

Part I

Getting Started with Oracle JDeveloper

This part describes the general concepts of working with Oracle JDeveloper and contains the following chapters:

	
Chapter 1, "Introduction to Oracle JDeveloper"

This chapter provides an introduction to JDeveloper, including resources available for you to learn Oracle JDeveloper and understand its features.

	
Chapter 2, "Oracle JDeveloper Accessibility Information"

This chapter provides information on the accessibility features of JDeveloper.

	
Chapter 3, "Working with Oracle JDeveloper"

This chapter provides information on working in the JDeveloper IDE.

3 Working with Oracle JDeveloper

This chapter is designed to get you up and running quickly on Oracle JDeveloper. Find information about working with the general development environment, source files, connections, using the online help, and common development tools.

This chapter includes the following sections:

	
Section 3.1, "About Working with Oracle JDeveloper"

	
Section 3.2, "Working with JDeveloper Roles"

	
Section 3.3, "How to Manage JDeveloper Features"

	
Section 3.4, "Working With Windows In the IDE"

	
Section 3.5, "Navigating The IDE"

	
Section 3.6, "Customizing the IDE"

	
Section 3.7, "Working with the Resource Palette"

	
Section 3.8, "Working with Source Files"

	
Section 3.9, "Working with Extensions"

	
Section 3.10, "Using the Online Help"

	
Section 3.11, "Common Development Tools"

	
Section 3.12, "Adding External Tools to JDeveloper"

3.1 About Working with Oracle JDeveloper

JDeveloper is the main development platform for the Oracle Fusion Middleware suite of products. It is a cross-platform IDE that runs on Windows, Linux, Mac OS X, and other UNIX-based systems.

3.2 Working with JDeveloper Roles

Roles enable you to tailor the JDeveloper environment. The modified environment removes items that you do not need from JDeveloper, including menus, preferences, New Gallery, and even individual fields on dialogs. The role you select determines which features and options are available to you as you work in JDeveloper.

The roles available are:

	
Default Role. This role allows you to access all JDeveloper features. The other roles provide subsets of these features.

	
Customization JDeveloper. This role allows you to create customizable applications, using the Oracle Metadata Services (MDS) framework.

	
Database Edition. This gives you access to just the core database development tools.

	
Java EE Edition. This includes only features for core Java EE development.

	
Java Edition. This includes only features for core Java development.

	
Note:

The full set of online help is always available regardless of the role you have chosen for JDeveloper.

3.2.1 How to Change the JDeveloper Role

JDeveloper prompts you to select a role the first time it is run. You can also change the role while JDeveloper is running.

To change the JDeveloper role:

	
From the main menu, select Tools > Switch Roles.

	
The current role contains a bullet next to it. In the Switch Roles menu, select the role you want to switch to.

3.3 How to Manage JDeveloper Features

To optimize performance and user experience, JDeveloper allows you to just load the features you need for your project. Managing features enables you to see only those components of the IDE that are most relevant to your work. Managing features has no affect on the data in a project itself.

For example, assume two projects used to create two different views into an application. The first project might have Java features loaded, which informs JDeveloper that the IDE should reflect the Java technology stack. Such filtering eliminates clutter from individual projects. The second project might have a features loaded for Swing/AWT, informing JDeveloper to reflect IDE components required for Swing/AWT development.

To add or remove features in JDeveloper:

	
From the main menu, select Tools > Features. The Manage Features for role dialog opens. This dialog displays the features available in the current JDeveloper role. These features are checked by default.

	
Search for the feature you want to add or remove by entering it in the Search field, or scroll in the list of Available Features. Click a feature or feature category and view its description on the right.

	
Check the features you want to add, and uncheck the features you want to remove. Click the Check for Updates icon to open the Check For Updates wizard which allows you to load features from an extension.

	
Optionally, to clear previously loaded features from the cache, click Clear Feature Loading Cache.

	
Click OK when you are done.

3.4 Working With Windows In the IDE

JDeveloper allows you to arrange the windows according to your convenience. JDeveloper uses two kinds of windows in the IDE:

	
Dockable windows that can be placed anywhere in the IDE.

	
Tabbed editor windows that are fixed in the center of the IDE.

3.4.1 How to Maximize Windows

Double-click the title bar of any JDeveloper window to quickly maximize to full screen view. Double-click the title bar again to return the window to its former position in the IDE.

3.4.2 How to Minimize and Restore Dockable Windows in the IDE

You can minimize any dockable window in JDeveloper, or set it to remain open in place. The default state is set to remain open.

When a window is set to stay open, its position is static. It remains always visible, in whichever position you have docked it.

When a window is set to minimize, its behavior is more fluid. When you give it focus, it opens fully in the general area (top, bottom, left, right) where you last left it docked. When you move the focus elsewhere, the minimized window collapses into the margin. Whether open or closed, any minimized window's status set to minimize is identified by a named button in the margin.

To minimize any dockable window:

	
Click the Minimize icon in the far right-hand corner of the window set to be kept open.

If the window currently has focus, it now expands to full height and remains in place. If the window does not have focus, it collapses into the margin.

When you minimize a window, a button bearing that window's name appears in the margin. You can toggle the minimized window open and closed with this button.

	
Note:

When you minimize a window that exists in a docking zone that also contains other windows, all windows in the docking zone are minimized.

3.4.3 How to Dock Windows in the IDE

All of the tools available under the View menu—the Application Navigator, Structure window, Property Inspector, and so on—can be arranged however you like. You can dock them singly or in groups. You can also tab windows together in one location, either as docked or floating windows.

The following table provides information on how to move dockable windows.

	Requirement	Action
	
Move a solitary docked window

	
Grab its title bar and drag

	
Decouple a docked window from a group

	
Grab its title bar and drag

	
Move a group of docked, tabbed, or docked and tabbed windows

	
Grab the title bar for the group—the topmost horizontal title bar, empty but for the close box—and drag.

	
To decouple one tabbed window from a group

	
Grab the window's tab and drag.

	
Note:

The title bars for docked windows sometimes appear vertically, on the side of the window.

The following table provides information on ways to reposition dock windows:

	Requirement	Action
	
Dock a window (or window group) against another edge of the development area

	
Drag the window (or window group) to the destination edge

	
Dock a window (or window group) alongside another window

	
Drag the window (or window group) to the top, bottom, or side edge of the docked window

	
Tab one window with another

	
Drag the window to be tabbed into the center of the destination window (or window group) and release

3.4.4 About Dockable Windows in the IDE

You can float any window that's normally docked—the Application Navigator, any custom navigator, the Log window, the Property Inspector, the Component Palette. You can also resize and position it wherever you would like within JDeveloper.

Generally, floating windows are best suited for a large screen with enough room for displaying both the information windows and your source code. If you are using floating palettes on a smaller screen they can sometimes be hidden by other information windows as you work.

3.4.5 How to Close and Reopen Dockable Windows in the IDE

You can easily open and close the main elements of the JDeveloper IDE, which include the navigators, Structure window, Property Inspector, Component Palette, Resource Palette and Log window.

To open a closed window:

	
In the View menu, choose the name of the window.

You can close an open window in one of these ways:

	
Click the Close icon which appears on the tab window's name.

	
With the focus in the window, press Shift+Escape or Ctrl+Click.

3.4.6 How to Restore Window Layout to Factory Settings

To restore the layout of dockable windows in JDeveloper, go to the Window menu and select Reset Layout to Factory Settings.

3.5 Navigating The IDE

You can accomplish any task in JDeveloper using the keyboard as you use the mouse.

3.5.1 How to Work With Shortcut Keys In The IDE

JDeveloper comes with several predefined keyboard schemes. You can choose to use one of these, or customize an existing set to suit your own coding style by changing which keyboard shortcuts map to which actions.

To load preset keyboard schemes:

	
From the main menu, choose Tools > Preferences.

	
In the preferences dialog, select the Shortcut Keys node. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
On the shortcut keys page, click More Actions and then select Load Keyboard Scheme. The Load Keyboard Scheme dialog appears, with the currently loaded keyboard scheme highlighted.

	
In the Load Keyboard Scheme dialog, select the scheme you wish to load and click Ok.

	
On the Shortcut Keys page, if you have finished, click Ok.

To view JDeveloper commands and their associated keyboard shortcuts (if assigned):

	
From the main menu, choose Tools > Preferences.

	
In the Preferences dialog, select the Shortcut Keys node.

	
On the Shortcut Keys page, under Available Commands, you can view the complete set of JDeveloper commands, and what keyboards shortcuts (if any) are assigned to each. If you are looking for a particular command or shortcut, or want to look at shortcuts for a particular category of commands only, enter a filtering expression in the Search field.

	
You can also define new shortcuts, or change existing ones.

To define a new keyboard shortcut for a command within a given keyboard scheme:

	
From the main menu, choose Tools > Preferences.

	
In the Preferences dialog, select the Shortcut Keys node. For more information at any time, press F1 or click Help from within the preferences dialog.

	
On the Shortcut Keys page, under Available Commands, select the command that you wish to define a new shortcut for.

	
To define a new shortcut for this action, place focus on the New Shortcut field, and then press the key combination on the keyboard.

If this proposed shortcut already has a command associated with it, that command will now appear in the Conflicts field. Any conflicting shortcuts are overwritten when a new shortcut is assigned.

	
To assign this shortcut to the action selected, click Assign. If you want to delete an already-assigned shortcut, click the Delete button in the toolbar.

If you want to assign more than one shortcut to a command, select the command and click the Duplicate button. Then, type the shortcut key in the New Shortcut field and click Assign.

	
When you are finished, click Ok.

To import or export keyboard schemes:

	
From the main menu, select Tools > Preferences to open the Preferences dialog.

	
Click More Actions > Export or Import. Keyboard schemes are stored as XML files.

3.5.2 Keyboard Navigation In JDeveloper

For any action that can be accomplished with a mouse, including selection, there is a way to accomplish the action solely from the keyboard. You can accomplish any task in JDeveloper using the keyboard as you can using the mouse.

The shortcut keys defined in the Java Look and Feel guidelines provide the base set for JDeveloper. The various predefined keyboard schemes available in JDeveloper are then overlaid upon this base set. If the same shortcut key exists in both the look and feel guidelines and the JDeveloper keyboard scheme, the JDeveloper scheme prevails. If a shortcut key defined by the look and feel guidelines does not appear in a JDeveloper scheme, then it is the original look and feel definition that remains in effect when the scheme in question is enabled.

At any given time, then, the shortcut keys enabled in JDeveloper depend upon the interaction of the currently enabled scheme with the Java look and feel guidelines. When you first open JDeveloper, the default scheme is enabled. You can change this scheme whenever you wish, and within each scheme, you can customize any of the shortcut key assignments that you would like. Note that any customized shortcuts you create in a scheme are not retained when another predefined keyboard scheme is activated (or even if the same scheme is reloaded).

To load predefined keyboard schemes, view current shortcut assignments within a scheme, and customize those assignments, you will need to open the preferences dialog. To open the dialog, choose Tools > Preferences (or on the keyboard, press Alt+T+P) from the main menu and then, using the arrow keys in the left-hand pane, navigate to the Shortcut Keys node. For details on working with the dialog, with the page displayed, click Help (or on the keyboard press H).

3.5.2.1 Common Navigation Keys

The following table describes the common methods of moving the cursor in JDeveloper:

Table 3-1 Common Methods of Moving the Cursor

	Key	Cursor Movement	Ctrl+cursor Movement
	
Left Arrow

	
Left one unit (e.g., a single character)

	
Left one proportionally larger unit (e.g., a whole word)

	
Right Arrow

	
Right one unit

	
Right one proportionally larger unit

	
Up Arrow

	
Up one unit or line

	
Up one proportionally larger unit

	
Down Arrow

	
Down one unit or line

	
Down one proportionally larger unit

	
Home

	
Beginning of the line

	
To the beginning of the data (top-most position)

	
End

	
End of the line

	
To the end of the data (bottom-most position)

	
Tab

	
Next field or control, except when in a text area or field. In this case, press Ctrl+Tab to navigate out of the control.

Where there are fields and controls ordered horizontally as well as vertically, pressing Tab moves the cursor first horizontally to the right, then at the end of the line, down to the left of the next line.

	
To the next pane which may be a navigator, an editor, or a palette, except when in a text area or field. In this case, press Ctrl+Tab to navigate out of the control

	
Shift+Tab

	
Previous field

	
To previous tab position. In property sheets, this moves the cursor to the next page

	
Enter

	
Selects and highlights the default button, except when in a combo box, shuttle button, or similar control.

Note: The default button changes as you navigate through controls.

	
n/a

3.5.2.2 Navigation In Standard Components

This section describes keyboard navigation in standard JDeveloper components.

Buttons

The following table describes the keyboard actions to perform navigation tasks involving buttons.

Table 3-2 Keyboard Navigation for Buttons

	Navigation	Keys
	
Navigate forward to or from button

	
Tab

	
Navigate backward to or from button

	
Shift+Tab

	
Activate the default button (when the focus is not on a button)

	
Enter

	
Activate any button while it has focus

	
Enter, Spacebar, or keyboard shortcut (if one has been defined)

	
Activate Cancel or Close buttons on a dialog

	
Esc

Checkboxes

The following table describes the keyboard actions to perform navigation tasks involving checkboxes.

Table 3-3 Keyboard Navigation for Checkboxes

	Navigation	Keys
	
Navigate forward to or from checkbox

	
Tab

	
Navigate backward to or from checkbox

	
Shift+Tab

	
Select or deselect (when the focus is on the checkbox)

	
Spacebar or keyboard shortcut (if one has been defined)

	
Navigate to checkbox and select or deselect (when the focus is not on the checkbox)

	
Keyboard shortcut (if one has been defined)

Dropdown Lists And Combo Boxes

The following table describes the keyboard actions to perform navigation tasks involving dropdown lists and combo boxes.

Table 3-4 Keyboard Navigation for Dropdown Lists and Combo Boxes

	Navigation	Keys
	
Navigate forward to or from a combo box or dropdown list

	
Tab or keyboard shortcut (if one has been defined)

	
Navigate backward to or from a combo box or dropdown list

	
Shift+Tab

	
Toggle list open and closed

	
Spacebar (the current selection receives the focus)

	
Open a list

	
Down Arrow to open (first item on list receives focus)

	
Move up or down within list

	
Up and Down Arrow keys (highlighted value has focus)

	
Move right and left within the initial entry on a combo box

	
Right and Left Arrow keys

	
Select list item

	
Enter

Note: The first time you press Enter, the item in the list is selected. The second time you press Enter, the default button is activated.

	
Close list (with the highlighted value selected)

	
Esc

List Boxes

The following table describes the keyboard actions to perform navigation tasks involving list boxes.

Table 3-5 Keyboard Navigation for List Boxes

	Navigation	Keys
	
Navigate forward into or out of a list

	
Tab

	
Navigate backward into or out of list

	
Shift+Tab

	
Make a selection

	
Up Arrow, Down Arrow, Spacebar, or Enter

Note: The first time you press Enter, the highlighted item in the list is selected. The second time you press Enter, the default button is activated.

	
Move within list

	
Up Arrow or Down Arrow

	
Move to beginning of list

	
Home or Ctrl+Home

	
Move to end of list

	
End or Ctrl+End

	
Select all entries

	
Ctrl+A

	
Toggle (select or deselect) an item

	
Spacebar or Ctrl+Spacebar

	
Select next item up in list without deselecting item with current focus

	
Shift+Up Arrow Key

	
Select next item down in list without deselecting item with current focus

	
Shift+Down Arrow Key

	
Select current item and all items up to the top of the list

	
Shift+Home

	
Select current item and all items up to the bottom of the list

	
Shift+End

	
Select current item and all items visible above that item

	
Shift+Page Up

	
Select current item and all items visible below that item

	
Shift+Page Down

	
Select item with current focus without deselecting other items (to select items that are not adjacent)

	
Ctrl+Spacebar

	
Navigate through list without deselecting item with current focus.

	
Ctrl+Up Arrow or Ctrl+Down Arrow

Radio Buttons

Table 3-6 Keyboard Navigation for Radio Buttons

	Navigation	Keys
	
Navigate forward to or from radio button

	
Tab

	
Navigate backward to or from radio button

	
Shift+Tab

	
Navigate forward from radio button

	
Arrow Keys

	
Navigate backward from radio button

	
Shift+Arrow Keys

	
Select radio button

	
Arrow key (navigating to a radio button via arrows selects it) or keyboard shortcut (if one has been defined)

	
Deselect radio button

	
Select a different radio button in the group using one of the commands above

Shuttles

The following table describes the keyboard actions to perform navigation tasks involving shuttles.

Table 3-7 Keyboard Navigation for Shuttles

	Navigation	Keys
	
Navigate forward into or out of a list

	
Tab

	
Navigate backward into or out of list

	
Shift+Tab

	
Make a selection

	
Up Arrow or Down Arrow

	
Move within list

	
Up Arrow or Down Arrow

	
Move to beginning of list

	
Home or Ctrl+Home

	
Move to end of list

	
End or Ctrl+End

	
Select all entries

	
Ctrl+A

	
Toggle (select or deselect) an item

	
Spacebar or Ctrl+Spacebar

	
Select next item up in list without deselecting item with current focus

	
Select next item up in list without deselecting item with current focus

	
Select next item down in list without deselecting item with focus

	
Shift+Down Arrow Key

	
Select current item and all items up to the top of the list

	
Shift+Home

	
Select current item and all items up to the bottom of the list

	
Shift+End

	
Select current item and all items visible above that item

	
Shift+Page Up

	
Select current item and all items visible below that item

	
Shift+Page Down

	
Select item with current focus without deselecting other items (to select items that are not adjacent)

	
Ctrl+Spacebar

	
Navigate through list without deselecting item with current focus.

	
Ctrl+Up Arrow or Ctrl+Down Arrow

Sliders

The following table describes the keyboard actions to perform navigation tasks involving sliders.

Table 3-8 Keyboard Navigation for Sliders

	Navigation	Keys
	
Navigate forward to or from slider

	
Tab

	
Navigate backward to or from slider

	
Shift+Tab

	
Increase value

	
Up Arrow or Right Arrow

	
Decrease value

	
Left Arrow or Down Arrow

	
Minimum value

	
Home

	
Maximum value

	
End

Spin Controls

The following table describes the keyboard actions to perform navigation tasks involving spin controls.

Table 3-9 Keyboard Navigation for Spin Controls

	Navigation	Keys
	
Navigate forward to or from spin control

	
Tab

	
Navigate backward to or from spin control

	
Shift+Tab

	
Increase value

	
Up Arrow or Right Arrow, or type the value you want

	
Decrease value

	
Left Arrow or Down Arrow, or type the value you want

	
Minimum value

	
Home

	
Maximum value

	
End

Text Fields

The following table describes the keyboard actions to perform navigation tasks involving text fields.

Table 3-10 Keyboard Navigation for Text Fields

	Navigation	Keys
	
Navigate forward into or out of text box

	
Tab or keyboard shortcut (if one has been defined)

	
Navigate backward into or out of text box

	
Shift+Tab

	
Move to previous/next character within text box

	
Left Arrow/Right Arrow

	
Move to start/end of box

	
Home/End

	
Select all text

	
Ctrl+A

	
Deselect all text

	
Left Arrow or Right Arrow

	
Select current item and all items up to the Left/Right

	
Shift+Left Arrow, Shift+Right Arrow

	
Select current item and all items up to the Start/End

	
Shift+Home, Shift+End

	
Select current item and all items up to the previous/next word

	
Ctrl+Shift+Left Arrow, Ctrl+Shift+Right Arrow

	
Copy selection

	
Ctrl+C

	
Cut selection

	
Ctrl+X

	
Paste from clipboard

	
Ctrl+V

	
Delete next character

	
Delete

	
Delete previous character

	
Backspace

3.5.2.3 Navigating Complex Controls

This section contains information about keyboard shortcuts for complex UI components.

Dockable Windows

The following table describes the keyboard actions to perform navigation tasks involving dockable windows.

Table 3-11 Keyboard Navigation for Dockable Windows

	Navigation	Keys
	
Navigate forward in or out of dockable window

	
Ctrl+Tab

	
Navigate backward in or out of dockable window

	
Ctrl+Shift+Tab

	
Display context menu

	
Shift+F10

	
Navigate between tabs within a dockable window

	
Alt+Page Down, Alt+Page Up

	
Move between elements including dropdown lists, search fields, panels, tree structure (but not individual elements in a tree), individual component buttons

	
Tab

	
Move up/down through dockable window contents (scrollbar)

	
Up Arrow, Down ArrowThis scrolls the window contents if the focus moves beyond visible area of canvas.

	
Move left/right (scrollbar)

	
Up Arrow, Down ArrowThis scrolls the pane contents if focus moves beyond visible area of canvas.

	
Move to start/end of data (component buttons)

	
Ctrl+Home, Ctrl+End

	
Select an element

	
Enter or Spacebar

	
Scroll left/right within the canvas area (without moving through the window contents)

	
Ctrl+Left/Ctrl+Right

	
Scroll Up/Down within the canvas area (without moving through the window contents)

	
Ctrl+Up/Ctrl+Down

Menus

Context menus are accessed using Shift+F10. Menus from the main menu bar are accessed using the keyboard shortcut for the menu.

The following table describes the keyboard actions to perform navigation tasks involving the menu bar.

Table 3-12 Keyboard Navigation for Menus

	Navigation	Keys
	
Navigate to menu bar

	
F10

	
Navigate out of menu bar

	
Esc

	
Navigate between menus in menu bar

	
Right Arrow, Left Arrow

	
Navigate to menu item

	
Up Arrow, Down Arrow

	
Navigate from menu item

	
Up Arrow, Down Arrow

	
Activate item

	
Enter, Spacebar, or keyboard shortcut (if one has been defined)

	
Open submenu

	
Right Arrow

	
Retract submenu

	
Left Arrow or Esc

Panels

The following table describes the keyboard actions to perform navigation tasks involving panels.

Table 3-13 Keyboard Navigation for Panels

	Navigation	Keys
	
Navigate in/out forward

	
Tab

	
Navigate in/out backward

	
Shift+Tab

	
Expand panel (when focus on header)

	
Right Arrow

	
Collapse panel (when focus on header)

	
Left Arrow

	
Navigate within panel

	
Up Arrow, Down Arrow

	
Navigate to panel header from contents (when focus is on top item in list)

	
Up Arrow

	
Navigate to panel contents from header (when focus is on header)

	
Down Arrow

Tables

Arrow keys move focus in the direction of the arrow, except when a web widget has focus; in that case, the down arrow or enter key initiates the widget control action, such as opening a choice list. tab moves the focus right, shift+tab moves the focus left.

The following table describes the keyboard actions to perform navigation tasks involving tables.

Table 3-14 Keyboard Navigation for Tables

	Navigation	Keys
	
Navigate forward in or out of table

	
Ctrl+Tab

	
Navigate backward in or out of table

	
Shift+Ctrl+Tab

	
Move to next cell (wrap to next row if in last cell)

	
Tab Arrow or Right Arrow

	
Move to previous cell (wrap to previous row if in first cell)

	
Shift+Tab or Left Arrow

	
Controls in cells open

	
Down Arrow or Enter

	
Block move left

	
Ctrl+Page Up

	
Block move right

	
Ctrl+Page Down

	
Block move up

	
Page Up

	
Block move down

	
Page Down

	
Move to first cell in row

	
Home

	
Move to last cell in row

	
End

	
Move to first cell in table

	
Ctrl+Home

	
Move to last cell in table

	
Ctrl+End

	
Select all cells

	
Ctrl+A

	
Deselect current selection (and select alternative)

	
Any navigation key

	
Extend selection on row

	
Shift+Up Arrow

	
Extend selection one column

	
Shift+Down Arrow

	
Extend selection to beginning of row

	
Shift+Home

	
Extend selection to end of row

	
Shift+End

	
Extend selection to beginning of column

	
Ctrl+Shift+Home

	
Extend selection to end of column

	
Ctrl+Shift+End

	
Edit cell without overriding current contents, or show dropdown list in combo box

	
F2

	
Reset cell content prior to editing

	
Esc

Tabs

This section refers to the tabs that appear within a dockable window, view or dialog. The following table describes the keyboard actions to perform navigation tasks involving tabs in dockable windows, views and dialogs.

Table 3-15 Keyboard Navigation for Tabs

	Navigation	Keys
	
Navigate forward into or out of tab control

	
Tab

	
Navigate backward into or out of tab control

	
Ctrl+Tab

	
Move to tab (within control) left/right

	
Left Arrow/Right Arrow

	
Move to tab (within control) above/below

	
Up Arrow/Down Arrow

	
Move from tab to page

	
Ctrl+Down

	
Move from page to tab

	
Ctrl+Up

	
Move from page to previous page (while focus is within page)

	
Ctrl+Page Up

	
Move from page to next page (while focus is within page)

	
Ctrl+Page Down

Trees

The following table describes the keyboard actions to perform navigation tasks involving trees.

Table 3-16 Table Navigation for Trees

	Navigation	Keys
	
Navigate forward into or out of tree control

	
Tab

	
Navigate backward into or out of tree control

	
Shift+Tab

	
Expand (if item contains children)

	
Right Arrow

	
Collapse (if item contains children)

	
Left Arrow

	
Move to parent from child (if expanded)

	
Left Arrow

	
Move to child from parent (if already expanded)

	
Right Arrow

	
Move up/down one item

	
Up Arrow, Down Arrow

	
Move to first item

	
Home

	
Move to last entry

	
End

	
Select all children of selected parent

	
Ctrl+A

	
Select next item down in list without deselecting that item that currently has focus

	
Shift+Down Arrow

	
Select next item up in list without deselecting that item that currently has focus

	
Shift+Up Arrow

	
Select current item and all items up to the top of the list

	
Shift+Home

	
Select current item and all items up to the bottom of the list

	
Shift+End

	
Select the item with current focus without deselecting other items (to select items that are not adjacent)

	
Ctrl+Spacebar

	
Navigate through list without deselecting item with current focus

	
Ctrl+Up/Down Arrow

Wizards

The Following Table Describes The Keyboard Actions To Perform Navigation Tasks Involving Wizards.

Table 3-17 Keyboard Navigation for Wizards

	Navigation	Keys
	
Navigate between stops on the roadmap or between pages

	
Up Arrow, Down Arrow (these do not wrap)

	
Navigate forward between components on wizard panel, wizard navigation bar buttons, and navigation panel

	
Tab

	
Navigate backward between components on wizard panel, wizard navigation bar buttons, and navigation panel

	
Shift+Tab

	
Navigate between buttons on Navigation Bar

	
Right and Left Arrow Key (does not wrap)

	
Navigate between stops on Roadmap/between wizard pages

	
Ctrl Page Up and Ctrl Page Down

3.5.2.4 Navigation in Specific Components

This section contains information about keyboard shortcuts for JDeveloper-specific UI components.

Dialogs

The following table describes the keyboard actions to perform navigation tasks involving dialogs.

Table 3-18 Keyboard Navigation for Dialogs

	Navigation	Keys
	
Close dialog without making any selections or changes

	
Esc

	
Activate the default button (if one is defined)

	
Enter

Overview Editor (Form + Mapping)

The following table describes the keyboard actions to perform navigation tasks involving overview editors.

Table 3-19 Keyboard Navigation for the Overview Editor

	Navigation	Keys
	
Navigate into or out of overview editor from other pages in editor (for example Source or History)

	
Alt+Tab

	
Navigate from the tab group to next control in editor)

	
Tab or Ctrl+Down Arrow

	
Navigate forward or backwards between controls on overview editor

	
Tab or Alt+Tab

	
Move between tabs in the side tab control (when the focus in the tab group)

	
Up Arrow, Down Arrow

	
Move between tabs in side tab control (when focus on Page)

	
Ctrl+Page Up/Ctrl+Page Down

	
Move from page to tab group (from next control in editor)

	
Ctrl+Tab

	
Move from page to tab group (from any control in editor)

	
Ctrl+Up Arrow

	
Open and close Sections (when focus is on a section header)

	
Enter, Spacebar, Right Arrow/Left Arrow

Component and Resource Palettes

The following table describes the keyboard actions to perform navigation tasks involving palettes.

Table 3-20 Keyboard Navigation for Component and Resource Palettes

	Navigation	Keys
	
Navigate forward in or out of palette

	
Ctrl+Tab This moves you into first item within the pane.

	
Navigate backward in or out of palette

	
Ctrl+Shift+Tab

	
Move between elements including dropdown lists, search fields, panels, tree structure (but not individual elements in a tree), individual component buttons

	
Tab, Shift+Tab

	
Move up/down elements in a list or tree

	
Up Arrow/Down Arrow

	
Move left/right elements in a list or tree

	
Left Arrow/Right Arrow

	
Move to start/end of data (component buttons)

	
Ctrl+Home/Ctrl+End

	
Select a component button

	
Enter

Navigators

The following table describes the keyboard actions to perform navigation tasks involving navigators.

Table 3-21 Keyboard Navigation for Navigators

	Navigation	Keys
	
Navigate forward in or out of navigator

	
Ctrl+Tab This moves you into first item within the pane.

	
Navigate backward in or out of navigator

	
Ctrl+Shift+Tab

	
Move between elements including dropdown lists, search fields, panels, tree structure (but not individual elements in a tree), individual component buttons

	
Tab

	
Move up/down elements in a list or tree

	
Up Arrow/Down

	
Move left/right elements in a list or tree

	
Left Arrow/Right Arrow

	
Move to start/end of data (component buttons)

	
Ctrl+Home/Ctrl+End

	
Select a component button

	
Enter

	
Select an element

	
Enter

Property Inspector

The following table describes the keyboard actions to perform navigation tasks involving the Property Inspector.

Table 3-22 Keyboard Navigation for the Property Inspector

	Navigation	Keys
	
Navigate forward into or out of Property Inspector

	
Ctrl+Tab

	
Navigate backward into or out of Property Inspector

	
Ctrl+Shift+Tab

	
Navigate from side tab group to page

	
Tab

	
Navigate backward and forwards between elements on page

	
Tab, Shift+Tab

	
Move to tab above/below (when focus is on the side tab)

	
Up Arrow, Down Arrow

	
Move to tab right or left, above or below (when focus is on the internal tab group)

	
Up Arrow, Down Arrow, Right Arrow, Left Arrow

	
Move from side tab group to page

	
Ctrl+Down Arrow

	
Move from page to side tab group

	
Ctrl+Up Arrow

	
Move to side tab above (previous) when focus on page

	
Ctrl+Page Up

	
Move to side tab below (next) when focus on page

	
Move to side tab below (next) when focus on page

	
Open and Close sections (when focus is on a section header)

	
Enter

Text Editors

The following table describes the keyboard actions to perform navigation tasks involving the pane elements of text editors.

Table 3-23 Keyboard Navigation for Text Editors

	Navigation	Keys
	
Navigate forward in or out of editor

	
Ctrl+Tab

	
Navigate backward in or out of editor

	
Ctrl+Shift+Tab

	
Move from page to previous page

	
Alt+Page Up

	
Move from page to next page

	
Alt+Page Down

The following table describes the keyboard actions to perform navigation tasks involving the text or canvas areas of text editors.

Table 3-24 Keyboard Navigation for Canvas Areas of Text Editors

	Navigation	Keys
	
Move up/down one line

	
Up Arrow, Down Arrow

	
Move left/right one character

	
Left Arrow, Right Arrow

	
Move to start/end of line

	
Home, End

	
Move to previous/next word

	
Ctrl+Left Arrow, Ctrl+Right Arrow

	
Move to start/end of text area

	
Ctrl+Home/Ctrl+End

	
Move to beginning/end of data

	
Ctrl+Home/Ctrl+End

	
Move up/down one vertical block

	
Page Up/Page Down

	
Block move left

	
Ctrl+Page Up

	
Block move right

	
Ctrl+Page Down

	
Block extend up

	
Shift+Page Up

	
Block extend down

	
Shift+Page Down

	
Block extend left

	
Ctrl+Shift+Page Up

	
Block extend right

	
Ctrl+Shift+Page Down

	
Select all

	
Ctrl+A

	
Deselect all

	
Up Arrow, Down Arrow, Left Arrow, Right Arrow

	
Extend selection up/down one line

	
Shift+Up Arrow/Shift+Down Arrow

	
Extend selection left/right one component or char

	
Shift+Left Arrow/Shift+Right Arrow

	
Extend selection to start/end of line

	
Shift+Home/Shift+End

	
Extend selection to start/end of data

	
Ctrl+Shift+Home/Ctrl+Shift+End

	
Extend selection up/down one vertical block

	
Shift+Page Up/Shift+Page Down

	
Extend selection to previous/next word

	
Ctrl+Shift+Left Arrow /Ctrl+Shift+Right Arrow

	
Extend selection left/right one block

	
Ctrl+Shift+Page Up/Ctrl+Shift+Page Down

	
Copy selection

	
Ctrl-C

	
Cut selection

	
Ctrl-X

	
Paste selected text

	
Ctrl-V

Graphical Editors

The following table describes the keyboard actions to perform navigation tasks involving graphical editors.

Table 3-25 Keyboard Navigation for Graphical Editors

	Navigation	Keys
	
Navigate forward in or out of editor

	
Ctrl-Tab

	
Navigate backward in or out of editor

	
Ctrl+Shift+Tab

	
Move from page to previous page

	
Alt+Page Up

	
Move from page to next page

	
Alt+Page Down

The following table describes the keyboard actions to perform navigation tasks involving the canvas areas of graphical editors.

Table 3-26 Keyboard Navigation for Canvas Areas of Graphical Editors

	Navigation	Keys
	
Move to the next focusable element within editor area

	
Up Arrow, Down Arrow, Left Arrow, Right Arrow

	
Select element

	
Spacebar

	
Activate context menu

	
Shift+F10

3.6 Customizing the IDE

You can alter the appearance and functionality of a wide variety of JDeveloper features.

3.6.1 How to Change the Look and Feel of the IDE

You can alter the appearance of JDeveloper using pre-defined settings.

To change the look and feel of the IDE:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, select the Environment node if it is not already selected.

	
On the Environment page, select a different look and feel from the Look and Feel dropdown list.

	
Click OK.

	
Restart JDeveloper.

	
Note:

The key bindings in Motif are different from key bindings in Windows. Under Motif, the arrow keys do not change the selection. Instead they change the lead focus cell. You must press Ctrl + Space to select an item. This is expected behavior.

3.6.2 How to Customize the General Environment for the IDE

You can customize the default display options (such as whether or not the splash screen is displayed at start up, or whether dockable windows are always on top), as well as other general behavior, such as whether JDeveloper will automatically reload externally modified files and whether output to the Log window is automatically saved to a file.

To change the general environment settings for the IDE:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, select the Environment node if it is not already selected.

	
On the Environment page, select the options and set the fields as appropriate.

	
Click OK.

	
Restart JDeveloper.

3.6.3 How to Customize Dockable Windows in the IDE

You can customize the layout for dockable windows in their docked position. You can also set dockable windows to remain on top of other GUI elements, or not, when those windows are moved.

To change the shape of one or more of the four docking areas:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, select the Environment node select Dockable Windows.

	
On the Dockable Windows page, click the corner arrows to lengthen or shorten each docking area's shape.

	
Click OK.

To change whether dockable windows remain on top or not when moved:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, select the Environment node select Dockable Windows.

	
On the Dockable Windows page, select or deselect Dockable Windows Always on Top as appropriate.

	
Click OK.

3.6.4 How to Customize the Compare Window in the IDE

You can customize the display of the Compare window.

To customize the options for comparing files:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, select Compare and Merge.

	
On the Compare page, set the options available for the display of two files being compared.

	
Click OK.

3.6.5 How to Customize the Component Palette

The Component Palette offers you a quick method for inserting components into files open in the editor.

3.6.5.1 How to Add a Page to the Palette

You can add pages to the Component Palette, within which to group additional components, or you can add components to existing pages.

To add a page to the Palette:

	
From the main menu, choose Tools > Configure Palette to open the Configure Component Palette dialog. For more information at any time, press F1 or click Help from within the Configure Component Palette dialog.

	
Optionally, in the Configure Component Palette dialog, for Page Type select the appropriate type to limit the display in the Pages list.

	
In the Configure Component Palette dialog, underneath the Pages list box, click Add.

	
In the Create Palette Page dialog, enter the name of the new page and select a type from the dropdown list. If you selected a page type in Step 2, that type is reflected now in this dialog.

	
Click OK to return to the Configure Component Palette dialog.

	
If finished, click OK. The new page is now added to the dropdown list in the Component Palette. It also appears in the Pages list of the Configure Component Palette dialog.

Alternately, right-click in the Component Palette and choose Add Page.

3.6.5.2 How to Add a JavaBeans Component to the Palette

You can add pages to the Component Palette to group your JavaBeans components, or you can add components to existing pages. Once you add JavaBeans to the Palette, you can insert these beans into any file you have open in the Java Visual Editor by selecting them from the Palette.

To add a JavaBeans component to the Palette:

	
If the bean is not already referenced by a library, create a user library (outside the project) for the bean.

In the Class Path field, set the location of the bean class. If the bean is in an archive, use the archive. If the bean is contained in a project, use the output directory of that project.

Note that when you are creating your own JavaBeans for later deployment, it can be useful to defer putting them into an archive until you have finished development.

	
From the main menu, choose Tools > Configure Palette to open the Configure Component Palette dialog. For more information at any time, press F1 or click Help from within the Configure Component Palette dialog.

	
Optionally, in the Configure Component Palette dialog, for Page Type select Java to view only those pages containing JavaBeans.

Skip to Step 6 if you do not want to add a new page.

	
Underneath the Pages list box, click Add.

	
In the Create Palette Page dialog, enter the name of the new page, ensure that Java is selected from the dropdown list, and click OK.

Your new page name is added to the bottom of the Pages list in the Configure Component Palette dialog.

	
In the Pages list, select the page to which you wish to add the JavaBeans component.

	
Underneath the Components list box, click Add.

	
In the Add JavaBeans dialog, fill in the appropriate details for the new component.

	
Click OK to return to the Configure Component Palette dialog.

	
If finished, click OK.

The new beans component now appears in the Component Palette when the appropriate page is selected. It also appears in the Components list of the Configure Component Palette dialog when the page it is associated with is selected in the Pages list.

3.6.5.3 How to Remove a Page from the Palette

Note that if you remove a page supplied by JDeveloper, the only way to recover it again is to restore the default setting for the Component Palette by moving the palette.xml file from jdev_install/system to jdev_install/system/release_and_build_number, where jdev_install is the root directory in which JDeveloper is installed.

To remove a page from the Palette:

	
From the main menu, choose Tools > Configure Palette to open the Configure Component Palette dialog. For more information at any time, press F1 or click Help from within the Configure Component Palette dialog.

	
Optionally, in the Configure Component Palette dialog, for Page Type select the appropriate type to limit the display in the Pages list.

	
In the Pages list, select the page to be removed.

	
Underneath the Pages list box, click Remove.

If the page cannot be removed, the Illegal Request dialog appears.

	
To confirm removal, in the Confirm Remove Page dialog, click Yes.

	
In the Configure Component Palette dialog, click OK.

The page no longer appears in the Component Palette dropdown list. It has also been removed from the Pages list of the Configure Component Palette dialog.

Alternately, with the page selected in the Component Palette, right-click in the Palette and choose Remove Page.

3.6.5.4 How to Remove a Component from the Palette

Note that if you remove a component supplied by JDeveloper, the only way to recover it again is to restore the default setting for the Component Palette by moving the palette.xml file from jdev_install/system to jdev_install/system/release_and_build_number, where jdev_install is the root directory in which JDeveloper is installed.

To remove a component from the Palette:

	
From the main menu, choose Tools > Configure Palette to open the Configure Component Palette dialog. For more information at any time, press F1 or click Help from within the Configure Component Palette dialog.

	
Optionally, in the Configure Component Palette dialog, for Page Type select the appropriate type to limit the display in the Pages list.

	
In the Pages list, select the page you want to remove the component from.

	
In the Components list box, click Remove.

If the component cannot be removed, the Illegal Request dialog appears.

	
To confirm removal, in the confirmation dialog, click Yes.

	
In the Configure Component Palette dialog, click OK.

The component no longer appears in the Component Palette dropdown list. It has also been removed from the Components list of the Configure Component Palette dialog.

You cannot remove a component using the Component Palette context menu. You must work through the Configure Component Palette dialog.

3.6.6 How to Change Roles in JDeveloper

You can change the roles that are used to shape JDeveloper. Shaping tailors the JDeveloper environment based on the role of the user.

When you change to a new role, it is only available after you restart JDeveloper.

To change the role for JDeveloper:

	
From the main menu, choose Tools > Switch Roles and select the role of your choice.

3.6.7 How to Associate File Types with JDeveloper

You can associate commonly used file types with JDeveloper. Once a file type has been associated with JDeveloper, opening a file of that type automatically launches JDeveloper. (This feature is supported only in Windows systems.)

To associate a file type with JDeveloper:

	
From the main menu, choose Tools > Preferences and open the File Types pane. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the list of file types, select a file type to be associated with JDeveloper.

	
In the Details for area, check Open with JDeveloper.

3.7 Working with the Resource Palette

When designing and building applications, you may need to find and use many software assets. You may know what you want to find, but you may not certain where to find it or even what the artifact of interest is called. Even if you think you know where to find the artifact, and what it is called, you might not know how to establish a connection to the source repository. Consider the following:

	
An application developer needs to find and incorporate shared model, view and controller objects created by other members of her team, and by other product teams.

	
A UI designer needs access to a corporate catalog of images, style sheets, templates and sample designs to facilitate rapid creation of standards-compliant pages.

	
An application integrator needs easy access to a variety of web services of interest to a particular domain.

	
An end user needs to find relevant content (for example, portlets and UI components) for use while personalizing a page. In each of these cases, the user has a simple goal: find the resource(s) needed for the task at hand. The process of discovering and accessing the assets should be as effortless as possible.

The Resource Palette in JDeveloper addresses this. It lets you:

	
Locate resources stored in a wide variety of underlying repositories through IDE connections

	
Locate resources by browsing a hierarchical structure in catalogs

	
Search for resources and save searches

	
Filter resources to reduce the visible set when browsing

	
Use a resource you have found in an application you are building

	
Facilitate resource discovery and reuse by sharing catalog definitions

3.7.1 How to Open the Resource Palette

The resource palette allows you to create connections to a number of different resources, such as application servers, databases, WebDAV servers, from where you can use them in different applications and share them with other users.

To open the Resource Palette:

In the main menu, choose View > Resource Palette.

By default, the Resource Palette is displayed to the right of the JDeveloper window.

3.7.2 How to Work With IDE Connections

The connections defined in the Resource Palette are listed in the IDE Connections panel of the Resource Palette.

When you create a connection in JDeveloper, you can create it in the context of the Resource Palette as an IDE connection that can be reused in different applications, or shared between users, or as application connections.

Some types of connections may appear in special connection-type navigators. For example, database connections display in the Database Navigator under the IDE Connection node (for IDE connections), or the application-name node (for application resource connections). The Database Navigator is where you edit objects through the database connection.

The different types of connection that can be made depends on the technologies and extensions available to you. To see what you can create a connection to, choose New Connection from the New button in the Resource Palette.

3.7.2.1 Resource Palette Connection Descriptor Properties Location

The file system location for the Resource Palette connection descriptor definition information is

system-dir/jdeveloper/system11.1.2.n.nn.nn.nn/o.jdeveloper.rescat2.model/connections/connections.xml

3.7.2.2 Defining the Scope of a Connection

In JDeveloper 11g you have two ways of creating and managing connections. You can define a connection to be used in the context of an application (called an Application Resource connection), or for the IDE as a whole (called an IDE connection). You use the same dialog to define both of these, but their scope within JDeveloper is different.

When you first create a connection you choose the connection scope. You cannot subsequently change the connection scope.

3.7.2.2.1 Application Resource Connections

These connections are locally scoped and just available within the application. Connections in application resources are artifacts of the application and are deployed within the application. These types of connection are listed in the Application Resources panel of the Application Navigator, under the Connections node.

The file system location for the connection descriptor definition information is application-folder/.adf/META-INF/connections.xml, where application-folder is the path for the selected application.

3.7.2.2.2 IDE Connections

These are globally defined connections available for reuse, and they are listed in the IDE Connections panel of the Resource Palette. You can copy IDE connections to the application navigator to use them within an application.

3.7.2.3 How to Create IDE Connections

You can create connections in the Resource Palette to resources available to JDeveloper.

The specific types of connections you can make depend on the technologies and extensions available to you.

To create an IDE connection:

	
In the Resource Palette IDE Connections panel, choose New Connection from the New button.

	
Choose the type of connection you want to create, and enter the appropriate information in the Create Connection dialog. For more information at any time, press F1 or click Help from within the dialog.

3.7.2.4 How to Edit IDE Connections

Once you have created a connection in the Resource Palette, you can edit details of the connection, but you cannot change the connection name.

To edit an IDE connection:

	
In the Resource Palette IDE Connections panel, choose Properties from the context menu of a connection.

	
The Edit connection dialog opens where you can change the connection details. For more information at any time, press F1 or click Help from within the Edit connection dialog.

3.7.2.5 How to Add IDE Connections to Applications

You can use connections in the Resource Palette in an application.

The connection can be added to the application currently open in JDeveloper, and it is listed in the Application Resources panel of the Application Navigator, under the Connections node.

To add a connection to an application:

In the Resource Palette IDE Connections panel, choose Add to Application from the context menu of a connection.

Alternatively, drag the resource from the Resource Palette and drop it onto an application page.

Alternatively, drag the connection from IDE Connections in the Resource Palette and drop it onto the Application Resources pane in the Application Navigator.

3.7.3 How to Search the Resource Palette

There are two ways of searching in the Resource Palette:

	
Performing a simple search

	
Performing an advanced search, where you enter parameters in a dialog

In addition, you can define a dynamic folder in a catalog where the content of the folder is defined by a query expression that is executed when the folder is opened.

The time the search takes depends on how many resources there are in the Resource Palette, and how long it takes to connect to them, and the results are displayed in the Search Results panel.

You can stop a search before it has completed by clicking the Stop Search button.

3.7.3.1 Performing a simple search

In this case, the search is performed across all the contents of the Resource Palette, and it may take some time because JDeveloper connects to remote resources during the search.

To perform a simple search:

	
In the Resource Palette, click the Search Options button to choose whether the search is performed against the Name, Type or Description of the resource. For more information at any time, press F1 or click Help from within the Resource Palette.

	
Enter a search string in the field. For example, if you want to find every resource that contains dep in the name, choose Name in step 1, and enter dep. Every resource that contains the string dep will be listed in the search results.

	
Click the Start Search button to start the search.

3.7.3.2 Performing an advanced search

You can specify a series of search criteria, and you can choose where to start the search from.

To perform an advanced search:

	
In the Resource Palette, choose Advanced Search from the context menu of an object in the My Catalogs panel or the IDE Connections panel. For more information at any time, press F1 or click Help from within the Advanced Search dialog.

	
Define where the search starts. Either select from Search in, or click Show Hierarchy which allows you choose within a hierarchical list of the Resource Palette contents.

	
Enter search criteria to return the resources you want, and click Search.

3.7.4 How to Reuse Resource Palette Searches

You can save a search and reuse it. There are two ways of saving a search in order to reuse it:

	
As a dynamic folder, where the contents of the folder are created dynamically based on the search criteria when the folder is opened.

	
As a static folder containing the results of the search.

Dynamic folders can also be created directly in a catalog.

To save a search:

	
In the Resource Palette Search Results panel, choose Save Search from the context menu.

	
In the Save Search dialog, choose:

	
Save Search Criteria, to create a dynamic folder.

	
Save Search Results, to create a static folder of results.

For more information at any time, press F1 or click Help from within the Resource Palette.

	
Enter a name for the folder.

	
Choose the catalog to contain the folder, either from the dropdown list, or from the hierarchical list displayed when you click Show Hierarchy.

3.7.5 How to Filter Resource Palette Contents

Filters allow you fine-tune the contents of catalog folders.

To filter the contents of My Catalogs:

	
In the Resource Palette, choose Filter from the context menu of an object in the My Catalogs panel or the IDE Connections panel. For more information at any time, press F1 or click Help from within the Filter dialog.

	
Enter a string to define the filtering. Only entries in the folder that contain the string will be shown.

3.7.6 How to Import and Export Catalogs and Connections

Catalogs and connections are shared by importing Resource Catalog archive (.rcx) files that have been exported by another user.

To export a catalog:

	
Note:

When you select a catalog to export, any connections in the catalog are also selected. If you deselect the catalog before exporting, you must be sure to also deselect the connections that are not wanted in the archive file.

	
In the Resource Palette, choose Export from the context menu of an object in the My Catalogs panel or the IDE Connections panel.

	
In the Export Catalog and Connections dialog, select the catalogs and connections to be exported, and decide how errors will be handled. For more information at any time, press F1 or click Help from within the Export Catalog and Connections dialog.

To import a catalog:

	
In the Resource Palette, choose Import from (New).

	
In the Import Catalog and Connections dialog, specify or browse to the path and name of the Resource Catalog archive file (.rcx). For more information at any time, press F1 or click Help from within the Import Catalog and Connections dialog.

	
Choose the catalogs and connections you want to import, and determine how to handle errors.

3.7.7 How to Refresh the Resource Palette

You can refresh the contents of the Resource Palette.

To refresh the Resource Palette:

	
In the Resource Palette, choose Refresh from the context menu of an object in the My Catalogs panel or the IDE Connections panel.

3.7.8 How to Work With Resource Palette Catalogs

A catalog is a user-defined construct for organizing resources from multiple underlying repositories. The contents of a catalog and its associated folder structure can be designed to be used by an individual developer, or they can be targeted towards specific groups of users such as the UI designers for a development project.

Catalog folders organize resources in a catalog. You use catalog folders in the same way you would to organize files in a file system or bookmarks in a Web browser. Each catalog folder can contain any combination of:

	
Folders.

	
Dynamic folders, which are populated using a query.

	
Filters, which are used to fine-tune the content of a folder or subtree.

3.7.8.1 How to Create Catalogs

You can organize the information in the resource palette in catalogs.

To create a catalog:

	
In the Resource Palette, choose New Catalog from the New button.

	
In the Create Catalog dialog, specify a name for the catalog. For more information at any time, press F1 or click Help from within the Create Catalog dialog.

	
(Optional) Provide a description for the catalog, and the email of the catalog administrator.

3.7.8.2 How to Rename Catalogs

You can rename catalogs.

To rename a catalog:

	
In the Resource Palette, right-click the catalog, and choose Rename from the context menu.

	
In the Rename dialog, specify a new name for the catalog. For more information at any time, press F1 or click Help from within the Rename dialog.

3.7.9 How to Work with Catalog Folders

You can create folders to organize the contents of catalogs.

3.7.9.1 How to Create Folders

You can organize the information within catalogs in folders.

To create a catalog folder:

	
In the Resource Palette, choose New Folder from the context menu of a catalog in the My Catalogs panel or the IDE Connections panel. For more information at any time, press F1 or click Help from within the Create Folder dialog.

	
Enter a name for the folder.

3.7.9.2 How to Create Dynamic Folders

Dynamic Folders provide a powerful way to dynamically populate a catalog folder with resources. The content of the folder is defined by a query expression that is executed when the folder is opened. The results of the query appear as the contents of the folder.

To create a dynamic folder:

	
In the Resource Palette, choose New Dynamic Folder from the context menu of a catalog in the My Catalogs panel or the IDE Connections panel. For more information at any time, press F1 or click Help from within the Create Dynamic Folder dialog.

	
Define the search criteria that will be used to populate this folder when it is opened.

3.7.9.3 How to Add Resources to a Catalog

You can add a connection from the IDE Connections panel or a resource from the Search panel in the Resource Palette to a catalog in My Catalogs.

To add a resource to a catalog:

	
In the Resource Palette, right click a connection in the IDE Connections panel, or the result of a search in the Search panel and choose Add to Catalog from the context menu.

	
The Add to Catalog dialog opens for you to specify the name for the resource in the catalog, and the catalog to add it to. For more information at any time, press F1 or click Help from within the Create Connection dialog.

Alternatively, you can drag an item from under IDE Connections and drop it on a catalog or catalog folder.

You can reorganize a catalog by selecting an item or folder in the catalog and dragging it to another folder in the same catalog, or to another catalog.

3.8 Working with Source Files

JDeveloper includes an editor for editing source files across several technologies, including Java and XML, among others.

3.8.1 Using the Source Editor

JDeveloper includes an editor for editing source files across several technologies, including Java and XML, among others.

Depending on the type of source file you are editing, the source editor will be available in one of the following forms:

	
Java Source Editor

	
XML Editor

	
HTML/JSP Source Editor

	
JavaScript Editor

In addition to technology-specific features, the source editor also has a set of common features across all technologies that enhance the coding experience. These features include bookmarking, code insight, code templates, and several other features that enable you to code faster and better.

Use the Code Editor page in the Preferences dialog to customize the source editor to suit your coding style.

The source editor offers a set of common features across all technologies that provide intuitive support for a variety of coding tasks. Available across all forms of the editor, these features enhance your coding experience through quicker execution of coding tasks and better navigation through code.

Breadcrumb Navigation

The breadcrumb bar, located at the bottom of the editor window, shows the hierarchy of code entities from the current caret position up to the top of the file. Hovering the mouse cursor over a node pops up some information about the node, and clicking on the node navigates the caret to the node location.

A breadcrumb can be clicked to display a popup list of child breadcrumbs can be displayed (where appropriate). For example, for a Java class, you can click the breadcrumb to display the class' methods and inner classes in a list. Choosing an item on this list will navigate the editor to its location.

If block coloring has been activated and colors have been assigned, breadcrumbs are highlighted in the same color as their corresponding code blocks.

Overview Popup

The right margin of the editor provides colored overview marks that are indicators for a location in the source file. Hovering the mouse over an overview mark makes a popup appear which displays information about the item in that location of the source file, and a snippet of the relevant code.

The following overview indicators are provided:

	
A square mark at the top right corner of the editor window indicates the overall health of your source file, as per its color. White indicated that the health is currently being calculated. Green indicates that there are no errors or warnings in the file. Red indicates errors, and yellow indicates warnings

	
Rectangles, depending on their color, signify the occurrence of the following source editing artifacts:

	
Red: Java code error

	
Pale blue: bookmark

	
Medium blue: current execution breakpoint

	
Yellow: occurrence of searched text

	
Pale orange: Java warning

	
Bright orange: Profile Point

You can also press Ctrl anywhere in the right margin to view a popup window that displays a portion of the source code that is not currently in view. By adjusting the position of the mouse while pressing Ctrl, you can view the entire code without scrolling in the editor itself

Hovers

Hovers enable you to position the mouse cursor over certain areas of the IDE and get some information on them in a popup window that appears floating in front.

Whitespace Display

Tools menu > Preferences > Code Editor > Display > Show Whitespace Characters

This feature optionally renders spaces, new lines, carriage returns, non-breaking spaces, and tab characters as visible characters in the editor. Turned off by default, this can be enabled and disabled using the Preferences Dialog.

Duplicate Selection

Edit menu > Duplicate Selection

Duplicates the currently selected block of code, and places the copied code beside the original code. After duplication, the newly inserted code is selected. The clipboard is not affected by this operation.

Vertical Selection

Edit menu > Block Selection

This feature enables you to select code vertically. when you do not want to select text that wraps around the end of lines. This is useful for selecting tabular data, or vertically aligned code blocks.

Join Lines

Join the current line to the next, or join all lines in a selection. Any comment delimiters or extra whitespace are intelligently removed to join the lines.

Default keyboard shortcut: Ctrl+J

Cursor Position

When the source editor is in use, the status bar at the bottom displays the line and column coordinates of the current position of the cursor.

Mouse Wheel Zoom

Hold down the Ctrl key and use the mouse scroller to zoom in to or zoom out of the code editor.

3.8.1.1 Features Available From the Context Menu

The generic source editor also provides a set of features through the context menu. To use these features, in the context menu, select Source. Depending on the type of source file in use, items other than the ones mentioned below may be present in the context menu. For example, the Java Source Editor contributes Java-specific options to the source editor context menu.

	
Note:

These features are also available through the Source menu.

Completion Insight

Completion insight provides you with a list of possible completions, such as method names, and parameter types if they are applicable, at the insertion point, which you may use to auto-complete Java code you are editing. This list is generated based on the code context found at the insertion point. The contexts supported by completion insight are:

	
Within package and import statements

	
Within extends, implements, and throws clauses

	
Within continue and break statements

	
Within general code expressions

Default keyboard shortcut: Ctrl+Space

Parameter Insight

Parameter insight provides you with the types and names of the parameters of the method call you are typing. If the method is overloaded, multiple sets of parameter types and names are listed.

Default keyboard shortcut: Ctrl+Shift+Space

	
Note:

If errors for the file appear in the Structure window, Code (Completion or Parameter) Insight may not work. If the class(es) you are using are not in your project (that is, not on your classpath), Code Insight will not appear. Please note that you may need to compile your src files in order for Code Insight to have access to them.

Complete Statement

Use to auto-complete code statements where such a completion is obvious to JDeveloper; for example, semi-colon insertions at the end of a statement.

Default keyboard shortcut: Ctrl+Shift+Enter

Expand Template

Insert a code template from a list of JDeveloper's predefined code templates. The code templates offered are context sensitive. For example, templates to declare class variables are only offered when the cursor is in the appropriate place in the class file.

Default keyboard shortcut: Ctrl+Enter

Code Assist

Code Assist examines your code in the editor and provides assistance to fix common problems. A Code Assist icon appears in the editor margin when JDeveloper has a suggestion for a code change. To invoke Code Assist manually, press Ctrl+Alt+Enter. To select an action listed in Code Assist, press Alt+ the underlined key.

Default keyboard shortcut: Ctrl+Alt+Enter

QuickDoc

Select to view the Javadoc or Jsdoc (depending on whether you are using the Java or JavaScript editor) for the element in focus.

Default Keyboard Shortcut: Ctrl+D

Toggle Line Comments

Comments out the line currently in focus in the source editor. Running this command on a commented line uncomments the line.

Default Keyboard Shortcut: Ctrl+Slash

Indent Block

Indents the line of code currently in focus. If a block of code is selected, the entire block is indented.

Unindent Block

Unindents a line or block of code, based on code has focus in the editor.

3.8.2 How to Set Preferences for the Source Editor

You can change the default settings of many of the features of the source editor by changing the preferences.

You can also view or change shortcut keys for the source editor, by modifying the predefined keyboard schemes.

To set indentation size for the source editor:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, select the Code Editor node, then the Code Style page.

	
On the Code Style page, select the Edit button.

	
On the Format tab, open the Indentation node and select Indentation Size.

	
Change the indentation value as required.

	
Note:

While editing code, if you press the Tab key when the Use Tab Character option is unchecked, JDeveloper indents by the indentation size you specify (4 by default). If you select Use Tab Character, JDeveloper will use tab characters for indenting, based on values specified in both the Indentation Size and Tab Size fields. For example, if you use an indent size of 4, and a tab size of 8, then it takes two indent levels (4 spaces each) to reach the tab size (8). So if you press Tab twice to indent twice, JDeveloper will insert a tab character in the source file. That tab character will expand to 8 spaces.

	
Click OK to close the dialogs.

To set fonts for the Source Editor

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, select the Code Editor node, then the Fonts node.

	
On the Fonts page, select a font type and size. Alter the sample text, if you wish. The sample text display reflects your font changes.

By default, all your system fonts are loaded. To limit the fonts available on this page to fixed-width fonts, select Display Only Fixed-Width Fonts.

	
Click OK.

To set caret behavior for the source editor:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within Preferences dialog.

	
In the Preferences dialog, expand the Code Editor node.

	
Select the Caret Behavior node.

	
On the Caret Behavior page, set the different attributes that determine how the caret will look and behave.

For more information, press F1 or click Help from within the dialog page.

	
Click OK.

To set the options for width and the right margin in the source editor:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, expand the Code Editor node.

	
Select the Display node.

	
On the Display page, enter the settings you wish for the right margin.

	
Enter a width for the source editor, expressed in numbers of columns.

	
Click OK.

To set line gutter behavior for the source editor:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, expand the Code Editor node.

	
Select the Line Gutter node.

	
On the Line Gutter page, decide whether or not line numbers will appear.

	
Set the other attributes to create the line gutter behavior that you want.

	
Click OK.

To set the options for syntax highlighting in the source editor:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog

	
In the Preferences dialog, expand the Code Editor node.

	
Select the Syntax Colors node.

	
On the Syntax Colors page, begin by selecting the appropriate category for the syntax you wish to work with.

The display on the page changes to reflect the current settings for the first style listed in this category, which is highlighted.

	
With the category displayed above, select any individual style in the Available Styles list to view its current settings.

	
Select a font style and set the background and foreground color as desired. The sample text changes accordingly.

	
Click OK.

To set bookmark options for the source editor:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within Preferences dialog.

	
In the Preferences dialog, expand the Code Editor node.

	
Select the Bookmarks node.

	
On the Bookmarks page, decide how you wish to handle bookmarks once you've exited the editor or Oracle JDeveloper, how you wish to traverse bookmarks, and how you wish to handle bookmarks at the end of files for lines that may no longer exist.

	
Click OK.

To set the options for Code Insight in the source editor:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within Preferences dialog.

	
In the Preferences dialog, expand the Code Editor node.

	
Select the Code Insight node.

	
On the Code Insight page, select the appropriate checkboxes to enable completion insight or parameter insight and use the sliding bar to set the delay time before the popup window appears.

	
Click OK.

3.8.3 How to Customize Code Templates for the Source Editor

Code templates assist you in writing code more quickly and efficiently while you are in the source editor. You can edit the existing templates or create your own.

To view existing code templates:

	
From the main menu, choose Tools > Preferences, expand the Code Editor node, and select Code Templates. For more information at any time, press F1 or click Help from within Preferences dialog.

	
On the Code Templates page, scroll through the shortcuts, which represent the letters you must type to evoke each template.

	
Click on any shortcut to view the associated template code on the Code tab. If there are any imports associated with this template, they will be shown on the Imports tab.

To edit an existing code template:

	
From the main menu, choose Tools > Preferences, expand the Code Editor node, and select Code Templates.

	
On the Code Templates page, make changes to the shortcut, the description, the code (including the variables used in it), and the imports, as required.

	
When you are finished, click OK.

To define a new code template:

	
From the main menu, choose Tools > Preferences, expand the Code Editor node, and select Code Templates.

	
On the Code Templates page, click Add. The cursor jumps to the bottom of the Shortcut list and a new row is added.

	
Type in the name for the new shortcut and add a description in the list next to it.

	
Select the Code tab and enter the code for this template. Note that cursor position is a part of the template, representing the logical insertion point for new code to be entered when the template is used. Select the Imports tab and enter any imports associated with this template.

	
Click OK.

To customize the HTML and JSP options for the source editor:

	
Choose Tools > Preferences. For more information at any time, press F1 or click Help from within Preferences dialog.

	
Expand the Code Editor node.

	
Select the XML and JSP/HTML node.

	
On the XML and JSP/HTML page, select End Tag Completion to enable that option.

	
Click OK.

To set undo behavior for the source editor:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, expand the Code Editor node.

	
Select the Undo Behavior node.

	
On the Undo Behavior page, use the slider bar to set the number of actions of the same type to be combined into one undo.

	
Select or deselect the options for combining insert-mode and overwrite-mode edits and for combining the deletion of next and previous characters.

	
If you wish to be able to undo navigation-only changes, select the appropriate checkbox. If you enable this setting, use the slide bar to set the number of navigation changes to be combined into one undo.

	
Click OK.

To set printing options for the source editor:

	
From the main menu, choose Tools > Preferences. For more information at any time, press F1 or click Help from within the Preferences dialog.

	
In the Preferences dialog, expand the Code Editor node.

	
Select the Printing node.

	
On the Printing page, set the various print options.

	
Click OK.

3.8.4 How to Manage Source Files in the Editor Window

Oracle JDeveloper possesses several capabilities for easier handling of files in the editor window.

3.8.4.1 Maximizing the View of a File

You can open a file to fill the maximum view available in JDeveloper. This is done by maximizing the source editor to fill JDeveloper

The same technique of double-clicking a tab can be used for any of the other windows in JDeveloper, for example, the Help Center, or the Application Navigator.

To maximize the view of a file:

	
In the source editor, double-click the tab of the file. The source editor becomes the only window visible in JDeveloper, with the file you have chosen currently displayed in it.

To reduce the view of a file to its former size

	
Double-click the tab of the file again. The windows within Oracle JDeveloper return to their former layout.

3.8.4.2 Navigating Between Open Files in the Editor Window

You can navigate through files visually (cycling through by tab), historically (cycling through by order of access), or numerically (cycling through based on file shortcut key assignment).

To navigate through open files by tab:

	
Press Alt+Left Arrow or Alt+Right Arrow. Use Alt+Left Arrow to navigate to the left, and Alt+Right Arrow to navigate to the right.

To navigate through open files based on history:

	
Press Ctrl+Tab or Ctrl+Shift+Tab

Use Ctrl+Tab to open the last active file. Note that opening a file renders it the currently active file, such that the previously active file now becomes the last file to have been active.

For example, given files A, B, and C (opened in the order C, B, A), where file A currently has focus, pressing Ctrl+Tab brings B to the foreground. Now B is the file with focus and A is the last active file. Pressing Ctrl+Tab again thus brings A back to the foreground.

	
Press Ctrl+Tab+Tab+Tab to cycle through files by order of access without stopping. Only when you stop on a file is that file given focus. Stopping on a file is equivalent to using Ctrl+Tab on that file.

3.8.4.3 How to Display the List of All Currently Open Files

You can display all the files currently open in the editor window, or all the files currently open in a particular tab group.

To display the alphabetical list of all the files currently open in a given tab group:

Click the File List button in the upper right-hand corner of the editor window. Alternately, with the focus in the editor window, press (in the default keyboard scheme) Alt+0.

If the editor window is not subdivided, the list will contain all open files. If the editor window is subdivided, the list will contain all the open files in that tab group.

To display the alphabetical list of all the files currently open in the editor window, regardless of split or detached files:

	
From the main menu, choose Window > Windows.

3.8.4.4 How to Access a Recently Opened File

Oracle JDeveloper remembers the last files you have edited.

To access a recently-edited file, irrespective of whether it is currently open or not:

	
From the main menu, choose Navigate > Go to Recent Files or (in the default keyboard scheme) press Ctrl+ =.

	
In the Recent Files dialog, select the file from the list or begin typing the first letters of the filename.

	
Click OK.

By default, only those files opened directly (through the navigator, for instance) appear in the list. Those opened indirectly (for example, as you debug code) do not automatically appear. To view files opened both directly and indirectly, select Show All.

3.8.4.5 How to Open Multiple Editors for a File

You can split the editor window horizontally or vertically, opening a single file in multiple views. In each view, you've the choice of changing which editor the file is opened in.

You can split a file into as many views as you like. The split views are automatically synchronized with each other.

To open a single file in multiple views:

	
From the main menu, choose Window > Split Document.

The editor window is now split in two, with two identical and independent windows opened on the same file. Each window has its own set of editor tabs at the bottom.

	
In each window, select the editor tab to view the file in that editor.

Note that some editors (such as the Java Visual Editor) permit only one view at a time on a file.

Alternately, you can split the file using the mouse, either horizontally or vertically.

To split the file horizontally, grab the splitter just above the vertical scroll bar (on the upper right-hand side of the window) and drag it downward.

To split the file vertically, grab the splitter just to the right of the horizontal scroll bar (on the lower right-hand side of the window) and drag it left.

To navigate quickly between split views:

	
Press F6 to cycle forward.

	
Press Shift+F6 to cycle backward.

To collapse those multiple views back into one:

	
From the main menu, choose Window > Unsplit Document.

Alternately, you can drag the splitter past the end of the editor window.

3.8.4.6 Viewing More Than One File at a Time

You can split the editor window horizontally or vertically, opening views on more than one file at a time. Each view is independent of the others

You can split the editor window into as many different independent views as you would like.

To view more than one file at a time, in independent windows:

	
From the main menu, choose Window > New Tab Group.

The editor window is now split in two, with different files in each window. Each window has a set of document tabs at the top and a set of editor tabs at the bottom. Each window is known as a tab group.

You can create as many tab groups as you like.

Alternately, you can detach a file using the mouse, by grabbing the document tab for the file and dragging it towards the area of the window where you want the file displayed.

As you drag the tab, the icon that follows the cursor changes. A split window with an arrow to the left, right, top, or bottom indicates that if you release the mouse now, the new window will be placed in that relationship to the current window.

To move a file to a different tab group:

	
Drag the document tab for the file to the center of the area occupied by the tab group you wish to attach it to.

	
When the icon that follows the cursor changes to show a miniature window with tabs, release the mouse.

To collapse those multiple views back into one:

	
From the dropdown menu, choose Window > Collapse Tab Groups.

Alternately, you can simply grab the document tab for a detached file and drop it onto an existing tab or tab group. When the icon changes to show a miniature window with tabs, release the mouse.

3.8.4.7 How to Quickly Close Files in the Editor Window

You can close any file open in the editor window with a single click.

To close the current file, choose one of the following ways:

	
From the main menu, choose File > Close.

	
Press Ctrl+F4.

	
In the editor, right-click the tab for the current file and choose Close.

	
Hover the mouse over the tab for the current file and click the Close button.

To close all files, choose one of the following ways:

	
From the main menu, choose File > Close All.

	
Press Ctrl+Shift+F4.

	
In the editor, right-click the tab for any file and choose Close All.

To close all files except one:

	
In the editor, right-click the tab for the file you want to stay open and choose Close Others.

To close multiple files at once:

	
From the main menu, choose Window > Windows.

	
In the Windows dialog, select the files to be closed and click OK.

To selectively close files:

	
In the editor, select the corresponding tab for the file to be closed.

	
Ctrl+click the tab, or hover the mouse over the tab and click the Close button.

3.8.5 Working with Mouseover Popups

Mouseover Popups enable you to position the mouse cursor over certain areas of the IDE and get some information on them in a popup window that appears floating in front. Information is available on the following:

	
Javadoc

	
Source code

	
Data values while debugging

	
Breakpoints

The popup window appears when you move the mouse over and optionally press the key that you assign for the feature. The following are some of the areas of the IDE that mouseover popups are available for:

	
Structure window

	
Text in an editor

Smart-Popup

The Smart-Popup feature shows the most appropriate popup for a given situation, depending on the order of popups specified in the Mouseover Popups page of the Preferences dialog. Smart-Popup is activated by a keystroke which you can specify on the Mouseover Popups page of the Preferences Dialog.

For example, you may have the following popup configuration (set using the Mouseover Popups page of the Preferences dialog)

	
Smart-Popup is enabled and configured on the Control key.

	
The Data Values, Documentation, and Source popups all have Smart-Popup enabled and are ordered in the following way: Data Values, Documentation, Source Code in the Mouseover Popups table.

With this configuration, if you hover the mouse over a variable in the source editor and press Control, then:

	
The Data Values popup is considered first. If you are debugging and the mouse hovers over a variable with a value, the Data Value popup is displayed.

	
If no popup is displayed for the previous step, then the Documentation popup is considered next. If the variable has any documentation, it is displayed in a popup window.

	
If no popup is displayed for the previous step, then the Source popup is considered next, and the source code for the variable (if available) is displayed in a popup window.

With Smart-Popup, you only need to use the Smart-Popup activation keystroke for the IDE to display the most appropriate popup

	
Note:

Even with Smart-Popup enabled, the individual popups for Data Values, Documentation, and Source Code can still be activated by their respective activation keys.

3.8.6 How to Locate a Source Node in the Navigator

You can quickly locate the source node in the Application Navigator for any file opened for editing, whether or not that node is in the current project.

To locate the node for any file opened in the editor:

	
Make sure that the focus in the editor is on the file you wish to locate.

	
From the context menu, choose Select in Navigator.

3.8.7 How to Set Bookmarks in Source Files

You can use bookmarks in your source files to help you quickly locate relevant code. You can use the Bookmarks Window to navigate to bookmarked material.

To set or remove a bookmark in a source file:

	
Within the file, place the cursor in the gutter of the line you would like bookmarked.

	
Right-click and choose Toggle Bookmark.

3.8.8 How to Edit Source Files

Oracle JDeveloper provides several features for editing source files.

3.8.8.1 How to Open Source Files in the Source Editor

JDeveloper provides a powerful source editor that will help you write different kinds of code quickly and efficiently.

You can set preferences for the specific editor for each file type.

To open your source code in its default editor:

	
In the Application Navigator, double-click the file or right-click and choose Open.

The default editor associated with that file type appears in the content area. If the editor is already open on that file, the editor comes to the foreground.

To open your source code in a specific editor or viewer:

	
In the Application Navigator, double-click the file or right-click and choose Open.

	
In the editor window, select the appropriate editor tab.

Changes made in the source will be immediately reflected in other views of that file.

You can also generate Java source code from modeled Java classes.

3.8.8.2 How to Edit Source Code with an External Editor

It is possible to edit source code that you have opened in JDeveloper with an outside editor, should you wish to do so. When you return to the JDeveloper IDE, it will detect the changes you have made.

Before you edit a file externally, you should first save any changes made in JDeveloper. If you do not, when you return to JDeveloper, you will be asked whether to reload those files or not. If you reload the externally modified files, you will lose the unsaved changes made in JDeveloper. If you do not reload them, you will lose the changes made outside JDeveloper once you save the file in JDeveloper.

To edit source code with an external editor, with the file open in JDeveloper:

	
Save any changes made to the file open in JDeveloper.

	
Edit your file externally and save your changes to the disk.

	
Return to JDeveloper and to the file open in the source editor.

By default, the file is reloaded in JDeveloper without a confirmation beforehand. To receive a confirmation dialog, deselect the Silently Reload When Buffer Is Unmodified option on the Environment page of the Preferences dialog.

3.8.8.3 How to Insert a Code Snippet from the Component Palette into Source Files

Once you have added code snippets to the Component Palette, you can add them to files open in the editor.

Alternatively, you can use code templates to assist you in writing code more quickly and efficiently while you are in the source editor.

To insert a code snippet from the Palette into a source file:

	
Open the file in the source editor.

	
If the Component Palette is not visible, open it by choosing View > Component Palette.

	
In the Palette dropdown list, select Code Snippets or the snippets page you have defined.

The snippets defined for that page appear listed to the right. Toggle between list and icon views by right-clicking and choosing the view you want from the context menu.

	
Position your cursor in the file at the point where the snippet is to be inserted.

	
In the Palette, click the snippet name or icon.

The code snippet appears in the file.

3.8.8.4 How to Record and Play Back Macros in Source Files

You can record, and play back, keystroke sequences in files open in the source editor.

To define shortcut keys for recording and playing back:

	
From the main menu, choose Tools > Preferences.

	
In the Preferences dialog, select the Shortcut Keys node.

	
On the Shortcut Keys page, in the Search field, enter Macro Toggle Recording.

	
You will see the Macro Toggle Recording action selected under Available Commands.

	
To assign a shortcut, place focus in the New Shortcut field, and enter a shortcut by pressing the key combination on the keyboard.

If this proposed shortcut already has an command associated with it, that command will appear in the Conflicts field.

	
To assign the shortcut you have specified, click Assign.

	
Now, in the Search field, enter Macro Playback.

	
Repeat steps 5 and 6 to assign a shortcut for playing back the macro.

	
Click OK.

To record a macro:

	
Open the source file in an editor.

	
To begin recording, press the key combination you have defined for recording macros.

	
Now enter the keystroke sequence you wish to record.

	
To end recording, again press the key combination you have defined for recording macros.

To play back a macro:

	
Open the source file in an editor.

	
Position your cursor in the open file.

	
Press the key combination you have defined for playing back macros.

3.8.8.5 How to Create Tasks

You can create tasks that are directly related to lines in files of source code, or tasks that are associated with applications, projects or general files. Oracle JDeveloper comes with the tags TODO, TASK, and FIXME and the priorities HIGH, MEDIUM, LOW and NONE preconfigured, and you can add your own task tags and priorities in the Tasks page of the Preferences dialog.

To add your own task priorities and task tags:

	
From the main menu, choose Tools > Preferences.

	
In the Preferences dialog, select the Tasks node.

	
On the Tasks page, alter the priorities and source tags to suit your requirements.

For more information, press F1 or click Help from within the dialog page.

	
Click OK.

To create a task associated with a comment line in source code:

	
Open the tasks window by choosing View > Tasks Window.

	
Within the source code file, create a comment line starting with // and one of the task tags, for example //TODO.

	
Continue to type the comment, which will at the same time appear as the description of the task in the tasks window.

	
Set the other options in the task window as required. For help while using the tasks window, press F1.

To create a task associated with an application, project or file:

	
In the navigator, select the object for which you wish to create a task.

	
Open the tasks window by choosing View > Tasks Window.

	
Select the Add Tasks button, which will open the Add Task dialog.

	
Complete the dialog for the task that you want to create. For help while using the Add Task dialog, press F1.

3.8.9 How to Compare Source Files

You can compare source files either belonging to the same project, or outside.

To compare a file currently being edited with its saved version:

	
Place the focus on the current version open in the editor.

	
Select the History tab in the editor window.

The saved file opens side by side with the file in the editor buffer.

To compare one file with another file outside the project:

	
Place the focus on the file in the editor to be compared.

	
From the main menu, choose File > Compare With Other File.

	
In the Select File to Compare With dialog, navigate to the file and click Open.

The two files open side by side, under a tab labeled Compare.

To compare any two files within the same project:

	
In the navigator, select the two files to be compared.

	
From the main menu, choose File > Compare With > Each Other.

The two files open side by side, under a tab labeled Compare.

3.8.10 How to Revert to the Last Saved Version of a File

While you are in the process of making changes to a file, at any time you can revert to the last saved version of the file.

To revert to the last saved version of a file:

	
While the changed file has focus in the editor, from the main menu choose File > Replace With > File On Disk.

	
In the Confirm Replace dialog, click Yes.

Any changes you have made since the last save are now undone.

3.8.11 How to Search Source Files

Oracle JDeveloper provides a powerful source editor that will help you write different kinds of code quickly and efficiently.

To search a source file currently open in the source editor, with the option to replace text:

	
With the file open in the editor, ensure that the editor has focus.

	
Optionally, if an instance of the text you want to search for is easily found, you can highlight it now.

	
From the main menu, choose Search > Find. Alternatively, press Ctrl+F.

	
In the Find Text Dialog, enter or select the text to locate.

Text previously searched for in this session of JDeveloper appears in the Text to Search For dropdown list.

	
Select other search parameters accordingly.

For more information, press F1 or click Help from within the dialog.

	
Click OK.

To do a simple search in the open source file for a single text string:

	
With the file open in the editor, ensure that the editor has focus.

	
Place the cursor in the file at the point you wish to search from.

	
From the main menu, choose Search > Incremental Find Forward or Search > Incremental Find Backwards.

	
In the dialog, enter the search text.

As you type, the cursor jumps to the next instance of the group of letters displayed.

Alternatively, enter the text string in the search box. As you type, the cursor jumps to the next instance of the group of letters displayed. Use the Previous or Next buttons to search up and down the file. Click in the search box to set Match Case, Whole Word, or Highlight Occurrences.

To search all files in a project or an application:

	
From the main menu, choose Search > Find in Files.

	
In the Find in Files dialog, enter or select the text to locate.

Text previously searched for in this session of Oracle JDeveloper appears in the Search Text dropdown list. By default, if you opened this dialog with text selected in the source editor, that text appears as the first entry.

	
If you want to choose the file types that are included in the search, click the File Types button to open the File Types To Include dialog. By default, all file types will be searched.

	
Select other search parameters as required.

For more information, press F1 or click Help from within the dialog.

	
Click OK.

3.8.12 How to Print Source Files

Oracle JDeveloper enables you to print source files.

To print a source file:

	
Display the file to be printed in an editor, or select its filename in the navigator.

	
From the main menu, choose File > Print.

	
In the Print dialog, select your print options.

	
Click OK.

3.8.13 Reference: Regular Search Expressions

Regular expressions are characters that customize a search string through pattern matching. You can match a string against a pattern or extract parts of the match.

JDeveloper uses the standard Sun regular expressions package, java.util.regex. For more information, see "Regular Expressions and the Java Programming Language" at http://docs.oracle.com/javase/tutorial/essential/regex/.

3.9 Working with Extensions

Extensions are components that are loaded and integrated with JDeveloper after it is started. Extensions can access the IDE and perform many useful tasks. In fact, much of JDeveloper itself is composed of extensions. Most of the basic functionality in JDeveloper is implemented as extensions—software packages which add features and capabilities to the basic JDeveloper IDE. You can add existing extensions into JDeveloper, or create your own.

This section contains information on finding, installing, and enabling or disabling JDeveloper extensions. The simplest way to find and download JDeveloper extensions is through the Check for Updates wizard.

If you need additional capabilities from the IDE (such as integration with a version control system or a special editor or debugger), you can add external tools to JDeveloper. See Section 3.12, "Adding External Tools to JDeveloper" for more information. In addition, you can obtain additional extension development tools and functionality in the Extension Software Development Kit (SDK). You can download the Extension SDK via the Check for Updates wizard.

You can also download the Extension SDK from the Oracle Technology Network Web page.

	
Note:

Any time an extension is added or upgraded, the migration dialog appears at startup in case you need to migrate any previous settings related to that extension.

3.9.1 How to Install Extensions with Check for Updates

The easiest way to find and install extensions is to use the Check for Updates wizard.

To install extensions using the Check for Updates wizard:

	
From the Help menu, select Check for Updates.

	
Follow the steps in the wizard to browse, download, and install patches and extensions.

You can also access the Check for Updates wizard from the Tools > Features page.

3.9.2 How to Install Extensions from the Provider's Web Site

Some extension providers prefer to have you install directly from their Web site, so that among other things they can contact you when there are updates to the extension. In this case, the Check for Updates wizard will inform you of the provider's preference, and will then open your default Web browser so that you can conduct the download and installation from the provider's Web site.

To download and install from the provider's Web site:

	
Follow the instructions on the provider's Web site for downloading and installing the extension. Be sure to note any comments or instructions on registration, configuration, or other setup requirements.

3.9.3 How to Install Extensions Directly from OTN

You can find and download extensions from the JDeveloper Extensions Exchange website on OTN. The page is located here:

http://www.oracle.com/technetwork/developer-tools/jdev/index-099997.html

The available extensions include:

	
JUnit Extension, an extension you can use to create and run test cases, test suites, and test fixtures, using JUnit.

	
iSQL*Plus Extension, an extension that enables you to load or execute SQL*Plus scripts from within JDeveloper.

	
Oracle Business Intelligence Beans, a set of standards-based JavaBeans™ that enables developers to build business intelligence applications.

	
Other extensions to JDeveloper contributed by the JDeveloper community.

To install extensions after you have downloaded them from OTN:

	
For extensions created for the current release, see the Oracle Fusion Middleware Developer's Guide for Oracle JDeveloper Extensions.

	
For extensions created for earlier releases, see: "Extension Packaging and Deployment For Previous Versions of JDeveloper" in the Extension SDK. Extensions were packaged differently and placed in a different location in earlier releases.

3.9.4 How to Install Extensions Using the JDeveloper dropins Directory

JDeveloper supports the concept of a "watched directory". A watched directory is a location where a user or script can drop files and have them discovered by JDeveloper automatically the next time it starts.

To install an extension using the dropins directory:

	
Drop your extension jar in the JDeveloper dropins directory, which is located in the jdeveloper/dropins folder.

	
Additional dropins directories can be specified via the ide.bundle.search.path property, either at the command line or by adding an entry in the jdev.conf file.

3.10 Using the Online Help

You can access the JDeveloper online help through the Help Center. This section describes how you can effectively use the features of the Help Center.

The JDeveloper Help Center comprises two windows: the help navigator and the help topic viewer.

The following types of content are available:

	
Conceptual and procedural information, which is available in this guide.

	
Context sensitive online help topics, which open when you press F1 or click Help in a dialog or wizard, or click the help icon in a wizard.

	
Developer guides, which provide end-to-end information for developing applications with specific technologies.

	
Tutorials, which provide introductions to many JDeveloper application scenarios.

From the Help Center, you can also access additional documentation on Oracle Technology Network (OTN).

The Help Center search feature lets you search the installed documentation, the documentation available from OTN, and the Fusion Middleware Documentation Library.

You can also customize the way you view content.

3.10.1 Using the Help Center

The Help Center enables you to browse the table of contents, locate relevant topics in the dynamic help links lists, and do a full text search of installed and online content. It also provides a Favorites navigator for saving links to frequently referenced topics. The Help Center comprises two windows: the help navigator and the help topic viewer. You can customize some aspects of these windows.

The following table describes the features available in the Help Center toolbar.

Table 3-27 Help Center Toolbar Icons

	Icon	Name	Description
	[image: Keep Help Center on Top]
	
Keep Help Center on Top (Alt+K)

	
Keeps the Help Center on top of all other open windows.

	[image: Navigators]
	
Navigators

	
Opens Help Center navigators you have previously closed.

	[image: JDeveloper Forum]
	
JDeveloper Forum

	
Launches an external browser window and visit the JDeveloper Forum on Oracle Technology Network (OTN).

	[image: Search OLH]
	
Search

	
Searches all the documentation installed as online help, Oracle Technology Network (OTN) and the Fusion Middleware and Database Libraries.

The Help Center includes tabs for navigating content on the left:

	
Contents - Displays the table of contents for all installed content in the help system, including traditional online help, tutorials, developer guides, and the user guide.

	
Favorites - Displays folders of user defined help topics and external links you have saved for quick retrieval.

The Help Center includes the following tabs for viewing content and search results on the right:

	
Help content viewers - Display the selected online help and developer guide contents. Multiple tabbed pages open for selected content.

	
Tutorial viewer - Displays a selected tutorial. Only one tutorial viewer opens.

	
Search results - Displays the results of the full text search.

3.10.2 How to Open the Online Help

The JDeveloper Help Center comprises two windows: the help navigator and the help topic viewer.

To open the online help, use any of these methods:

	
Press F1, click Help, or click the Help icon at any time to display context-sensitive help.

	
From the main menu, choose Help > Search.

	
From the main menu, choose Help > Table of Contents.

	
From the main menu, choose Help > Help Favorites.

	
From the Start page, choose any link with a tutorial, book or help topic icon.

To see a help page that is already open:

	
Select a tab at the top of the help topic window.

	
Click the scroll buttons at the top of the help topic window to scroll through all available tabs and select a tab.

	
Click the Tab List button at the top of the help topic window to display the list of all available pages and select a page.

3.10.3 How to Search the Documentation

You can search all the documentation installed as online help by doing a full-text search, and you can also search Oracle Technology Network (OTN) and the Fusion Middleware and Database Online Documentation Libraries. You can search an individual help topic that is open by using the Find icon in the topic viewer toolbar.

To do a full-text search from the Help Center:

	
If the Help Center is not open, from the main menu, choose Help > Search.

	
In the Search field, enter the word or phrase you are searching for.

	
Optionally, open the Search Options menu and select the locations you want to search. By default, Local Documentation and the Fusion Middleware library are selected.

	
Set the other search options as needed; these apply only to the online help search.

	
Click the Go icon or press Enter.

The Search Results page opens in the help viewer area, with the titles and sources of each matching document, as well as the beginning text.

	
To select a topic, double-click its title.

Each help topic opens in a separate tabbed page. The Search Results page remains available. Each OTN and Documentation Library page opens in your default browser.

Using the Boolean Expressions option:

BooleanExpression is a recursive tree structure for expressing search criteria involving boolean expressions. The BooleanExpression is based on the following grammar:

BooleanExpression ::
 BooleanExpression AND BooleanExpression
 BooleanExpression OR BooleanExpression
 BooleanExpression NOT BooleanExpression
 BooleanExpression + BooleanExpression
 BooleanExpression - BooleanExpression
 + BooleanExpression
 - BooleanExpression
 NOT BooleanExpression
 StringExpression (base case)

To begin a documentation search from the main toolbar Search field:

	
In the Search field, enter the word or phrase you are searching for.

	
Open the Search Options menu and select only the documentation: Help: Local, Help: OTN, Help: iLibrary. Deselect other locations.

By default, all locations are selected.

	
Click the Go icon or press Enter.

The Help Center opens with the Search Results page on the right, showing the titles and sources of each matching document, as well as the beginning text.

3.10.4 How to Add Bookmarks to the Favorites Page

You can save links to frequently referenced help topics, stored in folders you create and name, on the Favorites page in the Help Center. The help topic must be open in the help topic viewer, in order to bookmark it. You can also add links to external sites.

To add links to help topics to the Favorites page:

	
Click the Add to Favorites icon in the help topic viewer toolbar.

The Add to Favorites dialog is displayed.

	
Select the folder to which you want to add the link and click OK.

To add links to external sites to the Favorites page:

	
Click the Add External Favorites icon in the Favorites page toolbar, or right-click a node on the Favorites page and choose Add External Favorites from the context menu.

The Add External Favorites dialog is displayed.

	
Enter a title for the page or document in the Name field.

	
Enter the fully qualified path in the URL field.

	
Select the folder to which you want to add the link and click OK.

To create a new Favorites folder:

	
Click the New Folder icon in the Favorites page toolbar, or right-click a node on the Favorites page and choose New Folder from the context menu.

	
Enter the new folder name and click OK.

You can also create a new folder when the Add to Favorites dialog is open, by clicking New Folder.

To rename a Favorites folder:

	
Right-click a folder on the Favorites page and choose Rename from the context menu.

	
Enter the new folder name and click OK.

You can also rename a folder when the Add to Favorites dialog is open, by clicking Rename.

To delete a Favorites folder or link:

	
Click the Delete icon in the Favorites page toolbar, or right-click a node on the Favorites page and choose Delete from the context menu.

You can also delete a folder when the Add to Favorites dialog is open, by selecting the node and clicking Delete.

3.10.5 How to Customize the Online Help Display

You can customize some features of the Help Center window, as well as the navigators and topic viewers through the toolbars and context menu.

Use the Keep on Top icon to keep the Help Center in front of all open windows, including JDeveloper.

You can select the following types of help that you want to display from the Navigators drop down in the Help Center toolbar:

	
Contents - Displays the table of contents for all installed online help topics and books.

	
Favorites - Displays folders of user defined links for quick access to installed and external documentation.

Alternatively, you can right-click in the Help Center and choose a navigator from the Configure Tabs option on the context menu, to open navigators you previously closed.

You can also choose to view all help topics in the Contents navigator, or reduce what is displayed by selecting a single content type from the Contents drop down, as shown in the following figure.

Figure 3-1 Contents Dropdown List

[image: Contents dropdown list]

Use the Change Font Size options in help topic viewer toolbar to increase or decrease the font size incrementally.

3.10.6 How to Open and Close Multiple Help Topics

When you navigate through topics in the help system, the topics open in new tabbed pages.

To see a help page that is already open, use one of the following ways:

	
Select a tab at the top of the help topic window.

	
Click the scroll buttons above the help topic viewer to scroll through all available tabs and select a tab.

	
Click the Tab List button above the help topic viewer to display the list of all available pages and select a page.

When you open topics by clicking links within topics, the topics open within the same viewer. To cycle through those topics, click the Forward or Back icons in the help topic viewer toolbar. Note that you cannot navigate forward or back between different types of help viewer tabs; for example, the search results and help topic tabs. Use the scroll buttons instead.

To close one or more pages open in the help topic viewer:

	
Right-click in the help topic viewer tab and choose from options on the context menu.

You can close the page in front, all the pages, or all the pages except the page in front.

3.10.7 How to Print Help Topics

You can print help topics individually or by section.

To print an individual help topic:

	
Open a help topic in the help topic viewer.

	
In the help topic viewer toolbar, click the Print icon.

To print a topic grouping:

	
Click the Contents tab in the Help Center.

	
In the table of contents tree, select a topic folder.

	
Right-click and choose Print Topic Subtree.

The container topic and its children are printed. Topics listed as links are not printed.

3.11 Common Development Tools

This section provides an introduction to fundamental JDeveloper IDE functionality and concepts.

3.11.1 Application Overview

Use the Application Overview pages to guide you as you build a Fusion Web application, and to create files and objects and view the status of them.

3.11.1.1 Checklist

The Application Overview Checklist steps you through the building of a Fusion Web application, according to Oracle recommended best practices. The Checklist is displayed by default when a Fusion Web application is created, as part of the Application Overview pages.

The checklist optionally walks you through the entire process of configuring and building your application, with links to specific dialogs and wizards. Each step is also designed to teach you about the architecture, tools and resulting files using a combination of links to step-by-step instructions, relevant sections of the Developer's Guides, and descriptions of what happens in the IDE as a consequence of doing the work in a step.

Unlike a wizard, the Checklist itself is intended to provide a linear, but ultimately flexible and lightweight guide. You can follow the prescribed path in exact sequence, or explore tasks in a different preferred order. When using the Checklist, it suggests a best way to accomplish your goals, but you are not restricted by it. You can also close the Application Overview and work directly in the IDE, or work in both the IDE and Checklist interchangeably.

To use the Checklist:

	
Expand a step and read the prerequisites and assumptions.

[image: Checklist Step 1: Expand a step]

	
Optionally click any of the documentation links.

[image: Documentation links]

	
Click the button that takes you to the relevant area of the IDE.

[image: Launch a dialog]

	
Use the status indicator dropdown to change the status as you work through tasks.

[image: Status drop down]

3.11.1.2 File Summary Pages

All files and artifacts that you create within JDeveloper appear in the Application Overview file summary pages, organized by object type. You can create new files and artifacts, and view them filtered by status and project. The following table describes the types of file summary pages.

Table 3-28 File Summary Pages

	Page	Function
	
Status

	
Displays information about the object types available, using these status icons:

	
Error

	
Warning

	
Incomplete

	
Advisory

	
Ok

	
Unchecked

	
File

	
Displays the names of the objects. You can sort the objects in ascending or descending order by clicking the Sort icon in any of the column headings.

	
Project

	
Displays the project in which the file or object is located.

File Summary Pages Toolbar

The following table describes the icons in the File Summary Pages toolbar and their functions.

Table 3-29 Icons in the File Summary Pages Toolbar

	Icon	Name	Function
	[image: new object]
	
New

	
Creates new objects of the types listed, in the selected project. The context menu lists the files and objects associated with the technology that can be created in each project.

	[image: edit object]
	
Edit

	
Opens the selected file or object in its default edito.r

	[image: detele object]
	
Delete

	
Removes the selected file or object.

	[image: filter status or project]
	
Filter Status or Project

	
Displays the list of all files of a particular status by selecting the status, as described above. By default, Show All is selected.

If there is more than one project within the current application, use this list to select which project or projects you wish to be included in the file summary pages. You can choose:

	
all projects

	
a specific project from those available in the application

3.11.2 File List

Use the File List to search for and work on objects that you have created within an application. The rules, code assists, and metrics that are used to analyze Java code are specified by the Code Assist profile.

3.11.2.1 File List Tab Header

The following table describes the options available in the file list tab header.

Table 3-30 File List Tab Header Options

	Option	Function
	
Look in

	
If you have more than one project within the current application, use this list to select which project or projects will be searched for objects. The list includes all projects in the current application, plus options to show all projects and a selection of projects (multiple projects). You can choose:

	
a specific project from those available in the application

	
All Projects

	
Multiple Projects, which opens the Select Projects dialog where you choose the projects from those available in the application.

	
Saved Searches

	
Initially contains <New Search>. After you have saved at least one search, also lists all saved searches. Selecting a saved search will display the search criteria for that search. The search results will show the results of the most recent search, even as you change between saved searches. To obtain new search results, click the Search button. Saving a search is one of the actions available from the More Actions button.

	
Show History

	
Opens the Recent Searches dialog, through which you can return to a recent search. The search criteria of the selected search is shown, while the search results remain as they were for the most recent search. To obtain new search results, click the Search button.

3.11.2.2 Search Criteria Area

The following table describes the features available in the search criteria area.

Table 3-31 Features in the Search Criteria Area

	Option	Function
	
Search criteria input line(s)

	
Initially contains a single input line for search criteria. You can add further lines by clicking the Add icon at the end of the line. You can remove lines by clicking the Delete icon at the end of the line that you want to remove. By default, the first field in the line contains File Name: you can change this to File Extension, Date Modified, Status, or Category. The second field contains the options available for extending the entry in the first field. The third field contains a list of all object types that can be searched for.

	
Match options

	
Choose between Match All and Match Any to determine the scope of the search.

	
Search

	
Click to begin a search based on the search criteria currently shown.

	
More Actions

	
Click to reveal the following menu of options for use with named searches:

	
Save - Saves the current search criteria with the name currently in the Saved Searches box (even if the name is <New Search>).

	
Save As - Opens the Save As dialog, through which you can save the current search criteria as a new named search.

	
Restore - Restores a deleted named search if used immediately after the Clear option on this menu has been used.

	
Clear - Clears the search criteria for this named search. You can restore the criteria to this named search by immediately selecting the Restore option on this menu.

	
Delete - After confirmation, deletes the current named search.

3.11.2.3 Search Results Table

The following table describes the options available in the Search Results table.

Table 3-32 Options Available in the Search Results Table

	Option	Function
	
Results summary

	
Shows the number of files that match the search criteria, and the date and time that the search was completed.

	
Refresh

	
Reruns the search with the current search criteria.

	
Customize table

	
Opens a menu from which you can choose the columns that will be displayed in the results table. Also contains a Select Columns option, which opens the Customize Table dialog, through which you can choose which columns to display and the order in which they are displayed in the results table. The columns that are shown by default are Status, File, Project, and Date Modified, in that order. Other columns that you can choose to show are Application and Category.

	
Table headings

	
You can change the order of the columns by grabbing a table heading and moving it horizontally. You can change whether objects are shown in ascending or descending order within the columns by clicking a heading to give it focus, then clicking again to change the sort order. The sort icon (or) in the table heading will change as appropriate.

	
Objects list

	
Lists all the objects returned by the search. You can initiate actions for an object by selecting the name, right-clicking, and selecting from the context menu.

3.11.3 Compare Window

The Compare Window allows you to view the differences between two files or two directories.

You might want to do this when deciding whether to check in a particular file to a source control system, especially if doing so will overwrite a file whose contents you are unfamiliar with. The Compare Window is integrated with the Application Overview and the Application Navigator, and with the Subversion source control system.

3.11.3.1 Toolbar

The following table describes the icons in the Compare Window toolbar and their functions.

Table 3-33 Compare Window Toolbar Icons

	Icon	Name	Function
	[image: go to first difference]
	
Go to First Difference

	
Click to move the cursor to the first difference.

	[image: go to previous difference]
	
Go to Previous Difference

	
Click to move the cursor to the previous difference.

	[image: go to next difference]
	
Go to Next Difference

	
Click to move the cursor to the next difference.

	[image: go to last difference]
	
Go to Last Difference

	
Click to move the cursor to the last difference.

	[image: generate patch]
	
Generate Patch

	
Click to open the Generate Patch dialog, where you can generate a patch containing changes that have been made to the files.

3.11.3.2 Source and Target Areas

The title bar of each area identifies the file that contains the differences. The versions are aligned line by line. Lines with differences are highlighted using shaded boxes, joined as appropriate.

3.11.4 Application Navigator

The Application Navigator allows you to manage the contents and associated resources of an application.

3.11.4.1 Application Navigator Toolbar

This section describes the features available from the Application Navigator toolbar.

Main dropdown list

Use the main dropdown list, displayed in the figure below, to create a new application, open an existing application, or choose from the list of open applications. Use the context menu to choose from the list of application level actions available.

[image: application navigator drop down]

Application menu

Use the application menu, displayed in the figure below, to choose from a list of actions available.

[image: application menu]

The following table describes the options available from the Application Menu.

Table 3-34 Application Menu Options

	Menu Option	Function
	
New Project

	
Opens the New Gallery ready for you to select the type of project to create.

	
New (Ctrl+N)

	
Opens the New Gallery. Only those items available to be created from an application are available

	
Open Project

	
Opens the Open Project dialog, where you navigate to a project that you want to open in this application.

	
Close Application

	
Closes the current application.

	
Delete Application

	
Deletes the application control file (.jws) from disk.

	
Rename Application

	
Opens the Rename dialog where you can change the name of the current application.

	
Find Application Files

	
Opens the File List, where you can search for specific files.

	
Show Overview

	
Opens the Application Overview which is the home for all files you can create in this application.

	
Filter Application

	
Opens the Manage Working Sets dialog where you can specify the files to include or exclude from being listed in the Application Navigator.

	
Secure

	
Secures your application resources.

	
Deploy

	
Allows you to choose from the deployment profiles defined for the application.

	
Application Properties

	
Opens the Application Properties dialog where you can set various properties for the application.

3.11.4.2 Application Operations

You can several application operations from the Application Navigator. These include:

	
In the initial view, before any application content is shown, select the New Application link to create a new application or select the Open Application link to open an existing application.

	
Open any currently closed navigator, or bring a currently open navigator to the foreground, using View > navigator-name.

	
Move, size, float, minimize, maximize, restore or close the Application Navigator using the context menu available by right-clicking its tab or by pressing Alt+Minus.

	
Change the application shown in the navigator by choosing one from the main dropdown list or, if the one you want is not shown, by choosing Open Application.

	
Create a new application by choosing New Application from the dropdown list.

	
Open the context menu for the application by right-clicking the application, or by clicking the Application Menu icon (to the right of the application name).

3.11.4.3 Projects Panel Operations

You can perform the following operations from the projects panel of the Application Navigator:

	
View the project properties by clicking the Project Properties icon.

	
Refresh the project contents by clicking the Refresh icon.

	
Filter the project content that you work with by selecting options from the Working Sets dropdown menu.

	
Change what is shown in the navigator by selecting options from the Navigator Display Options dropdown menu.

	
Obtain a context-sensitive menu of commands for any node by right-clicking it.

	
Display the structure of an object in the Structure window by clicking the object's name.

	
Open an object in its default editor, or bring the default editor into focus, by double-clicking the object's name.

	
Rename a file using File > Rename.

	
Relocate a file using File > Save As.

	
Search for items visible in the panel by putting the focus anywhere inside it and typing a search string for the object you are looking for. (Precede with an asterisk to search for instances of names containing the search string.)

	
Close or open the panel by clicking its bar.

	
Remove the panel from view by opening its dropdown menu (panel bar, far right) and choosing Minimize. Restore it by clicking the three dots at the very bottom of the navigator and then clicking Projects.

3.11.4.4 Application Resources Panel Operations

You can perform the following operations in the Application Resources panel:

	
Close or open the panel by clicking its bar.

	
Change the area used by the panel by grabbing its bar and moving it up or down.

	
Remove the panel from view by opening its dropdown menu (panel bar, far right) and choosing Minimize. Restore it by clicking the three dots at the very bottom of the Application Navigator and then clicking Application Resources.

	
Obtain a context-sensitive menu of commands for any node by right-clicking it.

	
Display the structure of an object in the Structure window by clicking its name.

	
Open an object in its default editor, or bring the default editor into focus, by double-clicking the object's name.

	
Search for items visible in the panel by putting the focus anywhere inside it and typing a search string for the object you are looking for. (Precede with an asterisk to search for instances of names containing the search string.)

3.11.4.5 Data Controls Panel Operations

You can perform the following operations in the Data Controls panel:

	
Close or open the panel by clicking its bar.

	
Change the area used by the panel by grabbing its bar and moving it up or down.

	
Remove the panel from view by opening its dropdown menu (panel bar, far right) and choosing Minimize. Restore it by clicking the three dots at the very bottom of the Application Navigator and then clicking Data Controls.

	
Obtain a context-sensitive menu of commands for any node by right-clicking it.

	
Edit the definition of a data control by opening its context menu and choosing Edit Definition.

	
Search for items visible in the panel by putting the focus anywhere inside it and typing a search string for the object you are looking for. (Precede with an asterisk to search for instances of names containing the search string.)

3.11.4.6 Recently Opened Files Panel Operations

You can perform the following operations in the Recently Opened Files panel:

	
Close or open the panel by clicking its bar.

	
Change the area used by the panel by grabbing its bar and moving it up or down.

	
Remove the panel from view by opening its dropdown menu (panel bar, far right) and choosing Minimize. Restore it by clicking the three dots at the very bottom of the Application Navigator and then clicking Recently Opened Files.

	
Open an object in its default editor, or bring the default editor into focus, by double-clicking the object's name.

	
Search for items visible in the panel by putting the focus anywhere inside it and typing a search string for the object you are looking for. (Precede with an asterisk to search for instances of names containing the search string.)

3.11.5 Application Server Navigator

The Application Server Navigator allows you to manage connections to application servers. It is integrated with the Resource Palette.

When you create an application server connection in the Application Server Navigator it is available in the Resource Palette. Similarly, when you create an application server connection in the Resource Palette, it is available in the Application Server Navigator.

From the context menu of the Application Server Navigator, you can:

	
Create a new connection to an application server by choosing New Application Server from the context menu of the Application Servers node.

	
Import connections by clicking Import from the context menu of the Application Servers node.

	
Export connections by clicking Export from the context menu of the Application Servers node.

	
Edit the properties of an existing application server connection by choosing Properties from the context menu of the connection.

From the context menu of IntegratedWebLogicServer, you can:

	
Start the Integrated WebLogic Server.

	
Start the Integrated WebLogic Server in debug mode.

	
Create the Default Domain. When you first start the Application Server Navigator, the only node is IntegratedWebLogicServer (domain unconfigured). Before you can work with Integrated WebLogic Server, you must create a default domain. If you are creating the default domain for the first time, you must enter an administrator password for the new domain.

	
Update the Default Domain.

	
Configure a log to help diagnose problems.

	
Launch the Admin Console for:

	
Integrated WebLogic Server.

	
Oracle WebLogic Server.

The following table describes the icons in the Application Server Navigator toolbar:

Table 3-35 Application Server Navigator Toolbar Icons

	Icon	Name	Function
	[image: refresh]
	
Refresh

	
Click to refresh the contents of the selected application server connection.

	[image: delete]
	
Delete

	
Click to delete the selected application server connection.

3.11.6 Structure Window

The Structure window offers a structural view of the data in the document currently selected in the active window of those windows that participate in providing structure: the diagrams, the navigators, the editors and viewers, and the Property Inspector.

Depending on the document currently open, the Structure Window enables you to view data in two modes:

	
Source - displays the code structure of the file currently open in the editor. Applicable to technologies that allow code editing. For example, this tab will not be available when a diagram is open for editing.

	
Design - displays the UI structure of the file currently open in the editor.

In the Structure window, you can view the document or diagram data in a variety of ways. The structures available for display are based upon document or diagram type. For a Java file, you can view code structure, UI structure, or UI model data. For an XML file, you can view XML structure, design structure, or UI model data.

The Structure window is dynamic, tracking always the current selection of the active window (unless you freeze the window's contents on a particular view), as is pertinent to the currently active editor. When the current selection is a node in the navigator, the default editor is assumed. To change the view on the structure for the current selection, select a different structure tab.

The windows that participate in providing structure also follow selections made in the Structure window. Double-clicking the node for a method in the Structure window, for instance, makes the source editor the active view and takes you directly to the definition for that method.

You can open multiple instances of the Structure window, freezing the contents of any number of them, in order to compare the structures of different files. You can also switch structure views without changing editors.

Diagram objects (such as UML elements) listed in the Structure window can be dragged from the window and dropped directly onto diagrams.

3.11.6.1 Structure Window Toolbar

The following table describes the icons in the Structure Window toolbar and their functions:

Table 3-36 Structure Window Toolbar Icons

	Icon	Name	Function
	[image: freeze]
	
Freeze

	
Click to freeze the Structure window on the current view. A window that has been frozen does not track the active selection in the active window.

	[image: new view]
	
New View

	
Click to open a new instance of the Structure window. The new view appears as a tabbed page in the same window.

3.11.6.2 Structure Window Views

The Structure window view depends upon the document type of the current selection in the active window. Each view offers different options for viewing and sorting the structure of your files based on file type.

The following table describes the Structure Window views.

Table 3-37 Structure Window Views

	View	Description
	
ADF Business Components View

	
When you select any ADF business component in one of the navigators, the Structure window offers a structured view of the component's files, attributes, and other properties.

	
Cascading Style Sheet View

	
This view allows you to select and group CSS elements for easy editing. When a CSS file is open for editing, CSS selectors in the file are displayed in the Structure window as one of three types: Element, Class, and ID.

	
Java View

	
This view displays the code as well as design structure of the Java file currently being edited. Additionally, you can specify several display preferences to view structural data.

	
JSP/HTML View

	
This view displays the code structure and UI bindings for the JSP/HTML file that is currently selected.

	
Struts View

	
The Struts view shows the hierarchy of elements and attributes for the Struts configuration file currently selected in the active navigator or editor.

	
TopLink View

	
The TopLink view displays detailed information about the TopLink element selected in Application Navigator or TopLink editor, including descriptors, sessions, and mappings.

	
UML View

	
The UML view displays the behavior, interaction, and code structure in UML-based diagrams such as Activity Diagrams, Class Diagrams, and Use Case Diagrams.

	
Diagram View

	
When a diagram is open for editing, the Diagram view displays the components that have been added to the diagram. You can select an element in the Structure Window's diagram view and locate it in the diagram

3.11.7 Application Navigator - Data Controls Panel

Use to view the data controls created to represent an application's business services and to create databound UI components by dragging and dropping the control panel objects onto an open web page or ADF Swing panel.

	
Note:

The Data Controls panel may appear empty if no data controls have been created for or imported into the application.

The panel displays objects to which your UI components can be bound, including data collections, attributes, and methods that the business services developer exposed through the Oracle ADF data control, as well as specific, built-in operations that are generic to all data collections.

When you drag an object from the Data Controls panel onto a page, the context menu displays the UI components you can create for that specific object. Creating components this way means that they will automatically be databound to the dropped object.

After inserting a databound UI component into the displayed web page or Java panel, you can view the Oracle ADF data binding:

	
In the code view of a web page, where data binding objects appear in expressions that get evaluated at runtime using the expression language features of the JSTL tag library.

	
In the code view of an ADF Swing panel or form, where the setModel() method call on the UI component initializes the data binding object and accesses the Oracle ADF binding context (specified by the setBindingContext() method call on the panel).

	
In the associated page definition file. The page definition file defines the bindings created for the page, panel, or form.

Data Controls panel toolbar

The following table describes the icons in the Data Controls panel toolbar and their functions:

Table 3-38 Data Controls Panel Toolbar Icons

	Icon	Name	Function
	[image: refresh panel]
	
Refresh Panel

	
Click to reload the panel if the underlying business components have changed.

	[image: filter panel]
	
Filter Panel

	
Click to enter search criteria to find a specific item in the panel.

3.11.8 Log Window

The Log window displays tabbed windows for specific feedback from various components of the IDE.

The Log window displays information on:

	
Compiler. The compiler reports error messages that you can double-click to navigate directly to the correct line in the source file referenced.

	
Apache Ant. When you build your project using Apache Ant, the Log Window displays relevant build information.

	
Debugger

	
Audit

	
Profiler

To bring up the context menu for the contents of the Log window, right-click within the window. To bring up the context menu for the Log window as window, right-click on the tab.

From the context menu for the general Log window, you can:

	
Copy the contents of the window

	
Select all data within the window

	
Wrap the text in the window

	
Clear the contents of the window

	
Save the contents of the window to another format

	
Close the window

Other actions may be available within the tabbed sections generated by specific processes.

From the context menu for the window itself, you can:

	
Close the window

	
Close all other tabs but for the currently selected tab

	
Close all tabs within the window

3.11.9 Status Window

The Status Window is one of the JDeveloper features that helps you to audit your code. It displays audit violations in the document selected in the File List and provides information to help you resolve the issues.

The Code Assist audit profile determines the audit violations that are reported.

Status Window Toolbar

You can choose the items you want to view using the icons in the Status window toolbar.

The following table describes the icons in the toolbar and their functions:

Table 3-39 Status Window Toolbar Icons

	Icon	Name	Function
	[image: show error issues]
	
Show Error Issues

	
Toggle to show just the number of errors in the selected file, or to list the errors in the file.

	[image: show warning issues]
	
Show Warning Issues

	
Toggle to show just the number of warnings in the selected file, or to list the warnings in the file.

	[image: show incomplete issues]
	
Show Incomplete Issues

	
Toggle to show just the number of incomplete issues in the selected file, or to list the incomplete issues in the file.

	[image: show advisory issues]
	
Show Advisory Issues

	
Toggle to show just the number of advisory issues in the selected file, or to list the advisory issues in the file.

	[image: fixes]
	
Fixes

	
Select one of the issues in the list, and click Fixes. A suggested fix is displayed, for example: Add missing Javadoc tags.

3.11.10 Tasks Window

Use this dockable window to record tasks associated with applications, projects and files.

If you are working in a Java Class source file, a task will automatically be created whenever you type // TODO (in other words, when you create a comment and use the source tag recognized by JDeveloper).

While you are using the Tasks window, these features are available:

	
Sort the information by clicking the column headings.

	
Show or hide columns by opening the context menu for any heading and choosing from the list. Alternatively, you can choose Show/Hide Columns from the context menu of any task.

	
Add a task by choosing Add Task from the context menu of any task.

	
Edit an existing task by choosing Edit Task from the context menu of the task.

	
Delete a task by choosing Remove Task from the context menu of the task.

	
Delete completed tasks by choosing Remove Completed Tasks from the context menu of any task.

	
Open the file that the task refers to by choosing Go to Source from the context menu of the task.

Tasks Window Toolbar

The toolbar enables you to manage the tasks displayed in the Tasks window. The following table describes the icons in the Tasks Window toolbar and their functions.

Table 3-40 Tasks Window Toolbar Icons

	Icon	Name	Function
	[image: Current application]
	
Current Application

	
Choose to define the current application as the scope of the tasks displayed.

	[image: current project]
	
Current Project

	
Choose to define the current project as the scope of the tasks displayed.

	[image: current file]
	
Current File

	
Choose to define the current file as the scope of the tasks displayed.

	[image: add task]
	
Add task

	
Click to create a new task (independent of source file comments).

	[image: edit task]
	
Edit task

	
Click to edit the highlighted task.

	[image: delete task]
	
Delete task

	
Click to remove highlighted task.

	[image: filter]
	
Filter

	
Click to open the Filter Tasks dialog, where you can set up filters to determine which tasks are and are not shown.

3.12 Adding External Tools to JDeveloper

External tools are custom JDeveloper menu items and toolbar buttons that launch applications installed on your system, applications that are not packaged as part of JDeveloper.

To find all external programs that JDeveloper is preconfigured to support:

	
From the main menu, choose Tools > External Tools.

	
In the External Tools dialog, click Find Tools.

To add access to an external program from JDeveloper:

	
From the main menu, choose Tools > External Tools.

	
In the External Tools dialog, click New. Follow the instructions in the wizard.

To change how an external program appears, or remove access to an external program from JDeveloper:

	
From the main menu, choose Tools > External Tools.

	
In the External Tools dialog, click Edit or Delete. If you are editing the options, display, integration or availability of an external tool from JDeveloper, select the corresponding tab and change the values. Click Help for help choosing valid values.

	
Click OK. Your changes are reflected immediately.

9 Deploying Applications

This chapter describes how to run and debug applications using the JDeveloper integrated application server, and how to deploy applications to a target application server, for example to Oracle WebLogic Server or to a third-party server.

This chapter includes the following sections:

	
Section 9.1, "About Deploying Applications"

	
Section 9.2, "Running Java EE Applications in the Integrated Application Server"

	
Section 9.3, "Connecting and Deploying Java EE Applications to Application Servers"

	
Section 9.4, "Deploying Java Applications"

	
Section 9.5, "Deploying Java EE Applications"

	
Section 9.6, "Post-Deployment Configuration"

	
Section 9.7, "Testing the Application and Verifying Deployment"

	
Section 9.8, "Deploying from the Command Line"

	
Section 9.9, "Deploying Using Java Web Start"

	
Section 9.10, "Deploying Using Weblogic SCA Spring"

	
Section 9.11, "Troubleshooting Deployment"

9.1 About Deploying Applications

Deployment is the process of packaging application files as an archive file and transferring it to a target application server. You can use JDeveloper to deploy Java or Java EE applications directly to the application server (such as Oracle WebLogic Server or IBM WebSphere), or indirectly to an archive file as the deployment target, and then install this archive file to the target server. For application development, you can also use JDeveloper to run an application in the integrated application server. JDeveloper supports deploying to server clusters, but you cannot use JDeveloper to deploy to individual Managed Servers that are members of a cluster.

If you are using Oracle® Fusion Middleware extensions, refer to the appropriate developer's guide for deployment information specific to the product. For example:

	
If you are deploying an ADF Fusion Web application, see the "Deploying Fusion Web Applications" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
If you are deploying an ADF Java EE application, see the "Deploying an ADF Java EE Application" chapter in the Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework.

You can deploy applications in the following ways:

	
Directly to an application server through an application server connection.

	
To an archive file. You can deploy applications indirectly by choosing an archive file as the deployment target. The archive file can subsequently be installed on the target Java EE application server.

	
To a test environment using the JDeveloper integrated application server, a Java EE runtime service used for running and testing JDeveloper applications and projects as Java EE applications and modules within a Java EE container.

	
Note:

Normally, you use JDeveloper to deploy applications for development and testing purposes. If you are deploying applications for production purposes, you can use Enterprise Manager or scripts to deploy to production-level application servers.

For more information about deployment to later-stage testing or production environments, see the Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework.

Figure 9-1 shows the flow diagram that describes the overall deployment process. Note that preparing the target application server for deployment is outside the scope of this guide; you should refer to the Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework for deployment to Oracle WebLogic Server, or to the appropriate documentation for a third-party application server.

Figure 9-1 Deployment Overview Flow Diagram

[image: Deployment overview flow diagram]

Java and Java EE applications are based on standardized, modular components and can be deployed to the following application servers:

	
Oracle WebLogic Server

Oracle WebLogic Server provides a complete set of services for those modules and handles many details of application behavior automatically, without requiring programming.

	
A third-party application server, that is an application server provided by a vendor other than Oracle:

	
Apache Tomcat

	
IBM WebSphere

	
JBoss

For information about which versions of Oracle WebLogic Server, Tomcat, WebSphere, or JBoss are compatible, see the JDeveloper Certification Information at http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html.

You can use JDeveloper to:

	
Run applications in the integrates application server

You can run and debug applications using Integrated WebLogic Server and then deploy to a standalone WebLogic Server or to a third party server.

	
Deploy directly to the standalone application server

You can deploy applications directly to the standalone application server by creating a connection to the server and choosing the name of that server as the deployment target.

	
Deploy to an archive file

You can deploy applications indirectly by choosing an EAR file as the deployment target. The archive file can subsequently be installed on a target application server.

Deployment can be an iterative process where refinements to the application, or corrections to issues in the deployed application, require redeployment to either the test deployment environment, archive file, or application server. The process of deploying an application from JDeveloper can involve a number of processes.

9.1.1 Developing Applications with the Integrated Application Server

JDeveloper is bundled with an integrated application server called Integrated WebLogic Server and a default connection called IntegratedWebLogicServer is defined for it. The integrated application server is a Java EE runtime for services using deployment optimized for the iterative code development cycle. You can use it for running and testing JDeveloper applications and projects as Java EE applications and modules within a Java EE container, as well as for post-run services such as launching a browser or tester. JDeveloper has a default connection to the integrated application server and does not require any deployment profiles or descriptors. In most cases, deploying to the integrated application server is a one-click operation, for example, running a web service by choosing Run from the right-mouse menu of the web service in the Application Navigator, or running an application by choosing Run from the JDeveloper main menu.

You debug the application using the features described in Chapter 7, "Building, Running and Debugging Applications."

9.1.2 Developing Applications to Deploy to Standalone Application Servers

Typically, for deployment to standalone application servers, you test and develop your application by running it in the integrated application server. You can then test the application further to more closely simulate the production environment by deploying it to standalone Oracle WebLogic Server in development mode or to a third-party application server.

In general, you use JDeveloper to prepare the application or project for deployment by:

	
Creating a connection to the target application server

	
Creating deployment profiles (if necessary)

	
Creating deployment descriptors (if necessary, and that are specific to the target application server)

	
Updating application.xml and web.xml to be compatible with the application server (if required)

	
Migrating application-level security policy data to a domain-level security policy store

You must already have an installed application server. For Oracle WebLogic Server, you can use the Oracle 11g Installer or the Oracle Fusion Middleware 11g Application Developer Installer to install one. For other applications servers, follow the instructions in the applications server documentation to obtain and install the server.

If necessary, you must prepare the application server by creating a global JDBC data source for applications that require a connection to a data source.

After the application and application server have been prepared, you can:

	
Use JDeveloper to:

	
Directly deploy to the application server using the deployment profile and the application server connection.

	
Deploy to an EAR file using the deployment profile. WAR and MAR files can be deployed only as part of an EAR file.

	
Use Enterprise Manager, scripts, or the application server's administration tools to deploy the EAR file created in JDeveloper. For more information, see the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework.

9.1.3 Understanding the Archive Formats

A Java EE archive file contains a Java EE module or application. A module consists of one or more JDeveloper projects of a common component type, which have been configured for deployment. An application is comprised of one or more modules. An archive also contains a deployment descriptor, which is an XML file that describes the configuration of the module or application to the server, and is specific to the type of server. A deployment descriptor can be server specific or generic for Java EE servers.

JAR, EJB JAR, and WAR files each contain a module consisting of one or more components. An Enterprise Archive (EAR file) contains an application consisting of one or more modules.

When you create a web (servlet, JSP, JSF, and ADF Faces) or EJB application and deploy it via an application server connection, JDeveloper packages it as a WAR or EJB JAR, which you can optionally wrap in an EAR file. If your application consists of components of differing types, the components will be packaged into multiple modules, which you can deploy independently or assembled as an EAR file.

9.1.4 Understanding Deployment Profiles

Deployment profiles are application or project properties that govern the deployment of a project or application. A deployment profile names the source files, deployment descriptors, and other auxiliary files that will be packaged, the type and name of the archive file to be created, dependency information, platform-specific instructions, and other information.

9.1.5 Understanding Deployment Descriptors

Deployment descriptors define the content and organization of the deployed applications. Deployment descriptor files that are required by an application depend on the technologies the application uses and on its target application server.

9.1.6 Configuring Deployment Using Deployment Plans

You can control how an application is deployed using a deployment plan which allows you to make configuration adjustments in the application deployment descriptors web.xml, weblogic.xml, application.xml, and weblogic-application.xml.

Deployment plans are controlled using a descriptor called plan.xml. Only Weblogic deployment descriptor configuration can be customized using plan.xml. The primary use case for deployment customization is to modify Weblogic specific application configuration for different servers being deployed without requiring modification of the base Weblogic descriptor. For more information, see the section on Deployment Plans in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

9.1.7 Deploying from the Java Edition

If you are using the Java edition of JDeveloper, which contains only the core Java and XML features, the only deployment actions you can perform are:

	
Creating a simple JAR archive which you can then manually deploy to a server.

JDeveloper Java Edition provides the facility to package applications into a JAR file. The deployment dialog in Java Edition allows for only limited configuration of standard JAR options such as specifying JAR name, file groupings, or dependencies on other deployment profiles. Any application that requires more configuration than this must be deployed from the Studio edition of JDeveloper.

	
Creating deployment profiles as part of extension development. For more information about creating extensions to JDeveloper, see Oracle Fusion Middleware Developer's Guide for Oracle JDeveloper Extensions

9.2 Running Java EE Applications in the Integrated Application Server

JDeveloper is installed with Integrated WebLogic Server, an integrated application server which you can use to test and develop your application. For most development purposes, the integrated application server will suffice. When your application is ready to be tested, you can select the run target and then choose the Run command from the main menu.

	
Note:

The first time you start the integrated application server by running or debugging a project, file, or web service, a dialog is displayed where you enter a password for the administrator ID on the default domain. When you click OK, the default domain is created. You only need to do this once.

When you run the application target, JDeveloper detects the type of Java EE module to deploy based on artifacts in the projects and application workspace. JDeveloper then creates an in-memory deployment profile for deploying the application to the integrated application server. JDeveloper copies project and application workspace files to an "exploded EAR" directory structure. This file structure closely resembles the EAR file structure that you would have if you were to deploy the application to an EAR file. JDeveloper then follows the standard deployment procedures to register and deploy the "exploded EAR" files into the integrated application server. The "exploded EAR" strategy reduces the performance overhead of packaging and unpackaging an actual EAR file.

In summary, when you select the run target and run the application in the integrated application server, JDeveloper:

	
Detects the type of Java EE module to deploy based on the artifacts in the project and application

	
Creates a default deployment profile (that is, without customizations) in memory

	
Copies project and application files into a working directory with a file structure that simulate the "exploded EAR" file of the application.

	
Performs the deployment tasks to register and deploy the simulated EAR into the integrated application server

	
Automatically migrates identities, credentials, and policies. If you plan to deploy the application to a standalone Oracle WebLogic Server instance, you will need to migrate this security information.

	
Note:

When you run the application in the integrated application server, JDeveloper ignores the deployment profiles that have been created for the application.

The application will run in the base domain in the integrated application server. The base domain has the same configuration as a base domain in a standalone Oracle WebLogic Server instance. In other words, this base domain is the same as if you had used the Oracle® Fusion Middleware Configuration Wizard to create a base domain with the default options in a standalone Oracle WebLogic Server instance.

JDeveloper extends this base domain with the necessary domain extension templates, based on the JDeveloper technology extensions. For example, if you have installed JDeveloper Studio, JDeveloper will automatically configure the integrated application server environment with the ADF runtime template (JRF Fusion Middleware runtime domain extension template).

You can explicitly create additional default domains for the integrated application server which you can use to run and test your applications in addition to using the default domain. Open the Application Server Navigator, right-click IntegratedWebLogicServer and choose Create Default Domain.

9.2.1 Understanding the Integrated Application Server Log Window

The output messages generated when running or debugging an application in the integrated application server are displayed in a log window which has a title of either Running: IntegratedWebLogicServer or Debugging: IntegratedWebLogicServer.

The content of the Integrated WebLogic Server Log Window includes:

	
Status log messages about the server and the applications running on the server

	
Output from the integrated application server instance's console (in color)

	
Messages generated from deploying the application to the integrated application server

	
Messages that log the Java EE archives (EAR, WAR, and EJB JAR) as they are created. You can click on the links in the log window to browse the generated archives.

The generated log files are located at jdeveloper-user-home/DefaultDomain/server/DefaultServer/logs.

You can configure diagnostic logging parameters in the logging.xml file. Transient loggers can only be added while the server is running in debug mode.

You can control the level of information sent to the log file using the -verbose element in the jsp-descriptor and logging elements of weblogic.xml. For more information, see the weblogic.xml descriptor elements information in Oracle Fusion Middleware Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

9.2.2 Rules Governing Deployment to the Integrated Application Server

Deployment to the integrated application server uses default deployment profiles which rely on project metadata for the default mappings. Default contributors to the profiles are based on project dependencies, and the rules governing dependencies are:

	
If project A depends on the build output of project B, then the build output of project B is merged into project A. If project A is a web application, this means the build outputs of project A and project B are both copied into WEB-INF/classes of the resulting WAR.

Merging implies that you can only have one copy of any particular URI, because it can only exist once within WEB-INF/classes.

	
If project A depends on the deployment profile of project B, for example a JAR profile, then the result of that deployment profile is included in the WEB-INF/lib of the resulting WAR.

	
A project containing a WEB-INF/web.xml is recognized as a web project and a default WAR profile is created for it.

	
A project that contains at least one session EJB bean is recognized as an EJB project and a default EJB JAR profile is created for it.

	
All libraries marked Deploy by Default for a web project are deployed as a web application library (in the WEB-INF/lib of the WAR).

	
All libraries marked Deploy by Default for an EJB project are deployed as an application library (in the lib of the EAR).

	
If an EJB Project A depends on the build output of Project B, the build output (e.g. classes directory) of Project B is merged with the build output of Project A and deployed in the root directory of the EJB JAR.

9.2.3 Working with Integrated Application Servers

The definition of an integrated application server controls the interaction of the instance with JDeveloper and your computer system.

JDeveloper is bundled with an integrated application server called Integrated WebLogic Server, and a default instance called IntegratedWebLogicServer is defined for it. All applications are bound by default to IntegratedWebLogicServer.

You can modify the properties of the integrated application server that an application is bound to.

	
Note:

WebLogic Server domains used as integrated application servers must be collocated on the same host as the JDeveloper process.

To modify the properties of the integrated application server that an application is bound to:

	
In the Application Navigator, select a project.

	
Choose Application > Application Properties.

	
Select Run from the left panel.

	
Select an existing integrated application server in Bind Application to Server Instance, or click Application Server Properties to open the Application Server Properties dialog, where you can change some properties for the integrated application server.

	
Define the other options for the integrated application server, including startup and shutdown options. For more information, press F1 or click Help from within the dialog.

You can create a new integrated application server instances.

9.2.3.1 How to Create a New Integrated Application Server Connection

To define an integrated server connection:

	
In the Application Server Navigator, right-click Application Servers and choose New Application Server. The Create Application Server Connection wizard opens. For more information at any time, press F1 or click Help from within the wizard.

	
On the Usage page, select Integrated Server. If you want to manage the server from within JDeveloper, select Let JDeveloper manage the lifecycle for this Server Instance on the Name and Domain page, and provide the Domain and Server Instance directories.

	
Complete the wizard.

9.2.3.2 How to Run and Debug with an Integrated Application Server

By default, the integrated application server is automatically started when you run or debug an EJB, servlet, HTML, web service, or JSP project. Alternatively, you can start the integrated application server by clicking Start Server Instance or Debug Server Instance from the Run menu.

After it has been started, an integrated application server does not terminate automatically when you terminate a running Java EE application. Therefore, you can select an object, such as a JSP or a servlet in the Application Navigator, and choose an option from the Run menu.

You can run or debug a working set, which is a group of files created by applying a named filter to a project, by choosing the Use Current Working Set (Java JEE Only) option from the Run menu.

Once this is enabled, when you select Run or Debug from the context menu of the source editor or from a node in the Application Navigator, it is the current working set that is run or debugged.

Only a single integrated application server can be run at any given time. Thus, if you attempt to start another instance of the server, JDeveloper will shut down the previous instance and restart the instance in order to perform the requested task on the selected icon in the Navigator. After an integrated application server is started, multiple applications can run on it independently of each other. If an application is running, rerunning the application redeploys the up-to-date version of the application.

To run in an integrated application server, an application must be bound to a server instance. JDeveloper is supplied with a WebLogic Server domain, and a default server instance named DefaultServer is defined for it. The unique integrated application server connection defined for this integrated application server is called IntegratedWebLogicServer, and has the Domain Home defined as the system directory $SYSTEM_ROOT/DefaultDomain. All applications are bound by default to IntegratedWebLogicServer.

9.2.3.3 Working with the Default Domain

If you have not explicitly created the integrated application server's default domain, it will automatically be created with default settings when you start the server by running or debugging an application.

Alternatively, you can explicitly create the default domain from the Application Server Navigator.

If necessary, you can delete the existing default domain so that you can create it again to use new values.

To explicitly create the integrated application server's default domain:

	
If necessary, open the Application Server Navigator by choosing View > Application Server Navigator.

	
Right-click the integrated application server connection IntegratedWebLogicServer and choose Create Default Domain. The Configure Default Domain dialog opens, where you can accept the defaults, or explicitly set other values, such as choosing a different listen address. For more information at any time, click Help or press F1 from the Configure Default Domain dialog.

When you install extensions to JDeveloper you may have to update the integrated application server's default domain.

To update the integrated application server's default domain:

	
necessary, open the Application Server Navigator by choosing View > Application Server Navigator.

	
Right-click the integrated application server connection IntegratedWebLogicServer and choose Update Default Domain.

If you have already created the default domain, but you need to use specific settings you can delete the existing default domain and create it again.

To delete the integrated application server's default domain:

	
With JDeveloper closed, locate the system folder in the file system and delete it. When you restart JDeveloper, you can create a new default domain for the integrated application server.

After the server has started, click the Run Manager tab in the navigator, or select Run Manager from the View menu, to display the integrated application server process.

	
Note:

You can run more than one application simultaneously on a server in run mode, however you can only debug one application at a time in debug mode. To return JDeveloper back into non-debug editing mode, the integrated application server must be shut down.

9.2.3.4 One-Click Running of Applications in the Integrated Application Server

You can test an application by running it in the integrated application server. You can also set breakpoints and then run the application with the integrated application server in debug mode. For more information about running and debugging, see Chapter 7, "Building, Running and Debugging Applications."

To run an application in the integrated application server:

	
In the Application Navigator, select the run target, for example a project, web service, unbounded task flow, or JSF page.

	
Right-click the run target and choose Run or Debug. Alternatively, choose Run or Debug from the main menu.

The first time you start the integrated application server by running or debugging an application, a dialog is displayed where you enter a password for the default user weblogic on the default domain. When you click OK, the default domain is created. You only need to do this once.

Application-level and Global Data Sources

If you are deploying to an integrated application server, you can use application level data sources or global data sources.

For both one-click deployment to an integrated application, JDeveloper ensures that your web application web.xml, or EJB application ejb-jar.xml, contains the necessary <resource-ref> entry to identify an application resource name. The name is jdbc/connection-nameDS, where connection-name is the name of the application resources connection.

The application looks up this data source using the application-specific resource JNDI namespace of java:comp/env/jdbc/connection-nameDS, and it finds this resource because web.xml contains the <resource-ref> entry for jdbc/connection-nameDS.

To use application level data sources in one-click deployment to Integrated WebLogic Server, select Auto Generate JDBC Connections When Running Application in JDeveloper on the WebLogic page of the Application Properties dialog (available from the Application menu). This:

	
Generates a file called connection-name-jdbc.xml in the /META-INF directory of the application's EAR file

	
Creates a corresponding <module> entry in the weblogic-application.xml file in META-INF that references this JDBC module

If the application uses more than one application resources database connection, then a connection-name-jdbc.xml file will be created for each, and there will be a similar number of <module> entries in the weblogic-application.xml file.

To use global data sources in one-click deployment to Integrated WebLogic Server, deselect Auto Generate JDBC Connections When Running Application in JDeveloper on the WebLogic page of the Application Properties dialog (available from the Application menu), and:

	
Connect to the Integrated WebLogic Server Administration Console, described in Section 9.2.3.9, "How to Log In to the Integrated WebLogic Server Administration Console"

	
Create the global data source in a similar manner to creating one on Oracle WebLogic Server, see Section 9.3.6.4, "Setting Up JDBC Data Sources on Oracle WebLogic Server"

9.2.3.5 How to Start the Integrated Application Server

By default, the integrated application server is automatically started when you run or debug an EJB, servlet, or JSP project. Therefore, you can select an object, such as a JSP or a servlet in the Navigator, and choose an option from the Run menu.

	
Note:

The first time you start the integrated application server by running or debugging a project, file, or web service, a dialog is displayed where you enter a password for the administrator ID on the default domain. When you click OK, the default domain is created. You only need to do this once.

Only a single integrated application server can be run at any given time. Thus, if you attempt to start another instance of the server, JDeveloper will shut down the previous instance and restart the instance in order to perform the requested task on the selected icon in the Navigator.

After the server has started, click the Run Manager tab in the Navigator to display the integrated application server process. You can open the Run Manager by choosing View > Run Manager from the main menu.

To start an integrated application server:

	
If necessary, open the Application Server Navigator by choosing View > Application Server Navigator.

	
Right-click the Integrated WebLogic Server connection and choose Start Server Instance.

Alternatively, choose Run > Start Server Instance from the main menu.

To start an integrated application server in debug mode:

	
If necessary, open the Application Server Navigator by choosing View > Application Server Navigator.

	
Right-click the Integrated WebLogic Server connection and choose Debug Server Instance.

Alternatively, choose Run > Debug Server Instance from the main menu.

9.2.3.6 How to Cancel a Running Deployment

If you are running a large application on the integrated application server, you can cancel it before it has finished deploying.

To cancel a running deployment:

	
n the Log Window, click the Terminate button and choose the profile or application you wish to cancel.

9.2.3.7 How to Terminate an Integrated Application Server

After an integrated application server has started, the integrated application server process appears in the Run Manager. For more information, see Section 19.2, "Understanding the Run Manager."

You can open the Run Manager by choosing View > Run Manager from the main menu.

	
Note:

Applications deployed on an integrated application server are automatically undeployed whenever the integrated application server is terminated.

The default behavior is to undeploy all the applications, but you can change the behavior.

To shutdown the running integrated application server:

Do one of the following:

	
Choose Run > Terminate > IntegratedWebLogicServer (or the integrated application server connection name) from the main menu.

	
Select the integrated application server name from the Terminate dropdown list in the toolbar.

	
Choose View > Run Manager from the main menu. Right-click the integrated application server name and choose Terminate.

	
Choose File > Exit to exit JDeveloper. Click Yes when prompted to terminate the instance's process.

	
In the Application Server Navigator, right click on the integrated application server connection and select Terminate Server Instance.

To force shutdown of Integrated WebLogic Server:

	
If you need to force shutdown of Integrated WebLogic Server, press the Terminate button twice.

9.2.3.8 How to Configure Startup and Shutdown Behavior for Integrated Application Servers

You can configure startup and shutdown behavior for integrated application server connections.

To configure the startup and shutdown behavior for an integrated application server:

	
If necessary, open the Application Server Navigator by choosing View > Application Server Navigator.

	
Right-click the integrated application server connection and choose Properties to open the Application Server Properties dialog. For more information at any time, press F1 or click Help from within the dialog.

If you are viewing the properties of the default integrated application server, you can only change settings on the Configuration, Shutdown and Launch Settings tabs in the dialog. Otherwise you can edit everything except the connection name.

9.2.3.9 How to Log In to the Integrated WebLogic Server Administration Console

The integrated application server is an implementation of Oracle WebLogic Server and as such you can connect to the server's Administration Console.

	
Note:

To log in to the Administration Console, you must have the integrated application server running from JDeveloper, for example:

	
By starting Integrated WebLogic Server from the Application Server Navigator.

	
By running an application.

To launch and log in to the integrated application server Administration Console:

	
If necessary, open the Application Server Navigator by choosing View > Application Server Navigator.

	
Right-click IntegratedWebLogicServer and select Launch Administrative Console. A browser instance opens at the login page, which is http://host:port/console.

For example, if the default configuration is used, the browser uses http://localhost:7001/console.

	
Log in using the username for the default domain and password you used when the integrated application server was launched for the first time.

The integrated application server is an implementation of Oracle WebLogic Server, so for more information about the integrated application server Administration Console refer to the Administration Console Online Help, which is available from the WebLogic Server online documentation in your JDeveloper installation, or from the Administration Console.

9.3 Connecting and Deploying Java EE Applications to Application Servers

Before you deploy an application to a standalone application server, you must perform prerequisite tasks within JDeveloper to prepare the application for deployment.

Figure 9-2 show the process flow to prepare the application for deployment. After the application has been prepared and the application server has been prepared, you can proceed to deploy the application.

Figure 9-2 Preparing the Application for Deployment Flow Diagram

[image: Preparing the application for deployment flow diagram]

9.3.1 How to Create a Connection to the Target Application Server

You can deploy applications to the application server via JDeveloper application server connections.

Before you begin:

	
Ensure that the application server is installed and started.

	
If you are working behind a proxy server you need to configure JDeveloper to recognize the proxy server:

	
Choose Tools > Preferences to open the Preferences dialog.

	
Select Use HTTP Proxy Server and enter the hostname and port for the proxy server.

Exceptions is populated with values from your machine. If you are deploying to a Oracle WebLogic Server configured to use SSL you should add *.company_name.com to the exception list.

To create a connection to an application server:

	
Launch the Application Server Connection wizard.

You can:

	
In the Application Server Navigator, right-click Application Servers and choose New Application Server Connection.

	
In the New Gallery, expand General, select Connections and then Application Server Connection, and click OK.

On the Usage page of the wizard ensure that Standalone Server is selected, and click Next.

	
In the Resource Palette, choose New > New Connections > Application Server.

	
In the Create AppServer Connection dialog Usage page, select Standalone Server.

	
In the Name and Type page, enter a connection name.

	
In the Connection Type dropdown list, choose:

	
WebLogic 10.3 to create a connection to Oracle WebLogic Server

	
JBoss 5.x to create a connection to JBoss

	
Tomcat 6.x to create a connection to Tomcat

	
WebSphere Server 7.x to create a connection to IBM WebSphere Server

	
Click Next.

	
On the Authentication page, enter a user name and password for the administrative user authorized to access the application server.

	
Click Next.

	
On the Configuration page, enter the information for your server:

For WebLogic:

	
The Oracle WebLogic host name is the name of the WebLogic Server instance containing the TCP/IP DNS where your application (.jar,.war,.ear) will be deployed.

	
In the Port field, enter a port number for the Oracle WebLogic Server instance on which your application (.jar,.war,.ear) will be deployed.

If you don't specify a port, the port number defaults to 7001.

	
In the SSL Port field, enter an SSL port number for the Oracle WebLogic Server instance on which your application (.jar,.war,.ear) will be deployed.

Specifying an SSL port is optional. It is required only if you want to ensure a secure connection for deployment.

If you don't specify an SSL port, the port number defaults to 7002.

	
Select Always Use SSL to connect to the Oracle WebLogic Server instance using the SSL port.

	
Optionally enter a WebLogic Domain only if Oracle WebLogic Server is configured to distinguish non administrative server nodes by name.

For JBoss:

	
Enter or browse to the location of the JBoss deploy directory, where your application files (.jar,.war,.ear) are.

	
If you are using JMX, Select Enable JMX for this connection. (optional).

	
Note:

JMX configuration is optional and is not required for connecting to the JBoss Application Server. JMX is only needed for deploying SOA applications.

You must use the Oracle JMX RMI connector (oracle-jboss-remoting.sar) on the JBoss server; the standard JBOSS JMX connector (jmx-remoting.sar) does not work with JDeveloper.

	
In the Host Name field, enter host name of the target server. The default is the machine name.

	
In the RMI Port field, enter the port number of JBoss's RMI connector port. The default is 19000.

For Tomcat:

	
In the Webapps Directory field enter or browse to the location of the webapps directory where you place the application .war files.

For WebSphere:

	
In the Host Name field, enter the name of the WebSphere server containing the TCP/IP DNS where your Java EE applications (.jar, .war, .ear) are deployed. If no name is entered, the name defaults to localhost

	
In the SOAP Connector Port field, enter the port number. The host name and port are used to connect to the server for deployment. The default SOAP connector port is 8879

	
In the Server Name field, enter the name assigned to the target application server for this connection.

	
In the Target Node field, enter the name of the target node for this connection. A node is a grouping of Managed Servers. The default is machineNode01, where machine is the name of the machine the node resides on

	
In the Target Cell field, enter the name of the target cell for this connection. A cell is a group of processes that host runtime components. The default is machineNode01Cell, where machine is the name of the machine the node resides on.

	
In the Wsadmin script location field, enter, or browse to, the location of the wsadmin script file to be used to define the system login configuration for your IBM WebSphere application server connection. Note that you should not use the wsadmin files from the ORACLE_HOME/oracle_common/common/bin directory, which are not the correct version. The default location is websphere-home/bin/wsadmin.sh for Unix/Linux and websphere-home/bin/wsadmin.bat for Windows.

	
Click Next.

	
If you have chosen WebSphere, the JMX page appears. On the JMX page, enter the JMX information (optional):

	
Note:

JMX configuration is optional and is not required for connecting to the WebSphere Application Server. JMX is only needed for deploying SOA applications.

	
Select Enable JMX for this connection to enable JMX.

	
In the RMI Port field, enter the port number of WebSphere's RMI connector port. The default is 2809.

	
In the WebSphere Runtime Jars Location field, enter or browse to the location of the WebSphere runtime JARs.

	
In the WebSphere Properties Location (for secure MBEAN access) field, enter or browse to the location of the file that contains the properties for the security configuration and the mbeans that are enabled. This field is optional.

	
Click Next.

	
On the Test page, click Test Connection to test the connection.

JDeveloper performs several types of connections tests. The JSR-88 test must pass for the application to be deployable. If the test fails, return to the previous pages of the wizard to fix the configuration.

	
Click Finish.

How to Launch Oracle WebLogic Server Administration Console

Developing Secure Applications

14 Developing Secure Applications

This chapter describes how you can develop, deploy, and administer secure Java EE applications in Oracle JDeveloper.

This chapter includes the following sections:

	
Section 14.1, "About Developing Secure Applications"

	
Section 14.2, "Securing Applications in Phases"

	
Section 14.3, "About Web Application Security and JDeveloper Support"

	
Section 14.4, "Handling User Authentication in Web Applications"

	
Section 14.5, "Securing Application Resources in Web Applications"

	
Section 14.6, "Configuring an Application-Level Policy Store"

	
Section 14.7, "Migrating the Policy Stores"

	
Section 14.8, "Securing Development with JDBC"

14.1 About Developing Secure Applications

The Fusion Middleware Suite lets you develop, deploy, and administer secure applications. You can secure Java EE applications using only container-managed security or, for Fusion web applications, you can use Oracle ADF Security. Fusion web applications are Java EE applications that you develop using the Oracle Application Development Framework (Oracle ADF).

14.1.1 Understanding Java EE Applications and Oracle Platform Security Services for Java (OPSS)

A Java EE application can be enhanced to use OPSS. In this scenario, you work with JDeveloper's declarative editors to configure users and roles. You secure application resources using Java EE container-managed security.

14.1.2 Understanding Fusion Web Applications and ADF Security

This scenario is a fully declarative implementation that adds ADF Security to enable fine-grained security policies for Oracle ADF resources. You work with JDeveloper's declarative editors to configure a file-based identity store, policy store, and credential store; and, because your application utilizes Oracle ADF, you also run a wizard to configure security for web pages associated with ADF resources (such as ADF task flows and ADF page definitions) and then use the jazn-data.xml policy editor to define security policies.

14.1.3 Understanding Container-managed Security

The Java EE security model is a role-based, declarative model based on container-managed security, where resources are protected by roles that are assigned to users. This model allows decoupling an application from its underlying security infrastructure since security can be specified separately from the application logic in an application deployment descriptor. The container, where an application runs, provides security for the application according to a specifications in the deployment descriptor. This model also allows embedding security data (annotations) in the application code that can be referenced in deployment descriptors.

For more information about container-managed security, see the Oracle Fusion Middleware Security Guide.

14.1.4 Additional Functionality

The Oracle ADF Security framework is the preferred technology to provide authentication and authorization services to the Fusion web application. A prime reason is that Oracle ADF Security is built on top of the Oracle Platform Security Services (OPSS) architecture, which provides a critical security framework and is itself well-integrated with Oracle WebLogic Server.

For more information about Oracle ADF security, see the "Enabling ADF Security in a Fusion Web Application" chapter of the Oracle Fusion Middleware Developer's Guide for ADF.

For more information on OPSS, see the Oracle Fusion Middleware Application Security Guide.

14.2 Securing Applications in Phases

When developing secure applications in JDeveloper it is often useful to think of development and deployment (to the production environment) as different phases, each with different needs. This is because during development and testing, JDeveloper supports easy to manage file-based security through integration with Oracle Platform Security Services (OPSS).

JDeveloper simplifies the application development life-cycle for security, and allows you to store the data in a flat file, for easy development. The jazn-data.xml file is JDeveloper's default file-based security provider for integration with OPSS. The jazn-data.xml file stores the users, groups, roles, and policies that you define the Fusion web application built using the Oracle Application Development Framework (Oracle ADF) and Oracle ADF Security. JDeveloper provides a dedicated editor for this file that simplifies creating the security data stores.

A feature of OPSS is the abstraction of users defined by the production environment's enterprise roles into application roles that are specific to the functions of your application. During development the application developer adds application roles and security policies that use application roles to the policy store of the jazn-data.xml file. Then, to simplify testing, the developer may add a few users to the identity store and directly assign these test users to application roles. Therefore, for testing the application, the jazn-data.xml can also be used as the identity store.

During development, your application does not ned to be aware of the enterprise roles defined in the production environment. After deployment an administrator will use Oracle Enterprise Manager Fusion Middleware Control to map the production-level enterprise roles to the application roles of your application's policy store. This mapping will allow a user who is a member of a given enterprise role to have access to the resources that are accessible from the associated application role.

After you complete the application, you migrate the policy store to the production environment provider on Oracle WebLogic Server. At that point, you will replace your test user identity store with enterprise users configured in the Oracle WebLogic Server embedded LDAP server. In contrast to the jazn-data.xml file, the LDAP server supports a distributed application server configuration that may be employed in a production environment. For details about the LDAP server, see Oracle Fusion Middleware Securing Oracle WebLogic Server.

Therefore, working with the file-based provider and OPSS in JDeveloper helps separate the demands of the production environment through:

	
Declaratively defining test users and application roles

	
Declaratively defining security policies for Oracle ADF resources

	
Easily migrating from application-level security provider to system-jazn-data.xml security provider during deployment

	
Delaying the mapping of enterprise roles until deployment

14.3 About Web Application Security and JDeveloper Support

Java EE declarative security in Oracle WebLogic Server is implemented with Oracle Platform Security Services (OPSS), Oracle's implementation of the JAAS standard. OPSS extends Java EE security to provide application developers, system integrators, security administrators, and independent software vendors with a portable, integrated, and comprehensive security platform framework for Java SE and Java EE applications.

To learn more about OPSS and its features, see Oracle Fusion Middleware Security Guide.

JDeveloper provides tools to support configuring Java EE security for web applications and for deploying secure web applications to an application server instance. A developer, while developing an application, can configure OPSS services from JDeveloper through wizards and editors.

JDeveloper provides specific editors to create and edit Oracle Platform Security configurations (jps-config.xml), JAAS configurations (jazn-data.xml), and Web application deployment descriptors (web.xml). JDeveloper also supports direct deployment of web applications to application servers. For more information, see Section 14.2, "Securing Applications in Phases."

When you develop web applications you may choose to use Oracle Application Development Framework (Oracle ADF) to work with data-aware components in the user interface. When your user interface contains ADF resources, such as ADF task flows and ADF page definitions, then you have the option to secure the web pages that rely on those resources through the ADF Security framework. JDeveloper tools support iterative development of security so you can easily create, test, and edit security policies that you create for ADF resources. You can proceed to create test users in JDeveloper and run the application in Integrated WebLogic Server to simulate how end users will access the secured resources. For more information, see. Section 14.5.2, "How to Secure ADF Resources Using ADF Security in Fusion Web Applications."

For more information on web application security, see Oracle Fusion Middleware Programming Security for Oracle WebLogic Server.

14.4 Handling User Authentication in Web Applications

Authentication in declarative security is enforced when a user requests a protected web application area.

14.4.1 About Authentication Type Choices

Authentication in declarative security is enforced when a user requests a protected web application area. If the user has not been authenticated before, the container will retrieve credentials from the user. Users stay authenticated throughout the server session.

The supported types of authentication are: FORM based authentication, BASIC authentication, and CLIENT-CERT authentication. The type of authentication is specified in the web.xml deployment descriptor using the <login-config> element.

14.4.1.1 BASIC authentication

BASIC authentication uses the browser login dialog for the user to enter his user name and password. This dialog form cannot be customized and thus varies in its look and feel depending on the type of browser used. The user credentials are stored in the browser session for the authenticated realm. A realm is a repository that contains a set of permissions for the authenticated user. The default realm in Oracle Platform Security Services is jazn.com.

The code snippet in Example 14-1 demonstrates how BASIC authentication is specified in the web.xml file:

Example 14-1 BASIC Authentication Specified in web.xml File

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>jazn.com</realm-name>
</login-config>

14.4.1.2 FORM authentication

FORM based authentication allows the application developer to specify a custom login dialog. The username parameter must have a name of j_username, the password field must be named j_password. The login form action must have a value of j_security_check for the Java EE container to authenticate the request.

The code snippet in Example 14-2 demonstrates how FORM authentication is specified in the web.xml file:

Example 14-2 FORM Authentication Specified in web.xml File

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>loginform.jsp</form-login-page>
 <form-error-page>error.jsp</form-error-page>
 </form-login-config>
</login-config>

14.4.1.3 CLIENT-CERT authentication

CLIENT-CERT authentication uses the X.509 certificate to authenticate users. This type of authentication is also known as public key encryption.

For more information about authentication type choices, see the Oracle Fusion Middleware Security Guide.

For more information about authentication type using Oracle WebLogic Server, see Oracle Fusion Middleware Programming Security for Oracle WebLogic Server.

14.4.2 Encrypting Passwords for a Target Domain

As password encryption is specific to a WebLogic Server domain, you must manually add the password handling to the weblogic-jdbc.xml file. To encrypt a password, use the encrypt utility (weblogic.security.Encrypt) for the domain to which you want to deploy.

	
Note:

Passwords are domain-specific, so each time you want to deploy to a different domain you must re-encrypt the password for the target domain

The XML code you need to add to the weblogic-jdbc.xml should look something like this:

<password-encrypted>toystore</password-encrypted>

You can either put the clear text password or the encrypted password string in between the tags. This element goes inside of the <jdbc-driver-params> element, which will already be present in the weblogic-jdbc.xml if it has been edited using the Overview Editor.

14.4.2.1 weblogic.security.Encrypt

The weblogic.security.Encrypt utility encrypts cleartext strings for use with WebLogic Server. The utility uses the encryption service of the current directory, or the encryption service for a specified WebLogic Server domain root directory.

	
Note:

An encrypted string must have been encrypted by the encryption service in the WebLogic Server domain where it will be used. If not, the server will not be able to decrypt the string.

You can only run the weblogic.security.Encrypt utility on a machine that has at least one server instance in a WebLogic Server domain; it cannot be run from a client. Table 14-1 defines the arguments for the weblogic.security.Encrypt utility.

	
Note:

It is recommended that you run the utility from the Administration Server domain directory or on the machine hosting the Administration Server and specifying a domain root directory.

Syntax

java [-Dweblogic.RootDirectory= dirname]
[-Dweblogic.management.allowPasswordEcho=true]
weblogic.security.Encrypt [password]

Table 14-1 Arguments for the weblogic.security.Encrypt utility

	Argument	Definition
	
weblogic.RootDirectory

	
Optional. WebLogic Server domain directory in which the encrypted string will be used. If not specified, the default domain root directory is the current directory (the directory in which the utility is being run).

	
weblogic.management.

allowPasswordEcho

	
Optional. Allows echoing characters entered on the command line. weblogic.security.Encrypt expects that no-echo is available; if no-echo is not available, set this property to true.

	
password

	
Optional. Cleartext string to be encrypted. If omitted from the command line, you will be prompted to enter a password.

Examples

The utility returns an encrypted string using the encryption service of the domain located in the current directory:

java weblogic.security.Encrypt xxxxxx {3DES}Rd39isn4LLuF884Ns

The utility returns an encrypted string using the encryption service of the specified domain location:

java -Dweblogic.RootDirectory=./mydomain weblogic.security.Encrypt xxxxxx {3DES}hsikci118SKFnnw

The utility returns an encrypted string in the current directory, without echoing the password:

java weblogic.security.Encrypt Password: {3DES}12hsIIn56KKKs3

14.4.3 How to Create an Identity Store

An identity store is a data store of users, enterprise roles (user groups), and login credentials. The credentials are verified during authentication and used to authorize the user's access to application functions.

Understanding Users, Roles, and Realms

A user is an end user accessing a service; it could be an individual or a software component. A enterprise role is a collection of users that you group with the purpose of conferring the same set of permissions. A realm is a collection of authenticated users and enterprise roles.

For more information about users, enterprise roles, and realms, see the Oracle Fusion Middleware Security Guide.

Understanding Identity Stores in JDeveloper

When you develop secure applications in JDeveloper, you work with a file-based data store to define the users you wish to allow to log on. The advantage of defining a file-based identity store through the jazn-data.xml file is that it supports easy testing yet remains compatible with deployment to your production environment through migration to the system-jazn-data.xml file. It also avoids the complexity of setting up and maintaining an Oracle Internet Directory service for the LDAP-based identity store.

When you create a Fusion web application with Oracle ADF, the identity store will be created automatically when you run the Configure ADF Security wizard.

	
Note:

The LDAP-based identity store is a design time feature in JDeveloper, and is not available at runtime. JDeveloper's Integrated WebLogic Server overrides any LDAP identity store configuration.

For more information about identity stores, see the Oracle Fusion Middleware Security Guide.

To create an identity store:

	
Double-click the jps-config.xml file in the Descriptors > META-INF folder in the Application Resources panel of the Application Navigator.

	
Select the Identity Store tab in the jps-config.xml Overview Editor.

	
Click the Add a New Identity Store icon at the top of the page. The Create Identity Store dialog opens.

	
Choose the desired type of identity store option:

	
To create a file based identity store, choose XML-Based Identity Store, and enter the name for the store. By default, the file name is idstore.xml.

	
To create an LDAP based identity store, choose LDAP-Based Identity Store, and enter the name for the store. By default, the file name is idstore.oid.

Note: The LDAP-based identity store is a design time feature in JDeveloper, and is not available at runtime. The Integrated WebLogic Server in JDeveloper overrides any LDAP identity store configuration.

	
When you are done, click OK to close the dialog.

14.4.4 How to Add Test Users to the Identity Store

The identity store is an XML file that stores users and enterprise roles, and is used while authenticating users. There can be an identity store at either the domain or application level.

To add users to the identity store:

	
Open the application in the Application Navigator.

	
Choose Application > Secure >Users to open the overview editor for the jazn-data.xml file.

	
On the Users page, click the New User icon.

	
Enter the new user name and password.

	
Select the user from the Users list and enter further details, such as display name and description.

	
Save your changes to the jazn-data.xml file.

14.4.5 How to Add Enterprise Roles to the Identity Store

An enterprise role is a set of users that you group with the intention of conferring the same permission grants. You add enterprise roles to the identity store. You add application roles to the policy store.

	
Note:

Before adding a user to an enterprise role, ensure that you have created users in the identity store

To add roles to the identity store:

	
Open your application in the Application Navigator.

	
Choose Application > Secure > Groups to open the Enterprise Roles page of the overview editor for the jazn-data.xml file.

	
Under Enterprise Roles, click the New Role icon. The new role appears in the Enterprise Roles list.

	
Select the role from the Enterprise Roles list and enter further details, such as display name and description.

To manage users assigned to enterprise roles:

	
Open the Enterprise Roles page of the overview editor for jazn-data.xml file.

	
Select the role from the Enterprise Roles list, and then click the Members tab.

	
In the Members section, add or remove other members or roles.

To view assigned enterprise roles:

	
Open the Enterprise Roles page of the overview editor for the jazn-data.xml file.

	
Select the role from the Roles list, and then click the Assigned Roles tab.

14.4.6 How to Create a Credential Store

A credential store is a wallet-based file for storage of system credentials required by Oracle Platform Security Services (OPSS) in connecting to external systems such as databases. In JDeveloper, the credential store is the cwallet.sso file. The file contains all your OPSS-based credentials, and will be used in JDeveloper to store credentials that you define for Oracle ADF security. This file is normally not edited directly.

JDeveloper checks for the existence of a credential store service instance and creates the store the first time the you create a connection, for example, a database connection, in the Application Resources panel of the Application Navigator.

For more information about credential stores, see the Oracle Fusion Middleware Security Guide.

To create a credential store:

	
Double-click the jps-config.xml file in the Descriptors > META-INF folder in the Application Resources panel of the Application Navigator.

	
Select the Credential Store tab in the jps-config.xml Overview Editor.

	
Click the Add the Credential Store icon at the top of the page. The Create Credential Store dialog opens.

	
Enter the name of credential store file, and click OK.

	
Note:

You can create only one credential store in an application.

14.4.7 How to Add a Login Module

A login module is a component that authenticates users and populates a subject with principals. Login modules can be plugged in and used by applications without changing application code. An application can use more than one login module.

The login authentication process occurs in two distinct phases:

	
The login module attempts to authenticate a user requesting, as necessary, a name and a password or some other credential data; only if this phase succeeds, the second phase is invoked.

	
The login module assigns relevant principals to a subject, which is eventually used to perform some privileged action.

All login modules in a domain are configured in the file jps-config.xml using the following elements:

	
serviceProvider — to define a service provider for the login module.

	
serviceInstance — to define one or more instances of the service provider

	
jpsContext — to specify which instances to use

In JDeveloper, you can choose a pre-defined login module for your application, or create a new custom login module. Table 14-2 contains the pre-defined login modules that are available in JDeveloper:

Table 14-2 Predefined Login Modules

	Module	Description
	
saml.loginmodule

	
Used for SAML token assertion and implements the oracle.security.jps.internal.jaas.module.saml.

JpsSAMLLoginModule class.

	
krb5.loginmodule

	
Used for Kerberos token assertion and implements com.sun.security.auth.module.Krb5LoginModule class.

	
wss.digest.loginmodule

	
Used to authenticate the digest based user name token based on WSS Digest specification and implements oracle.security.jps.internal.jaas.module.digest.WSSDigestLoginModule. This is supported only for JSE use cases

	
certificate.authenticator.

loginmodule

	
Used to assert the X509 certificates and implements oracle.security.jps.internal.jaas.module.x509.X509LoginModule class.

	
user.authentication.

loginmodule

	
Used to authenticate the user based on valid user name and password, and implements oracle.security.jps.internal.jaas.module.authentication.JpsUserAuthenticationLoginModule class

	
user.assertion.loginmodule

	
Used to authenticate the user based on valid user name and password, and implements oracle.security.jps.internal.jaas.module.assertion.JpsUserAssertionLoginModule class.

	
idstore.loginmodule

	
Used to authenticate JSE bases use cases and implements oracle.security.jps.internal.jaas.module.

idstore.IdStoreLoginModule class

For more information about login modules, see the Oracle Fusion Middleware Security Guide.

To add a login module:

	
Double-click the jps-config.xml file in the Descriptors > META-INF folder in the Application Resources panel of the Application Navigator.

	
Select the Login Modules tab in the jps-config.xml Overview Editor.

	
Click the Choose from a list of pre-defined Login Modules icon at the top of the page. The Add Login Modules dialog appears.

	
Select the checkbox of login modules you want to add. You can add more than one login module in an application.

	
Click OK when you are done.

14.4.8 How to Authenticate Through a Custom Login Module

A key Oracle Platform Security component is the login service. Conceptually, the login service is an adapter that ties the JAAS login module SPI (javax.security.auth.spi.LoginModule) to the Oracle Platform Security for Java framework (OPSS).

The primary role of the login service is to enable JAAS login module implementations to be configured and used in OPSS.

To add a custom login module:

	
Double-click the jps-config.xml file in the Descriptors > META-INF folder in the Application Resources panel of the Application Navigator.

	
Select the Login Modules tab in the jps-config.xml Overview Editor.

	
Click the Create New Login Module button at the top of the page.

	
Enter the Login Module Name then click OK.

	
Enter the classname for the login module. To search for an existing classname available to the project, click the Search button.

	
Select the Login Control Flag. This can be: REQUISITE, REQUIRED, SUFFICIENT, or OPTIONAL.

	
Select the Log Level. This can be: FINE, FINER, FINEST, CONFIG, INFO, WARNING, SEVERE.

	
Click Debug to define whether the login module will output debug messages.

	
Select Add All Roles to define whether all directly or indirectly granted roles of the user are added to the subject after authentication using the login module.

	
Enter the names and values for any other properties required by the login modules.

14.4.9 How to Add a Key Store

A key store is a repository of private keys and digital certificates.

If you have keys and certificates and wish to use them for secure services in your application, JDeveloper allows you to import a Java Key Store, Oracle Wallet (from a *.sso or *.p12 file), or PCKS12 file (from a *.p12 file). You cannot create a key store in JDeveloper.

For more information about key stores and key store providers, see the Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server guide.

To add a key store:

	
Double-click the jps-config.xml file in the Descriptors > META-INF folder in the Application Resources panel of the Application Navigator.

	
Select the Key Stores tab in the jps-config.xml Overview Editor.

	
Click the Add a Key Store icon at the top of the page. The Add Key Store dialog appears.

	
Import the key store file and complete the required fields. You can import a Java Key Store (from a *.jks file), Oracle Wallet (from a *.sso or *.p12 file), or PCKS12 (from a *.p12 file) file as a key store.

	
Click OK when you are done.

14.4.10 How to Enable an Anonymous Provider

The anonymous provider is an alternative to public pages in that unauthenticated user access can have permissions assigned that are more fine grained than allowing access to the whole (public) page.

Enabling the anonymous provider creates an anonymous JpsContext, which contains the anonymous service instance and the anonymous login module. Anonymous credentials will be used at runtime when the application user has not been authenticated and the application allows some resources to be accessible without authentication.

For more information about the anonymous provider, see the Oracle Fusion Middleware Security Guide.

To enable an anonymous provider for a web application:

	
Double-click the jps-config.xml file in the Descriptors > META-INF folder in the Application Resources panel of the Application Navigator.

	
Select the Anonymous Provider tab in the jps-config.xml Overview Editor.

	
Select Enable Anonymous Provider.

	
Select the Security Contexts tab and ensure that anonymous is automatically chosen as the Anonymous Provider.

14.4.11 How to Add Credentials to Users in the Identity Store

Credentials contain the authentication password for a user. The credentials appear in obfuscated form by default. Before adding credentials in the identity store, the member users must first be defined for the identity store.

To add credentials to users in the identity store:

	
Open the application in the Application Navigator.

	
Choose Application > Secure > Users to open the Users page of the overview editor for jazn-data.xml.

	
Select a user in the Users list, and add credentials to the Password field.

14.4.12 How to Choose the Authentication Type for the Web Application

Authentication in declarative security is enforced when a user requests a protected web application area. If the user has not been authenticated before, the container will retrieve credentials from the user. Users stay authenticated throughout the server session.

The supported types of authentication are: FORM based authentication, BASIC authentication, and CLIENT-CERT authentication. The type of authentication is specified in the web.xml deployment descriptor using the <login-config> element.

For more information on authentication types, see Section 14.4.1, "About Authentication Type Choices".

To select the authentication type for the web application:

	
Double-click the web.xml for the application in the Application Navigator.

	
Click the Security tab of the web.xml Overview Editor.

	
Expand the Login Authentication section and select the desired authentication type.

14.5 Securing Application Resources in Web Applications

Web pages and other resources of the web application should be secured. Depending on the type of application, you can secure your application in one of the two following ways:

	
For a Java EE web application, use Oracle Platform Security Services (OPSS) to secure your web application.

	
For an application developed using Oracle Application Development Framework (ADF), use Oracle ADF Security to secure your application.

Using OPSS Security

The following tasks outline the process of securing an application using Java EE security:

	
Specifying an authentication mechanism for users.

	
Managing users and groups in the realm.

	
Creating security roles for the application.

	
Mapping roles to users and groups.

Using Oracle ADF Security

You can use the Oracle ADF Security framework to provide authentication and authorization services to the Fusion web application.

For more information about Oracle ADF security, see the "Enabling ADF Security in a Fusion Web Application" chapter of the Oracle Fusion Developer's Guide for ADF.

14.5.1 How to Secure Application Resources Using the jazn-data.xml Overview Editor

JDeveloper enables you to secure your application resource types. The resource types can be known, that is, recognized by JDeveloper, or you can create your own resource type.

A resource type represents the type of a secured artifact, such as a flow, a job, or a web service, and, essentially, it is a template for creating resources of a particular type. All resources have an associated type and are filtered or grouped according to type.

To secure an application resource:

	
Open the application in the Application Navigator.

	
In the main menu, choose Application > Secure > Resource Grants to open the Resource Grants page in the overview editor for the jazn-data.xml file.

	
In the Resource Type dropdown list, select the resource type you want to secure, for example, Task Flow. The list will display all the resource types available in the selected projects. You can also create a new resource type.

	
Click the Select Source Project icon to select the source project. Instances of the selected resource type from the selected source projects will be displayed in the Resources list.

	
Add the grantees (application roles, enterprise roles, or code sources) that will be granted the resource permissions. You can grant resource permissions to users, application roles, enterprise roles, and code sources. Click the Add Grantee icon in the Granted To list to add grantees.

	
In the Actions list, select the actions that will be allowed on the resource.

	
Save your changes to the jazn-data.xml file.

14.5.2 How to Secure ADF Resources Using ADF Security in Fusion Web Applications

Security policies that you define in a Fusion web application support fine-grained access control for ADF security-aware resources, including ADF task flows and ADF page definitions. To enable ADF security policies, you begin by running the Configure ADF Security wizard on the user interface project.

After you enable ADF Security you must grant users access rights so that they may view the web pages of the Fusion web application. Access rights that you grant users are known as a security policy that you specify for the page's corresponding ADF security-aware resource. Ultimately, it is the security policy on the ADF resource that controls the user's ability to enter a task flow or view a web page:

	
Do not define security policies for the individual web pages of a bounded task flow. When the user accesses the bounded task flow, security for all pages will be managed by the permissions you grant to the task flow. And, because the individual web pages (with associated page definitions) will be inaccessible by default, ADF Security prevents users from directly accessing the pages of the task flow. This supports a well-defined security model for task flows that enforces a single entry point for all users.

	
Do define security policies for the individual web page only when the page is not a constituent of a bounded task flow. Page-level security is checked for pages that have an associated page definition binding file only if the page is directly accessed or if it is accessed in an unbounded task flow.

ADF security policies are maintained in the file-based jazn-data.xml policy store. Defining and updating ADF security policies in JDeveloper is supported by the overview editor for this file. The resulting declarative ADF security policies are easy to read.

The detailed steps for securing Oracle ADF resources are in the "Enabling ADF Security in a Fusion Web Application" chapter of the Oracle Fusion Developer's Guide for ADF.

To define security policies for ADF resources:

	
Enforce ADF Security for the application by running the Configure ADF Security wizard.

	
Add application role names to the policy store.

	
Grant permission on the entire set of web pages contained in an ADF bounded task flows.

	
Grant permission on top-level web pages that are associated with an ADF page definition file and that are not associated with a bounded task flow.

If your application contains top-level web pages that are not associated with an ADF resource because they do not contain data-aware components, you can optionally secure these pages too.

	
If necessary, grant permission on rows of data that are defined by an ADF entity object.

	
Provision the identity store by adding the users who will login to test security.

	
Associate the test users you created with one or more application roles.

14.6 Configuring an Application-Level Policy Store

Security policies for web application resources are stored in the application-level policy store.

14.6.1 About Policy Stores

A Policy Store is the repository of application and enterprise policies. A policy specifies the permissions granted to code running from a specific location.

An Application Policy Store is a repository of application policies together with application roles, application policies, principals, and permissions. Application roles can include application users and roles, and roles specific to the application (such as administrative roles). A policy can use any of these roles or users as principals. Similarly, a System Policy store is a repository of system policies, principals, and permissions. A system policy store does not contain roles.

When you create a Fusion web application with Oracle ADF, the policy store will be created automatically when you run the Configure ADF Security wizard.

The difference between an application policy store and a system policy store is in their scope. An application policy store is constrained within an application limiting it's accessibility, where as a system policy store can be accessed openly.

For more information on policy stores, see the Oracle Fusion Middleware Security Guide.

A Principal is an identity assigned to an entity; the entity could be a user or a role. A Permission is a set of operations allowed for a group of entities; the entity could be a principal too. A Grant, or a custom policy, includes permissions and principals. In JDeveloper, you cannot create a principal or a permission without creating a grant.

14.6.2 About Principals, Permissions and Grants

A Principal is an identity assigned to an entity; the entity could be a user or a role. A Permission is a set of operations allowed for a group of entities; the entity could be a principal too. A Grant, or a custom policy, includes permissions and principals. In JDeveloper, you cannot create a principal or a permission without creating a grant.

14.6.3 How to Add Application Roles to an Application Policy Store

Application roles are specific to an application and defined in the application policy store. They are used by the application directly (either a Java SE or Java EE application) and are not necessarily known to the Java EE container. In the file-based policy store in a jazn-data.xml file, these application roles are defined in <app-role> elements under <policy-store>, and then written to system-jazn-data.xml at the domain level during deployment.

To add application roles to the application policy store:

	
Open the application in the Application Navigator.

	
Choose Application > Secure > Application Roles to open the Application Roles page of the overview editor for the jazn-data.xml file.

	
Click the Add icon to create a new application role as a peer or child of the currently selected role, or to create a new role category. The new application role or category is listed in the Roles list.

	
Enter details of the role or role category in the Name, Display Name, and Description fields.

	
Save your changes to the jazn-data.xml file.

For more information, see the Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server guide.

14.6.4 How to Add Member Users or Enterprise Roles to an Application Role

Deployment users and roles are defined in the security provider that you use. For the file-based provider, deployment users and roles are defined in the jazn-data.xml file.

	
Note:

Before adding member users or member roles to an application role, the member users and member roles must first be defined for the identity store.

To add users or enterprise roles to an application role:

	
Open the application in the Application Navigator.

	
Choose Application > Secure > Application Roles to open the Application Roles page in the overview editor for the jazn-data.xml file.

	
From the Application Roles list, select the application role, and then click the Members tab.

	
To add a user, under Member Users and Roles, click the Add User or Role icon, and select Add User.

	
To add an enterprise role, under Member Users and Roles, click the Add User or Role icon, and select Add Enterprise Role.

	
Save your changes to the jazn-data.xml file.

14.6.5 How to Create Custom Resource Types

You can create custom resource types and specify them in the jazn-data.xml file.

A resource type represents the type of a secured artifact, such as a flow, a job, or a web service, and, essentially, it is a template for creating resources of a particular type. All resources have an associated type and are filtered or grouped according to type.

To create a custom resource type:

	
Open your application in the Application Navigator.

	
Choose Application > Secure > Resource Grants to open the Resource Grants page of the overview editor for the jazn-data.xml file.

	
In the Resource Grants page, click the New Resource Type icon next to the Resource Type field.

	
In the Create Resource Type dialog, specify the properties of the resource, such as name, display name, and associated actions. The Actions list in the Create Resource Type dialog is used to populate the checkable items list in the Resource Grants page for resources of this type.

	
Save the jazn-data.xml file.

14.6.6 How to Add Resource Grants to the Application Policy Store

You can add application resource grants to an application policy store by updating the Resource Grants page of the overview editor for jazn-data.xml.

A resource is an instance of a resource type that represents a concrete resource; it defines an application resource that can be secured by a policy, such as software components managed by a container (for example, URLs, EJBs, JSPs) or an application business (for example, Reports, Transactions, Revenue Charts).

To add a resource grant for the application policy store:

	
Open your application in the Application Navigator.

	
Choose Application > Secure > Resource Grants to open the Resource Grants page of the overview editor for the jazn-data.xml file.

	
To define the security policy, select an item in the Security Policy field. The application security policy is selected by default. To define global resource grants, select Global.

	
Select the resource type from the Resource Type dropdown menu, or click the New Resource Type icon to create one.

	
For the resource types that are filtered by project, the Source Project selector is enabled. You may need to change the source project selection to find the desired resources.

	
The resources that belong to the selected resource type are listed in the Resources list.

	
Manage the entities that the resource permissions have been granted to, by clicking the Add Grantee icon in the Granted To list. You can grant to an application role, a user, an enterprise role, or a code source.

	
View and select the actions allowed on the resource in the Actions list.

14.6.7 How to Add Entitlement Grants to the Application Policy Store

Using the Entitlement Grants page of the overview editor for jazn-data.xml, you can define a set of resource permissions and grant those permissions to multiple application roles without having to grant each permission to each application role individually.

An entitlement is a collection of permissions. Typically, it encapsulates the list of permissions needed to perform a given business function or task.

To add entitlement grants to an application policy store:

	
Open your application in the Application Navigator.

	
In the main menu, choose Application > Secure > Entitlement Grants to open the Entitlement Grants page in the overview editor for the jazn-data.xml file.

	
To add an entitlement, click the Add Entitlement icon in the Entitlements list.

	
To add a member resource, click Resources, and in the Member Resources list, click the Add Member Resource icon.

	
To select the application role to grant the entitlement to, select Grants and then click the Add Role Grant icon. In the Select Application Roles dialog, you can select an application role or create a new one.

	
Save the jazn-data.xml file.

	
Tips:

	
You can view grants to resources that are members of an entitlement group in the Resource Grants page by clicking the Show Grants from Entitlements icon in the Granted To column. This option is selected by default.

	
You can also add member resources to new or existing entitlements from the context menu in the Resource Grants page.

14.6.8 How to Create a Custom JAAS Permission Class

A new permission class is useful when you want to create your own JAAS permission for a logical artifact type to secure. For example, although Oracle ADF already provides built-in permission classes for the artifacts on which it enforces security (including task flows, page definitions, entity objects, and entity attributes), you might create a custom permission class for a set of UI components that you want to secure in the user interface. Once this class is created, you can add enforcement checks using Java, Expression Language (EL), or embedded Groovy expressions, and then you can grant the new custom permission class to application roles by editing the jazn-data.xml file directly. For example, you could define a security policy to limit access to a menu that your application displays and then associate the rendering of the menu with the user's granted custom permission using the EL value userGrantedPermission on the component's rendered property.

To create a custom JAAS-compliant permission class:

	
Open your application in the Application Navigator.

	
From the main menu, select File > New to open the New Gallery.

	
In the New Gallery, under Categories, select Business Tier > Security.

	
Under Items, select JAAS Permission.

	
In the Create JAAS Permission dialog, enter the details of the custom permission class. For any help from within the dialog, click Help or press F1.

14.6.9 How to Add Grants to the System Policy Store

Currently, this release does not provide an editor to add system permission grants to a system policy store; you will need to manually add grants in the source code for jazn-data.xml.

To add a grant to the system policy:

	
Open your application in the Application Navigator.

	
In the Application Navigator, double-click the jazn-data.xml to open the overview editor.

	
Click Source to open the source editor.

	
In the source code, inside the <jazn-data> element, create a <jazn-policy> element.

	
Inside the <jazn-policy> element create a <grant> element that defines the <grantee> with the desired application role and the <permission> with the fully qualified class name of the permission class, the name that you want to use as the target for the grant, and the action that you want to grant to the application role principal.

	
Save changes to the jazn-data.xml file.

14.7 Migrating the Policy Stores

JDeveloper is configured by default to deploy the security objects from your application repositories to Integrated WebLogic Server each time you run the application. You can change this behavior by selecting security deployment options in the Application Properties dialog to:

	
Decide whether to overwrite the domain-level policies with those from the application jazn-data.xml file.

	
Decide whether to overwrite the system credentials from the application's cwallet.sso file.

	
Decide whether to migrate the identity store portion of the jazn-data.xml file to the domain-level identity store.

If you make no changes to the deployment settings, each time you run the application, JDeveloper will overwrite the domain-level security policies and system credentials. Additionally, JDeveloper will migrate new user identities you create for test purposes and update existing user passwords in the embedded LDAP server that Integrated WebLogic Server uses for its identity store. However, if you prefer to run the application without updating the existing security objects in Integrated WebLogic Server, you have this option.

14.7.1 How to Migrate the Policy Stores

When you are ready to deploy the application to standalone Oracle WebLogic Server, you can use the same configuration settings to control how JDeveloper handles migration of the security objects.

To configure deployment of security objects:

	
Choose Application > Secure > Configure Security Deployment to open the Application Properties dialog.

	
In the Application Properties dialog, under Security Deployment Options, select the security objects that you want to deploy with the application.

By default, each time your run the application, JDeveloper will overwrite the application policies and credentials at the domain level with those from the application. If you prefer not to overwrite either of these repositories, deselect Application Policies or Credentials. When deselected, JDeveloper will merge only new policies or credentials into the domain-level stores. For further details, see the sections below.

By default, each time you run the application, JDeveloper will migrate new user identities you create for test purposes and update existing user passwords in the embedded LDAP server that Integrated WebLogic Server uses for its identity store. You can disable migration of the application identity store by deselecting Users and Groups. For further details, see the sections below.

	
Click OK.

14.7.2 Migrating Application Policies

Application policies, specified in jazn-data.xml, can be migrated to a domain policy store when the application is deployed to a server in the Oracle WebLogic Server environment. If desired, the policies can also be removed from the domain policy store when the application is undeployed, or updated when the application is redeployed.

If Application Policies is selected in the Application Properties dialog, a jps.policystore.migration property is set to OVERWRITE in the packaged weblogic-application.xml when you deploy the application using JDeveloper. If Application Policies is unselected, the jps.policystore.migration setting will not be added to the packaged weblogic-application.xml, and will be removed if it is already present. This causes the default operation MERGE to be used by Oracle WebLogic Server. Merge will only migrate policies the first time the application is deployed if they do not already exist. If the policies for the application already exist, they will not be remigrated.

To find out more about automatic and manual migration of application policies, see the Oracle Fusion Middleware Security Guide.

14.7.3 Migrating Credentials

When you migrate your application policies, you might also want to migrate your credentials. Application credentials, specified in cwallet.sso, can be migrated to a domain credential store when the application is deployed or redeployed to a managed server in the WebLogic environment. Thus, credential migration includes the passwords for all connections created within JDeveloper, including those created for web services. (This is not related to user credentials specified in the identity store of the jazn-data.xml file. See Section 14.7.4, "Migrating Users and Groups" below for details about identity store migration.)

If Credentials is selected in the Application Properties dialog, a jps.policystore.migration property is set to OVERWRITE in the packaged weblogic-application.xml when you deploy the application in JDeveloper. If Credentials is unselected, the jps.policystore.migration setting will not be added to the packaged weblogic-application.xml, and will be removed if it is already present. This causes the default operation MERGE to be used by Oracle WebLogic Server. Merge will only migrate credentials the first time the application is deployed if they do not already exist. If the credentials for the application already exist, they will not be remigrated.

The credential migration is possible only when the server is running in development mode only. In production mode, credential overwrite is prohibited. Application credentials must be manually migrated when you deploy using tools outside of JDeveloper.

14.7.4 Migrating Users and Groups

Users and roles, specified in jazn-data.xml, can be migrated to a domain identity store when the application is deployed to a server in the WebLogic environment.

If Users and Groups is selected in the Application Properties dialog, JDeveloper will make calls when you deploy the application to create Oracle WebLogic Server users and groups corresponding to the application's jazn-data.xml users and role. If the user already exists in the domain store, only the description and password will be remigrated during deployment. If a group exists in the domain store with the same name as the roles in the jazn-data.xml file, it will be replaced entirely. If Users and Groups is unselected, JDeveloper will not try to migrate the identity store from the application jazn-data.xml.

	
Note:

Before migrating users and groups ensure that administrator roles (admin) and users (weblogic) are not used in the application jazn-data.xml file so that the domain identity store is not overwritten. When your application is ready for deployment to a production environment, you should remove the identities from the jazn-data.xml file or disable the migration of identities by deselecting Users and Groups from the Application Properties dialog.

14.8 Securing Development with JDBC

A JDBC database connection created in JDeveloper derives its encryption properties from the database client install on your machine. To create a secure connection using JDBC:

	
Configure encryption support using the OCI driver by setting parameters in the sqlnet.ora file on your client machine.

	
Use the thin JDBC driver to create a secure JDBC connection in JDeveloper. To do this, select Enter Custom JDBC URL in step 3 (Connection page) of the Create Database Connection Wizard, then enter your encryption parameters as part of a custom JDBC URL, as shown in Example 14-3.

Example 14-3 Encryption Parameters

jdbc:oracle:thin:@(description
=(address=(protocol=tcp)(host=myhost)(port=1521))(connect_data=
(sid=ORCL)(SQLNET.ENCRYPTION_CLIENT=REQUIRED)(SQLNET.ENCRYPTION_TYPES_
CLIENT=DES40)(SQLNET.CRYPTO_CHECKSUM_CLIENT=REQUESTED)
(SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENTMD5=MD5)))

Developing Applications Using XML

15 Developing Applications Using XML

This chapter describes how to create and update applications using the XML tools and editors provided by JDeveloper.

This chapter includes the following sections:

	
Section 15.1, "About Developing Applications Using XML"

	
Section 15.2, "Using the XML Editors."

	
Section 15.3, "Creating XML Files in Oracle JDeveloper"

	
Section 15.4, "Editing XML Files in Oracle JDeveloper"

	
Section 15.5, "Working with XML Schemas"

	
Section 15.6, "Developing Databound XML Pages with XSQL Servlet"

15.1 About Developing Applications Using XML

JDeveloper provides you with the tools you need to work with the XML files in your application. There is an XML source editor, an XML validator, and tools for working with XML schemas. You can also use JDeveloper to create and edit your XSQL files. It provides a robust XML editing environment that allows you to create and edit many different types of XML files in your application.

XML Schema development is easy with JDeveloper. You can create a schema document from scratch, generate schemas from XML documents or vice-versa. Once your schema is created, manage your elements using the XSD Visual Editor and the Component Palette. For more information, see Section 15.5, "Working with XML Schemas".

You can also create XSQL files from scratch or edit existing files. JDeveloper provides a complete development environment to simplify the task of developing databound XML pages with XSQL servlet. For more information, see Section 15.6, "Developing Databound XML Pages with XSQL Servlet".

15.2 Using the XML Editors

JDeveloper provides three different editors for working with your an XML files.

	
The XML editor is a specialized schema-driven editor for editing XML languages, including XSQL, XSL, XSD, XHTML, and WSDL files.

	
The Overview editor allows you to view and edit XML files. It visually displays aspects of your deployment-related XML files such as filters, security and references. For more information, see Chapter 11, "Developing Applications Using Web Page Tools."

	
The XSD Visual editor allows you to create or edit XML schemas. It visually displays the structure, content, and semantics of an XML document. For more information, see Section 15.5.3, "Understanding the XSD Component Display in the XSD Visual Editor."

15.2.1 Understanding XML Editing Features

Table 15-1 summarizes the editing features that are available when you're working with XML files.

Table 15-1 XML Editing Features

	Feature	Purpose
	
Code Insight

	
While you are typing, you can invoke Code Insight by pausing after typing the < (opening bracket) or by pressing Ctrl+Space if you are using the default keymapping. Code Insight opens a list with valid elements based on the grammar. After selecting an element, enter a space and then either pause or press Ctrl+Space to open a list of valid attributes from which you can select. After you enter the opening quote for the attribute value, either the required type of value or a list of available values is provided.

	
XML Validation

	
In an open XML Source Editor window, or in the Application Navigator, right-click an XML file and choose Validate XML. The Validate XML command will validate the XML against a schema registered with JDeveloper defined in the XML file. To register a schema with JDeveloper choose Tools > Preferences > XML Schemas. This command on the context menu is disabled whenever an XML file does not have an XML namespace defined.

	
Quick Form Check

	
Right-click on an XML file and choose Make to check for well-formedness of the file.

	
XML Schemas Preferences

	
Use the options on the XML Schemas page in the Preferences dialog to view all the currently registered XML schemas, to add new schemas, to support additional namespaces and elements, to remove user-defined schemas, and to unload schemas from memory.

To get to the Preferences dialog choose Tools > Preferences > XML Schemas.

	
XML Preferences

	
These features can be customized in the XML Preferences page. Choose Tools > Preferences > Code Editor > XML and JSP/HTML to display XML Preferences.

If Required Attribute Insertion is selected, the required attributes of an element will also be inserted for you.

If End Tag Completion is selected, the end tag will be automatically inserted when you close the start tag, for example if you have <foo and you type the >,</foo> is added automatically.

	
Component Palette

	
You can choose View > Component Palette to open the palette and select one of the available pages from the dropdown list. For example, while editing XSD files, you can select elements from the XML Schema pages on the palette.

	
Property Inspector

	
The Property Inspector displays attributes of elements in the file. You can edit the values of attributes in the Property Inspector to update your file.

	
Structure Window

	
A file's elements are displayed hierarchically in the Structure window, which also displays any XML syntax errors found as you type and edit. You can double-click on an element or error to edit it in the XML editor.

	
Validate XML

	
In an open XML editor window, or in the Application Navigator, right-click an XML file and choose Validate XML. The Validate XML command will validate the XML against the schema defined in the XML file. It validates the XML constraints and definitions but not XSDs. This context-menu command is disabled whenever an XML file does not have an XML namespace defined.

	
F2 Key

	
After creating an XML schema, select an element in the Structure window and press F2. The element now has focus in the XML design editor. You are automatically able to input new text for the element into the XML design editor.

	
Expand/Collapse Attributes

	
You can expand or collapse attributes that display under the complexType element. This is convenient because the list of attributes that display under the element can be large.

15.2.2 Understanding the XML Editor Toolbar

Table 15-2 contains the icons that display on the XML Editor toolbar.

Table 15-2 XML Editor Toolbar Icons

	Icon	Name	Description
	
[image: Search (Ctrl +F)]

	
Search (Crtl + F)

	
Enter search text in the XML Editor. Click the down arrow to view and set additional parameters for the search, including Match Case to perform a case-sensitive search, Whole Word to locate complete word matches only, and Highlight Occurrences to use shading to show the location of the match.

	
[image: Find Next (F3)]

	
Find Next (F3)

	
Click to locate the first occurrence of the text that meets the specified parameters in the file.

	
[image: Find Previous (Shift + F3)]

	
Find Previous (Shift + F3)

	
Click to locate the previous occurrence of the text that meets the specified parameters in the file.

15.3 Creating XML Files in Oracle JDeveloper

The New Gallery offers several different XML file type options, as shown in Table 15-3. To create a new XML file choose File menu > New > General > XML.

Table 15-3 XML File Types

	File Type	Description
	
XML Document

	
Create a new XML file that includes only the <?xml version="1.0"?> line at the top.

	
XML Document from XML Schema

	
Generates an XML document from an existing XML schema.

	
XML Localization File (XLIFF)

	
Creates an XML-based localization file with an .xlf extension. For more information, see Section 15.3.1, "Localizing with XML".

	
XML Document from XML Schema

	
Generates as XML Document from an XML Schema.

	
XQuery File

	
Creates an XQuery File with an .xq extension. For more information, see Section 15.4.2, "Using XQuery with XML".

	
XSL Map

	
Creates an XSL Map File with an .xsl extension.

	
XSL Map from XSL Stylesheet

	
Creates an XSL Map File with an .xsl extension from an XSL Stylesheet.

	
XSL Stylesheet

	
Creates an XSL Stylesheet with an .xsl extension. For more information, see Section 15.6.12, "How to Create an XSL Style Sheet for XSQL Files".

	
XSQL File

	
Creates an XSQL file with an .xsql extension. For more information, see Section 15.6.2, "How to Create an XSQL File".

15.3.1 Localizing with XML

JDeveloper has tools to support full localization for your application based on XML-based XLIFF technology. XLIFF supports a full localization process by providing tags and attributes that hold the data your translators and vendors will use when you internationalize your application.

15.3.1.1 How to Create a New XLIFF file

You create a new XMLFF file in the JDeveloper New Gallery under the XML node.

To create a new XLIFF file:

Choose File menu >New > General > XML > XML Localization File.

For more information on XLIFF, see the OASIS open standard website at, http://www.oasis-open.org/home/index.php

15.3.1.2 What You May Need to Know About XLIFF Files

The main elements in an XLIFF file are the trans-unit elements. These elements store localizable text and its translations. These elements represent segments (usually sentences in the source file that can be translated reasonably independently). The trans-unit elements contain source, target, alt-trans, and a handful of other elements.

There are also elements for review comments, the translation status of individual strings, and metrics such as word counts of the source sentences. The XLIFF file consists of one or more file elements. Each of these contains a header and a body section. The header contains project data, such as contact information, project phases, pointers to reference material, and information on the skeleton file.

JDeveloper uses Resource Bundles to hold all of the localization information, including the XLIFF files. When you create content in a JSF page, a resource bundle is automatically created for you in that project.

15.3.2 How to Import and Register XML Schemas

Use the options on the XML Schemas page in the Preferences dialog to view all the currently registered XML schemas, add new schemas to support additional namespaces and elements, remove user-defined schemas, and unload schemas from memory.

To import and register an XML schema:

	
From the main menu, choose Tools > Preferences.

	
Select the XML Schemas node.

	
Click Add to open the Add Schema dialog where you can specify a new schema to add to the list of user schemas.

	
Enter the name and location of the XML Schema file you are adding in the Add a Schema from the file system or a URL field.

	
Enter the file extension to register the schema for a specific file type in the Extension field. JDeveloper uses the extension to efficiently load the schema into memory and to display automatically created Component Palette pages based on the items in the schema.

	
Click OK.

JDeveloper automatically validates the schema when you add it.

	
Confirm that the new schema has been added in the User Schemas for XML Editing list and click OK.

	
Tips:

You can only remove user-defined schemas with the Remove button.

If a schema changes, you must use the Clear Cache button to unload all currently loaded schemas from memory. JDeveloper will then reload any needed schemas including the modified schema.

15.3.3 How to Add an XML Element to the Palette

You can add pages to the Component Palette in JDeveloper to include the elements from a registered schema or you can add elements to an existing page. Once you add the elements to the Palette, you can insert the elements into the XML file while you are editing, by selecting them from the Palette.

To add XML elements to the Component Palette:

	
From the main menu, choose Tools > Configure Palette to open the Configure Component Palette dialog.

Skip to step 4 if you do not want to add a new page.

	
Click Add under the Pages list to open the New Palette Page dialog.

	
In the New Palette Page dialog, enter the name of the new page and select the appropriate type from the dropdown list, then click OK.

Your new page name is added to the bottom of the Pages list in the Configure Component Palette dialog.

	
Select the new page name in the Pages list and click Add under the Components list to open the XML Elements dialog.

The XML Elements dialog displays the Registered Schemas.

	
Expand the appropriate schema node to display the elements you can add to the Palette.

	
To add an individual element, select it in the tree. To add multiple elements, use Ctrl-click or Shift-click to select them. Then click OK.

You can also click Use Default Icon or Select Icon to select the icon that will display for an individual element on the Palette, before you click OK.

	
After adding XML elements, click OK to close the Configure Component Palette dialog.

The name of the page you added displays in the dropdown list in the Palette. All the elements you added are displayed with angle brackets (< >) as the icon, if you accepted the default icon. If you do not see any element names on the Palette, right-click in the Palette and choose List View.

15.3.4 How to Generate Java Classes from XML Schemas with JAXB

In JDeveloper you can use JAXB (Java Architecture for XML Binding) to generate Java classes from XML schemas. JAXB is an easy way to incorporate XML data and processing functions in Java applications without having to know XML. You can generate a JAXB 1.0 or 2.0 content model, including the necessary annotations, from an XML schema.

When the JAXB binding compiler is run against an XML schema, JAXB packages, classes, and interfaces are generated. You can then use the generated JAXB packages and the JAXB utility packages in a binding framework to unmarshal, marshal, and validate XML content.

To generate Java classes from XML schemas with JAXB:

	
From the main menu choose File > New > Business Tier > TopLink/JPA and select either JAXB 1.0 or 2.0 Content Model from XML Schema to open the compilation dialog.

	
Select the schema file and optionally the JAXB customization file to use and the package to which the generated classes will be added.

The JAXB package and generated classes are added to the Application Resources folder.

15.4 Editing XML Files in Oracle JDeveloper

The XML Source Editor in JDeveloper is a specialized schema-driven editor for editing XML languages including XSD, WSDL, XSQL, XHTML, and XSL files.

To edit an XML file in the XML Source Editor:

	
In the Navigator, right-click a file and choose Open.

	
Click the Source tab if not selected by default for that file.

	
While you are typing, you can invoke Code Insight by pausing after typing the < (opening bracket) or by pressing Ctrl+Space (if you are using the default keymapping). Code Insight opens a list with valid elements, based on the schema.

	
After selecting an element, enter a space and then either pause or press Ctrl+Space to open a list of valid attributes from which you can select. After you enter the opening quote for the attribute value, Tip Insight displays the type of value that is required.

	
Tip:

To edit an XML document with the Component Palette, choose View > Component Palette to open the Palette and select one of the available pages from the dropdown list. Then choose elements from the page.

15.4.1 How to Set Editing Options for the XML Editor

When editing XML files in the XML Editor you can set two editing options.

To customize editing options for the XML Editor:

	
Choose Tools > Preferences.

	
Expand the Code Editor node.

	
Select the XML node.

	
Select the XML node. On the XML Preferences page, select Required Attribute Insertion or End Tag Completion to enable the desired options.

	
Click OK.

15.4.2 Using XQuery with XML

You can create and edit your XML-based XQuery files in JDeveloper. XQuery provides the means to extract and manipulate data from XML documents or any data source that can be viewed as XML, such as relational databases or office documents.

15.4.2.1 How to Create a New XQuery File

You create a new XQuery file in the JDeveloper New Gallery under the XML node.

To create a new XQuery file:

Choose File menu, > New, > General > XML > XQuery File.

For more information on XQuery, see the W3C website at, http://www.w3.org/TR/xquery/

15.4.2.2 What You May Need to Know About XPath Expression Syntax

XQuery uses XPath expression syntax to address specific parts of an XML document. It supplements this with a SQL-like "FLWOR expression" for performing joins. A FLWOR expression is constructed from the five clauses after which it is named: FOR, LET, WHERE, ORDER BY, RETURN.

The language is based on a tree-structured model of the information content of an XML document, containing seven kinds of node: document nodes, elements, attributes, text nodes, comments, processing instructions, and namespaces.

15.5 Working with XML Schemas

JDeveloper provides an XSD Visual Editor that gives a visual representation of the structure, content, and semantics of an XML document.

15.5.1 Working with Attributes in the XSD Visual Editor

You can create an XML schema's attributes and set properties and facets from using the XSD Visual Editor. Figure 15-1 contains an example XML schema in the Design tab of the XSD Visual Editor.

Figure 15-1 Schema in XSD Visual Editor

[image: Schema in XSD Visual Editor]

You can edit attributes in attribute2 in the attribute editor, which is displayed in Figure 15-1 as the union element. In this editor, you can:

	
Display all available attributes under an element. To hide or display details, click the plus and minus signs next to the attribute.

	
Display all facets and type details of an attribute display in the attribute node

	
Display the default "Insert Into" menu with the valid schema components (for example, union) when you right-click on an attribute node.

	
Expand an attribute node within to display a subtree containing child nodes like list or union.

15.5.2 What Happens When You Create an XML Schema in the XSD Visual Editor

As you create an XML Schema in the XSD visual editor, JDeveloper automatically updates the XML source in the design tab, as well as updating the contents of the Structure window. Example 15-1 contains the source for the example.xsd file shown in Figure 15-1.

Example 15-1 XML Source

<?xml version="1.0" encoding="windows-1252" ?>
 xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.example.org"
 targetNamespace="http://www.example.org" <elementFormDefault="qualified">
 <xsd:complexType name="UnionTest">
 <xsd:sequence>
 <xsd:element name="element1">
 <xsd:complexType>
 <xsd:attribute name="attribute1">
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="element2">
 <xsd:complexType>
 <xsd:attribute name="attribute2">
 <xsd:simpleType>
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:union/>
 </xsd:simpleType>
 <xsd:pattern value="abcd"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>
</xsd:schema>

15.5.3 Understanding the XSD Component Display in the XSD Visual Editor

The JDeveloper XSD Visual Editor provides a visual representation of the structure, content, and semantics of an XML document. Use the XSD Visual Editor to author a new, or to edit an existing, XML Schema.

15.5.3.1 XSD Component Selection

The selection of any component or attribute in the editor is indicated by highlighting the selected item in blue. In Figure 15-2, the selected simpleType component defines a simple type and specifies the constraints and information about the values of attributes or text-only components, in this case restricting the string type.

Figure 15-2 simpleType Component

[image: simpleType component]

15.5.3.2 XML Schema Component

The XML Schema component is displayed at the top of an XSD file, as shown in Figure 15-3. Right-click the element and select Properties to display a dialog for configuring the schema namespaces.

Figure 15-3 XML Schema Component

[image: XML Schema Component]

15.5.3.3 Choice Component

The choice component allows only one of the components contained in the <choice> declaration to be present within the containing component, as shown in Figure 15-4. Set attribute maxOccurs to >1 to have more than one item from the choice in the parent.

Figure 15-4 Choice Component

[image: Choice Component]

15.5.3.4 All Component

The all component shown in Figure 15-5 specifies that the child components can appear in any order and that each child component can occur zero or one time.

Figure 15-5 All Component

[image: All Component]

15.5.3.5 Sequence Component

The sequence component shown in Figure 15-6 specifies that the child components must appear in a sequence. Each child component can occur from 0 to any number of times.

Figure 15-6 Sequence Component

[image: Sequence Component]

15.5.3.6 Cardinality and Ordinality

In the example of cardinality shown in Figure 15-7, components are displayed with the following attributes:

	
Required components (minOccurs=">0") are displayed with a solid line.

	
Optional components (minOccurs="0") are displayed with a dotted line.

	
Unbounded components(maxOccurs="unbounded") display an infinity symbol in the component stack number. Any component that can appear more than once is displayed as a "stack" of components. In the numbers to the left of the component the number before the colon indicates the minimum number of times the component can occur (minOccurs) and the number after the colon indicates the maximum number of times the component can occur (maxOccurs). In the illustration the maximum is unbounded so an infinity symbol is displayed.

	
Range of components is displayed in the component stack number. In the illustration the component must appear at least 2 times in the instance document, but no more than 7.

Figure 15-7 Cardinality Component

[image: Cardinality Component]

15.5.3.7 ComplexType Component

In Figure 15-8, the complexType component extends a base type, and inherits an attribute and children from that base type. The yellow background represents a reference to the baseType defined elsewhere in the schema and illustrated below the complexType component. The component attributes are displayed as:

	
Inherited, marked with a square.

	
Optional, marked with a square.

	
Required, marked with an orange asterisk.

	
Prohibited, marked with an orange X.

Figure 15-8 complexType Component

[image: complexType Component]

15.5.3.8 Attribute Group Component

The attribute group component groups a set of attribute declarations so that they can be incorporated as a group into complex type definition.

Figure 15-9 displays three attribute groups.

Figure 15-9 Attribute Group Component

[image: Attribute Group Component]

If you add an element to a schema that has multiple attributeGroups, you can add choose one or more attributeGroups for the element by clicking on the element's attribute and choosing from a drop-down list.

15.5.3.9 Union Component

The union component defines a simple type as a collection (union) of values from specified simple data types. In Figure 15-10, the union represents all strings that begin with the letter "i".

Figure 15-10 Union Component

[image: Union Component]

15.5.3.10 List Component

The list component defines a simple type component as a space separated list of values of a specified data type. In Figure 15-11, the component represents a series of short value objects.

Figure 15-11 List Component

[image: List Component]

15.5.4 How to Generate an XML Schema from XML Documents

Use the XML wizard in the New Gallery to help you quickly generate industry standard W3C XML schema (.xsd) from your XML (.xml) documents. Conversely, you can also generate XML documents from your XML schema.

To generate an XML schema from an XML document:

	
Choose File menu > New > General > XML > XML Schema from XML Document.

	
Enter the information as directed.

To generate an XML document from an XML schema

	
Choose File menu > New > General > XML > XML Documents from XML Schema.

	
Enter the information as directed.

15.5.5 How to Generate an XSD File from a DTD File

You can generate an XML schema document (XSD) file from a document type definition (DTDs) file.

To generate an XSD file from a DTD:

	
On the main menu, click Tools.

	
In the Tools menu, click Convert DTD to XSD.

15.5.6 How to Display an XSD File for Editing

Open a schema (.xsd) file for editing in the XSD Visual Editor or XML Source Editor. By default new schema files are opened with the XSD Visual Editor in focus. Double-clicking a file in the Application Navigator opens or brings the default editor on the Design tab to the foreground. Clicking the Source tab opens the file in the XML Source Editor. Changes made in one editor are automatically updated in the other editor.

A schema file (.xsd) can be edited simultaneously with the visual and source editors by opening the page in one of the editors and using the splitter to open a second page view in the alternate editor.

To display a schema file in both editors:

	
To split the file horizontally, grab the splitter just above the vertical scroll bar (on the upper right-hand side of the window) and drag it downward.

	
To split the file vertically, grab the splitter just to the right of the horizontal scroll bar (on the lower right-hand side of the window) and drag it left.

15.5.7 How to Create an Image of the XSD Visual Editor Design Tab

You can create the design tab of the XSD Visual Editor as an image. You can then share the image as a file or print out or image with others.

Supported image formats are .svg, .svgz, .jpg, and .png.

	
In the Application Navigator, double click the .xsd file you want to display in the XSD Visual Editor.

	
Click the Design tab in the XSD Visual Editor.

A design view of the .xsd file displays, similar to Figure 15-12.

Figure 15-12 Design Tab in XSD Visual Editor

[image: Design Tab in XSD Visual Editor]

	
Right-click anywhere on the Design tab and choose Publish Diagram.

	
Enter a name, the path where you want to save the diagram, and the image type you want to use.

	
Notes:

If the diagram you are attempting to save is too large, a message displays indicating that the image should be saved in .svg format.

If you right-click on a node in the XSD Visual Editor, only the current node and its child nodes are saved as an image.

15.5.8 How to Navigate with Grab Scroll in the XSD Visual Editor

In the XSD Visual Editor, you can quickly navigate an XML Schema that displays with scroll bars using a grab scroll operation. Use the grab scroll to invoke a small hand cursor to grab an XML Schema page and drag it inside the editor window.

To navigate using grab scroll in an XML Schema:

	
In the XSD Visual Editor press and hold down the spacebar.

The pointer turns into an open hand cursor.

	
Press and hold down the left mouse button.

The hand closes and grabs the XML Schema page.

	
Use your mouse to move the XML Schema page inside the editor window.

	
Release the XML Schema page by releasing the left mouse button.

	
Close grab scroll by releasing the spacebar.

15.5.9 How to Expand and Collapse the XSD Component Display

While working in the XSD Visual Editor or Design structure window, you can expand or collapse XSD components to display children components or collapse container components to create a higher level view of the schema.

To expand one level beyond the parent component:

Click the + (plus) sign of the parent component.

To collapse all levels below the parent component:

Click the - (minus) sign of the parent component.

To expand all parent components in the schema:

Press Ctrl + *, using the * on the numeric keypad of the keyboard.

	
Note:

This view can be big.

15.5.10 How to Zoom In and Out in the XSD Visual Editor

Zooming enables you to magnify (zoom in) or shrink (zoom out) on the display of an XML Schema in the XSD Visual Editor.

To zoom in:

	
Place your cursor in the area of the XML Schema you wish to magnify.

	
Press Ctrl+Plus.

	
Note:

Use the Plus on the numeric keypad of the keyboard.

To zoom out:

	
Place your cursor on the area of the XML Schema you wish to shrink.

	
Press Ctrl+Minus.

	
Note:

Use the Minus on the numeric keypad of the keyboard.

15.5.11 How to Select XSD Components

One of the most common actions you perform in the XSD Visual Editor or Structure window (Design or Source view) is to select components in order to do something with them. There are several reasons for selecting components:

	
Edit the properties of the component(s)

	
Move the component(s)

	
Delete the component(s)

	
Select a target position in which to insert another component

You can select a single component without children, a component along with its children, and multiple components.

To select a component:

	
Click the component.

If the selected component contains children, selecting the component also selects all its children. If you copy, move, or delete the parent, all its children are also copied, moved, or deleted.

	
Tip:

Double-clicking an XSD component in the XSD Visual Editor displays a property editor for the component.

To select multiple components:

	
Click the first component.

	
Press and hold down the Ctrl key.

	
Click any additional components. If you want to deselect one without losing the other selections, continue to hold down the Ctrl key and click the component again.

Selecting multiple, non-adjacent components for any reason other than deleting them can lead to unexpected results. For example, if the components exist at different levels in the schema hierarchy, they can lose their relative hierarchical positions if you move or copy them to another position in the schema page.

In the XSD Visual Editor it is possible to select a container component (and thereby select its children) and also explicitly select one or more of the children. That means that any explicitly selected child is selected twice. If you do this and then copy and past the selection, the double-selected child will be pasted twice, once as a child to the copied parent and once as a peer to the copied parent.

15.5.11.1 What Happens When You Select a Component in the XSD Visual Editor

When a component is selected in the XSD Visual Editor, the component displays in blue. When a container component is selected and any of its children are also explicitly selected, all are displayed in blue.

When selected in the Structure window (Design or Source view), the component is highlighted. However, when you select any components with children, the children are also selected with it, even if their names are not selected. If you delete or move the parent, all the children are deleted or moved with it.

Whenever you select an component, you are also selecting a position in which another component can be inserted. For more information, see Section 15.5.12, "How to Select Target Positions for XSD Components".

	
Tips:

When you pass the mouse pointer over a component, a tooltip with the component's name is displayed. That makes it easier to know where to click to select a component.

When you select a component in the XSD Visual Editor, it is also selected in the Design and Source view of Structure window, and vice versa. That means that you can look at the selection in both tools to clarify what is selected and where the insertion position is.

The JDeveloper status bar explicitly states the insertion point for a selected component.

15.5.12 How to Select Target Positions for XSD Components

While inserting, copying, or moving XSD components in the XSD Visual Editor or Structure window (Design or Source view), you need to select a target position in relation to the node on which you are performing the activity. The possible target positions on a node are before, after, and inside.

To select a target position:

Choose from one of the following options:

	
Select the target position by clicking the node on which you are performing the action.

	
When dropping a component at a target position, do one of the following:

	
To insert a component before a target node, drag it towards the top of the node until you see a solid horizontal line (visual editor) or horizontal line with an embedded up arrow (structure), then release the mouse button.

[image: Schema Insert Up]

	
To insert a component after a target node, drag it towards the bottom of the node until you see a solid horizontal line (visual editor) or a horizontal line with an embedded down arrow (structure), then release the mouse button.

[image: Schema Insert Down]

	
To insert a component inside a target node, drag it over the node until it is surrounded by a box outline, then release the mouse button. This target position is available only on nodes that can contain child nodes.

	
When using the context menu to select a target position, right-click the target node, choose an option, and then select a component. The options are:

	
Insert before <component> - inserts a component before the selected node.

	
Insert inside <component> - inserts a component inside (under) the selected node.

	
Insert after <component> - inserts a component after the selected node.

Not all options are always available. Choosing an option displays a submenu from which you can choose a component list and then select the component you desire. Depending on the node you select, the submenu may also contain one or more components that are eligible for insertion inside the selected node.

	
Note:

When you select a target position in the Design or Source views in the Structure window, the selection is also reflected in the XSD Visual Editor, and vice versa. This enables you to verify the insertion position visually as well as hierarchically. The selection is also explicitly stated in the status bar at the bottom of the JDeveloper window.

15.5.13 How to Insert XSD Components

In the XSD Visual Editor and Structure window (Design and Source view), you can insert XSD components by dragging from the Component Palette or by using a context menu. You can also insert XSD components by copying or by cutting and pasting. If you are cutting and pasting, you can insert multiple components at a time. For more information, see Section 15.5.16, "How to Cut, Copy, and Paste XSD Components".

	
Note:

Pasting multiple components that were copied from different places in the XML schema hierarchy can lead to unexpected results.

To insert XSD components using the Component Palette:

	
In the XSD Visual Editor or Structure window, locate the desired position where you wish to insert a component. You may have to expand nodes in the Structure window to uncover the node you want.

	
In the Component Palette, select an XSD component list from the dropdown list box, and then drag the desired component from the list and drop into the desired target position in the XSD Visual Editor or Structure window.

You can also select the target position in the visual editor or Structure window and then click the desired component in the Component Palette.

	
Tip:

A brief description of a component appears when the cursor is placed over a component name in a list. For detailed help, right-click a components in the list and choose Help.

To insert XSD components using the context menu:

	
In the XSD Visual Editor or Structure window, right-click the desired node to display a context menu. You may have to expand nodes to uncover the node you want.

	
Choose an option in the context menu, and then select a component. The options are:

	
Insert before <component> - inserts a component before the selected node.

	
Insert inside <component> - inserts a component inside (under) the selected node.

	
Insert after <component> - inserts a component after the selected node.

Not all options in the context menu are always available. Choosing an option displays a submenu from which you can choose a component list and then select the component you desire. Depending on the node you select, the submenu may also contain one or more components that are eligible for insertion inside the selected node.

15.5.14 How to Set and Modify XSD Component Properties

The Property Inspector displays the properties of XSD components selected in the XSD Visual Editor or the Structure (Design or Source view) window. Use the Property Inspector to set or modify the property values for any component in your XML Schema. Set property values are marked with a green square.

To undo changes, from the main menu select Edit, > Undo action. Use the Set to Default button to reset a property that has been set to its default value (if any).

To set a component's properties:

	
With an XML Schema open, select a component in the visual editor or Structure window.

The Property Inspector displays the property values for the selected component. If the Property Inspector is not in view choose View > Property Inspector or use the shortcut Ctrl+Shift+I.

	
Scroll until the property you want is visible, then select it with the mouse or the arrow keys.

A brief description of the property is displayed at the bottom of the Property Inspector.

	
Tip:

To quickly locate a property in a long list, click the search button in the Property Inspector toolbar. In the Find text field, type the name of the property, then press Enter.

	
Enter the property value in the right column in one of the following ways:

	
In a text field, type the string value for that property, for example a text value or a number value, then press Enter.

	
In a value field with a down arrow, click the down arrow and choose a value from the list, then press Enter.

	
In a value field with an ellipsis (...), click the ellipsis to display an editor for that property. Set the values in the property editor, then press OK.

	
Tips:

Double-click an XSD component or right-click the component and choose Properties to display a property editor for the component.

In the property editor select an attribute and view a brief description in the status area below the editor.

Click Help in the property editor for a link to a component reference topic.

15.5.15 How to Set Properties for Multiple Components

If you have multiple components selected, by default the Property Inspector displays all the properties of the selected components. Click the Union button in the Property Inspector toolbar to toggle between displaying all the properties of the selected components (union) and displaying only the properties that the selected components have in common (intersection). Values represented in italic font indicate common properties that have differing values.

To set properties for multiple components:

	
Hold down the Ctrl key and select each of the components.

	
To change the list of properties displayed by the Property Inspector, click the Union button in the Property Inspector toolbar.

	
Selected state displays all the properties of the selected components.

	
Unselected state displays only the properties the selected components have in common.

	
Select and edit the desired property in the Property Inspector.

If the value is shown in italic font, the selected components have differing values. Editing the value of a shared property will cause all selected components to have the same value.

15.5.16 How to Cut, Copy, and Paste XSD Components

You can cut, copy, and paste XSD components in the XSD Visual Editor or Structure (Design or Source) window. You can perform these operations between files of the same project or different projects.

15.5.16.1 Cutting Components

When you cut a component, it is removed from the editor and placed into a local clipboard only accessible by JDeveloper, not to the system clipboard. If you quit JDeveloper without pasting the component, the cut version of the component will be lost.

Deleting a component removes it without changing the contents. If you get in the habit of using the cut command to remove items permanently, there is a chance that one day you will inadvertently replace something in the clipboard that you would rather have kept. For more information, see Section 15.5.18, "How to Delete XSD Components".

To cut one or more components:

	
Select the XSD component you wish to cut in the visual editor or the Structure window.

	
Do one of the following:

	
Press Ctrl+X.

	
Right-click and select Cut.

	
Choose Edit > Cut from the main menu.

15.5.16.2 Copying Components

You can copy XSD components in the visual editor or the Structure window.

To copy one or more components:

	
Select the XSD component you wish to copy in the visual editor or the Structure window.

	
Do one of the following:

	
Press Ctrl+C.

	
Right-click and select Copy.

	
Choose Edit > Copy from the main menu.

	
Hold down Ctrl and drag a copy of the selected component to a target position.

15.5.16.3 Pasting Elements

The elements you cut or copy from the XSD Visual Editor or Structure window can be pasted into any other XSD file in JDeveloper. For more information, see Section 15.5.12, "How to Select Target Positions for XSD Components".

To paste an element:

	
Open the file in which you want to paste a XSD element in the visual editor or Structure window.

	
Select the insertion point where you want to paste the element.

	
Do one of the following:

	
Press Ctrl+V.

	
Right-click and select Paste.

	
Choose Edit > Paste.

15.5.17 How to Move XSD Components

You can move an XSD component to a new insertion point in the XSD Visual Editor or Structure (Design or Source view) window by dragging or by cutting and pasting. You can work in the visual editor or the Structure window to move components or work in both at once, moving components between the editors. Move an XSD component to a valid insertion point in another file in the same project or a different project by cutting and pasting. For more information, see Section 15.5.11, "How to Select XSD Components".

You can move one or multiple components at a time. However, you should be aware that selecting and moving multiple, non-adjacent components or multiple components from different levels in the schema hierarchy can lead to unexpected results.

To move components by dragging

In the visual editor or Structure window do either of the following:

	
Drag the component(s) from the original position to a target position in the visual editor or Structure window. For more information, see Section 15.5.12, "How to Select Target Positions for XSD Components".

	
Right-click drag the component(s) from the original position to an insertion point in the visual editor or Structure window, and then choose Move Nodes Here from the context menu.

To move components by cutting and pasting:

In the visual editor or Structure window do either of the following:

	
Cut the component(s). Then, paste into some other position in the visual editor or Schema structure window.

	
Cut the component(s). Then, paste into another file in the same project or a different project.

	
Note:

The selected components and all of its child components are moved to the new target position.

15.5.18 How to Delete XSD Components

You can remove components from your XML Schema in the XSD Visual Editor or Structure (Design or Source view) window. When you delete a component, JDeveloper deletes the associated lines from the source code.

To delete one or more XSD components:

	
Select one or more XSD components you wish to delete in the visual editor or Structure window. For more information, see Section 15.5.11, "How to Select XSD Components".

	
Do one of the following:

	
Press the Delete key.

	
Press Ctrl+X.

	
Right-click and select Delete.

	
Choose Edit > Delete from the main menu.

15.6 Developing Databound XML Pages with XSQL Servlet

JDeveloper provides a complete development environment to simplify the task of developing databound XML pages with XSQL servlet.

15.6.1 Supporting XSQL Servlet Clients

JDeveloper provides support for XSQL Servlet with these features:

	
Provides XSQL tags on the Component Palette

	
Lets you automatically create XSQL pages

	
Includes XSQL libraries

	
Provides XSQLConfig.xml on the classpath; you can modify it as needed

	
Provides business component action handler tags so XSQL pages can use a business logic tier to access data

15.6.1.1 What is XSQL Servlet?

XSQL servlet lets you create and use XSQL pages as clients. These pages are written in XML with embedded SQL queries and other data manipulation language (DML) statements. In addition, you can use action handlers to provide more functionality than SQL, such as writing the XML data to a file.

An action handler is an application that allows you to call a Java class from within an XSQL page. There are predefined action handlers that can talk directly to the database or to Business Components for Java (BC4J), and you can create your own.

An XSQL Servlet application has these logical layers:

	
Client - XSQL pages take care of querying and getting data by using XML with embedded SQL. To present the data, you need to convert the XML data to another form, such as HTML, wireless markup language (WML), and so on. You can write XSL style sheets to convert XML to any of these languages.

	
XSQL Servlet in a Web Server - The servlet uses the XML SQL Utility to talk to a database.

	
Business Logic Tier - You can optionally use a Business Components for Java tier to access and modify data.

	
Database - You can use any database supporting JDBC 2.0 drivers.

15.6.1.2 How Can You Use XSQL Servlet?

XSQL servlets offer a simple and productive way to get XML in and out of the database. Using simple scripts developers can:

	
Generate simple or complex XML documents

	
Apply XSL style sheets to generate any text format

	
Parse XML documents and store the data in the database

	
Create complete dynamic web applications without programming a single line of code

For example, a file such as emp.xsql in Example 15-2:

Example 15-2 emp.sql File

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="emp.xsl"?>
<FAQ xmlns:xsql="urn:oracle-xsql" connection = "scottDS">
 <xsql:query doc-element="EMPLOYEES" row-element="EMP">
 select e.ename, e.sal, d.dname as department
 from dept d, emp e
 where d.deptno = e.deptno
 </xsql:query>
</FAQ>

Generates the XML in Example 15-3:

Example 15-3 XML File

<EMPLOYEES>
 <EMP>
 <ENAME>Scott</ENAME>
 <SAL>1000</SAL>
 <DEPARTMENT>Boston</DEPARTMENT>
 </EMP>
 <EMP>
...
 </EMP>
</EMPLOYEES>

With JDeveloper, you can easily develop and execute XSQL files. The built-in web server and your default web browser will be used to display the resulting pages.

For more information on XSQL Servlet, see your Oracle database documentation.

15.6.2 How to Create an XSQL File

With JDeveloper, you can easily develop and execute XSQL files. The built-in web server and your default web browser will be used to display the resulting pages.

To create an XSQL file:

	
In the Navigator, select the project in which you want to create the new XSQL page.

	
Choose File > New to open the New Gallery.

	
In the Categories tree, expand General and select XML.

	
In the Items list, double-click XSQL Page.

This will add a skeleton XSQL file named untitled#.xsql to your project, which opens in the XML Editor. You can type code in this editor, add tags by selecting them from the Component Palette, and modify the file with your own style sheet information.

15.6.3 How to Edit XML Files with XSQL Tags

JDeveloper's XML Editor supports syntax highlighting, Structure window view, and the Property Inspector. You can also select tags from the Component Palette to insert in your pages while you are editing.

To use the XML Editor to edit an XSQL file:

	
In the Navigator, right-click an XSQL file and choose XML Editor.

	
Choose View > Componenet Palette to open the Component Palette and select the XSQL tag page from the dropdown list in the Palette. You can then select XSQL tags from the Palette.

	
While you are typing, you can invoke Code Insight by pausing after typing the < (opening bracket) or by pressing Ctrl+Space (if you are using the default keymapping). Code Insight opens a list with valid tags.

	
After selecting a tag, enter a space and then either pause or press Ctrl+Space to open a list of valid attributes from which you can select. After you enter the opening quote for the attribute value, Tip Insight displays the type of value that is required.

	
While you are editing, or after you finish, you can right-click in the file and choose Auto Indent XML to properly indent the file.

	
You can also right-click in any tag and choose Locate in Structure to highlight that tag in the Structure window.

15.6.4 How to Add XSQL Tags

All XSQL tags can be inserted by selecting them from the Component Palette, as described below. You can also insert XSQL tags by typing them in the file. Code Insight is available for XSQL tags.

To add XSQL tags to a file:

	
In the Navigator, select the XSQL file to which you want to add tags, right-click and choose XML Editor to open the source file.

	
Place your cursor in the blank line after the <page xmlns:xsql="urn:oracle-xsql"> tag.

	
Choose View > Component Palette to open the Palette if it is not displayed.

	
Select XSQL Tags from the dropdown list in the Palette if it is not displayed.

	
Select the appropriate tag from the Palette.

If the tag has no attributes, it appears in the XSQL page immediately. If the tag has one or more attributes, a dialog displays.

	
In the dialog that displays, enter the required and any optional attributes. Press F1 or click Help in the dialog to get help for an XSQL tag and its attributes.

	
After entering attributes, click Next to display the next dialog or click Finish if it is enabled.

The button you see and the number of dialogs depend on which tag you select. Notice that the tag and attributes you entered appear in the XSQL page.

	
Add another line in the source file and select another tag from the Component Palette if necessary.

	
When you have finished adding tags, choose File > Save All to save all your work thus far.

After adding tags, you can view the raw XML data or format the XML data with a style sheet.

15.6.5 How to Check the Syntax in XSQL Files

You can check your XSQL file to determine if it is a well-formed XML document and if not, to find any errors.

To check the syntax in an XSQL file:

In the Navigator, or in an open XML Editor window, right-click an XSQL file and choose Check XML Syntax.

The results display in the Log window.

	
Note:

The Validate XML command on this context menu is disabled whenever an XML file does not have an XML namespace defined.

15.6.6 How to Create XSQL Servlet Clients that Access the Database

You can create XML based clients for XSQL servlets using XSQL tags. XSQL servlets allow you to easily get data in and out of the database in XML format. The following procedure shows how to use the XSQL Query tag to display data

To create an XSQL servlet client that directly accesses the database:

	
Create a new project in the workspace that contains the Business Components project by selecting the workspace in the Navigator and choosing File > New to open the New Gallery.

	
In the Categories tree, expand General and select Projects.

	
In the Items list, double-click Empty Project to open the New Project dialog.

	
Complete the New Project dialog and click OK to add the empty project to your workspace.

	
Select the new project in the Navigator and choose File > New.

	
In the Categories list, select General and select XML.

	
In the Items list, double-click XSQL Page.

This adds a skeleton XSQL file named untitled#.xsql to your project.

	
In the Navigator, right-click the new XSQL file, and choose XML Editor to open the source file.

	
Place your cursor in the blank line after the <page xmlns:xsql="urn:oracle-xsql"> tag.

	
Choose View > Component Palette to open the Palette if it is not displayed.

	
Select XSQL Tags from the dropdown list in the Palette if it is not displayed.

	
Drag the Query (XSQL) tag from the Palette onto the XSQL file.

The Query tag executes a SQL statement and includes its result set in XML format.

	
In the dialog that displays, you can enter values and change default values for the attributes. Press F1 or click Help in the dialog to get help on the tag and its attributes.

	
After entering attributes, click Next.

	
In the Connection Selection dialog, select your connection or create a new database connection, then click Next.

	
In the Query dialog, type the SQL statement that you want to execute, then click Next.

For example, you might type select * from customer to display all the records in the customer database, based on the attributes you entered.

	
Click Finish.

Notice that the Query tag and attributes you entered appear in the XSQL page.

	
Choose File > Save All to save your work.

	
Right-click the XSQL file in the Navigator, and choose Run filename.xsql to view the raw XML data in your web browser.

You can format the XML data with a style sheet. The XML data also can be passed on to another application through a messaging service.

15.6.7 Creating XSQL Servlet Clients for Business Components

You can create XML based clients for business components using XSQL servlet. XSQL servlet allows you to easily get data in and out of the database in XML format. The following procedure shows how to bind an XSQL client to a business components project you have already created, using the ViewObject Show tag to display the view object's data in XML format. You could also use the ViewObject Update tag to process inserts, updates, and deletes to a view object.

To create an XSQL servlet client for business components:

	
Create a new project in the workspace that contains the business components project by selecting the workspace in the Navigator and choosing File > New to open the New Gallery.

	
In the Categories tree, expand General and select Projects.

	
In the Items list, double-click Empty Project to open the New Project dialog.

	
Complete the New Project dialog and click OK to add the empty project to your workspace.

	
Select the new project in the Navigator and choose File > New.

	
In the Categories list, select General and select XML.

	
In the Items list, double-click XSQL Page.

This adds a skeleton XSQL file named untitled#.xsql to your project.

	
In the Navigator, right-click the new XSQL file, and choose XML Editor to open the source file if it is not open.

	
Place your cursor in the blank line after the <page xmlns:xsql="urn:oracle-xsql"> tag.

	
Choose View > Component Palette to open the Palette if it is not displayed.

	
Select XSQL tags from the dropdown list in the Palette if it is not displayed.

	
Select the ViewObject Show tag from the Palette.

The ViewObject Show tag shows the view object's data in XML format. The ViewObject Update processes inserts, updates, and deletes to a view object based on an optionally transformed XML document.

	
In the View Object Selection dialog, select the appropriate view object > click Next.

	
Change or accept the default values for the attributes. Press F1 or click Help in the dialog to get help on the tag and its attributes. After entering attributes, click Next.

	
Click Finish.

Notice that the tag and attributes you entered appear in the XSQL page.

	
Choose File > Save All to save all your work thus far.

	
Right-click the XSQL file in the Navigator, and choose Run filename.xsql to view the raw XML data in your web browser.

You can format the XML data with a style sheet. The XML data also can be passed on to another application through a messaging service.

	
Note:

Please refer to the section titled "Caveats while Querying View Objects with Circular ViewLink Accessors" in the ViewObject Show F1 help topic if you get the XSQL error JBO-27122.

15.6.7.1 What You May Need to Know About Business Components XSQL Action Handlers

To use XSQL pages with the Business Components XSQL action handlers, the XSQL Runtime and the JBO HTML libraries need to be in your project's classpath, in addition to any JBO libraries that are needed based on your intended connection mode. JDeveloper includes them in the classpath automatically.

15.6.8 How to Creating a Custom Action Handler for XSQL

An action handler in an XSQL page is a Java class that gets invoked to perform a specific task. There are prebuilt action handlers for various tasks such as setting cookies, applying style sheets, performing queries against databases, etc. However, if you choose to perform some operation which is not provided by the built-in action handlers, then you can write what is called a custom action handler. A custom action handler is a Java class that can be invoked from an XSQL page just as easily as a predefined action handler.

To create an action handler:

	
Add the XSQL configuration file to your project.

	
In the XSQL configuration file, register the new action handler by specifying the element name and handler class.

	
In the XSQL file, add the new element and its attributes.

	
In the XSQL file, add connection information to the <page> tag.

	
Add a Java file to the project.

	
In the Java file, create a class that extends the XSQLActionHandlerImpl class.

The XSQL action handlers for BC4J are packaged as part of the JBO HTML library in JDeveloper, which includes the relevant: <JdevHome>/BC4J/jlib/bc4jhtml.jar archive in the build.

Example 15-4 Action Handler For XSQL

// Copyright (c) 2000, 2009, Oracle and/or its affiliates. All
 rights reserved. import oracle.xml.xsql.*;
import org.w3c.dom.Node;
import java.util.Date;
/**
 * A Class class.
 * <P>
 * @author Pas Apicella
public class JavaDate extends XSQLActionHandlerImpl
{
 public void handleAction (Node root)
 {
 addResultElement(root, "CURRENTDATE", (new Date()).toString());
 }
}

15.6.9 How to Run and Deploy XSQL Servlet Clients

After you have completed your XSQL file, you can test the XSQL query by running it in Integrated WebLogic Server, which provides everything you need to develop, test and debug web applications from within the IDE. For more information, see Section 9.2, "Running Java EE Applications in the Integrated Application Server."

To run an XSQL servlet file:

	
In the Navigator, right-click the XSQL file and select Check XML Syntax.

JDeveloper will scan the XSQL file looking for XML syntax errors and display the results in the Log window.

	
If there are no XML syntax errors, right-click the XSQL file and select Run filename.xsql.

JDeveloper compiles the servlet. It then starts the Integrated WebLogic Server. The first time you start Integrated WebLogic Server, a dialog is displayed where you have to enter a password for the default user weblogic on the default domain. You only need to do this once.

JDeveloper launches your default web browser, and displays the output of the servlet in the browser.

After the XSQL file has run successfully in Integrated WebLogic Server, you can deploy the application containing it to an external application server, such as Oracle WebLogic Server.

To deploy an XSQL application:

	
The syntax used by JDeveloper and Oracle WebLogic Server to run XSQL is different, so in your XSQL source file you have to change the connection information as follows. Replace:

connection="java:comp/env/jdbc/database-connection-nameDS"

with

connection="jdbc/database-connection-nameDS"

	
Note:

If you want to run the application in the Integrated WebLogic Server, you need to change the connection information back again.

	
In order to deploy the application, you first have to create a deployment profile and deploy the application to it. In the navigator, right-click the project containing your XSQL servlet, then choose New. In the New Gallery, expand General and select Deployment Profiles.

	
Choose a profile, for example, a WAR deployment profile and click OK and continue to create the deployment profile. For more information, see Section 9.3.2, "How to Create and Edit Deployment Profiles."

	
To deploy the application to the deployment profile, right-click on the project containing your XSQL servlet files and choose Deploy > profile where profile is the name of the deployment profile you just created.

In the Deployment dialog, choose Deploy to WAR (or the appropriate option if you have chosen a different type of deployment profile) and click Finish.

	
The application is now ready to deploy to an application server, for example, Oracle WebLogic Server. The steps you need to perform are:

	
Create a data source on the target application server using the connection information in the XSQL file. For more information, see Section 9.3.6.4, "Setting Up JDBC Data Sources on Oracle WebLogic Server."

	
Create a connection to the application server. For more information, see Section 9.3.1, "How to Create a Connection to the Target Application Server."

	
Deploy the application by right-clicking on the project containing your XSQL servlet files and choosing Deploy > profile where profile is the name of the deployment profile.

In the Deployment dialog, choose Deploy to application server and on the next page choose the application server connection and click Finish.

Once the application is deployed, you can view the results of the query in a browser window by navigating to http://targethost:port/web-context-root/filename.xsql.

15.6.10 How to View Output from Running XSQL Files as Raw XML Data

After creating an XSQL file and adding tags, you can view the raw XML data or format the XML data with a style sheet.

To view an XSQL file as raw XML data:

Select the XSQL file in the Navigator, right-click and choose Run filename.xsql to open the source file in your web browser.

JDeveloper starts the Integrated WebLogic Server, launches your default web browser, and displays the raw XML data that is produced after the XSQL servlet processes the XSQL page.

15.6.11 How to Format XML Data with a Style Sheet

After creating an XSQL file and adding tags, you can format the XML data with an XSL style sheet or view the raw XML data. You can use a style sheet you previously created or create a new one in JDeveloper and apply it. By applying a style sheet, you can convert the XML data into HTML or another markup language, such as wireless markup language (WML).

To format the XML data with a style sheet:

	
In the Navigator, select the XSQL file to which you want to add a style sheet, right-click and choose XML Editor to open the source file.

	
Locate the xml-stylesheet line and comment, which looks like this:

<!--
Uncomment the following processing instruction and replace
the stylesheet name to transform output of your XSQL Page using XSLT
<?xml-stylesheet type="text/xsl" href="YourStylesheet.xsl" ?>
-->

	
Uncomment the <?xml-stylesheet?> line by moving it below the --> closing comment bracket.

	
In this line, replace YourStyleSheet.xsl with the name of your style sheet; for example, your style sheet could be named stylesheet1.xsl.

Next, add the file that you just specified to your project, if you used one created outside of this project.

	
In the Navigator, select the project and choose Project > Add to Project project name. In the Add to Project dialog, navigate to the directory and select the style sheet file you specified.

	
Click Open.

	
Choose File > Save All to save all your changes.

The file you added displays in the Navigator and opens in the XML Editor. You can close the open files.

	
Select the XSQL file in the Navigator, right-click and choose Run filename.xsql to open the file in your web browser.

You can see the formatted XML data in the browser.

15.6.12 How to Create an XSL Style Sheet for XSQL Files

In JDeveloper, you can create an XSL style sheet that you can apply to your XSQL files in order to format the data for HTML, WML or another output. When you create an XSL style sheet, it is added to the selected XSQL project.

To create an XSL style sheet:

	
In the Navigator, select the project in which you want to create the new XSL file.

	
Choose File > New to open the New Gallery.

	
In the Categories tree, expand General and select XML.

	
In the Items list, double-click XSL Style Sheet to open the New XSL File dialog.

	
Leave the Directory Name field unchanged to save your work in the directory where JDeveloper expects to find web application files. In the File Name field, enter the name of the file you want to generate.

A skeleton XSL file is generated and appears in your active project.

You can edit it in the XML Editor to create your own custom style sheet. An example of an XSL style sheet that transforms XML data into wireless markup language (WML) is provided below. When you are finished, you can specify the style sheet name in your XSQL file to format the raw XML data.

XSL Style Sheet Example

The style sheet in Example 15-5 demonstrates the conversion of XML to WML. It uses the default DeptView in a BC4J application.

Example 15-5 Conversion of XML to WML

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!-- Root template -->
<xsl:output type="wml" media-type="text/x-wap.wml"
doctype-public="-//WAPFORUM//DTD WML 1.1//EN"
doctype-system="http://www.wapforum.org/DTD/wml_1.1.xml"
indent="yes" />

<xsl:template match="* >/"><xsl:apply-templates/></xsl:template>
<xsl:template match="text()>@*"><xsl:value-of select="."/></xsl:template>
<xsl:template match="/">

<wml>
 <card id="C1">
 <p mode="nowrap">
 <big>DEPTLIST</big>
 </p>
 <xsl:for-each select="page/DeptView/DeptViewRow">
 <p>
 <xsl:value-of select="Deptno"/>
 xsl:value-of select="Dname"/>
 <xsl:value-of select="Loc"/>
 </p>
 </xsl:for-each>
 </card>
</wml>

</xsl:template>
</xsl:stylesheet>

15.6.13 How to Modify the XSQL Configuration File

The XSQL configuration file, XSQLConfig.xml, is on the classpath, so your XSQL pages always have access to it. The connection information is added to the XSQLConfig.xml file when you create a new connection in JDeveloper. XSQLConfig.xml is located in the system directory and gets copied to the WEB-INF directory when a project containing an XSQL file is compiled. You can add the file to your project if you need to modify it; for example, to register custom action handlers.

	
Note:

When you migrate an XSQL project in JDeveloper, the XSQLConfig.xml file is not updated for you. You can update your connections after migrating the project by recreating the connection or editing an existing connection in JDeveloper.

To modify the XSQL configuration file for your project:

	
With the project selected in the Navigator, choose Project > Add to Project project name.

	
Navigate to the system directory in your JDeveloper installation directory, select XSQLConfig.xml and click Open.

	
Make any changes or additions in the XML Editor.

	
Choose File > Save to save your revised file.

15.6.14 Using XML Metadata Properties in XSQL Files

The custom properties shown in Table 15-4 affect XML generation when using the writeXML method of a view object or row.

Table 15-4 Metadata Properties

	Property Name	Value	Valid For
	
XML_ELEMENT

	
a legal element name

	
view objects and view attributes

	
XML_ROW_ELEMENT

	
a legal element name

	
view objects

	
XML_CDATA

	
any value (not empty)

	
view attributes

	
XML_EXPLICIT_NULL

	
any value (not empty)

	
view objects and view attributes

15.6.14.1 Using XML_ELEMENT

If the XML_ELEMENT custom property is present for a view object, its value is used as the XML element name for the view object in XML, when it is generated using the writeXML method and "consumed" by the readXML method.

If the XML_ELEMENT custom property is present for a view attribute, its value is used as the XML element name for the attribute in XML, when it is generated using the writeXML method and "consumed" by the readXML method.

For example, for a view object named DeptView with an attribute named Sal, setting:

	
XML_ELEMENT="Departments" in the view object properties

	
XML_ELEMENT="Salary" in the view attribute properties for Sal

would produce XML like:

<Departments>
 <DeptViewRow>
 <Empno>1010</Empno>
 <Ename>Steve</Ename>
 <Salary>1234</Salary>
 </DeptViewRow>
</Departments>

Instead of the default:

<DeptView>
 <DeptViewRow>
 <Empno>1010</Empno>
 <Ename>Steve</Ename>
 <Sal>1234</Sal>
 </DeptViewRow>
</DeptView>

15.6.14.2 Using XML_ROW_ELEMENT

If the XML_ROW_ELEMENT custom property is present for a view object, its value is used as the XML element name for each row of query results produced by the view object in XML, when it is generated using the writeXML method and "consumed" by the readXML method.

For example, for a view object named DeptView with an attribute named Sal, setting:

	
XML_ELEMENT="Departments" in the view object properties

	
XML_ROW_ELEMENT="Department" in the view object properties

	
XML_ELEMENT="Salary" in the view attribute properties for Sal

would produce XML like:

<Departments>
 <Department>
 <Empno>1010</Empno>
 <Ename>Steve</Ename>
 <Salary>1234</Salary>
 </Department>
</Departments>

instead of the default:

<DeptView>
 <DeptViewRow>
 <Empno>1010</Empno>
 <Ename>Steve</Ename>
 <Sal>1234</Sal>
 </DeptViewRow>
</DeptView>

15.6.14.3 Using XML_CDATA

If the XML_CDATA custom property is set to a not empty value for a view attribute, then its value will be output as a CDATA section instead of as plain text.

15.6.14.4 Using XML_EXPLICIT_NULL

If the XML_EXPLICIT_NULL custom property is set to a not empty value for a view object, then any attribute with a null value will generate an XML element that looks like:

<AttributeName null="true"/>

instead of omitting the <AttributeName> element from the XML result, which is the default.

If the XML_EXPLICIT_NULL custom property is set to a not empty value for a view attribute, then in the case that the indicated attribute has a null value, the system will generate an XML element that looks like:

<AttributeName null="true"/>

instead of omitting the <AttributeName> element from the XML result, which is the default.

Developing Applications Using Web Services

16 Developing Applications Using Web Services

This chapter describes how JDeveloper provides powerful tools that help you discover and use existing web services, and develop and deploy new web services.

This chapter includes the following sections:

	
Section 16.1, "About Developing Applications using Web Services"

	
Section 16.2, "Using JDeveloper to Create and Use Web Services"

	
Section 16.3, "Working with Web Services in a UDDI Registry"

	
Section 16.4, "Creating Web Service Clients"

	
Section 16.5, "Creating SOAP Web Services (Bottom-Up)"

	
Section 16.6, "Creating SOAP Web Services from WSDL (Top Down)"

	
Section 16.7, "Creating RESTful Web Services"

	
Section 16.8, "Managing WSDLs"

	
Section 16.9, "Using Policies with Web Services"

	
Section 16.10, "Editing and Deleting Web Services"

	
Section 16.11, "Testing and Debugging Web Services"

	
Section 16.12, "Deploying Web Services"

	
Section 16.13, "Monitoring and Analyzing Web Services"

16.1 About Developing Applications using Web Services

Web services consist of a set of messaging protocols and programming standards that expose business functions over the Internet using open standards. A web service is a discrete, reusable software component that is accessed programmatically over the Internet to return a response.

You can create web service clients to access existing web services. If you use web services in your application, you can create bottom-up (starting from Java) and top-down (starting from WSDL) web services as follows:

	
Configure JDeveloper to develop and run web services

	
Create web service clients by performing one or more of the following tasks:

	
Find web services in a UDDI registry

	
Create a client and proxy classes to access an existing web service to incorporate it into an application

	
Create web services by performing one or more of the following tasks:

	
Create SOAP web services from the underlying Java implementation (bottom up)

	
Create web services from the WSDL (top down).

	
Create RESTful web services.

	
Secure web services using policies

	
Test and debug web services

	
Deploy web services to the Integrated WebLogic Server or Oracle WebLogic Server

	
Publish web services to a UDDI registry

Once deployed, your web services can then be accessed and used in other applications.

16.1.1 Discovering and Using Web Services

You can quickly create a client to an existing web service in order to use it in your application. You can view all web services in the application under the Web Services folder in the Application Navigator.

In addition, JDeveloper incorporates a UDDI browser and you can define connections to UDDI registries, for example, to one within your organization. For more information, see Section 16.3, "Working with Web Services in a UDDI Registry".

16.1.2 Developing and Deploying Web Services

You can create web services from Java classes, the remote interface of EJBs, and an ADF Business Components service session bean wrapped as an EJB. The Web service creation wizards create the deployment files for you, so once you have created your web service the final step is to deploy it to application servers. For more information, see Section 16.5, "Creating SOAP Web Services (Bottom-Up)".

Alternatively, you can create a web service starting with a WSDL, as a top-down web service. For more information, see Section 16.6, "Creating SOAP Web Services from WSDL (Top Down)".

Finally, you can develop web services that are based on Representational State Transfer (REST). A RESTful web service is a simple interface that transmits data over a standardized interface (such as HTTP) without an additional messaging layer, such as SOAP. For more information, see Section 16.7, "Creating RESTful Web Services"

JDeveloper also supports a set of standard Java-to-XML type mappings. You can also create custom serializers for types of objects that are not automatically supported. For more information, see Section 16.2, "Using JDeveloper to Create and Use Web Services".

16.2 Using JDeveloper to Create and Use Web Services

This following information will help you understand more about web services, and how you can use JDeveloper to create, configure, and use them.

	
Section 16.2.1, "How to Use Proxy Settings and JDeveloper"

	
Section 16.2.2, "How to Set the Context Root for Web Services"

	
Section 16.2.3, "How to Configure Connections to Use with Web Services"

	
Section 16.2.4, "How to Work with Type Mappings"

	
Section 16.2.5, "How to Work with PL/SQL Web Services and Types"

	
Section 16.2.6, "How to Choose Your Deployment Platform"

	
Section 16.2.7, "How to Work with Web Services Code Insight"

	
Section 16.2.8, "How to Migrate JAX-RPC 10.1.3 Web Services"

16.2.1 How to Use Proxy Settings and JDeveloper

By default, JDeveloper uses the proxy settings from the default browser on the same machine. If you have problems making connections from JDeveloper, for example, connecting to an application server that is on the same machine as JDeveloper, you may need to change the proxy server settings you use.

For example, if you are connecting to an IP address behind a proxy server, and your machine is also behind the same proxy server, then make sure that the web proxy preferences exclude the IP address you are trying to connect to.

When you use the HTTP Analyzer, the analyzer itself is a proxy and any traffic to be monitored by it is routed through it, just as though it was a normal proxy server. If you already have a proxy set in JDeveloper, the analyzer will make sure that the traffic goes through the original proxy after it has been passed through the analyzer.

To exclude an IP address:

	
Choose Tool > Preferences, and select Web Browser and Proxy.

For more information at any time, click F1 or Help from the Web Browser and Proxy dialog.

	
Add the IP address to the Exceptions list.

To turn off use of the browser proxy server:

	
Choose Tool > Preferences, and select Web Browser and Proxy.

For more information at any time, click F1 or Help from the Web Browser and Proxy dialog.

	
Deselect Use HTTP Proxy Server.

16.2.2 How to Set the Context Root for Web Services

The context root appears as part of the web service endpoint for a generated web service, so it is important that it is set to an appropriate value. You set the context root at the project level.

The web service context root is the string that comes after the host:port portion of the web service URL. For example, if the deployed WSDL of a WebLogic web service is as follows: http://hostname:7001/financial/GetQuote?WSDL

The context path for this web service is financial.

To set the context root:

	
In the Application Navigator, right-click the project and choose Project Properties to open the Project Properties dialog.

For more information at any time, click F1 or Help from the Project Properties dialog.

	
Expand Project Source Paths and select Web Application.

	
Either accept the default HTML Root Directory or enter a new value.

Click Browse to browse the local directory.

16.2.3 How to Configure Connections to Use with Web Services

You can develop simple web services that you can test using the Integrated WebLogic Server. However, to develop more complex web services, and to deploy web services, you will need the appropriate connections.

	
To deploy a web service to Oracle WebLogic Server, you need an application server connection as described in Section 16.12, "Deploying Web Services".

	
To find web services using a Universal Description, Discovery and Integration (UDDI) registry, you need to create a connection to the registry. For more information, see Section 16.3.1, "How to Define UDDI Registry Connections".

16.2.4 How to Work with Type Mappings

Objects that can be passed to and from web services have to be able to be serialized to an XML type, and then deserialized back to their original type. Objects that are automatically handled are Java primitive types and certain Java standard types. If you want to create a web service using objects that are not automatically serialized, you can write your own custom serializer.

The objects that can be passed to and from web services are ones that conform to the JavaBean conventions For the purposes of web services, a JavaBean is any Java class that conforms to the following restrictions:

	
Must have a public default (zero argument) constructor.

	
Must expose all attributes of interest as accessors.

	
Order of the accessors for the properties (setMethod() and getMethod()) must not matter.

	
Accessors must be written in mixed case with a lower case first letter. For example, if an attribute is called name the accessors must be called getName and setName.

For web services, each property of the object must be of one of the Java types that maps to an XML schema simple type. These are listed in the table below, which shows the primitive XML Schema types and arrays of primitive XML Schema types that are supported as parameters, and the return values for web services. In addition, a service method can accept and return a single piece of XML element data, passed as an org.w3c.dom.Element.

Table 16-1 XML schema type mapping to Java types

	XML Schema type	Java type
	
string

	
java.lang.String

	
boolean

	
java.lang.Boolean

	
decima

	
java.lang.Double

	
float

	
java.lang.Float

	
double

	
java.lang.Double

	
dateTime

	
java.util.Date

	
time

	
java.util.Date

	
date

	
date java.util.GregorianCalendar

	
base64Binary

	
java.lang.Byte[]

	
normalizedString

	
java.lang.String

	
integer

	
java.lang.Integer

	
long

	
java.lang.Long

	
int

	
java.lang.Integer

	
short

	
java.lang.Short

	
byte

	
java.lang.Byte

JAX-WS web services use Java Architecture for XML Binding (JAXB), described at http://jcp.org/en/jsr/detail?id=222, to manage all of the data binding tasks. Specifically, JAXB binds Java method signatures and WSDL messages and operations and allows you to customize the mapping while automatically handling the runtime conversion. This makes it easy for you to incorporate XML data and processing functions in applications based on Java technology without having to know much about XML.

16.2.5 How to Work with PL/SQL Web Services and Types

This section describes the limitations for which PL/SQL web services cannot be created for a particular circumstance:

	
Overloaded Program Units

	
BFILE Type

	
BCLOB Type

	
OUT and IN-OUT Parameters

	
Creating PL/SQL web services from PL/SQL records

	
Stored procedures of the same name which are accessible in more than one schema

	
Ref Cursors Return Types

	
SYS Schema

	
Types Declared Within a Package Spec

	
PL/SQL nested tables

Overloaded Program Units

A program unit that shares its name with another program unit in the same package is an overloaded program unit. At runtime the WSDL processor cannot determine which program unit to execute when there is more than one program unit with the same name. Therefore, the PL/SQL program units cannot be deployed as web services.

You can avoid the problem of overloaded program units that you can adapt to suit your requirements. Consider the following example of a PL/SQL package containing the following program:

-- promotes an employee to the specified rank
PROCEDURE promote_emp(empno IN NUMBER, rank IN NUMBER);

-- promotes an employee to the rank above their current rank
PROCEDURE promote_emp(empno IN NUMBER);

You can workaround the overloaded types in one of the following ways:

	
If you are able to change the existing package, you can add the two procedures shown below to the package, and publish the web services from the new procedures.

or

	
You can add the two procedures shown below to a new package, and publish the web services from the new package.

The new procedures are:

-- promotes an employee to the specified rank
PROCEDURE promote_emp_to_rank(empno IN NUMBER, rank IN NUMBER)
IS
BEGIN
promote_emp(empno, rank);
END;

-- promotes an employee to the rank above their current rank
PROCEDURE promote_emp_to_next_rank(empno IN NUMBER) IS
BEGIN
promote_emp(empno);
END;

BFILE Type

The PL/SQL type BFILE can only be used as an OUT argument or as a function return value.

BCLOB Type

The PL/SQL type BCLOB is not supported.

OUT and IN-OUT Parameters

When you publish a program unit with OUT or IN-OUT parameters, these are transferred back to the caller in a return type structure with one attribute for each OUT or IN-OUT parameter. For example, a service with the following signature:

PROCEDURE a_proc(val1 IN VARCHAR2, val2 IN OUT NUMBER, val3 OUT INTEGER)

Returns the final values of val2 and val3 in a generated result class. You can use accessor methods on the generated class to access these values.

Creating PL/SQL web services from PL/SQL records

JDeveloper does not allow you to create web services directly from PL/SQL packages that use PL/SQL records. If your organization uses PL/SQL packages that have been migrated from earlier versions of the Oracle database, you may find that you want to expose some functionality as web services and be unable to do so because the packages accept and return parameters that are record types, rather than object types.

You can use Oracle JPublisher on the packages that contain record types. For more information, see Section 28.3.1, "How to Use JPublisher".

A SQL file is produced that you run against your database to create equivalent packages that contain object types. You can then use the new packages to create your PL/SQL web services in the usual manner.

Stored procedures of the same name which are accessible in more than one schema

On Oracle9i Database release 2, when a stored procedure or function of the same name and the same package name is accessible in more than one schema, then the SQLJ translator invoked during publication of PL/SQL web services will fail.

In order to resolve this problem, ensure that packages to be published are visible only in one schema, and that no other packages in other schemas share the same name.

Ref Cursors Return Types

You cannot create a web service from a packages that uses ref cursor as a return type, for example:

PACKAGE TEST AS
type EmpCurType is ref cursor;
function EmpData return TEST.EmpCurType;
END;

SYS Schema

In order to prevent an arbitrary user from assuming SYS privilege, a connection cannot be specified from the middle tier as SYS. This means that you cannot create a web service from a package in the SYS schema.

If you need to access a PL/SQL package in the SYS schema from the middle tier, for example, to create a web service in JDeveloper, log on to the database as SYS, and grant package EXECUTE privileges to the user you then use to create the JDeveloper database connection.

Types Declared Within a Package Spec

PL/SQL packages can have types declared within the package spec, however these packages cannot be published as web services. To avoid this, create the types outside the scope of the package.

PL/SQL nested tables

JDeveloper does not allow you to create web services directly from PL/SQL packages that use PL/SQL nested tables.

16.2.6 How to Choose Your Deployment Platform

When you create a web service using the web services wizards, you are offered a choice of deployment platforms, as defined in Table 16-2. The platform you choose determines the options available to you in the wizard, and the libraries that are added to the WAR/EAR file for deployment.

Table 16-2 Deployment Platforms

	Deployment Platform	Description
	
J2EE 1.4 JAX-RPC with support for WebLogic Server 10.3

	
Generates a JAX-RPC web service that is configured for deploying to Oracle WebLogic Server 10.3.

	
Java EE 1.5 with support for JAX-WS Annotations

	
Generates a web service that takes advantage of the JAX-WS web services API, released as part of Java EE 1. 5. This option provides support for deploying to WebLogic Server 10.3 with Java annotations using the JAX-WS annotation specification.

	
Java EE 1.5 with support for JAX-WS RI

	
Generates a JAX-WS web service for deploying to any container that supports the Sun JAX-WS Reference Implementation.

16.2.7 How to Work with Web Services Code Insight

The web services Code Insight completes annotations when typing in a Java class, and is available for WSDL documents in the XML editor (that is, when typing in the Source tab). You can configure how fast Code Insight responds. You can access the Code Insight page in JDeveloper from Tools menu > Preferences > Code Editor > Code Insight.

	
Note:

Code Insight does not work with Java classes for JAX-RPC web services, only with Java classes for JAX-WS web services.

When you create a JAX-WS web service from a Java class by adding annotations in the source editor, the Code Insight features of Quick Fixes and Code Assists are available to help you.

For example, when you create a web service from a Java class by manually adding the @WebService annotation, a ragged line appears under the annotation. Click the Audit Fix icon and choose Configure project for web services.

From the Select Deployment Platform dialog, select one of the following JAX-WS platforms for your service:

	
Java EE 1.5, with support for JAX-WS Annotations. In this case, JDeveloper adds:

	
import javax.jws.WebService; statement to the class

	
web.xml file to the project

	
Java EE 1.5, with support for JAX-WS RI. In this case, JDevleoper adds:

	
import javax.jws.WebService; statement to the class

	
sun-jaxws.xml and web.xml files to the project

Other examples include:

	
You can add policy annotations to a JAX-WS web service and use JDeveloper to complete the policy you want. For example, if you enter @Pol, then click Alt+Enter you can choose whether to use @Policy, for a single policy, or @Policies for multiple policies. The appropriate import statement is also added to the class.

	
If you are working on a WSDL document in the source editor, you can use code completion to help you enter schema elements. For example, if you enter < and wait a second, a popup appears from which you can select the entry you want.

	
If the WSDL and web service source files get out-of-sync, you can regenerate the web service from source.

	
If you rename a Java class in either the Java class or WSDL, click the Audit fix icon and select how you would like to reconcile the discrepancy.

16.2.8 How to Migrate JAX-RPC 10.1.3 Web Services

You can migrate web services created as J2EE 1.4 JAX-RPC web services in JDeveloper 10.1.3.n.

	
Note:

You cannot migrate EJB 2.1 web services because they are deprecated in this version of JDeveloper. You cannot migrate JMS web services because they are Oracle-proprietary and no longer supported.

The following actions are performed during the upgrade:

	
Remove the JAX-RPC 10.1.3 Web Services library and replace it with the JAX-RPC 11g Web Services library.

	
Regenerate the web service as an Oracle WebLogic Server compatible JAX-RPC web service. For more information, see Section 16.5.6, "How to Regenerate Web Services from Source".

The WSDL is not changed. After performing the upgrade, you can use the Edit Web Service dialog to make any additional changes.

The limitations of the migrated service are:

	
JAX-RPC web services in this version of JDeveloper only support SOAP 1.1, so support for SOAP 1.2 is removed.

	
Any attached policies are removed. You can attach new policies by editing the web service and applying the appropriate Oracle WebLogic Server policies. For more information, see Section 16.9.3, "How to Attach Policies to Web Services".

	
Note:

JAX-RPC web services can only use Oracle WebLogic Server security policies.

	
Support for the previous version of stateful services is removed. You can configure support for the current version of stateful services in the Edit Web Services dialog. For more information, see Section 16.10, "Editing and Deleting Web Services".

	
Support for REST is removed.

	
Methods with collection return type, which are not supported, are disabled in the implementation.

To migrate a web service:

	
In the Application Navigator, select Open Application from the dropdown list. Open the application that contains the web service.

The migration wizard is automatically invoked enabling you to migrate the application and projects. For more information at any time, press F1 or click Help from within the wizard.

	
On the Webapp 2.5 Migration page of the Migration Wizard, deselect Migrate to Webapp 2.5. JAX-RPC is compatible with version 2.4 of web.xml, not version 2.5.

	
To upgrade the web service, in the Application Navigator, right-click the web service container and choose Upgrade Web Service to WLS JAX-RPC Configuration.

	
Read the Confirm Upgrade message and click Yes. The web service is upgraded to use the JAX-RPC 11g Web Services library and regenerated.

	
If necessary, edit the web service to make any additional changes.

16.3 Working with Web Services in a UDDI Registry

Universal Description, Discovery and Integration (UDDI) is one of the standards and protocols that underpin web services. It provides a common standard for publishing and discovering information about web services. It contains a UDDI browser that searches a UDDI registry using search criteria that you specify to find web services that are described by Web Services Description Language (WSDL). For more information about UDDI including the specification, see the UDDI OASIS standards at http://uddi.xml.org/.

The following sections describe how to work with web services in a UDDI registry:

	
Section 16.3.1, "How to Define UDDI Registry Connections"

	
Section 16.3.2, "How to Configure the View of UDDI Registry Connections"

	
Section 16.3.3, "How to Search for Web Services in a UDDI Registry"

	
Section 16.3.4, "How to Generate Proxies to Use Web Services Located in a UDDI Registry"

	
Section 16.3.5, "How to Display Reports of Web Services Located in a UDDI Registry"

	
Section 16.3.6, "How to Publish Web Services to a UDDI Registry"

16.3.1 How to Define UDDI Registry Connections

You can define connections to UDDI registries, for example, to browse your organization's internal UDDI registry. In addition, all defined UDDI registry connections are accessible to any workspace or project.

For more information about UDDI including the specification, see the UDDI OASIS standards at http://uddi.xml.org/.

The following sections describe how to define UDDI registry connections.

	
Section 16.3.1.1, "Creating UDDI Registry Connections"

	
Section 16.3.1.2, "Editing the Name of UDDI Registry Connections"

	
Section 16.3.1.3, "Changing the View of UDDI Registry Connections"

	
Section 16.3.1.4, "Refreshing UDDI Registry Connections"

	
Section 16.3.1.5, "Deleting UDDI Registry Connections"

16.3.1.1 Creating UDDI Registry Connections

You can create a new connection to a UDDI registry that is public or private (within your organization). The UDDI registry connection is listed in the Resource Palette, in the Connections panel.

To create a new connection:

	
In the Application Navigator, select the project.

	
Choose File > New to open the New Gallery.

	
In the Categories tree, expand Business Tier and select Web Services.

	
In the Items list, double-click UDDI Registry Connection to launch the Create UDDI Registry Connection wizard.

For more information at any time, press F1 or click Help from within the Create UDDI Registry Connection wizard.

Alternatively, you can create the connection directly in the Resource Palette as described in Section 6.9, "Using WebDAV with JDeveloper".

16.3.1.2 Editing the Name of UDDI Registry Connections

You can edit an existing UDDI registry connection to change the name of the connection, or to change the URL of the inquiry endpoint.

To change the inquiry endpoint of a registry:

	
In the main menu, choose View > Resource Palette. By default, the Resource Palette is displayed to the right of the JDeveloper window.

	
In the Resource Palette, expand UDDI Registry.

	
From the context menu of the UDDI registry connection you want to edit, choose Properties.

The reentrant UDDI Registry Connection wizard is launched.

For more information at any time, press F1 or click Help from within the Create UDDI Registry Connection wizard.

16.3.1.3 Changing the View of UDDI Registry Connections

You can change the order that web services are listed in the UDDI registry from Category view to Business view, or from Business View to Category view. For more information, see Section 16.3.2, "How to Configure the View of UDDI Registry Connections".

To change the view of a registry:

	
In the main menu, choose View > Resource Palette. By default, the Resource Palette is displayed to the right of the JDeveloper window.

	
In the Resource Palette, expand the UDDI Registry.

	
From the context menu of the UDDI registry connection you want to edit, choose Render Business Perspective or Render Category Perspective.

16.3.1.4 Refreshing UDDI Registry Connections

You can refresh a UDDI registry connection to ensure that information stored under the connection is up to date.

To refresh a connection:

	
In the main menu, choose View > Resource Palette. By default, the Resource Palette is displayed to the right of the JDeveloper window.

	
In the Resource Palette, expand the UDDI Registry.

	
From the context menu of the UDDI registry connection you want, choose Refresh.

16.3.1.5 Deleting UDDI Registry Connections

When no longer needed, you can delete a UDDI registry connection from the Resource Palette.

To delete a connection:

	
In the main menu, choose View > Resource Palette. By default, the Resource Palette is displayed to the right of the JDeveloper window.

	
In the Resource Palette, expand the UDDI Registry.

	
From the context menu of the UDDI registry connection you want to delete, choose Delete.

	
A message is displayed asking whether you want to delete the connection. Click Yes.

16.3.2 How to Configure the View of UDDI Registry Connections

When you create the connection, as described in Section 16.3.1, "How to Define UDDI Registry Connections", you are prompted whether the web services in the registry are displayed in Business View or Category View. The view you choose will determine how you search for services in the registry.

16.3.2.1 Choosing Business View

A UDDI registry contains four data structure types that group information about web services:

	
businessEntity: Defines the top-level data structure that contains information about the business providing the web service. When you find a web service, the business is added to the UDDI browser in the Resource Palette.

	
businessService: Contains descriptive information for a family of services, including the name and brief description, and category information.

	
bindingTemplate: Contains information about a web service entry point and references to interface specification.

	
tModel: Represents the technical specification of the web service. When the Find Web Services wizard finds a web service, it also displays other web services that are compatible with the same tModel.

If you choose Business View, services are listed under Business Entities and Business Services.

16.3.2.2 Choosing Category View

If you choose Category View, you can search for web services based on one or more of the following categories:

	
UDDI Types: Search by UDDI type.

	
NAICS: Specify the type of industry.

	
ISO 3166: Search by location.

	
UNSPSC: Search by type of service.

When you search by name, you can enter all or part of a name and you can use wildcards. The results are tModels where the name of the tModel matches the search criteria. When a number of web services have the same tModel, they are listed in the wizard so that you can choose the one that best fits your requirements.

16.3.3 How to Search for Web Services in a UDDI Registry

You can search a UDDI registry connection in the Resource Palette for a web service.

	
Note:

If you are creating a top-down web service, you can use the Find Web Service Wizard to search a UDDI registry connection from within the Create Java Web Service from WSDL wizard.

To search for a web service in a UDDI Registry:

	
Create a UDDI registry connection, if required. For more information, see Section 16.3.1, "How to Define UDDI Registry Connections".

	
In the Resource Palette, search for the web service. For more information, see Section 3.7, "Working with the Resource Palette".

16.3.4 How to Generate Proxies to Use Web Services Located in a UDDI Registry

You can create a proxy to a web service in a UDDI registry connection in the Resource Palette.

	
Note:

You can only generate a proxy to a web service if the service uses a WSDL link. To determine this, open the web service report, and check that the Overview Description in the tModel Instances section of the report is wsdl link.

To generate a proxy:

	
Open the Resource Palette.

In the main menu, choose View > Resource Palette. By default, the Resource Palette is displayed to the right of the JDeveloper window.

	
Navigate to the web service you want, or search for it.

	
Navigate to the service

	
Right-click the service, and choose Generate Web Service Proxy to launch the Web Service Proxy wizard.

For more information at any time, press F1 or click Help from within the wizard.

16.3.5 How to Display Reports of Web Services Located in a UDDI Registry

You can display a report of a web service in a UDDI registry.

To display a report of the service:

	
In the Resource Palette, expand the UDDI registry connection, and navigate to the endpoint for the service.

	
Right-click the service, and choose View Report.

A report of the web service is displayed in the source editor.

16.3.6 How to Publish Web Services to a UDDI Registry

You can publish a web service to a UDDI registry through a connection to the registry in the Application Server navigator. Before you can publish a service to a UDDI registry, you must already have a connection to the registry in the Resource Catalog. For more information, see Section 16.3.1.1, "Creating UDDI Registry Connections".

To publish a web service to a UDDI registry:

	
Deploy the web service to Oracle WebLogic Server.

	
Note:

If you deploy the web service to the Integrated WebLogic Server, then the UDDI registry to which you are publishing must be local to the Integrated WebLogic Server.

	
In Application Server navigator, expand the application server node.

	
Expand the web services node and locate the node (which represents the WSDL) of the web service you want to publish.

	
Right-click the WSDL node and choose Publish WSDL to UDDI to launch the Publish WSDL to UDDI Registry dialog.

For more information at any time, press F1 or click Help in the Publish WSDL to UDDI Registry dialog.

16.4 Creating Web Service Clients

JDeveloper makes it easy to use a web service in your application by allowing you to create client and proxy classes to access the service using the Create Web Service Client and Proxy wizard. You can launch the wizard when you locate or create a web service. Alternatively, you can launch the wizard directly and enter the URL for the web service or use the Find Web Service wizard to locate a web service in a UDDI registry.

JDeveloper automatically generates the correct type of proxy for an RPC or document style web service.

	
Note:

JAX-WS web services do not support RPC style.

For more information about:

	
Developing web service clients, see "Invoking Web Services" in the Oracle Fusion Middleware Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

	
Securing and administering web services and clients, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

The following sections describe how to create and use web service clients:

	
Section 16.4.1, "How to Create the Client and Proxy Classes"

	
Section 16.4.2, "How to Use Web Service Client and Proxy Classes"

	
Section 16.4.3, "How to View the WSDL Used to Create the Web Service Client"

	
Section 16.4.4, "How to Update the Web Service WSDL at Run Time"

	
Section 16.4.5, "How to Regenerate Web Service Client and Proxy Classes"

	
Section 16.4.6, "How to Manage the Web Service Clients"

	
Section 16.4.7, "How to Reference Web Services Using the @WebServiceRef Annotation"

16.4.1 How to Create the Client and Proxy Classes

Use JDeveloper to automatically create a client and proxy classes to access a web service and call its methods in your application. Using the wizard, you can also generate asynchronous methods and attach policies, as required.

You can create a client and proxy classes to access a web service using the Create Web Service Client and Proxy wizard. The wizard generates a new service class (JAX-WS) or stub (JAX-RPC) and service interface for each exposed port and lists them in the Application Navigator. It opens the generated client file port-nameClient.java in the source editor. Once generated, you can call the methods in your application.

	
Note:

In some cases, you may encounter errors when you run a web service client that you have created for a web service accessed on the Internet or using a UDDI registry. Because web services standards are still evolving, it is possible that the web services that you locate may not conform to the latest standards, or the standards to which they conform may not be compatible with those supported by the server on which the client is running. If a web service client that you have created in JDeveloper returns an error, examine the error message and consider creating a client to another web service that provides a similar service, but that is compatible with the server and will run without problems.

You can access the Create Web Service Client and Proxy wizard using one of the following methods. For help in completing the wizard, press F1 or click Help from within the wizard.

To create a client and proxy classes to access a web service:

	
In the Application Navigator, select the project you want to use.

	
Choose File > New to open the New Gallery.

	
In the Categories list, select Web Services.

	
In the Items list, double-click Web Services to launch t the Create Web Service Client and Proxy wizard.

For more information at any time, press F1 or click Help from within the Create Web Service Client and Proxy wizard.

To create a client and proxy classes to access a web service defined in JDeveloper:

	
Right-click the web service container in the Application Navigator, and choose:

	
For a JAX-WS web service, Create Client for Web Service Annotations.

	
For a JAX-RPC web service, Generate Web Service Proxy.

	
The Create Web Service Client and Proxy wizard opens and is prepopulated with the selected web service project.

	
Note:

When you create the client and proxy classes for an EJB web service that uses JavaBean parameters, the JavaBean must implement the java.io.Serializable interface.

16.4.2 How to Use Web Service Client and Proxy Classes

JDeveloper generates a number of files that define a proxy to the web service. Using the generated files, you can develop the following types of web service client applications:

	
Stand-alone client application

	
Java Standard Edition (SE) client application

	
Java EE component deployed to Oracle WebLogic Server

	
Note:

In addition to the procedures described below, you can use web service injection (using the @WebServiceRef method) to define a reference to a web service and identify an injection target in your web service client. For more information see Section 16.4.7, "How to Reference Web Services Using the @WebServiceRef Annotation"

16.4.2.1 How to Use a Stand-Alone Client Application

A stand-alone client application, in its simplest form, is a Java program that has the Main public class that you invoke with the java command. It runs completely separate from WebLogic Server.

To use the generated client proxy classes in a stand-alone client:

	
Open the client proxy class, called port_nameClient.java, in the source editor.

This file opens automatically when you create the web service client proxy initially. To re-open the class, right-click on the client proxy container and select Go to Client Class or simply double-click on the file in the Application Navigator.

	
Locate the comment // Add your own code here, which is in a try-catch block in the main method, and add the appropriate code to invoke the web service.

	
Run the client.

16.4.2.2 How to Use the Java Standard Edition (SE) Client Application

Include the generated proxy classes as part of a Java Standard Edition (SE) application and reference them to access the remote web service.

To use the generated client proxy classes in a JSE component:

	
Copy the generated client proxy classes to your JSE application source directory.

	
Using the main client proxy class, called port_nameClient.java, as your guide, add appropriate methods to access the web service from your application.

	
Run the application.

16.4.2.3 How to Use the Java EE Component Client Application Deployed to WebLogic Server

In this case, the web service runs inside a Java Platform, Enterprise Edition (Java EE) Version 5 component deployed to WebLogic Server, such as an EJB, servlet, or another web service. This type of client application, therefore, runs inside a WebLogic Server container.

To use the generated client proxy classes in a Java EE component:

	
Open the main client proxy class, called port_nameClient.java, in the source editor.

This file opens automatically when you create the web service client proxy initially. To re-open the class, right-click on the client proxy container and select Go to Client Class or simply double-click on the file in the Application Navigator.

	
Replace the main method with your own method(s) to access the web service and perform required operations. You can use the code generated in the main method as a guide.

	
Deploy the full set of client module classes that JDeveloper has generated.

	
Reference the client proxy class in your Java EE application.

16.4.3 How to View the WSDL Used to Create the Web Service Client

You can view the WSDL that was used to generate the web service client under the following circumstances:

	
If available, the local copy of the WSDL file is displayed. When generating the web service client, you have the option to copy the WSDL of the source web service to your local directory. See Section 16.4.1, "How to Create the Client and Proxy Classes".

	
Note:

In most cases, the local copy of the WSDL will match the WSDL of the remote web service. If the remote web service is modified, the local WSDL may become out-of-sync with the remote WSDL. To ensure the web service client will be able to access the remote web service, you can regenerate the local WSDL using the remote WSDL, as needed. See Section 16.4.5, "How to Regenerate Web Service Client and Proxy Classes".

	
If the local version is not available, the remote WSDL is displayed.

To view the client WSDL:

	
Right-click on the web service client within the Application Navigator.

	
Select Go To WSDL from the pop-up menu.

The WSDL is displayed.

16.4.4 How to Update the Web Service WSDL at Run Time

In some cases, you may need to update your application to reference imported XML resources, such as WSDLs and XSDs, from a source that is different from that which is part of the description of the web service. Redirecting the XML resources in this way may be required to improve performance or to ensure your application runs properly in your local environment.

For example, a WSDL may be accessible during client generation, but may no longer be accessible when the client is run. You may need to reference a resource that is local to or bundled with your application rather than a resource that is available over the network.

You can modify the location of the WSDL that will be used by the web service at runtime using one of the following methods:

	
XML Catalog File

	
Web Service Injection (@WebServiceRef) and a Deployment Plan

16.4.4.1 How to Use an XML Catalog File

When you create or regenerate a web service client, a jax-ws-catalog.xml file is created automatically in the META-INF directory. The file complies with the OASIS XML schema, as described in the Oasis XML Catalogs specification at http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html.

You can update the web service WSDL by modifying the uri attribute of the <system> element in the jax-ws-catalog.xml file. The specified value will be used at run time.

The following provides a sample XML catalog (jax-ws-catalog.xml) file for a remote WSDL:

<catalog xmln="urn:oasis:names:tc:entity:xmlns:xml:catalog"
 prefer="system">
 <system systemId="http://foo.org/hello?wsdl"
 uri="http://foo.org/hello?wsdl" />
</catalog>

The following provides a sample XML catalog (jax-ws-catalog.xml) file for a local WSDL:

<catalog xmln="urn:oasis:names:tc:entity:xmlns:xml:catalog"
 prefer="system">
 <system systemId="http://foo.org/hello?wsdl"
 uri="../org/foo/HelloService.wsdl" />
</catalog>

In the preceding examples:

	
The <catalog> root element defines the XML catalog namespace and sets the prefer attribute to system to specify that system matches are preferred.

	
The <system> element associates a URI reference with a system identifier.

	
Note:

When creating the client and proxy classes for multiple web services on a local system that share the same endpoint, to ensure that URL is unique for each web service in the jaxws-catalog.xml file, the service QName is appended as anchor text. For example:

http://foo.org/helloworld?wsdl

Might become:

http://foo.org/helloworld#%7Bhttp%3A%2F%2Fexample.com%2F%7DHelloService?wsdl.

16.4.4.2 How to Use Web Service Injection (@WebServiceRef) and a Deployment Plan

This method involves the following steps:

	
Using the @WebServiceRef annotation to define a reference to a web service and identify an injection target.

	
Updating the deployment plan and modifying the value of the web service WSDL that is referenced at run time.

Step 1: Using the @WebServiceRef Annotation

The @WebServiceRef annotation injects an endpoint for the Web service interface that is defined in the web.xml file. The following example demonstrates how to use the @WebServiceRef annotation to define a reference to a web service and identify an injection target.

@WebService
public class LoansApprover {
 /**
 ** Credit rating service injected from web.xml
 **/
 @WebServiceRef(name = "CreditRatingService")
 CreditRating creditRating;

 /**
 ** @return Loan application with approval code if approved.
 **/
 public LoanApprovalReponse approveLoan(LoanApplication la) {
 ...
 }
}

The web service class for the CreditRatingService is hard-coded in the web.xml file, as shown in the following example:

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee">
 ...
 <service-ref>
 <service-ref-name>CreditRatingService</service-ref-name>
 <service-interface>
 com.somecreditrating.xmlns.rating.CreditRating_Service
 </service-interface>
 </service-ref>
</web-app>

Step 2: Updating the Deployment Plan

To modify the value of the WSDL that is used at run time, you can generate and update a deployment plan.

A deployment plan is an optional XML document that you use to configure an application for deployment to a specific WebLogic Server environment. A deployment plan defines or overrides deployment property values that would normally be defined in an application's WebLogic Server deployment descriptors. To update the configuration for your application, you add or update variables in the deployment plan, defining both the location of the WebLogic Server descriptor properties and the value to assign to the properties. For more information, see the Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

The following example illustrates a deployment plan that overrides the value of the CreditRatingService web service WSDL, where:

	
The variable-definition element defines the CreditRatingService variable and the value to assign to it.

	
As part of the module-override element for the LoanApplication-LoanApprover-context-root.war, a variable-assignment element defines the CreditRating Service variable and the exact location within the descriptor where the property is overridden.

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://www.bea.com/ns/weblogic/deployment-plan"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/deployment-plan
 http://www.bea.com/ns/weblogic/deployment-plan/1.0/deployment-plan.xsd"
 global-variables="false">
 <application-name>production</application-name>
 <variable-definition>
 <variable>
 <name>CreditRatingService</name>
 <value>http://www.somecreditrating.com/xmlns/rating?WSDL</value>
 </variable>
 </variable-definition>
 <module-override>
 <module-name>production.ear</module-name>
 <module-type>ear</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-application</root-element>
 <uri>META-INF/weblogic-application.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>application</root-element>
 <uri>META-INF/application.xml</uri>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>wldf-resource</root-element>
 <uri>META-INF/weblogic-diagnostics.xml</uri>
 </module-descriptor>
 </module-override>
 <module-override>
 <module-name>
 LoanApplication-LoanApprover-context-root.war
 </module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 <variable-assignment>
 <name>CreditRatingService</name>
 <xpath>
 /web-app/service-ref/[service-ref-name="CreditRatingService"]/wsdl-file
 </xpath>
 <operation>add</operation>
 </variable-assignment>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>weblogic-webservices</root-element>
 <uri>WEB-INF/weblogic-webservices.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>webservices</root-element>
 <uri>WEB-INF/webservices.xml</uri>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>webservice-policy-ref</root-element>
 <uri>WEB-INF/weblogic-webservices-policy.xml</uri>
 </module-descriptor>
 </module-override>
 <config-root>
 D:\prom-demo\jdeveloper\mywork\LoanApplication\deploy\production\.\plan
 </config-root>
</deployment-plan>

16.4.5 How to Regenerate Web Service Client and Proxy Classes

There are times that you may need to regenerate the web service client and proxy classes.

	
Note:

When you regenerate the web service client and proxy classes, JDeveloper discards any changes that you have made to the class, WSDL, or supporting files since the client was last generated.

To regenerate the web service client and proxy classes:

	
In the Application Navigator, right-click the web service client node that you want to regenerate and choose Properties from the context menu.

The Web Service Client and Proxy Editor wizard is displayed.

	
Select Web Service Description. (It should be selected by default.)

	
Select Refresh Copied WSDL from Original WSDL Location if you wish to refresh the local WSDL using the WSDL at the original location.

	
Click OK.

The local copy of the WSDL is refreshed and the web service client and proxy classes are regenerated.

To regenerate the web service client and proxy classes:

You can regenerate the web service client and proxy classes quickly and easily using the set of properties last defined in the Web Service Client and Proxy Editor wizard and the current locally stored WSDL as follows:

	
In the Application Navigator, right-click the web service client node that you want to regenerate and choose Regenerate Web Service Proxy from the context menu.

The web service client class, WSDL, and supporting proxy files are regenerated.

16.4.6 How to Manage the Web Service Clients

JDeveloper provides the ability to both edit and delete web service clients.

To edit web service clients:

You can edit a web service client using the Web Service Client and Proxy editor. To access the Web Service Client and Proxy editor:

	
Double-click on the client within the Application Navigator.

	
Right-click on the client within the Application Navigator, and select Properties...

For help in completing the wizard, press F1 or click Help from within the wizard.

To delete web service clients:

	
In the Application Navigator, expand the node that contain the web service client proxy files, package.proxy, and select the files.

	
Choose File > Erase from Disk. You can ignore any usages JDeveloper finds.

	
Expand the node that contains the web service proxy runtime files, package.proxy.runtime, and select the files.

	
Choose File > Erase from Disk.

The files are permanently erased.

16.4.7 How to Reference Web Services Using the @WebServiceRef Annotation

When you use the javax.xml.ws.WebServiceRef annotation, you can inject a reference to a web service into any container-managed Java class.

To add a @WebServiceRef annotation to your Java class quickly and easily, right-click within the Java class editor at the location you want to inject the web service reference, and select one of the following options:

	
Select Create Proxy and Insert Reference from the context menu.

This command invokes the Create Web Service Client and Proxy wizard, enabling you to generate a web service client and proxy classes. Then, the javax.xml.ws.WebServiceRef and web service proxy classes are imported automatically and a reference to the selected web service is injected at the specified location.

	
Select Insert Proxy Reference from the context menu, then select an existing Web service proxy from the drop-down list.

The javax.xml.ws.WebServiceRef and web service proxy classes are imported automatically and a reference to the selected web service is injected at the specified location. If no web service proxy classes are currently available, then this option is greyed out.

The following excerpt provides an example of the code that is automatically added to the Java class:

import java.xml.ws.WebServiceRef;
import ratingservice.CreditRatingService;
...
/**
 ** Injectable field for service WebServiceClient
**/
@WebServiceRef
CreditRatingService creditRatingService1;
...

For more information, see "Defining a Web Service Reference Using @WebServiceRef Annotation" in GD.

16.5 Creating SOAP Web Services (Bottom-Up)

Web services can be created using two development methods: top-down or bottom-up. Bottom-up development refers to the process of developing a web service from the underlying Java implementation using SOAP. For information about using top-down development—starting from the WSDL—see Section 16.6, "Creating SOAP Web Services from WSDL (Top Down)".

The following sections describe how to generate different types of web services from the bottom up:

	
Section 16.5.1, "How to Create Java Web Services"

	
Section 16.5.2, "How to Use JSR-181 Annotations"

	
Section 16.5.3, "How to Create PL/SQL Web Services"

	
Section 16.5.4, "How to Create TopLink Database Web Service Providers"

	
Section 16.5.5, "How to Use Web Service Atomic Transactions"

	
Section 16.5.6, "How to Regenerate Web Services from Source"

	
Section 16.5.7, "How to Use Handlers"

	
Section 16.5.8, "How to Expose Superclass Methods for JAX-RPC"

	
Section 16.5.9, "How to Handle Overloaded Methods"

	
Section 16.5.10, "How to Set Mappings between Java Methods and WSDL Operations Using the JAX-RPC Mapping File Editor"

16.5.1 How to Create Java Web Services

You can create web services from:

	
Java classes

	
Remote interface of EJBs

	
ADF Business Components service session bean wrapped as an EJB

The web service creation wizards create the deployment files for you, so once you have created your web service the final step is to deploy it.

Before you begin:

If you have not already done so, set an appropriate context root for your web service. For more information, see Section 16.2.2, "How to Set the Context Root for Web Services".

To create the web service:

	
In the Application Navigator, select the project containing the Java class or EJB from which you want to create a web service.

	
Choose File > New to open the New Gallery.

	
In the Categories list, expand Business Tier and select Web Services. In the Items list, double-click Java Web Service to launch the Create Java Web Service wizard.

For detailed help about completing the wizard, press F1 or click Help from within the wizard.

	
Note:

The Select Deployment Platform page is only displayed the first time a web service is created in a project. Thereafter, all additional web services in the same project will use the same version.

16.5.2 How to Use JSR-181 Annotations

JSR-181 specifies web services meta data, which allows you to use annotations to declaratively to make creating and managing web services easier. You use the annotations for methods and classes in order to expose these methods as web service end-points.

You can add JSR-181 annotations to a class manually, choose to have JDeveloper add them to the class when creating the web service, or add them when editing the web service using the Edit Web Services dialog.

	
Note:

If you delete the annotations using the Edit Web Services dialog, any annotations that you entered manually are also deleted.

To add annotations:

	
Open the Java class open in the source editor.

	
On correct line, type @ and pause for a couple of seconds.

Code Insight displays possible values. For more information, see Section 16.2.7, "How to Work with Web Services Code Insight".

For more information, see the following references:

	
JSR-181 specification at http://jcp.org/en/jsr/detail?id=18

	
JAX-WS specification at: http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html

	
For JWS annotations available with WebLogic Server see "JWS Annotation Reference" in Oracle Fusion Middleware WebLogic Web Services Reference for Oracle WebLogic Server.

16.5.3 How to Create PL/SQL Web Services

The Create PL/SQL Web Service wizard makes it easy to generate a web service from a PL/SQL package or a Java stored procedure that uses object types. A Java stored procedure is defined by a SQL specification that invokes it, and the PL/SQL Web Service wizard treats these in the same way as packages.

	
Note:

You can only create JAX-RPC PL/SQL Web Services. For more information, see Section 16.2.6, "How to Choose Your Deployment Platform".

PL/SQL web services can be deployed to Oracle WebLogic Server. The Create PL/SQL Web Service wizard uses the functionality of Oracle JPublisher to wrap the PL/SQL in Java so that the service can be published. For more information see Section 28.3.1, "How to Use JPublisher".

You can either:

	
Create the web service starting from a project in the Application Navigator. In this case, you select the database connection and the PL/SQL package to generate the web service from.

	
Create the web service from the PL/SQL package under the database connection node in the Database Navigator or the Resource Palette. In this case, you have to select the project into which the generated files for the web service are deployed.

It should be noted that:

	
If you edit a PL/SQL web service, make sure that the database connection still exists otherwise you will see an error message. If you have deleted the database connection, create a new one with the same name as the original connection.

	
There are some cases where a web service cannot be created. For more information on the limitations, see Section 16.2.5, "How to Work with PL/SQL Web Services and Types".

	
Deploying PL/SQL web services is similar to deploying other J2EE Web Applications. For more information, see Section 16.12, "Deploying Web Services".

To create the PL/SQL web service from a project:

	
In the Application Navigator, select the project.

	
Choose File > New to open the New Gallery.

	
In the Categories list, expand Business Tier and select Web Services. In the Items list, double-click PL/SQL Web Service to launch the Create PL/SQL Web Service wizard.

For detailed help about completing the wizard, press F1 or click Help from within the wizard.

To create the web service from a PL/SQL package:

	
In the Database Navigator or the Resource Palette, expand the database connection node, the schema node, the Packages node, then the node of the package.

	
Right-click the PL/SQL package body, and choose Publish as Web Service to launch the Create PL/SQL Service wizard.

16.5.4 How to Create TopLink Database Web Service Providers

The Create TopLink DB Web Service Provider wizard enables you to build a JAX-WS web service provider for a TopLink database to perform one of the following tasks:

	
Access stored procedures and functions

	
Execute an SQL query

	
Perform CRUD operations on a table

Based on the type of service selected, the wizard generates a web service provider and WSDL document that can be deployed to an application server, such as Oracle WebLogic Server. Deploying TopLink web service providers is similar to deploying other J2EE Web Applications. For more information, see Section 16.12, "Deploying Web Services".

It should be noted that:

	
The wizard generates a JAX-WS web service provider.

	
If you edit a TopLink web service provider, ensure that the database connection still exists; otherwise an error message is returned. If you have deleted the database connection, create a new one with the same name as the original connection.

	
In some cases, you may not be able to generate a TopLink web service provider. For more information on the limitations, see Section 16.2.5, "How to Work with PL/SQL Web Services and Types".

To create the TopLink web service provider from a project:

	
In the Application Navigator, select the project.

	
Choose File > New to open the New Gallery.

	
In the Categories list, expand Business Tier and select Web Services. In the Items list, double-click TopLink DB Web Service Provider to launch the Create TopLink Web Service Provider wizard.

For detailed help about completing the wizard, press F1 or click Help from within the wizard.

16.5.5 How to Use Web Service Atomic Transactions

WebLogic web services enable interoperability with other external transaction processing systems, such as Websphere, JBoss, Microsoft .NET, and so on, through the support of the following specifications:

	
WS-AtomicTransaction (Versions 1.0, 1.1, and 1.2) at http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html

	
WS-Coordination (Versions 1.0, 1.1, and 1.2) at http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html

These specifications define an extensible framework for coordinating distributed activities among a set of participants. The coordinator is the central component, managing the transactional state (coordination context) and enabling web services and clients to register as participants. For more information about web service atomic transactions, see "Using Web Service Atomic Transactions" in Oracle Fusion Middleware Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server.

To enable atomic transactions for a web service implementation at the class level or synchronous method level (for two-way methods only) use one of the following methods:

	
Adding @weblogic.wsee.wstx.wsat.Transactional annotation directly in the Java class; the JDeveloper Code Insight feature can help you. For more information, see Section 16.2.7, "How to Work with Web Services Code Insight".

	
Using the Property Inspector, as described below.

To enable atomic transactions for web service clients use one of the following methods:

	
Right click on the @WebServiceRef annotation or web service injectable target, and select Add Transactional from the menu to add the @Transactional annotation.

	
Pass the weblogic.wsee.wstx.wsat.TransactionalFeature as a parameter when creating the web service proxy or dispatch. For more information, see "Using Web Service Atomic Transactions" in Oracle Fusion Middleware Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server.

When enabling web service atomic transactions, configure the following information:

	
Version: Version of the web service atomic transaction coordination context that is used for web services and clients. For clients, it specifies the version used for outbound messages only. The value specified must be consistent across the entire transaction. Valid values include WSAT10, WSAT11, and WSAT12, and DEFAULT. The DEFAULT value for web services is all three versions (driven by the inbound request); the DEFAULT value for web services clients is WSAT10.

	
Flow type: Flag that specifies whether the coordination context is passed with the transaction flow. The following table summarizes the valid values and their meaning on the web service and client. The table also summarizes the valid value combinations when configuring web service atomic transactions for an EJB-style web service that uses the @TransacationAttribute annotation.

Table 16-3 Transaction Configurations

	Value	Web Service Client	Web Service	Valid EJB @TransactionAttribute Values
	
NEVER

	
JTA transaction: Do not export transaction coordination context.

No JTA transaction: Do not export transaction coordination context.

	
Transaction flow exists: Do not import transaction coordination context. If the CoordinationContext header contains mustunderstand="true", a SOAP fault is thrown.

No transaction flow: Do not import transaction coordination context.

	
NEVER, NOT_SUPPORTED, REQUIRED, REQUIRES_NEW, SUPPORTS

	
SUPPORTS (Default)

	
JTA transaction: Export transaction coordination context.

No JTA transaction: Do not export transaction coordination context.

	
Transaction flow exists: Import transaction context.

No transaction flow: Do not import transaction coordination context.

	
SUPPORTS, REQUIRED

	
MANDATORY

	
JTA transaction: Export transaction coordination context.

No JTA transaction: An exception is thrown.

	
Transaction flow exists: Import transaction context.

No transaction flow: Service-side exception is thrown.

	
MANDATORY, REQUIRED, SUPPORTS

To enable web service atomic transactions in the Java class:

	
Open the web service class in the source editor.

	
You can use the JDeveloper Code Insight to help you.

Start typing the annotation, for example, @Transactional. When you pause, or click Ctrl+Shift+Space, a popup appears from which you can choose the correct entry to complete the statement.

	
You can specify the version and flow type values as follows:

@Transactional(version=Transactional.Version.[WSAT10|WSAT11|WSAT12|DEFAULT],
 value=Transactional.TransactionFowType.[MANDATORY|SUPPORTS|NEVER])

To enable web service atomic transactions in the Property Inspector:

	
With the web service class open in the source editor, choose View Property Inspector to open the Property Inspector.

For more information at any time, press F1 or click Help from within the Property Inspector.

	
With the cursor in the public class, @WebService, or two-way method line of the class, navigate to the Web Services Extensions node in the Property Inspector.

	
Select Add Transactional.

The Property Inspector is refreshed to display options to set the flow type and version. For more information about the configuration options, see Table 16-3.

	
Select a flow type from the Flow Type drop-down list. Valid values include: Supports, Never, and Mandatory. This field defaults to Supports.

	
Select a version from the Version drop-down list. Valid values include: WS-AT 1.0, WS-AT 1.1, WS-AT 1.2, and Default. The Default value for web services is all three versions (driven by the inbound request); the Default value for web services clients is WS-AT 1.0.

To enable web service atomic transactions in a web service client's injectable target:

	
Open the web service client in the source editor.

	
Right-click on the @WebServiceRef annotation or injectable target and select Add Transactional from the menu.

The @Transactional annotation is added to the web service client.

	
You can specify the version and flow type values as follows:

@Transactional(version=Transactional.Version.[WSAT10|WSAT11|WSAT12|DEFAULT],
 value=Transactional.TransactionFowType.[MANDATORY|SUPPORTS|NEVER])

For more information about the configuration options, see Table 16-3.

16.5.6 How to Regenerate Web Services from Source

There are times that you may need to regenerate your web service. For example, if the source from which the service was originally generated has changed.

	
Note:

When you regenerate the web service, JDeveloper discards any changes that you have made to the WSDL since it was last generated.

After you regenerate the web service, you may need to regenerate the client to the web service. Otherwise, you may get compilation errors (when the client is in the same project as the web service), or run-time errors (when the client is in a different project to the web service).

If you are not using annotations and change the name of the method in the underlying class, when you regenerate the service you will receive an error message indicating that no methods were selected. Because methods are tracked using namespaces, if you modify the namespace JDeveloper is not able to determine what needs to be regenerated. To correct this error, double-click the web service container to open the Web Services Editor, go to the Methods page, and select the methods on which to base the web service.

To regenerate a web service from source:

	
In the Application Navigator, right-click the web service container you want to regenerate.

	
Choose Regenerate Web Service from Source from the context menu.

The service is automatically regenerated, and any changes you made to the WSDL since it was last generated are lost.

16.5.7 How to Use Handlers

JDeveloper allows you to specify the handler classes to deal with the web service message. The handlers can use initialized parameters, SOAP roles or SOAP headers.

To define handlers:

	
Create a web service. For more information, see Section 16.5.1, "How to Create Java Web Services".

or

Open the web service editor. For more information, see Section 16.10, "Editing and Deleting Web Services".

	
In the Handler Details page, enter the values you want to use.

For more information at any time, press F1 or click Help from within the dialog.

16.5.8 How to Expose Superclass Methods for JAX-RPC

	
Note:

For JAX-WS web services, superclass methods are always exposed.

To expose superclass methods for JAX-RPC, consider the following two examples:

package mypackage;
public class Shape {
 public void area() {
 }
}

and

package mypackage;
public class Circle extends Shape {
 public Circle() {
 }
 public void callParentMethod() {
 super.area();
 }
}

In class Circle, which extends Shape, there is a public method callParentMethod() which is responsible for calling the parent class method area. To call the superclass method area(), create a J2EE Java web service on the Circle class using the public method callParentMethod().

16.5.9 How to Handle Overloaded Methods

If the Java class on which you base a web service has overloaded methods, JDeveloper handles them automatically. However if you create a J2EE 1.4 web service, and then change the class on which it is based so that an existing method becomes an overloaded method you have to take action to update the mapping file.

The procedure to handle overloaded methods depends on the type of web service that you are developing, JAX-WS or JAX-RPC.

Handling Overloaded Methods for JAX-WS Web Services

For JAX-WS web services, you can use the @WebMethod annotation to change the name of an overloaded method. For example:

public class SimpleImpl {
 @WebMethod(operationName="sayHelloOperation")
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
...
}

In the example, the sayHello() method of the SimpleImpl JWS file is exposed as a public operation of the web service. The operationName attribute specifies, however, that the public name of the operation in the WSDL file is sayHelloOperation.

For more information about @WebMethod, see "Specifying that a JWS Method Be Exposed as a Public Operation (@WebMethod and @OneWay Annotations)" in Oracle Fusion Middleware Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Handling Overloaded Methods for JAX-RPC Web Services

For JAX-RPC web services, there are two ways that you can handle overloaded methods:

	
Manually modify the mapping file

	
Delete the mapping file and recreate the web service

To manually modify the mapping file

After you create the web service based on the Java class, add the overloaded method to the class.

To delete the mapping file and recreate the web service

	
In the Application Navigator, expand Web Content and WEB-INF.

	
Right-click <web_service>-java-wsdl-mapping.xml and choose Delete.

	
Open the web service editor. For more information, see Section 16.10, "Editing and Deleting Web Services".

	
Click OK to close it and regenerate the service.

16.5.10 How to Set Mappings between Java Methods and WSDL Operations Using the JAX-RPC Mapping File Editor

JAX-RPC maps Java types to WSDL definitions. However when the types you want to support are not covered by the JSR-109 specification, or when you want to use different mappings to provide the functionality your web service requires, you can use the JAX-RPC Mapping File Editor to amend an existing mapping file, or to create your own.

The JAX-RPC Mapping File Editor is a specialized schema-driven editor which helps you to create a JSR-109 compliant mapping file for a J2EE 1.4 web service. The mapping file standardizes the Java- WSDL mappings, and in general you have to provide a full mapping only when the default mapping rules in JSR-109 are not satisfied.

These features are available while you are using the JAX-RPC Mapping File Editor:

	
While you are typing, you can invoke Code Insight by pausing after typing the < (open bracket), or by pressing Ctrl+Space (if you are using the default key mapping). Code Insight opens a list with valid elements based on the schema.

	
You can choose View > Component Palette to open the Palette and select one of the available pages from the dropdown list.

	
A mapping file's elements are displayed hierarchically in the Structure window, which also displays any XML syntax errors found as you type and edit. You can double-click on an element or error to edit it in the JAX-RPC Mapping File Editor.

	
You can right-click on an XML element in the editor and choose Locate in Structure to expand the Structure window to both show the element and select it. While you are editing, you can right-click in the open file and choose Auto Indent XML to properly indent the elements.

	
In an open JAX-RPC Mapping File Editor window, or in the Structure window with the web service selected in the Application Navigator, right-click a mapping file and choose Validate WSDL. The Validate WSDL command will validate the XML against the registered schemas.

16.6 Creating SOAP Web Services from WSDL (Top Down)

JDeveloper allows you to develop top-down web services, that is, starting with the WSDL. JDeveloper will generate a service implementation and its deployment descriptors. You can browse to a WSDL in the file system, or use the Find Web Service Wizard to locate a web service in a UDDI registry connection in the Resource Palette.

To create a SOAP web service from WSDL (top down):

	
In the Application Navigator, select the project in which you want to create the web service.

	
Choose File > New to open the New Gallery.

	
In the Categories list, expand Business Tier and select Web Services. In the Items list, double-click Java Web Service From WSDL to launch the Create Java Web Service from WSDL wizard.

For detailed help about completing the wizard, press F1 or click Help from within the wizard.

The SOAP web service is created and the Java implementation class is opened automatically in the editor

16.7 Creating RESTful Web Services

Representational State Transfer (REST) describes any simple interface that transmits data over a standardized interface (such as HTTP) without an additional messaging layer, such as SOAP. REST provides a set of design rules for creating stateless services that are viewed as resources, or sources of specific information, and can be identified by their unique URIs. A client accesses the resource using the URI, a standardized fixed set of methods, and a representation of the resource is returned. The client is said to transfer state with each new resource representation.

When using the HTTP protocol to access RESTful resources, the resource identifier is the URL of the resource and the standard operation to be performed on that resource is one of the HTTP methods: GET, PUT, DELETE, POST, or HEAD.

The following sections describe how to create RESTful web service and clients:

	
Section 16.7.1, "How to Add the Jersey JAX-RS Reference Implementation to Your Project"

	
Section 16.7.2, "How to Create JAX-RS Web Services and Clients"

16.7.1 How to Add the Jersey JAX-RS Reference Implementation to Your Project

Before you can create RESTful web services in JDeveloper, you need to download and add to your project the Jersey JAX-RS Reference Implementation (RI). The Jersey JAX-RS RI is available at http://jersey.java.net. Click Download for more information about the Jersey RI and to download the ZIP file that contains the relevant library JAR files. Once downloaded, you need to add the Jersey RI to your project.

	
Note:

The Jersey RI 1.1.5.1 (jersey-archive-1.1.5.1) version or above is compatible with this release of JDeveloper.

To add the Jersey JAX-RS RI to your project:

	
With the project selected in the Application Navigator, open the Project Properties dialog.

To display the dialog, double-click the Project folder or select Edit > Properties.

	
Select the Libraries and Classpath node.

	
On the Libraries and Classpath page, click Add Library.

	
In the Add Library dialog, click New.

	
In the Create Library dialog, enter a name for the new library (for example, JAX-RS) and select its location.

	
Enable Deployed by Default.

	
Note:

If you do not select this check box, you will experience errors during deployment of your RESTful web services and clients.

	
Select Class Path and click Add Entry.

	
In the Select Path Entry dialog, navigate to the lib directory of the Jersey archive. For example, c:\mylibraries\jersey-archive-1.1.5.1\lib.

	
Select all of the JAR files in the lib directory and click Select.

	
Note:

If you are developing RESTful web services only (that is, you are not developing RESTful clients), you do not have to include the jersey-client-1.1.5.1.jar. Similarly, if you are developing RESTful web service clients only, you do not have to include the jersey-server-1.1.5.1.jar.

	
If you downloaded the source files, you can set the Source Path to point to the source files (similar to the way that you defined the Class Path in the previous steps).

	
In the Create Library dialog, click OK.

	
In the Add Library dialog, click OK.

	
On the Libraries and Classpath page, if finished click OK.

Once you have added the Jersey JAX-RS RI to your project, you can then create JAX-RS web services and clients.

16.7.2 How to Create JAX-RS Web Services and Clients

After you have added the Jersey JAX-RS RI to your project, you can start creating JAX-RS web services and clients using JDeveloper. All of the standard Java source editor features will work with the JAX-RS calls, such as code insight, import assistance, and so on.

For more information about JAX-RS and samples, you might find it helpful to review the Jersey RI documentation at: https://wikis.oracle.com/display/Jersey/Main.

Once you create your RESTful web services, you can test them using the HTTP Analyzer. For more information, see Section 16.13.4, "How to Examine Web Services using the HTTP Analyzer".

	
Note:

If you experience errors during the deployment of your RESTful web services and clients, ensure that you have selected the Deployed by Default check box when adding the Jersey JAX-RS RI to your project.

A Simple Hello World Example

Example 16-1 provides a very simple example of a RESTful web services:

Example 16-1 RESTful web services

package samples.helloworld;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;

// Specifies the path to the RESTful service
@Path("/helloworld")
public class helloWorld {

 // Specifies that the method processes HTTP GET requests
 @GET
 @Path("sayHello")
 @Produces("text/plain")
 public String sayHello() {
 return "Hello World!";
 }
}

Example 16-2 provides a simple RESTful client that calls the RESTful web service defined previously. This sample uses classes that are provided by the Jersey JAX-RS RI specifically; they are not part of the JAX-RS standard.

Example 16-2 RESTful client

package samples.helloworld.client;

import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.WebResource;

public class helloWorldClient {
 public helloWorldClient() {
 super();
 }

 public static void main(String[] args) {
 Client c = Client.create();
 WebResource resource = c.resource(
 "http://localhost:7101/RESTfulService-Project1-context-root/
 jersey/helloWorld");
 String response = resource.get(String.class);
 }
}

About the web.xml File

JDeveloper does not automatically add the servlet class to the web.xml file. Instead, you are prompted to confirm whether you want to add it when you call a JAX-RS method from your code. For example, see Figure 16-1.

Figure 16-1 Prompt to confirm update

[image: Prompt to confirm update.]

	
Note:

Why is the web.xml file not updated automatically? In the future, when you deploy to a Java EE 6.0 container, an update to the web.xml will not be required. Therefore, this is set up as an optional activity.

To update the web.xml:

To update the web.xml, select Configure web.xml for Jersey JAX-RS web services as follows:

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee">
 <servlet>
 <servlet-name>jersey</servlet-name>
 <servlet-class>
 com.sun.jersey.spi.container.servlet.ServletContainer
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>jersey</servlet-name>
 <url-pattern>/jersey/*</url-pattern>
 </servlet-mapping>
</web-app>

16.8 Managing WSDLs

JDeveloper provides a number of ways that you can manage WSDLs for a web service, as described in the following sections:

	
Section 16.8.1, "How to Create WSDL Documents"

	
Section 16.8.2, "How to Add a WSDL to a Web Service Project"

	
Section 16.8.3, "How to Display the WSDL for a Web Service"

	
Section 16.8.4, "How to Save a WSDL to Your Local Directory"

16.8.1 How to Create WSDL Documents

You can create a WSDL document, for example, to create a top-down web service.

To create a WSDL:

	
In the Application Navigator, select the project containing the Java class or EJB from which you want to create a web service.

	
Choose File > New to open the New Gallery.

	
In the Categories list, expand Business Tier and select Web Services. In the Items list, double-click WSDL Document to open the Create WSDL Document dialog.

For detailed help about completing the wizard, press F1 or click Help from within the dialog.

16.8.2 How to Add a WSDL to a Web Service Project

You can generate a WSDL file for a web service and add it to the project using the procedures described below. The WSDL file is generated automatically and added to the WEB-INF/wsdl directory for Web applications and to the META-INF/wsdl directory for EJB applications within the project. In addition, the @WebService annotation is updated with the wsdlLocation attribute to reference the location of the local WSDL. For example:

@WebService(wsdlLocation="WEB-INF/wsdl/CreditRatingService.wsdl")

	
Note:

If a WSDL file already exists in the WEB-INF/wsdl or META-INF/wsdl directory, you are prompted whether or not to overwrite the existing WSDL file.

To add a WSDL to a web service project:

In the Application Navigator, right-click the web service for which you want to add a WSDL and select Generate WSDL and Add to Project from the context menu. The WSDL is automatically generated and added to the project in the WEB-INF/wsdl directory.

16.8.3 How to Display the WSDL for a Web Service

You can display the WSDL for a web service. The WSDL file is generated based on the annotations defined in the web service to a temporary directory and displayed.

To display the WSDL to a web service project:

In the Application Navigator, right-click the web service for which you want to display the WSDL and select Show WSDL for Web Service Annotations from the context menu.

The WSDL is generated to a temporary directory and displayed.

16.8.4 How to Save a WSDL to Your Local Directory

When viewing a remote WSDL for a web service, you can save the WSDL to your local directory.

	
Note:

If you want to use the WSDL within a web service project, you need to copy it to a location that is accessible by the project directory (for example, WEB-INF/wsdl for Web applications and META-INF/wsdl for EJB applications) and update the @WebService annotation to reference the WSDL location.

To save a WSDL to your local directory:

	
Display the WSDL file for the web service.

	
Choose Tools > Copy WSDL Locally.

	
In the Select Destination for WSDL dialog, navigate to the location that you want to save the WSDL, or enter the location in the Directory name text box, and click Select.

The WSDL is saved to the location specified.

16.9 Using Policies with Web Services

This section describes how to use policies with web services created in JDeveloper. You can use the following types of policies:

	
Oracle Web Service Manager (Oracle WSM) policies—Attach security policies only to JAX-WS web services.

	
Oracle WebLogic web service policies—Attach to JAX-WS or JAX-RPC web services.

You cannot mix the two types of policies in the same web service, so you should decide which to use at the planning stage. Once you have added policies of one type to your web service, you cannot switch to the other type without deleting the policies that are currently attached. For example, if you have configured Oracle WSM policies and later decide that you want to use Oracle WebLogic web service policies, you must delete the Oracle WSM policies before you can attach the Oracle WebLogic web service policies.

The following sections describe how to use policies with web services:

	
Section 16.9.1, "What You May Need to Know About Oracle WSM Policies"

	
Section 16.9.2, "What You May Need to Know About Oracle WebLogic Web Service Policies"

	
Section 16.9.3, "How to Attach Policies to Web Services"

	
Section 16.9.4, "How to Attach Oracle WSM Policies to Web Service Clients"

	
Section 16.9.5, "How to Invoke Web Services Secured Using WebLogic Web Service Policies"

	
Section 16.9.6, "How to Edit and Remove Policies from Web Services"

	
Section 16.9.7, "How to Use Custom Web Service Policies"

	
Section 16.9.8, "How to Use a Different Oracle WSM Policy Store"

Before you begin:

A detailed examination of all the tasks to be performed to use policies is outside the scope of this guide, but in general the steps you need to perform are:

	
Decide on the policies you intend to use. For more information, see "Determining Which Security Policies to Use" in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

	
Attach the policies to a class or service. For more information, see Section 16.9.3, "How to Attach Policies to Web Services".

	
Configure a server with the correct key stores or other information that the policies need to work, and deploy the web service to the server. For more information, see "Configuring Policies" in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

	
Test the web service to ensure that the policies work as expected. For more information, see Section 16.11.1, "How to Test Web Services in a Browser".

16.9.1 What You May Need to Know About Oracle WSM Policies

Oracle WSM policies can be attached to JAX-WS web services at the port-level. JDeveloper currently supports Oracle WSM security policies only.

JDeveloper is preconfigured to use the policy store set at the default location in the WS Policy page of the Preferences dialog at:

	
Tools menu > Preferences > WS Policy Store

or

	
Application menu > Application Properties > WS Policy Store

You can specify another policy store location to use your organization's custom Oracle WSM policies. For more information Section 16.9.8, "How to Use a Different Oracle WSM Policy Store".

For more information about Oracle WSM policies, see the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

Policy Annotations

You can attach a single policy using the weblogic.wsee.jws.jaxws.owsm.SecurityPolicy annotation in the Java class, for example:

@SecurityPolicy(uri = "oracle/wss11_message_protection_service_policy")

You can attach multiple policies as a composite using @SecurityPolicies containing a number of @SecurityPolicy elements, for example:

@SecurityPolicies({
 @SecurityPolicy(uri = "oracle/wss_http_token_service_policy"),
 @SecurityPolicy(uri = "oracle/wss_oam_token_service_policy")
})

	
Note:

To display a list of valid policies, click Ctrl+Alt+Enter to invoke the Code Assist feature.

16.9.2 What You May Need to Know About Oracle WebLogic Web Service Policies

Oracle WebLogic web service policies can be attached to JAX-WS and JAX-RPC web services at the port or operation level. With Oracle WebLogic web service policies it is possible to specify the usage direction of the policies, i.e., to be applied on the inbound (request) message or outbound (response) message, or both.

You can configure JDeveloper to use your organization's custom Oracle WebLogic web service policies. For more information, see Section 16.9.7, "How to Use Custom Web Service Policies".

For more information, see the Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server.

Policy Annotations

You can attach a single policy using the weblogic.jws.Policy annotation in the Java class, for example:

@Policy(uri = "policy:Wssp1.2-2007-Https-UsernameToken-Plain.xml")

You can attach multiple policies as a composite using @Policies containing a number of @Policy elements, for example:

@Policies({
 @Policy(uri = "policy:Wssp1.2-2007-Https-BasicAuth.xml"),
 @Policy(uri = "policy:Wssp1.2-2007-Https-UsernameToken-Plain.xml")
})

	
Note:

To display a list of valid policies, click Ctrl+Alt+Enter to invoke the Code Assist feature.

16.9.3 How to Attach Policies to Web Services

JDeveloper allows you to attach Oracle Web Service Manager (Oracle WSM) policies or Oracle WebLogic web service policies to web services.

After you attach a policy to a web service, you need to configure the policies. For more information, see "Configuring Policies" in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

You can attach policies to web services by:

	
Selecting the policies to attach in the web service wizard when creating a new web service or in the web service editor when updating a web service that already exists.

	
Adding policy annotations directly in the Java class; the Code Insight feature can help you. For more information, see Section 16.2.7, "How to Work with Web Services Code Insight".

	
Using the Property Inspector.

To attach policies in the web service wizard or editor:

In the Create Java Web Service wizard or web service editor, navigate to the Configure Policies page. For more information at any time, press F1 or click Help from within the dialog.

When attaching Oracle WSM policies, you can view more information about the policy and its assertions as follows:

	
Click the Show Descriptions checkbox to display a description of each of the policies.

	
Click View to review the policy assertions in the policy file.

	
Click the Show Selected Policies checkbox to display only those policies that are currently selected.

To attach policy annotations in the Java class:

	
Open the web service class in the source editor.

	
You can use the Code Insight to help you.

Start typing the annotation, for example, @Policies. When you pause, or click Ctrl+Shift+Space, a popup appears from which you can choose the correct entry to complete the statement.

For more information about using policy annotations, see "Updating the JWS File with @Policy and @Policies Annotations" and "SecurityPolicy and SecurityPolicies Annotations" in Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server.

To attach policies in the Property Inspector:

	
With the web service class open in the source editor, choose View > Property Inspector to open the Property Inspector.

For more information at any time, press F1 or click Help from within the Property Inspector.

	
With the cursor in the public class or @WebService line of the class, navigate to the Web Services Extensions node where you can choose to use Oracle WSM Policies or Oracle WebLogic web service policies.

	
Select Secure with OWSM Policies or Secure with WLS Policies.

The Property Inspector is refreshed to display options to select single or multiple policies for the policy type selected (Oracle WSM or WLS).

	
Click ... to attach multiple policies from the Edit Property: Multiple Policies dialog, or select a single policy from the Single Policy list.

When using the Edit Property: Multiple Policies dialog box to attach multiple Oracle WSM policy files, click View to review the policy assertions in the policy file.

You cannot use both types of policy in the same web service. If you choose the wrong type, delete the lines containing the policy statements from the JAX-WS class so that you can choose again.

16.9.4 How to Attach Oracle WSM Policies to Web Service Clients

JDeveloper allows you to attach Oracle Web Service Manager (Oracle WSM) to web service clients.

After you attach an Oracle WSM policy to a web service client, you need to configure the policies. For more information, see "Configuring Policies" in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

	
Note:

For information about updating client applications to invoke web services that use WebLogic web service policies, see "Updating a Client Application to Invoke a Message-Secured Web Service" in Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server.

You can attach Oracle WSM policies to web service clients by:

	
Selecting the Oracle WSM policies to attach in the Create Web Service Client and Proxy wizard when creating a new web service client or in the Web Service Client and Proxy editor when updating a web service client that already exists. In the Create Web Service Client and Proxy wizard or editor, navigate to the Policy page.

	
When attaching Oracle WSM policies, you can view more information about the policy and its assertions as follows:

	
Click the Show Descriptions checkbox to display a description of each of the policies.

	
Click View to review the policy assertions in the policy file.

	
Click the Show Selected Policies checkbox to display only those policies that are currently selected.

	
Click the Show only the compatible client policies for selection checkbox to view the policies that are compatible with the associated web service.

For more information at any time, press F1 or click Help from within the dialog.

	
Manually using weblogic.wsee.jws.jaxws.owsm.SecurityPolicyFeature class to attach a single policy or weblogic.wsee.jws.jaxws.owsm.SecurityPoliciesFeature to attach multiple policies.

For more information, see the Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server.

16.9.5 How to Invoke Web Services Secured Using WebLogic Web Service Policies

When creating or editing a web service client from a WSDL that advertises a WebLogic web service policy, you can configure credentials to invoke the web service.

To configure credentials for a web service client that invokes a web service secured using WebLogic web service policies:

	
Perform one of the following tasks:

	
Create a web service client. For more information, see Section 16.4.1, "How to Create the Client and Proxy Classes".

	
Edit a web service client. For more information, see Section 16.4.6, "How to Manage the Web Service Clients".

	
Navigate to the Select Credential page of the wizard.

	
Select an existing set of credentials from the dropdown list or click New to define a new set of credentials.

For help in completing the wizard, press F1 or click Help from within the wizard.

	
Complete the wizard.

The client class is updated to include methods for setting the client credentials. Once added, you can modify the credential values, as required.

The following provides an example of the code that is generated and included in the client class:

@Generated("Oracle JDeveloper")
public static void setPortCredentialProviderList(
 Map<String, Object> requestContext) throws Exception
{
 // Values used from credential preference: TestCredential
 String username = "weblogic";
 String password = "weblogic1";
 String clientKeyStore = "/C:/temp/ClientIdentity.jks";
 String clientKeyStorePassword = "ClientKey";
 String clientKeyAlias = "identity";
 String clientKeyPassword = "ClientKey";
 String serverKeyStore = "/C:/temp/ServerIdentity.jks";
 String serverKeyStorePassword = "ServerKey";
 String serverKeyAlias = "identity";
 List<CredentialProvider> credList = new ArrayList<CredentialProvider>();

 // Add the necessary credential providers to the list
 credList.add(getUNTCredentialProvider(username, password));
 credList.add(getBSTCredentialProvider(clientKeyStore, clientKeyStorePassword,
 clientKeyAlias, clientKeyPassword, serverKeyStore,
 serverKeyStorePassword, serverKeyAlias, requestContext));
 credList.add(getSAMLTrustCredentialProvider());
 requestContext.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credList);
}

For information about how to program your web service client to invoke a web service that is secured using WebLogic web service policies, see "Updating a Client Application to Invoke a Message-Secured Web Service" in the Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server.

16.9.6 How to Edit and Remove Policies from Web Services

You can edit policies and remove them entirely from web services with either of the following:

	
Web service editor

	
Source editor

	
Property Inspector

To change or remove policies using the web service editor:

	
Right-click the web service in the Application Navigator, and choose Web Service Properties.

For more information at any time, press F1 or click Help from within the dialog.

	
Navigate to the Configure Policies page, where you can change the policies for the type of policies selected, change to using a different type of policies (for example, from Oracle WSM policies to Oracle WebLogic web service policies), or choose No Policies. The web services is changed when you navigate away from this page of the editor.

To change or remove policies using annotations in the Java class:

	
Open the web service class in the source editor, where the Code Insight feature is available to help you. For more information, see Section 16.2.7, "How to Work with Web Services Code Insight".Add or remove the annotations, as required.

To change or remove policies using the Property Inspector:

	
With the JAX-WS web service class open in the source editor, choose View > Property Inspector to open the Property Inspector.

For more information at any time, press F1 or click Help from within the Property Inspector.

	
With the cursor in the public class or @WebService line of the class, navigate to the Web Services Extensions node:

	
To change multiple policies, click ... to open the Edit Property: Multiple Policies dialog.

	
To change a single policy, delete the name from the from the Single Policy list and choose another.

	
To change from one type of policy to another, delete all the policies so that you can start again.

16.9.7 How to Use Custom Web Service Policies

You can use custom policies from within JDeveloper. The process is different based on whether you are using custom Oracle Web Service Manager (Oracle WSM) policies or Oracle WebLogic web service policies, as described in the following sections:

	
Section 16.9.7.1, "Using Custom Oracle WSM Policies"

	
Section 16.9.7.2, "Using Custom Oracle WebLogic Web Service Policies"

16.9.7.1 Using Custom Oracle WSM Policies

To use custom Oracle Web Service Manager (Oracle WSM) policies, perform one of the following steps:

	
Add a custom policy in the default policy store location at:

JDEV_USER_HOME\system11.1.1.2.x.x.x\DefaultDomain\oracle\store\gmds. If not set,

JDEV_USER_HOME defaults to C:\Documents and Settings\user-dir\Application Data\JDeveloper.

Within this directory, policies must be included using one of the following directory structures:

	
Predefined Oracle WSM policies: owsm/policies/oracle/policy_file

	
Custom user policies: owsm/policies/policy_file

	
Note:

When exporting policy files from the Oracle WSM repository for use in JDeveloper, this directory structure is not maintained. You must ensure that when adding the exported policy to the JDeveloper environment that you use the required directory structure noted above. Otherwise, the policies will not be available in the JDeveloper environment. For more information about exporting policies from the Oracle WSM repository, see "Understanding the Different Mechanisms for Importing and Exporting Policies" in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

	
Specify a different policy store. Fro more information, see Section 16.9.7.2, "Using Custom Oracle WebLogic Web Service Policies".

If you elect to use a policy store on a remote application server, you can import custom Oracle WSM policies to the MDS repository on the remote application server using Fusion Middleware Control or WLST.

For more information about importing policies to the Oracle WSM MDS on the remote application server, see "Understanding the Different Mechanisms for Importing and Exporting Policies" in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

For more information about creating custom policies, see "Creating Custom Assertions" in Extensibility Guide for Oracle Web Services Manager.

16.9.7.2 Using Custom Oracle WebLogic Web Service Policies

To use custom Oracle WebLogic web service policies, perform one of the following steps:

	
Place the custom policy JAR in the classpath and enable the WebLogic Server property weblogic.wsee.policy.LoadFromClassPathEnabled to true.

	
Place the custom policy JAR in WEB-INF/policies (Web application) or META-INF/policies (EJB).

	
Place the custom policy XML file in WEB-INF (Web application) or META-INF (EJB).

To access the policies:

	
When using the @Policy annotation, ensure that you add the policy prefix; for example, policy:mypolicy.xml.

	
Click the Add Custom Policies button on the Configure Policies page of the Java Web Service Editor and select the custom policy files using the Select Custom Policy Files dialog box.

For more information about creating custom policies, see "Creating Custom Assertions" in Extensibility Guide for Oracle Web Services Manager.

16.9.8 How to Use a Different Oracle WSM Policy Store

The Oracle Web Service Manager (Oracle WSM) policy store is installed as part of JDeveloper. You can use a different policy store, for example, to use a shared policy store. You can use a policy store that is available on the local file store or on a remote application server.

To specify a different policy store location:

	
Choose Tools > Preferences to open the Preferences dialog, and navigate to the WS Policy Store page.

For more information at any time, press F1 or click Help from within the Preferences dialog.

	
To specify a policy store that is in the local file store, click File Store and enter the location of the policy store in the Override Location text box, or click Browse to browse to its location.

	
To configure a policy store on a remote application server, click App Server Connection and select a remote application server connection from the drop-down list.

To add a new remote application server connection, click New.

	
Note:

The remote application server that you select must be configured with the Oracle WSM Policy Manager. To verify that the Oracle WSM Policy Manager has been properly configured, use the following URL: http://<host>:<port>/wsm-pm/validator. Enter the username and password for the server when prompted. If the Oracle WSM Policy Manager is operational, then a list of the predefined policies is displayed with descriptions. For more information about troubleshooting the Oracle WSM Policy Manager, see "Diagnosing Problems" in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

16.10 Editing and Deleting Web Services

You can edit or delete a web service that you have created in JDeveloper, for example to change the exposed method or a file location.

To edit a web service:

	
In the Application Navigator, right-click the web service container and choose Properties. The reentrant web service wizard is displayed.

	
Make your changes to the web service. Click OK. The web service files are regenerated.

For detailed help about completing the wizard, press F1 or click Help from within the wizard.

After editing the web service files, you must redeploy the web service. For more information, see Section 16.12, "Deploying Web Services".

When you edit a web service, the previously generated WSDL file is overwritten, and any changes you have made to it will be lost. If you have already deployed the web service and you edit it, you must redeploy it.

When you edit a PL/SQL web service, ensure that the database connection is present; otherwise, you will receive an error message. If you have deleted the database connection, create a new one with the same name as the original one.

To delete a web service:

	
In the Application Navigator, right-click the web service container and choose Delete Web Service. The Delete Web Service dialog listing the files that will be deleted is displayed. Click OK.

The files are deleted and any references to the service web.xml are removed.

When you delete a web service from JDeveloper, the web service container and the files it contains (a WSDL file and possibly some interfaces) are deleted. The entries for the web service in web.xml are removed, although the file is not deleted. The WebServices.deploy file is unchanged as it may be used for other web services.

16.11 Testing and Debugging Web Services

Developer provides a number of ways that you can test web services. You can use the debugger, which enables you to debug web services that you create locally, on the Integrated WebLogic Server, and remotely, on Oracle WebLogic Server. You can also run a web service deployed to Integrated WebLogic Server in a browser to check that it returns what you expect.

In addition to the topics described in this section, you can use HTTP Analyzer to examine the content of web services over HTTP, similar to examining other packet information. For more information, see Section 16.13.4, "How to Examine Web Services using the HTTP Analyzer".

The following sections describe how to test and debug web services:

	
Section 16.11.1, "How to Test Web Services in a Browser"

	
Section 16.11.2, "How to Debug Web Services"

16.11.1 How to Test Web Services in a Browser

Once you have created and deployed a web service, you can check that it returns what you expect by running it in the browser.

The process that you use to test web services depends on whether you are testing WebLogic web services or Oracle Infrastructure web services, such as ADF business components.

	
Testing WebLogic Java EE web services in a browser

	
Testing Oracle Infrastructure web services in a browser

To test WebLogic Java EE web services in a browser:

	
Open the following URL in a browser: http://IP_address:port/wls_utc

	
Enter the URL of the WSDL and click Test.

For example: http://IP_address:port/Project1-context-root/MyWebService1?WSDL

The browser shows a simple page which lists the operations available on the service.

	
Enter values for each of the parameters and click the operation-name button to review the request details.

Testing Oracle Infrastructure Web Services in a Browser

For Oracle Infrastructure web services, such as ADF business components, you can test web services in a browser deployed to:

	
Integrated WebLogic Server

	
Oracle WebLogic Server

To test a service deployed to Integrated WebLogic Server:

	
When you deploy the Oracle Infrastructure web service to Integrated WebLogic Server, examine the contents of the log window. Find the line containing the following:

Use the following context root(s) to test your web application(s): http://IP_address:port/Project1-context-root/MyWebService1

	
Copy the URL and paste it into browser. The browser shows a simple page which lists the operations available on the service.

	
Enter a parameter, and click Enter. The result from the web service is displayed.

To test a service deployed to Oracle WebLogic Server:

	
When you deploy the Oracle Infrastructure web service to Oracle WebLogic Server, examine the contents of the log window. Find the line that says:

The application can be accessed at location: http://IP_address:port/Project1-context-root

This URL only shows the context root for the web service.

	
Copy the URL and paste it into browser, and add the name of the web service to the end to give the full location of the service:

http://IP_address:port/Project1-context-root/MyWebService1

The browser shows a simple page which lists the operations available on the service.

	
Enter a parameter, and click Enter. The SOAP message containing the parameter you entered to the web service is displayed.

	
Click Invoke. The result from the web service is displayed.

16.11.2 How to Debug Web Services

The debugging tools allow you to debug web services created using the web service wizards. This is similar to debugging Java programs; you can debug a web service locally or remotely by running a client against the service in debug mode. You set breakpoints in the client, which is the proxy to the web service, to investigate the functionality of the service.

Although you can debug a PL/SQL web service, what you are debugging is the Java class generated by JDeveloper to wrap the PL/SQL for deployment as a web service. Therefore, the correct way to ensure that a PL/SQL web service runs as expected is to debug the PL/SQL before you create a web service from it. For more information, see Section 29.3, "Debugging PL/SQL Programs and Java Stored Procedures".

You can use the HTTP Analyzer to examine and monitor HTTP request and response packets. It acts as a proxy between code in JDeveloper and the HTTP resource that the code is communicating with, and helps you to debug your application in terms of the HTTP traffic sent and received. For more information, see Section 16.13.4, "How to Examine Web Services using the HTTP Analyzer".

JDeveloper lets you debug a web service that is running in the Integrated WebLogic Server, locally or a web service that is deployed remotely.

Debugging Web Services Locally

Once the web service is running in Integrated WebLogic Server, you can create a proxy client to the web service. This client contains methods to run against each exposed method in the web service, and you can add your own code and set breakpoints to examine how the web service runs.

You can quickly debug a web service created in JDeveloper by debugging it locally. There are two ways to do this:

	
By putting breakpoints in the web service class, then running a proxy client against it. This allows you to debug the service class itself.

	
By putting breakpoints in the client.

Before locally debugging a web service, you should turn off the proxy settings. Remember to turn the proxy settings back on when you have finished debugging.

To debug a web service locally:

	
First, turn off the proxy settings. Choose Tools > Preferences, and select Web Browser and Proxy.

	
Deselect Use Http Proxy Server.

	
Run the web service in debug mode. In the navigator, right-click the web service container, and choose Debug.

The Integrated WebLogic Server is started in debug mode, and the web service is deployed to it. The results are displayed in the log window.

	
Create a web service client, as described in "Creating Web Service Clients".

A proxy container is generated and displayed in the navigator, with a Java class called web_serviceSoapHttpPortClient.java displayed in the source editor.

	
In the source editor, navigator to // Add your own code here, and enter some code.

	
If you are debugging the client to the web service, add one or more breakpoints, right-click and choose Debug.

Alternatively, if you have set breakpoints in the web service class, choose either Debug or Run from the context menu.

The debugger operates as for any Java class. For more information, see Chapter 19, "Running and Debugging Java Programs".

Debugging Web Services Remotely

JDeveloper lets you debug a web service that is deployed remotely.

The web service could be running on Oracle WebLogic Server on the local machine, or it could be running on a service located on a remote machine. In either case, you will need a connection to the server, and the server must be running in debug mode.

When you remotely debug a web service, you have to start the server in debug mode, deploy the web service to it. You can then create a client to the service and set breakpoints in it, and run the client in debug mode.

To debug a web service remotely:

	
Run the remote server in debug mode.

	
Deploy the web service. For more information, see Section 16.12, "Deploying Web Services".

	
Create a client to the web service.

	
In the source editor, navigate to // Add your own code here, and enter some code.

	
Add one or more breakpoints, right-click and choose Debug.

The debugger operates as for any Java class. For more information, see Chapter 19, "Running and Debugging Java Programs".

16.12 Deploying Web Services

JDeveloper provides tools that help you create and deploy web services to Oracle WebLogic Server, where they run within a Java EE container. You can:

	
Deploy web services to Integrated WebLogic Server. See Section 16.12.1, "How to Deploy Web Services to Integrated WebLogic Server".

	
Deploy web services to Oracle WebLogic Server. See Section 16.12.2, "How to Deploy Web Services to Oracle WebLogic Server".

	
Deploy web services to an archive file. For more information, see Section 9.4.1, "Deploying to a Java JAR".

	
Undeploy a web service. See Section 16.12.3, "How to Undeploy Web Services".

In addition, you can define a different WebLogic Server domain to be the Integrated WebLogic Server on which to run web services. For more information, see Section 9.2, "Running Java EE Applications in the Integrated Application Server".

16.12.1 How to Deploy Web Services to Integrated WebLogic Server

You can deploy web service generated in JDeveloper to Integrated WebLogic Server.

To deploy a web service to Integrated WebLogic Server:

	
In the Application navigator, right-click the project containing the web service, and choose Deploy > Web Services.

The first time you start Integrated WebLogic Server by running or debugging an application or web service, a dialog is displayed where you enter a password for the administrator ID on the default domain. When you click OK, the default domain is created. You only need to do this once.

	
In the Deploy Web Services dialog, on the Deployment Action page, select Deploy to Application Server and click Next.

	
On the Select Server page, select IntegratedWebLogicServer and click Next to view the Summary page or Finish to deploy the web services.

16.12.2 How to Deploy Web Services to Oracle WebLogic Server

You can deploy a web service generated in JDeveloper to Oracle WebLogic Server.

When you used one of the Create Web Services wizards to generate the files for your Java EE web service, the wizard automatically created all the files that you need, including a deployment profile named WebServices.deploy. The WebServices.deploy file is created at project level. The deployment profile contains a WAR file and an EAR file.

	
Note:

If you are deploying a PL/SQL web service, you must create an EAR, which is a deployment profile at application level, and deploy the EAR file. The database connection information is contained in the EAR, although password indirection is used so you also have to set a JDBC data source on Oracle WebLogic Server.

To deploy a web service:

	
In the navigator, right-click the project containing the web service and choose Deploy to > connection. From the list of available connections choose the application server connection that you specified when you created the web service.

To deploy a PL/SQL web service:

	
Create an application-level EAR deployment profile and add the web service to it.

	
Deploy the EAR to the application server connection to Oracle WebLogic Server.

	
Set the database connection details on Oracle WebLogic Server by following the information about deploying EARs to Oracle WebLogic Server.

For more information, see Section 9.4.1, "Deploying to a Java JAR".

To examine the contents of a web services deployment profile:

	
To examine the contents of a web services deployment profile:

	
Choose the File Groups > WEB-INF/classes > Filters node to display a listing of the .java and .wsdl files for the web service.

16.12.3 How to Undeploy Web Services

If you have deployed the web service to Integrated WebLogic Server you do not need to undeploy it as the integrated server resets itself to the new application and project whenever it is started.

If you have deployed the web service to a server using an application server connection, you can undeploy it from the Resource Palette.

To undeploy a web service:

	
In the Application Server Navigator, select the application server connection you have been using and expand Web Services.

	
Right-click application-name_project-name_ws and choose Undeploy.

16.13 Monitoring and Analyzing Web Services

You can analyze web services in a number of ways, for example to check whether they conform to WS-I Basic Profile 1.1, or to investigate the contents of SOAP packets.

The Web Services-Interoperability Organization (WS-I) was formed by Oracle and other industry leaders to promote the interoperability of web services technologies across a variety of platforms, operating systems, and programming languages. JDeveloper provides tools that allow you to test the interoperability of web services by checking that the services conform to the WS-I Basic Profile 1.1. For more information about WS-I, see the web site of The Web Services-Interoperability Organization (WS-I) at http://www.ws-i.org.

In order to monitor a web service against the WS-I Basic Profile, or analyze the log file resulting from monitoring a service, you need to have downloaded a WS-I compliant analyzer.

You can analyze a web service for conformity to WS-I standards. The service can either be one you have created that is listed in the Application Navigator, or it can be a web service that you have located using a UDDI registry that is listed in the Resource Palette. Alternatively, you can create a client and proxy classes to access a deployed web service and use the HTTP Analyzer to create a log file that you then use to analyze whether the web service conforms to WS-I standards.

In order to use a WS-I compliant analyzer to analyze a web service, you need to download one to your machine and register it with JDeveloper.

To download and register a WS-I analyzer:

	
Download and install a WS-I analyzer from http://www.ws-i.org.

	
In JDeveloper choose Tools > Preferences and select WS-I Testing Tools.

	
Enter details of where your WS-I compliant analyzer is installed.

For detailed help in using this dialog, press F1 or click Help from within the dialog.

The following sections describe how to monitor and analyze web services:

	
Section 16.13.1, "How to Analyze Web Services in the Navigator"

	
Section 16.13.2, "How to Create and Analyze Web Service Logs"

	
Section 16.13.3, "How to Analyze Web Services Running in the Integrated Server"

	
Section 16.13.4, "How to Examine Web Services using the HTTP Analyzer"

16.13.1 How to Analyze Web Services in the Navigator

You can produce a report of a web service that is listed in the Application Navigator, or that you have located using a UDDI registry and that is listed in the Resource Palette to see whether it conforms with WS-I Basic Profile 1.1 standards. Before you can do this you must have downloaded a WS-I compliant analyzer to your machine and registered it with JDeveloper.

The parts of the WS-I Basic Profile that check the content of messages sent between a web service and a client cannot be used until the client is run against the service. When invoked from the navigator, the WS-I analyzer can only analyze the description of the service in its WSDL document.

To analyze a web service:

	
With the web service selected in the navigator, choose WS-I Analyze WSDL from the context menu.

	
The WS-I Analyze Web Service wizard is displayed.

For detailed help in using the wizard, press F1 or lick Help from within the wizard.

	
Once the wizard has run, a report of the analysis called wsi-report.html is displayed in JDeveloper. The report may take a few moments to appear, depending on whether you are analyzing a local web service or one deployed elsewhere on the Web.

16.13.2 How to Create and Analyze Web Service Logs

You can use the HTTP Analyzer to produce a log from running a web service client. Then you can use a WS-I compliant analyzer that you have downloaded and registered with JDeveloper to check whether the web service complies with WS-I standards.

Because you are running the analyzer against a client to the web service, discovery, description and messages of the service are reported on.

	
Note:

If you are working within a firewall, make sure that the proxy server exceptions do not include the IP address of the machine on which the web service is running.

To create and analyze a web service:

	
Create a client to the web service you want to analyze.

	
Either to an external web service.

or

	
For a web service that you have created and deployed to Oracle WebLogic Server, create a client stub or proxy.

or

	
For a web service that you have just created in JDeveloper, ensure that the web service is running on the embedded server by selecting Run from the web service container's context menu. In the navigator, select Generate Web Service Proxy from the web service container's context menu. You need to make sure that the web service endpoint in the WSDL is exactly the same as the _endPoint variable in the generated proxy.

	
Start the Http Analyzer. Choose View > HTTP Analyzer, and in the monitor click the Start button.

[image: Start button icon]

	
Run the client. Either:

	
Select Run from the context menu of the client in the source editor.

or

	
Select Run from the context menu of the client in the navigator.

	
Once you have received the response you expect from the web service, stop the Http Analyzer by clicking the Stop button.

[image: Stop button icon]

	
Click the WS-I Analyzer button to launch the WS-I Analyze wizard, and follow the instructions in the wizard. The message log records the progress, and the results are displayed in the HTTP Analyzer.

[image: Analyzer button icon]

16.13.2.1 What You May Need to Know About Performing an Analysis of a Web Service

There are a number of reasons why you may find you have problems when performing an analysis of a web service. Some of these are outside the scope of the JDeveloper documentation, but there are two issues you might come across:

	
When the Message section of the wsi-report.html is missing all inputs

	
When the Discovery section of the wsi-report.html is missing all inputs

When the Message section of the wsi-report.html is missing all inputs

This can happen when the WSDL for an external web service has an endpoint that contains the machine name in upper or mixed case, and the client generated by JDeveloper has the _endPoint variable with the machine name in lower case. This is similar to the case discussed in Section 16.13.3, "How to Analyze Web Services Running in the Integrated Server".

The workaround is to import the WSDL into JDeveloper so that it is listed in the navigator, then edit the WSDL so that the machine name is lower case. Then you can generate the client (and associated proxy classes) and run it with the Http Analyzer running.

To import the WSDL into the navigator:

	
Create a new WSDL document accepting the defaults.

	
Open the WSDL document in a browser. View the source of the document, and copy the XML source of the WSDL.

	
Replace the contents of the WSDL document you have just created with the source from the WSDL document of the web service you want to use.

When the Discovery section of the wsi-report.html is missing all inputs

The Discovery section of wsi-report.html reports on the REGDATA artifacts that are used by web services you locate in a UDDI registry. If you have created a report of a web service that you have not located using a UDDI registry, then it all the Inputs in this section of the report will be missing.

16.13.3 How to Analyze Web Services Running in the Integrated Server

The WS-I compliant analyzer correlates messages in the log file against a set of standard assertions, and in particular the soap:address subelement of the service element in the WSDL document must exactly match that specified in the wsi-log.xml messageEntry's senderHostAndPort or receiverHostAndPort, otherwise the messages will not be analyzed for WS-I compatibility.

16.13.3.1 Changing the Endpoint Address

When the web service is run in the Integrated Server (by choosing Run from the web service's context menu), and you create the log by running the Http Analyzer while running a generated client against the web service, you may need to change the web service endpoint in the WSDL or the _endPoint variable in the generated client before creating the log file of the client running.

To make sure the web service endpoint is the same as the _endPoint variable in the proxy:

	
Edit the WSDL document of the web service using one of the following methods:

	
Double-click the web service container in the navigator, go to the Endpoint page of the Edit Web Service dialog, and edit the Web Service Endpoint.

	
Select the web service container in the navigator, and double-click the WSDL document in the Structure window. Navigate to the soap:address subelement, and edit the endpoint.

	
Change the web service endpoint to one of the following:

	
IP_address:integrated_port_no (the default integrated port number is 8988)

	
hostname (lower-case)

	
For JAX-RPC web services, open the EmbeddedStub.java file by double-clicking on it and navigate to the _endPoint variable. After ensuring the web service endpoint is the same as the _endPoint variable in the proxy you can create and analyze the web service logs. For more information, see Section 16.13.2, "How to Create and Analyze Web Service Logs".

16.13.3.2 Changing the Endpoint Address Without Modifying the WSDL (JAX-WS Only)

For JAX-WS web services, you can change the endpoint address without modifying the WSDL, as shown in the following example:

import java.net.URI;
import java.net.URL;
import java.util.Map;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.WebServiceRef;
import project2.proxy.Hello;
import project2.proxy.HelloService;

public class HelloPortClient
{
 @WebServiceRef
 private static HelloService helloService;

 public static void main(String [] args) {
 helloService = new HelloService();
 Hello hello = helloService.getHelloPort();
 setEndpointAddress(hello, "http://some.new.addr/endpoint");
 hello.sayHello("Bob");
 }

 public static void setEndpointAddress(Object port, String newAddress) {
 assert port instanceof BindingProvider :
 "Doesn't appear to be a valid port";
 assert newAddress !=null :"Doesn't appear to be a valid address";

 //
 BindingProvider bp = (BindingProvider)port;
 Map <String, object> context = bp.getRequestContext();
 Object oldAddress = context.get(
 BindingProvider.ENDPOINT_ADDRESS_PROPERTY);
 context.put(
 BindingProvider.ENDPOINT_ADDRESS_PROPERTY, newAddress);
 }
}

16.13.4 How to Examine Web Services using the HTTP Analyzer

You can use the HTTP Analyzer to examine the network traffic of a client connecting to a web service. More information, see Section 8.3, "Monitoring HTTP Using the HTTP Analyzer". It allows you to:

	
Observe the exact content of the request and response TCP packets of your web service.

	
Edit a request packet, resend the packet, and see the contents of the response packet.

You can use the results to debug a locally or remotely deployed web service.

	
Note:

In order to use the HTTP Analyzer, you may need to amend the proxy settings. For more information, see Section 16.2.1, "How to Use Proxy Settings and JDeveloper".

To examine the packets sent and received by the client to a web service:

	
Create the web service.

	
Either run the web service in the Integrated WebLogic Server by right-clicking the web service container in the navigator and choose Run web_service.

or

Deploy and run the web service on Oracle WebLogic Server. For more information, see Section 16.12, "Deploying Web Services".

	
Start the HTTP Analyzer by selecting View > HTTP Analyzer. It opens in its own window in JDeveloper.

	
Run the HTTP Analyzer by clicking Start HTTP Analyzer. [image: Start icon]

	
Run the client proxy to the web service. The request/response packet pairs are listed in the Http Analyzer.

	
To examine the content of a request/response pair highlight it in the History tab and then click the Data tab.

	
You can quickly move from one pair to the previous or the next by clicking the up Next message and Previous message buttons.

[image: Next button]

[image: Previous button]

Running and Debugging Java Programs

19 Running and Debugging Java Programs

This chapter describes how to use the tools and features provided by JDeveloper to run and debug Java programs. For information about writing and compiling a Java program, see Chapter 18, "Programming in Java."

This chapter includes the following sections:

	
Section 19.1, "About Running and Debugging Java Programs"

	
Section 19.2, "Understanding the Run Manager"

	
Section 19.3, "How to Configure a Project for Running"

	
Section 19.4, "Running an Applet"

	
Section 19.5, "How to Run a Project or File"

	
Section 19.6, "About the Debugger"

	
Section 19.7, "Using the Debugger Windows"

	
Section 19.8, "Managing Breakpoints"

	
Section 19.9, "Examining Program State in Debugger Windows"

	
Section 19.10, "Debugging Remote Java Programs"

19.1 About Running and Debugging Java Programs

JDeveloper offers several techniques to monitor and control the way Java programs run. When running Java programs, JDeveloper keeps track of processes that are run and debugged, or profiled. In addition, JDeveloper offers both local and remote debugging of Java, JSP, and servlet source files.

19.2 Understanding the Run Manager

The Run Manager keeps track of processes that are run, debugged, or profiled. When two or more such processes are active at the same time, the Run Manager window is automatically displayed. When a process has completed, it is automatically removed from the Run Manager.

To open the Run Manager:

	
Choose View > Run Manager from the main menu.

To terminate a process with the Run Manager:

	
Right-click a process in the Run Manager and choose Terminate from the context menu.

To view the Run Log:

	
Right-click a process in the Run Manager and choose View Log from the context menu.

19.3 How to Configure a Project for Running

Settings that control the way programs are run - such as the target, launch options, and the behavior of the debugger, logger, and profiler - are collected in run configurations.

A project may have several run configurations, each set up for a specific facet of the project or phase of the development process. A run configuration can be bound to the project and be available to all who work on the project, or it can be custom configuration, for your use only.

A default run configuration is created for each new project. You can modify run configurations, and you can create a new configuration by copying an existing one.

To select a run configuration:

	
From the main menu choose Application > Project Properties.

	
Select the Run/Debug page.

	
From the Run Configurations list, select a run configuration.

To modify a run configuration:

	
Select a run configuration as described above.

	
Click Edit.

The Edit Run Configuration dialog is opened.

	
Make the required changes to the preferences on the dialog pages.

For help while using the dialog pages, press F1.

To create a run configuration:

	
Select a run configuration as described above.

	
Click New.

The Create Run Configuration dialog is opened.

	
In the Name box, enter a name for the new run configuration.

	
In the Copy Settings From dropdown box, choose an existing run configuration to copy from.

	
To create a new run configuration having the same settings as the one it was copied from, click OK.

19.4 Running an Applet

JDeveloper lets you run applets in the AppletViewer or in the Integrated WebLogic Server instance. The AppletViewer provides a test bed to run your applet without launching the web browser. When you want to run your applet in a browser, you can run in the Integrated WebLogic Server instance.

After creating your applet and ensuring that the classpath is set up properly in the HTML file, you can run it by executing the Run command in one of the following ways:

	
In the navigator, select the HTML file that contains the <APPLET> tag.

	
To run the applet, right-click the HTML file and choose Run.

	
In the dialog, select the way you want to start the target applet and click OK:

	
In AppletViewer: The applet is launched in the Applet Viewer.

	
In the Server Instance: The integrated server is started and the applet is run in the server.

19.4.1 Using an HTML File to Store Arguments

An applet runs in an HTML page, from which it obtains its display size and other parameters. To run an applet in JDeveloper, you need to provide an HTML file containing the appropriate <APPLET> tag.

Parameter names are case-sensitive, although parameter tags are not:

<APPLET CODE="foo.class" WIDTH=200 HEIGHT=20> </APPLET>

You can also pass parameters to the applet by including a <PARAM> tag between the <APPLET> and </APPLET> tags:

 <PARAM NAME=foo VALUE=true>

Example 19-1 shows an HTML fragment that is used to pass parameters.

Example 19-1 HTML Fragment That is Used to Pass Parameters

<H1>Test File</H1>
<HR>
<APPLET CODE="Test3.class" WIDTH=500 HEIGHT=120>
<PARAM NAME=level VALUE="8">
<PARAM NAME=angle VALUE="45">
<PARAM NAME=delay VALUE="1000">
<PARAM NAME=axiom VALUE="F">
<PARAM NAME=incremental VALUE="true">
<PARAM NAME=incremental VALUE="true">
</APPLET>
<HR>
The source
...

19.5 How to Run a Project or File

After building your project or file, you can run it.

To run a project or file:

	
In the navigator, select the project or file you want to run.

	
Run an application in any of these ways:

	
For a project only, from the main menu choose Run > Run Project.

	
From the context menu, select Run.

	
Click the Run icon on the toolbar.

The main method of your Java application is started.

19.5.1 How to Run a Project from the Command Line

The following conditions must exist to run a project from the operating system command line:

	
The project is a standalone executable.

	
You must select the class file containing the application main() method.

To launch an application:

Enter the following:

java -cp <jdev_install>\jdeveloper\jdev\mywork\Workspace1\Project1\classes package1.Application1

To launch the executable JAR file from the command line:

Enter the following:

java -jar <application>.jar

where <application> is your JAR file name.

19.5.2 How to Change the Java Virtual Machine

You may need to change the Java Virtual Machine (VM) for which you are developing because of operating system considerations. For example, for client-side applications, you would use the HotSpot Client VM, whereas for executing long-running server applications, you would use the Server VM.

To change the Java Virtual Machine:

	
Right-click a project in the navigator and choose Project Properties from the context menu.

	
Open the Run/Debug/Profile page.

	
Select a run configuration and click Edit.

This opens the Edit Run Configuration dialog.

	
On the Launch Settings page, in the Virtual Machine list box, select an available option.

The selected JVM is used when running and debugging the project.

	
Click Help for additional information.

19.5.3 Setting the Classpath for Programs

When you run a Java program from the command line, you must provide the Java Virtual Machine (JVM) with a list of the paths to the class files and libraries that comprise your application. The form of the classpath changes depending on the method you use to run the Java program.

Your Java classes can be stored in Java Archive (*.jar) files, or as separate class (*.class) files in their package directory. There are differences in the ways Java handles JAR files and package directories.

	
When you refer to JAR files in your CLASSPATH, you use the fully qualified path to the JAR file. When you refer to package directories in your CLASSPATH, you use the path to the parent directory of the package.

	
You can refer to both JARs and package directories in a CLASSPATH statement. When you refer to more than one CLASSPATH in the same statement, each CLASSPATH is separated with a semicolon(;).

Once you have defined the classpath, you pass the value to the JVM in different ways, depending on how you run your Java program.

	
Set the CLASSPATH environment variable to run a standalone application using java.exe.

	
Set the CLASSPATH environment variable to.use the -classpath option of java.exe.

	
Embed the CLASSPATH in the <APPLET> tag of an.html file to run an applet in an Internet browser.

You have the option of using either the -classpath option when calling an SDK tool (the preferred method) or by setting the CLASSPATH environment variable.

19.5.3.1 Setting the CLASSPATH Environment Variable (for java.exe)

The java.exe is included as part of the Java2 Standard Edition (J2SE). It is intended to be used as a development tool, and is not licensed for distribution with your Java programs. It is used to test your Java applications from the command prompt.

In order to run a Java application from the command prompt, the system environment variable CLASSPATH must be defined to include all of the classes necessary to run your program. This includes any library classes provided with JDeveloper that your program uses.

19.5.3.2 Using the JDeveloper Library CLASSPATH

JDeveloper ships hundreds of library classes to help you generate your Java programs. The classes come from J2SE, third-party developers, and Oracle Corporation. Each of the libraries is kept separate for easy upgrade. As a result, many archive files may need to be included in your classpath to ensure that any program you create in JDeveloper can be run from the command prompt.

Oracle recommends that you list only the paths to each of the libraries that your project uses. If you list paths that your project does not use, your program will still run, but for performance reasons, you will want to eliminate any unnecessary libraries.

The command to set the CLASSPATH variable takes this format:

set CLASSPATH=path1;path2;path3;...path_n

	
Note:

Never use quotation marks in the classpath even when there is a space character in one of the paths.

19.5.3.3 Setting the CLASSPATH to Include Your Projects

If you have used the default directory for your output path, you can test your Java application using java.exe by appending the following directory to your classpath:

C:\<jdev_install>\jdeveloper\jdev\mywork\Workspace1\Project1\classes

Having set this variable, you can use java.exe to run your application from the output directory mywork.

If you have deployed your Java program to any other directory, you need to add the path to the parent directory of the application package.

The CLASSPATH variable is a long string that can be difficult to type accurately. To save time and reduce errors, you can set the CLASSPATH as a system environment variable.

19.5.3.4 Setting the CLASSPATH Parameter (for java.exe)

The Java Runtime Engine (java.exe) doesn't use the CLASSPATH environment variable. The CLASSPATH must be included as a parameter to the java.exe command. The format for the command is:

java -cp <classpath> package.Application

Where classpath is the complete CLASSPATH to your Java program and the dependency classes it uses. The quotation marks are optional if there are no spaces in any of the CLASSPATH directory names.

19.5.3.5 Embedding the CLASSPATH Parameters in the <APPLET> Tag

When running applets, the browser uses a CLASSPATH you supply in the ARCHIVE and CODEBASE parameters to the <APPLET> tag in the host *.html file.

The CODEBASE parameter sets the root directory where the Internet browser will look for your class files. If the classes are stored in the same directory as the HTML page calling the applet, you can omit the CODEBASE parameter entirely. Otherwise, use either an absolute or relative path from the HTML file to the location of the CODEBASE directory. Use forward slashes (/), not backslashes(\) to indicate directories.

The ARCHIVE parameter lists the locations and names of the JAR files that contain your program and its supporting library files, similar to the CLASSPATH used with applications. There are three important differences:

	
The names of the Java Archive files are separated by commas (,), not semicolons(;).

	
If the Java Archive files are in subdirectories of the CODEBASE, use forward slashes (/), not backslashes(\), to indicate directories.

	
Due to the limitations enforced by the Java security model for applets, classes referenced by your ARCHIVE parameter can only be located in subdirectories of the CODEBASE directory. This means that if you attempt to set the location of an archive file using a parent directory (../) you will receive a security violation error.

19.6 About the Debugger

Debugging is the process of locating and fixing errors in your programs. The JDeveloper integrated debugger enables you to debug Java applications, applets, servlets, JavaServer Pages (JSPs), and Enterprise JavaBeans (EJBs). You can debug a single or several objects on the same or different machine as JDeveloper supports distributed debugging.

The Debugger provides you with a number of features to investigate your code, and identify and fix problem areas. Two types of debugging are available to analyze your code - local and remote.

A local debugging session is started by setting breakpoints in source files, and then starting the debugger. When debugging an application such as a servlet in JDeveloper, you have complete control over the execution flow and can view and modify values of variables. You can also investigate application performance by monitoring class instance counts and memory usage. JDeveloper will follow calls from your application into other source files, or generate stub classes for source files that are not available.

Remote debugging requires two JDeveloper processes: a debugger and a debuggee which may reside on a different platform. Once the debuggee process is launched and the debugger process is attached to it, remote debugging is similar to local debugging.

JDeveloper provides a number of special-purpose debugging windows that enable you to efficiently identify the problematic areas in your code:

	
The Breakpoints Window displays the breakpoints for the current workspace and project. For more information, see Section 19.7.1, "Using the Breakpoints Window."

	
The Smart Data Window displays the data which is being used in the code that you are stepping through. For more information, see Section 19.7.2, "How to Use the Smart Data Window."

	
The Data Window displays the arguments and local variables for the current context. Note that Full Debug Info must be selected in the Compiler page of the Project Properties dialog. For more information, see Section 19.7.3, "How to Use the Data Window."

	
The Watches Window displays the values for a watched program. A watch evaluates an expression according to the current context. If you move to a new context, the expression is reevaluated for the new context. For more information, Section 19.7.4, "How to Use the Watches Window."

	
The Inspector Window displays a single data item in its own floating window. An inspector evaluates an expression according to the current context. For more information, see Section 19.7.5, "How to Use the Inspector Window."

	
The Heap Window displays information about the heap in the program you are debugging and helps you to detect memory leaks in your program. For more information, see Section 19.7.6, "How to Use the Heap Window."

	
The Stack Window displays the call stack for the current thread. For more information, see Section 19.7.7, "How to Use the Stack Window."

	
The Classes Window displays information about the classes which have been loaded as your application runs, including the name and package of each class. The debugger can also display the number of live instances of each class and the amount of memory being consumed by those instances. For more information, Section 19.7.8, "How to Use the Classes Window."

	
The Monitors Window displays information for active monitors in your application, as well as information about the status of threads accessing those monitors. This window is useful for examining deadlocks and other thread synchronization problems. For more information, see Section 19.7.9, "How to Use the Monitors Window."

	
The Threads Window displays the threads and the thread groups, highlights the current thread, and shows the name, status, priority, and group of each thread. For more information, see Section 19.7.10, "How to Use the Threads Window."

You can open the debugger windows by choosing View > Debugger.

19.6.1 Understanding the Debugger Icons

Table 19-1 contains the various JDeveloper debugger and runner icons. These icons are available from areas in the JDeveloper user interface, including the Debugger window and the Log window.

Table 19-1 Debugger and runner icons

	Icon	Name	Description
	[image: Array]
	
Array

	
Represents an array class in any JDeveloper data-related window.

	
[image: Add Breakpoint]

	
Add Breakpoint

	
Represents the Breakpoint toolbar button used to create a breakpoint.

	
[image: Breakpoint menu]

	
Breakpoints menu

	
Represents the View > Debugger > Breakpoints menu option or the tab icon for the Breakpoints window.

	
[image: Class]

	
Class

	
Represents the View > Debugger > Classes menu option, the tab icon for the Classes window and a class in the Classes window (grayed if the class has tracing disabled).

	
[image: Class without Line Number Tables]

	
Class Without Line Number Tables

	
Appears in the Classes window. Represents a class which does not have line number tables (obfuscated class)

	
[image: Current Execution Point]

	
Current Execution Point

	
Represents the current execution point shown in the source editor margin which you can display by choosing the Run > Show Execution Point menu option.

	
[image: Current Thread]

	
Current Thread

	
Represents the current thread in the Threads window.

	
[image: Data]

	
Data

	
Represents the View > Debugger > Data menu option; the View > Debugger > Smart Data menu option; and the tab icon for the Data window and Smart Data window.

	
[image: Debug (Shift + F9)]

	
Debug (Shift + F9)

	
Represents the Run > Debug <project_name> menu option; the debug toolbar button, a debugging process contained in the processes folder in the Run Manager Navigator, a log page for a debugging process, the debug layout, and the Remote Debugging and Profiling Project Wizard

	
[image: Debug Listener node]

	
Debug Listener Node

	
Represents a debug listener node in the Run > Manager navigator.

	
[image: Debug with Diagram]

	
Debug with Diagram

	
Represents the Run > Debug with Diagram <project_name> menu option. Lets you create a UML sequence diagram while debugging.

	
[image: Disabled Breakpoint]

	
Disabled Breakpoint

	
Represents a disabled breakpoint in the source editor margin and a disabled breakpoint in the Breakpoints window. The icon also represents the Breakpoint toolbar button to disable a breakpoint

	
[image: Delete breakpoint]

	
Delete Breakpoint

	
Represents the Breakpoint toolbar button to remove a breakpoint.

	
[image: Edit Breakpoint]

	
Edit Breakpoint

	
Represents the Breakpoint Toolbar button, which you can use to edit the selected breakpoint

	
[image: Garbage Collection]

	
Garbage Collection

	
Represents the Run > Garbage Collection menu option and the Garbage Collection toolbar button which you can click

	
[image: Interface]

	
Interface

	
Represents an interface in the Classes window

	
[image: Heap]

	
Heap

	
Represents the View > Debugger > Heap menu option and the tab icon for the Heap window

	
[image: Heap Folder]

	
Heap Folder

	
Represents a folder in the Heap window.

	
[image: Method]

	
Method

	
Represents a method in the Stack window

	
[image: Monitors]

	
Monitors

	
Represents the View > Debugger > Monitors menu option and the tab icon for the Monitors window.

	
[image: Object]

	
Object

	
Represents an object in any JDeveloper data-related window

	
[image: Package]

	
Package

	
Represents a package in the Classes window (grayed if the package has tracing disabled)

	
[image: Pause]

	
Pause

	
Represents the Run > Pause menu option and the Pause toolbar button which you can click.

	
[image: Primative]

	
Primitive

	
Represents a primitive item in any JDeveloper data-related window.

	
[image: Resume]

	
Resume

	
Represents the Run > Resume menu option and the Resume toolbar button which you can click.

	
[image: Run]

	
Run

	
Represents a running process in the Run Manager navigator, in a log page for a running process, and in the toolbar to run the selected node.

	
[image: Run to Cursor (F4)]

	
Run to Cursor (F4)

	
Represents the Run > Run to Cursor menu option. Lets you run to a specified location and execute the code until it reaches that location

	
[image: Stack]

	
Stack

	
Represents the View > Debugger > Stack menu option and the tab icon for the Stack window.

	
[image: Stack Folder]

	
Stack Folder

	
Represents the static folder in the Data window

	
[image: Step to End of Method]

	
Step to End of Method

	
Represents the Run > Step to End of Method menu option and the Step to End of Method toolbar button which you can click.

	
[image: Step Into (F7)]

	
Step Into (F7)

	
Represents the Run > Step Into menu option and the Step Into toolbar button which you can click.

	
[image: Step Out]

	
Step Out

	
Represents the Run > Step > Out menu option and the Step Out toolbar button which you can click.

	
[image: Step Over]

	
Step Over

	
Represents the Run > Step Over menu option and the Step Over toolbar button which you can click.

	
[image: Terminate]

	
Terminate

	
Represents the Terminate toolbar button which you can click to stop debugging your application.

	
[image: Thread]

	
Thread

	
Represents the View > Debugger > Thread menu option and the tab icon for the Thread window.

	
[image: Threads]

	
Threads

	
Represents the View > Debugger > Threads menu option and the tab icon for the Threads window.

	
[image: Thread Group]

	
Thread Group

	
Represents a thread group in the Threads window.

	
[image: Unverified Breakpoint]

	
Unverified Breakpoint

	
Represents an unverified breakpoint in the source editor margin, and an unverified breakpoint in the Breakpoints window

19.6.2 How to Debug a Project in JDeveloper

Your code must be compiled with debugging information before you can make use of some of the debugger features such as viewing arguments and local variables in the Data window.

To set breakpoints and step through your code:

	
In a source editor, set a breakpoint on an executable statement by clicking in the margin to the left of the statement. For more information, see Section 19.8, "Managing Breakpoints."

The unverified breakpoints icon appears in the left margin.

	
Select Run > Debug [filename.java].

The class runs and stops at the first breakpoint.

	
From the toolbar, click Step Into to trace into a method call or click Step Over to step over a method call.

	
Look in the Stack window to examine the sequence of method calls that brought your program to its current state. Double-click a method to display the associated source code in the source editor.

	
In the Smart Data and Data windows, examine the arguments and variables.

	
Display the Threads window to see the status of other threads in your program.

To edit and recompile:

	
When you have found lines of code to change, you can end the debugging session by clicking Terminate on the toolbar, or by choosing Run > Terminate.

	
Edit your code in the source editor.

	
In the navigator, click the appropriate object node.

	
Choose Run > Build <filename.java> from the main menu. The affected files in your project are recompiled, and you can run the debugger again.

19.6.3 How to Debug ADF Components

JDeveloper allows you to debug with breakpoints using the ADF Declarative Debugger. If an error cannot be easily identified, you can use the ADF Declarative Debugger in JDeveloper to set breakpoints. When a breakpoint is reached, the execution of the application is paused and you can examine the data that the Oracle ADF binding container has to work with, and compare it to what you expect the data to be. Depending on the types of breakpoints, you may be able to use the step functions to move from one breakpoint to another.

JDeveloper provides three windows for debugging ADF components:

	
The ADF Data Window displays relevant data based on the selection in the ADF Structure window when the application is paused at a breakpoint. For more information, see Section 19.7.3, "How to Use the Data Window."

	
The EL Evaluator Window evaluates EL Expressions when a breakpoint is reached during a debugging session. Only JSF applications can utilize the EL Evaluator.

	
The ADF Structure Window displays a tree structure of the ADF runtime objects and their relationships when the application is stopped at a breakpoint. For more information, see Section 3.11.6, "Structure Window."

You can control what type of information is displayed in each of the debugger windows. To see what options are available in each window such as which columns to display, right-click in a window and choose Preferences from the context menu. Or, you can choose Tools > Preferences from the main menu and expand the Debugger node to display a preferences page for each debugger window. You can also save the debug information as text or HTML output file. For more information. see Section 19.6.7, "How to Export Debug Information to a File."

To use the JDeveloper debugger to control the execution of a program:

	
Run to a breakpoint. For more information, see Section 19.8, "Managing Breakpoints."

A breakpoint is a trigger in a program that, when reached, pauses program execution. This allows you to examine the values of some or all of the program variables. When your program execution encounters a breakpoint, the program pauses, and the debugger displays the line containing the breakpoint in the source editor.

	
Step into a method and execute a single program statement at a time. For more information, see Section 19.6.11, "Stepping Into a Method."

If the execution point is located on a call to a method, the Step Into command steps into that method and places the execution point on the method's first statement.

	
Step over a method. For more information, see Section 19.6.12, "Stepping Over a Method."

If you issue the Step Over command when the execution point is located on a method call, the debugger runs that method without stopping, instead of stepping into it. Program statements are executed one at a time.

	
Run to the cursor location. For more information, see Section 19.6.16, "How to Run to the Cursor Location."

This allows you to go to a particular location in the program without having to single step or set a breakpoint.

	
Pause and resume the debugger. For more information, see Section 19.6.17, "How to Pause and Resume the Debugger."

You can pause your program when the program is running in the debugger. You can then use the debugger to examine the state of your program with respect to this program location. When you have finished examining that part of the program, you can then continue running the program.

	
Terminate a debugging session. For more information, see Section 19.6.18, "How to Terminate a Debugging Session.".

When finished, you can modify program values as a way to test hypothetical bug fixes during a program run. If you find that a modification fixes a program error, exit the debugging session, fix your program code, and recompile the program to make the fix permanent.

19.6.4 How to Configure a Project for Debugging

JDeveloper allows you to control how your program is debugged, including enabling and disabling packages and classes and configuring remote debugging options.

To configure debugger and remote debugger options in JDeveloper:

	
Choose Application > Default Project Properties (to set preferences that apply to all projects) or choose Application > Project Properties (to set preferences that apply only to the current project).

	
Select the Run/Debug/Profile node.

	
Select a run configuration. For more information, see Section 19.3, "How to Configure a Project for Running.".

	
Click Edit.

	
Select the Debugger node.

	
Set the options on the Debugger and Remote pages.

	
Click OK when finished.

19.6.5 How to Set the Debugger Start Options

By setting up the debugger start option, you are specifying how you would like the debugger to behave when you start a new debugging session. Specifically, decide if you want the debugger to execute until a breakpoint is reached, or if you want the debugger to stop when it reaches your project's code (for example, at the beginning of your application's main method).

To set the debugger start options:

	
From the main menu choose Tools > Preferences and open the Debugger page.

	
Select a Start Debugging Option:

	
Run Until a Breakpoint Occurs

When you start debugging, the debugger will let the program you are debugging execute until a breakpoint is reached.

	
Step Over

When you start debugging, the debugger will let the program you are debugging execute until a method in a tracing-enabled class is reached, but it will not stop in a class static initializer method.

	
Step Into

When you start debugging, the debugger will let the program you are debugging execute until any method, including a class static initializer method, is reached.

19.6.6 How to Launch the Debugger

You must build the project before debugging it.

To build a project and start the debugger:

	
In the Application Navigator, select the project.

	
Right-click and choose Project Properties. The Project Properties dialog opens.

	
Open the Compiler page.

	
If not already enabled, select Full Debug Info.

	
Click OK to close the dialog.

	
Use one of the following methods to start the debugger:

	
To start the debugger using the current run configuration, from the main menu choose Run > Debug <project name>.

	
To start the debugger using your choice of run configuration, select the dropdown menu beside the Debug icon on the toolbar and click the required run configuration name.

If the project builds successfully, the debugger starts.

19.6.7 How to Export Debug Information to a File

You can export debug information generated by the JDeveloper debugger to either a text or HTML output file from within any of the debugger windows.

To export debug information to file:

	
Start debugging by clicking Debug from the toolbar.

	
Once the debugger has stopped at a breakpoint, locate the debugger window containing the information you would like to export.

	
Right-click in a debugger window and choose Preferences from the context menu.

	
In the appropriate Preferences - Debugger page below Columns, select which columns you want to show or hide in the debugger window and output file. Click OK to close the Preferences dialog.

	
In the debugger window, right-click and choose Export.

	
In the Export dialog, enter the name of the file. The output file is saved as a text file with tabs between columns and new lines between rows. To export to an HTML file, add the extension as.html or .htm (case-insensitive).

If the project builds successfully, the debugger starts.

19.6.8 Using the Source Editor When Debugging

When the debugger stops (for example, at a breakpoint after completing a step command, or when paused), the source file for the current class will open in the source editor and will be marked with the execution point, as shown in Figure 19-1.

Figure 19-1 Execution Point Icon

[image: Execution Point]

If JDeveloper cannot locate the source file for the class while debugging, the Source Not Found dialog is displayed prompting you for the source file location.

You can use the source editor to debug in the following ways:

	
To set a breakpoint, click in the source editor's margin.

	
To remove a breakpoint, click the breakpoint in the source editor's margin.

Figure 19-2 Breakpoint Icon

[image: Breakpoint Icon]

Using Context Menu Items

The debugger adds several menu items to the source editor's context menu including those shown in Table 19-2.

Table 19-2 Context Menu Items

	Item	Function
	
Run to Cursor

	
Lets you run to the current location of the cursor and execute the code until it reaches that location.

	
Watch (Ctrl+F5)

	
Lets you add an expression to the Watches Window.

	
Inspect

	
Lets you open up a floating Inspector window.

	
Step Into Method at Cursor

	
Executes Run to Cursor, and then steps into the method that the cursor is currently on.

Using Tooltips

The debugger will show tool tips in the source editor if you hover the mouse over the name of a data item. By default, the tooltip will show the name, value, and type of the data item; providing an easy way to quickly inspect a data item without adding it in Data window or Watches window. If the data item is an array or object, you can inspect children of the selected item deep in the object hierarchy. The tooltip displays 20 children data items, use the navigation buttons to view remaining data items.

The columns which display in the tooltip depend on the column settings that were enabled in the Tools > Preferences – Debugger – Tooltip page.

If the project builds successfully, the debugger starts.

19.6.9 Using Java Expressions in the Debugger

Java expressions are used in the Watches window, Inspector window, Breakpoint Conditions, and Breakpoint Log Expressions. The debugger accepts Java expressions in the forms shown in Table 19-3.

Table 19-3 Java Expressions Accepted by Debugger

	Java Expression	Form
	
Simple variable name

	
rect

	
Field access

	
rect.width

	
Method call

	
myString.length()

	
Array element

	
myArray[3]

	
Array length

	
myArray.length

	
Comparison operation

	
rect.height == 100

myArray.length > 7

	
Arithmetic operation

	
rect.width * rect.height

x + y + z

	
Logical operation

	
frame1.enabled && frame1.visible

textField1.hasFocus || textField2.hasFocus

	
Instance of operator

	
<my_value> instanceof java.lang.String

	
Shift operator

	
x << 2

y >> 1

	
Binary Operator

	
keyEvent.modifiers & java.awt.event.InputEvent.CTRL_MASK

	
Question-colon operation

	
y>5 ? y*7 : y*4

	
Static field name

	
java.awt.Color.pink

	
Fully qualified class name

	
java.awt.Color

If the project builds successfully, the debugger starts.

19.6.10 Moving Through Code While Debugging

The JDeveloper debugger lets you control the execution of your program; you can control whether your program executes a single line of code, an entire method, or an entire program block. By manually controlling when the program should run and when it should pause, you can quickly move over the sections that you know work correctly and concentrate on the sections that are causing problems. For more information, see Section 19.6.5, "How to Set the Debugger Start Options."

The debugger lets you control the execution of your program in the following ways:

	
Stepping Into a Method

	
Stepping Over a Method

	
Controlling Which Classes are Traced Into

	
Locating the Execution Point for a Thread

	
Running to the Cursor Location

	
Pausing and Resuming the Debugger

	
Terminating a Debugging Session

The Step Into and Step Over commands offer the simplest way of moving through your program code. While the two commands are very similar, they each offer a different way to control code execution.

The smallest increment by which you step through a program is a single line of code. Multiple program statements on one line of text are treated as a single line of code – you cannot individually debug multiple statements contained on a single line of text. The easiest approach is to put each statement on its own line. This also makes your code more readable and easier to maintain.

19.6.11 Stepping Into a Method

The Step Into command executes a single program statement at a time. If the execution point is located on a call to a method, the Step Into command steps into that method and places the execution point on the method's first statement.

If the execution point is located on the last statement of a method, choosing Step Into causes the debugger to return from the method, placing the execution point on the line of code that follows the call to the method you are returning from.

The term single stepping refers to using Step Into to run successively though the statements in your program code.

You can step into a method in any of the following ways:

	
Select Run > Step Into.

	
Press F7.

	
Click the Step Into button from the toolbar.

Figure 19-3 Step Into Button

[image: Step Into Icon]

Unlike previous JDeveloper releases, you cannot start debugging by pressing the Step Into button. Step Into will only cause stepping on an already-started debugging process.

When you set the debugger to start by stepping into, the debugger will let the program you are debugging execute until a method in a tracing-enabled class is reached.

As you debug, you can step into some methods and step over others. If you are confident that a method is working properly, you can step over calls to that method, knowing that the method call will not cause an error. If you aren't sure that a method is well behaved, step into the method and check whether it is working properly.

19.6.12 Stepping Over a Method

The Step Over command, like Step Into, enables you to execute program statements one at a time. However, if you issue the Step Over command when the execution point is located on a method call, the debugger runs that method without stopping (instead of stepping into it), then positions the execution point on the statement that follows the method call.

If the execution point is located on the last statement of a method, choosing Step Over causes the debugger to return from the method, placing the execution point on the line of code that follows the call to the method you are returning from.

You can step into a method in any of the following ways:

	
Select Run > Step Over.

	
Press F8.

	
Click the Step Over button on the toolbar.

Figure 19-4 Step Over Button

[image: Step Over Button]

Unlike previous releases of JDeveloper, you cannot start debugging by pressing the Step Over button. Step Over will cause stepping only on an already-started debugging process.

When you set it to start by stepping over, the debugger will let the program you are debugging execute until a method in a tracing-enabled class is reached, but it will not stop in class static initializer method.

As you debug, you can step into some methods and step over others. If you are confident that a method is working properly, you can step over calls to that method, knowing that the method call will not cause an error. If you aren't sure that a method is well behaved, step into the method and check whether it is working properly.

19.6.13 Controlling Which Classes Are Traced Into

Normally, you should set the tracing include and exclude lists in the project properties before you start debugging. However, if you need to change the tracing include and exclude lists, you can do so from the Classes window. Right-click in the Classes window and choose Tracing from the context menu. The Tracing dialog appears in which you can adjust the tracing include and exclude lists.

When you specify a package to be included or excluded from tracing, all descending classes within that package are included or excluded as well unless you've specified them individually.

To closely examine part of your program, you can enable tracing on only the files you want to step through in the debugger. For example, you usually don't want to step through classes that are in the J2SE library because you're not going to troubleshoot on them; you usually only want to trace into your own classes.

19.6.14 How to Step Through Behavior as Guided by Tracing Lists

If you exclude a class or package, and you instruct the debugger to step into that class, the debugger runs straight through that code without pausing. The debugger pauses at the next line of code in a class which has not been excluded. The tracing include and exclude lists are used for all step commands including Step Into, Step Over, Step Out, and so on. Using these lists does not prevent you from setting a breakpoint in a class which has been excluded. If the debugger stops at such a breakpoint, the step commands will be disabled.

To enable tracing for a class, you can adjust the tracing include or exclude list by adding or removing a class or package:

	
Right-click a project in the navigator and choose Project Properties from the context menu.

	
Select the Run/Debug/Profile node.

	
Choose a run configuration and click Edit.

	
In the Edit Run Configuration dialog select the Debugger node.

	
In the Tracing Classes and Packages to Include and Tracing Classes and Packages to Exclude parameters, enter the name of the packages or classes you want to include or exclude in the appropriate field, separated by a semicolon (;).

Alternately, click Edit to open the Tracing Classes and Packages to Include/Exclude dialog, then click Add or Remove. If you click Add, the Class and Package Browser dialog appears. If you click Remove, the selected class or package is removed from the appropriate tracing List. Navigate to the class or package you want to add and click OK. The class or package is added to the appropriate tracing list.

By leaving the include lists blank, you are actually specifying that you would like to enable tracing in all packages except for those specifically listed in the exclude list. For example:

include:
exclude:java;javax

19.6.15 How to Locate the Execution Point for a Thread

When you're debugging, the line of code that is the current execution point for the current thread is highlighted and the execution point icon appears in the left margin of the source editor.

The execution point marks the next line of source code to be executed by the debugger.

To find the current execution point:

	
Choose Run > Find Execution Point from the main menu.

	
Right-click a thread in the Threads window and choose Go To Source of Thread.

The debugger displays the block of code containing the execution point in the source editor.

19.6.16 How to Run to the Cursor Location

When stepping through your application code in the debugger, you may want to run to a particular location without having to single step or set a breakpoint.

To run to a specific program location:

	
In a source editor, position your text cursor on the line of code where you want the debugger to stop.

	
Run to the cursor location in any of the following ways:

	
In the source editor, right-click and choose Run to Cursor.

	
Choose the Run > Run to Cursor option from the main menu.

	
Press F4.

Any of the following conditions may result:

	
When you run to the cursor, your program executes without stopping, until the execution reaches the location marked by the text cursor in the source editor.

	
If your program never actually executes the line of code where the text cursor is, the Run to Cursor command will cause your program to run until it encounters a breakpoint or when your program finishes.

19.6.17 How to Pause and Resume the Debugger

You can pause your program when the program is running in the debugger. You can then use the debugger to examine the state of your program with respect to this program location. When you have finished examining that part of the program, you can then continue running the program.

When you are using the debugger, your program can be in one of two possible states: running, or paused by the debugger. When your program is waiting for user input, it is still considered to be running. When your program is in the running mode, Pause is available. When your program is paused by the debugger, the available debugger buttons include Resume, Step Over, and Step Into.

You can pause the debugger in the following ways:

	
Choose Run > Pause from the main menu.

	
Click the Pause icon from the debugger toolbar.

Figure 19-5 Pause Icon

[image: Pause Icon]

Your program may be paused at a location for which there is no source available. In this case, the Source Not Found dialog is displayed prompting you for the source file location or whether to generate stub files.

Also, your program may be paused at a location where tracing is disabled because the class is on the tracing exclude list. For example, your program may be paused in the java.lang.Object.wait method.

While the debugger is paused, you can force garbage collection to occur. The results of the garbage collection are immediately reflected in the Classes and the Heap window. This enables you to find memory leaks in your application.

To resume the debugger when it is paused, choose Run > Resume.

19.6.18 How to Terminate a Debugging Session

Sometimes while debugging, you will find it necessary to restart the program from the beginning. For example, you might need to restart the program if you step past the location of a bug.

To terminate the current debugging session:

	
Choose the Run > Terminate - <program name> menu option, or

	
Click Terminate in the debugger toolbar.

Terminating a debugging session closes all debugger windows. However, this action does not delete any breakpoints or watches that you have set, which makes it easy to restart a debugging session.

19.6.19 How to View the Debugger Log

The Debugger log displays information about the debugging process. You can view the Debugger log at any time while the debuggee process is still active.

To view the Debugger log while the process is still active, use one of the two following ways:

	
In the View menu, select Debugger and then select Log.

	
In the Run Manager, right-click the process and select View Log in the context menu.

19.6.20 How to Debug an Applet

JDeveloper allows you to control how your Applet program is debugged.

To debug an applet:

	
In the navigator, select the HTML file that contains the <APPLET> tag.

	
Click Debug in the toolbar.

The applet starts. The debugger will stop at breakpoints you have set in your applet source code.

19.6.21 How to Debug a Javascript Program

JDeveloper allows you to control how your Javascript program is debugged, including configuring your browser for remote debugging.

To configure Javascript debugger options in JDeveloper:

	
Choose Application > Default Project Properties (to set preferences that apply to all projects) or choose Application > Project Properties (to set preferences that apply only to the current project).

	
Select the Run/Debug/Profile node.

	
Select a run configuration. For more information, see Section 19.3, "How to Configure a Project for Running."

	
Click Edit.

	
Select the Javascript node under Launch Settings.

	
Select your browser.

Choose FireFox/Mozilla and you'll get more options to control your Javascript debugging. If JDeveloper is not already configured for Firefox as your debugging browser, follow these steps:

	
Enter the path of Firefox browser executable file (firefox.exe) in Browser Command Line, or click Browse and select the executable file.

	
Click the Install debuggee extension in browser button to install the debugging extension in Firefox. Firefox opens with a page that provides a link to install the extension. Click the Install OracleJSDebugAgent for Windows link and install the Oracle Javascript Debug Agent Extension. Restart Firefox to complete the installation.

	
Click OK to close the Edit Run Configuration dialog, and then close the Project Properties dialog.

To debug a Javascript program:

	
In the Application Navigator, select the HTML/JSP/JS file that contains the Javascript code.

	
Right-click and choose Debug from the context menu.

	
In the How Should the Target be Started dialog, if you are debugging a JS file or an HTML file without server programming, select In the Browser without Starting Server Instance. If you are debugging a JSP file or an HTML file with server programming, choose In the Server Instance. Click OK.

The program starts in Firefox browser and, in JDeveloper, the debugger stops at the first breakpoint you have set in the source code.

19.7 Using the Debugger Windows

JDeveloper provides a number of special-purpose debugging windows to help you analyze your code.

19.7.1 Using the Breakpoints Window

Information about set breakpoints can be viewed in the Breakpoints window. For more information about this window including its context menu options, press F1 in the Breakpoints window.

To open the Breakpoints window to displays a list of set breakpoints:

	
Choose View > Debugger > Breakpoints from the main menu. The Breakpoints window appears.

To change which columns are displayed in the Breakpoints window:

	
Right-click in the Breakpoints window and choose Preferences from the context menu. Under Columns, select the columns you want to be displayed in the Breakpoints window.

	
Or, in the Breakpoints window, right-click on the columns heading and select the desired column names.

19.7.2 How to Use the Smart Data Window

Unlike the Data window which displays all arguments, local variables, and static fields for the current method, the Smart Data window displays only the data that appears to be relevant to the source code that you are stepping through. Specifically, the debugger analyzes the source code near the execution point and finds the variables, fields, and expressions, that are used in the lines of code that you are stepping through.

For more information, see Section 19.6.15, "How to Locate the Execution Point for a Thread."

The Smart Data window also displays the current return value of a non-void method when you set a breakpoint in the method and issue a Step to End of Method command or Step Out command. The return value is not displayed for Step Over or Step Into commands.

By default, the debugger analyzes only one line of code for each location and analyzes up to two locations. You can adjust these settings in the Tools > Preferences - Debugger - Smart Data page which you can also access by right-clicking in the Smart Data window and choosing Preferences from the context menu.

To open the Smart Data window:

	
Set a breakpoint in the Source Editor and start a debugging session.

	
Click Debug from the toolbar.

	
When the debugger hits a breakpoint, select View > Debugger > Smart Data.

To change which columns are displayed in the Smart Data window:

	
Right-click in the Smart Data window and choose Preferences from the context menu. Under Columns, select the columns you want to be displayed in the Smart Data window.

	
Alternatively, in the Smart Data window, right-click on the columns heading and select the desired column names.

If the project builds successfully, the debugger starts.

19.7.3 How to Use the Data Window

You use the Data window to display information about variables in your program. The Data window displays the arguments, local variables, and static fields for the current context, which is controlled by the selection in the Stack window. If you move to a new context, the Data window is updated to show the data for the new context. If the current class was compiled without debug information, you will not be able to see the local variables. The debugger analyzes the local variable memory locations in the stack frame to show you as much information as possible.

	
Note:

By default, the Data window displays local variable information while debugging a program. To disable local variable information in Data window, clear the Full Debug Info checkbox in the Compiler page of the Project Properties dialog. The Full Debug Info checkbox is selected by default.

The Data window also displays the current return value of a non-void method when you set a breakpoint in the method and issue a Step to End of Method command or Step Out command. The return value is not displayed for Step Over or Step Into commands.

To open the Data window:

	
Open source files in the Source Editor and set breakpoints.

	
In the toolbar, click Debug.

	
When the debugger pauses at a breakpoint, select View > Debugger > Data from the main menu.

To view array elements in Data window:

	
Start debugging the project and open Data window.

	
Select the array in the Data window and expand to view its elements. If the array contains more than 20 elements, the Data window displays first 20 elements.

	
To view the next 20 entries, click Next.

	
To view the previous 20 entries, click Previous.

	
To view the first 20 entries, click First.

	
To view the last 20 entries, click Last.

	
To change the default display size of 20, select the array, right-click and select Adjust Range from the context menu, and enter the new value in the New Count field. Click OK when you are done.

To change which columns are displayed in the Data window:

	
Right-click in the Data window and choose Preferences from the context menu. Under Columns, select the columns you want to be displayed in the Data window.

	
Or, in the Data window, right-click on the columns heading and select the desired column names.

If the project builds successfully, the debugger starts.

19.7.4 How to Use the Watches Window

A watch enables you to monitor the changing values of variables or expressions as your program runs. After you enter a watch expression, the Watches window displays the current value of the expression. As your program runs, the value of the watch changes as your program updates the values of the variables in the watch expression.

A watch evaluates an expression according to the current context which is controlled by the selection in the Stack window. If you move to a new context, the expression is re-evaluated for the new context. If the execution point moves to a location where any of the variables in the watch expression are undefined, the entire watch expression becomes undefined. If the execution point returns to a location where the watch expression can be evaluated, the Watches window again displays the value of the watch expression.

To open the Watches window:

	
Open source files in the Source Editor and set breakpoints.

	
Click Debug from the toolbar.

	
When the debugger pauses at a breakpoint, select View > Debugger > Watches from the main menu.

To change which columns are displayed in the Watches window:

	
Right-click in the Watches window and choose Preferences from the context menu. Under Columns, select the columns you want to be displayed in the Watches window.

	
Alternatively, in the Watches window, right-click on the columns heading and select the desired column names

To add a watch:

	
Right-click an item in the Data window and choose Watch from the context menu.

	
Drag and drop variables, fields, and objects from the Data window to the Watches window.

	
Select text in the source editor, right-click, and choose Watch from the context menu.

To watch a static field:

Enter the full name of the class followed by a period (.) and the name of the field. For example:

java.io.File.separator

To watch the current exception while stopped at an exception breakpoint, enter:

_throw

19.7.5 How to Use the Inspector Window

The Inspector window allows you to single out a selected variable, field or object, and display the same information that is available in the Watch or Data windows. For more information about this window, including its context menu options, press F1 in the Inspector window.

The Inspector window is slightly different from the other windows in that it floats by default, and you can have multiple instances of Inspector windows. Each Inspector window contains one data item. You can drag one Inspector window into another and dock them together.

To open the Inspector Window:

	
Set at least one breakpoint in the Source Editor.

	
Click Debug from the toolbar.

	
When the debugger reaches a breakpoint, select a variable in the Source Editor, right-click, and choose Inspect.

The floating Inspect window appears and contains the variable you selected. If you want to inspect something else, enter a new expression or variable in the text field, or select a previous one from the dropdown list.

If no variable or expression is selected, the Inspect dialog appears pre-populated with the text under the cursor in the editor as the expression to inspect. Click OK to open the Inspector window.

The Inspector window will appear floating in the center of your screen, but you can dock the Inspector window with other windows. To prevent docking, press the Ctrl key while moving the window. An inspector evaluates an expression according to the current context of the Stack window. For more information, see Section 19.7.7, "How to Use the Stack Window."

If you move to a new context, the expression is reevaluated for the new context. If the execution point moves to a new location where any of the variables in the expression are undefined, the entire expression becomes undefined. If the execution point returns to a location where the expression can be evaluated, the inspector again displays the value of that expression.

To change which columns are displayed in the Inspector window:

	
Right-click in the Inspector window and choose Preferences from the context menu. Under Columns, select the columns you want to be displayed in the Inspector window.

	
Or, in the Inspector window, right-click on the columns heading and select the desired column names.

19.7.6 How to Use the Heap Window

The Heap window displays information about the heap in the program you are debugging and helps you to detect memory leaks in your program. You can view all instances of a class as well as why an object has not been garbage collected.

Two types of folders display in the Heap window:

	
Class Folder

Displays the name of the class and how many instances of the class exist in memory, and when expanded lists the specific instances and their addresses in the heap.

	
Reference Path Folder

Contains all the "root" references which point, either directly or indirectly, to a specific object. Root references are static fields, stack variables, pinned objects. The garbage collector will not discard an object if there are any root references. Expanding a root reference will show you the reference path from the root reference to the specified object.

To open and use the Heap window:

	
Open source files in the Source Editor and set breakpoints.

	
In the toolbar, click Debug.

	
When the debugger hits the breakpoint, select View > Debugger > Heap from the main menu.

	
Right-click in the Heap window and choose Add New Type from the context menu. Alternatively, drag a class node from the Classes window into the Heap window. Or, right click on a class node in the Classes window and choose Display in Heap from the context menu. Information about the classes appears in the Heap window.

To change which columns are displayed in the Heap window:

	
Right-click in the Heap window and choose Preferences from the context menu. Under Columns, select the columns you want to be displayed in the Heap window.

	
Alternatively, in the Heap window, right-click on the columns heading and select the desired column names from the context menu.

19.7.7 How to Use the Stack Window

The Stack window displays the call stack for the current thread. When you highlight a line in the Stack window, the Data window, Watches window, and all Inspector windows are updated to show data for the highlighted method.

To open the Stack window:

	
Open source files in the Source Editor and set breakpoints.

	
Click Debug from the toolbar.

	
When the debugger pauses at a breakpoint, from the main menu, select View > Debugger > Stack.

To view the stack of a thread:

	
Start debugging the project and open Stack window.

	
Select the thread from the dropdown list, above the columns. The Stack window immediately reflects the stack of the selected thread.

To change which columns are displayed in the Stack window:

	
Right-click in the Stack window and choose Preferences from the context menu. Under Columns, select the columns you want to be displayed in the Stack window.

	
Alternatively, in the Stack window, right-click on the columns heading and select the desired column names.

19.7.8 How to Use the Classes Window

The Classes window displays which classes have been loaded and may also include useful information, such as the number of instances of a class. In conjunction with the Classes window, the debugger also includes a garbage collection tool when you want to force a run of the Java garbage collector. When you run the garbage collector, the impact is shown immediately in the Classes window. You can only force a run of the garbage collector when you are using a virtual machine that allows the debugger to do so.

To open the Classes window:

	
Set a breakpoint in the Source Editor and start a debugging session.

	
When the debugger hits a breakpoint, select View > Debugger > Classes.

The Classes window displays all the classes that are currently loaded, how many instances of that class are being used, and how much memory that number of instances requires.

To choose information that is displayed in the Classes window:

	
Right-click an item in the Classes window and choose Preferences from the context menu. Under Columns, select the columns you want to be displayed in the Classes window.

	
Alternatively, in the Classes window, right-click on the columns heading and select the desired column names.

To change the ascending or descending view order:

	
Click at the top of each column to change the sort order. You can sort by:

	
Name

	
Count

	
Memory

	
File

If the Show Packages check box is selected, by default the classes are displayed in a tree structure, where each branch represents a package. Also, the icon and entry next to each class or package indicates whether the class is included or excluded from tracing. The special icon shown in Figure 19-6 for a class without line number tables is used for classes to indicate that tracing is not possible because the class has been stripped or obfuscated.

Figure 19-6 Icon Indicating Tracing Is Not Possible

[image: Icon Indicating Tracing Is Not Possible]

In the Classes window, choose Preferences from the context menu to select which columns to view from the following available options:

	
Count

	
Memory

	
File

19.7.9 How to Use the Monitors Window

Java supports multithreading at the language level through the use of synchronization. Synchronization is the coordinating of activities and data access among multiple threads. The mechanism that Java uses to support synchronization is the monitor. The Monitors window displays status and control information for active monitors.

To open the Monitors window:

	
Open source files in the Source Editor and set breakpoints.

	
In the toolbar, click the Debug icon.

	
When the debugger stops at the breakpoint, select View > Debugger > Monitors.

To choose information that is displayed in the Monitors window:

	
Right-click an item in the Monitors window and choose Preferences from the context menu. Under Columns, select the columns you want to be displayed in the Classes window.

	
Alternatively, in the Monitors window, right-click on the columns heading and select the desired column names.

19.7.10 How to Use the Threads Window

The Threads window displays the names and status of all the threads and thread groups in your program.

To open the Threads window:

	
Open source files in the Source Editor and set breakpoints.

	
Click Debug from the toolbar.

	
When the debugger stops at a breakpoint, choose View > Debugger > Threads from the main menu.

The step commands including Step Over, Step Into, and Set Next Statement apply to the current thread. To select a different thread, right-click a thread and choose Select Thread from the context menu.

When you highlight a thread in the Threads window, the Stack window is automatically updated to show the stack for the highlighted thread.

To change which columns are displayed in the Threads window:

	
Right-click in the Threads window and choose Preferences from the context menu. Under Columns, select the columns you want to be displayed in the Threads window.

	
Alternatively, in the Threads window, right-click on the columns heading and select the desired column names.

19.7.11 How to Set Preferences for the Debugger Windows

You can choose to customize various debugger window settings including the column resize mode and other options you want to display.

	
Tip:

If the debugger has trouble connecting to the debuggee (the program you are debugging), try increasing the connection retry setting.

To set any of the Debugger window preferences:

	
Choose Tools > the Preferences - Debugger page.

The debugging panel appears with customizable fields.

	
Make your selections from the fields and options provided.

	
To set any options for a specific debugger window, expand the Debugger node and click the appropriate window node. For example, if you want to change the columns displayed in the Smart Data window, click Smart Data.

	
Edit any of the available options as desired.

	
Click OK when you are done.

19.8 Managing Breakpoints

A breakpoint is a trigger in a program that, when reached, pauses program execution allowing you to examine the values of some or all of the program variables. By setting breakpoints in potential problem areas of your source code, you can run your program until its execution reaches a location you want to debug. When your program execution encounters a breakpoint, the program pauses, and the debugger displays the line containing the breakpoint in the source editor. You can then use the debugger to view the state of your program. Breakpoints are flexible in that they can be set before you begin a program run or at any time while you are debugging. Figure 19-7 displays an example breakpoint in a Java Application source file.

Figure 19-7 Breakpoint in Source Editor

[image: Breakpoint in Source Editor]

Breakpoints set on comment lines, blank lines, declarations, and other non-executable lines of code are invalid and will not be verified by the debugger.

The JDeveloper debugger supports a number of different types of breakpoints:

	
Source breakpoints

	
Exception breakpoints

	
Method breakpoints

	
Class breakpoints

	
File breakpoints

	
Deadlock breakpoints

Deadlock breakpoints are useful in situations when you find it difficult to locate the source of the deadlock. When a deadlock breakpoint is encountered, the debugger halts. The deadlock breakpoint is automatically enabled when you start debugging.

Information about set breakpoints can be viewed in the Breakpoints window.

19.8.1 About Verified and Unverified Breakpoints

While debugging, you can place a breakpoint to the left of any line of code in the source editor. However, for a breakpoint to be valid, it must be set on an executable line of code. Before a method is first executed, the debugger verifies all valid breakpoints in the method. Breakpoints set on comment lines, blank lines, declarations, and other non-executable lines of code are invalid and will not be verified by the debugger.

When a breakpoint has been verified as valid, the icon displayed in the source editor margin and in the Breakpoints window changes to the icon shown in Figure 19-8.

Figure 19-8 Verified Breakpoint Icon

[image: Verified Breakpoint]

19.8.2 Understanding Deadlocks

A deadlock occurs when one or more threads in your program are blocked from gaining access to a resource or waiting on a condition that cannot be satisfied. A common deadlock in Java is a monitor block cycle deadlock.

A monitor block cycle deadlock occurs when two or more threads are unable to proceed because each is waiting to enter synchronized code that one of the others has already entered.

Example 19-2 shows a typical Java synchronization deadlock.

Example 19-2 Java Synchronization Deadlock

synchronized (a)
 {
 ...
 synchronized (b) {
 ...
 }
 ...
 }

At the same time, thread 2 is executing the following code:

synchronized (b)
{
...
 synchronized (b)
 {
 ...
 }
 ...
 }

A deadlock will occur if thread 1 enters the synchronized (a) as thread 2 enters the synchronized (b). Thread 1 will be blocked from entering synchronized (b) until thread 2 finishes the synchronized (b) and thread 2 will be blocked from entering synchronized (a) until thread 1 finishes the synchronized (a). A deadlock is also called a "deadly embrace." This example is for two threads but the same situation could occur for 3, 4, 5, and so on threads. The deadlock breakpoint can detect this type of deadlock.

Another kind of deadlock is where one thread calls the wait method on a particular object and no other threads call the notify method on that object. The most common cause of this kind of deadlock is timing. The notifying thread may have called notify before the waiting thread called wait. The important thing to know about calling wait is that even if notify was already called many times before, the wait method waits until notify is called again. Also, notify doesn't return any kind of error if there was no thread waiting. The deadlock breakpoint cannot detect this type of deadlock.

If you think your program is hanging, click Pause to pause your program in the debugger, and open the Monitors window. Perhaps you can see that one thread is waiting, investigate the code. If you can see that another thread probably called notify before the first thread called wait, there is a deadlock. This kind of deadlock is very hard to detect. You must know your code well in order to figure out which other thread should have called notify.

19.8.3 Understanding the Deadlock Breakpoint

The JDeveloper debugger sets a persistent deadlock breakpoint when it starts running. A deadlock breakpoint is useful in situations when you find it difficult to locate the source of the deadlock. When the debugger encounters a deadlock breakpoint, the debugger halts. It can detect a monitor block cycle deadlock as described above. The Monitors window can be useful when working with deadlocks.

The deadlock breakpoint has the following characteristics:

	
It is a persistent breakpoint that is created automatically when you use JDeveloper.

	
It cannot be deleted, but it can be disabled.

	
It pauses the debugger if a monitor block cycle deadlock is detected. A monitor block cycle deadlock occurs when two or more threads are unable to proceed because each is waiting to enter synchronized code that one of the others has already entered.

The JDeveloper debugger automatically creates a persistent deadlock breakpoint; this breakpoint will occur whenever a monitor block cycle is detected. You cannot delete a persistent breakpoint. You cannot create a new deadlock breakpoint, but you can edit the existing persistent deadlock breakpoint.

Not all Java Virtual Machines support deadlock detection; for example, the HotSpot VM does not support deadlock detection.

19.8.4 Understanding Grouped Breakpoints

Grouped breakpoints let you enable a set of breakpoints. When the debugger reaches a certain point in your code, you can instruct the debugger to enable a breakpoint or a group of breakpoints that was previously disabled.

For example, even though your code might be catching a NullPointerException, it may not be behaving correctly. In some cases, NullPointerExceptions occur more frequently than expected which causes the debugger to stop repeatedly for NullPointerExceptions, including those that are of no consequence to your code. This situation can be resolved by creating a breakpoint group, adding this breakpoint to the group, and disabling the breakpoint group so that the debugger does not stop at this breakpoint when debugging.

Next, you can create a source breakpoint in some code that you know is executed just before the problematic NullPointerException is thrown. You can set the actions for this source breakpoint so that when the source breakpoint occurs, it will automatically enable the breakpoint group which contains the exception breakpoint.

19.8.5 How to Edit a Breakpoint

JDeveloper allows you to edit the options of a breakpoint after you have added it in the source code.

To view and modify the options of a breakpoint:

	
If the Breakpoints window is not open, select View > Debugger > Breakpoints from the main menu.

	
In the Breakpoints window, select a breakpoint.

	
Right-click and choose Edit, or click the Edit icon on the Breakpoint toolbar.

The Edit Breakpoint dialog appears with a Definition tab, a Conditions tab, and an Actions tab.

	
Make any necessary changes to the breakpoint options.

	
To accept the changes, click OK.

From the Edit Breakpoint dialog, you can:

	
Set a breakpoint option.

	
Set the threads to which the breakpoint will apply.

	
Set a pass count for the breakpoint.

	
Put the breakpoint in a breakpoint group.

	
Choose what actions the debugger will take when the breakpoint occurs.

You can right-click to edit a breakpoint located in the source editor:

	
Right-click on a breakpoint icon in the gutter of the source editor.

	
Choose Edit Breakpoint.

The Edit Breakpoint dialog displays, where you can specify the definition of the breakpoint.

You can also hover over a breakpoint in the source editor:

	
With your mouse cursor, hover over a breakpoint icon in the gutter of an editor window.

Figure 19-9 Edit Breakpoints Dialog

[image: Edit Breakpoints dialog]

The popup dialog shown in Figure 19-9 displays.

In the dialog, you can edit some of the most important breakpoint attributes, such as enabled/disabled, condition and more.

19.8.6 How to Set Source Breakpoints

A source breakpoint is a breakpoint set in the source code and is the default type of breakpoint.

You can set a source breakpoint in any of the following ways:

	
In the source editor, click in the left margin next to a line of executable code.

	
In the source editor, right-click in the left margin next to a line of code then choose Toggle Breakpoint (F5).

	
Choose View > Debugger > Breakpoints to display the Breakpoints window. Then, right-click anywhere in this window and choose Add Breakpoint from the context menu. From the submenu, select Source as the breakpoint type, then complete the package, source file name, and line number information in the dialog. The source filename should not include any directory information, but must include the extension of the file. For example:

Application1.java or MyWebApp.jsp

You'll probably want to set a least one breakpoint before you start debugging, but it is not necessary. While your program is running in the debugger, you can set a breakpoint. The program pauses when it reaches the breakpoint.

19.8.7 How to Control Breakpoint Behavior

You can control how the debugger behaves when a breakpoint occurs.

To control how the debugger behaves when a breakpoint occurs:

	
In the Breakpoints window toolbar, click Add Breakpoint; or select a breakpoint and click Edit.

	
Click the Actions tab in the New/Edit Breakpoint dialog. The Actions tab allows you to change these behaviors:

	
Halt execution (default)

	
Beep

	
Log breakpoint occurrence (enter a tag or an expression)

	
Enable a group of breakpoints

	
Disable a group of breakpoints

19.8.8 How Disable and Delete Breakpoints

When you disable a breakpoint, all the breakpoint settings remain defined, but the breakpoint is not triggered when your program is run; your program will not stop on a disabled breakpoint. Disabling a breakpoint is useful if you have defined a breakpoint that you don't need to use now, but might need to use at a later time.

To disable breakpoints:

	
In the source editor, right-click the breakpoint symbol in the left margin and choose Disable Breakpoint.

	
In the Breakpoints window (View > Debugger > Breakpoints) right-click the breakpoint you want to disable and choose Disable.

	
To disable a group of breakpoints in the Breakpoints window, select the group that you want to disable, right-click and choose Disable Group.

You can also disable breakpoints from the Breakpoint toolbar. Select the breakpoint or breakpoint group, and click Disable on the toolbar.

	
To disable all current breakpoints, right-click in the Breakpoints window, and choose Disable All from the context menu.

To reenable disabled breakpoints:

	
To enable a breakpoint that is disabled, right-click the disabled breakpoint symbol (or entry in the Breakpoints window), and choose Enable.

	
To enable all breakpoints that have been set, right-click in the Breakpoints window, and choose Enable All.

	
To enable a group of breakpoints, right-click a breakpoint group in the Breakpoints window, and choose Enable Group.

You can also enable breakpoints from the Breakpoint toolbar. Select the breakpoint or breakpoint group, and click Enable on the toolbar.

To delete breakpoints:

When you no longer need to examine the code at a breakpoint location, you can delete the breakpoint. You can delete breakpoints either using the source editor or in the Breakpoints window.

	
In the left margin of the source editor, click the breakpoint you want to delete.

	
In the left margin of the source editor, right-click the breakpoint you want to delete, and choose Toggle Breakpoint.

	
In the source editor, place the cursor in the line of code containing the breakpoint, and press F5.

	
To delete all currently set breakpoints, right-click in the Breakpoints window and select Delete All.

	
Select the breakpoint in the Breakpoints window and click Delete Breakpoint on the toolbar.

	
Caution:

You cannot undelete a breakpoint.

19.8.9 How to Set Instance Breakpoints

Breakpoints typically have effect whenever they are reached. An instance breakpoint is associated with a specific instance of the class that defines the method where the breakpoint appears.

An instance breakpoint is a source breakpoint that has been associated with an instance filter that identifies the selected instances. Instance breakpoints do not persist between runs of the debugger. Instance filters are shown in the Instance Filters column of the Breakpoints window.

To set an instance breakpoint:

	
Set the source breakpoint that you will convert to an instance breakpoint. It must be in a method of the instance's class. For more information, see Section 19.8.6, "How to Set Source Breakpoints.".

	
Set a second breakpoint at some point where the desired instance will be accessible.

	
Define the instance filter:

	
Start or resume the debugger.

	
When the debugger stops at the second breakpoint, find the desired instance in the Data window, Smart Data window, or Watches window.

	
Right-click the instance, choose Instance Filters, and choose the source breakpoint that is to become an instance breakpoint.

Repeat for other instances you wish to track.

	
Resume the debugger.

The debugger will stop at the instance breakpoint only for the selected instances.

19.8.10 How to Set Exception Breakpoints

Breakpoints are typically attached to a particular line of code; they pause the debugger when a particular line of code is about to be executed. In addition, you can set a breakpoint to be activated when a certain type of exception is thrown. Exception breakpoints are not associated with a particular line of code.

To set an exception breakpoint:

	
In the Breakpoints window, click Add Breakpoint on the Breakpoint toolbar. From the submenu, choose Exception Breakpoint.

The Create Exception Breakpoint dialog appears.

	
In the Definition tab, enter or choose the name of an exception class.

	
If desired, select or clear the Break for Caught Exceptions or Break for Uncaught Exceptions checkboxes. Both checkboxes are selected by default.

	
Click OK.

The debugger will now pause if an exception of the specified type is thrown.

By default, the debugger automatically creates a persistent exception breakpoint for uncaught throws for java.lang.Throwable. This breakpoint will occur whenever an uncaught exception is thrown. You cannot delete a persistent breakpoint, although you can disable it.

19.8.11 How to Make a Breakpoint Conditional

When you make a breakpoint conditional, the debugger pauses when a certain condition is met. When a breakpoint is first set, the debugger pauses the program execution each time the breakpoint is encountered. However, using the Edit Breakpoints dialog, you can customize breakpoints so that they are activated only in certain conditions.

The Conditions tab in the Edit Breakpoint dialog is where you enter an expression that is evaluated each time the debugger encounters the breakpoint while executing the program. If the expression evaluates to true, then the breakpoint pauses the program. If the condition evaluates to false, then the debugger does not stop at that breakpoint location.

For example, suppose you want a breakpoint to pause on a line of code only when the variable mediumCount is greater than 10.

To set a breakpoint condition:

	
Set a breakpoint on a line of code by clicking to the left of the line in the source editor.

	
Open the Breakpoints window by choosing View > Debugger > Breakpoints.

	
In the Breakpoints window, right-click the breakpoint you just set and choose Edit.

	
In the Edit Breakpoint dialog, click Conditions.

	
Enter an expression in the Condition field, for example, mediumCount > 1

	
Click OK.

You can enter any valid Java language expression in the Edit Breakpoint dialog, but all symbols in the expression must be accessible from the breakpoint's location, and the expression cannot contain any method calls. For an exception breakpoint, you may want to use the exception object in your condition by using _throw.

You can also right-click a breakpoint located in the source editor to set conditions:

	
Right-click on a breakpoint icon in the gutter of the source editor.

	
Choose Edit Breakpoint.

The Edit Breakpoint dialog displays, where you can specify conditions.

You can also hover over a breakpoint in the source editor to set conditions:

	
With your mouse cursor, hover over a breakpoint icon in the gutter of an editor window.

The Edit Breakpoints popup dialog shown in Figure 19-9 displays. You can set conditions in the dialog.

19.8.12 Using Pass Count Breakpoints

The Pass Count field specifies the number of times that a breakpoint must be passed for the breakpoint to be activated. Pass counts are useful when you think that a loop is failing on the nth iteration. The debugger pauses the program the nth time that the breakpoint is encountered during the program run. The default value is 1.

If the Pass Count column is shown in the Breakpoints window, you can see the pass count value decrement each time the breakpoint line of code is encountered during the program execution. If the pass count equals 1 when the breakpoint line is encountered, the breakpoint is activated, and the program pauses at that line.

When pass counts are used together with breakpoint conditions, the breakpoint pauses the program execution the nth time that the condition is true; the condition must be true for the pass count to be decremented.

19.8.13 How to Examine Breakpoints with the Breakpoints Window

To see the list of breakpoints, choose View > Debugger > Breakpoints from the main menu. Breakpoints that have been verified as valid by the debugger are indicated by the icon shown in Figure 19-8. You can use the Breakpoints window to quickly find the breakpoint location in your source code.

To use the Breakpoints window to locate a breakpoint in the source editor:

	
In the Breakpoints window, select a breakpoint.

	
Right-click and choose Go to Source from the context menu.

19.8.14 How to Manage Breakpoint Groups

You can enable or disable several breakpoints with a single action, by creating a breakpoint group and putting breakpoints into it. Once you've created a breakpoint group, you can enable, disable, or remove it like a single breakpoint.

You can also drag and drop a breakpoint into or out of a group in the Breakpoints window.

To create a breakpoint group:

	
In the Breakpoints window, right-click a breakpoint and choose Edit from the context menu.

The Edit Breakpoint dialog appears.

	
In the Breakpoint Group Name field, enter a group name for this breakpoint.

	
Click OK.

A new group is created in the Breakpoints window, and is indicated by a folder icon. The breakpoint you just edited is automatically put in the new group.

To move a breakpoint into a breakpoint group:

Either drag-and-drop the breakpoint into the breakpoint group, or follow these steps.

	
In the Breakpoints window, right-click a breakpoint and choose Edit from the context menu.

The Edit Breakpoint dialog appears.

	
From the Breakpoint Group Name field, select a breakpoint group from the dropdown list, or enter a new group name.

	
Click OK.

The breakpoint is added into the specified group.

To enable, disable, or remove a breakpoint group, in the Breakpoints window, right-click a breakpoints group, and choose Enable Group, Disable Group, or Delete Group from the context menu.

You can also enable or disable a group from the Breakpoint toolbar. With the group name selected in Breakpoints window, click the Enable or Disable icon on the toolbar. All the breakpoints of the selected group will be enabled or disabled.

19.9 Examining Program State in Debugger Windows

Even though you can view your program by running and stepping through it, you usually need to examine the values of program variables to uncover bugs. For example, it is helpful to know the value of the index variable as you step though a loop, or the values of the parameters passed in a method call. When your program is paused in the debugger, you can examine the values of variables, arguments, fields, and array items.

19.9.1 How to Inspect and Modify Data Elements

You can inspect and change the values of data items using the Data, Smart Data, Inspector, or Watches windows during the course of your debugging sessions.

When you inspect a data item, you evaluate it with different expressions while your debugging session is running. If desired, you can then modify program data values as a way to test hypothetical bug fixes during a program run. If you find that a modification fixes a program error, you can exit the debugging session, fix your program code accordingly, and recompile the program to make the fix permanent.

You can modify program data values during a debugging session as a way to test hypothetical bug fixes during a program run. If you find that a modification fixes a program error, you can exit the debugging session, fix your program code accordingly, and recompile the program to make the fix permanent.

When you modify the value of a variable, the modification is effective for that specific program run only; the changes you make through the Data or Watches windows do not affect your program source code or the compiled program. To make your change permanent, you must modify your program source code in the source editor, then recompile your program.

The new value needs to be type-compatible with the variable you want to assign it to. A good rule of thumb is that if the assignment would cause a compile-time or run-time error, it is not a legal modification value.

To inspect a data item:

	
Open the Data window while the debugger is stopped at a breakpoint.

	
Right-click an item in the Data window and choose Inspect from the context menu.

The floating Inspector window opens displaying the item's name, value, and other related information. The columns which display in this window depend on those column settings that were enabled in the Tools > Preferences - Debugger - Inspector page. For more information, see Section 19.7.5, "How to Use the Inspector Window."

	
To evaluate the item for an expression, choose Edit Expression from the context menu.

You can also add a watch expression or further inspect the data item.

	
When you are done, close the Inspector window.

To quickly inspect a data item:

If you just want to view a data item's value and do not want to evaluate it for any expression, you can use the Quick Inspect feature.

	
Open the Data window while the debugger is stopped at a breakpoint.

	
Configure the Data window to display the Quick Inspect column. Right-click in the header of the Data window columns and choose Quick Inspect. The Quick Inspect is the first column of the window.

	
Select the data item and click the green spherical icon.

	
A child window opens showing the children of the selected item, allowing you to quickly inspect variables deep in an object hierarchy. The quick inspect windows close automatically when you move mouse pointer away from the data item.

JDeveloper also allows you to inspect a data item without adding it in Data window. When the debugger has stopped at a breakpoint in the Source Editor, hover the mouse over a data item to view the its name, value, and type. If the data item is an object or an array, you can inspect children of the selected item deep in the object hierarchy.

To modify the value of a variable in the Data window:

	
Open the Data window while the debugger is stopped at a breakpoint.

	
Right-click an item in the Data window and choose Modify Value from the context menu.

The Modify Value dialog appears with the selected item's name and its current value.

	
Enter a new value for the item.

	
If you are modifying a primitive value, you can enter a new value.

	
If you are modifying a reference pointer (other than a string), you can enter the memory address of an existing object or array.

	
If you are modifying a string, you can enter either a new string value or the memory address of an existing string.

	
Click OK to change the value for the item and to close the dialog.

The new value appears in the Data, Smart Data, Inspector, or Watches windows.

19.9.2 How to Set Expression Watches

A watch enables you to monitor the changing values of variables or expressions as your program runs. After you enter a watch expression, the Watch window displays the current value of the expression. As your program runs, the value of the watch changes as your program updates the values of the variables in the watch expression.

A watch evaluates an expression according to the current context which is controlled by the selection in the Stack window. If you move to a new context, the expression is reevaluated for the new context. If the execution point moves to a location where any of the variables in the watch expression are undefined, the entire watch expression becomes undefined. If the execution point returns to a location where the watch expression can be evaluated, the Watches window again displays the value of the watch expression.

To open the Watches window:

	
Choose View > Debugger > Watches from the main menu.

To add a watch from the Source Editor:

	
Select the expression you want to watch with your cursor.

	
Right-click and choose Watch from the context menu to add the expression to the Watches window.

A dialog appears with the expression.

	
Edit the expression, if necessary.

	
Click OK.

Or, add a watch in the following ways:

	
Select a data item in the Data window. Then right-click, and choose Watch.

	
Right-click in the Watches window and choose Add Watch.

	
Use the mouse to drag a data item from the Data window and drop it on the Watches window.

To edit a watch:

	
Select the expression in the Watches window, then right-click and choose Edit Watch.

The Edit Watch dialog appears.

	
Enter a new expression or modify the existing one and click OK.

To delete a watch:

	
Select the expression in the Watches window, press the Delete key or right-click and choose Remove Watch from the context menu. You can also delete all the watches by choosing Remove All Watches from the context menu.

	
Caution:

You cannot restore a deleted watch.

19.9.3 How to Modify Expressions in the Inspector Window

You can modify an existing expression in the inspector window.

To modify an expression in the Inspector window:

	
In the Inspector window, right-click and choose Edit Expression from the context menu.

The Edit Expression dialog appears.

	
Enter a new expression.

	
Click OK.

19.9.4 How to Show and Hide Fields in the Filtered Classes List

While debugging, you can use filters to reduce the number of fields that are displayed when you expand an object in a data-related debugger window. You can perform this task in the Smart Data window, the Data window, the Inspector window, the Watches window, and the left-hand side of the Monitors window through the Object Preferences dialog. Displaying fewer fields narrows your focus when debugging and may make it easier to locate and isolate potential problems in your program.

For example, you can create filters for classes in the data windows so that the debugger displays only the fields of interest to you. This drastically reduces clutter and allows you to find the relevant data more quickly.

To show or hide fields in the filtered classes list:

	
Select an object in a data-related debugger window. Right-click and choose Object Preferences from the context menu.

Choosing Object Preferences lets you go directly to the Object Preferences dialog for this specific object from which you can specify filters to control which fields are displayed and which fields are not displayed when you expand an object.

	
In the Object Preferences dialog, you can easily traverse the superclass hierarchy of the selected object, defining or updating the filters for each superclass. Select a class in the Type Hierarchy and choose the fields to hide or display in the Value column of the debugger window.

	
Click the arrows to shuttle filters from the Fields to Show list to the Fields to Hide list.

	
Click OK when you are done.

19.10 Debugging Remote Java Programs

In addition to debugging code locally in the JDeveloper IDE, you can also debug code which is located on a remote machine or running in a different VM instance. This means that you can use the debugger to debug code that has already been deployed. The debugger can simultaneously attach to multiple remote VMs, so you can seamlessly debug distributed applications, such as JSPs deployed to a web server accessing EJBs deployed to an application server.

The main difference between remote debugging and local debugging is how you start the debugging session. For local debugging, JDeveloper automatically launches the program you want to debug (called a debuggee process) and then attaches the debugger to that program. For remote debugging, you must manually launch the program you want to debug. Also, if you are debugging a JSP or a servlet, you must manually start a browser to invoke your JSP or servlet.

Once the debuggee is launched and the JDeveloper debugger is attached to it, remote debugging is very similar to local debugging. Remember that you can use remote debugging when the debuggee process is running on the same machine as JDeveloper or when the debuggee process is running on a different machine.

Unlike local debugging, you must choose which protocol to use before you start your remote debugging session. The remote debugging protocols are configured in Debugger - Remote page of the Edit Run Configuration dialog.

You can also debug Web pages such as JSPs or servlets using the HTTP Analyzer. For more information, see Chapter 8, "Auditing and Profiling Applications."

Attach to JPDA

Select to attach to the debugger application at a specified address. For more information about the Sun Java Platform Debugger Architecture (JPDA) Connection and Invocation, see http://java.sun.com/javase/6/docs/technotes/guides/jpda/conninv.html

Listen for JPDA

Select to specify that the debugger listen for a debuggee to attach to the debugger. Also, choose this option if you are debugging remote PL/SQL programs.

19.10.1 How to Start a Java Process in Debug Mode

After you've configured a project for remote debugging, you can start your remote debugging session by issuing the appropriate command based on the debugging protocol and the environment.

To start the Java process, enter the following at the command line:

java [-client|server] -cp <project_directory>\classes -agentlib:jdwp,<option1>[=<value1>],<option2>[=<value2>]... <java_main_class>

The available options are:

	
server(=n/y)

If set to y, then the Java process waits for a Debugger to attach. If set to n (default), the process attaches itself to the debugger application at the specified address.

	
address

Specifies the port for the connection. Defaults to 4000.

	
timeout

Time interval after which the connection attempt times out. Defaults to 2 seconds.

	
suspend =(y/n)

If set to y (default), the Java process runs after the debugger connects to it. If set to n, the debuggee process starts right away without waiting for the debugger to connect to it.

Command line examples:

	
java -cp <project_directory>\classes -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=4000

Listen for a debugger connection on port 4000, but begin execution without waiting for the debugger. Timeout after 2s (default). Implement the Client VM (default).

	
java -server -cp <project_directory>\classes -agentlib:jdwp=transport=dt_socket,server=n,suspend=y,timeout=3,address=8000

Attach to a debugger connection on port 8000. Begin execution only after connecting to the debugger. Timeout after 3s. Implement the Server VM.

For more information about the Sun JPDA Connection and Invocation, see

http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html.

19.10.2 How to Remote Debug Using the Javascript Debugger

JDeveloper allows you to remote debug a Javascript program in local instances and server instances.

Before you start remote debugging, install the Firefox plugin for Javascript debugging and configure JDeveloper for Javascript remote debugging.

To remote debug a Javascript program (HTML/JS files):

	
Enable remote debugging in JDeveloper.

	
Choose Application > Project Properties.

	
In the Project Properties dialog, select the Run/Debug/Profile node. From the Run Configurations list, select a run configuration and click Edit.

	
In the Launch Settings page of the Edit Run Configuration dialog, select Remote Debugging.

	
Select Remote node under Tool Settings > Debugger.

	
In the Remote page, select Protocol as Attach to Mozilla/Firefox.

	
Optionally, set host machine name, port, and timeout information. By default, JDeveloper uses port 4000 and 2 seconds timeout values.

	
Click OK to close the Edit Run Configuration dialog, and then close the Project Properties dialog.

	
Close all open instances of Firefox, if any.

	
In JDeveloper, set breakpoints in the Javascript program.

	
Open command window and start Mozilla Firefox with the following command:

firefox AnHtmlFile -oraclejsdebugport=<port> <another browser argument>

For example:

C:\>firefox file://C:/Shopcart/Servlet/public_html/index.html -oraclejsdebugport=4000

Firefox won't open, but its process will start in the background. Open Windows Task Manager and verify that firefox process is running.

	
In JDeveloper, start the remote debugger. In Application Navigator, select the project, right-click and choose Start Remote Debugger.

	
The program starts in Firefox browser and, in JDeveloper, the debugger stops at the first breakpoint you have set in your source code. Now, you may continue debugging your Javascript program using available debugger options.

To remote debug a Javascript program in a server instance (JSP/Servlets/HTML files):

	
Start JDeveloper Integrated WebLogic server. From the Run menu, choose Start Server Instance.

	
Deploy your project to the integrated WebLogic server.

	
Enable remote debugging in JDeveloper.

	
Choose Application > Project Properties.

	
In the Project Properties dialog, select the Run/Debug/Profile node. From the Run Configurations list, select a run configuration and click Edit.

	
In the Launch Settings page of the Edit Run Configuration dialog, select Remote Debugging.

	
Select Remote node under Tool Settings > Debugger.

	
the Remote page, select Protocol as Attach to Mozilla/Firefox.

	
Optionally, set host machine name, port, and timeout information. By default, JDeveloper uses port 4000 and 2 seconds timeout values.

	
Click OK to close the Edit Run Configuration dialog, and then close the Project Properties dialog.

	
Close all open instances of Firefox, if any.

	
In JDeveloper, set breakpoints in your program files.

	
Open command window and start Mozilla Firefox with the following command:

firefox webaddress -oraclejsdebugport=<port> <another browser argument>

For example:

C:\>firefox http://130.35.102.18:7101/Shopcart/index.jsp -oraclejsdebugport=4000

Firefox won't open, but its process will start in the background. Open Windows Task Manager and verify that firefox process is running.

	
In JDeveloper, start the remote debugger. In Application Navigator, select the project, right-click and choose Start Remote Debugger.

	
The program starts in Firefox browser and, in JDeveloper, the debugger stops at the first breakpoint you have set in your source code. Now, you may continue debugging your program using available debugger options.

19.10.3 How to Use a Project Configured for Remote Debugging

Any project can be configured to perform remote debugging.

To configure a project for remote debugging:

	
Click Debug from the toolbar.

The appropriate Attach to dialog appears.

	
In the Host list box, enter or select the name or IP address of the machine where the remote debuggee has been started.

	
In the Port list box, enter or select the port number for the remote debuggee.

	
Click OK.

In the Log window, once the debugger has connected, a successful connection message appears.

	
If you are remote debugging a JSP or servlet, you will want to access your JSP or servlet by launching your browser. If you are remote debugging an EJB, you will want to run an EJB client that will access your EJB.

	
Continue with your debugging session as usual.

	
To detach the debugger from the remote debugging process without terminating the debuggee process, choose the Run > Detach menu option. This option is appropriate for remote debugging an application server.

	
To terminate the remote debugging process, choose the Run > Terminate menu option, or select the Terminate icon.

19.10.4 How to Configure JPDA Remote Debugging

In the following steps, you will configure JDeveloper for Java Platform Debugger Architecture (JPDA) remote debugging.

To configure your project for remote debugging:

	
Make changes in the JSP section of global-web-application.xml as follows:

<init-param>
 <param-name>debug</param-name>
 <param-value>class</param-value>
</init-param>

	
Start commands for Integrated WebLogic Server (make sure -server is the first parameter).

value="-server -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=4000 -Xms512m -Xmx750m -XX:PermSize=128m -XX:MaxPermSize=256m -Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy -Djava.awt.headless=true -Dhttp.webdir.enable=false"/>

To configure JDeveloper for remote debugging:

	
Choose Application > Project Properties, select the Run/Debug/Profile node, select a run configuration and click Edit.

	
Select the Remote Debugging and Profiling check box.

	
On the Debugger - Remote page, verify that Protocol is set to Attach to JPDA.

	
Close the Preferences dialog.

	
Set breakpoints in your code and from the Debug button dropdown list select the desired run configuration. Complete the connection dialog and verify connection to the debuggee.

	
Access JSP previously deployed to server via a browser. The breakpoint should be hit and all work as expected.

Getting Started With Application Modeling Using Diagrams

21 Getting Started With Application Modeling Using Diagrams

This chapter describes how to get started modeling your applications, and various application sub-systems, and databases using the diagrams and related diagramming tools and technologies included in Oracle JDeveloper.

This chapter includes the following sections:

	
Section 21.1, "About Modeling with Diagrams"

	
Section 21.2, "Diagram Types"

	
Section 21.3, "How to Set Paths for a Modeling Project"

21.1 About Modeling with Diagrams

JDeveloper supports four standard UML diagrams types, and four additional diagram types to model and collaborate the software and systems development for your applications. You can use the diagrams in JDeveloper to model your typical business applications, including custom applications.

21.2 Diagram Types

JDeveloper provides New Gallery wizards to create the diagrams for your modeling projects. You can easily create any of these diagrams and related UML and non-uml components using the New Gallery wizards. Select File > New > General > Diagrams from the Menu bar.

Select your diagram type then double-click, or click OK to start the wizard. The wizard lets you choose the package for your new diagram, as well as select the optional components you want available for that diagram. The component selection feature enables you to choose the diagram-related components you want to show up in the Component Palette while you are editing your diagram. Figure Figure 21-1 shows an example create diagram dialog for a class diagram.

Choose from a variety of different tools, elements, and UML-compliant objects to model your application systems on the diagrams, for example, those available in the Component Palette for a typical class diagram, as shown in Figure 21-2.

Figure 21-1 Create Class Diagram Example

[image: create class diagram]

Figure 21-2 Class Diagram Component Palette

[image: class diagram component palette]

21.2.1 UML Diagrams

JDeveloper offers four standard UML diagram types to model your Java classes. You can use all of the standard UML objects, and class and diagram transformation features for UML to easily transform classes to online and offline database objects, or vice-versa. For more information, see Chapter 22, "How to Transform UML and Offline Databases".

Available UML diagram types include the following:

	
Activity Diagram. Model system behavior as coordinated actions. You can use activities to model business processes, such as tasks that achieve specific business goals, like shipping, or order processing.

	
Class Diagram. Model the structure of your system. Create new or inspect the architecture of existing class models, interfaces, attributes, operations, associations, generalizations and interface realizations.

	
Sequence Diagram. Model sequence of event occurrences. Sequence diagrams are organized according to time, and show the calls between the different objects in the sequence. Use the diagram to create or inspect interactions between events, lifelines, messages and combined fragments.

	
Use Case Diagram. Visually model what a system is supposed to do. A use case diagram is a collection of actors, use cases, and their communications.

21.2.2 Business Services Diagrams

You can model your business services and entities and their relationships in your applications using both regular and UML objects. Using JDeveloper transformation features for UML objects, you can transform online or offline database tables to classes, or classes to database tables. All of these objects can be modeled on any of the following four diagrams:

	
Business Components Diagram. Diagram your business component interrelationships, entity classes, interactions, and public interfaces.

	
Database Diagram. Model your online and offline database tables and their relationships. Use transformation features to create a diagram model that represents your database schema, or transform your classes to database tables online or offline.

	
EJB Diagram. Create, edit, and model the entity objects, session and message-driven beans inside a system, and the relationships between them.

	
Java Class Diagram. Model the relationships and the dependencies between Java classes. Use Java Class Diagrams to visually create or inspect objects like interfaces, enums, fields, methods, references, inheritance relationships, and implementation relationships.

21.3 How to Set Paths for a Modeling Project

You can configure the settings of a JDeveloper project to specify the root locations of the package hierarchies for modeled elements available to that project. The model path is configured by default. Change it if you want to include model element files to your model that are stored somewhere else, or to store new model element files somewhere else.

Modeled elements can be shared between projects by adding their file system location to the model path for a project.

To set the model path for a project:

	
Right-click the project whose model path you want to specify.

	
Choose Project Properties.

	
Open the Project Source Paths node and select the Modelers node.

	
In the Model Path area, use Add to enter the file system location for your project's model elements. Note that the order in which file system locations are entered in the Model Path signifies the order in which the folders are searched for a model element. These folders are the 'roots' of the package hierarchies used by a model. The first location specified in the model path is also the location in which new model elements are stored.

	
To complete the setting of the model path, click OK.

Oracle Legal Notices

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, an