application's adf-config.xml
file. For more information, see Section 23.2.1, "How to Enable Composer Sandbox Creation."
Rolling back to a specific label is useful if your application has dependencies on the customization metadata and resetting the task flow to its original state may cause issues.
When a user resets a task flow, the following changes occur:
Panel Customizable
components on the template are not removed. Example 18-2 shows the sample code to create a label with a SAVE_LABEL_
prefix.
Example 18-2 Code to Create a Label Prefixed with SAVE_LABEL_
If the application page contains declarative components, users can edit these components in Composer. Editing declarative components is similar to editing task flows. For more information, see Section 18.5.2, "Edit Content Inside a Task Flow."
Figure 18-56 and Figure 18-57 show the Edit Component and Close options available on declarative components.
Figure 18-56 Edit Option On a Declarative Component
Figure 18-57 Close Option Displayed While Editing a Declarative Component
To hide a component, right-click the component in the component navigator or on the page and choose Hide Component on the context menu (Figure 18-58).
Figure 18-58 Hide Component Option in Source View of the Page
A hidden component is not displayed on the page, but appears grayed out in the component navigator. The context menu for a hidden component displays a Show Component option. Choosing this option renders the component on the page again.
Note: Show or hide behavior is tied to the component's |
To make any JSPX document (*.jspx
) editable at runtime, you must add Composer components to your page in Oracle JDeveloper at application design time.
Note: Composer works only with JSPX pages and ADF Faces. You cannot add these components to JSP pages. For information about adding Composer components to your page, see Section 20.1, "Designing Editable Pages Using Composer Components." |
The Composer tag library (Figure 18-59) available from the Component Palette provides components that you can add to make a page editable.
Figure 18-59 Composer Tag Library in the Component Palette
This section provides an overview of the Composer components that are used to enable page editing. It contains the following subsections:
For more information about these components and other Composer components such as Custom Action
, see Appendix B, "Composer Component Properties and Files."
The Page Customizable
component defines the editable area of a page. Within this area, you can edit component properties, add content to the page, arrange content, and so on.
Adding a Page Customizable
component enables the runtime inclusion of Composer on the page. Users can edit pages in Composer using page-related controls available across the top of the page, Add Content buttons on components, and Edit icons on each editable page component, as shown in Figure 18-60.
To enable runtime editing for multiple application pages in one operation, add a Page Customizable
component to the ADF page template used for those pages. This avoids the need to manually add a Page Customizable
to each page. For more information about adding the Page Customizable
component, see Section 20.1.2, "How to Enable Runtime Customization Using a Page Customizable."
The Change Mode Link
or Change Mode Button
component provides an easy way to switch from View mode of the page to Edit mode. Figure 18-61 shows a Change Mode Link
component on the page.
For more information about using Change Mode Link
or Change Mode Button
, see Section 20.1.3, "How to Enable Switching Between Page Modes Using a Change Mode Link or Change Mode Button."
A Panel Customizable
defines an area of the page onto which users can add components at runtime. Users can move or minimize Show Detail Frame
components and portlets that are added as child components of a Panel Customizable
. Users can also drag and drop these components into another Panel Customizable
component on the page.
In Edit mode, the Panel Customizable
component is rendered as a box with dotted lines. In fact, a Panel Customizable
is referred to as a Box
in the runtime Resource Catalog. An Add Content button appears on each Panel
Customizable
component on the page, as shown in Figure 18-62. You can use this button to open the Resource Catalog Viewer and add components within the Panel Customizable
.
Figure 18-62 Panel Customizable Component
For more information, see Section 20.1.4, "How to Define Editable Areas of a Page Using Panel Customizable Components."
A Show Detail Frame
component renders a border or chrome around its child component along with a header that contains icons to enable users to perform some operations. The actions available on this menu enable users to move the component, along with its content, to new positions on the page (Figure 18-63). Users can also drag and drop Show Detail Frame
components from one Panel Customizable
component to another on the page. Note that a Show Detail Frame
must be included inside a Panel Customizable
component for it to be movable.
A Show Detail Frame
component enables the following actions:
Rich Text Editor
as a child component, then it enables end users to edit and save text in the Rich Text Editor
. You can add your own UI controls to further customize the display of content by using facets of the Show Detail Frame
. For information about using these facets, see Section 22.1, "Enabling Custom Actions on a Show Detail Frame Component by Using Facets."
For information about adding this component to a page, see Section 20.1.6, "How to Enable Component Customization Using Show Detail Frame Components."
The Layout Customizable
component is a container that enables end users to lay out its child components in several predefined ways (for example, two column, three column, and so on). You can design your page in such a way that all components on the page are enclosed in a Layout Customizable
component. In such a case, the layout is applied to the entire page.
Access predefined layouts using the layout changer. By default, the layout changer displays as a small green icon both in page View mode and page Edit mode. By using the Layout Customizable
component attributes you can choose to display the layout changer as an icon, text, or icon and text. In addition, you can decide whether to show or hide the layout changer in View mode. Figure 18-64 shows a Layout Customizable component and the predefined layouts that display when users click the layout changer.
Figure 18-64 Layout Customizable Component
For more information, see Section 20.1.5, "How to Enable Layout Customization for a Page Using a Layout Customizable."
In an application that is accessed by end users, application developers, and administrators, it may not be advisable to allow all users to perform all editing tasks. For example, you may want to allow end users to only customize their view of the page by performing tasks like rearranging components or hiding areas they do not want to see. On the other hand, application developers must be allowed to update content on the page, component properties, and so on. The ability to customize a page, component, or component attribute is inherited from security definitions at the tag, page, component, and attribute levels. However, you can override the default security definitions at various levels in keeping with your business requirement.
You can define application security on many levels, including on a page, an operation, a component, or a component attribute. There are several ways in which one can restrict application customizations on a component. Composer determines if a component can be customized by honouring these rules. For example, before users can customize components, the components' sources of security restrictions are queried to determine if application customization is allowed. If a component does not permit application customization, Composer considers it restricted; that is, Composer treats the component as if it were explicitly secured. Table 18-1 describes Composer behavior to reflect application customization restrictions.
Table 18-1 Customization Restrictions on Composer Components
Restriction | Behavior |
---|---|
The page (and its contents) is open for all customizations | Composer allows editing of components without restrictions. |
The page is restricted | Composer displays but none of the options, for example Page Properties button and Edit icon, are accessible. |
Some operations are restricted | Composer displays but the options corresponding to the restricted operations are disabled. |
A component is restricted | The Edit icon is not rendered on the component and its properties cannot be edited. |
A component's attributes are restricted | The restricted attributes are not displayed in Composer. Composer's API enables the developer to determine if a component's attributes are restricted or not. |
Depending on the privileges granted while implementing security, users can perform different user and application customization tasks when they log in to the application.
Note: In a secured application, it is recommended that you check all users' privileges and enable the Edit link or button on the page only for privileged users. Unauthenticated users who stumble into page Edit mode can change component properties. You can enable the Edit link or button for selected users by specifying an EL value for the |
This section describes the default security behavior of Composer components. It contains the following subsections:
For information about overriding default security behavior, see Chapter 24, "Modifying Default Security Behavior of Composer Components."
The application's jazn-data.xml
file is the repository for page-level and task flow-level security information. Composer references this file and enables editing capabilities based on a user's privileges:
Notes: Composer and WebCenter Portal Customizable Components support cascading of privileges with Grant being a super set of all privileges. A user with Grant privilege on a page or task flow is considered to have Edit, Personalize, and View privileges. A user with Personalize privilege is considered to additionally have the View privilege. |
Table 18-2 explains Composer behavior based on page- and task flow-level privileges. Only those privileges that are relevant to Composer and WebCenter Portal Customizable Components are listed in this table. The Grant privilege is not listed as it is a super set of all privileges. Users with the Grant privilege can perform all editing tasks.
Table 18-2 Mapping of Page or Task Flow Privileges to Composer Behavior
Privilege | Composer Behavior |
---|---|
Edit or Customize | Users can switch to Edit mode of the page, where Composer is invoked, and edit the page. Users with either the Edit or Customize privilege can perform all runtime editing tasks. With the Edit or Customize privilege on a page or task flow, users can:
Note: You can perform all or some of these tasks depending on whether you have page-level or task flow-level privileges. If users do not have the Edit or Customize privilege on a page but try to edit it, a message appears stating that they do not have permission to do so. If users do not have the Edit or Customize privilege on a task flow, the Edit option is not displayed for the task flow in Source view. |
Personalize | In View mode, users with a Personalize privilege on the page can:
Note: Having Personalize permission does not enable users to perform portlet customizations. If users without Personalize, Edit, or Customize permission try to edit a page, a message appears stating that they do not have permission to do so. |
View | Users with the View privilege can only view the page or task flow, but not perform user or application customizations. |
When you add a task flow to a customizable page, Composer provides options for editing the task flow and components on the task flow's page. In a secured application, Composer provides editing capabilities based on the privileges provisioned on the customizable page and the task flow. For more information about task flow privileges and Composer's behavior, see Table 18-2.
On an application page, components can be located directly on the JSPX page or on page fragments inside shared components such as task flows. Restrictions on components inside a task flow are derived from the page fragment. To understand task flow security better, consider an example of a page containing a task flow, which in turn contains another task flow, as shown in Figure 18-65.
Figure 18-65 Structure of a Page Containing Nested Task Flows
Components on this page inherit security as follows:
Component1
, Component2
, and Region3
inherit security definitions from Document.jspx
. ComponentA
, ComponentB
, and RegionC
inherit security definitions from region3.jsff
. ComponentX
and ComponentY
inherit security definitions from regionC.jsff
. Task flows do not support cascading of permissions. That is, page permissions are not inherited by components inside a task flow. However, users who do not have Edit or Customize permission on the page cannot customize task flows on the page.
For example, if you grant Edit or Customize permission on Document.jspx
and regionC.jsff
but not on region3.jsff
, then users can customize Component1
, Component2
, RegionC
, ComponentX
, and ComponentY
, but not ComponentA
, ComponentB
, and RegionC
.
In a secured application, task flow permissions are stored in the application's jazn-data.xml
file. The list of available actions for a task flow is defined by the task flow permission class, oracle.adf.controller.security.TaskFlowPermission
. The permission class defines task flow-specific actions that it maps to the task flow's operations. By default, only View permission is provisioned on task flows. To enable users to edit a task flow at runtime, you must ensure that Customize permission is granted on the task flow. For more information, see Section 20.3.1.1, "Considerations for Adding Task Flows" and Section 24.6, "Implementing Task Flow Security."
For more information about task flows and their security behavior, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Framework applications have a default MDS configuration that restricts application customization on all application objects. To enable runtime page editing, you must make this default restriction inactive by adding a Page Customizable
component to the page. A Page Customizable
component enables application customization on all components under it. However, it does not enable customization on components of a nested page or fragment. For example, if the Page Customizable
is used in a page template and has a Facet Ref
inside it, then customization is not enabled by default on the components inside the Facet Ref
.
You can enable application customization on a set of attributes for the component using MDS type-level restrictions or instance-level restrictions. Type-level restrictions are applicable to a specified component type across instances. At runtime, attributes for which you have enabled customization are shown as editable properties in Composer, and restricted attributes are not displayed in the Component Properties dialog for the selected component. For information, see Section 24.1, "Applying Component-Level Restrictions by Defining Customization Policies."
Panel Customizable
and Show Detail Frame
components enable the placement of restrictions on individual supported actions. For example, one can specify a restriction on whether the current user is allowed to minimize the Show Detail Frame
.
It is left to you to enforce restrictions on the actions on a component. You can specify restriction on component actions in adf-config.xml
. If a restriction is specified and applicable to the current user, the Panel Customizable
or Show Detail Frame
does not render the action.
For information about applying action-level restrictions, see Section 24.5, "Applying Action-Level Restrictions on Panel Customizable and Show Detail Component Actions."
This chapter describes how to use the Page service to create and manage pages at runtime. It includes the following sections:
The Page service enables you to create new pages and task flows in your application at runtime. You can base your pages on default or custom styles and templates. You can create them with either the Page - Create New task flow or the Page service APIs.
After you create pages or task flows, users can view and manage them with either the Page service data control or the Page service APIs. The APIs provide a means of defining a work area within the application, called a scope. Scopes are useful for categorizing custom pages that are of interest to a specific team or community (similar to a Group Space in Oracle WebCenter Portal: Spaces).
Table 19-1 describes the developer tools included with the Page service.
Table 19-1 Page Service Developer Tools
Tool | Description |
---|---|
Page - Create New task flow | A task flow for creating pages or task flows at runtime. |
PageServiceDC data control | A data control for viewing or deleting information about listed pages and task flows at runtime. PageServiceDC is available in design time after you add the Page service libraries to your application. By default, the Page service libraries are added to the application when you use the WebCenter Portal application template or when you add the Page - Create New task flow. |
Page service APIs | APIs for creating and managing pages and task flows at runtime. |
The Page service is integrated with many Oracle WebCenter Portal: Services, such as the Links, Search, and Tags services. You can track the most recent changes in pages with the Recent Activities service. Because it is preconfigured to work with the Recent Activities service, the Page service automatically produces the information that the Recent Activities service uses to display the most recent additions, changes, or deletions in pages.
For more information about the services at runtime, see Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
You can create pages and task flows at runtime with either the Page - Create New task flow or the Page service APIs.
Note: The Page - Create New task flow provides a means of creating pages and task flows and editing task flow parameters. To execute operations, such as copy, rename, create scope, and so on, you must use the Page service APIs along with the Page - Create New task flow. The Page service APIs provide the flexibility of customization within the Page service. |
The Page - Create New task flow enables you to invoke the Create Page dialog at runtime. The Create Page dialog in turn enables users to create pages based on predefined styles, schemes, and templates.
Page styles, schemes, and templates provide both a default page structure that describes the areas where you can place content (that is, the page layout) and a background color and image that contribute to a page look and feel. You can select the page style, scheme, scheme background color, and template when you create a page. You can additionally enhance the usefulness and presentability of a page using page layout components. These include an in-place HTML text editor, images, layout boxes, hyperlinks, and so on.
Figure 19-1 shows the Create Page dialog at runtime.
Figure 19-1 Create Page Dialog with Default Styles
Some page styles include properties that suggest a particular use for the page. For example, the Web Page style includes a configurable property for specifying a URL. Among its many uses, the Web Page style provides a means of embedding wiki or blog pages and exposing external Web content within your application.In many cases, you can switch the page scheme, scheme background color, and layout when you revise a page. You can also start with a blank page and create layout, look, and feel from the start.
At runtime, you can view a list of pages created through the Page - Create New task flow and create, copy, update or delete those pages.
For more information, see the section "Working with Page Layouts, Styles, and Schemes" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
This section describes how to add the Page - Create New task flow to your application to enable the creation of pages at runtime. It contains the following subsections:
To add the Page - Create New task flow to your WebCenter application:
The Create Page dialog opens (see Figure 19-1).
A page is created based on the selected information. For more details on where the page is created, see Section 19.2.1.4, "Structure of Pages Created at Runtime."
Note: After you add the task flow, you can edit task flow parameters. For information about Page - Create New task flow parameters, see Section 19.3, "Defining Values for the Page - Create New Task Flow Parameters." For detailed information about pages, such as how to delete pages created at runtime, see Section 19.5, "Managing Pages." |
The Page service does not require its own, specific configuration of ADF security. It follows the security set up for the Framework application. In a non-secured application, all pages created in the Create Page dialog appear in the data control, viewable by everyone. In a secured application, users see only the pages they create or the pages to which they are granted privileges.
To secure your application and the Page - Create New task flow:
jazn-data.xml
file in Application Resources to open the ADF Security Policies Editor. Figure 19-2 Adding Privileges to the Page - Create New Task Flow
Follow the same procedure outlined in steps 3 through 6: select a page, add roles, apply privileges.
Figure 19-3 Adding Privileges to Page with the Page - Create New Task Flow
Note: The PageServiceDC data control does not require any security setting for a secure or non-secure application. |
For detailed information, see the chapter "Introducing the Page Service and Oracle Composer" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
The pages you create at runtime using the Page - Create New task flow or the Page service APIs are stored in the mds
folder, located under your application root. Table 19-2 provides examples of the default formats used for page and task flow file names.
Table 19-2 Default File Name Formats
File Type | Format |
---|---|
Page |
For example: |
Page Definition |
|
Task Flow View pages |
|
Task Flow View Page Definitions |
|
Task Flow Definitions |
|
When you use the Page service APIs to create pages, you can provide a custom value for the file name format. For example: myPage<N>.jspx (value of N starts from 1)
The following examples show the structure of a page (Page1.jspx
) and its associated page definition (Page1PageDef.xml
) created at runtime by the user user1
.
Example 19-1 Page Created Under a Default Scope
Example 19-2 Page Definition Created Under a Default Scope
Example 19-3 Page Created Under a Custom Scope
Example 19-4 Page Definition Created Under a Custom Scope
In Example 19-4, the scopeGUID
is a unique ID assigned to a specific scope by the Page service.
Example 19-5 Task Flow View Page Created Under a Default Scope
Example 19-6 Task Flow Definition Created Under a Default Scope
Example 19-7 Task Flow View Page Definition Created Under a Default Scope
Example 19-8 Task Flow View Page Created Under a Custom Scope
Example 19-9 Task Flow Definition Created Under a Custom Scope
Example 19-10 Task Flow Page Definition Created Under a Custom Scope
In Example 19-10, the scopeGUID
is a unique ID assigned to a specific scope by the Page service.
To access pages with a default scope, enter the following URL:
To access pages with a custom scope, enter the following URL:
This section describes how to access and define values for Page - Create New task flow parameters. It contains the following subsections:
To access Page - Create New task flow parameters:
.jspx
page with the Page - Create New task flow. The Page Data Binding Definition in the design view is shown in Figure 19-4.
The Edit Task Flow Binding dialog opens, as shown in Figure 19-5.
Figure 19-5 Edit Task Flow Binding for the Page - Create New Task Flow
The following optional Page - Create New parameters are available:
scopename
For information, see Section 19.3.2, "Setting Scope in a Page - Create New Task Flow."
outcome
For information, see Section 19.3.3, "Setting an Outcome Parameter."
templatefile
For information, see Section 19.3.4, "Specifying Styles."
adftemplate
For information, see Section 19.3.5, "Specify an ADF Template."
uitype
For information, see Section 19.3.6, "Showing a Command Link."
icon
For information, see Section 19.3.7, "Displaying an Image."
label
For information, see Section 19.3.8, "Customizing the Label."
By default, the pages and task flows you create using the Page - Create New task flow are stored in the default scope. To assign a specific scope to the Page - Create New task flow, the scope name must be assigned to the oracle_webcenter_page_createpage_scopename
parameter, as shown in Figure 19-6.
Figure 19-6 oracle_webcenter_page_createpage_scopename Parameter
In Figure 19-6, PageViewBean
is a custom managed bean that is invoking the getScopeName()
method to fetch the value of scopeName
. It uses the Page service API. By doing this, the Page - Create New task flow creates all pages and task flows under the specified scope, rather than default scope.
The following example code highlights only the creation of scope. If a scope already exists, then users can get the scope name from the Scope
object.
Example 19-11 Creating a Scope for Application Pages
The outcome parameter defines a Java method that is called after the page is created. In this method, you can add dynamic content to the page, refresh the user interface that calls up the dialog to confirm creation of a new page, or initiate browser navigation to the newly created page. To specify a Java method to invoke after page creation (that is, it is called after users click the Create button in the Create Page dialog), enter the following in the Edit Task Flow Binding dialog:
You can define the method either with a String parameter or with no parameter. The String parameter value is the new page's name with full path. If the method is defined both ways, then the one with a parameter is invoked.
In the following example, the method go(String newPagePath)
is invoked. This method redirects users to the newly created page with the Java class MyTestClass.java
. The value of newPagepath
is passed by the Page service.
The Page service provides out-of-the-box styles that are packaged within the Page service libraries. You can use these styles or create your own custom styles.
This section describes how to apply out-of-the-box styles and custom styles. It contains the following subsections:
Note: For more information about styles, see Section 19.6, "Introduction to Custom Styles and Templates." |
The following out-of-the-box-styles are provided (see Figure 19-1):
To associate out-of-the-box styles with the Page - Create New task flow, use the optional parameter oracle_webcenter_page_createpage_templatefile
. Use the parameter value to specify the location of the file that contains the list of out-of-the-box styles.
To associate out-of-the-box styles with the Page - Create New task flow:
mystyles
under your Framework application's public_html
folder. mystyles
, create a file named default_pageservice_styles.xml
. templateDef
element. The templateDef
element takes the following attributes:
name
: This attribute specifies the path to the .jspx
page that defines a page style. When you use the default styles, you must specify the path to the page that defines the style you intend to use. The default page style page files are located within the Page service libraries. For example: TemplateThreeColumn.jspx
is the page within the Page service library that defines the Three Column Template style.
title
: The value you enter for title
is used as the able for the style in the Create Page dialog. You can modify the title of an out-of-the-box style to any name. For example: title="Three Column Layout"
or title="Sales Standard"
. icon
: This attribute specifies an image icon for a style. For out-of-the-box styles, if you do not specify an icon for a style, then the Page service automatically uses the default icons assigned to each out-of-the-box style.
Example 19-12 shows the content of a sample default_pageservice_styles.xml
file that lists the other out-of-the-box styles:
Example 19-12 Sample default_pageservice_styles.xml File
oracle_webcenter_page_createpage_templatefile
parameter value to ${'/mystyles/default_pageservice_style.xml'}
. For example:
In this example, you associate a custom style, labeled News, with the Page - Create New task flow.
To associate a custom style with the Page - Create New task flow:
.jspx
file (for example, NewsTemplate.jspx
). Note: For information about how to create ADF templates, see Section 19.6, "Introduction to Custom Styles and Templates." |
custom_pageservice_style.xml
). For example:
Note: For more information about the syntax to use for |
custom_pageservice_style.xml
under a folder in your application's public_html
folder. For example:
custom_pageservice_style.xml
: NewsTemplate.jspx
. NewTemplatePageDef.xml
. defaultTemplate.jspx
) on which the custom style file is based. This step is applicable only if you are using ADF templates. Note: If you specify the location of an ADF template using the |
oracle_webcenter_page_createpage_templatefile
parameter to ${'/mystyles/custom_pageservice_style.xml'}
, where mystyles
is a folder under the public_html
folder of your application. For example:
When you want to use the same template for both design time and runtime pages, you can use an ADF template. All that is required is to point the Page - Create New task flow to the template location.
To associate an ADF template with the Page - Create New task flow:
oracle_webcenter_page_creatpage_adftemplate
parameter, enter the path to the ADF template. For example:
In Figure 19-7, an ADF template called portalTemplate.jspx
is used.
Figure 19-7 oracle_webcenter_page_createpage_adftemplate Parameter
ADF templates can be in your application's public_html
folder. In this case, the path of portalTemplate.jspx
is ../public_html/templates/portalTemplate.jspx
.
By default, the Page - Create New task flow is rendered as a command button. You can instead specify that it is rendered as a command link (Figure 19-8).
To render the Page - Create New task flow as a command link:
oracle_webcenter_page_createpage_uitype
parameter to the following value: ${'link'}
. For example:
You can associate an icon with the Page - Create New task flow button or link. For example, Figure 19-9 shows the task flow rendered as a command link with a page icon.
Figure 19-9 Command Link with a Page Icon
Figure 19-10 shows the task flow rendered as a command button with a page icon.
Figure 19-10 Command Button with a Page Icon
To specify an icon for the Page - Create New task flow button or link:
oracle_webcenter_page_createpage_icon
parameter to the following value: {'/images/page.jpg'}
. For example:
By default, the label for the Page - Create New task flow command button or link is Create Page. You can provide your own value using the oracle_webcenter_page_createpage_label
parameter value.
Figure 19-11 shows the task flow rendered as a command button with a custom label.
To change the command button or link label:
oracle_webcenter_page_createpage_label
parameter to your preferred string value. For example:
The following types of objects are required for the creation of a task flow view page:
To enable the creation of task flow view pages through the Page - Create New task flow:
home.jspx
). oracle_webcenter_page_createpage_label
parameter. For example:
custom_taskflow_styles.xml
) to contain entries for all the task flow styles. For example:
The element templateDef
in the XML file contains the following attributes:
name
: to specify the name of the task flow view page title
: to specify the label to associate with the task flow view page style in the Create Page dialog. icon
: to specify the image icon for the task flow public_html
folder, create a folder (for example, mystyles
) and add the custom_taskflow_styles.xml
file to it. mystyles
folder: mytaskflow_view.jsff
(task flow view page) mytaskflow_viewPageDef.xml
(task flow view page definition) mytaskflow_view.xml
(task flow definition) oracle_webcenter_page_createpage_templatefile
parameter. For example:
In this example, mystyles
is a folder under the public_html
folder of your application.
home.jspx
page, and then click the Create Task Flow button. The new task flow view page is rendered.
For information on where the task flows are created, see section Section 19.2.1.4, "Structure of Pages Created at Runtime."
You can manage pages using either the Page service data control or the Page service APIs. This section contains the following subsections:
You can customize Page service views with the Page service data control. The data control enables you to view information about existing pages at runtime and delete any of the listed pages. The Page service data control, PageServiceDC
, is included in the Page service libraries and is available at design time after you add the libraries to the application.
For more information about the Page service data control, see Section 19.8.2, "Using the Page Service Data Control."
The Page service provides APIs to manage pages and task flows. These include APIs to delete pages and task flows, change the hidden status, change the page scheme (name, background color, background image), and copy pages.
For more information about Page service APIs, see Section 19.8.1, "Using the Page Service Java APIs."
At runtime, when users click the Create Page option, the Create Page dialog displays a set of predefined styles for creating the page (see Figure 19-1). Users select one of these page styles to create a page based on the associated style template. The style provides a special look and feel to your pages. The template provides the page layout. Templates are the ADF pages on which runtime pages are based. Pages can be based on default or custom styles and templates.
To provide custom selections for the Create Page dialog, you must define them, for example, in /mytemplates/templates.xml
. Place the directory /mytemplates
under the web content root.
If you choose not to use the default options available with the Create Page dialog, then you can use the following types of custom templates in your application:
This section explains how to customize the Page - Create New task flow to use different templates for the Create Page dialog and for the new pages that you create at runtime. It contains the following subsections:
You can create custom page templates according to your design requirements and associate page styles with these templates. If you want to restrict the style options in the Create Page dialog or provide a different set of styles, then you must perform the following high-level tasks:
This section steps you through both procedures. It contains the following subsections:
To create a page or page fragment style:
When creating task flows, create a page fragment (JSFF) based on that template.
When creating a page based on a template, the Page service actually copies the template and creates a new page based on it.
For example, if there is a facet where you would like to display content, you can drop a Page Customizable component from Composer around it to make the page editable at runtime. Make sure you set the correct values for the document title
, styleClass
, and inlineStyle
attributes.
Note: If this page or page fragment will be used as a template for pages that can be customized at runtime, then you must ensure that the |
Example 19-13 shows the sample code of a page fragment style, pstemplateview.jsff
.
Example 19-13 Sample Code of a New Page Style
Note: The page definition file of the JSPX page, which defines the style, must contain the following syntax for the <?xml version="1.0" encoding="UTF-8" ?> <pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel" version="11.1.1.41.30" id="ps_pagedefusage" Package="ps_package"> |
Alternatively, the JSPX or JSFF template file that you are creating can be based on an ADF template.
Example 19-14 shows the sample code of an ADF template.
Note: If you choose to design your own ADF templates and want to set page style, then you must have a |
Example 19-14 Sample Code of a Page Style that uses an ADF Template
Example 19-15 shows the sample code of a page style, NewsTemplate.jspx
, that is based on an ADF template, portalTemplate.jspx
. The viewId
attribute of the af:pageTemplate
tag provides the name of the ADF template used.
For information about using ADF templates, see the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
Example 19-15 Sample Code of a Page Style on an ADF Template
To display a different style, or use a different template for a style, you must define it, for example, in /mytemplates/templates.xml
. Place the directory /mytemplates
under the web content root. For more information about the templates.xml
file, see Section 19.3.4, "Specifying Styles."
Example 19-16 shows a sample templates.xml
file.
Example 19-16 templates.xml File
To edit the styles for the Create Page dialog and add a reference to the new page style:
/mytemplates/templates.xml
file, commenting out templateDef
entries for any default page styles that you do not want to display. templateDef
entry for the style that you want to associate with a different template, edit the name
and type
attributes, as shown in the following example: where
name
is the name of the page style that you want to use. title
is the label displayed for the style in the Create Page dialog. type
is the type of page style. It can take the value page
or task flow
. The default value page
, creates a page based on the style's associated template. The value task flow
creates a task flow view of a page based on the style's associated template. templateDef
entry, as shown in the following example: At runtime, the Create Page dialog displays the styles you specified. The pages and task flow page views users create using those styles are based on the JSPX or JSFF templates you defined.
If your page template is based on an ADF template, you can configure the page creation task flow to use a different ADF template depending on different criteria, such as user or scope.
You can specify the ADF template to use for runtime page creation in either of the following ways:
oracle_webcenter_page_createpage_adftemplate
parameter in the page creation task flow (see Section 19.3.4, "Specifying Styles"). ADFTemplateViewID
parameter in the createPage()
and createTaskflow()
APIs. Any JSPX page template that is based on an ADF template contains an af:pageTemplate
tag with the viewId
attribute. The viewId
attribute contains the name of the ADF template. Example 19-15 shows a page template that is based on the ADF template portalTemplate.jspx
.
When you specify an ADF template name for use during page creation, the Page service searches for the af:pageTemplate
tag in the page template and updates the viewId
attribute with the value you provided.
This section describes how to specify which ADF template to use under a given circumstance. It contains the following subsections:
To specify the ADF template name using the task flow parameter:
oracle_webcenter_page_createpage_adftemplate
parameter. If you define a constant value, for example ${'/mytemplates/defaultTemplate2.jspx'}
, then this ADF template is used for all pages created using the create page task flow.
However, by providing an EL value for the parameter, you can ensure that a different ADF template is used based on different criteria, such as user or scope.
For example, assume you have two users, user1
and user2
, and want to use a different ADF template for pages created by each user. You must enter the value ${MyClass.ADFTemplate}
for the oracle_webcenter_page_createpage_adftemplate
parameter and define the method MyClass.getADFTemplate()
so that it returns different ADF templates based on which user has logged in.
To specify the ADF template name using API parameters:
The page or task flow is subsequently created based on that ADF template.
To create a page:
where ADFTemplateViewID
is the ID of the ADF template view activity.
To create a task flow:
where ADFTemplateViewID
is the ID of the ADF page template view activity.
To use your own page styles, define them in /mytemplates.templates.xml
file. If you want to maintain a separate XML file with a different set of page styles, you can create an XML file and reference that from the Page - Create New task flow. For example, to display two different options to two users with different privileges, then you must create two XML files and define different styles in each XML file. You can then ensure that the Create Page dialog displays the respective options to each user.
This section describes how to create and reference a new style for the runtime Create Page dialog. It contains the following subsections:
To create a style for the Create Page dialog:
/mytemplates
directory, create an XML file, for example templates2.xml
. templatesDef
element, and within that add a templateDef
entry for each style that you want to include in the Create Page dialog. Example 19-17 shows the code entered into sample XML file templates2.xml
that references the pstemplateview.jsff
fragment you created in the previous section.
Example 19-17 Sample Code for the Create Page Dialog Style
where
name
is the name of the page or page fragment to use as a template. title
is the label for the style in the Create Page dialog. type
is the type of template. It can take that value page
or taskflow
. The default value page
creates a page based on the style's associated template. The value taskflow
creates a task flow view of a page based on the style's associated template. To reference the new XML file from the Page - Create New task flow:
The Edit Task Flow Binding dialog opens with the list of input parameters supported by the task flow.
oracle_webcenter_page_createpage_templatefile
parameter. If you define a constant value, for example ${'/mytemplates/templates2.xml'}
, then this template is used for the Create Page dialog always.
However, by providing an EL value for the parameter, you can ensure that a different template is used for the dialog based on different criteria, such as user or scope.
For example, assume you have two users, user1
and user2
, and want to display a different page style to each user. In this case, you must have two templates for the Create page dialog. Let us say you have created a new template, templates2.xml
, and updated the default template, templates.xml
. You can then specify ${TemplateBean.template}
for the oracle_webcenter_page_createpage_templatefile
parameter.
To use this value, you must first create the managed bean, TemplateBean.java
, with method getTemplate()
, which returns templates.xml
for user1
and templates2.xml
for user2
. At runtime, user1 and user2 are each shown different options in the Create Page dialog, as shown in Figure 19-12 and Figure 19-13.
Figure 19-12 Create Page Dialog using the templates.xml Style
Figure 19-13 Create Page Dialog using the templates2.xml Style
This section describes various ways to customize Page service views. It contains the following subsections:
You can use ADF Faces components to render runtime pages. For example, you can use ADF Faces components to render pages as tabs, links, and image links—or thumbnail views of pages. This section provides some examples of the types of pages you can create using ADF Faces components. It contains the following subsections:
When you design your application to render pages as tabs, you can use a range of ADF Faces components to accomplish this. This section provides information about the ADF Faces components that support rendering pages as tabs. It contains the following subsections:
Example 19-18 illustrates how pages can be rendered as tabs using navigationPane
components.
Here a method called pages
from a custom bean (MyPageServiceBean
) is used to get the list of pages. For more information about getting the list of pages with the Page service API, see the getPages()
method in Page service API section.
Example 19-18 Rendering Pages as Tabs Using af:navigationPane
The output of the code depicted in Figure 19-13 renders as a series of tabs (Figure 19-14).
Example 19-19 illustrates how pages can be rendered as tabs using navigationPane
components.
Here a method called pages
from a custom bean (MyPageServiceBean
) is used to get the list of pages. For more information about getting list of pages using Page service API, see the getPages()
method in Page service API section.
Example 19-19 Rendering Pages as Tabs Using af:panelTabbed
The output of the code in Example 19-19 renders as a series of tabs (Figure 19-15).
Figure 19-15 Render Pages as af:panelTabbed Component
This section provides examples of using ADF Faces Components to render pages as different types of links. It includes the following subsections:
Example 19-20 illustrates how pages can be rendered as links using af:commandLink
.
Example 19-20 Rendering Pages as Links Using af:commandLink
The output of the code depicted in Example 19-20 renders as a list of links (Figure 19-16).
Example 19-21 illustrates how pages can be rendered as links using af:goLink
.
Example 19-21 Rendering Pages as Links Using af:goLink
The output of the code depicted in Example 19-21 renders as a list of links (Figure 19-16).
Image links are linked thumbnail views of a page that users click to access the full page view. Example 19-22 illustrates how pages can be rendered as image links.
Example 19-22 Rendering Thumbnail Views of Pages
In Example 19-22, pageCount
is a method from a custom bean (MyPageServiceBean
) that gets the number of pages in the current scope. Users must write this method on their own using the other methods from Page service APIs.
In Example 19-22, <image_name>
is the name of the image with which you associate your page.
The output of the code in Example 19-22 is rendered as a linked series of thumbnail views of a page (Figure 19-17).
You can manage access to pages and task flows either through the Security Panel, which is a part of Composer, or through Page service APIs.
For more information about runtime security, see the "Setting Page Access" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
For more information about setting page access with the Page service APIs, see Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal.
This section describes the APIs and data controls available for the Page service. It includes the following sections:
This section provides information about Page service Java APIs. It includes information about the location of these APIs, how to make your application ready to use them, and how to use them to create pages. It contains the following subsections:
To use the Page service APIs, you must perform the following steps:
If these entries do not exist in adf-config.xml, add them using a text editor.
If these entries do not exist in your .cpx file, add them using a text editor.
The Page service APIs are located in the oracle.webcenter.page.model.PageService
class.
The Page service provides the following APIs:
For more information about the Page service APIs, see Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal.
Example 19-23 Using Page Service APIs to Create a Task Flow View Page
where
nameFormat
is the name format of the task flow; it can contain a subpath, such as users/UserA/taskflow{0}.jspx
. title
is the title of the task flow. pageTemplate
is the template used for the task flow. pageTemplatePath
is the path for the task flow template. cssStyle
is the cascading style sheet file for this task flow. schemeBGImage
is the background image for the custom scheme. schemeBGColor
is the background color for the custom scheme. It returns the PageDef
of the newly created task flow and throws the following:
InvalidNameException
if the name supplied cannot be used for update. DuplicateNameException
if the page with the same name already exists. LockUnavailableException
if another page or task flow operation is in progress. where
path
the path under which you want to see a list of all page that the user can view. If you do not specify a path, it returns a list of all pages that the user can view in the current scope. It returns the list of all pages that are not hidden in the current scope or under a specific path.
Example 19-25 Using Page Service APIs to Set the Page Title
where
pagepath
is the path of the page for which you want to change the title. title
is the new name of the page. It updates the name of the page and throws the following:
InvalidNameException
if the name supplied cannot be used for update. ObjectChangedException
if the page has changed since it was last retrieved. LockUnavailableException
if another page operation is in progress. Example 19-26 Using Page Service APIs to Set the Page Scheme
where
pagepath
the path of the page for which you want to change the scheme. schemeName
the name of the CSS for the page. schemeBGImage
the background image for the custom scheme. schemeBGColor
the background color for the custom scheme. otherCSS
any other CSS attributes you want to specify. It updates the page's scheme properties in the jspx page.
To use the Page service APIs, WebCenter Portal's Page service extension must be present in your JDeveloper application. In JDeveloper, go to the Help - About menu, and click the Extensions tab. Look for the WebCenter Page Service, as shown in Figure 19-18.
Note: For information about adding the WebCenter Portal's extensions, see Chapter 3, "Preparing Your Development Environment." |
After confirming that the Page service is included with the WebCenter Portal's extensions, you must add the Page service libraries to the project.
To add Page service libraries to your project:
Figure 19-19 Adding Page Service Libraries
If you do not want to use JDeveloper as the code editor, then you can set the CLASSPATH to the following jar files:
Jdev_Home/jdeveloper/webcenter/jlib/pagem.jar
Jdev_Home/jdeveloper/webcenter/jlib/pages.jar
Jdev_Home/jdeveloper/webcenter/jlib/page-service-view.jar
Jdev_Home/jdeveloper/webcenter/jlib/page-service-skin.jar
This section provides an example of how to create a page using the Page service APIs. Your requirements may call for different methods. Use the way the createPage
method is invoked in this sample code as a model for invoking the methods you require on the PageService
object.
Typically, pages created using Page service APIs are based on templates. Before you start creating pages using the APIs, you must ensure that each template file, for example MyPageTemplate1.jspx
, has a page definition file, in this case MyPageTemplate1PageDef.xml
, in the same directory as the JSPX page.
Example 19-27 shows how to use the createPage() API
to create a scope named MyScope
, create an MDS session instance, instantiate the Page service class with this new scope, and then create a page within this scope. The new page is created based on the MyPageTemplate1.jspx
template.
Example 19-27 Sample Showing How to Create a Page
Note: Pages and task flows created using Page service APIs do not have permissions granted by default. You must explicitly define permissions on the page. |
For more information about the Page service APIs, see Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal.
The Page service data control enables you to view information about existing pages at runtime and delete any of the listed pages.
This section describes how to add a Page service data control to a project and how to use it to view, edit, and delete pages. It contains the following subsections:
This section provides an example of adding the Page service data control at design time.
To add a Page service data control to your project:
The PageServiceDC appears in the Application Navigator after you have performed either of the following actions:
scopeName
parameter to view all the pages listed under the specified scope. If you do not enter any value, then the data control takes the default scope. In Figure 19-21, the scope value is fetched from a custom managed bean.
pageName
parameter: Text
attribute to Refresh
. This provides a refresh feature on the list of pages to enable users to refresh the list after they have added a page or deleted one from the list.
outputText
element in the table's page path column with a goLink
as follows: Replace
with
To view a page, follow the link generated from step 14 in the previous section. If the application has been secured properly, then an edit link should render on the page at runtime.To delete a page, click the deletePage button in the row of the relevant page. This button was generated from in step 7 in the previous section. Click the Refresh button for the table to remove the deleted page row from the table.
For detailed information about how to view, edit, and delete pages at runtime, see the chapter "Creating, Editing, and Deleting Pages" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
The Custom Portal Demo sample illustrates some Page service functionality, including the following:
The Custom Portal Demo sample is posted on the Oracle WebCenter Suite 11g Demonstrations and Samples page on the Oracle Technology Network (OTN) at: http://www.oracle.com/technetwork/middleware/webcenter/overview/index.html
Oracle WebCenter Portal's Composer provides components for controlling the application's design time at runtime behavior. This chapter describes how to add Composer components to your application page, thereby enabling runtime editing in the page.
For more information about Composer, see Chapter 18, "Introduction to Composer."
This chapter contains the following sections:
The Composer tag library provides design-time components that you can add to a page in Oracle JDeveloper to enable page editing at runtime. When you create a page with Composer components at design time, at runtime Composer provides options for entering page edit mode and modifying the page according to your requirements.
You can enable customizations in Framework applications and non-Framework applications. Within an application, you can enable customization of the following types of pages:
For more information about Composer components and their attributes, see Section 18.6, "Composer Components."
This section explains how to add Composer components to a page at design time to make it editable at runtime. It contains the following subsections:
The steps for creating a customizable JSPX page in your Framework application are available in Section 5.3, "Adding Pages to a Portal."
When you create a new page in JDeveloper, it is listed in the Application Navigator under Web Content as shown in Figure 20-1. Additionally, the page is opened in the editor and becomes the active editor panel.
Figure 20-1 New Customizable Page (MyPage.jspx) Shown in the Application Navigator
Security Considerations
By default, a Framework application is configured with ADF security. A default user name and password (weblogic/weblogic1) are created automatically for you.
To enable users to edit a page in a secured application, you must grant Edit or Customize privileges on the page to the required users or roles. For more information about granting permissions, see Section 69.4, "Using the Role Manager Task Flow."
If ADF security is not enabled in your application, you can test how user privileges impact runtime customization capabilities by implementing security and configuring your application to authenticate users so that they have distinct identities. For the steps to implement a basic security model in your application, see Section 69.3, "Configuring ADF Security."
Adding a Page Customizable
component to the page ensures that Composer is invoked when users switch to Edit mode of the page. When you add a Page Customizable
component, some configuration files are updated automatically with the default Composer-specific settings. For more information, see Section 20.1.9, "What Happens When You Add Composer Components."
Note: For considerations you must make before adding a |
To add a Page Customizable component to the page:
Notes: The |
center
facet of the Panel Stretch Layout
. You must ensure that the Page Customizable
is nested inside an af:form
element. The Page Customizable
is a rich client component that requires the rich client framework to function properly.
Page Customizable
component are populated with default values when you add the component to the page. You can define or modify attribute values by referring to Table B-1 in Section B.1, "Composer Component Properties."
By default, a Panel Customizable
component is added as a child component and the Page Editor Panel
is added as a facet in the Page Customizable
component, as shown in Figure 20-2.
Example 20-1 shows the pe:pageCustomizable
tag in the page source view.
To enable users to switch to Edit mode of a page easily, you must add a Change Mode Link
or Change Mode Button
component to the page.
Note: An alternative way to enable switching to Edit mode is by using the Change Mode API. For more information about this API, see Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal. For things you should consider before adding a |
To add a Change Mode Link or Change Mode Button component:
top
facet of the Panel Stretch Layout
that you added in the previous section, drag a Change Mode Link or Change Mode Button component. You must ensure that the Change Mode Link
or Change Mode Button
is nested in an af:form
element. The Change Mode Link
or Change Mode Button
component is a rich client component that requires the rich client framework to function properly.
Notes:
|
Change Mode Link
or Change Mode Button
component are set by default when you add the component to the page. Optionally, you can set any other attributes by referring to Table B-2 in Section B.1, "Composer Component Properties."
Note: In a secured application, it is recommended that you check all users' privileges and enable the Edit link or button on the page only for privileged users. Unauthenticated users who stumble into page Edit mode can change component properties, though the changes will not be saved. You can enable the Edit link or button for selected users by specifying an EL value for the |
The pe:changeModeLink
or pe:changeModeButton
tag displays within the af:form
tag in the Structure window, as shown in Figure 20-3.
Figure 20-4 shows the Change Mode Link
in the Design view of the page in JDeveloper.
Figure 20-4 Change Mode Link in Design View
The Panel Customizable
component is required for page composition or content management tasks, such as adding, arranging, or removing portlets or regions. By default, one Panel Customizable
component is automatically added as a direct child of the Page Customizable
component. You can add more Panel Customizable
components within this Panel Customizable
component according to your requirements.
It is only within a Panel Customizable
component that you can drag and drop components at runtime.
Note: For considerations you must make before adding a |
To add a Panel Customizable
component to the page:
You must ensure that the Panel Customizable
is nested in an af:form
element. The Panel Customizable
component is a rich client component that requires the rich client framework to function properly.
Notes:
|
Panel Customizable
component are set by default when you add the component to the page. Optionally, you can set any other attributes by referring to Table B-6 in Section B.1, "Composer Component Properties."
Notes: If you select |
Use the Layout Customizable
component to enable the runtime definition or modification of the layout of components on a page or an area of a page. Use this component only if you want to allow users to customize the layout at runtime. For static layouts, use an alternative component, such as a Panel Group Layout
or Panel Stretch Layout
.
To add a Layout Customizable
component:
Panel Customizable
component. The target Panel Customizable
component must be a child of the Page Customizable
component.
Ensure that the Layout Customizable
is nested in an af:form
element. The Layout Customizable
is a rich client component and requires the rich client framework to function properly.
Note: You can delete the direct child |
Layout Customizable
component are set by default when you add the component to the page. Optionally, you can set any other attributes by referring to Table B-3 in Section B.1, "Composer Component Properties."
Note: To ensure that the |
The pe:layoutCustomizable
tag is located inside a cust:panelCustomizable
tag in the Structure window as shown in Figure 20-5. A child Panel Customizable
component is added by default in the Layout Customizable
component. Additionally, a Panel Customizable
component is added within each facet of the Layout Customizable
component. These Panel Customizable
components enable you to add content inside the Layout Customizable
component at runtime.
The Panel Customizable
added as a direct child provides the main area—the central area in a layout at runtime. The Panel Customizable
components added within the two default Layout Customizable
facets provide the two content areas, A
and B
. When you select a predefined layout at runtime, these three areas are arranged to display content in the selected pattern. See Predefined Layout Types for more information about how the content is laid out for each layout type.
Note: In a |
Figure 20-5 Layout Customizable Component
When you want to enable customizations such as property editing, moving, minimizing, or removing components, you can drop a Show Detail Frame
component inside a Panel Customizable
component on the page. You can then add a component inside the Show Detail Frame
.
Note: Each If multiple components must be enclosed in a |
Use the Show Detail Frame
component to enable customizations in View and Edit modes of the page. Changes made in View mode are available to that user only, and changes made in Edit mode are available to all application users.
To add a Show Detail Frame component to the page:
Panel Customizable
component. The Show Detail Frame
should be nested in a Panel Customizable
component on the page.
Show Detail Frame
component are set by default when you add the component to the page. Optionally, you can set any other attributes by referring to Table B-7 in Section B.1, "Composer Component Properties."
The cust:showDetailFrame
tag is added inside the cust:panelCustomizable
tag as show in Figure 20-6.
For a better understanding of this type of task, see Section 20.2, "Designing Editable Pages Using Composer Components: Example."
If you plan to create many customizable pages in your application, you can base the pages on an ADF page template in which you have enabled customization. By adding Composer components to the template itself, you can save the effort required to add these components to each customizable page.
To create a page template and enable customization on it:
In the Create JSF Page Template dialog, enter a file name for the template, select a layout, and declare a new facet.
Panel Stretch Layout
component. center
facet of the Panel Stretch Layout
component. Panel Customizable
component from the Page Customizable
and add a Panel Group Layout
component in its place. layout
attribute on the Panel Group Layout
to scroll
. Facet Ref
component inside the Panel Group Layout
and specify the same name that you used to declare the facet in step 3. The template displays the facet as shown in Figure 20-7. You can now create customizable pages based on this template. Once you create a page, you can add a Panel Customizable
or Layout Customizable
component inside the facet displayed on the new page. You can then add page content within the Panel Customizable
or Layout Customizable
component.
When you have an existing ADF application with JSPX pages that are populated with content, and you want to enable customization, you can do so by moving all content inside a Page Customizable
component.
You must first add the Page Customizable
, then a Layout Customizable
, and then the required hierarchy of Panel Customizable
and Show Detail Frame
components. Drag each of the existing components and drop them onto suitable locations inside the Page Customizable
.
Notes:
|
When you add a Page Customizable
component to the page, the following configurations are performed automatically:
default-catalog.xml
, is configured in the application. The default-catalog.xml
file is located in the Application_Root
/Portal/src/portal
directory. To add components to the default Resource Catalog available to end users of your application, see Chapter 16, "Creating and Managing Resource Catalogs." In a Framework application, the default-catalog.xml
file is located in the Application_Root
/Portal/public_html/oracle/webcenter/p
ortalapp/catalogs
directory out-of-the-box, even without creating a page and adding a Page Customizable
component.
web.xml
file available in the Application_Root
/
Project_Name
/public_html/WEB-INF
directory is updated to configure the MDS JSP provider. ComposerChangeManager
is configured in the application's web.xml
file. For more information, see Section 22.11, "Configuring the Persistence Change Manager." adf-config.xml
file is also created. When you add a Page Customizable
to an application page, the required configuration is added to the adf-config.xml
file. For example, change persistence is configured in the adf-faces-config
section in this file. For more information, see Section 22.11, "Configuring the Persistence Change Manager." DataBindings.cpx
file in the Application_Root
/Portal/adfmsrc/portal
directory, is updated to enable the presence of task flows on the page. Page Customizable
component is added to an application page. Example 20-2 Page Definition File After Adding Page Customizable Component
See Also: Section B.2, "Composer-Specific Files and Configurations" for information about files that are created or modified when you add Composer components. |
At runtime, users can perform all the tasks described Section 18.3, "Customizing Capabilities in Page View Mode" and Section 18.4, "Editing Capabilities in Design View in Page Edit Mode."
Each Composer component provides runtime capabilities that are described in Section 18.6, "Composer Components."
Note: Runtime customizations that you perform on a page are not carried over when you deploy the application to a target server. |
When adding Composer components to your customizable page, consider the following:
Page Customizable
to a page. Note: Do not add a second |
Page Customizable
component has only one direct child component. When you add multiple direct child components, only the first one is rendered at runtime. The first child component is stretched to fit the page. All other direct child components are ignored.
Page Customizable
component. ID
attribute is defined on all components on the page. Runtime editing of components that have no ID
value is not supported in Composer. If your page includes components with no ID
value, then you may encounter problems while editing the page in Composer.
Show Detail Frame
component within a Panel Customizable
component. Show Detail Frame
to enclose a single child only. If you must enclose multiple components in a Show Detail Frame
, then place a grouping component, such as a Panel Group Layout
or Panel Customizable
, within the Show Detail Frame
component and then place the ADF Faces components or other content within this grouping component. Show Detail Frame
components. Portlets come equipped with a header and display options that are similar to Show Detail Frame
components. In this example, assume you want to create a page that is customizable at runtime. The page is named MyPage.jspx
in a Framework application named MyWebCenterApp
.
To create a customizable page:
MyWebCenterApp
by performing the steps in Section 5.1, "What Are Application Templates?." MyPage.jspx
by performing the steps in Section 5.3, "Adding Pages to a Portal." Panel Stretch Layout
to MyPage.jspx
. Note: The |
Page Customizable
to the center facet by following the steps in Section 20.1.2, "How to Enable Runtime Customization Using a Page Customizable." Page Customizable
to blue
to differentiate the editable area from other noneditable areas. Under the Style category in the Property Inspector for the Page Customizable
, click the Box tab and set the Border Color
attribute to Blue
.
Panel Customizable
to red
. Under the Style category in the Property Inspector for the Panel Customizable
, click the Box tab and set the Border Color
attribute to Red
.
Change Mode Link
to the top facet of the Panel Stretch Layout
by performing the steps in Section 20.1.3, "How to Enable Switching Between Page Modes Using a Change Mode Link or Change Mode Button." Panel Customizable
that is a direct child of the Page Customizable
, add a Layout Customizable
component by following the steps in Section 20.1.5, "How to Enable Layout Customization for a Page Using a Layout Customizable." Show Detail Frame
components inside each Panel Customizable
on the page by performing the steps in Section 20.1.6, "How to Enable Component Customization Using Show Detail Frame Components," and set the Rich Text Editor
and an Image
component inside two of the Show Detail Frame
components nested in the Layout Customizable
. Drag and drop each of these components from the ADF Faces tag library to the required location on the page.
The hierarchy of components on the page is as shown in Figure 20-8.
Figure 20-8 Component Hierarchy in MyPage.JSPX
MyPage.jspx
. The page opens in View mode. Click the Edit link on the page to enter Edit mode. The page opens in Composer. In Composer, you can perform all editing tasks described in Section 18.4, "Editing Capabilities in Design View in Page Edit Mode."
Figure 20-9 shows how the page appears in Edit mode at runtime.
If your application is not configured with ADF security, then to use this sample page in other examples in this guide, configure ADF security on the application.
To configure security in your application:
For more information, see Section 69.3, "Configuring ADF Security."
ahunold
, sking
, and jdoe
. For the detailed procedure, see Section 69.2, "Creating an Application Role."
When you run MyPage.jspx
, a login screen is displayed. You can log in with any of the three user names that you created.
After you create an editable page with the required Composer components, you can populate the page with content just like a regular JSPX page. However, there are certain limitations and recommendations that you must be aware of when adding content to your Composer-enabled page.
Populating editable pages at design time is like populating any other ADF Faces page. You can drag and drop components from different areas of the IDE onto the page. You can add components like portlets, task flows, and ADF Faces components.
When you drag and drop a component anywhere inside a Page Customizable
component, the Id
attribute is set to a unique value. The Id
attribute is required for editing a component and persisting its changed state. When you add a component to a page at runtime, the Id
attribute is set automatically.
Consider the following when adding content to your editable page:
Panel Customizable
components that are nested in the Page Customizable
component. This ensures that the components can be edited at runtime. Show Detail Frame
component. However, portlets contain headers similar to those provided by Show Detail Frame
components and can be added to Panel Customizable
components directly. There are no additional benefits to including portlets in Show Detail Frame
components. Output Text
and Output Formatted
nested inside a Page Customizable
component, then ensure that you set the clientComponent
attribute value. If this attribute value is not set, then you may encounter errors while trying to move or rearrange components on the page at runtime. Users can personalize, customize, and edit task flows that are added to a customizable page. In a secured application, users with Customize permission on the task flow can also edit components on the task flow's page.
Consider the following points when adding task flows to your customizable page:
TaskFlowPermission
grant in the application's jazn-data.xml
file, with at least View
action provisioned. You must set this explicitly as it is not enabled by default. TaskFlowPermission
grant in the application's jazn-data.xml
file, with Customize
action provisioned. You must set this explicitly as it is not enabled by default. For more information, see Section 0.1, "Implementing Task Flow Security."
This section provides information to assist you in troubleshooting problems you may encounter while using Composer.
Configuring ADF Logging for Composer
While creating your applications in JDeveloper, you can use the JDeveloper debugging tools to easily find errors in your web pages or page definition files. You can also set up the Java logger to display Java diagnostic messages. For detailed information about configuring logging, see the chapter titled "Testing and Debugging ADF Components" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. To configure logging for Composer, perform the tasks in that guide and ensure that the oracle.adf.view.page.editor
and oracle.adfinternal.view.page.editor
packages are configured in the logging.xml
file, with the desired logging level.
Problem
When you run a page, the following error displays:
Solution
This error occurs if a page containing the Page Customizable
component does not have the required task flow binding in its page definition file. Ensure that the page definition file contains the following valid entry under the <executables>
node:
This error may also occur if your page is based on a page template and that page template contains the Page Customizable
component. In such a case, the af:pageTemplate
tag does not contain the value="#{bindings.pageTemplateBinding}"
attribute.
Ensure that the page definition file has the following entry under the <executables>
node:
<page path="view.pageDefs.templateDef1PageDef" id="pageTemplateBinding" Refresh="ifNeeded"/>
Problem
Users cannot switch to Edit mode. The Edit link (Change Mode Link
or Change Mode Button
) appears disabled.
Solution
The user may have only view privilege on the page. Ensure that the user has the edit privilege on the page. For the page template on which the page is based, it is sufficient to have only view privilege.
Problem
Users encounter an exception while wiring events in the Component Properties dialog in Composer.
Solution
This error occurs if your application page includes both ADF Data Visualization components and Composer components.
Register the DvtElementObjectFactory
class with the Oracle ADF FactoryManager
object by adding the following code to the application class that gets loaded the earliest:
This chapter describes how to use Composer's declarative and programmable extensibility mechanism to customize Composer to suit your business needs. It contains the following sections:
Composer provides a framework on which to build customizable application pages. In addition to its default capabilities, you can extend the Composer framework to augment the runtime capabilities available to end users. You must configure the extensions in your application's adf-config.xml
file and the Composer extension file, pe_ext.xml
. For information about these files, see Section 21.1.8, "Configuration Files."
This section describes the options available for extending Composer runtime capabilities declaratively. It contains the following subsections:
The Page Properties and Reset Page buttons on the Composer toolbar (Figure 21-1) are examples of add-ons. Click these buttons to display panels for editing page properties and resetting page customizations. Typically, add-ons are custom task flows that are rendered as buttons on the Composer toolbar in page Edit mode. You can create add-ons that appear along with the Page Properties and Reset Page add-ons. For example, you can create an add-on to display page revision history so that it displays a Revisions button on the Composer toolbar. Clicking this button would display the page's revision history. You can also replace the Page Properties and Reset Page add-ons with custom add-ons that you create.
Figure 21-1 Default Add-Ons on the Composer Toolbar
The process of configuring custom add-ons includes creating the task flows, packaging them into JAR files, and defining them in the Composer extension file. For more information, see Section 21.2, "Creating Composer Add-Ons."
The Component Properties dialog displays categories of attributes on different tabs. Each tab can be referred to as a property panel. The default Component Properties dialog in Composer is analogous to the Oracle JDeveloper Property Inspector. You can create and register custom property panels for a component, populate them with component properties, and display them as tabs along with the default tabs in the Component Properties dialog.
The process of configuring custom property panels includes creating them as task flows, packaging them into JAR files, and defining them in the Composer extension file. For more information, see Section 21.3, "Creating Custom Property Panels."
Composer provides an intuitive user interface for editing pages at runtime. This includes such UI components as the Save, Close, and Delete buttons. When a user clicks a button or icon in Composer, an event handler ensures that a specific action is performed. An event handler is the code that is called back by Composer when a Composer event is invoked. Each UI event in Composer is associated with an event handler. Sometimes it may be necessary to augment Composer's innate capabilities by performing a different action or multiple actions on invoking an event. For example, when a user clicks Save, in addition to the save operation that Composer provides by default, you might want to configure the application to perform additional tasks such as cleaning up cached information and connections to resources. You can accomplish this with event handlers. For more information, see Section 21.6, "Configuring Event Handlers for Composer UI Events."
The Resource Catalog provides resources that users can add to their pages. An Add link next to a resource name enables users to add it to the page. Composer provides drop handlers to handle the add operation in the catalog. By default, a drop handler is configured for each resource in the catalog. If you want to provide complete control of the drop action to the resource, you can create additional drop handlers for that resource. The Add link then displays a context menu with different options for adding the resource to the page. You can create one or more drop handlers to handle different flavors for resources in your catalog.
You can add the following types of drop handlers:
For more information, see Section 21.7, "Configuring Drop Handlers in the Resource Catalog."
The Component Properties dialog displays properties of a selected component. By default, Composer filters certain component properties and displays a subset of properties to users. You can define filters declaratively to further hide properties that the user need not see, or to show properties that are hidden. For more information, see Section 21.8, "Defining Property Filters."
Customization Manager is a task flow that enables users to download, upload, reset, and delete application customizations on objects like pages and task flows. You can configure the Customization Manager either in Composer or outside of it, on some administrative page. For information about configuring and using Customization Manager, see Section 21.9, "Enabling Parameter Support on the Customization Manager Task Flow."
The default Composer toolbar displays elements on two rows. The first row displays the page name and status indicator, and the second row displays the View menu, Page Properties button, Reset Page button, and Close button, as shown in Figure 21-2.
Figure 21-2 Composer Toolbar with Default Elements
You can customize the toolbar by adding, deleting, or rearranging elements. You can also override existing elements with custom elements. For example, you can remove the message showing the page name if you do not want users to see the name of the page they are editing.
For information about customizing the Composer toolbar, see Section 21.10, "Customizing the Composer Toolbar."
Before you start with the extensibility configurations described in this chapter, there are two important configuration files that you must know about. Most of the extensions discussed in this chapter are defined in these files:
pe_ext.xml
) The Composer extension file, pe_ext.xml
, enables you to extend the editing capabilities provided by Composer. Within this file you can add elements to register new Composer add-ons and custom property panels, selectively render panels, register event handlers, and define property filters. The pe_ext.xml
file is not available in your application by default. You must create it the first time you perform such tasks as including add-ons, property panels, or event handlers. Create this file in the META-INF
directory under the project's Web context root or in the application_home
/
project
/src/META-INF
directory. When you run the application, the pe_ext.xml
file is picked up from the JAR file included in the application classpath. Your application can include more than one extension file. However, you must ensure that the JARs containing the extension files are available on the application classpath so that the pe_ext.xml
files are picked up for processing. Every JAR with a pe_ext.xml
in its META-INF
folder is processed, and the Composer extensions are loaded and combined. For information about the different elements you can define in pe_ext.xml
to extend Composer capabilities, see Section B.2.1, "pe_ext.xml."
adf-config.xml
file The adf-config.xml
file specifies application-level settings that are usually determined at deployment and often changed at runtime. When you perform such tasks as registering new add-ons and custom property panels in Composer, or creating customization layers, you must add appropriate entries in the adf-config.xml
file. The adf-config.xml
file is created automatically when you create an application, and when you add a Page Customizable
component to the page, certain configurations are added to this file.
For information about the Composer-specific configurations you can make in adf-config.xml
, see Section B.2.2, "adf-config.xml."
Composer provides the following default add-ons for runtime editing:
This dialog opens when users click the Page Properties button on the Composer toolbar. The Page Properties dialog displays the current page's properties and enables users to modify property values.
The Reset Page dialog opens when users click the Reset Page button on the Composer toolbar. The Reset Page dialog enables users to remove application customizations made to a page and reset it to a previously-saved version or to its original out-of-the-box state. For more information, see Section 18.4.11, "Reset Page."
In addition to these, you can register new add-ons with Composer. For example, you can create an add-on to display page revision history so that it displays a Revisions button on the Composer toolbar. Clicking this button would display the page's revision history.
This section contains the following topics:
You can create and register custom task flows that can be invoked from buttons on the Composer toolbar. All registered add-ons have an associated button that displays on the toolbar.
This section steps through the procedure of creating an add-on and registering it with Composer. It includes an example that demonstrates how to create an add-on that displays information about the application. The example add-on renders an About button on the Composer toolbar (Figure 21-3) that users can click to invoke a task flow that contains information about the application.
Figure 21-3 About Button on the Composer Toolbar
This section contains the following subsections:
Composer add-ons are task flows you create using JSPX pages or page fragments.
To create an add-on:
custompanelview.jsff
: Example 21-1 Sample code in the JSFF Fragment
Note: At runtime, the add-on panel is automatically sized to fit the content in this fragment. |
custom-panel-task-flow
: custompanelview.jsff
fragment that you created onto the task flow definition. See Also: "Getting Started with ADF Task Flows" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework for information about creating task flows. |
Optionally, if you create the task flow in one application but want to consume it in another application, you must first package the task flow in an ADF library and add the resulting JAR in the consuming application.
To package the task flow in an ADF library:
<
Application_Root
>\Portal\deploy\
. You can add this JAR file to any application in which you want to consume the add-on.
After you create the task flows, you must register them with Composer so that they are displayed on the Composer toolbar along with the default options.
To register an add-on with Composer:
pe_ext.xml
in the META-INF
directory under the project's Web context root (for example, in the APPLICATION_HOME
\Portal\src\META-INF
directory): Name the file pe_ext.xml
.
<addon-config>
element in the file, with a nested <panels>
element. <panel>
element for each task flow that you want to register as an add-on. Any number of panels can be declared under the <panels>
element in the extension file.
Example 21-2 shows the code of the extension file with a <panel>
entry.
Example 21-2 Composer Extension File
For more information about the addon-config
and other nested elements, see Section B.2.1.1, "addon-config."
event-handlers
element within the panel
element as shown in the following example: For more information, see Section 21.6, "Configuring Event Handlers for Composer UI Events."
pe_ext.xml
file. To register an add-on, you must add a reference to it in the application's adf-config.xml
file. Add the addon-panels
entry to define new add-ons.
To register add-ons in the adf-config.xml
file:
adf-config.xml
file, located in the ADF META-INF
folder under Descriptors
in the Application Resources panel. adf-config
element in the file: <pe:page-editor-config>
entry with the namespace and include <pe:addon-panels>
inside it. When you register a custom add-on, the default add-ons are not displayed in Composer by default. To display all the default add-ons, you must set the show-default-addons
attribute on the <pe:addon-panels>
tag to true
. The default value for this attribute is false
.
Within <pe:addon-panels>
, add <pe:addon-panel>
entries for the new panels, as shown in Example 21-3.
The name
attribute must contain the name you used to register the panel in the Composer extension file.
Example 21-3 New Add-On Referenced in adf-config.xml
Note: If you do not specify any |
For information about the Composer-specific configurations you can make in adf-config.xml
, see Section B.2.2, "adf-config.xml."
Custom add-ons that you register with Composer are rendered on the Composer toolbar along with the default add-ons.
In the example, an About button is rendered on the Composer toolbar (Figure 21-4).
Figure 21-4 About Button in Composer Toolbar
Clicking this button displays the About the Application task flow (Figure 21-5).
Note: The add-on panel is automatically sized to fit the content inside the task flow. |
Figure 21-5 About the Application Task Flow
You can choose to show or hide the Page Properties, Reset Page, and Customization Manager buttons on Composer toolbar. To hide any of these add-ons, you must set the show-default-addons
attribute on <pe:addon-panels>
to true
, add an entry for the default add-on you want to hide, and set the rendered
attribute on that add-on to false
.
Example 21-4 shows the code to hide the Page Properties add-on.
Example 21-4 The adf-config.xml File with the Reset Page Option Excluded
The excluded add-on (Reset Page) is not displayed on the Composer toolbar. The other default add-ons are displayed on the toolbar in the default order.
The Customization Manager is a Composer add-on that enables users to manage application customizations on task flows, pages, and page fragments on a given page. For more information, see Section 18.4.14, "Manage Application Customizations."
The Customization Manager add-on is available in the Composer library, but is not rendered by default. You can enable it by configuring it in your application's adf-config.xml
file using a <pe:addon-panel>
element inside <pe:page-editor-config>
, as shown in the following example:
This configuration ensures that the Composer toolbar displays the Customization Manager button as shown in Figure 21-6.
Depending on your business requirement, you may need to selectively hide the add-ons available to different users in Composer. To selectively hide an add-on, you must set the show-default-addons
attribute on <pe:addon-panels>
to true
, add an entry for the default add-on you want to hide, and set the rendered
attribute for that add-on to false
using an EL expression, as shown in Example 21-5.
Example 21-5 rendered Attribute Setting in the adf-config.xml File
In this example, the securityBean
backing bean returns either true
or false
, depending on the role of the logged-in user. If the returned value is false
, Composer does not display the Reset Page button on the Composer toolbar. If the returned value is true
, Composer displays the Reset Page button.
Note: If you hide the Reset Page button on the Composer toolbar, the Reset Task Flow button displayed while editing task flow content is also hidden. The default value for |
Composer displays the properties of a component in the Component Properties dialog when a user clicks the Edit icon on the component. The Component Properties dialog provides a series of tabs. Each tab displays a group of related attributes. The attributes have associated values that control a component's behavior and visual style properties. For example, the Style tab displays the component's style-related properties, such as width, height, and background color.
Similarly, when a user clicks the Page Properties button, a Page Properties dialog opens with its own series of tabs. These tabs contain display-related page properties, page parameters, and security settings.
You can create and register custom property panels to render along with the tabs displayed in the Component Properties or Page Properties dialog. In addition, you can remove the default panels or replace them with custom property panels. For example, you can develop a friendlier property panel for an Image
component by displaying a picker for its Source
property. This would make it easier for users to select an image from the available options.
This section describes how to create custom property panels. It also describes how to exclude, override, and selectively render default property panels. It contains the following subsections:
Creating a custom property panel is similar to creating an add-on. That is, you create custom property panels as task flows and register them in the Composer extension file. However, while Composer add-ons are configured using the addon-panels
element in the adf-config.xml
file, custom property panels are configured using the property-panels
element in the extension file itself.
You can configure a custom property panel to display in the Component Properties dialog always. Alternatively, you can configure the panel to display only when a particular component or task flow is selected for editing.
This section describes how to create and register a custom property panel. It contains the following subsections:
Property panels provide a means of editing page or component properties. For example, a user can click the Edit icon on a selected task flow and modify its parameter values and change its visual attributes in the Component Properties dialog.
Composer enables you to associate property panels with components and task flows. When a user clicks the Edit icon on the component or task flow, Composer opens the Component Properties dialog and displays the custom property panels you associated with the object along with the default property panels.
The steps for creating a custom property panel and declaring it in the Composer extension file are similar to those for creating and declaring Composer add-ons. For detailed information, see Section 21.2.1.1, "Creating an Add-On Task Flow" and Section 21.2.1.2, "Registering Add-Ons with Composer."
Example 21-6 shows a sample property panel declaration in the pe_ext.xml
file.
Example 21-6 Custom Property Panel Declaration in pe_ext.xml
After you create a custom panel and declare it in the pe_ext.xml
file, you must configure it using the <property-panels>
element, as shown in Example 21-7. This ensures that the panel displays automatically in the Composer Component Properties and Page Properties dialog.
Example 21-7 Custom Property Panel Configuration in pe_ext.xml
Use one <panel>
element to register each custom panel. A <panel>
corresponds to a tab in the Component Properties dialog. You can add any number of <panel>
elements.
When you register a custom panel in the extension file, you can associate the panel with a component or a task flow. The custom property panel then renders only for that component or task flow. This section describes how to register a property panel for a specific component.
To register a property panel for a component:
pe_ext.xml
, if it does not already exist. For information about creating the extension file, see Section 21.2.1.2, "Registering Add-Ons with Composer."
<property-panels>
element inside the <addon-config>
section in the pe_ext.xml
file. <property-
panel>
declaration within the <property-panels>
element. You can have multiple <property-panel>
entries.
<property-panel>
element, add a <component>
element to specify the runtime class name of the component (optional) and a <panel>
element to specify the name you used to declare the panel in the <addon-config>
section of the file. Example 21-8 shows a custom property panel that is associated with a Command Button
component by specifying the component's fully qualified class name. For information about Oracle ADF components and their runtime classes, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Example 21-8 Code to Register a Property Panel for a Component
Note: When registering a property panel, if you do not associate it with a component or task flow (discussed in the next section), the registered panel is rendered at all times in the Component Properties and Page Properties dialogs. To configure multiple property panels for a component, you can include multiple |
All the default panels, such as Child Components, Style, and Parameters, are displayed along with the custom panels you define.
You can define a custom property panel for a task flow by registering it with the Composer extension file. Example 21-9 shows the sample code used to register a custom property panel for a task flow.
A custom property panel registered for a specific task flow appears only when its associated task flow is selected. Otherwise, default property panels appear.
Note: Use task flow-specific custom property panels only to customize task flow parameters or any other aspect related to how the task flow works. A custom property panel does not function if it is associated with a task flow rendered using the Oracle JSF Portlet Bridge. |
To register a property panel for a task flow:
<property-panels>
element within the <addon-config>
element in the pe_ext.xml
file. For information about creating the extension file, see Section 21.2.1.2, "Registering Add-Ons with Composer."
property-
panel
declaration within this. You can have multiple property-panel
entries.
taskflow-id
and panel
elements within the property-
panel
element. Add the taskflow-id
element to specify the task flow name. Add the panel
element to specify the name you used to declare the property panel in the addon-config
section of the file.
Example 21-9 shows a custom property panel associated with a dashboard
task flow.
Example 21-9 Code to Register a Property Panel for a Task Flow Instance
Notes:
|
If you associated the custom property panel with a specific component or task flow, at runtime the panel renders as a tab in the Component Properties dialog invoked from the specified component or task flow. If you did not associate the custom property panel with a specific component or task flow, at runtime the custom property panel renders as a tab in both the Page Properties and Component Properties dialogs for all pages, components, and task flows.
Note: In the Component Properties and Page Properties dialogs, custom panels are sized by the tab component containing the task flows. The size of the tab component itself is determined by a rule in the currently-applied skin. This rule is called |
The Component Properties dialog in Composer displays the following panels by default: Display Options, Child Components, Events, Style, Content Style, and Parameters. You can override a particular panel by using the default panel's name when you declare and register the custom panel in the pe_ext.xml
file. For information about the default panels, see Section B.3, "Composer Default Add-Ons and Property Panels."
Example 21-10 shows the code to override the Display Options panel with a panel defined using a task flow called custom-panel-task-flow
.
Example 21-10 Sample Code to Override a Default Panel
Out-of-the-box, all default property panels are displayed along with custom property panels that you configure. To hide a default property panel in the Page Properties or Component Properties dialog, you can add a line specifically for that panel and and set the rendered
attribute to false
.
Example 21-11 shows the rendered
attribute set to false
for the Content Style property tab of a Command Button
component. For information about default property panels, see Section B.3, "Composer Default Add-Ons and Property Panels."
Example 21-11 rendered Attribute for a Property Panel
Custom property panels registered in the application are rendered in the Component Properties dialog when users click the Edit icon on a specified component. You can configure your application to render a property panel selectively based on different criteria like the role of a logged-in user, the page being viewed, and so on. To display property panels selectively, you can use an EL value in the property-panel
's rendered
attribute as shown in the following example:
If you are building a custom property panel for a component, you can use Show Property
components, available from the Composer tag library, to expose the component's attributes on the custom panel. In the page fragment defining the custom panel task flow, you must add one Show Property
component for each attribute that you want to expose. Show Property
is a declarative component that reads a property value on the component or task flow (for which you have created the custom panel), and displays an input field for that property in the custom panel. Users can edit property values in the panel using the input fields.
For more information about custom panels, see Section 21.3.1.1, "Creating a Custom Property Panel."
To add a Show Property
component:
Show Property
component for each component attribute that you want to expose in the custom panel. Show Property
component by referring to Section B.1.7, "Show Property." Note: You can use the |
Example
Consider an example of a weather widget that is included inside a Show Detail Frame
component. A custom property panel is created to enable users to edit the Text, Auto Refresh, and Refresh Interval attributes on the weather widget. It includes three fields for users to provide values for these attributes. To enable users to set the three attributes on the weather widget, one Show Property
component is added for each attribute that is exposed in the panel. When a user edits the weather widget at runtime, the Component Properties dialog displays the custom panel with the three attributes, as shown in Figure 21-7.
The weather widget is consumed in a page along with a Poll
component as shown in the following example:
The Poll
component is used to deliver refreshed content to the weather widget at fixed intervals. The default interval is 60000 milliseconds.
The custom panel contains three panelLabelandMessage
components to provide input fields for the Text
, Auto Refresh
, and Refresh Interval
attributes. The fields on this panel are implemented as follows:
showProperty
component is added to each panelLabelandMessage
component as shown in the following example: where sdfCustomPanel
references a managed bean, SDFCustomPanelBean.java
.
SDFCustomPanelBean.java
bean provides the logic to handle values for the different attributes exposed in the panel. In the bean, the SelectionContext
API is used to read and write values for each attribute as follows: Show Detail Frame
component, as the weather widget is included inside one. For example, the Refresh Interval
attribute is enabled only if Auto Refresh
in selected, and it displays a dropdown menu with the values defined in the managed bean. The Poll
component on the page is wired to the Show Property
component so that the widget refresh is driven by the value of the Show Property component. The code to handle the value for the Refresh Interval
property is as follows:
Refresh Interval
property and clicks Apply in the Component Properties dialog, the save listener is called and the save
event handler ensures that the value is saved back to the bean. The relevant code in the save event handler implementation is as follows: All properties on the Parameters and Display Options tabs in the Component Properties dialog can take Expression Language (EL) expressions. The Expression Builder option available on such parameters opens the Edit dialog, which is a simple expression builder as shown in Figure 21-8. The expression builder is particularly useful when you want a value that is retrievable but otherwise unknown, for example, when you want a value to be the name of the current user or the current application skin.
You can customize the expression builder to provide more options by making the necessary entries in the Composer extension file, pe_ext.xml
. This section explains how to extend the expression builder to add custom capabilities. It contains the following subsections:
You can extend the expression builder by adding custom options to the expression value dropdown list. Custom options must be defined and included in the pe_ext.xml
file. For each new option you want to add, you must define and include a <selector>
element in the pe_ext.xml
file.
To configure custom options in the Composer extension file:
UserInformation.java
, with the logic to populate the expression dialog with your custom options. Example 21-12 shows the code of a sample Java bean used to display a new string, User Name
, as a custom value in the expression dialog. Example 21-12 Sample Code to Add a Custom Value in the Expression Dialog
<elbuilder-config>
element in the pe_ext.xml
file to register the bean. For information about creating the extension file, see Section 21.2.1.2, "Registering Add-Ons with Composer."
<selector>
element within the <elbuilder-config>
section, and provide details about the bean you created, as shown in the following example: You can have multiple <selector>
entries for different custom options.
Custom options display for all attributes by default. You can use the rendered
attribute on <selector>
to display an option conditionally, based on specific criteria.
pe_ext.xml
file. The selector in the runtime expression builder displays the custom value along with the default values, as shown in Figure 21-9.
Figure 21-9 Expression Builder Displaying a Custom Value
Typically, while editing a task flow parameter in Composer, the user enters a value in the text box provided in the Component Properties dialog, as shown in Figure 21-10. However, many a time the user is confused about what value to specify in a particular field. Rather than leave them guessing, as a developer who knows the values that each parameter can take, you can make it easier for users by listing all valid options, wherever possible. You can configure Composer to display a list of values (LOV) or a picker against any parameter.
Figure 21-10 Parameters Tab on the Component Properties Dialog for a Task Flow
You can display a predefined set of values for a parameter using the following options:
To display a list of predefined values.
To display a list of values generated by evaluating an EL value that is computed when the page is run.
To display a global list of values that can be used in any task flow in the application.
To display all values in a picker format, for example, a document picker.
This section describes how to configure different types of LOVs for task flow parameters. It contains the following subsections:
Example Used to Describe the Procedures in This Section
Some of the procedures in this section use the example of a simple weather task flow, weather-task-flow-definition
, which displays weather information for a selected city, as shown in Figure 21-11.
The task flow provides two parameters, zipCode
and tempUnits
, that users can modify to display weather details for a selected city and in a selected temperature unit (Fahrenheit or Celsius) respectively. This weather task flow example is used to explain how to configure the following types of LOVs:
Celsius
and Fahrenheit
for the tempUnits
parameter, as shown in Figure 21-12. zipCode
parameter to display values (Figure 21-14) based on an EL value that is evaluated at runtime. The weather task flow includes a task flow definition file, weather-task-flow-definition.xml
, with the code shown in Example 21-13.
Example 21-13 The weather-task-flow-definition.xml FIle
The parameters, shown in bold text, are defined in such a way that values provided by users at runtime are stored in a session bean, pageFlowScope
, from where they can be read by other components.
When you edit the task flow at runtime, the Parameters tab displays two input text fields to provide parameter values. The following sections explain how to enable LOVs for these task flow parameters so that users can choose from a list of predefined of options.
This section describes how to configure different types of LOVs for task flow parameters. It includes the following subsections:
Use a static LOV to display a list of predefined values against a parameter. You can configure a static LOV by defining an <lov-config>
section with nested <enumeration>
elements in the Composer extension file, pe_ext.xml
. This section uses the weather task flow example and describes how to configure a static LOV for the tempUnits
parameter.
To configure a static LOV:
pe_ext.xml
in the META-INF
directory under the project's Web context root (for example, in the APPLICATION_HOME
\Portal\adfmsrc\META-INF
directory): Name the file pe_ext.xml
.
<lov-config>
section and include the task flow definition with nested <enumeration>
elements, as shown in the following code example: You can configure any number of static LOVs within the <lov-config>
section.
Note: To allow translatable strings to be provided for a parameter name, you can use an EL value for the name, for example, |
Use a dynamic LOV to display a list that is generated dynamically at runtime by evaluating an EL value. This section uses the weather task flow example and describes how to configure a dynamic LOV for the zipCode
parameter. To keep the example simple, the managed bean only provides static values that are displayed on the Zipcode
field at runtime.
To configure a dynamic LOV:
weatherBean
, and define the list of values for the Zipcode
parameter. The following example shows the relevant code snippet: weatherBean
in the application's faces-config.xml
file, as shown in the following example: pe_ext.xml
in the META-INF
directory under the project's Web context root (for example, in the APPLICATION_HOME
\Portal\adfmsrc\META-INF
directory): Name the file pe_ext.xml
.
<lov-config>
section, include the task flow definition with an <enumeration>
element, and reference the managed bean for the parameter value, as shown in the following example: You can configure any number of dynamic LOVs within the <lov-config>
section.
Typically, a picker enables users to select a value from a popup dialog that displays all available options, for example, a color picker or date picker. Configuring a picker for a task flow parameter involves the following high level tasks:
pe_ext.xml
file. This section explains these steps in detail using the weather task flow as an example. It shows how to configure a city picker for the zipCode
parameter. The picker task flow enables users to specify the city name and get the ZIP code for that place. The ZIP code from the picker is then pushed to the Zipcode field in the weather task flow. This section includes the following subsections:
Create a picker task flow with a JSFF fragment. Design the fragment to display fields or options of your choice.
To create the picker task flow:
weather-picker-task-flow-definition
: view
object to the task flow, for example, weatherPicker
. weatherPicker.jsff
fragment. See Also: "Getting Started with ADF Task Flows" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework for information about creating task flows. |
Input Text
components that enable users to search for ZIP codes in an XML file, and two UI controls, OK
and Cancel
. Example 21-14 Sample code in the Picker JSFF Fragment
The action listeners on the OK
and Cancel
buttons reference a managed bean, weatherPicker
. This bean also contains the logic to populate the parameter on the main task flow with the value specified in the picker.
The following example shows the relevant code snippet of the weatherPicker
bean, which contains the logic to search for a city by name and return the ZIP code:
weatherPicker
bean in the task flow definition file, as shown in the following example: inParamVal
and outParam
, on the picker task flow, as shown in the following example: These parameters are referenced in pageFlowScope
and will be used to read and populate the main task flow parameter, zipCode
. When a user clicks the picker icon next to the Zip Code field, the current value of the field is passed to the session bean using inParamVal
. When a user specifies a city name in the picker task flow and clicks OK, the bean gets the ZIP code for that city and passes it to the main weather task flow using outParam
.
OK
and Cancel
buttons. These activities and rules ensure that control is returned to the task flow when either of the buttons is clicked. You can define task flow return activities and control flow rules as shown in the following example: The task flow definition will now have code similar to the following example:
To display a custom picker for a task flow parameter, you must configure the picker for that parameter in the Composer extension file, pe_ext.xml
.
To configure a picker for a task flow parameter:
pe_ext.xml
in the META-INF
directory under the project's Web context root (for example, in the APPLICATION_HOME
\Portal\adfmsrc\META-INF
directory): Name the file pe_ext.xml
.
<lov-config>
section and include the task flow definition with an <enumeration>
element referencing the picker task flow, as shown in the following code example: You can configure pickers for any number of parameters within the <lov-config>
section.
When you edit the main task flow at runtime, the Component Properties dialog displays a magnifier icon next to that parameter. Clicking the icon invokes the picker task flow, in which users can select a value.
If you want to reuse an LOV in different task flow parameters within the application, you can define the LOV at a global level and reference it from the task flow parameters.
To configure an LOV from a global list:
pe_ext.xml
in the META-INF
directory under the project's Web context root (for example, in the APPLICATION_HOME
\Portal\adfmsrc\META-INF
directory): Name the file pe_ext.xml
.
<lov-config>
section and list the values within an <enumeration>
element (outside of the task flow definition), as shown in the following code example: You can configure any number of global LOVs within the <lov-config>
section.
pe_ext.xml
file, as shown in the following example: Depending on the type of LOV you configured for the task flow parameter, users will see different options to specify parameter values.
The Temp Units field, shown in Figure 21-15, lists values from the static LOV that you defined in the pe_ext.xml
file.
If you configured a picker for the Zipcode field, the field shows a magnifier icon to its right. This icon invokes a picker, as shown in Figure 21-16, that allows users to select a city by providing a name or ZIP code.
Event handlers are Java classes registered with Composer and called when a users performs an action on the page. For example, when a user clicks a Save button, Composer calls back into the application code to give the application a chance to respond to the Save action—or event. In addition to the event handlers that Composer provides by default, you might want to configure the application to perform additional workflows. This is useful in performing application-specific tasks on such events. Moreover, this is the recommended approach to, for example, save the changes on a custom property panel.
Composer provides a means of registering event handlers for different events. This section describes how. It contains the following subsections:
When you register an event handler with Composer, it is called when the corresponding event is fired in the Composer UI. This section describes how to create an event handler and register it with Composer. It contains the following subsections:
Table 21-1 lists the UI events for which Composer currently supports registering of handlers.
Table 21-1 Events for Which Registering Handlers are Supported
Event | Cause | Event Type | Listener Interface to Be Implemented | Method to Be Implemented | Event Parameters |
---|---|---|---|---|---|
Save | Invoked when a user clicks the Save or Save and Label button on the Composer toolbar, or the Apply or OK button in the Component Properties dialog or Page Properties dialog. |
|
|
|
|
Close | Invoked when a user clicks the Close button on the Composer toolbar. |
|
|
|
|
Deletion | Invoked when a user deletes the component. |
|
|
|
Get the deleted component using |
Addition | Invoked when a user adds a component to the page from the Resource Catalog by clicking the Add button against an item. |
|
|
|
|
Selection | Invoked when a user selects:
|
|
|
|
|
To register an event with Composer, you must first create a Java class and implement the appropriate listener for the event handler. This section describes the steps to create a Save event handler. You can perform similar steps to create event handlers for all the supported events listed in Table 21-1.
A Save event handler is called when a user clicks the Save button on the Composer toolbar or the Apply or OK button in the Component Properties or Page Properties dialog. A Save event handler must implement oracle.adf.view.page.editor.event.SaveListener
. The isCommit
method of the Save event can be used to differentiate between changes made to the page and to component properties. A value of true
implies that the user clicked the Save button on the Composer toolbar to save changes made to the page. A value of false
implies that the user clicked the Apply or OK button in the Component Properties dialog to save changes made to component properties.
To create a Save event handler:
SaveHandler
. oracle.adf.view.page.editor.event.SaveListener
interface. Note: If you are not able to see the |
The Java class source looks like the following:
You must declare the processSave
method as throws AbortProcessingException
because the method may throw this exception if the event must be canceled. You can include the reason for canceling this event in the Exception object when you create it.
On throwing this exception, further processing of this event is canceled and the listeners that are in the queue are skipped.
You can create event handlers for all supported events by performing steps similar to these.
Tip: You can use the |
After creating and implementing an event handler, you must register it with Composer. Registration is necessary for ensuring that the handler is called back by Composer when the corresponding event occurs in the UI.
Register event handlers in the Composer extension file, /META-INF/pe_ext.xml
. For more information about creating this file, see Section 21.2.1.2, "Registering Add-Ons with Composer."
To register an event handler:
pe_ext.xml
file, add the following entries: The values you provide for the event
attribute and between the event-handler
tags are unique to the type of event being entered and the name you specified for the event class.
At runtime, registered event handlers are called according to the sequence in the extension file and according to the order in which they were found on the class path. Composer's native event handler is called last.
On invocation of an event handler's process
EventName
method, if an event handler throws AbortProcessingException
, then the event is canceled and no further event handlers are called, including Composer's native event handlers.If, however, an error occurs while instantiating an event handler, then Composer continues with the next event handler. A warning message is logged.
For every UI event triggered on the page in Composer, the corresponding event handler calls back a method from a listener registered with the application. By performing some additional configurations, you can specify the sequence in which event handlers must be executed and configure a listener to terminate a process or notify Composer that the event has been handled.
Specify a Sequence Number for an Event Handler
By specifying the sequence for event handlers, you can decide on the order in which the event handlers, and therefore the listeners, are called. You can assign a sequence number to a listener or modify the default value by defining a sequence
attribute against the registered event handler in the pe_ext.xml
file.
To specify a sequence number for a listener:
pe_ext.xml
file, locate the event-handler
element for the handler that you want to sequence. sequence
attribute as follows: The value for the sequence
attribute must be a positive integer. If you do not define this attribute, the event handler is internally assigned a default sequence number of 100
.
Composer built-in listeners and listeners with no sequence numbers are assigned a default sequence number of 100
. If you want your event handler to be called before other event handlers, you must specify a value lesser than 100
.
Stop Event Processing and Notify Composer
You can configure an event handler to terminate processing of the current event and all subsequent events by throwing an exception. For this, you must declare the method used while implementing the listener as throws AbortProcessingException
. In addition, you can configure the handler to notify Composer that the event has been processed by using the Event.setEventHandled(true)
method.
For example, you can configure a delete
event handler to terminate the current event and all pending delete events and throw an exception when a user attempts to delete a component in Composer. To enable this, you must implement the DeletionListener
interface as shown in Example 21-15.
Example 21-15 DeletionListener Implementation
Drop handlers are Java classes registered with Composer and called when users click an Add link in the Resource Catalog. A drop handler declares the data flavors it can handle. Each resource in the catalog has a flavor. When a user clicks an Add link next to a resource, Composer queries all the registered drop handlers to check if they can handle the flavor. If only one drop handler can handle that flavor, then control is passed to that drop handler and the resource is added to the page immediately. If more than one drop handler can handle the flavor, then a context menu displays available drop handlers to users. The resource is dropped on the page when a user selects a Java drop handler from the context menu.
An example for a resource with multiple Java drop handlers is the Personal Documents subfolder available within the Documents folder, if you configured the Documents service in your catalog. This subfolder can be added as a Content Presenter, Document List Viewer, or Document Library.
Note: The |
This section describes the procedure to create and register drop handlers in your application. It contains the following subsections:
This section describes how to create a sample drop handler for adding XML content from the Resource Catalog and register the drop handler with Composer. It includes the following subsections:
To create a drop handler with Composer, you must first extend the abstract base class, DropHandler
, and implement the getName()
, getAcceptableFlavors()
, and handleDrop()
methods. This section describes an example to add an XML component called Test
to the Resource Catalog and create a drop handler named Custom XML
for adding XML content.
To create a drop handler:
TestDropHandler
. Drophandler
class, oracle.adf.view.page.editor.drophandler.DropHandler
. Note: If you are not able to see the |
The Java class source must look like the following:
getName()
method as follows to return the name of the drop handler: This value (Custom XML
) appears in the context menu on the Add link next to the XML component in the Resource Catalog.
getAcceptableFlavors()
method as follows to get a list of supported data flavors for the XML component: handleDrop(DropEvent)
method as shown in the following sample file to handle the drop event and add the XML component to the page. In this example, a DropEvent
parameter is passed to the handleDrop
method. This parameter has three attributes that can be described as follows:
transferable
, like DataFlavor
, is a standard Java class that contains the data being added. container
is the container into which component must be dropped. index
is the position of the component inside the container. For example, first, second, and so on. TestDropHandler.java
file. After implementing the drop handler, you must register it with Composer. Registration is necessary for ensuring that the handler is called by Composer when a user clicks an Add link in the catalog. Register drop handlers in the Composer extension file, /META-INF/pe_ext.xml
. For more information about creating this file, see Section 21.2.1.2, "Registering Add-Ons with Composer."
To register a drop handler:
pe_ext.xml
file, add the following entries: where TestDropHandler
is the name of the drop handler implementation.
You can register any number of drop handlers in the extension file by adding that many <drop-handler>
elements.
Since you created a drop handler for XML components generated by the XmlComponentFactory
class, you can test how the drop handler works at runtime by adding an XML component to the Resource Catalog and then adding that component to your page at runtime.
To add an XML component to the catalog:
default-catalog.xml
. For information about the location of this file, see "Default Resource Catalog Configuration".
<contents>
section of the file: default-catalog.xml
file. At runtime, the Resource Catalog shows the XML component, as shown in Figure 21-17. For more information, see Section 16.2.3.4, "Adding a Component."
Figure 21-17 XML Component in the Catalog
When a user clicks the Add link against a component in the catalog, all drop handlers supporting that flavor are displayed as options on the context menu of the Add link. However, if only a single drop handler is available to handle that flavor, then the resource is added to the page immediately.
Figure 21-18 shows the context menu displayed on clicking the Add link of the Test
XML component with the Custom XML
option and the default XML option.
Figure 21-18 Drop Handlers on an XML Component in the Catalog
Some component properties are not displayed in Composer's Component Properties dialog because they are filtered out by default. The default filters are defined in the <filter-config>
section of the Composer's extension file (/META-INF/pe_ext.xml).
Global filters filter attributes for all components. They are defined using the <global-attribute-filter>
tag. Tag-level filters filter attributes for a specified component only. They are defined using the <taglib-filter>
tag.
Note: In an extension file, you can have any number of |
You can define additional filters to hide more properties in the Component Properties dialog. This section describes how. It contains the following subsections:
Composer defines a built-in filter configuration. You can use the extension file, pe_ext.xml
, to define additional property filters and to delete filters. You can define any number of filters, even for a single tag, in different extension files. Composer merges the filtering information from all the extension files.
To define property filters in an extension file:
pe_ext.xml
file, add the filter-config
element as shown in the following example: Note: For information about creating the |
At runtime, when you edit a component's properties, the properties that were filtered out are not rendered in the Component Properties dialog.
You can remove global and tag-level filters so that previously filtered properties are now rendered in the Component Properties dialog. This is useful for displaying properties that are filtered out by Composer's built-in filters or by another extension file defined elsewhere the application.
Note: After you remove a property filter, it is rendered in the Component Properties dialog even if a filter is defined for that property in another extension file. |
To remove a property filter:
pe_ext.xml
, available in the META-INF
directory. You can remove property filters by editing entries in this file.
filtered
to false
in the <attribute>
tag as shown in the following example: If you enable parameter passing on the task flow, administrators can customize Customization Manager by setting certain parameters. By default, an administrator cannot pass parameters to the Customization Manager task flow in Composer. Table 21-2 describes the parameters supported by the Customization Manager task flow.
Table 21-2 Customization Manager Task Flow Parameters
Parameter Name | Value | Description |
---|---|---|
defaultPage | Page URI | Used to specify the default page to be managed. If this value is null, the current page will be used. |
dynamicNodeMap |
| Used to return a list of pages, XML documents, or task flows on a given page or fragment, using the following format: Page1.jspx -> List of {CustomizationManagerTaskFlowNode or CustomizationManagerPageNode or CustomizationManagerXMLNode} Use Use Use |
showBase | true/false Default: false | Used to show or hide the column for the base document. |
showCurrentLayers | true/false Default: true | Used to show or hide the column showing details about the currently used layer. |
showAllLayers | true/false Default: true | Used to show or hide the column showing details about layers other than the current one. |
showLayersforCurrent |
| Used to specify a list of layers that must be available in the Current Context column. This parameter takes the layer name and list of layer values and patterns that must be shown in the Current Context column. See Example 21-16 for more information. |
showLayersforAll |
| Used to specify a list of layers that must be available in the All Layers column. This parameter takes the layer name and list of layer values and patterns that must be shown in the All Layers column. See Example 21-16 for more information. |
labelPrefixes |
| Used to specify a list of space-separated label prefixes that must be displayed in the Promote dialog. Only those labels created with the specified prefixes are displayed in the Promote dialog. By default, all the labels are displayed. |
maxDepth | String | Used to restrict the depth of a task flow hierarchy in the Customization Manager. The default value is You can display a maximum nesting of 10 task flows. Customization Manager displays only a depth of 10 even if you specify avalue higher than 10. |
showDownload | true/false Default: true | Used to show or hide the Download link. |
showUpload | true/false Default: true | Used to show or hide the Upload link. |
showDelete | true/false Default: true | Used to show or hide the Delete link. |
showPromote | true/false Default: true | Used to show or hide the Promote link. |
Note: The implementation of |
This section describes the steps to enable parameter editing on the Customization Manager task flow. It contains the following subsections:
To pass parameters to the Customization Manager task flow, you must define the parameters
attribute as part of the Customization Manager add-on panel configuration in your application's adf-config.xml
file.
To enable parameter editing on the task flow:
adf-config.xml
file, located in the ADF META-INF
folder under Descriptors
in the Application Resources panel. adf-config
element in the file: <pe:page-editor-config>
entry with the namespace and include an <pe:addon-panels>
entry. Within <pe:addon-panels>
, add an <pe:addon-panel>
entry for the default Customization Manager panel and define the parameters
attribute by setting it to appUtilBean.customizationManagerParams
, as shown in Example 21-16.
Example 21-16 Customization Manager Add-On Referenced in adf-config.xml
where AppUtilBean
is a sample implementation of the AppUtilBean
class, and is as shown in the following example:
adf-config.xml
file. Customization Manager displays options to users based on the new parameter settings.
You can customize the default Composer toolbar by adding, removing, or rearranging elements and overriding existing elements. To enable toolbar extensibility, the Composer toolbar elements have been grouped into sections. You can work with these sections to customize your toolbar. Each section has a specific name and contains one or more elements inside it, as shown in Figure 21-19.
Notes: The Save button is displayed on the toolbar only if the application is configured to use a sandbox. For more information, see Section 23.2, "Using Composer Sandbox." The Help icon is displayed on the toolbar only if you have configured a help provider in your application or hooked up help from Composer panels or dialogs. For more information, see Section B.4, "Composer Help Topic IDs." The Composer toolbar is created using the ADF Faces |
Table 21-3 describes the toolbar areas.
Table 21-3 Toolbar Areas
Section or Area | Description |
---|---|
| Area containing the message with the page name. |
| Area containing the status indicator. |
| Area containing the View menu that allows users to switch between Design view and Source view. |
| Area containing Composer add-ons. The add-ons are all displayed in a sequence within this area. For more information, see Section 21.2, "Creating Composer Add-Ons." |
| Area containing the Help icon. |
| Area containing the Save and Close buttons. |
| Wide space between two sections. |
| A line break between sections. All sections after a line break are pushed to a new line on the toolbar. |
Using toolbar sections, you can customize the Composer toolbar in the following ways:
This section describes the steps to customize the Composer toolbar. It contains the following sections:
Use the toolbarLayout
attribute on a Page Customizable
component to control which toolbar sections are displayed and the order in which they appear.
To customize the toolbar for all editable pages in the application, you can create a template, add a Page Customizable
component to the template, and specify the toolbarLayout
attribute against the Page Customizable
component. You can then base all the pages in the application on that template.
If you do not specify a value for toolbarLayout
, this attribute is internally set to message stretch statusindicator newline menu addonpanels stretch help button
, which is the default layout for the Composer toolbar sections.
To customize the toolbar on an application page:
Page Customizable
component in the Structure window. toolbarLayout
attribute. The section names in Table 21-3 are valid values for this attribute.
Note: You can add only one |
In Source view, the toolbarLayout
attribute appears as shown in the following example:
At runtime, the toolbar displays the sections you specified in the order you specified them (Figure 21-20).
You can add custom sections by creating facets and specifying the facet names in the toolbarLayout
attribute. Populate the new facets with elements you want to display on the toolbar. The following example shows you how to create a section; specifically, how to add a Report a Bug button that opens a popup that enables users to report a bug.
To add a custom section:
facet
inside the Page Customizable
and name it bugreport
. Command Toolbar Button
component inside the facet and set the text
attribute to Report a Bug
. icon
attribute. Show Popup Behavior
component to invoke a popup on clicking the Command Toolbar Button
. In Source view, the Page Customizable
would appear as follows:
At runtime, the Composer toolbar displays a Report a Bug button, as shown in Figure 21-21.
Figure 21-21 Composer Toolbar with Custom Section
Clicking the Report a Bug button displays the File a Bug dialog that enables users to report a bug.
You can display custom content in a default toolbar section by adding a facet of the same name as the section and populating it with custom content. The facet content overrides the content of the default section. For example, to display a custom message to users in place of the Editing Page:
Page_Name
message, you can create a custom facet named message
and include an Output Text
component with the text you want to display to users. The Output Text
component then displays in place of the default message. The following example shows a Page Customizable
component with a custom toolbar message:
Figure 21-22 shows the Composer toolbar displayed for the page at runtime.
Figure 21-22 Composer Toolbar with a Custom Message
This section provides information to assist you in troubleshooting problems you may encounter while using the Composer extensibility features.
For information about configuring logging, see "Configuring ADF Logging for Composer".
Problem
You created an add-on, but it does not appear on the Composer toolbar.
Solution
Ensure the following:
pe_ext.xml
file is in /META-INF
folder in a JAR file or the application and is available in the class path. pe_ext.xm
l is correct. <pe:addon-panel>
entry exists under the <pe:page-editor-config>
section in the adf-config.xml
file. For information about add-ons, see Section 21.2, "Creating Composer Add-Ons."
Problem
You have registered a custom property panel. However, it does not appear in the Component Properties dialog when your select a component to display its properties.
Solution
Ensure the following:
pe_ext.xml
file is in /META-INF
folder in a JAR file or the application and is available in the class path. pe_ext.xm
l is correct. property-panel
registration is correct and is specified against the component you want the panel to appear against. Further, the fully qualified class name of the component is correctly specified using the component
node. true
. For information about custom property panels, see Section 21.3, "Creating Custom Property Panels."
Problem
You do not see some properties of a component in the Component Properties dialog.
Solution
Ensure that the component properties are not filtered or restricted. For more information, see Section 21.8.1, "How to Define Property Filters" and Section 24.4, "Applying Attribute-Level Security."
This chapter describes how to perform certain advanced Composer configurations to enhance the end user experience. It contains the following sections:
You can use the Show Detail Frame
component's facets to define and display custom actions on Show Detail Frame
components. For example, if your Show Detail Frame
contains a list of services provided in your application, you can add a custom action, Show Detailed Information
, which opens up a task flow containing details about the various services.
For information about the facets supported by Show Detail Frame
components, see Section B.1.5, "Show Detail Frame Component."
Oracle JDeveloper displays all facets available to the Show Detail Frame
component in the Structure window, however, only those that contain UI components appear activated.
To add a Show Detail Frame facet, perform the following steps:
Show Detail Frame
component in the Structure window, and select Facets - Show Detail Frame. Note: A check mark next to a facet name means the facet is already inserted in the |
The f:facet
element for that facet is inserted in the page.
For an end-to-end example of creating and using Show Detail Frame
facets, see Section 22.2, "Enabling Custom Actions on a Show Detail Frame Component By Using Facets: Example."
Assume a JSPX page, Page1
, with a Panel Customizable
component. Inside the Panel Customizable
is a Show Detail Frame
component (showDetailFrame1
). Inside the Show Detail Frame
is an ADF task flow. The Panel Customizable
has two other Show Detail Frame
components, one above and the other below showDetailFrame1
. The task flow displays two Output Text
components on the page.
You can configure an Additional Actions
facet on the Show Detail Frame
component to display a Customize action on the Actions menu along with the Move Up and Move Down actions. At runtime, the Customize action enables users to customize the text in the Output Text
components. This section describes the steps you take to achieve this effect. It contains the following subsections:
To create an ADF task flow:
view1
to view
2. Name this control flow case next
.
view2
back to view1
and name it prev
. BackingBean.java
to contain values for two variables view1
and view2
. view1
and view2
are initialized with initialValue1
and initialValue2
respectively. Ensure that the code of the bean is as show in the following example:
view1.jsff
) for that element. view1.jsff
. Value
for the first Output Text
component to be #{backingBean.view1}
, and specify the Value
for the second Output Text
component to be #{backingBean.view2}
. view1.jsff
, and close it. view2.jsff
) for that element. view2.jsff
, and specify Value
to be #{backingBean.view2}
. view2.jsff
, and close it. To include an Additional Actions facet:
Page1.jspx
, with a Panel Customizable
component and a nested Show Detail Frame
component. Show Detail Frame
components, above and below the existing Show Detail Frame
component. The purpose of adding three Show Detail Frame
components is to enable the display of Move Up
and Move Down
actions along with the additional action on the first Show Detail Frame
component, showDetailFrame1
.
showDetailFrame1
. Show Detail Frame
in the Structure window, and select Facets - Show Detail Frame. The f:facet-additionalActions
element for that facet is inserted in the page.
Additional Actions
facet, and add a Button component inside the Panel Group Layout
component. Text
attribute for the Button
to Customize
, and specify customize
as the Action
value. The page in the structure navigator should appear as shown in Figure 22-1.
Figure 22-1 Page1.jspx in Structure Navigator
To create the redirection page:
Page2.jspx
, and add two Input Text components and a Button component. Value
for the first Input Text
component to #{backingBean.view2}
, and set the Value
attribute for the second Input Text
component to #{backingBean.view1}
. The purpose of adding Input Text
components with references to the backing bean is to enable the passing of a user's input to the bean so that it can be reflected in the Output Text
components on Page1.jspx
.
Button
component, set the Text
attribute to OK
and specify back
as the Action
value. You can now enable switching between the two pages by defining navigation rules.
To define navigation rules between the pages:
backingBean
as the name. BackingBean
Java class that you created earlier. Click OK. In Source view, these entries appear as follows:
In JDeveloper, run Page1.jspx
. The Actions menu on the showDetailFrame1
component displays the Customize action, as shown in Figure 22-2.
Figure 22-2 Customize Action on the Actions Menu
Clicking Customize takes you to Page2.jspx
(Figure 22-4), where you can update the values for Label1
and Label2
.
Figure 22-3 Page with Option to Edit Text
Clicking OK takes you back to Page1.jspx
, which reflects the recent text changes, as shown in Figure 22-4.
You can customize a task flow by including it in a Show Detail Frame
component. The Show Detail Frame
component provides certain default actions to rearrange, show, and hide components. Further, you can define custom actions to trigger the desired navigational flow within the task flow at runtime. There are two ways in which you can enable custom actions on a task flow:
Show Detail Frame
component's Actions menu. Show Detail Frame
component enclosing the task flow so that they are displayed on the Show Detail Frame
component's Actions menu. This section describes both approaches. It includes the following subsections:
Perform the steps in this section if you want the task flow to be self-contained, without the need to inherit global custom actions defined at the application level. You can define custom actions on a task flow by configuring a <customComps-config>
section with a nested <customActions>
element in the adf-settings.xml
file. The additional custom actions specified in the adf-settings.xml
file are displayed on the Show Detail Frame
component that surrounds this task flow.
Typically, task flows are packaged and deployed as ADF libraries. When you create an adf-settings.xml
file containing custom actions for a task flow, this file is also packaged in the ADF library.
To enable custom actions on a task flow:
adf-settings.xml
file in the META-INF
directory under the project's Web context root (for example, in the APPLICATION_ROOT
/Portal/src/META-INF
directory): Name the file adf-settings.xml
.
<custComps-config>
section in the file, with a nested <customActions>
element. <customAction>
element for each internal task flow action that you want to display as a custom action on the Show Detail Frame
Actions menu. You can add any number of custom actions under the <customActions>
element.
Example 22-1 shows the code of the adf-settings.xml
file with a <customAction>
entry.
Example 22-1 The custComps-config Section in an adf-settings.xml File
Custom action definitions are similar at the task flow-level and application-level, except for the taskFlowId
attribute that is used in the task flow-level setting. This attribute is used to identify the task flow on which the custom action must be defined. As an ADF library may have multiple task flows, this attribute helps identify the task flow that must render the custom action.
Notes:
|
adf-settings.xml
file. You can define custom actions for a task flow on the enclosing Show Detail Frame
component. When these actions are invoked at runtime, they trigger the desired navigational flow in the task flow. For example, you can define a custom action on a Show Detail Frame
that specifies that the target task flow fragment opens in a separate browser window rather than inside the Show Detail Frame
.
You can specify custom actions on Show Detail Frame
components by adding Custom Action
components as children of a Show Detail Frame
component on the page. Custom actions defined in this way would be available only on the Show Detail Frame
instance, which has the custom action as its child. Alternatively, you can specify custom actions in the application's adf-config.xml file
. Custom actions defined in this way are available on all Show Detail Frame
instances in the application.
This section provides information about defining custom actions on a Show Detail Frame
. It includes the following subsections:
Define custom actions on a particular Show Detail Frame
component instance using the Custom Action
component. You can find the Custom Action
component in the Composer tag library. Custom actions are stored in the JSPX page definition file of the page that contains the Show Detail Frame
.
To define custom actions at the instance level:
Show Detail Frame
component, below the af:region
element. Add one Custom Action
component for each internal task flow action you want to display as a custom action on the Show Detail Frame
Actions menu.
Note: Add |
Custom Action
by referring to Table B-9 in Section B.1, "Composer Component Properties." Ensure that you populate the Action
attribute of each Custom Action
with the correct ADFc outcomes of the associated task flow. The code should be similar to the one shown in Example 22-2.
Example 22-2 Custom Action Code
Notes: You can add custom actions for all of the task flow's ADFc outcomes, but depending on the task flow view that is displayed, several or none of the custom actions are available at runtime. If you define a custom action without a corresponding task flow action, then the custom action is not rendered on the |
At runtime, when you select an action from the Show Detail Frame
's Actions menu, the associated control flow rule is triggered and the target task flow fragment is rendered.
Defining custom actions at the global level means making those custom actions available for all Show Detail Frame
instances in an application. Though global-level custom actions are available on all Show Detail Frame
components in an application, at runtime the header of any Show Detail Frame
displays only those custom actions that correspond to the ADFc outcomes of the current view of the task flow.
Define global-level custom actions in your application's adf-config.xml
file.
To define custom actions at the global level:
adf-config.xml
file, located in the ADF META-INF
folder under Descriptors in the Application Resources panel. <customActions>
element with nested <customAction>
tags for each action, as shown in Example 22-3. Tip: To render a custom action only in page Edit mode, you can set the |
Example 22-3 Custom Actions Definitions in the adf-config.xml File
Notes:
|
adf-config.xml
file. For additional information about defining custom actions, see Section 22.3.4, "How to Enable Custom Actions On a Show Detail Frame Enclosing a Task Flow: Example."
Resolving Conflicts Between Global-Level and Instance-Level Custom Actions
Each custom action is uniquely identified by the value of its action
attribute. If you have defined custom actions with the same action
attribute value at the global and instance levels, then there may be conflicts in how these custom actions are invoked at runtime, depending on other attribute values. At such times, the inheritGlobalActions
attribute of the Show Detail Frame
defines the behavior of other custom action attributes (other than the action
attribute) as follows:
Note: Regardless of the
|
inheritGlobalActions=true
, or you have not specified a value for inheritGlobalActions
(defaults to false
), the behavior of custom action attributes is as follows: inheritGlobalActions=true
, the behavior of custom action attributes is as follows: After you have designed your application pages, you must deploy the application to the production environment. For more information, see Chapter 70, "Deploying and Testing Your WebCenter Portal: Framework Application."
Note: Runtime customizations that you perform on the page in the development environment are not carried over when you deploy the application to a target server. |
Custom actions typically display the target task flow views in place, inside the Show Detail Frame
component. However, you can define a custom action to display a task flow view in a separate browser window.
To display a task flow view in a separate browser window, the control flow rule to that view must be prefixed with dialog:
in the task flow definition file and in the action
attribute of the custom action corresponding to that view. The following example shows an action
attribute definition:
Setting Properties on the Popup Window
For a command component inside a task flow region, you can specify the default behavior using the useWindow
, windowEmbedStyle
, windowHeight
, windowWidth
, and returnListener
attributes. The command component may have other such attributes that you can use. If you specify a return listener, on closing the dialog a particular action event is called to decide on the next navigation outcome. By default, without this setting, a dummy Rich Command Link
component is created to trigger the task flow action.
When you define a listener on a command component, you must also configure the custom action to call the action event on this component. The actionComponent
attribute on a custom action definition (global- and instance-level) enables you to specify the ID of the command component that must be queued for the action event. When the actionComponent
attribute is specified, the Show Detail Frame
component queues the action event on this component. Since this command component is inside your task flow, you change its attribute values at any time.
Example
Consider an example where you have included a task flow inside a Show Detail Frame
component and defined a Simple Edit
custom action corresponding to the task flow's navigation outcomes. A Command Button
component inside the task flow is configured to launch a modal inline popup of size 300x200
on clicking the Simple Edit
custom action. A return listener is configured on the command component so that it is called whenever the popup is closed.
The source code of the Command Button component inside the region is as follows:
Example 22-4 shows how you can specify a global custom action corresponding to the task flow outcome by defining the custom action in the adf-config.xml
file. The ID of the Command Button
component is specified against the actionComponent
attribute on the custom action.
Example 22-4 Global Custom Action Defined in the adf-config.xml File
Example 22-5 shows how you can specify an instance-level custom action corresponding to the task flow outcome by adding a Custom Action
component from the Composer tag library to the JSPX page. The ID of the Command Button
component is specified against the actionComponent
attribute on the custom action.
Example 22-5 Instance-Level Custom Action Defined in the JSPX Page
Note: A custom action that is launched in a popup dialog is sent as a new request to server. If you are using a Composer sandbox and are in Edit mode of a page, ensure that this request is launched in View mode by adding code in your servlet filter so that a new sandbox is not created for this page. |
Custom actions configured in the adf-settings.xml
file are merged with the custom actions configured in the adf-config.xml
file and all actions relevant to the current view of the selected task flow are displayed on the parent Show Detail Frame
component's Actions menu.
If you enabled custom actions at a global level, then the header of any Show Detail Frame
displays these custom actions if they correspond to the navigation outcomes of the current view of the child task flow.
If you prefixed the action
attribute value with dialog:
, then the target view of the task flow opens in a separate browser window.
In this example, assume that your application contains a task flow, customactions
, residing inside a Show Detail Frame
. The task flow includes three view elements, view_gadget
, edit_settings
, and about_gadget
, and three associated control flow rules, ViewGadget
, EditSettings
, and AboutGadget
. Your object is to define custom actions so that the control flow rules are available as actions on the Actions menu of the Show Detail Frame
component.
In this example, the control flow rules are added in such a way that users can navigate back and forth between the three views. Each view element has an associated page fragment of the same name:
view_gadget.jsff
fragment has a Panel Stretch Layout
component. The center facet of this component is populated with an Active Output Text
component whose Value
attribute is set to View Gadget
. edit_settings.jsff
fragment has a Panel Stretch Layout
component. The center facet of this component is populated with an Active Output Text
component whose Value
attribute is set to Edit Gadget Settings
. about_gadget.jsff
fragment has a Panel Stretch Layout
component. The center facet of this component is populated with an Active Output Text
component whose Value
attribute is set to About This Gadget
. To enable custom actions on the task flow:
customactions
task flow inside a Show Detail Frame
component on a customizable page, MyPage.jspx
. For information about creating a customizable page, see Section 20.1.1, "How to Create a Customizable Page."
Custom Action
component from the Composer tag library as a child of the Show Detail Frame
component, and set the Action
and Text
attributes to ViewGadget
and View Gadget
respectively. Custom Action
components to the Show Detail Frame
: Action
and Text
attributes for the first component to EditSettings
and Edit Settings
respectively. Action
and Text
attributes for the second component to AboutGadget
and About Gadget
respectively. MyPage.jspx
. The view_gadget
page fragment is rendered in the Show Detail Frame
component (named My Gadget) on the page. The Actions menu displays the About Gadget and Edit Settings options. Click About Gadget to navigate to the about_gadget
fragment. Note that the Actions menu now displays the navigation rules for the other two fragments (Figure 22-5).
Figure 22-5 Custom Actions on a Show Detail Frame Enclosing a Task Flow
To see this in action, look at the sample application, CustomActions.jws
, on the Oracle WebCenter Portal 11g Demonstrations and Samples page on the Oracle Technology Network (OTN):
The component navigator in Composer Source view provides an option to zoom into a task flow and display the components on its page or fragment, as shown in Figure 22-6.
Figure 22-6 Edit Action on a Task Flow Instance
Users can zoom in, edit the page or fragment, and zoom out of the task flow to navigate back to the page containing the task flow. In addition to the Edit Task Flow and Close links displayed next to a task flow name, you can configure your application to also display custom actions next to a task flow name, as shown in Figure 22-7.
Figure 22-7 Custom Action on a Task Flow Instance
This section describes the procedure to enable custom actions on task flows in the component navigator. It contains the following sections:
To display custom actions against a task flow in the component navigator, you must create a Java bean that defines the custom action behavior and call this bean from the application page containing the task flow. This section describes the steps to do so in detail. It contains the following subsections:
To begin with, you must decide on the custom action you want to provide to users and create a Java bean with the logic to be implemented when a user selects the custom action. This section describes the steps to implement simple logic to display a message to users on clicking the custom action. The sample bean also contains the code to display the Close/Edit Task Flow links along with the custom link.
To create a Java bean:
BackingBean
in the Name field and click OK. The BackingBean.java
file displays in Source view.
With this logic, the sample message you defined is displayed when a user clicks the custom action link against a task flow region.
Use the isRegion()
API to ensure that the custom action link is displayed only against task flow regions on the page. Use the isRootNode()
API to ensure that the Edit Task Flow or Close link is displayed against the root component of the task flow.
This section describes the procedure to create a JSPX page containing the custom action that you want to display to users in Composer.
To create the JSPX page:
customList.jspx
: Output Text
and Command Link
, as shown in the following sample page: This sample creates a custom action called Test
. The actionListener
and binding
attributes on this action are bound to BackingBean
, which you created earlier.
zoom
, as shown in the following example: zoom
facet in the page content as shown in the following example: The source of the customLink.jspx
page is as follows:
Let us assume that you have a simple JSPX page, MyPage
.jspx
, containing a task flow. The source of the page is as shown in the following example:
The task flow, taskflowdefinition1
, contains the following view.jsff
fragment:
To display the custom action that you created, you must ensure that the customLink.jspx
page is called from within Composer. Use the sourceViewNodeAction
attribute on the Page Customizable
component to reference the JSPX page containing the custom action.
The Page Customizable
tag appears as follows in the page source:
The sourceViewNodeAction
attribute can take the name of a JSPX file or an EL value that evaluates to a JSPX file name.
When you run MyPage.jspx
to the browser and open the page in Composer Source view, the component navigator displays a Test link and an Edit Task Flow link next to each task flow instance on the page. Figure 22-8 shows MyPage.jspx
in the component navigator, with the Test link highlighted. Clicking the Test link displays a sample message to the user.
Figure 22-8 Custom Action Displayed Against a Task Flow in the Component Navigator
Typically, users enter page Edit mode by clicking the Edit link or button on the page. You can now configure your application to enable users to enter page Edit mode using keyboard shortcuts. Further, you can configure your application to run some other event on using the shortcut keys. This section explains how to enable a keyboard shortcut to Composer and configure an event handler for the shortcut keys. It includes the following subsections:
You can configure linkless entry into page Edit mode by adding a <pe:mode-switch-key>
element to the application's adf-config.xml
file. The default keyboard shortcut configured when you set the <pe:mode-switch-key>
element is ctrl+shift+E
. Users can use this key sequence to toggle between page View and Edit modes. However, you can configure a key of your choice by adding a <pe:key-sequence>
property.
To add the <pe:mode-switch-key>
property:
adf-config.xml
file, located in the ADF META-INF
folder under Descriptors
in the Application Resources panel. <pe:mode-switch-key>
property and set its value to true
, as shown in Example 22-6. The example shows the <pe:key-sequence>
property with the shortcut value ctrl+E
. Use the <pe:mode-switch-handler>
element to specify the event that must be triggered on using the shortcut keys, as shown in the following example:
where, handleModeSwitch
uses the ModeChangeEvent
method to provide the logic to toggle between two modes, as shown in the following sample:
Users can access the application page and enter Edit mode by using the configured shortcut.
Composer provides a means of contextually wiring task flow events. You can wire a contextual event to an action handler to enable the passing of values from a producer component to a consumer component when the event is triggered on the producer.
For events to be available at runtime, event capability must be included in the task flow at design time. When you add event-enabled task flows to your customizable page, each task flow's Component Properties dialog includes an Events tab, where much of the wiring activity takes place. For information about including event capabilities, see "Creating Contextual Events" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
When a user invokes Composer by clicking the Edit button or link on a page, the page opens in Design view by default. If your business so requires, you can configure your application pages to display in Composer Source view by default.
The Edit Mode view
attribute on the Page Customizable
component enables you to select either Design view or Source view as the default page view in Edit mode.
To open a page in Source view by default:
Note: To open the page in Source view for selected users only, you can specify an EL value for the |
Setting the Source View Position and Size
By default, the component navigator in Source view is displayed at the top of the page, and its default height is 200
pixels. You can specify a different position or size for the component navigator using the sourceViewPosition
and sourceViewSize
attributes respectively on the Page Customizable
component. For more information about these attributes, see Section B.1.1, "Page Customizable."
By default, Source view is enabled in Composer-enabled pages. You can disable Source view if you want to prevent users from being able to edit any page components other than task flows, portlets, and layout components. This section describes how. It contains the following subsections:
Note: For information about the editing capabilities in Source view, see Section 18.5, "Editing Capabilities in Source View in Page Edit Mode." |
You can disable Source view by setting the <pe:enable-source-view>
entry to false
in the application's adf-config.xml
file.
Note: For information about the Composer-specific configurations you can make in |
To disable Source view:
adf-config.xml
file, located in the ADF META-INF
folder under Descriptors
in the Application Resources panel. enable-source-view
property and set its value to false
, as shown in Example 22-7. When a user switches to page Edit mode, the page is rendered in Design view and the View menu is not displayed to the user, as shown in Figure 22-9.
Figure 22-9 Design View of Page without View Menu
You can disable the capability to zoom into task flows in the application by setting the <pe:enable-zoom>
property to false
in the application's adf-config.xml
file.
Note: For information about the Composer-specific configurations you can make in |
To disable task flow zoom capability:
adf-config.xml
file, located in the ADF META-INF
folder under Descriptors
in the Application Resources panel. <pe:enable-zoom>
property and set its value to false
, as shown in Example 22-8. The ability to zoom into task flows is disabled in the entire application.
You can change the look and feel of Composer components by applying different styles to the component header and content using one of the following methods:
Notes: Using JDeveloper style properties overrides the style information from the skin CSS. However, when you define a style property using JDeveloper, this style overrides styles for the selected component only—child components continue to use the styles specified in the skin. |
You can adjust the look and feel of Page Customizable
, Panel Customizable
, Layout Customizable
, and Show Detail Frame
components at design time by changing the style-related properties inlineStyle
and styleClass
.
Show Detail Frame
components have another associated style property, contentStyle
, which defines the style for the content inside the component. The styleClass
property enables you to select an extra style from the skin, whereas the inlineStyle
and contentStyle
properties override the comparable styles specified in the application skin for that particular instance of the component.
The inlineStyle
property overrides styleClass
. Additionally, properties set on a component instance affect only that instance of the component. Other component instances in the application are not affected.
Note: The |
Understanding contentStyle and inlineStyle Properties
The style properties inlineStyle
and contentStyle
are alike in the types of attributes they support. They differ in their range of influence. While inlineStyle
provides style information for the entire component, contentStyle
provides style information only for component content. The contentStyle
property is available to Show Detail Frame
components but not to Panel Customizable
components.
The inlineStyle
property applies CSS to the root of the component, that is, the topmost DOM element. It does not override styles on child elements that are picking up color, font, and so on from a skin. For example, if a component header is skinned, then setting inlineStyle
does not affect the component header. The contentStyle
applies CSS to the DOM element that surrounds the content part of the component. In a Show Detail Frame
, content refers to the area below the header.
On component content, the value specified for contentStyle
takes precedence over the value specified for inlineStyle
. Additionally, contentStyle
on a component instance takes precedence over both inlineStyle
and the contentStyle
values of a parent component (such as a portlet nested in a Panel Customizable
component).
Figure 22-10 Defining Styles for contentStyle and inlineStyle in the Property Inspector
To persist user and application customizations across sessions, your application must be configured to use the change persistence framework. When you add Composer components to a customizable page, Composer configures the application to use ComposerChangeManager
so that changes made to a page at runtime are persisted appropriately.
The default change persistence behavior in release 11.1.1.1 applications is to save Edit mode changes to MDS. View mode changes are not persisted and are available only for that session. To persist View mode changes also to MDS so that they are available across sessions, you can configure your 11.1.1.1 applications to use ComposerChangeManager
.
This section describes the default change manager configuration in new Framework applications containing Composer-enabled pages and explains how to configure existing release 11.1.1.1 applications to use ComposerChangeManager
. It contains the following sections:
The first time you add a Composer component to your application page, Composer does the following to enable change persistence:
CHANGE_PERSISTENCE
context parameter to the web.xml
file, and sets the value to ComposerChangeManager
. This context parameter registers the ChangeManager
class to be used to handle persistence, as shown in the following example: persistent-change-manager
element in the adf-config.xml
file to the MDSDocumentChangeManager
. Composer configures MDSDocumentChangeManager
within the adf-faces-config
section as follows: The taglib-config
section in the file lists component tags and attributes that are persisted by default, as shown in the following example:
You can further enable change persistence for other tags and attributes by defining them in this section and setting the persist-changes
attribute to true
. For more information, see Section 24.4.1, "How to Define Change Persistence at the Component Level."
For a list of ADF Faces components and attributes that are implicitly persisted, see the chapter titled "Allowing User Customizations at Runtime" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
ComposerChangeManager
A ChangeManager
class is required for persisting application customizations performed by end users. ComposerChangeManager
handles change persistence both within a session and across sessions (to MDS). It delegates a users changes to the appropriate change manager as follows:
FilteredPersistenceChangeManager
to ensure that implicit customizations, such as column resizing and header collapse, work according to the filter rules configured in the application's adf-config.xml
file. MDSDocumentChangeManager
to ensure that both implicit and explicit customizations are always persisted and available across sessions. Notes: When you add Composer components to your application page, the option to enable customizations for the duration of the session (in the Project Properties dialog) is disabled. This is because changes in Composer-enabled application pages must be persisted across sessions, to MDS. |
Release 11.1.1.1 Framework applications containing Composer-enabled pages use MDSDocumentChangeManager
for persisting Edit mode changes by default. Since Composer now provides ComposerChangeManager
to persist user and application customizations, you can configure your existing applications to use ComposerChangeManager
so that user customizations (in View mode) are also persisted to MDS.
This section contains the following sections:
You must update the CHANGE_PERSISTENCE
context parameter to ComposerChangeManager
.
To modify the CHANGE_PERSISTENCE
parameter:
Application_Root
\
Project_Name
\
public_html\WEB-INF
directory. org.apache.myfaces.trinidad.CHANGE_PERSISTENCE
and update it to the following: web.xml
file. You must configure change persistence in the adf-faces-config
section of your application's adf-config.xml
file.
To configure change persistence in the adf-config.xml
file:
adf-config.xml
file. The adf-config.xml
file is located in the ADF META-INF
folder under Descriptors
in the Application Resources panel.
adf-confi
g section: This ensures that MDSDocumentChangeManager
is used to persist View mode changes to component tags and attributes listed in the taglib-config
section. By default, the following View mode changes are persisted:
Panel Customizable
component: Rearranging of components within the container or across containers. Show Detail Frame
component: Expanding, collapsing, and resizing of components. You can enable change persistence for other tags and attributes by defining them in this section and setting the persist-changes
attribute to true
. For more information, see Section 24.4.1, "How to Define Change Persistence at the Component Level."
adf-config.xml
file. Note: When you configure |
Component properties edited in Composer are available only in the current language. For example, if you add a task flow to your page, the task flow title you enter in Composer is available only in the current language. As a result, users in different locales do not see the translated values for such properties. To provide language support for component properties edited at runtime, Composer now provides users the option to edit resource strings for component display options that can take String values. This is similar to the resource string editor feature provided by ADF Faces in JDeveloper. Changes made to resource strings in Composer are saved into an override bundle, which gets translated along with other resource bundles in the application. The translated versions are then imported back into the application. This way, users are able to see the property values in their language.
Note: Composer supports creation of around 500 resource strings at runtime. Beyond this number, application performance slows down. |
Release 11.1.1.1 Framework applications containing Composer-enabled pages do not support editing of resource strings at runtime. You can enable resource string editing in your existing application by performing a few simple configurations. This section describes the steps to enable resource string editing in an existing release 11.1.1.1 application. It contains the following sections:
At runtime, for component display options that can take String values, the Edit menu next to the property field provides a Select Text Resource option. Clicking this option opens the resource string editor, which provides options to search existing resources, edit or delete resource keys, and add new resource key/value pairs. For information about editing resource strings at runtime, see Section 18.4.5, "Edit Resource Strings."
Changes made to resource strings in Composer are saved into an application override bundle. This bundle is sent for translation and the translated versions are imported back into the application. This way, users are able to see the property values in their language.
The ComposerOverrideBundle.xlf
is an empty XLIFF file that is packaged with Composer libraries. This bundle becomes available to the application when you add Composer components to the page at design time. At runtime, Composer uses this bundle internally to read from and write to the application override bundle while editing resource strings.
New and updated property values are saved into the override bundle. A user must specify a key, value, and description for each string being created or modified. All resource string changes made in an application are saved in a single override bundle. To distinguish runtime changes made in different layers, the key value is prefixed with the MDS layer name and value and must be in the format, RT_<
MDS Layer Name
><
MDS Layer Value
>_
Key Name
. For example, RT_sitewebcenter_WELCOME_MESSAGE
. For a selected property, users can search and use resource strings created in any MDS layer. However, they can edit only those resource strings that were created in the same MDS layer. In addition to searching the override bundle, users can also search for strings created and used in the JSPX page at design time. Internally, Composer searches for all resource bundles defined using c:set
tags in the JSPX file.
Runtime resource string changes in English are saved to the default application override bundle. Users can change the language and create or edit a resource string in that language. A separate override bundle is created for each language in which a user writes a resource string and the file name is suffixed with the initials for that language. For example, resource strings edited in French in Application1
are saved in a bundle named Application1OverrideBundle_fr.xlf
.
Current Limitations of the Resource String Editor
If the EL value for an ADF resource is referenced in a page definition parameter, such as page parameter, task flow parameter, or portlet parameter, then the binding EL returns an empty value. Users must avoid referencing ADF resource EL values in page definition parameters.
To enable resource string editing in your application, you must add a <pe:resource-string-editor>
element in the <pe:page-editor-config>
section of your application's adf-config.xml
file, as follows:
If you want to enable resource string selectively, based on specific criteria, such as the page being edited or the user or role, you can use an EL value for the enabled
attribute.
If you enable resource string editing in your application, you must configure your application to use the override bundle, oracle.adf.view.page.editor.resource.ComposerOverrideBundle.xlf
, which is available in the pageeditor.jar
file. This override bundle is used for reading and writing to the application override bundle when users create or edit resource strings at runtime.
To configure the override bundle:
Figure 22-11 Application Properties Dialog
oracle.adf.view.page.editor.resource.ComposerOverrideBundle.xlf
, as shown in Figure 22-12, and click Open. Figure 22-12 Select Resource Bundle Dialog
This ensures that the file is available to users at runtime.
Repeat the steps in this section to expose any of the resource bundles in your application to users at runtime.
Note: To make a resource bundle accessible for runtime read and write operations, you must ensure that the Override option is selected for that bundle in the Application Properties dialog. You can make properties bundles, list resource bundles, and XLIFF resource bundles accessible at runtime. |
When a user clicks the Edit icon next to a property that takes a String value, the Select Text Resource option is available. Clicking this option opens the resource string editor in which the user can create, modify, or delete resource strings. For more information, see Section 18.4.5, "Edit Resource Strings."
This section provides information to assist you in troubleshooting problems you may encounter on performing advanced Composer configurations.
For information about configuring logging, see "Configuring ADF Logging for Composer".
Problem
You added a global- or instance-level Custom Action
. However, it neither displays on the chrome or in the Action menu on the Show Detail Frame
.
Solution
Ensure the following:
Show Detail Frame
must be af:region
. Custom
Action
. dialog:
, the outcome in the task flow definition must also have the same prefix. For information, see Section 22.3.2, "How to Enable Custom Actions on a Show Detail Frame Enclosing a Task Flow."
Problem
Composer is not working on ADF application pages. Errors are reported in the logs when using WebCenter Portal's Resource Catalog or Component Properties dialog. None of the customizations are saved. Objects are not getting added from the catalog.
Solution
Composer is compatible with the MDSDocumentChangeManager
and ComposerChangeManager
. You must set the CHANGE_PERSISTENCE
context parameter in the web.xml
file to either of these. The following example shows how to set CHANGE_PERSISTENCE to MDSDocumentChangeManager
:
When you configure Composer, the value of CHANGE_PERSISTENCE
is changed to oracle.adf.view.page.editor.change.ComposerChangeManager
.
This chapter describes how to create customization layers for saving changes made to the page at runtime. It also describes how to enable Composer sandbox creation to provide users the option to preview their changes before saving them to the back end. It contains the following sections:
Most industries customize their enterprise applications to serve different audiences and domains. Problems can arise when an application is modified at the site level. For example, upgrading an application with site-level customizations may lead to data loss or data-merge errors. Consequently, a new version of the application cannot be deployed until all merge conflicts are reconciled.
In the metadata domain, MDS provides the customization feature to address such problems. The customization feature allows for the creation of nonintrusive customization layers that are applied on top of the base application definitions. Customization layers, or layered changes, are described in their own documents and are stored separately from the base application definition. At runtime, applicable customizations are loaded from the metadata store and layered over the base metadata definition to produce the desired effect. Product upgrades and patches affect only the base metadata definition, so customizations continue to function properly.
Customization Layers
MDS enables clients to specify multiple customization types. For example, you can add customizations to runtime modes, application or user roles, application states, or any client specified criteria. Each such customization type is called a customization layer and is depicted using a CustomizationClass
. A CustomizationClass
is the interface MDS uses to identify the customization layer to be overlaid on the base definition. For example, you can configure your application to save customizations based on the departments to which users belong. You can create a customization layer called DepartmentCC
in which application customizations made by users in different departments are stored in different folders within the layer. Another example would be to configure MDS to save View mode changes as user customizations in one layer and Edit mode changes as application customizations in another layer or vice versa.
Customization layers are applied in order of precedence, that is, if the same change is made in two different layers that apply to the given user and session, the change defined in the higher precedence layer is applied first.
When you implement a CustomizationClass
, you must register it with the MDS. The MDS provides a means of associating a list of CustomizationClass
types with a single MetadataObject
. This is called the fine-grained association. The MDS also provides the means of associating a list of CustomizationClass
types with a set of MetadataObjects
. This is called the coarse-grained association. For information about the CustomizationClass
and about creating a customization layer, see Section 23.3, "Adding Customization Layers to View and Edit Modes: Example."
Composer Sandbox
Typically, in a Framework application, runtime customizations are saved immediately in the JDEV_HOME
/jdev/
system_directory
/o.mds.dt/adrs/
application_name
/AutoGeneratedMar/mds_adrs_writedir
directory. Changes made in both View and Edit modes are saved in this way. However, in certain circumstances, users might first want to apply customizations in their own view and evaluate whether to keep or cancel the changes before actually saving them to the back end. You can configure Composer to create a sandbox if you are using a database repository to store customizations. For information about creating a sandbox, see Section 23.2, "Using Composer Sandbox."
A sandbox is a temporary storage layer for saving runtime page customizations until they are committed to the back end. If you configure a sandbox, a Save button is displayed on the Composer toolbar to enable users to save their changes. In a sandbox-enabled application, if a user clicks Close without first saving changes, a Close Confirm dialog prompts the user to save or cancel changes before closing Composer.
User customizations made in View mode are saved immediately. As such changes are available only to the user modifying the page, there is no particular value in reviewing such changes before saving.
Since Edit mode customizations are available to all users who access the page, you can enable a sandbox so that a user can experiment with page customizations and assess them before committing them. If you enable a sandbox for the application, a Save button is displayed on the Composer toolbar in both Design view and Source view of the page.
This section discusses the steps you can take to enable sandbox creation and describes runtime behavior of a sandbox-enabled application. It contains the following subsections:
You can enable a sandbox only if your application uses a database store. Therefore, you must ensure that you have configured a database store before performing the steps in this section. For information about setting up a database store, see Oracle Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle WebLogic Server.
This section describes how to enable the creation of a Composer sandbox. It contains the following subsections:
By default, sandbox creation is enabled for all namespaces that are mapped to the default customization store (defined in the <mds-config>
section of the adf-config.xml
file). You can, however, enable sandbox for a selected number of namespaces only. To do this, you must add a <pe:sandbox-namespaces>
element to the adf-config.xml
file, and then define the namespaces for which you want to support sandbox creation.
Note: For information about the Composer-specific configurations you can make in |
To configure sandbox creation in adf-config.xml
:
adf-config.xml
file located in the ADF META-INF
folder under Descriptors
in the Application Resources panel. <metadata-namespaces>
element, ensure that <namespace>
elements are defined for all metadata for which you want to enable sandbox creation, as shown in Example 23-1. Example 23-1 Namespace Definitions in the adf-config.xml File
<pe:sandbox-namespaces>
element within the <pe:page-editor-config>
section and add individual <pe:namespace>
tags for all namespaces for which you want to enable sandbox creation, as show in Example 23-2. adf-config.xml
file. To ensure that a sandbox is configured when you are in Edit mode of a page, you must create a filter in your application's web.xml
file and set the appropriate filter mappings. All requests are then routed through this filter, and a sandbox is created for all Edit mode customizations. If you are using a file system metadata store, then there is no action performed on a filtered request.
Note: For information about the Composer-specific configurations you can make in |
This section provides the example of defining a Composer-specific filter and its relevant filter mappings in your application's web.xml
file. It describes how to add the filter, WebCenterComposerFilter
.
To define a Composer-specific filter and the filter mappings:
application_root
/Portal/public_html/WEB-INF/web.xml
file. WebCenterComposerFilter
before the adfBindings
filter: <filter-mapping>
elements before the filter mapping for AdfBindingFilter
as shown in Example 23-3. Example 23-3 Filter Mappings for Composer-Specific Filter
The <url-pattern>
tag is used to specify the pages that must pass through the WebCenterComposerFilter
so that sandbox creation can be enabled when a page goes into Edit mode.
Note: The order in which you define filters is important. Requests pass through these filters sequentially and if they are not defined in the correct order, the application will not run as designed. Your |
web.xml
file. To enable sandbox creation, your application must be configured to use a database store. Therefore, while deploying your application to a WebLogic Managed Server, ensure that you select a database repository and specify a partition name for the application.
For information about deploying your application from JDeveloper to a WebLogic Managed Server, see Section 70.3.4.1, "Deploying to a Managed Server Using Local Data Sources."
When you enable sandbox creation in your application, you must ensure that a full page refresh is performed on entering and exiting page Edit mode. For the detailed steps to be performed, see Section 23.3.7, "How to Redirect the Servlet to Enable Switch Between MDS Customization Layers."
When a user switches to page Edit mode, the presence of a Save button on the Composer toolbar indicates that sandbox creation is enabled for the application. Changes made to the page or shared components on the page are not saved until the user clicks Save. Once saved, the customizations are available to all application users. If the Save button is not rendered, then sandbox is not available and each change is committed immediately.
When editing component properties in the Component Properties dialog, clicking Apply results in the following:
Clicking Save or Close on the page results in the following events:
Figure 23-1 Confirm Close Dialog in Composer
Users can select from the following options:
Notes: If a user navigates away from a page while editing it and then returns to the page, any unsaved changes are lost. |
What Happens During Concurrent Edits
If two or more users are editing the same page or task flow using the same customization layer, then the page displays a message to each user that another user is editing the page or task flow, as shown in Figure 23-2.
If two or more users have zoomed into a task flow at the same time in the same customization layer and are editing it, then a concurrency message appears, as shown in Figure 23-3.
Figure 23-3 Task Flow Concurrency Message
Note: If a user zoomed into a task flow, made some customizations, and zoomed out of the task flow, then the task flow concurrency message continues to display to other users until that user saves the customizations. |
Changes that are saved last overwrite prior changes. For example, if users A and B are editing a page or task flow simultaneously, then concurrency issues are handled as follows:
To ensure that changes are committed to the back end immediately, you can disable the sandbox.
To disable sandbox:
adf-config.xml
file located in the ADF META-INF
folder under Descriptors
in the Application Resources panel. <pe:page-editor-config>
element, add the <pe:disable-sandbox>
attribute and set it to true
. adf-config.xml
. When users edit a page at runtime, if the browser closes unexpectedly or the user navigates away from the page, the sandbox used in that session is still available. Any other user accessing the same page continues to see a concurrency message that another user is editing the same page. You can destroy such stale sandboxes to free some space in the database store and enhance performance.
You can ensure that a stale sandbox is destroyed when:
The <session-timeout>
element in the application's web.xml
file defines the time duration after which the sandbox is destroyed. To ensure this happens, you must configure WebCenterComposerSessionListener
in your application's web.xml
file. This listener is called when a session times out. It creates a new sandbox when the same user enters page Edit mode.
In this case, a new sandbox is created when the same user switches to Edit mode.
To configure WebCenterComposerSessionListener
:
application_root
/Portal/public_html/WEB-INF/web.xml
file. WebCenterComposerSessionListener
, as shown in the following example: web.xml
file. For information about the Composer-specific configurations you can make in web.xml
, see Section B.2.4, "web.xml."
Consider an example where you have created an application that displays a banner at the top of the page, a sidebar on the left with options to manage pages, and the page at the center of the browser window. You may want to enable users to edit the page in Composer and edit the sidebar using some other mechanism such as updating an XML file. Enabling Composer sandbox in such a case only saves changes to page content but not the sidebar. If you enable the application sandbox, then all changes made at runtime are saved at one time, to one location. If you enable sandbox creation at the application level, then Composer does not create its own sandbox when page Edit mode is invoked. Instead, the application sandbox is used. That is, a user interface provided by the application is used for committing and destroying the sandbox. To enable the application to provide a sandbox for Composer, you must first perform a set of configurations.
Another example where it is useful to enable the application sandbox is if you want users to edit page content, but ensure that the page is saved only on approval from the manager. By using an application sandbox, changes made by a user are in the sandbox until the manager approves the changes. The page is saved on approval.
To enable an application sandbox for use in Composer:
ComposerSessionOptionsFactory
class to provide MDSSessionOptions
for each request. For information about performing this task, see Section 23.3.4, "How to Implement the ComposerSessionOptionsFactory Class."
For information about performing this task, see Section 23.3.5, "How to Register the Implementation with Composer."
WebCenterComposerFilter
. For information about performing this task, Section 23.3.6, "How to Configure WebCenterComposerFilter."
At runtime, the application-defined user interface enables users to save their changes to the back end or close Composer without saving the changes. In this case, Composer has no control over when customizations are canceled or committed to the back end.
You can apply customizations to a metadata object based on client-defined criteria. For example, you can customize an application and the metadata objects that it uses based on an end user's permissions, an application's deployment location (also called localization), or a specific industry domain. Each such category—permissions, localization, and domain—denotes a customization layer, and each is depicted using a CustomizationClass
. A CustomizationClass
is the interface MDS uses to identify the customization layer to be overlaid on the base definition. See Section 23.3.3, "How to Create a Custom UserCC Tip Layer" for an example.
When you implement a CustomizationClass
, you must also register it with the MDS. The MDS provides the ability to associate a list of CustomizationClass
types with a single MetadataObject
. This is called fine-grained association. The MDS also provides the ability to associate a list of CustomizationClass
types with a set of MetadataObjects
. This is called the coarse-grained association.
A customizable application can have multiple customization layers. You can select the layer to which you want to apply customizations. The layer you choose to customize is called the tip layer. When you drop Composer components onto a JSF page, the ADF configures a default SiteCC
(site
) tip layer in the application. Consequently, the adf-config.xml
file is updated to include the SiteCC
customization class. This tip layer stores all customizations made to the page.
This section explains through example how adding customization tip layers to View and Edit runtime modes provides user customization capabilities to all users and application customization capabilities to selected users. To enable application customizations in the Edit mode, the site
tip layer is added. To enable user customization in the View mode, the user
tip layer is added. By default, the user
tip layer is applied on top of the site
tip layer. The user
tip layer stores all user customizations made in the View mode in a specific location created for the user who made them. Such changes are visible only to that user. The site
tip layer stores all application customizations made in the Edit mode and are visible to all users.
To enable tip layers at runtime, Composer provides the WebCenterComposerFilter
filter and supplies a means of defining an abstract factory for creating the MDS SessionOptions
object. This object provides applicable customization layers at runtime and enables users to perform user customizations (View mode) or application customizations (Edit mode) based on their role. When creating a new MDS session, the MDSSession.createSession
method of this object is used to specify the session options.
This section provides an example exercise for creating, implementing, and registering customization layers, configuring WebCenterComposerFilter
, and switching between MDS customization layers. It contains the following subsections:
This section describes how to add the Page Customizable
component to a JSF page. The purpose of this exercise is to provide Composer in the Edit mode at runtime so that the admin
user can perform customizations at the site level. This section includes the addition of a Change Mode Link
to enable switching from View mode to Edit mode at runtime.
To add Composer to a JSF Page:
The Source view should like this:
When you drop these components onto the page, the default SiteCC
tip layer is extended by the ADF. Consequently, the adf-config.xml
file is updated with this customization class:
Note: If you want your application to use |
This section describes how to create a custom SiteCC
tip layer, site
, in which all site-level customizations performed in Edit mode are stored. In this sample application, site-level customizations are stored in the /mds/mdssys/cust/site/webcenter/
pagename
.jspx.xml
directory.
To create the site
tip layer:
The Create Java Class dialog opens.
SiteCC
. CustomizationClass
. This imports oracle.mds.cust.CustomizationClass
.
The SiteCC.java
file is rendered in the Source view.
getCacheHint
, getName
, and getValue
methods, double-click the bulb on the left corner and select Implement Methods. Enter
after public class SiteCC extends CustomizationClass
, and add the following string
: The following libraries are imported:
SiteCC.java
file. This section describes an example showing how to create a custom user
tip layer for a user, scott
. This layer is applied on top of the site
layer. The user customizations that a user performs in View mode are saved in this user
tip layer in a folder created specifically for the logged-in user. In this example, the user customizations performed in View mode are saved in the /mds/mdssys/cust/user/scott/
pagename
.jspx.xml
directory.
Note: For illustration purpose, this example describes a simple scenario where a |
To create the user tip layer:
The Create Java Class dialog opens.
UserCC
. CustomizationClass
. This imports the oracle.mds.cust.CustomizationClass
.
The UserCC.java
file displays in the Source view.
getCacheHint
, getName
, and getValue
methods, double-click the bulb on the left corner and select Implement Methods. Enter
after public class UserCC extends CustomizationClass
, and add the following string
: The following libraries are imported:
UserCC.java
file. In this section, the ComposerSessionOptionsFactory
class provided by the ADF is implemented to supply MDS SessionOptions
for each HTTP request.
To implement the ComposerSessionOptionsFactory
class:
The Create Java Class dialog opens.
AppsSessionOptionsFactoryImpl
. The AppsSessionOptionsFactoryImpl.java
file is rendered in the Source view.
ComposerSessionOptionsFactory
class and provide SessionOptions
: For the site
and user
customization layers to function, you must register the ComposerSessionOptionsFactory
class with Composer. For example, if the concrete class is view.AppsSessionOptionsFactoryImpl
, the following snippet must be added to the adf-config.xml
file located in the /.adf/META-INF
folder in your application directory:
You must configure the WebCenterComposerFilter
filter in the web.xml
file located in the Portal/public_html/WEB-INF
folder in your application directory. This filter registers Composer's concrete SessionOptionsFactory
with the ADF for every HTTP request. When the filter receives a call from the ADF, it forwards the request to the application and gets the SessionOptions
with the new customized layer. If you have not set the Sandbox
or VersionContext
in the SessionOptions
, then Composer sets its own Sandbox and returns it to the ADF. For more information on Sandbox, see Section 23.2.1, "How to Enable Composer Sandbox Creation." The composerFilter
and its filter mapping must be configured before ADFBindingFilter
. For example, see the following web.xml
file:
Note: The order in which you define filters is important. Requests pass through these filters sequentially and if they are not defined in the correct order, the application will not run as designed. Your |
For information about the Composer-specific configurations you can make in web.xml
, see Section B.2.4, "web.xml."
To redirect the servlet, that is, to refresh the full page at runtime, you must create:
AppNavigationUtils
class, which calls the AppNavigationUtils.redirectToSamePage()
method AppCloseHandler
CloseListener, which uses the AppNavigationUtils
class AppModeBean
, which displays Edit mode This section describes how to create these objects. It contains the following subsections:
To create the AppNavigationUtils
class:
The Create Java Class dialog opens.
AppNavigationUtils
and click OK. The AppNavigationUtils.java
file is rendered in the Source view.
To create AppCloseHandler
:
The Create Java Class dialog opens.
AppCloseHandler
and click OK. The AppCloseHandler.java
file displays in the Source view.
After creating AppCloseHandler
, you must register it in the Composer extension file, pe_ext.xml
.
To register the event handler:
pe_ext.xml
file, add the following entries: For more information about event handlers, see Section 21.6, "Configuring Event Handlers for Composer UI Events."
To create AppModeBean
:
The Create Java Class dialog opens.
AppModeBean
and click OK. The AppModeBean.java
file displays in the Source view.
To see how the site
customization layer functions, first run the JSF page in a browser. Then log in to the page as admin
, and click the Edit link to switch to Edit mode. At runtime, customize the page. For example, drop a Web page, movable box, or an image onto the page. The page should look like Figure 23-4.
Go to /mds/mdssys/cust/site/webcenter
in your application directory, and open the pagename
.jspx.xml
file. This is where the site-level customizations (application customizations) that you made to the page are stored.
To use the user
customization layer, log in to the page as scott
and personalize the page in View mode. Then go to /mds/mdssys/cust/user/scott
in your application directory, and open the pagename
.jspx.xml
file. This is where the user-level customizations that you made to the page are stored.
This section provides information to assist you in troubleshooting MDS-related problems you may encounter while using Composer.
For information about configuring logging, see "Configuring ADF Logging for Composer".
Problem
Your application is configured to use MDS sandbox. When you run the application, the sandbox either does not work or generates exceptions.
Solution
Ensure the following:
web.xml
is correct. The <filter>
entries must be in the correct order for sandbox to work correctly. For information, see Section 23.2, "Using Composer Sandbox."
You can override the default security definitions at various levels in keeping with your business requirement. For information about the default security behavior of Composer components, see Section 18.7, "Security and Composer."
This chapter describes how to override the default security behavior of Composer components. It contains the following subsections:
By default, the MDS restricts application customization of page components, that is, users cannot customize components or their attributes at runtime. To enable application customization, you must lift the default restrictions on components and their attributes. When you add a Page Customizable
component to the page and populate it with content, the default customization restrictions on the Page Customizable
and all its child components are lifted. However, in some instances, such as when the Page Customizable
component is part of the template used for the page, you may need to explicitly allow application customization of components and their attributes. This section describes how to apply MDS type-level restrictions or instance-level restrictions on components and their attributes. It contains the following subsections:
Note: For information about creating customizable pages using page templates, see Section 20.1.7, "How to Create a Page Template for Creating Customizable Pages." |
When you apply type-level restrictions on a component, all instances of the component are restricted. This is useful if you want to allow only a specific set of users to edit a particular component or its attributes while restricting all other users from editing it. For example, if you want to allow only a page creator or application administrator to change the page layout at runtime, you can define type-level restrictions on the Layout Customizable
component and enable only users with admin
role to edit this component.
You can enable type-level restrictions on components and their attributes in a standalone XML file and then register this file in the mds-config
section of the adf-config.xml
file or in an mds-config.xml
file. The standalone XML file contains annotations that match the types for which customization restrictions must be specified.
You can create an mds-config.xml
file in your application's META-INF
directory and register the standalone file in the mds-config.xml
file.
To enable application customization of selected components or attributes at the type level:
standalone.xml
, add the following code, and replace the text in bold with appropriate values: The <customizationAllowedBy>
tag can appear only once. Multiple values can be specified as a space-separated list of allowed policies as part of the declaration. To enable or disable application customization for specific users or roles, the users or roles must be included in the customization policy of the MDS session. For more information, see Section 24.2.3, "How to Customize the SessionOptions Object to Include Customization Policy."
The <customizationAllowed>
tag takes a Boolean as its value. A value of true
for this tag means that anyone can customize the specified component, so long as other inherited customization polices allow it.
The <customizationAllowedBy>
tags do not serve any purpose if the same object has been tagged with <customizationAllowed>false</ customizationAllowed>
. Additionally, the customization must be allowed at the top level of the object tree. Otherwise the default behavior dictates that no customization can be permitted at a lower level.
To register the XML file in the adf-config.xml
file, add the type-config
element inside the mds-config
section using the following format:
Create an mds-config.xml
file in your application's META-INF
folder and add a type-config
element inside the mds-component-config
section of the file in the following format:
At runtime, MDS searches all mds-config
instances in the META-INF
directories and loads all the customization restrictions specified in standalone files.
Instance-level restrictions are useful if you want to allow or restrict customization of a particular instance of a component. The code for instance-level customization policies is similar to that used in the type-level policy definitions. However, instance level policies override type-level policies. That is, instance-level restrictions hold true irrespective of the restrictions from the type. For example, if you have used a form with some UI elements in your login page and in other pages such as a user preferences page, you may want to allow users to customize all instances of the form except on the login page. For this, you can allow customization of the form at the type level and restrict customization only on the instance in the login page.
You can enable customization on a component or any of its attributes at the instance level. To apply customization restriction at the component level, you can set the customizationAllowed
and customizationAllowedBy
attributes on the component in JDeveloper (see Section 24.1.1, "How to Define Type-Level Customization Policies"). To apply restrictions on a component's attributes, perform the steps described in this section.
Instance-level policies for component attributes are defined in an RDF file. The RDF file is picked up by MDS, and the policies are implemented.
To define instance-level customization policies:
main.jspx.rdf
. Create this file in the application_home
/
project
/public_html/mdssys/mdx
folder. Creating the RDF file in this folder structure ensures that the file is picked up by MDS and the policies defined here are implemented.
The following example shows how to apply a restriction on a Go Image Link
component and the text
attribute of a Command Button
component:
At runtime, these policies are read and the artifacts are enabled for customization accordingly.
This section explains how you can use component-level restrictions to limit access to certain component functions, based on different user roles and responsibilities. Specifically, it describes how to apply an instance-level customization restriction to a Panel Customizable
component to provide customization access to only users with admin
role. That is, when a user with admin
role logs into the system at runtime, the user can customize the Panel Customizable
on which the instance-level customization is applied.
In Composer's Property Inspector, the properties of the Panel Customizable
are not displayed to users who do not have admin
privileges. The Edit icon or menu item is disabled on restricted components. These users cannot drop any Movable Box
into the Panel Customizable
because of the applied restriction. Moreover, they cannot rearrange the Show Detail Frame
s inside this Panel Customizable
.
To restrict a functionality based on user roles is one way to apply customization restrictions. You can also use expression language expressions (ELs), which provide roles-based results, to enable or restrict access to a component function.
Note: MDS customization restrictions are natively honored only by |
This section contains the following subsections:
Before applying an instance-level customization restriction, you must secure your application using ADF security. For information, see Section 69.3, "Configuring ADF Security."
In a previous section, a customization restriction is applied to a Panel Customizable
component so that, at runtime, only the user with admin
role can access all the features of Panel Customizable
, and therefore, can customize its attributes.
In this section, two roles, admin
and customer
, are created and page permissions are granted to both users. Users with admin
role can customize the Panel Customizable
(panelCustomizable1
) component. However, because of the customization restriction you applied in an earlier section, users with customer
role do not have the rights to customize panelCustomizable1
, and these users cannot use all the features of panelCustomizable1
.
To create roles in the jazn-data.xml
file:
Figure 24-2 Roles Section in the jazn-data.xml File
admin
. customer
. Figure 24-3 Users Section in the jazn-data.xml File
Figure 24-4 Page Definitions in the jazn-data.xml File
admin
and customer
roles and click OK. Figure 24-6 Permissions List in the jazn-data.xml File
For more information about creating users and roles, see the section "Enabling ADF Security in a Fusion Web Application" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To enable the expected runtime behavior of the Panel Customizable
component, where only the user with admin
role has access to all capabilities of the Panel Customizable
, including the ability to customize it, the MDS session for this request must include the user roles in its customization policy. To achieve this, the following customization policy is included in the SessionOptions
object:
Then the MDS session is created with this customization policy.
To implement the ComposerSessionOptionsFactory
class:
The Create Java Class dialog opens.
AppsSessionOptionsFactoryImpl
. The AppsSessionOptionsFactoryImpl.java
file is rendered in the Source view.
ComposerSessionOptionsFactory
class and provide SessionOptions
: Perform the steps described in Section 23.3.5, "How to Register the Implementation with Composer" to register the ComposerSessionOptionsFactory
class implementation, where user roles were included in the MDS session's customization policy.
To configure WebCenterComposerFilter
, perform the steps described in Section 23.3.6, "How to Configure WebCenterComposerFilter."
In this section, you enable application customization for particular role on a Panel Customizable
component. At runtime, only the specified role, for example admin
, can access all the features of the Panel Customizable
, including customizing its attributes. Users with any other roles can use only a limited set of component features.
To apply an instance-level customization restriction:
Change Mode Link
component. Panel Customizable
in the Page Customizable. This restriction is stored in the following directory: public_html/mdssys/mdx/<pagename>.jspx.rdf
.
The Source view should look like this:
The design view should look like Figure 24-7.
Figure 24-7 Design View: Customization Allowed
Show Detail Frame
component within the Panel Customizable
and include another Panel Customizable
component as a child of the Show Detail Frame
component. Note: This step is for illustration purpose only as it is easier to explain runtime behavior by showing multiple components. For detailed information on how to add Composer components, see Section 5.3, "Adding Pages to a Portal." |
What happens at runtime is influenced by which user is logged on. To see the difference, log in as one user and then the other. For example:
In the Application Navigator, right-click the JSPX page and select Run.
Log in to the page as a user with admin
role, and switch to Edit mode. The Add Content button and the Edit icon are displayed on the outer and inner Panel Customizable
components. As a user with admin
role, you can switch to Source view and access the properties of the outer Panel Customizable
, as shown in Figure 24-8. That is, users with admin
role can edit this component.
Log in to the page as a user with customer
role, and switch to Edit mode. The Add Content button and the Edit icon are not available on the outer Panel Customizable
. That is, this component is not editable for users with customer
role. In Source view, the Add Content and Edit icons are grayed out for the component, as shown in Figure 24-9.
Figure 24-9 Restricted Component in Page Source View
By default, a Page Customizable
component enables application customization on all components under it. You may want to change this to restrict customization on some components. The Page Customizable
component does not enable customization on components that are on a nested page or fragment. You must enable customization on such components manually. To address such requirements, MDS provides the customizationAllowed
and customizationAllowedBy
attributes. These attributes can be used to enable or restrict customization on specific component instances on a page.
The customizationAllowed
attribute controls whether the component can be customized at runtime. If you set this attribute to false
, then the component cannot be customized at runtime. That is, in the Component Properties dialog the properties are grayed out and do not allow editing.
The customizationAllowedBy
attribute specifies the roles for which customization is enabled.
This section provides examples of enabling and restricting customization on a component. It contains the following subsections:
For more information, see "Extended Metadata Properties" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To enable application customization on an Image component:
MyPage.jspx
page that you created in Section 20.2, "Designing Editable Pages Using Composer Components: Example," add an ADF Faces Image component, for example, brandingImage.gif
, inside the Panel Customizable
called panelCustomizable1
. Application customization is enabled automatically on the Image
component since it is nested inside a Page Customizable
component.
MyPage.jspx
. The Component Properties dialog displays the image properties. You can edit any available property in this dialog. Edit a property and click OK. The property's editable value demonstrates that application customization is enabled on the component.
You can restrict customization of an image on the page by setting the customizationAllowed
attribute to false
on the image component.
To restrict customization on the Image Component:
Image
component that you added in the previous section, and in the Property Inspector set the value for customizationAllowed to false
. MyPage.jspx
. In the Component Properties dialog, the properties are grayed out and cannot be edited.
You can choose whether specific component attributes can be customized at runtime. Additionally, you can specify whether the changes made to an attribute must be persisted to a persistence store, such as MDS. You can apply attribute-level security in the following ways:
For information about applying property filters, see Section 21.8.1, "How to Define Property Filters."
This section describes how to persist changes at the component level. It contains the following subsections:
If your application is configured to use FilteredPersistenceChangeManager
to persist changes, you can use the persist-changes
attribute in the adf-config.xml
file to specify whether changes to a specific attribute must be persisted.
Note: For information about change persistence, see Section 22.11, "Configuring the Persistence Change Manager." For information about the Composer-specific configurations you can make in |
Example 24-1 shows a sample adf-config.xml
file with persist-changes
attributes defined for some attributes.
Example 24-1 Using the persist-changes Attribute in the adf-config.xml File
If you set persist-changes
to true
, then a change made to the component attribute is persisted in any instance of that component. If you set persist-changes
to false
, then even if you change the attribute value in the Component Properties dialog at runtime, the change is not saved.
The ability of a user to perform actions on Panel Customizable
and Show Detail Frame
components is inherited from page security. Inheritance is based on the value of the application-wide switch, enableSecurity
, in the adf-config.xml
file. If you select the WebCenter Portal - Framework Application template when you create your application, then the adf-config.xml
file is located in the ADF META-INF
folder under Descriptors
in the Application Resources panel.
This section describes how to apply action-level restrictions on Panel Customizable
and Show Detail Frame
component actions. It contains the following subsections:
The enableSecurity
element is not available by default in adf-config.xml
. To override or extend the page-level security inheritance for Panel Customizable
and Show Detail Frame
components, you must add the customizableComponentsSecurity
section in the adf-config.xml
file, as shown in Example 24-2, and set the enableSecurity
element in that section to true
.
Example 24-2 enableSecurity Element in the Customizable Components Security Section in adf-config.xml
Restrictions on actions can be implemented at the following levels:
By default, customizable components inherit allowable actions from the defined page-level permissions, such as edit, personalize, or customize. That is, a user who has edit, personalize, or customize privileges on a page can perform View mode user customizations on that page. The enableSecurity
element enables you to override the security inheritance behavior. It can take either of the following values:
true
: If set to true
(the default when not specified), then the ability of a user to modify a component is first determined from the page permissions and then adjusted according to the current set of actions defined for that type of permission. For example, if a user has customize permission, then the actions that constitute the customize category (move, customize, and so on) are available to the user, but they are overridden by the actions that are defined in the adf-config.xml
file. false
: If set to false
, then all actions are available to users. A user's page permissions and actions configured in adf-config.xml
are ignored. Panel Customizable
and Show Detail Frame
components. You can add an actionsCategory
element in the adf-config.xml
file to define security on multiple actions simultaneously. Depending on the actionCategory
attributes that you enable, appropriate privileges are provided on the components.
Panel Customizable
and Show Detail Frame
components. You can use the actions
element in the adf-config.xml
file to enable or disable individual actions. Depending on the actions
attributes that you enable, appropriate privileges are provided on the components.
Notes:
|
You can define security for component actions at the application level if enableSecurity
is set to true
in the adf-config.xml
file. A value of true
implies that permission checks are made in addition to the actionsCategory
and actions
values specified in the adf-config.xml
.
You can add an actionsCategory
element in the customizable components actions security section in the adf-config.xml
file to define security on multiple Panel Customizable
and Show Detail Frame
components actions. Depending on the actionsCategory
attributes that you enable, appropriate privileges are provided on the components.
The actions
and actionsCategory
elements in the adf-config.xml
file have certain default mappings. Table 24-1 describes the different actionsCategory
attributes and the actions they support by default.
For information about the Composer-specific configurations you can make in adf-config.xml
, see Section B.2.2, "adf-config.xml."
Table 24-1 Actions Categories and Actions Mapping
actionsCategory | Actions Supported |
---|---|
| showMoveAction showRemoveAction showMinimizeAction showResizer allowAction |
| showEditAction showAddContentAction showSplitAction |
The behavior of components based on a combination of personalizeActionsCategory
and customizeActionsCategory
settings is as follows:
personalizeActionsCategory
and customizeActionsCategory
are set to false
, then users cannot move, expand, collapse, delete, resize, or edit Show Detail Frame
components and they also cannot edit or delete Panel Customizable
components or add content inside them. personalizeActionsCategory
is set to true
and customizeActionsCategory
is set to false
, then users can move, expand, collapse, delete, or resize Show Detail Frame
components but not edit them. Additionally, they can delete Panel Customizable
components and rearrange components inside them but not edit them or add components to the page. Note: The |
personalizeActionsCategory
and customizeActionsCategory
are set to true
, then users can move, expand, collapse, delete, resize, and edit Show Detail Frame
components and they can also edit and delete Panel Customizable
components and add content inside them. Users can add content from the Resource Catalog using the Add Content button, add Box components using the Add Box icons, and move components from other Panel Customizable
components by dragging and dropping them. Note: It is not recommended that you set |
Example 24-3 shows the actionsCategory
entry that you can add to the customizable components actions security section in the adf-config.xml
file.
Example 24-3 actionsCategory Element in the Customizable Components Security Section
You can also use EL for these element values, as shown in Example 24-4.
Example 24-4 EL Used in Customizable Components an actionCategory Entry
For reference, the managed bean, appBusinessRules
, is defined as shown in Example 69-7 in Section 69.15, "Overriding Inherited Security on Portlets and Customizable Components."
You can use the actions
element in the customizable components actions security section of the adf-config.xml
file to show or hide individual Show Detail Frame
actions. Depending on the actions
attributes that you enable, appropriate privileges are provided on the Show Detail Frame
components.
For information about Composer-specific configurations you can make in adf-config.xml
, see Section B.2.2, "adf-config.xml."
The allowAction
setting, along with other actions settings, controls the ability to add content to the page and move or rearrange page content.
In Composer, users can add and arrange content in the following ways:
Box
components using the Add Box icons. Box
component, from the Resource Catalog, using the Add Content button. Show Detail Frame
components within a Panel Customizable
component by using the Move Up and Move Down actions on the Show Detail Frame
component's Actions menu. Show Detail Frame
components across Panel Customizable
components. Table 24-2 explains the ability to add content depending on the allowAction
and showAddContentAction
settings.
Table 24-2 Actions Settings for Adding Content to a Page
allowAction Setting | showAddContentAction Setting | Add Content Button Displayed? |
---|---|---|
|
| Yes |
|
| No |
| true | No |
|
| No |
Table 24-3 explains the ability to add content using the Add Box icons depending on the allowAction
and showSplitAction
settings.
Table 24-3 Actions Settings for Rearranging Content on a Page
allowAction Setting | showSplitAction Setting | Add Box Icons Displayed? |
---|---|---|
|
| Yes |
|
| No |
|
| No |
|
| No |
Table 24-4 explains the ability to move content on the page depending on the allowAction
and showMoveAction
settings.
Table 24-4 Actions Settings for Moving Content on a Page
allowAction Setting | showMoveAction Setting | Move Content on the Page? |
---|---|---|
|
| Yes |
|
| No |
|
| No |
|
| No |
Note:
|
Example 24-5 shows the actions
entry that you can add to the customizable components actions section of the adf-config.xml
file. You can use EL for element values.
Example 24-5 action Elements in the Customizable Components Security Section
Since editing task flow permissions has a far reaching impact on the task flow editing experience, the Edit permission on task flows is disabled by default. In fact, no permissions are provisioned on task flows by default. To ensure that only users with appropriate permissions can edit a task flow, you can implement task flow security by performing the following two tasks in the Composer context:
This section explains how to apply restrictions and enable permission checks on task flows. It includes the following subsections:
You can define the access policy for a task flow by creating permission grants in the Resource Grants page of the jazn-data.xml
file overview editor. The grants you create will appear as metadata in the policy store section of the file. These grants, or permissions, control the ability to zoom into and edit the task flow in Composer.
To grant or revoke permissions on a task flow in the jazn-data.xml
file:
jazn-data.xml
file, select the task flow in the Overview editor and click the Add button in the Granted to Roles column, shown in Figure 23–12. Figure 24-10 Task Flow Security Region in the jazn-data.xml File
jazn-data.xml
file. Note: The permission grant would appear as follows in the source view of the file: <permissions> <permission> <class>oracle.adf.controller.security.TaskFlowPermission</class> <name>/WEB-INF/task-flow-definition.xml#task-flow-definition</name> <actions>customize,view</actions> </permission> </permissions> The |
For more information about Composer's behavior based on task flow permissions, see Section 18.7.1, "Page and Task Flow Security."
For more information about defining permission grants on task flows, see the section titled "How to Define Security Policies for ADF Bounded Task Flows" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
When a user tries to edit a task flow, Composer does not check the task flow's permissions by default. To enhance task flow security, you must configure Composer to check for a task flow's permissions and allow only users with the required privileges to edit it. You can do so by setting the check-permission
property on the <pe:task-flow-security>
element in the application's adf-config.xml
file, as shown in the following example:
For more information about adf-config.xml
settings, see Section B.2.2, "adf-config.xml."
Note: In earlier releases, you could enable permission checks on task flows by running the server with the following JVM parameter:
However, this method is now deprecated. For backward compatibility, Composer checks for the |
Composer performs the following security checks to enable customization:
Note: This is an optional security setting, which is not enabled by default. |
Users can customize pages and task flows only if all the above criteria are met. By default, Composer uses pagePolicy
to perform page-level security checks.
There may be situations where you want to perform different security checks; probably add a few application-level checks to what Composer already provides. You can do so by overriding Composer's default security policy with a custom policy. This section explains how to do this. It includes the following sections:
You can create custom policies by extending Composer's base security classes. Depending on whether you want to check pages or task flows, you can extend the following base security classes:
oracle.adf.view.page.editor.security.BasePageSecurityPolicy
oracle.adf.view.page.editor.security.TaskflowPermissionPolicy
To take you one step further, you can configure your policy in such a way that Composer's default checks are performed in case the custom checks are not applicable or do not provide the desired results. For this, you must extend the DefaultPageSecurityPolicy
class and call the super.isCustomizable()
method, as shown in Example 24-6.
Example 24-6 Custom Policy Extending DefaultPageSecurityPolicy
To configure a custom policy to override the Composer security policy, you must include the <pe:security-config>
section in the application's adf-config.xml
file and register the custom security policy.
To register a custom security policy:
adf-config.xml
file from the ADF META-INF
folder under Descriptors
in the Application Resources panel. <pe:page-editor-config>
section if it does not already exist, and add the following code inside it: where,
override
specifies the default policy to be overridden. Options are pagePolicy
and taskflowPolicy
.
For information about task flow policies, see Section 24.6, "Implementing Task Flow Security."
Note: Out-of-the-box policies that are not mentioned here will continue to be checked by default. |
<pe:policy-class>
specifies the name of the custom policy class.
adf-config.xml
file. Composer performs the security checks defined in your custom policy and enables customization on components accordingly.
This section provides information to assist you in troubleshooting security-related problems you may encounter while using Composer components.
For information about configuring logging, see "Configuring ADF Logging for Composer".
Problem
The Show Detail Frame
and Panel Customizable
do not show the Edit icon, or the Panel Customizable
does not show the Add Content button. Also, you are not able to move the Show Detail Frame
out of a Panel Customizable
component or drop it into another Panel Customizable
component.
Solution
Ensure that the Panel Customizabl
e is not restricted by using MDS and the component actions are not secured by using entries in adf-config.xml
.
Problem
You are not able to grant permissions on task flows in the jazn-data.xml
file.
Solution
Ensure that you run the server with the Java startup parameter, as mentioned in Section 24.6, "Implementing Task Flow Security."
You can extend or alter the look and feel and functionality of Oracle WebCenter Portal task flows using the Oracle JDeveloper Customization Developer role. When you apply task flow customizations to a deployed Framework application, the customizations apply to all instances of that task flow in the application. You do not need to deploy customizations for individual task flow instances.
In Oracle WebCenter Portal: Spaces, task flow customizations are deployed at application-level, so any customizations that you make will apply to all spaces. To customize a taskflow for a specific space only, you must use runtime Spaces administration tools for taskflow customization as explained in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces. If your customization involves minor modifications like adding text, hiding existing content or rearranging existing content, you can also use runtime administration tools. If your customization requires complex layout changes to be applied to all instances of a space, use the development-based customization approach explained in this chapter.
Note: While you can perform view-level customizations to Framework applications, such as task flow customization, ADF model and Controller customizations are not supported in this release. To learn more about the different customization types, see the Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework. |
This chapter includes the following sections
The steps below prepare WebCenter Portal applications for customizing task flows.
webcenter
. Note: If you have not already installed the latest version of the Oracle WebCenter Portal Framework and Services Design Time extension, you must install it before the customization extension. |
If you are customizing task flows in WebCenter Portal: Spaces, open JDeveloper and create a new WebCenter Spaces Task Flow Customization Application.
To enable task flow customization in your Framework application, first ensure that you have created your application using the WebCenter Portal: Framework Application template. (For information on creating a new Framework application, see Section 5.2, "Creating a Framework Application.") Then follow the steps below.
Figure 25-1 Enabling Seeded Customizations
After you have enabled customization for your application as described in Section 25.1, "Preparing for Task Flow Customization", you must configure the customization layer values to use in the JDeveloper Customization Developer role.
Figure 25-2 Selecting the Customization Developer Role
Figure 25-3 Customization Context: Override Global Layer Values
Enter the configuration for your application's customization class. For applications using the default ADF site customization class, use the following code:
Figure 25-4 Navigator Display Options - Show Libraries
In the Customization Developer role, JDeveloper will display a red man next to your application name in the Application Navigator. You will also see a Customization Context window with Edit with following Customization Context selected and the customization layer name selected as site
, and the layer value set to the value defined in CustomizationLayerValues.xml
. These values indicate that you have successfully configured your application to enable customization of WebCenter Portal task flows.
JDeveloper's Customization Developer role is a powerful mechanism that allows you to customize the ADF Library without changing the code in base library JAR. Since both Oracle WebCenter Portal and Oracle ADF leverage MDS, you can use the Customization Developer role to extend WebCenter Portal: Spaces and WebCenter Portal: Services task flows. All WebCenter Portal task flows are packaged in the ADF Library so task flow customization is possible in JDeveloper design time. For instructions on configuring the Customization Developer role, see Section 25.2, "Configuring the JDeveloper Customization Developer Role"
The use cases that can be achieved by task flow customization include:
After you have prepared your application for customization as described in the previous sections, open the application and make any necessary customizations.
To customize task flows in WebCenter Portal: Spaces, open the application you created in Section 25.1.1, "WebCenter Portal: Spaces: Create a New Task Flow Customization Application" and make your customizations. The examples that follow explain two common customizations:
This example shows how to customize the Spaces Worklist task flow by replacing the two-row entry for each worklist item with a single row that provides a link to the worklist item details with a popup that displays the details that were previously shown on the second row. The following image shows a sample Worklist with the default two-row entry configuration.
Figure 25-5 Worklist - Before Customization
af:outputText - #{row.title}
component. Right-click the component and and choose Insert Before af:outputText - #{row.title} > Link. af:commandLink
to open the Property Inspector dialog. #{row.title}
as the expression. #{row.dateInfoSummary}
as the expression. openTaskDetailsApp()
commandLink
and delete the following components:af:outputText - #{row.title}
af:panelGroupLayout
Example 25-1 Updated worklist.jsff file
The image below shows a sample Worklist after customization, with a single row and a popup.
Figure 25-9 Worklist - After Customization
This example shows how you can customize the WebCenter Portal: Spaces Discussion Forums task flow to display a profile image for the user who initiated the discussion. The following image shows a sample Discussion Forum without the profile image.
Figure 25-10 Discussion Forum - Before Customization
To customize the Discussion Forums task flow:
<rtc:presence>
tag on the page. This tag renders the user name. rtc.:presence
tag, then choose Insert After > ADF Faces and select Panel Group Layout from the dialog. #{webCenterProfile[row.createdBy].photoURI['SMALL']}
. This EL will return the location of the image that the current user has set as their profile photo. The ListTopics.jsff.xml file that is generated will contain the following code:
Example 25-2 Updated ListTopics.jsff.xml File
The following image shows a sample Discussion Forum after customization, with a profile image.
Figure 25-12 Discussion Forum - After Customization (With User Profile Image)
To customize task flows in a custom Framework application, first follow the instructions in Section 25.1.2, "WebCenter Portal: Framework Application: Enable Customization." The example that follows demonstrates a common customization.
The example that follows shows how to customize the Document Library – List View task flow to add a new column called HTML Rendition. Before you perform these steps, ensure that you have prepared a customizable Framework application application as described in Section 25.1.2, "WebCenter Portal: Framework Application: Enable Customization.".
ITEM_NAME_COLUMN_HEADER
. #{dlBndl.ITEM_NAME_COLUMN-HEADER}
and choose Copy and Paste to create a new ADF column component. headerText
property to "HTML Rendition". af:image
component. af:goLink
component inside af:switcher -> f:facet – false
and choose Go to property. The previous sections explained how to customize WebCenter Portal task flows for different scenarios. The output of these exercises is the generated MDS customization. The customizations show up as .xml.xml
or .jsff.xml
files in the View project of the application under the libraryCustomization
package. These customization documents are essentially instructions for MDS to apply changes on top of the base document that is shipped to show the customized behavior at runtime.
Once you complete a task flow customization, you must apply it to the deployed WebCenter Portal application (Framework or Spaces). To see customizations performed on task flows in JDeveloper at runtime, you must import these customizations to the MDS repository of the deployed application.
Note: This process updates the runtime WebCenter Portal application metadata repository; back up the MDS schema before performing these steps. Also, it is a best practice to test your customizations in a development or stage environment first. |
To import WebCenter Portal task flow customizations to the MDS repository, use the steps in the following sections:
Use the steps that follow to create a metadata deployment profile for your custom WebCenter Portal application. (These steps are not necessary if you are using the WebCenter Portal: Spaces Task Flow Customization Application.)
Figure 25-14 Creating a Deployment Profile
Use the steps that follow to deploy your task flow customizations directly from JDeveloper.
metadata
is the name of the Deployment Profile). Figure 25-15 Deploying the "metadata" Deployment Profile
Figure 25-17 Deploy Metadata: Application Server
Figure 25-18 Deploy Metadata Dialog: Server Instance
Figure 25-19 Deploy Metadata: Deployed Applications
Use the steps that follow to deploy task flow customizations using WLST.
metadata
is the name of the Deployment Profile). Figure 25-20 Deploying the "metadata" Deployment Profile
Tip: Alternatively, you can export the metadata to a deployed application by selecting the Export to Deployed Application option, configuring the connection details of the server on which the application is deployed, and selecting the appropriate application. |
Example 25-3 Command Line for Importing Customizations
For more information on MDS WLST commands, refer to the Oracle Fusion Middleware WebLogic Scripting Tool Command Reference on the Oracle Technology Network.
You can revert task flow behavior or look and feel to the original deployment by removing task flow customizations.
Use the MDS WLST deleteMetadata
command to remove the applied customizations. The deleteMetadata
command needs to exercise with caution as incorrect use of this command may cause the loss of metadata documents. The sample command below removes the customization created in Section 25.3.1.2, "Example: Customizing the Discussion Forums Task Flow."
Example 25-4 Command to Delete the Customization Metadata from a Deployed WebCenter Portal Application
For more details on MDS WLST commands, refer to the Oracle Fusion Middleware WebLogic Scripting Tool Command Reference on the Oracle Technology Network.
The following task flows have been validated for view-level customizations. You can find these task flows in the libraries or JAR files and definition paths specified in Table 25-1.
Note: To customize analytics task flows, you must add the following JARs to the project:
|
Table 25-1 WebCenter Portal Task Flows
Description | Library/JAR Files | Definition Path |
---|---|---|
adfpage-renderer | WebCenter Portal: Framework |
|
Activity Stream - Mini View | WebCenter Portal Activity Streaming Service View |
|
Activity Stream - Main View | WebCenter Portal Activity Streaming Service View |
|
Analytics - Console | Task flows included in |
|
Analytics - WebCenter Portal Traffic | Task flows included in |
|
Analytics - Page Traffic | Task flows included in |
|
Analytics - Login Metrics | Task flows included in |
|
Analytics - Portlet Traffic | Task flows included in |
|
Analytics - Portlet Response Time | Task flows included in |
|
Analytics - Portlet Instance Traffic | Task flows included |
|
Analytics - Portlet Instance Response Time | Task flows included in |
|
Analytics - Search Metrics | Task flows included in |
|
Analytics - Document Metrics | Task flows included in |
|
Analytics - Wiki Metrics | Task flows included in |
|
Analytics - Blog Metrics | Task flows included in |
|
Analytics - Discussion Metrics | Task flows included in |
|
Announcements | WebCenter Portal Announcement Service View |
|
Announcements - Quick View | WebCenter Portal Announcement Service View |
|
Application Navigator | WebCenter Portal: Spaces View |
|
Blogs |
| |
Calendar Main View | WebCenter Portal Events Service View |
|
Calendar Mini View | WebCenter Portal Events Service View |
|
ChooseLanguageTaskflow | WebCenter Portal: Spaces View |
|
CommunityBrowserRegion | WebCenter Portal: Spaces View |
|
community-contacts-task-flow | WebCenter Portal: Spaces View |
|
Connections - Card | WebCenter Portal PeopleConnections View |
|
Connections - Detailed View | WebCenter Portal PeopleConnections View |
|
Connections - Main View | WebCenter Portal PeopleConnections View |
|
Connections - Main View | WebCenter Portal PeopleConnections View |
|
Connections - Mini View | WebCenter Portal PeopleConnections View |
|
Connections - Network | WebCenter Portal PeopleConnections View |
|
content-renderer | WebCenter Portal: Framework |
|
customization-manager-taskflow | Oracle Composer |
|
Discussions | WebCenter Portal Discussions Service View |
|
Discussions - Manager | WebCenter Portal Discussions Service View |
|
Discussions - Popular Topics | WebCenter Portal Discussions Service View |
|
Discussions - Recent Topics | WebCenter Portal Discussions Service View |
|
Discussions - Space Forums | WebCenter Portal Discussions Service View |
|
Discussions - Quick View | WebCenter Portal Discussions Service View |
|
Discussions - Watched Forums | WebCenter Portal Discussions Service View |
|
Discussions - Watched Topics | WebCenter Portal Discussions Service View |
|
Documents - AutoVue | WebCenter Portal Document Library Service View |
|
Documents - Content Presenter | WebCenter Portal Document Library Service View |
|
Documents - Document Manager | WebCenter Portal Document Library Service View |
|
Documents - Document Navigator | WebCenter Portal Document Library Service View |
|
Documents - Document Viewer | WebCenter Portal Document Library Service View |
|
Documents - Folder Viewer | WebCenter Portal Document Library Service View |
|
Documents - Document Explorer | WebCenter Portal Document Library Service View |
|
Documents - List Viewer | WebCenter Portal Document Library Service View |
|
Documents - Main View | WebCenter Portal Document Library Service View |
|
Documents - Mini Properties | WebCenter Portal Document Library Service View |
|
Documents - Properties | WebCenter Portal Document Library Service View |
|
Documents - Recent Documents | WebCenter Portal Document Library Service View |
|
Documents - Rich Text Editor | WebCenter Portal Document Library Service View |
|
Documents - Upload | WebCenter Portal Document Library Service View |
|
Documents - Version History | WebCenter Portal Document Library Service View |
|
Events | WebCenter Portal Events Service View |
|
Exportregion | Internal - invoked by WebCenter Portal: Spaces administrator for export of spaces or space templates. |
|
Feedback | WebCenter Portal PeopleConnections View |
|
Feedback - Summary View | WebCenter Portal PeopleConnections View |
|
ImportRegion | Internal - invoked by WebCenter Portal: Spaces administrator for import of spaces or space templates. |
|
LifecycleCartTaskflow | Internal |
|
LifecycleSelectorTaskflow | Internal |
|
lifecycle-siteresource-export-task-flow | Internal - used in Resource Manager |
|
lifecycle-siteresource-import-task-flow | Internal - used in Resource Manager |
|
Links | WebCenter Portal Links Service View |
|
Links Dialog | WebCenter Portal Links Service View |
|
List - Main View | WebCenter Portal List Service View |
|
list-instance-view-task-flow | WebCenter Portal Lists Service View |
|
list-of-resource-types-taskflow |
| |
| WebCenter Portal Mail Service View |
|
Message Board - Mini View | WebCenter Portal PeopleConnections View |
|
Message Board - Main View | WebCenter Portal PeopleConnections View |
|
Navigation - Menu | Navigation Task Flows |
|
Navigation - Breadcrumb | Navigation Task Flows |
|
Navigation - Tree | Navigation Task Flows |
|
navigation-renderer | WebCenter Portal: Framework |
|
Organization View | WebCenter Portal PeopleConnections View |
|
Page - Create New | WebCenter Portal Page Service View |
|
Polls - Polls Manager | WebCenter Portal Polls and Surveys Service View |
|
Polls - Quick View | WebCenter Portal Polls and Surveys Service View |
|
Polls - Take Poll | WebCenter Portal Polls and Surveys Service View |
|
Polls - View Poll Results | WebCenter Portal Polls and Surveys Service View |
|
portlet-renderer | WebCenter Portal Portal Framework |
|
Presence Controls | WebCenter Portal IM and Presence Service View |
|
Profile - Actions | WebCenter Portal PeopleConnections View |
|
Profile Gallery | WebCenter Portal PeopleConnections View |
|
Profile - Main View | WebCenter Portal PeopleConnections View |
|
Profile - Snapshot | WebCenter Portal PeopleConnections View |
|
Profile - Summary | WebCenter Portal PeopleConnections View |
|
Publisher | WebCenter Portal PeopleConnections View |
|
Recommended Connections | WebCenter Portal Activity Graph Service View |
|
Resource Action Handler - Resource Viewer | WebCenter Portal Common View |
|
Recent Activities | WebCenter Portal Recent Activity Service View |
|
RSS Viewer | WebCenter Portal RSS Service View |
|
Search | WebCenter Portal Search Services View |
|
Search Preferences | WebCenter Portal Search Services View |
|
Search - Saved Searches | WebCenter Portal Search Services View |
|
Search Toolbar | WebCenter Portal Search Services View |
|
Security - Self Registration | Public user registration |
|
Security - Self Registration - Public Invitation | Public user invitation to join spaces |
|
Security - Enterprise Role - Members | Lists the members of an enterprise group |
|
Security - Enterprise Role - Members Search | The members of an enterprise group of a particular pattern |
|
Security - Enterprise Role - Members Viewer | A tabbed page which shows the members of a group in one and the other tab lets you search for a particular pattern |
|
Security - Role Manager | Create, modify and delete application roles |
|
Security - External Application Credential Provisioning | Credential provisioning for a particular external application |
|
Security - External Application Change Password | Screen to change the password for all the external applications created |
|
Similar Items | WebCenter Portal Activity Graph Service View |
|
Similar Spaces | WebCenter Portal Activity Graph Service View |
|
Smart Tag Actions |
| |
Smart Tag Actions Enabler |
| |
Spaces | WebCenter Portal: Spaces View |
|
Space Members | WebCenter Portal: Spaces View |
|
Subscription Preferences | WebCenter Portal Notification Service View |
|
Subscription Viewer | WebCenter Portal Notification Service View |
|
Tag Cloud | WebCenter Portal Tagging Service View |
|
Tagging Dialog | WebCenter Portal Tagging Service View |
|
Tagged Items | WebCenter Portal Tagging Service View |
|
Tagging - Personal View | WebCenter Portal Tagging Service View |
|
Tagging - Related Links | WebCenter Portal Tagging Service View |
|
Tagging - Similar Items | WebCenter Portal Tagging Service View |
|
taskflow-renderer | WebCenter Portal: Framework |
|
Worklist | WebCenter Portal Worklist Service View |
|
Part IV contains the following chapters:
There are several ways to integrate content into a WebCenter Portal: Framework application. The method you choose is dependent on the requirements of the application and how you want to expose content to end users.
You can integrate content into a Framework application using any of the following methods (for more information, see the references at the end of this chapter):
This functionality is available primarily for backward compatibility with prior releases, and for requirements outside the capability of Content Presenter or the Documents service and its task flows.
Note: The availability of SharePoint as a content repository requires the installation of the SharePoint adapter, as described in Section 3.6, "Installing the Oracle WebCenter Adapter for SharePoint." Administration for SharePoint is performed using WLST commands, not Oracle Enterprise Manager Fusion Middleware Control Console. |
Using Documents service task flows and document components (such as links, previews, and images), you can add content to the application, and also provide end users with content and Documents service task flows built into the application to manage, display, and search documents at runtime.
Table 26-1 provides a comparative overview of these methods to help you select the most appropriate method for your needs.
Table 26-1 Methods of Integrating Content into a Framework Application
Content Data Controls | Content Management REST APIs | Content Presenter | Documents Service | |
---|---|---|---|---|
Repository | Content Server Oracle Portal SharePoint | Content Server | Content Server | Content Server Oracle Portal SharePoint |
Content Types | Folders and content files. | Folders and content files with support for metadata properties. | Folders and content files with support for metadata properties. Supports Oracle Site Studio region definitions-based content. | Folders and content files. Content Server only: supports folder and content file metadata properties. |
Content Display | Surface content using ADF render components: ADF Go Link, ADF Go Button, ADF Image, and ADF inline frame functions. | Surface content using REST APIs and custom client or server side application code. Surface content through single item selection, by folder, and by query results. | Task flow-based component intended primarily for rendering content. Surface content through single item selection, by folder, and by query results. Surface content in display templates: either built-in templates or custom display templates developed in JDeveloper. Reuse Oracle Site Studio display templates for Site Studio content. Supports WebCenter Personalization Services Conductor scenario (query results). | Task flow-based components intended primarily for collaborating and managing content. Content Server only:
|
Content Management | None. | Manage content using REST APIs and custom client or server side application code. Create, update, delete folders and content files and associated metadata fields. | In-context contribution editing for HTML and Site Studio content. | Manage content through graphical user interface. Create, update, delete folders and content files. Content Server only:
|
Benefits | Standard JCR API integrates with many different content repositories. | Flexible REST-based APIs useful for client-side style development. | Flexible display using display templates. Oracle Site Studio support. | Choice of task flows to provide easy UI access to managing content. |
Limitations | Read-only content. No Oracle Site Studio support. | Content must reside in Oracle Content Server repository. No Oracle Site Studio support. | Content must reside in Content Server repository. | No Oracle Site Studio support. |
The following chapters provide information that you will need for any method you use:
The following chapter provides information about using content data controls:
The following manual provides information about using CMIS (Content Management Interoperability Services) REST APIs:
The following chapters provide information about using Content Presenter:
The following chapters provide information about using the Documents service, which includes the Documents service task flows, document components (links, inline frames, and images), wikis, and blogs:
There are several ways to integrate content into a WebCenter Portal: Framework application. For more information, see Chapter 26, "Introduction to Integrating and Publishing Content."
This chapter discusses how to configure connections to content repositories to provide access to the content, and how to add content to pages in a Framework application.
This chapter includes the following sections:
In your Framework application, you can use the following adapters:
This adapter is bundled with Oracle WebCenter Portal extension bundle, so it is integrated by default.
This adapter is bundled with Oracle WebCenter Portal extension bundle, so it is integrated by default.
You must install this adapter, as described in Section 3.6, "Installing the Oracle WebCenter Adapter for SharePoint."
This adapter is bundled with Oracle WebCenter Portal extension bundle, so it is integrated by default.
Note: The File System adapter is intended to be used in the development environment only. |
Content repository connections are required to access the repository content to be published on JSF pages. These connections are also required to access the repository content through the WebCenter Portal REST API.
This section describes how to configure content repository connections based on Oracle WebCenter Content: Content Server, Oracle Portal, Oracle WebCenter Adapter for SharePoint, and file system adapters. Content Presenter can connect to and retrieve content available in Content Server content repositories. With JCR data controls, you can connect to Content Server, Oracle Portal, Oracle WebCenter Adapter for SharePoint, and file systems.
Connections can be created under Application Resources in the Application Navigator and under IDE Connections in the Resource Palette.
This section includes the following subsections:
This section describes how to configure a Content Server-based content repository connection. To successfully perform the subsequent steps, you must use Content Server release 11.1.1.4.0 or 10.1.3.5.1. The release 11.1.1.4.0 or 10.1.3.5.1 are required for Content Presenter. For information about how to configure Content Server for Oracle WebCenter Portal, see "Oracle WebCenter Content: Content Server Prerequisites" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
For an overview of the prerequisites and tasks required to get Content Server working in WebCenter Portal applications (Spaces and Framework applications), see the section "Configuration Roadmap for Content Server" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
To create a Content Server-based repository connection:
MyOCSConnection
. Tip: You can choose between creating application-specific connections in the Application Resources panel and creating common connections in the Resource Palette (IDE Connections). |
adf-config.xml
file that identifies this connection as the default connection. If connectionName
parameter is specified for a Documents service task flow, that value overrides this setting. Note: To be able to set a connection as primary (default) connection for the Documents service, you must select the Application Resources option in Create Connection In. This is because connections created as IDE connections cannot be used directly, they must be added to applications. |
Table 27-1 Configuration Parameters for Content Server
Configuration Parameters | Values |
---|---|
RIDC Socket Type | Determines whether the client library connects on the Content Server listener port or the Web server filter. It accepts
Table 27-2 includes more information on the configuration parameters required for each RIDC socket type. |
Server Host Name | Host name of the system where the Content Server is running. For example: |
Content Server Listener Port | Port of the server specified in the Server Host Name field. This corresponds to the |
URL of the Web Server Plugin | If the RIDC socket type is For Content Server release 11.1.1.4.0: For Content Server release 10.1.3.5: |
Web Server Context Root | The Web server context root for Content Server to integrate advanced metadata and Site Studio capabilities in the Framework application. The format of the Web server context root is |
Admin Username | The user name with administrative rights for the Content Server instance. It defaults to |
Admin Password | The password for the Content Server admin user. For example: |
KeyStore File Location | Location of key store that contains the private key used to sign the security assertions. The key store location must be an absolute path. For example: |
KeyStore Password | The password required to access the keystore. |
Private Key Alias | The client private key alias in the keystore. The key is used to sign messages to the server. The public key corresponding to this private key must be imported in the server keystore. |
Private Key Password | The client private key password required to retrieve the key from the keystore. |
JAX-WS Client Security Policy | Enter the client security policy to be used when the RIDC Socket Type is JAX-WS. The JAX-WS client security policy can be any valid OWSM policy, but must match the security policy configured for the Content Server's Native Web Services IdcWebLogin service. For more information about the IdcWebLogin service, see "WebCenter Content Web Services" in the Oracle WebCenter Content Developer's Guide for Content Server. For information about predefined security policies, see the section "Security Policies" in Oracle Application Server Web Services Security Guide. For information about configuring a security policy on client side, see the section "Configuring Clients" in Oracle WebCenter Content Developer's Guide for Content Server. For information about configuring a security policy on the server side, see the section "Configuring WS-Security through WS-Policy" in Oracle WebCenter Content Developer's Guide for Content Server. |
Cache Invalidation Interval | The interval (in minutes) used by WebCenter caches to automatically detect external Content Server content changes. This allows WebCenter to automatically clear cached items when changes to those items are made directly in the Content Server UI.The interval is in minutes. A value of |
Binary Cache Maximum Entry Size | The maximum size (in bytes) for WebCenter caching of Content Server binary documents. Documents larger than this size are not cached by WebCenter.The unit is bytes and defaults to |
Table 27-2 Content Server Connection Parameters for Each RIDC Socket Type
Connection Parameters | RIDC Socket Type: web | RIDC Socket Type: socket | RIDC Socket Type: socketssl | RIDC Socket Type: jaxws |
---|---|---|---|---|
Server Host Name | Not Applicable | Mandatory for Content Presenter Defaults to local host. | Mandatory for Content Presenter Defaults to local host. | Not Applicable |
Content Server Listener Port | Not Applicable | Port specified for the incoming provider in the server. Defaults to | Port specified for the Defaults to | Not Applicable |
URL of the Web Server Plugin | Mandatory | Not Applicable | Not Applicable | MandatoryUse format: For example: http(s):// |
Web Server Context Root | Optional | Optional | Optional | Optional |
JAX-WS Client Security Policy | Not Applicable | Not Applicable | Not Applicable | Mandatory, unless Global Policy Attachment is used, in which case it should be left empty. This is the name of an OWSM client security policy. This policy must match the corresponding server side policy applied on the Content Server. For information about security policies, see the section "Security Policies" in Oracle Application Server Web Services Security Guide. |
Admin Username | Mandatory | Optional Defaults to | Optional Defaults to | OptionalDefaults to |
Admin Password | Mandatory | Not Applicable | Not Applicable | Whether the password is used or not depends on the selected JAX-WS security policy. |
Key Store and Private Key | Not Applicable | Not Applicable | Mandatory | Not Applicable |
Identity Propagation | Not supported at runtime | Supported For testing purpose, connects as guest if no/invalid user name is specified. | Supported For testing purpose, connects as guest if no/invalid user name is specified. | Supported, provided that the JAX-WS security policy supports identity propagation. |
External Application | Mandatory | Supported Password is not used. | Supported Password is not used. | SupportedWhether the password is used or not depends on the selected JAX-WS security policy. |
User Name and Password | Supported | Supported The password is not verified during the test connection operation. | Supported The password is not verified during the test connection operation. | SupportedWhether the password is used or not depends on the selected JAX-WS security policy. |
Figure 27-1 Content Repository Connection - Content Server
Note: If the Specify login credentials for the current JDeveloper session checkbox is selected, then the credentials you entered are used. If the checkbox is not selected, then the connection is tested using External Application credentials (if they exist), otherwise null credentials are used. If you have selected External Application for authentication and also specified either public or shared credentials, then you can leave these fields blank, as the public or shared credentials can be used to login at design time. However, if you have selected External Application but have not specified public or shared credentials, then you must specify user name and password here. |
During testing user name and password are used (if specified). If they are not specified, but an external application is defined with either shared or public credentials, then this is used. Otherwise the guest user is used.
Note: The Connection Credentials dialog displays if you do not save the credentials, that is, you do not select the Specify login credentials for the current JDeveloper session checkbox, or if you do not specify an External Application service that uses public or shared credentials. |
This section describes how to create a content repository connection based on the Oracle Portal adapter. Before creating a repository connection, see Section 27.2.6, "What You May Need to Know When Creating a Repository Connection". You can use this connection to configure a content data control that will enable you to add content from the Oracle Portal repository to JSF pages.
To create an Oracle Portal repository connection:
MyOraclePortal
. Tip: You can choose between creating application-specific connections in the Application Resources panel and creating common connections in the Resource Palette (IDE Connections). |
Figure 27-2 Content Repository Connection - Oracle Portal
adf-config.xml
file that identifies this connection as the default connection. If connectionName
parameter is specified for a Documents service task flow, that value overrides this setting. Note: To be able to set a connection as primary (default) connection for the Documents service, you must select the Application Resources option in Create Connection In. This is because connections created as IDE connections cannot be used directly, they must be added to applications. |
jdbc
format: Table 27-3 Parameters for Creating Oracle Portal-based Content Data Control
Parameters | Description |
---|---|
Driver | There are two types of drivers: thin and oci8. The thin driver can be used to connect to Oracle Database release 8i or later databases with TCP/IP network protocols. This driver is included in the default Oracle JDBC library for all projects. The oci8 driver is used when creating a Java application that runs against an Oracle Application Server. This is a thick driver optimized for the Oracle Database. It is a mix of Java and native code. This driver handles any database protocol (TCP, IPX, BEQ, and so on). It is recommended for applications that are run from the computer on which they are stored. |
Host Name | Name of the Oracle Database. Use an IP address or a host name that can be resolved by TCP/IP; for example, |
JDBC Port | Value to identify the TCP/IP port. |
SID | Unique system identifier of an Oracle database instance. |
Service Name | The service name for an Oracle database instance. |
Note: If the Specify login credentials for current JDeveloper session checkbox is selected, then the credentials you entered are used. If the checkbox is not selected, then the connection is tested using External Application credentials (if they exist), otherwise null credentials are used. If you have selected External Application for authentication and also specified either public or shared credentials, then you can leave these fields blank, as the public or shared credentials can be used to login at design time. If you specified both public and shared credentials for the external application, then the public credentials have higher precedence. However, if you have selected External Application but have not specified public or shared credentials, then you must specify user name and password here. |
Note: The Connection Credentials dialog displays if you do not save the credentials, that is, you do not select the Specify login credentials for the current JDeveloper session checkbox, or if you do not specify an External Application service that uses public or shared credentials. |
See Also: To create a data control using this connection, perform the procedure described in Section 28.2, "Configuring Content Data Controls for JCR Adapters". |
The Oracle WebCenter Adapter for SharePoint extracts and searches content within a Microsoft SharePoint 2007 repository. The adapter accesses the repository using the Microsoft SharePoint SOAP interfaces. Oracle recommends that you study Section 27.2.6.3, "What You Should Know About Oracle WebCenter Adapter for SharePoint." before configuring and using Oracle WebCenter Adapter for SharePoint.
This section includes the following subsections:
To create a repository connection based on Oracle WebCenter Adapter for SharePoint:
MySPConnection
. Tip: You can choose between creating application-specific connections in the Application Resources panel and creating common connections in the Resource Palette (IDE Connections). |
Note: This option displays only if the extension for Oracle WebCenter Adapter for SharePoint is installed. |
adf-config.xml
file that identifies this connection as the default connection for the Documents service. If a Document Library task flow is used without any connectionName
input parameter, then this connection is used. For information about the Documents service, see Chapter 30, "Integrating the Documents Service." Note: To be able to set a connection as primary connection for the Documents service, you must select the Application Resources option in Create Connection In. This is because connections created as IDE connections cannot be used directly, they must be added to applications. |
http://mysharepoint.mycompany.com
, as shown in Figure 27-4. Figure 27-4 Content Repository Connection - Oracle WebCenter Adapter for SharePoint
64
characters as the limit for search pattern strings that are passed to the Microsoft SharePoint Server. If the value is set to zero, then the full string is passed to the server. That is, the LIKE limit is disabled. This parameter is optional. Oracle recommends that it be left to its default state. For related information, see Section 27.2.6.3, "What You Should Know About Oracle WebCenter Adapter for SharePoint." Note: Oracle WebCenter adapter for Microsoft SharePoint does not support the Identity Propagation authentication method. Therefore, the External Application authentication method lets you use a single shared set of credentials for all users when accessing the repository. You can also configure this option to enable each user to enter their own login credentials when accessing the repository the first time by omitting both the Shared and Public credentials in the External Application configuration. The system then reuses each unique credential on subsequent access requests. |
Note: The Connection Credentials dialog displays if you do not save the credentials, that is, you do not select the Specify login credentials for the current JDeveloper session checkbox, or if you do not specify an External Application service that uses public or shared credentials. |
This step is optional.
The Oracle WebCenter Adapter for SharePoint is designed to map the content managed in SharePoint servers, such as sites, lists, list items, metadata, documents, as well as content services delivered by Microsoft SharePoint, such as search and security.
The adapter maps content and content services that are relevant to the JCR standard. In other words, the adapter does not map the Microsoft SharePoint graphical user interface (GUI) and the application-level functions that are not part of the JCR standard. For example, the adapter does not map the GUI application logic of the Microsoft SharePoint server (not covered by JCR), but it provides GUI-relevant metadata so that JCR or Java applications can restore some of the GUI logic such as SharePoint lists, if that is the goal of the application.
Default JCR Location of the Microsoft SharePoint Documents Libraries
For a SharePoint Services v3 Team Site, the Shared Documents Library appears at path:/sp:Site/sp:RootWeb/sp:Lists/Shared Documents/sp:Files
, as shown in Figure 27-5.
Figure 27-5 The Shared Documents Library Path for a SharePoint Services v3 Team Site
For the MOSS 2007 site created during installation, the Documents Center Document Library appears at path: /sp:Site/sp:RootWeb/sp:Webs/Docs/sp:Lists/Documents/sp:Files
, as shown in Figure 27-6. This path reflects the structure where the Documents Center is a subsite in the SharePoint main site.
Files are JCR nodes of primary type nt:file
, and of mix-in type sp:File
. Folders are JCR nodes of primary type nt:folder
and of mix-in type sp:Folder
. The sp:
mix-ins are similar to nt:unstructured
in their definitions.
Figure 27-6 The Documents Center Document Library Path for MOSS 2007 Site
This section describes the procedure to create a content repository connection based on the file system adapter. The File System adapter is intended to be used in the development environment only.
To create a File System repository connection:
MyConnection
. Tip: You can choose between creating application-specific connections in the Application Resources panel and creating common connections in the Resource Palette (IDE Connections). |
adf-config.xml
file that identifies this connection as the default connection. If connectionName
parameter is specified for a Documents service task flow, that value overrides this setting. Note: To be able to set a connection as primary (default) connection for the Documents service, you must select the Application Resources option in Create Connection In. This is because connections created as IDE connections cannot be used directly, they must be added to applications. |
C:\MyContent
. Note: The following must be considered while creating a file system connection:
|
Success!
status, as shown in Figure 27-7. When you create a connection to a repository, the contents in the main directory of the repository display under the Content Repository connection in the Application Resources panel, as shown in Figure 27-8. You can double-click folders and files to view them.
You can use repository connections to create JCR data controls that enable integration of the repository content with JSF pages. See Section 28.2, "Configuring Content Data Controls for JCR Adapters" and Section 28.5, "Integrating Content Using Content Data Controls" for information. These connections can also be consumed through the Documents service and Content Presenter task flows. See Chapter 30, "Integrating the Documents Service" for information.
This section includes:
The Create Content Repository Connection dialog provides the following options for authentication methods:
To apply this authentication method, it is best to configure security for your application using the Configure ADF Security wizard since repositories may support only authenticated users or provide only limited access to the public or guest user. See Section 28.4, "Securing a Content Repository Data Control".
The External Application service allows different types of credentials to be associated with a connection:
If you intend to configure the External Application service, then click New to launch the Register External Application wizard and do the following:
http://content-server.mycompany.com/idc/
Note: This URL is optional and is required only to provide click through login to the content repository's own user interface. See the External Application service documentation for more information on how to configure click through login. |
This option is selected when click through login is not required. If click through login is enabled, then you must select another option based on the authentication method used in the repository.
Click Finish.
The following should be considered while using the Oracle Portal adapter:
file
, image
, imagemap
, and text
item types and custom types based on these item types are supported. portal:container
page type and its extensions are supported. Consider the following while configuring and using Oracle WebCenter Adapter for SharePoint:
anonymous
access. The adapter does not function correctly if any other Versioning Settings are configured. For example, upload operations fails if Require CheckOut
is set to yes
. If document version history or content approval are enabled, new versions or documents have restricted visibility.
Http Session time-out
in the application's web.xml
file to ensure that any unused sessions are closed, and the adapter memory cache is released. The adapter exposes content from a Microsoft SharePoint server in a hierarchical way which is similar to the way by which the content is exposed by the native web interface. The items of the hierarchy have a primary type of either nt:folder
, nt:file
, or a specialization of these. Additional SharePoint specific characteristics are in some instances added by means of mixins, that is, sp:Folder
, sp:File
, and so on. The SharePoint specific name space, which is identified by the sp
prefix in these examples, is used for items controlled by the SharePoint server. Items controlled by the user - webs, documents, list items and the like - are in the default name space. The adapter allows write access to SharePoint document libraries. That is, it allows folders and files to be created within document libraries in correspondence with creating folders or uploading files to the native SharePoint web interface. Examples which demonstrate this hierarchical mapping are described in the next point.
/sp:Site
: The root element of the site. /sp:Site/sp:RootWeb
: The root web element. /sp:Site/sp:RootWeb/sp:Lists
: The path to the root of all lists in the site. /sp:Site/sp:RootWeb/sp:Lists/Shared Documents/sp:Files
: The path to the start of the file and folder hierarchy within a document library. In this example, the Shared Documents library is shown. All site document libraries are mapped under /sp:Site/sp:RootWeb/sp:Lists
, each mapped by their own document library name. /sp:Site/sp:RootWeb/sp:Lists/Shared Documents/sp:Files/myFiles
: An example of a folder within the sites Shared Documents document library. /sp:Site/sp:RootWeb/sp:Webs/mySubSite
: A site's subsites are all mapped under /sp:Site/sp:RootWeb/sp:Webs
. This example shows the path to a subsite named mySubSite
. The subsite may itself contain Document Libraries. write
access to a SharePoint Document Library with settings that require one or more mandatory SharePoint columns. LIKE
operator supports a pattern match on strings up to 64 characters. Therefore, the Oracle WebCenter Adapter for SharePoint applies a client-side filtering on result sets to ensure that the correct constraint on URL is applied. The adapter's LIKE limit parameter controls this feature, and if this limit is not set, it defaults to applying a 64 character limit. The parameter can be set to 0
to disable client-side filtering. The parameter can also be set to some other positive value to apply a different character limit. However, this limit can only be increased if the SharePoint instance supports LIKE tests on URLs greater than 64 characters. OR
expression. =
, >=
, >
, <=
, <
, LIKE
, <>
, IS
NULL
, IS NOT NULL
. Predicates, descendants, and self operators (//
) are supported on the last location step. IsDocument
, ContentClass
, SiteName
, Description, FileName
, jcr:data
, jcr:mimeType
, jcr:created
, jcr:lastModified
. This section describes how you can edit a common or an application-specific content repository connection. This section includes the following subsections:
Common repository connections (IDE connections) are created and edited under the Resource Palette.
To edit a common repository connection:
Figure 27-9 Resource Palette - Properties
Figure 27-10 Edit Content Repository Connection
Application-specific content repository connections exist under the Application Resources panel.
To edit a Framework application-specific content repository connection:
Figure 27-11 Application Resources - Properties
Figure 27-12 Edit Content Repository Connection
You can use an existing repository connection for any Framework application, if you created it as a common repository under the Resource Palette.
To use an existing repository connection:
MyConnection_2
, and drop it under the Application Resources panel of the new application, as shown in Figure 27-13. Tip: Alternatively, right-click the connection and choose Add to Application. The connection is displayed under the Application Resources panel. |
Figure 27-13 Dragging an Existing Common Repository Connection (IDE Connection) to an Application
You can now configure a data control for your new application from this repository connection, as described in Section 28.2, "Configuring Content Data Controls for JCR Adapters".
There are several ways to integrate content into a WebCenter Portal: Framework application. For more information, see Chapter 26, "Introduction to Integrating and Publishing Content."
JCR APIs enable independent access to content, regardless of the underlying repository or the type of the content; for example, documents, relational content, and so on. The JCR 1.0 API, as defined in JSR 170, provides a set of basic capabilities for reading, writing, browsing, and searching content. The JCR data controls also enable you to connect to and read from other JCR 1.0 repositories. To add content available in Oracle WebCenter Content: Content Server, Oracle Portal, Oracle WebCenter Adapter for SharePoint, and file systems to JSF pages, you first create connections to the repositories, then use the connections to create data controls based on the repositories.
This chapter includes the following sections:
A content data control is a container for all the data objects, collections, methods, and operations used to create user interface (UI) components within your Framework application. The data controls provide you with easy-to-use methods that you can drag and drop onto JSF pages to publish content as ADF components, such as URLs, files, and folders. While methods, parameters, and default attributes to publish content are similar across all JCR data controls, the content integration module gives you the flexibility to customize attributes based on your requirements.
Each type of content data control contains methods and parameters to publish content as links, tables, files, and folders, and to add search and advanced search capabilities for your content. Parameters include two types of attributes: default and custom. The default attributes are common across data controls based on File System, Oracle Portal, Oracle WebCenter Content: Content Server, and Oracle WebCenter Adapter for SharePoint. The custom attributes are repository-specific and can be added while creating content data controls.
The following sections describe the methods, parameters, and default attributes that are common across data controls based on File System, Oracle Portal, Oracle WebCenter Content: Content Server, and Oracle WebCenter Adapter for SharePoint:
The getItems
method returns the files and folders stored starting at a particular location in the repository. This method enables you to publish content in forms, tables, and hierarchical trees. Using this method, you can also create navigation lists and buttons.
Table 28-1 describes the parameters of the getItems
method.
Table 28-1 Parameters of the getItems Method
Parameter | Description |
---|---|
| Defines the starting point for |
| Specifies what should be returned: only files, only folders, or any object. |
The getItems
method returns the attributes described in Table 28-2.
Table 28-2 Return Attributes of the getItems Method
Parameter | Description |
---|---|
| Provides a URI to the icon that the Documents service uses for an item. |
| Provides a URI to the icon that the Documents service uses for an item. |
| Parameter to the Documents service task flows that require an ID. |
| Describes the last modified date of an item. |
| Describes the name of the returned file or folder. |
| Describes the location of the returned file or folder within the content repository. |
| The direct access URL of a file or folder. |
| Describes whether the returned object is a file or folder or some other type. |
The search
method enables you to create a simple search by name pattern or keyword.
Table 28-3 describes the parameters of the search
method.
Table 28-3 Parameters of the search Method
Parameter | Description |
---|---|
| Starting path of the search. |
| Specifies whether only the specified folder (The default value is |
| Search keyword for full text search. |
| Pattern search on name. Use the |
The search
method returns the attributes described in Table 28-4.
Table 28-4 Return Attributes of the search Method
Parameter | Description |
---|---|
| Provides a URI to the icon that the Documents service uses for an item. |
| Provides a URI to the icon that the Documents service uses for an item. |
| Parameter to the Documents service task flows that require an ID. |
| Describes the last modified date of an item. |
| Describes the name of the returned file or folder. |
| Describes the location of the returned file or folder within the content repository. |
| The direct access URL of a file or folder. |
| Describes whether the returned object is a file or folder or some other type. |
The advancedSearch
method enables you to perform an advanced search by creating a set of search criteria out of any available attribute.
Table 28-5 describes the parameters of the advancedSearch
method.
Table 28-5 Parameters of the advancedSearch Method
Parameter | Description |
---|---|
| Starting path of the search. |
| Specifies whether only the specified folder (The default value is |
| Search keyword for full text search. |
| Pattern search on name. Use the |
| Specifies whether all predicates (|
| A collection of |
| Specifies what should be returned: only files, only folders, or any object. |
The advancedSearch
method returns the attributes described in Table 28-6.
Table 28-6 Return Attributes of the advancedSearch Method
Parameter | Description |
---|---|
| Provides a URI to the icon that the Documents service uses for an item. |
| Provides a URI to the icon that the Documents service uses for an item. |
| Parameter to the Documents service task flows that require an ID. |
| Describes the last modified date of an item. |
| Describes the name of the returned file or folder. |
| Describes the location of the returned file or folder within the content repository. |
| The direct access URL of a file or folder. |
| Describes whether the returned object is a file or folder or some other type. |
The getURI
method returns the URI attribute, which is the direct access URL of the file or folder. Its path
parameter describes the path to the object. You can use this method to create links to content and to inline content in your page. The getURI
method returns the URI
attribute.
The getAttributes
method returns the list of attributes and their values for a given file or folder. Its path
parameter describes the path to the object.
Table 28-7 describes the attributes that the getAttributes
method returns.
This section describes how to create a content data control based on a content repository connection:
The procedure to create content repository data controls is the same irrespective of the types of the connections that you use to create data controls. If you have not created a connection to your content repository, then see Section 27.2, "Configuring Content Repository Connections". In this section, a content data control is created using a Content Server-based connection.
To create a content data control using an existing content repository connection:
You must do this to ensure that the data control definition is separate from the data control usage. When you select the Portal project, data control definition files are created in its sub folder, Application Sources and not in the ViewController project in which the user interface is created.
Alternatively, from the File menu, choose New. In the New Gallery, expand Business Tier, select Content Repository and then Content Repository Data Control, and click OK.
The Create Content Repository Data Control dialog displays with the name of the connection selected in the Connection Name list.
Note: If you created your repository connection under the Resource Palette, then right-click the connection under the Resource Palette and choose Create Data Control. From the Resource Palette, you can also drag and drop the required connection onto the Data Controls panel. To add a new connection, click the Create new content repository connection icon to display the Create Content Repository Connection dialog. For more information, see Section 27.2, "Configuring Content Repository Connections". |
MyDataControl
. In Content Server, a metadata attribute named dPropertyName
is mapped in the adapter as shown here:
For example, if the property name is dWorkflowState
, then it is mapped as jcr:content/idc:metadata/idc:dWorkflowState
.
In Oracle Portal, a metadata attribute is mapped in the adapter as shown here:
name of the attribute in Oracle Portal
Note: To retrieve the JCR paths of item attributes, run the |
Note: The data controls include the predefined node types of JCR. These basic node types represent folders (|
When the data control is successfully configured, it shows under the Data Controls panel. Expand it in the Data Controls panel to see the hierarchical list of methods, parameters, and operations for the new data control, as shown in Figure 28-1. For detailed information on using the Data Control panel, see Chapter titled "Using Oracle ADF Model in A Fusion Web Application" of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Figure 28-1 Data Controls Panel - Content Server
Table 28-8 describes the icons and object hierarchy of a data control.
Table 28-8 The Data Controls Panel Icons and Object Hierarchy
Icon | Name | Description | Used to Create... |
---|---|---|---|
| Data Control | Represents a data control. You cannot use the data control itself to create UI components, but you can use any of the child objects listed under it. Depending on how your business services were defined, there may be multiple data controls. | Serves as a container for the other objects, and is not used to create anything |
| Method | Represents an operation in the data control or one of its exposed structures that may accept parameters, perform some business logic and optionally return single value, a structure or a collection of those | Command components For methods that accept parameters: command components and parameterized forms |
| Method Return | Represents an object that is returned by a custom method. The returned object can be a single value or a collection. A method return appears as a child under the method that returns it. The objects that appear as children under a method return can be attributes of the collection, other methods that perform actions related to the parent collection, and operations that can be performed on the parent collection. | For single values: text fields and selection lists For collections: forms, tables, trees, and range navigation components When a single-value method return is dropped, the method is not invoked automatically by the framework. A user either has to also create an invoke action as an executable, or drop the corresponding method as a button to invoke the method. |
| Attribute | Represents a discrete data element in an object (for example, an attribute in a row). Attributes appear as children under the collections or method returns to which they belong. Only the attributes that were included in the view object are shown under a collection. If a view object joins one or more entity objects, that view object's collection will contain selected attributes from all of the underlying entity objects. | Label, text field, date and selection list components |
| Operation | Represents a built-in data control operation that performs actions on the parent object. Data control operations are located in an Operations folder under collections or method returns, and also under the root data control node. The operations that are children of a particular collection or method return operate on those objects only, while operations under the data control node operate on all the objects in the data control. If an operation requires one or more parameters, they are listed in a Parameters folder under the operation. | UI components such as buttons or links |
| Parameter | Represents a parameter value that is declared by the method or operation under which it appears. Parameters appear in the Parameters folder under a method or operation. | Label, text, and selection list components |
The following files (Figure 28-2) are created under the Portal project:
DataControls.dcx
: Oracle JDeveloper creates this file the first time a data control is created. This file lists all the Oracle ADF data controls created under the current project. This file is required to initialize the data control. datacontrolname
.xml
: This file includes attributes, accessors, and operations of a data control. advancedSearch_return.xml
: This file includes the return type definition for the advancedSearch
method. getAttributes_return.xml
: This file includes the return type definition for the getAttributes
method. getItems_return.xml
: This file includes the return type definition for the getItems
method. getURI_return.xml
: This file includes the return type definition for the getURI
method. search_return.xml
: This file includes the return type definition for the search
method. Return.xml
: This file defines the standard operations on collections. Figure 28-2 Projects Panel - Portal Project
This section describes a generic procedure to edit content data controls that you configured as described in Section 28.2, "Configuring Content Data Controls for JCR Adapters".
To edit a content data control:
Figure 28-4 Edit Content Repository Data Control Dialog
You can enable security for your content repository connections. For information, see Chapter 69, "Securing Your WebCenter Portal: Framework Application".
In this section, you will use getURI
, getItems
, search
, and advancedSearch
methods of your data control. The basic procedure to use any data control method is to drag and drop it onto a page. When a method is dropped, its ADF Faces tag is added to the source of the page, and the tag is displayed in the Structure window. For example, dropping the URI attribute of getURI
as a Go Link adds an af:goLink
to the page. The destination of the af:goLink
is set to the EL expression #{bindings.URI.inputValue}
. This EL expression ties the destination value of the af:goLink
to the binding container's URI value.
In the page definition file, methodIterator
is added to the executables
element, and methodAction
is added to the bindings
element. The methodIterator
and methodAction
elements define which data control and method is to be used. The NamedData
attribute of the methodAction
defines what input parameter values should be provided to this method call. The path and type parameters are common across all data control methods. However, NamedData
for search and advancedSearch
includes additional parameters that are unique to those methods. For example, in the advancedSearch
method, the NamedData
can also be used to define the search predicates, whether the search is recursive, and so on.
The page definition includes the AttrNames
element, which defines the attributes of the items available in the bindings container to ADF. These items are based on default attributes and custom attributes that were defined when creating the data control.
For detailed information on using the Data Control panel and working with page definition files, see the chapter "Using Oracle ADF Model in A Fusion Web Application" of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
The examples in this section use the following data control methods:
getURI
to add textual and clickable image links to the repository folder. getItems
to publish the repository content in an ADF table and tree. search
and advancedSearch
to display those items of the repository that match the search criteria. This section includes the following subsections:
This section describes how to create hyperlinks to files stored in a file system and convert them into textual and image links. You use the ADF Go Link and the getURI
method to create textual links and the Image of ADF Faces to create image links.
This section includes the following procedures:
Before you begin:
In this section, you will use the Oracle ADF Go Link option of the getURI
method to publish your content as a textual link. You will also create a link to show a specific item of a repository.
To publish content as a textual link:
myPage.jspx
, to open it in the visual editor. URI
attribute, as shown in Figure 28-5. Figure 28-5 The URI Attribute of the getURI Method
af:form
. From the Create menu, choose Links and then ADF Go Link, as shown in Figure 28-6. If this is the first time you have dropped a node onto the page, then the Edit Action Binding dialog displays.
Figure 28-6 Oracle JDeveloper Context Menu for the getURI method
/
), for example /PlasmaNews.html
. To modify or delete this path later, click the arrow icon next to the node in design mode and choose Go to Binding from the context menu. Note: To grant edit, personalize, customize, and view permissions at the attribute level, see Section 28.4, "Securing a Content Repository Data Control". |
goLink1
. In the Structure window, select af:goLink - goLink1 and view the properties in the Property Inspector. Plasma News
, as shown in Figure 28-8. In Section 28.5.1.2, "Creating a Clickable Image to Link to a Document", you will extend this textual link into an image link.
To add a link to another item, in the same JSF page:
Figure 28-10 Page Data Binding Definition
executables
element, add another methodIterator
and change the methodIterator id
and value of Binds
, as shown in Bold in the following example: Bindings
element, add another methodAction
and change the methodAction id
, ReturnName
, and NDValue
, as shown in Bold in the following example: true
Action="invokeMethod" MethodName="getURI"Bindings
element, add another attributeValues
tag to specify the new Id, as shown in bold in the following example: URI
attribute. af:form
. From the Create menu, choose Links and then ADF Go Link, as shown in Figure 28-11. Figure 28-11 Oracle JDeveloper Context Menu for the getURI method
FOD Logo
. #{bindings.URI1.inputValue}
expression, and click OK. This expression is based on new elements that you added in executables
and bindings
. NDValue
) that you specified in step 4. Figure 28-12 shows the new link, FOD Logo
, in addition to the Plasma News
link that was added in the first part of Section 28.5.1.1, "Publishing Content As a Textual Link". You can add as many links as required by following these steps.
In this section, you will use the Image option of ADF Faces to publish a document as a clickable image, that is, clicking the image object will display your document.
To publish content as a clickable image object:
plasma.jpg
. Figure 28-14 ADF Object Image Link in a Browser
In the preceding examples, you created hyperlinks to files that are stored in a file system using ADF Go Link and converted them into textual and image links using the getURI
method and the Image component of ADF Faces.
At runtime, the ADF framework uses the information from the page definition file to invoke the data control methods required by the page. For information about the page lifecycle, see the chapter "Understanding the Fusion Page Lifecycle" of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
At runtime, the getURI
data control method is invoked to convert the given path into a valid HTTP URI for the content repository for which the data control is configured. The returned URL is syntactically correct for the target repository, but is not guaranteed to find a resource, that is, the getURI
method does not validate that the path corresponds to an existing JCR node. When the page is rendered and the clickable image or link is clicked, the application's get handler converts the HTTP URL into a JCR path and attempts to retrieve the content for the JCR path. The get handler also supplies mimeType
information in the response Content-Type
header, if such information is available from the repository. This is because in JCR, jcr:mimeType
is an optional property of the nt:resource
node type.
In this section, the getItems
data control method is used to publish file and folder information in a table. This section describes the following procedures:
Before you begin:
Here you will create a read-only ADF table using the getItems
method.
To display folder content in a read-only table:
Figure 28-15 The Return node of the getItems method
af:form
in the Structure window. From the Create menu, choose Table and then ADF Read-only Table , as shown in Figure 28-16. Figure 28-16 The Create Context Menu for getItems Method
getItems.name
Value Binding and enter an appropriate value for the Display Label; for example, Name
. Repeat this step for the path, URI, primaryType, and lastModified attributes. Enter new display labels such as name
, Location
, URL
, and so on, then click OK.
In the Edit Action Binding dialog, enter the path of the content directory as the path
parameter, as shown in Figure 28-18. You must enter a leading slash (/
). To modify or delete this path later, click the arrow icon next to the node in design mode and choose Go to Binding from the context menu.
Leave the type
parameter blank. This implies that the table displays both files and folders.
Figure 28-19 Read-Only Table for Publishing Folder Content
Note: You can turn the page caching on or off. To do so, open the page definition and expand executables, and select getItemsIterator in the Structure window. Then, in the Property Inspector, set CacheResults to true or false, as required. |
Figure 28-20 Files and Folders Displayed in a Read-Only Table
By default, the table displays file or folder attributes as read-only text (af:outputText
). The next section describes how to display the Name
attribute (name
) as a Go Link (af:goLink
).
In this section, you will convert the Name
attribute of the table that you created in Section 28.5.3.1, "Displaying Files and Folders in Read-Only Format" into a link using an ADF Go Link component. You will also configure the table to show only the Name column.
To display the Name attribute as a Go Link:
af:column - Name
) to show the default display format af:outputText - #{row.name}
. Figure 28-21 Default Formatting for the Name Column
Replace the af:outputText
in bold
with an af:goLink
as shown in bold:
af:column - URL
and select Delete. name
attribute as a link. Clicking a link in the URI column opens the respective file or folder and shows its contents. Figure 28-22 Folder Content Displayed as Hyperlinks
To configure the table to show only the Name column:
myFiles
, as shown in Figure 28-24. Figure 28-24 Table Properties - Common Tab
type
parameter blank when creating the table. Figure 28-25 Files and Folders Displayed in a Single-Column Table
In the next section, the Name column will be configured to show only files.
The type
attribute is used to configure a table to show only files and not folders.
To configure the table to show files:
Note: The |
nt:file
and nt:folder
. To specify the display of only files, enter nt:file
under the Value column, as shown in Figure 28-26, and click OK. nt:file
. Figure 28-27 Files Displayed in a Single-Column Table
The getItems
method of the JCR data control retrieves the child items of a JCR folder (type nt:folder
). This method is called with a path to a folder and optionally a type to which the returned child nodes are restricted.
The path
parameter must be the path of a folder. An exception to this rule is that the root of the repository does not have to be a folder. Hence, the getItems
method can retrieve the child items for a path that corresponds to a folder, or that is the root of the repository. Otherwise the getItems
method does not attempt to retrieve the child items and therefore the result set is never populated.
At runtime, the JCR data control calls the Session.getItem
method. This method returns a JCR node. The data control then calls the node.getNodes
to retrieve child nodes. The child nodes are filtered according to the specified type; for example, the nt:file
type. The data control passes on these child nodes to ADF. The data control ensures that the JCR node object is adapted to ADF so that JCR properties are available as data control item attributes that can be consumed through the bindings container.
In the example, each row in the collection returned by the data control is stored as a row in the af:table
table. However, a column is only displayed for each af:column
defined in the af:table
, and not for every possible ADF item attributes returned by the data control. In the first part of the example, the drag and drop action creates an af:column
for every ADF attribute available for each ADF item returned by the data control.
If the af:table
is modified to include only the af:column
for the name, then at runtime it only requests the name of the ADF item. That is, the data control runs a method to fetch the name of the JCR node. At design time, when the name column is converted to an af:goLink
, the destination of Go Link destination is set to the URI value of the item, as shown in the following syntax:
At runtime, for each ADF item in the table, the data control runs methods to return both the JCR name of the item and its HTTP URL.
In this section, you will use the getItems
method to publish content in a hierarchal tree format. This section describes the following procedures:
Before you begin:
In this section, you will display your content in the tree format.
To display your content in the tree format:
Figure 28-28 Parameters of the getItems Method
If this is the first time you have dropped a node onto the page, the Edit Action Binding dialog displays.
Figure 28-29 Oracle JDeveloper Create Menu for getItems
(/
) for the path
parameter, as shown in Figure 28-30. To modify or delete this path later, click the arrow icon next to the node in the design mode and choose Go to Binding from the context menu. Leave the type
parameter blank to show both files and folders.
Figure 28-30 The Edit Action Binding Dialog
Figure 28-32 Tree for Navigating Folder Content
When the page appears in your browser window, you should see a list of files and folders available through your data control. Figure 28-33 displays a tree of files and folders in the read-only format based on ADF tree dropped on the JSF page. Expand a branch to see the content in this subdirectory.
Note: By default, the range size is |
Figure 28-33 Folder Content Displayed in a Tree
By default, the tree displays file and folder names as read-only text. The next section describes how to create hyperlinks to file names. In the following section, folder names will remain read-only text because they are required for navigation through the tree.
To create hyperlinks to file names and to keep folder names read-only, you need the af:switcher
component with two facets: one for folders and one for files.
To use the Switcher component for folders and files:
f:facet - nodeStamp
and delete af:outputText-#{node}
. A Switcher is added under f:facet - nodeStamp in the Structure window, as shown in Figure 28-34.
Figure 28-34 Output Text Converted to a Switcher Component
#{node.primaryType}
. nt:folder
and click OK. Folder names require no additional formatting, so you can display the node names as plain text. Name the second facet nt:file
. The facets look like Figure 28-35. Figure 28-35 Switcher Component with Two Facets
#{node.name}
. #{node.name}
expression. #{node.URI}
. nt:file
facet of the switcher under af:tree
was converted to a link (node.URI
). Clicking a link displays the respective item. Figure 28-36 Tree with File Names as Hyperlinks
The JCR data control getItems
method is designed to retrieve the child items of a JCR folder (type nt:folder
). The method is invoked with a path to a folder and optionally a type to which the returned child nodes are restricted. The path
parameter must be the path of a folder for the getItems
method to retrieve the child items. An exception to this rule is that the root of the repository does not have to be a folder. Hence, the getItems
method can retrieve the child items for a path that corresponds to a folder, or that is the root of the repository. Otherwise the getItems
method does not attempt to retrieve the child items and therefore the result set is never populated. If the path is valid, then the data control invokes JCR Session.getItem()
on this path which returns a JCR node, and then it invokes node.getNodes()
to retrieve all child nodes. The child nodes are filtered according to the type supplied; for example, to return only the nt:file
type child node. This is the result that is provided by the data control to ADF. The data control ensures that the JCR node object is adapted to ADF such that JCR properties are available as data control item attributes that can be consumed by way of the bindings container.
The af:tree
renders each node in the collection returned by the data control as a node in its tree. In the first part of the example, it displays the name
, type
, and URI
for each node. Each of these values is retrieved through the data control. When the switcher is added to the af:tree
the node's primaryType
value is used to differentiate how a node is rendered. If the node is of primary type nt:folder
, then only its name is shown in the tree node. However if the node is of type nt:file
, then the node renders go:Link
, the destination of which is the node's URI. The data control getItems
method is invoked again to retrieve the child nodes of any folder node in the tree.
With the help of two examples, this section describes how to add simple and advanced search capabilities for the integrated content. The simple search enables users to search for the content based on name or content fragments in specific locations. The advanced search enables users to search by attribute values of the content.
This section contains the following:
Before you begin:
In this section, you will enable simple search capabilities in your page. This will let you perform wildcard (%
) search.
To enable the search function:
Figure 28-37 ADF Parameter Form in the Design View
Figure 28-38 Table with Four Columns - search
/
for search_path and %jpg%
for namePattern. All .jpg
files stored in the root of your repository display, as shown in Figure 28-39. Figure 28-39 Search Results for .jpg Files
In this section, you will add advanced search capabilities to your page that will enable you to perform search based on the last modified dates of items located in your file system repository.
To enable the advanced search function:
advancedSearch
, class=AdvancedSearch
, package=view
. (In the Create JSF Page dialog > Page Implementation > Automatically Expose UI Components in a New Managed Bean) In this example the page is called advancedSearch.jspx
.
getPredicates
method, which will be added in the next step. /
. For isRecursive specify true
, and matchAny specify false
. ${backingBeanScope.advancedSearch.predicates}
, as shown in Figure 28-40, and click OK. Figure 28-40 Variables Dialog - predicates
Figure 28-41 Advanced Search - Design View
ContentDelivery
property to immediate
. advancedSearch
page displays in the browser. Clicking the search button at runtime invokes the search
method and the values provided through the UI are used as the parameters for the search. At runtime, you can perform the wild (%
) card search. For example, to search for files that have .jpg
extension, enter /
in the search_path field, enter %jpg
in the namePattern field and then click Search. All files with the .jpg
extension will display in the read-only table.
At runtime the JCR data control uses the given parameters to construct an XPath
query for the given parameters. For the simple search example, the query is:
In the advanced search example, first a backing bean is added to the page, because the backing bean is required to construct the predicate
parameter value of the advancedSearch
method. Then the Panel Form Layout UI component is dropped onto the page. In this component, the InputDate
component is dropped, which is used at runtime to supply the date-based search criterion. The advancedSearch
method predicates parameter allows for a combination of predicates to be supplied to the search
method. Each can specify the value of an item's properties that must apply for the search. In this example, only a modification date is tested in the predicates, but potentially multiple tests could be included, for example a modification date and a mimeType
.
The backing bean's getPredicates
method is hardcoded to construct the predicates
method from the date provided by the page at runtime. At design time, the return value of the predicates
method is bound into the predicates advancedSearch
method parameter. At runtime this invokes the getPredicates
method before invoking the advancedSearch
method to construct the correct predicate
value.
At runtime the JCR data control uses the given parameters to construct an XPath
query for the given parameters. For this example the query is:
Consider the following points while adding search capabilities:
primaryType
attribute. The only supported way to search based on type is through the element (*
, type) construct. The Content Presenter task flow allows authorized users to retrieve content from Content Server and display it in a WebCenter Portal application in real time, without assistance from an IT Department or software developers. For example, you might want to display a list of the most recent Press Releases so users can browse them and click one to read it. You can place images (a photograph or a chart, for example) or add textual content to the portal.
Note: Content Presenter can only be used with Content Server based content. No other repository connection types are supported. |
Content Presenter renders content using a selected display template. The primary focus of this chapter is creating Content Presenter display templates. You can create a Content Presenter template to satisfy your particular content rendering requirements or to handle your own custom content properties.
This chapter includes these topics:
You can add a Content Presenter task flow at design time or runtime. For details on adding Content Presenter at design time (using JDev), see Chapter 31, "Adding Content Task Flows and Document Components to a Portal Page." For details on adding and using Content Presenter at runtime, see "Publishing Content Using Content Presenter" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
A Content Presenter display template is a JSFF file (JSF page fragment) that defines how Content Presenter renders content items on a portal page. WebCenter provides several out-of-the-box display templates to get you started, and you can create your own templates.
Tip: You can find sample display templates in |
Display templates can use the full set of Rich ADF components, so you can quickly and easily create robust and attractive templates to display your content. Note, however, that you are not required to use these components in your template.
A Content Presenter display template can handle either single content items, multiple content items, or combinations of the two. For example, a multiple content item template might render tabs for each item and then call a single item template to render the details of a selected item.
Each content item is associated with a specific content type defined in the Content Server repository. A content type defines the properties of the content item. Content types can map to Content Server profile definitions and Site Studio region definitions. Types are created on the Content Server. As a Content Presenter display template developer, you need to know the names of the properties defined for the associated content type so that you can define how to display the selected content item(s) on the page.
Tip: One way to determine the properties for the existing content types defined in Content Server is to use the Content Presenter Configuration dialog in WebCenter Portal: Spaces. For a detailed description of this technique, see Section 29.4.5, "Discovering Content Type Property Names." |
At runtime, an authorized end user can choose a display template in the Content Presenter Configuration dialog.
WebCenter Portal provides several out-of-the-box Content Presenter display templates. These pre-built templates provide options for displaying single content items and multiple content items.
For example, the Default Document Details View template displays detailed information about any single content item including creation date, modification date, created by username, modified by username, path and any comments. Figure 29-0 shows a content item displayed at runtime with this template.
Figure 29-1 Default Document Details View Display Template
Several options are provided for displaying multiple content items, such as the Accordion View, which Displays multiple content items in an accordion format. In this format, each item can be expanded to display its details, as shown in Figure 29-2.
Figure 29-2 Accordion View Display Template
For a complete list of out-of-the-box display templates, see Section 31.7.1, "Content Presenter Task Flow Parameters and Out-of-the-Box Display Templates."
Tip: If you intend to create a Content Presenter display template, a good practice is to copy one of the out-of-the-box templates and modify it. |
If the out-of-the-box display templates (see Section 29.3, "Using the Out-of-the-Box Display Templates") do not meet your needs, you can define custom Content Presenter templates.
This section discusses these topics:
Depending on your needs, the approach you take to defining Content Presenter display templates will vary. Typically, you define display templates for specific single items of content, then define a multiple content item display template that includes calls to the single item display templates.
Template definitions can include calls to other display templates in any of the following ways:
The basic tasks for creating Content Presenter display templates include:
Examples of single content items for which you may want to create Content Presenter display templates are:
The definition of a single content item display template uses the JSP tags listed in Table 29-1.
Table 29-1 Content Display Template Tags for Single Content Items
JSP Tag | Description | Example |
---|---|---|
| Required. Defines a single content item template. Attributes:
| <dt:contentTemplateDef var="node"> <af:outputText value="#{node.name}" /> </dt:contentTemplateDef> |
| Optional. Retrieves and renders the string value(s) of the specified node property inline. Attributes:
| <!-- Handling of text-based primary properties (HTML, text, etc.). --> <dt:contentTemplateDef var="node"> <cmf:renderProperty id="rp1" name="#{node.primaryProperty.name}" node="#{node}"/> </dt:contentTemplateDef> |
| Optional. Nested under Calls another single item template. Attributes:
| <dt:contentTemplateDef var="node"> <af:outputText value="#{node.name}" > <dt:contentTemplate node="#{node}" view="templates.pressrelease.item" /> </af:outputText> </dt:contentTemplateDef> |
To define a display template for a single content item:
pages
and store the JSFF in the subfolder. renderProperty
tag. Figure 29-3 Content Display Template Tags in Component Palette
Example 29-1 and Example 29-2 show sample single content item display template definitions. These examples illustrate a use case where a certain kind of document (a press release) is produced by two different departments inside a company, and each department has defined its own content type and properties. These sample Content Presenter display templates allow these two different content types to be displayed in a consistent manner.
The template shown in Example 29-1 handles a Press Release that uses a property named xHeading
to describe the heading of the Press Release document, and xDestinationUrl
to describe the location of the document. To learn how you can obtain these property names for a given content type, see Section 29.4.5, "Discovering Content Type Property Names."
Example 29-1 Sample Content Presenter Display Template for a Press Release Document
The template shown in Example 29-2 handles a Press Release that uses a property named dDocTitle
to describe the heading of the Press Release document, and xLinkUrl
to describe the location of the document.
Example 29-2 Sample Content Presenter Template for Another Press Release Document
Examples of multiple content items for which you may want to create Content Presenter display templates are:
The definition of a multiple content item display template uses the JSP tags listed in Table 29-2.
Table 29-2 Content Display Template Tags for Multiple Content Items
JSP Tag | Description | Example |
---|---|---|
| Required. Defines the multiple content item template. Attributes:
| <dt:contentListTemplateDef var="nodes"> <af:iterator value="#{nodes}" var="node"> <af:outputText value="#{node.name}" /> </af:iterator> </dt:contentListTemplateDef> |
| Optional. Nested under Calls another multiple item template. Attributes:
| <dt:contentListTemplateDef var="nodes"> <!-- Reuse the default bulleted list view, but indent it with a <blockquote> --> <f:verbatim> <blockquote> </f:verbatim> <dt:contentListTemplate nodes="#{nodes}" category="oracle.webcenter.content. templates.default.category" view="oracle.webcenter.content. templates.default.list.bulleted"/> <f:verbatim> </blockquote> </f:verbatim> </dt:contentListTemplateDef> |
| Optional. Nested under Calls a single item template. Attributes:
| <dt:contentListTemplateDef var="nodes"> <af:iterator rows="0" var="node" varStatus="iterator" value="#{nodes}"> <dt:contentTemplate node="#{node}" view="templates.pressrelease.listitem" nodesHint="#{nodes}"/> </af:iterator> </dt:contentListTemplateDef> |
To define a display template for multiple content items:
Example 29-3 shows a sample multiple content item display template definition.
Example 29-3 Sample display template definition for the display of multiple Press Releases (press-release-list-view.jsff)
This template definition iterates over the data items selected for display, and processes them according to the referenced view (view="mycorp.content.templates.pressrelease.listitem"
).
This section describes the EL expressions that you can use in your Content Presenter display template definitions to retrieve and display specific information about content items.
Use the EL expressions described in the following tables as you define your Content Presenter display templates as explained in Section 29.4.2, "Defining Single-Item Display Templates" and Section 29.4.3, "Defining Multiple-Item Display Templates." These expressions are used with the JSP tags described in Table 29-1 and Table 29-2.
The EL expressions listed in Table 29-3 allow you to display basic information about a content item in a display template.
Table 29-3 EL Expressions for Retrieving Basic Content Information
EL Expression | Description |
---|---|
| Returns the user name of the node's creator. |
| Returns the node's creation date. |
| Returns |
| Returns the icon service defined in the current web application. |
| Returns the node's identifier. |
| Returns |
| Returns |
| Returns the user name of the node's last modifier. |
| Returns the node's last modification date. |
| Returns the node's name. |
| Returns the parent node's identifier. |
| Returns the node's path. |
| Returns the node's primary property, if available. |
| Creates and returns a map of wrapped property objects, keyed by property name. Properties can be accessed as |
| Returns an instance of the node property URL service for the primary property of this node (if any). By default, resolves to |
Use the EL expression described in Table 29-4 and Table 29-5 to perform actions on content item node properties and property values.
Tip: To determine the names of the properties defined for a given content type, see Section 29.4.5, "Discovering Content Type Property Names." |
Table 29-4 EL Expressions for Content Item Node Properties
EL Expression | Description |
---|---|
| Returns this property as text or HTML if the type is text or HTML. If |
| Returns |
| Returns the icon service defined in the current web application. |
| Returns the indexed name of a multi-valued property. For example, if a multi-valued node property named |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns |
| Returns the Example: |
| Returns the property's name. |
| Retrieves nested properties for this single-valued property, and returns a list of properties. |
| Returns the data type of this property value. For example: |
| Returns a URL service for this property. |
| Returns the value service for this property. |
| Returns elements from a static list. For example: <af:iterator var="listItem" value="#{node.propertyMap['ARTICLE_RGD:Paragraphs'].nestedProperties}" varStatus="vs"> <af:outputText id="ot1" value='#{listItem[0].value}'/> <af:outputText id="ot3" value="#{listItem[1].value}"/> </af:iterator> |
| Returns Site Studio data as HTML text. For example:
The element name (|
Table 29-5 EL Expressions for Content Item Node Property Values
EL Expression | Description |
---|---|
| Returns custom attributes for a binary property type or attachment. Attributes available on
|
| Returns the value of this property as |
| Returns the value of this property as |
| Returns the value of this property as |
| Returns the value of this property as |
| Returns the "index" of the property when the property is multi-valued. Example: |
| Returns the value of this property as Example: |
Table 29-6 and Table 29-7 describe EL expressions for working with icons and URLs associated with content items and properties.
Table 29-6 EL Expressions for Content Item Node or Property Icons
EL Expression | Description |
---|---|
| Returns a URL to an image resource for a large icon. Example: |
| Returns a URL to an image resource for a small icon. Example: |
Table 29-7 EL Expressions for Content Item Node URLs
EL Expression | Description |
---|---|
| Creates a URL to the binary content. Forces a download, and the underlying operating system renders the content based on the content type. Example: |
| Creates a URL to the binary content. Allows the browser to render the content based on the content type. By default, Example: |
This section describes a useful technique for learning the property names of a content item's content type.
Note: You can also use REST services to obtain content type property names. For more information see the Oracle Fusion Middleware Content Management REST Service Developer's Guide. |
Each content item is associated with a specific content type defined in the Content Server repository. Content types can map to Content Server profile definitions and Site Studio region definitions. Types are created on the Content Server. A content type defines the properties of the content item (see Table 29-8), and is identified when you register the template.
As a Content Presenter display template developer, you will need to know the names of the properties defined for the associated content type so that you can define how to display the selected content item(s) on the page.
One way to determine the properties for the existing content types defined in Content Server is to use the Content Presenter Configuration dialog in WebCenter Portal: Spaces:
Note: The list of property names shown in the dropdown list (Figure 29-4) are display names only. For example, the display name To discover the actual property names that correspond to the display names, you must access them through the Content Server administration console, or contact your Content Server administrator. When referencing the actual content type properties, you must include the leading letter |
Figure 29-4 Identifying Content Type Properties
In some cases, a display template needs to reference an external file, like a CSS file. All such references must be either an absolute path or a path that is relative to the root of the web application. For example:
http://host:port/mypath/file.css
/webcenter/mypath/file.css
Do not use local references to external files. Local references to external files do not work because they are not included when you upload a Content Presenter display template to a WebCenter Portal: Spaces application, as explained in Section 29.5, "Using Content Presenter Display Templates in a Framework Application."
You can use custom display templates to display Site Studio Region Definition elements. For example, you might have a Site Studio Region Definition called RD_NEWS with four elements: TITLE, LEAD, IMAGE, and BODY. A Content Presenter display template can reference these elements using the node property EL expression like this:
#node.propertyMap['RD_NEWS:LEAD'].asTextHtml}
Example 29-4 illustrates how these Site Studio Region elements can be included in a contentTemplateDef
definition:
Example 29-4 Referencing Site Studio Region Elements in a Template
For a complete, end-to-end example illustrating how to reference Site Studio Region elements in multiple templates, see the WebCenter Architecture Team blog entry at: http://blogs.oracle.com/ATEAM_WEBCENTER/entry/content_presenter_cmis_complete
.
For information on using a display template in a Content Task flow, see Section 31.5, "Adding a Content Task Flow to a Page." See also Section 31.7.1, "Content Presenter Task Flow Parameters and Out-of-the-Box Display Templates." For information on integrating a display template into a WebCenter Portal: Framework application, see the following section Section 29.5, "Using Content Presenter Display Templates in a Framework Application."
Note: If you display a wiki page in a Framework application using a Content Presenter display template, by default any links within that wiki page are displayed in the Document Viewer. If you want to display wiki page links using Content Presenter, you must edit the |
This section explains how to make a Content Presenter display template available to Content Presenter in a Framework application.
Note: If you are using a locally configured JDev environment to develop a Framework application, all you need to do to use a Content Presenter display template in your application is to export it as a portal resource, as explained in Section 29.5.1, "Export a Content Presenter Display Template as a Portal Resource." You do not need to perform the upload task as explained in Section 29.5.2, "Upload the New Content Presenter Display Template." |
This section explains how to export a Content Presenter display template as a portal resource. This procedure is a prerequisite to adding a Content Presenter display template to a deployed WebCenter Portal: Spaces application and to Content Presenter at runtime.
Figure 29-5 Create Portal Resource Dialog for a Single-Item Template
Figure 29-6 Create Portal Resource Dialog for a Multiple-Item Template
The default settings in the Create Portal Resource dialog are generally sufficient; however, you must enter a unique value in the View ID field. The Display Name is the name that appears in the display template drop down menu at runtime.
The View ID parameter is intended to be human-readable; therefore, it is not automatically generated for you. For example, you can use the View ID to programmatically refer to one template from another. For example, a multiple content item template could render tabs for each item and also call on a single item template to be used below the selected tab to render the details of that item. As another example, you can include one template in another by passing the View ID as a parameter to the Content Presenter task flow. For a detailed example illustrating the latter use case, see the WebCenter Architecture Team blog entry at: http://blogs.oracle.com/ATEAM_WEBCENTER/entry/content_presenter_cmis_complete
. See also Section 29.4.7, "Referencing Site Studio Region Elements in a Custom View."
Additional Attributes in the Create Portal Resource dialog for a single item template include:
Additional Attributes in the Create Portal Resource dialog for a multiple item template include:
Note: For more information on other fields in the Create Portal Resource dialog, see Section 17.4.3, "How to Export a Portal Resource from JDeveloper." |
Now that your Content Presenter display template is exported as a portal resource, the next step is to upload it to your WebCenter Portal: Spaces application. After uploading the display template portal resource, it will be available in the list of display templates when you add a Content Presenter to your portal page.
You can upload a new display template to any deployed WebCenter Portal: Framework or WebCenter Portal: Spaces application that includes the Resource Manager. To upload a Content Presenter display template to a WebCenter Portal: Framework or WebCenter Portal: Spaces application, do the following:
Note: The repository connection names and details must be the same between the design time Framework application in which you developed the Content Presenter display template and the WebCenter Portal: Spaces application. |
Note: Any references to external files in the display template must either be absolute or relative path references. See Section 29.4.6, "Referencing External Files in Display Templates." |
Figure 29-7 Uploading the Display Template Portal Resource
Figure 29-8 Toggling the Show/Hide State of a Template
The new Content Presenter display template is now ready to be used with Content Presenter in a WebCenter Portal: Spaces application.
This section explains how to test your Content Presenter display template with Content Presenter.
Figure 29-9 Opening the Document Management Folder
Figure 29-11 Selecting the Content Presenter Display Template
The Content Presenter template will be applied to the Content Presenter instance. For more information on using Content Presenter and display templates, see Section 31.2, "Understanding the Documents Service Task Flows" and Section 29.3, "Using the Out-of-the-Box Display Templates".
This section includes these topics:
After you have defined a Content Presenter display template, you can add a Content Presenter task flow to a page in your application, specifying the content and display template in the Content Presenter task flow parameters (see Section 31.6, "Modifying Content Task Flow Parameters" and Section 29.3, "Using the Out-of-the-Box Display Templates").
If you integrate the Documents Service in your application (see Chapter 30, "Integrating the Documents Service"), end users of your application can select content and your Content Presenter display templates in the Content Presenter Configuration dialog to include content on editable pages of the application, as described in "Publishing Content Using Content Presenter" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces. To understand how Content Presenter identifies which display templates to expose in the Content Presenter Configuration dialog, see Section 29.6.2, "Identifying Display Templates for Selected Content Items."
At runtime, after a user selects content in the Content Presenter Configuration dialog, Content Presenter checks the Resource Manager to identify the display templates that are suitable for the selected content item(s), then exposes the list of valid templates on the Template page in the Content Presenter Configuration dialog for the user to select. See also Chapter 17, "Adding and Using the Resource Manager."
For single content item templates, Content Presenter generates a list of valid templates using the following precedence order:
*
) and specified content type. *
) and default content type (*
). For multiple content item templates, Content Presenter generates a list of valid templates using the following precedence order:
*
). For example, if the user selects multiple content items (such as the children of a folder, or the results of a search), the Content Presenter Configuration dialog shows a list of categories and the list of templates associated with that category and the default category, based on the repository of the content items.
Note: When a user selects a template in the Content Presenter Configuration dialog, that template is used to display the selected content item(s) in the running application. If that template is later deleted from the Resource Manager for any reason, Content Presenter will automatically select a "closest match" template to display the content item(s) using the precedence order above. |
When content nodes are retrieved for display in a Content Presenter display template, most content item node property values are retrieved immediately along with the node, but some are loaded later only if needed. Other than the performance difference, the selective loading of node property values is transparent to the user or developer.
As a Content Presenter display template developer, you can optimize performance of your template if you are aware when different property values are loaded. For example, a typical list display template will render faster if you refer only to properties that are immediately loaded when the node is first retrieved and avoid properties that are loaded later when needed.
A secondary consideration is dependent on how the node is retrieved: through search versus fetched by parent ID. A property that may be loaded immediately on node retrieval for searches (such as "Results of a Query") may be loaded later for other retrieval methods (such as "Contents Under a Folder"). Table 29-8 shows whether or not node properties are loaded immediately upon node retrieval, by retrieval mechanism.
For information about the node properties listed in Table 29-8, see the Oracle WebCenter Content Idoc Script Reference Guide.
Table 29-8 Loading of Node Properties By Node Retrieval Mechanism
OCS Global Profile Properties	Loaded When Node Is First Retrieved?		
GET BY PARENT ID ("Contents Under a Folder")	SEARCH ("Results of a Query")	GET BY UUID ("Single Content Item" and "List of Items")	
N	Y	Y	
Y	N	Y	
Y	Y	Y	
Y	Y	Y	
Y	Y	Y	
Y	Y	Y	
Y	Y	Y	
Y	Y	Y	
Y	Y	Y	
Y	Y	Y	
Y	Y	Y	
Y	N	Y	
Y	Y	Y	
Y	N	Y	
Y	N	Y	
Y	N	Y	
Y	Y	Y	
Y	N	Y	
Y	Y	Y	
Y	Y	Y	
Y	N	Y	
Y	Y	Y	
N	N	Y	
Y	Y	Y	
N	N	Y	
Y	Y	Y	
Y	Y	Y	
Y	Y	Y	
Y	Y	Y	
Y	Y	Y	
Y	Y	Y	
There are several ways to integrate content into a WebCenter Portal: Framework application. For more information, see Chapter 26, "Introduction to Integrating and Publishing Content."			
This chapter describes how to integrate the Documents service into a Framework application to both add content to the application, and to provide end users with content and Documents service task flows built into the application to manage, display, and search documents at runtime.			
This chapter includes the following sections:			
The Documents service provides features for accessing, adding, and managing folders and files; configuring and viewing file and folder properties; and searching file and folder content in Content Server, Oracle Portal, or SharePoint content repositories. It provides these features through Documents service task flows, document components (links, inline frames, and images), wikis, and blogs.			
Note: The availability of SharePoint as a content repository requires the installation of the SharePoint adapter, as described in Section 3.6, "Installing the Oracle WebCenter Adapter for SharePoint." Administration for SharePoint is performed using WLST commands, not Oracle Enterprise Manager Fusion Middleware Control Console.			
To integrate the Documents service into a Framework application, your WebCenter Portal administrator must set up a connection to the content repository that contains the documents you want to manage. If the content repository you wish to use requires authentication, ensure that you set up an external application when you configure the connection to your content repository, as discussed in Section 30.2, "Setting Up Connections."			
Before you can use the Documents service and task flows, you must first set up the connection to the Content Server, Oracle Portal, or SharePoint content repository that contains the documents you want to manage. You can reuse connections you've created or create new ones.			
Note: While you can set up the connections to back-end servers at design time in Oracle JDeveloper, you can later add, delete, or modify connections in your deployed environment using Enterprise Manager Fusion Middleware Control. For more information, refer to the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.			
The choices made for application security and content repository connection authentication need to be compatible. For example, if the connection is configured to use External Application with only Public credentials defined, then there is no requirement for the application to enforce user authentication. For detailed information about connection configuration, see Section 27.2, "Configuring Content Repository Connections."			
The Documents service task flows support the same security options that are supported by the content repository connections. This service can also use an external application with dedicated user accounts to access remote content repositories, such as an Oracle Content Server or Oracle Portal. For more information about using security with content repositories, see Section 28.4, "Securing a Content Repository Data Control." For information about using external applications, see Section 69.13, "Working with External Applications."			
If you are using a content repository that handles its own authentication, such as Oracle Portal or Oracle Content Server, you can associate that content repository with an external application definition to allow for credential provisioning. You can modify your connection to your content repository to use an external application without shared or public credentials. When you do this, the External Application - Change Password task flow is automatically integrated to allow your end users to provide their credentials.			
To register an external application for an existing content repository connection:			
Figure 30-6 External Application in the Application Resources Panel			
If you do not apply security, and the content repository requires a login to access the content, the user will not be able to authenticate, and thus will see only public content at runtime.			
You can use the Documents service with a variety of other WebCenter services. For example, you can add tags to documents in your content repository, search across your application and retrieve documents in the results, or track recent changes to the content repository.			
You can see an example of how to use the Documents service with the Tags service in Section 44.3.3, "Optional Way to Show Tags on Pages."			
To learn more about how you can use these services together, refer to Section 2.4, "Introducing Oracle WebCenter Portal: Services."			
Note: When you integrate the Documents service with the Search service, the Search service returns results from all content repository connections.			
The Document Manager, Document Explorer, and Folder Viewer task flows allow you to upload files into content repositories. WebCenter Portal: Framework uses Apache MyFaces Trinidad to handle file upload from a browser to the application server.			
To change the default settings of Apache MyFaces Trinidad, you can add three parameters to the web.xml			
file. To edit this file, open the ViewController project of your application. Under Web Content, open the web.xml			
file. In the Overview, navigate to Application > Context Initialization Parameters, then click the green plus sign (+) to add the parameters and their values (as described in Table 30-1) or simply update the code in the Source view. After you've made your changes, save the web.xml			
file, then restart Oracle JDeveloper.			
Table 30-1 Apache MyFaces Trinidad Parameters			
Parameter	Description		
---	---		
org.apache.myfaces.trinidad.UPLOAD_MAX_MEMORY	The maximum amount of memory in bytes that a single file can use when uploaded.		
org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE	The maximum amount of disk space in bytes that a single file can use when uploaded.		
org.apache.myfaces.trinidad.UPLOAD_TEMP_DIR	The directory in which the file being uploaded is temporarily stored.		
For more information, see the Apache MyFaces Trinidad documentation at http://myfaces.apache.org/trinidad/devguide/fileUpload.html			
.			
To learn more about using existing adapters for the content repository connections, see Chapter 27, "Managing Content Repository Connections."			
The script content on this page is for navigation purposes only and does not alter the content in any way.			
There are several ways to integrate content into a WebCenter Portal: Framework Application. For more information, see Chapter 26, "Introduction to Integrating and Publishing Content."			
In a Framework application, you can add content from one or more connected content repositories to the application, using Content Presenter or the Documents service task flows to display the content in a variety of ways. As you develop your application, you can view, edit, and manage that content using the content task flows, in the same way that end users of the application will do. For information about viewing, editing, and managing content in content task flows, see "Working with Content" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
This chapter describes how to add content to a page in a Framework application using the content task flows and document components in the following sections:			
Content Presenter enables you to precisely customize the selection and presentation of content in a WebCenter Portal application.			
The Content Presenter task flow is available only when the connected content repository is Content Server and your WebCenter Portal administrator has completed the prerequisite configuration.			
The Content Presenter task flow allows you to select a single item of content, contents under a folder, a list of items, query for content, or select content based on the results of a Personalization Conductor scenario, and then select a template to render the content on a page in a WebCenter Portal application.			
Content Presenter has no dependency on the Documents service for adding or managing the content it displays.			
To add the Content Presenter task flow to a page, see Section 31.4, "Adding a Selected Folder or File to a Page" and Section 31.5, "Adding a Content Task Flow to a Page."			
Note: If a page is based on a page template that includes a Content Presenter task flow to display a content item, the page template developer must manually modify the task flow properties to display the content in the page template, as follows:			
For more information about Content Presenter task flow properties, see Table 31-4, "Content Presenter Task Flow Parameters" For information about creating a page template, see Section 12.2.2, "How to Create a Page Template."			
The Documents service task flows provide a variety of formats to display folders and files, including wikis and blogs, on a page in a Framework application. You can choose the task flows appropriate for your application to provide features for accessing, adding, and managing folders and files; configuring and viewing file and folder properties; and searching file and folder content in Content Server, Oracle Portal, or SharePoint content repositories.			
Note: The availability of SharePoint as a content repository requires the installation of the SharePoint adapter, as described in Section 3.6, "Installing the Oracle WebCenter Adapter for SharePoint." Administration for SharePoint is performed using WLST commands, not Oracle Enterprise Manager Fusion Middleware Control Console.			
To add a Documents service task flow to a page in a Framework application, your WebCenter Portal administrator must first integrate the Documents service into the application by establishing a content repository connection, as described in Chapter 30, "Integrating the Documents Service" and Chapter 27, "Managing Content Repository Connections."			
Using Documents service task flows and document components (such as links, previews, and images), you can add content to the application, and also provide end users with content and Documents service task flows built into the application to manage, display, and search documents at runtime.			
Table 31-1 provides an overview of the Documents service task flows.			
Table 31-1 Documents Service Task Flows			
Folder and File Listings	Individual Folders	Individual Files	
---	---	---	---
Document Explorer task flow. Displays folders and files in two panes, combining the functionality of the Document Navigator and Folder Viewer task flows. It provides in-place previewing and editing, and robust management capabilities with an interface that should be familiar to users of Windows Explorer. Size: medium to full page width. See Figure 31-1.	X	X	
Document List Viewer task flow. Displays folders and files in a single pane as a flat listing. It provides preview and editing in separate window, and some management capabilities. Size: narrow to medium page width. See Figure 31-2.	X	X	
Document Manager task flow. Displays folders and files as specified by its	X	X	
Document Navigator task flow. Displays a nested hierarchy of folders and files in a single pane, providing expand and collapse on folders to show the full hierarchy. Size: narrow to medium page width. See Figure 31-6.	X	X	
Folder Viewer task flow. Displays the contents of a folder in a single pane as a flat listing, providing in-place preview and editing, and robust document management capabilities with a straightforward interface that should be familiar to Windows users. Size: medium to full page width. See Figure 31-7.	X	X	
Recent Documents task flow. Displays a list of the files most recently created or modified in the current folder. See Figure 31-8.	X		
Document Viewer task flow. Displays a preview of a file, or file properties for files that do not support a preview. See Figure 31-9, Figure 31-10, Figure 31-11, and Figure 31-12.	XFoot 1	X	
Document Mini Properties task flow. Displays the Basic properties of a file in a read-only view. See Figure 31-13.	X1	X	
Document Properties task flow. Displays both Basic and Advanced properties of a file, along with an Edit button to allow you to modify property values. See Figure 31-14.	X1	X	
Rich Text Editor task flow. Displays an HTML or wiki document in the Rich Text Editor.	X	X	
Document Upload task flow. Displays the Upload dialog to allow users to upload new documents to the page.	X	X	
Document Version History task flow. Displays a list of versions of a file, allowing for deletion of a selected version. See Figure 31-15.	X		
AutoVue task flow. Displays AutoVue markup for a file in a table of hyperlinked markup names (see "Collaborating on Documents Using AutoVue" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces).	X		
Footnote 1 To show folder information in a Document Viewer, Document Mini Properties, or Document Properties task flow, you can set the task flow's resourceID			
property to the ID of the target folder. See Section 31.7, "Content Task Flow Parameters."			
To add a Documents service task flow to a page, see Section 31.4, "Adding a Selected Folder or File to a Page" and Section 31.5, "Adding a Content Task Flow to a Page."			
For detailed information about each Documents service task flow, click the links below to display the pertinent sections in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces			
Figure 31-1 shows an example of the Document Explorer task flow. For information about setting properties for this task flow, see Section 31.7.2, "Document Explorer Task Flow Parameters."			
Figure 31-2 shows an example of the Document List Viewer task flow. For information about setting properties for this task flow, see Section 31.7.3, "Document List Viewer Task Flow Parameters."			
Figure 31-3, Figure 31-4, and Figure 31-5 show examples of the three different layouts for the Document Manager task flow. The explorer			
layout (default) is identical to the Document Explorer task flow, without the properties showDocuments			
, showFolders			
, and treeNavCollapsed			
. For information about setting properties for this task flow, see Section 31.7.4, "Document Manager Task Flow Parameters."			
Figure 31-6 shows an example of the Document Navigator task flow. For information about setting properties for this task flow, see Section 31.7.5, "Document Navigator Task Flow Parameters."			
Figure 31-7 shows an example of the Folder Viewer task flow. For information about setting properties for this task flow, see Section 31.7.6, "Folder Viewer Task Flow Parameters."			
Figure 31-7 shows an example of the Recent Documents task flow. For information about setting properties for this task flow, see Section 31.7.7, "Recent Documents Task Flow Parameters."			
Figure 31-9, Figure 31-10, Figure 31-11, and Figure 31-12 show examples of the Document Viewer task flow for different file types. For information about setting properties for this task flow, see Section 31.7.8, "Document Viewer Task Flow Parameters."			
Figure 31-13 shows an example of the Document Mini Properties task flow. For information about setting properties for this task flow, see Section 31.7.9, "Document Mini Properties Task Flow Parameters."			
Figure 31-14 shows an example of the Document Properties task flow. For information about setting properties for this task flow, see Section 31.7.10, "Document Properties Task Flow Parameters."			
Figure 31-15 shows an example of the Document Version History task flow. For information about setting properties for this task flow, see Section 31.7.13, "Document Version History Task Flow Parameters."			
The Documents service provides features for adding document components to a portal page. As described in Section 31.4, "Adding a Selected Folder or File to a Page", you can add a document component to a page as a container for a selected folder or file (Figure 31-16).			
Document components enable you to display an individual file on a page in a variety of ways, depending on the file type:			
To add a document component to a page in a Framework application, you must first integrate the Documents service into the application by establishing a connection to a content repository, as described in Chapter 30, "Integrating the Documents Service."			
Table 31-2 shows the document components available for the different content types.			
Table 31-2 Components for Folders and FIles			
Content Type	Document Components		
---	---		
Folder	Link (ADF Go Link)		
Documents of various types (XML, PDF, JAVA, TXT, DOC, XLS, HTM)	Link (ADF Go Link)		
Documents that can be rendered in a browser (HTML, flash, PDF and image)	Inline frame (ADF Inline Frame)		
Images (PNG, JPG, GIF)	Link (ADF Go Link) Inline frame (ADF Inline Frame) Image (ADF Image)		
To display a folder or file using one of these document components, see Section 31.4, "Adding a Selected Folder or File to a Page."			
If you want to add a content task flow to a page, independent of a specific folder or file, refer to Section 31.5, "Adding a Content Task Flow to a Page." This section describes how to display an individual folder or file from a connected content repository on a page, as shown inFigure 31-20 and Figure 31-21, by choosing the required container for the selected folder or file.			
Table 31-3 lists all containers available for displaying folders and files on a portal page:			
Table 31-3 Containers for Adding Individual Folders and Files to a Page			
Root Folder	Folders	Individual Files	
---	---	---	
Footnote 1 To show folder information in a Document Viewer, Document Mini Properties, or Document Properties task flow, you can set the task flow's resourceID			
parameter to the ID of the target folder. See Section 31.7, "Content Task Flow Parameters."			
For more information about any of the containers listed in Table 31-3, see Section 31.1, "Understanding the Content Presenter Task Flow", Section 31.2, "Understanding the Documents Service Task Flows", and Section 31.3, "Understanding Document Components."			
Note: When an item that is stored in a content repository is dropped onto a page, the Framework application instructs the browser to check whether the content is up-to-date before a cached copy, if available, displays in the browser. The default content validation process supports collaboration use cases that require real-time content exchange. For static content or content that does not change frequently, content validation checks incur an unnecessary performance overhead. For static content, the following is recommended:			
To add a selected folder or file to a page in a Framework application (see Section 5.2.1, "How to Create a Framework Application"):			
Figure 31-22 Adding Content Repository Root Folder to Portal Page			
Note: The Content Presenter task flow is available only when the connected content repository is Content Server. When you select the Content Presenter task flow, the folder or file displays in a default display template for its type.			
For information about viewing, editing, and managing content in content task flows, see "Working with Content" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
You may want to add an "empty" content task flow to a page, containing no folders or files. For example, in cases where you do not have a content repository connection, or want to use an EL expression as a parameter to dynamically bind to a target item.			
See Chapter 26, "Introduction to Integrating and Publishing Content" for information about each content task flow to help you select the task flow most appropriate for your needs.			
To add a content task flow to a page in a Framework application:			
Note: To allow end users of your application to customize a Content Presenter or Document List Viewer task flow using the Edit action, drag the task flow inside a Show Detail Frame Component (see Section 20.1.6, "How to Enable Component Customization Using Show Detail Frame Components").			
Note: If you display a wiki page in a Framework application using a Content Presenter display template, by default any links within that wiki page are displayed in the Document Viewer. If you want to display wiki page links using Content Presenter, you must edit the			
After you add a content task flow to a page, you can subsequently modify the parameters if required. See Section 31.6, "Modifying Content Task Flow Parameters".			
For information about viewing, editing, and managing content in content task flows, see "Working with Content" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
Note: For information about adding custom actions to task flows, see Section 22.3.2, "How to Enable Custom Actions on a Show Detail Frame Enclosing a Task Flow."			
Note: By default, the task flow displays as full screen at runtime. You can use ADF layout components to modify this layout. To learn more about ADF layout components, refer to the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.			
To modify the parameters of a content task flow after you have created the region:			
Figure 31-27 Document List View Task Flow in the Bindings View			
Note: For a Content Presenter task flow:			
Figure 31-28 Task Flow Binding Parameters			
Each content task flow has its own set of parameters. You configure these values when you add the task flow to a page.			
The following sections describe the parameters for the content task flows:			
The Content Presenter task flow is available when the connected content repository is Content Server. This task flow displays selected documents in out-of-the-box or custom display templates.			
Table 31-4 describes the Content Presenter task flow parameters. Table 31-5 and Table 31-6 describe the out-of-the-box display templates for single and multiple content items, which can be specified as values for the templateView			
and templateCategory			
parameters.			
Note: When you specify the content and a display template, note that Content Presenter does not support non-ASCII characters in files that are encoded using the non-UTF-8 character encoding. When users preview such files in Content Presenter, non-ASCII characters appear garbled.			
If you want to allow end users of your application to select the content and display template using the Content Presenter Configuration dialog at runtime, you can leave all parameter values blank except for taskFlowInstId			
. Enter a task flow instance ID that is unique to your application (for example, contentPresenterInstance1			
).			
At runtime, the parameters of a Content Presenter task flow on an editable page can be edited in two ways by end users with appropriate permissions:			
Table 31-4 Content Presenter Task Flow Parameters			
Parameter	Description		
---	---		
The data source of the content. The value depends on the value of			
where:			
The data source type of the content. Valid values are:			
The maximum number of results to display when Default:			
Specifies whether the display template is a Site Studio region definition template. This value is valid only with Content Server 11g or higher:			
For information about creating and using Site Studio region templates, see "Publishing Content Using Content Presenter" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces and the Oracle Site Studio documentation library.			
The unique identifier of this task flow instance, used internally to maintain the association of the task flow instance with its customization and personalization settings and to manage saved queries. The value is generated automatically when you add individual files or the content of folders to your page from the Application Resources Panel, displaying the content in a Content Presenter task flow. The value is blank when you add a Content Presenter task flow onto your page from the Resource Palette. Enter or edit this value to set the unique identifier for the task flow.			
The display template category ID to use in rendering results for multiple content items. This ID may reference the default template category for an out-of-the-box display template (Table 31-6) or a custom category created for a display template for multiple content items that has been defined as described in Section 29.4, "Creating Content Presenter Display Templates".			
The display template view ID to use in rendering results for single content items. Enter the view ID of a template that is configured in the Resource Manager for a specific content type, or for list-based templates by category ID. This ID may reference one of the out-of-the-box display templates (Table 31-5), a custom display template that has been defined as described in Section 29.4, "Creating Content Presenter Display Templates", or set to the contentID of a region template if the content is a region.			
The out-of-the-box display templates provided by Oracle WebCenter are listed in Table 31-5 and Table 31-6.			
Table 31-5 Out-of-the-Box Templates for Displaying Single Content Items			
Single Content Item Display Templates	View ID	Description	
---	---	---	
Default Document Details View			
Displays detailed information about any single content item including creation date, modification date, created by username, modified by username, path and any comments.			
Default List Item View			
Used by multiple content item views to display each individual item. Displays a single line with an icon and item name as a link that either displays or downloads the item when clicked.			
Default View			
Displays any single content item, either directly in the browser (images, HTML, text) or as a link that downloads the associated file when clicked.			
Table 31-6 Out-of-the-Box Templates for Displaying Multiple Content Items			
Multiple Content Item Display Templates	View ID	Description	
---	---	---	
Accordion View			
Displays multiple content items in an accordion format, where each item can be expanded to display its details.			
Bulleted View			
Displays multiple content items in a bulleted list format. Only content items will be displayed; folder items will be omitted.			
Bulleted with Folder Label View			
Displays multiple content items in a bulleted list format. The name of the folder containing the first item in the list will display as a label above the list. This template is intended to be used when datasourceType is set to dsTypeFolderContents to ensure that all items have the same parent folder. Only content items will be displayed; folder items will be omitted.			
Carousel View			
Displays multiple content items in a carousel format, where items can be browsed by moving a slider left or right.			
Icon View			
Displays multiple content items in a tiled format with large icons and file names.			
List View			
Displays multiple content items in a simple list.			
List with Details Panel View			
Displays multiple content items in a list on the left, with a panel to the right displaying the details of a selected item.			
Sortable Table View			
Displays multiple content items in a sortable table that includes the document name, date created, and date modified.			
Tabbed View			
Displays multiple content items as tabs that can be selected to display item details. content items in a simple list.			
The Document Explorer task flow displays a list of folders and files in two panes: the left pane shows folders, and the right pane show the contents of the currently selected folder. It is a feature-rich documents task flow for viewing, managing, and collaborating on folders and files.			
Parameters that are unique to the Document Explorer task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 31-7 describes the Document Explorer task flow parameters.			
Table 31-7 Document Explorer Task Flow Parameters			
Parameter	Description		
---	---		
The name of the content repository connection. If no value is selected, the default connection specified by the application developer or administrator is used. For information about configuring content repository connections, see "Registering Content Repositories" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. Default: The connection selected as default in the Create Content Repository Connection dialog box by the application developer, which can be changed by the administrator.			
A list of disabled features for the task flow. Use commas or spaces to separate items. Valid values are exposed in the JavaDoc: Example:			
The maximum number of rows to show in the task flow. If the listing of folders and files in the task flow is larger than the specified number of rows, the task flow displays a scroll bar. Default: Typical scenarios where you may wish to alter this value are:			
Note: If you set			
Specifies whether to disable and hide all content management operations:			
The currently focused resource. This value can be a folder ID or a document ID. The			
Specifies whether the navigation tree shows documents and folders, or folders only:			
Specifies whether the navigation tree shows documents and folders, or documents only:			
The name of the folder to use as the root folder in the current task flow instance. This is a content-scoping parameter that assists with determining the source and range of content to display in the task flow instance. There is no need to set this value for task flows that display the content of the current space's default root folder. But it is useful, for example, when you want the start folder to be other than a space's default root folder and when you want to display content from another space. Example:			
You can specify an EL expression to set this value. Default: The root folder of the content repository configured with the specified connection for the current Space.			
Specifies whether to collapse or expand the panel containing the tree navigation:			
The Document List Viewer task flow displays folders and files in a single pane as a flat listing. In this task flow, users can navigate a folder hierarchy, and customize search queries. While this task flow may be useful for a specific need, its search functionality is replicated and enhanced by the Content Presenter task flow.			
Parameters that are unique to the Document List Viewer task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 31-8 describes the Document List Viewer task flow parameters.			
Table 31-8 Document List Viewer Task Flow Parameters			
Task Flow Parameter	Description		
---	---		
The name of the content repository connection. If no value is selected, the default connection specified by the application developer or administrator is used. For information about configuring content repository connections, see "Registering Content Repositories" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. Default: The connection selected as default in the Create Content Repository Connection dialog box by the application developer, which can be changed by the administrator.			
A filtering value to limit the display of task flow content to folders and files created after a specified date and time. The value uses the ISO 8601 format: ${'yyyy-mm-ddThh:mm:ss.sssTZ'}Foot 1 Example: ${'2011-03-17T18:24:36.000+01:00'}			
A filtering value to limit the display of task flow content to folders and files created before a specified date and time. The value uses the ISO 8601 format: ${'yyyy-mm-ddThh:mm:ss.sssTZ'}1 Example: ${'2011-03-17T18:24:36.000+01:00'}			
A filtering value to limit the display of task flow content to folders and files created by a particular user. Enter the user name as specified by the user login credentials. Only one user name may be entered. If no value is entered, then content created by any user is shown. Example:			
A filtering value to limit the display of task flow content to folders and files last modified after a specified date and time. If no value is entered, then content modified in the last three months is shown. The value uses the ISO 8601 format: ${'yyyy-mm-ddThh:mm:ss.sssTZD'}1 Example: ${'2011-03-17T18:24:36.000+01.00'}			
A filtering value to limit the display of task flow content to folders and files modified before a specified date and time. If no value is entered, then the last modification date is applied. The value uses the ISO 8601 format: ${'yyyy-mm-ddThh:mm:ss.sssTZD'}1 Example: ${'2011-03-17T18:24:36.000+01:00'}			
A filtering value to limit the display of task flow content to folders and files last modified by a particular user. Enter the user name as specified by the user login credentials. Only one user name may be entered. If no value is entered, then all modified documents are shown. Example:			
The maximum number of rows to show in the task flow. If the listing of folders and files in the task flow is larger than the specified number of rows, the task flow displays a scroll bar. Default: Typical scenarios where you may wish to alter this value are:			
Note: If you set			
The name of the folder to use as the root folder in the current task flow instance. This is a content-scoping parameter that assists with determining the source and range of content to display in the task flow instance. There is no need to set this value for task flows that display the content of the current space's default root folder. But it is useful, for example, when you want the start folder to be other than a space's default root folder and when you want to display content from another space. Example:			
You can specify an EL expression to set this value. Default: The root folder of the content repository configured with the specified connection for the current Space.			
Specifies whether to show documents and folders, or documents only:			
The unique identifier for this task flow instance, used internally to maintain the association of the task flow instance with its customization and personalization settings and to manage saved queries. The value is generated automatically when you add individual files or the content of folders to your page from the Application Resources Panel, displaying the content in a Document List Viewer task flow. The value is blank when you add a Document List Viewer task flow onto your page from the Resource Palette. Enter or edit this value to set the unique identifier for the task flow.			
Footnote 1 "TZ" is the time zone indicator. If the time being described is in UTC (Coordinated Universal Time), then the time zone indicator is "Z". If the time is from any other time zone, then TZ describes the offset from UTC of the time zone. For example, if the time is in California in December (Pacific Standard Time, PST), then the TZ indicator would be "-08:00".			
The Document Manager task flow displays folders and files as specified by its layout			
parameter: it may display folders and files in two panes (explorer			
layout), or a single pane showing only the content of the current folder (table			
layout), or a single pane showing the folder hierarchy starting from the root folder (treeTable			
layout). The explorer			
layout is identical to the Document Explorer task flow, without the properties showDocuments			
, showFolders			
, and treeNavCollapsed			
.			
The Document Manager task flow provides comprehensive document management functionality, such as copying, moving, pasting, and deleting folders and files.			
Parameters that are unique to the Document Manager task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 31-9 describes the Document Manager task flow parameters.			
Table 31-9 Document Manager Task Flow Parameters			
Task Flow Parameter	Description		
---	---		
The name of the content repository connection. If no value is selected, the default connection specified by the application developer or administrator is used. For information about configuring content repository connections, see "Registering Content Repositories" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. Default: The connection selected as default in the Create Content Repository Connection dialog box by the application developer, which can be changed by the administrator.			
A list of disabled features for the task flow. Use commas or spaces to separate items. Valid values are exposed in the JavaDoc: Example:			
A target layout for the task flow. Select from:			
The maximum number of rows to show in the task flow. If the listing of folders and files in the task flow is larger than the specified number of rows, the task flow displays a scroll bar. Default: Typical scenarios where you may wish to alter this value are:			
Note: If you set			
Specifies whether to disable and hide all content management operations:			
The currently focused resource. This value can be a folder ID or a document ID. The			
The name of the folder to use as the root folder in the current task flow instance. This is a content-scoping parameter that assists with determining the source and range of content to display in the task flow instance. There is no need to set this value for task flows that display the content of the current space's default root folder. But it is useful, for example, when you want the start folder to be other than a space's default root folder and when you want to display content from another space. Example:			
You can specify an EL expression to set this value. Default: The root folder of the content repository configured with the specified connection for the current Space.			
The Document Navigator task flow displays folders and files in a single pane, with the capability to expand and collapse folders to view folder hierarchy within the current folder. There are no menu options available to the end user for this task flow.			
Parameters that are unique to the Document Navigator task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 31-10 describes the Document Navigator task flow parameters.			
Table 31-10 Document Navigator Task Flow Parameters			
Parameter	Description		
---	---		
The name of the content repository connection. If no value is selected, the default connection specified by the application developer or administrator is used. For information about configuring content repository connections, see "Registering Content Repositories" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. Default: The connection selected as default in the Create Content Repository Connection dialog box by the application developer, which can be changed by the administrator.			
A list of disabled features for the task flow. Use commas or spaces to separate items. Valid values are exposed in the JavaDoc: Example:			
The maximum number of rows to show in the task flow. If the listing of folders and files in the task flow is larger than the specified number of rows, the task flow displays a scroll bar. Default: Typical scenarios where you may wish to alter this value are:			
Note: If you set			
Specifies whether to disable and hide all content management operations:			
The currently focused resource. This value can be a folder ID or a document ID. The			
Specifies whether the navigation tree shows documents and folders, or folders only:			
The name of the folder to use as the root folder in the current task flow instance. This is a content-scoping parameter that assists with determining the source and range of content to display in the task flow instance. There is no need to set this value for task flows that display the content of the current space's default root folder. But it is useful, for example, when you want the start folder to be other than a space's default root folder and when you want to display content from another space. Example:			
You can specify an EL expression to set this value. Default: The root folder of the content repository configured with the specified connection for the current Space.			
The Folder Viewer task flow displays a listing of the contents of a folder in a single pane as a flat listing.			
Parameters that are unique to the Folder Viewer task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 31-11 describes the Folder Viewer task flow parameters.			
Table 31-11 Folder Viewer Task Flow Parameters			
Parameter	Description		
---	---		
The name of the content repository connection. If no value is selected, the default connection specified by the application developer or administrator is used. For information about configuring content repository connections, see "Registering Content Repositories" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. Default: The connection selected as default in the Create Content Repository Connection dialog box by the application developer, which can be changed by the administrator.			
A list of disabled features for the task flow. Use commas or spaces to separate items. Valid values are exposed in the JavaDoc: Example:			
The maximum number of rows to show in the task flow. If the listing of folders and files in the task flow is larger than the specified number of rows, the task flow displays a scroll bar. Default: Typical scenarios where you may wish to alter this value are:			
Note: If you set			
Specifies whether to disable and hide all content management operations:			
The currently focused resource. This value can be a folder ID or a document ID. The			
Specifies whether the navigation tree shows documents and folders, or documents only:			
The name of the folder to use as the root folder in the current task flow instance. This is a content-scoping parameter that assists with determining the source and range of content to display in the task flow instance. There is no need to set this value for task flows that display the content of the current space's default root folder. But it is useful, for example, when you want the start folder to be other than a space's default root folder and when you want to display content from another space. Example:			
You can specify an EL expression to set this value. See "EL Expressions Relevant to the Documents Service" in Appendix B in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces. Default: The root folder of the content repository configured with the specified connection for the current Space.			
The Recent Documents task flow displays a listing of the most recently created or modified files by the current user.			
Parameters that are unique to the Recent Documents task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 31-12 describes the Recent Documents task flow parameters.			
Table 31-12 Recent Documents Task Flow Parameters			
Parameter	Description		
---	---		
The name of the content repository connection. If no value is selected, the default connection specified by the application developer or administrator is used. For information about configuring content repository connections, see "Registering Content Repositories" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. Default: The connection selected as default in the Create Content Repository Connection dialog box by the application developer, which can be changed by the administrator.			
(Used in WebCenter Spaces only)			
A filtering value to limit the display of task flow content to folders and files last modified after a specified date and time. If no value is entered, then content modified in the last three months is shown. The value uses the ISO 8601 format: ${'yyyy-mm-ddThh:mm:ss.sssTZD'}Foot 1 Example: ${'2011-03-17T18:24:36.000+01.00'}			
A filtering value to limit the display of task flow content to folders and files modified before a specified date and time. If no value is entered, then the last modification date is applied. The value uses the ISO 8601 format: ${'yyyy-mm-ddThh:mm:ss.sssTZD'}1 Example: ${'2011-03-17T18:24:36.000+01:00'}			
A filtering value to limit the display of task flow content to folders and files last modified by a particular user. Enter the user name as specified by the user login credentials. Only one user name may be entered. If no value is entered, then all modified documents are shown. Example:			
The maximum number of files to show. If no value or 0 is entered, then up to 10 of the most recently accessed documents are shown. Example: Note that there is no single quote surrounding the value. Default:			
Specifies the sort order of files in the task flow:			
Footnote 1 "TZ" is the time zone indicator. If the time being described is in UTC (Coordinated Universal Time), then the time zone indicator is "Z". If the time is from any other time zone, then TZ describes the offset from UTC of the time zone. For example, if the time is in California in December (Pacific Standard Time, PST), then the TZ indicator would be "-08:00".			
The Document Viewer task flow displays the contents of a folder or a preview of an individual file in the default template for its file type.			
Parameters that are unique to the Document Viewer task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 31-13 describes the Document Viewer task flow parameters.			
Table 31-13 Document Viewer Task Flow Parameters			
Parameter	Description		
---	---		
A list of disabled features for the task flow. Use commas or spaces to separate items. Valid values are exposed in the JavaDoc: Example:			
Specifies the tabbed pane to have initial focus in the Document Viewer. Valid values are:			
Specifies whether to disable and hide all content management operations:			
The currently focused resource. This value can be a folder ID or a document ID.			
The Document Mini Properties task flow displays the basic properties of a selected file in a read-only view. This task flow is available for all file types.			
Parameters that are unique to the Document Mini Properties task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 31-14 describes the Document Mini Properties task flow parameters.			
The Document Properties task flow displays both Basic and Advanced properties of a selected file, along with an Edit button to modify property values. This choice is available for all file types.			
Parameters that are unique to the Document Properties task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 31-15 describes the Document Properties task flow parameters.			
Table 31-15 Document Properties Task Flow Parameters			
Parameter	Description		
---	---		
The ID of the document for which to display basic and advanced properties.			
Specifies whether or not to allow end user to edit document properties:			
The Rich Text Editor task flow displays an HTML or wiki document in the Rich Text Editor.			
Parameters that are unique to the Rich Text Editor task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 31-18 describes the Rich Text Editor task flow parameters.			
Table 31-16 Rich Text Editor Task Flow Parameters			
Parameter	Description		
---	---		
The currently focused resource. This value can be a folder ID to create a new document in that folder, or a document ID (as shown in the properties pane of the Document Viewer task flow) to edit an existing document.			
A list of disabled features for the task flow. Use commas or spaces to separate items. Valid values are exposed in the JavaDoc: Example:			
Specifies a pane to display in the sidebar of the Document Viewer. Valid values are:			
The Document Upload task flow displays the Upload dialog to allow users to upload new documents to the page.			
Parameters that are unique to the Document Upload task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 31-18 describes the Document Upload task flow parameters.			
Table 31-17 Document Upload Task Flow Parameters			
Parameter	Description		
---	---		
The currently focused resource. This value specifies a folder ID to upload a document into that folder.			
Specifies whether or not the destination folder can be changed:			
A list of disabled features for the task flow. Use commas or spaces to separate items. Valid values are exposed in the JavaDoc: Example:			
The Document Version History task flow displays a list of versions of a selected file in a read-only view. This task flow is available for all file types.			
Parameters that are unique to the Document Version History task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 31-18 describes the Document Version History task flow parameters.			
Table 31-18 Version History Task Flow Parameters			
Parameter	Description		
---	---		
Specifies the layout orientation for the version history information:			
The ID of the document for which to display version history.			
Specifies whether to disable and hide all content management operations:			
The AutoVue task flow integrates the Oracle AutoVue functionality to allow users to review and collaborate on a document.			
Parameters that are unique to the AutoVue task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 31-19 describes the AutoVue task flow parameters.			
You can integrate the wiki and blog functionality in your WebCenter Portal: Framework applications to enable your application users to collaborate and share content and ideas.			
This chapter describes how to integrate the wiki and blog functionality into your Framework applications. It includes the following sections:			
A wiki is a collection of useful content or information that users can browse, update, and remove, sometimes without the need for registration. This ease of interaction and the variety of operations make wiki an effective tool for collaborative authoring, where multiple people create written content together.			
Blogs are typically personal records of an individual user's experience and opinions. The word blog is a contraction of the term Web log. It was coined to describe the online diaries spawned in the late 1990s. Blogs provide a useful tool for discussing and/or evangelizing any type of idea, strategy, or point of view. Blogs may be projected out to a select group of people or to a wider audience. Typically, each blog contains various blog posts, with the most recently added blog post displayed at the top. Blogs invite readers to comment on the overall concepts.			
You can integrate wikis and blogs into your Framework applications using the Documents service. There is no limitation on the number of wiki pages or blogs that you can expose in an application.			
To support the wiki and blog functionality, the Documents service relies on Content Server. For wiki and blog functionality to be available in your Framework applications, the following prerequisites must be met:			
WebCenter			
schema installed. After completing these requirements, you can use the Documents service to add wikis and blogs to your Framework applications:			
If you want to convert wikis and blogs in your Framework applications into PDF, your application administrator must configure the WebCenter Conversion component, as described in "Enabling the Conversion of Wikis and Blogs into PDFs" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.			
This following sections provide the information you need to add wiki documents to your Framework applications:			
To provide your application users with the ability to add and manage wiki documents at runtime, you need to add the Document Explorer task flow to your Framework application. When you add this task flow at design time, it is built into the application for end users, and enables them to work with wiki documents at runtime.			
The Document Explorer task flow has associated parameters. For information, see Section 31.7.2, "Document Explorer Task Flow Parameters."			
To prepare your Framework application and add the Document Explorer task flow for enabling the wiki functionality:			
Note: While setting up the connection, you must choose an authentication method. If you choose identity propagation, you must implement ADF security in your application and configure secure socket layer (SSL) on Oracle Content Server. If you choose external application, you must specify the external application you want to use for authenticating users to Oracle Content Server. For information, see Section 7.2.1.1, "Implementing Security for Services."			
For information about the parameters that you can set for the Document Explorer task flow, see Section 31.7.2, "Document Explorer Task Flow Parameters."			
When you run the page, the Document Explorer task flow displays in your default browser, as shown in Figure 32-1. Application users can create a wiki document by clicking New Wiki Document.			
The way you modify parameters of a Document Explorer task flow is same as for any other Documents service task flow. For information, see Section 31.6, "Modifying Content Task Flow Parameters." For information about the specific parameters that you can modify, see Section 31.7.2, "Document Explorer Task Flow Parameters."			
At runtime, authorized application users can create wiki documents in a Framework application in which the wiki functionality has been exposed. Users can also edit, download, rename, share, and subscribe to a wiki document and view its history and properties.			
At runtime, the folder that you exposed through the Document Explorer task flow is shown as the root folder. Application users can create a wiki document by clicking New Wiki Document (Figure 32-4), which opens the Rich Text Editor (RTE) (Figure 32-3), displaying a blank wiki document.			
Figure 32-2 Creating a New Wiki Document			
Users can add and edit wiki content using the Rich Text Editor (RTE), which is a fully-integrated HTML text editor (Figure 32-3).			
By default, all wiki documents are created directly under the root folder (Figure 32-4).			
At runtime, users can also choose to display a wiki document using Content Presenter.			
The runtime procedures for adding and managing wiki documents in a Framework application are same as in WebCenter Portal: Spaces. For generic information, refer to the chapter "Working with Wiki Documents" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
At runtime, when a wiki document is displayed using a Content Presenter display template, by default the links present in the wiki document render in the Document Viewer. You can configure your application to display such links within Content Presenter.			
To open the links present in a wiki document within Content Presenter:			
adf-config.xml			
file. This file is located under Descriptors/ADF META-INF			
in the Application Navigator. Namespace			
entry as follows: ResourceActionHandler			
entry as follows: adf-config.xml			
. When you integrate the blogs functionality into your Framework application, authorized application users can create and manage blog posts. To enable the blog functionality, you need to add the blog task flows.			
While integrating the Blogs task flow, you need to specify a folder on Oracle Content Server that will act as the container for your blog and contain all the blog posts.			
This following sections provide the information you need to add blogs to a Framework application:			
If you want to include a blog on a page, along with other page components, you can use the blog task flows to add one or more elements of a blog to a page. Table 32-1 lists and describes the blog task flows:			
Table 32-1 Blog Task Flows			
Blog Task Flow	Description	Example as Exposed on a Page	
---	---	---	
Blog Archives	Displays a composite list of blogs based on dates.		
Blog Banner	Displays a banner for the blog.		
Blog Digest	Displays a blog or blog post.		
Recent Blog Posts	Displays a list of most recent blog posts.		
Blogs	Displays a blog or blog post with a default design.		
To add a blog to a page in your Framework application:			
Note: While setting up the connection, you must choose an authentication method. If you choose identity propagation, you must implement ADF security in your application and configure secure socket layer (SSL) on Oracle Content Server. If you choose external application, you must specify the external application you want to use for authenticating users to Oracle Content Server. For information, see Section 7.2.1.1, "Implementing Security for Services."			
If you have an existing folder, perhaps already containing blog posts, you can establish that folder as a blog folder, instead of creating a new "empty" blog (see Section 32.4.2.2, "Adding a Custom Blog to a Page Using the Blog Task Flows"). At runtime, the blog displays the blog posts in that folder.			
To expose a selected folder and its contents as a blog on a page:			
Tip: You can expose any folder as a blog. To better organize your blogs, you may consider storing each blog folder in a parent folder; for example, a folder named Blogs. You can create a folder using either the Documents service interface or the Content Server console. Files stored in the blog folder are identified as blog posts in their metadata			
Figure 32-6 Specifying Parameters for Blogs Task Flow			
resourceId			
value is automatically populated with the resource ID of the selected folder. Click OK to accept the default task flow parameters, or modify the parameters as desired. For more information, see Section 32.4.5.5, "Blogs Task Flow Parameters." The new blog is given the same name as the selected folder. Existing files under the folder become blog posts if the Type			
property of the file is set to blog			
(for more information about file properties in Content Server, see "Info Update Form" in Oracle WebCenter Content User's Guide for Content Server). As posts are added to the blog at runtime, the blog posts are stored in this folder.			
You may want to add an "empty" blog task flow onto your page, either as one component on a page, or as the entire page. For example, in cases where you do not have a content repository connection, or want to use an EL expression as a parameter to dynamically bind to a target item, you may want to use this method instead of the method described in Section 32.4.2.1, "Establishing a Selected Folder as a Blog Folder." Additionally, the individual blog task flows enable you to customize the appearance of a blog.			
To add a customized blog task flow to a page:			
For information about each of the five blog task flows, see Section 32.4.1, "Understanding the Blog Task Flows."			
Figure 32-7 Adding Blog Task Flow Using Resource Palette			
Internally, the new blog is given the same name as the folder specified by the resourceID			
; however, the name visible on the page is the value you specify in the Title			
parameter of the Blog Banner task flow. Existing files under the folder become blog posts if the Type			
property of the file is set to blog			
(for more information about file properties in Content Server, see "Info Update Form" in Oracle WebCenter Content User's Guide for Content Server). As posts are added to the blog at runtime, the blog posts are stored in this folder.			
At runtime, the folder specified by the resourceID			
parameter for the blog task flow is exposed as a blog on the page:			
resourceID			
parameter of the blog task flow is the name of your blog internally; however, the name visible on the page is the value you specify in the Title			
parameter of the Blog Banner task flow. Authorized users can create blog posts, and the posts are displayed on the blog page. Users can perform tasks such as edit, download, comment upon blog posts, and so on.			
On the default blog page (Figure 32-8), and in the Blog Archives task flow, the Archives section provides links to blog posts by year and by month. Clicking a month displays all blog posts created during that month.			
A blog displays various details for each blog post. These include the blog post title, the blog post content, date of creation or modification, name of the user who created or last modified the post, and the number of comments on the blog post. Authorized users can click the Edit Post icon to edit a post, and click the Post comments link to enter comments on a blog post.			
Clicking a blog post title opens the blog post to occupy the entire the blog page (Figure 32-9), providing controls to manage the blog post.			
The procedures for managing blogs at runtime in a Framework application is same as that for managing blogs in WebCenter Portal: Spaces. For information, see the "Working with Blogs" chapter in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
The procedure for modifying the parameters of a Blogs task flow is same as any other Documents service task flow. For information, see Section 31.6, "Modifying Content Task Flow Parameters." For information about the parameters that you can modify, see Section 32.4.5, "Blog Task Flow Parameters."			
Each blog task flow has its own set of parameters. You can configure these values when you add the task flow to your page, or modify the values at any time .			
The following sections describe the parameters for the blog task flows:			
The Blog Archives task flow displays a composite list of blogs based on dates.			
Parameters that are unique to the Blog Archives task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 32-2 describes the Blog Archives task flow parameters.			
The Blog Banner task flow task flow displays a banner for the blog.			
Parameters that are unique to the Blog Banner task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 32-3 describes the Blog Banner task flow parameters.			
Table 32-3 Blog Banner Task Flow Parameters			
Parameter	Description		
---	---		
The resource ID of the blog folder.			
(Optional) The background image to be used in the blog banner. When not specified, the background image will default to an image provided by the current skin.			
(Optional) The title to be used for the blog banner. Default: The blog folder name.			
The Blog Digest task flow displays a blog or blog post.			
Parameters that are unique to the Blog Digest task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 32-4 describes the Blog Digest task flow parameters.			
Table 32-4 Blog Digest Task Flow Parameters			
Parameter	Description		
---	---		
The target blog resource to display. This can be either a folder ID, in which case the blog listing for this folder will display, or a document ID, in which case the blog post will display.			
A Aour-digit number specifying the target year used to filter blog entries. Example:			
A number from 1 to 12 specifying the target month used to filter blog entries. For this parameter to take effect, the Filter Year parameter must also be specified. Example:			
Specifies whether the Comments feature is exposed:			
The number of blog posts displayed in the Blog Digest Viewer before the Next and Previous icons are enabled. Default:			
The Blog Recent Posts task flow displays a list of most recent blog posts.			
Parameters that are unique to the Blog Recent Posts task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 32-5 describes the Blog Recent Posts task flow parameters.			
The Blogs task flow displays a blog or blog post with a default design.			
Parameters that are unique to the Blogs task flow task flow are shown in the Edit Task Flow Binding dialog box when you add the task flow to a page. Table 32-6 describes the Blogs task flow task flow parameters.			
Table 32-6 Blogs Task Flow Parameters			
Parameter	Description		
---	---		
The target blog resource to display. This can be either a folder ID, in which case the blog listing for this folder will display, or a document ID, in which case the blog post will display.			
Specifies whether the Comments feature is exposed:			
The number of blog posts displayed in the Blogs task flow before the Next and Previous icons are enabled. Default:			
This chapter explains how to integrate the Announcements service into a WebCenter Portal: Framework application at design time. For more information about managing and including announcements, see:			
This chapter includes the following sections:			
The Announcements service lets you create and expose announcements on your application pages. Access to announcements boosts community participation, problem resolution, and knowledge sharing.			
You can use the Links service to link announcements to other services, such as Events or Discussions. For example, suppose your company is announcing a new product, you can link from the announcement directly to a discussion forum, where potential customers can ask other customers about the product, or link to an instant messenger to speak directly with a customer service representative to purchase the product.			
Announcements can show either forum-level announcements or global announcements (that is, system announcements not specific to a forum).			
This section includes the following subsections:			
With the Announcements service, you can do the following:			
The Announcements service is integrated with many other services in WebCenter Portal, such as Activity Stream, RSS, and Instant Messaging and Presence, and you can link announcements to other services, such as Events and Discussions. For example, suppose your company is announcing a new product. You can link from the announcement directly to a discussion forum, where potential customers can ask other customers about the product, or link to an instant messenger where customers can chat with a customer service representative about the product. With WebCenter Portal live search, announcement titles are searchable, and with Oracle Secure Enterprise Search, announcement titles and text are searchable.			
The Announcements service requires a discussions server. You must install and configure the discussions server that comes with Oracle Fusion Middleware.			
At runtime, users who have been granted the create			
permission can post announcements, and these announcements are visible to all users who have view			
permission. For example, an application administrator can use this service to announce the availability of a new feature or the plan to shut down the application temporarily for maintenance.			
Figure 33-1 shows a sample announcement at runtime.			
Figure 33-1 Sample Announcement in the Announcements - Quick View Task Flow			
To view announcements in the Announcement Manager, ensure that the Announcements task flow has been added to your Framework application. Then log in to your application and click the Open Announcement Manager icon in the Announcements task flow (Figure 33-2).			
Figure 33-2 Open Announcement Manager Icon			
Note: The Open Announcement Manager icon does not display if the user does not have the required privileges.			
Figure 33-3 shows the sample announcement in the Announcement Manager.			
Figure 33-3 Sample Announcement in the Announcement Manager			
Application administrators in Framework applications can access the Announcement Manager, which provides Create, RSS, and Refresh icons, and Show dropdown lists to control the display of announcements on the page. Edit, Delete, Mail, and Links icons are available for each announcement in the list.			
Depending on the privileges users have on the page and whether the required services in WebCenter Portal are configured in the application, users may see only a subset of these options in the Announcement Manager. For example, the Delete icon is displayed only to users with administrative privileges.			
For more information about the service at runtime, see Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
This section describes required steps for adding this service to your Framework application. It includes the following subsections:			
To take advantage of the Announcements service, you must first create a connection to the discussions server from your application. To do so, ensure that you have the connection information for the discussions server.			
The Announcements service requires a Discussion Forum connection to the discussions server. You can register additional Discussion Forum connections, but only one connection is active at a time.			
When you create a Discussion Forum connection or set a connection as active, both the Announcements and Discussions services use this same connection. If you have an existing connection, then you can skip this section and see Section 33.2.2, "Adding the Announcements Service at Design Time."			
If you do not have an existing connection, then you must create a new Discussion Forum connection.			
Note: While you can set up the connections to back-end servers at design time in Oracle JDeveloper, you can later add, delete, or modify connections in your deployed environment using Enterprise Manager Fusion Middleware Control. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.			
To set up the Announcements connection:			
Note: If you created a Discussion Forum connection for the Discussions service, then that is used by default for the Announcements service. No extra configuration is required.			
Note: If you create a connection in IDE and not in the application, then the connection must be added to the application. For example, in the Resource Palette under IDE Connections, right-click the connection and select Add to Application.			
MyDiscussions			
. Note: After you create a connection as the active connection, you cannot edit it so that it is not the default. To use a different default connection, you must create a new connection and mark that as the default connection.			
Figure 33-4 Create Discussion Connections, Step 1			
URL			
: Enter the URL of the discussions server; for example: http://discussions.example.com:8888/owc_discussions			
. Admin User			
: The user name of your discussions server administrator; for example, admin			
. This account is used by the Discussions and Announcement services to perform administrative operations on behalf of WebCenter Portal users. In WebCenter Portal: Spaces, this account is mostly used for managing space-related discussions and announcements. It is not necessary for this user to be a super admin. However, the user must have administrative privileges on the current root category for Spaces, that is, the category (on the discussions server) under which all space-related discussions and announcements are stored.			
Note: If your Framework application does not include space-related functionality, the administrator's user name is not required.			
Connection Timeout			
: Specify a suitable timeout for the connection. This is the length of time (in seconds) the application waits for a response from the discussions server before issuing a connection timeout message. The default is -1, which means that the service default is used. The service default is 10 seconds. Policy URI for Authenticated Access			
: Select the SAML token client policy this connection uses for authenticated access to the discussions server Web service. SAML (Security Assertion Markup Language) is an XML-based standard for passing security tokens defining authentication and authorization rights. An attesting entity (that has trust relationship with the receiver) vouches for the verification of the subject by method called sender-vouches. Options available are: The client policy specified must be compatible with the service policy that is configured for the OWCDiscussionsServiceAuthenticated			
endpoint in the discussions server. Out-of-the-box, the default service policy is WSS 1.0 SAML Token Service Policy (oracle/wss10_saml_token_service_policy).			
Policy URI for Public Access			
: Select the client policy this connection uses to enforce message security and integrity for public access to the discussions server Web service. Options available are: The client policy specified must be compatible with the service policy that is configured for the OWCDiscussionsServicePublic			
endpoint in the discussions server. Out-of-the-box, a service policy is not configured for public access.			
Recipient Key Alias			
: Enter the recipient key alias to be used for message protected policies (applicable to the OWCDiscussionsServicePublic			
and OWCDiscussionsServiceAuthenticated			
endpoints). This is the alias to the certificate that contains the public key of the discussions server in the configured keystore. For more information, see the chapter "Configuring WS-Security for WebCenter Portal's Applications and Components" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.			
Figure 33-5 Create Discussions Connection, Step 2			
application.root.category.id			
: (WebCenter Portal: Spaces only) The application root category ID on the discussions server under which all discussion forums are stored. For example, if set to 3, then all forums are stored inside the category 3.			
Note: To encrypt property values, such as passwords, click Add Secured Property.			
This section explains a basic incorporation of the Announcement service.			
Both the Announcements and the Announcements - Quick View task flows display current announcements. The Announcements task flow additionally offers tools for managing announcements within the task flow. With the Announcements - Quick View task flow, you must click the Open Announcement Manager icon to manage announcements, and administrators can configure this task flow to remove all announcement management functionality.			
Table 33-1 Announcements Service Task Flows			
Task Flow	Description		
---	---		
Announcements	This task flow displays a view that allows the user to see all current announcements and perform operations based on their privileges. For a Moderator, all command buttons are shown, but for a Reader, only the refresh and personalization options are shown. The personalization option lets users select the number of days to display announcements. The		
Announcements - Quick View	This task flow displays a view that shows various categories of quick links to announcements. The The look and feel of this view changes with the optional parameter values given for rendering the task flow region. For information on how to add this task flow, see Section 33.3.1, "How to Add the Announcements - Quick View Task Flow."		
The Announcements task flow provides a complete view of your announcements. To add the Announcements task flow to your Framework application:			
af:form			
begin			
and end			
tags. parentId			
parameter. The discussions server could be shared with multiple Framework applications. Each Framework application should create a forum on the discussions server. Enter that forum ID here as the parentId			
; for example, ${2			
}			
.			
The Announcements service task flows have required and optional task flow binding parameters.			
You can adjust the parameter values when you drop the task flows onto a page or after you have placed a task flow on a page:			
Figure 33-7 Edit Task Flow Binding Dialog for Announcements - Quick View			
Table 33-2 describes the properties that are unique to the Announcements service task flows.			
Table 33-2 Announcements Service Task Flow Parameters			
Property	Description	Task Flow	
---	---	---	
The forum ID in the discussions server under which announcement objects are maintained. Each Framework application should create a forum on the discussions server. Enter that forum ID here; for example, If this parameter is not specified, then announcements default to global announcements.	Announcements Announcements - Quick View		
A Boolean value representing whether to remove the announcement title (subject) and show the announcement body as is. The default value is Enter	Announcements - Quick View		
The number of announcements to display announcement details (that is, the body of the announcement). Users can click the title to display the full announcement content in rich text mode. The value you enter for	Announcements - Quick View		
For announcements that display announcement body, this value specifies how many characters to display for each announcement. Enter an Expression Language (EL) expression. For example, when the value is set to the EL expression If no value is specified, then it displays 200 characters. If a non-valid positive integer value is specified, then it displays all characters in plain text. This parameter takes effect with	Announcements - Quick View		
The number of announcements to show in a page on Extended Quick View.	Announcements - Quick View		
The number of announcements to show in the Quick View.	Announcements - Quick View		
A Boolean value representing whether to display the task flow personalization feature.	Announcements - Quick View		
A Boolean value representing whether to launch the announcement in a popup or navigate to the Announcement Manager. The default behavior is to launch in a popup. Enter	Announcements - Quick View		
A Boolean value representing whether to display details for all announcements in extended quick view. Default value is	Announcements - Quick View		
You can change the look and feel of the Announcements - Quick View with the parameter values. For example, Figure 33-12 shows the Announcements - Quick View at runtime with the freeFlowView			
parameter set to false (or empty).			
Figure 33-8 Announcements - Quick View with Optional Parameters			
Figure 33-13 shows the Announcements - Quick View at runtime with the freeFlowView			
parameter set to ${true}			
.			
Figure 33-9 Announcements - Quick View with freeFlowView Parameter			
By default, authenticated users of Framework applications can view and participate in announcements. Any user who has logged in to a WebCenter Portal application can view announcements, and users with sufficient permissions can create announcements. To create announcements, you must be a moderator or administrator on the back-end discussions server.			
In an unsecured Framework application, identity propagation cannot happen. A user is a guest (or anonymous) user who can view only public categories and forums. In an unsecured application, the parentId			
(forum ID) from which announcements are fetched should be a public forum. If the forum is not public, then an error is reported. If the parentId			
parameter is not specified at all, then WebCenter Portal cannot fetch global announcements (that is, announcements not scoped to a forum): global announcements are not available for public users. Rather than relying to global announcements, each Framework application should reserve its own forum ID.			
In an ADF-secured Framework application, identity propagation is enabled. Based on the identity, appropriate permissions are matched and corresponding actions are enabled. The user name that you use to log in to the application is used to log in to the discussions server. The recommended approach is to have the discussions server and the Framework application point to the same identity store. This way, your users can log in to the application one time and automatically connect to the discussions server.			
Note: The Announcements services requires that the identity store be LDAP-based; that is, not file-based with			
ADF security is configured by default if you created your application using WebCenter Portal's Framework application template. For information about configuring ADF security, see Section 69.3, "Configuring ADF Security."			
This section describes optional features available with this service. It includes the following subsections:			
The Announcements - Quick View provides a snapshot (dashboard) view of the announcements (Figure 33-10).			
By default, announcements in the Announcements - Quick View task flow show announcement titles as links. But you can configure the task flow to display only announcement titles, titles with some amount of content, or only content.			
Click an announcement to view it in a popup. From there, you can select the Mail icon to mail the announcement to anyone you choose or select the Links icon to link to this announcement (Figure 33-10).			
The Announcements - Quick View task flow includes numerous parameters to customize your view. For example, you can remove the link to the Announcement Manager, to present announcements to end users where manage controls are not needed. The task flow lists 10 announcements by default, but you can change this number and how much of the announcement is displayed. The More Announcements ... link launches a popup containing the complete list of all announcements with pagination behavior. This is called the Extended Quick View (or Mini View).			
To add the Announcements - Quick View to your Framework application, follow the same instructions that you did for the Announcements task flow in Section 33.2.2, "Adding the Announcements Service at Design Time," but drag and drop Announcements - Quick View onto the page.			
Table 33-2 describes the Announcements - Quick View parameters. The look and feel of the Announcements - Quick View changes with the values provided for these parameters. For more information, see Section 33.2.2.3, "How to Modify Announcements Service Task Flow Parameters."			
You can change the look and feel of the Announcements - Quick View with the parameter values. For example, Figure 33-12 shows the Announcements - Quick View at runtime with the freeFlowView			
parameter set to false (or empty).			
Figure 33-12 Announcements - Quick View with Optional Parameters			
Figure 33-13 shows the Announcements - Quick View at runtime with the freeFlowView			
parameter set to ${true}			
.			
Figure 33-13 Announcements - Quick View with freeFlowView Parameter			
You can expose WebCenter Portal: Spaces functionality in a WebCenter Portal: Framework application. Your Framework application users can find out what is happening in a specific space through RSS news feeds.			
Configure RSS news feeds for the Announcements service to enable users to view space announcements from within a Framework application. To obtain the space RSS news feed URL for the Announcements service, use either of the following APIs for Spaces:			
getServiceRSSFeedURL			
getServiceRSSFeedURLbyGuid			
To obtain an RSS feed URL, you must identify the space (by name or GUID) and specify the service required (by service ID). The service ID for the Announcements service is GroupSpaceWSClient.ANNOUNCEMENT_SERVICE_ID			
.			
For information about how to use these APIs, see Section 57.2.5.3.9, "Retrieving RSS Feed URLs for Space Services."			
This chapter explains how to integrate the Discussions service in a WebCenter Portal: Framework application at design time. For more information about managing and including discussions, see:			
This chapter includes the following sections:			
The Discussions service lets you expose discussion forums on your application pages, so users can create forums, post questions, and search for answers. For example, customers can share product reviews, or a customer service department can answer questions online. Discussion forums additionally provide the means to preserve and revisit discussions.			
The back-end discussions server manages content in a hierarchy. At the top of the hierarchy are categories, below that are forums, and then topics. Within each topic are messages, and messages can be nested within messages.			
Where categories are exposed in your application, authorized users can create multiple forums within a given scope and multiple topics under those forums. Where categories are not exposed, authorized users can create multiple topics under one forum within a given scope.			
With the Discussions service, you can do the following (according to your permissions):			
Note: In a secured application, Discussions permissions are allotted according to an individual user's assigned user role. A user can be a moderator, participant, or viewer. Some activities require moderator or participant roles. For more information, see Section 34.2.3, "Setting Security for Discussions."			
The Discussions service is integrated with many WebCenter Portal services, such as Instant Messaging and Presence, RSS, and Search (to search within forums) services. Use the Mail service to archive mails into discussions as threads. Use the Links service to link to a discussion from any WebCenter Portal object.			
The Discussions service requires a discussions server. Install and configure the discussions server that comes with Oracle Fusion Middleware.			
To create forums in Framework applications, you must be a moderator or administrator on the back-end discussions server. For more information, see "Granting Administrator Role for Oracle WebCenter Portal's Discussions Server" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.			
Figure 34-1 shows a discussion forum at runtime.			
Figure 34-1 Discussion Forums Task Flow at Runtime			
For more information about the service at runtime, see Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
This section describes required steps for adding the Discussions service to your application. It includes the following subsections:			
You must create a connection to the discussions server in your WebCenter Portal: Framework application. You can register additional Discussion Forum connections, but only one connection is active at a time.			
When you create a Discussion Forum connection or set a connection as active, both the Announcements and Discussions services use this same connection. If you have an existing connection, then you can skip this section and see Section 34.2.2, "Adding the Discussions Service at Design Time."			
If you do not have an existing connection, then you must create a new Discussion Forum connection.			
The Discussions service requires a Discussion Forum connection to the discussions server.			
Note: While you can set up the connections to back-end servers at design time in Oracle Developer, you can later add, delete, or modify connections in your deployed environment using Enterprise Manager Fusion Middleware Control. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.			
Follow these steps to set up the discussions connection.			
Note: If you created a Discussion Forum connection for the Announcements service, then that is used by default for the Discussions service. No extra configuration is required.			
MyDiscussions			
. Note: After you create a connection as the default connection, you cannot edit it so that it is not the default. To use a different default connection, you must create a new connection and mark that as the default connection.			
Figure 34-2 Create Discussion Connections, Step 1			
URL			
: Enter the URL of the discussions server hosting discussion forums and announcements. For example: http://discuss-example.com:8888/owc_discussions			
Admin User			
: The user name of your discussions server administrator; for example, admin			
. This account is used by the Discussions and Announcement services to perform administrative operations on behalf of WebCenter Portal users. In WebCenter Portal: Spaces, this account is mostly used for managing space-related discussions and announcements. It is not necessary for this user to be a super admin. However, the user must have administrative privileges on the current root category for Spaces, that is, the category (on the discussions server) under which all space-related discussions and announcements are stored.			
Note: If your Framework application does not include space-related functionality, then the administrator's user name is not required.			
Connection Timeout			
: Specify a suitable timeout for the connection. This is the length of time (in seconds) the application waits for a response from the discussions server before issuing a connection timeout message. The default is -1, which means that the service default is used. The service default is 10 seconds. Policy URI for Authenticated Access			
: Select the SAML token client policy this connection uses for authenticated access to the discussions server Web service. SAML (Security Assertion Markup Language) is an XML-based standard for passing security tokens defining authentication and authorization rights. An attesting entity (that has trust relationship with the receiver) vouches for the verification of the subject by method called sender-vouches. Options available are: The client policy specified must be compatible with the service policy that is configured for the OWCDiscussionsServiceAuthenticated			
endpoint in the discussions server. Out-of-the-box, the default service policy is WSS 1.0 SAML Token Service Policy (oracle/wss10_saml_token_service_policy).			
Policy URI for Public Access			
: Select the client policy this connection uses to enforce message security and integrity for public access to the discussions server Web service. Options available are: The client policy specified must be compatible with the service policy that is configured for the OWCDiscussionsServicePublic			
endpoint in the discussions server. Out-of-the-box, a service policy is not configured for public access.			
Recipient Key Alias			
: Enter the recipient key alias to be used for message protected policies (applicable to the OWCDiscussionsServicePublic			
and OWCDiscussionsServiceAuthenticated			
endpoints). This is the alias to the certificate that contains the public key of the discussions server in the configured keystore. For more information, see the chapter "Configuring WS-Security for WebCenter Portal's Applications and Components" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.			
Figure 34-3 Create Discussions Connection, Step 2			
application.root.category.id			
: (WebCenter Portal: Spaces only) The application root category ID on the discussions server under which all discussion forums are stored. For example, if set to 3, then all forums are stored inside the category 3.			
Note: To encrypt property values, such as passwords, click Add Secured Property.			
This section explains a basic incorporation of the Discussions service.			
The Discussions service provides several task flows (Table 34-1) to enable you to include the service in a form that best suits your needs.			
Table 34-1 Discussions Service Task Flows			
Task Flow	Description		
---	---		
Discussion Forums	This task flow displays the Discussion Forums view, which allows the user to see all the discussions and their respective replies. It also allows users to perform various operations based on their privileges. A Moderator can perform create, read, update, and delete operations on all objects. A Participant can create a topic, edit a topic that has been created by him, and reply to a topic. A Viewer can only view objects. All watched forums and topics are accessible from this task flow. The Watched Forums and Watched Topics task flows provide more focussed views of watched forums or watched topics. The parameters alter the way the view appears. For more information, see Section 34.2.2.3, "How to Modify the Discussions Service Task Flow Parameters."		
Discussions - Popular Topics	This task flow provides a view that allows users to see the most frequently viewed topics in the application under a given category ID or forum ID. For more information, see Section 34.3.1, "Adding the Discussions - Popular Topics Task Flow."		
Discussions - Recent Topics	This task flow displays a view that allows users to see all the recent topics in the application given a category ID or forum ID. For more information, see Section 34.3.2, "Adding the Discussions - Recent Topics Task Flow."		
Discussions - Watched Forums	This task flow displays a view that allows users to see all of their watched forums in the application under a given category ID. For more information, see Section 34.3.3, "Adding the Discussions - Watched Forums Task Flow."		
Discussions - Watched Topics	This task flow displays a view that allows users to see all their watched topics in the application under a given category ID or forum ID. For more information, see Section 34.3.4, "Adding the Discussions - Watched Topics Task Flow."		
Discussions - Quick View	This task flow displays a combined view of the Popular Topics, Recent Topics, Watched Topics, and Watched Forums task flows. Instead of adding four separate task flows, this single task flow presents all four views with a dropdown list so that end users can personalize it For more information, see Section 34.3.5, "Adding the Discussions - Quick View Task Flow."		
The Discussion Forums task flow provides a complete view of your discussions. To add the Discussion Forums task flow to your Framework application, follow these steps.			
Notes: If you created a connection in IDE and not in the application, then the connection must be added to the application. For example, in the Resource Palette under IDE Connections, right-click the connection and select Add to Application. All instances of the Discussion Forums task flow in an application run against the same discussions server: it is unnecessary to add multiple Discussion Forums task flow instances. This is true for all service task flows that require connections to back-end servers, such as task flows from the Announcements or Mail services.			
The Discussion Forums main view contains some features that require other services in your application.			
The Discussions service task flows have optional task flow binding parameters.			
You can adjust the parameter values when you drop the task flows onto a page or after you have placed a task flow on a page:			
Figure 34-5 Edit Task Flow Binding Dialog for Discussion Forums Task Flow			
Table 34-2 describes the properties that are unique to the Discussions service task flows.			
Table 34-2 Discussions Service Task Flow Parameters			
Property	Description	Task Flow	
---	---	---	
This optional parameter is an identifier for an existing category in Oracle WebCenter Portal's Discussion Server to which the view should be scoped. When no value is supplied, it defaults to the appropriate root category of the discussions server. (This root category ID can be overridden by supplying an additional property named For testing purposes, you may want to create a category through the discussions server administrator interface and then reference that category identifier here.			
This parameter is an identifier for an existing forum in your discussions server for which popular topics should be fetched. If both			
This parameter indicates whether the toolbar, including the Refresh icon, should be displayed. It can be			
This parameter determines if you show forums either in a category only or in subcategories. True means all forums under a given category/subcategory are shown; false means only the category's direct child forums are shown. The default value is false. Note: A value of true can impact performance.	Discussion Forums		
i	A means of showing the forums grouped under the Category ID category or the topics specified under the Forum ID forum. True means you want the task flow to display the forums classified under This parameter value works in combination with other parameters.	Discussion Forums	
Sets the number of visible topics	Discussion Forums		
If set to true, users are not allowed to change the number of visible topics.	Discussion Forums		
Sets the number of visible watched topics.			
Sets the number of visible watched forums.	Watched Forums		
If set to true, the More link is not visible.			
You can customize the look and feel of Discussion Forums views by changing parameter values. The following combinations are possible:			
Note: A bidirectional link connects back and forth. For example, when you create a link from a discussion topic to a document, a link from the document back to the topic also is created. Similarly, when you delete the link from the discussion topic to a document, the link from the document back to the topic automatically is deleted.			
categoryId			
: This displays the forums list view if there are multiple forums. If there is only one forum, then it drills into the forum and lists all topics with a bidirectional link enabled. categoryId			
and forumId			
: This displays the topics list view with a bidirectional link enabled. isCategoryView			
is set to true			
: This displays the topics list view with a bidirectional link enabled. categoryId			
and forumId			
and isCategoryView			
is set to false			
: This displays the topics list view, but a bidirectional link is not enabled. categoryId			
and isCategoryView			
is set to true			
: This displays the forums list view if there are multiple forums. If there is only one forum, then it displays that forum with a bidirectional link enabled. forumId			
and isCategoryView			
is set to false			
: This displays the topics list view, but a bidirectional link is not enabled. categoryId			
and isCategoryView			
is set to false			
: This is similar to when categoryId			
alone is given. forumId			
and isCategoryView			
is set to true			
: This is similar to when forumId			
and isCategoryView			
is set to false. isCategoryView			
= true			
or false			
: This is ignored. It goes with the default scope (that is, all forums listed under the root category) in a Framework application. forumId			
: This is similar to forumId			
and isCategoryView			
is set to false. By default, authenticated users of WebCenter Portal applications can view and participate in discussion forums. Any user who has logged in to a WebCenter Portal application can view discussions, and users with sufficient permissions can create forums and topics. To create forums, you must be a moderator or administrator on the back-end discussions server that provides the Discussions service.			
In an unsecured Framework application, the user identity is not propagated to the discussions server; consequently, users are identified as GUEST (that is, as anonymous users) and can view only public categories and forums.			
Note: Categories and forums are server-side classifications that move from category to forum to topic. That is, a category can head a collection of forums, just as a forum can head a collection of topics.			
In a secured Framework application, discussions permissions are allotted according to an individual user's assigned user role. For example, a user can be a moderator, participant, or viewer. A forum moderator can edit and delete any topics and messages within a forum. A forum participant can create topics and edit his or her own topics. A forum viewer can view topics and messages.			
In an unsecured Framework application, identity propagation cannot happen. A user is a guest (or anonymous) user who can view only public categories and forums.			
In an ADF-secured Framework application, identity propagation is enabled. Based on the identity, appropriate permissions are matched and corresponding actions are enabled. The user name that you use to log in to the application is used to log in to the discussions server. The recommended approach is to have the discussions server and the application point to the same identity store. When you run the page, you are presented with a login page for user credentials. Enter the credentials with the required privileges in the discussions server.			
Note: The Discussions services requires that the identity store be LDAP-based; that is, not file-based with			
ADF security is configured by default if you created your application using WebCenter Portal's Framework application template. For information about configuring ADF security, see Section 69.3, "Configuring ADF Security."			
This section describes optional features available with this service. It includes the following subsections:			
The Discussions - Popular Topics task flow provides a view that allows users to see the most frequently viewed discussion topics under a given category ID or forum ID.			
Note: Popular topics are based on topic replies. The administrator is not able to determine popularity.			
To add the Discussions - Popular Topics task flow to your Framework application, follow the same instructions that you did for the Discussion Forums task flow in Section 34.2.2.2, "How to Add Discussions to a Page," but drag and drop Discussions - Popular Topics onto the page.			
Table 34-2 describes the available parameters for this task flow.			
Figure 34-6 shows how the Discussions - Popular Topics task flow looks at runtime.			
Figure 34-6 Discussions - Popular Topics View at Runtime			
The Discussions - Recent Topics task flow displays a view that allows users to see all the recent topics (that is, topics posted within the past two days) given a category ID or forum ID.			
To add the Discussions - Recent Topics task flow to your Framework application, follow the same instructions that you did for the Discussion Forums task flow in Section 34.2.2.2, "How to Add Discussions to a Page," but drag and drop Discussions - Recent Topics onto the page.			
Table 34-2 describes the available parameters for this task flow.			
Figure 34-7 shows how the Discussions - Recent Topics task flow looks at runtime. To view a topic post, simply click the relevant topic.			
Figure 34-7 Discussions - Recent Topics View at Runtime			
The Discussions - Watched Forums task flow displays a view that allows users to see all of their watched forums under a given category ID.			
You can watch discussion forums and topics to keep a close eye on the information most current and relevant to your efforts. The forums and topics you select to watch are personal, in that your selections appear on your view of watch lists. No other user is affected by the forums and topics you choose to watch.			
When a user places a watch on a forum or a topic, whenever users add to that forum or topic, in addition to it appearing in the user's watched forums or topics list, the user receives an mail notification.			
All watched forums and topics are accessible from the Forums task flow. The Watched Forums and Watched Topics task flows provide more focussed views of watched forums or watched topics.			
To add the Discussions - Watched Forums task flow to your Framework application, follow the same instructions that you did for the Discussion Forums task flow in Section 34.2.2.2, "How to Add Discussions to a Page," but drag and drop Discussions - Watched Forums onto the page.			
Table 34-2 describes the available parameters for this task flow.			
Figure 34-8 shows how the Discussions - Watched Forums task flow looks at runtime.			
Figure 34-8 Discussions - Watched Forums View at Runtime			
For information on how to watch a forum or topic at runtime, see "Working with the Discussions Service" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
Similar to the Discussions - Watched Forums task flow, the Discussions - Watched Topics task flow displays a view that allows users to see all their watched topics under a given category ID or forum ID.			
To add the Discussions - Watched Topics task flow to your Framework application, follow the same instructions that you did for the Discussion Forums task flow in Section 34.2.2.2, "How to Add Discussions to a Page," but drag and drop Discussions - Watched Topics onto the page.			
Table 34-2 describes the available parameters for this task flow.			
Figure 34-9 shows how the Discussions - Watched Topics task flow looks at runtime.			
Figure 34-9 Discussions - Watched Topics View at Runtime			
For information on how to watch a forum or topic at runtime, see "Working with the Discussions Service" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
The Discussions - Quick View task flow displays a combined view of the Popular Topics, Recent Topics, Watched Topics, and Watched Forums task flows. Instead of adding four separate task flows, this single task flow presents all four views with a dropdown list so that end users can personalize it.			
By default, Watched Topics are displayed. This task flow takes only one parameter: categoryId			
.			
To add the Discussions - Quick View task flow to your WebCenter Portal: Framework application, follow the same instructions that you did for the Discussion Forums task flow in Section 34.2.2.2, "How to Add Discussions to a Page," but drag and drop Discussions - Quick View onto the page.			
Table 34-2 describes the available parameters for this task flow.			
Figure 34-10 shows how the Discussions - Quick View task flow looks at runtime.			
Figure 34-10 Discussions - Quick View at Runtime			
You can expose WebCenter Portal: Spaces functionality in a Framework application. Your Framework application users can find out what is happening in a specific space through RSS news feeds.			
Configure RSS news feeds for the Discussions service to enable users to view space discussions from within a Framework application. To obtain the space RSS news feed URL for the Discussions service, use either of the following Spaces APIs:			
getServiceRSSFeedURL			
getServiceRSSFeedURLbyGuid			
To obtain an RSS feed URL, you must identify the space (by name or GUID) and specify the service required (by service ID). The service ID for the Discussions service is GroupSpaceWSClient.DISCUSSION_SERVICE_ID			
.			
For information about how to use these APIs, see Section 57.2.5.3.9, "Retrieving RSS Feed URLs for Space Services."			
The back-end Oracle WebCenter Portal's Discussion Server includes APIs to further customize your application. To learn more about them, see the Jive Forums documentation on the Oracle Fusion Middleware documentation library (in the WebCenter Portal product area).			
WebCenter Portal provides REST APIs to support the Discussions service. Use the Discussions service REST APIs to post, read, update, and delete discussion forums, topics, and messages.			
This section describes the REST APIs associated with the Discussions service. It includes the following subsections:			
For an introduction to the REST APIs, see Chapter 54, "Using Oracle WebCenter Portal REST APIs."			
Each REST service has a link element within the Resource Index that provides the entry point for that service. To find the entry point for the Discussions service, find the link element with a resourceType			
of:			
urn:oracle:webcenter:discussions:forums			
The corresponding href			
or template			
element provides the URI entry point. The client sends HTTP requests to this entry point to work with the Discussions service.			
For more information about the Resource Index, see Section 54.5.1, "The Resource Index."			
For more information about resource types, see Section 54.5.2.1, "Resource Type."			
When the client has identified the entry point, it can then navigate through the resource type taxonomy to perform the required operations. For more information about the individual resource types, see the appropriate section in Section 54.5.2.1, "Resource Type."			
The taxonomy for the Discussions service is:			
Beyond the service entry points, URL templates allow clients to pass query parameters to customize their requests and control the form of returned data.			
Collection resources in the discussions resources support pagination (startIndex			
and itemsPerPage			
). Other query parameters are not supported (that is, search			
and projection			
).			
There are no specific security considerations for this service. For general security considerations, see Section 54.8, "Security Considerations for WebCenter Portal REST APIs."			
This section provides the information about each resource type. It includes the following subsections:			
Use this resource type to identify the URI to use to read (GET			
) and write (POST			
) discussion forums. The response from a GET			
operation includes each forum in this collection of forums, and each forum includes links used to operate on that forum. The response from a POST			
operation includes the forum that was created in this collection of forums and a link to operate on that forum.			
Navigation Paths to forums			
This section shows how the client can navigate through the hypermedia to access this resource:			
Supported Methods for forums			
The following methods are supported by this resource:			
GET			
startIndex			
, itemsPerPage			
(pagination) POST			
For more information, see Section 54.5.2.5, "Templates."			
Resource Types Linked to From forums			
Table 34-3 lists the resource types that the client can link to from this resource.			
Table 34-3 Related Resource Types for forums			
rel	resourceType		
---	---		
self			
Use this resource type to identify the URI to use to read (GET			
), update (PUT			
), and delete (DELETE			
) a specific discussion forum. The response from a GET			
operation includes the specific forum identified by the URI. The response from a PUT			
operation includes the modified version of the forum identified by the URI. The response from a DELETE			
operation is a 204.			
Navigation Paths to forum			
This section shows how the client can navigate through the hypermedia to access this resource:			
Supported Methods for forum			
The following methods are supported by this resource:			
GET			
PUT			
DELETE			
Writable Elements for forum			
Table 34-4 lists the writable elements for this resource.			
Table 34-4 Writable Elements for forum			
Element	Type	Required	Constraints
---	---	---	---
String	Yes	1 or more characters	Name of the forum
String	No	1 or more characters	Name used in presentation
String	No	1 or more characters	Description of the forum
Read-only Elements for forum			
Table 34-5 lists the read-only elements for this resource.			
Table 34-5 Read-only Elements for forum			
Element	Type	Description	
---	---	---	
Integer	ID of the forum		
Integer	ID of the parent category		
String	ID of the user that created the forum		
	User information about the user that created the forum, including GUID, ID, display name, and a link to the profile icon (same user as		
Date	Date on which the forum was created		
String	ID of the user that performed the last modification		
	User information about the user that performed the last modification, including GUID, ID, display name, and a link to the profile icon (same user as		
Date	Date on which the forum was last modified		
String	URL for direct access to the discussions server		
Integer	Number of topics		
Integer	Number of messages		
Boolean	True if this forum is locked		
Boolean	True if this forum is marked as a favorite		
Resource Types Linked to From forum			
Table 34-6 lists the resource types that the client can link to from this resource.			
Table 34-6 Related Resource Types for forum			
rel	resourceType		
---	---		
self			
Use this resource type to identify the URI to use to read (GET			
) and write (POST			
) discussion topics. The response from a GET			
operation includes each topic in this collection of topics, and each topic includes links used to operate on that topic. The response from a POST			
operation includes the topic that was created in this collection of topics and a link to operate on that topic.			
Navigation Paths to topics			
This section shows how the client can navigate through the hypermedia to access this resource:			
Supported Methods for topics			
The following methods are supported by this resource:			
GET			
startIndex			
, itemsPerPage			
(pagination) POST			
For more information, see Section 54.5.2.5, "Templates."			
Resource Types Linked to From topics			
Table 34-7 lists the resource types that the client can link to from this resource.			
Table 34-7 Related Resource Types for topics			
rel	resourceType		
---	---		
self			
Use this resource type to identify the URI to use to read (GET			
), update (PUT			
), and delete (DELETE			
) a specific discussion topic. The response from a GET			
operation includes the specific topic identified by the URI. The response from a PUT			
operation includes the modified version of the topic identified by the URI. The response from a DELETE			
operation is a 204.			
Navigation Paths to topic			
This section shows how the client can navigate through the hypermedia to access this resource:			
Supported Methods for topic			
The following methods are supported by this resource type:			
GET			
PUT			
DELETE			
Writable Elements for topic			
Table 34-8 lists the writable elements for this resource type.			
Table 34-8 Writable Elements for topic			
Element	Type	Required	Constraints
---	---	---	---
String	Yes	1 or more characters	Subject of the topic
String	No	0 or more characters	Contents of the topic
Read-only Elements for topic			
Table 34-9 lists the read-only elements for this resource type.			
Table 34-9 Read-only Elements for topic			
Element	Type	Description	
---	---	---	
Integer	Identifier for the topic		
Integer	Identifier for the parent message		
Integer	Identifier for the forum under which this topic is posted		
Integer	Identifier for the topic under which this topic is posted		
String	ID of the user who created the topic		
	User information about the user who created the topic, including GUID, ID, display name, and a link to the profile icon (same user as		
Date	Date on which the topic was created		
String	User who lasted updated the topic		
Date	Date on which the topic was last updated		
String	URL for direct access to the discussions server		
Integer	Depth in the hierarchy of messages		
Integer	Number of child messages under this topic		
Integer	Number of replies to this topic		
Boolean	Whether the topic is marked as a favorite for the user		
Boolean	Whether the topic is locked		
Boolean	Whether the topic is hidden		
Boolean	Whether the topic has attachments		
Resource Types Linked to From topic			
Table 34-10 lists the resource types that the client can link to from this resource.			
Table 34-10 Related Resource Types for topic			
rel	resourceType		
---	---		
self			
Use this resource type to identify the URI to use to read (GET			
) and write (POST			
) discussion topic messages. The response from a GET			
operation includes each message in this collection of messages, and each message includes links used to operate on that message. The response from a POST			
operation includes the message that was created in this collection of messages and a link to operate on that message.			
Navigation Paths to messages			
This section shows how the client can navigate through the hypermedia to access this resource:			
Supported Methods for messages			
The following methods are supported by this resource:			
GET			
startIndex			
, itemsPerPage			
(pagination) POST			
For more information, see Section 54.5.2.5, "Templates."			
Resource Types Linked to From messages			
Table 34-11 lists the resource types that the client can link to from this resource.			
Table 34-11 Related Resource Types for messages			
rel	resourceType		
---	---		
self			
Use this resource type to identify the URI to use to read (GET			
), update (PUT			
), and delete (DELETE			
) a specific discussion topic message. The response from a GET			
operation includes the specific message identified by the URI. The response from a PUT			
operation includes the modified version of the message identified by the URI. The response from a DELETE			
operation is a 204.			
Navigation Paths to message			
This section shows how the client can navigate through the hypermedia to access this resource:			
Supported Methods for message			
The following methods are supported by this resource:			
GET			
PUT			
DELETE			
Writable Elements for message			
Table 34-12 lists the writable elements for this resource.			
Table 34-12 Writable Elements for message			
Element	Type	Required	Constraints
---	---	---	---
String	Yes	1 or more characters	Subject of this message
String	No	0 or more characters	Content of this message
Read-only Elements for message			
Table 34-13 lists the read-only elements for this resource.			
Table 34-13 Read-only Elements for message			
Element	Type	Description	
---	---	---	
Integer	ID of the message		
Integer	ID of the parent message		
Integer	ID of the forum under which the message is posted		
Integer	ID of the topic under which the message is posted		
String	ID of user that created the message		
	User information about the user that created the message, including GUID, ID, display name and a link to the profile icon (same user as		
Date	Date on which the message was created		
String	User that performed the last modification		
Date	Date on which the message was last modified		
String	URL for direct access to the discussions server		
Integer	Depth in the hierarchy of messages		
Integer	Number of messages		
Integer	Number of replies to this message		
Boolean	True if this message is hidden		
Boolean	True if this message has attachments		
Resource Types Linked to From message			
Table 34-14 lists the resource types that the client can link to from this resource.			
Table 34-14 Related Resource Types for message			
rel	resourceType		
---	---		
self			
This section describes common problems and solutions for the Discussions service.			
Problem			
It can take several minutes to fetch data from recursive forums. For example, if you drop the Discussions task flow on the page with the categoryId			
and forumId			
parameters left blank and you set the showrecursive			
parameter to ${'true'}			
, then it could take several minutes to scroll through all the forums.			
Solution			
The option to show recursive forums is not recommended for performance reasons.			
Problem			
Users can log on to WebCenter Portal but cannot log on to Oracle WebCenter Portal's Discussion Server.			
Solution			
Make sure that Oracle WebCenter Portal's Discussion Server is configured to use the same LDAP provider as the Framework application. Contact your administrator for details. For information about configuring LDAP, see the "Configuring the Identity Store" section in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.			
Problem			
When you access a discussions forum from your Framework application, the following error message is displayed:			
No default or active connection available for: Discussion Forum			
Solution			
Ensure the following:			
Problem			
While performing certain operations on Discussions Forums task flows, you encounter error messages like "Forum not found" or "Topic not found."			
Solution			
Check the following:			
If all of these settings are fine and the problem persists, contact your administrator for details.			
Problem			
If you change the connection to use a different discussions server, and if you change the application root category ID from administrator-services-discussions, then you could see exceptions like, "Category Not Found."			
Solution			
Restart the managed server on which the Framework application is deployed.			
This chapter explains how to integrate the Instant Messaging and Presence (IMP) service in a WebCenter Portal: Framework application at design time.			
For more information about managing and including instant messaging and presence, see:			
This chapter includes the following sections:			
The IMP service enables you to observe the presence status (online, offline, busy, or away) of other authenticated application users. It provides instant access to interaction options, such as instant messages and mails. Additionally, if your enterprise presence is unavailable (for example, when you are traveling), you can connect to a 3rd-party network presence service, such as Yahoo! Messenger.			
Services in WebCenter Portal that have user names with the same identity can integrate with the IMP service; for example, Discussions, Documents, or Mail.			
This section provides an overview of IMP features and requirements. It includes the following subsections:			
Figure 35-1 shows the Presence icon indicating a user who is online.			
Wherever a user is indicated, for example as the author of a document in the document library, you can click the icon to invoke a context menu (Figure 35-2).			
The context menu can include the following actions:			
Next to a contact name is an icon that indicates the presence state of each contact.			
For detailed information about the IMP service at runtime, including screen shots and descriptions of the presence status options, see Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
The IMP service requires a back-end presence server. WebCenter Portal is certified with Microsoft Office Live Communications Server (LCS) 2005, Microsoft Office Communications Server (OCS) 2007, and Microsoft Lync 2010.			
Note: Oracle Beehive Server connections are not supported in this release.			
This section describes the steps required for adding the IMP service to your application. It includes the following subsections:			
After the presence server is properly installed and running, you must add a connection to it. This section describes how. It includes the following subsections:			
The IMP service requires an Instant Messaging and Presence connection to the presence server (Microsoft LCS, Microsoft OCS, or Microsoft Lync).			
When a service in WebCenter Portal interacts with an application that handles its own authentication, you can associate that application with an external application definition to allow for credential provisioning. An external application is mandatory.			
Note: While you can set up the connections to back-end servers at design time in Oracle JDeveloper, you can later add, delete, or modify connections in your deployed environment using Enterprise Manager Fusion Middleware Control. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.			
The im.address.resolver.class			
handles the resolver implementation used to map user names to IM addresses and IM addresses to user names. This implementation looks for IM addresses in the following places and order:			
BUSINESS_EMAIL			
attribute. Users can change this default with im.address.profile.attribute			
. To use your own resolver implementation, extend from IMPAddressResolver			
class and implement two methods: resolveAddress			
and resolveUsername			
.			
resolveAddress			
method takes in user name and returns the corresponding IM address. resolveUsername			
method takes in the IM address and returns the corresponding user name. To plug in the new resolver class, change the service property im.address.resolver.class			
from the default oracle.webcenter.collab.rtc.IMPAddressResolverImpl			
to your resolver implementation. Example 35-1 shows a sample IMPAddressResolver			
implementation, where the resolver appends the domain string @example.com			
to the user name to construct the address and removes the same domain string from the address to construct the user name.			
Example 35-1 Resolver Implementation			
See Also: Section, "setIMPServiceProperty" in Oracle Fusion Middleware WebLogic Scripting Tool Command Reference			
To set up the connection to the LCS presence server:			
A connection in Application Resources is available only for that application, while a connection in IDE connections is available for all applications you create. If you plan to use the connection in other applications, then select IDE connections to avoid having to re-create it.			
No other connection should have the same name.			
Figure 35-3 Create LCS Instant Messaging and Presence Connection, Step 1			
Figure 35-4 Create LCS Instant Messaging and Presence Connection, Step 2			
For example:			
Url			
could be http://host:port/RTC			
where RTC is the virtual directory name under which the server side module is deployed. (See the Microsoft Live Communications Server 2005 documentation for more information.) Domain			
property is maintained for backward compatibility. It should be left blank. Connection Timeout			
property is optional. It represents the time (in seconds) the service should wait for the server to respond while making the connection. If the presence server does not respond in the given time, then it aborts the connection and reports an error. PoolName			
, enter the name of the pool under which Microsoft Communications Server components are deployed. (See the Microsoft Live Communications Server documentation for more information.) For LCS connections, an external application is mandatory. The application maps the presence server user to the application user such that end users do not have to enter their user names and passwords each time they need information. For detailed information about configuring an external application for the IMP service, see Section 35.2.3, "Setting Security for the IMP Service."			
Figure 35-5 Create LCS Instant Messaging and Presence Connection, Step 3			
You can see the new IM and presence connection under Application Resources - Connections.			
To set up the connection to the Microsoft OCS or Microsoft Lync presence server:			
A connection in Application Resources is available only for that application, while a connection in IDE connections is available for all applications you create. If you plan to use the connection in other applications, then select IDE connections to avoid having to re-create it.			
No other connection should have the same name.			
Note: Microsoft Lync connections use the Microsoft Office Communications Server 2010 connection type.			
The service requires that one connection be marked as the default connection, as shown in Figure 35-6.			
Figure 35-6 Create Microsoft OCS or Microsoft Lync IMP Connection, Step 1			
Figure 35-7 Create Microsoft OCS or Microsoft Lync IMP Connection, Step 2			
For example:			
URL			
is the location of your Microsoft OCS or Lync instance. This could be http://host:port/RTC			
where RTC is the virtual directory name under which the server side module is deployed. (See the Microsoft documentation for more information.) Domain			
property is maintained for backward compatibility. It should be left blank. Connection Timeout			
property is optional. It represents the time (in seconds) the service should wait for the server to respond while making the connection. If the presence server does not respond in the given time, then it aborts the connection and reports an error. User Domain			
is the Active Directory domain on Microsoft OCS or Lync. This parameter is mandatory. Poolname			
, enter the name of the pool under which Microsoft Communications Server components are deployed. This parameter is mandatory. (See the Microsoft documentation for more information.) For Microsoft OCS and Microsoft Lync connections, an external application is mandatory. The application maps the presence server user to the application user such that end users do not have to enter their user names and passwords each time they need information. For detailed information about configuring an external application for the IMP service, see Section 35.2.3, "Setting Security for the IMP Service."			
Figure 35-8 Create Microsoft OCS or Microsoft Lync IMP Connection, Step 3			
You can see the new IM and presence connection under Application Resources - Connections.			
This section explains a basic incorporation of the IMP service into your application. It includes the following subsections:			
The IMP service does not include any task flows.			
To add the IMP service to your Framework application:			
Figure 35-9 Component Palette - IMP Service Components			
Use the Presence icon anywhere you want to display a user, for example, as the author of a discussion topic, the sender/recipient of a mail, or the owner of a document.			
You can add numerous presence components to the application page.			
For information about optional Presence component parameters, see Section 35.3.2, "Customizing IMP Views."			
<af:document>			
tag). This component does not have any attributes.			
The Presence Data component provides the status information for all Presence components on the page, such as online, offline, or busy. It verifies that all presence information corresponding to the user on the whole page shows consistent status information. Without this component, all users appear offline.			
Because the Presence Data component makes a call to the back-end server, for best performance, ensure that this is the last tag on the page. To avoid adding this tag to every page in your application, consider using a page template with Presence Data as the last component; that is, before the end of the </af:form>			
tag.			
Note: You can create new pages at runtime on which you can add components, such as forums, mail, or documents. Many components have Presence tags, but users do not have a handle to add the Presence Data tag to the page. To see presence on custom pages, you must manually add the Presence Data tag to the underlying template.			
This task flow enables the end user to set the appropriate user name and password for the external application.			
Figure 35-10 shows the runtime Presence component with the display name of user Monty Montasaurus111.			
The IMP service requires user identity. ADF security is configured by default if you created your application using the WebCenter Portal - Framework Application template. For information about configuring ADF security, see Section 69.3, "Configuring ADF Security."			
Credentials are read from the external application (public credentials) and used to log on to the presence server. If you do not apply ADF security or if you do not have an external application configured, then users cannot authenticate and do not see any content at runtime.			
Note: The presence server and the Framework application should point to the same identity store. The identity store must be LDAP-based; that is, not file-based with			
To access the presence server, the IMP service can use an external application with dedicated user accounts.			
Microsoft LCS, OCS, and Lync support external application connections. With a secured application, users get presence status. The Change Credentials option works as an alternative to using an external application. Logged-in users can click their own Presence context menu and select Change Credentials. Security should be on a private trusted network.			
To use an external application for authentication:			
This brings up the Register External Application wizard. The application maps the presence server user to the application user such that end users do not have to enter their user names and passwords each time.			
Note: External application credential provisioning is built into the IMP connection. You do not need to drop External Application - Change Password task flow on a page.			
Click Add Field, and add an extra field with the name "Account." Make sure to select the Display to User checkbox, as shown in Figure 35-11.			
Note: The external application for the IMP service requires this additional field. It must be displayed to users.			
For information about using external applications, see Section 69.13, "Working with External Applications."			
This section describes optional features available with the IMP service. It includes the following subsections:			
When WebCenter Portal presence is not available (for example, if your enterprise uses a Jabber/XMPP presence server or has federated presence servers with users distributed across identity management systems), you can connect to a 3rd-party network presence service.			
Out-of-the-box, WebCenter Portal supports Yahoo! Messenger on network presence. However, the network presence model can be extended to include other providers, such as ICQ.			
This section includes the following subsections:			
WebCenter Portal Framework allows end users to set their IM preferences to their Yahoo! Messenger presence. Portal developers enable this functionality by leveraging the rtcPresenceHandler			
bean.			
Follow these steps to include Yahoo! Messenger presence in your Framework application.			
Example 35-2 shows the two af:inputText			
components for users to enter Display Name and IM Address and an af:commandButton			
component for users to save the preferences.			
Setting the inputText			
value with this EL sets the displayName			
and imAddress			
in the preferences bean. To save the values, users click the button, which invokes a method from the bean to save the preferences.			
Example 35-2 User Interface for Yahoo! Messenger Presence			
Example 35-3 shows the full source code for the page, with the user interface included.			
Example 35-3 Source Code for the Page with Yahoo Presence			
Figure 35-12 User Interface to Enter Yahoo! Messenger Credentials			
Presence tags for that user shows their Yahoo presence, either online (Figure 35-13) or offline (Figure 35-14).			
Figure 35-13 Yahoo Presence Icon - Online			
Figure 35-14 Yahoo Presence Icon - Offline			
Figure 35-15 shows a sample page that includes the Discussion Forums task flow, where Yahoo! Messenger presence and WebCenter Portal presence are shown together.			
Figure 35-15 Sample Page with WebCenter Portal Presence and Yahoo! Messenger Presence			
To use a different network presence provider, deploy your application that contains the PresenceNetworkAgent			
implementation class for that service and an imp-pna.config			
file listing that implementation class into a jar file.			
For example, suppose the new Presence Network Agent is called SamplePNA. You must create two files: the Project1.SamplePNA			
class file and the imp-pna.config			
file.			
Project1.SamplePNA.java			
: This class implements oracle.webcenter.collab.rtc.PresenceNetworkAgent			
. It must implement three methods: isSupported(PNAContext context)			
: The method should return true if the PNA supports the user for which presence is requested. The PNAContext			
object supplied contains the user information. For example, if the PNA supports all IM addresses with the domain example.com			
, then it can get the imAddress from the PNAContext			
object and check for the domain example.com			
. getURL(PNAContext context)			
: The method should return the fully qualified URL to reach to the user's Presence icon. Again, it gets the user information from the PNAContext			
object. getChatURI(PNAContext context)			
: The method should return the browser compatible URI to invoke the chat client (for example, sip:user@example.com			
). Example 35-3 shows this SamplePNA class file.			
Example 35-4 SamplePNA Class File			
META-INF/imp-pna.config			
: This file lists the available PNAAgent			
classes. In this case, it contains only the following line: See Chapter 56, "Extending the Spaces Application Using JDeveloper" for information on how to package your application and deploy it as a custom shared library (for example, in WebCenter Portal: Spaces).			
Whenever a Presence tag is encountered with an IM address as user@example.com			
. The URL configured appears on the user interface as the Presence icon.			
Table 35-1 lists the attributes supported by the Presence component. Only the username			
attribute is required; all other attributes are optional. You can update these attributes in the Property Inspector.			
Table 35-1 Presence Component Description			
Attribute	Description		
---	---		
The user whose presence information you want to add to the application page. This attribute is required.			
How the component should display. Takes one of the following values:			
By default, the Presence component displays the user name. If the flag			
The position for the icon. Possible values are			
A Boolean value that defines whether the component should provide rich interactions to the end user. If this attribute is set to			
A unique identifier for the component on the page. The identifier must follow a subset of the syntax allowed in HTML:			
A Boolean value that defines whether to use the small 12x12 icon set (
A Boolean value that defines whether to render this component. The default value is			
An EL reference to store the component instance on a bean. Use this to give programmatic access to a component from a backing bean or to move creation of the component to a backing bean.			
The CSS styles to use for this component. Manually enter any style in compliance with CSS version 2.0 or later, or expand this node to specify style elements. This is intended for basic style changes.			
A CSS style class to use for this component.			
A Boolean value that defines whether to resolve the supplied However, if the supplied			
This section describes common problems and solutions for the IMP service.			
Problem			
The Presence icon is not visible in your Framework application.			
Solution			
Ensure that an IMP connection exists in your application and has been set as active.			
Problem			
Changes in the presence status of users are not visible in your Framework application.			
Solution			
For each logged-in user's session, the IMP service fetches the presence information from the presence server and stores it in the presence cache. For presence requests, the service returns the data from the cache until the cache expires. The default cache expiry period is 60 seconds.			
To view the updated presence status, you can wait for the cache to expire and retrieve the latest presence status.			
You can also change the cache expiry time by setting the rtc.cache.time			
service configuration property to the desired value (in seconds). Update adf-config.xml			
to include the highlighted entry, which shows the sample value as 30 seconds. Example 35-5 shows an example.			
Example 35-5 Setting the rtc.cache.time Expiration Value in adf-config.xml			
Problem			
A number of options, such as Send Instant Message, are not available in the context menu of the IMP service in your Framework application.			
Solution			
Ensure that IMP service is configured in your Framework application. Also, ensure the following settings for the various context menu options:			
Problem			
You are unable to send a message from your Framework application. Clicking the Send Instant Message option returns an error.			
Solution			
Ensure that your SIP client is supported by the presence server and you have logged on as an authenticated user. The supported SIP client is Microsoft Communicator.			
This chapter explains how to integrate the Mail service in a WebCenter Portal: Framework application at design time.			
For more information about managing and including mail, see:			
This chapter includes the following sections:			
Note: The Mail service supports only the Inbox. No other folders (or moving of messages) are supported.			
This section provides an overview of Mail service features and requirements. It includes the following subsections:			
The Mail service enables users to access the inbox of a mail server that supports Internet Message Access Protocol4 (IMAP4) and Simple Mail Transfer Protocol (SMTP). Additionally, it enables users to compose a new mail message from within the application (with attachments) and delete, reply to, and forward messages.			
The Mail service does not replace users' mail clients; it simply enables users to access and compose mail in a single, collaborative environment.			
With the Mail service, you can do the following:			
Figure 36-1 shows the Mail task flow at runtime. At the top of the view are three elements: a dropdown list that shows the number of mails to display (here, All), the Compose icon, and the Refresh icon. The Refresh icon provides a means of manually checking for new messages in the inbox.			
The dropdown list provides filters to focus the view on messages received today, messages received since yesterday, messages received this week, and messages received this month (Figure 36-2).			
Note: By default,			
Click the Compose icon next to the dropdown list to compose a new message right from your application. Clicking this icon displays the Compose page, as shown in Figure 36-3.			
Use the Search icons to find mail addresses and contacts of users in the LDAP store that the Framework application uses. For any user not in the LDAP store, you must enter an explicit mail address.			
For more information about the Mail service at runtime, see Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
The Mail service requires a mail server that supports IMAP4 and SMTP protocols.			
In WebCenter Portal: Spaces, the Microsoft Exchange mail server is required for automatic creation of distribution lists when spaces are created. In a Framework application, this feature may not be desirable. To disable it, do not provide the LDAP (Active Directory) server details in the mail connection.			
This section describes the steps required for adding the Mail service to your application. It includes the following subsections:			
Use the roadmap in this section as a guide through the configuration process.			
Figure 36-4 and Table 36-1 provide an overview of the prerequisites and tasks required to get the Mail service working in Framework applications.			
Figure 36-4 Configuring the Mail Service for Framework Applications			
Table 36-1 Configuring the Mail Service for Framework Applications			
Actor	Task	Sub-task	
---	---	---	
Administrator	1. Install WebCenter Portal and the back-end components for the Mail service	1.a For Microsoft Exchange 2007 and 2010 only, follow additional configuration steps	
Developer	2. Integrate the Mail service in your Framework application		
Developer or Administrator	3. Deploy the Framework application using one of the following tools:		
Developer or Administrator	4. (Optional) Add/modify connection parameters using one of the following tools:		
End User			
Before you can use the Mail service, you must first set up the connection to your mail server. The Mail service supports any mail server based on IMAP4 and SMTP protocol.			
Note: While you can set up the connections to back-end servers at design time in Oracle JDeveloper, you can later add, delete, or modify connections in your deployed environment using Enterprise Manager Fusion Middleware Control. For more information, Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.			
To create a connection to your mail server from the application:			
A connection in Application Resources is available only for that application; while a connection in IDE Connections is available for all applications you create. If you plan to use the connection in other applications, then select IDE Connections to avoid having to re-create it.			
Figure 36-5 Configure a New Mail Connection, Step 1			
When configuring multiple mail accounts, you are not necessarily required to select this as the default connection. Keep in mind, however, that the service requires that one connection be marked as the default connection.			
Note: After you create a connection as the default connection, you cannot edit it so that it is not the default. To use a different default connection, you must create a new connection and mark that as the default connection.			
Figure 36-6 Configure a New Mail Connection, Step 2			
IMAP Host			
: The location of your IMAP server IMAP Port			
: The IMAP server port number (default is -1) SMTP Host			
: The location of your SMTP server SMTP Port			
: The SMTP server port number (default is -1) IMAP Secured			
: Indicates (true/false) a secure SSL connection (default is false) SMTP Secured			
: Indicates (true/false) a secure SSL connection (default is false) LDAP Host			
and LDAP Port			
: These, and all other LDAP values, are required only if Microsoft Exchange is the mail server. For the Mail service to create distribution lists reliably, the WebCenter Portal: Spaces application should use the same Active Directory server as Microsoft Exchange. Connection Timeout			
: The connection timeout (in seconds). The application maps the mail server user to the application user so that end users are not required to enter their user names and passwords each time.			
For more information on external applications, see Section 69.13, "Working with External Applications."			
Note: External application credential provisioning is built into the mail connection. You do not need to drop the External Application - Change Password task flow on a page.			
For Application Name, enter a unique name to identify the application. This name must be unique not only within the Framework application, but also among other connections. Note that you cannot edit this field afterward.			
For Display Name, enter a name for the application that end users see in the credential provisioning screens.			
For Login URL, enter the URL to which the HTML login page is submitted. View the HTML source of the application's login form to retrieve this URL.			
For User Name/ID Field Name, enter the label that the application uses for the user name field, for example, User Name.			
For Password Field Name field, enter the label that the application uses for the password field, for example Password.			
From the Authentication Method list, select POST. This submits login credentials within the body of a form. The external application for the Mail service requires this authentication method.			
Email Address			
. This field captures the user's mail address, so that when the user sends mail, the sender address is this mail address. Select the Display to User checkbox. Additionally, to specify that replies to the user's mail should go to different mail address than the Email Address			
field, click Add Field again, and add an extra field with the name Reply-To Address			
. Select the Display to User checkbox, as shown in Figure 36-7.			
Figure 36-7 Email Address and Reply-To Additional Fields			
Note: The external application for the Mail service requires the			
When shared credentials are specified, every authenticated user uses the same credentials to access the external application; that is, the user name and password you define here.			
With public credentials, without authenticating your Framework application, you can view mail from a certain mail ID for all unauthenticated (public) users. Public credentials are used whenever an application is not secured or the user has not yet logged in.			
Note: Public credentials are required to send mail from a self-registration page.			
With private credentials, each user must authenticate to an individual mail ID. That is, each application user must specify his own credentials.			
For detailed parameter information, see Table 36-2.			
Note: For WebCenter Portal: Spaces and the Mail service to share an identity management system for setting up space mailing lists, you must use Active Directory. For information about installing and configuring mail servers as the WebCenter Portal administrator, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.			
Table 36-2 LDAP Directory Server Configuration Parameters			
Field	Description		
---	---		
LDAP Host	Enter the host name of the computer where the LDAP directory server is running.		
LDAP Port	Enter the port on which the LDAP directory server listens.		
LDAP Base DN	Enter the base distinguished name for the LDAP schema. For example, CN=Users,DC=oracle,DC=com.		
LDAP Domain	Enter the domain to be appended to distribution list names. In WebCenter Portal: Spaces, for example, if the domain value is set to		
LDAP Administrator User Name	Enter the user name of the LDAP directory server administrator. A valid user with privileges to make entries into the LDAP schema.		
LDAP Administrator Password	Enter the password for the LDAP directory server administrator. The password is stored in a secured store.		
LDAP Default User	Enter a comma-delimited list of user names to whom you want to grant moderator capabilities. These users become members of every space distribution list that is created. The users specified must exist in the base LDAP schema (specified in the		
Indicate whether a secured connection (SSL) is required between the Framework application and the LDAP directory server. If LDAP is configured to run in secure mode, then add this property (set to true/false) to use LDAP while creating distribution lists.			
You can see the new mail connection under Application Resources - Connections.			
This section explains a basic incorporation of the Mail service. It includes the following subsections:			
The Mail service includes one task flow: Mail. This task flow displays a mail inbox.			
To add the Mail service to your application:			
tabularView			
parameter. If this parameter is set to true			
, then mail messages appear in a table, like an Inbox on any mail client. If this parameter is set to false			
, then mail messages render in a list view. Note: If you created a connection in IDE and not in the application, then the connection must be added to the application. For example, in the Resource Palette under IDE Connections, right-click the connection and select Add to Application.			
Enter the credentials, then click Submit.			
Notes:			
The Mail service task flow has an optional task flow binding parameter.			
You can adjust the parameter values when you drop the task flows onto a page or after you have placed a task flow on a page:			
Figure 36-9 Edit Task Flow Binding Dialog for Mail Task Flow			
Table 36-3 describes the properties that are unique to the Mail service task flow.			
Table 36-3 Mail Service Task Flow Parameters			
Property	Description	Task Flow	
---	---	---	
Using the EL value type, enter a value of true to display the information associated with a mail message, such as its subject, sender, and, date sent, in a tabular format. If this parameter is set to false, then mail messages render in a list view.			
Figure 36-10 depicts the Mail task flow where the region parameter tabularView			
is set to true.			
Figure 36-10 A Mail Task Flow where the Region Parameter Tabular Is Set to True			
The Mail service requires security to fetch mail for each logged-in user. ADF security is configured by default if you created your application using WebCenter Portal's Framework application template. For information about configuring ADF security, see Section 69.3, "Configuring ADF Security."			
The external application credentials for the user name used to log in to the application are fetched and used to log in to the mail server. The recommended approach is to have the mail server and the Framework application point to the same identity store.			
Note: Even if the Framework application and the mail server share the same identity store, the Mail service does not support identity propagation. Single sign-on functionality is enabled through the external application mechanism.			
The Mail service works in a non-secured Framework application if, and only if, the external application connection is configured with public credentials. If you do not apply security, and if mail requires a login to access the content, then users are not able to authenticate and do not see any content at runtime.			
For information about using external applications, see Section 69.13, "Working with External Applications."			
This section describes optional features available with the Mail service. It includes the following subsections:			
The Mail Compose page enables users to determine how they want to compose individual messages within the application.			
Invoke the Mail Compose page directly with a navigation rule that directs the user to the full page (Example 36-1).			
Example 36-1 Invoking the Mail Compose Page			
When you cannot provision mail accounts for all users within a space but want to provide the ability for space members to send mails to other members, then specify a shared (public) mail connection with the useConnection			
parameter. (Specify the connection name as a region input parameter to the mail-service compose view.) The end user Mail Preferences does not display mail connections with shared credentials.			
You can pass optional parameters to seed the compose message. For example, you can pass parameters to pre-populate fields like To, Cc, Bcc, From, Subject, and Content. Set parameters only for items you want to pre-populate. If you require an empty ComposeView.jspx			
, then no setActionListener			
is necessary. You must set all parameters on pageFlowScope			
.			
Use the scope			
parameter to set the scope within which the compose view should be launched.			
Use the sendMailToGSMembers			
parameter to select the option to send mail to all space members.			
Example 36-2 shows some parameters for the Mail Compose page (ComposeView.jspx			
):			
Example 36-2 Parameters of the Mail Compose Page			
Example 36-3 shows how to hide the recipients fields (like To, Cc and Bcc) by setting the following action listener in ComposeView.jspx			
:			
By default, the Mail service displays the 50 most recent mail messages from your Inbox folder. Providing that your mail server supports the increase in memory cache that fetching additional mail requires, the administrator can change this to a higher number in the adf-config.xml			
file.			
Add the mail.messages.fetch.size			
property as shown in Example 36-4:			
Example 36-4 Increasing the Number of Mails Displayed			
Alternatively, your Fusion Middleware administrator can increase this value with the WLST command setMailServiceProperty			
. For more information, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.			
This change applies to all users; that is, following Example 36-4, all users see 500 recent mails in their Inbox in the Framework application. Increasing the number of messages shown correspondingly increases the cache size on the Framework application. Take care to set this to a reasonable size.			
This section describes common problems and solutions for the Mail service.			
Problem			
Users are not able to retrieve their mail messages or send mail messages from within the Framework application.			
Solution			
Ensure the following:			
Problem			
The Mail service within your Framework application requires users to log in, but users are not able to authenticate and do not see any content at runtime. When users access the Mail service, it throws the ExtApp Authorization Exception.			
Solution			
The Mail service works in a non-secured Framework application if, and only if, the Mail connection is configured to use an external application connection with public credentials. If your application is running in non-secured mode, then ensure that you have configured public credentials for your external application.			
If you want your Framework application to run in secure mode, then you must configure ADF security for your application.			
Problem			
When users receive mail in Framework applications, message content is shown as an attachment (named content.html			
) rather than within the message body. This can occur if the mail server is running Microsoft Exchange Server 2007 and the "Update Rollup 3 for Microsoft Exchange Server 2007" is not yet installed.			
Solution			
Mail server administrators must download and install "Update Rollup 3 for Microsoft Exchange Server 2007" which fixes this issue. For more information, see http://support.microsoft.com/kb/930468			
.			
This chapter explains how to integrate the Polls service into a WebCenter Portal: Framework application at design time. For more information about using polls, see "Working with the Polls Service" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
This chapter includes the following sections:			
The Polls service lets you create, edit, and take online polls on your application pages. Polls let you survey your audience (such as their opinions and their experience level), check whether they can recall important information, and gather feedback on the efficacy of presentations.			
This section includes the following subsections:			
In addition to taking available polls, the Polls service lets you do the following:			
The Polls service is integrated with the Instant Messaging and Presence service in the Polls Manager.			
In a Framework application, the Polls service requires a connection to WebCenter Portal database schema. For details about setting up a database connection, see Section 7.2.2, "Setting Up a Database Connection."			
At runtime, users can quickly create polls with just a name and a question. Figure 37-1 shows a sample quick poll.			
WebCenter Portal application administrators can access the Polls Manager, which lets you create polls with multiple questions or with templates. The Actions dropdown list lets continue designing the poll, publish the polls, analyze results, clear results, and delete the poll (Figure 37-2).			
Polls created through the Polls Manager must be published and open to be taken. Users cannot take unpublished or closed polls.			
For more information about the service at runtime, see Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
This section describes required steps for adding this service to your application. It includes the following subsections:			
The Polls service requires a connection to the database where the WebCenter Portal schema is installed. For details about setting up a database connection, see Section 7.2.2, "Setting Up a Database Connection."			
This section explains a basic incorporation of the Polls service. It includes the following sections:			
The Polls service includes the task flows described in Table 37-1.			
Table 37-1 Polls Task Flows			
Task Flow	Description		
---	---		
Poll - Quick Poll	This task flow displays a view that enables users to create one-question polls to be published immediately. Each quick poll needs its own Quick Poll task flow on the page.		
Polls - Polls Manager	This task flow allows users to perform administrative operations on the polls. Any user who has access to this task flow can perform the administrative operations, such as edit or delete the poll.		
Polls - Take Polls	This task flow displays the most recently-published available poll, unless it is set to a specific poll in the		
Polls - View Poll Results	This task flow displays the results of a poll as a graph for the supplied		
The Quick Poll task flow display polls and provides tools to create, edit, and delete polls. It also provides controls for determining when a poll when it expires. This task flow lets you present polls to end users where manage controls are not needed.			
To add the Quick Poll task flow to your WebCenter Portal: Framework application:			
af:form			
begin			
and end			
tags. The Polls service task flows have optional task flow binding parameters.			
In addition to providing required values for successful task flow rendering, you can use task flow parameters to customize the appearance and behavior of a task flow instance. For example, you can use parameter values to set which poll to display.			
You can adjust the parameter values when you drop the task flows onto a page or after you have placed a task flow on a page:			
Figure 37-4 Edit Task Flow Binding Dialog for Polls Manager Task Flow			
Table 37-2 describes the properties that are unique to the Polls task flows.			
Table 37-2 Polls Service Task Flow Parameters			
Property	Description		
---	---		
The space name from which polls are to be fetched. If this is supplied, then polls of that particular space are shown. On the Home space, when this parameter is not supplied, it fetches polls from all spaces. This parameter appears in the properties for the Polls Manager task flow.			
This parameter determines whether to display all polls or only those polls created by the user. The default (No) is to show all polls. Set to Yes to display only those polls created by the user. If the This parameter appears in the properties for the Polls Manager task flow.			
The poll to display. This parameter appears in the properties for the following task flows.			
This parameter determines whether users can edit a quick poll. When a quick poll is in Edit mode, a Design Poll box for editing the poll appears. When a quick poll is not a Edit mode, the Design Poll box for editing is not visible. This parameter appears in the properties for the Quick Poll task flow.			
The Polls service does not require security. Administrators control access to Polls task flows through the Resource Catalog, where they define the users and groups privileged to see polls. Security is driven by the page security on which the task flow exists or by the task flow permissions on that page. Any user who can see the task flow can edit the poll.			
ADF security is configured by default if you created your application using WebCenter Portal's Framework application template. For information about configuring ADF security, see Section 69.3, "Configuring ADF Security."			
This section describes optional features available with this service. It includes the following subsections:			
The Polls Manager task flow provides a complete view of polls and perform actions on them.			
To add this to your Framework application, follow the same instructions that you did for the Polls Manager task flow in Section 37.2.2, "Adding the Polls Service at Design Time," but drag and drop Polls Manager onto the page.			
This task flow displays published polls for users to take. It displays the most recently-published available poll, unless it is set to display a specific poll with the pollId			
parameter. After a user submits a response for that poll, it displays the next most recently-published poll.			
To add this to your Framework application, follow the same instructions that you did for the Polls Manager task flow in Section 37.2.2, "Adding the Polls Service at Design Time," but drag and drop Polls - Take Polls onto the page.			
The View Poll Results task flow displays the results of a poll as a graph for the poll supplied with the required pollId			
parameter.			
To add this task flow to your Framework application, follow the same instructions that you did for the Polls Manager task flow in Section 37.2.2, "Adding the Polls Service at Design Time," but drag and drop Polls - View Poll Results onto the page.			
Use the Polls service data controls to build a customized user interface for polls with a Framework application or a custom task flow.			
The Polls service includes two data controls to customize the user interface:			
The Take Poll data control contains the following methods:			
This method lets users respond to a particular poll. Table 37-3 describes the required parameters for this method.			
This method lets users respond to the most recently-published poll. It has no parameters.			
This method gets the poll results for a particular poll. Table 37-5 describes the required parameters for this method.			
The Polls Manager data control contains the following methods:			
This method creates polls with multiple choice questions. Table 37-7 describes the required parameters for this method.			
Table 37-7 addQuestion Input Parameters			
Parameter	Type	Description	
---	---	---	
String	The poll to display.		
String	The text of the question; for example, What is your favorite color?		
String	Corresponding list of options for the question. This should be line-separated list of options.		
Boolean	True to allow multiple options to be selected; false to allow only a single option selection.		
This method creates complex polls with matrix-type questions. Table 37-8 describes the required parameters for this method.			
Table 37-8 addQuestion Input Parameters			
Parameter	Type	Description	
---	---	---	
String	The poll to display.		
QuestionType	Question type, either:		
String	The text of the question; for example, What is your favorite color?		
String	Corresponding list of options for the question. This should be line-separated list of options.		
String	Column options.		
Boolean	True if the question is optional (that is, users can ignore answering it); false if question is mandatory.		
String	Enables a comment field for users to provide feedback or enter personalized text with their answers.		
Integer	Size for the comment field. To capture feedback, set this to 3; otherwise, set it to 1. This parameter value depends on the type of answer expected in the comment field.		
This method closes a particular poll. Table 37-9 describes the required parameters for this method.			
This method closes a poll on a specific date. Table 37-10 describes the required parameters for this method.			
This poll closes a poll at a set number of days after the poll is published. Table 37-11 describes the required parameters for this method.			
This method closes as poll after a set number of responses have been collected. Table 37-12 describes the required parameters for this method.			
This method creates a quick poll. Table 37-13 describes the required parameters for this method.			
This method deletes a particular poll. Table 37-14 describes the required parameters for this method.			
This method edits a particular poll. Table 37-16 describes the required parameters for this method.			
This method finds a particular poll. Table 37-17 describes the required parameters for this method.			
This method displays all polls, as defined in its parameters. Table 37-18 describes the required parameters for this method.			
This method displays polls created by a particular user. Table 37-19 describes the required parameters for this method.			
Table 37-19 getPollsByUser Input Parameters			
Parameter	Type	Description	
---	---	---	
String	User name of the person who created the poll.		
Integer	The index of the first matching result that should be included in the result set (0-n ... zero based). This is used for pagination.		
Integer	The number or results to display.		
This method publishes a particular poll. Table 37-21 describes the required parameters for this method.			
This method publishes a poll on a specific date. Table 37-22 describes the required parameters for this method.			
This part provides comprehensive information about the People Connections service, including what it delivers and how to use it in aWebCenter portal application.			
This part includes the following chapters:			
The People Connections service provides social networking tools for use in enhancing connection and communication within a project team and throughout an enterprise. It does this through a set of features that include:			
This chapter describes the task flows associated with the People Connections service and provides some troubleshooting tips.			
This chapter includes the following sections:			
The People Connections service provides social networking tools for creating, interacting with, and tracking the activities of one's connections. Its features enable users to manage their personal profiles, access the profiles of other users, provide ad hoc feedback, post messages, track activities, and connect with others.			
In a production environment, an enterprise can leverage its back-end identity store as a means of providing People Connections with a population of potential connections. In a development environment, developers can add test-users to the jazn-data.xml			
file.			
See Also: For information about connecting to a back-end (LDAP) identity store for the production version of your application, see the chapter, "Managing Security," in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. For information about creating test users in			
This section provides an overview of the People Connections service. It includes the following subsections:			
The features of the People Connections service fall into five categories. Each category includes a set of task flows that expose People Connections features to your end users. Note that the Publisher task flow does not belong to these categories, but rather, works in concert with the Activity Stream.			
This section introduces these categories. It includes the following subsections:			
See Also: For information about the People Connections service at runtime, see Part VIII, "Organizing Your Collaborative and Social Networking Environment," in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces. For information about People Connections task flows, see Section 38.1.1, "People Connections Service Task Flows."			
The Activity Stream feature tracks the application activities of a user's connections. Table 38-1 lists the types of activities that may be tracked by the Activity Stream.			
Table 38-1 Activities Tracked by Activity Stream			
Service	Tracked Activities		
---	---		
Announcements			
Blogs			
Connections			
Discussions			
Documents			
Events			
Feedback			
Lists			
Message Board			
Pages	The following activities are tracked when they are performed within the service framework scope (for example, if a user creates pages under		
Profiles			
Tagging			
Activity Stream compares somewhat to the Recent Activities service, which also tracks and reports on application activities (for more information, see Chapter 50, "Integrating the Recent Activities Service"). Both track the application activities of integrated services, though Activity Stream tracks a broader range of services. For example, Recent Activities tracks the Documents (including wikis and blogs), Announcements, Discussions, and Page services. Activity Stream tracks these services as well as People Connections. Recent Activities tracks activities no matter who performs the action. Activity Stream tracks activities performed by a user's connections and includes information about who performed the activity. Recent Activities does not include names.			
The basic difference between these two services can be summarized as follows: Recent Activities provides an overview of what is happening in an application. Activity Stream provides an overview of what is happening with a user's connections.			
The Publisher task flow works in concert with Activity Stream to provide content in the form of user messages. A message posted through the Publisher task flow is published to the Activity Streams of the user who entered it and that user's connections.			
Activity Stream messages may include attachments, such as a file or a link. Depending on a file's mime type, Activity Stream allows for displaying a preview of such attachments. Activity Stream previews files through either a native web format or through UCM slide rendition. The previewer used depends on the mime type of the file to be previewed.			
The mime types that use the native web format include:			
image			
htm			
text			
The mime types that use UCM slide rendition include:			
pdf			
powerpoint			
powerpnt			
pptx			
Note: PDF file previews are available in Activity Stream when the mime type is			
Note that the mime types shown in these bullet lists are the only mime types that are previewed. Other mime types appear as links. The mime types docx			
and xlsx			
are not previewed in Activity Stream. Note also that a parameter associated with an Activity Stream task flow instance can be set to omit file previews (for more information, see Section 40.2, "People Connections Task Flow Binding Parameters").			
Two Activity Stream task flows are available through the Resource Palette:			
Figure 38-2 Activity Stream - Quick View Task Flow			
See Also: For information about Activity Stream task flows at runtime, see the section, "Working with Activity Stream Task Flows," in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
Connections provides users with a means of managing their own connections and viewing the connections of others. Use Connections to collect business friends and contacts into one or more smaller social groups. Use connections lists to manage the display of your connections.			
Three Connections task flows are available through the Resource Palette:			
vcard			
displays a connection's photo, job title, and status message. iconic			
displays a connection's photo and user name. list			
displays connections in a list, with each list row showing the profile photo, user name, job title, and an Add to List button. tiled			
renders the connection's personal Profile photo and shows the user name and job title beside the photo. Tip: In all views, the name links to a summary view of the user's Profile.			
Select one of these views through task flow bindings (for more information, see Chapter 40, "People Connections Task Flow Binding Parameters") (Figure 38-4).			
Figure 38-5 Connections - Quick View Task Flow			
See Also: For information about Connections task flows at runtime, see the section, "Setting Up Your Social Network," in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
Feedback provides users with a means of viewing, posting, and managing feedback. By default, users can view feedback in their own Feedback views. Users can view and post feedback in other users' Feedback views.			
Two Feedback task flows are available through the Resource Palette:			
A			
accesses user B			
's view of Feedback - Quick View, user A			
additionally sees an Add Feedback option (Figure 38-7). Figure 38-7 Feedback - Quick View Task Flow			
See Also: For information about Feedback task flows at runtime, see the section, "Working with Feedback Task Flows," in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
Message Board provides a means of viewing and posting messages and attachments to Message Boards and Activity Streams.			
Two Message Board task flows are available through the Resource Palette:			
Figure 38-9 Message Board - Quick View Task Flow			
See Also: For information about Message Board task flows at runtime, see the section, "Working with Message Board Task Flows" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
Profile provides users with a variety of views into their own and other users' personal profile information. Such information can include a user's email address, phone number, office location, department, manager, direct reports, and so on. Profile takes the bulk of its information from the back-end identity store that provides your WebCenter Portal application with its users. Additionally, Profile may offer opportunities for altering some of this information and for providing additional data not included in the identity store.			
Three Profile task flow are available through the Resource Palette:			
Note: To enable users to upload anything to your ADF-based application at runtime, the page on which you have placed the upload task flow must have the			
See Also: For information about Profile task flows at runtime, see the section, "Viewing and Editing Personal Profiles" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
The Publisher task flow works in concert with Activity Stream. Users enter content into Publisher, which is then published to the Activity Stream of the user who posted it as well as to the Activity Streams of that user's connections (Figure 38-13).			
See Also: For information about the Publisher task flow at runtime, see the section, "Sharing Items, Files, and URLs Through the Publisher Task Flow" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
For a successful integration of People Connections with your WebCenter Portal: Framework application, ensure that the following steps have been taken:			
.jspx			
) page (for more information, see Section 5.3, "Adding Pages to a Portal"). Secure your application and create some test users (for more information, see Chapter 69, "Securing Your WebCenter Portal: Framework Application," and Section 24.2.2, "How to Define Roles and Grant Privileges in the jazn-data.xml File").			
This section provides information to assist you in troubleshooting problems you may encounter while using the People Connections service.			
People Connections task flows take up the full browser, even when empty			
This problem may arise if you are using Internet Explorer, version 8 (IE8). In IE8, go to Tools, Compatibility View Settings. In the Compatibility View Settings dialog, clear the following check boxes:			
New Profile Image is Not Shown			
Changes to a Profile image may not be rendered immediately due to a stale WebCenter Database cache. Clicking the Refresh icon under the stale image will cause the image to update.			
This chapter provides the required steps for adding the People Connections service to your WebCenter Portal: Framework application. It includes the following sections:			
For information about setting up a database connection in support of Oracle WebCenter Portal: Services, see Section 7.2.2, "Setting Up a Database Connection."			
This section describes how to add a People Connections task flow to an application page. The steps provided here are largely the same for all People Connections task flows. Differences are noted.			
To add People Connections task flows to your WebCenter Portal: Framework application:			
.jspx			
) page. It may ask whether you want to add the People Connections library to the project. Confirm by clicking Add Library.			
For example, for Connections - Quick View, the parameter userid			
represents the name of the current user at runtime. You can specify an EL expression for the parameter that will evaluate to the currently logged-in user. For example, for userid			
, enter #{securityContext.userName}			
. For more information, see Chapter 40, "People Connections Task Flow Binding Parameters."			
The task flow is added to the page, and the ViewController project's libraries are configured to run the task flow.			
Note: To enable users to upload anything to your ADF-based application at runtime, the page on which you have placed the task flow must have the <af:form usesUpload="true"> … <af:region value="#{bindings.profile1.regionModel}"/> … </af:form> Additionally, to enable the upload of a profile snapshot, the task flow binding parameter			
Because People Connections features are centered around users, application security must be set up for successful use of the service. Ideally, test users are also in place to enable you to interact in a meaningful way with each feature. Each feature in the People Connections service can be secured separately.			
Once you have added test users, you can add additional user attributes, such as business_email			
, title			
, or department			
:			
jazn-data.xml			
file. Tip: You will find the			
<user>			
node for a selected user, insert the following: For example, to add business_email			
as monty@domain.com			
for the user monty			
, add:			
Two scripts are available to configure and revise People Connections site-level settings:			
RCUHOME			
refers to your install location of the Resource Creation Utility (RCU). The RCU may be used in setting up the WebCenter schema and is packaged with the Oracle JDeveloper ship home. RCUHOME			
is the root folder where the RCU is installed. This section describes the scripts and provides information about the types of settings they control. It includes the following subsections:			
All site-level settings for People Connections features are stored in the WebCenter schema table WC_PPL_COMMON_SETTING			
. Out-of-the-box, this table does not contain any setting values. In the absence of values, the application assumes default values. To change the value of any setting, the setting must first be inserted into this table and then updated with the desired value. Two SQL scripts enable you to perform these steps in their proper sequence.			
This section describes how to prepare and run the People Connections site-level settings scripts. It includes the following subsections:			
Before you can change People Connections site-level settings, you must run the settings-insert.sql			
script once. The script has INSERT			
statements for all supported settings. All INSERT			
statements are commented out by default. Before you run the script, you must prepare it by uncommenting all the settings you plan to change.			
See Also: For an example of the			
To prepare and run the settings-insert.sql			
script:			
INSERT			
statement. Tip: To uncomment an			
INSERT			
statements for the settings of interest, save and run the script. The uncommented settings are populated with default values.			
Note: You can run the			
To change People Connections site-level settings, you must run the settings-update.sql			
script after you run settings-insert.sql			
once. The settings-update.sql			
script has UPDATE			
statements for all supported settings. All UPDATE			
statements are commented out by default.			
You can run the settings-update.sql			
script as many times as required for a given set of settings on a given schema, provided you have run settings-insert.sql			
once for those settings.			
See Also: For an example of the			
To prepare and run the settings-update.sql			
script:			
UPDATE			
statement. Tip: To uncomment an			
SETTING_KEY			
column to the desired value. For information about settings and values, see Section 39.4.2, "Supported Site-Level Settings for People Connections Features."			
UPDATE			
statements of interest, save and run the script. The table WC_PPL_COMMON_SETTING			
is updated with the revised values.			
This section lists and describes the supported site-level application settings for the People Connections service. It includes the following subsections:			
Table 39-1 lists and describes the site-level settings for the People Connections service Activity Stream feature.			
The service ID for Activity Stream is oracle.webcenter.activitystreaming			
. For a list of service IDs, see Table G-7.			
Table 39-1 Site-Level Settings for Activity Stream			
Setting Key	Description	Valid Site-Level Values	
---	---	---	
Specifies who can view a user's Activity Stream.			
Specifies whether individual users can override in their own application views the application-level setting for who can view their Activity Stream. This setting is honored only when the application exposes the override control in a user preferences screen.			
Specifies whether the Home space activities of a user's connections are included in the user's Activity Stream. Users can override this setting on a task flow instance.			
Specifies whether any space activities of a user's connections are included in the user's Activity Stream. Users can override this setting on a task flow instance.			
Specifies whether to show activities published by the WebCenter service For example: servicePublishedSettings[oracle.webcenter.community] Users can override this setting on a task flow instance.			
Table 39-2 lists and describes the site-level settings for the People Connections service Connections feature.			
The service ID for Connections is oracle.webcenter.peopleconnections.connections			
. For a list of service IDs, see Table G-7.			
Table 39-2 Site-Level Settings for Connections			
Setting Key	Description	Valid Site-Level Values	
---	---	---	
Specifies that connection invitations are accepted automatically by default. Individual users can override this application-level setting in their own view, provided the application exposes the override control in a user preferences screen.			
Specifies who can view a user's Connections.			
Specifies whether individual users can override in their own application views the application-level setting for who can view their Connections. This setting is honored only when the application exposes the override control in a user preferences screen.			
Table 39-3 lists and describes the site-level settings for the People Connections service Feedback feature.			
The service ID for Feedback is oracle.webcenter.peopleconnections.kudos			
. For a list of service IDs, see Table G-7.			
Table 39-3 Site-Level Settings for Feedback			
Setting Key	Description	Valid Site-Level Values	
---	---	---	
Specifies who can view a user's received Feedback.			
Specifies whether individual users can override in their own application views the application-level setting for who can view their received Feedback. This setting is honored only when the application exposes the override control in a user preferences screen.			
Specifies who can give Feedback to a user.			
Specifies whether individual users can override in their own application views the application-level setting for who can give them Feedback. This setting is honored only when the application exposes the override control in a user preferences screen.			
Specifies the number of Feedback entries to show in a Feedback - Quick View task flow.	Positive integers		
Specifies whether individual users can override in their own application views the application-level setting for the number of entries to show in a Feedback - Quick View task flow. This setting is honored only when the application exposes the override control in a user preferences screen.			
Specifies whether users are allowed to delete the Feedback they leave for other users.			
Table 39-4 lists and describes the site-level settings for the People Connections service Message Board feature.			
The service ID for Message Board is oracle.webcenter.peopleconnections.wall			
. For a list of service IDs, see Table G-7.			
Table 39-4 Site-Level Settings For Message Board			
Setting Key	Description	Valid Site-Level Values	
---	---	---	
Specifies who can view a user's Message Board.			
Specifies whether individual users can override in their own application views the application-level setting for who can view their Message Board. This setting is honored only when the application exposes the override control in a user preferences screen.			
Specifies who can post to a user's Message Board.			
Specifies whether individual users can override in their own application views the application-level setting for who can post to their Message Board. This setting is honored only when the application exposes the override control in a user preferences screen.			
Specifies the number of messages to show in a Message Board - Quick View task flow.	Positive integer		
Specifies whether individual users can override in their own application views the application-level setting for the number of messages to show in a Message Board - Quick View task flow. This setting is honored only when the application exposes the override control in a user preferences screen.			
Specifies whether users are allowed to edit the messages they post on other users' Message Boards.			
Specifies whether users are allowed to delete messages they post on other users' Message Boards.			
Table 39-5 lists and describes the site-level settings for the People Connections service Profile feature.			
The service ID for Profile is oracle.webcenter.peopleconnections.profile			
. For a list of service IDs, see Table G-7.			
Table 39-5 Site-Level Settings for Profile			
Setting Key	Description	Valid Site-Level Values	
---	---	---	
Specifies whether profile updates, such as uploading a photo, updating personal status, changing profile attributes, should result in activities getting published in Activity Stream.			
Specifies who can view a user's Profile Gallery.			
Specifies whether individual users can override in their own views the application-level setting for who can view their Profile Gallery. This setting is honored only when the application exposes the override control in a user preferences screen.			
Specifies who can view the Profile section identified by For example: general-profile-settings.view.name.personalInfo.access-control-level For more information, see Table 39-6, "Profile Section Names".			
Note:			
Specifies whether individual users can override in their own application views the application-level setting for who can view the Profile section identified by This setting is honored only when the application exposes the override control in a user preferences screen. For more information, see Table 39-6, "Profile Section Names".			
Specifies whether users are allowed to edit the Profile section identified by For example: general-profile-settings.view.name.personalInfo.allow-user-edit For more information, see Table 39-6, "Profile Section Names".			
Specifies whether users are allowed to update the field identified by For example: ootb-view-edit-settings.view.name.personalInfo.homePhone.allow-edit For more information, see Table 39-6, "Profile Section Names" and Table 39-7, "Profile Field Names".			
Table 39-6 Profile Section Names			
Section Name	Description		
---	---		
Profile summary These details are discoverable in an application search.			
Employee detail			
Business contact information			
Personal information			
Table 39-7 Profile Field Names			
Field Name	Description		
---	---		
Business email address			
User display name			
Office department			
Job title			
Business phone number			
Time zone			
User photo			
Personal status message			
About me			
Employee type			
Employee number			
User's preferred language			
Employee's organization			
Employee's expertise			
Fax number			
Mobile/cell phone number			
Page number			
Office address: street			
Office address: city			
Office address: state			
Office address: P.O. box			
Office address: ZIP/PIN/P.O. code			
Office address: country			
Home address			
Home phone number			
Date of birth			
Maiden name/surname before marriage			
Date of hire			
By default, when users send invitations to connect, recipients must explicitly accept them. Through site-level settings, the application administrator can configure the application to accept invitations automatically. This setting is identified by the key, autoAcceptInvitations			
, and the service ID, oracle.webcenter.peopleconnections.connections			
. To change the setting, the administrator performs the following steps:			
settings-insert.sql			
script and uncomment the following lines: After modification, the lines appear as follows:			
settings-update.sql			
script and uncomment the following lines: After the modification, the lines appear as follows:			
SETTING_VALUE			
to a plus sign (+			
). After modification, the lines appear as follows:			
After you restart, the setting takes effect. In this example, when a user invites another user to connect, the connection is created automatically.			
See Also: For lists and descriptions of People Connections site-level settings, see Section 39.4.2, "Supported Site-Level Settings for People Connections Features."			
Each People Connections task flow has a set of required and optional task flow binding parameters. These provide a means of capturing information that is useful to the task flow's successful function. For example, all People Connections task flows provide a binding parameter for capturing the ID of the current runtime user. This value (typically #{securityContext.userName}			
) enables the task flow to return People Connections data that is relevant to the current user.			
In addition to providing required values for successful task flow rendering, you can use task flow binding parameters to customize the appearance and behavior of a task flow instance. For example, you can use parameter values to determine whether headers and footers are rendered, the number of rows and columns of information to show, whether to apply a filter to returned data, and the like.			
You can provide task flow binding parameter values when you drag and drop a task flow onto an application page. Doing so opens the Task Flow Bindings dialog (for more information, see Section 39.2, "How to Add People Connections Task Flows to a Page"). You can also adjust task flow binding parameter values after you have placed a task flow on a page.			
This chapter describes how to revise task flow parameter values at design time and provides a table that lists and describes the binding parameters associated with People Connections task flows. It includes the following sections:			
After you have added a task flow to a page, you may want to customize the instance by revising its binding parameter values. This section describes how to access the Edit Task Flow Binding dialog and change binding parameter values.			
To access the Edit Task Flow Binding dialog:			
Tip: Task flow names under Executables differ from names in design view. For example, Message Board task flows are instead referred to as wall, and Feedback task flows are instead referred to as kudos.			
Figure 40-1 Bindings View of an Application Page			
Figure 40-2 Edit Task Flow Binding Dialog			
Table 40-1 lists and describes task flow binding parameters applicable to the People Connections service.			
Table 40-1 People Connections Service Task Flow Binding Parameters			
Parameter	Description		
---	---		
A means of enforcing the follow logic when querying Activity Stream			
This parameter (for Fusion application business objects) is used in conjunction with the This parameter is associated with the Activity Stream task flow.			
A means of using the object extension handler to process Fusion application business objects			
When you enter This parameter is associated with the following task flows:			
A comma separated list of objects for which to show activities Enter objects in the format This parameter is associated with the Activity Stream task flow.			
A means of enforcing a security check on a Fusion application business object			
The security check is performed by the resource authorizer that is implemented by the Fusion application. If a user has no permission on a business object, the activities related to that business object are filtered out. This parameter is associated with the Activity Stream task flow. This parameter is associated with the following task flows:			
A field for specifying a custom query to filter streamed items For more information, see Section 40.3, "What You Should Know About the Activity Stream Advanced Query Option." This parameter is associated with the Activity Stream task flow.			
The name of a connections list This parameter is associated with the task flow Connections - Card.			
The view to display by default Valid values include:			
When users access the task flow instance, the view specified here is the first one they see. All selections, except This parameter is associated with the Connections task flow.			
The maximum number of connections to show in the task flow For example, enter The value entered for this parameter is honored only when values for This parameter is associated with the following task flows:			
The number of columns to show in the task flow For example, in a Connections - Card task flow that shows six connections, a value of This parameter is associated with the following task flows:			
The number of rows to show in the task flow For example, in a Connections - Card task flow that shows six connections and a value of See also This parameter is associated with the following task flows:			
The default layout style for the task flow Enter one of the following:			
In all layouts, the name links to a summary view of the user's Profile. This parameter is associated with the task flow Connections - Card.			
A means of showing or hiding the Remove action on the task flow Enter This parameter is associated with the task flow Connections - Card.			
The connections sort order Enter This parameter is associated with the task flow Connections - Card.			
The number of items to show in the task flow For example, enter This parameter appears in the component properties for the following task flows:			
The number of characters to show for each feedback message Messages exceeding the specified value are truncated, and an ellipse (…) is appended to the end. This parameter is associated with the task flow Feedback - Quick View.			
A means of enabling an edit mode on a Profile task flow instance Enter This parameter is associated with the Profile task flow.			
A means of showing or omitting detailed information about the object in the current context (that is, in a popup or other contextual instrument)			
When this parameter is true and the This parameter is associated with the Activity Stream task flow.			
A filter against task flow content For example, enter This parameter is associated with the task flow Connections - Card.			
The start date of a date range within which to show feedback messages Enter dates in the format See also This parameter is associated with the following task flows:			
A means of hiding the actions normally associated with a Feedback or Message Board entry, such as Edit, Private, Hide, and Delete			
This parameter appears in the component properties for the following task flows:			
Specifies whether the Attach: File	Link option is shown or hidden		
This parameter is associated with the Publisher task flow.			
A means of showing or hiding the Comments feature on streamed activities Enter This parameter is associated with the Activity Stream task flow			
A means of hiding the personalization option on the task flow instance This parameter is associated with the following task flows:			
A means of showing or hiding the Publisher task flow's document uploader Enter This parameter is associated with the Publisher task flow.			
A means of showing or hiding the task flow footer The task flow footer contains the More link that appears at the bottom of a task flow when there are more items to show than can be accommodated in the current view. Hiding the footer hides the More link. Hiding the footer does not affect Previous and Next links that may also appear at the bottom of a task flow. Enter This parameter is associated with the following task flows:			
A means of showing or hiding feedback given to a user Enter true to allow the rendering of given feedback. Enter false to prohibit it. This parameter is associated with the following task flows:			
A means of showing or hiding the task flow header Enter This parameter is associated with the following task flows:			
A means of allowing or omitting an inline preview of files attached to streamed activities Enter This parameter is associated with the Activity Stream task flow.			
A means of showing or hiding the Like link on a streamed activity Enter true to hide the Like link. Enter false to show it. This parameter is associated with the Activity Stream task flow			
A means of showing or hiding the message entry field and the upload file and URL controls (the Publisher)			
This parameter is associated with the following task flows:			
Specifies whether the Share something with option is shown or hidden			
This parameter is associated with the Publisher task flow.			
Specifies the resource bundle class and message key for hint text Use the format This parameter is associated with the Publisher task flow.			
The display size of the profile photo Enter one of the following values:			
This parameter is associated with the Profile - Snapshot task flow.			
A means of dedicating the task flow instance to updating the current user's Profile status message Enter This parameter is associated with the Publisher task flow.			
Specifies whether the text box remains active after a user clicks the Publish button			
This parameter is associated with the Publisher task flow.			
The number of rows to show when the Connections task flow instance is set to list view This parameter is associated with the Connections task flow.			
The ID of an object to associate with a published message This parameter is associated with the Publisher task flow.			
The type of an object to associate with a published message This parameter is associated with the Publisher task flow.			
A means of showing or omitting organization breadcrumbs on a user profile that renders a management chain that is linked to each member up the chain Enter This parameter is associated with the Profile - Snapshot task flow.			
The number of items to stream in a given task flow instance This parameter is associated with the following task flows:			
The form of pagination to use on a multipage stream			
This parameter is associated with the Activity Stream task flow.			
A means of allowing a photo upload from the profile screen Enter This parameter is associated with the task flow Profile - Snapshot.			
A means of showing or omitting an Edit link on a Profile - Snapshot task flow Enter This parameter is associated with the Profile - Snapshot task flow.			
A means of launching a user Profile when the user name is clicked Enter This parameter is associated with the task flow Connections - Card			
A means of streaming activities only from user profiles			
This parameter is associated with the Activity Stream task flow.			
ID of the user from whom to stream activity This parameter is associated with the Activity Steam - Quick View task flow.			
The current user ID Enter This parameter is associated with the following task flows:			
The ID of the scope to which to publish This property value assists in generating a link for use in navigating to the published object. It is not necessary to provide a value, unless you plan to do so using an EL expression. For information about EL expressions, seeAppendix G, "Expression Language Expressions." This parameter is associated with the Publisher task flow.			
A means of enabling or disabling section-by-section edit capability on the task flow			
This parameter is associated with the Profile task flow.			
A field for entering a comma-separated list of names of services from which to stream activities Use this parameter to limit the display of streamed activities to only those associated with the specified service or services. Enter one or more service IDs, for example: oracle.webcenter.collab.announcement, oracle.webcenter.collab.forum For a list of valid service ID, see Table G-7, "Service IDs". Note that all listed service IDs cannot be used because all services do not stream items to the Activity Stream. For example, the RSS service does not stream any activities. This parameter is associated with the Activity Stream task flow.			
The service ID of the service to which the object associated with a published message belongs For a list of service IDs, see Table G-7, "Service IDs". This parameter is associated with the Publisher task flow.			
The space to which to publish messages If your application does not support spaces, do not provide a value for this parameter. This parameter is associated with the following task flows:			
A comma-separated list of names or GUIDs of spaces from which to stream activities Use this parameter to limit the display of streamed activities to only those associated with the specified space or spaces. If your application does not support spaces, do not provide a value for this parameter. This parameter is associated with the Activity Stream task flow.			
A boolean value representing whether a control is available on the task flow for updating a profile status message Enter either This parameter appears in the component properties for the Profile - Snapshot task flow.			
The end date of a date range within which to show feedback messages Enter dates in the format See also This parameter is associated with the following task flows:			
A means of limiting the Publisher task flow to its document upload feature Enter #{true} to limit the Publisher task flow to be only a document uploader. Enter This parameter is associated with the Publisher task flow.			
The current user ID Enter This parameter is associated with the following task flows:			
The name of the user to whom to publish messages This value is supplied by default. We recommend that you do not change the default value, This parameter is associated with the Publisher task flow.			
The user name of the person who provided the object the current user is sharing For example, John is sharing a document with everyone that Jane originally shared with him. In this case, Jane is the via user. This parameter is associated with the Publisher task flow.			
Use Advanced Query			
to create filters against streamed activities in an Activity Stream task flow. Create filters for user names, service IDs, and object details, such as a document's display name. You can use SQL syntax for parameter values. Additionally you can place EL expressions within the SQL.			
You can construct queries against specific database objects, which are represented by aliases that are prefixed to the inquiry. Table 40-2 lists and describes the types of database objects against which you can construct a query and provides their alias prefixes.			
See Also: In many cases, you can use EL expressions to obtain the value you require for the supported fields and columns listed in Table 40-2. For more information, see Appendix G, "Expression Language Expressions."			
Table 40-2 Supported Database Objects for Constructing a SQL WHERE Clause			
Database Object	Alias Prefix	Supported Fields/Columns	
---	---	---	
ACTIVITY	AE		
ACTIVITY (ACTOR)	AD		
ACTIVITY (OBJECT)	OD		
Table 40-3 Activity Type Names for Advanced Query			
Service	Activity Type Name		
---	---		
Events			
Announcements			
Discussions			
Tags			
Lists			
Page			
Documents			
People Connections (Profile)			
People Connections (Message Board)			
People Connections (Connections)			
People Connections (Feedback)			
The SQL string that is passed as the advanced query parameter complies with SQL standards. That is, it supports SQL constructs, such as AND			
, OR			
, IN			
, and the like. Note, however, that it does not support INSERT			
, UPDATE			
, DELETE			
, SELECT			
, JOIN			
constructs. The syntax of the advanced query must contain only the WHERE			
clause portion of a SQL query. Because SELECT			
is not supported, the WHERE			
clause cannot have nested queries or subqueries.			
The Advanced Query			
parameter also supports EL expressions, which can be embedded in the WHERE			
clause or used to generate the whole WHERE			
clause.			
All the literals in the query must be escaped by prepending a backward slash (\); otherwise, such characters generate syntax errors (see Table 40-4 for examples).			
Note that the advanced query WHERE			
clause is always AND			
'ed to the internal query that is generated by Activity Stream based on the current user, space membership, connection list, and the like. This is to prevent a user from viewing activities to which he or she does not have access.			
Table 40-4 lists examples of advanced queries.			
Table 40-4 Examples of Advanced Queries for Use with Activity Stream			
Use Case	Query Syntax		
---	---		
Stream only document creation activities.			
Stream activities only from an object or current space.			
Stream activities only about wikis created by the current user.			
Stream activities for documents and discussions, but only create activities or all activities for the current user.			
This chapter provides an overview of People Connections service data controls and Java APIs. It further provides details about each data control and how to add it to your project and a pointer to information about how to use data controls in a WebCenter Portal: Framework application.			
This chapter includes the following sections:			
The People Connections service provides data controls that enable you to create your own visualization of the People Connections functionality. This section provides an overview of the following data controls and lists and describes their supported methods, attributes, and classes:			
This section also includes the following subsections:			
You add a data control to your project by right-clicking it in the Resource Palette and selecting Add to Project from the resulting context menu. Once added, you can browse the data control's methods and attributes by expanding it in the Data Controls panel in the Application Navigator.			
You add a data control to an application page by dragging it onto the page from the Data Controls panel. Once placed, a context menu opens with options for selecting the type of component to which to bind the data, such as a button or a text box.			
To implement a People Connections Data Control:			
The Data Controls appear in the Application Navigator Projects Data Controls folder.			
On expanding, the Data Control objects and their corresponding Java methods appear.			
.jspx			
page and select the ADF Table option in the drop-down Table menu list, shown in Figure 41-1. Figure 41-1 The Data Control Object Dragged and Dropped on to a .jspx Page With ADF Table Selected			
Figure 41-2 Dragging and Dropping Java Methods to the .jspx Page and Selecting Method in the Create Menu List			
See Also: For more information about using data controls in a WebCenter Portal: Framework application, see Section 7.1.3, "Using WebCenter Portal Data Controls."			
The People Connections Management Data Control provides methods for adding and managing connections and connections lists. The primary methods exposed include:			
The subsections in this section list and describe the methods associated with the People Connections Management Data Control.			
A collection of details about connections lists, including the list ID, name, localized name, number of members, whether or not the list is modifiable, and member user IDs. Table 41-1 lists and describes the attributes associated with this method.			
Table 41-1 Attributes of the Method connectionLists			
Attribute	Description		
---	---		
The connections lists IDs			
The names of connections lists			
The localized names of connections lists			
The number of members on each named connections list			
Information about whether a named connections list can be modified			
The user IDs of members on each named connections list			
The number of connections contained in each connections group.			
A collection of details about a received invitation to connect, including when the invitation was sent and received, the invitation's GUID, the invitation message, and the user IDs of the user who sent the invitation and who received it. Table 41-2 lists and describes the attributes associated with this method.			
Table 41-2 Attributes of the Method receivedInvitations			
Attribute	Description		
---	---		
The date the invitation was received according to the recipient's time stamp			
The date the inviation was sent according to the sender's time stamp.			
The GUID of the received invitation			
The invitation message			
The user ID of the person who received the invitation			
The user ID of the person who sent the invitation			
The date the invitation was sent according to the system time stamp			
A collection of details about a sent invitation to connect, including when the invitation was sent and received, the invitation's GUID, the invitation message, and the user IDs of the user who sent the invitation and who received it. lists and describes the attributes associated with this method. Table 41-3 lists and describes the attributes associated with this method.			
Table 41-3 Attributes of the Method sentInvitations			
Attribute	Description		
---	---		
The date the invitation was received according to the recipient's time stamp			
The date the inviation was sent according to the sender's time stamp			
The unique GUID of the received invitation			
The invitation message			
The user ID of the person who received the invitation			
The user ID of the person who sent the invitation			
The date the invitation was sent according to the system time stamp			
A method for accepting invitations to connect. Table 41-4 lists and describes the parameters associated with this method.			
A method for adding identified users to a named connections list. Table 41-5 lists and describes the parameters associated with this method.			
A method for creating a connections list. Table 41-6 lists and describes the parameters associated with this method.			
A method for declining an invitation to connect. Table 41-7 lists and describes the parameters associated with this method.			
Method for deleting a connections list. Table 41-8 lists and describes the parameters associated with this method.			
Returns an object that represents a Connections List. This object provides details about a connections list acquired for the given connection list name. Table 41-9 lists and describes the parameters associated with this method. Table 41-10 lists and describes the attributes associated with this method.			
Table 41-9 Parameters of the Method getConnectionList			
Parameter	Description		
---	---		
connectionListName	The name of the connections list for which to return the following attributes (see Table 41-10):		
Table 41-10 Attributes of the Method getConnectionList			
Attribute	Description		
---	---		
The unique GUID of the connections list to return			
The name of the connections list to return			
The localized name of the connections list to return			
The number of members on the connections list to return			
An indicator of whether the returned connections list can be modified			
The user IDs of the members of a returned connections list			
Returns the Connection			
object, which provides details about the connection, including the connection's user ID, the connections lists on which the connection is a member, and details from a connection's profile. Table 41-11 lists and describes the parameters associated with this method. Table 41-12 lists and describes the attributes associated with this method.			
Table 41-11 Parameters of the Method getConnections			
Parameter	Description		
---	---		
The user ID for each returned connection			
The name of the connection list from which to obtain connections			
A filter to use against returned connections, such as "co," which returns			
The order by which to sort connections Enter			
The point from which to start fetching results This is used for pagination. For example, the search can return 50 matching records, and only 10 are needed, starting from 1. Set			
The number of results to return (see			
Returns the number of users (int			
) connected to the identified user. Table 41-13 lists and describes the parameters associated with this method. Table 41-14 lists and describes the attributes associated with this method.			
Table 41-13 Parameters of the Method getNumberOfConnections			
Parameter	Description		
---	---		
The user ID for whom to return the number of connections			
The name of the connection list from which to obtain a count			
A filter to use against returned connections, such as "co," which returns			
Specifies that the invitation with the specified ID should be ignored. Table 41-15 lists and describes the parameters associated with this method.			
A means of inviting the user with the specified user ID to connect. Includes the invitation message, such as, "I would like you to be my connection." Also includes one or more connection list names to which to add the invitee once the invitation is accepted. Table 41-16 lists and describes the parameters associated with this method.			
Returns true or false (boolean			
) as to whether the named connections list can be modified. Table 41-17 lists and describes the parameters associated with this method. Table 41-18 lists and describes the attributes associated with this method.			
Returns true or false (boolean) as to whether the identified user is a member of a connections list that cannot be modified. Table 41-19 lists and describes the parameters associated with this method.			
A method for removing the identified connection either as a connection or from a connections list. Table 41-20 lists and describes the parameters associated with this method.			
Table 41-20 Parameters of the Method removeConnection			
Parameter	Description		
---	---		
The user name of the connection to remove from the specified list			
A flag (true or false) indicating whether to remove the user as a connection or remove the user only from the specified connections list			
The name of the connections list from which to remove the specified user			
Returns the object Users			
, which is a collection of details about returned users, including the user's relational attributes, GUID, and profile details. Table 41-21 lists and describes the parameters associated with this method. Table 41-22 lists and describes the attributes associated with this method.			
Table 41-21 Parameters of the Method searchUsers			
Parameter	Description		
---	---		
A filter to use against returned search terms, such as "co," which returns			
The point from which to start fetching results This is used for pagination. For example, the search can return 50 matching records, and only 10 are needed, starting from 1. Set			
The number of results to return (see			
Provides a means of updating an identified connection's list membership by adding the connection to identified connections lists and removing the connection from identified connections lists. Table 41-23 lists and describes the parameters associated with this method.			
Table 41-23 Parameters of the updateConnectionListsMembership Method			
Parameter	Description		
---	---		
The user name of the member whose connections list membership to manage			
The names of the connections lists to which to add the identified user			
The names of the connections lists from which to remove the identified user			
The Profile Data Control provides methods for returning and updating Profile details.			
The subsections in this section list and describe the methods associated with the Profile Data Control.			
A method for returning the WCUserProfile			
object, which is a collection of user Profile details. Table 41-24 lists and describes the parameters associated with this method.			
Table 41-24 Parameters for the getProfile Method			
Parameter	Description		
---	---		
The ID of the user for whom to return Profile details			
Tip: To see the attributes associated with the			
A method for updating the WCUserProfile			
object, which is a collection of user Profile details. Table 41-25 lists and describes the parameters associated with this method.			
Table 41-25 Parameters for the getProfileForUpdate Method			
Parameter	Description		
---	---		
The ID of the user for whom to update Profile details			
Tip: To see the attributes associated with the			
The People Connections service has associated Java APIs that you can use to work with service features. These include:			
oracle.webcenter.peopleconnections.connections			
oracle.webcenter.peopleconnections.wall			
oracle.webcenter.activitystreaming			
Look in Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal for more information			
The script content on this page is for navigation purposes only and does not alter the content in any way.			
Oracle WebCenter Portal provides REST APIs to support the People Connections service. You can use the People Connections service REST APIs to perform the following actions:			
This chapter describes the REST APIs associated with the People Connections service. It includes the following sections:			
See Also: For an introduction to the REST APIs, see Chapter 54, "Using Oracle WebCenter Portal REST APIs."			
Use the Activity Stream REST APIs to browse user application activities in an activity stream. This section provides information about the REST APIs to use to perform this action. It includes the following subsections:			
Note: Because REST APIs can be configured in many different ways, it's possible that not all of a user's activities will be returned, allowing the REST client to customize how the Activity Stream behaves separately from the Webcenter Portal application.			
Each REST service has a link element within the Resource Index that provides the entry point for that service. For the People Connections service, each feature has its own link element. For example, to find the entry point for the Activity Stream feature of the People Connections service, find the link elements with a resourceType			
of:			
urn:oracle:webcenter:activities:stream			
The corresponding href			
or template			
element provides the URI entry point, which retrieves application activities for the current user from the Activity Stream. The client sends HTTP requests to this entry point to work with the Activity Stream feature of the People Connections service.			
See Also: For more information about the Resource Index, see Section 54.5.1, "The Resource Index." For more information about resource types, see Section 54.5.2.1, "Resource Type."			
When the client has identified the entry point, it can then navigate through the resource type taxonomy to perform the required operations. For more information about the individual resource types, see the appropriate section in Section 42.1.4, "Activity Stream Resource Types."			
The resource type taxonomy for the Activity Stream feature of the People Connections service is:			
You must be logged in to the REST service to access any of the People Connections REST APIs. After that, the underlying service handles permission checking and the like.			
See Also: For general security considerations, see Section 54.8, "Security Considerations for WebCenter Portal REST APIs."			
This section provides you with all the information you need to know about each resource type. It includes the following subsections:			
urn:oracle:webcenter:activities:stream			
The stream			
response contains URIs for use in retrieving activities from the Activity Stream.			
You can retrieve the activities from a user's stream or activities from a user's connections' streams. To have even greater control over which activities to retrieve, use the activity stream query filter. With the query filter, you can:			
The options available to you depend on the path you take to get to the stream			
resource and the rel			
of the link that you use. For example, the activity stream query filter is available only from links with a rel			
attribute of urn:oracle:webcenter:activities:stream			
. If you access the activity stream query filter from the person			
resource, the personGuid			
parameter is prefilled.			
Table 42-1 shows the activities returned depending on the rel			
element of the link.			
Table 42-1 Activities Returned by stream			
rel	Returns		
---	---		
Activities from the user's stream (
Activities from the user's connections' streams (
Activities determined by the activity stream query filter			
Activities from the space activity stream			
Activities from the space activity list			
Footnote 1 GUID			
can be any valid user GUID or @me			
.			
Navigation Paths to stream			
This section shows how the client can navigate through the hypermedia to access this resource:			
Supported Methods for stream			
The following method is supported by the stream			
resource:			
GET			
startIndex			
, itemsPerPage			
See Also: For information about REST API parameters, such as			
The following additional parameters are available for the query filter URI:			
data			
– Returns specified data only (for more information, see "Common Request Query Parameters"). For the stream resource, if you specify the constant 'data'			
as the data parameter, all of the basic information about the resource is returned except "comments" and "likes" summaries. If you want to return comments or likes, specify the data			
parameter value 'commentsSummary'			
or 'likesSummary'			
. Note: You can specify multiple data values as a comma separated list. For example,			
personGuid			
—(Required) Retrieves activities from the stream for the specified user. Valid values: any valid user GUID or @me			
. serviceIds			
—Retrieves activities only for the specified services. Valid values: An asterisk (*) returns all services. If null or empty, uses the user preference settings for service filters (from the settings link in the top bar). personal			
—Includes the specified user's activities in the Home space. Valid values: true			
or false			
. Default value: false			
. connections			
—Includes activities from the streams of the specified user's connections. Valid values: true			
or false			
. Default value: false			
. groupSpaces			
—Includes activities from all spaces of which the specified user is a member. Valid values: true			
or false			
. Default value: false			
. connectionListIds			
– A comma separated list of connection list names that specifies the connection lists used to show activities. groupSpaceGuids			
– A comma separated list of space GUIDs used to show activities. userGroupSpaceActivities			
– Specifies whether or not to show the user's activities in their spaces. Valid values: true			
or false			
. Default value: false			
. followedObjects			
– Specifies whether or not to show all activities for followed objects that both the current user and the specified user follow. Valid values: true			
or false			
. Default value: false			
. followedObjectsUserActivities			
– Specifies whether or not to show the specified user's activities for followed objects that both the current user and the specified user follow. Valid values: true			
or false			
. Default value: false			
. advancedQuery			
– Specifies filters against streamed activities. Create filters for user names, service IDs, and object details, such as a document's display name. Note: You must plug actual values into the			
For example, the following URI returns activities from the current user's activity stream, for all services that the user has configured in their personal preference settings for service filters. It returns activities from the user's personal space and from the streams of the user's connections:			
The following URI returns only the user's personal profile and connections activities:			
This next example illustrates how to use the advancedQuery			
parameter. As explained previously, you cannot pass an EL expression to advancedQuery			
. The REST API client must first obtain the actual data object value, and that value can then be passed to advancedQuery			
. For example, to filter activities for a particular space, you can pass the GUID of the space's scope to advancedQuery			
:			
where s8bba98ff_4cbb_40b8_beee_296c916a23ed			
is the GUID of the space. Note that the query string must be encoded with the appropriate escape codes. For a list of EL expressions that can be used to obtain values for advancedQuery			
, see Section 40.3, "What You Should Know About the Activity Stream Advanced Query Option."			
Note: Because the			
Resource Types Linked to From stream			
Table 42-2 lists the resource types that the client can link to from the stream			
resource.			
Table 42-2 Related Resource Types for stream			
rel	resourceType		
---	---		
self urn:oracle:webcenter:activities:stream:person	urn:oracle:webcenter:activities:stream		
urn:oracle:webcenter:activities:activity			
urn:oracle:webcenter:activities:activity			
The activity			
response contains the data for activities and URIs for use in retrieving all the data you need from an activity that is included in an Activity Stream.			
Navigation Paths to activity			
This section shows how the client can navigate through the hypermedia to access the activity			
resource:			
Supported Methods for activity			
No methods are supported for activity			
. Activities are currently available only from the stream			
resource type.			
Resource Types Linked to from activity			
Table 42-3 lists the resource types that the client can link to from this resource.			
Table 42-3 Related Resource Types for urn:oracle:webcenter:activities:activity			
rel	resourceType		
---	---		
self			
icon			
Read-only Elements for activity			
Table 42-4 lists the read-only elements for the activity			
resource.			
Note: The activity will also return a link to an activity icon in the links section of the response, if an icon is available. See urn:oracle:webcenter:activities:activity:icon.			
Table 42-4 Read-Only Elements for activity			
Element	Type	Description	
---	---	---	
String	Activity type Unique within the service. For example the Discussions service can return the		
String	If you specify		
Date (String)Foot 1	Date the activity was created.		
String	The description of the activity.		
String	Detail information for the activity, if available. For example, this might return the contents of a message, the file name of a document, and the like. Similar to		
String	Detail information for the activity, if available. Similar to		
String	A pre-formatted, internationalized description.		
String	A pre-formatted, internationalized message (does not include template information).		
	Information about the space in which the activity was performed Note: This reference is not present for activities that did not happen in a space (for example, activities that happened in the Home space). Also, because creation of a space happens in a personal space, that activity does not have this element either.		
String	Unique ID of the message		
true or false	Indicates whether or not this activity is a summary of other activities.		
String	If you specify		
String	Localized string for this activity This may contain replacement strings within curly braces ({}).		
PRIVATE SHARED PUBLIC	Permission level of this activity		
String	Scope of the activity This might return a space, like the Home space. For example, for a space, it returns a string similar to the following: s8bba98ff_4cbb_40b8_beee_296c916a23ed		
String	Unique ID of the service that created the activity Note: For a list of WebCenter Portal service IDs, see Table G-7, "Service IDs".		
urn:oracle:webcenter:activities:parameter	A list of		
Param	The custom parameter includes a		
Footnote 1 Data types, such as DATE			
and BOOLEAN			
, are stored in the API as STRING			
. The DATE			
data type returns a Java standard date format, for example, 2009-08-21T14:43:11.0013-0700			
, with 0700			
representing the time zone.			
Understanding the templateParams Element			
Suppose you want to display the most recent messages for a user named Carl. You want to display information like this: "Carl created the space Customer Feedback". The templateParams			
elements helps you solve this problem.			
The templateParams			
element is returned in objects of type oracle:webcenter:activities:activity			
. This element captures a lot of data related to an activity. For example, if a user creates a new space, the templateParams			
element for that activity captures information about the user and about the space. Keys are provided that allow you to perform string substitutions in a parameterized message string related to the activity.			
For example, if the user creates a space, the returned activity object contains a <message>			
item that is parameterized like this:			
By parsing the templateParams			
element for the activity, you can find the available keys that allow you to perform string substitutions as well as appropriate data to display, like the name of the user and the activity.			
For a detailed example showing how you might code a UI using templateParams			
to display information about an activity, see Section 54.13.2, "Displaying Activity Stream Data."			
The templateParams			
element also provides links to comments			
, likes			
, commentsSummary			
, and likesSummary			
objects, if they are requested using the data			
parameter. These links let you query for all the comments or likes for an object or post a new comment or like. The summary links returns the comments or likes count and several recent comments or likes. See also "Understanding Comments and Likes".			
The links returned with the templateParams			
element vary depending on what kind of object is returned, like a user, document, space (GS), or custom object. For more information, see "urn:oracle:webcenter:activities:parameter".			
Note: The			
If a rel			
link is marked "via," this means it is a link to the underlying REST object–for instance, the document not the parameter. If a rel			
link is marked "alternate" and type "text/html," it is a link to the HTML page for that object. Space (GS) objects include an activity stream link for spaces. Users have icon and activity stream links. Other objects can have an alt			
link to the tagged item, as well as the related tagged items list, if tagging is enabled for that object. If a regular object supports comments or likes, it can include the comments/commentsSummary and likes/likesSummary, as explained previously.			
Understanding Comments and Likes			
Likes and Comments only show up if they are requested using the data parameter			
. They do not appear by default. Comments are associated with the object referenced by the activity, not the activity itself. For example, if you edit a document, then the comments will be associated with the document, not the edit activity. This means that if you "like" the document, then the comments from editing it will also show up.			
The links associated with comments and likes are:			
comments			
– The comments			
link lets you query for all the comments for an object. This link also lets you POST a new comment. For a comments			
POST, the text			
field is required. commentsSummary			
– The commentsSummary			
link returns the comments count and several recent comments. likes			
– The likes			
link lets you query for all the likes for an object. This link also lets you POST a new like. There are no required fields for a likes			
POST. likesSummary			
– The likesSummary			
link returns the likes count and the current user's like (if available). Note:			
urn:oracle:webcenter:activities:parameter			
The templateParams			
element returns a set of param			
elements. The param			
elements return data specific to the type of activity object returned. The possible types of param elements include:			
user			
– Returns the displayName			
, guid			
, id			
, key			
, primaryId			
, and type			
. document			
– Returns the displayName			
, iconUrl			
, id			
, key			
, primaryId			
, and type			
. custom			
– Returns displayName			
, key			
, and type			
, and may or may not have a URL. A param can also be a variable reference or key of the general form {prefix[index].variable}			
.			
urn:oracle:webcenter:activities:activity:icon			
Use this resource type to get the icon of the activity, if available (GET			
).			
Navigation Paths to activities:activity:icon			
This section shows how the client can navigate through the hypermedia to access this resource:			
Supported Methods for icon			
The following methods are supported by this resource:			
GET			
– Returns the icon used for the named activity. Resource Types Linked to from icon			
Table 42-5 lists the resource types that the client can link to from this resource.			
Table 42-5 Related Resource Types for urn:oracle:webcenter:activities:activity:icon			
rel	resourceType		
---	---		
self			
urn:oracle:webcenter:parent			
Use the Connections and Profile REST APIs to browse a profile or a connections list, manage connections lists, add or remove connections, send invitations to connect, and update a profile status message.			
This section provides information about the REST APIs to use to perform these actions. It includes the following subsections:			
Each REST service has a link element within the Resource Index that provides the entry point for that service. For the People Connections service, each feature has its own link element. For example, to find the entry points for Connections and Profile features of the People Connections service, find the link elements with a resourceType			
of:			
urn:oracle:webcenter:people			
(returns the current user profile)			
urn:oracle:webcenter:people:person			
(enables you to query for a user)			
urn:oracle:webcenter:people:invitations			
(returns invitations sent or received by the current user)			
Note: The			
The corresponding href			
or template			
element provides the URI entry point, which returns a list of people (people			
) or an individual user (people:person			
). The client sends HTTP requests to this entry point to work with the Connections and Profile features of the People Connections service.			
See Also: For more information about the Resource Index, see Section 54.5.1, "The Resource Index." For more information about resource types, see Section 54.5.2.1, "Resource Type."			
When the client has identified the entry point, it can then navigate through the resource type taxonomy to perform the required operations. For more information about the individual resource types, see the appropriate section in Section 42.2.4, "Connections and Profile Resource Types."			
The resource type taxonomy for the Connections and Profile features in the People Connections service is:			
urn:oracle:webcenter:people:person:list:member			
You must be logged in to the REST service to access any of the People Connections REST APIs. After that, the underlying service handles permission checking and the like.			
See Also: For general security considerations, see Section 54.8, "Security Considerations for WebCenter Portal REST APIs."			
This section provides you with all the information you need to know about each resource type. It includes the following subsections:			
urn:oracle:webcenter:people			
The people			
response contains URIs for use in retrieving the profile of one or more users.			
Navigation Paths to people			
This section shows how the client can navigate through the hypermedia to access the people			
resource:			
Supported Methods for people			
The following method is supported by the people			
resource:			
GET			
startIndex			
– See "Common Request Query Parameters." itemsPerPage			
– See "Common Request Query Parameters." projection			
– See "Common Request Query Parameters." data			
– The data parameter is a comma separated list that controls which data will be returned in the response. The predefined set basic			
is equivalent to data=guid,id,displayName			
. The predefined set data			
is a standard set that returns all the data for the user, but does not include status			
, manager			
, reportees			
, or photos			
. The full list of possible values includes the predefined sets basic			
and data			
, as well as the following individual data values: guid			
, id			
, displayName			
, birthday			
, language			
, timeZone			
, name			
, addresses			
, organizations			
, workEmail			
, phoneNumbers			
, manager			
, reportees			
, photos			
, and status			
. If you specify the constant 'data'			
as the data			
parameter, all the basic information will be returned for the resource. If both the projection			
and data			
query string parameters are present, the data			
parameter will be used to determine which data to return.			
The data			
parameter can also take any of the following values comma-separated values to return the corresponding data: guid			
, id			
, displayName			
, birthday			
, language			
, timeZone			
, name			
, addresses			
, organizations			
, workEmail			
, phoneNumbers			
, manager			
, reportees			
, photos			
, and/or status			
.			
Note: The data parameter can accept a predefined set, a collection of values, or a mix of sets and values. For example, to get the basic data plus the user's birthday, you can specify			
links			
– The links parameter is a comma-separated list that controls which links will be returned in the response. This parameter can accept predefined sets, individual data values, or a combination of predefined sets and individual data values. The predefined sets are basic			
, data			
, activitiesSet			
, connectionsSet			
, and feedbackSet			
. These predefined sets are described in "Predefined Sets for the links Parameter". The individual values for the links			
parameter are: person			
, profile			
, icon			
, status			
, messageBoard			
, activities			
, personActivities			
, connectionActivities			
, connections			
, listNames			
, invitation			
, givenFeedback			
, receivedFeedback			
, userGivenFeedback			
, manager			
, reportees			
, member			
.			
If both the projection			
and links			
query string parameters are present, the links			
parameter will be used to determine which links to return.			
Predefined Sets for the links Parameter			
The following items are predefined sets that can be returned in the links			
parameter. For example, if you specify links=basic			
, it is the equivalent of specifying data=person,profile,icon			
. You can also specify additional parameters as needed. For example, you could specify data=basic,birthday			
.			
Note: Links that are not currently available will not be returned even if they are specified in the			
basic			
– A standard set that returns the basic information for the profile and includes person			
, profile			
, and icon			
. data			
– A standard set that returns all the basic links for the response plus the connections list, status, and activity stream template. activitiesSet			
– Includes activities			
, personActivities			
, and connectionActivities			
. connectionsSet			
– Includes connections			
, listNames			
, and invitation			
. feedbackSet			
– Includes givenFeedback			
, receivedFeedback			
, and userGivenFeedback			
. Resource Types Linked to from people			
Table 42-6 lists the resource types that the client can link to from the people			
resource.			
Table 42-6 Related Resource Types for people			
rel	resourceType		
---	---		
urn:oracle:webcenter:people:icon	urn:oracle:webcenter:people:person		
urn:oracle:webcenter:people:person:list:connections	urn:oracle:webcenter:people:person:list		
urn:oracle:webcenter:activities:stream:person	urn:oracle:webcenter:activities:stream		
urn:oracle:webcenter:activities:stream:connections	urn:oracle:webcenter:activities:stream		
urn:oracle:webcenter:activities:stream	urn:oracle:webcenter:activities:stream		
urn:oracle:webcenter:feedback:all-received	urn:oracle:webcenter:feedback		
urn:oracle:webcenter:feedback:all-given	urn:oracle:webcenter:feedback		
self	urn:oracle:webcenter:people:person:status		
urn:oracle:webcenter:people:person:list:list	urn:oracle:webcenter:people:person:list		
self	urn:oracle:webcenter:people:person:listName		
urn:oracle:webcenter:activities:stream:list	urn:oracle:webcenter:activities:stream		
urn:oracle:webcenter:people:icon			
Use this resource type to get the icon used for the named profile (GET			
).			
Navigation Paths to people:icon			
This section shows how the client can navigate through the hypermedia to access this resource:			
Supported Methods for icon			
The following methods are supported by this resource:			
GET			
– Returns the icon used for the named profile. Note: This resource includes a template that lets you choose the size of the profile icon to use. The			
Resource Types Linked to from icon			
Table 42-7 lists the resource types that the client can link to from this resource.			
Table 42-7 Related Resource Types for urn:oracle:webcenter:people:icon			
rel	resourceType		
---	---		
self			
urn:oracle:webcenter:parent			
urn:oracle:webcenter:people:person			
The person			
response contains profile data and the URIs for use in retrieving a user profile.			
Navigation Paths to person			
This section shows how the client can navigate through the hypermedia to access the person			
resource:			
Supported Methods for person			
The following method is supported by the person			
resource:			
GET			
q			
To retrieve a specified person, the format of q			
is:			
Note: The parameter			
message			
Read-only Elements for person			
Table 42-8 lists the read-only elements for the person			
resource.			
Note: The elements present in a			
See Also: Some of the elements listed in Table 42-8 can be returned in predefined sets described in "Predefined Sets for the links Parameter".			
Table 42-8 Read-Only Elements for person			
Element	Type	Description	
---	---	---	
String	Unique GUID of the person		
String	Unique login ID of the person (that is, the user name, for example, pat_coi)		
String	Display name of the person (the user's name, for example, Pat Coi). This may have the same value as		
Date (String)Foot 1	Birth date of the person		
Boolean (String)1	Whether or not this person is connected to the current user		
String	Preferred language of the person		
String	Time zone of the person		
Name information for the person			
Address information for the person address is a portable contact type. For more information, see Section 54.10.2.2, "address Portable Contact Type."			
Emails for the person			
Profile photos for the person			
Phone numbers for the person			
Organization information for the person organization is a portable contact type. For more information, see Section 54.10.2.3, "organization Portable Contact Type."			
	Manager of this person		
	Direct reports of this person		
urn:oracle:webcenter:people:person:status	Person's profile status message		
Footnote 1 Data types, such as DATE			
and BOOLEAN			
, are stored in the API as STRING			
.			
Resource Types Linked to from person			
Table 42-9 lists the resource types that the client can link to from the person			
resource.			
Table 42-9 Related Resource Types for person			
rel	resourceType		
---	---		
self	urn:oracle:webcenter:people:person		
alternate	urn:oracle:webcenter:spaces:profile (HTML)		
urn:oracle:webcenter:people:person:list:connections	urn:oracle:webcenter:people:person:list		
urn:oracle:webcenter:people:person:listNames			
urn:oracle:webcenter:people:person:status			
urn:oracle:webcenter:activities:stream:person	urn:oracle:webcenter:activities:stream		
urn:oracle:webcenter:activities:stream:connections	urn:oracle:webcenter:activities:stream		
urn:oracle:webcenter:activities:stream	urn:oracle:webcenter:activities:stream		
urn:oracle:webcenter:messageBoard			
urn:oracle:webcenter:feedback:all-given			
urn:oracle:webcenter:feedback:all-received			
urn:oracle:webcenter:people:person:list			
The list			
response contains URIs for use in retrieving all the profiles on a connections list (GET			
), inviting a user to be a connection or adding a connection to a connections list (POST			
), and removing a connections list (DELETE			
).			
Navigation Paths to list			
This section shows how the client can navigate through the hypermedia to access the list			
resource:			
Supported Methods for list			
The following methods are supported by the list			
resource:			
GET			
startIndex			
, itemsPerPage			
, projection			
See Also: For information about REST API parameters, such as			
person			
items POST			
member			
member			
See Also: For information about			
DELETE			
Resource Types Linked to from list			
Table 42-10 lists the resource types that the client can link to from the list			
resource.			
Table 42-10 Related Resource Types for list			
rel	resourceType		
---	---		
self urn:oracle:webcenter:people:person:listFoot 1	urn:oracle:webcenter:people:person:list		
urn:oracle:webcenter:activities:stream	urn:oracle:webcenter:activities:stream		
Footnote 1 self			
rel			
currently includes "urn:oracle:webcenter:people:person:list:list			
" instead of the correct "urn:oracle:webcenter:people:person:list			
". For the @connections			
default list, it currently includes "urn:oracle:webcenter:people:person:list:connections			
".			
urn:oracle:webcenter:people:person:listNames			
The listNames			
response contains the names of existing connections lists as well as the URIs for use in retrieving the lists (GET) and creating connections lists (POST			
).			
Navigation Paths to listNames			
This section shows how the client can navigate through the hypermedia to access the listNames			
resource:			
Supported Methods for listNames			
The following methods are supported by the listNames			
resource:			
GET			
listName			
items POST			
listName			
listName			
Resource Types Linked to from listNames			
Table 42-11 lists the resource types that the client can link to from the listNames			
resource.			
Table 42-11 Related Resource Types for listNames			
rel	resourceType		
---	---		
self	urn:oracle:webcenter:people:person:listNames		
urn:oracle:webcenter:people:person:listName			
The listName			
response contains the names of connections lists and URIs for use in accessing the connections lists.			
Navigation Paths to listName			
This section shows how the client can navigate through the hypermedia to access the listName			
resource:			
Writable Elements for listName			
Table 42-12 lists the writable elements for the listName			
resource.			
Table 42-12 Writable Elements for listName			
Element	Type	Required	Constraints
---	---	---	---
String	Yes	1 or more characters	A single list name
Resource Types Linked to from listName			
Table 42-13 lists the resource types that the client can link to from the listName			
resource.			
Table 42-13 Related Resource Types for listName			
rel	resourceType		
---	---		
self urn:oracle:webcenter:people:person:list	urn:oracle:webcenter:people:person:list		
urn:oracle:webcenter:activities:stream:list	urn:oracle:webcenter:activities:stream		
urn:oracle:webcenter:people:person:list:member			
The member			
response contains URIs for use in deleting a connection from a connections list.			
Navigation Paths to member			
This section shows how the client can navigate through the hypermedia to access the member			
resource:			
Supported Methods for member			
The following method is supported by the member			
resource:			
DELETE			
Writable Elements for member			
Table 42-14 lists the writable elements for the member			
resource. Writable elements for member			
are used when you add a connection to a list or invite a user to be a connection. The member			
resource itself is for deleting connections, and does not use writable elements.			
Table 42-14 Writable Elements for member			
Element	Type	Required	Constraints
---	---	---	---
String	Yes	1 or more characters	GUID of the user
String	No	0 or more characters	Invitation message Use this only when inviting users to be connections (that is POSTing to the
urn:oracle:webcenter:people:person:status			
The status			
response contains URIs for use in retrieving (GET			
) and updating (PUT			
) the profile status message of a specified user.			
Navigation Paths to status			
This section shows how the client can navigate through the hypermedia to access the status			
resource:			
Supported Methods for status			
The following methods are supported by the status			
resource:			
GET			
status			
PUT			
status			
status			
Writable Elements for status			
Table 42-15 lists the writable elements for the status			
resource.			
Table 42-15 Writable Elements for status			
Element	Type	Required	Constraints
---	---	---	---
String	Yes	1 or more characters	Content of status message
Resource Types Linked to from status			
Table 42-16 lists the resource types that the client can link to from the status			
resource.			
Table 42-16 Related Resource Types for status			
rel	resourceType		
---	---		
self	urn:oracle:webcenter:people:person:status		
urn:oracle:webcenter:people:invitations			
The invitations			
response contains URIs for use in retrieving invitations (GET			
). You can also send an invitation (POST			
) to another user.			
Navigation Paths to invitations			
This section shows how the client can navigate through the hypermedia to access the invitations			
resource:			
If you are not already connected to a user, you can also navigate to the invitations resource from that user's profile in order to invite them to connect. This path is only used for POSTing.			
Supported Methods for invitations			
The following methods are supported by the invitations			
resource:			
GET			
q			
To retrieve invitations sent to the current user, the format of q			
is:			
To retrieve invitations sent from the current user, the format of q			
is:			
POST			
invitation			
invitation			
Writable Elements for invitations			
Table 42-17 lists the writable elements for the invitations			
resource.			
Table 42-17 Writable Elements for invitations			
Element	Type	Required	Constraints
---	---	---	---
String	No	1 or more characters	Message attached to the invitation
Resource Types Linked to from invitations			
Table 42-18 lists the resource types that the client can link to from the invitations			
resource:			
Table 42-18 Related Resource Types for invitations			
rel	resourceType		
---	---		
self	urn:oracle:webcenter:people:invitation		
urn:oracle:webcenter:people:invitation			
The invitation			
response contains URIs for use in deleting (DELETE			
) invitations you have sent, or deleting (DELETE			
) or updating (PUT			
) invitations you have received.			
Navigation Paths to invitation			
This section shows how the client can navigate through the hypermedia to access the invitation			
resource:			
Supported Methods for invitation			
The following methods are supported by the invitation			
resource:			
PUT			
invitation			
invitation			
DELETE			
Writable Elements for invitation			
Table 42-19 lists the writable elements for the invitation			
resource.			
Table 42-19 Writable Elements for invitation			
Element	Type	Required	Constraints
---	---	---	---
String	Yes (PUT)	ACCEPTED IGNORED	The status of the invitation. Note: When you accept or ignore an invitation, it is removed from your list of invitations.
Read-only Elements for invitation			
Table 42-20 lists the read-only elements for the invitation			
resource.			
Table 42-20 Read-only Elements for invitation			
Element	Type	Description	
---	---	---	
String	Unique ID of the invitation		
	User to whom the invitation is sent		
	User from whom the invitation is sent		
Date (String)Foot 1	Date the invitation was sent		
Footnote 1 Data types, such as DATE			
and BOOLEAN			
, are stored in the API as STRING			
.			
Resource Types Linked to from invitation			
Table 42-21 lists the resource types that the client can link to from the invitation			
response.			
Table 42-21 Related Resource Types for invitations			
rel	resourceType		
---	---		
self	urn:oracle:webcenter:people:invitation		
Use the Feedback REST APIs to read and delete feedback. This section provides information about the REST APIs to use to perform these actions. It includes the following subsections:			
Each REST service has a link element within the Resource Index that provides the entry point for that service. For the People Connections service, each feature has its own link			
element. To find the entry points for the Feedback feature of the People Connections service, find the link			
elements with a resourceType			
of:			
urn:oracle:webcenter:feedback			
The corresponding href			
or template			
element provides the URI entry point, which returns all received feedback for the current user. The client sends HTTP requests to this entry point to work with the Feedback feature of the People Connections service.			
See Also: For more information about the Resource Index, see Section 54.5.1, "The Resource Index." For more information about resource types, see Section 54.5.2.1, "Resource Type."			
When the client has identified the entry point, it can then navigate through the resource type taxonomy to perform the required operations. For more information about the individual resource types, see the appropriate section in Section 42.3.4, "Feedback Resource Types."			
the resource type taxonomy for the Feedback feature of the People Connections service is:			
You must be logged in to the REST service to access any of the People Connections REST APIs. After that, the underlying service handles permission checking and the like.			
See Also: For general security considerations, see Section 54.8, "Security Considerations for WebCenter Portal REST APIs."			
This section provides you with all the information you need to know about each resource type. It includes the following subsections:			
urn:oracle:webcenter:feedback			
The feedback			
response contains URIs for use in reading Feedback messages.			
Navigation Paths to feedback			
This section shows how the client can navigate through the hypermedia to access the feedback			
resource:			
Supported Methods for feedback			
The following methods are supported by the feedback			
resource:			
GET			
startIndex			
, itemsPerPage			
See Also: For information about REST API parameters, such as			
message			
POST			
– If permitted, lets you add feedback for a target user. This method is only available if the current user is connected to and has permission to add feedback for the target user. Resource Types Linked to from feedback			
Table 42-22 lists the resource types that the client can link to from the feedback			
resource.			
Table 42-22 Related Resource Types for feedback			
rel	resourceType		
---	---		
self urn:oracle:webcenter:feedback:all-received	urn:oracle:webcenter:feedback		
self urn:oracle:webcenter:feedback:all-given	urn:oracle:webcenter:feedback		
urn:oracle:webcenter:feedback:message			
urn:oracle:webcenter:feedback:message			
The message			
response contains the feedback message data and URIs for use in deleting a Feedback message.			
Navigation Paths to message			
This section shows how the client can navigate through the hypermedia to access the message			
resource:			
Supported Methods from message			
The following method is supported by the message			
resource:			
DELETE			
Read-only Elements for message			
Table 42-23 lists the read-only elements for the message			
resource.			
Table 42-23 Read-only Elements for message			
Element	Type	Description	
---	---	---	
String	Message content		
String	Unique ID of the message		
	User who created the message		
Date (String)Foot 1	Date the message was created		
receivedUser		A person reference to the user who received the feedback	
Footnote 1 Data types, such as DATE			
and BOOLEAN			
, are stored in the API as STRING			
.			
Resource Types Linked to from feedback			
Table 42-24 lists the resource types that the client can link to from the feedback			
resource.			
Use the Message Board REST APIs to post, read, and delete messages to a user's or a space message board.			
This section provides information about the REST APIs to use to perform these actions. It includes the following subsections:			
Each REST service has a link			
element within the Resource Index that provides the entry point for that service. For the People Connections service, each feature has its own link			
element. To find the entry points for the Message Board feature of the People Connections service, find the link			
elements with a resourceType			
of:			
urn:oracle:webcenter:messageBoard			
Note: As well as an entry point from the Resource Index, to navigate to an individual user's message board, the Message Board feature also has an entry point from a space response for the space message board.			
The corresponding href			
or template			
element provides the URI entry point, which returns the Message Board for the current user. The client sends HTTP requests to this entry point to work with the Message Board feature of the People Connections service.			
See Also: For more information about the Resource Index, see Section 54.5.1, "The Resource Index." For more information about resource types, see Section 54.5.2.1, "Resource Type."			
When the client has identified the entry point, it can then navigate through the resource type taxonomy to perform the required operations. For more information about the individual resource types, see the appropriate section in Section 42.4.4, "Message Board Resource Types."			
The resource type taxonomy for the Message Board feature of the People Connections service is:			
You must be logged in to the REST service to access any of the People Connections REST APIs. After that, the underlying service handles permission checking and the like.			
See Also: For general security considerations, see Section 54.8, "Security Considerations for WebCenter Portal REST APIs."			
This section provides you with all the information you need to know about each resource type. It includes the following subsections:			
urn:oracle:webcenter:messageBoard			
The messageBoard			
response contains URIs for use in reading (GET			
) and posting (POST			
) space and individual user Message Board messages.			
Navigation Paths to messageBoard			
This section shows how the client can navigate through the hypermedia to access the messageBoard			
resource:			
Supported Methods for messageBoard			
The following methods are supported by the messageBoard			
resource:			
GET			
startIndex			
, itemsPerPage			
See Also: For information about REST API parameters, such as			
Note: The REST			
POST			
message			
The POST for messages supports including a link URL in the message.			
Read-only Elements for messageBoard			
Table 42-25 lists the read-only elements for the messageBoard			
resource.			
Table 42-25 Read-only Elements for message			
Element	Type	Description	
---	---	---	
String	Returns		
String	Contains link data for messages with links:		
Resource Types Linked to from messageBoard			
Table 42-26 lists the resource types that the client can link to from the messageBoard			
resource.			
Table 42-26 Related Resource Types for messageBoard			
rel	resourceType		
---	---		
self	urn:oracle:webcenter:messageBoard		
urn:oracle:webcenter:messageBoard:message			
urn:oracle:webcenter:messageBoard:message			
The message			
response contains the Message Board message data and URIs for use in reading (GET			
), revising (PUT			
), and deleting (DELETE			
) a space or individual user Message Board message.			
Navigation Paths to message			
This section shows how the client can navigate through the hypermedia to access the message			
resource:			
Supported Methods for message			
The following methods are supported by the message			
resource:			
GET			
message			
PUT			
message			
message			
DELETE			
Writable Elements for message			
Table 42-27 lists the writable elements for the message			
resource.			
Table 42-27 Writable Elements for message			
Element	Type	Required	Constraints
---	---	---	---
String	Yes	1 or more characters	message content
Read-only Elements for message			
Table 42-28 lists the read-only elements for the message			
resource.			
Table 42-28 Read-only Elements for message			
Element	Type	Description	
---	---	---	
String	Unique ID of the message		
	User who created the message		
Date (String)Foot 1	Date the message was created		
Footnote 1 Data types, such as DATE			
and BOOLEAN			
, are stored in the API as STRING			
.			
Resource Types Linked to from message			
Table 42-29 lists the resource types that the client can link to from the message			
resource.			
This section illustrates how to invite another user to join your connections list using the People Connections Service REST API. After the invitation is made, the invitee is given the option to accept or not. This example also illustrates how to delete an invitation.			
This section includes the following subsections:			
connections			
list. To find your connections			
list, first, scan the People Connections documentation (this chapter) for "connections			
." You will discover in Table 42-9, "Related Resource Types for person" that connections			
are linked to from the person			
resource. For convenience, this table is shown in Figure 42-2.			
Now that you know that connections			
are linked to from the person			
resource, you need to find the person			
resource. As the URN indicates, you get to the person			
resource from the people			
resource, as described in the following steps.			
resourceIndex			
from your previous visit): people			
resource, and you will find: people			
resource to access your lists: resourceType			
and rel			
listed in Table 42-9: connections			
list to execute a POST			
: Figure 42-3 Activity Stream Showing Invitation			
After you initiate an invitation, you can view the invitation from your account by specifying invitor:equals:@me			
. For example:			
GET http://<host:port>/rest/api/people/invitations?q=invitor:equals:@me&utoken=ASDF			
Each invitation element listed in the response contains a link that supports the DELETE operation and that looks something like this:			
host_name:port_name			
/rest/api/people/invitations/The invitee can also delete an invitation from his or her own account. The invitee can get a list of his or her invitations by specifying:			
GET http://<host:port>/rest/api/people/invitations?q=invitee:equals:@me&utoken=ASDF			
Note that the response from a DELETE is simply a status code of 204.			
This chapter explains how to integrate the Links service in a WebCenter Portal: Framework application at design time.			
For more information about managing and including links, see:			
This chapter includes the following sections:			
This section provides overview information about the Links service features and requirements. It includes the following subsections:			
The Links service provides a way to view, access, and associate related information. For example, in a list of project assignments, you can link to the specifications relevant to each assignment. In a discussion thread about a problem with a particular task, you can link to a document that provides a detailed description of how to perform that task.			
The Links service provides a means for the application developer to set up source objects (for example, the Discussions service) and target objects (for example, a document), thus enabling your users to create links between the two objects.			
There are three actions associated with the Links service: create, delete, and manage. The manage action includes the create and delete actions.			
The following custom JSF components are included in the service:			
The gray Links icon (Figure 43-1) indicates that no links are present in the Links dialog.			
Figure 43-1 The Links Icon (No Links Present)			
The gold Links icon (Figure 43-2) indicates that links are present in the Links dialog.			
Figure 43-2 The Links Icon (Links Present)			
You can link from the following objects:			
You can link to the following new objects:			
You can link to the following existing objects:			
Note: The Lists and Notes services are available in WebCenter Portal: Spaces only.			
Links are not available for the other WebCenter Portal services, such as Mail and People Connections.			
The Links service supports bidirectional links between objects. For example, when you create a link from a discussion topic to a document, a link from the document back to the discussion topic also is created. Similarly, when you delete the link from the discussion topic to a document, the link from the document back to the discussion topic is automatically deleted. Bidirectional linking is not available for URLs, notes, and specific list rows.			
Links automatically recognize any WebCenter Portal service in your application. After you have configured a service in your application, you can add links. However, links work only on secured pages. Links icons do not appear on unsecured pages. For more information, see Section 43.2.3, "Setting Security for the Links Service."			
Linking provides an easy way for you to share information with your social network. Linking can help you realize a significant reduction of wasted time and effort normally spent looking for information.			
The Links service exposes its features through a Links dialog (Figure 43-3), accessible wherever the Links icon (Figure 43-1) appears in your application.			
With the Links service, you can do the following:			
For more information about the Links service at runtime, see Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
This section describes the steps required for adding the Links service to your application. It includes the following subsections:			
The Links service requires a connection to the database where the WebCenter Portal schema is installed. The link map (that is, relationship information such as what object is linked to what other object) is stored in the database.			
For details about setting up a database connection, see Section 7.2.2, "Setting Up a Database Connection."			
This section explains a basic incorporation of the Links service. It includes the following subsections:			
The Links service includes one task flow: Links Dialog.			
To add the Links Dialog task flow to your Framework application:			
panelGroupLayout			
. The button is placed inside of a panelGroupLayout			
for the purposes of this example only. It is not required that you always place the button inside a panelGroupLayout			
.			
Figure 43-4 Insert Links Detail Button Wizard			
The properties in this dialog include:			
OnDemand			
. Note: The Links service combines the			
The new button displays in your page source (Figure 43-5).			
Figure 43-5 The Link Detail Button in Your Page Source			
The Links service requires secured pages. Links icons do not appear on unsecured pages.			
ADF security is configured by default if you created your application using WebCenter Portal's Framework application template. For information about configuring ADF security, see Section 69.3, "Configuring ADF Security."			
This section describes common problems and solutions for the Links service.			
Problem			
The Links icon does not appear.			
Solution			
The Links service requires a database connection to the WebCenter Portal schema, where links information is stored. Make sure that you have created the connection to the database and made it available in the Application Resources panel of the Application Navigator. If the connection is available in the Resource Palette but not in Application Resources, then simply drag the connection from the Resource Palette to the Connections folder in Application Resources.			
Problem			
Existing links appear, but you are not able to create new links or delete existing links.			
Solution			
The RelationshipPermission			
permission is automatically granted to authorized users when a service is consumed. Verify that this permission has been granted. For information, see Section 69.3.2, "Automated Security Grants for WebCenter Portal Services."			
This section describes optional features available with this service. It includes the following subsection:			
WebCenter Portal provides REST APIs to support the Links service. Use the Links service REST APIs to post links between two objects. For example, you could create a link between an event and a document in a space.			
This section describes the REST APIs associated with the Links service. It includes the following subsections:			
For an introduction to the REST APIs, see Chapter 54, "Using Oracle WebCenter Portal REST APIs."			
Each REST service has a link element within the resource index that provides the entry point for that service. To find the entry point for the Links service, find the link element with a resourceType			
of:			
urn:oracle:webcenter:links			
The corresponding href			
or template			
element provides the URI entry point. The client sends HTTP requests to this entry point to work with the Links service.			
For more information about the resource index, see Section 54.5.1, "The Resource Index."			
For more information about resource types, see Section 54.5.2.1, "Resource Type."			
When the client has identified the entry point, it then can navigate through the resource type taxonomy to perform the required operations. For more information about the individual resource types, see the appropriate section in Section 54.5.2.1, "Resource Type."			
The taxonomy for the Links service is:			
Beyond the service entry points, URL templates allow clients to pass query parameters to customize their requests and control the form of returned data.			
Authentication is required before using Links REST API methods.			
For general security considerations, see Section 54.8, "Security Considerations for WebCenter Portal REST APIs."			
This section provides information about each resource type. It includes the following subsection:			
Use this resource type to identify the URI to use to create (POST			
) a link between two objects			
The request is represented by the URL, and the response is a link, each with metadata to help the end user choose an item to drill down and cross links to the owning REST services, if available. If the owning REST service is unavailable, then an HREF link is provided.			
Navigation Paths to results			
This section shows how the client can navigate through the hypermedia to access this resource:			
Supported Methods for results			
The following method is supported by this resource:			
POST			
serviceId			
, resourceId			
, and resourceName			
; if the target is a URL link, then the target object also contains a resourceUrl			
, Parameters: serviceId			
, resourceId			
, resourceName			
where:			
serviceId={serviceId}			
Optional: The service ID of the item, such as services.oracle.webcenter.collab.calendar.community			
resourceId={resourceId}			
The resource ID, such as s833cddc4_caa5_416c_87e9_d702ef870b43;;3b0c6edb			
resourceName={resourceName}			
The resource name, such as New Event			
.			
For more information, see Section 54.5.2.5, "Templates."			
Resource Types Linked to From results			
Table 43-1 lists the resource types that the client can link to from this resource.			
Table 43-1 Related Resource Types for links			
rel	resourceType		
---	---		
self	urn:oracle:webcenter:links:results		
This chapter explains how to integrate the Tags service in a WebCenter Portal: Framework application at design time.			
For more information about managing and including tags, see:			
See Also: You must register a resource viewer to enable custom resources to be rendered using Search or Tags, or to make the resources linkable to and from each other. For more information, see Section 7.3, "Extending Your Framework Application with Custom Components."			
This chapter includes the following sections:			
Tags enable users to apply their own meaningful terms to items, making those items more easily discoverable in search results and the Tag Center. The Tag Center is a page that displays the interactions among all the tags, tagged items, and their taggers in an application.			
Having multiple users tag objects contributes to the collective knowledge, which makes searching much more relevant. WebCenter Portal search takes advantage of the knowledge captured by tagging by indicating the relevance of results based on the quality and frequency of their applied tags.			
Tags let the users of data (instead of the publishers of data) classify information. In this way, tags act as a personal productivity tool and a method to increase searchability for everyone.			
For example, suppose your application includes a component that provides a view of departmental human resources contacts. If you enable tags for this component, then a user who comes to it can bookmark it for themselves and assign tags like HR or contacts or department to help others find it as well.			
The Tags service is available for pages, documents, and custom objects. Creating a tag automatically publishes the event to the Activity Stream.			
You can apply one or more meaningful terms, called tags, to remind yourself and alert other users of the content they might expect to find at the tagged location. Anywhere you see the Tags icon (Figure 44-1), you can apply a tag.			
Tags let you apply your own classifications to items. For example, you could apply the tag phone			
to a product page that provides useful information about new phones. When you or other users search for phone, the tagged page displays in the search results.			
When you access the Tag Center, you see all users who applied the same tag anywhere else in the application. Within the Tag Center, a tag cloud (Figure 44-2) displays all currently applied tags.			
A tag cloud is a visual depiction of all tags. Tags are presented according to the frequency of their use—the larger the font, the more the tag has been applied to items. Click a tag in the tag cloud to run a search that returns a list of all items that use the tag.			
The Tags service requires that you set up the WebCenter Portal schema and create a database connection to the schema. Tag information is stored in the database. For details, see Section 7.2.2, "Setting Up a Database Connection."			
Note: Typically, when you add tags in a Framework application, you also should add a search toolbar to enable searching for the objects with the tags. To add the search toolbar, follow the instructions in Section 45.2.3, "Adding the Search Service at Design Time."			
The Tags service requires security. If users are not authenticated, then they cannot tag objects. If the application is not secured, then pages are not returned in search results for tagged items.			
To enable the ability to tag documents, you must have the Document Manager task flow in the Framework application. For more information, see Chapter 30, "Integrating the Documents Service."			
At runtime, when you search for a tag word, results are returned in the Tagged Items section of the search results. By default, tagged items that are accessed through their tags are rendered in a full screen replacing the same window.You can override this and have it open in a popup window.			
You can tag custom components, find those tags either through a search or in the Tag Center, and access tagged items through their associated tags.			
For services exposing resources to be tagged (and therefore searched and viewed) WebCenter Portal provides a Resource Action Handling framework. The Tags service uses this framework to allow acting on a search result. For more information, see Section 7.3, "Extending Your Framework Application with Custom Components."			
For more information about the service at runtime, see Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.			
This section describes required steps for adding this service to your application. It includes the following subsections:			
The Tags service requires a connection to the database with the WebCenter Portal schema installed.			
For details about setting up a database connection, see Section 7.2.2, "Setting Up a Database Connection."			
To enable basic tagging, you must add either the Tagging Button component or the Tagging Menu Item component and the Tagging - Dialog task flow. In addition, to tag custom objects, you must register a resource viewer to visualize the tagged component when it is discovered by users.			
This section describes how to enable tagging by adding the Tagging Button and the Tagging - Dialog task flow. It includes the following subsections:			
The following JSF components are included in the service:			
You can configure attributes in the Tags components. For example, the SharedParam			
attribute lets you disable the Shared checkbox. (With the default			
value, the checkbox is enabled, so users can check it or uncheck it at will. With the always			
value, the checkbox is disabled in the true state, so all tags are public. With the never			
value, the checkbox is disabled in the false state, so all tags are private.) As another example, the ResourceScope			
attribute lets users tag objects in a different scope, such as a list of search results with the Tagging button next to each result, where the search is done in the default scope but the results could be in other scopes. For more information about the component attributes, see the online help.			
Table 44-1 lists the Tags service task flows.			
Table 44-1 Tags Service Task Flows			
Task Flow	Definition		
---	---		
Tagging - Dialog	This task flow displays a dialog that appears to tag a particular object. This does not have any visible user interface rendering when dropped onto a page. It only becomes visible when the tagging button is clicked.		
Tagging - Personal View	This task flow shows the tags created by the current user, objects tagged by those tags, and a cloud view of the tags. A service ID input parameter enables you to view tagged items of interest. Because this is a non-public task flow, it requires authentication.		
Tagging - Related Links	For an object identified by a unique ID, this task flow lists all the other objects that are tagged with similar tags. The other objects listed include those that are similarly tagged; that is, their tag "sets" have an intersection of at least one. The list is ordered by the number of tags in the intersection.		
Tagging - Tag Cloud	This task flow displays a tag cloud, which is a visual depiction of all the tags used. Tags are presented according to the frequency of their use. More frequently used tags display in bold fonts and varying font sizes—the larger the font, the more the tag has been applied. When you click a tag in the tag cloud, you are redirected to Tag Center, where that tag is selected. This task flow appears on a page with tagged items. It provides Resource Action Handling (RAH) links for all tags in the page.		
Tagging - Tag Selection	Similar to the Tag Cloud task flow, the Tag Selection task flow also displays a tag cloud. However, when you select a tag, it marks the tag as selected, and you see the results in the Related Resources task flow. You are not redirected to the Tag Center. With this task flow and the Tagging - Tagged Items task flow, you can click a tag in the tag cloud to see the items that use the tag. (In other words, selecting a tag in the Tagging - Tag Cloud task flow sends the tag word as an event to all interested event consumers, such as the Tagging - Tagged Items task flow.)		
Tagging - Tagged Items	This task flow displays items pages, or documents that have been tagged. It can refine itself to show only the items tagged with the tag passed to it. This task flow can listen for events sent by the Tagging - Tag Cloud task flow.		
To add the Tags service to your WebCenter Portal: Framework application:			
PanelGroupLayout			
. Make it the first child of the PanelGroupLayout			
by placing it to the left of the search toolbar. The Tagging Button enables users to start tagging. Table 44-2 Fields in the Insert Tagging Button Dialog			
Field	Description		
---	---		
ResourceId	The ID that uniquely identifies the object to which you are binding the Tagging Button. The value in this field need not be static. For example, you could use EL to insert a unique value for each row in a table. For example:		
ResourceName	The name of the object to which you are binding the Tagging Button. The value in this field need not be static. For example, you could use EL to insert a unique value for each row in a table.		
ServiceId	An application-wide ID. (With custom components, you add this to		
Figure 44-3 Insert Tagging Button Dialog for a Custom Component			
Note: The Tagging Button includes additional properties you can set. For example,			
In the Source view where you added the Tags service, you should see something similar to Example 44-1.			
Example 44-1 Tagging Button and Tagging - Dialog Task Flow Source			
Note: Even if there are multiple Tagging Buttons on the page, only one Tagging Dialog			
Run the page with the Tagging Button and Tagging - Dialog task flow. When the page renders in the browser, click the Tags link.			
home			
and click Save. Note that every user of the system can perform this same operation and assign the same tag, which means that you get a weighted collection of tags. home			
, and click the Search icon. home			
as a search result under Tags and Custom Component 1			
as a search result under Tagged Items. Custom Component 1			
and a dialog appears with the resource viewer you just created (Figure 44-4). Some Tags service task flows have optional task flow binding parameters.			
Note: You should not change the Tags service task flow properties unless you want to show items from a different resource or different service.			
To see and adjust task flow binding parameter values after you have placed a task flow on a page:			
Figure 44-6 Edit Task Flow Binding Dialog for Tags - Related Links Task Flow			
Table 44-3 describes the properties that are unique to the Tags service task flows.			
Table 44-3 Tags Service Task Flow Parameters			
Property	Description	Task Flow	
---	---	---	
Unique ID of the item or resource within a given service that is used to find similarly tagged items. This value is set automatically. Do not change this value unless you want to show items similar to a different resource.	Tagging - Related Links		
This parameter has a different meaning for the Related Links task flow and the Personal View task flow.			
Tagging - Related Links Tagging - Personal View			
Scope of tags. This value is set automatically (either Do not change this value.	Tagging - Tag Cloud Tagging - Tag Selection Tagging - Tagged Items		
Optional redirection URL for anonymous page login. This must include the	Tagging - Dialog		
The Tags service requires security. If users are not authenticated, then they cannot tag objects. If the application is not secured, then pages are not returned in search results for tagged items.
ADF security is configured by default if you created your application using WebCenter Portal's Framework application template. For information about configuring ADF security, see Section 69.3, "Configuring ADF Security."
Note: You must register a resource viewer to allow custom objects to be found using Search or Tags. For information about how the resource viewer's |
This section describes optional features available with this service. It includes the following subsections:
Note: You can turn up logging levels for the tagging component (as you can with other components) in the |
Custom components can implement the Tags service APIs to create a tagging back end compatible with the WebCenter Portal REST APIs or Tags service task flows and components.
For more information on the Java APIs, see Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal.
WebCenter Portal provides REST APIs to support the Tags service. Use the Tags service REST APIs to do the following:
This section describes the REST APIs associated with the Tags service. It includes the following subsections:
For an introduction to the REST APIs, see Section 54, "Using Oracle WebCenter Portal REST APIs."
Each REST service has a link element within the Resource Index that provides the entry point for that service. To find the entry point for the Tags service, find the link element with a resourceType
of one of the following:
urn:oracle:webcenter:tagging:tags
urn:oracle:webcenter:tagging:taggeditems
urn:oracle:webcenter:tagging:users
The corresponding href
or template
element provides the URI entry point. The client sends HTTP requests to this entry point to work with the Tags service.
For more information about the Resource Index, see Section 54.5.1, "The Resource Index."
For more information about resource types, see Section 54.5.2.1, "Resource Type."
When the client has identified the entry point, it then can navigate through the resource type taxonomy to perform the required operations. For more information about the individual resource types, see the appropriate section in Section 54.5.2.1, "Resource Type."
The taxonomy for the Tags service is:
Under users, you can add the resource type for that object, such as peopleprofile.
Beyond the service entry points, URL templates allow clients to pass query parameters to customize their requests and control the form of returned data.
Collection resources in the tags resources support pagination (itemsPerPage
and startIndex
for tags and users and itemsPerPage
for taggedItems). Other query parameters (search
and projection
) are not supported.
Authentication is required before using Tags REST API methods.
For general security considerations, see Section 54.8, "Security Considerations for WebCenter Portal REST APIs."
This section provides information about each resource type. It includes the following subsections:
Use this resource type to identify the URI to use to read (GET
) tags. The response from a GET
operation includes all tags, a specific tag, a subset of tags, or a tag related to a specific list of tags or users.
Navigation Paths to tags
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for tags
The following methods are supported by this resource:
GET
keyword
, serviceId
, relatedId, user
, startIndex
, itemsPerPage
, shared
, tags
, users
where:
keyword={keyword for substring match}
The keyword for substring matches.
serviceId={serviceId}
The service ID for which you want to find tags. (null for all)
relatedId= {related Tag Id}
user={...}
The user ID to find tags for. If null, this uses the logged-in user.
shared = {true/false}
Returns personal or system tags.
tags={TAG}+{TAG}+...+{TAG}
Filter by these tags separated by URL-encoded spaces ('+').
users = {USER}+{USER}+...+{USER)
Filter by these users separated by URL-encoded spaces ('+').
For more information, see Section 54.5.2.5, "Templates."
Table 44-4 shows the available parameter combinations for each operation.
Table 44-4 Tags GET Parameters
API Method | tags | tagWords | UserId | UserFilter | ServiceId | shared | scope | keyword |
---|---|---|---|---|---|---|---|---|
findRelatedSystemTags | X | X | X | X | ||||
findPopularTagsCommon | X | X | X | X | ||||
findPopularTags (with GUID) | X | X | X | X | ||||
findPopularTags | X | X | X |
Resource Types Linked to From tags
Table 44-5 lists the resource types that the client can link to from this resource.
Table 44-5 Related Resource Types for tags
rel | resourceType |
---|---|
self | urn:oracle:webcenter:tagging:tags |
Previous/Next | urn:oracle:webcenter:tagging:tags |
Use this resource type to identify the URI to use to read (GET
), rename (PUT
), and delete (DELETE
) a tag. The response from a GET
operation includes all tags, a specific tag, a subset of tags, or a tag related to a specific list of tags or users.
Navigation Paths to tag
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for tag
The following methods are supported by this resource:
GET
PUT
DELETE
Resource Types Linked to From tag
Table 44-5 lists the resource types that the client can link to from this resource.
Table 44-6 Related Resource Types for tag
rel | resourceType |
---|---|
self | urn:oracle:webcenter:tagging:tag |
urn:oracle:webcenter:tagging:taggedItems | |
urn:oracle:webcenter:tagging:users | |
urn:oracle:webcenter:tagging:tags |
Use this resource type to identify the URI to use to read tagged items and their related resources (GET
) or to add tagged items (POST
).
The response from a GET
operation includes a tagged item or all tagged items, which can be filtered by date, tag words, and so on. Each tag includes links used to operate on that tag. The response from a POST
operation includes the tagged items that were created in this collection of tags and a link to operate on them.
Navigation Paths to taggedItems
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for taggedtems
The following methods are supported by this resource:
POST
GET
serviceId
, keyword
, tags
, users
, dt
, shared
, itemsPerPage
where:
serviceId={serviceId}
The service ID of the item.
keyword={keyword}
A keyword in the resource title.
tags={TAG}+{TAG}+...+{TAG}
Filter by these tags, separated by URL-encoded spaces ('+').
users={USER}+{USER}+...+{USER}
Filter by these users, separated by URL-encoded spaces ('+').
dt={DD-MM-CCYY}
Filter bookmarks by this date, which defaults to the most recent date on which bookmarks were saved.
shared = {true/false}
System or personal resources only.
For more information, see Section 54.5.2.5, "Templates."
Table 44-7 shows the available parameter combinations for each operation.
Table 44-7 TaggedItems Parameters
API Method | serviceId | resourceId | date | shared | tagWords | userFilter | keyword | scope |
---|---|---|---|---|---|---|---|---|
findRelatedSystemResources | X | X | ||||||
findUpdatedResources | X | X | ||||||
findSystemResources | X | X | X | X | ||||
findFilterPersonalResources | X | X | X | |||||
findPersonalResources | X | X | X | X | ||||
findFilteredPersonalResources (no keyword) | X | X |
Resource Types Linked to From taggedItems
Table 44-8 lists the resource types that the client can link to from this resource.
Table 44-8 Related Resource Types for taggedItems
rel | resourceType |
---|---|
self | urn:oracle:webcenter:tagging:taggedItems |
Previous/Next | urn:oracle:webcenter:tagging:taggedItems |
Use this resource type to identify the URI to use to read tagged items and their related resources (GET
), add tagged items (POST
), update tags for a tagged item (PUT
), and remove all tags from an item (DELETE
).
The response from a GET
operation includes a tagged item or all tagged items, which can be filtered by date, tag words, and so on. Each tag includes links used to operate on that tag. The response from a POST
operation includes the tagged item that was created in this collection of tags and a link to operate on that tagged item.
Navigation Paths to taggedItem
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for taggedItem
The following methods are supported by this resource:
GET
serviceId
, keyword
, tags
, users
, dt
, shared
, itemsPerPage
PUT
DELETE
Resource Types Linked to From taggedItem
Table 44-8 lists the resource types that the client can link to from this resource.
Table 44-9 Related Resource Types for taggedItem
rel | resourceType |
---|---|
self | urn:oracle:webcenter:tagging:taggedItem |
urn:oracle:webcenter:tagging:taggedItems | |
alternate | The resource type depends on the type of resource tagged; for example, a page would be urn:oracle:webcenter:page:page |
Use this resource type to get a list of people related to a given list of tags.
Navigation Paths to users
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for users
The following methods are supported by this resource:
GET
startIndex
, itemsPerPage
, tags
, users
where:
tags={TAG}+{TAG}+...+{TAG}
Filter by these tags separated by URL-encoded spaces ('+').
users = {USER}+{USER}+...+{USER)
Filter by these users separated by URL-encoded spaces ('+').
For more information, see Section 54.5.2.5, "Templates."
Resource Types Linked to From users
Table 44-5 lists the resource types that individual users can link to from this resource.
Table 44-10 Related Resource Types for users
rel | resourceType |
---|---|
self | urn:oracle:webcenter:tagging:users |
Previous/Next | urn:oracle:webcenter:tagging:users |
While it is possible to add the Tagging Button and task flows on a page-by-page basis, typically you want to add the search toolbar and tags as part of a page template that you can apply whenever building a page that requires it. To add tags through a page template:
looksee1template
. Figure 44-7 Create JSF Page Template Dialog
Example 44-2 Sample JSF Page Template
PanelGroupLayout
. Make it the first child of the PanelGroupLayout
. Table 44-11 provides descriptions and example values for the fields in the dialog.
Table 44-11 Fields in the Insert Tagging Button Dialog for a Page
Field | Description |
---|---|
ResourceId | Unique identifier of your page. In this case, because the resource ID is meant for a page, enter |
ResourceName | Name of the page. In this case, enter |
ServiceId | Service identifier that you add to In this case, enter Note: Because |
Figure 44-8 Insert Tagging Button Dialog for a Page
panelGroupLayout
. panelGroupLayout
. panelSplitter
with identifier sidebar
. connectionName
, enter the name of the connection to your document library's content repository; for example, ${'MyFileSystem'}
. For information on how to set up a connection to your content repository, see Section 27.2, "Configuring Content Repository Connections." Example 44-3 JSF Page Template with Tags and Search
ooksee1template1
from the Use Page Template list. Search.jspx
and add the Search task flow in the center facet. Documents.jspx
and add the Document Library - List View task flow as the center facet. In the Edit Task Flow Binding dialog, for connectionName
, enter the name of the connection to your document library's content repository; for example, ${'MyFileSystem'}
. For information on how to set up a connection to your content repository, see Section 27.2, "Configuring Content Repository Connections." To run your pages with tags:
Search.jspx
page. search page test customapp
for Tags (Figure 44-9). Figure 44-9 Tag this Page Dialog for Search Page
Documents.jspx
(or run it separately). doclib documents page test customapp
for Tags (Figure 44-10). Figure 44-10 Tag this Page Dialog for Documents Page
Documents.jspx
page, enter search
and click the Search icon. search
. For services exposing resources to be tagged (and therefore searched and viewed) WebCenter Portal provides a Resource Action Handling framework. For example, rows in a table can be tagged.
To register a resource viewer, see Section 7.3, "Extending Your Framework Application with Custom Components."
This section provides troubleshooting tips on implementing the Tags service. It includes the following subsections:
Problem
A resource to which a user has View permission has been tagged, but the user cannot see the resource in the Tag Center.
Solution
In service-definition.xml
, verify that the resource type has the Resource Authorizer configured properly. Problem
Tagged WebCenter Portal Content Server documents do not appear in the Tag Center.
Solution
Check the version listed for the WebCenter Portal component in the Content Server. The result set name changed in WebCenter Portal release 11.1.1.6.0.
Problem
The Tagging Button component is dropped on a page, but it does not show up.
Solution
Problem
When clicking a tagging resource in Tag Center, users are not redirected to the correct page.
Solution
All tagging links are generated through the Resource Action Handling (RAH) framework. Ensure that RAH is configured properly.
service-definition.xml
for that resource type to see if a resource viewer is configured properly. resourceID
and serviceID
parameters passed for this resource are correct. This chapter explains how to integrate the Search service in a WebCenter Portal: Framework application at design time.
For more information about managing and including search, see:
This chapter includes the following sections:
WebCenter Portal's search provides a unified, extensible framework that enables the discovery of information through an intuitive user interface. It honors application security settings by returning only the results a user is authorized to view. Users can save their searches for reuse, including searches with complex search refinement conditions.
WebCenter Portal provides two ways of searching your application:
In addition, the Documents service provides its own search engine for file searches. This saves time and increases the relevancy of results by narrowing the scope of a search to files.
See Also: Section 14.4, "Using Portal Navigation to Create a Sitemap" for information about integrating an external search engine in your application |
With Framework applications, Oracle Secure Enterprise Search (SES) is set as the default and preferred search platform. Oracle SES provides unified ranking results for the following resources:
Note: WebCenter Portal: Spaces applications include the Oracle SES crawler that indexes spaces, lists, pages, and people resources in Spaces. This crawler is not supported in Framework applications. |
Oracle SES search is beneficial for the following reasons:
Supported Oracle SES versions include 10.1.8.4.x and later. Oracle strongly recommends using Oracle SES release 11.1.2.2. Search with Oracle SES requires additional configuration in Oracle SES Administration, Oracle WebCenter Content: Content Server, and Oracle WebCenter Portal's Discussion Server.
Although Oracle SES is the preferred search platform for best performance, you can manually override search with Oracle SES and have Framework applications search using WebCenter Portal's original search adapters. WebCenter Portal's search adapters span all enabled and searchable services, such as documents, tags, people, and pages.
If no Resource Action Handling is specified in the Framework application, then the default action when a search result is clicked is to render the search result in a new browser window. Also, results from services that provide resource viewers, such as Documents, Discussions or Announcements, open in their resource viewers. For more information about resource viewers and the Resource Action Handling framework, see Section 7.3, "Extending Your Framework Application with Custom Components."
At run time, users can perform global (application-wide) searches from the Search task flow or from the Search toolbar and refine and save searches.
For more information about WebCenter Portal's search at runtime, see Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
This section provides the steps for adding the Search service to your application. It includes the following subsections:
Use the roadmap in this section as a guide through the configuration process.
Note: If you override search with Oracle SES to use the original WebCenter Portal live search adapters, then no Oracle SES configuration is required. Skip ahead to section Section 45.2.3, "Adding the Search Service at Design Time." |
Figure 45-1 and Table 45-1 provide an overview of the prerequisites and tasks required to get Oracle SES working in Framework applications.
Figure 45-1 Configuring Oracle SES for Framework Applications
Table 45-1 Configuring Oracle SES for Framework Applications
Actor | Task | Sub-task |
---|---|---|
Administrator | ||
4. Create a Federation Trusted Entity using one of the following tools:
| ||
5. Create two crawl sources: Documents Crawler and Discussions Crawler using one of the following tools:
| ||
6. Create a source group for the crawl sources using one of the following tools:
| ||
Developer | 7. Integrate the Search service in your application | |
Developer or Administrator | 8. Deploy the application using one of the following tools:
| |
Administrator | 9. (Optional) Secure the connection to Oracle SES with SSL | |
Administrator | 10. Configure additional search parameters using one of the following tools:
|
To search with Oracle SES, you must add the Oracle SES connection in the application. For more information, see Section 45.3.4, "Configuring Search with the Oracle SES Adapter."
Note: You can create a connection to Oracle SES to search repositories outside WebCenter Portal and override using Oracle SES as the default search crawler with Fusion Middleware Control or WLST. This allows users to search other Framework application resources, such as people. |
Select to create the connection in either the Application Resources or IDE connections. A connection in Application Resources is available only for that application, while a connection in IDE connections is available for all applications you create. If you plan to use the connection in other applications, then select IDE connections to avoid the need to re-create it.
Note: If you create the connection in IDE, then the connection must be added to the application later. For example, in the Resource Palette under IDE connections, right-click the connection and select Add to Application. |
Enter values for the fields in the dialog. For example:
SESconnection
. This name cannot be changed after it is created. (To use a different connection name, create a new connection.) wcsearch
. A trusted entity allows the application to authenticate itself to Oracle SES and assert its users when making queries on Oracle SES. This trusted entity can be any user that either exists on the identity management server behind Oracle SES or is created internally in Oracle SES. You can find (or create) the trusted entity on the Global Settings - Federation Trusted Entities page of Oracle SES.
This ensures that your application uses that connection to access Oracle SES. The Search service uses only one Oracle SES connection.
Note: After you create a connection as the default connection, you cannot edit it so that it is not the default. To use a different default connection, you must create a new connection and mark that as the default connection. |
Note: Source groups present a good way to segment your searchable data on Oracle SES. Given an Oracle SES instance that keeps a search index on all corporate data, you can use source groups to make only a portion of your corporate data available to WebCenter Portal's search. For more information on creating source groups, see Oracle SES Administrator's Guide. |
You should see something similar to Figure 45-2.
Figure 45-2 Create Oracle SES Connection Dialog
If the connection is successful, then click OK.
After you have included the Oracle SES connection in your application, you should see it in your Application Resources panel, as shown in Figure 45-3.
Figure 45-3 Oracle SES Connection in Application Resources
The Oracle SES connection is now included in the connections.xml
file and is the default connection in the adf-config.xml
file, as shown in Example 45-1.
Example 45-1 Oracle SES Connection in adf-config.xml
Note: After a Framework application has been deployed to an Oracle WebLogic managed server, you can configure it using WLST or Fusion Middleware Control. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. |
This section describes the Search service task flows and explains how to integrate the Search service into your application. It includes the following subsections:
Table 45-2 lists the Search service task flows.
Table 45-2 Search Service Task Flows
Task Flow | Definition |
---|---|
Search | This task flow provides a rich search experience with features for refining and saving search results. |
Search - Saved Searches | This task flow enables you to create a simple launch pad for running saved searches within the application. |
Search Preferences | This task flow enables users to select which WebCenter Portal services to search. |
Search Toolbar | This task flow enables users to enter simple search criteria and run the search from the application. Search results are rendered as links. |
The Search Toolbar task flow offers the easiest way to add the Search service to your application. To add the Search Toolbar task flow to your Framework application:
Note: ADF security is configured by default if you created your application using WebCenter Portal's Framework application template. For information about configuring ADF security, see Section 69.3, "Configuring ADF Security." |
If a prompt to confirm the ADF library appears, click Add Library.
In the Application Navigator, right-click this application and select Run. It may take a few moments for the operation to complete.
Enter the user name and credentials that you created when you defined security.
Note: To return results, the Search service requires that other WebCenter Portal services are included in the application. |
With the Search service task flow parameters, you can customize the appearance and behavior of a task flow instance. For example, you can restrict search results to include only specific services, document types, and spaces, or you can change the size of the search box.
See Also: "How to Set Parameters to Narrow Search" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces for detailed information about customizing the Search service with task flow parameters |
To see and adjust task flow binding parameter values after you have placed a task flow on a page:
Figure 45-5 Edit Task Flow Binding Dialog for Search Task Flow
Table 45-3 describes the properties that are unique to the Search service task flows.
Table 45-3 Search Service Task Flow Parameters
Property | Description | Task Flow |
---|---|---|
| List of custom attributes to show when displaying search results. To include one or more custom attributes in the search results, set this to a list of custom attribute names, separated by commas. An optional label prefix may be provided with the custom attribute name to display instead of its associated custom attribute name. Use the format: label:name. | Search Search Toolbar |
| List of refiners to hide when displaying search results. To hide one or more refiners, set this to a list of refiner names, separated by commas (choose from creator, date, space, content, and tags). | Search Search Toolbar |
| Show or hide the input box. Set to true (default) to show the input box, or set to false to hide it. | Search |
| List of MIME types to limit the search. To limit the search to certain document types, set this to the list of MIME types of the documents (such as PDF, PPT, DOC), separated by commas. This also can be set to the Documents service with oracle.webcenter.doclib. Note: To limit search to Microsoft Word documents and WebCenter Portal pages, set this parameter to application/msword, and set the See Also: "Searching Specific Document Types" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal | Search Search Toolbar |
| List of unique IDs to limit the search scope. To limit the search to a list of spaces, set this to the list of GUIDs of the spaces, separated by commas. For example: | Search Search Toolbar |
| Unique ID to limit the search scope. To limit the search to a particular space, set this to the GUID of the space. For example: #{spaceContext.currentSpaceGUID} or s8bba98ff_4cbb_40b8_beee_296c916a23ed Note: This parameter has been deprecated. It is included for backward-compatibility only. | Search |
| Value to limit the size of the search box. The default value is 42. Enter a lower number (for example, 30) to shorten the length of the search box. This also changes the size of the search box in the Search task flow. | Search Toolbar |
| List of IDs of services or executors to include when displaying search results. To display only people profiles and documents in the Content Server, set this parameter to For a list of service IDs, see Table G-7, "Service IDs". | Search Search Toolbar |
| Either search keywords or the saved search GUID. Note: This parameter is for internal use only. Do not change this value unless you want coded search main views. If you do change this value, then you must also specify | Search |
| Marker specifying whether the Note: This value is set automatically and is for internal use only. Do not change it unless you want coded search main views. | Search |
| List of unique objects to limit the search scope. Note: This parameter has been deprecated. Use the | Search Toolbar |
Note: The All Saved Searches and the Search Preferences task flows do not have any unique properties. |
The Oracle SES adapter must be configured with an identity management system to validate and authenticate users. This is necessary for searches to return only results that the user is allowed to view based on access privileges. Because WebCenter Portal uses identity propagation when communicating with Oracle SES, WebCenter Portal's user base must match that in Oracle SES. One way this can happen is by configuring WebCenter Portal and Oracle SES to the same identity management system. For detailed information, see the section "Oracle SES - Configuration" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
WebCenter Portal's original search adapters rely on individual services to ensure that the user performing the search can view results. Search results are returned based on user privileges. When unauthenticated, queries return only public content. Only authenticated users of an ADF-secured Framework application can save searches.
ADF security is configured by default if you created your application using WebCenter Portal's Framework application template. For information about configuring ADF security, see Section 69.3, "Configuring ADF Security."
This section describes optional features available with this service. It includes the following subsections:
Note: The Search service REST APIs and data controls are available only for search using Oracle SES. They are not supported with search using WebCenter Portal's original search adapters. |
To add the Search task flow to your application, follow the instructions provided for the Search Toolbar task flow in Section 45.2.3, "Adding the Search Service at Design Time," but instead, drag and drop the Search task flow onto the page.
To run the page with the Search view:
You can add the Search - Saved Searches task flow to provide a simple launch pad for running saved searches within the application. To add this task flow to your Framework application, follow the instructions provided for the Search Toolbar task flow in Section 45.2.3, "Adding the Search Service at Design Time," but instead, drag and drop the Search - Saved Searches task flow onto the page.
The task flow renders links that, when clicked, run a saved search.
The Search Preferences task flow enables users to control which WebCenter Portal services are searched. By default, all enabled services are selected to be searched. Users can disable any service from which they do not want to see search results. Users also can select the order of services in their search results. For example, they may find that search results from the Documents service prove more useful that search results from other services.
To add the Search Preferences task flow to your application, follow the instructions provided for the Search Toolbar task flow in Section 45.2.3, "Adding the Search Service at Design Time," but instead, drag and drop the Search Preferences task flow onto the page.
WebCenter Portal: Framework applications automatically set Oracle Secure Enterprise Search (SES) as the default search adapter, but additional configuration is required in Oracle SES, Oracle WebCenter Content: Content Server, and Oracle WebCenter Portal's Discussion Server. See the section "Managing the Search Service" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal for detailed information about the steps to set up search with the Oracle SES adapter.
After you have completed all configuration steps, validate the inclusion of Oracle SES results in WebCenter Portal's search.
As long as the application has been ADF-secured, you should see a login page. It may take a few moments for the operation to complete.
When the page loads, you should see your search toolbar.
Figure 45-6 shows a sample results page for the search term webcenter, before Oracle SES has crawled anything.
Figure 45-7 shows a sample results page after Oracle SES has been configured and crawled.
See Also: Oracle SES documentation provided on the Oracle Fusion Middleware documentation library (in WebCenter Portal's product area) |
You can manually override search with Oracle SES and have Framework applications search using WebCenter Portal's original search adapters. WebCenter Portal's search adapters span all enabled and searchable services, such as documents, tags, people, and pages.
To enable search with WebCenter Portal's search adapters, edit the adf-config.xml
file either to change all enable attributes in crawl-properties
to false (Example 45-2) or to comment out the crawl-properties
entirely (Example 45-3).
Example 45-2 Crawl Properties in adf-config.xml Set to False
Example 45-3 Crawl Properties in adf-config.xml Commented Out
Custom components can implement Search service APIs to expose their content to WebCenter Portal's search.
For more information, see Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal.
WebCenter Portal provides REST APIs to support the Search service. Use the Search service REST APIs to post, read, update, and delete searches. You can specify keywords and the scope of the search; for example, the iPhone could search for "smith" in all spaces, documents and wiki pages. The API also lets you build a customized search user interface on top of the Search service.
This section describes the REST APIs associated with the Search service. It includes the following subsections:
For an introduction to the REST APIs, see Chapter 54, "Using Oracle WebCenter Portal REST APIs."
Each REST service has a link element within the resource index that provides the entry point for that service. To find the entry point for the Search service, find the link element with a resourceType
of:
urn:oracle:webcenter:search
The corresponding href
or template
element provides the URI entry point. The client sends HTTP requests to this entry point to work with the Search service.
For more information about the resource index, see Section 54.5.1, "The Resource Index."
For more information about resource types, see Section 54.5.2.1, "Resource Type."
When the client has identified the entry point, it then can navigate through the resource type taxonomy to perform the required operations. For more information about the individual resource types, see the appropriate section in Section 54.5.2.1, "Resource Type."
The taxonomy for the Search service is:
Beyond the service entry points, URL templates allow clients to pass query parameters to customize their requests and control the form of returned data.
Collection resources in the search resources support pagination (startIndex
and itemsPerPage
). Other query parameters are not supported (that is, search
and projection
).
Authentication is required before using Search REST API methods.
For general security considerations, see Section 54.8, "Security Considerations for WebCenter Portal REST APIs."
This section provides information about each resource type. It includes the following subsection:
Use this resource type to identify the URI to use to read (GET
) a query containing keywords and attribute-specific criteria.
The request is represented by the URL and the response is a list of search results, each with metadata to help the end user choose an item to drill down, as well as cross links to the owning REST services, if available. If the owning REST service is unavailable, then an HREF link is provided.
The response XML can be paginated with standard URL parameters, and appropriate previous and next links provided along with a general template (with the query prepopulated) for the consuming application to do its own custom pagination.
Navigation Paths to results
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for results
The following methods are supported by this resource:
GET
serviceId
, q
, scopeGuid
, refiners
, startIndex
(pagination), itemsPerPage
(pagination) refiners=true
) where:
serviceId={serviceId1}[,{serviceId2}...]
Optional: This narrows the search to one or more WebCenter Portal services, such as oracle.webcenter.doclib or oracle.webcenter.page. For example, setting this to oracle.webcenter.doclib searches only documents. If omitted, this searches all services.
q={queryString}
Searches may be specified using the following format
Where multiple clauses are joined by an implicit AND
and are syntactically separated by the ";" semicolon. Square brackets []
denote optional values. Each clause can be one of the following types:
keywords
- simple string with no ":" colon separator attribute1:value1
- shortcut for a clause meaning attribute1 equals value1 attribute1:operand1:value1
- a clause capturing a Boolean condition between attribute1 and value1 Search attributes include the following, but can be any attribute name:
title
- Name or title of the item description
- Description of the item creator
- Creator or contributors of the item date
- Date on which the item was last modified tags
- Tag words that the item may have (applicable to pages) The attributes can be returned in search results, where data=
field1[,field2]
Legal operands:
equals
- Strings and Numbers contains
- Strings gt
(greater than) - Numbers gte
(greater than or equals) - Numbers lt
(less than) - Numbers lte
(less than or equals) - Numbers scopeGuid={...}
Optional: The GUID associated with the scope.
refiners={true|false}
Optional: Whether to fetch refiners. If omitted, the default value is false.
Example 45-4 Search REST Commands
For more information, see Section 54.5.2.5, "Templates."
Writable Elements for results
Table 45-4 lists the writable elements for this resource.
Table 45-4 Writable Elements for results
Element | Type | Required | Constraints | Description |
---|---|---|---|---|
| String | 1 or more characters | Name of the query author | |
| ||||
| ||||
| ||||
| String | No | 1 or more characters | Description of the query |
| ||||
|
Resource Types Linked to From results
Table 45-5 lists the resource types that the client can link to from this resource.
Use the Search service data control to build a customized search user interface with a Framework application or a custom task flow. Deploying this task flow into an ADF library allows for a portable consumption of the task flow; for example, you could add it to a WebCenter Portal: Spaces application Resource Catalog to build site templates.
The Search data control contains the searchSes
method. Table 45-6 describes its parameters for setting search refiners and limiting the scope of the search.
Table 45-6 searchSes Input Parameters
Parameter | Required? | Type | Description |
---|---|---|---|
| No | String | GUID value to filter results by spaces. |
| No | String | The service ID of the item; for example, oracle.webcenter.doclib searches only documents. If omitted, this searches across all services. |
| Yes | String | Search terms. |
| No | List | Collection of predicates. |
| No | Boolean | Whether to fetch refiners. If omitted, the default value is false. |
| Yes | Integer | Specifies the index of the first matching result that should be included in the result set (0-n ... zero based). This is used for pagination. |
| Yes | Integer | Number of results to display. |
The searchSes
method returns:
element
To use the Search data control:
searchSes
method from SearchServiceDC
. SearchServiceDCResult
return object type, onto the form, and choose Table - ADF Read-only Table. Click OK. keywords
: any search term startIndex
: 0 itemsPerPage
: 10 For information about adding data controls to your application, see Section 7.1.2, "Understanding WebCenter Portal APIs."
You can use search adapters to add other sources to your search results. WebCenter Portal framework automatically discovers these search adapters and consolidates them in formulating search results in your application. Subsequently, when you expose your custom component to the Search service in your application, it is included in the federated search.
This section describes how to extend WebCenter Portal's search through search adapters. It includes the following subsections:
To add a new search source, you must create Java classes for the new source to manage the incoming queries and return search results. After you add the necessary Java classes to your application, you must register them with the Search service.
When performing a search, the search framework calls QueryManager.createRowQueryHandler
with a query object and a List<QName>
that describes the columns sought. In return, the framework receives a QueryHandler<Row>
.
A QueryHandler
can be a QueryFederator
or a QueryExecutor
. A QueryFederator
is just a collection of other QueryHandlers
. With the QueryFederator
, the framework can get a list of the child QueryHandlers
and keep recursing until all QueryExecutors
are found.
The framework calls the execute
method on the QueryExecutor
to get a QueryResult<Row>
, which is an extension of java.util.Iterator<Row>
that iterates and retrieves rows of results.
One possible implementation would be to create these classes:
SampleQueryManager
... SampleRowQueryExecutor
... SampleRowQueryResult
... SampleRow
... To add a new search source with a similar query manager:
SampleQueryManager.java
(Example 45-5). Example 45-5 SampleQueryManager.java
SampleRowQueryExecutor.java
(Example 45-6). Example 45-6 SampleRowQueryExecutor.java
SampleRowQueryResult.java
(Example 45-7). Example 45-7 SampleRowQueryResult.java
SampleRow.java
(Example 45-8). Example 45-8 SampleRow.java
To register your query manager with the Search service, you must edit the service-definition.xml
file. The SampleQueryManager
line exposes the custom adapter's query manager implementation to the Search service so that the custom adapter is included with any search user interface.
The entry should be similar to Example 45-9.
Example 45-9 Sample Query Manager Entry in service-definition.xml
For more information about the resource-view
tag (and WebCenter Portal's Resource Action Handling framework), see Section 7.3, "Extending Your Framework Application with Custom Components."
This section describes the attributes available for searching a service. It includes the following subsections:
WebCenter Portal's search user interface exposes searches based on three fields: keywords, date, and person. Each service, in its own search implementation, honors these fields to the best of its capabilities. At minimum, it supports the keywords field. When you define your own search adapter, you must honor these fields to the best of your adapter's capabilities, as described in Section 45.3.9.3.8, "Selectable Attributes."
By default, the keyword field is in oracle.webcenter.search.TextPredicate
. The field can comprise multiple words, with the service determining how to interpret multiple words. The Search service does not tokenize before the call comes to the service, but here are some guidelines:
OR
operator is explicitly set, it is assumed that the default conjunction among the words in the keywords field is AND
. For Search service to support filtering of query results by last modified date, the service implementation of the WPSAPI must support the use of oracle.webcenter.search.AttributePredicate
, accessible from the query object, that uses oracle.webcenter.search.AttributeConstants.DCMI_MODIFIED
. The supported comparators must include the following:
oracle.webcenter.search.ComparatorConstants.GREATER_THAN
oracle.webcenter.search.ComparatorConstants.GREATER_THAN_OR_EQUALS
They may also include the following:
oracle.webcenter.search.ComparatorConstants.EQUALS
oracle.webcenter.search.ComparatorConstants.NOT_EQUALS
oracle.webcenter.search.ComparatorConstants.LESS_THAN
oracle.webcenter.search.ComparatorConstants.LESS_THAN_OR_EQUALS
The literals for comparison should be of type java.util.Calendar
.
You can use the BETWEEN
clause for dates. The complex date condition, instead of being a simple AttributePredicate
, is a ComplexPredicate
that contains one GREATER_THAN
AttributePredicate
and one LESS_THAN
AttributePredicate
with an AND
conjunction operator. This ComplexPredicate
must apply the AND
operator with the rest of the fields (that is, keywords and person).
To differentiate between this case and the default case, service authors must check on the type of the predicate that is meant for the date condition. If it is an AttributePredicate
, then it is the default case. If it is a ComplexPredicate
, then it is a special case.
For Search to support filtering of query results by person, the service implementation of the WPSAPI must support oracle.webcenter.search.AttributePredicate
, accessible from the query object, that uses oracle.webcenter.search.AttributeConstants.WPSAPI_MODIFIER
.
The comparators supported must include the following:
oracle.webcenter.search.ComparatorConstants.EQUALS
oracle.webcenter.search.ComparatorConstants.CONTAINS
oracle.webcenter.search.ComparatorConstants.STARTS_WITH
oracle.webcenter.search.ComparatorConstants.ENDS_WITH
The literals for comparison should be of type java.lang.String
.
Service authors must check on the type of predicate that is meant for the person condition. An AttributePredicate
is the default case.
The Search service (as a caller) expects that the query's getPredicate()
method likely returns an oracle.webcenter.search.ComplexPredicate
that joins an oracle.webcenter.search.TextPredicate
holding the keyword, and an oracle.webcenter.search.ComplexPredicate
holding the date condition, and an oracle.webcenter.search.AttributePredicate
holding the person condition.
The following selectable attributes/columns should be supported by your search adapter in its search implementation:
For each resource returned, the Search service user interface can display the title column, if provided. It is strongly recommended that the title column comes with the QName AttributeConstants.DCMI_TITLE
.
For resources to communicate a unique identifier that allows the Search service to render a link to navigate to the resource view (or any declared views) of the service, the column with the name oracle.webcenter.search.AttributeConstants.DCMI_IDENTIFIER
must be returned as a column accessible from a row within the QueryResult<Row>
.
The Search service extracts the DCMI_IDENTIFIER
column and feeds it into the resource viewer as the value of the resourceId
parameter when the link is clicked.
If your resource view (or any declared views) requires multiple columns in the primary key, then try to bundle all of them into a composite string value for the oracle.webcenter.search.AttributeConstants.DCMI_IDENTIFIER
column. The Search service treats that opaquely and passes it to your resource view, within which it may deconstruct the string into the various parts of the primary key.
For each resource returned, the Search service user interface can display the type column, if provided. The type column comes with the QName AttributeConstants.DCMI_TYPE
. If the DCMI_TYPE
column is not found, then the value of the DCMI_FORMAT
column is used in its place. In your resource viewer, you can make use of the resource type to aid in the rendering of a resource.
In the absence of an oracle.webcenter.search.AttributeConstants.DCMI_IDENTIFIER
column, WebCenter Portal's Search service constructs the link from the value of the column specified by oracle.webcenter.search.AttributeConstants.DCMI_URI
. With absolute URLs, the DCMI_URI
can launch a link from the search results to the URL.
This allows for services, such as the Documents service and the Page service, to invoke the browser plug-in to render various results link targets, instead of invoking a resource view.
For each resource returned, the Search service user interface can display the last modified date column, if provided. To mirror the searchable attribute of the last modified date, it is important that users can see the last modified date as a returned column in the search result.
For most users, the last modified date is more relevant than the creation date. To have better consistency between the searchable attributes and the selectable attributes (so that users know what date to search with after seeing some values in the columns), it is strongly recommended that service authors return AttributeConstants.DCMI_MODIFIED
rather than AttributeConstants.DCMI_CREATED
. The last modified date is of type java.util.Calendar
.
For each resource returned, the Search service user interface can display the creator and last modified by column, if provided. The search user interface combines them in the same column as a list of contributors for the found resource. The QNames to use are AttributeConstants.DCMI_CREATOR
and AttributeConstants.WPSAPI_MODIFIED
, respectively. The creator is of type java.lang.String
.
For each resource returned, the Search service user interface can display the icon column, if provided. The icon column comes with the QName AttributeConstants.WPSAPI_ICON_PATH
and corresponds to a valid path to an icon file that is accessible in the class path. The icon path is of type java.lang.String
.
For each resource returned, the Search service user interface can display the size column, if provided. The size column comes with the QName AttributeConstants.DCMI_EXTENT
and corresponds to the size of the resource found. The size is of type java.lang.Number
.
When you perform a search from the main view or toolbar, it should seamlessly include your new search source. For testing purposes, be sure to enter criteria that yields a result in your newly-added search source.
WebCenter Portal's Search service invokes a resource viewer using the Resource Action Handling framework. For information about registering a resource viewer to allow custom components to be found using Search, see Section 7.3, "Extending Your Framework Application with Custom Components."
You can develop a custom search user interface in a Framework application without WebCenter Portal's Search service API, but still with Oracle SES as the application's search engine by using the Oracle SES Web Service Query API to do search functions. Also, action handling for search results can be managed with WebCenter Portal's Resource Action Handling framework, so that when an application resource (for example, a document) is clicked in the search results, the resource is shown in the viewer of the resource (for example, the Documents resource viewer). Moreover, if the application uses WebCenter Portal Navigation, then certain resource types can be shown in the navigation node of the resource.
This section describes the required steps to enable Resource Action Handling for handling search result action.
The Document Services Manager creates an attribute called wc_url
in the Oracle SES index for each document. The value of the wc_url
attribute is a URL that goes to the Resource Action Handling module of the application. The URL uses the value of the WebCenter URL Prefix
parameter in the Document Service instance as the prefix.
Set the parameter value as the host and port where the application is deployed, plus the context root; for example:
wc_url
attribute for action handling in the search UI. Typically, the search UI uses the URL attribute for action handling. To use Resource Action Handling for action handling of search results of the Documents resource type, use the wc_url
attribute. Note that only search results with the Documents resource type have the wc_url
attribute. Therefore, this must be done conditionally in the search UI code.
When a search result is clicked, the resource is rendered in the resource viewer of the resource, if available. The current search results page is over-written. Use Resource Action Framework to change this behavior.
Update the adf-config.xml
file of the application to specify the Resource Action Handling class to use.
Example 45-10 shows how to use PopUpResourceActionViewHandler
to show the resource in a popup window when a search result is clicked.
Example 45-10 Specifying PopUp Behavior Handler
Example 45-11 shows how to use NavigationResourceActionHandler
to show the resource in the navigation node of the resource when a search result is clicked.
Example 45-11 Specifying the Navigation Handler
This section describes common problems and solutions for the Search service.
Problem
There is a set timeout for querying each service. If a particular service does not return search results in the allotted time, then it times out. The Announcements and Discussions services are susceptible to timeouts. (In WebCenter Portal: Spaces, pages and spaces could have timeouts from search execution.)
Solution
To improve performance at design time, you can increase the values (in milliseconds) of timeoutMs
and prepare TimeoutMs
in adf-config.xml
. The following is the relevant fragment of adf-config.xml
, found in the Application Resources panel in the ADF META-INF
folder:
<execution-properties timeoutMs="3000"prepare TimeoutMs="1000"/>
At runtime, you can configure timeouts using WLST or Fusion Middleware Control.
This chapter explains how to integrate the Activity Graph service in a WebCenter Portal: Framework application at design time.
This chapter includes the following sections:
For more information about managing and using the Activity Graph service, see:
The advent of Enterprise 2.0 has enabled users to contribute content at unprecedented rates. In view of this, there is now a need for better information retrieval technologies that are seamlessly integrated with Enterprise 2.0 products, such as Framework applications. The Activity Graph service provides the solution by leveraging collective intelligence to benefit search and social applications.
This section provides an overview of the Activity Graph service, its task flows, its benefits, and the underlying architecture. It includes the following subsections:
The Activity Graph service provides suggestions of people that a user may be interested in connecting with, based on existing connections and shared interaction with objects within the application. It also directs users to spaces or content that may be of interest, based on similar interactions with those spaces or items that the user is currently viewing.
The Activity Graph service presents these suggestions based on data gathered and analyzed by the Activity Graph engine. The Activity Graph engine provides a central repository for actions that are collected by enterprise applications. Thinking in terms of a mathematical graph, application users and the enterprise content with which they interact are nodes, and the actions between users and between users and content are directed edges (Figure 46-1).
In an enterprise, this analysis of the interaction of people with other people and with content produces similarity scores for making contextual recommendations based on an extensible set of actions, such as viewing, editing, tagging, and so on. For online vendors, for example, such contextual recommendations help provide a selection of suggested additional purchases. In a social networking environment, recommendations suggest additional connections to make based on the friends of the friends you have already connected with.
The Activity Graph engine also calculates an activity rank for content and passes this information to Oracle Secure Enterprise Search to enable more relevant content to appear higher in search results. For more information see the section "Setting Up Activity Rank for Oracle Secure Enterprise Search" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Node Classes
Activity graph nodes are grouped into classes. The default node classes for WebCenter Portal are:
WC.user
) WC.group-space
) WC.document
) WC.wiki-page
) WC.blog
) WC.topic
) If you want to extend the Activity Graph engine to integrate with other applications, then you can create custom node classes for the objects in those applications. For more information, see Section 46.4.1, "Defining Custom Node Classes."
Actions
An action is a specific type of event. It has a source and a target. For example, if a user, say Monty, looks at a document, that is a view
action with Monty as the source and the document as the target. Other actions between users and items include create
, like
, and tag
. Actions can also occur between two users, for example, when two users connect
with each other.
Table 46-1 lists the default actions defined for WebCenter Portal.
Table 46-1 WebCenter Portal Default Actions
Action URN | Description |
---|---|
| Connecting with another user. |
| Creating a space, document, wiki page, blog, topic, or message. |
| For all items except spaces:
For spaces:
|
| Commenting on a document, wiki, or blog |
| Liking a document, wiki, blog, or message |
| Tagging a document, wiki, or blog |
| Viewing a space page, document, wiki page, blog entry, or discussion topic |
| Downloading a document, wiki, or blog |
| Checking in a new version of a document, editing a wiki page or blog, replying to a topic, editing a message |
| Viewing a document, wiki page, blog, or discussion topic |
When one of these WebCenter Portal actions occurs, for example, Monty view
ing his document, it is picked up by the Events Collector, a component of WebCenter Portal's Analytics, and placed in an event table in the Activities database (Figure 46-2).
Figure 46-2 Data Collection by WebCenter Portal's Analytics
When the activity data gathering process starts, Analytics Activity Provider reads actions from the Analytics event tables and uses a registered set of mappings to generate activities (Figure 46-3). An activity is one occurrence of an action and is used to determine relations, aggregated occurrences of actions, which are stored in the relation tables. For example, the fact that Monty has viewed this particular document five times is a relation. Information in the relation tables is used to determine recommendations and search ranks.
Figure 46-3 Data Gathering by the Activity Graph Engine
If you want to integrate the Activity Graph engine with other applications, then you can create custom actions for the actions that users perform in those applications. For more information, see Section 46.4.2, "Defining Custom Actions."
Similarity Calculations
The Activity Graph Query API is a Java API, used by the Activity Graph service task flows, that queries the relation tables for recommendations using a recipe (Figure 46-4). A recipe is a weighted list of similarity calculations. A similarity calculation provides a similarity score (a number between zero and one) that designates how similar two objects are to each other given a specific criterion. The weighting of each calculation determines its significance in deciding the overall recommendation score. Recommendations are ordered by their total recommendation score.
Figure 46-4 Recommendations Calculation by the Activity Graph Service
Table 46-2 lists the similarity calculations used by the Activity Graph service task flows (for information about the task flows, see Section 46.2.3.1, "Activity Graph Service Task Flows").
Table 46-2 Activity Graph Service Similarity Calculations
URN | Applies to | Description | Used by Task Flow |
---|---|---|---|
| Documents Wiki pages Blogs Topics | Users who edited the current item also edited the recommended item | Similar Items |
| Documents Wiki pages Blogs Topics | Users who liked the current item also liked the recommended item | Similar Items |
| Documents Wiki pages Blogs Topics | Users who commented on the current item also commented on the recommended item | Similar Items |
| Documents Wiki pages Blogs Topics | Users who tagged the current item also tagged the recommended item | |
| Documents Wiki pages Blogs Topics | Users who interacted in any way with the current item, including viewing it, also interacted in some way with the recommended item | Similar Items |
| Spaces | Users who participated in the current space also participated in the recommended space | Similar Spaces |
| Spaces | Users who interacted in any way with the current space, including viewing pages or content in the space, also interacted in some way with the recommended space | Similar Spaces |
| Users | The current user shares a number of connections with the recommended user | Recommended Connections |
| Users | The current user edited some items that the recommended user also edited | Recommended Connections |
| Users | The current user likes some items that the recommended user also likes | Recommended Connections |
| Users | The current user commented some items that the recommended user also commented on | Recommended Connections |
| Users | The current user tagged some items that the recommended user also tagged | Recommended Connections |
| Users | The current user interacted in some way, including viewing, with some items that the recommended user also interacted with | Recommended Connections |
You can edit these similarity calculations to change the weightings. If you want to integrate the Activity Graph engine with other applications, then you can create additional similarity calculations. For more information, see Section 46.4.3, "Defining Custom Similarity Calculations.".
Query Result Post-Processors (QRPPs)
After the initial list of recommendations for a particular object is generated, the results can be filtered into something more appropriate and useful to present to users. This is achieved using Query Result Post-Processors (QRPPs). QRPPs take the current list of recommendation results return a modified list as output. A QRPP may filter out recommendations, for example by removing recommendations for objects that the current user is not permitted to see, or may add or modify result metadata.
WebCenter Portal provides three QRPPs (run in the following order):
You can create your own QRPPs to further filter the results or to integrate the Activity Graph engine with other applications. For more information, see Section 46.4.6, "Registering Custom QRPPs."
Activity Graph Service Task Flows
Recommendations are presented to users via the Activity Graph service task flows. The Activity Graph service provides the following task flows:
For more information, see Section 46.2.3.1, "Activity Graph Service Task Flows."
The Activity Graph service requires that the Activity Graph engine has been installed and configured. For more information, see the Oracle Fusion Middleware Installation Guide for Oracle WebCenter Portal.
In addition, in your application you must create a connection to WebCenter Portal's schema and to the Activities database. For more information, see Section 7.2.2, "Setting Up a Database Connection."
The application must be configured to send usage events to the Analytics Event Collector. For more information, see the section "Registering an Analytics Collector for Your Application" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Before the Activity Graph service can make recommendations, the Activity Graph engines must have been run at least once to gather the data and calculate similarity scores. For more information see the section "Preparing Data for the Activity Graph Service" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
The items suggested in the Similar Items task flow depend on the services that are available in your application. For example, documents are only recommended if the Documents service is available. For information about making a service available in your application, refer to the appropriate chapter for that service. An item can also be filtered out of the recommendations by the Resource Authorizer of the service that owns the item.
At runtime, the context is provided for the Activity Graph service task flow:
The task flow then queries the Activity Graph database for recommendations through the Activity Graph Query API, using the recipe provided in the task flow parameters. The list of recommendations returned from the Query API may be filtered by QRPPs before being listed in the task flow.
For more information about the service at runtime, see the section "Working with the Activity Graph Service" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
This section describes required steps for adding the Activity Graph service to your application. It includes the following subsections:
The flow chart (Figure 46-5) and table (Table 46-3) in this section provide an overview of the prerequisites and tasks required to get the Activity Graph service working in Framework applications.
Figure 46-5 Configuring the Activity Graph Service for WebCenter Portal: Framework Applications
Table 46-3 Configuring the Activity Graph Service for WebCenter Portal: Framework Applications
The Activity Graph service requires a the following connections:
Note: While you can set up the connections to back-end servers at design time in JDeveloper, you can later add, delete, or modify connections in your deployed environment using Enterprise Manager Fusion Middleware Control. For more information, see the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. |
This section provides descriptions of the Activity Graph service task flows and steps you through the addition of the Activity Graph service to your application. It includes the following subsections:
This section describes and illustrates the task flows available through the Activity Graph service.
Table 46-4 lists the task flows provided by the Activity Graph service.
Table 46-4 Activity Graph Service Task Flows
Task Flow | Description |
---|---|
Recommended Connections | This task flow enables viewing and connecting to users whom the Activity Graph engine has calculated to be similar to the current user. For more information, see Section 46.2.3.1.1, "The Recommended Connections Task Flow." |
Similar Spaces | This task flow enables viewing and interacting with spaces that the Activity Graph engine has calculated to be potentially of interest to the current user. For more information, see Section 46.2.3.1.2, "The Similar Spaces Task Flow." |
Similar Items | This task flow enables viewing and interacting with the WebCenter Portal items that the Activity Graph engine has calculated to be potentially of interest to the current user. For more information, see Section 46.2.3.1.3, "The Similar Items Task Flow." |
The Recommended Connections task flow enables viewing and connecting to users who have been calculated to be similar to the current user.
The Recommended Connections task flow is available by default on each user's Profile page.
For information about how to use this task flow at runtime, see the section "Working with the Recommended Connections Task Flow" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Table 46-5 shows the similarity calculations and their weightings used in the default recipe for the Recommended Connections task flow. You can change this recipe by editing the similarityURNList
task flow binding parameter. For more information, see Section 46.2.3.3, "How to Modify Activity Graph Service Task Flow Parameters."
Table 46-5 Default Recipe for Recommended Connections
Similarity Calculation | Weight |
---|---|
user-connect | 100 |
user-edit | 50 |
user-like | 50 |
user-comment | 10 |
user-tag | 10 |
user-all | 1 |
The user with the highest overall recommendation score is displayed first in the task flow. For each recommended user, if the highest scoring related similarity calculation has an associated reason string, that string is displayed underneath the user's name and description to provide details for why the user was recommended.
If no reason string is defined for the top similarity function, nothing is displayed. You can edit the similarity calculation reason strings, or provide additional strings. For more information, see the section "Customizing Reason Strings for Similarity Calculations" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
The Similar Spaces task flow enables viewing and interacting with spaces that have been calculated to be potentially of interest to users of the current space. The suggested spaces are not specific to the current user, however the task flow lists only those spaces that the current user has permission to see.
For information about how to use this task flow at runtime, see the section "Working with the Similar Spaces Task Flow" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Table 46-6 shows the similarity calculations and their weightings used in the default recipe for the Similar Spaces task flow. You can change this recipe by editing the similarityURNList
task flow binding parameter. For more information, see Section 46.2.3.3, "How to Modify Activity Graph Service Task Flow Parameters."
The space with the highest overall recommendation score is displayed first in the task flow. For each recommended space, if the highest scoring related similarity calculation has an associated reason string, that string is displayed underneath the space's name and description.
If no reason string is defined for the top similarity calculation, nothing is displayed. You can edit the similarity calculation reason strings, or provide additional strings. For more information, see the section "Customizing Reason Strings for Similarity Calculations" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
The Similar Items task flow enables viewing and interacting with the WebCenter Portal items that the Activity Graph engine has calculated to be potentially of interest to users of the currently selected item. The suggested items are not specific to the current user, however the task flow lists only those items that the current user has permission to see.
Items of interest may include a wiki page, a blog post, a document, or a discussion topic.
The Similar Items task flow determines the context for its recommendations based on items selected on other task flows on the page. This information is provided through task flow input parameters (typically using an EL expression) or through the WebCenterResourceSelected
ADF UI event. The task flows that determine the context of the Similar Items task flow are:
The Similar Items task flow is included in the Document Explorer Related Items pane for files to show items similar to the currently viewed file. For more information, see the section "Viewing and Adding Tags, Links, and Recommendations to a File" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
For information about how to use this task flow at runtime, see the section "Working with the Similar Items Task Flow" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Table 46-7 shows the similarity calculations and their weightings used in the default recipe for the Similar Items task flow. You can change this recipe by editing the similarityURNList
task flow binding parameter. For more information, see Section 46.2.3.3, "How to Modify Activity Graph Service Task Flow Parameters."
Table 46-7 Default Recipe for Similar Items
Similarity Calculation | Weight |
---|---|
item-edit | 100 |
item-like | 50 |
item-comment | 20 |
item-tag | 10 |
item-all | 1 |
The item with the highest overall recommendation score is displayed first in the task flow. For each recommended item, if the highest scoring related similarity calculation has an associated reason string, that string is displayed underneath the item's name and description to provide details for why the item was recommended.
If no reason string is defined for the top similarity function, nothing is displayed. You can edit the similarity calculation reason strings, or provide additional strings. For more information, see the section "Customizing Reason Strings for Similarity Calculations" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
The section describes how to add the Recommended Connections task flow to an application page. The steps provided here are the same for all Activity Graph service task flows.
To add the Recommended Connections task flow to your Framework application:
.jspx
) page. You may be prompted to add the Activity Graph service ADF library (activitygraph-service-view.jar
) to the project. Confirm by clicking Add Library. This operation may take a moment to complete.
For more information, see Section 46.2.3.4, "Activity Graph Service Task Flows and Task Flow Parameters."
The task flow is added to the page, and the project's libraries are configured to run the task flow.
Each Activity Graph service task flow has a set of required and optional task flow binding parameters. These provide a means of capturing information that is useful to the task flow's successful function.
In addition to providing required values for successful task flow rendering, you can use task flow binding parameters to customize the appearance and behavior of a task flow instance. For example, you can use parameter values to determine whether headers and footers are rendered, the number of rows and columns of information to show, whether to apply a filter to returned data, and the like.
You can provide task flow binding parameter values when you drag and drop a task flow onto an application page. Doing so opens the Task Flow Bindings dialog (for more information, see Section 46.2.3.2, "How to Add Activity Graph Service Task Flows to a Page").
You can also adjust task flow binding parameter values after you have placed a task flow on a page.
To access the Edit Task Flow Binding dialog:
Figure 46-6 shows an example of a Recommended Connections task flow in the Executables section.
Figure 46-6 Recommended Connections in the Page Data Binding Definition
Figure 46-7 Edit Task Flow Binding Dialog for Recommended Connections
Table 46-8 lists and describes task flow binding parameters applicable to the Activity Graph service.
Table 46-8 Activity Graph Service Task Flow Binding Parameters
Parameter | Task Flows | Description |
---|---|---|
| Recommended Connections Similar Spaces Similar Items | The ID of the person, space, or item to use as a context for recommendations. For connections, the default value is the expression language token for the currently logged in user. For spaces, the default value is the expression language token for the resource ID of the space containing the task flow. For items, the value is derived from the selection event. |
| Similar Items | The node class of the context. By default the information is derived from the selection event. |
| Similar Spaces Similar Items | The name of the space or item to use as a context for recommendations. For spaces, the default value is the expression language token for the resource ID of the space containing the task flow. For items, the value is derived from the selection event. |
| Recommended Connections Similar Spaces Similar Items | A comma separated list of registered similarity calculation = weight pairs. The list determines what recommendations appear and how they are ordered. The default recipes for each task flow are listed in Section 46.2.3.1, "Activity Graph Service Task Flows." |
| Similar Items | A comma separated list of the node classes of objects to exclude from the recommendations. By default this is empty, meaning that there are no restrictions on which classes of objects may be returned. |
| Recommended Connections Similar Spaces Similar Items | A comma separated list of registered actions. The task flow will not show people, spaces, or items on which the logged in user took any of the listed actions. For example, the default value for the Similar Items task flow is create, edit, comment, tag, meaning that users are not recommended items which they themselves created, edited, commented on, or tagged. The WebCenter Portal default actions are listed in Table 46-1. |
| Similar Items | Used in conjunction with |
| Similar Items | Used in conjunction with For example |
| Similar Items | Determines whether links in the task flow launch content in inline popups (The default value is |
This section describes advanced features available with the Activity Graph service. It includes the following subsections:
The Activity Graph service provides a data control that enables you to create your own user interface (task flows) for the service.
The Activity Graph data control exposes two methods to query Activity Graph for suggestions of similar items and similar users, and one method to record items the user is not interested in.
getSimilarObjects
—Returns a list of SuggestionWrappers
for a given source and similarity calculation, with choices for complex similarity calculation recipes and filtering of node classes and actions. recordNotInterested
—Records that the user is not interested in a given object. Note: For convenience, the |
Typically, there are three things that you need to bind your data control to a method: a MethodAction
, a MethodIterator
to iterate through the results of the method, and a Tree
to pick attributes of the resulting data structure. You can create these manually in a page definition file, or more easily, use the wizards that JDeveloper provides.
To add the Activity Graph data control to your project:
.jspx
) in your project). classURN
—The URN of the node class of the source for the recommendation. objectURN
—The URN of the source for the recommendation. userCredentialClass
—if null, the WebCenter Portal user type is used. recipe
—a comma separated list of similarity calculations to be used and their associated weights. For example: classURNRestrictionList
—a comma separated list of classes to filter the results. excludeObjectActionList
—a comma separated list of action URNs to use to filter the results. WebCenter Portal provides REST APIs to support the Activity Graph service. Use the Activity Graph service REST APIs to create your own interface for providing recommendations for connections, spaces, and items.
This section describes the REST APIs associated with the Activity Graph service. It includes the following subsections:
For an introduction to the REST APIs, see Chapter 54, "Using Oracle WebCenter Portal REST APIs."
Each REST service has a link element within the Resource Index that provides the entry point for that service. For the Activity Graph service there are two entry points: one for recommendations and one for items. To find the entry points for the Activity Graph service, find the link element with one of the following resourceType
s:
The corresponding href
or template
element provides the URI entry point. The client sends HTTP requests to this entry point to work with the Activity Graph service.
For more information about the Resource Index, see Section 54.5.1, "The Resource Index."
For more information about resource types, see Section 54.5.2.1, "Resource Type."
When the client has identified the entry point to use, it can then navigate through the resource type taxonomy to perform the required operations. For more information about the individual resource types, see the appropriate section in Section 46.3.2.2, "Activity Graph Resource Type Taxonomy."
The taxonomy for the Activity Graph service is:
There are no specific security considerations for this service. For general security considerations, see Section 54.8, "Security Considerations for WebCenter Portal REST APIs."
This section provides you with all the information you need to know about each resource type. It includes the following subsections:
Use this resource to identify the URI to use to retrieve (GET
) recommended connections, spaces, or items based on their similarity to the specified object. The response from a GET
operation includes each object in the requested list, and each object includes links used to operate on that object.
Nodes in the activity graph are identified by a combination of node class URN and object URN.
For example, to identify the user, monty, you can specify:
classURN=WC.user
objectURN=monty
The nodes provided out of the box are all WebCenter Portal resources (users, documents, spaces, and so on) and so have WebCenter Portal service and resource IDs. The Activity Graph REST APIs provide another way for you to identify these out of the box nodes using the serviceId
and objectURN
(which contains the resource ID).
For example, to identify the user, monty, you can specify:
serviceId=oracle.webcenter.people
objectURN=monty
If a service's objects are further classified by resource type, for example, the Documents service, you must also specify the resource type.
For example, to identify a particular document, you can specify:
serviceId=oracle.webcenter.doclib
resourceType=document
objectURN=document1
Any new node classes that are created (that is, non-native WebCenter Portal objects) should be identified using node class and object URNs.
Navigation Paths to recommendations
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for recommendations
The following methods are supported by this resource:
GET
startIndex
, itemsPerPage
, utoken
For information about these common parameters, see "Common Request Query Parameters".
The following additional parameters are available:
classURN
—the node class URN that identifies the type of the object for which you are requesting recommendations. For example WC.user
, WC.group-space
. objectURN
—the object URN that provides a unique identifier for the object for which you are requesting recommendations. For example monty
, 1000
. recipe
—a semicolon-separated list of similarity URNs and optional associated weights (indicated by a colon) that is used to determine which objects to recommend. For example, gs-edit:10;gs-all:1
classURNRestrictions
—a comma-separated list of types of objects, identified by node class URN, to exclude from the recommendations excludeObjectActions
—a comma-separated list of actions, identified by action URN, used to exclude objects from the recommendations if the current user has performed that action on the object. For example, if the client is retrieving recommended spaces, the gs-edit
action could be specified to exclude spaces that the current user has edited (since the user already knows about those spaces). serviceId
—the WebCenter Portal service ID that identifies the type of object for which you are requesting recommendations (you can use this instead of classURN
for out of the box objects). resourceType
—The WebCenter Portal resource type of the object for which you are requesting recommendations, used in combination with serviceId
if necessary. userCredentialClassURN
—the node class URN of the user exercising the REST API. The default value is WC.user
. If you are integrating the Activity Graph engine with another application, this may need to be a different node class. For more information, see Section 54.5.2.5, "Templates."
Resource Types Linked to from recommendations
Table 46-9 lists the resource types that the client can link to from this resource.
The recommendation response contains the recommended objects and the URIs for use in accessing those objects.
Navigation Paths to recommendation
This section shows how the client can navigate through the hypermedia to access the recommendation resource:
Read-only Elements for recommendation
Table 46-10 lists the read-only elements for the recommendations resource.
Table 46-10 Read-only Elements for recommendation
Element | Type | Description |
---|---|---|
score | Float | The overall score of this recommendation relative to the other recommendations in the list. This is the weighted sum of the component scores associated with each of the similarity URNs that comprise the recipe and is a floating point number between 0 and 1. |
item | urn:oracle:webcenter:activitygraph:items:item | The recommended user, item, or space. |
componentScores | A list of | A list of the component scores associated with the different similarity URNs in the recipe for the recommendation. A component score may have a reason and a link which can be used to retrieve the common items that the user and the recommended object have interacted with. |
Use this resource to identify the URI to use to retrieve (GET
) objects that the source object and recommended object have in common. You can use this to determine the reasons why a particular object was recommended. The response from a GET
operation includes each item in this collection of items, and each item includes links used to operate on that item.
Navigation Paths to items
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for items
The following methods are supported by this resource:
GET
startIndex
, itemsPerPage
, utoken
For information about these common parameters, see "Common Request Query Parameters".
The following additional parameters are available:
similarityURN
—the URN of the similarity calculation to be used determine which objects are similar to the recommended object. For example item-tag
, gs-edit
, user-connect
srcClassURN
—the node class URN that identifies the type of the object that was used to request the recommendations. For example WC.user
, WC.group-space
. srcObjectURN
—the URN of the object that was used to request the recommendations. For example monty
, 1000
. trgClassURN
—the node class URN that identifies the type of the recommended object trgObjectURN
—the object URN that provides a unique identifier for the recommended object userCredentialClassURN
—the node class URN of the user exercising the REST API. The default value is WC.user
. If you are integrating the Activity Graph engine with another application, this may need to be a different node class. For more information, see Section 54.5.2.5, "Templates."
Resource Types Linked to from items
Table 46-11 lists the resource types that the client can link to from this resource.
Use this resource type to identify the URI to use to update (PUT
) a recommendation to indicate user interest in the recommended object.
Navigation Paths to item
This section shows how the client can navigate through the hypermedia to access the item resource:
Supported Methods for item
The following method is supported by this resource type:
PUT
Writable Elements for item
Table 46-12 lists the writable elements for this resource type.
Table 46-12 Writable Elements for item
Element | Type | Required | Constraints | Description |
---|---|---|---|---|
status | String | Yes | interested not interested | Whether the user is interested in the object |
Read-only Elements for item
Table 46-13 lists the read-only elements for this resource type. Not all of these elements are available for all objects.
Table 46-13 Read-only Elements for item
Element | Type | Description |
---|---|---|
classURN | String | Node class of the object |
objectURN | String | Identifier for the object |
name | String | Name of the object |
description | String | Description of the object |
modified | Date | Date on which the object was last updated |
modifiedByUser | PersonReference | User information about the user who last updated the object, including GUID, ID, display name, and a link to the profile icon |
author | PersonReference | User information about the user who created the object, including GUID, ID, display name, and a link to the profile icon |
Resource Types Linked to from item
Table 46-14 lists the resource types that the client can link to from this resource.
Out of the box, Activity Graph includes metadata definitions for mapping WebCenter Portal service event data to WebCenter Portal's Analytics. This metadata is automatically loaded the first time the Activity Graph engines application starts.
You can extend Activity Graph metadata to change how actions are gathered from WebCenter Portal's Analytics by manipulating XML files. The XML files can be exported, edited in a text editor, and then imported.
To update Activity Graph metadata definitions, you must first export them to a local XML file:
After exporting the metadata definitions to an appropriate file, you can then edit the file in an editor of your choice to add your own definitions. When you have made your changes, you must import the metadata file back to the managed server. For information about importing Activity Graph metadata definition files, see the section "Importing Activity Graph Metadata" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
This section includes the following subsections:
The Activity Graph metadata provide definitions for the node classes that represent WebCenter Portal objects, such as users, spaces, and documents. For more information and for a list of the default node classes supported by WebCenter Portal, see "Node Classes".
You can define your own node classes, for other WebCenter Portal objects or for objects from other applications, by exporting the Activity Graph metadata definitions to an XML file, editing the file, and then importing the metadata back into WebCenter Portal. For example, if you want to integrate your CRM application with Activity Graph, you could define a node class for service requests.
To define a custom node class:
exportAGMetadata
to export the Activity Graph metadata to a local XML file. For more information, see the section "Exporting Activity Graph Metadata" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. URN
—An attribute of the nodeClass
element, this is a string that uniquely identifies the node class nodeType
—A sub-element that indicates whether objects defined by the node class are items or users. Valid values are Item
or User
. numericURNs
—A sub-element that indicates whether or not the URNs of the objects of this class are numeric. This enables you to integrate Activity Graph more efficiently with applications that use numeric IDs. Valid values are true
or false
. properties
—A list of name, value pairs. A node class's properties are available at runtime to provide additional metadata about the class. For example, all out-of-the-box WebCenter Portal objects modeled in Activity Graph define properties for serviceID
and resourceType
, which are used by the Activity Graph task flows to tailor the display of recommendations based on their service and resource type: Example 46-1 Node Class Definition
importAGMetadata
to import the updated Activity Graph metadata file to the managed server where the Framework application is deployed. For more information, see "Importing Activity Graph Metadata" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. Activity Graph includes metadata definitions for the actions that occur in Framework applications. For more information, see "Actions".
You can define your own actions, for WebCenter Portal or for other applications, by exporting the Activity Graph metadata definitions to an XML file, editing the file, and then importing the metadata back into WebCenter Portal. For example, if you want to integrate your CRM application with Activity Graph, you could define new actions for opening a service request, assigning a service request to a customer service representative, and closing a service request.
To define a custom action:
exportAGMetadata
to export the Activity Graph metadata to a local XML file. For more information, see the section "Exporting Activity Graph Metadata" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. URN
—An attribute of the action
element, this is a string that uniquely identifies the action actionType
—A sub-element. Valid values are: Simple
—These actions are useful for counting. They have no other metadata besides the source, the target, and the occurred time. For example, WebCenter Portal comes with a preregistered view-count
simple action whose associated relation value increases each time the person clicks on the same item, but also decays over time. Boolean
—These actions are useful when you just want to know whether something has happened or not, but not how many times it has happened. Boolean actions have one additional Boolean as metadata. For example, WebCenter Portal comes with a Boolean view
action whose associated relation value doesn't increase each time the person clicks on the same item. It just records whether a person has clicked on a specific item or not. Non-negative Integer
—Actions that have one additional integer as metadata, where the integer cannot be negative. Rating (assigning a number of stars) is the typical example. Integer
—Actions that have one additional integer as metadata. This can be used for ratings that allow negative values. symmetric
—A sub-element that indicates whether the source and target of the action are interchangeable. An example of a symmetric action is the connect
action, which occurs when two users connect in the People Connections service. Valid values are true
or false
. sourceType
—A sub-element that identifies the type of object that performs the action. Valid values are User
or Item
. targetType
—A sub-element that identifies the type of object on which the action is performed. Valid values are User
or Item
. relationType
—A sub-element. Valid values are Sum
or LastAssigned
. Sum
actions increment each time they occur, for example the edit-count
action. LastAssigned
actions keep whatever value was passed in the most recent occurrence of the action. Non-counting simple actions like create
and edit
are LastAssigned
. An example of a LastAssigned Integer
action would be a rating action. relationDecayPeriod
—(Optional) A sub-element that identifies the amount of time, in days, after which the action starts to lose (or decay) value. When computing the relation value, the value of each action is multiplied by the decay factor every decay period following the occurrence of the action. relationDecayFactor
—(Optional) A sub-element that is a floating value between 0 and 1 that determines how much the action's value decreases (or decays) after the decay period. When computing the relation value, the value of each action is multiplied by the decay factor every decay period following the occurrence of the action. Example 46-2 Action Definition
importAGMetadata
to import the updated Activity Graph metadata file to the managed server where the Framework application is deployed. For more information, see "Importing Activity Graph Metadata" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. Activity Graph includes metadata definitions for the similarity calculations that are used by WebCenter Portal. For more information, see "Similarity Calculations".
You can define your own similarity calculations, for WebCenter Portal or for other applications, by exporting the Activity Graph metadata definitions to an XML file, editing the file, and then importing the metadata back into WebCenter Portal. For example, if you want to integrate your CRM application with Activity Graph, you could define an item-assign
similarity calculations for to help recommend other service requests that were assigned to the same person.
To define a custom similarity calculation:
exportAGMetadata
to export the Activity Graph metadata to a local XML file. For more information, see the section "Exporting Activity Graph Metadata" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. URN
—An attribute of the similarityCalculation element that is a string that uniquely identifies the similarity calculation. similarityFunction
—A sub-element that identifies the function that measures the similarity of items. There is currently only one supported similarity function: Tanimoto
. This function measures similarity between two items as the ratio of the number of common actions to the total number of actions on those items. domainClasses
—A sub-element that identifies the node classes for which similarity scores are calculated. These are the targets of the actions represented in the similarity calculation's relation combination. backgroundClasses
—A sub-element that identifies the node classes that are the sources of the actions in the similarity calculation's relation combination. relationCombination
—A sub-element that defines a new relation by combining one or more registered relations. There are two types of relation combination: Boolean OR
(used by all WebCenter Portal out-of-the-box similarity calculations) The resulting relation combination has a value of 1
(meaning true) if any of the component relations have a positive value, and 0
(meaning false) otherwise. Weighted Sum
(used by all WebCenter Portal out-of-the-box rank calculations) The resulting relation combination is a weighted sum of the values for each of its component relations. For each component relation, specify:
actionURN
—the URN of the action for the component relation use inverse
—set to false
(the default) to use the component relation to calculate similarity directly for the target objects, or true
to use the component relation to calculate similarity for the source objects rather than the target objects. For example, if the view
relation has the source object (user
) viewing a target object (document
), then to calculate similarity for documents, set use inverse=false
. To calculate similarity for source objects (users), set use inverse=true
. weight
—(for Weighted Sum
relation combinations) the weight to apply to the component relation represented as a floating-point number Example 46-3 Similarity Calculation Definition
importAGMetadata
to import the updated Activity Graph metadata file to the managed server where the Framework application is deployed. For more information, see "Importing Activity Graph Metadata" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. Activity Graph includes metadata definitions for the rank calculations that are used by the Activity Graph Rank Engine to calculate the importance of nodes in the activity graph. For more information, see the section "Setting Up Activity Rank for Oracle Secure Enterprise Search" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
You can define your own rank calculations, for WebCenter Portal or for other applications, by exporting the Activity Graph metadata definitions to an XML file, editing the file, and then importing the metadata back into WebCenter Portal.
To define a custom rank calculation:
exportAGMetadata
to export the Activity Graph metadata to a local XML file. For more information, see the section "Exporting Activity Graph Metadata" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. URN
—An attribute of the rankCalculation
element, this is a string that uniquely identifies the rank calculation. domainClasses
—A sub-element that identifies a list of node classes to which the rank calculation applies. relationCombination
—A sub-element that defines a new relation by combining one or more registered relations. There are two types of relation combination: Boolean OR
(used by all WebCenter Portal out-of-the-box similarity calculations) The resulting relation combination has a value of 1
(meaning true) if any of the component relations have a positive value, and 0
(meaning false) otherwise. Weighted Sum
(used by all WebCenter Portal out-of-the-box rank calculations) The resulting relation combination is a weighted sum of the values for each of its component relations. For each component relation, specify:
actionURN
—the URN of the action for the component relation use inverse
—set to false
(the default) to use the component relation to calculate similarity directly for the target objects, or true
to use the component relation to calculate similarity for the source objects rather than the target objects. For example, if the view
relation has the source object (user
) viewing a target object (document
), then to calculate similarity for documents, set use inverse=false
. To calculate similarity for source objects (users), set use inverse=true
. weight
—(for Weighted Sum
relation combinations) the weight to apply to the component relation represented as a floating-point number resultAcceptorClass
—A sub-element that identifies the fully qualified class name for the class that implements the IRankResultAcceptor
interface. This class receives a set of object rankings from the Rank Engine and stores them in a search engine where they can later be used to influence search query ranking. WebCenter Portal includes one rank acceptor out of the box, which will persist ranks to Oracle Secure Enterprise Search. Example 46-4 Rank Calculation Definition
importAGMetadata
to import the updated Activity Graph metadata file to the managed server where the Framework application is deployed. For more information, see "Importing Activity Graph Metadata" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. Activity providers are used by the Activity Graph engine during the gathering process to generate activities from recorded occurrences of actions. For example, the Analytics Activity Provider reads actions from the Analytics event tables and uses a registered set of mappings to generate activities. These activities are then used to determine relations, which are used in turn to determine recommendations and search ranks.
If you want to integrate other applications with the Activity Graph engine, you can create your own activity providers to generate activities from those applications.
To make a custom activity provider available to the Activity Graph engine, you must register it by adding an activity provider assignment to the Activity Graph metadata definitions. An activity provider assignment maps the triple of the action
, srcClass
, and trgClass
to the Java class that implements the activity provider.
Note: If more than one triple maps to the same provider class, there must be a provider assignment for each triple. For example, the out-of-the-box metadata declares a number of provider assignments mapping all triples to a single class, |
To register a custom activity provider:
exportAGMetadata
to export the Activity Graph metadata to a local XML file. For more information, see the section "Exporting Activity Graph Metadata" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. action
—An attribute of the providerAssignment
element, this specifies which action is being mapped to the providerClass
. Specify one registered action. srcClass
—An attribute of the providerAssignment
element, this specifies which source class is being mapped to the providerClass
. Specify one registered node class. trgClass
—An attribute of the providerAssignment
element, this specifies which target class is being mapped to the providerClass
. Specify one registered node class. providerClass
—A sub-element that identifies the fully qualified name of the Java class that implements the activity provider for the specified action, source class, and target class triple. Example 46-5 Activity Provider Assignment Definition
importAGMetadata
to import the updated Activity Graph metadata file to the managed server where the Framework application is deployed. For more information, see "Importing Activity Graph Metadata" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. WebCenter Portal provides several QRPPs to filter recommendation results. For more information, see "Query Result Post-Processors (QRPPs)".
You can create your own QRPPs to further filter recommendation results or to provide display metadata for recommendations when you are integrating the Activity Graph engine with other applications. To make a QRPP available to the Activity Graph engine, you must register it by adding a QRPP registration to the Activity Graph metadata definitions.
To register a custom QRPP:
exportAGMetadata
to export the Activity Graph metadata to a local XML file. For more information, see the section "Exporting Activity Graph Metadata" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. URN
—An attribute of the QRPP
element, this is a string that uniquely identifies the QRPP. priority
—An attribute of the QRPP
element, this is an integer indicating the order in which the QRPP should be run in relation to the other registered QRPPs. description
—A sub-element that provides a brief description of what the QRPP does. providerClass
—A sub-element that identifies the fully qualified name of the Java class that implements the QRPP. Example 46-6 QRPP Definition
importAGMetadata
to import the updated Activity Graph metadata file to the managed server where the Framework application is deployed. For more information, see "Importing Activity Graph Metadata" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. This section provides information to assist you in troubleshooting problems you may encounter while using the Activity Graph service.
The following troubleshooting solutions assume that:
WC_Utilities
managed server is up and running openusage enabled
is true
Problem
Recommendations are not shown in the task flows even after valid user activity.
Solution
Check whether the events are being captured by the Analytics Event Collector. You can verify this by checking the collector logs. If the logs do not show the events being captured, the problem is with the Analytics Event Collector.
For more information, see the section "Validating Analytic Event Collection" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Problem
The Analytics Event Collector logs show that events are being captured but recommendations are not shown in the task flows.
Solution
Check the last run time of the Activity Graph engine on the Activity Graph Schedule and Status Page. You may need to adjust the schedule or launch an immediate run in order to gather and analyze recent events.
Problem
The Activity Graph engine has run successfully recently, but recommendations are not shown in the task flows.
Solution
Verify the relation tables in the Activities database (ActivitiesDS
) for the presence of any data. If the Activity Graph engines are working correctly, these relation tables should have some data in them. If data is present in the tables and there are still no recommendations in the task flows, then the task flows might be broken.
Problem
Some users are not shown as recommended connections in spite of valid user interactions.
Solution
This might happen if WebCenter Portal: Spaces and the services are not wired with the same OID. In this case, users who are not present in the OID to which the services are wired will not be suggested recommendation connections. The same users should be present in both the OIDs, or the WebCenter Portal: Spaces and services should be wired to the same OID.
Problem
A space is not suggested in the Similar Spaces task flow even after a successful user interaction.
Solution
Check to see that the logged in user has permissions to access the space by finding the space in the Browse Spaces task flow.
For recommended items to be displayed in the Similar Items task flow, the item for which the recommended items are to be displayed should be selected in another task flow on the page (for example, the Document Manager task flow).
Problem
An item is not suggested in the Similar Items task flow even after valid user interaction.
Solution
This could be because the current user does not have view privileges on the item. This is the correct behavior. Users should not see recommendations for items on which they do not have sufficient privileges. If the user should be able to see the item, grant the user sufficient privileges.
Problem
Specific types of items are not being displayed (for example, documents, wikis, and blogs are seen in the task flow, but not discussions).
Solution
Check the status of the specific service. If the service is unavailable items from that service will not be displayed in the Similar Items task flow.
Problem
Items are suggested only for some users; other users do not get any suggested items in the Similar Items task flow.
Solution
This might happen if WebCenter Portal: Spaces and the services are not wired with the same OID. In this case, users who not present in the OID to which the services are wired will not see suggested items from that service. The same users should be present in both the OIDs, or the WebCenter Portal: Spaces and services should be wired to the same OID.
Part VIII contains the following chapters:
The Analytics service enables you to display usage and performance metrics for Framework applications. This chapter describes how to integrate the Analytics service into applications built using Oracle WebCenter Portal: Framework.
This chapter includes the following sections:
For information about using any of the analytics task flows, see Chapter "Working with the Analytics Service" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
For a detailed list of database tables and parameters, see Appendix I, "WebCenter Portal Analytics Database Schema."
The Analytics service offers real-time usage and activity reporting for your portal. This section provides an overview of the Analytics service, its task flows, and its usages. It includes the following subsections:
The Analytics service allows administrators and users to track and analyze traffic and usage in WebCenter Portal application. The Analytics service provides the following basic functionality:
Table 47-1 lists the analytics task flows available with WebCenter Portal. These task flows work similarly for Spaces and Framework applications. For detailed information about these task flows and how to use them, see "Understanding Analytics Task Flows in Spaces" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Table 47-1 Analytics Task Flows Available in JDeveloper
Task Flows | Description |
---|---|
WebCenter Portal Traffic | A summarized view for common events within the portal. |
Page Traffic | Displays the number of page hits and the number of unique users that visited any page within the portal. |
Login Metrics | Reports portal logins. |
Portlet Traffic | Displays usage data for a portlet. |
Portlet Response Time | Displays performance data for a portlet. |
Portlet Instance Traffic | Displays usage data for a portlet instance*. |
Portlet Instance Response Time | Displays performance data for a portlet instance*. |
Search Metrics | Tracks portal searches. |
Document Metrics | Tracks document views. |
Wiki Metrics | Tracks most popular/least popular wikis. |
Blog Metrics | Tracks most popular/least popular blogs. |
Discussion Metrics | Tracks most popular/least popular discussions. |
* If the same portlet is displayed on several different pages, each placement is known as a portlet instance.
The Analytics service requires that the analytics schema (ACTIVITIES
) is installed and up and running. In addition, Oracle WebCenter Portal's Analytics Collector must be up and running on the WC_Utilities
managed server. For detailed installation instructions, see Oracle Fusion Middleware Installation Guide for Oracle WebCenter Portal.
On install, the Analytics Collector is configured to receive events out-of-the-box, using installation defaults. If the default values are not suitable for your installation or you want to deploy Analytics Collectors in a cluster, you may need to configure different values using WLST or Fusion Middleware Control. For more details, see "Configuring Analytics Collector Settings" Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
To display usage and performance metrics through analytics task flows you must enable event generation for your Framework application and configure a connection to the analytics database (ACTIVITIES
). For details on how to do this in JDeveloper, see Section 47.2.2, "Setting up Connections for the Analytics Service".
At runtime, user activity in your Framework application generates event data. For example, every time a user logins in, reads a discussion topic, views a document, and so on, the event is recorded. The OpenUsage API sends event metrics to the Analytics Collector using UDP (User Datagram Protocol) and the event data is stored in the analytics database (ACTIVITIES).
In a non-clustered environment the Framework application is configured with the location of the collector, and all events are transmitted to that location.
In a clustered environment both the Framework application and Analytics Collector are configured with a cluster-specific channel name. Each collector periodically broadcasts a heartbeat with its location to the cluster-specific channel. The Framework application listens to the channel for these collector heartbeats, and when it hears one, adds the collector to its list of known collectors. When the Framework application sends an event it randomly selects a collector from its list and sends the event to that collector. If a collector stops (either being stopped purposefully or failing) it stops broadcasting a heartbeat. When the Framework application stops hearing the heartbeat it removes the collector from its list and stops sending events to that collector. If the Framework application does not hear any collector heartbeats it does not send any events.
Analytics task flows and custom analytics reports (based on SQL data controls) that are included in Framework applications display the metrics collected for standard events by querying the analytics database at runtime. For more information about the task flows at runtime, see "Working with Analytics Task Flows" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
This section describes how to include the Analytics service in your Framework applications.
This section contains the following subsections:
See also, Section 47.1.2, "Requirements for the Analytics Service".
The flow chart depicted in Figure 47-1 and Table 47-2 in this section provide an overview of the prerequisites and tasks required to get the Analytics service working in Framework applications.
Table 47-2 Configuring the Analytics Service for Framework applications
Actor | Task | Sub-task |
---|---|---|
Administrator | 1. Install Oracle WebCenter Portal: Framework and the back-end components for the Analytics service | |
Developer | 2. Integrate the Analytics service in your Framework application | 2.a Configure a connection to the Activities database in JDeveloper 2.b Configure a connection to the Analytics Collector in JDeveloper |
Developer/ Administrator | 3. Deploy the Framework application using one of the following tools:
| |
Administrator | 4. (Optional) Configure the Analytics Collector using either of the following tools: | |
Developer | 5. (Optional) Instrument events for pages and portlets using JDeveloper, then redeploy the application. | |
Developer/ Administrator | 6. (Optional) Add/modify connection parameters using one of the following tools:
| |
End User | 7. Test that analytics data is available in the Framework application | 6.a Log in to the Framework application 6.b Display the analytics task flow |
The Analytics service requires that the Framework application is connected to the analytics database (ACTIVITIES
). You must also configure the Framework application to send event information to a specific Analytics Collector.
Note: While you can set up the connections to back-end servers at design time in JDeveloper, you can later add, delete, or modify connections in your deployed environment using Fusion Middleware Control. For more information, see "Managing the Analytics Service" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. |
This section includes the following subsections:
The Analytics service requires a connection to the analytics database (ACTIVITIES
) where analytics event data is stored.
To set up the analytics database connection:
ACTIVITIES
database is up and running. See Section 47.1.2, "Requirements for the Analytics Service".
connectionName
(for example, myAnalyticsDatabaseConnection
Oracle (JDBC)
username
(a user with access to the database) password
(the specified user's password) host
(where the analytics database is installed, for example localhost
) port
(for example, 1521
) sid
(system identifier for the database) This creates a data-source to the ACTIVITIES
schema so that you can test analytics in your Framework application at design-time.
The connection appears as a node in the Application Resources pane, under Connections.
Out-of-the-box, the Analytics Collector is installed on the WC_Utilities
managed server and is configured to receive events using the following default values:
Analytics Collector Configuration | Default Value |
---|---|
Collector Host Name |
|
Default Port |
|
Maximum Port Number |
|
Broadcast Type |
|
Clustering Cluster Name Cluster Broadcast Frequency |
- - |
If these defaults are not suitable for your installation, your administrator can configure suitable values using WLST or the Fusion Middleware Control. For more information, see "Configuring Analytics Collector Settings" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
The Analytics service requires a connection to the Analytics Collector that is collecting WebCenter Portal events and OpenUsage must be enabled in the Framework application.
Use the following OpenUsage JVM properties to set properties for the Analytics service:
oracle.wc.openusage.
enabled
- Specifies whether to send analytics events raised using OpenUsage APIs to the Analytics Collector. Valid values are true
and false
. The default value is false
. oracle.wc.openusage.
unicast
- Specifies whether events are sent to a clustered Analytics Collector in multicast mode or whether a single Analytics Collector using unicast communication is required. Valid values are true
and false
. The default value is true
(unicast). oracle.wc.openusage.
clustername
- Name of the collector cluster or the host name of an Analytics Collector. Currently, clusters are not supported so specify only the host name here. The default value is localhost
. oracle.wc.openusage.
collectorport
- Port on which the Analytics Collector listens for events. The default value is 31314
. oracle.wc.openusage.
timeout
Period of time (in seconds) used to determine availability of the collector service in multicast mode. The default value is 30 seconds. To set Analytics Collector JVM properties:
Note: In the current release the |
Ensure that the values you provide, shown here in bold, match your Analytics Collector installation.
These steps enable OpenUsage in the Integrated WebLogic Server for the current Framework application. If the Integrated WebLogic Server is currently running you must restart it to pick up the new settings. See also, Section 70.2, "Deploying a Framework Application to the Integrated WebLogic Server".
Most events are configured out-of-the-box, so no additional coding is required in your application to send events. The only exception is page view events, which require additional code, as described in Section 47.2.3.1, "Including Event Code for Page Views."
To send page events, you must add event code to each page. Following is an example using a client JavaScript event on the page which, in turn, calls the Java Analytics API to send the actual event. To implement this example, you add the following code just below the <af:document>
tag, replacing the pageName
value with the name of the page for which you are sending events:
The example above generates a client event when the ADF document gets loaded, then the defined server listener actually sends the event. Here is the java bean that sends the event:
Analytics task flows use MDS to store customizations made by the user and these customizations are stored in an MDS namespace specific to analytics. If you want to enable user customizations for analytics task flows in your Framework application, you must configure a namespace for the analytics metadata in adf-config.xml
.
Note: In addition, each task flow must specify a unique MDS document in which to its store user customizations details. See Section 47.2.5.4, "How to Allow End Users to Customize Analytics Task Flows at Runtime". |
To configure a namespace for analytics metadata:
adf-config.xml
. Use the Application Resources panel to navigate to this file. The file is located in the Descriptors
\ADF META-INF
folder.
<metadata-namespaces>
element, add the following XML fragment: <namespace path="/oracle/webcenter/analytics/scopedMD" metadata-store-usage="WebCenterFileMetadataStore"/>
See also, Chapter 23, "Performing Composer-Specific MDS Configurations".
This section describes the Analytics service task flows and how to add analytics task flows to your application. It includes the following subsections:
Table 47-3 lists the analytics task flows available with WebCenter Portal. For detailed information about these task flows and the type of information that users can see at runtime, see "Understanding Analytics Task Flows in Spaces" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Table 47-3 Analytics Task Flows Available in JDeveloper
Analytics Task Flows | Description |
---|---|
WebCenter Portal Traffic | A summarized view for common events within the portal. |
Page Traffic | Displays the number of page hits and the number of unique users that visited any page within the portal. |
Login Metrics | Reports portal logins. |
Portlet Traffic | Displays usage data for a portlet. |
Portlet Response Time | Displays performance data for a portlet. |
Portlet Instance Traffic | Displays usage data for a portlet instance*. |
Portlet Instance Response Time | Displays performance data for a portlet instance*. |
Search Metrics | Tracks portal searches. |
Document Metrics | Tracks document views. |
Wiki Metrics | Tracks most popular/least popular wikis. |
Blog Metrics | Tracks most popular/least popular blogs. |
Discussion Metrics | Tracks most popular/least popular discussions. |
To add an analytics task flow to your Framework application:
Note: If no usage data exists when you run the application, analytics task flows displays the message: |
<af:form>
tag. You may be prompted to add the ADF library for the Analytics service (analytics-reporting-service-view.jar
) to the project. Confirm by clicking Add Library (Figure 47-4).
applicationName
- Required analyticsResourceId
- Required analyticsReportTitle
- Optional maxDataPointsPerSeries
- Optional For more information, see Section 47.2.5.5, "Analytics Task Flows and Task Flow Parameters".
The task flow is added to the page, and the ViewController project's libraries are configured to run the task flow.
If no usage data exists when you run the application, analytics task flows display the message: No data to display
You may create some data for the analytics task flow to display by performing actions that relate to the task flow you are testing. For example, to test discussion metrics, create and view discussions, to test page metrics, create and view pages, and so on.
Each analytics task flow has a set of required and optional task flow binding parameters. Required parameters are not mandatory but enable you to capture information that is essential to the task flow's successful function. For example, if you want user customizations for a particular task flow instance to be stored in MDS you must specify the MDS document required.
In addition, you can use task flow binding parameters to customize the appearance and behavior of a task flow instance. For example, you can use parameter values to specify a display title above your analytics data.
You can provide task flow binding parameter values when you drag and drop a task flow onto an application page. Doing so opens the Task Flow Bindings dialog (for more information, see Section 47.2.5.2, "How to Add Analytics Task Flows to a Page").
You can also adjust task flow binding parameter values after you have placed a task flow on a page at run time. For details, see "Setting Analytics Task Flow Properties" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
To access the Edit Task Flow Binding dialog:
For more information, see Section 47.2.5.5, "Analytics Task Flows and Task Flow Parameters".
If you want to enable user customizations for a particular task flow instance you must specify the MDS document where customizations are stored using the Analytics Resource Id
parameter.
The ID must be unique, so consider using a consistent naming pattern such as <app_name>_<page_name>_<task_flow>_<sequence>
. For example, set the analyticsResourceId
parameter for a Page Traffic task flow to myapp_analyticspage_pagetraffic_1
.
For details, see Section 47.2.5.3, "How to Modify Analytics Task Flow Parameters".
Table 47-4 lists and describes task flow binding parameters applicable to the Analytics service.
Table 47-4 Analytics Task Flow Binding Parameters
Parameter (* = required) | Task Flows | Description |
---|---|---|
| All | Specifies the display title that appears above the analytics data, that is, you can override the default report title. See also, Figure 47-7, "analyticsReportTitle - Example". |
| All | Specifies the MDS document that will be generated to store user customizations/application customizations for the task flow instance in MDS. For example: |
| All | Specifies the name of the Framework application for which you want to display analytics data. For example: The analytics database can be used to store event data from multiple applications so this parameter is required to identify which application data to display. If omitted, the task flow display analytics data for all applications. |
| All | Indicates the maximum number of data points to be displayed in a bar or line chart. Enter a value between 1 and 1000. The default value is 25. Increasing the number of data points can increase the time it takes to display the chart. See also, Figure 47-8, "maxDataPointsPerSeries - Example". |
Analytics task flows are intended to make usage metrics visible to a limited set of administrative users who perform particular business functions, such as capacity planning, quality of service (QoS) analysis, return on investment (ROI) analysis, "best bet" customization for Search, and so on.
Analytics usage data is valuable for portal analysis but might be regarded as private or sensitive to portal users. For example, the Search, Document, and Portlet reports can be configured to display activity metrics for a particular user, based on user properties such as E-mail Address, First Name, or Last Name.
To protect security and privacy interests associated with analytics task flows and custom reports:
To ensure that only a limited number of administrative users can add analytics task flows to pages, create reports based on custom analytics data controls, or view pages set up to display sensitive usage metrics, create a new administrative group and manage group membership accordingly.
Ensure analytics task flows and custom reports do not contain private or sensitive data unless such a view is particularly intended. If the metrics in the report do contain private or sensitive data, configure security so that only appropriate, specified users have access to the task flow or the page.
For example, at design-time, developers can expose the analytics task flows to non-admin users by granting them appropriate privileges to the page. In addition, developers can customize the reports pre-deployment, to hide or show and predefine certain report options (such as time frame, chart type, user property filter, group by option, and so on). Administrators will be able to perform the same tasks at runtime, that is, grant page access and customize the information that displays. Non-admin users can still personalize the reports they are allowed to see, but they cannot change customizations made by the administrator.
Out-of-the-box analytics task flows present common analytics event metrics in a specific display format. If you want to present analytics data in a different way or display custom event data, you can build a custom analytics report using SQL.
This section contains the following subsections:
For a detailed list of database tables and parameters, see Appendix I, "WebCenter Portal Analytics Database Schema."
Use SQL data controls to define, in an SQL query statement, the information you want to retrieve from the analytics database. When you expose data controls on a page you can choose whether the analytics data presents in a graph, table or a form, and you can also configure the bind parameters and other display options.
You can use JDeveloper to build SQL data controls at design-time. For detailed information about data controls, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You can also create data controls in a running Framework application if runtime resource management features are enabled. To do this in the Spaces application, see "Creating a SQL Data Control" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces. To create a data control in other Framework applications, see "Managing Application Resources" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Use a SQL data control to fetch data from the analytics database and display analytics data in your Framework application. Figure 47-9 shows the sample SQL statement below in a Create/Edit SQL Data Control dialog in Spaces. A database connection to the analytics database (ActivitiesDS
) is required, and you must provide a valid database password.
Sample SQL: Page Hits by Day
You can add as many bind parameters as required. When you add parameters, you can restrict the data retrieved from the data source based on the parameter values you specify. As this example is for the Spaces application, the name of the application is set to webcenter
and personal pages (pages in the Home space) are included in the report shown in Figure 47-10.
Table 47-5 Report Parameters
Parameter | Default Value | Description |
---|---|---|
|
| The corresponding application name, always |
|
| For Spaces, determines whether or not pages created in the Home space are included in the report. |
|
| Any valid pattern for dates in an Oracle database. Every component of the pattern is optional since it depends on the data you want to retrieve. |
|
| Determines a start date for the data required. |
|
| Determines an end date for the data required. |
Figure 47-9 shows the custom report displayed as a graph.
Figure 47-11 Sample Analytics Report - Page HIts by Day
This section provides SQL statements that can be used as a starting point for custom reports. You can customize these statements in many ways by providing additional filters, groupings, and so on.
For a detailed list of database tables and parameters, see Appendix I, "WebCenter Portal Analytics Database Schema."
This section provides example queries for user-specific metrics. It includes the following samples:
For a detailed list of database tables and parameters and information on user properties, seeSection I.5, "Analytics User Properties" in Appendix I, "WebCenter Portal Analytics Database Schema.".
The following query returns the names of the pages accessed by users in the Sales department, and the number of views for each of those pages.
The following query returns the total number of page views broken down into departments.
This section provides example queries for specific metrics. It includes the following samples:
For a detailed list of database tables and parameters, see Appendix I, "WebCenter Portal Analytics Database Schema."
The following query returns a list of all the activities executed by a specific user during a specific time period.
Sample Report Output
The following query returns a list of all activities executed in a specific space.
Sample Report Output
The following query returns a list of all activities executed in a specific space during a specific time period.
Sample Report Output
The following query returns activity for a specific service (in this example, the login service) during a specific time period and groups results by user.
Sample Report Output
The following query returns the phrases searched during a specific time and lists how many times each search was executed.
Sample Report Output
The following query returns the pages viewed by a specific user during a specific time period.
Sample Report Output
The script content on this page is for navigation purposes only and does not alter the content in any way.
This chapter provides an overview of the Lists service and describes how to integrate the Lists service with a Framework application. It includes the following sections:
This section provides an overview of the Lists service features and requirements. It includes the following subsections:
The Lists service provides a means of creating lists and exposing them for placement on application pages at runtime. At design time, you can make the Lists task flow available in your runtime Resource Catalog. At runtime, users can add the task flow from the Catalog to a page and use the task flow to create lists.
At design time, you can add a code snippet to the Resource Catalog to ensure that populated lists are added to the Catalog at runtime, making them available for placement on your application pages.
By default, only users assigned the seeded role Administrator
have manage permission on lists. This means at runtime such users can create, edit, and delete lists and edit list data. The default permission can be changed at deployment in jazn-data.xml
or by using Enterprise Manager or the Application Policy Manager. Authorized users can change this permission at runtime at the component level (for more information, see Chapter 24, "Modifying Default Security Behavior of Composer Components"). Only role-based permission is supported.
At runtime, the Lists task flow provides controls for creating lists and adding list data. For information about these controls, see the sections, "Creating and Managing Lists," and "Adding and Managing List Data," in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Tip: To enable users to work with lists at runtime, they must be explicitly permitted to do so. For more information, see Section 48.2.3, "Enabling Users to Work with Lists at Runtime." |
This section describes the steps required for adding the Lists service to your application. It includes the following subsections:
The Lists service requires a connection to the database where the WEBCENTER
is installed. The Lists service stores all list data in the database. For details about setting up a database connection to the database where the WEBCENTER
is installed, see Section 7.2.2, "Setting Up a Database Connection."
Note: For details about installing the database and the |
This section explains a basic integration of the Lists service. It includes the following subsections:
The Lists service includes one task flow: Lists (Figure 48-1).
Figure 48-1 A List Rendered in the Lists Task Flow
For information about the Lists task flow, see Section 48.1.2, "What Happens to the Lists Service at Runtime."
To add the Lists task flow to your Framework application:
See Also: For more information, see Chapter 24, "Modifying Default Security Behavior of Composer Components." |
Out of the box, only the application administrator can work with lists. For users to see and work with lists at runtime, they must explicitly be granted, minimally, the permission ListPermission:view
. At runtime, application administrators can assign this permission through the Role Manager task flow.
For example, to grant view access to lists to all authenticated users, the administrator can create the role AllUsers
in the Role Manager task flow, add authenticated-role
as a member, and grant view access on Lists.
If you plan to add the Lists service to your application, then you must also add the Role Manager task flow. If your application is based on a WebCenter , then the Role Manager task flow is available out of the box on the Security tab in Administration pages. At runtime, you can navigate to this page using the following URL:
Note: Roles and permissions created and granted through the Role Manager at design time are not packaged in the application and are not available after deployment. The provisioning steps described in this section must be taken after deployment. |
See Also: For information about the Role Manager task flow, see Section 69.4, "Using the Role Manager Task Flow." |
If properly configured, the Resource Catalog makes populated lists available at runtime, enabling authorized users to add them to pages in edit mode. The procedure for adding components to an existing resource catalog or creating a custom catalog are described in Chapter 16, "Creating and Managing Resource Catalogs." This section provides an example of a code snippet to use to add lists to a resource catalog (Example 48-1).
Note: The values in uppercase are message keys for translated strings. |
Example 48-1 Code to Add Lists to a Resource Catalog
Oracle WebCenter Portal provides REST APIs to allow access to Lists functionality through interfaces other than the provided task flows. You can use the Lists service REST APIs to perform the following actions:
This section describes the associated with the Lists service. It includes the following subsections:
See Also: For an introduction to the REST APIs, see Chapter 54, "Using Oracle WebCenter Portal REST APIs." |
To get to the REST entry point for lists in a space of the Spaces application, you must navigate to a specific space to see a link to lists in that space. For all the lists in a space, find the link elements with a resourceType
of:
The corresponding href
or template
element provides the URI entry point, which retrieves the lists in the space.
See Also: For more information about the Resource Index, see Section 54.5.1, "The Resource Index." For more information about resource types, see Section 54.5.2.1, "Resource Type." |
When the client has identified the entry point, it can then navigate through the resource type taxonomy to perform the required operations. The resource type taxonomy for lists is:
You must be logged in to the REST service to access any of the Lists REST APIs. After that, the underlying service handles permission checking.
See Also: For general security considerations, see Section 54.8, "Security Considerations for WebCenter Portal REST APIs." |
This section provides you with all the information you need to know about each resource type. It includes the following subsections:
The lists
response provides a means of retrieving the lists in a given space (GET
) and adding lists to a space (POST
). This section includes the following subsections:
This section shows how the client can navigate through the hypermedia to access the lists
resource:
The lists
resource type supports the following methods:
Method (lists): GET
This method retrieves the lists in a space.
application/xml
| application/json
] startIndex
, itemsPerPage
, q
, projection
q
parameter for query, format 'q=attribute:operator:value'
, for example: equals
, not.equals
, contains
, starts.with
equals
, not.equals
, greater.than
, greater.than.or.equals
, less.than
, less.than.or.equals
Table 48-1 Searchable Attributes for lists GET Method
Element | Type | Description |
---|---|---|
name | string | Name of list |
description | string | Description of list |
creator | string | User who created list |
created | date | Date the list was created |
modifier | string | User who modified list |
modified | date | Date the list was last modified |
200
[OK] <lists>
Method (lists): POST
This method creates a list in a space.
<list>
Table 48-2 Create List Writable Elements
Element | Type | Constraints | Description |
---|---|---|---|
nameFoot 1 | string | — | Name of list |
description | string | — | Description of list |
columnsFootref 1 |
| 1 to 30 | List columns |
Footnote 1 Denotes required element
Content-Type = application/xml
| application/json
, [Accept = application/xml
| application/json
] 201
[Created] <list>
Table 48-3 Retrieved Elements from lists
Element | Type | Description |
---|---|---|
id | string | List ID |
name | string | List name |
description | string | List description |
scope.guid | string | GUID of space to which the list belongs |
scope.name | string | Name of the space to which the list belongs |
creator | string | Name of the user who created the list |
created | date | Date the list was created |
modifier | string | Name of the user who last modified the list |
modified | date | Date the list was last modified |
columns |
| List columns |
Table 48-4 lists the resource types that the client can link to from the lists
resource.
Table 48-4 Resource Types Linked to from lists
rel | resourceType |
---|---|
self |
|
|
The list
response provides a means of retrieving, updating, and deleting an individual list. This section includes the following subsections:
This section shows how the client can navigate through the hypermedia to access the list
resource:
The list resource type supports the following methods:
Method (list): GET
Use this method to retrieve a list.
application/xml
| application/json
] 200
[OK] <list>
Table 48-5 Retrieved Elements for list
Element | Type | Description |
---|---|---|
id | string | ID of the list |
name | string | Name of the list |
description | string | Description of the list |
scope.guid | string | GUID of the space to which the list belongs |
scope.name | string | Name of the space to which the list belongs |
creator | string | User who created the list |
created | Date | Date on which the list was created |
modifier | string | User who last modified the list |
modified | Date | Date on which the list was last modified |
columns |
| The columns that make up the list |
Method (list): PUT
Use this method to update a list name or description.
<list>
Table 48-6 Writable Elements for list
Element | Type | Required | Constraints | Description |
---|---|---|---|---|
nameFoot 1 | string | Yes | 1 or more characters | Name of this list |
description | string | No | none | Description of this list |
Footnote 1 Denotes required element
Content-Type = application/xml
| application/json
, [Accept = application/xml
| application/json
] 200
[OK] <list>
Method (list): DELETE
Use this method to delete a list.
204
[No Content] Table 48-7 lists the resource types that the client can link to from the list
resource.
Table 48-7 Resource Types Linked to from list
rel | resourceType |
---|---|
self |
|
| |
|
The rows
response provides a means of retrieving and adding rows to a list. This section includes the following subsections:
This section shows how the client can navigate through the hypermedia to access the rows
resource:
The rows resource type supports the following methods:
Method (rows): GET
Use this method to retrieve list rows.
application/xml
| application/json
] startIndex
, itemsPerPage
, q
, projection
q
parameter for query, format 'q=columnId:operator:value'
, for example: 'q=lco_9bdd1418_6004_40ba_a052_04e8335b7ee8:equals:2'
Strings
: equals
, not.equals
, contains
, starts.with
Numbers
, Dates
: equals
, not.equals
, greater.than
, greater.than.or.equals
, less.than
, less.than.or.equals
200
[OK] <rows>
Method (rows): POST
Use this method to create a row in a list.
<row>
Table 48-8 Writable Elements for rows
Element | Type | Constraints | Description |
---|---|---|---|
columns.column.idFoot 1 | string | — | Column ID |
columns.column.valueFootref 1 | string | Valid value for column data type | Column value |
Footnote 1 Denotes required element
Content-Type = application/xml
| application/json
, [Accept = application/xml
| application/json
] 201
[Created] <row>
Table 48-9 Retrieved Elements for rows
Element | Type | Description |
---|---|---|
id | string | Row ID |
list id | string | List ID |
scope | string | GUID of space to which list belongs |
creator | string | Person who created the list |
created | date | Date the list was created |
modifier | string | Last user to modify the list |
modified | date | Date the list was last modified |
columns | — | Column values |
Table 48-10 lists the resource types that the client can link to from the rows
resource.
Table 48-10 Resource Types Linked to from rows
rel | resourceType |
---|---|
self |
|
parent |
|
|
The row
response provides a means of retrieving and adding, and deleting an individual list row. This section includes the following subsections:
This section shows how the client can navigate through the hypermedia to access the row
resource:
The row resource type supports the following methods:
Method (row): GET
Use this method to retrieve data from a list row.
application/xml
| application/json
] 200
[OK] <row>
Table 48-11 Retrieved Elements for row
Element | Type | Description |
---|---|---|
id | string | ID of the row |
listId | string | ID of the parent list |
scope | string | GUID of the space to which the list belongs |
creator | string | User who created the row |
created | Date | Date on which the row was created |
modifier | string | User who last modified the row |
modified | Date | Date on which the row was last modified |
columns | Column values |
Method (row): PUT
Use this method to update row data.
<row>
Table 48-12 Writable Elements for row
Element | Type | Constraints | Description |
---|---|---|---|
columns.column.idFoot 1 | string | — | Column ID |
columns.column.valueFootref 1 | string | valid value for column data type | Column value |
Footnote 1 Denotes required element
Content-Type = application/xml
| application/json
, [Accept = application/xml
| application/json
] 200
[OK] <row>
Method (row): DELETE
Use this method to delete a list row.
204
[No Content] Table 48-13 lists the resource types that the client can link to from the row
resource.
The columns
response provides a means of retrieving and adding list columns. This section includes the following subsections:
This section shows how the client can navigate through the hypermedia to access the columns
resource:
The columns
resource type supports the following methods:
Method (columns): GET
Use this method to retrieve columns in a list.
application/xml
| application/json
] 200
[OK] <metaColumns>
Method (columns): POST
Use this method to create a column in a list.
<metaColumn>
Table 48-14 Writable Elements for columns
Element | Type | Constraints | Description |
---|---|---|---|
nameFoot 1 | string | — | The name of the column |
dataTypeFootref 1 | string |
| The data type of the column |
required | boolean |
| Whether a value is required for the column |
defaultValue | data type of column | Object must match data type | The default value of the column |
maxLength | int | Valid only for | The maximum length for a string value |
rangeLow | int | Valid only for | The low range value for a |
rangeHigh | int | Valid only for | The high range value for a |
format | string | For
For
| The format of the column |
allowLinks | boolean |
Valid only for | Whether a hyperlink can be specified for a column value |
linkTarget | string |
Valid only if |
|
editLines | int | Valid only for | The number of lines when editing a column value (default=1) |
peopleScope | string |
Valid only for | Whether valid users are all users in directory or members of the space that contains the list |
displayWidth | int | — | Display width of column in pixels |
hint | string | — | Hint displayed to help user when entering column value |
Footnote 1 Denotes required element
Content-Type = application/xml
| application/json
, [Accept = application/xml
| application/json
] 201
[Created] <metaColumn>
Table 48-15 Retrieved Elements from columns
Element | Type | Description |
---|---|---|
id | string | Column ID |
name | string | The name of the column |
dataType | string | The data type of the column |
required | boolean | Whether a value is required for the column |
defaultValue | data type of column | The default value of the column |
maxLength | int | The maximum length for a string value |
rangeLow | int | The low range value for a |
rangeHigh | int | The high range value for a |
format | string | The format of the column |
allowLinks | boolean | Whether a hyperlink can be specified for a column value |
linkTarget | string |
|
editLines | int | The number of lines when editing a column value (default=1) |
peopleScope | string | Whether valid users are all users in directory or members of the space that contains the list |
displayWidth | int | Display width of column in pixels |
hint | string | Hint displayed to help user when entering column value |
Table 48-16 lists the resource types that the client can link to from the columns
resource.
Table 48-16 Resource Types Linked to from columns
rel | resourceType |
---|---|
self |
|
parent |
|
|
The column
response provides a means of retrieving, adding, and deleting an individual list column. This section includes the following subsections:
This section shows how the client can navigate through the hypermedia to access the column
resource:
The column resource type supports the following methods:
Method (column): GET
Use this method to retrieve a list column.
application/xml
| application/json
] 200
[OK] <metaColumn>
Table 48-17 column Retrieved Elements
Element | Type | Description |
---|---|---|
id | string | Column ID |
name | string | The name of the column |
dataType | string | The data type of the column |
required | boolean | Whether a value is required for the column |
defaultValue | data type of column | The default value of the column |
maxLength | int | The maximum length for a string value |
rangeLow | int | The low range value for a |
rangeHigh | int | The high range value for a |
format | string | The format of the column |
allowLinks | boolean | Whether a hyperlink can be specified for a column value |
linkTarget | string |
|
editLines | int | The number of lines when editing a column value (default=1) |
peopleScope | string | Whether valid users are all users in directory or members of the space that contains the list |
displayWidth | int | Display width of column in pixels |
hint | string | Hint displayed to help user when entering column value |
Method (column): PUT
Use this method to update column data.
<metacolumn>
Table 48-18 column Writable Elements
Element | Type | Constraints | Description |
---|---|---|---|
nameFoot 1 | string | — | The name of the column |
dataTypeFootref 1 | string |
| The data type of the column |
required | boolean |
| Whether a value is required for the column |
defaultValue | data type of column | Object must match data type | The default value of the column |
maxLength | int | Valid only for | The maximum length for a string value |
rangeLow | int | Valid only for | The low range value for a |
rangeHigh | int | Valid only for | The high range value for a |
format | string | For
For
| The format of the column |
allowLinks | boolean |
Valid only for | Whether a hyperlink can be specified for a column value |
linkTarget | string |
Valid only if |
|
editLines | int | Valid only for | The number of lines when editing a column value (default=1) |
peopleScope | string |
Valid only for | Whether valid users are all users in directory or members of the space that contains the list |
displayWidth | int | — | Display width of column in pixels |
hint | string | — | Hint displayed to help user when entering column value |
Footnote 1 Denotes required element
Content-Type = application/xml
| application/json
, [Accept = application/xml
| application/json
] 200
[OK] <metaColumn>
Method (column): DELETE
Use this method to delete a list column.
204
[No Content] Table 48-19 lists the resource types that the client can link to from the column
resource.
Problem
The List task flow shows an error that the WebCenter Portal's repository is not available.
Solution
The database connection is likely not configured. For more information, see Section 7.2.2, "Setting Up a Database Connection."
Problem
A 401 Unauthorized error appears.
Solution
It is likely that security is not set up for the application. Or it may be that there was insufficient permission to perform the attempted task.
The script content on this page is for navigation purposes only and does not alter the content in any way.
Notifications provides a means of subscribing to services and application objects and, when those objects change, receiving notification across one or more selected messaging channels. This chapter describes how to integrate Notifications with your Framework applications. It includes the following sections:
This section provides an overview of Notifications. It includes the following subsections:
Notifications provides an automated means of triggering notices about subscribed services and objects across different messaging channels. Messages are triggered when the application services and objects to which a user has subscribed change. For example, a user can subscribe to a document and receive notification when another user changes the document.
Messaging channels can include phone text (SMS), mail, or Worklist, depending on what messaging servers are available and how the application administrator configures Notifications. For example, users can receive a mail message when a particular document changes, a text message when someone responds to a particular discussion topic, a Worklist alert when the user receives an invitation to connect. All messages contain links that take the user to the scene of the change.
Participating services and objects include People Connections (Connections, Message Board, and Feedback), Discussions, and Documents (including Wikis and Blogs).
Table 49-1 describes the types of activities that can trigger a notification and indicates the level at which the subscription is made.
Table 49-1 Activities that Can Trigger Notifications
Activity | Level |
---|---|
A user sends you an invitation to connect | Application |
A user posts a message to your Message Board | Application |
A user likes your Message Board post (messages explicitly set on a Message Board and not those added from Publisher to the Activity Stream) | Application |
A user comments on your Message Board post (messages explicitly set on a Message Board and not those added from Publisher to the Activity Stream) | Application |
A user posts feedback for you | Application |
A user replies to a discussion topic | Object |
A user comments on a discussion topic | Object |
A user deletes a discussion topic | Object |
A user comments on a document | Object |
A user likes a document | Object |
A user updates a document | Object |
A user deletes a document | Object |
A user comments on a wiki document | Object |
A user likes a wiki document | Object |
A user updates a wiki document | Object |
A user deletes a wiki document | Object |
A user comments on a blog entry | Object |
A user likes a blog entry | Object |
A user updates a blog entry | Object |
A user deletes a blog entry | Object |
Notifications leverages message delivery platforms available in WebCenter, such as the User Messaging Service (UMS) or the Mail service, to deliver the messages it generates. The Mail service furnishes the default messaging delivery mechanism, though you can instead use the BPEL connection provided through the Worklist service to widen a user's choice of channels to phone text, mail, and the Worklist.
You can set defaults for application-level subscriptions for all users through an XML configuration file (notification-service-settings.xml
). You create your own version of this default file, and then use it to supersede the file of the same name that is provided for this purpose out of the box.
Before your application can work with the Notifications service, you must specify the Notification namespace in the application's adf-config.xml
file. For more information, see Section 49.2.1, "Adding the Notifications Namespace."
Subscription capability is built into the services that support it and do not require additional configuration.
Notifications messaging capability relies on the presence of a configured Mail or Worklist connection to enable delivery of notifications messages. For Notifications messaging, you must explicitly configure the application to use either the BPEL server that is configured for the Worklist service or the Mail server that is configured for the Mail service. For more information, see Section 49.2.2, "Creating a Notifications Connection to a Mail Server," and Section 49.2.3, "Creating a Notifications Connection to a BPEL Server."
To set application defaults for all users for application-level subscription preferences, you must provide your own version of the default file notification-service-settings.xml
. For more information, see Section 49.2.4, "Setting Application Defaults for Notifications."
For Notifications to function properly, its task flows must reside on a secured page. This is because the current user must be known through authentication in order to track and report on subscribed actions. If the page or application that contains Notifications is not secured, you will encounter exception errors. For more information, see Section 49.2.6, "Setting Security for Notifications."
At runtime, users set up their preferred messaging channels through UMS Preferences. For more information, see the section "Establishing and Managing Your Messaging Channels and Filters" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Note: In designing your application, you must provide users with a way to access UMS preferences. For example, you can add a link to them in your UI, or you can point users to the Worklist task flow, which includes a link to them. |
Users establish their application-level subscriptions through the Notifications task flow Subscription Preferences (Figure 49-1).
Figure 49-1 Subscription Preferences Task Flow
Users establish their object-level subscriptions by subscribing to the object directly.
Users manage their application-level subscriptions through the Subscription Preferences task flow and their object-level subscriptions through the Notifications task flow Subscription Viewer (Figure 49-2).
Figure 49-2 Subscription Viewer Task Flow
See Also: For more information about Notifications task flows, see Section 49.2.5.1, "Notifications Task flows." |
Notifications leverages your Mail or Worklist service connection to provide messaging channels for user notifications. If you plan to use the Mail server, then a connection to a mail server for the Mail service is required, but no further configuration is necessary for Notifications. If you plan to use the same BPEL connection for Notifications that is used by the Worklist service, you must add this configuration to the adf-config.xml
file.
This section provides an overview of those connections and configurations and the process of adding Notifications task flows to an application page. It includes the following subsections:
To establish the Notifications namespace with your application, add the following code to the adf-config
element at the top of the file (Example 49-1):
Tip: You can find the |
Example 49-1 Configuring the Application to Recognize Notifications Configuration
For example (bold) (Figure 49-2):
Example 49-2 Notifications Configuration in the adf-config Element
To enable users to select a mail messaging channel, you must configure a connection to a Mail server (for more information, see Section 36.2.2, "Setting up Connections for the Mail Service"). Once this is established, you add the following entry in the adf-config.xml
file to associate the Mail server with Notifications (Example 49-3).
Example 49-3 Associating a Mail Server with Notifications in adf-config.xml
Where ConnectionName
is the name of a configured Mail server.
Example 49-4 presents a code sample, with the previous code sample in place (bold).
Example 49-4 A Mail Connection for Notifications in adf-config.xml
To furnish users with the option to select mail, phone text, or Worklist messaging channels, you must configure a connection to a BPEL server (for more information, see Section 51.3.1, "Setting up Connections for the Worklist Service"). Notifications leverages the BPEL server that is specified for the Worklist service to provide multiple messaging channels for the notifications it generates. Once a connection to a BPEL server is established, you add the following entry in the adf-config.xml
file to associate the BPEL server with Notifications (Example 49-5).
Example 49-5 Configuring Notifications to Use the BPEL Server for Messaging
Where:
Example 49-6 presents a code sample, with the previous code sample in place (bold).
Example 49-6 Notifications Entries in the adf-config.xml File
This section provides information about the XML file you use to set application-level defaults for all users for Notifications. It includes the following subsections:
Administrator-level subscription preferences are set in a custom XML file that you create and then use to supersede the file that is provided in the notification-repository.jar
for this purpose out of the box (notification-service-settings.xml
). The settings in the custom XML file are analogous to the application-level subscriptions settings available to users through the Subscription Preferences task flow.
Each setting provides the following attributes:
id
—for specifying the service ID: oracle.webcenter.peopleconnections.connections
, the Connections feature of the People Connections service oracle.webcenter.peopleconnections.wall
, the Message Board feature of the People Connections service oracle.webcenter.peopleconnections.kudos
, the Feedback feature of the People Connections service subscription-enabled
—For specifying the default value for the preference option: true
or false
Tip: Rather than enabling or disabling the entire subscription capability, the |
end-user-configurable
—For enabling users to change the established default or preventing users from doing so: true
or false
These attributes work together to determine the initial state of the Subscription Preferences task flow.
Table 49-2 illustrates the effect of custom administrator-level subscriptions settings on the appearance of the Subscription Preferences task flow.
Table 49-2 Effect of Administrator Defaults on Subscriptions Preferences
subscription-enabledFoot 1 | end-user-configurable | Option in Preferences |
---|---|---|
True | True | Rendered normally, checkbox is checked |
True | False | Grayed out, checkbox is checked |
False | True | Rendered normally, checkbox is clear |
False | False | Hidden, checkbox is hidden |
Footnote 1 Rather than enabling or disabling the entire subscription capability, the subscription-enabled
attribute merely sets the initial state of the subscription.
Tip: The most typical scenario for most notifications is |
Table 49-3 lists the types of actions that can trigger an application-level notification and associates them with their related service ID.
Table 49-3 Application-Level Activities that Can Trigger Notifications
Activity | Related Service ID |
---|---|
A user sends you an invitation to connect |
|
A user posts a message to your Message Board |
|
A user likes your post on another user's Message Board |
|
A user comments on your post on another user's Message Board |
|
A user posts feedback for you |
|
To set defaults for application-level Subscription preferences:
/oracle/webcenter/notification
, and create the folder custom
. Tip: The directory structure can start or end with any directory or directories, as long as it has |
custom
folder, or in any subdirectory under /oracle/webcenter/notification/custom/
, create the file notification-service-settings.xml
. Example 49-7 provides sample content for an application-wide subscription preferences setting file and an example of each required option.
Example 49-7 Sample Subscriptions Settings XML File
Note: If an option is not provided, the default values |
importMetadata
, and import the directory content into your metadata store. See Also: For information about the |
For example:
serverName
', fromLocation='directoryPath
', docs='/**')Where:
application
is the name that identifies your application serverName
is the name of the server on which the application is running directoryPath
is the directory path under which oracle/webcenter/notification/custom/<any_sub_dir_after_this>/notification-service-settings.xml
is located. For example, if the directory path to notification-service-settings.xml
is /scratch/mydir/oracle/webcenter/notification/custom
, enter /scratch/mydir
for directoryPath
.
docs
identifies the content to be imported, in this example, the path and files that fall under those specified for directoryPath
. Table 49-4 describes the effect of various combinations of settings for the service ID oracle.webcenter.peopleconnections.connections
.
Table 49-4 Effects of Subscription Configurations for Connections
subscription-enabled | end-user-configurable | Effect |
---|---|---|
true | true |
|
true | false |
|
false | true |
|
false | false |
|
Footnote 1 This is the out-of-the-box default
Table 49-5 describes the effect of various combinations of settings for the service ID oracle.webcenter.peopleconnections.wall
.
Table 49-5 Effects of Subscription Configurations for Message Board
subscription-enabled | end-user-configurable | Effect |
---|---|---|
true | true |
|
true | false |
|
false | true |
|
false | false |
|
Table 49-6 describes the effect of various combinations of settings for the service ID oracle.webcenter.peopleconnections.kudos
.
Table 49-6 Effect of Subscription Configurations for Feedback
subscription-enabled | end-user-configurable | Effect |
---|---|---|
true | true |
|
true | false |
|
false | true |
|
false | false |
|
This section provides a brief overview of Notifications task flows and describes how to add them to your application pages. It includes the following subsections:
Notification Services exposes two task flows for managing user subscriptions:
Figure 49-3 Subscription Preferences Task Flow
Figure 49-4 Subscription Viewer Task Flow
To add a Notifications task flow to a page:
See Also: For information about Subscription Preferences task flow input parameters, see Section 49.2.5.3, "Subscription Preferences Task Flow Input Parameters." |
The task flow displays on the page. For example, in the Source view, you will see the content depicted in Example 49-8.
The task flow appears in your browser (Figure 49-5).
Figure 49-5 Subscription Preferences Task Flow
The Subscription Preferences task flow has input parameters that you can use to control the behavior of a given task flow instance. Table 49-7 lists and describes the input parameters associated with this task flow.
Table 49-7 Subscription Preferences Task Flow Input Parameters
Input Parameter | Description |
---|---|
| A control for showing or hiding the Save button and Refresh icon on the task flow
|
| The name of the scope for which to set subscription preferences. |
Notifications must know the identity of a user to preserve the user's Notifications settings and to track the user's activities on subscribed services and objects. To that end, you must at least configure your application to authenticate users such that they have distinct identities for the purposes of personalization and user preferences.
For details on how to implement a basic security solution for your Framework application, see Section 69.3, "Configuring ADF Security." For details on how to implement a complete security solution for your Framework application, see Chapter 69, "Securing Your WebCenter Portal: Framework Application."
After you configure ADF security for your application, you can open the jazn-data.xml
file and modify your sample user's privileges for each task flow. To open the ADF Security Policies Editor, locate the file in the Application Resources panel and double-click its name. You can further configure grants in this view.
Note: To successfully grant user permissions for Notifications, you must configure user permissions after deployment. |
This section provides information about the APIs that are available for use with Notifications. It includes the following subsections:
This section provides an overview of Notifications Java APIs. It includes the following subsections:
See Also: For detailed information about the Notifications Java APIs, see the Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal. |
To use Notifications Java APIs, you must have the following entries in your adf-config.xml
file:
If these entries are not present in adf-config.xml
, you can add them using your preferred text editor.
Notifications Java APIs are located in the class oracle.webcenter.notification
. Within the class, SubscriptionManager
provides the interface for creating and managing user subscriptions using the following Java APIs:
FilterOption
—Provides the filter criteria. Use an instance of this class while querying a user's subscriptions. NotificationServiceFactory
—Factory for creating and retrieving instances that correspond to Notifications interfaces. This is the entry point to the Notifications API. SortOption
—Defines the sort attributes for fetching subscriptions. Use an instance of this class in SubscriptionManager
methods to query a user's subscriptions. Subscription
—Contains information about a user's subscription. Subscriptions for a user are created via the method that is exposed by SubscriptionManager
. Instances of this class are returned by the methods exposed in SubscriptionManager
. SubscriptionPreference
—Represents application- or scope-level subscriptions as a preference and enables setting and unsetting of subscriptions for the corresponding service. See Also: For detailed information about the Notifications Java APIs, see the Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal. |
To use the Notifications Java APIs, WebCenter Portal extension must be present in your JDeveloper application. In JDeveloper, go to the Help - About menu, and click the Extensions tab. Look for the Service, as shown in Figure 49-6. For information about adding the WebCenter Portal extension, see Chapter 3, "Preparing Your Development Environment."
After confirming that Notifications is included with the WebCenter Portal extension, you must add the Notifications libraries to the project if they are not already present.
To add Notifications libraries to your project:
Notifications provides a data control that enables you to create your own visualization of the subscription management functionality. This section provides an overview of the data control Notification Subscription Data Control, and lists and describes its supported methods, attributes, and classes.
See Also: For information about using data controls in a Framework application, see Section 7.1.3, "Using WebCenter Portal Data Controls." |
This section includes the following subsections:
Add a data control to your project by right-clicking it in the Resource Palette and selecting Add to Project from the resulting context menu. Once added, you can browse the data control's methods and attributes by expanding it in the Data Controls panel in the Application Navigator.
Add a data control to an application page by dragging it onto the page from the Data Controls panel.
See Also: For information about using data controls in a Framework application, see Section 7.1.3, "Using WebCenter Portal Data Controls." |
The Notification Subscription Data Control enables you to create a custom UI that is equivalent to the Subscription Preferences and Subscription Viewer task flows should these prove insufficient for your requirements.
You can use the data control as a means of adding application-level subscription preferences. For example, if you have developed your own preferences mechanism in your application, you can use the data control to add subscription preferences to that existing mechanism rather than using the Subscription Preferences task flow directly. Or you can build a custom subscription viewer UI, where all of the current user's object-level subscriptions are listed.
This section lists and describes the methods exposed in the Notification Subscription Data Control. It includes the following subsections:
This method returns application-level subscription preferences for the current user.
Input Parameters
None
Return Values
Returns a collection of SubscriptionPreference
objects. The SubscriptionPreference
object indicates the user's preference for each service.
This method returns the scope level subscription preferences for the current user.
This method is primarily useful in a Spaces application. In a Framework application, it is expected that the scope will always be the default scope, that is, the application. For the default scope, this method returns application-level preferences.
Input Parameters
The input parameter scopeGuid
takes a value of type String
. The value specifies the GUID of the scope for which the user's scope-level preferences are returned. In a Spaces application, the scope referenced here is equivalent to a space.
Return Values
Returns a collection of SubscriptionPreference
objects. Each object indicates the current user's subscription preferences for each service within the specified scope.
This method enables the application to commit and save changes to the user's application-level preferences. For example, if the user subscribes to all available services, then these changes can be committed by binding this method to the appropriate component on the UI (for example, an Apply button).
Input Parameters
None
Return Values
None
This method enables the application to commit and save changes to the user's scope-level preferences. For example, if the user subscribes to all the available services in the given scope, then these changes can be committed and saved by binding this method to the appropriate component on the UI (for example, an Apply button).
Input Parameters
The input parameter scopeGUID
takes a value of type String
. The value specifies the GUID of the scope for which the modified preferences are to be saved.
Return Values
None
The primary method for returning a list of the current user's object-level subscriptions. You can use this method to build a custom Subscription Viewer UI for showing all of a user's object-level subscriptions.
Input Parameters
Table 49-8 lists and describes the input parameters supported by this method.
Table 49-8 Input Parameters Supported by the method getSubscriptions
Input Parameter | Description |
---|---|
| An object that contains filter conditions for querying a user's subscriptions. |
| An object that contains the sort or ordering condition for querying subscriptions. It supports sorting by object name, scope name (Spaces only), or the creation date of subscription. |
| This input parameter takes an integer as a value. The offset for querying subscriptions. This is typically used while fetching the result set with pagination. |
| This input parameter takes an integer as a value. The maximum number of rows to be returned in one call. |
Return Values
Returns a collection of Subscription
objects matching the filter criteria and other input parameters in the order specified by the sort option.
Used to unsubscribe from, or remove, a specific subscription. This method is typically used to add the unsubscribe action to the Subscription Viewer UI, where object-level subscriptions are exposed.
Note that unsubscribing from a particular service at the application and space level, or at either level, can be achieve by setting the appropriate flag in SubscriptionPreference
and saving those via the appropriate save*()
method listed above. The Unsubscribe
method is useful within Subscription Viewer functionality.
Input Parameters
Table 49-9 lists and describes the input parameters supported by this method.
Table 49-9 Input Parameters Supported by the method Unsubscribe
Input Parameter | Description |
---|---|
| Takes a value of type |
| The ID of the unsubscribed service Valid service IDs include:
|
| The GUID of the unsubscribed object. |
Return Values
None
The Notification Subscriptions Data Control exposes two classes as return values:
The class SubscriptionPreference
represents application- or scope-level subscriptions as a preference and enables setting and unsetting of subscriptions for the corresponding service (this is followed by save call on the data control).
Table 49-10 lists and describes the properties associated with the SubscriptionPreference
class.
Table 49-10 Properties Associated with the SubscriptionPreference Class
Property | Description |
---|---|
| A string containing the concatenation of all the applicable activities (description) within the service that generates notifications This is useful to display on the UI to tell the user what he is subscribing to. |
| An icon for the service |
| ID of the corresponding service |
| Display name of the service |
| A flag that indicates whether the subscription is enabled This attribute also has a setter to support the check/uncheck or select/deselect operation on the UI. |
| A flag that indicates whether to allow the user to override the default setting |
The class Subscription
is purely read-only and represents space- (Spaces only) and object-level subscriptions.
Table 49-11 lists and describes the properties associated with the Subscription class.
Table 49-11 Properties Associated with the Subscription Class
Property | Description |
---|---|
| The datetime this subscription was created |
| The ID of the object, if this represents object level subscription, otherwise |
| The name of the object, if this represents object level subscription, otherwise |
| The object type (as defined by the corresponding service) when this subscription represents object level subscriptions, otherwise |
| The GUID of the scope or space. |
| The display name of the scope or space. |
| The ID of the service for this subscription object. |
| The name of the service. |
| The ID of the user who created this subscription. |
This chapter describes how to integrate the Recent Activities service into your WebCenter Portal: Framework application. This service enables you to display the most recent changes to the services in your application.
This chapter includes the following sections:
For information about using the Recent Activities service, see Chapter "Working with the Recent Activities Service" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Oracle WebCenter Services are preconfigured to work with the Recent Activities service. Recent Activities enable users to view the most recent changes to the services in your application. For example, once you add the Documents service, it automatically produces the information that the Recent Activities service will use to display the most recent changes to the document library. This service is useful to your users who want a quick and easy way to view any additions or changes to a particular area of the application.
The Recent Activities service can track information from the following WebCenter Services:
For more information about these services, see Chapter 33, "Integrating the Announcements Service," Chapter 34, "Integrating the Discussions Service," Chapter 30, "Integrating the Documents Service," and Chapter 19, "Enabling Runtime Creation and Management of Pages."
This section contains the following subsections:
The Recent Activities service provides a summary view of recent changes to a variety of services. You can specify the range of time to consider recent by selecting a time range from a list at the top of the task flow. Recorded activities include additions or revisions of pages, documents, discussion forums, and the like.
By default, the Recent Activities service works with the Documents, Announcements, Discussions, and Page services. You can narrow the services that the Recent Activities service tracks. For more information about this setting, see the next section, Section 50.3, "Advanced Information for the Recent Activities Service." You can also learn more about using Oracle WebCenter Portal: Services in Section 2.4, "Introducing Oracle WebCenter Portal: Services."
The Recent Activities service compares somewhat to Activity Stream (for more information, see Section 38.1.1.1, "Activity Stream"). Both track the application activities of integrated services, though Activity Stream tracks a broader range of services. For example, Recent Activities tracks the Documents, Announcements, Discussions, and Page services. Activity Stream tracks these services as well as People Connections and Wikis and Blogs. Recent Activities tracks activities no matter who performs the action. Activity Stream tracks activities performed by a user's connections and includes information about who performed the activity. Recent Activities does not include names.
The basic difference between these two services can be summarized as follows: Recent Activities provides an overview of what is happening in an application. Activity Stream provides an overview of what is happening with a user's connections.
At runtime, the Recent Activities task flow fetches latest information about the services that are configured and running in your application. Figure 50-1 shows an example of the Recent Activities task flow at runtime, and displays the following activities that have occurred in the application since yesterday:
The time range choices (Last 30 days, Today, Since Yesterday, and so on) display based on the default values set for the Recent Activities Time Range parameter values at design time (see Table 50-1).
The Recent Activities service uses the search capabilities of WebCenter to query activities for specified periods. Search capabilities are implemented across the following WebCenter Portal service: Documents, Announcements, Discussions, and Pages. These services, if configured in an application, respond to queries of the Recent Activities service and return items pertinent to the search criteria. Responses to queries (search results) are always based on the search predicate, DCMI_MODIFIED > [start time]
. Here start time
is one of the time periods that you configured in the Edit Task Flow Binding dialog at design time. You can select a select a time period in the Show dropdown list at runtime.
Figure 50-1 Recent Activities Service at Runtime
This section describes how to add the Recent Activities service to your Framework application.
This section contains the following subsections:
You do not need to set up specific connections for the Recent Activities service. You only need to ensure that the service(s) you are tracking with the Recent Activities service is configured. For more information about setting up connections for other services, see the individual services chapters in this guide.
To use the Recent Activities service, you must add its task flow to your application. Ensure that you have at least one of the services it tracks in your application. There is a single Recent Activities task flow available in the WebCenter Portal - Services Catalog, which you can add to your application to display information about services in your application to your users.
The Recent Activities service automatically picks up other services in your application and looks for recent activities within these services. Before running your application containing the Recent Activities service, however, you may want to ensure your application contains at least one of the services you wish to monitor.
To add the Recent Activities task flow to your application:
Note: If you run an application that does not contain one of these services, the Recent Activities service displays an error saying |
MyExternalApplication
, then click Next. Account
. <af:form>
tag, and choose Region. Figure 50-3 Edit Task Flow Binding Dialog
In the Edit Task Flow Binding dialog shown in Figure 50-4, you can set the values for the time range that displays at runtime. This time range controls what activities display, as you will see in the next section. If you leave these parameters empty, the Recent Activities service will use the default values of the service.
Table 50-1 describes the possible values for these parameters. The default values specified in this table come from the adf-config.xml
file, as described in Section 50.3.1, "Refining the Behavior of the Recent Activities Service."
Table 50-1 Recent Activities Time Range Parameter Values
Parameter | Values |
---|---|
| Leave the value of this parameter as Note: This parameter is only used within the Spaces application and is not relevant in non-scoped applications. |
| Default value: Possible values: |
| Default value: Possible values: |
| Default value: (10080 minutes is equivalent to 7 days.) Possible values: |
| Default value: (43200 minutes is equivalent to 30 days.) Possible values: |
Figure 50-4 Example of the Edit Task Flow Binding Dialog for the Recent Activities Service
Figure 50-5 The Recent Activities Task Flow on a Page in the Design View
Note: When you add the Recent Activities task flow to your page, you will see a task flow parameter called groupSpace. The default value of this parameter is |
The Recent Activities service task flows have required and optional task flow binding parameters. You can adjust the parameter values when you drop the task flows onto a page or after you have placed a task flow on a page. For information about modifying parameters, see Section 33.2.2.3, "How to Modify Announcements Service Task Flow Parameters." The procedure for modifying parameters is identical across all task flows.
The Recent Activities service uses the security applied to the underlying services being analyzed. So, the information returned by the services only contains content for which the current user has at least View privileges. For example, a user who does not have View privileges to view content in a document library will not see recently added documents in the Recent Activities view. Similarly, a public user will only see activities returned on services exposed to the public, and do not require authentication to view.
This section explains that in addition to the task flow parameters, you can further refine the behavior of the Recent Activities service. It also describes how you can obtain RSS news feed for your Recent Activities service.
This section contains the following subsections:
You can change a variety of the Recent Activities service parameters after you have added it to your application. When you add the task flow to your page, you also automatically add the following entry to the adf-config.xml
file, located in the Application Resources panel, under Descriptors, in the ADF META-INF folder:
You can change the settings described in Table 50-2 in this entry.
Table 50-2 Recent Activities Settings in the adf-config.xml File
Setting | Description |
---|---|
| Default value: The maximum number of rows displayed for a single service. If there are more recent activity results than this, the most recent ones up to this number are returned. For example, if there are 32 recently modified documents and this setting is 25 then only the most recent 25 will show up in the results. |
| Default value: See Table 50-1. This setting is the same as the |
| Default value: See Table 50-1. This setting is the same as the |
| Default value: See Table 50-1. This setting is the same as the |
| Default value: See Table 50-1. This setting is the same as the |
| Default value: Use this tag to filter out services you do not wish to track with this service. The following example omits any changes to the Page service from displaying in the Recent Activities service: <services-filter> <exclude>oracle.webcenter.page</exclude> </services-filter> By default, no services are omitted. |
You can expose WebCenter Portal: Spaces functionality in a Framework application. Your Framework application users can find out what is happening in a specific group space through RSS news feeds.
Configure RSS news feeds for the Recent Activities service to enable users to view group space recent activities from within a portal. To obtain the group space RSS news feed URL for the Recent Activities service, use either of the following WebCenter Portal: Spaces APIs:
getServiceRssFeedURL
GetServiceRssFeedURLbyGUID
To obtain an RSS feed URL, you must identify the group space (by name or GUID) and specify the service required (by service ID). The service ID for the Recent Activities service is GroupSpaceWSClient.RECENT_ACTIVITY_SERVICE_ID
. For information about how to use these APIs, see Section 57.2.5.3.9, "Retrieving RSS Feed URLs for Space Services."
This chapter describes how to integrate the Worklist service into your application. Worklists enable users to view and take action on all tasks and notifications from a BPEL (Business Process Execution Language) server all in one place.
This chapter includes the following sections:
For information about managing and using the Worklist service, see:
The Worklist service enables you to show Business Process Execution Language (BPEL) Worklist items assigned to the currently authenticated user. The BPEL Worklist items are open BPEL tasks from one or more BPEL Worklist Repositories to which your application is connected. The Worklist displays BPEL Worklist items that are a result of a task invoked as part of a BPEL Workflow process, or are a result of a message being sent to the Worklist channel on the Oracle User Messaging Service.
This section contains the following subsections:
The Worklist service provides a personal, at-a-glance view of business processes that require your users' attention. These can include a request for document review or other types of business processes that come directly from your enterprise applications.
Worklist items come from a variety of sources. Some Worklist items are kicked off by events that are associated with an externally defined workflow. A workflow maps the route an item follows once an event kicks off. This type of workflow is defined in a Worklist BPEL server, such as Oracle BPM Worklist.
Messages, alerts, and notifications might also come from the User Messaging Service (UMS). The Worklist task flow includes a control for accessing messaging preferences on this server. Use these controls to specify the channels over which to receive Oracle User Messaging Service messages and to define messaging filters.
See Also: Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces for more information about the service at runtime. |
To use the Worklist service, you must have a BPEL server installed. For information on installing BPEL for the Worklist service, see the "Back-End Requirements for the Worklist Service" in the Oracle Fusion Middleware Installation Guide for Oracle WebCenter Portal.
For the Worklist to properly function, it must reside on a secured page, as the service uses the currently authenticated user to access the BPEL server. If the page or application that contains the Worklist service is not secured, you will encounter exception errors.
At runtime, the Worklist task flow fetches latest Worklist workflow items from BPEL workflows configured in the BPEL server. For more information, see the chapter "Working with the Worklist Service" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
To get a list of the items assigned to a user, the Worklist service uses the WebService access function of the public BPM client API. The Worklist service uses SAML authentication to authorize the logged-in user to fetch the list of latest items from the BPEL repository. The Worklist service fetches 25 most recent items for each Worklist connection, and determines the order of these items by using a predicate on the TaskQueryService
API. For more information, see "Building a Custom Worklist Client" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Figure 51-1 shows the Worklists service at runtime.
Figure 51-2 and Table 51-1 in this section provide an overview of the prerequisites and tasks required to get the Worklist service working in Framework applications.
Figure 51-2 Configuring the Worklist Service for WebCenter Portal: Framework Applications
Table 51-1 Configuring the Worklist Service for WebCenter Portal: Framework Applications
Actor | Task | Sub-Task |
---|---|---|
Administrator | 1. Install Oracle WebCenter Portal and the Oracle SOA Suite | |
Developer | 2. Integrate the Worklist service in your Framework application | |
Developer/Administrator | 3. Deploy the Framework application using one of the following tools:
| |
Administrator | 4. Deploy additional BPEL workflows using the Oracle BPM Worklist application | |
Administrator | 5. (Optional): Configure BPEL server to use same identity store as the application | |
Administrator | 6. (Optional): Secure the connection to the BPEL server | 6.c Configure SSL |
Developer/Administrator | 7. (Optional): Add/modify connection parameters using one of the following tools:
| |
End User | 8. Test that the Worklist service is working | 8.a Log in to the Framework application 8.b Generate a worklist event 8.c Verify event information displays in the task flow |
This section describes how to set up a connection for the Worklist service and add the task flow to your Framework application.
This section contains the following subsections:
To use the Worklist service, you must establish a connection to one or more BPEL servers. This section describes these connections and how to create them in a Framework application.
The Worklist service relies on a BPEL server. Once you create a connection using the Create Worklist Connection dialog, the connection is registered in your application's connections.xml
and referenced in your application's adf-config.xml
. You can see the connections to your BPEL Worklist Repositories in the Application Resources pane.
Note: While you can set up the connections to back-end servers at design time in Oracle JDeveloper, you can later add, delete, or modify connections in your deployed environment using Enterprise Manager Fusion Middleware Control. For more information, see the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. |
The Worklist service provides a task flow that you can add to your application at design time or at runtime. Before you can run the task flow, you create a connection from your application to a BPEL server.
Note: The application you use must be prepared for service consumption. For information about doing so, see Chapter 7, "Preparing Your Application for WebCenter Portal Services." |
To set up the connection for the Worklist service:
Note: At runtime, when users view their worklist items, they can choose to group the items by "Worklist Server." The Worklist Server name used is the name you enter in the Connection Name field. |
http://bpel.example.com
. This is the URL for the managed server running the SOA processes. SAML (Security Assertion Markup Language) is an XML-based standard for passing security tokens defining authentication and authorization rights. An attesting entity (that already has trust relationship with the receiver) vouches for the verification of the subject by method called sender-vouches. Options available are:
Figure 51-3 Create Worklist Connection Dialog
protocol://host:port
. For example, http://mySSO.host.com:7777
.
This URL is used to build SSO- or HTTPS-enabled URL links to worklist items. Whereas the URL property of the Worklist service is used to access the BPEL Task Query Service, which for performance reasons does not need to go through HTTPS or an SSO server.
The new connection displays in the Application Resources panel under Connections.
This section describes the Worklist task flow and how to add it to your application.
There is one task flow associated with the Worklist service, called "Worklist." You can find this task flow in the WebCenter Portal - Services Catalog in the Resource Palette.
You can add the Worklist service to your application before or after you have created your connection. However, you must set up your connection before you run the service.
To add the Worklist task flow to your application:
Figure 51-4 Worklist Task Flow in the Page Source
The Worklist service displays the tasks for the currently authenticated user. So, for users to store and retrieve Worklist tasks on the BPEL server from your application, you must set up security on the application (as described in Section 7.2.1.1, "Implementing Security for Services"). The user names need to either exist in a shared user directory (LDAP), or set up similarly (same user name) on both the Framework application and the BPEL Server. For example, if the user rsmith
needs to use the Worklist service in your Framework application to store and retrieve tasks from the BPEL server, you must ensure that the user rsmith
exists on both the BPEL server and within your application.
To enable users to perform actions on assigned Worklist tasks, you can configure SSO. If you do not configure SSO, the users will be prompted to log into the Worklist Task Details page on the BPEL server. For more information, see the Oracle Containers for J2EE Security Guide.
Only authenticated users can view Worklist tasks on the BPEL server to which they have permissions to view. If the application end user does not supply appropriate credentials, or if the page containing the Worklist service is not secured, she will not see any Worklist items stored on the BPEL server and exception errors may occur.
The Worklist service collates all the Worklist items for the authenticated user from all connections in your application defined for the Worklist service. You can use the create connection method described in Section 51.3.1.2, "How to Set Up Connections for the Worklist Service" to create additional connections, or right-click the connection name in the Application Resources list and choose Delete to remove a connection.
This chapter explains how to integrate the Events service into a WebCenter Portal: Framework application at design time.
This chapter includes the following sections
For information about managing and including events, see:
In Framework applications, the Events service provides access to your personal Microsoft Exchange calendar.
This section includes to following subsections:
With the Events service, users can:
The Events service is integrated with many WebCenter Portal services, such as Links, Mail, and Search.
Figure 52-1 shows an example of a personal calendar in a Framework application.
The Events service integrates with Microsoft Exchange Server to provide access to personal calendars. You must install and configure the appropriate server.
For information about installing and configuring Exchange Server, see "Events Service Prerequisites" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
At runtime, users can view events from their Microsoft Exchange calendars.
For more information about the service at runtime, see the chapter "Working with the Events Service" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Note: Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces discusses both personal events and space events. Only the information on personal events applies to Framework applications. |
This section includes the following subsections:
The flow chart (Figure 52-2) and table (Table 52-1) in this section provide an overview of the prerequisites and tasks required to get the Events service working in Framework applications.
Figure 52-2 Configuring the Events Service for WebCenter Portal: Framework Applications
Table 52-1 Configuring the Events Service for WebCenter Portal: Framework Applications
Actor | Task | Sub-task | Notes |
---|---|---|---|
Administrator | 1. Install WebCenter Portal and Microsoft Exchange Server | MS Exchange Server is the back-end component for personal calendars | |
1.a Download and install WebCenter Portal's Personal Events Web Service Plug-in | |||
Developer | 2. Integrate the Events service in your application | 2.a Configure a connection to the events server in JDeveloper | |
Developer/ Administrator | 3. Deploy the application using one of the following tools:
| ||
Developer/ Administrator | 4. Add/modify connection parameters using one of the following tools:
| ||
End User | Click Login to Personal Calendar on the Events task flow and enter your MS Exchange login credentials |
To take advantage of the Events service, you must first create a connection to the Exchange server from your Framework application. To do this, ensure that you have the connection information for the server.
You can register several server connections for the Events service, but only one connection is active at a time.
Note: While you can set up the connections to back-end servers at design time in JDeveloper, you can later add, delete, or modify connections in your deployed environment using Enterprise Manager Fusion Middleware Control. For more information, see the section "Registering Events Servers Using Fusion Middleware Control" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. |
To set up a connection for the Events service:
To create a connection that is available to the current application only, in the Application Resources panel of the Application Navigator, right-click Connections and choose New Connection and then WebCenter Personal Event Connection.
ExchangeServerForEvents
(Figure 52-3). For example:
Note: After you create a connection as the active connection, you cannot edit it so that it is not the default. To use a different active connection, you must create a new connection and mark that as the default connection. |
If the test is not successful, check the settings and try again.
In the Resource Palette, under IDE Connections, right-click the connection and choose Add to Application.
The connection is listed in the Application Resources panel of the Application Navigator (Figure 52-4). An external application connection is also created to store the user names and passwords of users who connect to the Exchange server.
Figure 52-4 Application Resources - Personal Event Connection
This section includes the following subsections:
The Events service task flows enable you to add a main view or quick view of events to a page.
Table 52-2 Events Service Task Flows
Task Flow | Description |
---|---|
Calendar Main View | This task flow displays a calendar of events and provides users with options to view events in day, week, month, or list view. |
Calendar Mini View | This task flow displays a calendar, similar to Calendar Main View, however, it requires less space. Only users with permission to edit the page and task flow can configure the event view (available in day or list view). |
To add an Events task flow to your application:
af:form
tags. event-view.jar
library, so click Add Library to add the library to your project. This operation may take a moment to complete. Figure 52-5 shows the Calendar Main View task flow at runtime.
Figure 52-6 shows the Calendar Mini View task flow at runtime.
When you create the connection to the Microsoft Exchange Server for the Events service, an external application connection is also created. This external application connection is created to store the user name and password of users in the Microsoft Exchange Server. For more information, see Section 52.2.2, "Setting Up a Connection for the Events Service."
WebCenter Portal provides REST APIs to support the Events service. Use the Events service REST APIs to create your own interface for providing access to space events.
Note: The Events service REST APIs are available for space events only. You cannot use REST APIs to work with personal events. |
This section describes the REST APIs associated with the Events service. It includes the following subsections:
The entry point for the Events service can be reached only through a space. First you need to navigate to the appropriate space and then find the link element with a resourceType
of:
The corresponding href
or template
element provides the URI entry point. The client sends HTTP requests to this entry point to work with the Events service.
For more information about the Resource Index, see Section 54.5.1, "The Resource Index."
For more information about resource types, see Section 54.5.2.1, "Resource Type."
When the client has identified the entry point, it can then navigate through the resource type taxonomy to perform the required operations. For more information about the individual resources types, see the appropriate section in Section 52.3.4, "Events Resource Types."
The taxonomy for the Events service is:
There are no specific security considerations for this service. For general security considerations, see Section 54.8, "Security Considerations for WebCenter Portal REST APIs."
This section provides you with all the information you need to know about each resource type. It includes the following subsections:
Use this resource to identify the URI to use to retrieve (GET
) and create (POST
) space events. The response from a GET
operation includes each space event in this collection of events, and each event includes links used to operate on that event. The response from a POST
operation includes the event that was created in this collection of events and a link to operate on that event.
Navigation Paths to gsEvents
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for gsEvents
The following methods are supported by this resource:
GET
startIndex
, itemsPerPage
, utoken
For information about these common parameters, see "Common Request Query Parameters".
The following additional parameters are available:
startDate
—the date from which to start listing space events endDate
—the date at which to stop listing space events For the start and end dates, use the format YYYY-MM-DD
, for example 2011-09-01
. You can also specify a time (for example, 2011-09-01T09:00:00
) and a timezone sign (for example, for UTC, 2011-09-01T09:00:00Z
).
POST
Resource Types Linked to From gsEvents
Table 52-3 lists the resource types that the client can link to from this resource.
Use this resource type to identify the URI to use to read (GET
), update (PUT
), or delete (DELETE
) a specific space event. The response from a GET
operation includes the specific event identified by the URI. The response from a PUT
operation includes the modified version of the event identified by the URI. The response from a DELETE
operation is a 204.
Navigation Paths to gsEvent
Supported Methods for gsEvent
The following methods are supported by this resource:
GET
PUT
DELETE
Writable Elements for gsEvent
Table 52-4 lists the writable elements for this resource.
Table 52-4 Writable Elements for gsEvent
Element | Type | Required | Constraints | Description |
---|---|---|---|---|
| String | No | The name of an event category defined for the space | The category to which the event belongs |
| String | No | 1 or more characters | Additional details about the event |
| Date | Yes | YYYY-MM-DDTHH:MM:SS
| The date and time at which the event ends |
| String | No | 1 or more characters | The location at which the event takes place |
| String? | No | 1 - Highest 2 - High 3 - Normal 4 - Low 5 - Lowest | The priority of the event, which determines where it appears when events clash |
| Date | Yes | YYYY-MM-DDTHH:MM:SS | The date and time at which the event starts |
| String | Yes | 1 or more characters | A brief description of the event to serve as the title of the event |
Read-only Elements for gsEvent
Table 52-5 lists the read-only elements for this resource.
Table 52-5 Read-only Elements for gsEvent
Element | Type | Description |
---|---|---|
| personReference | User who created the event |
| Date | Date on which the event was created |
| String | The length (in minutes) of the event |
| groupSpaceReference | The space to which the event belongs |
| String | Unique ID of the event |
| Boolean | Indicates whether the event takes place over an entire day |
| Date | Date on which the event was last updated |
| personReference | User who last updated the event |
Resource Types Linked to from gsEvent
Table 52-6 lists the resource types that the client can link to from this resource.
Use this resource to identify the URI to use to retrieve (GET
) and create (POST
) space event categories. The response from a GET
operation includes each category in this collection of categories, and each category includes links used to operate on that category. The response from a POST
operation includes the category that was created in this collection of categories and a link to operate on that category.
Navigation Paths to gsCategories
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for gsCategories
The following methods are supported by this resource:
GET
POST
Resource Types Linked to From gsCategories
Table 52-7 lists the resource types that the client can link to from this resource.
Use this resource type to identify the URI to use to read (GET
), update (PUT
), or delete (DELETE
) a specific space event category. The response from a GET
operation includes the specific category identified by the URI. The response from a PUT
operation includes the modified version of the category identified by the URI. The response from a DELETE
operation is a 204.
Navigation Paths to gsCategory
This section shows how the client can navigate through the hypermedia to access the gsCategory resource:
Supported Methods for gsCategory
The following methods are supported by this resource type:
GET
PUT
DELETE
Writable Elements for gsCategory
Table 52-8 lists the writable elements for the resource.
Table 52-8 Writable Elements for gsCategory
Element | Type | Required | Constraints | Description |
---|---|---|---|---|
| String | Yes | 1 or more characters | The name of the category |
Resource Types Linked to from gsCategory
Table 52-9 lists the resource types that the client can link to from this resource.
This section provides information to assist you in troubleshooting problems you may encounter while using the Events service.
Problem
Error message displayed in calendar taskflow:
Solution
Confirm that you have created a Personal Event Connection. For more information, see Section 52.2.2, "Setting Up a Connection for the Events Service."
Problem
After logging into the calendar with the right credentials, you continue to see the Login to Personal Calendar link rather than your events.
Solution
Confirm that the page on which calendar taskflow is added is a secured page. Anonymous users cannot log into the Personal Event Calendar server.
The RSS service enables your application users to add and view RSS 2.0 formatted feeds within your application. This chapter describes how to integrate the RSS Viewer into a Framework application at design time.
This chapter includes the following sections:
For more information about managing and including RSS feeds, see:
Really Simple Syndication (RSS) provides a means of accessing the content of many different web sites from a single location—a news reader. Oracle WebCenter Portal provides the RSS service that encompasses the RSS Viewer and the service to show RSS feeds from various WebCenter Portal services. The RSS Viewer enables you to view external news feeds from different web sites from within your Framework applications.
This section provides an overview of the features and requirements of the RSS service. It includes the following subsections:
To display news feeds from external sources on your application pages, you add the RSS Viewer task flow and specify the URL for the required RSS feed, as shown in Figure 53-1. Your application users can then view the RSS feed at runtime.
For accessing secure application content, the RSS Viewer task flow supports integration with external applications to provide credential mapping services to authenticate with a remote feed. For information about using external applications, see Section 69.13, "Working with External Applications."
Figure 53-1 RSS Details Specified at Design Time
The RSS service does not require any back-end server. You do not need to set up a connection to use this service. However, you can set up a proxy server for the RSS service, if required.
At runtime, RSS news feeds are displayed from the RSS feed location specified at design time. Users can click the RSS icon on the top-right corner of the application page to open the URL specified as the RSS feed location.
Any user who has permissions to modify the application page can access the RSS Viewer parameters and change the URL of the RSS feed that is rendered.
For information about the RSS service at runtime, see the "Working with the RSS Service" chapter in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
This section describes how to set up the proxy server for the RSS service and add the RSS Viewer task flow to your Framework application.
This section includes the following subsections:
The RSS service does not require any connections. You can simply point to the URL of the RSS feed. However, if you want to point to an RSS feed that is external to your intranet and application, you may need to set up a proxy server for your application.
To set up a proxy server for the RSS service:
This section describes the RSS Viewer task flow and how to add it to your application.
This section contains the following subsections:
The RSS service has a single task flow called RSS Viewer, which you can add to your application to enable your users to access an RSS feed. You can add multiple instances of the task flow to your application and use the Edit Task Flow Binding dialog to point to multiple RSS feed locations.
To add the RSS Viewer task flow to your application:
Note: For more information about external applications, refer to Section 69.13, "Working with External Applications." |
Figure 53-4 Example of the Edit Task Flow Binding Dialog for the RSS Service
Table 53-1 describes the possible values for the RSS Viewer task flow binding parameters.
Table 53-1 RSS Viewer Task Flow Binding Parameters
Parameter | Value |
---|---|
| Enter the location of the RSS feed. For example, to use the Oracle Press Releases RSS feed, enter: ${'http://www.oracle.com/rss/rss_ocom_pr.xml'} |
| Enter the name of the external application you want to use to authenticate the Framework application with the RSS feed. If the RSS feed does not require authentication, you do not need to set up and identify an external application for this service. |
If you look at the Source tab of your page, you can see the RSS Viewer task flow in the page source, as shown in Example 53-1.
The RSS Viewer task flow has required and optional task flow binding parameters.
You can adjust the parameter values when you drop the task flow onto a page or after you have placed a task flow on a page:
To use the RSS service with a public RSS feed, you do not need to set security. To use the RSS service with an RSS feed that requires authentication, you can set up an external application for your Framework application that sets up either user credentials or public credentials for accessing the RSS feed.
Note: For secure application content, your news reader must support BASIC authentication. |
For more information about using external applications, see Section 69.13, "Working with External Applications."
Only authenticated users can view secure RSS feeds. If a user is not authenticated and the RSS feed is secured, the user will not see any content in the RSS Viewer unless the external application specifies public credentials.
Note: When you add the RSS Viewer task flow to your Framework application, the View grant is automatically added to the |
Oracle WebCenter Portal provides a set of REST APIs for retrieving and modifying server data. This chapter discusses the WebCenter Portal REST APIs.
This chapter includes the following sections:
This chapter includes some examples that demonstrate how to use WebCenter Portal REST APIs. For more examples, see the Oracle WebCenter Portal Demonstrations and Samples page on the Oracle Technology Network (OTN) at:
http://www.oracle.com/technology/products/webcenter/release11_demos.html
REST (REpresentational State Transfer) is an architectural style for making distributed resources available through a uniform interface that includes uniform resource identifiers (URIs), well-defined operations, hypermedia links, and a constrained set of media types. Typically, these operations include reading, writing, editing, and removing, and media types include JSON and XML/ATOM.
REST commands use standard HTTP methods as requests to point to the resource being used. Every request returns a response, indicating the status of the operation. If the request results in an object being retrieved, created, or updated, the response includes a standard representation of that object.
REST supports multiple clients, both from client machines and other servers, and it can be used from just about any client or development technology, including Java, JavaScript, Ruby on Rails, PHP, .Net, and so on.
Tip: For a good general introduction to REST, see the Wikipedia article Representational State Transfer at |
REST is typically used with Rich Internet Applications (RIA) that are client-side scripted and require the ability to interact with data from a server-side application. For example, the WebCenter iPhone App uses WebCenter Portal REST APIs to interact with a WebCenter Portal: Spaces application. The native iPhone client is written in Objective-C, and the REST APIs enable the client to send and retrieve application data.
To provide additional security, every URI, for both href
and template
attributes, includes a security token parameter that is based on the authenticated username (a utoken).
The security generation algorithm uses a randomly generated "salt" along with the username. The salt ensures that if any of the parameters used to perform encryption become compromised, existing tokens can be invalidated and new ones generated. Most importantly, because the username is used as part of the user token generation algorithm, the salt prevents having to change all user names in the event of a compromise.
The salt is stored in the Credential Store Framework (CSF) in the map o.webcenter.jf.csf.map
against key user.token.salt
. You can change the value of this key (and other keys used for token encryption) by accessing CSF in Oracle Enterprise Manager.
Caution: If you change the encryption key values, all existing username based security tokens will immediately become invalid. Only change these values under extraordinary circumstances, like an algorithm parameter compromise. |
Many excellent articles have been published about REST and the benefits of the RESTful style of software architecture. Some of these benefits include:
In addition to enabling mobile access, WebCenter Portal REST APIs allow you to take advantage of Web 2.0 technologies like Ajax, JavaScript, and JSON to create rich, interactive browser-based user interfaces and to access and modify Oracle WebCenter Portal: Framework and WebCenter Portal: Spaces data. In general, the WebCenter REST commands provide a more natural and easy-to-use alternative to a SOAP-style web services approach.
Table 54-1 describes the Oracle WebCenter Portal REST APIs provided for WebCenter Portal: Services features.
Table 54-1 Summary WebCenter Portal: Services Features Supported by REST APIs
REST API | Description | Chapter |
---|---|---|
Discussions | Enable a client to post, read, update, and delete discussion forums, topics, and messages. | Section 34.3.8, "Using the Discussions Service REST APIs." |
Lists | Enables a client to browse all the lists associated with a named group space; search list columns given a search term; create new lists; add, update, and remove list rows; and similar sorts of list-related tasks | Section 48.4, "Using the Lists Service REST APIs." |
People Connections | Enable a client to view profile data; manage connection lists, feedback, and messages; create new activities and view activities for users, lists, and group spaces. | Chapter 42, "People Connections Service REST APIs." |
WebCenter Portal: Spaces | Enable a client to retrieve group space metadata and view, create, update, and delete group space lists and list items. You can also retrieve group space membership information. | Section 57.3, "Using the WebCenter Portal: Spaces REST APIs." |
Content Management | Uses the CMIS (Content Management Interoperability Services) RESTful server binding to provide access to the CM VCR (Content Management Virtual Content Repository). | Oracle Fusion Middleware Content Management REST Service Developer's Guide. |
Activity Graph | Enables you to retrieve recommendations for connections, group spaces, and items using the underlying Activity Graph engine. | Section 46.3.2, "Using the Activity Graph Service REST APIs." |
Events | Lets you access calendar events associated with a named group space. | Section 52.3, "Using the Events Service REST APIs." |
Feedback | Enables a client to create, read, and delete feedback in a social networking application. | Chapter 42, "Feedback REST APIs." |
Search | Lets you post, read, update, and delete searches. You can specify keywords and the scope of the search; for example, the iPhone could search for "smith" in all spaces, documents and wiki pages. | Section 45.3.7, "Using the Search Service REST APIs." |
Tags | Enables a client to read, post, update, and delete tags and tagged items. | Section 44.3.2, "Using the Tags Service REST APIs." |
Navigation | Use the navigation REST APIs to create your own interface for displaying navigations. Note: The navigation REST APIs do not share the resource index described in this chapter. | Section 14.3.2, "Using the Navigation REST APIs." |
Personalization | Enables you to access the Personalization Conductor. | Section 67.4, "Extending Personalization." |
Pagelets | Allows remote web services to retrieve information about resources and pagelets. Inject pagelets into non-proxied pages, allowing the Pagelet Producer to act as a portlet provider for Oracle WebCenter Interaction, Oracle WebLogic Portal, or other third-party portals. | Section 63.2.2.2, "Accessing Pagelets Using REST." |
Hypermedia is at the core of two of the most successful web-based formats: HTML and ATOM. HTML and ATOM allow consumers to navigate to other hypermedia documents through links–for example, clicking on a link to go to a news article.
Hypermedia drives RESTful application state (known as HATEOAS: Hypermedia As The Engine Of Application State).
Note: HATEOAS analogy to define application state: Suppose you are completing your taxes in your favorite browser. You finish entering your W-2 data and move on to deductions when the browser crashes. The state you lost—the fact that you were on deductions and still needed to enter data—is the application state; not the W-2 data entered (that is, change states from the current state). HATEOAS dictates that this state—the application state—be captured wholly in hypermedia. Application state is where you are in the application, not what data you've entered into the application. One of the benefits of this approach is that it simplifies the client and server, because they do not need to be aware of the state they are in. The link contains all the state information necessary to process the request, so, when the browser restarts and returns to the link, the user will be at the same place in the tax process. |
Given a set of top-level URI entry points to a RESTful service, all interactions beyond those entry points are driven by hypermedia links returned in response representations. This link-centered approach helps keep the client from becoming too tightly coupled to the server URLs. The client is using URLs given to it by the server, therefore the client code does not break if the server URLs change format.
Understanding this link model helps you understand how to use the data the service returns to navigate the REST APIs.
This section describes the hypermedia link model used by WebCenter's RESTful services. It includes the following subsections:
In WebCenter, the Resource Index is your starting point for all authenticated access. The Resource Index provides access to the set of top-level URI entry points. It provides the way in to all the available WebCenter RESTful services. The Resource Index URI is the only URI that you need to know.
The WebCenter Resource Index URI is:
Note: Access to the Resource Index always requires authentication; however, you can (optionally) access the CMIS resource entry point anonymously using the following URI:
See also Section 54.9, "Security Considerations for CMIS REST APIs." |
The first step in using the WebCenter Portal REST APIs is to send a GET
request to the Resource Index. The response varies depending on the services available and the media type of the request. Example 54-1 shows how the response might look if you made an Ajax request using JavaScript (and possibly a client-side scripting library, such as Dojo) to retrieve the JSON data for the Resource Index. Note that this is an abridged sample response and does not include all of the links actually present in a real response.
Example 54-1 Response to a GET on the Resource Index
By interpreting the links returned in the Resource Index data, you can retrieve the URI entry point for an individual service by locating the URI for the resource type you want to use. You can then continue navigating through the hypermedia until you can perform the required operation. Example 54-2 shows a method that locates a URI given the Resource Index JSON data.
Example 54-2 Locating the URI for a Particular Service in the Resource Index
Example 54-3 and Example 54-4 show the anatomy of a hypermedia link as XML and in JSON document fragments, respectively.
Example 54-3 Link in an XML Document Fragment
Example 54-4 Link in a JSON Document Fragment
The resourceType
, rel
, and capabilities
attributes of the hypermedia link provide metadata that enable clients to determine which URI (href
or template
) to use, without having to parse the URIs directly. The URIs are opaque—the metadata determines which link is useful in a given circumstance.
Multiword field, element, and attribute names are formatted in camel case, unless the representation is attempting to conform to a specification not under the service author's direct control. Acronyms are treated as normal words with their case adjusted accordingly (for example, fooXml
or xmlFoo
). See Example 54-5 and Example 54-6.
This section includes the following subsections that describe the different attributes of the hypermedia link:
The resourceType
link attribute indicates the type of resource to which the link points. Clients should use the resourceType
to determine the expected response bodies for GET
and POST
and allowable request bodies for POST
and PUT
.
For more information, see Section 54.7, "Navigating Hypermedia Using HTTP."
The rel
link attribute indicates the relationship of the linked object to the current object (that is, the object that contains the list of links). The value of this attribute is a space-separated list of the following currently supported values:
self
—The linked object is the current object related
—The linked object is related to the current object via
—The linked object is the source of the information for the current object alternate
—The linked object is a substitute for the current object (typically, the same object in another format, such as an HTML page that displays the current object) urn:oracle:webcenter:parent
—The linked object is the parent of the current object. That is, the linked object owns the current object Note: Some REST APIs for some WebCenter features may contain additional |
The capabilities
link attribute indicates which methods are supported by the linked resource.
Links are returned only if a client is allowed to access that resource. User authorization can affect the capabilities a client has with the links returned in a response representation. In general, services only return the capabilities that the current authorized user has permission to execute and that the resource supports.
If there is no link, then the client cannot access the resource. If a link has no capabilities, then it is not returned to the client, meaning that the client does not have permission to do anything with that link (even read it).
Capability-based expression of hypermedia links communicates the range of operations that the client can expect to succeed, which allows the client to dynamically configure any associated UI to provide the best overall user experience.
The value of this attribute is a space-separated list of the following values:
urn:oracle:webcenter:create
—This maps to the HTTP verb POST
urn:oracle:webcenter:read
—This maps to the HTTP verb GET
urn:oracle:webcenter:update
—This maps to the HTTP verb PUT
urn:oracle:webcenter:delete
—This maps to the HTTP verb DELETE
Note: The top-level |
Note: Querying a resource for the allowed HTTP verbs using |
The type
link attribute indicates the media types supported by the linked object.
All REST services, except for CMIS, support both XML (application/xml
) and JSON (application/json
) media type. CMIS currently supports only ATOM. For more information about CMIS REST APIs, see the Oracle Fusion Middleware Content Management REST Service Developer's Guide.
The template
link attribute indicates that the client can use a URI template, instead of the href
URI, to provide parameterized values for the linked object. Links must include at least an href
or a template
URI, but can include both.
Some hypermedia links support request query parameters that allow the client to configure the link in different ways. Rather than force the client to know the URI format and manually build the URI, URI templates are used. These templates allow client code to easily insert data into a URI without having to understand exactly how the URI works. This maintains the opacity of hypermedia URIs and protects the client from changes to the URI format.
Example 54-7 shows a URI template including several request query parameters.
Example 54-7 URI Template
WebCenter Portal REST APIs use a simple slot replacement syntax that follows many industry URI template schemes.
For example, using the template in Example 54-7, to see 10 list items on the first page, the client would provide a value of 1
for the startIndex
parameter and a value of 10
for the itemsPerPage
parameter, as shown in Example 54-8.
Example 54-8 URI Template with Parameter Values
Note: All unused parameters must be removed from a template before it can be used. Clients may not submit unprocessed templates to the service that produced it; doing so results in undefined behavior, generally returning a status code of 500. Clients must process templates into valid URI form before submitting to the server. Clients must replace slots with appropriate values, taking care to properly URI encode any value replacing the slot token. If a client does not have a suitable value for one or more of the slots in the template, then it must replace the slot token with an empty string. |
You must URL-encode special or reserved character in parameter values. For example, to search lists for a person named Günter, you must URL-encode the ü as shown in Example 54-9.
Common Request Query Parameters
Many resources support a common set of request query parameters. For example, when retrieving a collection of entities, it is common to change the shape of the results set by limiting the quantity or details of the results. The REST framework uses the following request parameters to scope results and provide security:
startIndex
—Specifies the index of the first matching result that should be included in the result set (0-n ... zero based). This is used for pagination. itemsPerPage
—Specifies the maximum number of results to return in the response (1-n). This is used for pagination. q
—Specifies implementation-specific searching. Searches may be specified using the following format (square brackets [] denote optional values): For example:
While each resource uses the same format for the q
parameter, the way search is implemented is different depending on the resource being searched. For more information about how each resource implements search, see the chapter for the specific service.
projection
—Reserved for implementation-specific projection of model representations, such as variable recursion depth, field or attribute filtering. Valid values are summary
or details
. For example, requesting a projection of summary
for a collection of lists, returns only the title, description, and hypermedia links. Requesting a projection of details
results in the server sending back a collection of lists that includes all the column metadata for each list. This may require additional processing time or database queries on the server.
The following example request results in the response entity containing a deeper object graph.
data
—This parameter accepts a comma separated list of data sets and items. This parameter lets clients specify what data they would like to receive. For example, a mobile device application might use this parameter to limit the amount of XML data returned. If both the projection
and data
query string parameters are present, the data
parameter will be used to determine which data to return. If you specify the constant 'data'
as the data parameter, all the standard information will be returned for the resource. For information about how these parameters are supported by specific resources, see the chapter for the appropriate service.
A collection of items
makes up the actual content of responses. This is at the same level as the links
section described previously. Each item (including the top-level tag in each response) has one common attribute (resourceType
) in addition to resource-specific content and format. For details beyond the resourceType
, see the chapter for the specific service.
See Example 54-13 for an example that describes a collection of entities/items. Example 54-15 describes a single entity/item.
You can navigate REST service hypermedia in a similar way to that used to browse and interact with HTML or an ATOM feed. Interactions are performed on the resources identified by links using HTTP methods. The REST services return response codes and response bodies to the client, and the client uses the hypermedia in the response to drive further interactions.
Table 54-2 describes the general pattern followed when constructing opaque resource URIs. The resourceType
differentiates whether the HTTP method operates on a collection of resources or an individual resource.
Table 54-2 HTTP Methods
HTTP Method | Response for a Collection of Resources | Response for an Individual Resource |
---|---|---|
| Returns resource collection container (200 HTTP response code) | Returns resource (200 HTTP response code) |
| Cannot update a collection of resources (405 HTTP response code) | Updates and returns resource (200 HTTP response code) |
| Creates and returns a new resource within the collection. Note: Can return a 201 or 204 HTTP response code. The returned code depends on whether the newly created object is directly addressable or not. For instance, activities cannot be addressed individually, so they return a 204 no-content response code. | Cannot create a resource within an individual resource (405 HTTP response code) |
| Cannot delete a collection of resources (405 HTTP response code) | Deletes resource (204 HTTP response code) |
Collection resources generally support reading a collection (GET) and creating a subordinate to that collection (POST). Individual resources generally support reading a resource (GET), updating a resource (PUT), and deleting a resource (DELETE).
HTTP Response Status Codes
Table 54-3 describes the potential response status codes.
Table 54-3 HTTP Response Status Codes
HTTP Response Status Code | Description |
---|---|
200 | OK. Upon successful completion of a |
201 | Created. Upon successful completion of a |
204 | No content, or any request that does not return content. For example, creating an object that cannot be linked. Upon successful completion of a |
400 | Bad Request. The URI was malformed or could not be processed; for example, the IDs were not formatted correctly, or the ID was supplied in the URI on a |
401 | Unauthorized. Client may retry by submitting credentials. This may be accompanied with a fault response body to help diagnose the issue. |
403 | Forbidden. Client does not have permission to perform a particular action, such as creating or deleting a resource. Re-authenticating as the same user does not help. This may be accompanied with a fault response body to help diagnose the issue. |
404 | Not Found. Referencing a specific resource with an ID, but that resource does not exist. |
405 | Method Not Allowed. This includes a list of valid methods for the requested resource. |
406 | Not Acceptable. The Accept header media type(s) sent by the client are not supported for the requested operation.This may be accompanied with a fault response body to help diagnose the issue. |
409 | Conflict. Possibly the resource ID is in use, or an entity has been modified by another process during an update.This may be accompanied with a fault response body to help diagnose the issue. |
422 | Bad entity body, the data in the body, although syntactically correct, was not valid, or could not be processed; for example, invalid data when updating a row. |
500 | Internal server error. The server encountered an unexpected condition that prevented it from fulfilling the request. |
501 | Not Implemented. The server does not support the functionality required to fulfill the request. This is the appropriate response when the server does not recognize the request method and is not capable of supporting it for any resource. |
All of the WebCenter REST URIs reference protected resources (similar to protected web pages) and require authentication for access.
Note: The one exception to the authenticated access rule is access to the CMIS resources. CMIS resources can be accessed anonymously through the CMIS URI entry point:
See also Section 54.9, "Security Considerations for CMIS REST APIs." |
You can pass this authentication in with the request using basic authentication, or you can configure the client and the WebCenter REST service to use single sign-on. For more information about single sign-on, see the section "Configuring a WebCenter Portal: Framework Application to Use Single Sign-On" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Basic authentication sends the user's password in plain text. If you use this type of authentication, you should consider securing the connection using SSL. For more information, see the section "Configuring WebCenter Portal: Framework Applications and Components to Use SSL" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
To provide additional security, every URI, for both href
and template
attributes, includes a security token parameter. The security token is user-scoped. This means that it is based on and scoped to an authenticated user and can be bookmarked or cached across that user's sessions. These security tokens help prevent Cross-Site Request Forgery (CSRF) attacks.
For example:
Note: The security token is not used for authentication or identity propagation. |
WebCenter Portal REST APIs operate under the identity of the authenticated user. For example, the group space REST APIs only return information for, and allow changes to, group spaces to which the user has access.
The CMIS REST APIs do not use the same authentication scheme as the other WebCenter Portal REST APIs. Whereas other WebCenter Portal REST APIs do not allow unauthenticated access and prompt the user for authentication before allowing access, the CMIS REST APIs do allow unauthenticated access.
If a document requires authentication information and does not receive that information (because it is being accessed by an unauthenticated user), a 404 error is returned. This does not necessarily mean that the document cannot be found, rather that the (unauthenticated) user does not have the appropriate permissions to access the document. For the request to succeed, it should include basic authentication headers to identify the current user.
CMIS stands for Content Management Interoperability Services, a standard REST interface for Enterprise Content Management Systems. For more information, see Oracle Fusion Middleware Content Management REST Service Developer's Guide.
This section describes the common types that are shared by multiple WebCenter Portal REST APIs.
Common types provide a consistent way to reference objects used in the WebCenter Portal REST APIs.
This section includes the following subsections:
This is a generic data type that represents a user in the system. It is used by several APIs, for example to identify the author of a message board or feedback message, or a user's manager or direct reports. It is made up of the following elements:
guid
—The GUID of the user id
—The login ID of the user displayName
—The display name of the user The personReference
also includes a link to the user's profile icon. You can control the size of the icon by providing values: small
, medium
, or large
.
Depending on where the personReference
type is included, it can also return links to the associated REST APIs of the generating response. For example, if the personReference
type is included as the author in a message board response, it includes links to message board services.
This is a generic data type that represents a group space. It is used by several APIs, for example in the activity stream, to identify a group space in which a particular activity occurred. It is made up on the following elements:
guid
—The GUID of the group space name
—The name of the group space displayName
—The display name of the group space The groupSpaceReference
also includes an html link, rest link, and icon link.
Portable Contact types provide users with a standard way to access their address books and friends lists over the web. Portable Contact types are used by the Profile component of the People Connections service.
Note: These types are based on the Portal Contact Types in WebCenter. They may include additional data. |
This section includes the following subsections:
This is a portable contact type that provides information about the user's name. It is made up of the following elements:
formatted
—The formatted version of the full name of the user, for example, Michael David Jones Ph.D. familyName
—The family name, or last name, of the user, for example Jones givenName
—The given name, or first name, of the user, for example Michael honorificSuffix
—The honorific suffix of the user, for example, Esq. or Ph.D. initials
—The first initials of the user, for example, M. D. maidenName
—The maiden name of the user Some of the elements may not be present depending on the user repository configuration and data.
This is a portable contact type that provides information about the user's address. It is made up of the following elements:
formatted
—The formatted version of the full address type
—The type of the address, for example, Home, Work streetAddress
—The street address poBox
—The post office box number locality
—The city or locality region
—The state or region postalCode
—The zip code or postal code country
—The country Some of the elements may not be present depending on the user repository configuration and data.
This is a portable contact type that provides information about the user's organizational affiliation. It is made up of:
name
—The name of the organization employeeNumber
—The employee number of the user employeeType
—The employee type of the user. department
—The department within the organization to which the user belongs defaultGroup
—The default group to which the user belongs title
—The job title of the user within the organization description
—A textual description of the user's role within the organization expertise
—The expertise of the user within the organization startDate
—The date when the user joined the organization Some of the elements may not be present depending on the user repository configuration and data.
This is a generic object that contains data for a wide variety of contact information. It is made up of the following elements:
primary
—A boolean value that identifies whether this is the primary piece of information of this type for this person. The primary element may not be present and is only relevant if there are multiple values for the same type of data. value
—The value for this type type
—The type of information. Valid types are: standard
: with valid values of work
, home
, other
phoneNumber
: with valid values of work
, home
, fax
, pager
, mobile
photos
: with a valid value of thumbnail
Client-side developers need to know how to handle HTTP cache headers in both requests and responses. Individual resources that have a "last modified" date are also return entity tags. The entity tags can be used to make retrieval of a specific entity more efficient. To learn more about the use of entity tags in caching, please see the Hypertext Transfer Protocol specification.
A proxy server is typically employed to avoid cross-domain request problems associated with making XMLHttpRequest (XHR) calls from a browser client. These calls are typically associated with the Ajax development technique for creating rich, interactive client-side interfaces. REST APIs are typically used within this kind of client-side development scenario.
For more information on setting up a proxy server, see "Configuring a Proxy Server" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
This section includes some examples illustrating how to use the WebCenter Portal REST APIs. It includes the following subsections:
This section includes examples to illustrate how to navigate the REST service hypermedia. The examples show how to read messages on a message board, post messages to another user's message board, and delete unwanted messages.
This section includes the following subsections:
The first step is always to access the Resource Index (Example 54-10).
This request returns a list of the top-level URI entry points to the RESTful services, including the entry point for the message board (Example 54-11).
Example 54-11 Response to Accessing the Resource Index
You can examine this list to find the URI that you require to access your message board. You should look for the link with a resourceType
of urn:oracle:webcenter:messageBoard
. The href
for this link is the one that you require to access your message board.
For other resources rel
, type
, and template
also help find the correct link.
Once you have determined the correct URI for your message board, you can send a GET request to that URI to read your messages (Example 54-12).
To read messages on a message board, you must be logged in.
The response provides information about all the messages on your message board (Example 54-13).
Example 54-13 Response to Retrieving Messages from Your Message Board
From the response you can see that you have read
and create
capabilities on your message board. So you can read its contents and post new messages.
In addition, the response also includes a collection of items (in this case the collection consists of just a single item). These items, with a resourceType
of urn:oracle:webcenter:messageBoard:message
, are the messages on your message board. The capabilities
attribute for the message indicates that, for this particular message, you can read it or delete it from your message board.
For each message, the response provides the following information:
id
—the identifier of the message body
—the text of the message author
—the author of the message. The author element is also made up of several other elements: id
—the identifier, or user name, of the author of the message displayName
—the name of the author, formatted for display guid
—the globally unique identifier of the author Within the author
element there is also a collection of three links. The resourceType
of these links are:
urn:oracle:webcenter:people:person
—enables you to view information about the author of the message urn:oracle:webcenter:messageBoard
—enables you to read or create a message on the author's message board urn:oracle:webcenter:spaces:profile
—enables you to read a text/html
document of the author's profile Now that you have read the message on your message board, you probably want to reply to Carl on his message board. To do this you should send a POST
request to the URI for Carl's message board.
To find the correct URI, use the href
from the author
link with resourceType
of urn:oracle:webcenter:messageBoard
.
A POST
request creates a subordinate resource of the resource to which you post it. In this case, we are posting to the messageBoard
, so we should post its subordinate resource: message
(Example 54-14).
Example 54-14 Creating a Message on Another User's Message Board (POST)
The response shows that your message was successfully created on Carl's message board (Example 54-15).
Example 54-15 Response to Creating a Message on Another User's Message Board
A PUT
request is very similar to a POST
request, except that it is performed on the resource being edited, instead of on the parent resource.
From the response to your earlier POST
request, when you created your message on Carl's message board, you can see that you have read
, update
, and delete
capabilities on the message. You can also see that the href
provides the URI for your message. Something came up at work and you must stay a bit later. Using the URI for your message, you can now send a PUT
request to update the message and let Carl know that you are going to be late (Example 54-16).
Example 54-16 Updating a Message (PUT)
The response is nearly identical to that of POST
, except that the body
contains your updated message (Example 54-17).
Performing a DELETE
request on a resource deletes it, if you have the delete
capability on the resource. The link to your message on Carl's message board supports delete
.
You decide to delete the message that you left on Carl's message board (Example 54-18).
The response is simply a status code of 204 (Example 54-19).
Note:
|
To properly display Activity Stream data, you must:
This sample is available on the Oracle WebCenter Portal Demonstrations and Samples page on the Oracle Technology Network (OTN) at:
http://www.oracle.com/technology/products/webcenter/release11_demos.html
In Example 54-20:
getResourceURL
method shows you how to retrieve the URI entry point for the Activity Stream service by retrieving the JSON data for the main Resource Index (/rest/api/resourceIndex
) and locating the URI for the Activity Stream resource in that data. formatMessage
method processes the Activity Stream data into a displayable format. This involves locating an individual message and replacing any template parameters in the message with the name of the object or user that corresponds to that parameter. The parameters also include links to display the object or user. They may contain links to REST services for those objects or users, if available. Note: To get the Resource Index and Activity Stream JSON data, make Ajax requests using Javascript (and possibly a client-side scripting library like Dojo) and pass the resulting data into the appropriate methods. |
Example 54-20 Displaying Activity Stream Data
Ext is a popular JavaScript library for building tables and forms and linking them to REST web services. The following example illustrates how to display a list of connections from the People Connections service REST APIs using an Ext JsonStore
and GridPanel
.
For more information about Ext, see:
Note: You must run Ext on a web server. If that server is not your WebCenter instance, then you will run into cross-site scripting problems. If you cannot run the example on your WebCenter server, and you want to use Ext, then consider a proxy, such as Apache or WebCenter Ensemble. |
This sample is available on the Oracle WebCenter Portal Demonstrations and Samples page on the Oracle Technology Network (OTN) at:
http://www.oracle.com/technology/products/webcenter/release11_demos.html
This section includes the following subsections:
Example 54-21 shows the simple HTML page. The HTML page must reference the required Ext files and the JavaScript file, connections.js
. The body of the page contains a destination div
. The GridPanel
is rendered in this div
.
Example 54-21 The HTML Page
The JavaScript file, connections.js
, enables the population of the list when the page loads. Example 54-22 shows that all of the JavaScript is a parameter to Ext.onReady()
.
Example 54-22 connections.js as a Parameter to Ext.onReady
The JavaScript does the following:
Notice that the example asks for responses in JSON format.
Example 54-23 Querying the Resource Index
By default, the REST API uses Basic authentication for secure APIs. In the example, credentials for passing to the Connections list URL are Base64 encoded. Ext does not have a Base64 utility object itself, but one has been developed for it at:
http://extjs.com/forum/showthread.php?p=167166
Example 54-24 Getting the Connections List URL
Example 54-25 Sending an Authenticated Request to the Connections List URL
JsonStore
(Example 54-26). Previously, this example named displayData()
as the handler for a successful call to the Connections list URL. Now, it creates the function and adds the JsonStore
code. In the JsonStore
, the data model for the data is defined and mapped to results expected from the REST call.
Example 54-26 Adding the Response to a JsonStore
GridPanel
to display the JsonStore
by including the code in Example 54-27 in displayData()
. The grid defines columns and a title. It also includes other display options, such as the size of the table.
Example 54-27 Creating a GridPanel to Display the JsonStore
GridPanel
by including the line in Example 54-28 in displayData()
. Figure 54-1 shows the list of connections from the People Connections service REST APIs.
The following example shows how to use REST APIs to update a user's WebCenter profile status.
Note: You must host the sample on a web server (for example, Apache or Oracle HTTP Server) or an application server. To avoid cross site scripting errors, you should proxy URL access to the REST service. On Apache or OHS, the conf commands would look like (change ProxyPass /webcenter/ http://myspaceshost:port/webcenter/ ProxyPassReverse /webcenter/ http://myspaceshost:port/webcenter/ ProxyPass /rest/ http://myspaceshost:port/rest/ ProxyPassReverse /rest/ http://myspaceshost:port/rest/ ProxyPreserveHost on |
This sample is available on the Oracle WebCenter Portal Demonstrations and Samples page on the Oracle Technology Network (OTN) at:
http://www.oracle.com/technology/products/webcenter/release11_demos.html
Updating user status involves making a sequence of asynchronous AJAX calls to get the URL for the status object:
The HTML page for updating user status (Example 54-29) includes an input field where users can enter the new status message (statusMessage
). Clicking the Update Status button (or pressing Enter) calls the updateStatus
method to make the initial call to the Resource Index.
Example 54-29 HTML Body
Figure 54-2 shows the HTML page.
The code in Example 54-30 retrieves the Resource Index (resourceIndexURL
variable set to /rest/api/resourceIndex
). The Resource Index is returned as an AJAX request object (resourceIndexRequest
).
Example 54-30 Retrieving the Resource Index
The getResourceURL
method shown in Example 54-31 traverses the links in the data returned by a REST call to find a specified string (URN) that identifies the required resource type.
Example 54-31 Traversing the Links
Example 54-32 uses getResourceURL
to parse the Resource Index to find the user profile URL. The data is returned as an AJAX request object (profileRequest
).
Example 54-32 Retrieving the User Profile
Example 54-33 takes the new status message provided by the user in the HTML page (statusMessage
) and uses request.put
to update the status object (retrieved by again calling getResourceURL
).
Example 54-33 Retrieving the Status Object
The renderStatusPutResults
method, shown in Example 54-34, renders the new status object.
Example 54-34 Rendering the New Status Object
Example 54-35 shows the code for disabling and reenabling the UI.
Example 54-35 Disabling the UI
Example 54-36 shows the library that assists in AJAX calls. Most of this is not WebCenter specific and works for any XHR requests to a service that returns JSON.
The library includes a reusable XHR object. This object supports HTTP GET, POST, PUT, and DELETE. All functions are asynchronous and take a URL and two callback functions, one for success, and one for failure. Success calls are made with a JavaScript object containing the return data. Failure calls are made with an error string. POST and PUT also take a data argument which must be a JSON string.
Example 54-36 AJAX Library
This chapter describes how you can integrate other Oracle applications with your WebCenter Portal application.
This chapter contains the following sections:
Oracle WebCenter Portal is an integrated suite of technology designed to deliver a unified, context-aware user experience. WebCenter Portal integrates structured and unstructured content, business intelligence, business processes, communication, and collaboration services, and removes the boundaries between enterprise applications. By integrating other applications available within the enterprise with WebCenter Portal, you can create context-centric, composite applications that leverage the capabilities of these applications, extending WebCenter Portal and changing the way people work.
WebCenter Portal uses industry-standard technologies to integrate (primarily as WSRP and JPDK portlets) other application components. Figure 55-1 shows the technologies involved in WebCenter Portal integration with other Oracle applications.
Although not all applications support the same integration mechanisms, the integration process is generally quite simple, consisting of exposing the application object to be integrated as a portlet, registering the portlet with WebCenter Portal, adding the portlet to a page, and then running and testing the results.
In Figure 55-1 we show the applications that can be integrated as Siebel, E-Business Suite, JD Edwards, PeopleSoft, and Oracle Business Intelligence. These Oracle applications are fully supported and documented within this chapter. However, you can integrate virtually any application that can expose objects as WSRP or JPDK portlets. The process for integrating them is the same as for the Oracle applications documented here: expose the object as a portlet, register the portlet in WebCenter Portal, and add the portlet to a page. Refer to the documentation for one of the supported Oracle applications for a description of how to consume an exposed portlet in WebCenter Portal.
This section describes how to integrate a Siebel Web service in a Framework application. It also describes how to integrate Siebel objects using the Siebel Web Engine (SWE). Siebel and WebCenter Portal can work together to include Siebel's CRM capabilities as portlets within your Framework application. You can integrate Siebel applications as Web services, or using the Siebel Web Engine (SWE) as described in the following subsections:
This section describes how to integrate Siebel applications as Web services in a Framework application.
This section contains the following subsections:
This section describes how to create an inbound Web service, set up operations for the inbound service, and generate a WSDL that you will later use to create a data control to your Framework application.
This section contains the following subsections:
To create an inbound Web service:
The Inbound Web Services page shows the out-of-the-box Web services and any other Web services that are currently exposed.
New Record
from the drop-down list. Field Name | Value |
---|---|
Namespace |
|
Name |
|
Status |
|
Comment |
|
CustAccount
as the Name and click Type. Business Service
as the Implementation Type. Siebel Account
. HTTP
. Save Record
. To add operations to the inbound Web service and then create a WSDL file, perform the following steps:
New
from the Menu drop-down list. AccountInsert
. Insert
as the Method, and click OK. Authentication Type | Session Type | Description |
---|---|---|
None | None | A single request is sent with an anonymous user login, and the session is closed after the response is sent out. In order for the anonymous session to be identified by the SWSE Plug-in, UsernameToken and PasswordText must be excluded in the SOAP headers. |
Username and password | None | A single request is sent with the username and password used to log in, and the session is closed after the response is sent out. |
Username and password | Stateless | The initial request to log in establishes a session that is to remain open and available for subsequent requests. Username/password are used to log in and a session token is returned in a SOAP header included in the outbound response. The session remains open. |
Session token (stateless) | Stateless | Request to reconnect to an established session, using the information contained in the session token. If the session has been closed, automatic re-login occurs. The Siebel servers include the session token in the SOAP header of the response. The session remains open. |
Session token (stateless) | None | When a SOAP header carries a session token and has the session type set to None, then the Session Manager on the SWSE closes (logs out) of this session, and invalidates the session token. The session token is not used after the session is invalidated. |
AccountQueryByExample
). Save Record
from the Menu drop-down list. Save Record
from the Menu drop-down list. Clear Cache
from the Menu drop-down list. This section describes how to consume Siebel applications that have been set up as Web services in a Framework application, including how to set up a WSDL-based data control and, how to use JDeveloper's JSF Navigation Modeler to diagrammatically create your application's pages and the navigation between them.
This section contains the following subsections:
This section describes how to create a WSDL-based data control based on a Web service created from a Siebel application.
To create a WSDL-based data control:
Model
node and select New from the context menu. All Technologies
from the Filter By drop-down list. Business Tier | Web Services
as the category, select the Web Service Data Control
item, and click OK. In the wizard, note the URL generated in the Service field.
Step 2 shows all the operations available from the selected Web service.
When you expand the Model
node in the Applications Navigator, you should see nodes for the entries that you have created.
-
This section describes how to create the page flow diagram to which you can your add source and query pages.
To create a page flow diagram:
ViewController
node and select New from the context menu. Web Tier
node and select JSF. An empty page flow diagram opens with a Component Palette and Data Control Palette to the right of the diagram editor. You use this to create components for the JSF Navigation Model.
This section describes how to add pages and navigation to the page flow diagram.
To add pages to the page flow diagram:
QueryByID
). Typically, you will have at least a source and query page. ShowResult
). success
) by clicking it and entering an appropriate name (for example, toResult
). The rule you just created in the diagram should be listed in the table.
JDeveloper gives you three views of the faces-config.xml
file: The same information that is presented in the diagram is also accessible through a declarative dialog and directly from the source. If you open the source view (by clicking the Source tab) the <from-view-id>
tag identifies the source page, and the <to-view-id>
tag identifies the destination page.
toQuery
). This section describes how to create and set up navigation for the query page.
To create the query page:
QueryById
) to launch the Create JSF JSP Wizard. An empty JSF page opens in the Design tab of the editor.
The ShowDetailFrame appears in the page.
Note: Oracle WebCenter Portal provides two customizable components: PanelCustomizable and ShowDetailFrame. These two components make it very easy to organize the content of your Web application, treating different panels as if they are almost stand-alone, portlet-like objects that can be minimized, rearranged, have their own drop-down menus, and so on. |
AccountQueryById(String)
node onto the ShowDetailFrame on the page. Account ID:
This section describes how to create and add navigation for the results page.
To create the results page:
An empty JSF page opens in the Design tab of the editor.
The ShowDetailFrame appears in the page.
Back to Query
, and in the Action field select toQuery
from the list. This section describes how to test the application's JSF pages in JDeveloper. Before you can query a Siebel Account using an ID, you need to determine the IDs that are available in your Siebel instance. To perform the following steps you must have access to Siebel Call Center.
To determine the IDS and test your JSF pages:
The page is loaded in your default browser.
The Details page displays the detail information for the corresponding account.
As well as integrating Siebel applications using Web Services, you can also integrate Siebel applications in a Framework application using the Siebel Web Engine (SWE).
Siebel Web Engine (SWE) is responsible for rendering the Siebel User Interface. Siebel Web Templates provide this HTML layout information (markup information) to the Siebel Web Engine when rendering Siebel objects in the repository definition of the application. The markup that SWE returns can also be XML for rendering within XML-aware applications or WML (wireless markup language) for rendering on wireless devices. This lets you request the SWE to return a Siebel View as XML, parse the data elements, and display the result in a Framework application.
For instructions on how to use SWE within a Framework application, follow the tutorial Using the Siebel Web Engine (SWE) to View Data in a WebCenter Application.
To complete the tutorial, you will need the following:
Also refer to the Siebel Bookshelf Guides: Siebel Portal Framework Guide (specifically, the section on delivering content to external Web applications), and Configuring Siebel Business Applications Guide for details on SWE and Web Templates.
This section describes how to integrate E-Business Suite applications in WebCenter Portal applications.
This section contains the following subsections:
This section describes the integration points and requirements integrating Oracle E-Business Suite portlets in WebCenter Portal applications.
This section includes the following subsections:
Out-of-the-box, Oracle E-Business Suite OA Framework-based portlets, such as Applications Navigator, Favorites, and Worklist are WSRP and JSR 168-compliant. That means that you can access these Oracle E-Business Suite portlets from WSRP-compliant portal servers such as WebCenter Portal: Framework applications or WebCenter Portal: Spaces, by simply adding the portlet onto an application page. Follow the instructions in Section 55.3.2.3, "Creating a JSF Page to Consume the Remote Producer" to add them to a Framework application page, or Section 55.3.3.3, "Adding the EBS Portlet to a Spaces Page" to add them to a Spaces page.
You can also create new E-Business Suite portlets that are WSRP and JSR 168-compliant that can similarly be added to a Framework application. Creating and consuming WSRP and JSR 168 compliant portals in WebCenter Portal is described in Section 55.3.2, "Integrating EBS Applications in a Framework Application" and Section 55.3.3, "Integrating EBS Applications in Spaces."
The following requirements apply for integrating Oracle E-Business Suite portals into WebCenter Portal applications:
If you are using OSSO, follow the steps in My Oracle Support document 376811.1 to integrate E-Business Suite Release 12 with OID and OSSO.
If you are using OAM, follow the steps in My Oracle Support document 975182.1 to integrate E-Business Suite Release 12 with OAM.
Note: To complete some steps, you may need system administrator permissions. |
This section includes the following subsections:
Prepare the standalone regions to be portletized as described in the section on "Basic Implementation" under "Portlets" in Chapter 4: "Implementing Specific UI Features" in the Oracle Application Framework Developer's Guide, available from My Oracle Support at:
https://support.us.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1107973.1
The Oracle E-Business Suite OA Framework lets you expose any standalone regions (except pageLayout regions) as portlets.
You can also use an Oracle E-Business Suite tool called Portlet Generator to convert existing standalone Oracle Application Framework regions into portlets. For more information, see the section on "Portlet Generator" in Chapter 4: "Developer Tools" in the Oracle Application Framework Developer's Guide.
After creating the portlets, grant access to your new UI Function by adding it to a menu and associating the menu with a responsibility. For more information, see the section on "Page Security" under "Portlets" in Chapter 4: "Implementing Specific UI Features" in the Oracle Application Framework Developer's Guide.
Before adding the portlets in WebCenter Portal, be sure to bounce the Apache listener as the menu and function definitions are cached. Note that you'll need system administrator permissions to do this.
Follow the instructions below to create or open an existing Framework application, and register the EBS WSRP producer.
Page 1 (Specify Producer Name) of the Register WSRP Portlet Producer wizard displays.
The Specify Connection Details page displays.
For example:
The WSRP producer should now appear under Connections.
Use the following procedure to add or use an existing JSF page to consume the EBS remote producer in your Framework application.
To create a JSF page:
The New Gallery dialog displays.
A list with the descriptions of the available options display in the Items field.
The Create JSF Page dialog displays.
Create an XML Document (*.jspx)
field is selected. For more information about setting up the JSF page, click the Help button to access the online help. The newly created JSF page displays.
True
. Use this procedure to test the Framework application by modifying content on the JSF page in the Framework application and checking that the modification shows up in the EBS application.
.jspx
page that you created. This section contains the following subsections:
Prepare the standalone regions to be portletized as described the section on "Basic Implementation" under "Portlets" in Chapter 4: "Implementing Specific UI Features" in the Oracle Application Framework Developer's Guide, available from My Oracle Support at:
https://support.us.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1107973.1
The Oracle E-Business Suite OA Framework lets you expose any standalone regions (except pageLayout regions) as portlets.
You can also use an Oracle E-Business Suite tool called Portlet Generator to convert existing standalone Oracle Application Framework regions into portlets. For more information, see the section on "Portlet Generator" in Chapter 4: "Developer Tools" in the Oracle Application Framework Developer's Guide.
After creating the portlets, grant access to your new UI Function by adding it to a menu and associating the menu with a responsibility. For more information, see the section on "Page Security" under "Portlets" in Chapter 4: "Implementing Specific UI Features" in the Oracle Application Framework Developer's Guide.
Before adding the portlets in Spaces, be sure to bounce the Apache listener as the menu and function definitions are cached.
You can register the EBS WSRP producer directly in Spaces, as described in the section on "Registering Portlet Producers" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces. You can also register the EBS WSRP producer using Fusion Middleware Control as described in the steps below.
To register the EBS WSRP producer using Fusion Middleware Control:
Spaces
in the Navigation bar and from the WebCenter Portal menu, and select Register Producer. The Add Portlet Producer page displays.
WSRP Producer
, and paste the WSDL endpoint URL that you copied in step 1 into the URL End Point field. Use the following procedure to consume the EBS remote producer in Spaces.
Note that if you've created a custom catalog, Portlets may not appear, in which case you will need to add it to the Resource Catalog. For information about managing Resource Catalogs, see the chapter "Working with Resource Catalogs" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
True
and click OK. Use this procedure to test the Spaces portlet connection by modifying content and checking that the modification shows up in the EBS application.
This section describes how to integrate JD Edwards applications into WebCenter Portal applications.
This section contains the following subsections:
This section includes the following subsections:
Before you can add JD Edwards standalone regions to Framework applications, you must first prepare them to be portletized within JD Edwards by making them available externally as portlets and locating the pre-configured WSDL in the webclient.war/wsdl
directory. The WSDL URL is needed so that you can register the JD Edwards WSRP producer and consume it from a Framework application page.
Follow the instructions below to create or open an existing Framework application, and register the JD Edwards WSRP producer.
Page 1 (Specify Producer Name) of the Register WSRP Portlet Producer wizard displays.
The Specify Connection Details page displays.
The WSRP producer should now appear under Connections.
Use the following procedure to add or use an existing JSF page to consume the JD Edwards remote producer in your Framework application.
To create a JSF page:
The New Gallery dialog displays.
A list with the descriptions of the available options display in the Items field.
The Create JSF Page dialog displays.
Create an XML Document (*.jspx)
field is selected. For more information about setting up the JSF page, click the Help button to access the online help. The newly created JSF page displays.
True
. Use this procedure to test the Framework application by modifying content on the JSF page in the Framework application and checking that the modification shows up in the JD Edwards application.
.jspx
page that you created. This section contains the following subsections:
You can register the JD Edwards WSRP producer directly in Spaces, as described in the section on "Registering Portlet Producers" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces. You can also register the JD Edwards WSRP producer using Fusion Middleware Control as described in the steps below.
To register the JD Edwards WSRP producer using Fusion Middleware Control:
Spaces
in the Navigation bar and from the WebCenter Portal menu, and select Register Producer. The Add Portlet Producer page displays.
WSRP Producer
, and paste the WSDL endpoint URL that you copied in step 1 into the URL End Point field. Use the following procedure to consume the JD Edwards remote producer in Spaces.
Note that if you've created a custom catalog, Portlets may not appear, in which case you will need to add it to the Resource Catalog. For information about managing Resource Catalogs, see the chapter "Working with Resource Catalogs" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
True
and click OK. Use this procedure to test the Spaces portlet connection by modifying content and checking that the modification shows up in the JD Edwards application.
This section describes how to integrate PeopleSoft applications in a WebCenter Portal application.
This section contains the following subsections:
This section describes the benefits and methods involved in integrating PeopleSoft applications into WebCenter Portal applications.
This section includes the following subsections:
PeopleTools 8.48 and later lets you expose PeopleSoft applications as WSRP portlets in remote applications such as WebCenter Portal. This allows people who only need access to a small portion of PeopleSoft's functionality to access it through a WebCenter Portal application without needing to open or learn the entire PeopleSoft application.
This section the prerequisites for integrating PeopleSoft objects in Framework applications, and Spaces.
This section describes how to create or modify a Framework application that integrates with PeopleSoft Applications.
This section includes the following subsections:
This section describes how to prepare the PeopleSoft application so that it can be consumed by Spaces or a Framework application.
To prepare the PeopleSoft application:
The Content Ref Administration page displays.
The Producer Offered Portlets page displays.
Follow the instructions below to create or open an existing Framework application, and register the PeopleSoft WSRP producer.
Page 1 (Specify Producer Name) of the Register WSRP Portlet Producer wizard displays (see Figure 55-2).
The Specify Connection Details page displays (see Figure 55-3).
The WSRP producer should now appear under Connections.
Note: Compression must be turned off in WLS to expose WSRP Portlets. Compression is enabled by default in the Producer Web Server running with Weblogic 10.3.2 and must be disabled in the Server Manager setting for compression available for each instance. |
Use the following procedure to add a JSF page to consume the PeopleSoft remote producer.
To create a JSF page:
The New Gallery dialog displays.
A list with the descriptions of the available options display in the Items field.
The Create JSF Page dialog displays.
Create an XML Document (*.jspx)
field is selected. For more information about setting up the JSF page, click the Help button to access the online help. The newly created JSF page displays.
True
. PeopleTools release 8.5.1 (and earlier) does not support outgoing WS-Security headers in its messages. The out-of-the-box WebCenter Portal/OWSM policies require that both outgoing and incoming messages be secured. To bridge this gap you may need to create custom OWSM policies. This section describes the different integration scenarios that require custom WS-Security policies, and the steps required on WebCenter Portal side to configure them.
This section includes the following subsections:
This section describes how to configure WS-Security for the WSS10 SAML Token with Message Integrity (oracle/wss10_saml_token_with_message_integrity_client_policy
) policy.
To configure WS-Security:
wss10_saml_token_with_message_integrity_client_policy.
The default WSS10 SAML Token with Message Protection (oracle/wss10_saml_token_with_message_protection_client_policy
) policy that ships with OWSM requires that response also be signed and encrypted. However, PeopleTools release 8.5.1 and earlier cannot send WS-Security headers in response (only the initial cookie/get portlet handle
call contains security headers; subsequent calls do not) and we therefore need to create and attach a custom policy based on the oracle/wss10_saml_token_with_message_protection_client_polic
y policy.
To create a custom policy:
wc_domain
by default). wss10_saml_token_with_message_protection_client_policy
and click Create Like. oracle/wss10_saml_token_with_message_protection_plaintext_response_client_policy
). Note: You must use WLST to register the producer. Fusion Middleware Control can only accept fixed policy names and therefore you must register the producer with this policy using WLST by passing in |
The default WSS10 Username Token with Password (oracle/wss10_username_token_with_message_protection_client_policy)
policy that ships with OWSM requires that response also be signed and encrypted. However, PeopleTools release 8.5.1 and earlier cannot send WS-Security headers in response (only the initial cookie/get portlet handle
call contains security headers; subsequent calls do not) and we therefore need to create and attach a custom policy based on the oracle/wss10_username_token_with_message_protection_client_policy policy.
To create a custom policy:
wc_domain
by default). wss10_username_token_with_message_protection_client_policy
and click Create Like. oracle/wss10_username_token_with_message_protection_plaintext_response_client_policy
). Note: You must use WLST to register the producer. Fusion Middleware Control can only accept fixed policy names and therefore you must register the producer with this policy using WLST by passing in |
Use this procedure to test the Framework application by modifying content on the JSF page in the Framework application and checking that the modification shows up in the PeopleSoft application.
.jspx
page that you created. This section describes how to integrate a PeopleSoft application in Spaces.
This section contains the following subsections:
You can register the PeopleSoft WSRP producer directly in Spaces, as described in the section on "Registering Portlet Producers" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces. You can also register the PeopleSoft WSRP producer using Fusion Middleware Control as described in the steps below.
To register the PeopleSoft WSRP producer using Fusion Middleware Control:
Spaces
in the Navigation bar and from the WebCenter Portal menu, select Register Producer. The Add Portlet Producer page displays.
WSRP Producer
, and paste the WSDL endpoint URL that you copied in step 1 into the URL End Point field. Follow the steps below to add the PeopleSoft portlet to a Spaces page.
Note that if you've created a custom catalog, Portlets may not appear, in which case you will need to add it to the Resource Catalog. For information about managing Resource Catalogs, see the chapter "Working with Resource Catalogs" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
True
and click OK. Use this procedure to test the Spaces portlet connection by modifying content and checking that the modification shows up in the PeopleSoft application.
This section explains how to use JDeveloper to create and configure a WebCenter Portal application that integrates with the Oracle Business Intelligence Presentation Services catalog. At runtime, users can add business intelligence objects to their Framework application or Spaces pages.
This section includes the following subsections:
This section explains how you use JDeveloper to create a Framework application, or configure Spaces to integrate with the Oracle Business Intelligence Presentation Services catalog. For more information about adding Oracle Business Intelligence objects to Framework applications, see "Embedding Business Intelligence Objects in ADF Applications" in the Oracle Fusion Middleware Developer's Guide for Oracle Business Intelligence Enterprise Edition.
This section includes the following subsections:
You can use JDeveloper to create Framework applications that integrate with Oracle Business Intelligence Presentation Services. At runtime, these applications include the Presentation Services catalog in the WebCenter Portal - Resource catalog. Users can then browse for and add business intelligence analyses, dashboard pages, dashboards, or scorecard components (strategy maps, strategy trees, KPI watchlists, cause and effect maps, and custom views) to their Framework application pages. Any filters, prompts, and actions links included in the Business Intelligence objects will work within the Framework application or Spaces pages.
At runtime, WebCenter Portal users can expand and browse the Presentation Services catalog's folders to view an analysis' views. The following view types display in the Presentation Services catalog: table, pivot table, chart, funnel chart, gauge, narrative, ticker and title. The following view types do not display in the Presentation Services catalog: view selector, column selector, logical SQL, and no-results view.
Users can also browse the dashboard folder for the pages associated with the dashboard; however, users cannot browse within the dashboard pages to see their components (for example, any analyses embedded in the dashboard). Users cannot include entire Scorecards (only a Scorecard's components) in their Framework application pages.
To create a Framework application that integrates with Oracle Business Intelligence Presentation Services, you must have installed Oracle JDeveloper 11g Release 1 (11.1.1.6) or later and the required Oracle BI EE and WebCenter Portal extensions.
To properly create the Framework application, you must configure the library settings, update the weblogic.xml
and weblogic-application.xml
files, and have properly configured security.
For both Framework applications and Spaces, you must also set up a connection to the BI application as well as configuring security as described in "Creating an Oracle BI EE Presentation Services Connection" in the Oracle Fusion Middleware Developer's Guide for Oracle Business Intelligence Enterprise Edition. You will also need to specify the credentials for the connection, as described in Section 55.6.2, "Configuring Credentials for Connecting to the Oracle BI Presentation Catalog."
At design time, you need to specify credentials to connect to the Oracle BI Presentation Catalog. These credentials are used to retrieve the list of business intelligence objects (for example, analyses, dashboards, and scorecard components) from the Oracle BI Presentation Catalog.
This process ensures that the login to the Presentation Server is the same as the current user of the application and any access checks are performed as the current user, and data is fetched as the current user. If the ADF page contains business intelligence objects to which the user does not have access, the ADF page returns a message stating that the user does not have the proper permissions to access these objects.
Note that the Perform impersonation parameter should be set to true
when security is enabled.
This section contains the following subsections:
Use the following procedures to create a BIImpersonateUser user to secure an application that uses an Oracle BI EE Presentation Services connection and includes Oracle BI EE objects. ADF security must be enabled for your application before you can apply the impersonate user credentials to the Oracle BI EE Presentation Services connection.
The Impersonate User feature secures applications that contain Oracle BI EE objects when Oracle BI EE and ADF are not sharing an Oracle Internet Directory (OID). Before you begin the process of creating and using Impersonate User, you must confirm that this capability is configured in your environment.
Before you perform this procedure, make sure that either you or the Administrator have created users in the WebLogic Server's Oracle BI EE realm and assigned the BIConsumer role to each user in this realm.
Follow the steps below to create the BIImpersonateUser user:
The Realms pane displays.
The Settings dialog displays.
BIImpersonateUser
for the user name and enter a password. Follow the steps below to use Fusion Middleware Control to grant permissions to BIImpersonateUser:
bifoundation_domain
. The bifoundation_domain pane displays.
bifoundation_domain
pane, click the WebLogic Domain list, highlight Security
, and select Application Policies. The Search pane displays.
The Add Permission dialog displays.
oracle.security.jps.ResourcePermission
. In the Resource Name field, select oracle.bi.server.impersonateUser
. The Add User dialog displays.
BIImpersonateUser
and click Move to move it to the Selected Users list. bifoundation_domain
pane, click OK. This section describes how to install the required BI extensions, and create or modify a Framework application that integrates with Oracle Business Intelligence Presentation Services.
This section includes the following subsections:
Use this procedure to install the required Business Intelligence extensions:
bi-soap-cn_bundle
bi-vo_bundle
bi-adf_bundle
bi-adf-taskflow-extension_bundle
oracle.webcenter.framework_bundle.zip
). Use the following procedures to create or modify a Framework application that can access the Oracle Business Intelligence Presentation Services catalog at runtime. Before following these steps you should already have created the BIImpersonateUser, as described in Section 55.6.2, "Configuring Credentials for Connecting to the Oracle BI Presentation Catalog."
This section includes the following subsections:
Use the following procedure to create a Framework application and add a JSF page.
To create a Framework application and JSF page:
WebCenter Portal - Framework application
(be sure to check the checkbox for Configure the Application with Standard Portal Features). The user name/password in this case should be BIImpersonateUser/<password>
, where <password>
is the password that you set when you created the user.
When you create the connection, be sure to set Perform impersonation when security is enabled the to true
and change the username and password to the Impersonate User credentials (BIImpersonateUser/<password>
) as described above.
The New Gallery dialog displays.
A list with the descriptions of the available options display in the Items field.
The Create JSF Page dialog displays.
Create an XML Document (*.jspx)
field is selected. For more information about setting up the JSF page, click the Help button to access the online help. The newly created JSPX page displays.
The field updates to display the corresponding components, layouts, and operations.
Customize
, Grant
, Personalize
, and View
privileges. Use this procedure to add the Presentation Catalog to the Framework application's folder list. At runtime, the catalog displays in the WebCenter Portal - Resource Catalog where the users can browse to business intelligence objects and add them to their Framework application page.
To display the Presentation Catalog in the Framework application's folder list:
The Project Properties dialog displays.
The Add Library dialog displays.
default-catalog.xml
) located in Portal > Web Content > Oracle > webcenter > portalapp > catalogs. <customFolder>
entry under the <catalogDefinition> - ><contents>
folder: Weblogic.xml
and add references to oracle.bi.adf.view.slib
and oracle.bi.adf.webcenter.slib
as shown below: weblogic-application.xml
and add a reference to oracle.bi.adf.model.slib
as shown below: Use the following procedure to enable the BI ADF task flow permissions in your application's security settings.
To enable the BI ADF task flow permissions:
jazn-data.xml
file from Application Resources Pane > META-INF > jazn-data.xml. For example:
This section describes how to test the Framework application by performing the following procedures:
This section includes the following subsections:
Before you can add Oracle BI content to a Framework application page, you must add objects stored in the Oracle BI Presentation Catalog to the WebCenter Portal - Resource Catalog.
The WebCenter Portal Administration Console displays.
The BI Presentation Services folder displays in the right frame. Open this folder to display the Oracle BI objects.
Use this procedure to test the Framework application by adding business intelligence content to the Framework application.
.jspx
page that you created. The WebCenter Portal - Resource Catalog displays.
The contents of the catalog display.
.jspx
page. Use this procedure to test the Framework application by changing an analysis or dashboard's filter or prompt values.
.jspx
page that you created. For more information about adding business intelligence content to the .jspx page, see Section 55.6.3.3.2, "Adding Business Intelligence Content at Runtime."
The Editing Page dialog displays.
Use the following procedure to test the business intelligence task flow's initialization parameters.
.jspx
page that you created. For more information about adding business intelligence content to the .jspx page, see Section 55.6.3.3.2, "Adding Business Intelligence Content at Runtime."
The Component Properties dialog displays.
After an application has been deployed, use Fusion Middleware Control to add a new Oracle BI EE Presentation Services connection to the application, or modify the application's existing Oracle BI EE Presentation Services connection with the user name and password for BIImpersonateUser.
For more information about modifying these connections, see "Adding or Modifying a Presentation Services Connection After Deployment" in the Oracle Fusion Middleware Developer's Guide for Oracle Business Intelligence Enterprise Edition.
Note: If the Framework application and the Oracle Business Intelligence application do not share the same identity store, you must create the relevant users in both system. |
Impersonate User lets you secure a Framework application that integrates with Oracle BI EE Presentation Services. For more information about Impersonate User and how to implement it to secure your application, see "How to Create and Use Impersonate User" in the Oracle Fusion Middleware Developer's Guide for Oracle Business Intelligence Enterprise Edition.
Use the following procedures to test the WebCenter Portal: Spaces integration with the BI objects.
Before you can begin integrating BI objects in Spaces, you must first configure a connection from Spaces to the BI server. Oracle BI EE provides an ADF MBean that allows you to add a new connection to a deployed BI ADF or WebCenter Portal: Spaces application. You can also modify a deployed application's existing connection. MBeans are deployed with the application and can be accessed post-deployment using Fusion Middleware Control.
Prior to following the steps below, you should already have followed the steps in Section 55.6.2, "Configuring Credentials for Connecting to the Oracle BI Presentation Catalog" to specify credentials to connect to the Oracle BI Presentation Catalog.
Note: If the Spaces application and the Oracle Business Intelligence application do not share the same identity store, you must create the relevant users in both system. |
Follow the steps below to configure the connection after the application was deployed.
The System MBean Browser pane displays.
For example, Server:DefaultServer
or Server:WC_Spaces
.
For example, Application:Application2
or Application:webcenter
.
The corresponding MBean information displays in the Application Defined MBean pane.
The Operation:createConnection dialog displays.
In the connection type Value field, enter BISoapConnection
, enter a name in the connection name Value field and click Invoke to create the connection.
The connection's information displays in the Application Defined MBean pane.
BISoap
connection information, and then click Apply to apply your changes. Before you can add Oracle BI content to a Spaces page, you must add objects stored in the Oracle BI Presentation Catalog to the Spaces Resource Catalog.
The Spaces Administration pages displays.
The BI Presentation Services folder displays.
Use this procedure to create a WebCenter Portal: Spaces page and add Oracle BI objects to it. Before you perform this procedure, you must have added Oracle BI objects to the WebCenter Portal: Spaces resource catalog.
The object that you selected is added to the page.
Use this procedure to test the WebCenter Portal: Spaces page by changing an analysis or dashboard's filter or prompt values.
Use the following procedure to test the business intelligence task flow's initialization parameters.
.jspx
page, see Section 55.6.4.3, "Adding Oracle BI Content at Runtime." The Component Properties dialog displays.
WebCenter Portal's Spaces application can be customized using browser-based tools and also using JDeveloper. This chapter describes how to customize the Spaces application and Spaces resources in JDeveloper and subsequently utilize them in the Spaces application. For example, you may want to deploy additional shared libraries that include custom code or some additional task flows. Or, you might want to edit Spaces resources, such as skins, page templates, and navigations, in JDeveloper.
It includes the following sections:
Audience
This section is intended for developers who have basic knowledge of JDeveloper with WebCenter Portal: Framework extensions and want to perform advanced customizations for their Spaces deployment.
A JDeveloper workspace for developing Spaces extensions is available as a download from Oracle Technology Network - this workspace is named DesignWebCenterSpaces.jws.
To download the Spaces development workspace:
Oracle JDeveloper 11g (11.1.1.6.0) is available for download from: http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html
webcenter
'. Figure 56-1 Download Oracle JDeveloper WebCenter Portal Framework and Services Design Time Extensions
See also, Section 3.2, "Installing WebCenter Portal's Extension for Oracle JDeveloper."
DesignWebCenterSpaces_PS5.zip
) from Oracle Technology Network: http://download.oracle.com/otndocs/tech/webcenter/files/DesignWebCenterSpaces_PS5.zip
Table 56-1 DesignWebCenterSpaces_PS5.zip - Unzip Folders
Unzip Folders	Description
\DesignWebCenterSpaces	Includes This workspace enables you to configure your shared library list, that is, you can specify one or more shared libraries containing various customizations (such as custom java code, custom task flows, and so on) that you want to utilize in the Spaces application. The workspace also provides a design environment for editing and uploading Spaces resources.
\copy_to_common	Includes a WebCenter Portal's WLST commands are required to upload customized resources directly to the Spaces application from
\copy_to_jdev_ext	Includes Required update to Oracle JDeveloper WebCenter Portal Framework and Services Design Time Extensions.
<DesignWebCenterSpaces_Unzip_Location>\copy_to_common	
common	
directory. The common	
directory is located under <DesignWebCenterSpaces_Unzip_Location>\copy_to_common	
.	
<JDeveloper_install_directory>	
\oracle_common	
Tip: The	
common	
directory here. Tip: On Linux, use the following command:	
oracle.webcenter.portal.jar	
to the Oracle JDeveloper extensions directory: <DesignWebCenterSpaces_Unzip_Location>\copy_to_jdev_ext	
oracle.webcenter.portal.jar	
. The oracle.webcenter.portal.jar file	
is located under <DesignWebCenterSpaces_Unzip_Location>\copy_to_jdev_ext	
.	
<JDeveloper_install_directory>	
\jdeveloper\jdev\extensions\	
Tip: The	
oracle.webcenter.portal.jar file	
here. This section includes the following subsections:	
The Spaces application includes the standard shared library extend.spaces.webapp.war	
. This .WAR file includes a deployment descriptor (weblogic.xml	
) which can reference other libraries that contain Spaces customizations.	
Therefore, if you have custom code or task flows deployed in several shared libraries from multiple sources you can add them to the extend.spaces.webapp	
shared library list, as illustrated in Figure 56-2.	
Figure 56-2 Referencing Custom Shared Libraries in extend.spaces.webapp.war	
This development model provides an easy way to utilize additional shared libraries in Spaces from multiple contributors, including developers, customers, partners.	
Whenever you deploy a new shared library that includes Spaces extensions you must modify the Spaces shared library dependency list and redeploy extend.spaces.webapp.war	
. Figure 56-3 illustrates the process.	
For more detail, see Section 56.2.2, "Deploying Your Own Custom Code and Task Flows in Shared Libraries" and Section 56.2.3, "Rebuilding the Spaces Shared Library List".	
Developers can build extensions for the Spaces application, package them in ADF Library JARs, and then deploy them as shared libraries for use in Spaces. For example, you can:	
To help you get started, Oracle provides a sample workspace in which you can develop extensions, and build and deploy Spaces shared libraries that contain your custom code.	
The sample workspace, SampleWebCenterSpacesExtension.jws	
, contains sample extensions and scripts that enable you to deploy custom code for Spaces. For more information, download the accompanying whitepaper, Using Spaces Extension Samples (11.1.1.6.0), from Oracle Technology Network at http://www.oracle.com/technetwork/index.htm	
.	
Whenever you deploy a new shared library that includes Spaces extensions you must update the Spaces shared library dependency list and redeploy extend.spaces.webapp.war	
.	
This section describes:	
Use the WebCenterSpacesExtensionLibrary project to build and deploy extend.spaces.webapp.war	
—a shared library containing weblogic.xml	
in which you configure the Spaces shared library dependency list.	
See Section 56.1, "Downloading a Workspace for Spaces Development".	
DesignWebCenterSpaces\	
DesignWebCenterSpaces.jws	
in JDeveloper (Figure 56-4). Out-of-the-box, this file is blank, that is, no additional shared libraries are listed in the file.	
<library-ref>	
entry for each shared library that you want to use in Spaces. For example, you can include a single library entry, as shown in Figure 56-6:	
Or, reference multiple shared libraries, as shown in Figure 56-7:	
Note: If you want to use custom extensions developed for a previous WebCenter Spaces release (11.1.1.3.0 or earlier), include the name of the old shared library, custom.webcenter.spaces	
, in weblogic.xml	
, as shown in Figure 56-7.	
The next section describes how to set build and deployment options for the shared library list (extend.spaces.webapp.war	
).	
Before you can build the shared library list and deploy extend.spaces.webapp.war	
to the Spaces managed server, you must provide some information about your environment and your WebCenter Portal installation in the configuration file config.properties	
.	
To set build and deployment properties for the extend.spaces.webapp	
shared library:	
See also, Section 56.1, "Downloading a Workspace for Spaces Development"	
The config.properties	
file describes each property and offers examples. The defaults provided are only samples and must be replaced with your own, installation-specific values.	
Table 56-2 Configuring config.properties to Enable Deployment to the Managed Server	
Configuration Property	Description
---	---
Base directory where JDeveloper is installed. The directory you specify contains other folders such as	
Name of the WLST executable file. Either	
Path to the Spaces development workspace directory. For example,	
Path to	
Port number on which the WLS Administration Console is running	
Host machine on which the Spaces application is running and where the custom shared library is to be deployed	
Name and location of the file storing administrator passwords.	
Name and location of the file storing administrator user details.	
Targets on which the Spaces shared library is to be deployed. For example,	
Targets on which the	
Name of the Spaces application. Always	
Controls incremental implementation version numbers.	
config.properties	
. Updates to config.properties	
are available immediately so there is no need to restart JDeveloper.	
The next section describes how to build and deploy the shared library list extend.spaces.webapp.war	
.	
You must rebuild and redeploy the extend.spaces.webapp.war	
shared library whenever you modify the shared library list (weblogic.xml	
).	
To build and deploy the shared library list:	
DesignWebCenterSpaces.jws	
in JDeveloper. See also, Section 56.1, "Downloading a Workspace for Spaces Development".	
config.properties	
. See also, Section 56.2.3.2, "Setting Build and Deployment Options (config.properties)".	
extend.spaces.webapp.war	
, open the Run Ant dropdown menu, and then select clean-stage (Figure 56-8) This generates a new version of the shared library list extend.spaces.webapp.war	
. The implementation version number associated with the new .WAR is saved to MANIFEST.MF	
as follows:	
<UnzipDir>/DesignWebCenterSpaces/WebCenterSpacesExtensionLibrary/META-INF/MANIFEST.MF	
A new version of the shared library list is deployed to the Spaces managed server. To verify the new deployment, login to the WLS Administration Console, navigate to the deployment overview page, and check the implementation version, that is, navigate to:	
Deployments> extend.spaces.webapp>Overview	
If the latest version is not active, refer to the Section 56.2.3.5, "Troubleshooting Shared Library Deployment".	
If there is a problem with the latest shared library list or you want to revert to a previous version for some reason, you can undeploy (remove) the current version and revert to the previous version, using the WLS Administration Console.	
You can remove unwanted shared library versions too. If you go through several "change-build-deploy-test" iterations, each incremental version is retained by default. As the Spaces application only uses the latest shared library version you can clean up or delete previous versions if you want.	
Before undeploying the latest version, you must shut down the managed server on which the Spaces application is running. Once you have removed the latest version, you can restart the managed server.	
Note: Oracle recommends that you do not delete the original extend.spaces.webapp	
shared library (version 11.1.1) as this enables you to revert to the out-the-box version if necessary.	
To revert to the out-of-the-box Spaces deployment, revert to the original extend.spaces.webapp.war	
shared library, that is, delete all other Spaces shared library versions, except for extend.spaces.webapp.war	
version 11.1.1.	
The Spaces application always uses the latest shared library version. Check that the implementation version in MANIFEST.MF matches the implementation version displayed in the WLS Administration Console.	
For example, check the value in <UnzipDir>/DesignWebCenterSpaces/WebCenterSpacesExtensionLibrary/META-INF/MANIFEST.MF	
is the same as that displayed in the WLS Admin Console under Deployments> extend.spaces.webapp>Overview	
Check that wls.userconfig	
and wls.userkey	
are both set correctly in the config.properties	
file, and verify that both security files specified are accessible	
This error occurs if the implementation version of the new deployment and the existing deployment are the same. Use the WLS Administration Console to verify the current implementation version and then change the restart.implementation.version.suffix property in config.properties	
to this value. When you rebuild and redeploy the shared library, the implementation version should increment by '1'.	
Restart the managed server on which the Spaces application is deployed.	
If you encounter issues during the deployment phase (Run Ant Target > deploy-shared-lib) and the process hangs, end/kill the Ant process from inside JDeveloper, and then restart the Administration Server and the managed server for the Spaces application. If you encounter further issues restarting either the Administration Server or the managed server, end/kill the associated Java processes and restart both servers.	
If a newly deployed shared library is not active, use WLS Administration Console to manually delete the non-active shared library version, and then rebuild (Run Ant Target>clean-dist) and redeploy (Run Ant Target > deploy-shared-lib) the Spaces shared library.	
Restart the managed server on which the Spaces application is deployed.	
Restart Spaces.	
This section describes the WebCenterSpacesResources project—-a design environment for Spaces resource development. Through this project, you can upload resources, developed or customized through JDeveloper, to the Spaces application.	
This section includes the following subsections:	
WebCenter Portal's round-trip development features provide a simple, convenient way to modify Spaces resources without redeploying the entire application. Round-trip development refers to features and techniques that allow you to download resources from a deployed application and upload them to JDeveloper for maintenance or enhancement. Once modified, you can upload the resource back to the Spaces application for immediate use or for testing.	
Out-of-the-box, Spaces provides some default resources, such as skins and page templates, for people to use or modify. To keep Spaces easy to use, the built-in functionality for creating and editing resources within Spaces is purposely somewhat limited. If your resource requirements extend beyond the editing capabilities of the Spaces application, you can further develop resources using a JDeveloper project that is especially designed for that purpose—WebCenterSpacesResources.	
Oracle recommends that you use this project to build and manage custom skins, page templates, page styles, navigations, content display templates, mashup styles, and resource catalogs. The project provides some sample resources, as well as other files and folders you might need. You do not have to develop resources from scratch; you can export existing resources from the Spaces application and edit them in JDeveloper, or use one of the samples as your starting point.	
Note: This chapter describes how to use the WebCenterSpacesResources project to manage resource customizations. If you need more information on how to build/develop resources, see Section 56.3.4.3, "How to Build Spaces Resources".	
When you are ready to deploy new resources, you can upload them directly from JDeveloper to a live Spaces application simply by providing JDeveloper with the name of the host and port where the Spaces application is running.	
Note: You do not need to deploy customized resources to a shared library.	
Alternatively, you can login to Spaces and upload new resources through the Resource Manager. If you decide to use this method you must save the resource to an export archive (.ear).	
Figure 56-9 Designing Resources Using the WebCenterSpacesResources Project	
See Section 56.1, "Downloading a Workspace for Spaces Development".	
DesignWebCenterSpaces\	
DesignWebCenterSpaces.jws	
in JDeveloper (Figure 56-10). This workspace contains a project dedicated to resource development called WebCenterSpacesResources.	
The WebCenterSpacesResources project contains several files and folders (Figure 56-11):	
Table 56-3 describes the files and folders in the WebCenterSpacesResources project.	
Table 56-3 Files and Folders in the WebCenterSpacesResources Project	
Configuration Property	Description
---	---
\Application Sources	Supporting files and folders.
\Web Content	Contains Spaces resources.
\oracle\webcenter\siteresources	Directory containing Spaces resources. You can develop and manage all your application resources under this folder.
\scopedMD	Contains application-level and Space-level resources.
\<Default Scope ID>	Contains sample application-level resources.
\contenttemplates	Includes a sample Content Presenter display template (
\navigation	includes a sample navigation (
\pageStyle	Includes a blank page style (
\resourceCatalog	Includes a sample catalog (
\siteTemplate	Includes a sample page templates (Note: This directory is the correct directory for developing page templates (even though the directory name is siteTemplate).
\skin	Includes a sample skin (
\taskFlowStyle	Includes files for a sample mashup style (
\shared	Content directory for images/content used by resources, such as, icons, images, and so on. When you upload a resource to the Spaces application, content in the Ensure that you copy all files that your resources reference to this
\Page Flows	Supporting files and folders.
If you build or modify skins, page templates, and so on, for a Spaces application that is live or running in a test environment you can upload your updates directly to the application from JDeveloper. To enable direct updates from the JDeveloper WebCenterSpacesResources project you must:	
config.properties	
. monitor	
AND Create, Edit, Delete Skins	
permission. Configuring the Spaces hostname and port, enables the Upload Portal Resource option in your project. The first time you use this option, within a JDeveloper session, you must enter your Spaces login name and password. For security reasons, your credentials are not saved for future sessions but they are stored in memory for the current JDeveloper session.	
Once you are logged in to Spaces you can upload resources, providing, of course, that you have the appropriate permissions to manage Spaces resources.	
Note: Out-of-the-box, only the default Fusion Middleware administrator (
To set connection properties in config.properties	
and grant permissions:	
config.properties	
, available at: <Unzip_Directory>\DesignWebCenterSpaces\config.properties	
The config.properties	
file describes each property and offers examples. The defaults provided are only samples and must be replaced with your own, installation-specific values.	
Table 56-4 config.properties Settings to Enable Direct Uploads	
Configuration Property	Description
---	---
Base directory where JDeveloper is installed. In addition to	
Name of the host machine where the Spaces application is running.	
Port number on which the WLS Administration Console is running.	
config.properties	
. Table 56-5 Permissions to Upload and Manage Resources Through JDeveloper	
Type	Role or Permissions
---	---
WebLogic Server	
This role enables you to run the WLST scripts which upload resources from JDeveloper to the Spaces application. See also, "Add users to roles" in Oracle WebLogic Server Administration Console Help.	
Spaces	
Application-level	
This permission enables you to create and manage application-level resources for Spaces. This permission gives you access to the Spaces resource administration page. See also, "Managing Application Roles and Permissions" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
Space-level Space-level	
These permissions enable you to create and manage resources for a particular Space. Either standard or advanced permissions will apply, depending on the Space. This permission gives you access to the Space's resource administration page. See also, "Managing Roles and Permissions for a Space" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.	
For details, see Section 56.3.5, "Uploading Resources Directly to the Spaces Application".
See also, Section 56.3.7, "Troubleshooting Resource Round-Trip Development"
Oracle recommends that you extend Spaces resources in the JDeveloper project, WebCenterSpacesResources. This project provides everything you need to create, modify, and upload the following Spaces resources:
Where To Start...
You do not have to develop Spaces resources from scratch. Most developers will download an existing resource from the Spaces application and edit it in JDeveloper. There are two techniques for bringing Spaces resources into JDeveloper. The first is downloading the resource into JDeveloper directly from the server. The second is exporting the resource from Spaces and then importing it into JDeveloper.
For more information, see:
See, also How to Build Spaces Resources.
Application-Level vs Space-Level Resources
The difference between application- and Space-level resources is one of scope. In the Spaces application:
You must develop all application-level resources under the WebCenterSpacesResources project directory oracle/webcenter/siteresources/scopedMD/s8bba98ff_4cbb_40b8_beee_296c916a23ed
.
To upload application resources to the Spaces application you must have Spaces permissions: Application-Manage Configuration
plus Create, Edit, Delete <Resource_Type>
.
You must develop a resource for a specific Space under the appropriate namespace, so that it can be uploaded to that Space:
oracle/webcenter/siteresources/scopedMD/<space_internal_id
>
Similarly, resources downloaded from an existing Space and imported into JDeveloper, can only be uploaded back to the same Space. You cannot upload such resources to a different Space.
To upload resources to a particular Space you must have the Space-Manage Configuration
permission, plus one of:
Create, Edit, Delete Resources
(standard permission model)
Create, Edit, Delete <Resource_Type>
(advanced permission model)
If you want to upload resources directly from JDeveloper, you must also have the WebLogic Server monitor
role. See Section 56.3.3, "Enabling Direct Uploads to the Spaces Application".
For information on how to create and edit Spaces resources, see:
You can download a Spaces resource directly into JDeveloper from within the WebCenterSpacesResources project.
Figure 56-12 Download Portal Resource from Server Menu
Figure 56-13 Download Portal Resources Dialog
Figure 56-14 Selecting a Resource Type to Download
When you import a Spaces resource archive (.ear) into the WebCenterSpacesResources project the resource is uploaded to the appropriate project directory.
WebCenterSpacesResources\oracle\webcenter\siteresources\scopedMD\
application_ID\resource_type\resource_ID
For example, an application-level skin with the resource ID gsr5a8c2fcc_bc7f_4cba_9254_36df58d66e60
is created under the application directory s8bba98ff_4cbb_40b8_beee_296c916a23ed
:
WebCenterSpacesResources\oracle\webcenter\siteresources\scopedMD\
s8bba98ff_4cbb_40b8_beee_296c916a23ed\skin\gsr5a8c2fcc_bc7f_4cba_9254_36df58d66e60
WebCenterSpacesResources\oracle\webcenter\siteresources\scopedMD\
Space_ID\resource_type\resource_ID
For example, a Space-level skin with the resource ID gsre9cbef77_28b2_4f46_a69a_25beac543382
is created under the Space directory sc48d77f4_ca06_4fa9_8d51_0e23bed74eac
:
WebCenterSpacesResources\oracle\webcenter\siteresources\scopedMD\
sc48d77f4_ca06_4fa9_8d51_0e23bed74eac\skin\gsre9cbef77_28b2_4f46_a69a_25beac543382
Its important to know the internal IDs of Spaces resources and the parent Space (Space-level resources only) so that you can locate the appropriate resource folders in JDeveloper. In the Spaces application, internal IDs are published in the resource's About dialog (Figure 56-15). For details, see "Viewing Information About a Resource" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Internal IDs are not easy to remember like display names. If you want to identify an imported resource you can check its display name using the Update Resource option. Navigate to the resource directory, drill down to the resource file (for example, mynavigation.xml
, myskin.css
, mypagetemplate.jpsx
, mycatalog.xml
), and then click Update Resource from the right mouse menu (Figure 56-16).
To import a Spaces resource from an archive:
If the archive does not exist yet, login to Spaces and download the resource to an .EAR file. See "Downloading a Spaces Resource" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
WebCenterSpacesResources\oracle\webcenter\siteresources\scopedMD\
s8bba98ff_4cbb_40b8_beee_296c916a23ed
WebCenterSpacesResources\oracle\webcenter\siteresources\scopedMD\<Space_GUID>
To learn more about building resources, read the appropriate chapter:
If the Spaces application is up and running you can deploy new or updated resources directly to the application from your JDeveloper environment.
You must have appropriate resource management permissions in the Spaces application to upload resources in this way. If you do not have the correct privileges, you are not allowed to upload resources. See also Section 56.3.3, "Enabling Direct Uploads to the Spaces Application".
config.properties
and request the appropriate resource management permissions. See also, Section 56.3.3, "Enabling Direct Uploads to the Spaces Application".
For example, to upload the sample application-level navigation SampleNavigation, navigate to (Figure 56-17):
WebCenterSpacesResources\Web Content\oracle\ webcenter\siteresources\scopedMD\s8bba98ff_4cbb_40b8_beee_296c916a23ed\navigation\gsrcc8dab1c_6161_4bb8_8764_127b4ecee01b
<af:image source="/oracle/webcenter/siteresources/scopedMD/shared/mylogo.gif id="pt_12">
There is a single file associated with most resource types. The exception is mashup style which has two files: definition.xml
and .jsff
. To upload a mashup style you must right-click the definition.xml
file.
...\shared\skins\logos\mylogo.gif
and ...\shared\skins\icons\myicon.gif
), the entire content of both directories (\logos
and \icons
) are uploaded. An information message displays to indicate that the upload process is complete and also provides the name and location of the upload log file—upload_<resource_type_id>.log
.
Figure 56-18 Resource Upload Complete Message
The following message indicates that the upload was successful.
Imported <temp_log_directory>\<resource_type_id>.ear
If you do not see this message, refer to Section 56.3.7, "Troubleshooting Resource Round-Trip Development"
To verify an application-level resource, navigate to the following URL:
http://host:port/webcenter/spaces/admin/resources
To verify a Space-level resources, navigate to the following URL:
http://host:port/webcenter/spaces/spaceName/admin/resources
Dependent images, and so on, must be located in the Spaces content directory. If an image is missing, check that you copied it to the appropriate content directory in JDeveloper (under /oracle/webcenter/siteresources/scopedMD/shared
).
When your resource is ready for use in the Spaces application you can upload it directly to Spaces or you can export the resource to an .EAR file format which you (or someone else) can upload at any time using Spaces Resource Manager.
To export a Spaces resource:
myskin.css
, mypagetemplate.jpsx
, mycatalog.xml
). Note: Ensure that all dependent content such as images, icons, style sheets, and so on, are copied to the /oracle/webcenter/siteresources/scopedMD/shared/ directory and verify that all references to such content point to this location, for example: |
C:\myskin.ear
Do one of the following:
Consider the following before exporting content directories for the resource:
...\shared\skins\logos\mylogo.gif
and ...\shared\skins\icons\myicon.gif
), the entire content of both directories (\logos
and \icons
) are exported. \shared
directory that is referenced by portal resources. The steps to upload resource archives to Spaces are available in "Uploading a Spaces Resource" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
This troubleshooting section includes the following subsections:
Examining the Resource Upload Log File
When you upload a resource to the Spaces application progress details are recorded in a log file. The name of the log file includes the type of resource you are uploading and a unique ID, in the format—upload_
resource_type_id
.log
. For example, upload_siteTemplate_17283.log
.
The location of the log file depends on your local temp
directory settings. The exact log file location displays in an information message such as this:
Figure 56-19 Resource Upload Log File Location
The following log entry indicates that the upload process was successful.
Imported <temp_log_directory>\<resource_type_id>.ear
Insufficient permissions result in "Access denied
" or "java.lang.Exception
" errors, as described below.
Unable to Upload Resources to Spaces - Access denied
The following error displays in the resource upload log file if you do not have the monitor
role:
The monitor
role is a Weblogic Server role. This role enables you to run the WLST scripts which upload resources from JDeveloper to the Spaces application. Ask your Spaces administrator to grant you this role through the WebLogic Server Administration Console. See also, "Add users to roles" in Oracle WebLogic Server Administration Console Help.
Unable to Upload a Resource to Spaces - java.lang.Exception
The following error displays in the resource upload log file if you do not have permission to manage any resources in Spaces or the particular type of resource you are trying to upload:
Ask your Spaces administrator to grant you appropriate permissions through Spaces Administration. Or, if the resource you are trying to upload is for a particular Space, contact the Space moderator to request the required permission. See also, Table 56-5, "Permissions to Upload and Manage Resources Through JDeveloper"".
This chapter describes how to expose Oracle WebCenter Portal: Spaces functionality in a WebCenter Portal: Framework application, using WebCenter Spaces APIs. Through these APIs, you can create new Spaces, manage Space membership, retrieve Space information, and more, from your WebCenter Portal: Framework applications.
The chapter also describes how to expose information from other applications, such as WebCenter Portal: Framework applications in WebCenter Spaces.
This chapter includes the following sections:
Note: Custom-built task flows that implement WebCenter Spaces APIs (described in this chapter) can be deployed on WebCenter Portal: Framework applications, but you cannot deploy them to WebCenter Portal: Spaces. |
Audience
This section is intended for developers who want to expose WebCenter Spaces functionality in their WebCenter Portal: Framework applications.
WebCenter Spaces is a Web-based application, built using the Oracle WebCenter Portal: Framework, WebCenter services, and Oracle Composer. WebCenter Portal: Spaces furnishes all the tools you require to rapidly create portals, communities, and social sites capable of accommodating thousands of users and encompassing diverse populations with differing languages. Figure 57-1 shows a typical WebCenter Spaces home page.
Figure 57-1 Oracle WebCenter Portal: Spaces
Out of the box, WebCenter Spaces offers a configurable work environment that enables individuals and groups to work and collaborate more effectively. The application is a self-service solution for managing individual and group interactions. It also provides intuitive tools that allow business users to come together and share information by adding pages and resources such as documents, charts, reports, portlets, business applications, services, and other ADF resources or views.
WebCenter Spaces provides two work environments within a single application: the Home Space and Group Spaces. The Home Space provide each user with a private work area for storing personal content, viewing and responding to business process assignments, maintaining a list of online buddies, and performing many other tasks relevant to his or her unique working day. Group Spaces (from hereon referred to as Spaces) support discrete work areas organized around an area of interest or a common goal.
Spaces support the formation and collaboration of project teams and communities of interest. Spaces bring people together in a virtual environment for ongoing interaction and information sharing—in essence, forming a social network. Figure 57-2 shows an example of a Space.
Structurally, Spaces comprise pages, many of which are dedicated to a particular service. For example, a Lists page provides the means to create and publish multicolumn lists. A Documents page provides a central library for uploading, organizing, and managing group content. A Search page includes features for saving searches and managing search results. In addition to these and other default pages, a Space supports custom pages created by authorized users. Page creation is easy with a wide selection of predefined layouts. With little effort, users can provide pages neatly tailored to the unique needs of their team or community. For more information about Spaces, see the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
WebCenter Portal provides various services that Spaces can use to offer a wide variety of functionality in support of group objectives. For example, a Documents service provides features for uploading and managing content; a Discussions service provides features for creating, managing, and participating in discussion forums. Some other examples of these services include Events, Lists, Announcements, and Search. These services are what helps to make Spaces a productive, collaborative working environment. Services expose subsets of their features and functionality through task flows. A task flow is a reusable view that may expose all or a subset of the features available from a particular service. For example, a Recent Documents task flow provides a subset of the functionality offered through the Documents service by listing documents that have recently been opened, added, or affected in some way.
To help users get Spaces up and running quickly, they can be based on out-of-the-box templates. Additionally, WebCenter Spaces allows users to turn any Space into a template, so they can design Spaces to suit specific audiences and offer them up as templates for others to use. For information about creating templates, see "Creating Custom Space Templates" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
WebCenter Spaces can consume portlets from any WSRP, Oracle PDK-Java, or Pagelet producer if the producer is registered first. Therefore, any portlets you create for WebCenter Portal: Framework applications can be used in WebCenter Portal: Spaces too. For more information, see the "Managing Portlet Producers" chapter in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
This section includes the following subsections:
While using your WebCenter Portal: Framework application, users may encounter situations where a Space would be useful to help them complete a particular task. In such cases, it would be much less disruptive to remain within the context of the current application, rather than having to switch to the WebCenter Spaces application. To this end, WebCenter Spaces provides access to a subset of its Space functionality through several APIs. Using these APIs, you can integrate powerful Space functionality into your WebCenter Portal: Framework application.
You can use WebCenter Spaces APIs to:
WebCenter Spaces APIs are contained within several classes. Table 57-1 lists the different classes and describes the purpose of the APIs within each class.
Table 57-1 WebCenter Spaces API Classes
Class	Contains APIs for	More Information
Creating and managing Spaces and Space templates Managing Space membership Retrieving Space information	Section 57.2.5, "How to Provide Space Functionality in WebCenter Portal Applications"	
Establishing context before calling the APIs	Section 57.2.4.4, "Setting Up the WebCenter Spaces Client Context"	
Managing exceptions raised by the APIs	Section 57.2.6, "How to Handle Exceptions Raised by WebCenter Spaces APIs"	
Retrieving information about Space members	Section 57.2.5.3, "Retrieving Information for Spaces and Space Templates"	
Retrieving Space information	Section 57.2.5.3, "Retrieving Information for Spaces and Space Templates"	
Spaces can have many different applications. From your perspective, as a WebCenter Portal: Framework application developer, here are a couple of case studies describing scenarios where building and working with Spaces through the APIs might come in useful:		
Consider a purchasing application built using the Oracle WebCenter Portal: Framework. This application tracks suppliers, pricing, lead-time requirements, delivery time estimates, and performance history.		
Users of the purchasing application must also be able to select and evaluate supplier candidates. Supplier evaluation is a collaborative process; it requires people from various areas of a company. For example, a design engineer and manufacturing representative must verify that an item being purchased meets the required technical specifications; a purchasing agent can negotiate prices, logistics and contractual issues; and a manager or executive has to approve the deal. How could the purchasing application initiate supplier evaluations?		
Typically, the purchasing manager receives a purchase requisition from the manufacturing department. Sometimes the purchase order cannot be completed because the requisition cannot be delivered by the usual supplier in the time frame required by manufacturing. Therefore, a new supplier that can meet delivery and pricing requirements must be determined. The purchasing manager can add a candidate supplier into the system but the purchasing manager needs a way to organize and share information, and collaborate with people in and outside his team so that he can assess the supplier.		
A Space can provide this collaborative environment. So the purchasing application includes a call to the createGroupSpace		
API, and this enables the purchasing manager to click a link (Create a New Space) that displays a "Create Space" dialog, directly from the purchasing application, as shown in Figure 57-3.		
Figure 57-3 Purchasing Application Includes a Space Creation Link		
When the purchasing manager clicks the link a custom dialog prompts him for some information. The purchasing manager enters a name and description for the Space, and also selects a template (Purchasing Projects) as shown in Figure 57-4. The Purchasing Projects template sets up the Space quickly so it is ready to use right away. For example, the template defines which services are required (events, a document library, and so on) and any custom pages that may be required. Because the APIs enable you to create your own "Create Space" dialog, you can apply your own look and feel and terminology.		
In this scenario, the purchasing manager chooses the Purchasing Projects template from the template list. Another approach would be to have the purchasing application pass in a default template value. With this additional default, there would be one less thing (determining which template to use) for the purchasing manager to think about. You could even generate the name of the Space from the Supplier ID so that the purchasing manager would not have to enter any details at all. The Space could then be created with just the click of a link.		
When the purchasing manager clicks OK, WebCenter Spaces displays the new Supplier Evaluation Space in WebCenter Spaces, similar to that shown in Figure 57-5.		
Figure 57-5 shows a Home page for the Supplier Evaluation Space, which includes an events calendar, documents the group may find useful, an area for announcements, and so on. Each of these areas was determined by the Purchasing Projects template. In addition a link to the purchasing application transaction instance from which the Space was created is also provided. Clicking this link (Add/Update Vendors) displays the screen Add/Update Vendor transaction for the supplier Shaker Distribution.		
In WebCenter Spaces, the purchasing manager becomes the moderator of the Space automatically. The moderator can add content to the Space, initiate discussions, invite members, and collaborate with interested parties. Once consensus is reached regarding the supplier, the purchasing manager is can approve or reject the supplier concerned.		
Consider a Customer Support Center application built using the Oracle WebCenter Portal: Framework that tracks customer calls and issues.		
A support analyst is notified that a customer has escalated the service request that the analyst has been working on. The analyst knows that she can find a quicker resolution to the issue if she can involve other people from different areas of the company. For example:		
This problem can be solved collaboratively using a Space. The support analyst creates a Space from within the Customer Support Center application and adds the required members. These members are then notified and use the Space to start discussing the customer situation. The support analyst views their updates to the Space inside the support application, navigating to the Space whenever necessary to obtain more specific details. Based on the information she gets from the other members of the Space, she can diagnose the problem and offer the customer a solution very quickly.		
Before you can use the WebCenter Spaces APIs you must ensure that the WebCenter Spaces application is up and running and that your project is set up correctly in JDeveloper.		
This section includes the following subsections:		
If you want to use the WebCenter SpacesAPIs, the WebCenter Spaces application must be up and running.		
To verify that WebCenter Spaces is up and running:		
You do not need to log in.		
You should see a page similar to the one shown in Figure 57-6. If you do not see this page, contact your Fusion Middleware administrator.		
For more information about setting up WebCenter Spaces, see the "Getting WebCenter Spaces Up and Running" chapter in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.		
Before you can call the WebCenter Spaces APIs in your WebCenter Portal: Framework application, you must ensure that your application contains the correct libraries and that there is a connection to the WebCenter Spaces Web service.		
To set up your application to use the WebCenter Spaces APIs:		
The application should be based on the WebCenter Application template.		
JDEV_HOME		
/jdeveloper/oracle_common/modules/oracle.adf.model_11.1.1/adfm.jar		
JDEV_HOME		
/jdeveloper/oracle_common/modules/oracle.xdk_11.1.1/xml.jar		
SpacesWebServiceEndpoint.		
The connection information is added to the connections.xml		
file in the application's META-INF		
directory, for example:		
If the connections.xml		
file does not exist, it is created.		
connections.xml		
file and verify that the code shown in Example 57-1 appears: Example 57-1 WebCenter Spaces Web Service Endpoint URL Connection		
If you need to set the WebCenter Spaces Web service endpoint at runtime, you can use the setGroupSpaceWebServiceEndpoint		
API (Example 57-2). You can write a wrapper API that takes the endpoint as a parameter and then calls setGroupSpaceWebServiceEndpoint		
, passing the parameter. An exception is reported as INFO in the log file if the endpoint is not set in connections.xml		
.		
Before using the WebCenter Spaces APIs in your WebCenter Portal: Framework application, you must ensure that the communication between the application (the consumer) and WebCenter Spaces (the producer) is secure. This is so that the identity of the user invoking the APIs is propagated to WebCenter Spaces in a secure manner where the integrity and confidentiality of the communication is maintained.		
To do this, the WebCenter Spaces APIs use a policy of SAML based token passing with message protection. Your administrator must create a Java keystore and update the credential store so that WebCenter Spaces can verify the authenticity of the security tokens received from your application. You must then register this keystore and update the credential store using JDeveloper.		
For information about the steps that the administrator must perform, see "Securing WebCenter Spaces for Applications Consuming Spaces Client APIs with WS-Security" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.		
Before calling any of the WebCenter Spaces APIs in your application code, a few setup steps are required.		
To set up the WebCenter Spaces client context		
GroupSpaceWSContext		
class. In particular, you must set the SAML issuer name and the public key alias for WebCenter Spaces, which are required for data encryption. If the WebCenter Spaces Web service endpoint is not set in the connections.xml		
file, you can set this too.		
For example:		
Where:		
endPointUrl		
is the WebCenter Spaces Web service endpoint, for example, http://server.example.com:8912/webcenter/SpacesWebService		
. samlIssuer		
is the issuer URI of the SAML Authority issuing assertions for this SAML Asserting Party, for example, http://www.oracle.com		
. Out-of-the-box, http://www.oracle.com		
is the only trusted SAML issuer. producer		
is the public key alias for WebCenter Spaces, for example, orakey		
if you are using a simple topology. For information about the steps that the administrator must perform, see "Securing WebCenter Spaces for Applications Consuming Spaces Client APIs with WS-Security" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.		
For a full list of the APIs provided by the GroupSpaceWSContext		
class, see the Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal.		
If the correct URL is returned, everything is set up correctly and you can start using the WebCenter Spaces APIs.		
The WebCenter Spaces APIs enable you to perform common Space-related operations within a WebCenter Portal: Framework application. Most of these APIs are provided by the GroupSpaceWSClient		
class. The APIs can be grouped into three main categories:		
Table 57-2 lists the APIs in the GroupSpaceWSClient		
class.		
Table 57-2 APIs for Performing Common WebCenter Spaces Operations		
WebCenter Spaces API	Category	Description
---	---	---
Managing Spaces and Space Templates	Creates a new Space based on a template. See Section 57.2.5.1.1, "Creating a Space."	
Managing Spaces and Space Templates	Creates one or more custom attributes for a Space. See Section 57.2.5.1.2, "Creating a Custom Attribute."	
Managing Spaces and Space Templates	Permanently removes a Space from WebCenter Spaces. See Section 57.2.5.1.4, "Deleting a Space."	
Managing Spaces and Space Templates	Creates a new Space template based on an existing Space. See Section 57.2.5.1.3, "Creating a Space Template."	
Managing Space Membership	Makes a user (or a group) a Space member with a specific role. See Section 57.2.5.2.1, "Adding Members to a Space."	
Managing Space Membership	Invites a list of users to become members of a Space. See Section 57.2.5.2.2, "Inviting Users to Join a Space."	
Managing Space Membership	Revokes Space membership. See Section 57.2.5.2.3, "Removing Members from a Space."	
Managing Space Membership	Retrieves all the roles for a given Space. See Section 57.2.5.2.4, "Retrieving Role Information."	
Retrieving Information for Spaces and Space Templates	Retrieves a list of Spaces for a given query string. See Section 57.2.5.3.1, "Retrieving a List of Spaces."	
Retrieving Information for Spaces and Space Templates	Retrieves a list of public Spaces for a given query string. See Section 57.2.5.3.2, "Retrieving a List of Public Spaces."	
Retrieving Information for Spaces and Space Templates	Retrieves a list of discoverable Spaces for a given query string. See Section 57.2.5.3.3, "Retrieving a List of Discoverable Spaces."	
Retrieving Information for Spaces and Space Templates	Retrieves information (metadata) about the Space. See Section 57.2.5.3.4, "Retrieving Space Metadata."	
Retrieving Information for Spaces and Space Templates	Retrieves information (metadata) about a Space given the Space's GUID. See Section 57.2.5.3.4, "Retrieving Space Metadata."	
Retrieving Information for Spaces and Space Templates	Retrieves a list of Space templates for a given query string. See Section 57.2.5.3.5, "Retrieving a List of Space Templates."	
Retrieving Information for Spaces and Space Templates	Retrieves information (metadata) about the Space template. See Section 57.2.5.3.6, "Retrieving Space Template Metadata."	
Retrieving Information for Spaces and Space Templates	Retrieves information (metadata) about the Space template given the template's GUID. See Section 57.2.5.3.6, "Retrieving Space Template Metadata."	
Retrieving Information for Spaces and Space Templates	Retrieves the WebCenter Spaces URL. See Section 57.2.5.3.7, "Retrieving the WebCenter Spaces URL."	
Retrieving Information for Spaces and Space Templates	Retrieves a Space URL. See Section 57.2.5.3.8, "Retrieving a Space URL."	
Retrieving Information for Spaces and Space Templates	Retrieves RSS feed URLs for the specified Space service.	
Retrieving Information for Spaces and Space Templates	Retrieves RSS feed URL for a given Space by GUID and a given service.	
Use the following WebCenter Spaces APIs to manage your Spaces and Space templates:		
createGroupSpace		
setCustomAttribute		
createGroupSpaceTemplate		
deleteGroupSpace		
Before you begin		
Before using any of these APIs, you must complete all the steps listed in Section 57.2.4, "How to Set Up Your WebCenter Portal Application to Use the WebCenter Spaces APIs."		
This section includes the following subsections		
Use the createGroupSpace		
API to create a Space that is based on an existing Space template.		
To use this API, specify:		
Optionally, you can provide a comma separated list of keywords to help users locate the Space in searches.		
Example 57-3 creates a Space with the name Databases that is based on the CommunityofInterest template. The example also specifies two search keywords (databases and Oracle).		
Example 57-3 Creating a Space		
For an example of how to provide custom attributes for a new Space, see Section 57.2.5.1.2, "Creating a Custom Attribute."		
Every Space comes with built-in attributes such as name, description, date created, icon, and so on. In addition, you can define custom attributes that store additional information (metadata) that is unique to the Space and its characteristics.		
Use the setCustomAttribute		
API to specify a custom attribute for a Space. To use this API, specify the name of the Space and a name, description, type, and value for the custom attribute.		
Example 57-4 creates the Databases Space and then creates a custom attribute for that Space. The attribute is named Vendors, with the description List of vendors. It takes string values of Oracle and IBM.		
Example 57-4 Creating a Custom Attribute		
Use the createGroupSpaceTemplate		
API to create a Space template based on an existing Space. To use this API specify a name, display name, and description for the template, and the name of the Space to use to create the template.		
Example 57-5 creates a Space template based on the Databases Space.		
Example 57-5 Creating a Space Template		
Use the deleteGroupSpace		
API to permanently delete a Space from WebCenter Spaces. To use this API, specify the name of the Space to delete. The API returns a boolean value to indicate whether the deletion was successful.		
Example 57-6 deletes the Space with the name Databases. The example uses the boolean value returned by the API to print a message about the success or failure of the operation.		
Use the following WebCenter Spaces APIs to manage Space membership:		
addMember		
inviteMember		
removeMember		
getRoles		
Before you begin		
Before using any of these APIs, you must complete all the steps listed in Section 57.2.4, "How to Set Up Your WebCenter Portal Application to Use the WebCenter Spaces APIs."		
This section includes the following subsections:		
Use the addMember		
API to give users (and groups) Space membership and assign the new members to a specific role. To use this API, specify the name of the Space, and a list of users/groups. The list must contain objects of type GroupSpaceWSMembers		
that specify the user/group name and the role to give that user/group in the Space.		
You must specify the name of a valid user or user group that exists in the WebCenter Spaces identity store. For the role, choose one of the default roles (Moderator, Participant, Viewer) or a custom role (if any). To retrieve a list of the available roles for a Space, use the getRoles		
API. For more information, see Section 57.2.5.2.4, "Retrieving Role Information." For more information about roles, see the "Managing Roles and Permissions for a Space" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.		
Example 57-7 makes users (of type GroupSpaceWSMembers		
) named Pat and Vicki and everyone in the Sales and Marketing user group, members of the Databases Space. Pat and everyone in Sales and Marketing are granted the Viewer role. Vicki is assigned the Participant role.		
Note: Use		
Example 57-7 Adding Members to a Space		
Use the inviteMember		
API to invite users to become members of a Space. To use this API, specify the name of the Space and a list of users to invite. The list must contain objects of type GroupSpaceWSMembers		
that specify the user name and the role to give that user in the Space. An invitation to join the Space is sent to each user, and each user can then accept or reject that invitation.		
You must specify a valid user name that exists in the WebCenter Spaces identity store. For the role, choose one of the default roles (Moderator, Participant, Viewer) or a custom role (if any). To retrieve a list of the available roles for a Space, use the getRoles		
API. For more information, see Section 57.2.5.2.4, "Retrieving Role Information." For more information about roles, see the "Managing Roles and Permissions for a Space" section in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.		
Example 57-8 invites users (of type GroupSpaceWSMembers		
) named Pat and Vicki to become members of the Databases Space with Viewer and Participant roles respectively.		
Example 57-8 Inviting Users to Join a Space		
Use the removeMember		
API to revoke Space membership. To use this API, specify the name of the Space, and a list of users. The list must contain objects of type GroupSpaceWSMembers		
that specify the user name. To obtain a list of current Space members, use the getGroupSpaceMetadata		
API. For more information, see Section 57.2.5.3.4, "Retrieving Space Metadata."		
Example 57-9 removes users (of type GroupSpaceWSMembers		
) Pat and Vicki from the membership of the Databases Space.		
Example 57-9 Removing Members from a Space		
Use the getRoles		
API to retrieve all the roles for a given Space. This is useful for determining which roles are available when adding or inviting members to a Space. Roles include out-of-the box roles (Moderator, Participant, Viewer) and also custom roles (if any). To use this API, specify the name of the Space.		
Example 57-10 retrieves and displays role information for the Databases Space.		
Use the following WebCenter Spaces APIs to retrieve Space information:		
getGroupSpaces		
getPublicGroupSpaces		
getDiscoverableGroupSpaces		
getGroupSpaceMetadata		
getGroupSpaceMetadataByGuid		
getGroupSpaceTemplates		
getGroupSpaceTemplateMetadata		
getGroupSpaceTemplateMetadataByGuid		
getWebCenterSpacesURL		
getGroupSpaceURL		
Before you begin		
Before using any of these APIs, you must complete all the steps listed in Section 57.2.4, "How to Set Up Your WebCenter Portal Application to Use the WebCenter Spaces APIs."		
This section includes the following subsections		
Use the getGroupSpaces		
API to obtain a list of Spaces that match a given query string. To use this API, specify a query string. A null value query string returns a list of all Spaces that are accessible to the current user.		
The API returns Spaces that are accessible to the current user, up to a maximum of 500.		
Example 57-11 returns a list of Spaces containing the string Database.		
Example 57-11 Retrieving a List of Specific Spaces		
Example 57-12 returns a list of all Spaces to which the current user has access. This is achieved by specifying a null query string.		
Use the getPublicGroupSpaces		
API to obtain a list of public Spaces that match a given query string. To use this API, specify a query string. A null value query string returns a list of all public Spaces.		
The API returns Spaces that are accessible to all users, even those who are not logged in to WebCenter Spaces, up to a maximum of 500.		
Example 57-13 returns a list of public Spaces containing the string Database.		
Example 57-13 Retrieving a List of Specific Public Spaces		
Example 57-14 returns a list of all public Spaces. This is achieved by specifying a null query string.		
Use the getDiscoverableGroupSpaces		
API to obtain a list of discoverable Spaces that match a given query string. To use this API, specify a query string. A null value query string returns a list of all discoverable Spaces.		
The API returns Spaces that are accessible to all users who are logged in to WebCenter Spaces, up to a maximum of 500.		
Example 57-13 returns a list of discoverable Spaces containing the string Database.		
Example 57-15 Retrieving a List of Discoverable Spaces		
Example 57-14 returns a list of all discoverable Spaces. This is achieved by specifying a null query string.		
Example 57-16 Retrieving a List of All Discoverable Spaces		
Use the getGroupSpaceMetadata		
or getGroupSpaceMetadataByGuid		
APIs to obtain information (metadata) about a particular Space. This includes information such as the description of the Space, the name of the user who created it, the date on which it was last updated, and so on.		
To use the getGroupSpaceMetadata		
API, specify the name of the Space. To use the getGroupSpaceMetadataByGuid		
API, specify the GUID of the Space. Note that while the Space name may be changed during the existence of the Space, the GUID always remains the same. You can obtain the GUID of a Space as follows:		
Both APIs return a bean object that contains more APIs that you can then use for retrieving the Space metadata. These APIs are provided by the GroupSpaceWSMetadata		
class. Table 57-3 lists the APIs returned by the bean object:		
Table 57-3 APIs for Retrieving Space Metadata		
WebCenter Spaces API	Description	
---	---	
Returns the name of the person who created the Space.		
Returns the custom attributes for a Space.		
Returns the description of the Space.		
Returns the display name of the Space.		
Returns the state of the Space: active, offline, deleted.		
Returns the GUID of the Space.		
Returns the location of the Space icon.		
Returns a comma separated list of keywords used to describe the Space.		
Returns the date the Space was last updated.		
Returns the location of the Space logo.		
Returns the mailing list for the Space.		
Returns the current list of Space members.		
Returns the internal name of the Space.		
Returns if the Space is returned in searches made by users who are not members of the Space.		
Returns if the Space is available to users who are not logged in.		
Example 57-17 retrieves the Description, Keywords, and Last Updated Date information for the Databases Space given the Space's name.		
Example 57-17 Retrieving Space Metadata Using the Space Name		
Example 57-18 retrieves the Display Name, Creator, and Last Updated Date information for the Databases Space given the Space GUID.		
Example 57-18 Retrieving Space Metadata Using Space GUID		
Example 57-19 retrieves the Name, Description, Type, and Value for every custom attribute associated with the Databases Space.		
Example 57-19 Retrieving Custom Attribute Metadata		
Example 57-20 retrieves a list of members of the Databases Space.		
Example 57-20 Retrieving Membership Information		
Use the getGroupSpaceTemplates		
API to obtain a list of Space templates that match a given query string. To use this API, specify a query string. A null value query string returns a list of all templates that are accessible to the current user.		
The API returns templates that are accessible to the current user, up to a maximum of 500.		
Example 57-21 returns a list of Space templates containing the string Interest.		
Example 57-21 Retrieving a List of Specific Space Templates		
Example 57-22 returns a list of all Space templates to which the current user has access. This is achieved by specifying a null query string.		
Use the getGroupSpaceTemplateMetadata		
and getGroupSpaceTemplateMetadataByGuid		
APIs to obtain information (metadata) about a particular Space template. This includes information such as the description of the template, the name of the user who created it, and so on.		
To use the getGroupSpaceTemplateMetadata		
API, specify the name of the template. To use the getGroupSpaceTemplateMetadataByGuid		
API, specify the GUID of the template. Note that while the Space template name may be changed during the existence of the template, the GUID always remains the same.		
Both APIs return a bean object that contains more APIs that you can then use for retrieving the Space template metadata. These APIs are provided by the GroupSpaceWSMetadata		
class. Table 57-4 lists the APIs returned by the bean object:		
Table 57-4 APIs for Retrieving Space Template Metadata		
WebCenter Spaces API	Description	
---	---	
Returns the name of the person who created the template.		
Returns the description of the template.		
Returns the display name of the template.		
Returns the GUID of the template.		
Returns the location of the template icon.		
Returns a comma separated list of keywords used to describe the template.		
Returns the location of the template logo.		
Returns the internal name of the template.		
Example 57-23 retrieves the GUID, Description, and Created By information for the CommunityofInterest Space template given the template name.		
Example 57-23 Retrieving Template Metadata Using the Template Name		
Example 57-24 retrieves the name of a Space template given the template GUID.		
Use the getWebCenterSpacesURL		
API to obtain the URL of WebCenter Spaces.		
Example 57-25 retrieves the URL of the currently running instance of WebCenter Spaces.		
Use the getGroupSpaceURL		
API to obtain the URL of a specific Space. This is useful for when you want to construct a hyperlink for a Space or you have a relative URL that you need to make into an absolute URL. To use this API, specify the name of the Space.		
Example 57-26 retrieves the URL of the Databases Space.		
Example 57-27 prints a list of Spaces as hyperlinks.		
Example 57-27 Printing a List of Spaces as Hyperlinks		
To construct the URL of a particular Space page, retrieve the Space URL and then add the page information. For information about how to create pretty URLs for Space pages, see "WebCenter Spaces Pretty URLs" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.		
In WebCenter Spaces, Space members can find out what is happening in a Space through various RSS news feeds. The following Space RSS feeds are available:		
You can retrieve the RSS feed URLs for these Space services, from a WebCenter Portal application, using the following WebCenter Spaces APIs:		
getServiceRSSFeedURL		
getServiceRSSFeedURLbyGuid		
To obtain an RSS feed URL, you must identify the Space (by name or GUID) and specify the service required (using a service ID). Service IDs are available as constants in GroupSpaceWSClient		
as follows:		
GroupSpaceWSClient.ANNOUNCEMENT_SERVICE_ID		
GroupSpaceWSClient.DISCUSSION_FORUM_SERVICE_ID		
GroupSpaceWSClient.LIST_SERVICE_ID		
GroupSpaceWSClient.RECENT_ACTIVITY_SERVICE_ID		
Retrieving Space RSS News Feed URLs Using getServiceRSSFeedURL		
Use the getServiceRSSFeedURL		
API to obtain service-related RSS news feed URLs for a particular Space by specifying the Space name.		
To retrieve the RSS news feed URL for a service using getServiceRSSFeedURL		
, use the following:		
Where:		
service_URL refers to the service parameter being retrieved		
groupspace_name is the name of the Space		
service_ID is the ID of the service for which you want to retrieve the RSS news feed URL. Use one of the following: ANNOUNCEMENT_SERVICE_ID		
, DISCUSSION_FORUM_SERVICE_ID		
, RECENT_ACTIVITY_SERVICE_ID		
, or LIST_SERVICE_ID		
.		
Therefore, depending on the service required, you can use the following:		
String		
service_URL		
= client.getServiceRSSFeedURL(
"groupspace_name		
", GroupSpaceWSClient.ANNOUNCEMENT_SERVICE_ID)		
String		
service_URL		
= client.getServiceRSSFeedURL("		
groupspace_name		
", GroupSpaceWSClient.DISCUSSION_FORUM_SERVICE_ID)		
String		
service_URL		
= client.getServiceRSSFeedURL("		
groupspace_name		
", GroupSpaceWSClient.LIST_SERVICE_ID)		
String		
service_URL		
= client.getServiceRSSFeedURL("		
groupspace_name		
", GroupSpaceWSClient.RECENT_ACTIVITY_SERVICE_ID)		
Example 57-28 retrieves the recent activity RSS feed URL for a Space named Finance_Project:		
Example 57-28 Retrieving the RSS Feed URL for Recent Activity		
Retrieving RSS News Feed URLs Using GetServiceRSSFeedURLbyGuid		
Use the getServiceRSSFeedURLbyGuid		
API to obtain service-related RSS news feed URLs for a particular Space by specifying the Space's GUID.		
To retrieve the RSS news feed URL for a service using getServiceRSSFeedURLbyGuid		
, use the following:		
Where:		
service_URL refers to the service parameter being retrieved		
groupspace_GUID is a Space GUID. For information about obtaining a Space's GUID, see Section 57.2.5.3.4, "Retrieving Space Metadata."		
service_ID is the ID of the service for which you want to retrieve the RSS news feed URL. Use one of the following: ANNOUNCEMENT_SERVICE_ID		
, DISCUSSION_FORUM_SERVICE_ID		
, RECENT_ACTIVITY_SERVICE_ID		
, or LIST_SERVICE_ID		
.		
Example 57-29 retrieves the recent activity RSS feed URL for a Space with the GUID: s2201fa44_b441_4bdd_950e_47307f6f9800:		
The GroupSpaceWSException		
class provides APIs for handling exceptions raised by WebCenter Spaces APIs.		
Table 57-5 WebCenter Spaces APIs in the GroupSpaceWSException Class		
API	Class	Description
---	---	---
GroupSpaceWSException	Composes the localized error message.	
GroupSpaceWSException	Prints the exception and its back trace to the standard error stream.	
This section includes the following subsections:
Sometimes you may find that the default error messages provided by the APIs are not specific enough for your particular application. In these cases you can provide your own error messages.
Use the getLocalizedMessage
API to compose application-specific error messages.
Example 57-30 shows a servlet that includes code to create a Space. If any exceptions are raised during the creation process, a localized message is printed.
Example 57-30 Printing a Localized Error Message
For debugging purposes, it is often useful to see which errors ultimately led to the failure of a particular operation to discover the underlying cause of the problem. Use the printStackTrace
API to list all the errors that caused a particular exception.
Example 57-31 prints the exception and all the errors leading up to it.
Example 57-31 Listing the Error Stack
API Reference Documentation |
---|
For detailed syntax information for each API, see the Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal. |
If you experience issues with WebCenter Spaces APIs, check the following:
See "Updating the Credential Stores" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
context.setRecipientKeyAlias
. The alias should be the public key alias of the producer (WebCenter Spaces), for example: In this example, the public key alias of the producer is orakey. See also, Setting Up the WebCenter Spaces Client Context.
- webcenter.jks
(copied to WebCenter Spaces end)
- clientapi.jks
(copied to WebCenter Portal application end)
For example, the following commands generate clientapi.jks
and webcenter.jks
for a simple topology:
See also, Securing the Connection Between the Application and WebCenter Spaces.
Oracle WebCenter provides REST APIs to support various Space-related operations. You can use REST APIs to perform the following actions in WebCenter Portal: Spaces:
This section describes the WebCenter Portal: Spaces REST APIs. It contains the following subsections:
For an introduction to the REST APIs, see Section 54, "Using Oracle WebCenter Portal REST APIs."
Each REST service has a link element within the Resource Index that provides the entry point for that service. To find the entry point for WebCenter Portal: Spaces REST APIs, find the link element with a resourceType
of:
urn:oracle:webcenter:spaces
The corresponding href
or template
element provides the URI entry point which returns a list of Spaces accessible to the current user. The client sends HTTP requests to this entry point to work with WebCenter Portal: Spaces.
For more information about the Resource Index, see Section 54.5.1, "The Resource Index".
For more information about resource types, see Section 54.5.2.1, "Resource Type."
When the client has identified the entry point, it can then navigate through the resource type taxonomy to perform the required operations. For more information about the individual resource types, see the appropriate section in Section 57.3.4, "WebCenter Portal: Spaces Resource Types".
The taxonomy for WebCenter Portal: Spaces is:
There are no specific security considerations for this service. For general security considerations, see Section 54.8, "Security Considerations for WebCenter Portal REST APIs."
The following sections provide all the information you need to know about each resource type:
Use this resource type to identify the URI to use to view a list of Spaces (GET
) and to create a new Space (POST
). The response from a GET
operation includes each Space, and each Space includes links to operate on that Space.
Navigation Paths to spaces
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for spaces
The following methods are supported by this resource:
GET
– Returns information on all Spaces. startIndex
itemsPerPage
projection
- Allowed values are summary
and details
. The default is summary
. visibility
- Determines which Spaces are included in the list: all Spaces, public Spaces only, joined Spaces, or discoverable Spaces. Allowed values are all
, public
, joined
and discoverable
. The default is joined
.
POST
– Creates a new Space. Note: The Basic CommunityOfInterest ProjectSpace |
Resource Types Linked to from spaces
Table 57-6 lists the resource types that the client can link to from this resource.
Use this resource type to identify the URI to use to retrieve a list of Site Resources (GET
). The response from a GET
operation includes a list of all site resource names. The main purpose of retrieving site resource names is to know what all resources is available in the Space.
The returned list includes the resources that are found under the Resources tab of the WebCenter Spaces Administration console, and include resources like page templates, navigations, skins, page styles, and others.
Navigation Paths to siteresources
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for siteresources
The following methods are supported by this resource:
GET
startIndex
itemsPerPage
projection
- Allowed values are summary
and details
. The default is summary
. q
- You can search on siteResourceType
and/or seeded
. If siteResourceType
is specified, the query returns all site resource names for that site resource type.
The format is: q
= siteResourceType:equals:<
value>
The possible values are siteTemplate
, contentPresenter
, pageStyle
, navigation
, resourceCatalog
, or skin
.
Example:
q=siteResourceType:equals:siteTemplate
If seeded
is specified as true
, the query returns all site resources names that are seeded.
The format is: q=seeded:equals:<
value>
.
The possible values are true
or false
.
Example:
q=seeded:equals:false
(returns all non-seeded resources)
If a non-seeded site template is required, the query is:
siteResourceType:equals:siteTemplate;
seeded:equals:false
siteResourceType
is specified, returns all the site resource names for that site resource type. Read-Only Elements for siteresources
Table 57-7 lists the read-only elements for siteresources.
Table 57-7 Read-Only Elements for urn:oracle:webcenter:siteresources
Element | Type | Description |
---|---|---|
guid | String | Global ID for the site resource. |
displayName | String | Name of the site resource as displayed to end users. |
name | String | The name of the site resource. A complete list of all of the site resources, by name, is provided in Table 57-8. |
description | String | Description of the site resource. |
siteResourceType | String | Type of the site resource. |
scopeName | String | Either the name of the Space or the default scope at the application level. |
seeded | Boolean | Set to true if the site resource is pre-populated. |
visible | Boolean | Set to true if this site resource is visible in the user interface. |
createdBy | String | Username of the user who created the site resource. |
createdDate | Date | Date the site resource was created. |
modifiedBy | String | Username of the user who updated the site resource. |
modifiedDate | Date | Date on which the site resource was modified. |
version | String | Version of the site resource. |
List of Site Resources by Name
Table 57-8 lists the site resources by name, and gives the type and description of each resource.
Table 57-8 List of Site Resources by Name Provided by WebCenter Portal
Name | Type | Description |
---|---|---|
Accordion View | contentPresenter | Displays multiple content items in an accordion (stacked) format. When an item is clicked, the other items collapse to reveal the selected items details. |
Blank | pageStyle | Blank Page Style |
Blank | taskFlowStyle | Blank |
Blog | pageStyle | Blog Page Style |
Bulleted View | contentPresenter | Displays multiple content items as a bulleted list. Only content items are displayed; sub-folders are omitted. |
Bulleted with Folder Label View | contentPresenter | Displays multiple content items as a bulleted list. The name of the parent folder is displayed as a label above the list. Only content items are displayed; sub-folders are omitted. |
Carousel View | contentPresenter | Displays multiple content items in a carousel format. Users browse through items using a slider bar from left to right. |
Default Document Details View | contentPresenter | Displays detailed information about a single content item, including creation date, modification date, creator, user who last modified the item, and path, as well as any comments. |
Default Home Space Catalog | resourceCatalog | Used when editing application-level pages and task flows in your Home Space. |
Default List Item View | contentPresenter | Used by a single content item view to display a single line with an icon and item name as a link that either displays or downloads the item when clicked. |
Default List Item View for Folders | contentPresenter | Used by a single content item view to display a single line with an icon and item name as a link that either displays or downloads the item when clicked. |
Default Page Template Catalog | resourceCatalog | Used when editing page templates |
Default Space Catalog | resourceCatalog | Used when editing Space-level pages and task flows |
Default View | contentPresenter | Displays a single content item. Image and HTML content items are displayed directly in the browser. For other item types, details are displayed, along with a link to download the associated file. |
Fusion FX | skin | |
Fusion Side Navigation | siteTemplate | Stretching Page Layout with Side Navigation. Use Fusion FX Skin. |
Fusion Top Navigation | siteTemplate | Stretching Page Layout with Top Navigation. Use Fusion FX Skin. |
Home Page | pageStyle | Home Page style |
Icon View | contentPresenter | Displays multiple content items in a tiled format, using icons to represent sub-folders and content items. |
Left Narrow | pageStyle | Left Narrow Page Style |
List View | contentPresenter | Displays multiple content items in a simple list. |
List with Details Panel View | contentPresenter | Displays multiple content items in a list on the left. A panel on the right displays the details of a selected item. |
Parameter Form | taskFlowStyle | |
Right Narrow | pageStyle | |
Sortable Table View | contentPresenter | Displays multiple content items in a sortable table that includes the document name, date created, and date modified. |
Html Page | pageStyle | HTML page style |
Spaces Default Navigation Model | navigation | Navigation model that displays current Space pages |
Spaces Navigation with Blogs/Wikis/Lists Submenus | navigation | Navigation model that displays current Space pages and submenus for Blogs, Wikis and Lists |
Stretch | taskFlowStyle | |
Tabbed View | contentPresenter | Displays multiple content items as tabs. Clicking a tab displays the associated item's details. |
Three Column | pageStyle | Three Column Page Style |
Web Page | pageStyle | Web Page Page Style |
Public-Pages Template | siteTemplate | Default Page Template for WebCenter Public pages. |
Collaborative with Top Navigation | siteTemplate | Page Template for Collaborative Spaces, with Flowing Layout and Top Navigation. Use WebCenter Spaces FX Skin. |
Spaces FX | skin | WebCenter Spaces FX Skin |
Portal-centric with Top Navigation | siteTemplate | Page Template for Portal-centric Sites, with Flowing Layout and Top Navigation. Use WebCenter Spaces FX Skin. |
Side Navigation | siteTemplate | Flowing Page Layout with Side Navigation. Use WebCenter Spaces FX Skin. |
Side Navigation (Stretch) | siteTemplate | Stretching Page Layout with Side Navigation. Use WebCenter Spaces FX Skin. |
Top Navigation | siteTemplate | Default Page Template with Flowing Layout and Top Navigation. Use WebCenter Spaces FX Skin. |
Top Navigation (Stretch) | siteTemplate | Stretching Page Layout with Top Navigation. Use WebCenter Spaces FX Skin. |
Wiki | pageStyle | Wiki Page Style |
Writeable Elements for siteresources
There are no writeable elements for this resource.
Use this resource type to identify the URI to use to retrieve a list of Space templates (GET
). The response from a GET
operation includes a list of template names. The main purpose of retrieving template names is to provide a value for the templateName
parameter for the create Space command.
Navigation Paths to templates
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for templates
The following methods are supported by this resource:
GET
startIndex
projection
- Allowed values are summary
and details
. The default is summary
. q
- Performs searches. itemsPerPage
For more information about query parameters, see Section 54.5.2.5, "Templates."
Resource Types Linked to from templates
Table 57-9 lists the resource types that the client can link to from this resource.
Table 57-9 Related Resource Types for urn:oracle:webcenter:spaces
rel | resourceType |
---|---|
self |
|
Use this resource type to identify the URI to use to view details for a single Space (GET
), create a nested Space (POST
), or delete a Space (DELETE
). The response from a GET
operation includes the specific Space identified by the URI, including its creator, description, members, and custom attributes.
Note: The response from this resource also includes a link to the Space's message board. |
Navigation Paths to space
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for space
The following methods are supported by this resource:
GET
projection
- Allowed values are summary
, and details
. The default is details
. Choose summary
to exclude member and custom attribute details. POST
– Creates a new Space that is a child of the named Space (a Subspace). This feature supports creating hierarchical or nested Spaces. Note: The Basic CommunityOfInterest ProjectSpace |
DELETE
– Deletes the named Space. On delete, a 204 status code is returned whether or not the Space existed.
For more information about query parameters, see Section 54.5.2.5, "Templates."
Writable Elements for space
Table 57-10 lists the writable elements for this resource.
Table 57-10 Writable Elements for urn:oracle:webcenter:space
Element | Type | Description |
---|---|---|
| String | Description of the Space. |
| String | Internal name for the Space. |
| String | Must be a valid template name returned from urn:oracle:webcenter:spaces:resource:templates. For example, the default template names are: Basic CommunityOfInterest ProjectSpace |
Read-only Elements for space
Table 57-11 lists the read-only elements for this resource.
Table 57-11 Read-only Elements for urn:oracle:webcenter:space
Element | Type | Description |
---|---|---|
| String | Global ID for the Space. |
| String | ID of the user who created the Space. |
| | User information about the user who created the Space, including GUID, ID, display name, and a link to the profile icon (same user as |
| String | Name of the Space as displayed to members. |
| String | Fully qualified URL for the Space's icon image. |
| String | Relative URL for the Space's logo image. |
| Boolean | Indicates whether the Space is offline or online. |
| Boolean | Specifies whether the space is discoverable. |
| Boolean | Specifies whether the space is public. |
| String | Lists keywords for the space. |
| String | Lists the mailing list email for the space if it has one. |
| String | Shows the parent display name if the Space is a child space and has a parent. In this case, there will also be an |
| String | List of service ids whose data is to be copied to new spaces/templates when created based off this Space. |
| String | The default language. |
| String | URI to the Space landing page if specified. |
| Boolean | Specifies whether or not this is a Template. |
| Boolean | Specifies whether or not you need approval to unsubscribe. |
| Boolean | Specifies whether or not the space has an associated RSS feed. |
| Boolean | Specifies whether or not the space is closed. |
| Boolean | Specifies whether or not all access to space is blocked (not sure how this happens). |
| String | Returns the members element for the space. |
| String | Returns the attributes element for the space. |
Resource Types Linked to from space
Table 57-12 lists the resource types that the client can link to from this resource.
Table 57-12 Related Resource Types for urn:oracle:webcenter:space
Use this resource type to identify the URI to use to view the WebCenter Spaces resource index.
Navigation Paths to resourceindex
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for resourceindex
The following methods are supported by this resource:
GET
Resource Types Linked to From resourceindex
Table 57-13 lists the resource types that the client can link to from this resource.
Table 57-13 Related Resource Types for urn:oracle:webcenter:space:resourceindex
rel | resourceType |
---|---|
| |
|
Use this resource type to get a list of roles for the named Space (GET
). The results returned from this call can be used to add a new member to a Space with urn:oracle:webcenter:space:members.
Navigation Paths to space:roles
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for roles
The following methods are supported by this resource:
GET
– Returns the list of roles assigned to the named Space. Resource Types Linked to from roles
Table 57-14 lists the resource types that the client can link to from this resource.
Table 57-14 Related Resource Types for urn:oracle:webcenter:spaces:roles
rel | resourceType |
---|---|
self |
|
urn:oracle:webcenter:space:role | |
urn:oracle:webcenter:parent | |
Use this resource type to get a named role (GET
).
Use this resource type to get a list of roles for the named Space (GET
). The results returned from this call can be used to add a new member to a Space with urn:oracle:webcenter:space:members.
Navigation Paths to space:role
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for role
The following methods are supported by this resource:
GET
– Returns the named role. Resource Types Linked to from role
Table 57-14 lists the resource types that the client can link to from this resource.
Table 57-15 Related Resource Types for urn:oracle:webcenter:spaces:roles
rel | resourceType |
---|---|
self |
|
urn:oracle:webcenter:space:role | |
urn:oracle:webcenter:parent | |
Use this resource type to get the icon used for the named Space (GET
).
Note: This resource type is used for Group Space references, not for Group Space responses. This resource can be used anywhere a Group Space is referenced, like in an Activity Stream or a Group Space event. |
Navigation Paths to space:icon
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for icon
The following methods are supported by this resource:
GET
– Returns the icon used for the named Space. Resource Types Linked to from icon
Table 57-14 lists the resource types that the client can link to from this resource.
Table 57-16 Related Resource Types for urn:oracle:webcenter:spaces:roles
rel | resourceType |
---|---|
self |
|
urn:oracle:webcenter:parent | |
Use this resource type to identify the URI to use to view a list of custom attributes defined for a Space (GET
). The response from a GET
operation includes each custom attribute for the Space, and each attribute includes links to operate on that attribute. Also use this resource type to add custom attributes to a Space (POST
).
Navigation Paths to attributes
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for attributes
The following methods are supported by this resource:
GET
POST
– Adds a custom attribute to the named space. Writeable Elements for attributes
Table 57-17 lists the writeable elements for this resource.
Table 57-17 Writeable Resources for space:attributes
Element | Type | Description |
---|---|---|
name | String | Attribute name. |
value | String | Attribute value. |
Resource Types Linked to From attributes
Table 57-18 lists the resource types that the client can link to from this resource.
Table 57-18 Related Resource Types for urn:oracle:webcenter:space:attributes
rel | resourceType |
---|---|
self |
|
| |
urn:oracle:webcenter:parent | |
Use this resource type to identify the URI to use to view the name and value of single Space attribute (GET
). The response from a GET
operation includes the specific attribute identified by the URI.
Navigation Paths to attribute
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for attribute
The following methods are supported by this resource:
GET
Read-only Elements for attribute
Table 57-19 lists the read-only elements for this resource.
Table 57-19 Read-only Elements for urn:oracle:webcenter:space:attribute
Element | Type | Description |
---|---|---|
name | String | Name of the custom attribute. |
description | String | Description of the custom attribute. |
type | String | Data type of the custom attribute. |
value | String | Value of the custom attribute. |
Resource Types Linked to From attribute
Table 57-20 lists the resource types that the client can link to from this resource.
Table 57-20 Related Resource Types for urn:oracle:webcenter:space:attribute
rel | resourceType |
---|---|
self |
|
urn:oracle:webcenter:parent | |
Use this resource type to identify the URI to use to view a list of members for the Space (GET
). The response from a GET
operation includes each member of the Space, each member includes links to operate on that member.
Navigation Paths to members
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for members
The following methods are supported by this resource:
GET
POST
– Adds a member to the Space. DELETE
– Removes the named member from the Space. You can obtain the member guid with urn:oracle:webcenter:space:member. Writeable Elements of spaces:space:members
Table 57-21 Writeable Elements of spaces:space:members
Element | Type | Description |
---|---|---|
name | String | The member's name. |
role | String | The member's role. Obtain this value from urn:oracle:webcenter:space:roles. |
Resource Types Linked to From members
Table 57-22 lists the resource types that the client can link to from this resource.
Table 57-22 Related Resource Types for urn:oracle:webcenter:space:members
rel | resourceType |
---|---|
self |
|
| |
urn:oracle:webcenter:parent | |
Use this resource type to identify the URI to use to view details for a Space member and their current role assignments (GET
). The response from a GET
operation includes the specific member identified by the URI, including a hyperlink to the member's profile.
Navigation Paths to member
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for member
The following methods are supported by this resource:
GET
Read-only Elements for member
Table 57-23 lists the read-only elements for this resource.
Table 57-23 Read-only Elements for urn:oracle:webcenter:space:member
Element | Type | Description |
---|---|---|
guid | String | Global ID for the Space member. |
name | String | User ID of the Space member. |
role | String | Role assigned to the member. |
displayName | String | Display name of the member. |
Resource Types Linked to From member
Table 57-24 lists the resource types that the client can link to from this resource.
Table 57-24 Related Resource Types for urn:oracle:webcenter:space:member
rel | resourceType |
---|---|
self |
|
| |
urn:oracle:webcenter:people:icon |
|
Use this resource type to identify the URI to use to view (GET
) and add (POST
) lists for the Space. The response from a GET
operation includes each list in the Space, and each list includes links used to operate on that list. The response from a POST
operation includes the list that was created in this collection of lists and a link to operate on that list.
Navigation Paths to lists
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for lists
The following methods are supported by this resource:
GET
startIndex
itemsPerPage
q
You can search on name
, title
, description
, creator
, created
, modifier
, and modified
.
For string type elements (that is, name
, title
, description
, creator
, and modifier
), you can use the following supported operands: equals
, not.equals
, and contains
. For example:
For date type elements (that is, created
and modified
), you can use the following supported operands: equals
, not.equals
, greater.than
, greater.than.or.equals
, less.than
, less.than.or.equals
. For example:
projection
- Allowed values are summary
and details
. The default is summary
. POST
For more information about query parameters, see Section 54.5.2.5, "Templates."
Resource Types Linked to From lists
Table 57-25 lists the resource types that the client can link to from this resource.
Table 57-25 Related Resource Types for urn:oracle:webcenter:space:lists
rel | resourceType |
---|---|
self |
|
|
Use this resource type to identify the URI to use to view (GET
), update (PUT
), and delete (DELETE
) a list belonging to a Space. The response from a GET
operation includes the specific list identified by the URI. The response from a PUT
operation includes the modified version of the list identified by the URI. The response to a DELETE
operation is a 204 status code.
Navigation Paths to list
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for list
The following methods are supported by this resource:
GET
PUT
DELETE
Writable Elements for list
Table 57-26 lists the writable elements for this resource.
Table 57-26 Writable Elements for urn:oracle:webcenter:space:list
Element | Type | Required | Constraints | Description |
---|---|---|---|---|
name | String | Yes | 1 or more characters | Name of the Space list. |
description | String | No | 0 or more characters | Description of the list. |
columns | urn:oracle:webcenter:space:list:columns | Yes | 1 or more characters | Columns that make up the list. |
Read-only Elements for list
Table 57-27 lists the read-only elements for this resource.
Table 57-27 Read-only Elements for urn:oracle:webcenter:list
Element | Type | Description |
---|---|---|
id | String | ID of the list. |
name | String | Name of the list. |
description | String | Description of the list. |
scopeguid | String | Global ID of the parent Space. |
scopename | String | Name of the parent Space. |
creator | String | ID of the user that created the list. |
author | | User information about the user that created the list, including GUID, ID, display name, and a link to the profile icon (same user as |
created | Date | Date the list was created. |
modifier | String | ID of the user that last modified the list. |
modifiedByUser | | User information about the user that last modified the list, including GUID, ID, display name, and a link to the profile icon (same user as |
modified | Date | Date the list was last modified. |
columns | String | Columns that make up the list. |
Resource Types Linked to From list
Table 57-28 lists the resource types that the client can link to from this resource.
Table 57-28 Related Resource Types for urn:oracle:webcenter:space:list
rel | resourceType |
---|---|
self |
|
| |
|
Use this resource type to identify the URI to use to view (GET
) and create (POST
) list rows (list items). The response from a GET
operation includes each row in this list, each row includes links to operate on that row. The response from a POST
operation includes the row that was created in this list and a link to operate on that row.
Navigation Paths to rows
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for rows
The following methods are supported by this resource:
GET
startIndex
itemsPerPage
q
You can search on name
, title
, description
, creator
, created
, modifier
, and modified
.
For string type elements (that is, name
, title
, description
, creator
, and modifier
), you can use the following supported operands: equals
, not.equals
, contains
, and starts.with
. For example:
For date type elements (that is, created
and modified
), you can use the following supported operands: equals
, not.equals
, greater.than
, greater.than.or.equals
, less.than
, less.than.or.equals
. For example:
POST
For more information about query parameters, see Section 54.5.2.5, "Templates."
Resource Types Linked to From rows
Table 57-29 lists the resource types that the client can link to from this resource.
Table 57-29 Related Resource Types for urn:oracle:webcenter:space:list:rows
rel | resourceType |
---|---|
self |
|
parent |
|
|
Use this resource type to identify the URI to use to view (GET
), update (PUT
), and delete (DELETE
) a list row (list item). The response to a GET
operation includes the specific row identified by the URI. The response to a PUT
operation includes the modified version of the row identified by the URI. The response to a DELETE
operation is a 204 status code.
Navigation Paths to row
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for row
The following methods are supported by this resource:
GET
PUT
DELETE
For more information about query parameters, see Section 54.5.2.5, "Templates."
Writable Elements for row
Table 57-30 lists the writable elements for this resource.
Table 57-30 Writable Elements for urn:oracle:webcenter:space:list:row
Element | Type | Required | Constraints | Description |
---|---|---|---|---|
columns.column.id | String | Yes | 1 or more characters | ID of the column (containing list item detail). |
columns.column.name | String | No | 1 or more characters | Name of the column. |
columns.column.value | String | Yes | 1 or more characters | Value of the column. |
Read-only Elements for row
Table 57-31 lists the read-only elements for this resource.
Table 57-31 Read-only Elements for urn:oracle:webcenter:space:list:row
Element | Type | Description |
---|---|---|
id | String | ID of the row (list item). |
listId | String | ID of the list. |
scope | String | Global ID of the parent Space. |
creator | String | ID of the user that created the list item. |
author | | User information about the user that created the list item, including GUID, ID, display name, and a link to the profile icon (same user as |
created | Date | Date the list item was created. |
modifier | String | ID of the user that last modified the list item. |
modifiedByUser | | User information about the user that last modified the list item, including GUID, ID, display name, and a link to the profile icon (same user as |
modified | Date | Date the list item was last modified. |
Resource Types Linked to From row
Table 57-32 lists the resource types that the client can link to from this resource.
Table 57-32 Related Resource Types for urn:oracle:webcenter:space:list:row
rel | resourceType |
---|---|
self |
|
Use this resource type to identify the URI to use to view (GET
) and create (POST
) list columns (list item detail). The response from a GET
operation includes each column in this list, each column includes link to operate on that column. The response from a POST
operation includes the column created in this list and a link to operate on that column.
Navigation Paths to columns
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for columns
The following methods are supported by this resource:
GET
startIndex
itemsPerPage
q
- Search parameters STARTS.WITH
and END.WITH
are not supported. POST
For more information about query parameters, see Section 54.5.2.5, "Templates."
Resource Types Linked to From columns
Table 57-33 lists the resource types that the client can link to from this resource.
Table 57-33 Related Resource Types for urn:oracle:webcenter:space:list:columns
rel | resourceType |
---|---|
self | |
parent |
|
|
Use this resource type to identify the URI to use to view (GET
), update (PUT
), and delete (DELETE
) a list column (list item detail). The response from a GET
operation includes the specific column identified by the URI. The response from a PUT
operation includes the modified version of the column identified by the URI. The response from a DELETE
operation is a 204 status code.
Navigation Paths to column
This section shows how the client can navigate through the hypermedia to access this resource:
Supported Methods for column
The following methods are supported by this resource:
GET
PUT
DELETE
Writable Elements for column
Table 57-34 lists the writable elements for this resource.
Table 57-34 Writable Elements for urn:oracle:webcenter:space:list:column
Element | Type | Required | Constraints | Description |
---|---|---|---|---|
columns.column.id | String | Yes | 1 or more characters | ID of the column (containing list item detail). |
columns.column.name | String | No | 1 or more characters | Name of the column. |
columns.column.value | String | Yes | 1 or more characters | Value of the column. |
Read-only Elements for column
Table 57-35 lists the read-only elements for this resource.
Table 57-35 Read-only Elements for urn:oracle:webcenter:space:list:column
Element | Type | Description |
---|---|---|
id | String | ID of the column (list item detail). |
Resource Types Linked to From column
Table 57-28 lists the resource types that the client can link to from this resource.
Table 57-36 Related Resource Types for urn:oracle:webcenter:space:list:column
rel | resourceType |
---|---|
self |
|
You can expose various enterprise applications inside WebCenter Spaces, including:
Technologies such as WSRP, Oracle JSF Portlet Bridge, ADF task flows, and WebCenter support for external applications, enable WebCenter Spaces to consume and present application data in a unified way. The following sections tell you how.
This section includes the following subsections:
You can expose WebCenter Portal: Framework applications, built using the WebCenter Portal: Framework, as portlets and task flows in WebCenter Spaces:
You can expose Oracle Applications Unlimited products, for example, E-Business Suite, Siebel, PeopleSoft, and JDEdwards, in WebCenter Spaces, using:
You can expose Web applications developed using non-Oracle platforms in WebCenter Spaces, as follows:
Part X contains the following chapters:
This chapter provides an overview of portlets, and describes, with the help of examples, the use of portlets. It explains portlet anatomy and the resources to create portlets. This chapter also explains the features, technologies, and tools to help you decide which portlet building technology best suits your needs.
This chapter includes the following sections:
A portlet is a reusable web component that can draw content from many different sources. Figure 58-1 illustrates the Products portlet, a portlet that shows the products available on a shopping web site.
Portlets provide a means of presenting data from multiple sources in a meaningful and related way. Portlets can display excerpts of other web sites, generate summaries of key information, perform searches, and access assembled collections of information from a variety of data sources. Because different portlets can be placed on a common page, the user receives a single-source experience. In reality, the content may be derived from multiple sources.
A portlet may or may not be rendered in an inline frame (IFRAME). Inline frames enable the placement of a document within a rectangular region that includes scroll bars and borders.
Note: For more information about portlets and inline frames, see Section 64.4.12, "What You May Need to Know About IFRAMEs." |
Within this IFRAME, portlets can display many types of content, including HTML, formatted text, images, or elements of an HTML form.
This section includes the following subsections:
Portlet anatomy is the visual representation of the portlet on a page. Figure 58-2 illustrates a typical portlet anatomy on a page in a Framework application. Note that the same portlet displayed in a different application could look different.
What is rendered on the page is controlled not only by the portlet's own logic, but by the attributes of the portlet tag that binds the portlet to the page. Values for these attributes are specified at the design time of the application that consumes the portlet, rather than through the portlet's own logic.
Note: For information about attributes of the |
For example, at application design time you can specify through portlet tag attributes that the runtime portlet should display a header and that its border should be of a specified thickness and color. In the header, you can include a portlet title and an Actions menu icon. The Actions menu icon is displayed on a portlet only when the portlet header is displayed. If you choose not to display a header, then the Actions menu is displayed on a FadeIn-FadeOut toolbar that renders on a mouse rollover.
These elements are sometimes referred to as portlet chrome. The appearance of portlet chrome can be controlled through a style sheet and through style-related attributes of the adfp:portlet
tag. The values of style-related attributes take precedence over styles specified through a style sheet, or skin.
Note: For information about skins and style-related attributes, see Section 22.10, "Applying Styles to Components." |
Through portlet tag attributes, you can include or omit display commands on the Actions menu. Actions menu items controlled through portlet tag attributes include Maximize and Restore. Maximize causes the maximized portlet to displace all other displayed portlets. These are displayed again when a user selects Restore.
Note: The Maximize attribute is meaningful for a portlet only when the portlet is placed inside a |
Other Actions menu items controlled through portlet tag attributes include the display or omission of the mode settings that were specified when the portlet was developed. If the portlet was built without including additional modes, then these commands do not appear on the Actions menu even when you indicate that they should through portlet tag attributes. In other words, portlet tag attributes are sometimes on/off switches that enable or disable the portlet's own built-in functionality.
Mode settings that appear on the Actions menu include such modes as About, and Help.
Users click the Personalize icon to alter their personal view of the portlet. The Personalize icon is displayed in the portlet header only to authenticated users (that is, users who are logged in). It does not display to Public or unauthenticated users. You must implement some form of application security for users to be able to personalize their portlet views.
Note: If you are a developer creating portlets, and you want to test the Personalize mode without creating a complete security model for your application, see Section 69.12, "Configuring Basic Authentication for Testing Portlet Personalization." |
Customization enables application administrators to edit a portlet's default settings at runtime. All users see the results of a customization.
Note: A typical customization setting is Portlet Title. At runtime, the portlet administrator can determine what title should appear in the portlet header. The Portlet Title can also be set at design time through portlet properties, using the For additional information about portlet tag attributes, see Section 64.4, "Setting Attribute Values for the Portlet Tag." |
Portlet resources include the many prebuilt portlets available out of the box from many sources, including Oracle Portal, Oracle E-Business Suite, and third-party sources. Portlet resources also include programmatic portlets built through WebCenter Portal: Framework's JSR 286 (standards-based) and Oracle PDK-Java wizards, and through other portlet-building tools. Each of these tools offers different product features that are targeted toward different developer roles.
For specific information about each tool and its benefits, see Section 58.2, "Portlet Technologies Matrix."
This section includes the following subsections:
What Are They?
JSF portlets are created using the Oracle JSF Portlet Bridge. The Oracle JSF Portlet Bridge enables application developers to expose their existing JSF applications and task flows as JSR 286 portlets. The Oracle JSF Portlet Bridge simplifies the integration of JSF applications with WSRP portlet consumers, such as Oracle Portal. You can create JSF portlets using the JSR 286 Java Portlet Wizard by invoking it from the New Gallery.
JSF portlets do not require separate source code from that of the JSF application. Since these portlets are created using the Oracle JSF Portlet Bridge, you need only maintain one source for both your application and your portlets. Similarly, when you deploy your JSF application, JSF portlets are also deployed with it. Therefore, using the bridge eliminates the requirement to store, maintain, and deploy your portlets separately from your application.
Who Is the Intended User?
Application developers with the knowledge of Faces and WSRP.
When Should They Be Used?
JSF portlets are best suited when application developers intend to display contents from a JSF application as a portlet without hosting the entire application, or without separately building a portlet for the same. When portletized, the consumption of the portlet is same as registering any WSRP producer using their provider URLs. ADF components that is task flows, can be exposed using the Oracle JSF Portlet Bridge as well.Figure 58-3 shows two portlets, one where users can enter a department number, and one that displays the employee information for the specified department. These portlets were created from ADF task flows using the Oracle JSF Portlet Bridge.
What Are They?
Prebuilt portlets are available through Oracle's partnerships with leading system integrators, software vendors, and content providers. You can access these portlets by using the keywords portal
or portlet
when searching the Oracle PartnerNetwork Solutions Catalog, available at http://solutions.oracle.com
. Examples of these include portlets for the following purposes:
Who Is the Intended User?
Fully developed, downloadable portlets are best suited for use by application developers who understand how to download, install, and register producers in WebCenter Portal: Framework. They are available for use by all levels of experience.
When Should They Be Used?
Use prebuilt portlets when your needs are satisfied by the functions the portlets offer and the level of personalization readily available is sufficient to complete the desired task.
Consider alternatives when you want to extend or personalize the portlet, for example, when you need a different user interface or when the functionality you require is not available out of the box.
What Are They?
The Parameter Form and Parameter Display portlets provide a quick and easy way to pass values between components. They are provided by the WSRP Tools producer.
The Parameter Form portlet has three output parameters that are set when values are submitted in the form inside the portlet. The parameters can then be used to drive the content of other portlets. You can customize the Parameter Form portlet to determine how many of the three fields are displayed on the form, depending on how many parameters you require.
The Parameter Display portlet enables you to quickly test the wiring from the Parameter Form portlet. However, typically you use the values passed from the Parameter Form portlet to drive the content of some other portlet, for example to pass a zip code to a weather portlet, or a stock symbol to a stock ticker portlet.
Figure 58-4 Parameter Form and Display Portlets
Who Is the Intended User?
The Parameter Form and Parameter Display portlets are best suited for use by application developers who want to provide contextual linking between portlets on a page. These portlets can be added to a page by any user with the appropriate privileges.
When Should They Be Used?
Use the Parameter Form and Parameter Display portlets when your needs are satisfied by the functions the portlets offer and the level of personalization readily available is sufficient to complete the desired task.
Consider alternatives when you want to extend or personalize the portlet, for example, when you need a different user interface or when the functionality you require is not available out of the box.
What Is It?
Web Clipping is a browser-based declarative tool that enables the integration of any web application with a Framework application. Web Clipping is designed to provide quick integration by leveraging the web application's existing user interface. Web Clipping has been implemented as a PDK-Java producer.
To create a Web Clipping portlet, the Framework application developer uses a web browser to navigate to a web page that contains desired content. Through the Web Clipping Studio, the application developer can drill down through a visual rendering of the target page to choose the desired content.
Web Clipping supports the following:
Who Is the Intended User?
Web Clipping is best suited for use by application developers and component developers who want to leverage an existing web page for rapid portlet development. This portlet can be added to a page by any user with the appropriate privileges.
When Should It Be Used?
Use Web Clipping when you want to repurpose live content and functionality from an existing web page and expose it in your Framework application as a portlet. Consider alternatives to change the way information is presented in the clipped portlet. That is, you do not want to control the User Interface (UI) or application flow, and you are accessing web-based applications. For a greater level of control, use OmniPortlet's Web Page data source instead of Web Clipping. (For more information, see Section 58.1.2.5, "OmniPortlet.")
The following are some examples of when you can consider using the Web Clipping portlet:
For more information about using Web Clipping, see Chapter 66, "Creating Content-Based Portlets with Web Clipping."
What Is It?
OmniPortlet is a declarative portlet-building tool that enables you to build portlets against a variety of data sources, including XML files, character-separated value files (CSV, for example, spreadsheets), web services, databases, and web pages. OmniPortlet users can also choose a prebuilt layout for the data. Prebuilt layouts include tabular, news, bullet, form, chart, or HTML. HTML layout enables OmniPortlet users to write their own HTML and inject the data into the HTML. Figure 58-5 shows a portlet created with OmniPortlet.
Like Web Clipping, OmniPortlet supports proxy authentication, including support for global proxy authentication and authentication for each user. You can specify whether all users automatically log in using a user name and password you provide, each user logs in using an individual user name and password, or all users log in using a specified user name and password.
Who Is the Intended User?
Business users with a minimum knowledge of the URLs to their targeted data and limited programming skills may find OmniPortlet a valuable tool.
When Should It Be Used?
Use OmniPortlet when you want to build portlets rapidly against a variety of data sources with a variety of layouts. Consider alternatives when you want complete control of the design and functionality of the portlet.
The following are some examples of when you can consider using OmniPortlet:
For more information about OmniPortlet, see Chapter 65, "Creating Portlets with OmniPortlet."
What Are They?
Programmatic portlets are portlets that you write yourself, in Java, using either the standard Java Portlet Specification (JPS) or PDK-Java. WebCenter Portal: Framework provides two declarative wizards for simplifying the creation of standards-based JSR 286 portlets and Oracle PDK-Java portlets. These wizards assist in the construction of the framework within which you create the portlet. Each wizard may include easy steps for the following:
Who Is the Intended User?
Use of the wizards is easy, but the creation of portlet logic is best performed by experienced and knowledgeable Java developers who are comfortable with the Java Portlet Specification or PDK-Java and who understand the configuration of producers.
When Should They Be Used?
Use programmatic portlets when you have very specialized business rules or logic or when you require personalized authentication, granular processing of dynamic results, and complete user interface control. Additionally, use programmatic portlets when you want to satisfy any of the following conditions:
Consider using the programmatic approach when the out-of-the-box portlets do not address your needs.
The following list provides a couple of examples of when you can consider using programmatic portlets:
For more information about using programmatic portlets, see Chapter 60, "Creating Portlets with the Portlet Wizard" and Chapter 61, "Coding Portlets."
Figure 58-6 illustrates the spectrum of portlet resources described in the previous section. Notice how one end of the spectrum is geared toward a more declarative development environment (that is, develop-through-wizard) while the other end focuses more on hand-coding. You can choose your tool depending on which type of environment is most comfortable and suitable to your skill-base.
For more information about deciding which tool to use, see Section 58.2, "Portlet Technologies Matrix."
Figure 58-6 Portlet Resources from Declarative to Coded Development
Portlet modes exhibit the runtime functionality seen by users. The standard modes supported by WebCenter Portal are described in the following subsections:
WebCenter Portal defines an extended set of modes that it supports. Different modes are available for both JSR 286 and PDK-Java portlets. For example, the Create JSR 286 Java Portlet wizard includes Print mode, which you can use to provide a printer friendly version of the portlet.
If you are coding portlets to JSR 286, then you can also declare your own custom portlet modes in the portlet.xml
file. You can use these to map to the extra modes offered by PDK-Java (for example, Full Screen mode), or to accommodate any other functionality you may want to provide.
Defining custom modes is especially useful if the portlet must interoperate with portal implementations from other vendors. You can offer any of these modes to users. In fact, it is recommended that some modes like Edit Defaults are offered.
Note: Third party portal products may have their own set of extended modes (JSR 286 custom modes) that producers can offer. In Framework applications, the chrome UI for portlets only shows the custom modes that are defined in WebCenter Portal: Framework. Arbitrary custom modes that a third party or custom portlet producer offers are ignored and therefore are not supported. |
A portlet uses View mode (known as Shared Screen mode in PDK-Java) to appear on a page with other portlets. This is the mode most people think about when they envision a portlet. A JSR 286 portlet must have a View mode, the rest are optional.
For guidelines about how to implement View mode, see Section 61.1.1.1, "Guidelines for View Mode."
A portlet uses Edit mode to enable users to personalize the behavior of the portlet. Personalization are visible only to the user that performed them; not to other users. Edit mode provides a list of settings that the user can change. These settings may include the title, type of content, formatting, amount of information, defaults for form elements, and anything that affects the appearance or content of the portlet.
Users typically access a portlet's Edit mode by choosing Personalize from the portlet's dropdown list of options. When users choose Personalize, a new page appears in the same browser window. The portlet typically creates a web page representing a dialog to choose the portlet's settings. After applying the settings, users automatically return to the original page.
For guidelines about how to implement Edit mode, see Section 61.1.1.2, "Guidelines for Edit Mode."
A portlet uses Edit Defaults mode to enable administrators to customize the default behavior of a particular portlet instance. Edit Defaults mode provides a list of settings that the application developer can change. These settings may include the title, type of content, formatting, amount of information, defaults for form elements, and anything that affects the appearance or content of the portlet.
These default personalization settings can change the appearance and content of that individual portlet for all users. Because Edit Defaults mode defines the system-level defaults for what a portlet displays and how it displays it, this mode should not be used as an administrative tool or for managing other portlets.
Administrators access Edit Defaults mode, when editing a page, by choosing Customize from the portlet's dropdown list.
When users click the Customize icon, the portlet displays in the same browser window. The portlet typically creates a web page representing a dialog to personalize the portlet instance settings. After applying the settings, users are automatically returned to the original page.
For guidelines about how to implement Edit Defaults mode, see Section 61.1.1.3, "Guidelines for Edit Defaults Mode."
A portlet uses Help mode to display information about the functionality of the portlet and how to use it. The user should be able to find useful information about the portlet, its contents, and its capabilities with this mode.
Users access a portlet's Help mode by choosing the Help action in the portlet.
For guidelines about how to implement Help mode, see Section 61.1.1.4, "Guidelines for Help Mode."
Users must be able to see what version of the portlet is currently running, its publication and copyright information, and how to contact the author. Portlets that require registration may link to web-based applications or contact information from this mode as well.
User's access a portlet's About mode by choosing About from the dropdown list in the portlet's chrome. A new page appears in the same browser window. The portlet can either generate the content for this new page or take the user to an existing page or application.
For guidelines about how to implement About mode, see Section 61.1.1.5, "Guidelines for About Mode."
Table 58-1 summarizes the technologies and tools you can use with Oracle WebCenter Portal: Framework. The matrix describes the tools and technologies that are covered in more detail in this guide: Oracle JSF Portlet Bridge, OmniPortlet, Web Clipping portlet, and programmatic portlets, including standards-based (JSR 286) portlets and PDK-Java portlets.
Note: While these are the primary tools for building portlets, additional tools and technologies exist, such as other Oracle products, including Oracle Reports and Oracle BI Discoverer. These other tools are not covered in this guide. |
Use Table 58-1 to quickly scan all the features and characteristics of the different portlet building technologies, then see the subsequent sections for more in-depth information.
Table 58-1 Portlet Building Technologies Comparison Matrix
JSF Portlets | Web Clipping | OmniPortlet | Programmatic Portlets Standards-Based/PDK-Java |
---|---|---|---|
| |||
Oracle JSF Portlet Bridge exposes JSF and ADF artifacts as JSR 286 portlets. | A simple wizard-based tool, accessible from a browser, that assists in retrieving and presenting web content that originates from other web sites in a Framework application. | Wizard-based tool, accessible from a browser, that assists in retrieving and presenting data from a wide variety of data sources. | PDK-Java offers Oracle-specific application programming interfaces (APIs) for building portlets for use in Framework applications and Oracle Portal. Standards-based portlets additionally work with portals of other vendors. WebCenter Portal: Framework supports both WSRP and JSR 286 standards. |
| |||
No expertise required. | No expertise required. | Basic understanding of one or more supported data sources and the concepts of portlet and page parameters. | Java, Servlet, JSP knowledge. |
Supported Data Sources (for details, see Section 58.2.2, "Expertise Required") | |||
No limitations. | Any web site accessible on the network over HTTP or HTTPS. | CSV, XML, web service, SQL, web site, JCA. | No limitations. |
| |||
WSRP producers using Oracle JDeveloper or manually. | PDK-Java producers | PDK-Java producers | PDK-Java uses PDK-Java producers. Standards-based portlets use WSRP producers. |
| |||
Expiry-based caching, validation-based caching (auto invalidate when personalized). | Expiry-based caching, validation-based caching (auto invalidate when personalized). | Expiry-based caching, validation-based caching (auto invalidate when personalized). | Expiry-based, validation, and invalidation caching, Edge Side Includes. Note: JSR 286 does not support validation based caching. WSRP 1.0 does. If you use a pure WSRP portlet, then validation-based caching is also supported. If you host a JSR portlet on WSRP (as is done in WebCenter Portal: Framework) then validation-based caching is not supported. |
| |||
Oracle JDeveloper Oracle JSF Portlet Bridge/JSF Portletization dialog. | Browser - wizard. | Browser - wizard. | Oracle JDeveloper Java Portlet wizard (or any other Java development environment). |
| |||
Develop a JSF application first, convert it into a JSF portlet later. | design time at runtime. | design time at runtime. | Develop first, add later. |
| |||
Very Flexible. | N/A | Very flexible, by using the HTML layout. | Very flexible. |
Ability to Capture Content from Web Sites | |||
No. Depends upon the application being portletized. | Yes, by its nature. | Yes, by using the Web Page Data Source. | Yes. For PDK-Java, use the For standards-based portlets, use the |
Ability to Render Content Inline | |||
Yes. | Yes | No. However, inline rendering can be achieved through public portlet parameters. | Yes. For PDK-Java, use private portlet parameters. Standards-based portlets include servlets and JSPs, using the method |
| |||
No. | No | Yes, 2D-3D charts. | Yes, using BI Beans. |
Public Portlet Parameter Support | |||
Yes | Yes | Yes | Yes |
Private Portlet Parameter Support | |||
Yes | No | No | Yes |
Ability to Hide and Show Portlets Based on User Privileges | |||
Yes. | No, though it is possible to apply security managers that are not exposed through the user interface (UI). | No, though it is possible to apply security managers that are not exposed through the UI. | Yes. For PDK-Java, by using the Security managers. For standards-based portlets, the Servlet security model is supported by using methods such as |
| |||
Yes. | N/A | Yes | Yes |
| |||
Yes. | N/A | No | Yes, programmatically |
Authenticating to External Applications | |||
Through custom user attributes. | External application integration supported. | Basic authentication support if the data source requires it. | For PDK-Java portlets, external application integration is supported. LDAP integration is supported when the portlet is running behind the same firewall as the LDAP server. For standards-based portlets, though not specifically supported, external application support is feasible through custom user attributes.) LDAP integration is supported. |
The rest of this chapter includes the following sections that provide more in-depth detail about the different portlet building technologies:
This section describes each portlet-building technology in terms of its usage characteristics (for example, wizard-based or programmatic).
JSF Portlets
The Oracle JSF Portlet Bridge is a dialog-based tool that enables page developers to expose their existing JSF applications and task flows as JSR 286 portlets. Using the Oracle JSF Portlet Bridge to create JSF portlets from JSF applications does not require a technical background.
Web Clipping
Web Clipping is a simple wizard-based tool that assists with retrieving and presenting web content that originates from other web sites in a Framework application. Web Clipping does not require a technical background.
Examples of portlets you can build using Web Clipping
The examples of portlets that you can build by using Web Clipping are as follows:
OmniPortlet
OmniPortlet is an easy-to-use, wizard-based tool for presenting information from a wide variety of data sources in a variety of formats. OmniPortlet runs completely in the browser. Drop OmniPortlet on a page, click the Define link, and choose a data source and a presentation format. Select from a wide variety of data sources as follows:
OmniPortlet does not require the use of an additional development tool or a strong technical background. Even so, it can be used for building reusable, high-performing portlets.
Examples of portlets you can build using OmniPortlet
The examples of portlets that you can build by using OmniPortlet are as follows:
Programmatic Portlets
If the wizard-based portlet building tools do not satisfy your needs, then you can build your portlets programmatically using Java. The Java Community Process standardized the Java portlet APIs in 2003. Portlets built against the Java Specification Request (JSR) 286 standard are interoperable across different portal platforms. The Java Portlet Wizard, a tool available through WebCenter Portal: Framework, assists with building Java portlets.
Note: When building portlets in Java, you have full control over your portlet's functionality. For example, you can control what it looks like and how it behaves. |
Examples of portlets you can build using Java
The examples of portlets that you can build by using Java are as follows:
While some portlet building tools do not require portlet development skills, others assume a strong technical background. This section describes each tool in terms of the level of knowledge required to use it effectively.
JSF Portlets
The Oracle JSF Portlet Bridge does not require a technical background. However, you must have an understanding of Faces and WSRP.
Web Clipping
Web Clipping does not require a technical background. However, to parameterize the web page content that you clipped, you must have an understanding of public portlet parameters and page parameters.
OmniPortlet
OmniPortlet requires a basic knowledge of the data source you want to leverage in your portlet. Table 58-2 lists the types of data sources that can be used with OmniPortlet and describes the type of information required to work with each type.
Table 58-2 OmniPortlet Data Sources
Data Source | Required Information |
---|---|
Spreadsheet | The URL that points to the spreadsheet containing the data to display in the portlet. |
SQL | The connection information to the data source and the SQL query that retrieves the data from the database. |
XML | The location of the XML source and optionally the address of the XSL filter and the XML schema. |
Web service | The Web Services Description Language (WSDL) URL, the method of the web service, and optionally the XSL filter URL and the XML schema URL. |
Web page | The Web Page data source uses the same environment as Web Clipping. No technical background is required. |
J2EE Connector Architecture | Although not displayed on the OmniPortlet Wizard's Type page, a J2EE Connector Architecture (JCA) 1.0 adapter is also available. JCA provides a mechanism to store and retrieve enterprise data such as that held in ERP systems (Oracle Financials, SAP, PeopleSoft, and so on). |
Programmatic Portlets
To build Java portlets, you must know at least a subset of Java EE. Knowing HTML, Java servlets, and XML is a must, and JSP experience is recommended. Additional Java knowledge is optional, depending on the task you want to perform. Using Java portlets you can access any data source supported by the Java language.
Before a portlet can be consumed by an application, you must first deploy it, then register the producer you've deployed the portlet to. As shown in Figure 58-7, portlets can be deployed through the following two producer types:
Within WSRP, both version 1.0 and 2.0 are supported.
PDK-Java portlets are deployed to a Java EE application server, which is often remote and communicates with the consumer through Simple Object Access Protocol (SOAP) over HTTP. JSR 286 portlets are deployed to a WSRP producer, which is also remote and communicates with the consumer through WSRP (Web Services for Remote Portlets). JSF Portlets are deployed as JSR 286 portlets, that is, to a WSRP producer, either from Oracle JDeveloper or manually.
PDK-Java producers use open standards, such as XML, SOAP, HTTP, or Java EE for deployment, definition, and communication with applications. Figure 58-8 shows how Oracle Portal incorporates portlets from a PDK-Java producer and the PDK-Java producer communicates with Framework application using SOAP over HTTP.
There are several benefits to developing portlets and exposing them through PDK-Java producers as follows:
To expose your portlets using a PDK-Java producer, you must first create a producer that manages your portlets and communicates with WebCenter Portal: Framework using SOAP. To learn how to expose your portlets using a PDK-Java producer, see Section 60.2, "Creating Java Portlets."
WebCenter Portal supports Web Services for Remote Portlets (WSRP) versions 1.0 and 2.0. This emerging standard provides support for inter-portlet communication and export or import of portlet customizations.
The Producer Registration wizard is the entry point for registering both WSRP 1.0 and 2.0 producers. The wizard automatically recognizes whether WSRP 1.0 or 2.0 is in play.
Architecturally, WSRP producers are very similar to PDK-Java producers. WSRP is a communication protocol between Framework application servers and portlet containers. WSRP is a standard that enables the plug-and-play of visual, user-facing web services with intermediary web applications.
Being a standard, WSRP enables interoperability between a standards-enabled container based on a particular language (such as JSR 286, .NET, Perl) and any WSRP portal. So, a portlet (regardless of language) deployed to a WSRP-enabled container can be rendered on any application that supports this standard.
Note: For more information about the WSRP architecture, see "The Relationship Between WSRP and JSR 286" in Chapter 60, "Creating Portlets with the Portlet Wizard." |
To make standard portlets (such as JSR 286, .NET, Perl) available to a Framework application, you must package them in a Portlet Producer application and deploy them to a WSRP container.
To learn how to package your portlets in a WSRP container, see Chapter 62, "Testing and Deploying Your Portlets."
Figure 58-9 illustrates the basic architecture of portlet producers.
When users display a page in their web browsers, the flow of the request works as follows:
JSF portlets, Web Clipping, OmniPortlet, and Java portlets communicate with WebCenter Portal: Framework through either WSRP or PDK-Java producers. You must register these producers with WebCenter Portal: Framework before you can use the portlets they produce in your Framework application.
The latest versions of Web Clipping and OmniPortlet are available through Application Development Runtime Service (ADRS). For more information, see Section 3.4, "Working with the Integrated WebLogic Server."
Portlet caching is key to rapid response to user requests. Portlets implement validation-based and expires-based caching using Java Object Cache. Invalidation-based caching continues to be implemented by a web cache that fronts the PDK-Java producer running the Web Clipping portlet and OmniPortlet.
Caching rules can be specified at a portlet's container level, encoded in the portlet's own logic, or, for JSR 286 portlets, established through the portlet wizard. Provided it is specified, container-level caching takes over when caching is not part of the portlet code.
At the application level, WebCenter Portal: Framework supports use of a Java cache for the establishment of application-level caching rules.
When not using caching, you may find accessing various data sources with Web Clipping and OmniPortlet to be time consuming. When you enable caching at the application level, you instruct the Java cache to maintain a copy of the portlet content. When data that was previously cached is requested, no time is lost in contacting the data source and regenerating its content. Instead, the previously cached portlet content is returned.
A portlet's content weighs heavily in determining the type of caching the portlet should use. For example:
JSF Portlets
Oracle JSF Portlet Bridge supports expiry- and validation-based caching. JSF portlets can be cached in full, or you can use Edge Side Includes (ESI) to cache fragments of portlets.
Web Clipping and OmniPortlet
In addition to invalidation-based caching, expiry-based caching can be specified for the Web Clipping portlet and OmniPortlet. Additionally, these portlets are refreshed automatically when they are personalized.
Programmatic Portlets
Java portlets support expiry- and validation-based caching. These portlets can be cached in full, or you can use Edge Side Includes (ESI) to cache fragments of portlets.
This section describes the development tools you can use to build different types of portlets.
JSF Portlets
Oracle JSF Portlet Bridge/JSF Portletization dialog is used to create a JSF portlet based upon a page or a task flow.
Web Clipping and OmniPortlet
OmniPortlet and Web Clipping use a browser-based wizard as the development tool.
Programmatic Portlets
Although you can use any Java development environment to build Java portlets, it is highly recommended that you use Oracle JDeveloper, a professional IDE. While you can consider other IDEs, Oracle JDeveloper includes the Java Portlet Wizard, to minimize your Java portlet development efforts.
The Java Portlet Wizard generates a starting skeleton and file structure for both JSR 286 and PDK-Java portlets. You need only add your own business logic to the skeleton. Oracle JDeveloper can also package and deploy your applications to your Java EE container. Also, Oracle JDeveloper helps you test your portlet producer. Oracle recommends that you use the Integrated WLS, provided through WebCenter Portal: Framework, as your development Java portlet runtime environment. For more information, see Chapter 3, "Preparing Your Development Environment."
WebCenter Portal: Framework supports the following types of portlet creation (Figure 58-10):
Develop first, add later portlet creation is usually the task of the portlet developer; design time at runtime portlet creation is the application developer's responsibility.
JSF Portlets
Develop a JSF application first and then portletize the application using the JSF Portletization dialog at design time.
OmniPortlet and Web Clipping
OmniPortlet and Web Clipping both offer a "design time at runtime" portlet creation style. Register the portlet producers with the application that consumes the portlets, add the portlets to an application page, run the application, and then define the portlets in-place on the page.
Programmatic Portlets
Typically programmatic portlets offer a "develop first, add later" portlet creation style. Two wizards are available through WebCenter Portal: Framework to assist with the creation of Oracle PDK-Java and JSR 286 portlets. The wizards generate the basic files required for portlet creation. The developer hand-codes the portlet logic. The development sequence for programmatic portlets is to create the portlet, deploy it to a producer, register the producer with the application that consumes the portlet, and then add the portlet to an application page.
Note: With extensive coding, you can create "design time at runtime" Java portlets. For example, Web Clipping and OmniPortlet are both Java portlets. |
This section describes the portlet building tools in terms of the control you have over the user interface.
JSF Portlets
Oracle JSF Portlet Bridge ensures that the portletized JSF application functions as a JSF portlet.
Web Clipping
Because of its nature, Web Clipping always displays the remote web site content, therefore UI flexibility is not a requirement for this portlet.
OmniPortlet
OmniPortlet enables you to use different pre-built layouts, such as scrolling news, tabular, and chart. You can also use the built-in HTML layout to personalize the look and feel of your portlet using HTML and JavaScript.
Note: When using JavaScript in portlets, developers must ensure that the JavaScript identifiers are qualified. That is, identifiers must be unique for each portlet instance and must not clash with the JavaScript on the page. |
Programmatic Portlets
In Java portlets, you have full control over your portlet's user interface. Your portlet is free to generate any HTML content that conforms to the rendering rules for pages.
This section describes the portlet building tools in terms of their ability to include content from other sources.
JSF Portlets
Oracle JSF Portlet Bridge's capability to capture contents from web sites depends upon the JSF application being portletized.
Web Clipping
For portlets that display content from a remote web site as it is presented at the source location, the best tool to use is Web Clipping. Web Clipping can tolerate the changes of the source HTML page to some extent. If a clipped table moves from one place to another in the source page, then the Web Clipping engine can find the table again using the internal "fuzzy match" algorithm. Portlets built with Web Clipping can also maintain sessions to the remote web sites. Web Clipping also supports user personalization of HTML form values.
OmniPortlet
For portlets using the data but not the layout from a remote web site, the best choice is OmniPortlet. Use OmniPortlet to retrieve the data, process the data (format, filter, and so on), and present it in a portlet in a tabular, chart, or news format. OmniPortlet is a powerful tool that extracts data from web pages by using its Web Page data source.
Programmatic Portlets
Java portlets can take advantage of low-level Java networking APIs to retrieve and process content from remote web sites. To avoid unnecessary development efforts, before choosing Java always ensure that Web Clipping or OmniPortlet are not viable options.
Active elements in portlets, such as links or form buttons, enable users to navigate to remote URLs. In a News portlet, for example, a user can click a hyperlink to navigate to a news site with detailed information about news of interest. For example, a user clicks a news-summary link in a News portlet, leaves the application page, and lands on the news site.
You may have a requirement to keep your users within the context of the application page by rendering the requested content within the same portlet container. For example, a user clicks a news-summary link in a News portlet, and the portlet refreshes with the detailed news article.
This maintenance of context is what rendering content inline means .
JSF Portlets
Oracle JSF Portlet Bridge converts a JSF application with multiple pages into JSF portlets. The contents of these pages are rendered inline.
Web Clipping
The Web Clipping portlet supports URL rewriting for achieving inline content rendering. It can process the links originating from the source web site and rewrite them to achieve the desired functionality.
The following options are available:
OmniPortlet
Rendering content inline is not supported, but you can achieve inline rendering using public portlet parameters.
Programmatic Portlets
As you have full control over the links and buttons in Java portlets, you can easily implement the inline rendering functionality. To achieve inline rendering, you must append the private portlet parameters to the page URL.
If you use Struts in your portlet, then the PDK-Struts integration framework renders your content always in the same portlet container. Oracle recommends, however, that you use ADF Faces navigation for your new WebCenter Portal: Framework portlets.
If your portlet consists of multiple JSPs (for example, several steps in a survey or wizard), then your portlet can make use of a special parameter to specify at runtime the JSP to use to render the content.
This section describes the portlet building tools in terms of their charting capability.
JSF Portlets
Oracle JSF Portlet Bridge does not have charting capability. However, it supports portletization of a JSF application that contains ADF charts.
Web Clipping
Web Clipping clips pre-existing content. So, while it does not create charts, it can retrieve and present HTML content that contains charts.
OmniPortlet
OmniPortlet supports bar, line, and pie chart types. Charts are dynamically generated images, which can include hyperlinks.
Programmatic Portlets
You can create sophisticated charts programmatically in Java portlets using Oracle's Business Intelligence (BI) Beans.
Note: Oracle Reports and Oracle Discoverer portlets use BI Beans to create professional graphs. |
Typically, a portlet's state is opaque (private); however, in WebCenter Portal: Framework portlets can describe public inputs (parameters) so values can be coordinated by the consuming application with other constituents of that application.
Inputs can include, public portlet parameters and private portlet parameters. These can be described as follows:
Assigned values can be specific (such as a constant), a system variable (for example, the user name), or a page parameter. At runtime, the portlet receives the values from the sources specified.
Note: A Refresh action is available for inclusion on the portlet's Actions menu (|
Portlets supporting public portlet parameters enable application developers to tailor data input for each portlet instance. The component developer can focus on the portlet logic, while the application developer can address the interaction between the application page and its portlets.
All portlet building technologies discussed in this chapter (OmniPortlet, Web Clipping, and programmatic portlets) support public portlet parameters. OmniPortlet and Web Clipping provide complete support through their wizard interface. You can add public portlet parameter support to your programmatic portlets programmatically or with the Java Portlet wizard.
This section describes the portlet building tools in terms of their support for private parameters.
JSF Portlets
In your JSF portlets, you can implement internal navigation using private portlet parameters.
OmniPortlet and Web Clipping
With the OmniPortlet and Web Clipping portlets, component developers do not have access to private portlet parameters.
Programmatic Portlets
In your Java portlets, you can implement internal navigation using private portlet parameters.
This section describes the portlet building tools in terms of their support for authorization functionality.
JSF Portlets
Oracle JSF Portlet Bridge supports the standard servlet mechanisms.
Web Clipping and OmniPortlet
Dynamically hide and show portlets built with Web Clipping and OmniPortlet by using security managers. Although Web Clipping and OmniPortlet do not expose security managers through the user interface, they make them available for editing through their XML provider definition files.
Programmatic Portlets
PDK-Java provides security managers for Java portlets. For example:
JSR 286 portlets support the standard servlet mechanisms.
This section describes the portlet building tools in terms of their support for other languages.
Web Clipping, OmniPortlet, JSF portlets, and Java portlets display textual information in the language selected by the end user.
Support for pagination is useful when a portlet must display a relatively large set of records.
JSF Portlets
Oracle JSF Portlet Bridge supports pagination, if the application portletized has pagination implemented in it.
Web Clipping
Web Clipping does not support pagination.
OmniPortlet
OmniPortlet does not support pagination.
Programmatic Portlets
With Java, portlet pagination can be implemented programmatically.
This section describes the portlet building tools in terms of authentication for external applications.
JSF Portlets
Since any portletized application can function as a WSRP portlet, the external application support is feasible through custom user attributes.
Web Clipping
Web Clipping's integration with the external application framework provides a fully automated mechanism to store passwords to external web sites. All you must do is provide an External Application ID when registering the Web Clipping producer.
OmniPortlet
OmniPortlet enables you to store connection information when the data source is password protected. The credentials to access the data source can either be shared across all users or saved individually for each user. OmniPortlet can storing database credentials and HTTP basic authentication user name-password pairs. Credentials are stored in a secured metadata services repository.
Programmatic Portlets
Java portlets support programmatic integration with the external application framework and any LDAP server, such as Oracle Internet Directory.
This chapter explains how to use the Oracle JSF Portlet Bridge to expose an application as a portlet.
This chapter includes the following sections:
The Oracle JSF Portlet Bridge enables application developers to quickly and easily expose their existing JSF applications, and Oracle ADF applications and task flows as JSR 286 portlets.
Note: Unless otherwise noted, the term JSF applications encompasses Oracle ADF applications as well. |
The Oracle JSF Portlet Bridge:
Note: The Oracle JSF Portlet Bridge is based on and conforms to JSR 329. JSR 329 is the standards effort to define the functionality for the Portlet 2.0 Bridge for JavaServer Faces. Oracle is the specification lead for this standard. More information is available at: |
The Oracle JSF Portlet Bridge enables you to expose a JSF application or task flow as a portlet. You do this declaratively, using the Create Portlet Entry dialog; no coding is required. Using the Create Portlet Entry dialog, you can configure Oracle JSF Portlet Bridge on a JSF application to expose the application as a JSR 286 portlet. As part of this configuration, you indicate the initial JSF view (or task flow view) to invoke when the portlet is rendered. From that point on the Oracle JSF Portlet Bridge works with the JSF application to navigate through the additional views that are reachable from this initial view. So in the typical situation when you are exposing the entire JSF application as the portlet, you configure the Oracle JSF Portlet Bridge to render the application's initial view in the portlet and the rest of the navigation works naturally within that same portlet.
This section includes the following subsections:
The simplest way to create a portlet from a JSF application is to generate a portlet based upon a page.
To create a JSF portlet from an existing application page:
.jspx
page to portletize. Figure 59-1 The Create Portlet Entry Dialog for a Page
The portlet title is displayed in the Resource Palette or Application Resources panel, so make the title something to help users decide whether the portlet is useful to them. The portlet title is also displayed on the portlet header when the portlet appears on a page.
portlet.xml
file for any contextual events exposed by the page. This option is selected by default. Portlet events enable a portlet to communicate with the page on which it resides and with other portlets on that page.
The portlet.xml
file is created.
This file contains the portlet entry (Example 59-1) and is opened ready for viewing or editing. By default, the file is opened in Design view. To view or edit the source code, click the Source tab.
Example 59-1 Generated Portlet Entry for a Page
The page you selected earlier is used as the entry point for the portlet View mode. This is indicated in the portlet.xml
file by the javax.portlet.faces.defaultViewId.view
initialization parameter. You can manually edit the portlet.xml
file to define the pages for other default and extended portlet modes supported by WebCenter Portal:
javax.portlet.faces.defaultViewId.edit
javax.portlet.faces.defaultViewId.help
javax.portlet.faces.defaultViewId.about
javax.portlet.faces.defaultViewId.config
javax.portlet.faces.defaultViewId.edit_defaults
javax.portlet.faces.defaultViewId.preview
javax.portlet.faces.defaultViewId.print
Note: The value for the If you add |
An advantage of using Oracle ADF is task flows that provide a modular approach for defining control flow in an application. Instead of representing an application as a single large JSF page flow, you can break it up into a collection of reusable task flows. In each task flow, you identify application activities, the work units that must be performed in order for the application to complete. An activity represents a piece of work that can be performed when running the task flow.
Task flows can be unbounded or bounded:
A typical application is a combination of an unbounded and one or more bounded task flows. The application can then call bounded task flows from activities within the unbounded task flow. For more detailed information about bounded and unbounded task flows, see the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
This section includes the following subsections:
Use the Create Portlet Entry dialog to create a portlet from a single task flow.
To make a portlet from a task flow using the Create Portlet Entry dialog:
Figure 59-2 The Create Portlet Entry Dialog for a Task Flow
If the task flow is bounded, there is only a single possible entry point, so you do not see the Entry Point View dropdown list.
The portlet title is displayed in the Resource Palette or Application Resources panel, so make the title something to help users decide whether the portlet is useful to them. The portlet title is also displayed on the portlet header when the portlet appears on a page.
portlet.xml
file for any contextual events exposed by the task flow. This option is selected by default. Portlet events enable a portlet to communicate with the page on which it resides and with other portlets on that page.
When your portlet has been created, you should receive a message that says:
In addition, the portlet.xml
file is created. The portlet.xml
file contains the portlet entry (Example 59-2) and is opened ready for viewing or editing.
Example 59-2 Generated Portlet Entry for a Task Flow
Note: The |
If your project includes a lot of task flows, you may find it easier to select the task flows to create as portlets from a list. You can do this using the Manage Portlet Entries of Task Flows dialog. This dialog also lets you create portlets from multiple task flows at the same time, rather than having to create them individually.
To create a portlet from a task flow using the Manage Portlet Entries of Task Flows dialog:
Figure 59-3 The Manage Portlet Entries of Task Flows Dialog
portlet.xml
file for any contextual events exposed by the task flows. This option is selected by default. Portlet events enable a portlet to communicate with the page on which it resides and with other portlets on that page.
When you have created your JSF portlet you can test it using the Integrated WebLogic Server that comes packaged with JDeveloper.
To test a JSF portlet:
It may take a few moments for the Integrated WLS to start. When the instance has started, you should see a message similar to the following in your Log panel:
For more information, see Section 3.4, "Working with the Integrated WebLogic Server."
Note the distinction between Run and Deploy in the note in that section. Deploy provides a more persistent testing scenario.
Post deployment you must verify that the application works correctly as a web application before it is consumed as a Portlet Producer application. For example, verify that the page you portletized earlier works:
Note: Because the Oracle JSF Portlet Bridge uses WSRP 2.0 features, you should register the producer using the WSRP v2 WSDL URL listed in the WSRP Producer Test Page. |
You can continue to access the application as a regular web application or consume it as a portlet producer.
After having created and tested the JSF portlet you can deploy the application to your production environment.
Note: Ensure that you deploy your application to a Java EE container with the Oracle Portlet Container installed. The Integrated WLS has the container installed, which is why it is recommended for testing. |
After successful deployment, you can access both the application and the portlet producer test page. For example, the application URL would be similar to:
And the portlet producer test URL would be similar to:
For more information, see Section 64.2.1, "How to Register a WSRP Portlet Producer."
You must code your JSF pages such that they produce markup that conforms with JSR 286 portlet markup fragment rules. If you have chosen to use Oracle ADF, the markup in your page comes mainly from the Oracle ADF Faces components, most of which naturally render markup in a style that is compatible with JSF portlets.
For those components that might cause problems in a portlet environment, the application developer must take special care. Some components generate markup that conflicts with the portlet environment and hence restricts their use. Other components may allow program control (inputs) that enable developers to introduce values that conflict with the portlet environment. In this latter case, you as the developer must be aware of the potential to publish the page as a portlet and therefore properly encode a value.
This section includes the following subsections:
The guidelines that follow lay out the issues of which you should be aware as you code Oracle ADF pages that you may later choose to publish as portlets.
HttpServlet
objects (or you get a ClassCastException
when running as a portlet). Instead, use the abstraction provided by the Faces ExternalContext
object. For example, instead of: Use the following:
To the extent that ExternalContext
does not provide that abstraction for you, you can write servlet or portlet specific code. You can use the following method to check if the application runs as portlet:
maximumTimeout
element) specified in adf-config-xml
. The portlet guidelines are as follows:
web-app-context-root
. Otherwise, your images and other resources cannot be found by the portlet. Do not use relative (../) path notation. Portlets in Oracle WebCenter Portal: Framework run remotely and are accessed using a SOAP protocol (WSRP). The latter means that the regular web application concept of request path does not apply in a JSR 286 container. The JSR 286 specification reflects this by mandating that all resource URLs either be absolute or context path relative. requestDispatcher.include()
. The use of httpServletResponse.sendRedirect()
or requestDispatcher.forward()
results in exceptions and errors. To work properly in a portlet environment, you must implement JSF navigation rules in faces-config.xml
or Oracle ADF task flow control flow rules. minimumWsrpVersion
container runtime option to 1
so that it can be registered using the WSRP V1 WSDL. For more information, see Section 61.2.4, "How to Customize the Runtime Environment." The security guidelines are as follows:
jazn-data.xml
file of the producer application: If you do not grant the permissions, the portlet does not render.
For example, if you have an application with two roles: authenticated-role, with view permission; and testrole, with customize, edit, grant, personalize, and view permissions, you must add the following entries inside the <permissions>
tag of each role:
For information about setting up WS-Security on the producer, see Section 69.17, "Securing Identity Propagation Through WSRP Producers with WS-Security."
When registering the producer with the consuming application, you must ensure that you set the appropriate security properties. For more information, see Section 64.2.1, "How to Register a WSRP Portlet Producer."
The JSF guidelines are as follows:
h:commandLink
JSF standard HTML component ensure that you set the following context-param
in web.xml
so that the JSF Reference Implementation does not generate any external JavaScript resource. This is to work around an issue in the JSF Reference Implementation where the reference to the JavaScript resource is not properly encoded. The Oracle ADF guidelines are as follows:
<tr:inputDate>
<tr:inputColor>
<tr:popup>
useWindow
attribute of <af:commandButton>
<af.fileDownloadActionListener>
component is not supported. prepareModel
must be idempotent. Any code running during the prepareModel
phase must be rerunnable without effect to the underlying data/business logic. When running in the portlet environment, prepareModel
is called twice during the complete JSF life cycle as opposed to being called once when running within a regular web application. The reason for this difference is that the Oracle JSF Portlet Bridge runs JSF in two requests not one. It is implemented as if every JSF request redirected before the render phase. The consequence of this approach is that the JSF restoreView
phase is called both when the request is first submitted and then again when request to render is received.
This two phase model enables the clearing of submitted parameters before rendering in a manner that allows such clearing to be communicated all the way back to the client, which makes this request something you could bookmark. As a result, request parameters do not exist during the render phase. As described previously, prepareModel
is invoked again in this rendering phase. Therefore, any references to request parameters in this phase handler fail. You should avoid code like either of the following fragments:
prepareModel
phase. This issue relates to the same problem just described for request parameters. Generally, page parameters depend on request parameters and are evaluated during the restoreView
phase. As this phase is called a second time during portlet rendering and request parameters are not available, such use fail. Instead, move any dependency on a page parameter value into the model before JSF transitions from its execute phases to its render phase. <tr: >
tags only), then you must manually include the following libraries in your project: jdeveloper\modules\oracle.adf.view_11.1.1\adf-richclient-api-11.jar
jdeveloper\modules\oracle.adf.view_11.1.1\adf-richclient-impl-11.jar
This is so that the URLs to icons in the style sheet generated for the producer are encoded correctly.
id="demoTemplate:popup"
id="__ns12345678:demoTemplate:popup"
Things to watch out for specifically are:
AdfPage.PAGE.findComponentByAbsoluteId()
API. Use getSource()
and findComponent()
methods instead. For example: clientId
instead of an absolute path (starting with a ':
'). For example, use: Instead of:
java.lang.String
. portlet.xml
file, you can enable the Oracle JSF Portlet Bridge to raise these undeclared events. To raise undeclared events, set the following container runtime option for the portletized task flow:
Setting this option to true
means that any ADFm event raised is forwarded on as a portlet event. If this option is not provided or is set to false
, then only events with corresponding portlet event declarations are forwarded.
You can also enable undeclared portlet events to automatically be forwarded on from the portlet binding as ADFm events.
In the portlet binding, set the raiseUndeclaredContextualEvent
attribute to true
, for example:
Setting this option to true
means that if a portlet event is received, a corresponding ADFm event is raised, even if there is no event declaration in the portlet binding. The name of the ADFm event is directly taken from the QName of the portlet event. This is so that ADFm events raised from the Oracle JSF Portlet Bridge have the same name as that used when the event was raised on the remote application.
_xEncodeUrl
parameter to false
on URLs that are passed to the Oracle JSF Portlet Bridge for encoding. For example, an inline frame that contains a Google Map would typically need to make use of the user's browser HTTP proxy settings to access the external maps.google.com
server. The ADF markup to enable the component to work correctly when exposed as a portlet would look like the following:
Note: Do not use this parameter to access resources that reside on the producer server. These resources must be accessed using the portlet client's proxy. |
In a WebCenter Portal application, you can create skins at runtime, using the Resource Manager. When you do this, you may encounter rendering issues on pages that include JSF portlets. This is because the skin used by the WebCenter Portal application is not available to the remote application rendering the task flow.
To rectify this issue, you must copy the runtime-created skin to the Portlet Producer application created when the task flow was portletized.
To copy a runtime-created skin to a Portlet Producer application:
For information about how to do this, see Section 17.4.1, "How to Download a Resource Using the Resource Manager."
transport.mar
file: generic-site-resources.xml
among the metadata files. Normally, this file is in a directory like: The file should have a section that describes the exported skin, similar to the following example:
generic-site-resources.xml
: skinId
(for example, gsr616d879d_99e0_4bd9_8c10_98e7ea272a6a.desktop
) skinFamily
(for example, gsr616d879d_99e0_4bd9_8c10_98e7ea272a6a
) skinExtends
(for example, webcenter-fusion-internal.desktop
) Skin.css
file into the META-INF
directory: trinidad-skins.xml
under the META-INF
directory: trinidad-skins.xml
file: where skinId
, skinFamily
, and skinExtends
are the values noted earlier.
The JAR file should contain two files: Skin.css
and trinidad-skins.xml
.
myskin.jar
file to the Portlet Producer application. The easiest way to do this is to copy the file to the WEB-INF/lib
directory of the Portlet Producer web application.
This chapter explains how to create Java portlets based on the Java Portlet Specification (JSR 286) or the Oracle Portal Developer Kit-Java (PDK-Java) in a WebCenter Portal Portlet Producer application, using the Create JSR 286 Java Portlet and Create Oracle PDK-Java Portlet wizards.
This chapter includes the following sections:
This section includes the following sections:
Historically organizations engaged in portal development projects found application integration to be a major issue. Users developed portlets using proprietary APIs for a single portal platform and often faced a shortage of available portlets from a particular portal vendor. All this changed with the introduction of the following standards:
These two standards enable the development of portlets that interoperate with different portal products, and therefore widen the availability of portlets within an organization. This wider availability, in turn, dramatically increases an organization's productivity when building portals.
WSRP is a web services standard that enables the plug-and-play of visual, user-facing web services with portals or other intermediary web applications. Being a standard, WSRP enables interoperability between a standards-enabled container and any WSRP portal. WSRP defines the following:
JSR 286 is a specification that defines a set of APIs to enable interoperability between portlets and portals, addressing the areas of aggregation, personalization, presentation, and security. JSR 286 defines container services which provide the following:
Oracle actively participates in portlet standards including those produced by the OASIS (WSRP) and JCP (JSR 168, 286, 301, 329, and so on) standards organizations.
Note: HTML forms can be submitted using either the |
The Relationship Between WSRP and JSR 286
WSRP is a communication protocol between a portlet client, for example, a WebCenter Portal: Framework application, and a portlet container running on a remote server. JSR 286 describes the Java Portlet API for running Portlet Producer applications. Combining these standards enables developers to integrate their applications from any internal or external source as portlets with WSRP portals. Building pages becomes as simple as selecting portlets from the JDeveloper Resource Palette or Application Resources pane of the Application Navigator.
Figure 60-1 shows the architecture of the WSRP specification.
Figure 60-1 WSRP Specification Architecture
WebCenter Portal: Framework can support communication between the Framework application and both the Java Portlet APIs and our existing APIs (PDK-Java).
Figure 60-2 shows the architecture of the WSRP support. Notice that the JSR 286-compliant portlet container uses the WSRP protocol for communication and the PDK-Java portlet container uses Oracle's proprietary SOAP protocol for communication.
Figure 60-2 WebCenter Portal Portlet Architecture
For a description of how JSR 286 security concepts are exposed through WSRP, see Section 69.17, "Securing Identity Propagation Through WSRP Producers with WS-Security."
PDK-Java gives you a framework to simplify the development of Java portlets by providing commonly required utilities and enabling you to leverage existing development skills and application components such as JSPs, servlets, and static HTML pages. PDK-Java also enables you to create portlets without having to deal directly with the complexity of communications between WebCenter Portal: Framework and producers.
The PDK-Java framework is divided into the following areas:
ProviderDefinition
(oracle.portal.provider.v2.ProviderDefinition
) ProviderInstance
(oracle.portal.provider.v2.ProviderInstance
) PortletDefinition
(oracle.portal.provider.v2.PortletDefinition
) PortletInstance
(oracle.portal.provider.v2.PortletInstance
) ParameterDefinition
(oracle.portal.provider.v2.ParameterDefinition
) EventDefinition
(oracle.portal.provider.v2.EventDefinition
) DefaultProviderDefinition
(oracle.portal.provider.v2.DefaultProviderDefinition
) DefaultProviderInstance
(oracle.portal.provider.v2.DefaultProviderInstance
) DefaultPortletDefinition
(oracle.portal.provider.v2.DefaultPortletDefinition
) DefaultPortletInstance
(oracle.portal.provider.v2.DefaultPortletInstance
) PortletRenderer
(oracle.portal.provider.v2.render.PortletRenderer
) PortletPersonalizationManager
(oracle.portal.provider.v2.personalize.PortletPersonalizationManager
) PortletSecurityManager
(oracle.portal.provider.v1.http.DefaultSecurityManager
) hrefs
), rendering the portlet's container (including the header), rendering HTML forms that work within a page, and supporting portlet caching. For more information about the PDK-Java, see the Oracle Fusion Middleware Java API Reference for Oracle PDK Java.
Before you begin you should make sure:
Note: The figures in this section were taken with the default Look and Feel (Oracle) and Theme (Fusion Blue) settings in JDeveloper. If you have changed these settings, then what you see on your screen may vary slightly, but the content and functionality remains the same. To change the Look and Feel and Theme settings, select Preferences from the Tools menu, and then select Environment. |
This section includes the following subsections:
Using the Create JSR 286 Java Portlet wizard in JDeveloper you can expose your portlet over WSRP 2.0 quickly and easily. This wizard supports both WSRP 1.0 and WSRP 2.0.
In the Create JSR 286 Java Portlet wizard, you can choose which portlet modes you want to implement and the implementation method (JSP, HTTP servlet, Java class, or HTML) to use for each mode. The wizard then creates a simple implementation for each of the selected modes.
To create a JSR 286 Java portlet using the JDeveloper wizard:
The application must be scoped for portlet creation. An easy way to achieve this is to use the Portlet Producer Application template.
Note: Application built using WebCenter Portal's Framework application template are not scoped for portlet creation. |
Note: If the project already contains JSR 286 portlets, you can also create a new portlet by:
|
On the General Portlet Information page of the Create JSR 286 Java Portlet wizard (Figure 60-3), replace the default name provided in the Name field with one that better describes the purpose of the portlet.
Figure 60-3 The General Portlet Information Page
Click the Browse button to find packages within the project, if required. If you do not select a specific package, the wizard uses the default package of the project.
Edit mode enables users to personalize the portlet at runtime. For more information, see Section 58.1.3.2, "Edit Mode."
If you select this option, you can specify implementation details for the portlet's Edit mode later on in the wizard.
The portlet title is displayed in the Resource Palette or Application Resources panel, so make the title something to help users decide whether the portlet is useful to them. The portlet title is also displayed on the portlet header when the portlet appears on a page.
Figure 60-4 The Additional Portlet Information Page
For example, Oracle Portal uses the portlet display name in the Portlet Repository.
To provide additional details for your portlet, click Next and follow the remaining steps.
Figure 60-5 The Content Types and Portlet Modes Page
In the Implementation Method section, select how you want to implement View mode for your portlet (for more information about View mode, see Section 58.1.3.1, "View Mode"):
When you complete the wizard, the generated JSP displays in the Application Navigator where you can select it for further development. This is the default selection for all portlet display modes.
Note: If you choose this option, the portlet implementation class is created as a subclass of |
With this selection, you must write the targeted resource or file yourself. The target could be, for example, a JSP, a servlet, or an HTML file. This selection enters code in the generated portlet Java class that routes requests for the given mode to the specified target.
private void do
MODE_NAME
CONTENT_TYPE
) in the generated portlet java class. You must update this code to render useful content. Note: If you want this portlet mode to support a different content type, for example text/xml, see Step 17. |
The Portlet Modes dialog lists the standard modes supported by JSR 286 and the extended modes supported by WebCenter Portal.
For more information, see Section 58.1.3, "Portlet Modes."
To add a new content type:
If you selected Enable users to edit portlet content on the General Portlet Information page earlier in the wizard, then you can create customization preferences to enable users of the portlet to specify values for the portlet at runtime. Go to step 19.
If you did not select this option, go to step 24.
On the Customization Preferences page (Figure 60-6), click Add to add a new customization preference to the portlet.
By default, the wizard includes a customization preference to enable users to customize the portlet title.
Figure 60-6 The Customization Preferences Page
The name must be unique in the portlet. Use only letters, numbers, and the underscore character.
JDeveloper generates a resource bundle class for translatable preferences, with strings for which you can obtain translations. At runtime, the portlet references the resource bundle entries.
Note: The preference name is always translated, but there is not always a requirement to translate the default values. For example, if the value is an integer, then no translation is needed. |
On the Security Roles page (Figure 60-7), to add an existing security role to your portlet, select the security role and move it to the Selected list.
Security roles enable you to set tiered levels of access to the portlet. For example, a View user can view the portlet but cannot edit it; a Customize user can customize portlet settings; a Manage user can perform all available functions associated with the portlet.
The Available list displays the security roles defined for the application in which you are creating the portlet. Moving a security role to the Selected list creates a reference of the security role in the application's portlet deployment file (portlet.xml
) that refers to the security role in the application's web deployment file (web.xml
).
You can create new security roles for the application by editing web.xml
. For more information, see the JDeveloper online help.
Selecting this option indicates that portlet caching is managed by the portlet container. The portlet itself may choose to cache content for any given response. The settings on this page apply only when the portlet itself does not specify a caching condition for a response.
If you do not want any default caching for this portlet, choose Do Not Cache By Default. In this case, the wizard actually sets a cache duration of 0 seconds. As stated earlier, this cache setting only comes into play when the portlet itself does not specify a caching condition for a response.
If you choose no caching here and you later decide to implement default caching for the portlet, then you can change the cache duration value in the portlet.xml
file, which is generated by the wizard, to a number greater than zero.
For more information, see Section 61.2.9.1, "Implementing Expiry-Based Caching."
For information about how to implement validation-based caching, see Section 61.2.9.2, "Implementing Validation-Based Caching."
Initialization parameters provide the application developer, who decides what goes into the .war
file, an alternative to JNDI variables for configuring the behavior of all of the different components of the application (for example, servlets and portlets) in a compatible way. These initialization parameters are added to the portlet.xml
file.
Figure 60-9 The Initialization Parameters Page
When you use the JDeveloper wizard to create a JSR 286 Java portlet, JDeveloper generates a default implementation of the portlet. Specifically, the following files are created:
portletName
.java
is invoked by the portlet container and contains all the methods required by the portlet standards. portletname
Bundle.java
contains all the translation strings for the portlet. portlet.xml
is the portlet deployment descriptor file for the application. web.xml
is the web deployment descriptor file for the application. view.jsp.
view.jspx
. You can add Faces components to this page. You can see all these files in the Application Navigator, as shown in Figure 60-10.
Figure 60-10 Files Generated for a JSR 286 Java Portlet
The next step is to extend the sample code with your own business logic to implement the desired functionality and features for your portlet. For more information, see the JSR 286 specification at:
http://jcp.org/en/jsr/detail?id=286
You can change the portlet's settings by editing the portlet.xml
file. JDeveloper provides an Overview Editor to enable you to easily edit portlet.xml
. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File."
Using the Create Oracle PDK-Java Portlet wizard in JDeveloper you can quickly and easily create PDK-Java portlets. You can choose which portlet modes you want to implement and the implementation method (JSP, HTTP servlet, Java class, or HTML) to use for each mode. The wizard then creates a simple implementation for each of the selected modes.
To create a PDK-Java portlet using the JDeveloper wizard:
The application must be scoped for portlet creation. An easy way to achieve this is to use the Portlet Producer application template. Applications build using WebCenter Portal's Framework application template are not scoped for portlet creation.
Note: To create the portlet in an existing producer, right-click the producer's |
Note: Selecting Oracle PDK-Java Portlet opens the wizard for creating PDK-Java portlets. Selecting Standards-based Java Portlet opens the wizard for creating JSR 286-compliant portlets. |
In the PDK-Java, the term provider is used instead of producer. A provider is the same thing as a producer.
This automatically generates two .properties
files:
serviceID
.properties
defines properties for a producer with that service ID. The service ID has the same value as the producer name. _default.properties
is a default properties file. A producer application may have multiple producers, each with its own service ID. On registration, if no service ID is defined, then the default properties file is used. This automatically generates a producer definition file (provider.xml
) for the producer that contains details of the portlets belonging to the producer, including those generated by the wizard.
This automatically generates an index.jsp
file that lists all the producers that reside in the application with hyperlinks that enable easy access to producer test pages.
On the General Portlet Information page (Figure 60-12), enter a name and display name for your portlet.
The name is used internally and is not exposed to users. The display name is displayed to users in portlet selection lists, such as the Component Palette.
The description is not implemented in Framework applications so you do not need to enter a value in this field unless your portlet is likely to be consumed by other applications, such as Oracle Portal.
Figure 60-12 The General Portlet Information Page
On the View Modes page (Figure 60-13), under Show Page, from the Implementation Style dropdown list, select the implementation style to use for the portlet's Shared Screen mode.
<renderer>
element of your provider.xml
file: charSet
indicates the character set that the producer must use to encode the HTML page. The default character set is determined by JDeveloper preferences. If you require a different character set, you must update this element of provider.xml
accordingly.
For more information about Shared Screen mode, see Section 58.1.3.1, "View Mode."
To provide additional details for your portlet, click Next and follow the remaining steps.
For more information about Edit mode, see Section 58.1.3.2, "Edit Mode."
For more information about Edit Defaults mode, see Section 58.1.3.3, "Edit Defaults Mode."
For more information about Help mode, see Section 58.1.3.4, "Help Mode."
For more information about About mode, see Section 58.1.3.5, "About Mode."
This adds a new row to the table of parameters. Double-click each field in the row to provide a name, display name, and description for the parameter.
Repeat this step to add more public parameters. When you are done, click Next.
Public portlet parameters enable a portlet to communicate with the page on which it resides and with other portlets on that page. For more information, see Section 61.3.3, "How to Implement Public Parameters."
Figure 60-16 The Public Portlet Parameters Page
For more information about events, see the Oracle Fusion Middleware Developer's Guide for Oracle Portal.
When you use the JDeveloper wizard to create a PDK-Java portlet, JDeveloper generates a default implementation of the portlet. Specifically, the following files are created:
portletname
EditPage.jsp.
provider.xml
is the producer definition file that contains details of the portlets belonging to the producer. web.xml
is the web deployment file for the application. weblogic.xml
includes a shared library definition pointing to the PDK-Java shared library. index.jsp
is used by JDeveloper for testing purposes. _default.properties
is the default properties file. serviceID
.properties
is the properties file for the producer identified by serviceID. All these files are required to deploy and run the portlet successfully, except for index.jsp.
You can see all these files in the Application Navigator, as shown in Figure 60-17.
Figure 60-17 Files Generated for a PDK-Java Portlet
The next step is to extend the sample code with your own business logic to implement the desired functionality and features for your portlet.
For more information about the PDK-Java, see the Oracle Fusion Middleware Java API Reference for Oracle PDK Java.
This section provides information to assist you in troubleshooting problems you may encounter while creating portlets using the Create Portlet Wizards.
Problem
In the New Gallery, I cannot find the Oracle PDK-Java Portlet or Standards-based Java Portlet (JSR 286) options.
Cause
The application in which you are trying to create the JSR 286 or PDK-Java portlet was created using WebCenter Portal's Framework application template and therefore is not scoped for portlet creation.
Solution
Problem
I cannot find the option to add certain features, for example portlet events or public render parameters, to the portlet in the Create Portlet Wizard.
Cause
The Create Portlet Wizard does not provide the option to add certain features to portlets.
Solution
After you create the portlet using the Create Portlet Wizard, edit the portlet.xml
file using the Overview Editor to add advanced functionality. For more information, see Section 61.2, "Enhancing JSR 286 Java Portlets."
This chapter explains how you can enhance the Java portlets you created with the Oracle JDeveloper Create Java Portlet wizards.
This chapter includes the following sections:
Before You Begin
Before you begin looking through this chapter ensure that:
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
When you write your portlets in Java for either JSR 286 or PDK-Java, you should follow the best practices described in this section.
This section includes the following subsections:
Portlet modes exhibit the runtime portlet functionality seen by users. You can provide an extended set of modes in addition to the standard ones provided with WebCenter Portal. Different portal products support extended portlet modes as follows:
portlet.xml
file that map to the extended modes offered by PDK-Java, or to accommodate any other functionality you may want to provide. Defining custom modes is especially useful if the portlet must interoperate with portal implementations from other vendors. You can offer any of these modes to users. In fact, it is recommended that some modes like Edit Defaults are offered.
This section includes the following subsections that discuss each of the standard portlet modes:
View mode is known as Shared Screen mode in PDK-Java. For information about View mode, see Section 58.1.3.1, "View Mode."
When developing portlets, you must consider all of the factors that may influence the portlet's appearance on the page, such as the portlet's containing object and the other portlets with which your portlet shares the page. For example, suppose you choose to place your portlet inside an HTML table cell. The portlet should display only content that can be rendered within a table cell. Furthermore, the actual size of the table cell may vary depending on user settings, the browser width, and the amount and style of content in the portlet.
Plain HTML is the most basic way to render portlets and provides a great deal of flexibility to portlet developers. You can use almost any standard HTML paradigm, such as links, forms, images, tables, if it can display within an HTML table cell. Improperly written HTML may appear inconsistently across different browsers and, in the worst case, could cause parts of your page not to appear at all. Ensure that you adhere to the following rules:
http://www.w3.org/
). The HTML you use also affects the perceived performance of your site. Users judge performance based on how long it takes for them to see the page they requested, and browsers require time to interpret and display HTML. Given that, you should consider the following:
The fonts and colors of every portlet on a page should match the style settings chosen by the user. To accomplish this goal, these style selections are embedded automatically using a Cascading Style Sheet (CSS) on each page. The portlets access these settings for their fonts and colors, either directly or using the Application Programming Interface (API).
While different browsers have implemented varying levels of the full CSS specification, WebCenter Portal: Framework uses a very basic subset of this specification to allow for consistent fonts and colors. CSS implementation levels should not affect the consistency of your pages across browsers. Follow these guidelines for using CSS:
http://www.w3.org/TR/WCAG10-CSS-TECHS/
). For information about Edit mode, see Section 58.1.3.2, "Edit Mode."
The following guidelines should govern what you expose to users in Edit mode:
For consistency and user convenience, Edit mode should implement the following buttons in the following order:
When you show the forms used to change personalization settings, you should default the values such that the user does not have to constantly reenter settings. When rendering the personalization values, use the following sequence to provide consistent behavior:
This logic enables the personalizations to be presented in a predictable way, consistent with the other portlets in the Framework application.
For information about Edit Defaults mode, see Section 58.1.3.3, "Edit Defaults Mode."
The following guideline should govern what you expose to page designers in Edit Defaults mode:
For consistency and user convenience, Edit Defaults mode should implement the following buttons in the following order:
When you show the forms used to change personalization settings, you should default the values so that the application developer does not have to constantly reenter settings. When rendering personalization values, use the following sequence to provide consistent behavior:
This logic enables the personalizations to be presented in a predictable way, consistent with the other portlets in the Framework application.
For information about Help mode, see Section 58.1.3.4, "Help Mode."
The following guideline should govern what you expose to users in Help mode:
For information about About mode, see Section 58.1.3.5, "About Mode."
The following guideline should govern what you expose to users in About mode:
Note: This mode has no particular application in Framework applications, but used in Oracle Portal's Portlet Repository. |
The following guidelines should govern what you expose to users in Preview mode:
Technically, JSR 286 portlets do not have Full Screen mode. However, you can implement the equivalent of Full Screen mode for a JSR 286 portlet with View mode and a maximized state for the window.
In some ways, navigation between different sections or pages of a single portlet is identical to navigation between standard web pages. Users can submit forms and click links. In typical, simple web pages, both of these actions involve sending a message directly to the server responsible for rendering the new content, which is then returned to the client. In portlets, which comprise only part of a page, the form submission or link rendered within the portlet does not directly target the portlet. It passes information to the portlet through the Framework application. If a link or form within a portlet does not refer back to the application, then following that link takes the user away from the application, which is not typically the desired behavior.
The component developer does not need to know the detailed mechanics of how the parameters of a form or link get passed around between the user, application, and portlet. However, they must understand that they cannot write links in a portlet the same way they do for typical, simple web pages.
Types of Links for Portlets
A portlet may render links of four classes, as follows:
Figure 61-1 contains a summary of these link types. The arrows indicate how the links reference the resources to which they logically refer.
Figure 61-1 WebCenter Portal: Framework Application Link Types
This section includes the following subsections:
Intraportlet links go to different sections or pages within a given portlet. Strictly speaking, they refer to the page containing the portlet, but they contain parameters that cause the portlet to render a different section or page within that page when it is requested by the user.
As a direct consequence, a portlet cannot expect to render links to different sections or pages of itself using relative links or absolute links based on its own server context. Intraportlet link are useful for intraportlet navigation, either as links or form submission targets.
Application links refer to significant pages within the Framework application, such as the user's home page.
External links refer neither to the portlet (through a page) nor to any part of the Framework application. If selected, these links take the user away from the application, for example, www.oracle.com
.
Internal/Resource links refer to internal (to the portlet) resources. Sometimes they are exclusively used internally during portlet rendering, for example as a server side include. On other occasions, they may be used externally to reference portlet resources like images. In this latter case, you can use the PDK-Java constructResourceURL
method in the UrlUtils
class to retrieve images from behind a firewall using resource proxy. Note that in order for resource proxying to work, you must first set the JNDI variable, oracle/portal/provider/sample/resourceUrlKey
, for the producer. For more information about setting JNDI variables, see Section 61.3.5.2, "Setting JNDI Variable Values."
For example, lottery.jsp
of the lottery sample, which is available with PDK-Java, contains resource proxy requests for images.
For session-based producers, any cookies returned from the original initSession
call to the producer are sent with the request back to the producer to maintain the right session context.
JavaScript can often be useful within a portlet, but bear in mind the following guidelines within your portlets:
When you have built your initial portlet in the Create JSR 286 Java Portlet wizard as described in Section 60.2.1, "How to Create a JSR 286 Java Portlet," the next step is to enhance it. Because JSR 286 portlets adhere to the Java standards, you can find substantial information about enhancing them from many different sources, such as third-party books and web pages.
This section includes the following subsections:
The portlet deployment descriptor file for the application, portlet.xml
, specifies the portlet resources in the application. After you have created your JSR 286 portlet using the Portlet Wizard, you can edit the portlet.xml file to edit those resources.
When you open the portlet.xml file in JDeveloper, you can edit the source code or you can use the Overview Editor to edit portlet resources without having to manually modify it in Source mode.
To edit the portlet deployment file:
portlet.xml
. In the Create JSR 286 Java Portlet wizard, you add portlet modes by adding them to a list on the Content Types and Portlet Modes page. For more information about using the wizard, see Section 60.2.1, "How to Create a JSR 286 Java Portlet." The wizard enables you to implement the standard modes supported by JSR 286 and the extended modes provided by WebCenter Portal.
The standard modes supported by JSR 286 are:
WebCenter Portal supports the following additional custom modes:
After the initial creation of the portlet, you can also define your own custom portlet modes. You can add custom modes to map to the extra modes offered by PDK-Java (for example, Full Screen mode), or to accommodate any other unique functionality you may want to provide.
The principles of implementing portlet modes are the same for all modes.
Before You Begin
The steps that follow assume that you have:
To add a custom portlet mode:
portlet.xml
file. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File." This section lists all the custom modes available to the portlets within the application. It includes the WebCenter Portal extended portlet modes.
The name must be unique within the application.
portlet.xml
file. You can create user attributes in the Portlet Producer application to access commonly used user information, such as user.login.id
or user.name.family
. At runtime, these user attributes are mapped to the actual attributes of the current user. Portlets can use this information to obtain information about the current user.
To access user information:
portlet.xml
file. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File." user.login.id
. At runtime, the portlet container maps this attribute to the appropriate value. For example, if the current user is John Doe, then the user.name.family
user attribute is mapped to Doe. Portlets can obtain a Map
object containing the user attributes from the PortletRequest
interface.
portlet.xml
file. When a portlet is run, the portlet container provides the runtime environment and provides an interface between the Portlet Producer application and the portlet.
Container runtime options provide a way to customize the behavior of the portlet container and therefore customize the runtime environment.
This section includes the following subsections:
Table 61-1 lists the container runtime options supported by the WebCenter Portal portlet container.
For more information about the JSR 286 container runtime options, see the JSR 286 specification at:
http://jcp.org/en/jsr/detail?id=286
Table 61-1 Supported Container Runtime Options
javax.portlet.actionScopedRequestAttributes
Specifies whether to store action-scoped request attributes so that they are available to portlets until a new action occurs.
You can use the WebCenter Portal-specific excludedActionScopeRequestAttributes
container runtime option to limit which request attributes are stored in the scopes.
Valid values:
true
—store request attributes starting at processAction
until the next processAction
. You can specify a second value of numberOfCachedScopes
and a third value indicating the number of scopes to be cached by the portlet container. false
—do not store request attributes. javax.portlet.escapeXml
Specifies whether to XML encode URLs returned from actionUrl
, renderUrl
, and resourceUrl
JSR 286 tag library tags.
You can override this option on a per-tag basis using the encodeXml
attribute.
Valid values:
true
—(default) the URLs returned by the actionUrl
, renderUrl
, and resourceUrl
tags are XML encoded (using ampersand entities for parameter separation). false
—the URLs returned by the actionUrl, renderUrl, and resourceUrl tabs are not XML encoded (and use just ampersand characters). Note: This option does not have any effect on the return value of |
javax.portlet.servletDefaultSessionScope
Specifies the scope of the session object provided to servlets or JSPs that are included or forwarded from a Java portlet.
Valid values:
APPLICATION_SCOPE
—(default) map the portlet session with application scope. PORTLET_SCOPE
—map the portlet session with portlet scope. com.oracle.portlet.allowEventPayloadsWithoutJAXBBinding
Allows event payload types declared in portlet.xml
and event payloads sent from JSR 286 portlets to bypass the JSR 286 spec requirement that these types have a valid JAXB binding.
Valid values:
true
—event payloads without valid JAXB bindings are allowed. false
—event payloads without valid JAXB bindings are not allowed, per the JSR 286 specification. com.oracle.portlet.allowWsrpExport
Specifies whether the WSRP export-portlets operation should be supported for the web application.
This option is used mainly for backward-compatibility; it is preferred to control the export-portlets operation through the wsrp-producer-config.xml
setting.
Valid values:
true
—(default) export-portlets is allowed. false
—export-portlets is not allowed. This overrides the setting in WEB-INF/wsrp-producer-config.xml
. com.oracle.portlet.compatibilityMode
Set to owc168
to invoke the WebCenter Portal JSR 286 container JSR 168 compatibility mode.
This also automatically sets the disallowResourceServing
runtime option to true
if no other value for that option is specified.
com.oracle.portlet.defaultProxiedResourceRequiresWsrpRewrite
Specifies the default WSRP requiresRewrite
flag to use when encoding URLs for resources not served by the portlet. This setting is used for all URLs returned by the PortletResponse.encodeURL()
method, unless overridden by the presence of the oracle.portlet.server.resourceRequiresRewriting
request attribute when the PortletResponse.encodeURL()
method is called.
Valid values:
true
—(default) the requiresRewrite
flag is set to true
, indicating that the resource should be rewritten by the consumer. false
—the requiresRewrite
flag is set to false
, indicating that the resource does not necessarily need to be rewritten by the consumer. com.oracle.portlet.defaultServedResourceRequiesWsrpRewrite
Specifies the default WSRP requiresRewrite
flag to use when generating resource URLs for portlet-served resources.
This setting is used for all resource URLs created by the portlet, unless overridden by the presence of the resourceRequiresRewriting
request attribute when the resource URL methods write()
or toString()
are called. This setting is also used to specify the WSRP requiresRewriting
flag on the served resource response, but can be overridden by the presence of the resourceRequiresRewriting
request attribute when the portlet's serveResource()
method returns.
Valid values:
true
—the requiresRewrite
URL flag and requiresRewriting
response flag are set to true
, indicating that the resource should be rewritten by the consumer false
—the requiresRewrite
URL flag and requiresRewriting
response flag are set to false
, indicating that the resource does not necessarily need to be written by the consumer, although the consumer may choose to rewrite the URL. If unspecified, the requiresRewrite
URL flag is not given a value, and the requiresRewriting
response flag for a serveResource
operation is based on the MIME type of the response.
com.oracle.portlet.disallowResourceServing
Specifies whether portlets are allowed to serve resources. This is useful if JSR 168 portlets are run in the 286 container, as any JSR 168 portlet extending javax.portlet.GenericPortlet
automatically inherits the JSR 286 functionality, which automatically forwards resource requests to a file in the web application named after the resource ID, creating a potential security problem. For the same security reason, JSR 286 portlets that do not serve resources are safest to disallow resource serving.
Valid values:
true
—portlets are not allowed to serve resources. false
—portlets are allowed to serve resources. com.oracle.portlet.escapeXmlEncodeUrls
Specifies whether the JSR 286 container should XML-encode URLs generated from the PortletResponse.encodeURL()
method.
Valid values:
true
—URLs generated by the PortletResponse.encodeURL()
method are XML-encoded. false
—(default) URLs generated by PortletResponse.encodeURL()
are not XML-encoded. com.oracle.portlet.eventPayloadsXmlType
Specifies optional XML schema types for JAXB-bindable Java object event payloads if events are sent over WSRP. This is a multi-valued runtime option; each value consists of a Java class name and QName pair, separated by a colon (:
). The QName should use the standard Java String representation of a QName ({
namespace
}
localpart
). For each value specified, the QName is used as the XML schema type to annotate WSRP event payloads of the specified Java object type after the object has been marshalled to XML. This may be useful when using events to communicate across portlets on multiple producers.
com.oracle.portlet.excludedActionScopeRequestAttributes
This is a multi-valued property with each value being a regular expression. Request attributes which match any of the regular expressions are not stored as action-scoped request attributes if the javax.portlet.actionScopedRequestAttributes
container runtime option is used, in addition to any request parameters whose values match the regular expressions defined in the com.oracle.portlet.externalScopeRequestAttributes
container runtime option.
com.oracle.portlet.externalScopeRequestAttributes
This is a multi-valued property with each value being a regular expression. Request attributes which match any of the regular expressions are considered outside of portlet scope, and are shared with the underlying portal request.
If the javax.portlet.actionScopedRequestAttributes
option is used, any request attributes matching the regular expressions declared in externalScopeRequestAttributes
are not stored in the action scope request attributes.
com.oracle.portlet.importCssToIFrame
Specifies to a portal consumer whether the CSS file should be imported to an IFRAME portlet.
Valid values:
false
—(default) nothing is done. true
—the CSS file from the consumer is applied to an IFRAME portlet. com.oracle.portlet.minimumWsrpVersion
Specifies minimum required WSRP version for the portlet to work. If the WSRP version being used is less than the value specified, the portlet will not be included in a WSRP GetServiceDescription
, GetPortletDescription
, GetMarkup
and other WSRP responses.
Valid values:
1
2
com.oracle.portlet.offerPortletOverWsrp
Specifies whether the portlet is offered in the WSRP producer's service description.
Any offerRemote
setting in a .portlet
file referencing the JSR 168/286 portlet overrides this container runtime option.
Valid values:
true
—(default) the portlet is offered in the WSRP producer's service description. false
—the portlet is not included in the service description. If not specified at all, the default value specified in the WEB-INF/producer-config.xml
is used.
com.oracle.portlet.portalInfoProvider
Specifies the class name of an optional implementation of com.bea.portlet.container.IPortalInfo
interface. This implementation defines the value returned by the JSR 286 container's request.getPortalContext().getPortalInfo()
. The default implementation returns the producer/local server name and version, but a custom implementation could pass both the consumer server information and the producer server information in a WSRP scenario.
com.oracle.portlet.redirectAfterAction
Causes the JSR 286 container to send a redirect to the browser to the portlet's render URL after a processAction
is run (and after events are handled) so that reloading the resulting page will not result in another processAction
.
Valid values:
true
—a redirect is issued after every portlet action. false
—no redirect is not automatically issued after portlet actions. com.oracle.portlet.requireIFrame
Specifies whether the portlet must be rendered inside an IFRAME.
Valid values:
true
—renders the portlet inside an IFRAME. false
—does not force the portlet to be rendered inside an IFRAME. com.oracle.portlet.streamingOptimized
Indicates the portlet is optimized to run in streaming mode, which may enhance performance.
Valid values:
true
—the portlet is optimized to run in streaming mode. false
—the portlet is not optimized to run in streaming mode. com.oracle.portlet.suppressWsrpOptimisticRender
Suppresses the optimistic render of a portlet after the action and/or event lifecycles if the portlet is being run over WSRP.
Valid values:
true
—optimistic render is always suppressed. false
—optimistic render may be performed. com.oracle.portlet.trapWsrpRenderExceptions
Specifies whether the JSR 286 container should send exceptions during render as WSRP SOAP faults, or render an exception message for the portlet markup instead.
Valid values:
true
—(default) exceptions are not sent as SOAP faults but instead as rendered exception stack traces. false
—exceptions generated by the portlet during render are treated as SOAP faults. com.oracle.portlet.trimEncodeUrls
Specifies whether the JSR 286 container should trim whitespace from URLs passed to the PortletResponse.encodeURL()
method.
Valid values:
true
—(default) leading and trailing whitespace is trimmed from the URL passed into PortletResponse.encodeURL()
. false
—whitespace is not trimmed from the URL passed into PortletResponse.encodeURL()
. com.oracle.portlet.useWsrpUserContextForUserAuthentication
Specifies whether the PortletRequest methods getRemoteUser()
, getUserPrincipal()
and isUserInRole()
are based on the WSRP user context information or on standard J2EE security.
Valid values:
true
—the user information is based on the WSRP user context, if the portlet is run over WSRP. This can be a security problem so use this option with care. false
—(or the portlet is not being run over WSRP) the user information is based on the J2EE authenticated user. com.oracle.portlet.wsrpHeaderMode
Used only when portlets are being rendered as WSRP remote portlets, to indicate where cookies and headers should be put in the WSRP SOAP response as a hint to the WSRP consumer for the header or cookie's intended final destination.
When portlets are run locally (not over WSRP), headers and cookies set by portlets are always assumed to go to the client. Setting this container runtime option sets a default value for the PortletRequest
attribute com.oracle.portlet.wsrpHeaderMode
, which can still be overridden by the portlet at runtime on a per-header basis.
Valid values:
client
—headers and cookies set by the portlet are directed to go to the client (for example, the browser). consumer
—headers and cookies set by the portlet are directed to go to the consumer and not passed on to the client. both
—headers and cookies set by the portlet are directed to go to the client and the consumer. If not set, the portlet container assumes the default value for the producer as specified in the WEB-INF/wsrp-producer-config.xml
file.
com.oracle.portlet.wsrpLegacyPortletHandle
Allows the specification of a legacy WSRP portlet handle to be used for the portlet, which must be unique within the web application. This is useful for backward-compatibility with WebCenter Portal consumers that use the legacy, portlet-position-based WSRP portlet handles.
If specified, the legacy portlet handle is published in the WSRP serviceDescription as a legacy-handle extension on the portlet, and consumers are able to access the portlet using the legacy portlet handle, although the portlet will not be published in the WSRP serviceDescription under the legacy portlet handle.
com.oracle.portlet.wsrpPortletHandle
Allows the specification of the WSRP portlet handle to be used for the portlet, which must be unique within the web application.
oracle.portlet.bridge.adf.raiseUndeclaredContextualEvents
Allows the Oracle JSF Portlet Bridge to raise ADFm events that do not have corresponding portlet events declared in the portlet.xml
file.
Valid values:
true
—any ADFm event raised is forwarded on as a portlet event. false
—only events with corresponding portlet event declarations are forwarded. Setting container runtime options at the application level affects all the portlets in the application.
To set application-level container runtime options:
portlet.xml
file. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File." The list includes all container runtime options supported by the WebCenter Portal portlet container, which are listed in Table 61-1.
If you are using a different portlet container that supports additional container runtime options that are not listed, select <Customize> and enter the name of the option in the Name field.
If you specify a container runtime option that is not supported by the portlet container, it is ignored.
The container runtime option is added to the portlet.xml
code.
portlet.xml
file. You can set container runtime options at the individual portlet level to override the application-wide settings.
To set portlet-level container runtime options:
portlet.xml
file. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File." The list includes all container runtime options supported by the WebCenter Portal portlet container, which are listed in Table 61-1.
If you are using a different portlet container that supports additional container runtime options that are not listed, select <Customize> and enter the name of the option in the Name field.
If you specify a container runtime option that is not supported by the portlet container, it is ignored.
The container runtime option is added to the portlet.xml
code.
portlet.xml
file. Portlet events are a JSR 286 feature that enable inter-portlet communication by providing portlets with the ability to respond to actions that occur outside of the portlet itself, for example an action performed on the page that contains the portlet or on another portlet on the same page. Portlet events can be cascaded so that a portlet may respond to an event by triggering an event of its own, which in turn affects other portlets on the page.
Any portlet events supported by a portlet must be declared in the application section of the portlet deployment descriptor (portlet.xml
). Portlet events defined at the application level in this way are available to all the portlets in the application.
Individual portlets within the application can then specify which of these portlet events they want to use. Portlets can declare events that they are interested in receiving, called processing events, and events that they trigger, called publishing events.
This section includes the following subsections:
For more information about portlet events and how to implement them, see the JSR 286 specification at:
http://jcp.org/en/jsr/detail?id=286
For a portlet event to be available to a portlet, it must first be declared in the application section of the portlet deployment descriptor (portlet.xml
).
To define a portlet event at the application level:
portlet.xml
file. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File." A QName uniquely identifies the portlet event across applications by specifying a namespace for the parameter as well as a local name. A page typically contains multiple portlets which may come from different applications. Using QNames ensures that portlet events from one portlet do not unintentionally interfere with the other portlets on a page regardless of where those portlets come from.
If the namespace for the portlet event is the same as the application default namespace, you can omit the namespace when defining the event by specifying an unqualified name. If the application default namespace has not been defined, a portlet event with an unqualified name uses the XML default namespace.
portlet.xml
file: portlet.xml
file. If your want a portlet to listen for a particular portlet event, define it as a processing event.
To add a processing event to a portlet:
portlet.xml
file. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File." In the Processing Events panel, the Available list shows all the portlet events that have been defined for the application.
This adds the portlet event as a processing event to the portlet definition in portlet.xml
:
portlet.xml
file. If you want a portlet to trigger a particular portlet event, define it as a publishing event.
To add a publishing event to a portlet:
portlet.xml
file. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File." In the Publishing Events panel, the Available list shows all the portlet events that have been defined for the application.
This adds the portlet event as a publishing event to the portlet definition in portlet.xml
:
portlet.xml
file. Public render parameters are a JSR 286 feature that enable portlets to share parameter values, allowing a form of inter-portlet communication.
For example, if a Map portlet and a Weather portlet are both configured to use a Zipcode public render parameter, entering a zip code in the Map portlet updates the same parameter value in the Weather portlet.
Any public render parameters supported by a portlet must be declared in the application section of the portlet deployment descriptor (portlet.xml
). Public render parameters defined at the application level in this way are available to all the portlets in the application.
Individual portlets within the application can then specify which of these public render parameters they want to use.
This section includes the following subsections:
For more information about public render parameters and how to implement them, see the JSR 286 specification at:
http://jcp.org/en/jsr/detail?id=286
For a public render parameter to be available to a portlet, it must first be declared in the application section of the portlet deployment descriptor (portlet.xml
).
To define a public render parameter at the application level:
portlet.xml
file. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File." A QName uniquely identifies the public render parameter across applications by specifying a namespace for the parameter as well as a local name. Within the portlet code, a public render parameter is accessed by its identifier, which identifies the parameter uniquely within the application. However, a page typically contains multiple portlets which may come from different applications. Using QNames ensures that public render parameters from one portlet do not unintentional interfere with the other portlets on a page regardless of where those portlets come from.
If the namespace for the parameter is the same as the application default namespace, you can omit the namespace when defining the parameter by specifying an unqualified name. If the application default namespace has not been defined, a parameter with an unqualified name uses the XML default namespace.
The identifier must be unique within the application and is used to identify the parameters used by a portlet and in the portlet code to access the parameter. Using the identifier means that portlet developers do not need to be aware of the parameter's fully qualified name; they simply need to know the simpler application-specific identifier.
Note: When creating aliases for public render parameters, it is a good idea to set up reciprocal aliases. So if a parameter in portlet A has an alias to a parameter in portlet B, you should also, if possible, create an alias for the parameter in portlet B to the parameter in portlet A. |
portlet.xml
file: portlet.xml
file. If you want a portlet to support a public render parameter, add it to the portlet.
To add a public render parameter to a portlet:
portlet.xml
file. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File." In the Publishing Events panel, the Available list shows all the portlet events that have been defined for the application.
In the Public Render Parameters panel, the Available list shows all the public render parameters that have been defined for the application.
This adds the public render parameter to the portlet definition in portlet.xml
:
portlet.xml
file. Portlet preferences enable end users to personalize the portlet at runtime. These personalizations are visible only to the user that performed them; not to other users. By default, when you create a JSR 286 portlet using the JDeveloper wizard, a portlet preference is created to enable users to personalize the title of the portlet at runtime. You can create additional portlet preferences, either during portlet creation or by editing the portlet.xml
file after portlet creation, to enable end users to perform other personalizations on the portlet at runtime.
This section includes the following subsections:
To add portlet personalization, you must create portlet preferences for those attributes of the portlet that you want users to be able to personalize.
To add a portlet preference to a portlet:
portlet.xml
file. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File." The Preferences panel lists any existing portlet preferences that exist for the portlet, for example, the portletTitle
preference.
The name must be unique within the portlet and use only letters, numbers, and the underscore character.
getPreference
method. Note: If you want the preference to be translatable, you must add the appropriate key-value pairs to the resource bundle class. |
The following example provides a simple illustration of how you can enable personalization in portlets.
To add simple personalization to a portlet:
view.jsp
and choose Open. portletContent
customization preference: Example 61-1 view.jsp Sample Code
edit.jsp
and choose Open. Notice that the JSP consists of a form field, a form input field, and two form button fields.
portletContent
customization preference: Example 61-2 edit.jsp Sample Code
portletName
.java
and choose Open. processAction
method: Notice that JDeveloper automatically saves and compiles the code before deploying the portlet. For a reminder of how to perform this step, see Chapter 62, "Testing and Deploying Your Portlets."
Portlet filters are a JSR 286 feature that enable you to alter the content of a portlet at runtime. A portlet filter is a reusable Java component that can transform the content of portlet requests and portlet responses. Filters do not generally create a response or respond to a request as portlets do, rather they modify or adapt the requests and responses.
This section includes the following subsections:
For more information about portlet filters and how to implement them, see the JSR 286 specification at:
http://jcp.org/en/jsr/detail?id=286
For a portlet to be able to use a portlet filter, the filter must first be defined within the application.
To add a portlet filter to an application:
portlet.xml
file. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File." Select Choose from Existing Class, and enter or browse for the filter class, if the filter class that implements the portlet filter already exists. Go to step 9.
In the Name field, enter a name for the portlet filter.
The name must be unique within the application and use only letters, numbers, and the underscore character.
javax.portlet.filter
interfaces the filter class implements: ActionFilter
interface EventFilter
interface. RenderFilter
interface. ResourceFilter
interface. Note: When you create a new filter class using the Create Portlet Filter dialog, you can specify which of the filter interfaces the filter class implements. After the filter class has been created, you cannot add or remove filter interfaces through the Overview Editor. Instead, you must edit the source of the filter class directly to manually add or remove the interfaces and the |
In the Display Name field, enter a more user-friendly name for the portlet filter.
init()
method of the filter class. portlet.xml
file: portlet.xml
file. After the portlet filter has been defined in the application, you can then apply it to one or more portlets within the application. You can also specify the order in which portlet filters are applied to portlets.
To apply a portlet filter to a portlet:
portlet.xml
file. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File." The dropdown list is populated with all the portlet filters that are defined in the portlet.xml
file.
The dropdown list is populated with all the portlets that are defined in the portlet.xml
file.
Alternatively, you can use wildcards to apply the portlet filter to more than one portlet. For example, you can enter *
to apply the portlet filter to all the portlets in the application.
portlet.xml
file: portlet.xml
file. The order of the portlet filters determines the order in which the filters are applied to the portlets. Note: Remember that filters can be mapped to multiple portlets. If you have multiple portlets mapped to (sharing) a filter, arbitrarily changing the filter order can produce undesired side effects. For example, if you change the order in which filters are applied in one portlet, the reordering will apply to all other portlets that share the filter. |
portlet.xml
file. When you have completed the basic functionality of your portlet, you may want to turn your attention to portlet performance.
Caching is a common technique for enhancing the performance of web sites that include a great deal of dynamic content. The overhead involved in retrieving data and generating the output for dynamic content can be significantly reduced by proxying requests through a local agent backed by a large, low-latency data store known as a cache. The cache agent responds to a request in one of two ways, as follows:
Producers generate dynamic content (that is, portlets) and they reside remotely from the Framework application instance on which they are deployed. As such, caching might improve their performance. The architecture lends itself well to caching. You can cache the portlets rendered by your producer and reuse the cached copies to handle subsequent requests, minimizing the overhead your producer imposes on page assembly.
For JSR 286 portlets, there are two different caching methods. The methods differ mainly in how they determine whether content is still valid.
ETag
). The response goes into the cache, but before the consumer can reuse the cached response, it must determine whether the cached version is still valid. It sends the producer a render request that includes the version identifier of the cached content. The producer determines whether the version identifier remains valid. If the version identifier is still valid, then the producer immediately sends a lightweight response to the consumer without any content, which indicates that the cached version can be used. Otherwise, the producer generates new content with a new version identifier, which replaces the previously cached version. In this form of caching, the consumer must always confirm with the producer whether the content is up to date. The validity of the cached copy is determined by some logic in the producer. The advantage of this approach is that the producer controls the use of the cached content, rather than relying on a fixed period. For more information, see Section 61.2.9.2, "Implementing Validation-Based Caching." This section includes the following subsections:
You can choose to implement expiry-based caching when you first create a portlet using the Create JSR 286 Portlet Wizard. However, during the initial development of a portlet, you may prefer to turn portlet caching off and implement it later in the development cycle when the portlet content becomes more stable. You may also want to edit the expiration period, or change the cache scope.
To implement expiry-based caching:
portlet.xml
file. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File." Note: To disable portlet caching, deselect Cache Portlet. This sets the cache expiration period to |
portlet.xml
file: portlet.xml
file: portlet.xml
file. Implementation of validation-based caching takes place after the initial portlet creation and requires hand coding.
Example 61-3 shows how a GenericPortlet
would typically implement its doView()
method such that the consumer caches the markup using validation-based caching. The example also shows how expiry-based caching can be defined programmatically (using the CacheControl.setExpirationTime()
method) and used in conjunction with validation-based caching to further reduce the load on the producer. This would work equally well for serveResource()
.
Example 61-3 A JSR 286 Portlet Implementing Validation-Based Caching
For more information about validation-based caching in JSR 286 portlets, see the JSR 286 specification at:
Another new feature that arrives with WSRP 2.0 is the ability to keep customizations with portlets when moving them from one deployment to another. Customizations are portlet preferences that are set in edit defaults mode. For example, suppose that you create a portlet and then customize its title within your development environment. If you have enabled export for that producer, then the customized title is transported along with the portlet when you deploy it in production environment. If you do not enable export, then all customizations are lost when you transport the portlet from one deployment environment to another.
To implement export of portlet customizations:
portlet.xml
file. For more information, see Section 61.2.1, "How to Edit the Portlet Deployment Descriptor File." true
. portlet.xml
file. Resource proxying is the standard way to retrieve resources with WSRP. To avoid problems with URLs within your portlet, you can set a flag to rewrite all of the URLs within a specified resource. For example, if have an HTML fragment that contains URLs, then you could set this flag to rewrite its URLs taking into account the WSRP resource proxying.
To indicate that URLs should be rewritten, set the PortletRequest
attribute, oracle.portlet.server.resourceRequiresRewriting
, to true
. For example, you might include code similar to the excerpt in Example 61-4 to use resource proxying for a URL that you are encoding. Encapsulate this code within a method to avoid repeating it for every URL individually.
Example 61-4 Resource Proxy for WSRP
If you do not specifically set oracle.portlet.server.resourceRequiresRewriting
, then it defaults to false
, meaning that URLs are not rewritten. You must explicitly activate the feature by setting this attribute to true
.
If you have out of protocol resources that do not require rewriting, you may want to use stateless resource proxying. Stateless resource proxying means that the URLs returned to the browser do not require portlet IDs or any other contextual information. This increases the cache hit ratio for such resources. You might find stateless resource proxying useful for functionality such as static JavaScript files, static images, and so on.
To indicate that stateless proxying is required, set the PortletRequest
attribute oracle.portlet.server.useStatelessProxying
to true
. For example, you might include code similar to the excerpt in Example 61-5 to use stateless proxying for a URL that you are encoding. Encapsulate this code within a method to avoid repeating it for every URL individually.
Example 61-5 Stateless Resource Proxying
If you do not specifically set oracle.portlet.server.useStatelessProxying
, it defaults to false
. You must explicitly activate the feature by setting this attribute to true
.
To improve preference store performance, you may choose to use Java Object Cache for preference store access. This avoids the need to access the persistent store on each request. You can configure the use of caching by the WSRP preference store with the following JNDI variable:
By default, this variable is set to false
. You can set the variable yourself in the web.xml
file for your Portlet Producer application as follows:
For more information about setting JNDI variables, see Section 61.3.5.2, "Setting JNDI Variable Values."
You can secure JSR 286 portlets that are deployed to a WSRP producer by configuring security at the WSRP producer end and the client end. For information about securing a JSR 286 portlet through its WSRP producer, see Section 69.17, "Securing Identity Propagation Through WSRP Producers with WS-Security."
When you have built your initial portlet in the Create Oracle PDK-Java Portlet wizard as described in Section 60.2.4, "How to Create a PDK-Java Portlet," the next step is to enhance it. You can find the JavaDoc reference for the PDK-Java in the Oracle Fusion Middleware Java API Reference for Oracle PDK Java:
This section includes the following subsections that describe some enhancements that you might want to perform:
The source code for many of the examples referenced in this section is available as part of the Portlet Developer's Kit (PDK).
When you unzip PDK-Java, find the examples in:
In WebCenter Portal: Framework, PDK-Java portlets work somewhat differently than they did in Oracle Portal. As a result, you must be aware of the following new design considerations when you build PDK-Java portlets in WebCenter Portal: Framework:
In the Create Oracle PDK-Java Portlet wizard, you add portlet modes by checking boxes on the wizard pages. For more information about using the wizard, see Section 60.2.4, "How to Create a PDK-Java Portlet." For each portlet mode that you select in the wizard, a basic skeleton is created. If you want to add a portlet mode after creating the portlet, you can do that manually by updating provider.xml
and HTML or JSPs in JDeveloper.
The principles of implementing portlet modes using RenderManager
are the same for all modes.
For more detailed information about the PDK runtime classes used in this section, see the JavaDoc in the Oracle Fusion Middleware Java API Reference for Oracle PDK Java:
For more information about the syntax of provider.xml
, see the provider JavaDoc, also available on OTN.
Before You Begin
The steps that follow assume that you have:
To add a portlet mode:
The node for the portlet is located under Web Content > htdocs > provider.
You must create an HTML file or a JSP for each mode to add to your portlet. For example, to implement Help mode, create an HTML file to provide the help content.
For example, for Help mode, you could add the following HTML:
provider.xml
file for the provider that owns the portlet and choose Open. The provider.xml
file is located under Web Content > WEB-INF > providers > provider.
true
. For example, if you are adding Help mode, change the hasHelp
tag as follows:
This indicates to the PDK Framework that a link or icon to that mode should be rendered.
For example, for the Help page, add the following code:
When you redeploy, JDeveloper automatically saves and compiles the code before deploying the portlet.
provider.xml
file to the WLS instance where you plan to deploy the portlet. This step is not necessary if you have redeployed the producer application to a server instance.
You should now be able to access the new mode. For example, if you added Help mode, you should be able to click the Help link.
PDK-Java and WebCenter Portal: Framework provide public and private portlet parameters to enable portlet developers to easily write reusable, complex portlets. The Create Oracle PDK-Java Portlet wizard in JDeveloper creates portlets that are set up to use parameters. This feature enables you to focus solely on adding business logic to your portlets and does not require any changes to provider.xml
.
For an overview of parameters, see Section 58.2.11, "Public Portlet Parameter Support" and Section 58.2.12, "Private Portlet Parameter Support."
Before You Begin
The steps that follow assume that you have:
Note: Each portlet is limited to 4K of data. The lengths of parameter and event names, display names, and descriptions all contribute toward this 4K limit. Hence, you should not use too many parameters and events for each portlet, or give them lengthy names and descriptions. |
Using the Create Oracle PDK-Java Portlet wizard, you can easily create a portlet with public parameters. When you register the producer and drop the portlet on a page, the portlet's parameters are automatically linked to page variables.
To create a portlet with public parameters:
Note: To create the portlet in an existing producer, right-click the producer's |
See Section 60.2.4, "How to Create a PDK-Java Portlet" for basic information about going through the wizard.
This adds a new row to the table of parameters.
Figure 61-2 Public Portlet Parameters Page of Portlet Wizard
provider.xml
file for the provider that owns the portlet and choose Open. The provider.xml
file is located under Web Content > WEB-INF > providers > provider.
You should see entries for the parameters that you added on the Public Portlet Parameters page in the wizard, for example, as shown in Example 61-6.
Example 61-6 provider.xml Sample, Public Parameters
portletname
ShowPage.jsp
for your portlet and choose Open. The file is located under Web Content > htdocs > provider > portlet.
The portlet includes logic for retrieving the parameters, for example, as shown in Figure 61-2.
Example 61-7 ShowPage.jsp Sample
The page definition should look similar to Example 61-8. Notice the variables at the page level and the parameters at the portlet level (indicated in bold).
Example 61-8 Page Definition File Sample
In some cases, you might need a parameter that is known only to the portlet instance. These parameters are known as private parameters because they have no connection to the page and are known only to the portlet. Private parameters often come in handy when you are building navigation for your portlet. For example, if you have a portlet made up of multiple pages, then you can use these private parameters to jump to another resource of the portlet.
This section includes the following subsections:
Private parameters are used in classic web applications to pass information from links or forms in the browser back to the server. The server in turn takes actions and returns the appropriate content. For example, if the user of a dictionary web site asks for information about hedgehogs, then the URL submitted to the server might append a private parameter as follows:
If the server is responsible for rendering the whole page and the client communicates directly with the server, then this form of URL works well. In a Framework application, the client does not communicate directly with portlets. Instead, WebCenter Portal: Framework mediates between the client and the portlet. Moreover, because most pages have multiple portlets, WebCenter Portal: Framework communicates with multiple portlets.
For example, suppose a page contains two portlets, a thesaurus portlet and a dictionary portlet. Both portlets use q
as a parameter to record the search queries made by the user. If the user queries the thesaurus portlet, then the URL used to rerequest the page with the updated thesaurus portlet must contain the thesaurus portlet's parameter, q
. The thesaurus parameter must also be distinguished from dictionary portlet parameter 1, which performs the same function for that portlet.
You must ensure that the portlet meets the following criteria:
The following API call transforms an unqualified parameter name into a qualified parameter name:
HttpPortletRendererUtil
is in the package oracle.portal.provider.v2.render.http
.
For example:
To fetch the value of a portlet parameter from the incoming request, you can use the following API:
Note: The API converts the parameter name into the qualified parameter name before fetching the value from the incoming request. Hence, you need not perform this step. |
PortletRenderRequest
is in the package oracle.portal.provider.v2.render
.
For example:
The other aspect of a portlet's responsibilities with private parameters is to not disturb the parameters on the URL that it does not own. The utilities you may use to ensure adherence to this rule are discussed in Section 61.3.4.3, "Building Links with the Portlet URL Types" and Section 61.3.4.4, "Building Forms with the Portlet URL Types."
When a portlet renders itself, WebCenter Portal: Framework passes it various URLs, which the portlet can then use to render links. You can fetch and manipulate these URLs to simplify the task of creating links. The following is a list of the URLs provided to portlets:
To build links with Portlet URL types, you must access them and use them when writing portlet rendering code. To fetch the URL for a link, you call the following APIs in PDK-Java:
In portlet navigation, you must add (or update) your portlet's parameters in the page URL. To perform this task, you can use the following API to build a suitable URL:
UrlUtils
resides in the package called oracle.portal.provider.v2.url
. Notice that you do not actually fetch the page URL yourself. Rather you use the supplied portlet URL type, UrlUtils.PAGE_LINK
.
The parameter names in the params
argument should be fully qualified. Moreover, if you properly qualify the parameters, UrlUtils.constructLink
with the appropriate linkType
does not disturb other URL parameters that are not owned by the portlet.
An alternative version of UrlUtils.contructLink
accepts a URL as the basis for the returned URL. If you require an HTML link, then you can use UrlUtils.constructHTMLLink
to produce a complete anchor element.
The following example portlet, ThesaurusLink.jsp
, uses the parameter q
to identify the word for which to search the thesaurus. It then creates links on the found, related words that the user may follow to get the thesaurus to operate on that new word. To see the initial submission form that sets the value of q
, see the example in Section 61.3.4.4, "Building Forms with the Portlet URL Types."
The use of portlet parameters in forms is similar to their use in links. The following two fundamental rules continue to apply:
In terms of markup and behavior, forms and links differ quite considerably. However, just as with links, PDK-Java contains utilities for complying with these two basic rules.
A parameter name is just a string, whether it is a link on a page or the name of a form element. Therefore, the code for properly qualifying the portlet's parameter name is the same as that described in Section 61.3.4.3, "Building Links with the Portlet URL Types."
Forms differ from links in the way you ensure that the other parameters in the URL remain untouched. Once you open the form in the markup, you can make use of the following APIs:
where formName = UrlUtils.htmlFormName(pRequest,null)
.
Note: Just as parameters in URLs and element names in forms require qualification to avoid clashing with other portlets on the page, form names must be fully qualified because any given page might have several forms on it. |
The htmlFormHiddenFields
utility writes HTML hidden form elements into the form, one form element for each parameter on the specified URL that is not owned by the portlet.
Thus, you need only to add their portlet's parameters to the form.
The other item of which you should be aware is how to derive the submission target of your form. In most cases, the submission target is the current page:
The value of formTarget
can be the action attribute in an HTML form or the target attribute in a SimpleForm
. Even though the method name includes HTML, it actually just returns a URL and thus you can use it in mobile portlets, too.
The following example form renders the thesaurus portlet's submission form. For the portlet that results from the submission of this form, see the example in Section 61.3.4.3, "Building Links with the Portlet URL Types."
You can implement navigation within a portlet in one of three ways:
q
, the portlet branches based on the parameter value and renders different content accordingly. The following portlet code comes from the multipage example in the sample producer of PDK-Java:
Note: The value of |
You can modify the thesaurus example to operate with the use of this parameter. Specifically, you can use the form submission portlet to be the input for the thesaurus (the first page of the portlet), then navigate the user to the results page, which contains links to drill further into the thesaurus. The following examples illustrate these changes.
Note: The example that follows is most useful for relatively simple cases, such as this thesaurus example. If your requirements are more complex (for example, you want to build a wizard experience), then you should consider using an MVC framework such as Struts. For information about how to build portlets from struts applications, see Section 61.5, "Creating a Struts Portlet." |
ThesaurusForm.jsp
:
Notice how next_page
must be explicitly set to point to ThesaurusLink.jsp
. If you do not explicitly set next_page
in this way, then it defaults to the resource registered in provider.xml
, which is ThesaurusForm.jsp
.
ThesaurusLink.jsp
:
One limitation of implementing navigation with private parameters is that users could potentially navigate to portlet resources that you prefer to restrict. To control navigation to restricted resources, you can create a whitelist of acceptable resources to which a user may navigate. If you do not construct a whitelist to restrict navigation, then your portlet's resources are accessible according to the following default rules:
/index.jsp
is accessible but /WEB-INF/web.xml
is not. htdocs
directory is navigable. For example, both /htdocs/multipage/first.jsp
and /htdocs/lottery/lotto.jsp
are accessible. To change this default behavior, you can add allowable path values to the provider definition file, provider.xml
. For example, suppose you have a portlet where a JSP is used as a controller to forward requests to other pages depending on the pageParameterName
private parameter. The XML excerpt in Example 61-9 allows resources under /htdocs/multiportlet
to be shown. All other resources are restricted.
Example 61-9 Whitelist Excerpt from the provider.xml File
The pattern matching rules for this feature are similar to URL pattern matching in web.xml
files. The rules are as follows:
/
and ending with /*
. Any resource whose path starts with this string is matched. For an <allowedPath>
value of /htdocs/sub1/*
, valid values of the private parameter include /htdocs/sub1/file.jsp
and /htdocs/sub1/sub2/file2.jsp
. *.
and ending with a file extension. Valid values for the page parameter end with that file extension. For an <allowedPathvalue>
of *.jsp
, valid values of the private parameter include /htdocs/sub1/file.jsp
and /htdocs/sub1/file2.jsp
. When writing Java portlets, you may set deployment-specific properties through the JNDI service such that their values may be retrieved from your producer code. In this way, you can specify any property in a producer deployment and then easily access it anywhere in your producer code.
You can use JNDI variables to change producer property values after the producer has been deployed. The environment entry must be declared in web.xml.
It can then be updated on deployment using a deployment plan.
PDK-Java provides utilities to enable the retrieval of both producer and non-producer JNDI variables within a Java EE container.
This section includes the following subsections:
You declare JNDI variables in the web.xml
file for your producer. The format for declaring a JNDI variable is as follows:
The env-entry-name
element contains the name by which you want identify the variable. env-entry-type
contains the fully qualified Java type of the variable. env-entry-value
contains the variable's default value.
This section includes the following subsections:
In the env-entry-type
element, you must supply the fully qualified Java type of the variable, which is expected by your Java code. The Java types you may use in your JNDI variables are as follows:
java.lang.Boolean
java.lang.String
java.lang.Integer
java.lang.Double
java.lang.Float
The Java EE container uses these type declarations to automatically construct an object of the specified type and gives it the specified value when you retrieve that variable in your code.
The PDK-Java defines environment variables that can be set at the individual producer service level or at the web application level. To avoid naming conflicts between different producer services or different application components packaged in the same web application, Oracle recommends you devise some naming convention.
Note: If you use the |
For example:
where:
company
is the name of the company owning the application. component name
is the name of the application or component with which the producer is associated. producer name
is the service name of the producer. variable name
is the name of the variable itself. As you can see, these naming conventions are similar to those used for Java packages. This approach minimizes the chance of name collisions between applications or application components. PDK-Java provides utilities that enable you to retrieve variables in this form without hard coding the service name of the producer into your servlets or JSPs. The service name need only be defined in the producer's WAR file. For more information about retrieving JNDI variables, see Section 61.3.5.3, "Retrieving JNDI Variables."
The following examples illustrate producer variable names:
The following example illustrates non-producer variable names:
In your producer deployment, you may want to set a new value for some or all of your JNDI variables. You can perform this task by setting the values manually within a WLS deployment plan. Deployment plans can be created for the producer deployment through the WLS console.
To set variable values manually within a deployment plan:
<deployment-plan>
tag: WEB-INF/web.xml
module descriptor (oracle/portal/sample/rootDirectory
is used as an example): JNDI is a standard Java EE technology. As such, you can access JNDI variables through Java EE APIs. For example:
In addition to the basic Java EE APIs, PDK-Java includes a simple utility class for retrieving the values of variables defined and used by the PDK itself. These variables conform to the naming convention described in Section 61.3.5.1.2, "Variable Naming Conventions" and are of the form:
To use these APIs, you need only provide the provider_service_name
and the variable_name
. The utilities construct the full JNDI variable name, based on the information you provide, and look up the variable using code similar to that shown earlier and return the value of the variable.
The EnvLookup
class (oracle.portal.utils.EnvLookup
) provides two lookup()
methods. One retrieves producer variables and the other retrieves non-producer variables. Both methods return a java.lang.Object
, which can be cast to the Java type you are expecting.
The following code example illustrates the retrieval of a producer variable:
myProviderName
represents the service name for your producer, which makes up part of the variable name. myVariableName
represents the portion of the variable name that comes after the producer's service name. The example assumes the variable being retrieved is of type java.lang.String
.
To retrieve a non-producer variable, you use the same code, you pass only one parameter, the variable name, to the lookup()
, again excluding the oracle/portal
prefix.
Table 61-2 shows the JNDI variables provided by default with PDK-Java. If you do not declare these variables, then PDK-Java looks for their values in their original locations (web.xml
and the deployment properties file).
Table 61-2 PDK-Java JNDI Variables
Variable | Description |
---|---|
oracle/portal/provider/provider_name/autoReload | Boolean auto reload flag. Defaults to true. |
oracle/portal/provider/provider_name/definition | Location of producer's definition file. |
oracle/portal/provider/global/log/logLevel | Log setting (0 through 8). 0 being no logging and 8 the most possible logging. |
oracle/portal/provider/provider_name/maxTimeDifference | Producer's HMAC time difference. |
oracle/portal/provider/<service_name>/resourceUrlKey | Authentication key for resource proxying through the Parallel Page Engine. See Oracle Fusion Middleware Administrator's Guide for Oracle Portal for more information. |
oracle/portal/provider/provider_name/rootDirectory | Location for producer personalizations. No default value. |
oracle/portal/provider/provider_name/sharedKey | HMAC shared key. No default value. |
oracle/portal/provider/provider_name/showTestPage | (non-producer) A Boolean flag that determines if a producer's test page is accessible. Defaults to true. |
oracle/portal/provider/global/transportEnabled | A Boolean flag that determines whether Edit Defaults personalizations may be exported and imported. |
When a user accesses a page, it initiates a public, unauthenticated session and tracks information about the session across requests. If the user logs in, then this session becomes an authenticated session of the logged-in user. This session terminates when any of the following occur:
As part of the metadata generation, all of the producers that contribute portlets to the page are contacted, if they specified during registration that they be called for some special processing. This call allows producers to do processing based on the user session, log the user in the producer's application if needed, and establish producer sessions. For producers, this call is referred to as initSession
. As most web-enabled applications track sessions using cookies, this API call enables the producer of the application to return cookies.
You can use the session store to save and retrieve information that persists during the portal session. This information is only available, and useful, to you during the life of the session. You should store only temporary information in the session store. Application developers may use the session store to save information related to the current user session. Data in the session store can be shared across portlets.
If the information you want to store must persist across sessions, then you may want to store it in the preference store instead. Some common applications of the session store are as follows:
Before you implement session storage, you should carefully consider the performance costs. Because portlets and producers are remote, it can be a relatively expensive operation to create and maintain even a small amount of information in the session store. For this reason, you may want to avoid altogether any session storage for public pages that are accessed frequently by many users.
Furthermore, while using the session store with producers, you create a stateful application that tracks state information in memory. Similarly, you create a stateful application if you use the file-system implementation of preference store.
If scalability is an important concern for you, then a stateful application may cause you problems. Stateful applications can affect the load-balancing and failover mechanism for your configuration. Even though you may deploy multiple middle-tiers, you must implement sticky routing (where the same node handles subsequent requests in the same session) to track state. Sticky routing may result in lopsided load-balancing or loss of session data in case a node crashes, affecting failover. This issue is one reason why many developers prefer to build stateless applications. However, if scalability is not a concern, then a stateful application should present no problems for you.
The PDK Framework represents the session with a ProviderSession
object, which is established during the call to the Provider Instance's initSession
method. This object is associated with the ProviderUser
. To make data persistent between requests, you must write data into the session object using the setAttribute
method on the ProviderSession
object. This method maps a java.lang.Object
to a java.lang.String
and stores that mapping inside the session object. The String
can then be used to retrieve the Object
during a subsequent request, provided the session is still valid.
A producer session may become invalid for the following reasons:
invalidate
method on ProviderSession
is called. All portlets contained by the same ProviderInstance
share the same session for a particular ProviderUser
. Therefore, data unique to a particular portlet instance must be mapped to a unique String
in the session. This is accomplished using the portletParameter
method in the PortletRendererUtil
class. This method makes a supplied String
parameter or attribute name unique to a PortletInstance
, by prefixing it with a generated identifier for that instance. You can use the returned instance-specific name to write portlet instance data into the session.
For more detailed information about the PDK Framework classes, see the JavaDoc in the Oracle Fusion Middleware Java API Reference for Oracle PDK Java.
In the example in this section, session storage is used to count the number of times your portlet has rendered in Shared Screen mode.
Before You Begin
The steps that follow assume that you have:
To implement session storage:
ProviderSession
, PortletRendererUtil
, and HttpPortletRendererUtil
. provider.xml
. The steps that follow describe how to add a session count to your portlet that displays how many times the portlet has been rendered for the current session.
provider.xml
. You must update this flag in order for the producer to receive session information from the portal. You should only set this tag to true if you are using session information in your producer or portlets. By setting this flag to true, extra load is added to the producer calls. Once you have completed the basic functionality of your portlet, you may want to turn your attention to portlet performance.
Caching is a common technique for enhancing the performance of web sites that include a great deal of dynamic content. The overhead involved in retrieving data and generating the output for dynamic content can be significantly reduced by proxying requests through a local agent backed by a large, low-latency data store known as a cache. The cache agent responds to a request in one of two ways, as follows:
Producers generate dynamic content (that is, portlets) and they reside remotely from the Framework application instance on which they are deployed. As such, caching might improve their performance. The architecture lends itself well to caching. You can cache the portlets rendered by your producer and reuse the cached copies to handle subsequent requests, minimizing the overhead your producer imposes on page assembly.
The producer can use any one of three different caching methods, depending upon which one is best suited to the application. The methods differ chiefly in how they determine whether content is still valid. Following are the three caching methods:
This section includes the following subsections:
Before You Begin
The steps that follow assume that you have:
To use the caching features in your producers, you must first activate the middle tier cache. This cache is known as the PL/SQL Cache because it is the same cache used by mod_plsql, the Oracle HTTP Server plug-in that calls database procedures, and hence database producers, over HTTP.
Usually, your administrator is responsible for the configuration details of caching.
Expiry-based caching is a simple caching scheme to implement, and can be activated declaratively in your XML producer definition. You can set an expiry time for the output of any ManagedRenderer
you use by setting its pageExpires
property to the number of minutes you want the output to be cached for. For example, suppose you want portlet output to be cached for one minute.
To add expiry-based caching:
provider.xml
file and set the pageExpires
property tag of showPage to 1. This sets an expiry entry of one minute for the portlet. By default the wizard generates a standard and compressed tag for showPage
. Expand the tag to include a subtag of pageExpires
:
When viewing the portlet, you see that the time (including seconds) is constant for one minute. After the time has expired, the portlet displays the most current time and a new cache is set.
Adding validation-based caching requires slightly more effort, but gives you explicit control over exactly which requests to your producer are cache hits. As an example, you may want to update the cache only when data within the portlet has changed. To implement this algorithm, you must override the prepareResponse
method. The signature of the BaseManagedRenderer.prepareResponse
method is:
In your version of prepareResponse()
, do the following:
HttpPortletRendererUtil.getCachedVersion()
method: HttpPortletRendererUtil.useCachedVersion()
method. It also instructs the RenderManager
that it is not necessary to call renderBody()
to render the portlet body. Otherwise, use HttpPortletRendererUtil.setCachedVersion()
to generate a new version of the portlet, which is cached. It also indicates to the consumer that the renderBody()
method has to be called to regenerate the portlet content.
For validation-based caching, you need not update provider.xml
. You can view the portlet by refreshing the page or adding the portlet to a page and updating the content. If the content has changed, then the portlet shows the new content. If the content has not changed, then a cached version of the portlet is displayed.
If you have implemented personalization for your portlet, then the Personalize link only appears on the portlet for authenticated users. Hence, to test the personalization of a portlet (the Personalize link), you must have some form of security implemented for the application consuming the portlet. For testing purposes, you may prefer to just configure the most basic authentication possible. For more information, see Section 69.12, "Configuring Basic Authentication for Testing Portlet Personalization."
Oracle PDK contains extensions to integrate Apache Struts applications. This section explains how to build a portlet from an existing struts application. You can also follow these steps to create a portlet that uses the Model View Controller paradigm. The PDK-Java extensions described in this section rely on Apache Struts 1.1.
You can use the Struts framework to enhance portlet behavior. For example, a Struts controller may be used for page flow within a portlet. A portlet renderer is used as a bridge between portlet render requests and Struts servlet requests
The following code shows a portion of the producer definition file (provider.xml
):
The showPage
of the Struts portlet contains two important components:
oracle.portal.provider.v2.render.http.StrutsRenderer
) receives the render requests and forwards them to the Struts Action Servlet. defaultAction
tag defines the Struts action that is used by default when the portlet is called for the first time. The PDK-Java enables you to easily develop a view (portlet view) of your Struts application. This view enforces a consistent look and feel of your Struts portlet using portal styles, and enables the end user to use the application within the portal.
To create a Struts portlet, you must use the PDK-Java Struts tags, which are extensions of the default Struts JSP tags. This development process is similar to that of creating a standalone Struts application. For portlets in a producer application to use the Struts framework, the Struts components must be part of the same web application.
To publish a part of an existing Struts application as a portlet, Oracle recommends that you first create a new view to serve as the portlet view of your application. This view uses existing objects (Actions
, ActionForm
, and so on) with a new mapping and new JSPs.
Note: Although Oracle recommends that you create a portlet view of your application, you could alternatively replace your application's struts tags with PDK-Java struts tags. This approach enables your application to run both as a standalone struts application and a portlet. |
In this example, you create a portlet that enables you to add a new entry to a blog. Figure 61-3 and Figure 61-4 show how you submit a blog and save a blog entry.
prepareNewBlog
is a simple empty action that redirects the request to the enterNewBlog.jsp
page. This page shows a form for submitting a new blog.
The corresponding entry in the struts-config.xml
is:
This section includes the following subsections:
To create a new view, first create a new set of ActionMappings
(page flow) that redirects the various actions and requests to Portal-specific JSPs.
As you can see, only the path attributes are modified. The FormBean
Action responsible for the application business logic remains unchanged.
As specified in the previous step, the actions forward the request to new JSPs, which are responsible for rendering the portlet content. Your new portlet view JSPs can share the HTML with the standalone view, but ensure the portlet meets the following criteria:
<html>
, <body>
, and <frame>
tags). The PDK Struts HTML tag library contains versions of the Struts HTML tags that can be used in portlet markup.
Note: You can register the Oracle PDK with Oracle JDeveloper so that you can drop the tags from the Oracle JDeveloper Components Palette. For more information, see the Registering a Custom Tag Library in JDeveloper section in the Oracle JDeveloper online Help. |
You can create your Struts portlet either manually or by using the Create Oracle PDK-Java Portlet wizard. Although the wizard does not explicitly offer Struts support, you can use the wizard to build your Struts portlet.
To create a portlet:
For more information, see Section 60.2.4, "How to Create a PDK-Java Portlet."
oracle.portal.provider.v2.render.http
. StrutsRenderer
. This generates the skeleton of the portlet renderer class, StrutsRenderer
. StrutsRenderer
is part of the PDK, you do not need this generated file. So, when you finish the wizard, you must delete the file generated by the wizard. To do so, click the file in the System Navigator window, then from the File menu, select Erase from Disk in JDeveloper. provider.xml
and change the following properties: At the producer level, perform the following:
<actionInSession>
is set to true), then enable session handling: At the portlet level, perform the following:
If you prefer that users always start from the beginning of the portlet when they return from outside the container page, then you should not save the struts action:
Note that this setting is the default behavior.
In your application, you should add code specific to your environment, such as the user's information, personalization, and localization. To do so, you can create a new Action
class that is only called in context, and handles all business logic.
Now that your portlet is ready to be used by consumers, you must make it accessible by registering it. For information about how to register your PDK-Java portlet, see Section 62.4, "Registering and Viewing Your Portlet."
This chapter explains how to test and deploy JSR 286 and Oracle PDK-Java portlets. In a development environment, you can test your portlets on Integrated WebLogic Server (WLS), which comes packaged with Oracle JDeveloper, and also deploy Portlet Producer applications to an Oracle WebLogic Managed Server instance residing outside JDeveloper.
This chapter includes the following sections:
For information about testing and deploying other WebCenter Portal: Framework applications, see Chapter 70, "Deploying and Testing Your WebCenter Portal: Framework Application".
For information about creating portlets, see Chapter 59, "Creating Portlets with the Oracle JSF Portlet Bridge" and Chapter 60, "Creating Portlets with the Portlet Wizard".
Before you deploy your Portlet Producer application, you are advised to test it in a development environment. Integrated WLS in JDeveloper enables you to test your portlets in a single step, without creating a deployment profile. To learn the benefits of testing applications on Integrated WLS, see Integrated WebLogic Server. An additional benefit is that portlet customizations that you perform at design time are maintained in your application workspace and become an integral part of the application source definition. These changes are packaged with the EAR file when the application is deployed to a WebLogic Managed Server instance (managed servers). This eliminates the requirement to export and import portlet customizations.
If, while testing your application with Integrated WebLogic Server, you make changes at runtime, these customizations are also retained. If you do not want to keep these runtime customizations when you deploy your application to a managed server, you must clear them. You can do this manually by deleting them from the configured directory. Alternatively, during the development of your application, you can clear out these runtime customizations each time the application is run. To do this:
To test your Portlet Producer application on an Oracle WebLogic Managed Server instance, or to deploy for production, you must configure a connection to the managed server, create deployment plans, and then deploy to the server instance as described in this chapter. For information about deploying Portlet Producer applications using Oracle Enterprise Manager Fusion Middleware Control, WLS Administration Control, or WLST commands, see the chapter, "Managing Portlet Producers" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
The connection to Integrated WLS (Default Server) connection is preconfigured and shows as IntegratedWLSConnection under the Application Server node in the IDE Connections panel of the Resource Palette, as shown in Figure 62-1. You can run multiple applications simultaneously and watch the progress of each application in the Run Manager panel. The Run Manager panel also lets you stop Default Server instances.
Figure 62-1 IntegratedWLSConnection in IDE Connections
For more information about Integrated WLS Server, see Integrated WebLogic Server.
This section includes the following subsections:
To test a JSR 286 Portlet Producer application, right-click the portlet.xml
page in the project folder and select Run. Running portlet.xml
triggers packaging and deployment of your Portlet Producer application on an instance of Integrated WLS named after the application.
Note: When the Integrated WLS instance stops, the application is undeployed, and therefore, becomes unavailable. For a more persistent testing scenario, you can deploy your Portlet Producer application to Integrated WLS by right-clicking the application and then selecting Deploy. This deploys your application to the Default Server instance so that it is always available when the Default Server is running. Thus, the application remains accessible for multiple consumer applications. If you choose this method, then you must first create deployment profiles, as described in Section 62.3.1, "How to Create Deployment Profiles". If you deploy your application to Integrated WLS, then the Deployment Configuration dialog displays to let you configure and customize deployment settings. The file system MDS repository pre-created by JDeveloper displays in the Repository Name field. |
See the IntegratedWebLogicServer - Log window to monitor the deployment progress. The log shows the URL of the application page. The WSRP producer URL uses the following syntax:
host:port
/applicationname
-Portlets-context-root/infowhere:
host
is the server to which your producer has been deployed. port
is the HTTP Listener port. Typically, it is 7101
. When the server is started, the port is displayed in the console. context-root
is the Web application's context root. A test page similar to Figure 62-2 displays in a browser window.
Note: This procedure is for testing purposes only. After this procedure, you are required to register your producer as described in Section 62.4, "Registering and Viewing Your Portlet". |
When you run JSR 286 portlets on Integrated WLS, the following happens:
wsdls
and other configuration files are added to the WEB-INF directory to configure the portlets as a Web service. web.xml
file is updated with listener and server classes, filters, parameters, and other configurations that are required to run the JSR 286 Portlet Producer application successfully. For example, the oracle.portlet.server.adapter.web.ServerContextListener
class, WSRP_v2_PortletManagement_Service
and WSRPBaseService
filters, and so on.
weblogic.xml
file, for example, oracle.portlet-producer.wsrp
. These configurations vary depending upon the portlet requirements.
When you run your Portlet Producer application on Integrated WLS, an instance of Default Server starts.
To test a Portlet Producer application, right-click a JSP page, for example, index.jsp
in the project folder and select Run. Running index.jsp
triggers packaging and deployment of your Portlet Producer application on an instance of Integrated WLS named after the application.
Note: When the Integrated WLS instance stops, the application is undeployed, and therefore, becomes unavailable. For a more persistent testing scenario, you can deploy your Portlet Producer application to Integrated WLS by right-clicking the application and then selecting Deploy. This deploys your application to the Default Server instance so that it is always available when the default server is running. Thus, the application remains accessible for multiple consumer applications. If you choose this method, then you must first create deployment profiles, as described in Section 62.3.1, "How to Create Deployment Profiles". If you deploy your application to Integrated WLS, then the Deployment Configuration dialog displays to let you configure and customize deployment settings. The file system MDS repository pre-created by JDeveloper displays in the Repository Name field. |
See the DefaultServer Log window to monitor the deployment progress. The DefaultServer - Log shows the URL of the application test page, as shown in Figure 62-3. The format of the URL is http://
host:port/application_name
-Portlets-context-root/index.jsp
.
The PDK-Java Application Test page displays in a browser window, as shown in Figure 62-4.
Figure 62-4 Portlet Producer Application Test Page
Click the link underneath Service Name. Your browser should open with a page similar to the one shown in Figure 62-5. The URL of this page is the one required to register the producer with another application.
Alternatively, you can construct the URL yourself as follows:
where:
host
is the server to which your producer has been deployed.
port
is the HTTP Listener port. Typically, it is 7101
. When the server is started, the port is displayed in the console.
context-root
is the Web Application's Context Root, which you specified earlier and can be found in the WAR Deployment Profile Properties under General.
producer_name
is the name of the portlet's producer. A WAR file may contain multiple producers, hence you should always include the name of the producer for clarity. Otherwise, you get the default producer, which is the first producer created. The default producer is defined by the _default.properties
file. This is created with the first producer in a project.
If you enter this URL in your browser, you should see a page similar to the one in Figure 62-5.
When you run PDK-Java portlets on Integrated WLS the following happens:
web.xml
file is updated with listener and server classes, filters, parameters, and other configurations that are required to run the Portlet Producer application successfully. For example, the ResourceServlet pdkresource, the oracle.portlet.server.service.ContextFilter
filter, and so on. These configurations vary depending upon the portlet requirements.
weblogic.xml
file, for example, oracle.portlet-producer.jpdk
. To test your Portlet Producer application on an Oracle WebLogic Managed Server instance, or to deploy it for production, you must first create an application WAR deployment profile, a deployment descriptor, and a connection to the Oracle WebLogic Managed Server instance. Before you deploy or test your Portlet Producer application to a managed server, ensure that the managed server is created using the correct template and it contains all the required shared libraries as described in the section "Creating a Managed Server" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Note: Before you deploy the application, you must remove the For more information, see the section "How to Remove the test-all Role from the Application Policy Store" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
For information about deploying Portlet Producer applications using Oracle Enterprise Manager Fusion Middleware Control, Oracle WebLogic Administration Console, or WLST commands, see the chapter, "Managing Portlet Producers" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
This section includes the following subsections:
The project-level deployment profile is packaged as a Web Application Archive (WAR) file. Deployment descriptors are server configuration files that define the configuration of an application for deployment and are deployed with the Portlet Producer application as needed. The deployment descriptors that a project requires depend on the technologies the project uses and on the type of the target application server.
Note: You can deploy PDK-Java portlets only as EAR files. Therefore, while creating deployment profiles, ensure that the WAR file is included in the application's EAR file. For information about how to create an EAR file, see Section 70.3.2.2, "Creating Deployment Profiles" in Chapter 70, "Deploying and Testing Your WebCenter Portal: Framework Application". |
This section includes the following subsections:
To create a WAR deployment profile:
Alternatively, from the main menu, choose File and then New. In the New Gallery, expand General, select Deployment Profiles and then WAR File, and click OK.
Figure 62-6 The Create Deployment Profile -- WAR File Dialog
Figure 62-7 The Edit WAR Deployment Profile Properties Dialog
Figure 62-8 The Project Properties Dialog
To create a deployment descriptor:
To deploy a portlet producer application to a WebLogic Managed Server instance, you must first create a server instance that contains all the required shared libraries. For more information, see the section "Creating a Managed Server" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
After creating the WebLogic Managed Server instance, you must create and register a Metadata Service Repository (MDS) schema for the application on the WebLogic Domain's Administration Server instance. For more information, see the section "Creating and Registering the Metadata Service Repository" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
In JDeveloper, you can deploy your Portlet Producer applications to Oracle WebLogic Managed Server instances that reside outside JDeveloper. You must first create a connection to the server instance.
Before You Begin
Before you create a connection to the managed server, ensure that the server instance is up and running.
To create a WebLogic Managed Server connection:
PortletServer
. Then click Next. webcenter.portletserver.example.com
and the port number, for example, 7001
. wc_domain
. Click Next. After you have created the deployment profiles and a connection to the managed server for portlet deployment, you can deploy your Portlet Producer application to this server instance.
To deploy a Portlet Producer application:
WLS_Portlet
, and click Finish. Note: If your Portlet Producer application contains JSR 286 portlets, then the Select deployment type dialog displays. Click Yes to add the configuration required to expose this application as a WSRP service. |
Note: Consider the following about producer connections:
|
The message Deployment started displays in the Deployment - Log window. If the application is successfully deployed to the targeted server instance, the message Deployment finished displays in the log.
If you are deploying JSR 286 portlets, the configuration settings described in Section 62.2.2, "What Happens When You Test JSR 286 Portlets on Integrated WebLogic Server" are added to the EAR file.
If you are deploying PDK-Java portlets, the configuration settings described in Section 62.2.4, "What Happens When You Test PDK-Java Portlet Producer Applications on Integrated WebLogic Server" are added to the application EAR file at design time.
If you are deploying your Portlet Producer application in a cluster environment, you will receive the following warning:
This is expected behavior. When you deploy your application, the producer metadata exported into the EAR file (as a MAR file) needs to be imported into an MDS schema for use in the production environment. Importing the metadata occurs automatically during deployment. This import only needs to happen with one node in the cluster, so a lock is created to prevent other nodes in the cluster trying to perform the same operation.
After you have created and deployed the producer and its portlets, you should register the producer with an application and add one or more portlets to a page to check that it is working correctly. Registering a producer gives applications the information they require to locate and communicate with that producer. After you register a producer, it is exposed as a connection, and the producer and its portlets become available in the Application Resources panel under the Connections node, or in the Resource Palette.
To register producers for your JSR 286 portlets, follow the instructions provided in Section 64.2.1, "How to Register a WSRP Portlet Producer".
To register producers for your PDK-Java portlets, follow the instructions provided in Section 64.2.3, "How to Register an Oracle PDK-Java Portlet Producer".
To add your portlets to a page, follow the instructions provided in Section 64.3, "Adding Portlets to a Page".
A pagelet is a reusable user interface component. Any HTML fragment can be a pagelet, but pagelet developers can also write pagelets that are parameterized and configurable, to dynamically interact with other pagelets, and respond to user input. Pagelets are similar to portlets, but while portlets were designed specifically for portals, pagelets can be run on any web page, including within a portal or other web application. Pagelets can be used to expose platform-specific portlets in other web environments.
Oracle WebCenter Portal's Pagelet Producer (previously known as Oracle WebCenter Ensemble) provides a collection of useful tools and features that facilitate dynamic pagelet development. This chapter includes detailed information about pagelet development and configuration using the Pagelet Producer.
The Pagelet Producer acts as a proxy server, brokering transactions between client computers and external resources.
Services on external resources communicate with the Pagelet Producer via HTTP. For example, when a browser requests a page, the Pagelet Producer makes simultaneous requests to each external resource to retrieve the pagelet content for the page. The external resource reads the current user's preferences from the HTTP headers sent by the Pagelet Producer and sends back the appropriate HTML. The Pagelet Producer inserts the HTML into the page markup. Any images stored in the Image Service are retrieved and displayed by the browser.
A proxy server acts as a middleman, brokering transactions between a client computer and another server. This configuration is typically used to serve content to clients that would otherwise be unable to access the external resource, but it can be used to impose additional security restrictions on the client, including the use of policies. The proxy hides the external resource; to the end user, the content appears to come directly from the proxy server.
This architecture makes the Pagelet Producer the single point of access for content, and allows external resources to reside on a private network or behind a firewall. As long as the Pagelet Producer can connect to the external resource, users can view the content, even if they cannot access it directly. To the browser, the Pagelet Producer appears to be the source of content on the external resource.
When a user interacts with a service, any request made to a URL in the proxy is automatically rerouted through the Pagelet Producer. To the user, the content appears to come from the Pagelet Producer; the external resource is an unknown back-end system.
There are many benefits to this configuration. The most useful to services are:
The collection of URLs that should be proxied for a service is configured in the Resource editor. All URLs that use the Internal URL prefix configured for the resource or point to other proxied CSP or web resources will be proxied unless Enable URL Rewriting is deselected.
Keep the following warnings and best practices in mind when implementing services that use the proxy:
All pagelets are designed to be displayed with other pagelets. As explained in the previous section, the Pagelet Producer acts as a proxy, processing and combining pagelets from multiple applications to create a single, unified page with a range of functionality.
The code returned by a pagelet is parsed by the Pagelet Producer server and inserted into the HTML markup that makes up the page. Pagelets from the same back-end application can interact with each other within the page.
HTTP is a protocol used mostly for transferring web page content and XML between a server and a client. CSP is a platform-independent protocol based on the open standard of HTTP 1.1 that defines the syntax of communication between the Pagelet Producer and external CSP resources.
HTTP communication is made up of Requests and Responses. Requests and Responses are essentially lists of name-value pairs of metadata in headers, along with an optional body. The body is the data that is being transferred (an HTML page or XML file). The metadata in the headers is information about the Request or Response itself (what language the content is in, or how long the browser should cache it). The Request and Response each contain specific information, outlined next. For more detailed information on HTTP, see RFC 2616 (http://www.faqs.org/rfcs/rfc2616.html
).
The client sends the server an HTTP Request, asking for content. The Request body is used only for requests that transfer data to the server, such as POST and PUT.
HTTP Request Format:
HTTP Request Example:
The server sends back an HTTP Response that contains page content and important details, such as the content type, when the document was last modified, and the server type. The Response contains an error message if the requested content is not found.
HTTP Response Format:
HTTP Response Example:
Custom HTTP headers can be configured to include specialized information.
Note: Header size limits are controlled by the server that hosts the code. The standard limit for IIS/ASP is 60K. Java Application Servers range from 2K to 10K. These limits are generally configurable; see your server documentation for details. |
Services can also access standard HTTP headers, such as the Set-Cookie header or HTTP 1.1 basic authentication header. If you want to investigate HTTP further, you can view all the headers being passed back and forth between your browser and Web server using logging (as described in Section 63.3.4, "Debugging Pagelets"). HTTP is used in conjunction with SSL to serve up secure content. Single Sign-On (SSO) also uses HTTP headers for basic authentication.
CSP extends HTTP and defines proprietary headers to pass settings between Pagelet Producer and external CSP resources (i.e., Oracle WebCenter Interaction portlets). CSP outlines how these services use HTTP to communicate and modify settings. The latest version is 1.4, and is available here: http://download.oracle.com/docs/cd/E13158_01/alui/wci/docs103/devguide/references/CSP1.4.pdf
.
The custom CSP headers used to communicate system and user configuration variables can also be used by pagelets.
Table 63-1 Pagelet Producer Headers
Header Name | Description |
---|---|
User ID | The User ID of the currently logged in user. This value can be used to determine if the session has expired. If UserID=2, the default 'Guest' user is logged in; any other user's session has ended. |
User Name | The name of the logged in user. The user's name can be used to personalize display or pre-fill form fields. |
Image Service URL | The URL to the root virtual directory of the Image Service in the user's implementation of the Pagelet Producer. This location should be used for all static images used in services. |
Stylesheet URL | The URL to the current user's style sheet. In each implementation of the Pagelet Producer, the UI is customized. In some portals, users can choose between a selection of stylesheets. Using these styles ensures that pagelets appear in the style of the current user's implementation of the Pagelet Producer. |
Pagelet ID | The ID for the current resource (pagelet), and the instance ID for the current pagelet. This value is useful for appending to the names of HTML forms and client-side JavaScript functions to ensure unique form and function names on the page to avoid name conflicts. |
Host Page URL | The URL to the page that hosts the pagelet. Preference pages need this URL to return the user to the correct page after settings are configured. This value can also be used to allow a single pagelet to display different content on different pages. |
This section describes how to add pagelets to a JSF page in JDeveloper, to any web page, or to a page in WebCenter Portal: Spaces. Before you can add a pagelet to any web application, you must deploy and configure the resource and pagelet in the Pagelet Producer as described in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
This section includes the following subsections:
Oracle JDeveloper allows you to drag and drop pagelets onto a JSF page. In this section, you will register the Pagelet Producer with your WebCenter Portal: Framework application, add a pagelet to a JSF page, and view the page in a browser to test the pagelet.
This section includes the following subsections:
Before you can add a pagelet to a JSF page, you must register the Pagelet Producer with your application. You can register a Pagelet Producer in two ways:
To register a Pagelet Producer through Oracle JDeveloper:
For other methods of invoking the wizard, such as from the Resource Palette, see Section 1.6.2, "How Do I Access the Connection Wizards?"
myPageletProducer
. http://
hostname:portnumber
/pagelets
. Figure 63-1 Pagelet Producer in the Application Resources Panel
To add a pagelet to a page:
Figure 63-2 Pagelet in the Structure Window
For information about securing pagelets, see the section "Policy" and the section "Configuring Oracle Single Sign-On (OSSO)" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Once you have deployed a pagelet, you can insert it into a proxied or non-proxied page using JavaScript or REST.
This section includes the following subsections:
You can insert pagelets into non-proxied pages using a simple JavaScript function.
To activate this feature, add the following HTML snippet in the <HEAD> section of the page.
This script injects all CSAPI and pagelet inject functions into the page to display the pagelet. One of the sections injected is the following function:
This function injects a pagelet as a widget into the parent page. The method interface uses the following parameters:
iframe width=100% height=auto frameborder=0
. If omitted or left blank, the pagelet content is rendered inline. 'param1=value1¶m2=value2¶m3=value3'
. document.write()
when the injectpagelet
call is evaluated. true
, it sends the context_id
in the community ID header to the pagelet. Defaults to false
. none
. false
. Note: These arguments are positional; they must be provided in the given order. If you do not want to specify a particular argument, but do want to specify an argument that follows it, you must pass in an empty value ('') for the former. All arguments are optional except for library and name. |
The script also creates a new <div>
with a unique name that includes a reference to the injectpagelet
function. Several examples are shown below:
The injecteditor
function lets you add preference editors that enable users to set personal and shared preferences for pagelets that support this capability. This functionality is analogous to personalization and customization functionality in Oracle WebCenter Portal.
where:
context_id
is sent to pagelet in the community ID CSP header. iframe width=100% height=auto frameborder=0
. If omitted or left blank, the editor content is rendered inline. document.write()
when the injecteditor
call is evaluated. true
, it sends the context_id
in the community ID header to the pagelet. Defaults to false
. none
. Note: These arguments are positional; they must be provided in the given order. If you do not want to specify a particular argument, but do want to specify an argument that follows it, you must pass in an empty value ('') for the former. All arguments are optional except for library and name. |
REST stands for Representational State Transfer and is a simple way of providing APIs over HTTP. The basic principles of REST are:
Pagelet Producer REST APIs provide the following functionality:
The pagelet inject URL can be used in portals to specify the location of a remote portlet (this is how a pagelet can be used as a portlet). The inject URL can also be used as the src attribute of an IFrame tag in any HTML page.
The URL must use the following format:
http://
host:port
/pagelets/inject/v2/pagelet
/libraryname
/pageletname
?content-type=html
where libraryname
and pageletname
refer to the library and pagelet configured in the Pagelet Producer.
Note: When using the pagelet inject API as the URL for a Portlet Web Service in Oracle WebCenter Interaction, you must switch "pagelet" to "portlet" in the URL. For example, the above URL would become:
|
The query string arguments to the above call define how the pagelet is to be returned. The following parameters are defined:
Parameter | Description | Default |
---|---|---|
ifwidth | Sets the width of the IFrame; can be specified in percent '%' or pixels 'px', for example: ifwidth=500px. Can be set to 'auto' to automatically resize the IFrame to fit the content within. For details, see Section 63.2.2.3, "Using Automatic Resizing with IFrames". | 100% |
ifheight | Sets the height of the IFrame; can be specified in percent '%' or pixels 'px', for example: ifheight=500px. Can be set to 'auto' to automatically resize the IFrame to fit the content within. For details, see Section 63.2.2.3, "Using Automatic Resizing with IFrames". | No default |
ifborder | Sets the border of the IFrame. | 'none' |
ifalign | Sets the align rule within the IFrame, for example: ifalign=center. | No default |
ifdesc | Sets the description of the IFrame. | No default |
ifmarginheight | Sets the margin height; can be specified in percent '%' or pixels 'px', for example: ifmarginheight=500px. | No default |
ifmarginwidth | Sets the margin width; can be specified in percent '%' or pixels 'px', for example: ifmarginwidth=500px. | No default |
ifscrolling | Sets the scrollbars of the IFrame. Accepted values: yes/no/auto. | auto |
ifstyle | Sets the CSS style of the IFrame | No default |
ifclass | Sets the CSS class of the IFrame. | No default |
For example, the following URL points to the linkspagelet in the samples library:
http://
host:port
/pagelets/inject/v2/pagelet/samples/linkspagelet?content-type=iframe&csapi=true&ifheight=123px&ifclass=myclass
This URL should result in markup similar to the code below.
Note: The IFrame source points back to the inject API, but this time the content-type parameter is set to |
Two REST APIs are available to retrieve data from the Pagelet Producer:
The base URL for all requests is http://
host:port
/pagelets/restservice/pageletproducer/
.
Example 63-1 All Pagelets
Example 63-2 Pagelets By Library and Name
The Pagelet Producer pagelet inject API can automatically resize the IFrame that encapsulates pagelet content. The resizing is done so that the IFrame stretches to fit the content within. To use this feature, the ifwidth and ifheight parameters must be set to 'auto' as shown in the example below:
In addition, this feature relies on an external page on the same domain as the consumer page. This page is included into the pagelet IFrame as an internal hidden IFrame. This page collects the sizing information and passes it on to the parent consumer page. This page must be deployed in the same directory as the consumer page.
The example below resizes the pagelet IFrame after it finishes loading. To add dynamic auto-resizing capabilities to user interaction activities after the initial load, simply add more event listeners for mouse and keyboard events.
In WebCenter Portal: Spaces, you can add a pagelet to a page using Composer. By default, pagelets appear in the Mash-Ups folder in the Resource Catalog. To add a pagelet to a page, navigate to the pagelet in the Resource Catalog and select it.
For detailed information about how to add resources to pages in Spaces, see the section "Adding Resource Catalog Components to Pages" in Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
To configure a pagelet within a page, view the page in Edit mode and click the edit button (wrench icon) for the pagelet. The Pagelet Properties tab in the Component Properties dialog allows you to define pagelet parameters and IFrame options.
Figure 63-4 Component Properties Dialog: Pagelet Properties
This section provides information on building pagelets using the Pagelet Producer.
The Adaptive Pagelet Scripting Framework is a client-side JavaScript library that provides services to CSP pagelets and proxied pages. This section explains how to use the scripting framework to implement dynamic functionality in pagelets.
For a full list of classes and methods, see the JSPortlet API documentation.
For additional information on adaptive pagelets, see Section 63.3.1.5, "Adaptive Pagelet Development Tips".
In many cases it can be expensive and inefficient to send large amounts of HTML back in response to some HTTP request, if only a small part of the user interface needs to be changed. This is especially true with more complex user interfaces. In these cases, the response can be encoded in XML. The client-side response handler can then parse the XML, and update the user interface (or perform some other action) based on that response. Use the Structured Response design pattern to redraw a small area of the user interface after making an HTTP request, or to access a simple HTTP/URI type web service from a pagelet. The example code below (structuredresponse_portlet.html) accesses an RSS feed from a selection of news sites.
The adaptive pagelet scripting framework allows pagelets to respond to both page-level events and custom events raised by other pagelets.
The registerForWindowEvent
and registerOnceForWindowEvent
methods in the scripting framework provide pagelets with access to page-level events. For a complete list, see Section 63.3.1.2.1, "Page-Level Events for Use with the Scripting Framework". To register for notification of these events, pass in the name of the event and the name of the method that should be called when it occurs. When a page-level event is raised, the JavaScript event object is passed to the event handler as an argument. The scripting framework also allows pagelets to raise and respond to custom events using raiseEvent
and registerForEvent
. The Broadcast-Listener design pattern illustrates an important example of using notification services with session preferences. Users can select an item or perform some other action in a "broadcast" pagelet, which causes the content in other related "listener" pagelets to be redrawn. In the following example, the broadcast pagelet displays a form that allows you to enter a number in a text box.
When the user enters a number in the text box, the values in the listener pagelets change. The first listener pagelet displays the square root of the number entered in the broadcast pagelet.
The second listener pagelet displays the cube root of the number entered in the broadcast pagelet.
The following steps summarize how the pagelets work:
registerForEvent
) to register for events of type 'onBroadcastUpdate'. raiseEvent
) to raise an event of type 'onBroadcastUpdate'. Broadcast Pagelet
Listener Pagelet #1
Listener Pagelet #2
The scripting framework automatically has access to the following page-level events.
Table 63-2 Page-Level Events
Event | Triggered: |
---|---|
onload | immediately after the browser loads the page |
onbeforeunload | prior to a page being unloaded (browser window closes or navigates to different location) |
onunload | immediately before the page is unloaded (browser window closes or navigates to different location) |
onactivate | the page is set as the active element (receives focus) |
onbeforeactivate | immediately before the page is set as the active element (receives focus) |
ondeactivate | when the active element is changed from the current page to another page in the parent document |
onfocus | when the page receives focus |
onblur | when the page loses focus |
oncontrolselect | when the user is about to make a control selection of the page |
onresize | when the size of the page is about to change |
onresizestart | when the user begins to change the dimensions of the page in a control selection |
onresizeend | when the user finishes changing the dimensions of the page in a control selection |
onhelp | when the user presses the F1 key while the browser is the active window |
onerror | when an error occurs during page loading |
onafterprint | immediately after an associated document prints or previews for printing |
To refresh pagelet content in place, without affecting other content on the page, use the scripting framework to implement in-place refresh.
Many pagelets display data that is time sensitive. In some cases, users should be able to navigate across links within a pagelet without changing or refreshing the rest of the page. You can refresh pagelet content on command, associate the refresh action with an event (refreshOnEvent
), or program the pagelet to refresh at a set interval (setRefreshInterval
). The scripting framework also contains methods for expanding and collapsing pagelets. In the simplified example below, the refresh pagelet displays a "Refresh Portlet" button. Clicking the button updates the date and time displayed in the pagelet.
The in-place refresh is executed by calling the refresh()
method on the pagelet object instance. You can also set a new URL to be displayed within the pagelet upon refresh. (The title bar cannot be altered on refresh.)
To store and share settings within the client browser, use session preferences.
Pagelets can use preferences to communicate with each other, but accessing preferences usually requires a round trip to a database. Session preferences provide a way to store and share settings in the user's session within the client browser. The Master-Detail design pattern illustrates the most basic usage of session preferences. This design pattern splits control and display between two pagelets. For example, the "master" pagelet could summarize data in list form, and the "detail" pagelet could display details on each data item in response to user selection. In the example below, the master pagelet displays a form that allows you to enter a color code in a text box.
When the user enters a color code in the text box, the color in the detail pagelet changes.
For each onkeyup
event that occurs in the "Enter color" text box in the master pagelet, the following steps are executed:
Note: Shared session preferences must be specified by name on the Preferences page for the pagelet in the Pagelet Producer Console or they will not be sent to the pagelet. |
The adaptive pagelet scripting framework provides an easy way to detach the relationship between pagelets and use a common event interface for communication.
Note: The example below is oversimplified; the master pagelet makes a direct call to a JavaScript method of the detail pagelet. Unless the master pagelet takes extra measures to ensure that the detail pagelet is actually present on the same page, calls from master to detail could generate errors. |
Master Pagelet
Detail Pagelet
These tips apply to most pagelets that use the adaptive pagelet scripting framework.
onunload
event. innerHTML
property. The Pagelet Producer manages authentication with each proxied application based on the settings defined for the associated resource.
The Pagelet Producer provides an API for creating custom mappings to external credential stores, allowing you to authenticate users against a custom credential source.
The IVendorCredentialMapper
interface defines the Pagelet Producer interface for objects capable of obtaining an appropriate set of credentials needed for secondary authentication for a particular user in an application. To implement this interface, follow the directions below.
com.plumtree.runner.credentialmapper.IVendorCredentialMapper
interface. getCredential
and setCredential
methods of this interface to your credential vault. The simplified example below uses an internal class called VConnector
and calls VConnector.getInstance(). getCredentialsForDomain
. Note: This step is vendor-specific. It will probably include a network hop, since the credential store will most likely reside on another server. You must give the mapper a unique name, and localized ones if necessary. See the IVendorCredentialMapper API documentation for all required names. common.jar
, included with the Pagelet Producer distribution. The example below is simplified for illustration purposes.
For details on configuring resources to use credential mappings, see the section "Creating Pagelet Producer Resources and Pagelets" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
The Pagelet Producer allows you to modify pagelet functionality at runtime using custom injectors and parsers.
A web injector inserts content into a specified location in the proxied resource page. The content may be any text, including HTML, CSS, JavaScript, and pagelet declarations. An empty injector may also be used to remove unwanted content from a page. Injectors cannot be created for OpenSocial resources. While injecting simple HTML content has a limited use case, you can also inject JavaScript that directly modifies the pagelet's HTML markup.
To create a web injector, select the Injectors section under the resource you want to use and click the Create icon in the toolbar.
The injector can be applied to a subset of the resource by typing a URL pattern into the URL Filter field. The injector will be applied only to those URLs within the resource that begin with the text in the URL Filter box. If the box is empty or contains only a '/', the injector will be applied to the entire resource.
To restrict the injector to specific kinds of content, type a comma separated list of MIME types in the MIME Filter box. For example, text/html restricts the injector to HTML content, while text/css only restricts the injector to CSS content.
Define where in the resource's output the injection will be made:
The Enclose tag option identifies the unique string and replaces both the text and the enclosing tag with the content specified on the next page.
Figure 63-11 Pagelet Producer Console: Injectors - General Page
Enter the content to be injected on the Content page. This content may be any text, including HTML, CSS, JavaScript, and pagelet declarations.
For example, the following code could be injected at the top of a page. This example registers a handler function with the page load event and then uses the handler to modify the page markup (by finding and hiding the header and footer).
Custom parsers allow you to supplement or change built-in logic for parsing content and finding URLs. When the built-in parsers fail to identify URLs or identify sections that must not be rewritten as URLs, custom parsers can be used to change the default behavior. Parsers cannot be created for WSRP or Oracle JPDK portlet producers or for OpenSocial gadget producers.
To create a custom parser, select the Parsers section under the resource you want to use and click the Create icon in the toolbar.
Figure 63-12 Pagelet Producer Console: Parsers - General Page
For example, the regular expression XMLFile=(.*?)"
would identify URLs to XML files defined within a tag, as in <embed src="/i/flashchart/anychart_5/swf/OracleAnyChart.swf?>
XMLFile=http://apex.oracle.com/pls/apex/apex_util.flash?p=53557:1:74175370346201:FLOW_FLASH_CHART5_R45192463162785599619_en
"
.
The Pagelet Producer provides advanced logging traces for debugging pagelets. Logging is configured in the Settings section of the Pagelet Producer Console, where you can define different levels of logging for each Pagelet Producer component. (For details on Pagelet Producer configuration settings, see Managing the Oracle WebCenter Portal's Pagelet Producer in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.)
Figure 63-13 Pagelet Producer Console: Settings - Logging
The Pagelet Producer logs messages to the standard Oracle Diagnostic Logging facility. In Oracle WebLogic Server, the logs are stored at user-projects/domains/ <domain>/servers/<server>/logs/<server>-diagnostic.log
.
To view the HTTP requests and responses received and sent by the Pagelet Producer, set the HTTP component on the Logging Settings page to Finest. The example traces below were captured from a test environment.
Example 63-5 HTTP Request Received By Pagelet Producer
Example 63-6 HTTP Response Sent By Pagelet Producer
Example 63-7 HTTP Request Sent By Pagelet Producer
Example 63-8 HTTP Response Received By Pagelet Producer
To view the content proxied by the Pagelet Producer before and after transformation, set the Transform component on the Logging Settings page to Finest. The purpose of these traces is to log response content at different stages of transformation, allowing you to compare them and view the result of different transformers.The example traces below were captured from a test environment.
Example 63-9 Untransformed Markup
Example 63-10 Transformed Markup (Transformed by Transformer Class)
The Pagelet Producer can be used to present WSRP and Oracle JPDK portlets for use in any web application. For details on configuring the Pagelet Producer to connect to a WSRP or Oracle JPDK portlet producer, see Managing the Oracle WebCenter Portal's Pagelet Producer in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. The Pagelet Producer can also modify portlet markup at runtime as explained in the next section, Section 63.4.1, "Using Pagelet Chrome."
Pagelet chrome allows you to modify markup at runtime in pagelets created from portlets imported from a WSRP or JPDK portlet producer.
A pagelet chrome template is an HTML file that specifies:
The default chrome template displays the portlet name and a dropdown menu that allows the user to switch into different modes. The dropdown menu is dynamically populated with all the standard modes supported by the underlying portlet. Templates uses the following reserved tokens to identify key portlet elements, which the Pagelet Producer substitutes at runtime.
Table 63-3 Pagelet Chrome Template Tokens
Token | Description |
---|---|
$$PORTLET TITLE$$ | Portlet title |
$$REPEAT MENU ITEM$$ | Used to indicate the beginning of a repeating section for navigational items |
$$END REPEAT MENU ITEM$$ | Used to indicate the end of a repeating section for navigational items |
$$MENU ITEM URL$$ | Navigation URL (to switch portlet modes or window states) |
$$MENU ITEM$$ | Display name of navigational item (for example, Customize) |
$$TOKEN$$ | Unique identifier for pagelet instance on the page |
$$PORTLET CONTENT$$ | Portlet content |
pt://images | Tag used to indicate the imageserver URL |
The example below is a very simple pagelet chrome template:
Note: The pagelet chrome template file must be hosted on the classpath of the Pagelet Producer web application. If you configured Pagelet Producer to use an external image server, copy the files from ensemblestatic.war/imageserver/yahoo to your image server to properly render the default chrome template. |
To implement the chrome template, add it as a parameter to the pagelet inject URL (REST or JavaScript). For details on pagelet inject URLs, see Section 63.2.2, "Adding a Pagelet to a Web Page." For example:
/inject/v2/pagelet/pagelet_lib/pagelet_name?chrome=mychrome.html
injectpagelet(library, name, iframe_options, payload, params, context_id, element_id, is_in_community, chrome)
The value of the chrome parameter can be the name of the file containing the chrome template or the special reserved value "none
", which suppresses all chrome and sends back portlet markup only. If the chrome parameter is omitted, the default chrome is returned with the portlet markup. The default chrome template uses YUI menu control to display a gradient title bar and a DHTML dropdown menu for switching modes. (When ADF content is detected, a different chrome template is used by default. This template can be overridden with a custom template or with the standard default template by setting chrome=chrometemplate.html.)
Any OpenSocial gadget reachable by the Pagelet Producer server can be registered as a pagelet and used in any web application, including a portal. For details on registering OpenSocial pagelets with the Pagelet Producer, see Managing the Oracle WebCenter Portal's Pagelet Producer in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
The Pagelet Producer supports most of the standard OpenSocial APIs excluding OAuth. The complete OpenSocial API reference documentation can be found here: http://shindig.apache.org/shindig-1.1.x/shindig-features/jsdoc/index.html
.
The Pagelet Producer also allows gadgets to store preferences, retrieve WebCenter Portal profile and connection information, and access a user's activity stream using OpenSocial APIs. For more details on using these features, see the sections that follow.
In order for gadgets to request user-level data (preferences or people connections), the end user's identity must be established. If any OpenSocial gadgets need to access user-level data from the server, you must configure a security policy for the parent OpenSocial resource in the Pagelet Producer Console. The first time a user accesses an OpenSocial gadget, a login page will be presented. After the initial login, subsequent requests for OpenSocial gadgets will use the established user identity.
For details on configuring a security policy for a Pagelet Producer resource, see the Managing Pagelets chapter in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal
OpenSocial gadgets may use user preferences to store data at the container. User preferences are scoped to a particular user and may optionally be scoped to an appId (the gadget appId is the pagelet context ID). If you choose to use the OpenSocial gadget.Prefs API, the user preferences will be scoped to the user and pagelet instance. Alternatively, you may use the opensocial.DataRequest API to manage preferences at the user level that can be shared with other pagelets.
When registered as a pagelet, a gadget's user preferences are treated as pagelet preferences. In WebCenter Portal, for example, non-hidden user preferences can be edited by the end user using the Personalize button. Additionally, to simulate preferences shared between users, you may pass in user preferences via pagelet parameters. Note that a pagelet preference, if set, will always override the corresponding pagelet parameter (in other words, personalization takes precedence over customization).
Outside of WebCenter Portal, gadget-backed pagelets are provided with a simple chrome that displays the gadget title and buttons for accessing the preference editor and minimizing/maximizing the gadget. The chrome may be suppressed by passing in the value of 'none' to the chrome parameter in the Pagelet Inject API. The preference editor UI supports all four types of user preferences:
OpenSocial gadgets can query the current user's profile data and people connections via the standard OpenSocial APIs. To use this feature, you must manually target the WebCenterDS data source to the WC_Portlet server as described in Managing the Oracle WebCenter Portal's Pagelet Producer in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Note: The OpenSocial API cannot be used to update profile or connection information. |
The supported user profile fields are listed in the table below.
Table 63-4 User Profile Fields
OpenSocial Field | Type | Description |
---|---|---|
aboutme | string | A general statement about the person. |
addresses | Plural-Field <Address> | A physical mailing address for the person. |
appData | Plural-Field <AppData> | A collection of AppData keys and values, used for preferences. |
birthday | Date | The birthday of the person. The value MUST be a valid Date. The year may be set to 0000 when the age of the person is private or the year is not available. |
emails | Plural-Field <string> | E-mail address for the person. |
location | string | Physical address for the person. |
name | Name | The broken-out components and formatted version of the person's real name. |
organizations | Plural-Field <Organization> | Current or past organizational affiliation of the person. |
phoneNumbers | Plural-Field <string> | Phone number for the person. In addition to the standard canonical values for type, this field defines the additional values mobile, fax, and pager. |
photos | Plural-Field <string> | URL to a photo of the person. The value MUST point to an actual image file (e.g. a GIF, JPEG, or PNG image file) rather than to a web page containing an image. Note that this field SHOULD NOT be used to send down arbitrary photos taken by this user, but specifically profile photos of the contact suitable for display when describing the contact. |
preferredUsername | string | The preferred username of this person on sites that ask for a username (e.g. jsmarr or daveman692). |
status | string | The person's status, headline or shoutout. |
thumbnailUrl | string | The person's photo thumbnail URL, specified as a string. This URL MUST be fully qualified. |
OpenSocial gadgets can operate on a user's activity stream using OpenSocial APIs. The following operations are supported:
The following operations are not supported:
The supported activity stream fields are listed in the table below.
Table 63-5 Activity Stream Fields
OpenSocial Field | Type | Description |
---|---|---|
appId | Object-Id | The application with which the activity is associated. |
body | string | An optional expanded version of the activity. Bodies may only have the following HTML tags: <i>, <a>, , but this formatting may be ignored. |
externalId | Object-Id | An optional ID generated by the posting application. |
id | Object-Id | An ID that is permanently associated with the activity. |
postedTime | string | The time at which the activity took place in milliseconds since the epoch. |
priority | number | A number between 0 and 1 representing the relative priority of the activity in relation to other activities from the same source. |
title | string | The primary text of the activity. Titles may only have the following HTML tags: <i>, <a>, , but this formatting may be ignored. |
userId | Object-Id | ID of the user for whom the activity is defined. |
The Pagelet Producer supports the OpenSocial pubsub inter-gadget eventing model. A gadget may publish events over any number of arbitrary channels (defined by simple string names) in JavaScript. On the receiving end, a gadget may subscribe to receive events over any number of channels, again in JavaScript, and take appropriate actions based on the events.
For a complete JavaScript reference to the supported eventing API, see http://shindig.apache.org/shindig-1.1.x/shindig-features/jsdoc/symbols/gadgets.pubsub.html
.
The example that follows is simplified for illustration. For details on Pagelet Producer Console settings, see the Managing Oracle WebCenter Portal's Pagelet Producer chapter in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
The example that follows is simplified for illustration. For details on Pagelet Producer Console settings, see the Managing Oracle WebCenter Portal's Pagelet Producer chapter in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Note: If you choose to host OpenSocial gadget XML files, the files must be placed under an anonymous resource (with no security policy) or gadget functionality will not work correctly. |
To upload a gadget file, enter the path to the file or click the Browse button to navigate to the file, then click the Upload button to upload the file to the Pagelet Producer server.
To create a gadget file, use the editor on the Content page to enter and edit content.
This chapter describes how to add portlets to the pages of your WebCenter Portal: Framework application and the options that accompany this process.
This chapter includes the following sections:
This chapter does not cover Oracle JDeveloper or Oracle ADF page creation basics. It covers only those aspects of page creation that are specific to Framework application pages. Therefore, you should familiarize yourself with the information covered in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework before reading this chapter.
For information about creating portlets, which can then be consumed by Framework application pages, see the following chapters:
Oracle WebCenter Portal: Framework enables you to consume a portlet by registering its producer either with an application or with the Resource Palette from where you can add it to any application. After you register the producer, its portlets appear under the registered producer's name under the Connections node in the Application Resources panel or in the Resource Palette.
Your application can consume portlets that you build and portlets that you receive from a third party, such as a packaged-application vendor.
There are many options associated with portlet consumption. For example, you can choose to place portlets straight onto a page or nest them in a Composer component, you can adjust many attributes of the portlet tag, and you can wire portlets to each other.
Before you can add a portlet to a Framework application page, you must register the portlet's producer with the application. You can register portlet producers in two ways:
A portlet that is available in the Resource Palette can be added to any of your Framework applications by dropping it on the page as you would any other component. When you add a portlet from the Resource Palette, its producer gets registered with the application if that producer is not already registered with the application. You can drag and drop a whole producer connection from the Resource Palette into the Application Resources panel of the Application Navigator. This registers the producer with the application. Alternatively, you can right-click a producer in the Resource Palette and choose Add to Application from the context menu to register the producer with the currently open application.
JDeveloper provides wizards for registering both WSRP producers and Oracle PDK-Java producers.
Note: If your application is source controlled, you must manually create elements in the source control system for any new files created during producer registration. Any files that are already source controlled are checked out automatically by the producer registration process. |
This section includes the following subsections:
For more information about producers, see Section 58.2.3, "Deployment Type." For information about obtaining prebuilt portlets through Oracle, see Section 3.4, "Working with the Integrated WebLogic Server." For information about using JDeveloper's portlet creation wizards, see Chapter 60, "Creating Portlets with the Portlet Wizard." For more information about portlets, see Chapter 58, "Overview of Portlets."
When you register a WSRP portlet producer, you provide basic information that describes the producer's operational parameters. This information is used by the portlet-consuming application to communicate with the producer and with the portlets through the producer.
WebCenter Portal: Framework supports both WSRP 1.0 and WSRP 2.0 producers. The WSRP 2.0 standard, among others, provides support for inter-portlet communication and export and import of portlet customizations. You can leverage the benefits of WSRP 2.0 while building standards-based JSR 286 portlets.
The Register WSRP Portlet Producer wizard is the entry point for registering both WSRP 1.0 and 2.0 producers. When registration is successful, the newly registered producer displays in JDeveloper either in the Application Resources panel of the Application Navigator, or in the Resource Palette, depending on where you created the connection. You can then select portlets from the producer for placement on your application (.jspx
) pages.
Note: If you are registering a producer provided by Oracle WebLogic Portal, and the portlet uses ADF Rich Components, you should register the WSRP 2.0 WSDL URL to ensure that the portlet functions correctly. |
You also use the Register WSRP Portlet Producer wizard to register JSF portlets, which are portletized JSF applications or portletized ADF task flows. Once you create a portlet from a JSF application, you can deploy the portlet to a WLS instance and register the JSF portlet producer as you would register any WSRP portlet producer. The Oracle JSF Portlet Bridge exposes JSF applications and task flows as JSR 286 portlets. For more information, see Chapter 59, "Creating Portlets with the Oracle JSF Portlet Bridge."
To register a WSRP portlet producer:
Note: In the Register WSRP Portlet Producer wizard, if you click Cancel after you have clicked Finish, the registration is not canceled. |
For other methods of invoking the wizard, such as from the Resource Palette, see Section 1.6.2, "How Do I Access the Connection Wizards?"
Figure 64-1 The Specify Producer Name Page (WSRP Producer)
This should be the same project as the one in which you intend to consume the portlets.
You can change this option only if you invoked the wizard from the Application Navigator.
The syntax varies according to your WSRP implementation, for example, the sample WSRP producer uses the following syntax:
http://
host
:
port
/
context-root
/portlets/wsrp1?WSDL
http://
host
:
port
/
context-root
/portlets/wsrp2?WSDL
http://
host
:
port
/
context-root
/portlets?WSDL
(WSRP 1.0 for backward compatibility) Where:
host
is the server to which your producer has been deployed. port
is the port to which the server is listening for HTTP requests. context-root
is the Web application's context root. portlets[/wsrp(1|2)]?WSDL
is static text. The text entered here depends on how the producer is deployed. For example:
You can access the producer test page through the URL:
Figure 64-2 The Specify Connection Details Page (WSRP Producer)
Note: The proxy fields in this step default to the proxy preferences set in JDeveloper Preferences (from the main menu, choose Tools > Preferences, and then select Web Browser and Proxy). |
The connection to the producer is tested. If there are any problems, an error message displays. You must resolve any problems before you can continue.
Some producers define additional registration properties. In such cases, the properties are displayed in a table on this page of the wizard. You can enter values for these additional properties in the table. These properties are producer-specific and are used only at registration time. That is, they collect information that consumer applications send to producers at registration time; the producers store this information against the consumers and use it subsequently.
Figure 64-3 The Specify Additional Registration Details Page (WSRP Producer)
If you are registering the producer in the Application Resources panel, and plan to request authentication whenever the producer (and consequently, its portlet) is accessed, click Next and follow the remaining steps. If you do not want to configure security, click Finish.
If the producer declares user categories, when you click Finish, the Register WSRP Portlet Producer dialog displays. Click Yes and see Section 64.2.2, "How to Map a Producer's Declared User Categories to an Application's Defined Java EE Security Roles." Click No to decline this opportunity and complete the registration process.
Note: If you decline to map the user categories to security roles at this point, you can do so later by editing the producer registration. |
If you select this option, you do not want to complete the rest of the wizard. Click Finish.
When you select this policy, you must also specify the Recipient Alias.
Use this token profile if the WSRP producer has a different identity store. You must define an external application pertaining to the producer and associate the external application with this producer. The external application defined here is used to retrieve and propagate the user credentials to the producer. The producer verifies this against the identity store configured for the external application.
When you select this policy, you must also specify the Recipient Alias.
When you select this policy, you must also specify the Recipient Alias.
This policy does not require any keystore configuration.
Figure 64-4 The Configure Security Attributes Page (WSRP Producer)
When unauthenticated, the identity anonymous is associated with the application user. OWSM does not currently support the propagation of an anonymous identity, so you must specify an alternative identity here. Keep in mind though, that in this case, the Framework application has not authenticated the user so the default user you specify should be a low privileged user in the remote producer that is an appropriate identity to use for showing public content. For example, you may want to create a guest account in the identity store for this purpose. If the user has authenticated to the application, then the user's identity is asserted rather than the default user.
Note: If you specify a Default User, the remote producer must be set up to accept this information. |
The Default User field does not appear if you selected User Name Token with Password.
www.oracle.com.
This field appears only if you selected an SAML Token option from the Token Profile dropdown list, and Custom from the Configuration options. The issuer name is the attesting entity that vouches for the verification of the subject.
For more information, see Section 69.13.3, "Managing External Applications."
This option is available only if you selected User Name Token with Password.
If you selected Default as the configuration option, then the fields on the Specify Key Store page are disabled. Click Finish to complete the registration.
If the producer declares user categories, when you click Finish, the Register WSRP Portlet Producer dialog displays. Click Yes and see Section 64.2.2, "How to Map a Producer's Declared User Categories to an Application's Defined Java EE Security Roles." Click No to decline this opportunity and complete the registration process.
If you are not sure of the full path, click Browse to navigate to and select the file. The selected file should be a keystore created with the Java keytool.
Figure 64-5 The Specify Key Store Page (WSRP Producer)
The keystore password must be correct for the Store Type field and the Signature Key Alias dropdown list to populate.
If an incorrect keystore path or password is entered, then an error message appears stating that the password is invalid and must be corrected. All fields on this screen except for Store Path and Store Password are disabled until you specify the correct values.
This list populates automatically when the correct password is entered in the Store Password field. The Signature Key Alias is the identifier for the certificate associated with the private key that is used for signing. The key aliases found in the specified keystore are available in the list. Select the one to be used for signing.
This list populates automatically when the correct password is entered in the Store Password field. The key aliases found in the specified keystore are available in the list. Select the one to be used for encryption.
This certificate is used to encrypt the message to the producer.
This field is not displayed if you selected SAML Token with Message Integrity as the Token Profile in the Configure Security Attributes page of the wizard.
If the producer declares user categories, when you click Finish, a dialog displays asking whether you want to map the user categories to Java EE roles. Click Yes and see Section 64.2.2, "How to Map a Producer's Declared User Categories to an Application's Defined Java EE Security Roles." Click No to decline this opportunity and complete the registration process.
The user categories the producer declares come from the portlets it contains. For example, if the producer contains one or more JSR 286 portlets created with the Standards-based Java Portlet (JSR 286) Wizard, then any security roles added during portlet creation are included in the user categories the producer declares. Java EE Security Roles can be specified through the Framework application's web.xml
file properties.
For more information about security roles in JSR 286 portlets, see Section 69.17, "Securing Identity Propagation Through WSRP Producers with WS-Security."
This procedure continues forward from Section 64.2.1, "How to Register a WSRP Portlet Producer."
To map producer-declared user categories with application-defined Java EE security roles:
The User Categories dialog is also accessible when you edit producer registration settings. For more information see Section 64.2.4, "How to Edit Portlet Producer Registration Settings."
When you register a PDK-Java portlet producer, you provide basic information that describes the producer's operational parameters. This information is used by the portlet-consuming application to communicate with the producer and with the portlets through the producer.
When registration is successful, the newly registered producer is displayed in JDeveloper either in the Application Resources panel of the Application Navigator, or in the Resource Palette, depending on where you created the connection. You can then select portlets from the producer for placement on your application (.jspx
) page.
Note: In the Register Oracle PDK-Java Portlet Producer wizard, if you click Cancel after you have clicked Finish, the registration is not canceled. |
To register a PDK-Java portlet producer:
For other methods of invoking the wizard, such as from the Resource Palette, see Section 1.6.2, "How Do I Access the Connection Wizards?."
Figure 64-7 The Specify Producer Name Page (PDK-Java Producer)
This should be the same project as the one in which you intend to consume the portlets.
You can change this option only if you invoked the wizard from the Application Navigator.
Where:
host
is the server to which your producer has been deployed. port
is the port to which the server is listening for HTTP requests. context-root
is the Web application's context root. providers
is static text. The text entered here depends on how the producer is deployed. For example:
Figure 64-8 The Specify Connection Details Page (PDK-Java Producer)
PDK-Java enables you to deploy multiple producers under a single adapter servlet. The producers are identified by their unique service IDs. A service ID is required only when a service ID or producer name is not appended to the URL endpoint. For example the following URL endpoint requires the service ID, sample
:
However, the following URL endpoint, does not require a service ID:
Note: The proxy fields in this step default to the proxy preferences set in JDeveloper Preferences (from the main menu, choose Tools > Preferences, and then select Web Browser and Proxy.) |
For more information, see Section 69.13.3, "Managing External Applications."
This option is available only if you invoked the wizard from the Application Navigator, as external applications are scoped to individual applications.
When sessions are enabled, the server maintains session-specific information, such as user name. Message authentication uses sessions, so if the shared key is set, then this option should also be selected.
For sessionless communication between the producer and the server, deselect this option.
To provide additional details, click Next and follow the remaining steps.
Figure 64-9 The Specify Additional Registration Details Page (PDK-Java Producer)
When a producer is registered, a call is made to the producer. During the call, the consumer passes the value for Subscriber ID to the producer. This value for Subscriber ID is also passed every time a portlet call is made. If the producer does not see the expected value for Subscriber ID, then it might reject the registration call.
Note: Editing the producer registration to change the Subscriber ID after the initial registration has no effect. To specify a different Subscriber ID, you must reregister the producer. |
The shared key is used by the encryption algorithm to generate a message signature for message authentication. Producer registration fails if the producer is set up with a shared key and you enter an incorrect shared key here. The shared key can contain between 10 and 20 alphanumeric characters.
Both the WSRP and PDK-Java portlet producer registration wizards enable you to access and revise many of the values you entered when you registered the producer.
To edit portlet producer registration settings:
You can also go directly to a specific step by clicking the links in the navigation panel on the left side of the wizard.
You cannot edit the Producer Registration Name.
Note: While you can edit the value of the WSDL URL field, you can point to a different producer only if the new producer has access to the preference store of the old producer, or if the preference store of the old producer has been migrated to that of the new producer. |
The connection testing feature provides a means of testing the validity of a portlet producer connection.
To test a portlet producer connection:
If the failure dialog displays, consider editing the producer registration details and retesting the producer connection. Additionally, especially if the failure dialog takes a long time to display, ensure that the producer is available. For example, if the producer is provided through the Integrated WLS, ensure that the Integrated WLS is running, and then retest the connection.
When you refresh a portlet producer, the portlets from that producer are also refreshed. Newly added portlets and any updates to existing portlets become available to any applications that are consuming portlets from this producer.
Tip: When a portlet is removed from a producer, be sure to manually delete the portlet from all application pages on which it has been placed. For more information, see Section 64.6, "Deleting Portlets from Application Pages." |
To refresh a portlet producer:
If you no longer want to use a particular producer with your application, you can delete the producer. For information about deleting portlets and relevant page variables, see Section 64.6, "Deleting Portlets from Application Pages."
Note: if you delete a producer, any pages that consume portlets from that producer display an error message that the portlet is unavailable. The portlets continue to be unavailable even if you re-register the producer using the same name. |
To delete a portlet producer:
Placing a portlet on a Framework application page is a simple matter of dragging the portlet from the Application Resources panel or Resource Palette and dropping it on the page.
This section includes the following subsections:
Before You Begin
Before you can place a portlet on a page, there are a few preparatory steps you must perform before you can take this simple action. These include:
You can add a portlet to a page by dragging and dropping it from the Application Resources panel of the Application Navigator or from the Resource Palette.
To add a portlet to a page:
.jspx
file) to which you want to add the portlet. Tip: You can also double-click the page to open it. |
Under the selected producer, all portlets contained by that producer are listed.
You should drag the portlet onto a form on the page. If you do not, a dialog displays prompting you to create a form to contain the portlet. Select:
af:form
component to the page. h:form
or tr:form
component to the page, depending on the surrounding document tag. Do not select HTML - Form as this is not valid for portlets.
Note: You can include any Oracle ADF Faces component or task flow as a child component of a |
Note: If you are adding a PeopleSoft portlet to a page in a Framework application, you must set the For more information, see Section 64.4, "Setting Attribute Values for the Portlet Tag." |
When you add a portlet to a page, a portlet tag (adfp:portlet
or adfph:portlet
) is added to the page source. This is the tag that represents the portlet component. This tag includes attributes that you can edit using the Property Inspector, or in the page source, to further control the behavior and appearance of the portlet. For information about these attributes, see Section 64.4, "Setting Attribute Values for the Portlet Tag."
The type of portlet tag used is determined by the following:
adfp:portlet
tag is used. adfph:portlet
tag is used. adfp:portlet
tag is used and the project is automatically configured for rich client components. This is so that the look and feel of the portlet matches that of other components on the page. For example, if you created your page as described in Section 5.3, "Adding Pages to a Portal," the page is a rich client page. In this case, the portlet is added using the adfp:portlet
tag.
Example 64-1 A Rich Client Page Containing a Portlet
If you are working with an upgraded 10.1.3.2 application or an application that contains Trinidad components, the application uses HTML components, rather than rich client components. In this case, when you drag a portlet onto a page, the adfph:portlet
tag is used.
Example 64-2 A Trinidad Page Containing a Portlet
If the application page includes one or more Composer components, this may influence where the portlet is placed. For example, in the Structure panel, a portlet placed on a page with a cust:panelCustomizable
tag, would be placed as illustrated in Example 64-3:
Example 64-3 Hierarchical Placement of the Portlet Tag
Note: We recommend that you do not mix ADF Faces rich client components with HTML or Trinidad components on the same page. Doing so may produce unexpected results at runtime. Therefore, do not place a rich client portlet inside a Composer HTML component or an HTML portlet inside a Composer rich client component. |
For information about Composer tags, see Chapter 20, "Enabling Runtime Editing of Pages Using Composer."
Note: When you drop an instance of OmniPortlet onto your page, open the Property Inspector and ensure that the AllModesSharedScreen, under the Display Mode category, is set to |
When you add a portlet to a page, a portlet binding is added to the page definition file. This portlet binding includes attributes that specify whether the portlet should automatically listen for parameter changes and events (Example 64-4).
Example 64-4 Portlet Binding
Setting these attributes to true
(the default) means that any parameters or events raised that match those supported by the portlet (or that match an alias for one of the supported parameters or events) automatically cause the portlet to be updated accordingly. You can set these attributes to false
to disable this automatic parameter and event listening off. For example, your page might contain multiple instances of the same portlet that require values to come from different sources. If you disable automatic parameter and event listening, you must manually configure the portlet wiring.
Once you place a portlet on a page, right-click the page and choose Run. This displays the page and runs the portlet in your default browser using JDeveloper's Integrated WLS. Different portlets may require additional runtime configuration. Notably, the content of an OmniPortlet or Web Clipping portlet instance is defined at runtime. For more information about OmniPortlet, see Chapter 65, "Creating Portlets with OmniPortlet." For more information about the Web Clipping portlet, see Chapter 66, "Creating Content-Based Portlets with Web Clipping." For more information about portlets generally, see Chapter 58, "Overview of Portlets."
When running a portlet that has an Edit mode (in a Framework application, this renders as a Personalize icon (pencil icon) in the portlet header), the Personalize icon displays only to authenticated users (that is, users who have logged in). Anonymous or public users do not see the option to personalize the portlet. Some form of security must be implemented for the portlet-consuming application before users can personalize their view of a portlet. If you are a developer creating portlets and pages, you may want to test your portlet's Edit mode without creating a complete security model for your application. For information about how to add security to enable testing of a portlet's Edit mode, see Section 69.12, "Configuring Basic Authentication for Testing Portlet Personalization."
Note: To be able to add portlets to your page at runtime, you must add at least one portlet to that page at design time. Adding a portlet at design time ensures that the following is added to the <factory nameSpace="http://xmlns.oracle.com/portlet/bindings" className="oracle.adf.model.portlet.binding.PortletBindingDefFactoryImpl"/> <dtfactory className="oracle.adfdtinternal.view.faces.portlet.PortletDefinitionDTFactory"/> This entry is required to enable consumption of portlets at runtime. |
If a portlet supports parameters or events and the automatic parameter and event listening is enabled, any changes to the supported parameters and events (or to parameters and events that are aliased) automatically update the portlet.
When running a portlet from a producer associated with an external application, a link to update login information is displayed. Clicking the link displays a credential provisioning page for entering external application credentials. After specifying valid credentials the portlet displays content appropriately. For more information about external applications, see Section 69.13, "Working with External Applications."
In the source code view of a page, each portlet is represented by an adfp:portlet
tag (or adfph:portlet
tag), which includes a set of required and optional attributes. Required attributes, value
and portletType
, are provided automatically by the framework, and must not be altered. Optional attribute values are relevant when support for the attribute is built into the portlet. For example, you can set isAboutModeAvailable
to true
, but if no About mode has been defined for the portlet, then the attribute setting does not affect the portlet.
Portlets also support a set of style-related attributes, which are discussed more fully in Section 22.10, "Applying Styles to Components."
The portlet tag uses many attributes, which you can set at design time either through the JDeveloper Property Inspector or in the source code as attributes of the tag.
This section includes the following subsections:
The Property Inspector provides a quick and easy way to set attribute values for the portlet tag without having to edit the source code yourself.
To set attribute values for the portlet tag using the Property Inspector:
Tip: You can also double-click the page to open it. |
Repeat this step as often as required.
If you prefer working in source code, you can set attribute values for the portlet tag directly there.
To set attribute values for the portlet tag in source code:
Tip: You can also double-click the page to open it. |
Table 64-1 describes the common attributes of the portlet tag.
Table 64-1 Common Attributes of the Portlet Tag
Attribute | Value | Description |
---|---|---|
| Text string. For example: id="newsBrief" The value must follow a subset of the syntax allowed in HTML:
| The unique identifier of the portlet. This attribute is populated with a unique value by default when you add the portlet to a page. |
| Text string. For example: title="Announcements" | The portlet title, which is displayed in the portlet header. The value specified here takes precedence over any title specified elsewhere (for example, in the portlet markup). If no value is specified here, the portlet extracts its title from the portlet markup (response). If no value is specified either here or in the portlet markup, the portlet extracts its title from the portlet definition. Note: Supplying a value to the |
| Number expressed in pixels or as a percentage of available area:
| The width of the area to allow for portlet display. If the actual portlet width is larger than the |
| Number expressed in pixels, for example: height = 300px | The height of the area to allow for portlet display. If the actual portlet height is larger than the |
| URI to an image. For example: icon="coffee.png" In the Property Inspector, click the Property Menu icon next to the field and then choose Edit to locate and select the required image. The value must be an absolute URI or a URI that is resolvable relative to the current page or the application context root. The URI provided in the preceding example is stored at the application context root, therefore a full path is not required. | A URI specifying the location of an image to use as an icon, displayed to the left of the portlet title in the portlet header. You can use the icon to indicate the portlet's purpose, to reinforce branding, as a content indicator, or for some other reason. |
| One or more component IDs. For example: partialTriggers="_id1 _id2 componentID5" Separate component IDs with spaces. | The IDs of the components that trigger a partial update. The portlet listens on the specified trigger components. If a trigger component receives a trigger event that causes it to update in some way, this portlet also requests to be updated. |
Table 64-2 describes the appearance attributes of the portlet tag.
Table 64-2 Appearance Attributes of the Portlet Tag
Attribute | Value | Description |
---|---|---|
| minimized normal Default: | The default state of the portlet:
|
| auto false true Default: | Whether a change in portlet mode renders the new mode on a new page, rather than the page on which the portlet resides.
|
| auto false true Default: | Whether the portlet is rendered in an IFRAME:
For more information, see Section 64.4.12, "What You May Need to Know About IFRAMEs." |
| auto false true Default: | Whether a scroll bar is displayed:
|
| false true Default: | Whether the portlet header is displayed:
|
| false true Default: | Whether to display a shadow decoration around the portlet:
|
| false true Default: | Whether the portlet is rendered.
|
| dark light medium Default: | The style selector to apply to the skin used by the portlet:
This provides a way for you to apply a different look and feel to each portlet on an page. |
| Text string. For example: shortDesc="Portlet for entering display text in place." | A short description of the portlet. |
| always onHover Default: | Whether seeded interactions for the portlet are shown:
|
| menu none Default: | Whether to display the Move command in the portlet's Action menu:
There is a difference in the way that the Move command behaves at design time and at runtime. For more information, see Section 64.4.11, "What You May Need to Know About Maximize, Minimize, Restore, and Move." |
| menu none Default: | Whether to display the Remove icon on the portlet chrome:
There is a difference in the way that the Remove icon behaves at design time and at runtime. For more information, see Section 64.4.11, "What You May Need to Know About Maximize, Minimize, Restore, and Move." Note: This attribute is available only for the |
| always never Default: | Whether to display the resize handle at the bottom right corner of the portlet.
Note: This attribute is available only for the |
| chrome none Default: | Whether to display the Minimize icon on the portlet chrome:
There is a difference in the way that the Minimize icon behaves at design time and at runtime. For more information, see Section 64.4.11, "What You May Need to Know About Maximize, Minimize, Restore, and Move." |
Table 64-3 describes the behavior attributes of the portlet tag.
Table 64-3 Behavior Attributes of Portlet Tag
Attribute | Value | Description |
---|---|---|
| One or more component IDs. For example: partialTriggers="_id1 _id2 componentID5" Separate component IDs with spaces. | The IDs of the components that trigger a partial update. The portlet listens on the specified trigger components. If a trigger component receives a trigger event that causes it to update in some way, this portlet also requests to be updated. |
| false true Default: | Whether parameters in portlet links that point to the page on which the portlet is placed are made available to the page:
|
Portlet Modes attributes control the rendering of mode-switching UI actions, such as entering edit mode. The ability to render a portlet in a particular mode depends on the modes supported by the portlet and the user authorization. For example, if the isCustomizeModeAvailable
attribute is set to true
, but the action is not supported in the portlet, then the attribute setting does not affect the portlet.
Portlet Modes attributes, described in Table 64-4, are value binding expressions that evaluate to true
or false
:
true
means the portlet is allowed to render in the named mode. false
means the portlet is not allowed to render in the named mode. Table 64-4 Portlet Modes Attributes of the Portlet Tag
Attribute | Value | Description |
---|---|---|
| false true Default: | Whether to render an About command on the portlet's Actions menu. Users choose About to invoke the portlet's About mode. |
| false true Default: | Whether to render a Configure command on a JSR 286 portlet's Actions menu. Users choose Configure to open the portlet's Configuration settings. |
| false true Default: | Whether to render a Customize icon in the portlet header. Site administrators choose Customize to edit a portlet's default personalization data. |
| false true Default: | Whether to render a Details command on a PDK-Java portlet's Actions menu. Users choose Details to open the portlet in Full Screen mode. |
| false true Default: | Whether to render a Help command on the portlet's Actions menu. Users choose Help to open the portlet's Help page. |
| false true Default: | Whether to render a Print command on a JSR 286 portlet's Actions menu. Users choose Print to displays a printer-friendly version of the portlet. |
| false true Default: | Whether to render a Refresh command on the portlet's Actions menu. Users choose Refresh to redraw the portlet independent of any other content on the page (also known as a partial-page refresh). |
| false true Default: | Whether to render a Personalize icon in the portlet header. Users choose Personalize to alter their personal view of the portlet. This mode is equivalent to the Edit mode selection in the Standards-based Java Portlet (JSR286) Wizard. The Personalize icon displays only to authenticated users (that is, users who are logged in). It does not display to public or unauthenticated users. You must implement some form of application security for users to be able to personalize their portlet views. If you are a developer creating portlets, and you want to test the Personalize mode without creating a complete security model for your application, then see Section 69.12, "Configuring Basic Authentication for Testing Portlet Personalization." Note: A typical personalization setting is Portlet Title. You can set Portlet Title at design time, by providing a value for the |
| false true Default: | Whether to enable previewing of portlet content. This mode has no particular application in Framework applications, but it is used in Oracle Portal's Portlet Repository, where it renders as a magnifying glass icon, which users click to preview a portlet. |
Table 64-5 describes the style attributes of the portlet tag.
Table 64-5 Style Attributes of the Portlet Tag
Attribute | Value | Description |
---|---|---|
| One or more CSS styles. These should be in compliance with, at least, CSS 2.0 and take the following format: contentStyle="color:rgb(255,0,255); font-family:Arial Helvetica Geneva sans-serif;font-size:large;" | The CSS style to apply to the portlet content. Values entered here take precedence over styles specified in the |
| One or more CSS styles. These should be in compliance with, at least, CSS 2.0 and take the following format: inlineStyle="color:rgb(255,0,255); font-family:Arial Helvetica Geneva sans-serif;font-size:large;" | The CSS style to apply to the whole portlet. Values entered here take precedence over styles included in a CSS or skin on the specific portlet instance. For more information, see Understanding contentStyle and inlineStyle Properties. |
Table 64-6 describes the binding attributes of the portlet tag.
Table 64-6 Binding Attributes of the Portlet Tag
Attribute | Value | Description |
---|---|---|
| Name of a managed bean. For example: binding="#{frameActionsBean.Binding}" In the Property Inspector, click the Property Menu icon next to the field and then choose Edit to select a managed bean and specify the relevant managed bean property. | A binding reference to store the component instance. The binding reference binds an instance of the portlet to a managed bean property. Managed beans are any JavaBeans used by the application that are registered in the JSF |
Table 64-7 describes the customization attributes of the portlet tag.
Table 64-7 Customization Attributes of the Portlet Tag
Attribute | Value | Description |
---|---|---|
| false true Default: | Whether design time customizations of the portlet tag are allowed on this portlet. |
| Text string | The roles for which design time customizations are allowed. This attribute enables you to allow customizations, but restrict who can actually perform them. |
Table 64-8 describes the other attributes of the portlet tag.
Table 64-8 Other Attributes of the Portlet Tag
Attribute | Value | Description |
---|---|---|
| loose none strict Default: | Which DTD, if any, is specified in the
|
To accommodate the needs of the development environment, the behavior of the actions Minimize, Maximize, Restore, and Move for Show Detail Frame
and portlet
components differs between design time and runtime. At design time, these actions persist in a given WLS session, but do not persist over sessions (session means the time between starting and stopping WLS). At runtime, these actions persist both during a given WLS session and across sessions.
This difference has been introduced to enable an automatic reset of an application page at design time.
If persisting across sessions is not required at runtime, then a simple modification to the application's web.xml
file can turn it off. Go to the following parameter setting in the application's web.xml
file (Example 64-6):
Example 64-6 Persistence Setting in the Application's web.xml File
Replace it with the following (Example 64-7):
Example 64-7 Turning Runtime Persistence Off in the Application's web.xml File
If security has been implemented on the application, then the Minimize, Maximize, Restore, and Move actions display only to users with Customize privileges. They do not display to users with Personalize privileges. Customize users can test the effect of these actions by following these steps at design time:
Rendering a portlet directly on a page provides a better user experience as compared to placing it in an inline frame, or IFRAME. However, at times, it may be required to include the portlet markup inside an IFRAME. You can use the renderPortletInIFrame
attribute to determine whether or not a portlet should be rendered in an IFRAME.
The default setting of the renderPortletInIFrame
attribute is auto
. This causes the portlet consumer to attempt to rewrite the portlet markup whenever possible, so that it renders correctly within the Oracle ADF page without the need for an IFRAME.
However, in the following circumstances, the portlet is rendered within an IFRAME:
com.oracle.portlet.requireIFrame
container runtime option in the portlet.xml
file to true
. Note: Portlets created using the Oracle JSF Portlet Bridge have the |
In some circumstances, the portlet consumer may be unable to rewrite the portlet markup and JavaScript to accommodate the portlet in the Oracle ADF page. If this is the case, you may find that the portlet does not behave as expected, for example, buttons do nothing or you get JavaScript errors in the console. If this happens, you should set the renderPortletInIFrame
attribute to true
so that the portlet is always rendered in an IFRAME.
Some examples of when you should set renderPortletInIFrame
to true
are when:
Note: If you render a portlet within an IFRAME, then manipulating |
If you want to ensure that a portlet is never rendered in an IFRAME, for example for accessibility reasons, set the renderPortletInIFrame
attribute to false
. Note however, that HTML markup from a portlet that is not rendered in an IFRAME may interfere with other components on the Oracle ADF page.
For more information about the accessibility implications of using IFRAMEs, see Section 2.9, "Overview of WebCenter Accessibility Features."
When you copy portlets, the portlets and their copies must reside within the same application. For example, you can copy a portlet from one page in an application to another page in the same project in that application, or from one place on a page to another place on the same page. You can also copy a portlet from one project to another project in the same application, if the target project is configured for consuming portlets. The copies are references to the same portlet instance, so customizations or personalizations made to any instance of the portlet (original or copy) affect all the other instances.
Copying a portlet is more than a matter of copying and pasting the portlet view tag. It involves copying portlet-related entries from the application page's source. It may also involve copying portlet-related entries from the page definition file and removing duplicate portlet binding information or creating a new method in the copied portlet's binding bean.
When a portlet is copied, the target page must be an Oracle ADF Faces page. Any preexisting code on the target page must reflect that. This is quite easy to accomplish. When JDeveloper creates a new JSF page, it contains pure JSF tags. The first time you drop an Oracle ADF Faces component onto the page, tags are automatically updated to be Oracle ADF Faces tags. For example, an <html>
tag becomes <afh:html>
, <head>
and <title="title">
tags become <afh:head title="title">
, and so on. Therefore, a simple way to ensure the conversion of the target page to an Oracle ADF Faces page is to place any Oracle ADF Faces component on the target page. This performs any required code conversion for you automatically.
This section includes the following subsections:
Because all of the page's resources are available to both portlet instances when you copy a portlet to the same page, there is no requirement to copy portlet-related information from the page's Page Definition file. It is just a matter of copying and pasting the portlet's view tag, and assigning a unique identifier to the copy.
To copy and place a portlet on the same page:
Tip: You can also double-click the page to open it. |
Example 64-8 Code Fragment to be Copied When Copying a Portlet
id
attribute (Example 64-9). Example 64-9 Changing the Portlet ID
Note: On a given page, each portlet must have a unique ID. |
adfp:portlet
tag has a binding attribute, for example: Then either remove this binding, or create a new method in the binding bean by opening the managed bean class for this managed bean and defining the new method.
For example, if portlet1 is copied, the pasted copy becomes portet2 in the managed bean class, as shown in Example 64-10.
When you copy a portlet from one page to another in an application, portlet-related code must also be copied from the source page's Page Definition file. This section describes the steps related to both copying from one application page to another and from one application project to another.
To copy a portlet from one page to another:
Tip: You can also double-click the page to open it. |
Example 64-11 Source Page Code Fragment to Be Copied When Copying a Portlet
Portlets can reside only on Oracle ADF Faces pages. If the target page does not contain Oracle ADF Faces components, then ensure that the container objects—that is, any tags the portlet tag is nested in—use Oracle ADF tags.
If you are copying the portlet to a page in a different project, the target project must be configured for consuming portlets. To configure the project, you must register a portlet producer with the project. For information, see Section 64.2, "Registering Portlet Producers with a WebCenter Portal: Framework Application."
Example 64-12 Code Fragment to Be Copied From a Page Definition File
Note: When the portlet being copied includes parameters, be sure to include the copied portlet's portlet parameters and the page variables linked to the portlet parameters in the copy. |
If a page definition does not exist for the page, you are asked if you want to create one. Click Yes.
Paste the code between the <executables>
tags. You may need to add a closing </executables>
tag and ensure that the opening tag does not contain a slash (/
).
When you delete a portlet from an application page, if the portlet had parameters, then you should also delete page variables associated with those parameters from the application page's Page Definition file.
To delete a portlet and its related page variables from a page:
Tip: You can also double-click the page to open it. |
This deletes the portlet from the page and the portlet binding from the Page Definition file.
For example, if you deleted portlet1, you would also delete the highlighted variables in Example 64-13:
Example 64-13 Deleting Portlet-Related Page Variables from a Page Definition File
WebCenter Services Portlets is a preconfigured, out-of-the-box producer that enables you to expose WebCenter Portal service task flows in other applications as WSRP portlets or pagelets.
WebCenter Services Portlets provides the following portlets:
You can consume WebCenter Services Portlets in the following applications:
The WebCenter Services Portlets producer is a WSRP producer. As such, you register it with your application in the same way as you would any other WSRP producer.
Note: The WebCenter Services Portlets producer is a secured producer, so when you register the producer, you must use the same token as was used when configuring the producer in WebCenter Portal. For information about configuring the WebCenter Services Portlets producer, see the "Configuring WebCenter Services Portlets" section in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. |
This section includes the following subsections:
To consume WebCenter Services Portlets in Oracle Portal:
For information about how to do this, see the "Securing Access to Web Services Remote Portlets" section in the Oracle Fusion Middleware Administrator's Guide for Oracle Portal.
For information about how to do this, see the "Adding a Portlet to a Page" section in the Oracle Fusion Middleware User's Guide for Oracle Portal.
To consume WebCenter Services Portlets in Oracle WebLogic Portal:
For information about how to do this, see the "Adding a Producer" section in the Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal.
For information about how to do this, see the "Adding a Remote Portlet to the Portal Library" section in the Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal.
For information about how to do this, see the "SAML Security Between a WebLogic Portal Consumer and a WebCenter Framework Producer" section in the Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal.
For information about how to do this, see the "Adding Contents to a Page" section in the Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.
To consume WebCenter Services Portlets in Oracle WebCenter Interaction:
For information about how to do this, see the "Registering WSRP Portlet Producers" section in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Note: You must select the same Token Profile that was specified when configuring WS-Security for WebCenter Services Portlets. |
For information about how to do this, see the "Creating the Oracle WebCenter Pagelet Producer Remote Server" section in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Interaction at:
For information about how to do this, see the "Creating or Editing a Remote Pagelet Web Service" section in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Interaction at:
For information about how to do this, see the "Creating or Editing a Portlet" section in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Interaction at:
For information about how to do this, see the "Creating a Community Page" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Interaction at:
Each portlet provided by WebCenter Services Portlets defines various parameters that enable you to change the appearance or behavior of the portlet when you consume it in your application.
This section includes the following subsections:
Table 64-9 lists the parameters that are available for all the portlets provided by WebCenter Services Portlets.
Table 64-9 Common Parameters for WebCenter Services Portlets
Parameter | Description |
---|---|
| Specifies the width of the portlet on the consuming page. If not specified, the portlet takes up as much horizontal space as the page allows. |
| Specifies the height of the portlet on the consuming page. If not specified, the portlet height is determined by the portlet consumer. |
Table 64-10 lists the additional parameters available for the Document Manager portlet.
Table 64-10 Document Manager Portlet Parameters
Parameter | Description |
---|---|
| The name of the Oracle Content Server connection used by WebCenter Services Portlets. If no value is selected, the default connection specified by the application developer or administrator is used. For information about configuring content repository connections, see the "Registering Content Repositories" section in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. Default: The connection selected as default in the Create Content Repository Connection dialog box by the application developer, which can be changed by the administrator. |
| A list of disabled features for the portlet. Use commas or spaces to separate items. Valid values are exposed in the JavaDoc: Example: ${'search, advancedSearch, clipboard, dnd, rename, newfolder, upload, newwiki, checkin, checkout, editoffice, edithtml, delete, sidebars, history'} |
| A target layout for the task flow. Select from:
|
| The maximum number of rows to show in the portlet. If the listing of folders and files in the portlet is larger than the specified number of rows, the portlet displays a scroll bar. Default: Note: If you set |
| Specifies whether to disable and hide all content management operations:
|
| The currently focused resource. This value can be a folder ID or a document ID. |
| The name of the folder to use as the root folder in the current portlet instance. This is a content-scoping parameter that assists with determining the source and range of content to display in the portlet instance. You can specify an EL expression to set this value. Example: |
Table 64-11 lists the additional parameters available for the Discussion Forums portlet.
Table 64-11 Discussion Forums Portlet Parameters
Parameter | Description |
---|---|
| An identifier for an existing category in WebCenter Portal's Discussion Server to which the view should be scoped. When no value is supplied, it defaults to the appropriate root category of the discussions server. (This root category ID can be overridden by supplying an additional property named application.root.category.id in the connection.) For testing purposes, you may want to create a category through the discussions server administrator interface and then reference that category identifier here. |
| An identifier for an existing forum in your discussions server for which popular topics should be fetched. If both categoryId and forumId are given, then only categoryId is honored. |
| Determines if the portlet shows forums either in a category only or in subcategories. True means all forums under a given category/subcategory are shown; false means only the category's direct child forums are shown. The default value is false. Note: A value of true can impact performance. |
| Determines if the forums are grouped under the Category ID category or the topics are grouped under the Forum ID forum. True means the portlet displays the forums classified under categoryId; false means the portlet displays the topics associated with the specified forumId. The default value is false. This parameter works in combination with other parameters. |
Table 64-12 lists the additional parameters available for the Blogs portlet.
Table 64-12 Blogs Portlet Parameters
Parameter | Description |
---|---|
| Specifies whether or not to display blog post comments:
|
| Specifies how many blog posts to show before pagination is displayed and users can select to go to the next page. By default, up to 10 blog posts can be displayed on a blog page. |
| Specifies the unique identifier of the selected folder. The value can be specified in the following formats:
|
The Lists portlet does not include any additional parameters.
Table 64-13 lists the additional parameters available for the Polls Manager portlet.
Table 64-14 lists the additional parameters available for the Take Polls portlet.
The Worklist portlet does not include any additional parameters.
Table 64-15 lists the additional parameters available for the Announcements portlet.
Table 64-15 Announcements Portlet Parameters
Parameter | Description |
---|---|
| The forum ID in the discussions server under which announcement objects are maintained. Each application should create a forum on the discussions server. Enter that forum ID here, for example If this parameter is not specified, then amusements default to global announcements. |
Table 64-16 lists the additional parameters available for the Mail portlet.
Table 64-16 Mail Portlet Parameters
Parameter | Description |
---|---|
| Using the EL value type, enter a value of true to display the information associated with a mail message, such as its subject, sender, and, date sent, in a tabular format. If this parameter is set to false, then mail messages render in a list view. |
Table 64-17 lists the additional parameters available for the Activity Stream portlet.
Table 64-17 Activity Stream Portlet Parameters
Parameter | Description |
---|---|
| A field for specifying a custom query to filter streamed items. For more information, see Section 40.3, "What You Should Know About the Activity Stream Advanced Query Option." |
| A means of showing or omitting detailed information about the object in the current context (that is, in a popup or other contextual instrument).
When this parameter is true and the |
| A means of showing or hiding the Comments feature on streamed activities. Enter |
| A means of hiding the personalization option on the task flow instance. |
| A means of allowing or omitting an inline preview of files attached to streamed activities. Enter |
| A means of showing or hiding the Like link on a streamed activity. Enter |
| A means of showing or hiding the Share menu on streamed activities. Enter |
| The number of items to stream in a given task flow instance. |
| The form of pagination to use on a multipage stream.
|
| A means of streaming activities only from user profiles.
|
| The current user ID. Enter |
| A field for entering a comma-separated list of names of services from which to stream activities. Use this parameter to limit the display of streamed activities to only those associated with the specified service or services. Enter one or more service IDs, for example: oracle.webcenter.collab.announcement, oracle.webcenter.collab.forum For a list of valid service ID, see Table G-7. Note that all listed service IDs cannot be used because all services do not stream items to the Activity Stream. For example, the RSS service does not stream any activities. |
The Tag Cloud portlet does not include any additional parameters.
The portlet producer task flow (Producer) enables users to manage portlet producer connections at runtime.
For applications created using WebCenter Portal's Framework application template, the portlet producer task flow is available out of the box through the WebCenter Portal Administration console (Services tab). For details, see the chapter "Managing Services, Portlet Producers, and External Applications" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
In addition, just like other task flows, you can add the portlet producer task flow to your application pages. This might be especially useful if you are not using WebCenter Portal's Framework application template and the WebCenter Portal Administration console is therefore not part of your project. Special permissions are required to manage or view portlet producer connections through the Producer task flow:
AppConnectionManager
—Users with this role can register, modify, and delete portlet producer connections at runtime. AppConnectionViewer
—Users with this role can view portlet producer connections at runtime. By default, any user who is logged in (that is, has the authenticated-user
role) is granted this role. By default, users with the Administrator role can manage portlet producers. If you want other users to manage connections through the portlet producer task flow, you must grant them the AppConnectionManager
role.
To add the portlet producer task flow:
af:form
tag. AppConnectionManager
role to one or more test users, if required: TEST_PROD
. AppConnectionManager
role. For information about how to add a user and grant this role, see the section "Creating Test Users" in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
TEST_PROD
user defined in the previous step. The screen shown in Figure 64-10 appears. Figure 64-10 The Portlet Producer Task Flow
Note: At runtime, application administrators can grant users the |
This section provides information to assist you in troubleshooting problems you may encounter while using portlets. It contains the following subsections:
There is a set of tools available for both the consumer and producer to help identify and resolve issues with portlets.
If you encounter a portlet error message when a portlet is rendered, or if the portlet displays but you cannot interact correctly with it, there are some general steps using these tools that you should follow to diagnose the issue.
This section includes the following subsections:
The first step when you encounter a portlet error, is to identify which portlet producer and portlet instance is being invoked. Execute the portletDebugShow()
JavaScript from your browser to display this information in the main portlet content area.
To identify the portlet instance:
Tip: In Internet Explorer and Google Chrome, you must type this command in the Location field. If you paste the command into the field, the In Firefox 6 and above, you cannot enter JavaScript in the Location field, you must enter the command in JavaScript console. |
The ECIDs are unique IDs used to identify a portlet request. Use the ECIDs to correlate the messages across different consumer and producer log files using Fusion Middleware Control. The same ECID is propagated from the consumer to the producer. For more information, see the "Correlating Messages Across Log Files and Components" section in the Oracle Application Server Administrator's Guide.
Note: Broken portlets show two ECIDs: one for the request in which the error occurred and one for request in which the error was reported. For inline portlets (that is, portlets that are not displayed in an IFRAME), these two ECIDs are the same. For IFRAME portlets, for example Oracle JSF Portlet Bridge portlets, the ECIDs are different. This is because the error is reported in a later request than the one in which the original exception occurred. When checking the logs, you should look for both ECIDs, as either may contain relevant information. |
You can use this information in the subsequent diagnostic steps to help locate the issue.
Note: The ECIDs shown in the portlet diagnostic information do not reflect partial page rendering requests that have been made to the portlet producer (using the portlet consumer resource proxy). These requests may update the portlet, but the ECIDs are not recorded in the portlet diagnostic information. Errors that occur during these requests are logged on the producer and by the portlet resource proxy on the consumer but you cannot use the ECID information reported in the portlet diagnostic information to help you determine the ECIDs for the relevant log entries. |
Tip: In Internet Explorer and Google Chrome, you must type this command in the Location field. If you paste the command into the field, the In Firefox 6 and above, you cannot enter JavaScript in the Location field, you must enter the command in JavaScript console. |
The next step in diagnosing a portlet error is to access the Portlet Consumer Test Page (shown in Figure 64-11) to locate the portlet producer and, if necessary, test the portlet in isolation.
Figure 64-11 The Portlet Consumer Test Page
The Portlet Consumer Test Page contains three tabs:
After accessing the Portlet Consumer Test Page, you can perform further diagnostic steps.
This section includes the following subsections for using the Portlet Consumer Test Page to diagnose portlet issues:
The Portlet Consumer Test Page provides diagnostic information about the portlet consumer.
To access the Portlet Consumer Test Page:
Note: If the consumer application is secured, the Portlet Consumer Test Page can be accessed only by users granted permission to view those pages. |
The Producers tab of the Portlet Consumer Test Page lists all the producers that have been registered with the consumer application. If a portlet instance in your application displays an error message, you can view information about the producer that owns the portlet by selecting it on this tab.
To locate the portlet producer:
You noted this information in Section 64.9.1.1, "Identify the Portlet Instance."
You can use this information to identify potential issues with the producer.
If you have still not been able to identify the cause of the portlet error, the issue may lie with the portlet instance itself.
To locate and run the portlet instance:
You noted this information in Section 64.9.1.1, "Identify the Portlet Instance."
You noted this information in Section 64.9.1.1, "Identify the Portlet Instance."
The Sanity Checks tab of the Portlet Consumer Test Page (shown in Figure 64-12) provides a quick overview of the state of portlet communication in your application across all producers.
The Sanity Checks tab references portlet instances used within the consumer application. This list is configured by the application developer who chose the portlets to include and the parameters to pass to these portlets.
The checks on this page do not render the output in the UI, but simply create a runnable instance of the portlet under the covers and report any failures if any exception is returned by the portlet.
To perform sanity checks:
The results of the sanity tests are displayed in the Status column.
The Configuration tab of the Portlet Consumer Test Page (shown in Figure 64-13) enables you to identify the consumer configuration entries for portlet consumption. This tab displays settings defined in the adf-config.xml
file, for example, the minimum and maximum timeout values and the consumer version number. You cannot change these values as they are stored within the application; they are displayed for reference information only.
If you cannot identify the cause of the error in the consumer application, the next step is to use the Producer Test Page (shown in Figure 64-14) to identify potential issues with the portlet producer application.
Access to the main Producer Test Page is public, but links to the test pages for each portlet are accessible only to users granted permission on the underlying pages and task flows.
The Producer Test Page contains five sections:
A list of all the portlets within the producer. For Oracle JSF Portlet Bridge portlets, each portlet also provides a separate link to run the portlet as a servlet (this is a prerequisite to running them as portlets: if a portlet does not run as a servlet, it cannot run as a portlet).
Information on where the consumer preference information is stored.
The version number of the Portlet Producer Container.
Links to the Web Service Definition Language (WSDL) documents to use for registration.
A link to the WSRP SOAP monitor where users with the Monitor
or Admin
role can track the SOAP messages between the consumer and producer.
After accessing the Producer Test Page, you can perform further diagnostic steps.
This section includes the following subsections:
The Producer Test Page provides diagnostic information about the portlet producer.
To access the Producer Test Page:
To verify that an Oracle JSF Portlet Bridge portlet producer is running correctly, you must first verify that the producer application runs correctly through standard HTTP requests. If the artifacts the producer exposes as portlets do not run as servlets, they will not run as portlets.
To run a JSF portlet as a servlet:
If the resulting page or task flow does not render correctly, then there is a problem with the producer application that must be resolved before you can run the page or task flow as a portlet.
The SOAP monitor provides access to the SOAP requests between the consumer and producer when rendering a portlet. This is very useful in diagnosing problems at the communication level.
To examine the SOAP monitor:
Note: To access the SOAP monitor you must be a member of the |
Note: If, after rerunning the portlet and refreshing the SOAP monitor, you see no messages displayed, this indicates that there may be a security issue between the producer and the consumer. You must verify that the correct WS-Security settings are set up for the producer and consumer to communicate. |
To troubleshoot portlet issues, it is useful to add portlet log-handlers and loggers to the logging configuration file, logging.xml
.
Example 64-14 shows how to add the portlet log-handlers and loggers. The example assumes that you are running the consumer and producer applications on the same WebLogic Server instance. If you are running the consumer and producer applications on different instances, you must split them up appropriately.
Note: Add the log entries at the end of the file to ensure that they override any seeded settings. |
Example 64-14 Configuring Log Files for Troubleshooting Portlet Issues
The logging configuration file is located in:
The log file name is also defined in logging.xml
. By default the log file name is:
The message Portlet Consumer Error (shown in Figure 64-15) typically indicates that an error occurred within the operation of the portlet parts of the portlet consumer application.
Figure 64-15 Portlet Displaying a Portlet Consumer Error
Problem
An error has occurred within the operation of the portlet parts of the portlet consumer application. In other words, the error is unrelated to the remote portlet producer application.
Solution
Consult the diagnostic log file to determine the cause of the exception.
If the DebugErrorRenderer
is enabled, the cause exception is displayed in the portlet along with links to the log file. If running in production mode, then consult the consumer-side logs.
The exception that caused the error message to be displayed is logged. Wherever possible, a message is included in the log at the start of the exception stack to indicate for which portlet binding the exception occurred. Example 64-15 shows a message logged for a portlet error.
Example 64-15 Example Message Logged for a Portlet Error
Pay particular attention to the cause exceptions in the stack as this is likely to indicate what the real underlying problem is.
The cause is likely to be an internal error and the appropriate course of action is to contact Oracle Support.
If a Portlet Timeout is displayed in the area of the page that you would expect to contain a portlet (as shown in Figure 64-16), this means that the consumer waited for a configured period of time for the producer to respond and did not get a response during that time, or the response did not complete during that time. There are a number of possible causes.
Figure 64-16 Portlet Displaying a Portlet Timeout Error
Problem 1
The producer machine is overloaded.
Solution 1
Check the load on the producer managed server (the tools used to do this vary depending on the operating system that is running on the producer). If the load is high, check whether a particular process is causing this high load, and whether such a process could be run on another machine, or at a less busy time. If no single process is causing the high load, or if the Oracle WebLogic Server is causing the high load, and if the load is consistently high, consider whether the producer hardware is adequate, or whether it is necessary to upgrade it (or add further nodes to the cluster). Also consider adjusting the Oracle WebLogic Server configuration to increase the size of the request thread pool. For more information, see the Oracle WebLogic Server documentation.
Problem 2
The network is overloaded, or there are problems with the network affecting communication between the consumer and producer.
Solution 2
Check that you can ping the producer machine from the consumer machine. Check that you can access the producer's WSRP Producer Test Page in your local browser. If this works, check that you can access this same page from a browser running on the consumer machine. If any of these steps cause problems, and the machine is not overloaded, this could be a network problem, which should be investigated by a system administrator.
Problem 3
There is a deadlock (or a stuck thread) on the producer machine causing the request thread to hang.
Solution 3
This should not happen during normal operation. If it does occur, there will generally be an error in the producer's log files indicating the point at which the deadlock occurred. This may help diagnose the problem. In some cases, it may be possible to alleviate this by modifying the configuration of Oracle WebLogic Server. For more information, see the Oracle WebLogic Server documentation.
Problem 4
The producer application is running slowly (for example, due to processing large quantities of data).
Solution 4
In this case, the producer application may be processing large quantities of data, causing it to spend too long building the response. If the application will regularly deal with large quantities of information, it may be necessary to either add or improve producer hardware, or to increase the portlet timeout duration. The portlet timeout can be configured on the producer connection in the consumer application using Enterprise Manager or the WLST setWSRPProducerConnection
command. Additionally, minimum and maximum timeouts for all producer connections within the application can be configured within the portlet section of the adf-config.xml
file.
Problem 5
The producer application is waiting for a response from another resource, such as a database, that is taking too long (for example, if the database is overloaded).
Solution 5
Check that the resource in question is functioning correctly. If it is, the solution is same as Solution 4.
Problem 6
The portlet timeout values have been misconfigured such that the timeout period is too short.
Solution 6
Typically, the timeout for a portlet is set on the registration of the producer. This may have been set to a value that does not give time for the portlet to respond.
Also, the portlet section of the adf-config.xml
file allows minimum, maximum, and default values for portlet timeouts to be configured across the whole application. The maximum timeout imposes an upper limit on timeouts specified by portlet producers, so if the maximum timeout is too short, this could cause unwanted portlet timeout errors even if the timeout specified on the producer connection is longer.
When a section of the screen shows the Remote Portlet Communication Error message (as shown in Figure 64-17), and there is an otherwise blank region surrounding it, this area is expected to be filled with a portlet, which the application is not able to contact.
Figure 64-17 Portlet Displaying a Remote Portlet Communication Error
Problem 1
The producer is down.
Solution 1
It could be that the producer application is not running, or the managed server on which it is deployed is not started. In this case, it will need to be started. Identify the application that needs to be started based on the task being attempted at the time of the portlet failure.
Problem 2
The web services security is incorrectly configured.
Solution 2
Troubleshooting steps for web services security depend on the type of security profile being used, for example AuthN, SSL, or Message Security.
For more information about troubleshooting web service security, see the "Diagnosing Problems" chapter in the Oracle Application Server Web Services Security Guide.
Problem 3
The producer managed server cannot be reached.
Solution 3
The producer may be in a location that cannot be reached by the consumer application, due to intervening firewalls or incorrect routing rules. In an environment that is installed by Oracle's provisioning software, this should not be the case, but it is worth checking that you are able to access the WSDL endpoint for the producer from the machine hosting the consumer, by going to:
Where:
host
is the server to which the portlet producer is deployed port
is the port to which the server is listening for HTTP requests context-root
is the producer web application's context root For example:
If the portlet displays a Remote Portlet Error (as shown in Figure 64-18), this indicates that the producer responded with an error message. The error message is returned in the form of a SOAP fault message inside the response document. There are a number of reasons the producer might return an error. The best strategy to diagnose these errors is to first find the corresponding exception stack trace in the consumer diagnostic logs. This stack trace shows what kind of fault was returned by the producer, plus any further information required in the response. Some faults you may encounter are listed in the following sections.
Figure 64-18 Portlet Displaying a Remote Portlet Error
Problem 1
OperationFailedException
. This is the most common type of Remote Portlet Error and it is a catch-all for most unhandled exceptions raised in the producer application.
Solution 1
To resolve an OperationFailedException
, examine the exception in the consumer diagnostic logs. This generally shows any exception that was raised in the producer application to trigger the fault response as the final Caused by
exception.
If required, you can then examine the diagnostic logs on the producer application for more detail, or for any related exceptions that occurred prior to the fault being triggered. In some cases, the exception in the producer log indicates a problem that can be simply resolved, such as a database connection failure or configuration problem. In other cases, the exception might indicate a product bug.
Problem 2
InvalidRegistrationException
. This error indicates that the producer has not been properly registered with the consumer before the consumer attempted to communicate with it. This could also occur if the producer's preference store has been moved or deleted since the consumer registered it.
Solution 2
The most likely cause is a problem during provisioning. It is also worth checking the producer application's web.xml
file setting to ensure that the entry shown in Example 64-16 is present.
Example 64-16 Persistent Store Setting in web.xml
Problem 3
InvalidHandleException
. This indicates that the consumer has asked the producer to render, or otherwise interact with, a portlet instance that the producer does not know about. This could occur if the producer's preference store has been corrupted in some way since the portlet was added to the page.
Solution 3
This error is most likely caused by a problem during provisioning, or a missing persistentStore
setting in the web.xml
file, as described in Solution 2.
Problem 4
AccessDeniedException
. This indicates that the producer application decided that the current user did not have access to the portlet or task flow in question.
Solution 4
This could either be a legitimate error message or an indication of a configuration problem. In most cases, WebCenter Portal should deal with authorization errors gracefully, without a Portlet Remote Error being displayed.
OmniPortlet is a data publishing portlet that you add to your application at design time, and customize at runtime. It provides a runtime, wizard-based experience to allow page designers to publish data from a variety of data sources, including SQL, XML, web services, spreadsheets, and web pages to several different layouts, such as customizable charts and tables.
This chapter covers the information you may find useful if you are planning to use OmniPortlet in your Oracle JDeveloper environment. For information on how to use the OmniPortlet wizard, refer to Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
This chapter includes the following sections:
For information about registering and configuring OmniPortlet, see Section 64.2, "Registering Portlet Producers with a WebCenter Portal: Framework Application" and Section E.1, "OmniPortlet Configuration Tips."
Note: You can find more information about developing different types of portlets and information about producers and other portlet technologies in Chapter 58, "Overview of Portlets." |
OmniPortlet is a subcomponent of Oracle WebCenter Framework that enables developers to easily publish data from various data sources using a variety of layouts without writing any code. You can base an OmniPortlet on almost any kind of data source, such as a web service, a SQL database, spreadsheet (character-separated values), XML, and even application data from an existing web page. Figure 65-1 shows an example of a portlet created using OmniPortlet.
OmniPortlet enables the WebCenter Portal: Framework application developer and component developer to do the following:
To display personalized data, you can refine the retrieved data by filtering the results returned from a data source, and parameterize the credential information used to access secure data. Out of the box, OmniPortlet provides the most common layout for portlets: tabular, chart, HTML, news, bulleted list, and form.
As described in Chapter 64, "Consuming Portlets," you can add an OmniPortlet to a page created through Oracle JDeveloper. OmniPortlet is included in the Integrated WebLogic Server (Integrated WLS) that is installed with Oracle JDeveloper. After you start the Integrated WLS, you can register the OmniPortlet producer by using the Register Oracle PDK-Java Producer wizard. When this producer is registered, the portlets become available on the Oracle JDeveloper Resource Palette or in the Application Resources panel. For example, if you register the OmniPortlet producer as "OmniProducer," OmniPortlet displays in your IDE Connections list in the Resource Palette, as shown in Figure 65-2.
Figure 65-2 OmniPortlet in the Resource Palette
Note: For more information about:
|
After you register the portlet producer, you can simply drag OmniPortlet onto your *.jspx
page.
Note: When you add an instance of OmniPortlet onto your page in Oracle JDeveloper, open the Property Inspector for the portlet and ensure that the
|
For information on configuring OmniPortlet in Oracle JDeveloper, refer to Section E.1, "OmniPortlet Configuration Tips."
After you add an OmniPortlet to your application at design time, you can customize the content, layout, and other options, by running your application to a browser. This section provides a high-level introduction to the runtime customization experience. For more detailed information on using and customizing this portlet, refer to Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Note: For more information about configuring OmniPortlet, see Appendix E, "OmniPortlet Configuration Tips." |
The OmniPortlet wizard initially contains five steps. When you first define your OmniPortlet, you set the data source type, data source options, filter options, view options, and layout. When you have completed these steps of the wizard, you can reenter the wizard by clicking the Customize link for the portlet. When you reenter the wizard, you can change the definitions on the Source, Filter, View, and Layout tabs.
Note: On the IBM Linux on Power platform, if the action buttons (Next, Previous, Finish, and Cancel) are minimized to dots when defining the OmniPortlet, increase the stack size shell limit to unlimited and restart the |
You can use several different data sources with OmniPortlet:
For more information on using these data sources with OmniPortlet, refer to the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
This section provides information to help you troubleshoot problems you may encounter while using OmniPortlet.
Note: As the OmniPortlet producer exists and executes in a tier different from the Framework application and does not have access to the session information, you must expose XML files as PUBLIC in order for OmniPortlet to access them. |
Cannot Define OmniPortlet Using the Define Link
You are not able to define the OmniPortlet at runtime.
Problem
OmniPortlet only supports a RenderPortletInIFrame
value of true
, meaning that OmniPortlet must be rendered within an IFRAME. Therefore, the OmniPortlet property, RenderPortletInIFrame
, must be set to true
. In the Property Inspector, the RenderPortletInIFrame
property is available under Display Options.
Currently, the RenderPortletInIFrame
property has a value of false
. Consequently, when you click the Define link at runtime, the Type tab may not display and you cannot proceed with defining the OmniPortlet.
Solution
You can choose Customize from the Action list to define OmniPortlet, or select the OmniPortlet in the Structure window in Oracle JDeveloper, and in the Property Inspector, set RenderPortletInIFrame
to true
.
Web Clipping is a publishing portlet that enables you to integrate any web application with your WebCenter Portal: Framework application. Web Clipping is designed to give you quick integration by leveraging the existing user interface of a web application. With Web Clipping, you can collect web content into portlets in a single centralized web page. You can use Web Clipping to consolidate content from web sites scattered throughout a large organization.
This chapter includes the information you are required to know to use Web Clipping in your Oracle JDeveloper environment. For information about how to use Web Clipping at runtime, see the "Working with the Web Clipping Portlet" chapter in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
This chapter includes the following sections:
For information about additional Web Clipping portlet producer configuration such as repository and proxy settings and producer security, see Appendix E, "Additional Portlet Configuration."
For information about the different types of portlets, producers, and other portlet technologies, see Chapter 58, "Overview of Portlets."
With Web Clipping you can clip an entire web page or a portion of it and reuse it as a portlet. You can clip basic and HTML-form-based sites. Use Web Clipping when you want to copy content from an existing web page and expose it in your Framework application as a portlet.
Web Clipping supports the following features:
Web Clipping supports various login mechanisms including form- and JavaScript-based submission and HTTP Basic and Digest Authentication with cookie-based session management.
Fuzzy matching enables the Web Clipping engine to correctly identify a web clipping and deliver it as portlet content even if the web clipping is reordered within the source page or if its character font, size, or style changes.
Personalization enables you to expose input parameters that end users can modify when they personalize the portlet. Parameters can be exposed as public parameters that you can map as page parameters. This feature enables end users to obtain personalized clippings.
You can use external applications and leverage Oracle Single Sign-On to clip content from authenticated external web sites.
Inline rendering enables you to set up Web Clipping portlets to display links within the context of the portlet. When a user clicks a link in the Web Clipping portlet, the results display within the same portlet. You can use this feature with internal and external web sites.
Web Clipping supports proxy authentication, including global proxy authentication and authentication for each user. You can use this feature if proxy servers require authentication. You can specify proxy server authentication details, including type (Basic or Digest) and realm in the provider.xml
file. In addition, you can specify a scheme for entering user credentials:
For more information, see Section E.2.2, "HTTP or HTTPS Proxy Configuration."
Web Clipping enables you to clip content from HTTPS-based external web sites if appropriate server certificates are acquired. For information about server certificates, see Section E.2.3.1, "Adding Certificates for Trusted Sites."
By default, the Web Clipping provider supports only HTTP challenge-based authentication methods, such as Basic and Digest and form submission logins. To support custom authentication methods, such as Kerberos proxy authentication, you can use the Web Clipping Transport API. For more information, see Section 66.4.1, "Using the Web Clipping Transport API."
Web Clipping provides basic support of pages written with JavaScript, applets, and plug-in enabled content, retrieved through HTTP GET and POST methods of form submission.
Web Clipping also supports clipping of content from pages written with HTML 4.01, including:
<applet>, <body>, <div>, <embed>, , <object>, , , <table>,
and
tagged content <head>
styles and fonts, and CSS Web Clipping provides globalization support in URLs and URL parameters. For information about how Web Clipping determines the character set of clipped content, see Section 66.5, "Current Limitations of Web Clipping."
Web Clipping definitions are stored persistently in a repository. By default, in JDeveloper, the Web Clipping producer is configured to use the file-based Oracle Metadata Service (MDS) as a repository. If you prefer, you can use a database schema for your Web Clipping repository. For information about configuring a Web Clipping repository, see Section E.2.1, "Web Clipping Repository Configuration."
Any secure information, such as passwords, is stored in an encrypted form, according to the Data Encryption Standard (DES), using Oracle encryption technology.
You can add a Web Clipping portlet to a JSP document created through JDeveloper. The Web Clipping portlet producer is included in:
WLS_Portlets
managed server in the default domain in a full Oracle Fusion Middleware installation To add a Web Clipping portlet to your application:
During this step, you must provide the endpoint URL, for example:
You can choose to register the Web Clipping portlet producer from the WLS_Portlets
managed server or Integrated WLS.
When the producer is registered, portlets become available either in the Application Resources panel or the Resource Palette.
.jspx
page. For more information, see Section 64.3, "Adding Portlets to a Page." If you are using a PanelCustomizable
or ShowDetailFrame
component, then drag the portlet on top of that component instead of af:form
. In the Structure pane, the Web Clipping portlet must display under the PanelCustomizable
or ShowDetailFrame
component. In the Page Editor, the portlet must display inside the PanelCustomizable
or ShowDetailFrame
component.
Note: When you add an instance of Web Clipping to your page in JDeveloper, open the Property Inspector for the portlet and ensure that the
|
.jspx
page and choose Run. The Web Clipping portlet displays in your default browser.
Note: To clip SSL-enabled web sites, you must add certificates of those sites to the certificate store. You are not required to add certificates of SSL-enabled web sites that use Equifax, VeriSign, or Cybertrust certificates because these certificates are included in the default certificate store. For information about adding certificates, see Section E.2.3.1, "Adding Certificates for Trusted Sites." |
You can leverage Oracle Single Sign-On to integrate content from external web sites that require authentication, into a Web Clipping portlet.
Note: You can associate only one external application with a producer. For each external application, you must register a new producer. Framework application users access the authenticated content by using their user name and password for that system, not your credentials. |
To integrate an external application that requires authentication:
While registering the producer by using the Register Oracle PDK-Java Portlet Producer wizard, on the Specify Connection Details page, select the Associate Producer with External Application checkbox, and from the list of values, select the external application that you just registered. The Enable Producer Sessions checkbox gets selected automatically.
Figure 66-1 shows the external application named MyOracleSupport associated with a Web Clipping producer.
Figure 66-1 Associating a Web Clipping Producer with an External Application
.jspx
page. .jspx
page and choose Run. Figure 66-2 shows the login screen of an external application named MyOracleSupport.
Figure 66-2 Logging into the Integrated External Application
The Find a Web Clipping page displays, with the default URL for the external application displayed in the URL Location field (Figure 66-3).
You can now select any section of a web page that you intend to display in your Web Clipping portlet. For information about how to customize a Web Clipping portlet, see the "Working with the Web Clipping Portlet" chapter in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
After you clip the required page of the external application, the web clipping, even though it is from a page requiring authentication, is available in your portlet.
Web Clipping supports certain advanced features. You can configure custom authentication methods by using the Web Clipping Transport API and rewrite image links to use a resource proxy.
This section includes the following subsections:
To support custom authentication methods, you can use the Web Clipping Transport API. To extend the Web Clipping transport layer to support custom authentication methods, you must perform several implementation and deployment procedures.
This section includes the following subsections:
If you want to support a custom authentication method, such as Kerberos, you must first implement your own transport classes.
To implement custom transport classes:
oracle.portal.wcs.transport.http.HttpTransportLiaison
interface. In Web Clipping, this interface is used to abstract the HTTP transport layer. By default, the two use cases of this interface are manifested by the following implementations:
HttpClientStudioTransportLiaison
, which handles HTTP transport in Web Clipping Studio mode HttpClientProviderTransportLiaison
, which handles HTTP transport in Web Clipping Producer show mode To support more authentication methods, you must override the addRequestHeaders
methods for both the Studio and Provider HttpClientTransportLiaison
implementations to add your own authentication-specific headers. For more information, see the Oracle WebLogic Server Web Clipping Transport API Reference.
For example, to compile the new subclasses, use the following command:
javac -classpath
path_to_wcejar
-d classes/
Where, path_to_wcejar
refers to the path to the wce.jar
file.
To create the JAR file, for example, run the following command from the classes
directory:
jar cvf ../
mytransport.jar
Where, mytransport.jar
refers to the JAR file users want to create.
After implementing the new transport classes, you must deploy the JAR file to support the custom authentication method.
To deploy the JAR file:
web.xml
file for the Web Clipping producer by making the following modifications to the context parameters defined for HttpClientProviderTransportLiaison
and HttpClientStudioTransportLiaison
: oracle.webclipping.provider.TransportLiaisonClass
to the name of the new class extended from the HttpClientProviderTransportLiaison
class. oracle.webclipping.studio.TransportLiaisonClass
to the name of the new class extended from the HttpClientStudioTransportLiaison
class. Web Clipping enables you to rewrite image links to use a resource proxy. To enable this feature, you must add the following entry to the web.xml
file of the Web Clipping producer:
When you use Web Clipping, you should be aware of the following limitations.
document.write
JavaScript method to modify the HTML document being written, then you may not be able to clip content from the site. mod_osso
), you cannot clip directly through those partner applications in an authenticated manner. However, you can use partner applications through the external application framework. OraRef
, to specify a style within an HTML tag, rather than using an HTML tag name, such as <A>
, as the name of the style. <A>
, as the name of the style, and a second portlet on the same page does not use a CSS, the second portlet is affected by the style instructions of the CSS of the first portlet. <A>
, as the name of the style, then the style that is displayed depends on the browser. Content-Type
in the HTTP header for the charset
attribute. If this is present, then it assumes that this is the character encoding of the HTML page. charset
attribute is not present, then Web Clipping checks the HTML META
tag on the page to determine the character encoding. META
tag is not found, then Web Clipping uses the charset
in the previous browsed page. If this is the first page, then it defaults to the ISO-8859-1 character encoding. charset
for Content-Type
or META
tag is not supported (for example, if the charset
was specified as NONE
), then Web Clipping uses the default character set, ISO-8859-1, not the charset
in the previously browsed page. This section provides information to help you troubleshoot problems you may encounter while using Web Clipping.
Encountered "x" at line n, column n. Was expecting one of: "x", "y" ...
Parser error message written to the log file.
Problem
The web content displayed in the Web Clipping portlet contains invalid HTML or JavaScript.
Solution
This is a site-specific issue, not a Web Clipping error. Contact the site's administrator for assistance.
Personalization for WebCenter Portal delivers targeted content based on both user and application context. WebCenter Portal's Personalization also provides a run-time system and associated tools that allow the declarative definition of application flow.
This chapter describes how to integrate Personalization into a WebCenter Portal: Framework application and includes the following sections:
For more information about Personalization, see:
Personalization provides a dynamically derived user experience for your WebCenter Portal application. Personalization evaluates defined sources of input data, generates a decision based on that evaluation, and applies this information to a declaratively defined Personalization scenario. Personalization, for example, can return content or change application flow based on information about a user in a Human Resources database, targeting the application experience for that specific user.
This section provides an overview of the features and requirements of Personalization, and contains the following subsections:
Figure 67-1 shows the architecture and out-of-the box services and components that comprise Personalization. These and other Personalization components are described in:
Figure 67-1 Personalization Services Architecture
This section describes the role of the Personalization Conductor. The Conductor is the heart of the Personalization engine, and contains and runs the units of work called scenarios. The Conductor runs the prepared scenarios, and provides access to provider extensions that plug into the Conductor. These aspects of the Conductor are described in the following sections:
A scenario is defined by a script you create using the Scenario Editor in JDeveloper (or provide as an XML file) based on a simple syntax that allows conditional statement evaluation resulting in the return (to the client) of some form of content. Based on function provider expressions, a script action may then return filtered content to the client application using a Data Provider and a query. A scenario, rather than returning targeted content, can also be used to make dynamic changes to application flow, resulting in a personalized user experience within the application.
In JDeveloper, you can use the Scenario Editor to graphically design your scenario. You can also create XML file-based scenarios. See Section 67.2.2.4, "Specifying Scenario Flow Using Node Types" and Section 67.2.3, "Creating File-Based Scenarios" for more information about creating scenarios.
As well as returning content targeted to a specific user, scenarios executing within the Conductor can also control application flow, render user interface components, and execute application-related events. Using the Conductor's public Java and Expression Language (EL) API, you can provide seamless integration with an existing Java or Web-based application. See Chapter 68, "Using Personalization APIs Externally" for more information about using Java and EL APIs.
The Property Service uses property sets to organize sets of user or application data, and property definitions to assign a data type to property data. You can extend the Property Service to access additional user profile data in an enterprise LDAP repository, or to access additional repositories such as Oracle MDS. For more information about the Property Service and property sets, see Section 67.1.3, "Personalization Property Service."
Providers provide a way to access external resources within your scenario. As well as three out-of-the-box providers for the Property Service, Content Server Provider (CMIS), and Activity Graph, the Conductor also supports an extensible architecture that lets you implement and access custom providers from within your Scenarios. For more information about providers, see Section 67.1.4, "Personalization Providers."
This section describes the Personalization Property Service. The Property Service provides a simple yet scalable way for developers to access user data.
This section includes the following subsections:
The Property Service uses Java and REST APIs to store and retrieve properties about a user, such as their age or gender, or other information such as the current time. These properties are part of a property set. A property set can have a schema defined (the schema defines types for properties), or it can be created on demand without a schema. A property set can have properties that are retrieved from different locations such as the Identity Store LDAP server, a file, or using a SQL query. For more information about using Java and REST APIs, see Chapter 68, "Using Personalization APIs Externally"
The Property Service uses the default Personalization cache (or Coherence cache if available) and by default stores property sets in a database. The Property Service is also extensible allowing additional repositories such as Oracle MDS to be configured.
Figure 67-2 Property Service Architecture
The Property Service uses property sets to organize sets of user or application data, and property definitions to assign a data type to property data. The existing user profile data in an enterprise LDAP repository can also be made accessible by extending the Property Service. See Section 67.2.2.5, "Defining Property Sets and Property Locators" for more information about the property sets. In a JDeveloper project for a WebCenter Portal application, the PropertySet Editor creates property namespace files containing namespace
, PropertySet
, and Property
definitions.
A property locator is invoked by the Property Service to access external stores of properties. For example, Personalization provides an out-of-the-box People Connections property locator that uses the People Connections REST service to access profile information for users. For more information about property locators, see Section 67.2.2.5, "Defining Property Sets and Property Locators." For more information about the People Connections property locator, see Section 67.1.4.1.4, "People Connections Locator."
A provider is an interface point for the Conductor that lets it communicate with external services. Personalization provides out-of-the-box providers for the Property Service, Oracle WebCenter Content: Content Server, and Activity Graph, and a locator used by the Property Service provider to allow integration with People Connections. There are also two types of custom providers you can implement: data providers and function providers.
This section describes the out-of-the-box providers and the two types of custom providers in the following subsections:
This section describes the out-of-the-box providers you can access from within your scenarios, and a locator used by the Property Service provider to allow integration with People Connections.
This section contains the following subsections:
The Property Service Provider allows integration with the Property Service. This provider allows you to retrieve property sets for a particular property set definition, retrieve a property set by name, or return a specific property from a property set. For more information about the Property Service Provider, see Section 67.2.2.8.1, "Using the Property Service Provider."
The CMIS Provider provides services to retrieve and search for content from standards-based CMIS (Content Management Interoperability Services) content servers, specifically provided by the Oracle WebCenter Content Server. The CMIS Provider also has utility function providers to convert results to simplified form. For information about integrating the CMIS Provider, see Section 67.2.2.8.2, "Using the CMIS Provider." For information about creating and editing connection configuration for the Content Server provider, see "Configuring the REST Service Identity Asserter" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
The Activity Graph Provider (ActivityGraphProvider) provides integration with the Activity Graph engine (the basis for the Activity Graph service), which provides recommendations about what a user may be interested in connecting with based on analytics within WebCenter. For example, the Activity Graph Provider method recommendedUsers
, queries the Activity Graph engine for a list of users that a given user might want to connect with.
The Activity Graph engine provides a central repository for actions that are collected by enterprise applications. For more information about the Activity Graph service and the Activity Graph engine, see Section 46, "Integrating the Activity Graph Service."
The Activity Graph provider is built on two REST services for Activity Graph running on the WebCenter Portal: Spaces server, and consequently requires that WebCenter Portal: Spaces be installed in your environment. For more information about integrating the Activity Graph provider in your scenario, see Section 67.2.2.8.3, "Using the Activity Graph Provider." For information about creating and editing connection configuration for the Activity Graph provider, see "Configuring the Activity Graph Provider" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Although The People Connections locator is an ILocator used by the Property Provider to interface with the WebCenter People Connections service. One of the benefits of the People Connections service is that it can access user profile information stored on WebCenter Portal: Spaces. For more information about the People Connections service, see Part VI, "Working with the People Connections Service". For more information about the People Connections locator, see Section 67.2.2.8.1, "Using the Property Service Provider." For information about creating and editing connection configuration for the People Connections locator, see "Configuring the Oracle People Connections Locator" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
A data provider is a component that plugs into the Conductor architecture and acts as a delegate for some service. Data returned from a data provider can be used as-is (Java classes), or chained to be used as input to other data providers in the same scenario.
The Property Service Provider, Activity Graph Provider, and the CMIS Provider are all examples of data providers that are available out-of-the-box. But data providers (oracle.wcps.conductor.provider.IDataProvider
) also provide an extension point for the Conductor so that you can write a custom data provider to, for example, integrate with legacy systems or external data stores. You can then call your custom (or out-of-the-box) data provider using the Invoke Provider
node from within a scenario.
Data providers typically operate on the input context of a given user or an external application data set (or both). Personalization includes a Property Service that can provide typed data storage for user or application data, and is accessible as input to providers. For more information about creating your own data provider, see Section 67.4.1, "Adding Custom Providers."
Function providers (oracle.wcps.conductor.provider.IFunctionProvider
) also provide an extension point for the Conductor to create utility methods (for example, for data manipulation or transformation, or business rule calculation) that can be invoked using Expression Language (EL) expressions. A simple example might be: ${strings:concat('string1','string2')}
). The CMIS and Activity Graph providers each have their own function provider to facilitate data transformations, among other utilities. For more information about Personalization ELs, see Appendix G, "ELs Related to the Personalization Service."
This section describes how to integrate Personalization in your Framework application.
This section contains the following subsections:
This section describes the design-time system requirements and dependencies for developing WebCenter Portal applications with JDeveloper that integrate Personalization services. For a complete list of requirements, dependencies, and options for Personalization, see "Personalization Prerequisites" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
configureWCPS.py
) located in the DefaultDomain/scrpts-wcps
directory. For more information about configuring the WebCenter Trust Services and single sign-on using this script see "Configuring Single Sign-on" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal. Note: Although you can optionally include the out-of-the-box providers for Activity Graph and People Connections in your application, you will not be able to test results in JDeveloper. Note also that these providers are only partially configured, and you must complete their configuration as described in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal in the sections on "Configuring the Oracle People Connections Service" and "Configuring the Activity Graph Service." |
This section describes how to author personalized scenarios using the Personalization tools in JDeveloper, and includes the following subsections:
The Properties Namespace file contains the property definitions and property set definitions you define.
To create a Properties Namespace file in JDeveloper:
The New Gallery dialog displays (see Figure 67-3).
Note: If the Personalization category doesn't display, open the All Technologies tab and select it, or click selected technologies and add the Personalization technology to the project. |
The Create Namespace dialog displays (see Figure 67-4).
The Include default property definitions checkbox controls whether initial default property definitions are added to the namespace file. These are: IntDef
, NumberDef
, StringDef
, BooleanDef
, DateTimeDef
, ClobDef
, IntArrayDef
, NumberArrayDef
, StringArrayDef
, BooleanArrayDef
, DateTimeArrayDef
, ClobArrayDef
.The property definitions can be removed, if needed afterwards. Or, you can leave the checkbox unselected to start with no initial property definitions and create them as needed in the Scenario Editor.
A graphic representation of the namespace file displays in the Design pane (see Figure 67-5).
Figure 67-5 Design Pane - Namespace Definition
Properties are the bits of data about someone or something on which, for example, you can base evaluations of conditionals in your scenario's flow. A property, for example, could contain a person's age or gender. A property set is simply a collection or container of related properties.
To define a property set and associated properties:
The Create New Property Set dialog displays (see Figure 67-6).
Figure 67-6 Create New Property Set Dialog
A node for the new property set displays in the Design pane (see Figure 67-7).
Figure 67-7 Design Pane - New Property Set Definition
The Create Property Definition dialog displays (see Figure 67-8).
To create a new property definition, select New Definition
in the Definition drop down list.
The new property appears as part of the property set's graphic representation (see Figure 67-9).
Figure 67-9 Design Pane - Property Definition
The Conductor's Scenario Editor provides a visual tool for viewing and editing scenario definitions managed by the Conductor. The Scenario Editor stores scenarios in both file and visual formats and is available from within JDeveloper. Before creating a scenario, you should have created a namespace and at least some of the property sets and properties you need for the scenario.
To create a new scenario using the Scenario Editor in JDeveloper:
The New Gallery dialog displays (see Figure 67-10).
Note: If the Personalization category doesn't display, open the All Technologies tab and select it, or click selected technologies and add the Personalization technology to the project. |
The Scenario Definition dialog displays (see Figure 67-11).
.scenarios_diagram
) cannot be changed. The Scenario Editor displays with a new Start node (see Figure 67-12).
Figure 67-12 Scenario Editor - Start Node
Figure 67-13 Adding a Node in the Scenario Editor
Right-click the new node to expose options for setting node properties and extending the flow. For a description of available node types, see Section 67.2.2.4, "Specifying Scenario Flow Using Node Types."
The Scenario Editor uses a tree-structured fixed layout where the flow is represented by a combination of subtrees (for decisions) and internal label references to represent flow for loops and complex nested if/else decisions.
Node Types
The Property Editor lets you view and edit the property set definitions and their associated property definitions managed by the Property Service. The Property Editor communicates and persists data through the Property Service.
Property sets and properties within a property set can be stored in many different locations and formats, so a locator facility is needed to retrieve them. A default property set locator is provided that retrieves and stores property set data to a pre-configured database. This default locator is used when no other is specified for the property set.
A custom locator for the People Connections service is also provided out-of-the-box (for more information, see Section 67.1.4.1.4, "People Connections Locator"), but you may want to define additional locators for other data sources. You can define multiple locators for properties and property sets, and they can also be defined in order of precedence. For step-by-step instructions for how to implement a locator see Section 67.4.2, "Adding Custom Locators."
The IFunctionProvider
is a marker interface that allows utility code to be accessible from the Expression Language services within the Conductor. Implementations of IFunctionProvider
contain annotated public and static methods. Example 67-1 shows an example function provider:
Example 67-1 Example Function Provider
You would call the function provider in Example 67-1 using the following expression syntax:
Here is an example of how to assign a variable to the results of a function provider based on Example 67-1:
Data provider implementations are a more structured way of integrating custom functionality with scenario execution. Unlike function providers, data providers have access to a connection configuration framework built into the Conductor so that environment-specific configuration data can be used. The following diagram illustrates the class interaction for data providers:
Figure 67-14 Class Interaction for Data Providers
IDataProvider
Data providers are responsible for returning abstract named connection implementations of IConnection
. These named connections are usually backed by environmental configurations provided by the Conductor's connection configuration service, but do not have to be. Should the data provider happen to use the configuration service, the implementation must return a class that extends oracle.wcps.connection.configuration.AnnotatedConfiguration
from the getConnectionConfigClass()
method. This class must contain public annotated fields that represent configuration data specific to the data provider.
IConnection
Implementations of oracle.wcps.conductor.provider.IConnection
are responsible for returning (named and default) Executable Resources. Each instance of IConnection
can represent a single connection configuration and should be constructed within the instance of IDataProvider
(not static).
IExecutableResource
Implementations of oracle.wcps.conductor.provider.IExecutableResource
contain most of the integration code with the external system and the instance should be constructed within the instance of IConnection
(not static). The default method from within IExecutableResource
is the execute
method that takes no arguments, but custom annotated methods can be written within the implementation if IExecutableResource
and exposed to scenario execution. For example, the following custom method can be invoked from a scenario:
Here is how the provider with the custom method is invoked from within the scenario:
Personalization provides three providers out-of-the-box providers for use within scenarios: the Property Service Provider, the Content Server Provider (CMIS), and Activity Graph. This section describes how you can integrate these providers in your application in the following subsections:
The Property Service Provider (oracle.PropertiesServiceProvider
) allows integration with the Personalization Server Property Service. This provider lets you to retrieve property sets for a particular property set definition, retrieve a property set by name, or return a specific property from a property set. If you are using the People Connections locator to integrate profile data into your scenario, then you must configure the Property Service before using it. For more information about the People Connections locator, see Section 67.1.4.1.4, "People Connections Locator." For information about configuring the Property Service provider, see "Configuring the Oracle People Connections Locator" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
The CMIS provider (CMISProvider
) provides services to search for and retrieve content from standards-based CMIS (Content Management Interoperability Services) content servers. For WebCenter, this is specifically provided by the Oracle WebCenter Content: Content Server. The CMIS provider also has a utility function provider (CMISFunctionProvider
) to convert results to simplified form. Before trying the examples below, be sure to configure your CMIS provider connection as shown in the section on "Configuring the CMIS Provider" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Example CMIS Provider Scenario
Create a scenario using the following (remember to set the content-type
of application/xml
):
Request URI:
Request Body:
Executing the Scenario
Request URI:
Request Body:
Using the CMISFunctionProvider
A function provider is a utility class that can be invoked from within a scenario. The CMISFunctionProvider
supports several methods (see the JavaDoc for the class for more information). Here are two example methods:
Using the CMISFunctionProvider in a Scenario
The following scenario snippet shows how data might be fed into the CMISFunctionProvider
to create a CMIS query for multiple nodes, where the query is then sent to the CMIS provider. (In a more realistic case, rather than generate the data, we could have passed the results from an Activity Graph provider call, for example.)
The Activity Graph Provider (ActivityGraphProvider
) provides integration with the Activity Graph service, which provides recommendations based on analytics within WebCenter. Before attempting the examples below, be sure to configure the connection for the Activity Graph service as shown in the section on "Configuring the Activity Graph Provider" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Portal.
Example Activity Graph Provider Scenario
Create a scenario using the following (remember to set the content-type
of application/xml
):
Request URI:
Request Body:
Executing the Scenario
Before continuing, you must set the header values: Accept=application/xml
and content-type=application/xml
.
Request URI:
Request Body:
Using the AGFunctionProvider
A function provider is a utility class that can be invoked from within a scenario. The AGFunctionProvider
supports these methods:
Using the AGFunctionProvider in a Scenario
In the following scenario, a call is first made to the Activity Graph REST service. The results of that call are in the agRecommendations
variable. The next call in the scenario is to the AGFunctionProvider.getContentIDs()
method, passing in the results of the agRecommendations
(an Activity Graph object), and returning a List<String>
of document IDs, held in the evaluation of the expressions
call.
As well as using the Scenario Editor, you can also create file-based scenarios in XML format. Note that file-based scenarios are only supported through the Conductor's import/export function and JDeveloper MDS integration. To import a file-based scenario into the Scenario Editor, select the Create from file option when you create the scenario.
Table 67-1 shows the statements that make up the contents of a scenario file. For more detailed information about the statements, refer to the node descriptions in Section 67.2.2.4, "Specifying Scenario Flow Using Node Types."
Table 67-1 Scenario Statements
Statement | Description | Example |
---|---|---|
Variable Assignment | Creates a variable that is scoped within the context of the currently running scenario. | <assign-variable> <variable>index</variable> <expression>3</expression> </assign-variable> |
Execute | Invokes a specified EL Expression with no expected return value. Similar to Variable Assignment, only results of the expression are not stored within the Scenario Context. | <execute> <comments>Adds to an existing collection.</comments> <expression>${collections:append(responses,'The outlook is not so good.')}</expression> </execute> |
Condition/Otherwise | Evaluates an EL expression and executes the contained statements should the EL expression evaluate to true. Statements within the otherwise block will only execute if all condition statements evaluate to false. | <conditions> <body> <condition> <body> <assign-variable> <variable>customerType</variable> <expression>Great Customer</expression> </assign-variable> </body> <expression>${customer.totalMoneySpent >= 100000}</expression> </condition> <otherwise> <body> <assign-variable> <variable>customerType</variable> <expression>Good Customer</expression> </assign-variable> </body> </otherwise> </body> </conditions> |
ForEach | Provides looping/iterating functionality over a collection of things. | <for-each> <body> <execute> <comments> Let's send each great customer an email, thanking them for their loyalty. </comments> <expression> ${emailService:sendMail(customer,'Subject:Thanks for being a great customer')} </expression> </execute> </body> <variable>customer</variable> <max-iterations>10</max-iterations> <items>${greatCustomers}</items> </for-each> |
While | Provides looping/iterating functionality as long as the specified EL expression evaluates to true. | <while> <body> <assign-variable> <comments>Sum up customer invoices to arrive at customer total expenditure.</comments> <variable>customerTotalSpent</variable> <expression>${customerTotalSpent+order.invoiceTotal}</expression> </assign-variable> </body> <expression>${customer.id = currentCustomerId }</expression> <max-iterations>-1</max-iterations> </while> |
Invoke Scenario | Invokes another named scenario within the same namespace. Results are stored within the context of the currently running scenario. | <call-scenario > <variable>greeting</variable> <scenario>randomGreetingGenerator</scenario> <input> <parameter> <ns2:name>greetingsList</ns2:name> <ns2:value>hello, Bonjour, Buenos días</ns2:value> </parameter> </input> </call-scenario> |
Invoke Provider | Invokes a named implementation of IDataProvider. Results are stored within the context of the currently running scenario | <call-provider> <provider-name>CRM_Provider</provider-name> <connection-name>crm_db</connection-name> <resource-name>getGreatCustomers</resource-name> <variable>greatCustomers</variable> <input> <parameter> <ns2:name>minMoneySpent</ns2:name> <ns2:value>100000</ns2:value> </parameter> </input> </call-provider> |
Return | Returns the specified results of evaluation of an EL Expression. | <return> <comments>Return the sales rep who sold the most widgets this month.</comments> <expression>${bestSalesRep.id}</expression> </return> |
Raise Error | Raise and throw an error with the specified error message | <raise-error> <comments>User is unathorized, so let's return a 401.</comments> <statusCode>401</statusCode> <message>User ${ScenarioContext.scenarioRequest.userPrincipal.name} is unauthorized to execute this scenario.</message> </raise-error> |
Example 67-2 Example File-based Scenario
This section describes how targeted content is displayed using the Content Presenter to the user at runtime for WebCenter Portal: Spaces and WebCenter Portal: Framework applications. It also describes how you can use REST APIs to create your own user interface for presenting content.
This section contains the following subsections:
Content Presenter is tightly integrated with the Conductor's dynamic content query generation and enables simple surfacing of dynamic content. For more information about using Content Presenter in your application, see Chapter 29, "Creating Content Presenter Display Templates."
For information about using Expression Language expressions in WebCenter Portal: Spaces to access a Personalization server scenario, see "Personalizing Pages" in the Oracle Fusion Middleware User's Guide for Oracle WebCenter Portal: Spaces.
Using REST APIs, you can create your own user interface for presenting content rather than using Content Presenter. For more information about REST APIs, see Chapter 54, "Using Oracle WebCenter Portal REST APIs."
This section describes how to create a simple application in JDeveloper containing a scenario that returns a simple string ("Hello World"
). You'll then test the results of that scenario by adding it to a JSP page, and run the application in the integrated WebLogic server to display the results in a browser.
This section also covers the steps to configure and start the integrated WebLogic server, define a connection to the Personalization Server Conductor, and how to deploy the scenario and JSP artifacts to the server domain for testing.
Note: as a prerequisite to to this tutorial, you should already have installed WebCenter Portal's extension for Oracle JDeveloper (|
Hello_Applicaton
) using the default options and technologies. The New Gallery appears.
Fusion Web Application (ADF)
from the list and click OK. The Create Fusion Web Application (ADF) wizard appears (see Figure 67-15).
Figure 67-15 Creating the Hello_Application - Step 1
Hello_Application
. Step 4 of 5
, the wizard page for the Portal
project. The Project Technologies tab displays a list of available technologies to install for the application.
Figure 67-16 Creating the Hello_Application - Step 4
Webcenter Personalization
to the list of selected technologies for the Portal
project, and click Finish to create the configured Hello_Application
application. The domain will automatically be extended to include necessary server artifacts required for running the Personalization components (i.e., the Personalization Conductor and the Property Service).
Application Server Navigator
and expand the Application Servers
tree node to display the IntegratedWeblogicServer
. The current status should be (domain unconfigured)
.
IntegratedWeblogicServer
to display the context menu and select Create Default Domain...
The status displays (domain building)
and the Message Log window displays the output as the domain is being built. Wait for the domain to finish building. This may take some time to complete. When complete, the message log should display "Integrated Weblogic domain processing completed successfully."
Figure 67-17 Application Server Navigator - Creating the Default Domain
IntegratedWeblogicServer
to display the context menu, and selecting Start Server Instance. The Running: IntegratedWeblogicServer - Log
view should appear and display output as the server is starting. Wait for the server to finish starting. This may take some time to complete. When complete, the IntegratedWeblogicServer Message Log should display IntegratedWebLogicServer started
.
Figure 67-18 Application Server Navigator - Starting the Server
The external tool to perform this task will begin running and its output will be directed to the Configure WCPS Trust Service - Log
view. Wait for the configuration to complete. This may take a while. When complete, the log will display the message "YOU HAVE MADE CHANGES THAT REQUIRE THE DOMAIN TO BE RESTARTED. PLEASE RESTART ALL DOMAIN SERVERS."
Figure 67-19 Configuring the WCPS Trust Service
Running: IntegratedWeblogicServer - Log
view. When shutdown is complete you will see the message "Process Exited"
. You can then proceed to restart the server as shown in step 2c.
Application Properties...
The Application Properties dialog displays.
Figure 67-20 Application Properties Dialog - Configuring the Personalization Server Connection
Personalization Server
category, and from the URL Connection: drop-down list and select < New URL Connection... >
. The Create URL Connection dialog displays (see Figure 67-21).
Figure 67-21 Create URL Connection Dialog - Conductor URL Connection
Field Name | Value |
---|---|
Name | Conductor |
URL Endpoint | http://localhost:7101/wcps/api/conductor/resourceIndex |
Authentication Type | Basic |
Username | weblogic |
Password | weblogic1 |
Realm | WCPS |
The Status should display as "The connections successfully established."
Hello_Application
), and click OK in the Application Properties dialog to accept the settings. Hello_Application
such that the Personalization Services (WCPS) libraries are available to the application. Portal/Web Content/WEB-INF
. weblogic.xml
deployment descriptor to open it. The WebLogic Descriptor Editor displays.
Libraries
category. Figure 67-22 WebLogic Descriptor Editor - Adding the WCPS Library
Save
from the File menu to save the weblogic.xml
descriptor. hello_world
scenario that returns the string "Hello World"
when invoked by the Personalization Conductor. Portal
project in the Application Navigator and select New... The New Gallery appears.
Personalization
category. Conductor Scenario
and click OK. The New Conductor Scenario dialog displays.
Figure 67-23 New Conductor Scenario Dialog
Create a new conductor scenario file
selected, enter a New scenario filename called hello_world.scenarios_diagram
, and click OK to create the scenario. Add Following Statement->Return
. A Return node is added and connected.
Set Expression...
The Scenario Expression builder displays (see Figure 67-24).
Your scenario diagram should look like the one shown in Figure 67-25.
Figure 67-25 Scenario Editor - hello_world Scenario
Save
to save the hello_world.scenarios_diagram
. hello_world
scenario and displays the results. Before creating the JSP page we need to add some libraries to the Portal
project that contain resources required by the JSP page.
Portal
project in the Application Naviagtor and select Project Properties... The Project Properties dialog displays.
Libraries and Classpath
category, and click Add Library... The Add Library dialog displays (see Figure 67-26).
Figure 67-26 Project Properties Dialog - Adding the Extension Libraries
Now we can create the JSP page that executes the hello_world
scenario on the Personalization Conductor and displays the result.
Portal
project in the Application Naviagtor and select New... The New Gallery appears.
The Create JSP dialog displays (see Figure 67-27).
hello_world.jsp
and click OK to create the JSP page. Notice in the c:out
command how the Personalization Context Bean p13nContext
is being used to invoke the Conductor connection (Conductor
) you created earlier using the scenario namespace Hello_Application
specified earlier in the Application Properties dialog, invoking the scenario called hello_world
, and finally displaying the results.
Note: If you haven't configured single sign-on and the trust service as outlined in step 3, then the
in place of the |
hello_world.jsp
. Hello_Application
, right-click the runnable artifact the hello_world.jsp
page in the Application Navigator and select Run. JDeveloper starts several background processes in sequence, including:
hello_world.jsp
. Figure 67-28 Application Navigator - Building and Deploying the Application
The resulting hello_world.jsp
JSP page appears in the browser.
Figure 67-29 Hello_Application's hello_world.jsp Page Displayed in Browser
This section describes how you can create new ways to personalize application flow or content by adding custom providers and locators.
This section includes the following sub-sections:
Providers provide an extension point to Personalization, with which you can add custom function providers and custom data providers. Table 67-2 shows the available extension points for Function and Data Providers.
Table 67-2 Extension Points
Extension | Description |
---|---|
oracle.wcps.provider.IFunctionProvider | A Function Provider extension point for the Conductor to create utility methods for data manipulation/transformation, business rule calculation, and so forth that can be invoked using EL. A simple example might be: ${strings:concat('string1','string2')} |
oracle.wcps.provider.IDataProvider | A Data Provider extension point for the Conductor. Custom data providers can be written to integrate with legacy systems or external data stores. |
The AnnotatedConfiguration
class describes the connection parameters required for a data provider, and can be found in:
Location: \Oracle\Middleware\jdeveloper\webcenter\modules\wcps-services_11.1.1.4.0\connections-service-1.0.jar
You will need to extend this class and add any other properties your custom provider may require. Create this class first, as the other components will build upon it (see Example 67-3).
Example 67-3 HelloWorldConnectionConfig
IMetadata
Location: \Oracle\Middleware\jdeveloper\webcenter\modules\wcps-services_11.1.1.4.0\conductor-server-1.0.0.0.jar
Next, implement the IMetadata interface. This provides information to the tools to surface the connection parameters, essentially representing the information in your HelloWorldConnectionConfig
class as metadata (see Example 67-4). Each of the properties in the HelloWorldConnectionConfig
class becomes a child metadata object. This is not so intuitive for simple structures, but is useful when the connection configuration may contain nested classes that relate to other components in the 'model'.
Example 67-4 HelloWorldConfigMetadata
IExecutableResource
An executable resource is a class having public methods annotated to designate them as executable by the Conductor. These methods could execute code directly, or delegate the call to an external REST service.
Location:
\Oracle\Middleware\jdeveloper\webcenter\modules\wcps-services_11.1.1.4.0\conductor-server-1.0.0.0.jar
Your ExecutableResources
can specify additional methods for execution by virtue of this annotation. Note the use of resource bundles (see section on Resource Bundles for more info). You can create any number of ExecutableResources
and add them to your connection (see Example 67-5).
Example 67-5 SayHelloExecutableResource
IConnection
Once you have implemented your IExecutableResources
and IMetadata
, you can construct your actual connection object. Each connection has a specific set of configuration parameters, so your provider could possibly have multiple connection objects (see Example 67-6).
Location:
\Oracle\Middleware\jdeveloper\webcenter\modules\wcps-services_11.1.1.4.0\conductor-server-1.0.0.0.jar
Example 67-6 HelloWorldConnection
An instance of your HelloWorldConnection
will be instantiated for each entry in your provider-connections.xml
file that corresponds to the connection type specified in HelloWorldConnectionConfig
(connectionType="hello.world.provider.connection"
).
IDataProvider
Finally, we are ready to roll all this into our top-level provider class HelloWorldProvider
. This is the access point for the Conductor to configure our connections and invoke our IExecutableResource
(s).
Location:
\Oracle\Middleware\jdeveloper\webcenter\modules\wcps-services_11.1.1.4.0\conductor-server-1.0.0.0.jar
Project Properties -> Libraries and Classpath -> add Jar/Directory -> (point to above conductor-server-1.0.0.0.jar)
Example 67-7 IDataProvider
Required annotations:
See Example 67-8 on resource bundles below for more information.
Example 67-8 Resource Bundles
These files also go in the same directory as your classes, so they will be added to your final JAR file. The location of the files must correspond to the package name given in HelloWorldProvider:bundle="demo.provider.resources.HelloWorldProviderResources"
Configure your connection in as described in
Name your provider for the Conductor by creating this file in the META-INF/services
directory (in the same directory structure as your classes, so they will be added to your final jar file):
Note the resource name is the same as in your HelloWorldConnections
source code.
Example 67-9 Scenario Calling the Provider
This section describes how you can extend your personalized WebCenter Portal application by adding custom locators.
This section contains the following subsections:
A property locator is invoked by the Property Service to access external stores of properties. For example, Personalization provides an out-of-the-box PeoplePropertyLocator
that uses the People Connections REST service to access profile information for users. The locator is not invoked directly by the Conductor/Scenario, but is instantiated by the Property Set service, which then delegates calls for retrieving properties and property sets to the underlying locator implementation.
The example in the following sections will walk you through creating your own BookPropertyLocator
to find a book by title in a library, and load its attributes into a property set you have created to represent a Book object.
There are two major steps to implementing this example:
IPropertyLocator
to load properties from a Book object. Location:
\Oracle\Middleware\jdeveloper\webcenter\modules\wcps-services_11.1.1.4.0\properties-common-1.0.0.0.jar
The IContext
object is the vehicle for authentication, passed in from the Property Service. There are two ways you can access the credentials:
HttpServletRequest request = context.getProperty(IContext.HTTP_REQUEST_KEY)
String user = context.getProperty(IContext.USERNAME_KEY); String pw = context.getProperty(IContext.PASSWORD_KEY);
This section describes how to create a PropertySetDefinition
that will be used with your locator.
Follow the steps below to create the PropertySetDefinition
:
/DefaultDomain/locator-extensions-library/WEB-INF/lib
. This section describes how to implement the property locator, data object, and data layer.
Implement the IPropertyLocator
(read-only for demo simplicity)
Implement the Data Access Object for retrieving property values
Implement the data layer (Books within a Library)
The PropertyLocator
is invoked by the Property Service, which is itself part of the PropertiesServiceProvider
. We can invoke the GetProperties
method on that provider in a scenario, as shown below:
A client can access the WebCenter Personalization public APIs using Java APIs or public Rest APIs as described in the following sections:
The service interfaces shown in Table 68-1 define the remote Conductor API.
Table 68-1 Remote Conductor APIs
Interface/Service | Description |
---|---|
oracle.wcps.conductor.services.IScenariosService | General management, retrieval, and execution of stored Scenarios. |
oracle.wcps.conductor.services.INamespaceService | General management of stored namespaces known to the Conductor. |
oracle.wcps.conductor.services.IProviderService | Retrieval of provider metadata known to the Conductor server. |
For more information about Personalization Java APIs, see the JavaDoc for WebCenter in the Oracle Fusion Middleware Java API Reference for Oracle WebCenter Portal.
This section provides examples of how you can use the Property Service's REST APIs to programatically carry out basic Personalization tasks, such as:
This section contains the following subsections:
The Property Service resource index's response contains links and templates to access other resources of the Property Service. For the request and response for accessing the Property Service's resource index, see Section 68.3.1.1, "ResourceIndex."
Creating an object using the REST HTTP interface requires setting the request method to POST
and adding a header content-type
with the value application/xml
. For the request and response for creating a namespace using the Property Service, see Section 68.3.2.1, "Create Namespace."
For the request and response for viewing property set definitions within a namespace using the Property Service, see Section 68.3.4.3, "Retrieve All Property Set Definitions."
For the request and response for creating a property definitions within a namespace using the Property Service, see Section 68.3.3.1, "Create Property Definition - Create Integer Property Definition."
For the request and response for viewing property definitions within a namespace using the Property Service, see Section 68.3.3.6, "Retrieve all Property Definitions."
For the request and response for creating a property set definition within a namespace using the Property Service, see Section 68.3.4.1, "Create Property Set Definition."
For the request and response for creating a property set within a namespace using the Property Service, see Section 68.3.5.1, "Create Property Set."
For the request and response for viewing a property set within a namespace using the Property Service, see Section 68.3.5.5, "Retrieve all Property Sets."
Note that in the example below the link templates and ResourceIndex will be modified to comply with best practice guidelines.
Three IDataProvider implementations are provided out-of-the-box and are accessible in every namespace: ActivityGraphProvider
; CMISDataProvider
; PropertiesProvider
.
This section includes the following subsections:
This section includes the following subsections:
ResourceIndex
XML
JSON
This section contains the following subsection:
CreateNamespace
XML
JSON
RetrieveNamespace
XML
JSON
UpdateNamespace
XML
JSON
DeleteNamespace
XML
JSON
RetrieveAllNamespaces
XML
JSON
DeleteAllNamespaces
XML
JSON
This section contains the following subsections:
CreateIntPD
XML
JSON
CreateIntArrPD
XML
JSON
RetrievePD
XML
JSON
UpdatePD
XML
JSON
DeletePD
XML
JSON
RetrieveAllPDs
XML
JSON
DeleteAllPDs
XML
JSON
This section contains the following subsections:
CreatePSD
XML
JSON
RetrievePSD
XML
JSON
RetrieveAllPSDs
XML
JSON
DeleteAllPSDs
XML
JSON
This section contains the following subsections:
CreatePS
XML
JSON
RetrievePS
XML
JSON
UpdatePS
XML
JSON
DeletePS
JSON
RetrieveAllPSs
XML
JSON
DeleteAllPSs
XML
JSON
This section contains the following subsections:
CreateP
XML
JSON
RetrieveP
XML
JSON
UpdateP
XML
JSON
DeleteP
XML
JSON
DeleteAllP
XML
JSON
The property value in JSON format indicates the value type using concreteType
field names. The following table maps the property definition type and Java data type to the values of concreteType
.
Table 68-2 concreteType Values
Property Definition Type | Java Data Type | concreteType Value |
---|---|---|
INT | java.lang.Integer | urn:oracle:wcps:property:internal:jaxrs:model:integer-value |
NUMBER | java.lang.Double | urn:oracle:wcps:property:internal:jaxrs:model:double-value |
STRING | java.lang.String | urn:oracle:wcps:property:internal:jaxrs:model:string-value |
BOOLEAN | java.lang.Boolean | urn:oracle:wcps:property:internal:jaxrs:model:boolean-value |
BLOB | oracle.wcps.property.BlobData | urn:oracle:wcps:property:blob-data |
CLOB | oracle.wcps.property.ClobData | urn:oracle:wcps:property:clob-data |
DATETIME | oracle.wcps.property.DateTime | urn:oracle:wcps:property:date-time |
/resouceIndex
request. Table 68-3 shows the supported query parameters and their default values.
Table 68-3 Query Parameters
Query Parameter Name | Description | Default Value | Other Special Values |
---|---|---|---|
q | the value for it is a search expression | none | none |
startIndex | Represents the index of the first element in a page | 0 | none |
itemsPerPage | Represents the number of items to be included in a page | 10 | none |
dataFields | Represents a list of attributes of a property service entities for which data is returned | empty list = (Return zero attributes) | * = (all attributes) |
This section contains the following subsections:
The value for the 'q
' query parameter is a search expression. The search expression format is:
:equals:
==> Equals :contains:
==> Contains :like:
==> SQL Like, applies only to string type property values :gt:
==> Greater than :gte:
==> Greater than or equals to :lt:
==> Less than :lte:
==> Less than or equals to ;
==> and Table 68-4, Table 68-5, Table 68-6, and Table 68-7 show the supported attribute names that can be used in a search expressions to search for property service entities.
Namespace Attributes
Table 68-4 Namespace Attributes
Attribute Name | Description |
---|---|
ns-name | A namespace's name |
ns-property-locator-class-name | A namespace's property locator class name |
ns-definition-locator-class-name | A namespace's definition locator class name |
ns-created-on | A namespace's created on date time |
ns-updated-on | A namespace's updated on date time |
Examples:
Property Definition Attributes
Table 68-5 Property Definition Attributes
Attribute Name | Description |
---|---|
pd-name | A property definition's name |
pd-description | A property definition's description |
pd-type | A property definition's type |
pd-restricted | A property definition's restricted attribute |
pd-validator-class-name | A property definition's validator class name |
pd-created-on | A property definition's created on date time |
pd-updated-on | A property definition's updated on date time |
Example:
Property Set Definition Attributes
Table 68-6 Property Set Definition Attributes
Attribute Name | Description |
---|---|
psd-name | A property set definition's name |
psd-description | A property set definition's description |
psd-pd-name | A property definition name referred by a property set definition |
psd-property-locator-class-name | A property locator class name associated with a property set definition |
psd-created-on | A property set definition's created on date time |
psd-updated-on | A property set definition's updated on date time |
Example:
Property Set Attributes
Table 68-7 Property Set Attributes
Attribute Name | Description |
---|---|
ps-name | A property set's name |
ps-description | A property set's description |
psd-created-on | A property set's created on date time |
psd-updated-on | A property set's updated on date time |
a property's name | A property's name attribute (for example, firstName, zipCode, etc.) |
Example:
This section provides examples of how you can use the Conductor's REST APIs to programatically carry out basic Personalization tasks, such as:
You can use the Conductor REST APIs from within application code, or using Personalization ELs to call them from within your WebCenter Portal: Framework application or WebCenter Portal: Spaces.
This section contains the following subsections:
This section provides examples of using the Conductor's data provider management APIs, and contains the following subsections:
XML
JSON
XML
JSON
XML
JSON
XML
JSON
XML
JSON
XML
JSON
This section provides examples of using the Conductor's function provider APIs, and contains the following subsections:
XML
JSON
XML
JSON
This section provides examples of using the Conductor's namespace management APIs, and contains the following subsections:
XML
JSON
XML
JSON
XML
JSON
XML/JSON
This section provides examples of using the Conductor's scenario management APIs, and contains the following susbsections:
XML
JSON
XML
JSON
XML
JSON
XML
JSON
XML/JSON
XML
JSON
Using Expression Language (EL) expressions, you can call Personalization services from remote clients such as web pages and Java Server Faces environments. You can, for example, use ELs to apply Personalization scenarios to pages in WebCenter Portal: Spaces. For more information about Personalization ELs, see also Section G.9, "ELs Related to the Personalization Service."
This section contains the following subsections:
The Personalization Context is a session-scoped managed bean that is automatically declared and instantiated by the Java Server Faces context, and there for use with the following EL:
Accessing the Conductor context
Access to remote Conductor services can be accessed in the following way:
UrlOrConnectionName
>"]}where UrlOrConnectionName
is a URL to the conductor resource index (for example, http://localhost:7001/wcps/api/conductor/resourceIndex
), or a connection name specified in connections.xml
(available only within JDeveloper or WebCenter environments).
If the connection name "default
" is specified, the first connection name that starts with "Conductor
" is retrieved. For example:
Accessing the Properties service context
Access to remote Properties Service services can be accessed in the following way:
UrlOrConnectionName
>"]}where UrlOrConnectionName
is a URL to the Properties Service resource index (for example http://localhost:7001/wcps/api/property/resourceIndex
), or a connection name specified in connections.xml
(available only within JDeveloper or WebCenter environments).
If the connection name "default
" is specified, the first connection name that starts with "Properties
" is retrieved. For example:
Configuring the client services for request scope
You may sometimes need to have the Personalization services client use request scope rather than session scope. To do this, configure a custom managed bean in your application's faces-config
as shown in the example below:
The Personalization client can be used with
JSP pages similarly to the way it is used in Java Server Faces pages (see Section 68.5.1, "Calling Personalization Client Services from JSF Pages"). You must, however, register the bean using <jsp:useBean>
as shown in the following example:
If you want to clear the bean's state, you can invoke it using scriptlet code by placing it after the <jsp:useBean>
statement:
Table 68-8 shows the Personalization context object methods.
Table 68-8 Personalization Context Object Method Reference
Method Name | Description | Example |
---|---|---|
reset | Clears the state of the context object in which it is invoked. | #{p13nContext.reset} #{p13nContext.conductor['ConductorConnection'].reset} #{p13nContext.conductor['ConductorConnection'].namespaces['MyNamespace'].reset} #{p13nContext.properties['PropertiesConnection'].namespaces['MyNamespace'].setDefinitions['MyPropertySetDefinition'].set['MyPropertySet'].reset} |
update | Updates the property set with new values if bound to a form. This method only applies to the PropertySetContext. Note: This method can only called as part of a form-based action. | #{p13nContext.properties['PropertiesConnection'].namespaces['MyNamespace'].setDefinitions['MyPropertySetDefinition'].set['MyPropertySet'].update} |
results | Retrieves the results of the context object. For PropertySetContext, it retrieves the property set by name and property set definitions, if they exist. For ScenarioExecutionContext and ParameterizedScenarioExecutionContext, the scenario results are retrieved. | #{p13nContext.properties['PropertiesConnection'].namespaces['MyNamespace'].setDefinitions['MyPropertySetDefinition'].set['MyPropertySet'].results} #{p13nContext.conductor['ConductorConnection'].namespaces['MyNamespace'].scenario['MyScenario'].results} #{p13nContext.conductor['ConductorConnection'].namespaces['MyNamespace'].scenario['MyScenario'].withInput['input1=val1;input2=value2;input3=value3'].results} |
withInput | Executes a scenario by name with input parameters. Input parameters must be in the format:
where each parameter name and value is separated by semicolon. This method only applies to ScenarioExecutionContext. | #{p13nContext.conductor['ConductorConnection'].namespaces['MyNamespace'].scenario['MyScenario'].withInput['input1=val1;input2=value2;input3=value3'].results} |
isError | Determines if an error has occurred in the current context object. Only applies to PropertySetContext and ~ScenarioExecutionContext. | #{p13nContext.conductor['ConductorConnection'].namespaces[myManagedBean.namespace].scenario[myManagedBean.scenario].isError} #{p13nContext.properties['PropertiesConnection'].namespaces['MyNamespace'].setDefinitions['MyPropertySetDefinition'].set['MyPropertySet'].isError} |
errorMessage | Returns the error message if an error has occurred in the current context object. Only applies to PropertySetContext and ~ScenarioExecutionContext. | #{p13nContext.conductor['ConductorConnection'].namespaces[myManagedBean.namespace].scenario[myManagedBean.scenario].errorMessage} #{p13nContext.properties['PropertiesConnection'].namespaces['MyNamespace'].setDefinitions['MyPropertySetDefinition'].set['MyPropertySet'].errorMessage} |
To enable single sign-on, access to the HttpServletRequest
must be available for both JSF and JSP environments. An implementation of javax.servlet.Filter
(PersonalizationFilter
) puts the HttpServletRequest
on ThreadLocal
for access within the client as shown in the example below:
This filter is automatically configured in the wcps-services-client-web-lib
.
 Copyright © 2007, 2012, Oracle and/or its affiliates. All rights reserved. |