

What's New in This Guide for Release 11.1.2.2.0

For Release 11.1.2.2.0, this guide has been updated in several ways. The following table lists the sections that have been added or changed.

For changes made to Oracle JDeveloper and Oracle Application Development Framework (Oracle ADF) for this release, see the What's New page on the Oracle Technology Network at http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html.

	Sections	Changes Made
	
Chapter 9 Organizing Content on Web Pages

	

	
Section 9.5, "Arranging Content in a Grid"

	
Section added to describe new panelGridLayout, gridRow, and gridCell components.

	
Chapter 22 Using Graph Components

	

	
Section 22.1.1.3, "Image Formats"

	
Section added to describe graph image formats

	
Section 22.5.1, "Changing the Color, Style, and Display of Graph Data Values"

	
Removed obsolete procedure to use seriesObjectCount attribute to set number of different colors used in a series set

	
Chapter 23 Using Gauge Components

	

	
Section 23.2.1, "Configuring Gauges"

	
Section added to describe gauge image formats

	
Appendix A ADF Faces Configuration

	

	
Section A.2.3.18, "Framebusting"

	
Section revised to reflect the change to use a Apache MyFaces Trinidad API.

	
Section A.2.3.24, "Clean URLs"

	
Section added to document how URL parameters are used and can be removed to result in "clean" URLs.

	
Section A.4.4, "Using Content Delivery Networks"

	
Section added to document how ADF Faces can work with content delivery networks.

1 Introduction to ADF Faces

This chapter introduces ADF Faces, providing an overview of the framework functionality and each of the different component types found in the library.

This chapter includes the following sections:

	
Section 1.1, "About Oracle ADF Faces"

	
Section 1.2, "ADF Faces Framework"

	
Section 1.3, "ADF Faces Components"

1.1 About Oracle ADF Faces

Oracle ADF Faces is a set of over 150 Ajax-enabled JavaServer Faces (JSF) components as well as a complete framework, all built on top of the JSF 2.0 standard. In its beginnings, ADF Faces was a first-generation set of JSF components, and has since been donated to the Apache Software Foundation. That set is now known as Apache MyFaces Trinidad (currently available through the Apache Software Foundation), and remains as the foundation of today's ADF Faces.

With ADF Faces and JSF 2.0, you can implement Ajax-based applications relatively easily with a minimal amount of hand-coded JavaScript. For example, you can easily build a stock trader's dashboard application that allows a stock analyst to use drag and drop to add new stock symbols to a table view, which then gets updated by the server model using an advanced push technology. To close new deals, the stock trader could navigate through the process of purchasing new stocks for a client, without having to leave the actual page. Much of this functionality can be implemented declaratively using Oracle JDeveloper, a full-featured development environment with built-in support for ADF Faces components, allowing you to quickly and easily build the view layer of your web application.

	
Note:

Because ADF Faces adheres to the standards of the JSF technology, this guide is mostly concerned with content that is in addition to, or different from, JSF standards. Therefore, it is recommended that you have a basic understanding of how JSF works before beginning to develop with ADF Faces. To learn more about JSF, see http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html.

1.2 ADF Faces Framework

ADF Faces framework offers complete rich functionality, including the following;

	
Built to the JSF 2.0 specification

ADF Faces supports JSF 2.0, including Facelets. Several of the new JavaServer Faces 2.0 features have parallel functionality in ADF Faces. To understand the new functionality introduced in JSF 2.0 and the functional overlap that exists between ADF Faces and JSF 2.0, see the JavaServer Faces 2.0 Overview and Adoption Roadmap in Oracle ADF Faces and Oracle JDeveloper 11g whitepaper on OTN.

	
Large set of fully featured rich components

The library provides over 150 Rich Internet Application (RIA) components, including geometry-managed layout components, text and selection components, sortable and hierarchical data tables and trees, menus, in-page dialogs, and general controls. For more information, see Section 1.3, "ADF Faces Components."

	
Widespread Ajax support

Many ADF Faces components have ajax-style functionality implemented natively. For example, the ADF Faces table component lets you scroll through the table, sort the table by clicking a column header, mark a row or several rows for selection, and even expand specific rows in the table, all without requiring the page to be submitted to the server, and with no coding needed. In ADF Faces, this functionality is implemented as partial page rendering (PPR). For more information, see Chapter 8, "Rerendering Partial Page Content."

	
Limited need for developers to write JavaScript

ADF Faces hides much of the complex JavaScript from you. Instead, you declaratively control how components function. You can implement a rich, functional, attractive Web UI using ADF Faces in a declarative way that does not require the use of any JavaScript at all.

That said, there may be cases when you do want to add your own functionality to ADF Faces, and you can easily do that using the client-side component and event framework. For more information, see Chapter 4, "Using ADF Faces Client-Side Architecture."

	
Enhanced lifecycle on both server and client

ADF Faces extends the standard JSF 2.0 page request lifecycle. Examples include a client-side value lifecycle, a subform component that allows you to create independent submittable regions on a page without needing multiple forms, and an optimized lifecycle that can limit the parts of the page submitted for processing. For more information, see Chapter 5, "Using the JSF Lifecycle with ADF Faces."

	
Event handling

ADF Faces adheres to standard JSF event handling techniques, as well as offering complete a client-side event model. For more information about events, see Chapter 6, "Handling Events."

	
Partial page navigation

ADF Faces applications can use PPR for navigation, which eliminates the need to repeatedly load JavaScript libraries and stylesheets when navigating between pages. For more information, see Section 8.4, "Using Partial Page Navigation."

	
Client-side validation, conversion, and messaging

ADF Faces validators can operate on both the client and server side. Client-side validators are in written JavaScript and validation errors caught on the client-side can be processed without a round-trip to the server. For more information, see Chapter 7, "Validating and Converting Input."

	
Server-side push and streaming

The ADF Faces framework includes server-side push that allows you to provide real-time data updates for ADF Faces components. For more information, see Chapter 35, "Using the Active Data Service with an Asynchronous Backend."

	
Active geometry management

ADF Faces provides a client-side geometry management facility that allows components to determine how best to make use of available screen real-estate. The framework notifies layout components of browser resize activity, and they in turn are able to resize their children. This allows certain components to stretch or shrink, filling up any available browser space. For more information, see Section 9.2.1, "Geometry Management and Component Stretching."

	
Advanced templating and declarative components

You can create page templates, as well as page fragments and composite components made up of multiple components, which can be used throughout your application. For more information, see Chapter 10, "Creating and Reusing Fragments, Page Templates, and Components."

	
Advanced visualization components

ADF Faces includes data visualization components, which are Flash- and PNG-enabled components capable of rendering dynamic charts, graphs, gauges, and other graphics that provide a real-time view of underlying data. For more information, see Part V, "Using ADF Data Visualization Components".

	
Skinning

You can create your own look and feel by implementing skins for ADF Faces components. Oracle provides a stand-alone skin editor, where you can declaratively create and modify your skins. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Internationalization

You can configure your JSF page or application to use different locales so that it displays the correct language based on the language setting of a user's browser. For more information, see Chapter 29, "Internationalizing and Localizing Pages."

	
Accessibility

ADF Faces components have built-in accessibility that work with a range of assistive technologies, including screen readers.ADF Faces accessibility audit rules provide direction to create accessible images, tables, frames, forms, error messages, and popup windows using accessible HTML markup. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
User-driven personalization

Many ADF Faces components allow users to change the display of the component at runtime. By default, these changes live only as long as the page request. However, you can configure your application so that the changes can be persisted through the length of the user's session. For more information, see Chapter 32, "Allowing User Customization on JSF Pages."

	
Drag and drop

The ADF Faces framework allows the user to move data from one location to another by dragging and dropping one component onto another. For more information, see Chapter 33, "Adding Drag and Drop Functionality."

	
Integration with other Oracle ADF technologies

You can use ADF Faces in conjunction with the other Oracle ADF technologies, including ADF Business Components, ADF Controller, and ADF Databinding. For more information about using ADF Faces with the ADF technology stack, see the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
Integrated declarative development with Oracle JDeveloper

JDeveloper is a full-featured development environment with built-in declarative support for ADF Faces components, including a visual layout editor, a Component Palette that allows you to drag and drop an ADF Faces component onto a page, and a Property Inspector where you declaratively configure component functionality. For more information about using JDeveloper, see Chapter 3, "Getting Started with ADF Faces and JDeveloper."

1.3 ADF Faces Components

ADF Faces components generally fall into the following categories:

	
Layout components

Layout components act as containers to determine the layout of the page, ADF Faces layout components also include interactive container components that can show or hide content, or that provide sections, lists, or empty spaces. JDeveloper provides prebuilt quick-start layouts that declaratively add layout components to your page based on how you want the page to look. For more information about layout components and geometry management, see Chapter 9, "Organizing Content on Web Pages."

In addition to standard layout components, ADF Faces also provides the following specialty layout components:

	
Explorer-type menus and toolbar containers: Allow you to create menu bars and toolbars. Menus and toolbars allow users to select from a specified list of options (in the case of a menu) or buttons (in the case of a toolbar) to cause some change to the application. For more information, see Chapter 16, "Using Menus, Toolbars, and Toolboxes."

	
Secondary windows: Display data in popup windows or dialogs. The dialog framework in ADF Faces provides an infrastructure to support building pages for a process displayed in a new popup browser window separate from the parent page. Multiple dialogs can have a control flow of their own. For more information, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."

	
Core structure components and tags: Provide the tags needed to create pages and layouts, such as documents, forms and subforms, and resources. These tags are discussed in various chapters.

	
Text and selection components

These components allow you to display text, from a simple output text component to input components, including selection components, to a complex list of value component.

	
Output components: Display text and graphics, and can also play video and music clips. ADF Faces also includes a carousel component that can display graphics in a revolving carousel. For more information, see Chapter 18, "Using Output Components."

	
Input components: Allow users to enter data or other types of information, such as color selection or date selection. ADF Faces also provides simple lists from which users can choose the data to be posted, as well as a file upload component. For more information about input components, see Chapter 11, "Using Input Components and Defining Forms."

	
List-of-Values (LOV) components: Allow users to make selections from lists driven by a model that contains functionality like searching for a specific value or showing values marked as favorites. These LOV components are useful when a field used to populate an attribute for one object might actually be contained in a list of other objects, as with a foreign key relationship in a database. For more information, see Chapter 13, "Using List-of-Values Components."

	
Data Views

ADF Faces provides a number of different ways to display complex data.

	
Table and tree components: Display structured data in tables or expandable trees. ADF Faces tables provide functionality such as sorting column data, filtering data, and showing and hiding detailed content for a row. Trees have built-in expand/collapse behavior. Tree tables combine the functionality of tables with the data hierarchy functionality of trees. For more information, see Chapter 12, "Using Tables and Trees."

	
Data visualization components: Allow users to view and analyze complex data in real time. ADF data visualization components include graphs, gauges, pivot tables, geographic maps, Gantt charts, and hierarchy viewers that display hierarchical data as a set of linked nodes, for example an organization chart. For more information, see Chapter 21, "Introduction to ADF Data Visualization Components."

	
Query components: Allow users to query data. The query component can support multiple search criteria, dynamically adding and deleting criteria, selectable search operators, match all/any selections, seeded or saved searches, a basic or advanced mode, and personalization of searches. For more information, see Chapter 14, "Using Query Components."

	
Specialty display components: The calendar component displays activities in day, week, month, or list view. You can implement popup components that allow users to create, edit, or delete activities. For more information, see Chapter 17, "Using a Calendar Component." The carousel component allows you to display a collection of images in a scrollable manner. For more information, see Section 18.6, "Displaying Images in a Carousel."

	
Messaging and help: The framework provides the ability to display tooltips, messages, and help for input components, as well as the ability to display global messages for the application. The help framework allows you to create messages that can be reused throughout the application.You create a help provider using a Java class, a managed bean, an XLIFF file, or a standard properties file, or you can link to an external HTML-based help system. For more information, see Chapter 19, "Displaying Tips, Messages, and Help."

	
Hierarchical menu model: ADF Faces provides navigation components that render items such as tabs and breadcrumbs for navigating hierarchical pages. The framework provides an XML-based menu model that, in conjunction with a metadata file, contains all the information for generating the appropriate number of hierarchical levels on each page, and the navigation items that belong to each level. For more information, see Chapter 20, "Working with Navigation Components."

	
General controls

General controls include the components used to navigate, as well as to display images and icons,

	
Navigation components: Allow users to go from one page to the next. ADF Faces navigation components include buttons and links, as well as the capability to create more complex hierarchical page flows accessed through different levels of menus. For more information, see Chapter 20, "Working with Navigation Components."

	
Images and icon components: Allow you to display images as simple as icons, to as complex as video. For more information, see Chapter 18, "Using Output Components."

	
Operations

While not components, these tags work with components to provide additional functionality, such as drag and drop, validation, and a variety of event listeners. These operational tags are discussed with the components that use them.

8 Rerendering Partial Page Content

This chapter describes how to use the partial page render features provided with ADF Faces components to rerender areas of a page without rerendering the whole page.

This chapter includes the following sections:

	
Section 8.1, "About Partial Page Rendering"

	
Section 8.2, "Enabling Partial Page Rendering Declaratively"

	
Section 8.3, "Enabling Partial Page Rendering Programmatically"

	
Section 8.4, "Using Partial Page Navigation"

8.1 About Partial Page Rendering

Ajax (Asynchronous JavaScript and XML) is a web development technique for creating interactive web applications, where web pages appear more responsive by exchanging small amounts of data with the server behind the scenes, without the whole web page being rerendered. The effect is to improve a web page's interactivity, speed, and usability.

With ADF Faces, the feature that delivers the Ajax partial page render behavior is called partial page rendering (PPR). PPR allows certain components on a page to be rerendered without the need to rerender the entire page. For example, an output component can display what a user has chosen or entered in an input component, or a command link or button can cause another component on the page to be rerendered, without the whole page rerendering.

In order for PPR to work, boundaries must be set on the page that allow the lifecycle to run just on components within the boundary. In order to determine the boundary, the framework must be notified of the root component to process. The root component can be identified in two ways:

	
Events: Certain events indicate a component as a root. For example, the disclosure event sent when expanding or collapsing a showDetail component (see Section 9.9, "Displaying and Hiding Contents Dynamically"), indicates that the showDetail component is a root. When the showDetail component is expanded or collapsed, only that component goes through the lifecycle. Other examples of events identifying a root component are the disclosure event when expanding nodes on a tree, or the sort event on a table. For a complete list of events that have corresponding event root components, see Table 6-1 in Section 6.1.1, "Events and Partial Page Rendering."

	
Components: Certain components are recognized as a boundary, and therefore a root component. For example, the framework knows a popup dialog is a boundary. No matter what event is triggered inside a dialog, the lifecycle does not run on components outside the dialog. It runs only on the popup.

In addition to built-in PPR functionality, you can configure components to use cross-component rendering, which allows you to set up dependencies so that one component acts as a trigger and another as the listener. When an event occurs on the trigger component, the lifecycle is run only on listener components and child components to the listener, and only the listener components and their children are rerendered. Cross-component rendering can be implemented declaratively. However, by default, all events from a trigger component will cause PPR (note that some components, such as table, trigger partial targets on only a subset of their events). For these cases where you need strict control over the event that launches PPR, or for cases where you want to use some logic to determine the target, you can implement PPR programatically.

	
Tip:

If your application uses the Fusion technology stack, you can enable the automatic partial page rendering feature on any page. This causes any components whose values change as a result of backend business logic to be automatically rerendered. For more information, see the "What You May Need to Know About Automatic Partial Page Rendering" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Additionally, ADF Faces applications can use PPR for navigation. In standard JSF applications, the navigation from one page to the next requires the new page to be rendered. When using Ajax-like components, this can cause overhead because of the time needed to download the different JavaScript libraries and style sheets. To avoid this costly overhead, the ADF Faces architecture can optionally simulate full-page transitions while actually remaining on a single page, thereby avoiding the need to reload JavaScript code and skin styles.

	
Note:

The browser must have JavaScript enabled for PPR to work.

8.2 Enabling Partial Page Rendering Declaratively

Using the simplest form of cross-component rendering, one component, referred to as the target component, is rerendered when any event occurs on another component, referred to as the trigger component.

For example, as shown in Figure 8-1, the File Explorer application contains a table that shows the search results in the Search panel. This table (and only this table) is rerendered when the search button is activated. The search button is configured to be the trigger and the table is configured to be the target.

Figure 8-1 The Search Button Causes Results Table to Rerender

[image: Search button causes table to rerender]

	
Note:

In some cases, you may want a component to be rerendered only when a particular event is fired, not for every event associated with the trigger component, or you may want some logic to determine whether a component is to be rerendered. In these cases, you can programatically enable PPR. For more information, see Section 8.3, "Enabling Partial Page Rendering Programmatically."

Trigger components must inform the framework that a PPR request has occurred. On command components, this is achieved by setting the partialSubmit attribute to true. Doing this causes the command component to fire a partial page request each time it is clicked.

For example, say a page includes an inputText component, a commandButton component, and an outputText component. When the user enters a value for the inputText component, and then clicks the commandButton component, the input value is reflected in the outputText component. You would set the partialSubmit attribute to true on the commandButton component.

However, components other than command components can trigger PPR. ADF Faces input and select components have the ability to trigger partial page requests automatically whenever their values change. To make use of this functionality, use the autoSubmit attribute of the input or select component so that as soon as a value is entered, a submit occurs, which in turn causes a valueChangeEvent event to occur. It is this event that notifies the framework to execute a PPR, as long as a target component is set. In the previous example, you could delete the commandButton component and instead set the inputText component's autoSubmit attribute to true. Each time the value changes, a PPR request will be fired.

	
Tip:

The autoSubmit attribute on an input component and the partialSubmit attribute on a command component are not the same thing. When partialSubmit is set to true, then only the components that have values for their partialTriggers attribute will be processed through the lifecycle. The autoSubmit attribute is used by input and select components to tell the framework to automatically do a form submit whenever the value changes. However, when a form is submitted and the autoSubmit attribute is set to true, a valueChangeEvent event is invoked, and the lifecycle runs only on the components marked as root components for that event, and their children. For more information, see Section 5.3, "Using the Optimized Lifecycle."

Once PPR is triggered, any component configured to be a target will be rerendered. You configure a component to be a target by setting the partialTriggers attribute to the relative ID of the trigger component. For information about relative IDs, see Section 4.5, "Locating a Client Component on a Page."

In the example, to update the outputText in response to changes to the inputText component, you would set its partialTriggers attribute to the inputText component's relative ID.

	
Note:

Certain events on components trigger PPR by default, for example the disclosure event on the showDetail component and the sort event on a table. This means that any component configured to be a target by having its partialTriggers attribute set to that component's ID will rerender when these types of events occur.

	
Note:

If your trigger component is an inputLov or an inputComboBoxLov, and the target component is an input component set to required, then a validation error will be thrown for the input component when the LOV popup is displayed. To avoid this, you must use programmatic partial page rendering. For more information, see Section 8.3, "Enabling Partial Page Rendering Programmatically."

8.2.1 How to Enable Partial Page Rendering

For a component to be rerendered based on an event caused by another component, it must declare which other components are the triggers.

Before you begin:

It may be helpful to have an understanding of declarative partial page rendering. For more information, see Section 8.2, "Enabling Partial Page Rendering Declaratively."

To enable a component to rerender another component:

	
In the Structure window, select the trigger component (that is, the component whose action will cause the PPR):

	
Expand the Common section of the Property Inspector and set the id attribute if it is not already set. Note that the value must be unique within that component's naming container. If the component is not within a naming container, then the ID must be unique to the page. For more information about naming containers, see Section 4.5, "Locating a Client Component on a Page."

	
Tip:

JDeveloper automatically assigns component IDs. You can safely change this value. A component's ID must be a valid XML name, that is, you cannot use leading numeric values or spaces in the ID. JSF also does not permit colons (:) in the ID.

	
If the trigger component is a command component, expand the Behavior section of the Property Inspector, and set the partialSubmit attribute to true.

	
If the trigger component is an input or select component in a form and you want the value to be submitted, expand the Behavior section of the Property Inspector, and set the autoSubmit attribute of the component to true.

	
Note:

Set the autoSubmit attribute to true only if you want the component to submit its value. If you do not want to submit the value, then some other logic must cause the component to issue a ValueChangeEvent event. That event will cause PPR by default and any component that has the trigger component as its value for the partialTriggers attribute will be rerendered.

	
In the Structure window, select the target component that you want to rerender when a PPR-triggering event takes place.

	
Expand the Behavior section of the Property Inspector, click the dropdown menu for the partialTriggers attribute and choose Edit.

	
In the Edit Property dialog, shuttle the trigger component to the Selected panel and click OK. If the trigger component is within a naming container, JDeveloper automatically creates the relative path for you.

	
Tip:

The selectBooleanRadio components behave like a single component with partial page rendering;, however, they are in fact multiple components. Therefore, if you want other components (such as inputText components) to change based on selecting a different selectBooleanRadio component in a group, you must group them within a parent component, and set the partialTriggers attribute of the parent component to point to all of the SelectBooleanRadio components.

Example 8-1 shows a commandLink component configured to execute PPR.

Example 8-1 Code for Enabling Partial Page Rendering Through a Partial Submit

<af:commandLink id="deleteFromCart" partialSubmit="true"
 actionListener="#{homeBean...}">

Example 8-2 shows an outputText component that will be rerendered when the command link with ID deleteFromCart in Example 8-1 is clicked.

Example 8-2 Code for Partial Page Rendering Triggered by Another Component

<af:outputText id="estimatedTotalInPopup"
 partialTriggers="deleteFromCart"
 value="#{shoppingCartBean...}"/>

	
Tip:

You can use PPR to prevent components from being validated on a page. For more information, see Section 5.3, "Using the Optimized Lifecycle."

8.2.2 What You May Need to Know About Using the Browser Back Button

In an ADF Faces application, because some components use PPR (either implicitly or because they have been configured to listen for a partial trigger), what happens when a user clicks the browser's back button is slightly different than in an application that uses simple JSF components.

In an application that uses simple JSF components, when the user clicks the browser's back button, the browser returns the page to the state of the DOM (document object model) as it was when last rendered, but the state of the JavaScript is as it was when the user first entered the page.

For example, suppose a user visited PageA. After the user interacts with components on the page, say a PPR event took place using JavaScript. Let's call this new version of the page PageA1. Next, say the user navigates to PageB, then clicks the browser back button to return to PageA. The user will be shown the DOM as it was on PageA1, but the JavaScript will not have run, and therefore parts of the page will be as they were for PageA. This might mean that changes to the page will be lost. Refreshing the page will run the JavaScript and so return the user to the state it was in PageA1. In an application that uses ADF Faces, the refresh is not needed; the framework provides built-in support so that the JavaScript is run when the back button is clicked.

8.2.3 What You May Need to Know About PPR and Screen Readers

Screen readers do not reread the full page in a partial page request. PPR causes the screen reader to read the page starting from the component that fired the partial page request. You should place the target components after the component that triggers the partial request; otherwise, the screen reader would not read the updated target components.

8.3 Enabling Partial Page Rendering Programmatically

For components such as tables that have many associated events, PPR will happen any time any event is triggered, causing any component with the table as a partial trigger to be rerendered each time. If you want the target to be rerendered only for certain events, or if you want a target to be rerendered based on some other logic, you can enable partial page rendering programmatically.

8.3.1 How to Enable Partial Page Rendering Programmatically

You use the addPartialTarget method to enable partial page rendering.

Before you begin:

It may be helpful to have an understanding of programmatic partial page rendering. For more information, see Section 8.3, "Enabling Partial Page Rendering Programmatically."

How to enable PPR programatically:

	
Create a listener method for the event that should cause the target component to be rerendered.

Use the addPartialTarget() method to add the component (using its ID) as a partial target for an event, so that when that event is triggered, the partial target component is rerendered. Using this method associates the component you want to have rerendered with the event that is to trigger the rerendering.

For example, the File Explorer application contains the NavigatorManager.refresh() method. When invoked, the navigator accordion is rerendered.

Example 8-3 Rerendering Using Partial Targets

 public void refresh()
 {
 for (BaseNavigatorView nav: getNavigators())
 {
 nav.refresh();
 }

 AdfFacesContext adfFacesContext = AdfFacesContext.getCurrentInstance();
 adfFacesContext.addPartialTarget(_navigatorAccordion);
 }

	
In the JSF page, select the target component. In the Property Inspector, enter a component ID and set ClientComponent to true.

	
Note:

You must set the clientComponent attribute to true to ensure that a client ID will be generated.

	
In the Property Inspector, find the listener for the event that will cause the refresh and bind it to the listener method created in Step 1.

8.4 Using Partial Page Navigation

Instead of performing a full page transition in the traditional way, you can configure an ADF Faces application to have navigation triggered through a PPR request. The new page is sent to the client using PPR. Partial page navigation is disabled by default.

When partial page navigation is used, in order to keep track of location (for example, for bookmarking purposes, or when a refresh occurs), the framework makes use of the hash portion of the URL. This portion of the URL contains the actual page being displayed in the browser.

Additionally, JavaScript and CSS will not be loaded for each page. You must use the resource tag to include JavaScript and CSS content specific to the current page. Using the <f:verbatim> or <trh:stylesheet> tags will not work. For more information, see Section 4.3, "Adding JavaScript to a Page."

When partial page navigation is enabled in an application, get requests are supported for the following ADF Faces components:

	
goButton

	
goLink

	
goImageLink

	
goMenuItem

	
commandNavigationItem

	
Note:

PPR get requests are not supported in Internet Explorer. When using that browser, URLs will be loaded using a standard get request.

For other browsers, get requests for these components are only supported for pages within an application.

8.4.1 How to Use Partial Page Navigation

You can turn partial page navigation on by setting the oracle.adf.view.rich.pprNavigation.OPTIONS context parameter in the web.xml file to on.

Before you begin:

It may be helpful to have an understanding of partial page navigation. For more information, see Section 8.4, "Using Partial Page Navigation."

To use partial page navigation:

	
Double-click the web.xml file.

	
In the source editor, change the oracle.adf.view.rich.pprNavigation.OPTIONS parameter to one of the following:

	
on: Enables partial page navigation.

	
Note:

If you set the parameter to on, then you need to set the partialSubmit attribute to true for any command components involved in navigation.

	
onWithForcePPR: Enables partial page navigation and notifies the framework to use the PPR channel for all action events, even those that do not result in navigation. Since partial page navigation requires that the action event be sent over PPR channel, use this option to easily enable partial page navigation.

When partial page navigation is used, normally only the visual contents of the page are rerendered (the header content remains constant for all pages). However, the entire document will be rerendered when an action on the page is defined to use full page submit and also when an action does not result in navigation.

8.4.2 What You May Need to Know About PPR Navigation

Before using PPR navigation, you should be aware of the following:

	
When using PPR navigation, all pages involved in this navigation must use the same CSS skin.

	
Because PPR navigation makes use of the hash portion of the URL, you cannot use the hash portion for navigation to anchors within the page.

	
You must use the resource tag to include JavaScript and CSS content specific to the current page.

	
Unlike regular page navigation, partial navigation will not result in JavaScript globals (variables and functions defined in global scope) being unloaded. This happens because the window object survives partial page transition. Applications wishing to use page-specific global variables and/or functions must use the AdfPage.getPageProperty() and AdfPage.setPageProperty() methods to store these objects.

Part IV

Using Common ADF Faces Components

Part IV contains the following chapters:

	
Chapter 11, "Using Input Components and Defining Forms"

	
Chapter 12, "Using Tables and Trees"

	
Chapter 13, "Using List-of-Values Components"

	
Chapter 14, "Using Query Components"

	
Chapter 15, "Using Popup Dialogs, Menus, and Windows"

	
Chapter 16, "Using Menus, Toolbars, and Toolboxes"

	
Chapter 17, "Using a Calendar Component"

	
Chapter 18, "Using Output Components"

	
Chapter 19, "Displaying Tips, Messages, and Help"

	
Chapter 20, "Working with Navigation Components"

12 Using Tables and Trees

This chapter describes how to display tables and trees using the ADF Faces table, tree and treeTable components. If your application uses the Fusion technology stack, then you can use data controls to create tables and trees. For more information see the "Creating ADF Databound Tables" and "Displaying Master-Detail Data" chapters of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

This chapter includes the following sections:

	
Section 12.1, "About Tables, Trees, and Tree Tables"

	
Section 12.2, "Common Functionality in Tables and Trees"

	
Section 12.3, "Using the Table Component"

	
Section 12.4, "Adding Hidden Capabilities to a Table"

	
Section 12.5, "Enabling Filtering in Tables"

	
Section 12.6, "Displaying Data in Trees"

	
Section 12.7, "Displaying Data in Tree Tables"

	
Section 12.8, "Passing a Row as a Value"

	
Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars"

	
Section 12.10, "Exporting Data from Table, Tree, or Tree Table"

	
Section 12.11, "Accessing Selected Values on the Client from Components That Use Stamping"

12.1 About Tables, Trees, and Tree Tables

Structured data can be displayed as tables consisting of rows and columns using the ADF Faces table component. Hierarchical data can be displayed either as tree structures using ADF Faces tree component, or in a table format, using ADF Faces tree table component. Figure 12-1 shows the ADF Faces table and tree components.

Figure 12-1 ADF Faces Table and Tree Components

[image: ADF Faces table, tree, and tree table]

	
Tip:

When you do not want to use a table, but still need the same stamping capabilities, you can use the iterator tag. For example, say you want to display a list of periodic table elements, and for each element, you want to display the name, atomic number, symbol, and group. You can use the iterator tag as shown in the following example.

<af:iterator var="row" first="3" rows="3" varStatus="stat"
 value="#{periodicTable.tableData}" >
 <af:outputText value="#{stat.count}.Index:#{stat.index} of
 #{stat.model.rowCount}"/>
 <af:inputText label="Element Name" value="#{row.name}"/>
 <af:inputText label="Atomic Number" value="#{row.number}"/>
 <af:inputText label="Symbol" value="#{row.symbol}"/>
 <af:inputText label="Group" value="#{row.group}"/>
</af:iterator>

Each child is stamped as many times as necessary. Iteration starts at the index specified by the first attribute for as many indexes specified by the row attribute. If the row attribute is set to 0, then the iteration continues until there are no more elements in the underlying data.

12.1.1 Table and Tree Use Cases and Examples

Tables, tree, and tree tables are used to display structured information. For example, as shown in Figure 12-2, the Table tab in the File Explorer application uses a table to display the contents of the selected directory.

Figure 12-2 Table Component in the File Explorer Application

[image: Table component in the File Explorer]

Hierarchical data (that is data that has parent/child relationships), such as the directory in the File Explorer application, can be displayed as expandable trees using the tree component. Items are displayed as nodes that mirror the parent/child structure of the data. Each top-level node can be expanded to display any child nodes, which in turn can also be expanded to display any of their child nodes. Each expanded node can then be collapsed to hide child nodes. Figure 12-3 shows the file directory in the File Explorer application, which is displayed using a tree component.

Figure 12-3 Tree Component in the File Explorer Application

[image: ADF Faces Tree component]

Hierarchical data can also be displayed using tree table components. The tree table also displays parent/child nodes that are expandable and collapsible, but in a tabular format, which allows the page to display attribute values for the nodes as columns of data. For example, along with displaying a directory's contents using a table component, the File Explorer application has another tab that uses the tree table component to display the contents, as shown in Figure 12-4.

Figure 12-4 Tree Table in the File Explorer Application

[image: ADF Faces Tree Table component]

Like the tree component, the tree table component can show the parent/child relationship between items. And like the table component, the tree table component can also show any attribute values for those items in a column. Most of the features available on a table component are also available in tree table component.

You can add a toolbar and a status bar to tables, trees, and tree tables by surrounding them with the panelCollection component. The top panel contains a standard menu bar as well as a toolbar that holds menu-type components such as menus and menu options, toolbars and toolbar buttons, and status bars. Some buttons and menus are added by default. For example, when you surround a table, tree, or tree table with a panelCollection component, a toolbar that contains the View menu is added. This menu contains menu items that are specific to the table, tree, or tree table component.

Figure 12-5 shows the tree table from the File Explorer application with the toolbar, menus, and toolbar buttons created using the panelCollection component.

Figure 12-5 TreeTable with Panel Collection

[image: PanelCollection holds toolbar]

12.1.2 Additional Functionality for Tables and Trees

You may find it helpful to understand other ADF Faces features before you implement your table and tree components. Additionally, once you have added a tree or table component to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that table and tree components can use.

	
Customizing the toolbar: You can customize the toolbar included in the panelCollection component, which provides menus, toolbars, and status bars for the table and tree table components. For more information about menus, toolbars, and toolbar buttons, see Chapter 16, "Using Menus, Toolbars, and Toolboxes."

	
Geometry management of the table width: If the table is a child to a component that stretches its children, then this width setting will be overridden and the table will automatically stretch to fit its container. For more information about how components stretch, see Section 9.2.1, "Geometry Management and Component Stretching."

	
Active data: If your application uses active data, then you can have the data in your tables and trees update automatically, whenever the data in the data source changes. For more information, see Chapter 35, "Using the Active Data Service with an Asynchronous Backend."

	
Note:

If you wish to use active data, and your application uses ADF Business Components, then your tables must conform to the following:

	
The table or tree is bound to homogeneous data which contains only a single attribute.

	
The table does not use filtering.

	
The tree component's nodeStamp facet contains a single outputText tag and contains no other tags.

	
Events: Table and tree components fire both server-side and client-side events that you can have your application react to by executing some logic. For more information, see Chapter 6, "Handling Events."

	
Partial page rendering: You may want a table or tree to refresh to show new data based on an action taken on another component on the page. For more information, see Section 5.3, "Using the Optimized Lifecycle."

	
Personalization: Users can change the way the table displays at runtime (for example the user can reorder columns or change column widths), those values will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 32, "Allowing User Customization on JSF Pages."

	
Accessibility: You can make your table and tree components accessible. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
Automatic data binding: If your application uses the Fusion technology stack, then you can create automatically bound tables and trees based on how your ADF Business components are configured. For more information, see the "Creating ADF Databound Tables" and "Displaying Master-Detail Data" chapters of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

12.2 Common Functionality in Tables and Trees

Trees and tables share many of the same functionality, such as how data is delivered and how data can be displayed and edited. It is important that you understand this shared functionality and how it is configured before you use these components.

12.2.1 Displaying Data in Rows and Nodes

Instead of containing a child component for each record to be displayed, and then binding these components to the individual records, table, tree and tree table components are bound to a complete collection, and they then repeatedly render one component (for example an outputText component) by stamping the value for each record. For example, say a table contains two child column components. Each column displays a single attribute value for the row using an output component and there are four records to be displayed. Instead of binding four sets of two output components to display the data, the table itself is bound to the collection of all four records and simply stamps one set of the output components four times. As each row is stamped, the data for the current row is copied into the var attribute on the table, from which the output component can retrieve the correct values for the row. For more information about how stamping works, especially with client components, see Section 12.2.6, "Accessing Client Table, Tree, and Tree Table Components."

Example 12-1 shows the JSF code for a table whose value for the var attribute is row. Each outputText component in a column displays the data for the row because its value is bound to a specific property on the variable.

Example 12-1 JSF Code for a Table Uses the var Attribute to Access Values

<af:table var="row" value="#{myBean.allEmployees}">
 <af:column>
 <af:outputText value="#{row.firstname}"/>
 </af:column>
 <af:column>
 af:outputText value="#{row.lastname}"/>
 </af:column>
</af:table>

12.2.2 Content Delivery

The table, tree, and tree table components are virtualized, meaning not all the rows that are there for the component on the server are delivered to and displayed on the client. You configure tables, trees, and tree tables to fetch a certain number of rows at a time from your data source. The data can be delivered to the components immediately upon rendering, when it is available, or lazily fetched after the shell of the component has been rendered (by default, the components fetch data when it is available).

With immediate delivery, the data is fetched during the initial request. With lazy delivery, when a page contains one or more table or tree components, the page initially goes through the standard lifecycle. However, instead of fetching the data during that initial request, a special separate partial page rendering (PPR) request is run, and the number of rows set as the value of the fetch size for the table is then returned. Because the page has just been rendered, only the Render Response phase executes for the components, allowing the corresponding data to be fetched and displayed. When a user's actions cause a subsequent data fetch (for example scrolling in a table for another set of rows), another PPR request is executed.

When content delivery is configured to be delivered when it is available, the framework checks for data availability during the initial request, and if it is available, it sends the data to the table. If it is not available, the data is loaded during the separate PPR request, as it is with lazy delivery.

	
Note:

If your application does not use the Fusion technology stack, then you must explicitly add support for whenAvailable to your CollectionModel implementation. For an example, see the WhenAvailableData.java managed bean in the Faces demo application.

If your application does use the Fusion technology stack, then the CollectionModel implementation created for you automatically uses these APIs.

	
Performance Tip:

Lazy delivery should be used when a data fetch is expected to be an expensive (slow) operation, for example, slow, high-latency database connection, or fetching data from slow non-database data sources like web services. Lazy delivery should also be used when the page contains a number of components other than a table, tree, or tree table. Doing so allows the initial page layout and other components to be rendered first before the data is available.

Immediate delivery should be used if the table, tree, or tree table is the only context on the page, or if the component is not expected to return a large set of data. In this case, response time will be faster than using lazy delivery (or in some cases, simply perceived as faster), as the second request will not go to the server, providing a faster user response time and better server CPU utilizations. Note however that only the number of rows configured to be the fetch block will be initially returned. As with lazy delivery, when a user's actions cause a subsequent data fetch, the next set of rows are delivered.

When available delivery provides the additional flexibility of using immediate when data is available during initial rendering or falling back on lazy when data is not initially available.

The number of rows that are displayed on the client are just enough to fill the page as it is displayed in the browser. More rows are fetched as the user scrolls the component vertically. The fetchSize attribute determines the number of rows requested from the client to the server on each attempt to fill the component. The default value is 25. So if the height of the table is small, the fetch size of 25 is sufficient to fill the component. However, if the height of the component is large, there might be multiple requests for the data from the server. Therefore, the fetchSize attribute should be set to a higher number. For example, if the height of the table is 600 pixels and the height of each row is 18 pixels, you will need at least 45 rows to fill the table. With a fetchSize of 25, the table has to execute two requests to the server to fill the table. For this example, you would set the fetch size to 50.

However, if you set the fetch size too high, it will impact both server and client. The server will fetch more rows from the data source than needed and this will increase time and memory usage. On the client side, it will take longer to process those rows and attach them to the component.

You can also configure the set of data that will be initially displayed using the displayRow attribute. By default, the first record in the data source is displayed in the top row or node and the subsequent records are displayed in the following rows or nodes. You can also configure the component to first display the last record in the source instead. In this case, the last record is displayed in the bottom row or node of the component, and the user can scroll up to view the preceding records. Additionally, you can configure the component to display the selected row. This can be useful if the user is navigating to the table, and based on some parameter, a particular row will be programmatically selected. When configured to display the selected row, that row will be displayed at the top of the table and the user can scroll up or down to view other rows.

	
Note:

You cannot use JavaScript to dynamically size a table or tree. The height of tables, trees and treetables is set the first time they are rendered and cannot be changed using JavaScript APIs.

12.2.3 Row Selection

You can configure selection to be either for no rows, for a single row, or for multiple rows of tables, trees, and tree tables using the rowSelection attribute. This setting allows you to execute logic against the selected rows. For example, you may want users to be able to select a row in a table or a node in a tree, and then to click a command button that navigates to another page where the data for the selected row is displayed and the user can edit it.

When the selected row (or node) of a table, tree, or tree table changes, the component triggers a selection event. This event reports which rows were just deselected and which rows were just selected. While the components handle selection declaratively, if you want to perform some logic on the selected rows, you need to implement code that can access those rows and then perform the logic. You can do this in a selection listener method on a managed bean. For more information, see Section 12.3.8, "What You May Need to Know About Performing an Action on Selected Rows in Tables."

	
Note:

If you configure your component to allow multiple selection, users can select one row and then press the shift key to select another row, and all the rows in between will be selected. This selection will be retained even if the selection is across multiple data fetch blocks. Similarly, you can use the Ctrl key to select rows that are not next to each other.

For example, if you configure your table to fetch only 25 rows at a time, but the user selects 100 rows, the framework is able to keep track of the selection.

12.2.4 Editing Data in Tables, Trees, and Tree Tables

You can choose the component used to display the actual data in a table, tree, or tree table. For example, you may want the data to be read-only, and therefore you might use an outputText component to display the data. Conversely, if you want the data to be able to be edited, you might use an inputText component, or if choosing from a list, one of the SelectOne components. All of these components are placed as children to the column component (in the case of a table and tree table) or within the nodeStamp facet (for a tree).

When you decide to use components whose value can be edited to display your data, you have the option of having the table, tree, or tree table either display all rows as available for editing at once, or display all but the currently active row as read-only using the editingMode attribute. For example, Figure 12-6 shows a table whose rows can all be edited. The page renders using the components that were added to the page (for example, inputText, inputDate, and inputComboBoxListOfValues components).

Figure 12-6 Table Whose Rows Can All Be Edited

[image: Each cell in the table can be edited]

Figure 12-7 shows the same table (that is, it uses inputText, inputDate, and inputComboBoxListOfValues components to display the data), but configured so that only the active row displays the editable components. Users can then click on another row to make it editable (only one row is editable at a time). Note that outputText components are used to display the data in the noneditable rows, even though the same input components as in Figure 12-6 were used to build the page. The only row that actually renders those components is the active row.

Figure 12-7 Table Allows Only One Row to Be Edited at a Time

[image: Table allows only one row to be edited at a time]

The currently active row is determined by the activeRowKey attribute on the table. By default, the value of this attribute is the first visible row of the table. When the table (or tree or tree table) is refreshed, that component scrolls to bring the active row into view, if it is not already visible. When the user clicks on a row to edit its contents, that row becomes the active row.

When you allow only a single row (or node) to be edited, the table (or tree or tree table) performs PPR when the user moves from one row (or node) to the next, thereby submitting the data (and validating that data) one row at a time. When you allow all rows to be edited, data is submitted whenever there is an event that causes PPR to typically occur, for example scrolling beyond the currently displayed rows or nodes.

Not all editable components make sense to be displayed in a click-to-edit mode. For example, those that display multiple lines of HTML input elements may not be good candidates. These components include:

	
SelectManyCheckbox

	
SelectManyListBox

	
SelectOneListBox

	
SelectOneRadio

	
SelectManyShuttle

	
Performance Tip:

For increased performance during both rendering and postback, you should configure your table to allow editing only to a single row.

When you elect to allow only a single row to be edited at a time, the page will be displayed more quickly, as output components tend to generate less HTML than input components. Additionally, client components are not created for the read-only rows. Because the table (or tree, or tree table) performs PPR as the user moves from one row to the next, only that row's data is submitted, resulting in better performance than a table that allows all cells to be edited, which submits all the data for all the rows in the table at the same time. Allowing only a singe row to be edited also provides more intuitive validation, because only a single row's data is submitted for validation, and therefore only errors for that row are displayed.

12.2.5 Using Popup Dialogs in Tables, Trees, and Tree Tables

You can configure your table, tree, or tree table so that popup dialogs will be displayed based on a user's actions. For example, you can configure a popup dialog to display some data from the selected row when the user hovers the mouse over a cell or node. You can also create popup context menus for when a user right-clicks a row in a table or tree table, or a node in a tree. Additionally, for tables and tree tables, you can create a context menu for when a user right-clicks anywhere within the table, but not on a specific row.

Tables, trees, and tree tables all contain the contextMenu facet. You place your popup context menu within this facet, and the associated menu will be displayed when the user right-clicks a row. When the context menu is being fetched on the server, the components automatically establish the currency to the row for which the context menu is being displayed. Establishing currency means that the current row in the model for the table now points to the row for which the context menu is being displayed. In order for this to happen, the popup component containing the menu must have its contentDelivery attribute set to lazyUncached so that the menu is fetched every time it is displayed.

	
Tip:

If you want the context menu to dynamically display content based on the selected row, set the popup content delivery to lazyUncached and add a setPropertyListener tag to a method on a managed bean that can get the current row and then display data based on the current row:

<af:tree value="#{fs.treeModel}"
 contextMenuSelect="false" var="node" ..>
 <f:facet name="contextMenu">
 <af:popup id="myPopup" contentDelivery="lazyUncached">
 <af:setPropertyListener from="#{fs.treeModel.rowData}"
 to="#{dynamicContextMenuTable.currentTreeRowData}"
 type="popupFetch" />
 <af:menu>
 <af:menu text="Node Info (Dynamic)">
 <af:commandMenuItem actionListener=
 "#{dynamicContextMenuTable.alertTreeRowData}"
 text=
 "Name - #{dynamicContextMenuTable.currentTreeRowData.name}" />
 <af:commandMenuItem actionListener=
 "#{dynamicContextMenuTable.alertTreeRowData}"
 text=
 "Path - #{dynamicContextMenuTable.currentTreeRowData.path}" />
 <af:commandMenuItem actionListener=
 "#{dynamicContextMenuTable.alertTreeRowData}"
 text="Date -
 #{dynamicContextMenuTable.currentTreeRowData.lastModified}" />
 </af:menu>
 </af:menu>
 </af:popup>
 </f:facet>
...
</af:tree>

The code on the backing bean might look something like this:

public class DynamicContextMenuTableBean
{
 ...
 public void setCurrentTreeRowData(Map currentTreeRowData)
 {
 _currentTreeRowData = currentTreeRowData;
 }

 public Map getCurrentTreeRowData()
 {
 return _currentTreeRowData;
 }

 private Map _currentTreeRowData;
}

Tables and tree tables contain the bodyContextMenu facet. You can add a popup that contains a menu to this facet, and it will be displayed whenever a user clicks on the table, but not within a specific row.

For more information about creating context menus, see Section 15.2, "Declaratively Creating Popups."

12.2.6 Accessing Client Table, Tree, and Tree Table Components

With ADF Faces, the contents of the table, tree, or tree table are rendered on the server. There may be cases when the client needs to access that content on the server, including:

	
Client-side application logic may need to read the row-specific component state. For example, in response to row selection changes, the application may want to update the disabled or visible state of other components in the page (usually menu items or toolbar buttons). This logic may be dependent on row-specific metadata sent to the client using a stamped inputHidden component. In order to enable this, the application must be able to retrieve row-specific attribute values from stamped components.

	
Client-side application logic may need to modify row-specific component state. For example, clicking a stamped command link in a table row may update the state of other components in the same row.

	
The peer may need access to a component instance to implement event handling behavior (for more information about peers, see Section 4.1, "About Using ADF Faces Architecture"). For example, in order to deliver a client-side action event in response to a mouse click, the AdfDhtmlCommandLinkPeer class needs a reference to the component instance which will serve as the event source. The component also holds on to relevant state, including client listeners as well as attributes that control event delivery behavior, such as disabled or partialSubmit.

Because there is no client-side support for EL in the ADF Faces framework, nor is there support for sending entire table models to the client, the client-side code cannot rely on component stamping to access the value. Instead of reusing the same component instance on each row, a new JavaScript client component is created on each row (assuming any component must be created at all for any of the rows).

Therefore, to access row-specific data on the client, you need to use the stamped component itself to access the value. To do this without a client-side data model, you use a client-side selection change listener. For detailed instructions, see Section 12.11, "Accessing Selected Values on the Client from Components That Use Stamping."

12.2.7 Geometry Management and Table, Tree, and Tree Table Components

By default, when tables, trees, and tree tables are placed in a component that stretches its children (for example, a panelCollection component inside a panelStretchLayout component), the table, tree, or tree table will stretch to fill the existing space. However, in order for the columns to stretch to fit the table, you must specify a single column to stretch to fill up any unused space, using the columnStretching attribute. Otherwise, the table will only stretch vertically to fit as many rows as possible. It will not stretch the columns, as shown in Figure 12-8.

Figure 12-8 Table Stretches But Columns Do Not

[image: Table stretched]

When placed in a component that does not stretch its children (for example, in a panelCollection component inside a panelGroupLayout component set to vertical), by default, a table width is set to 300px (27.27em units which translates to 300px for an 11px font setting) and the default fetch size is set to return 25 rows, as shown in Figure 12-9.

Figure 12-9 Table Does Not Stretch

[image: Table Does Not Stretch]

When you place a table in a component that does not stretch its children, you can control the height of the table so that is never more than a specified number of rows, using the autoHeightRows attribute. When you set this attribute to a positive integer, the table height will be determined by the number of rows set. If that number is higher than the fetchSize attribute, then only the number of rows in the fetchSize attribute will be returned. You can set autoHeightRows to -1 (the default), to turn off auto-sizing.

Auto-sizing can be helpful in cases where you want to use the same table both in components that stretch their children and those that don't. For example, say you have a table that has 6 columns and can potentially display 12 rows. When you use it in a component that stretches its children, you want the table to stretch to fill the available space. When you use that table in a component that doesn't stretch its children, you want to be able to "fix" the height of the table to six rows. However, if you were to set a height on the table, then that table will not stretch when placed in the other component. To solve this issue, you can set the autoHeightRows attribute. Then, when the table in the example above is placed in a component that stretches, the table will stretch (ignoring the autoHeightRows attribute), and when it is placed in a component that does not stretch, the table will be 6 rows high, the number of rows set for autoHeightRows attribute.

12.3 Using the Table Component

The table component uses a CollectionModel class to access the data in the underlying collection. This class extends the JSF DataModel class and adds on support for row keys and sorting. In the DataModel class, rows are identified entirely by index. This can cause problems when the underlying data changes from one request to the next, for example a user request to delete one row may delete a different row when another user adds a row. To work around this, the CollectionModel class is based on row keys instead of indexes.

You may also use other model classes, such as java.util.List, array, and javax.faces.model.DataModel. If you use one of these other classes, the table component automatically converts the instance into a CollectionModel class, but without the additional functionality. For more information about the CollectionModel class, see the MyFaces Trinidad Javadoc at http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html.

	
Note:

If your application uses the Fusion technology stack, then you can use data controls to create tables and the collection model will be created for you. For more information see the "Creating ADF Databound Tables" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

The immediate children of a table component must be column components. Each visible column component is displayed as a separate column in the table. Column components contain components used to display content, images, or provide further functionality. For more information about the features available with the column component, see Section 12.3.1, "Columns and Column Data."

The child components of each column display the data for each row in that column. The column does not create child components per row; instead, the table uses stamping to render each row. Each child is stamped once per row, repeatedly for all the rows. As each row is stamped, the data for the current row is copied into a property that can be addressed using an EL expression. You specify the name to use for this property using the var property on the table. Once the table has completed rendering, this property is removed or reverted back to its previous value.

Because of this stamping behavior, some components may not work inside the column. Most components will work without problems, for example any input and output components. If you need to use multiple components inside a cell, you can wrap them inside a panelGroupLayout component. Components that themselves support stamping are not supported, such as tables within a table. For information about using components whose values are determined dynamically at runtime, see Section 12.3.9, "What You May Need to Know About Dynamically Determining Values for Selection Components in Tables."

You can use the detailStamp facet in a table to include data that can be optionally displayed or hidden. When you add a component to this facet, the table displays an additional column with an expand and collapse icon for each row. When the user clicks the icon to expand, the component added to the facet is displayed, as shown in Figure 12-10.

Figure 12-10 Extra Data Can Be Optionally Displayed

[image: Expand icon set to collapse - details not seen]

When the user clicks on the expanded icon to collapse it, the component is hidden, as shown in Figure 12-11.

Figure 12-11 Extra Data Can Be Hidden

[image: Extra Data Can Be Hidden]

For more information about using the detailStamp facet, see Section 12.4, "Adding Hidden Capabilities to a Table."

12.3.1 Columns and Column Data

Columns contain the components used to display the data. As stated previously, only one child component is needed for each item to be displayed; the values are stamped as the table renders. Columns can be sorted and can also contain a filtering element. Users can enter a value into the filter and the returned data set will match the value entered in the filter. You can set the filter to be either case-sensitive or case-insensitive. If the table is configured to allow it, users can also reorder columns. Columns have both header and footer facets. The header facet can be used instead of using the header text attribute of the column, allowing you to use a component that can be styled. The footer facet is displayed at the bottom of the column. For example, Figure 12-12 uses footer facets to display the total at the bottom of two columns. If the number of rows returned is more than can be displayed, the footer facet is still displayed; the user can scroll to the bottom row.

Figure 12-12 Footer Facets in a Column

[image: Footer facet in a column]

12.3.2 Formatting Tables

A table component offers many formatting and visual aids to the user. You can enable these features and specify how they can be displayed. These features include:

	
Row selection: By default, at runtime, users cannot select rows. If you want users to be able to select rows in order to perform some action on them somewhere else on the page, or on another page, then enable row selection for the table by setting the rowSelection attribute. You can configure the table to allow either a single row or multiple rows to be selected. For information about how to then programatically perform some action on the selected rows, see Section 12.3.8, "What You May Need to Know About Performing an Action on Selected Rows in Tables."

	
Table height: You can set the table height to be absolute (for example, 300 pixels), or you can determine the height of the table based on the number of rows you wish to display at a time by setting the autoHeightRows attribute. For more information, see Section 12.2.7, "Geometry Management and Table, Tree, and Tree Table Components."

	
Note:

When table is placed in a layout-managing container, such as a panelSplitter component, it will be sized by the container and the autoHeightRows is not honored.

	
Note:

You cannot use JavaScript to dynamically size a table. The height of a table is set the first time is rendered and cannot be changed using JavaScript APIs.

	
Grid lines: By default, an ADF table component draws both horizontal and vertical grid lines. These may be independently turned off using the horizontalGridVisible and verticalGridVisible attributes.

	
Banding: Groups of rows or columns are displayed with alternating background colors using the columnBandingInterval attribute. This helps to differentiate between adjacent groups of rows or columns. By default, banding is turned off.

	
Column groups: Columns in a table can be grouped into column groups, by nesting column components. Each group can have its own column group heading, linking all the columns together.

	
Editable cells: When you elect to use input text components to display data in a table, you can configure the table so that all cells can be edited, or so that the user must explicitly click in the cell in order to edit it. For more information, see Section 12.2.4, "Editing Data in Tables, Trees, and Tree Tables."

	
Performance Tip:

When you choose to have cells be available for editing only when the user clicks on them, the table will initially load faster. This may be desirable if you expect the table to display large amounts of data.

	
Column stretching: If the widths of the columns do not together fill the whole table, you can set the columnStretching attribute to determine whether or not to stretch columns to fill up the space, and if so, which columns should stretch. You can set the minimum width for columns, so that when there are many columns in a table and you enable stretching, columns will not be made smaller than the set minimum width. You can also set a width percentage for each column you want to stretch to determine the amount of space that column should take up when stretched.

	
Note:

If the total sum of the columns' minimum widths equals more than the viewable space in the viewport, the table will expand outside the viewport and a scrollbar will appear to allow access outside the viewport.

	
Performance Tip:

Column stretching is turned off by default. Turning on this feature may have a performance impact on the client rendering time when used for complex tables (that is, tables with a large amount of data, or with nested columns, and so on).

	
Note:

Columns configured to be row headers or configured to be frozen will not be stretched because doing so could easily leave the user unable to access the scrollable body of the table.

	
Column selection: You can choose to allow users to be able to select columns of data. As with row selection, you can configure the table to allow single or multiple column selection. You can also use the columnSelectionListener to respond to the ColumnSelectionEvent that is invoked when a new column is selected by the user. This event reports which columns were just deselected and which columns were just selected.

	
Column reordering: Users can reorder the columns at runtime by simply dragging and dropping the column headers. By default, column reordering is allowed, and is handled by a menu item in the panelCollection component. For more information, see Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars."

12.3.3 Formatting Columns

Each column component also offers many formatting and visual aids to the user. You can enable these features and specify how they can be displayed. These features include:

	
Column sorting: Columns can be configured so that the user can sort the contents by a given column, either in ascending or descending order using the sortable attribute. A special indicator on a column header lets the user know that the column can be sorted.

When the user clicks on the icon to sort a previously unsorted column, the column's content is sorted in ascending order. Subsequent clicks on the same header sort the content in the reverse order. In order for the table to be able to sort, the underlying data model must also support sorting. For more information, see Section 12.3.7, "What You May Need to Know About Programmatically Enabling Sorting for Table Columns."

	
Content alignment: You can align the content within the column to either the start, end, left, right, or center using the align attribute.

	
Tip:

Use start and end instead of left and right if your application supports multiple reading directions.

	
Column width: The width of a column can be specified as an absolute value in pixels using the width attribute. If you configure a column to allow stretching, then you can also set the width as a percentage.

	
Line wrapping: You can define whether or not the content in a column can wrap over lines, using the noWrap attribute. By default, content will not wrap.

	
Row headers: You can define the left-most column to be a row header using the rowHeader attribute. When you do so, the left-most column is rendered with the same look as the column headers, and will not scroll off the page. Figure 12-13 shows how a table showing departments appears if the first column is configured to be a row header.

Figure 12-13 Row Header in a Table

[image: Row header in a table]

If you elect to use a row header column and you configure your table to allow row selection, the row header column displays a selection arrow when a users hovers over the row, as shown in Figure 12-14.

Figure 12-14 Selection Icon in Row Header

[image: Arrow as selection icon in row header]

For tables that allow multiple selection, users can mouse down and then drag on the row header to select a contiguous blocks of rows. The table will also autoscroll vertically as the user drags up or down.

	
Performance Tip:

Use of row headers increases the complexity of tables and can have a negative performance impact.

	
Tip:

While the user can change the way the table displays at runtime (for example the user can reorder columns or change column widths), those values will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 32, "Allowing User Customization on JSF Pages."

12.3.4 How to Display a Table on a Page

You use the Create an ADF Faces Table dialog to add a table to a JSF page. You also use this dialog to add column components for each column you need for the table. You can also bind the table to the underlying model or bean using EL expressions.

	
Note:

If your application uses the Fusion technology stack, then you can use data controls to create tables and the binding will be done for you. For more information see the "Creating ADF Databound Tables" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

Once you complete the dialog, and the table and columns are added to the page, you can use the Property Inspector to configure additional attributes of the table or columns, and add listeners to respond to table events. You must have an implementation of the CollectionModel class to which your table will be bound.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 12.3, "Using the Table Component."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."

To display a table on a page:

	
In the Component Palette, from the Data Views panel, drag and drop a Table to open the Create ADF Faces Table dialog.

Use the dialog to bind the table to any existing model you have. When you bind the table to a valid model, the dialog automatically shows the columns that will be created. You can then use the dialog to edit the values for the columns' header and value attributes, and choose the type of component that will be used to display the data. Alternatively, you can manually configure columns and bind at a later date. For more information about using the dialog, press F1 or click Help.

	
Note:

If you are using an inputText component to display a Character Large Object (CLOB), then you will need to create a custom converter that converts the CLOB to a String. For more information about conversion, see Chapter 7, "Creating Custom JSF Converters."

	
In the Property Inspector, expand the Common section. If you have already bound your table to a model, the value attribute should be set. You can use this section to set the following table-specific attributes:

	
RowSelection: Set a value to make the rows selectable. Valid values are: none, single, and multiple, and multipleNoSelectAll.

	
Note:

Users can select all rows and all columns in a table by clicking the column header for the row header if the rowSelection attribute is set to multiple and that table also contains a row header. If you do not want users to be able to select all columns and rows, then set rowSelection to multipleNoSelectAll.

For information about how to then programatically perform some action on the selected rows, see Section 12.3.8, "What You May Need to Know About Performing an Action on Selected Rows in Tables."

	
ColumnSelection: Set a value to make the columns selectable. Valid values are: none, single, and multiple.

	
Expand the Columns section. If you previously bound your table using the Create ADF Faces Table dialog, then these settings should be complete. You can use this section to change the binding for the table, to change the variable name used to access data for each row, and to change the display label and components used for each column.

	
Tip:

If you want to use a component other than those listed, select any component in the Property Inspector, and then manually change it:

	
In the Structure window, right-click the component created by the dialog.

	
Choose Convert from the context menu.

	
Select the desired component from the list. You can then use the Property Inspector to configure the new component.

	
Tip:

If you want more than one component to be displayed in a column, add the other component manually and then wrap them both in a panelGroupLayout component. To do so:

	
In the Structure window, right-click the first component and choose Insert before or Insert after. Select the component to insert.

	
By default the components will be displayed vertically. To have multiple components displayed next to each other in one column, press the shift key and select both components in the Structure window. Right-click the selection and choose Surround With.

	
Select panelGroupLayout.

	
Expand the Appearance section. You use this section to set the appearance of the table, by setting the following table-specific attributes:

	
Width: Specify the width of the table. You can specify the width as either a number of pixels or as a percentage. The default setting is 300 pixels. If you configure the table to stretch columns (using the columnStretching attribute), you must set the width to percentages.

	
Tip:

If the table is a child to a component that stretches its children, then this width setting will be overridden and the table will automatically stretch to fit its container. For more information about how components stretch, see Section 12.2.7, "Geometry Management and Table, Tree, and Tree Table Components."

	
ColumnStretching: If the widths of the columns do not together fill the whole table, you can set this attribute to determine whether or not to stretch columns to fill up the space, and if so, which columns should stretch.

	
Note:

If the table is placed inside a component that can stretch its children, only the table will stretch automatically. You must manually configure column stretching if you want the columns to stretch to fill the table.

	
Note:

Columns configured to be row headers or configured to be frozen will not be stretched because doing so could easily leave the user unable to access the scrollable body of the table.

	
Performance Tip:

Column stretching is turned off by default. Turning on this feature may have a performance impact on the client rendering time for complex tables.

You can set column stretching to one of the following values:

	
blank: If you want to have an empty blank column automatically inserted and have it stretch (so the row background colors will span the entire width of the table).

	
A specifically named column: Any column currently in the table can be selected to be the column to stretch.

	
last: If you want the last column to stretch to fill up any unused space inside of the window.

	
none: The default option where nothing will be stretched. Use this for optimal performance.

	
multiple: All columns that have a percentage value set for their width attribute will be stretched to that percent, once other columns have been rendered to their (non-stretched) width. The percentage values will be weighted with the total. For example, if you set the width attribute on three columns to 50%, each column will get 1/3 of the remaining space after all other columns have been rendered.

	
Tip:

While the widths of columns can change at runtime, those width values will not be retained once the user leaves the page unless you configure your application to use change persistence. For information about enabling and using change persistence, see Chapter 32, "Allowing User Customization on JSF Pages."

	
HorizontalGridVisible: Specify whether or not the horizontal grid lines are to be drawn.

	
VerticalGridVisible: Specify whether or not the vertical grid lines are to be drawn.

	
RowBandingInterval: Specify how many consecutive rows form a row group for the purposes of color banding. By default, this is set to 0, which displays all rows with the same background color. Set this to 1 if you want to alternate colors.

	
ColumnBandingInterval: Specify the interval between which the column banding occurs. This value controls the display of the column banding in the table. For example, columnBandingInterval=1 would display alternately banded columns in the table.

	
FilterVisible: You can add a filter to the table so that it displays only those rows that match the entered filter criteria. If you configure the table to allow filtering, you can set the filter to be case-insensitive or case-sensitive. For more information, see Section 12.5, "Enabling Filtering in Tables."

	
Text attributes: You can define text strings that will determine the text displayed when no rows can be displayed, as well as a table summary and description for accessibility purposes.

	
Expand the Behavior section. You use this section to configure the behavior of the table by setting the following table-specific attributes:

	
ColumnResizing: Specify whether or not you want the end user to be able to resize a column's width at runtime. When set to disabled, the widths of the columns will be set once the page is rendered, and the user will not be able to change those widths.

	
Tip:

While the user can change the values of the column width at runtime when columnResizing is set to true, those width values will not be retained once the user leaves the page unless you configure your application to use change persistence. For information about enabling and using change persistence, see Chapter 32, "Allowing User Customization on JSF Pages."

	
DisableColumnReordering: By default, columns can be reordered at runtime using a menu option contained by default in the panelCollection component. You can change this so that users will not be able to change the order of columns. (The panelCollection component provides default menus and toolbar buttons for tables, trees, and tree tables. For more information, see Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars".)

	
Note:

While the user can change the order of columns, those values will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 32, "Allowing User Customization on JSF Pages."

	
FetchSize: Set the size of the block that should be returned with each data fetch. The default is 25.

	
Tip:

You should determine the value of the fetchSize attribute by taking the height of the table and dividing it by the height of each row to determine how many rows will be needed to fill the table. If the fetchSize attribute is set too low, it will require multiple trips to the server to fill the table. If it is set too high, the server will need to fetch more rows from the data source than needed, thereby increasing time and memory usage. On the client side, it will take longer to process those rows and attach them to the component. For more information, see Section 12.2.2, "Content Delivery."

	
ContentDelivery: Specify when the data should be delivered. When the contentDelivery attribute is set to immediate, data is fetched at the same time the component is rendered. If the contentDelivery attribute is set to lazy, data will be fetched and delivered to the client during a subsequent request. If the attribute is set to whenAvailable (the default), the renderer checks if the data is available. If it is, the content is delivered immediately. If it is not, then lazy delivery is used. For more information, see Section 12.2.2, "Content Delivery."

	
AutoHeightRows: If you want your table to size to a specific height when placed in a component that does not stretch its children, specify the maximum number of rows that the table should display. The default value is -1 (no automatic sizing for any number of rows). You can also set the value to 0 to have the value be the same as the fetchSize.

	
Note:

Note the following about setting the autoHeightRows attribute:

	
Specifying height on the inlineStyle attribute will have no effect and will be overridden by the value of autoHeightRows.

	
Specifying a min-height or max-height on the inlineStyle attribute is not recommended and is incompatible with the autoHeightRows attribute.

	
When the component is placed in a component that stretches its children, such as panelSplitter, it will be sized by the container (no auto-sizing will occur). For more information, see Section 12.2.7, "Geometry Management and Table, Tree, and Tree Table Components."

	
DisplayRow: Specify the row to be displayed in the table during the initial display. The possible values are first to display the first row at the top of the table, last to display the last row at the bottom of the table (users will need to scroll up to view preceding rows) and selected to display the first selected row in the table.

	
Note:

The total number of rows from the table model must be known in order for this attribute to work successfully.

	
DisplayRowKey: Specify the row key to display in the table during initial display. This attribute should be set programmatically rather than declaratively because the value may not be strings. Specifying this attribute will override the displayRow attribute.

	
Note:

The total number of rows must be known from the table model in order for this attribute to work successfully.

	
EditingMode: Specify whether for any editable components, you want all the rows to be editable (editAll), or you want the user to click a row to make it editable (clickToEdit). For more information, see Section 12.2.4, "Editing Data in Tables, Trees, and Tree Tables."

	
Tip:

If you choose clickToEdit, then only the active row can be edited. This row is determined by the activeRowKey attribute. By default, when the table is first rendered, the active row is the first visible row. When a user clicks another row, then that row becomes the active row. You can change this behavior by setting a different value for the activeRowKey attribute.

	
ContextMenuSelect: Specify whether or not the row is selected when you right-click to open a context menu. When set to true, the row is selected. For more information about context menus, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."

	
FilterModel: Use in conjunction with filterVisible. For more information, see Section 12.5, "Enabling Filtering in Tables."

	
Various listeners: Bind listeners to methods that will execute when the table invokes the corresponding event. For more information, see Chapter 6, "Handling Events."

	
In the Structure window, select a column. In the Property Inspector, expand the Common section, and set the following column-specific attributes:

	
HeaderText: Specify text to be displayed in the header of the column. This is a convenience that generates output equivalent to adding a header facet containing an outputText component. If you want to use a component other than outputText, you should use the column's header facet instead (for more information, see Step 11). When the header facet is added, any value for the headerText attribute will not be rendered in a column header.

	
Align: Specify the alignment for this column. start, end, and center are used for left-justified, right-justified, and center-justified respectively in left-to-right display. The values left or right can be used when left-justified or right-justified cells are needed, irrespective of the left-to-right or right-to-left display. The default value is null, which implies that it is skin-dependent and may vary for the row header column versus the data in the column. For more information about skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Sortable: Specify whether or not the column can be sorted. A column that can be sorted has a header that when clicked, sorts the table by that column's property. Note that in order for a column to be sortable, the sortable attribute must be set to true and the underlying model must support sorting by this column's property. For more information, see Section 12.3.7, "What You May Need to Know About Programmatically Enabling Sorting for Table Columns."

	
Note:

When column selection is enabled, clicking on a column header selects the column instead of sorting the column. In this case, columns can be sorted by clicking the ascending/descending sort indicator.

	
Filterable: Specify whether or not the column can be filtered. A column that can be filtered has a filter field on the top of the column header. Note that in order for a column to be filterable, this attribute must be set to true and the filterModel attribute must be set on the table. Only leaf columns can be filtered and the filter component is displayed only if the column header is present. This column's sortProperty attribute must be used as a key for the filterProperty attribute in the filterModel class.

	
Note:

For a column with filtering turned on (filterable=true), you can specify the input component to be used as the filter criteria input field. To do so, add a filter facet to the column and add the input component. For more information, see Section 12.5, "Enabling Filtering in Tables."

	
Expand the Appearance section. Use this section to set the appearance of the column, using the following column-specific attributes:

	
DisplayIndex: Specify the display order index of the column. Columns can be rearranged and they are displayed in the table based on the displayIndex attribute. Columns without a displayIndex attribute value are displayed at the end, in the order in which they appear in the data source. The displayIndex attribute is honored only for top-level columns, because it is not possible to rearrange a child column outside of the parent column.

	
Width: Specify the width of the column. If the table uses column stretching, then you must enter a percentage for the width.

In column stretching, column width percentages are treated as weights. For example, if all columns are given 50% widths, and there are more than three columns, each column will receive an equal amount of space, while still respecting the value set for the minWidth attribute.

Because the width as a percentage is a weight rather than an actual percentage of space, if column stretching is turned on in the table, and only one column is listed as being stretched by having a percentage width, that column will use up all remaining space in the table not specified by pixel widths in the rest of the columns.

	
MinimumWidth: Specify the minimum number of pixels for the column width. When a user attempts to resize the column, this minimum width will be enforced. Also, when a column is flexible, it will never be stretched to be a size smaller than this minimum width. If a pixel width is defined and if the minimum width is larger, the minimum width will become the smaller of the two values. By default, the minimum width is 10 pixels.

	
ShowRequired: Specify whether or not an asterisk should be displayed in the column header if data is required for the corresponding attribute.

	
HeaderNoWrap and NoWrap: Specify whether or not you want content to wrap in the header and in the column.

	
RowHeader: Set to true if you want this column to be a row header for the table.

	
Performance Tip:

Use of row headers increases the complexity of tables and can have a negative performance impact.

	
Expand the Behavior section. Use this section to configure the behavior of the columns, using the following column-specific attributes:

	
SortProperty: Specify the property that is to be displayed by this column. This is the property that the framework might use to sort the column's data.

	
Frozen: Specify whether the column is frozen; that is they can't be scrolled off the page. In the table, columns up to the frozen column are locked with the header, and not scrolled with the rest of the columns. The frozen attribute is honored only on the top-level column, because it is not possible to freeze a child column by itself without its parent being frozen.

	
Performance Tip:

Use of frozen columns increases the complexity of tables and can have a negative performance impact.

	
Selected: When set to true, the column will be selected on initial rendering.

	
To add a column to an existing table, in the Structure window, right-click the table and from the context menu choose Insert Inside Table > Column.

	
To add facets to the table, right-click the table and from the context menu, choose Facets - Table and choose the type of facet you want to add. You can then add a component directly to the facet.

	
Tip:

Facets can have only one direct child. If you want the facet to display more than one component, first insert a group component (such as panelGroupLayout) and then insert the multiple components as children to the group component.

	
To add facets to a column, right-click the column and from the context menu, choose Facets - Column and choose the type of facet you want to add. You can then add a component directly to the facet.

	
Tip:

Facets can have only one direct child. If you want the facet to display more than one component, first insert a group component (such as panelGroupLayout) and then insert the multiple components as children to the group component.

	
Add components as children to the columns to display your data.

The component's value should be bound to the variable value set on the table's var attribute and the attribute to be displayed. For example, the table in the File Explorer application uses file as the value for the var attribute, and the first column displays the name of the file for each row. Therefore, the value of the output component used to display the directory name is #{file.name}.

	
Tip:

If an input component is the direct child of a column, be sure its width is set to a width that is appropriate for the width of the column. If the width is set too large for its parent column, the browser may extend its text input cursor too wide and cover adjacent columns. For example, if an inputText component has its size set to 80 pixels and its parent column size is set to 20 pixels, the table may have an input cursor that covers the clickable areas of it neighbor columns.

To allow the input component to be automatically sized when it is not the direct child of a column, set contentStyle="width:auto".

12.3.5 What Happens When You Add a Table to a Page

When you use JDeveloper to add a table onto a page, JDeveloper creates a table with a column for each attribute. If you bind the table to a model, the columns will reflect the attributes in the model. If you are not yet binding to model, JDeveloper will create the columns using the default values. You can change the default values (add/delete columns, change column headings, and so on) during in the table creation dialog or later using the Property Inspector.

Example 12-2 shows abbreviated page code for the table in the File Explorer application.

Example 12-2 ADF Faces Table in the File Explorer Application

<af:table id="folderTable" var="file"
 value="#{explorer.contentViewManager.
 tableContentView.contentModel}"
 binding="#{explorer.contentViewManager.
 tableContentView.contentTable}"
 emptyText="#{explorerBundle['global.no_row']}"
 rowselection="multiple"
 contextMenuId=":context1" contentDelivery="immediate"
 columnStretching="last"
 selectionListener="#{explorer.contentViewManager.
 tableContentView.tableFileItem}"
 summary="table data">
 <af:column width="180" sortable="true" sortProperty="name"
 headerText="" align="start">
 <f:facet name="header">
 <af:outputText value="#{explorerBundle['contents.name']}"/>
 </f:facet>
 <af:panelGroupLayout>
 <af:image source="#{file.icon}"
 inlineStyle="margin-right:3px; vertical-align:middle;"
 shortDesc="file icon"/>
 <af:outputText value="#{file.name}" noWrap="true"/>
 </af:panelGroupLayout>
 </af:column>
 <af:column width="70" sortable="true"
 sortProperty="property.size">
 <f:facet name="header">
 <af:outputText value="#{explorerBundle['contents.size']}"/>
 </f:facet>
 <af:outputText value="#{file.property.size}" noWrap="true"/>
 </af:column>
...
 <af:column width="100">
 <f:facet name="header">
 <af:outputText value="#{explorerBundle['global.properties']}"/>
 </f:facet>
 <af:commandLink text="#{explorerBundle['global.properties']}"
 partialSubmit="true"
 action="#{explorer.launchProperties}"
 returnListener="#{explorer.returnFromProperties}"
 windowWidth="300" windowHeight="300"
 useWindow="true"></af:commandLink>
 </af:column>
</af:table>

12.3.6 What Happens at Runtime: Data Delivery

When a page is requested that contains a table, and the content delivery is set to lazy, the page initially goes through the standard lifecycle. However, instead of fetching the data during that request, a special separate PPR request is run. Because the page has just rendered, only the Render Response phase executes, and the corresponding data is fetched and displayed. If the user's actions cause a subsequent data fetch (for example scrolling in a table), another PPR request is executed. Figure 12-15 shows a page containing a table during the second PPR request.

Figure 12-15 Table Fetches Data in a Second PPR Request

[image: Table fetches data in PPR request]

When the user clicks a sortable column header, the table component generates a SortEvent event. This event has a getSortCriteria property, which returns the criteria by which the table must be sorted. The table responds to this event by calling the setSortCriteria() method on the underlying CollectionModel instance, and calls any registered SortListener instances.

12.3.7 What You May Need to Know About Programmatically Enabling Sorting for Table Columns

Sorting can be enabled for a table column only if the underlying model supports sorting. If the model is a CollectionModel instance, it must implement the following methods:

public boolean isSortable(String propertyName)

public List getSortCriteria()

public void setSortCriteria(List criteria)

For more information, see the MyFaces Trinidad website at http://myfaces.apache.org/trinidad/index.html.

If the underlying model is not a CollectionModel instance, the table component automatically examines the actual data to determine which properties can be sorted. Any column that has data that implements the java.lang.Comparable class is able to be sorted. Although this automatic support is not as efficient as coding sorting directly into a CollectionModel (for instance, by translating the sort into an ORDER BY SQL clause), it may be sufficient for small data sets.

	
Note:

Automatic support provides sorting for only one column. Multi-column sorting is not supported.

12.3.8 What You May Need to Know About Performing an Action on Selected Rows in Tables

A table can allow users to select one or more rows and perform some actions on those rows.

When the selection state of a table changes, the table triggers selection events. A selectionEvent event reports which rows were just deselected and which rows were just selected.

To listen for selection events on a table, you can register a listener on the table either using the selectionListener attribute or by adding a listener to the table using the addselectionListener() method. The listener can then access the selected rows and perform some actions on them.

The current selection, that is the selected row or rows, are the RowKeySet object, which you obtain by calling the getSelectedRowKeys() method for the table. To change a selection programmatically, you can do either of the following:

	
Add rowKey objects to, or remove rowKey objects from, the RowKeySet object.

	
Make a particular row current by calling the setRowIndex() or the setRowKey() method on the table. You can then either add that row to the selection, or remove it from the selection, by calling the add() or remove() method on the RowKeySet object.

Example 12-3 shows a portion of a table in which a user can select some rows then click the Delete button to delete those rows. Note that the actions listener is bound to the performDelete method on the mybean managed bean.

Example 12-3 Selecting Rows

<af:table binding="#{mybean.table}" rowselection="multiple" ...>
 ...
</af:table>
<af:commandButton text="Delete" actionListener="#{mybean.performDelete}"/>

Example 12-4 shows an actions method, performDelete, which iterates through all the selected rows and calls the markForDeletion method on each one.

Example 12-4 Using the rowKey Object

public void performDelete(ActionEvent action)
{
 UIXTable table = getTable();
 Iterator selection = table.getSelectedRowKeys().iterator();
 Object oldKey = table.getRowKey();
 while(selection.hasNext())
 {
 Object rowKey = selection.next();
 table.setRowKey(rowKey);
 MyRowImpl row = (MyRowImpl) table.getRowData();
 //custom method exposed on an implementation of Row interface.
 row.markForDeletion();
 }
 // restore the old key:
 table.setRowKey(oldKey);
}

// Binding methods for access to the table.
public void setTable(UIXTable table) { _table = table; }
public UIXTable getTable() { return _table; }
private UIXTable _table;

12.3.9 What You May Need to Know About Dynamically Determining Values for Selection Components in Tables

There may be a case when you want to use a selectOne component in a table, but you need each row to display different choices in a component. Therefore, you need to dynamically determine the list of items at runtime.

While you may think you should use a forEach component to stamp out the individual items, this will not work because forEach does not work with the CollectionModel instance. It also cannot be bound to EL expressions that use component-managed EL variables, as those used in the table. The forEach component performs its functions in the JSF tag execution step while the table performs in the following component encoding step. Therefore, the forEach component will execute before the table is ready and will not perform its iteration function.

In the case of a selectOne component, the direct child must be the items component. While you could bind the items component directly to the row variable (for example, <f:items value="#{row.Items}"/>, doing so would not allow any changes to the underlying model.

Instead, you should create a managed bean that creates a list of items, as shown in Example 12-5.

Example 12-5 Managed Bean Returns a List of Items

public List<SelectItem> getItems()
{
 // Grab the list of items
 FacesContext context = FacesContext.getCurrentInstance();
 Object rowItemObj = context.getApplication().evaluateExpressionGet(
 context, "#{row.items}", Object.class);
 if (rowItemObj == null)
 return null;
 // Convert the model objects into items
 List<SomeModelObject> list = (List<SomeModelObject>) rowItemObj;
 List<SelectItem> items = new ArrayList<SelectItem>(list.size());
 for (SomeModelObject entry : list)
 {
 items.add(new SelectItem(entry.getValue(), entry.getLabel());public
 }
 // Return the items
 return items;
}

You can then access the list from the one component on the page, as shown in Example 12-6.

Example 12-6 Accessing the Items from a JSF Page

<af:table var="row">
 <af:column>
 <af:selectOneChoice value="#{row.myValue}">
 <f:Items value="#{page_backing.Items}"/>
 </af:selectOneChoice>
 </af:column>
</af:table>

12.4 Adding Hidden Capabilities to a Table

You can use the detailStamp facet in a table to include data that can be displayed or hidden. When you add a component to this facet, the table displays an additional column with a toggle icon. When the user clicks the icon, the component added to the facet is shown. When the user clicks on the toggle icon again, the component is hidden. Figure 12-16 shows the additional column that is displayed when content is added to the detailStamp facet.

	
Note:

When a table that uses the detailStamp facet is rendered in Screen Reader mode, the contents of the facet appear in a popup window. For more information about accessibility, see Chapter 30, "Developing Accessible ADF Faces Pages."

Figure 12-16 Table with Unexpanded DetailStamp Facet

[image: Unexpanded detailStamp facet]

Figure 12-17 shows the same table, but with the detailStamp facet expanded for the first row.

Figure 12-17 Expanded detailStamp Facet

[image: Expanded detailStamp facet]

You can use an EL expression for the rendered attribute on the facet to determine whether or not to display the toggle icon and show details. For example, say on a shopping cart page you want to use the detailStamp facet to display gift wrapping information. However, not all order items will have gift wrapping information, so you only want the toggle icon to display if the order item has the information to display. You could create a method on managed bean that determines if there is information to display, and then bind the rendered attribute to that method. Figure 12-18 shows the same table but with icons displayed only for the rows that have information to display.

Figure 12-18 Conditional detailStamp Facet

[image: Not all rows show detail indicator]

	
Note:

If you set the table to allow columns to freeze, the freeze will not work when you display the detailStamp facet. That is, a user cannot freeze a column while the details are being displayed.

12.4.1 How to Use the detailStamp Facet

To use the detailStamp facet, you insert a component that is bound to the data to be displayed or hidden into the facet.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 12.4, "Adding Hidden Capabilities to a Table."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."

To use the detailStamp facet:

	
In the Component Palette, drag the components you want to appear in the facet to the detailStamp facet folder. Figure 12-19 shows the detailStamp facet folder in the Structure window.

Figure 12-19 detailStamp Facet in the Structure Window

[image: detailStamp facet in the Structure window]

	
Tip:

If the facet folder does not appear in the Structure window, right-click the table and choose Facets - Table > Detail Stamp.

	
If the attribute to be displayed is specific to a current record, replace the JSF code (which simply binds the component to the attribute), so that it uses the table's variable to display the data for the current record.

Example 12-7 shows abbreviated code used to display the detailStamp facet shown in Figure 12-17, which shows details about the selected row.

Example 12-7 Code for detailStamp Facet

<af:table rowSelection="multiple" var="test1"
 value="#{tableTestData}"
 <f:facet name="detailStamp">
 <af:panelFormLayout rows="4" labelWidth="33%" fieldWidth="67%"
 inlineStyle="width:400px">
 <af:inputText label="Name" value="#{test1.name}"/>
 <af:group>
 <af:inputText label="Size" value="#{test1.size}"/>
 <af:inputText label="Date Modified" value="#{test1.inputDate}"/>
 <af:inputText label="Created by"/>
 </af:group>
 </af:panelFormLayout>
 </f:facet>
</af:table>

	
If you want the detailStamp facet to display its icon and components conditionally, set the rendered attribute on the facet to a method on a managed bean that will determine if the facet should be rendered.

	
Note:

If your application uses the Fusion technology stack, then you can drag attributes from a data control and drop them into the detailStamp facet. You don't need to modify the code.

12.4.2 What Happens at Runtime: Disclosing Row Data

When the user hides or shows the details of a row, the table generates a rowDisclosureEvent event. The event tells the table to toggle the details (that is, either expand or collapse).

The rowDisclosureEvent event has an associated listener. You can bind the rowDisclosureListener attribute on the table to a method on a managed bean. This method will then be invoked in response to the rowDisclosureEvent event to execute any needed post-processing.

12.5 Enabling Filtering in Tables

You can add a filter to a table that can be used so that the table displays only rows whose values match the filter. When enabled and set to visible, a search criteria input field displays above each searchable column.

For example, the table in Figure 12-20 has been filtered to display only rows in which the Location value is 1700.

Figure 12-20 Filtered Table

[image: Filtered table shows only rows that match query]

Filtered table searches are based on Query-by-Example and use the QBE text or date input field formats. The input validators are turned off to allow for entering characters for operators such as > and < to modify the search criteria. For example, you can enter >1500 as the search criteria for a number column. Wildcard characters may also be supported. Searches can be either case-sensitive or case-insensitive. If a column does not support QBE, the search criteria input field will not render for that column.

The filtering feature uses a model for filtering data into the table. The table's filterModel attribute object must be bound to an instance of the FilterableQueryDescriptor class.

	
Note:

If your application uses the Fusion technology stack, then you can use data controls to create tables and filtering will be created for you. For more information see the "Creating ADF Databound Tables" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework

In Example 12-8, the table filterVisible attribute is set to true to enable the filter input fields, and the sortProperty attribute is set on the column to identify the column in the filterModel instance. Each column element has its filterable attribute set to true.

Example 12-8 Table Component with Filtering Enabled

<af:table value="#{myBean.products}" var="row"
 ...
 filterVisible="true"
 ...
 rowselection="single">
 ...
 <af:column sortProperty="ProductID" filterable="true" sortable="true"
 <af:outputText value="#{row.ProductID}">
 ...
 </af:column>
 <af:column sortProperty="Name" filterable="true" sortable="true"
 <af:outputText value="#{row.Name}"/>
 ...
 </af:column>
 <af:column sortProperty="warehouse" filterable="true" sortable="true"
 <af:outputText value="#{row.warehouse}"/>
 ...
 </af:column>
</af:table>

12.5.1 How to Add Filtering to a Table

To add filtering to a table, first create a class that can provide the filtering functionality. You then bind the table to that class, and configure the table and columns to use filtering. The columns that will use filtering must either have a value for the headerText attribute, or must contain a component in the header facet. This allows the filter component to be displayed. Additionally, the column must be configured to be sortable, because the filterModel class uses the sortProperty attribute.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 12.5, "Enabling Filtering in Tables."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."

To add filtering to a table:

	
Create a Java class that is a subclass of the FilterableQueryDescriptor class. For more information about this class, see the ADF Faces Javadoc.

	
Create a table, as described in Section 12.3, "Using the Table Component."

	
Select the table in the Structure window and set the following attributes in the Property Inspector:

	
FilterVisible: Set to true to display the filter criteria input field above searchable column.

	
FilterModel: Bind to an instance of the FilterableQueryDescriptor class created in Step 1.

	
Tip:

If you want to use a component other than an inputText component for your filter (for example, an inputDate component), then instead of setting filterVisible to true, you can add the needed component to the filter facet. To do so:

	
In the Structure window, right-click the column to be filtered and choose Insert inside af:column > JSF Core > Filter facet.

	
From the Component Palette, drag and drop a component into the facet.

	
Set the value of the component to the corresponding attribute within the FilterableQueryDescriptor class created in Step 1. Note that the value must take into account the variable used for the row, for example:

#{af:inputDate label="Select Date" id="name"
 value="row.filterCriteria.date"}

	
In the Structure window, select a column in the table and in the Property Inspector, and set the following for each column in the table:

	
Filterable: Set to true.

	
FilterFeatures: Set to caseSensitive or caseInsensitive. If not specified, the case sensitivity is determined by the model.

12.6 Displaying Data in Trees

The ADF Faces tree component displays hierarchical data, such as organization charts or hierarchical directory structures. In data of these types, there may be a series of top-level nodes, and each element in the structure may expand to contain other elements. As an example, in an organization chart, each element, that is, each employee, in the hierarchy may have any number of child elements (direct reports). The tree component supports multiple root elements. It displays the data in a form that represents the structure, with each element indented to the appropriate level to indicate its level in the hierarchy, and connected to its parent. Users can expand and collapse portions of the hierarchy. Figure 12-21 shows a tree used to display directories in the File Explorer application.

Figure 12-21 Tree Component in the File Explorer Application

[image: ADF Faces tree component]

The ADF Faces tree component uses a model to access the data in the underlying hierarchy. The specific model class is oracle.adf.view.rich.model.TreeModel, which extends CollectionModel, described in Section 12.3, "Using the Table Component."

You must create your own tree model to support your tree. The tree model is a collection of rows. It has an isContainer() method that returns true if the current row contains child rows. To access the children of the current row, you call the enterContainer() method. Calling this method results in the TreeModel instance changing to become a collection of the child rows. To revert back up to the parent collection, you call the exitContainer() method.

You may find the org.apache.myfaces.trinidad.model.ChildPropertyTreeModel class useful when constructing a TreeModel class, as shown in Example 12-9.

Example 12-9 Constructing a TreeModel

List<TreeNode> root = new ArrayList<TreeNode>();
for(int i = 0; i < firstLevelSize; i++)
{
 List<TreeNode> level1 = new ArrayList<TreeNode>();
 for(int j = 0; j < i; j++)
 {
 List<TreeNode> level2 = new ArrayList<TreeNode>();
 for(int k=0; k<j; k++)
 {
 TreeNode z = new TreeNode(null, _nodeVal(i,j,k));
 level2.add(z);
 }
 TreeNode c = new TreeNode(level2, _nodeVal(i,j));
 level1.add(c);
 }
 TreeNode n = new TreeNode(level1, _nodeVal(i));
 root.add(n);
}
ChildPropertyTreeModel model = new ChildPropertyTreeModel(root, "children");
private String _nodeVal(Integer... args)
{
 StringBuilder s = new StringBuilder();
 for(Integer i : args)
 s.append(i);
 return s.toString();
}

	
Note:

If your application uses the Fusion technology stack, then you can use data controls to create trees and the model will be created for you. For more information see the "Displaying Master-Detail Data" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework

You can manipulate the tree similar to the way you can manipulate a table. You can do the following:

	
To make a node current, call the setRowIndex() method on the tree with the appropriate index into the list. Alternatively, call the setRowKey() method with the appropriate rowKey object.

	
To access a particular node, first make that node current, and then call the getRowData() method on the tree.

	
To access rows for expanded or collapsed nodes, call getAddedSet and getRemovedSet methods on the RowDisclosureEvent. For more information, see Section 12.6.4, "What You May Need to Know About Programmatically Expanding and Collapsing Nodes."

	
To manipulate the node's child collection, call the enterContainer() method before calling the setRowIndex() and setRowKey() methods. Then call the exitContainer() method to return to the parent node.

	
To point to a rowKey for a node inside the tree (at any level) use the focusRowKey attribute. The focusRowKey attribute is set when the user right-clicks on a node and selects the Show as top context menu item (or the Show as top toolbar button in the panelCollection component).

When the focusRowKey attribute is set, the tree renders the node pointed to by the focusRowKey attribute as the root node in the Tree and displays a Hierarchical Selector icon next to the root node. Clicking the Hierarchical Selector icon displays a Hierarchical Selector dialog which shows the path to the focusRowKey object from the root node of the tree. How this displays depends on the components placed in the pathStamp facet.

	
Note:

You cannot use JavaScript to dynamically size a tree. The height of a tree is set the first time is rendered and cannot be changed using JavaScript APIs.

As with tables, trees use stamping to display content for the individual nodes. Trees contain a nodeStamp facet, which is a holder for the component used to display the data for each node. Each node is rendered (stamped) once, repeatedly for all nodes. As each node is stamped, the data for the current node is copied into a property that can be addressed using an EL expression. Specify the name to use for this property using the var property on the tree. Once the tree has completed rendering, this property is removed or reverted back to its previous value.

Because of this stamping behavior, only certain types of components are supported as children inside an ADF Faces tree. All components that have no behavior are supported, as are most components that implement the ValueHolder or ActionSource interfaces.

In Example 12-10, the data for each element is referenced using the variable node, which identifies the data to be displayed in the tree. The nodeStamp facet displays the data for each element by getting further properties from the node variable:

Example 12-10 Displaying Data in a Tree

<af:tree var="node">
 <f:facet name="nodeStamp">
 <af:outputText value="#{node.firstname}"/>
 </f:facet>
</af:tree>

Trees also contain a pathStamp facet. This facet determines how the content of the Hierarchical Selector dialog is rendered, just like the nodeStamp facet determines how the content of the tree is rendered. The component inside the pathStamp facet can be a combination of simple outputText, image, and outputFormatted tags and cannot not be any input component (that is, any EditableValueHolder component) because no user input is allowed in the Hierarchical Selector popup. If this facet is not provided, then the Hierarchical Selector icon is not rendered.

For example, including an image and an outputText component in the pathStamp facet causes the tree to render an image and an outputText component for each node level in the Hierarchical Selector dialog. Use the same EL expression to access the value. For example, if you want to show the first name for each node in the path in an outputText component, the EL expression would be <af:outputText value="#{node.firstname}"/>.

	
Tip:

The pathStamp facet is also used to determine how default toolbar buttons provided by the panelCollection component will behave. If you want to use the buttons, add a component bound to a node value. For more information about using the panelCollection component, see Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars."

12.6.1 How to Display Data in Trees

To create a tree, you add a tree component to your page and configure the display and behavior properties.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 12.6, "Displaying Data in Trees."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."

To add a tree to a page:

	
Create a Java class that extends the org.apache.myfaces.trinidad.model.TreeModel class, as shown in Example 12-9.

	
In the Component Palette, from the Data Views panel, drag and drop a Tree to open the Insert Tree dialog. Configure the tree as needed. Click Help or press F1 for help in using the dialog.

	
In the Property Inspector, expand the Data section and set the following attributes:

	
Value: Specify an EL expression for the object to which you want the tree to be bound. This must be an instance of org.apache.myfaces.trinidad.model.TreeModel as created in Step 1.

	
Var: Specify a variable name to represent each node.

	
VarStatus: Optionally enter a variable that can be used to determine the state of the component. During the Render Response phase, the tree iterates over the model rows and renders each node. For any given node, the varStatus attribute provides the following information:

	
model: A reference to the CollectionModel instance

	
index: The current row index

	
rowKey: The unique key for the current node

	
Expand the Appearance section and set the following attributes:

	
DisplayRow: Specify the node to display in the tree during the initial display. The possible values are first to display the first node, last to display the last node, and selected to display the first selected node in the tree. The default is first.

	
DisplayRowKey: Specify the row key to display in the tree during the initial display. This attribute should be set only programatically. Specifying this attribute will override the displayRow attribute.

	
Summary: Optionally enter a summary of the data displayed by the tree.

	
Expand the Behavior section and set the following attributes:

	
InitiallyExpanded: Set to true if you want all nodes expanded when the component first renders.

	
EditingMode: Specify whether for any editable components used to display data in the tree, you want all the nodes to be editable (editAll), or you want the user to click a node to make it editable (clickToEdit). For more information, see Section 12.2.4, "Editing Data in Tables, Trees, and Tree Tables."

	
ContextMenuSelect: Determines whether or not the node is selected when you right-click to open a context menu. When set to true, the node is selected. For more information about context menus, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."

	
RowSelection: Set a value to make the nodes selectable. Valid values are: none, single, or multiple. For information about how to then programatically perform some action on the selected nodes, see Section 12.6.5, "What You May Need to Know About Programmatically Selecting Nodes."

	
ContentDelivery: Specify when the data should be delivered. When the contentDelivery attribute is set to immediate, data is fetched at the same time the component is rendered. If the contentDelivery attribute is set to lazy, data will be fetched and delivered to the client during a subsequent request. If the attribute is set to whenAvailable (the default), the renderer checks if the data is available. If it is, the content is delivered immediately. If it is not, then lazy delivery is used. For more information, see Section 12.2.2, "Content Delivery."

	
FetchSize: Specify the number of rows in the data fetch block. For more information, see Section 12.2.2, "Content Delivery."

	
AutoHeightRows: Set to the maximum number of nodes to display before a scroll bar is displayed. The default value is -1 (no automatic sizing for any number of number). You can set the value to 0 to have the value be the same as the fetchSize value.

	
Note:

Note the following about setting the autoHeightRows attribute:

	
Specifying height on the inlineStyle attribute will have no effect and will be overridden by the value of AutoHeightRows.

	
Specifying a min-height or max-height on the inlineStyle attribute is not recommended and is incompatible with the autoHeightRows attribute.

	
When the component is placed in a layout-managing container, such as panelSplitter, it will be sized by the container (no auto-sizing will occur). For more information, see Section 12.2.7, "Geometry Management and Table, Tree, and Tree Table Components."

	
SelectionListener: Optionally enter an EL expression for a listener that handles selection events. For more information, see Section 12.6.5, "What You May Need to Know About Programmatically Selecting Nodes."

	
FocusListener: Optionally enter an EL expression for a listener that handles focus events.

	
RowDisclosureListener: Optionally enter an EL expression for a listener method that handles node disclosure events.

	
Expand the Advanced section and set the following attributes:

	
FocusRowKey: Optionally enter the node that is to be the initially focused node.

	
DisclosedRowKeys: Optionally enter an EL expression to a method on a backing bean that handles node disclosure. For more information, see Section 12.6.4, "What You May Need to Know About Programmatically Expanding and Collapsing Nodes."

	
SelectedRowKeys: Optionally enter the keys for the nodes that should be initially selected. For more information, see Section 12.6.5, "What You May Need to Know About Programmatically Selecting Nodes."

	
To add components to display data in the tree, drag the desired component from the Component Palette to the nodeStamp facet. Figure 12-22 shows the nodeStamp facet for the tree used to display directories in the File Explorer application.

Figure 12-22 nodeStamp Facet in the Structure Window

[image: nodeStamp facet in the Structure window]

The component's value should be bound to the variable value set on the tree's var attribute and the attribute to be displayed. For example, the tree in the File Explorer application uses folder as the value for the var attribute, and displays the name of the directory for each node. Therefore, the value of the output component used to display the directory name is #{folder.name}.

	
Tip:

Facets can accept only one child component. Therefore, if you want to use more than one component per node, place the components in a group component that can be the facet's direct child, as shown in Figure 12-22.

12.6.2 What Happens When You Add a Tree to a Page

When you add a tree to a page, JDeveloper adds a nodeStamp facet to stamp out the nodes of the tree. Example 12-11 shows the abbreviated code for the tree in the File Explorer application that displays the directory structure.

Example 12-11 ADF Faces Tree Code in a JSF Page

<af:tree id="folderTree"
 var="folder"
 binding="#{explorer.navigatorManager.foldersNavigator
 .foldersTreeComponent}"
 value="#{explorer.navigatorManager.foldersNavigator.
 foldersTreeModel}"
 disclosedRowKeys="#{explorer.navigatorManager.foldersNavigator.
 foldersTreeDisclosedRowKeys}"
 rowSelection="single"
 contextMenuId=":context2"
 selectionListener="#{explorer.navigatorManager.foldersNavigator.
 showSelectedFolderContent}">
 <f:facet name="nodeStamp">
 <af:panelGroupLayout>
 <af:image id="folderNodeStampImg" source="#{folder.icon}"
 inlineStyle="vertical-align:middle; margin-right:3px;
 shortDesc="folder icon"/>
 <af:outputText id="folderNodeStampText" value="#{folder.name}"/>
 </af:panelGroupLayout>
 </f:facet>
</af:tree>

12.6.3 What Happens at Runtime: Tree Component Events

The tree is displayed in a format with nodes indented to indicate their levels in the hierarchy. The user can click nodes to expand them to show children nodes. The user can click expanded nodes to collapse them. When a user clicks one of these icons, the component generates a RowDisclosureEvent event. You can register a custom rowDisclosureListener method to handle any processing in response to the event. For more information, see Section 12.6.4, "What You May Need to Know About Programmatically Expanding and Collapsing Nodes."

When a user selects or deselects a node, the tree component invokes a selectionEvent event. You can register custom selectionListener instances, which can do post-processing on the tree component based on the selected nodes. For more information, see Section 12.6.5, "What You May Need to Know About Programmatically Selecting Nodes."

12.6.4 What You May Need to Know About Programmatically Expanding and Collapsing Nodes

The RowDisclosureEvent event has two RowKeySet objects: the RemovedSet object for all the collapsed nodes and the AddedSet object for all the expanded nodes. The component expands the subtrees under all nodes in the added set and collapses the subtrees under all nodes in the removed set.

Your custom rowDisclosureListener method can do post-processing, on the tree component, as shown in Example 12-12.

Example 12-12 Tree Table Component with rowDisclosureListener

<af:treeTable id="folderTree" var="directory" value="#{fs.treeModel}"
 binding="#{editor.component}" rowselection="multiple"
 columnselection="multiple" focusRowKey="#{fs.defaultFocusRowKey}"
 selectionListener="#{fs.Table}"
 contextMenuId="treeTableMenu"
 rowDisclosureListener="#{fs.handleRowDisclosure}">

The backing bean method that handles row disclosure events is shown in Example 12-13. The example illustrates expansion of a tree node. For the contraction of a tree node, you would use getRemovedSet.

Example 12-13 Backing Bean Method for RowDisclosureEvent

public void handleRowDisclosure(RowDisclosureEvent rowDisclosureEvent)
 throws Exception {
 Object rowKey = null;
 Object rowData = null;
 RichTree tree = (RichTree) rowDisclosureEvent.getSource();
 RowKeySet rks = rowDisclosureEvent.getAddedSet();

 if (rks != null) {
 int setSize = rks.size();
 if (setSize > 1) {
 throw new Exception("Unexpected multiple row disclosure
 added row sets found.");
 }

 if (setSize == 0) {
 // nothing in getAddedSet indicates this is a node
 // contraction, not expansion. If interested only in handling
 // node expansion at this point, return.
 return;
 }

 rowKey = rks.iterator().next();
 tree.setRowKey(rowKey);
 rowData = tree.getRowData();

 // Do whatever is necessary for accessing tree node from
 // rowData, by casting it to an appropriate data structure
 // for example, a Java map or Java bean, and so forth.
 }
}

Trees and tree tables use an instance of the oracle.adf.view.rich.model.RowKeySet class to keep track of which nodes are expanded. This instance is stored as the disclosedRowKeys attribute on the component. You can use this instance to control the expand or collapse state of an node in the hierarchy programatically, as shown in Example 12-14. Any node contained by the RowKeySet instance is expanded, and all other nodes are collapsed. The addAll() method adds all elements to the set, and the and removeAll() method removes all the nodes from the set.

Example 12-14 Tree Component with disclosedRowKeys Attribute

<af:tree var="node"
 inlineStyle="width:90%; height:300px"
 id="displayRowTable"
 varStatus="vs"
 rowselection="single"
 disclosedRowKeys="#{treeTableTestData.disclosedRowKeys}"
 value="#{treeTableTestData.treeModel}">

The backing bean method that handles the disclosed row keys is shown in Example 12-15.

Example 12-15 Backing Bean Method for Handling Row Keys

public RowKeySet getDisclosedRowKeys()
{
 if (disclosedRowKeys == null)
 {
 // Create the PathSet that we will use to store the initial
 // expansion state for the tree
 RowKeySet treeState = new RowKeySetTreeImpl();
 // RowKeySet requires access to the TreeModel for currency.
 TreeModel model = getTreeModel();
 treeState.setCollectionModel(model);
 // Make the model point at the root node
 int oldIndex = model.getRowIndex();
 model.setRowKey(null);
 for(int i = 1; i<=19; ++i)
 {
 model.setRowIndex(i);
 treeState.setContained(true);
 }
 model.setRowIndex(oldIndex);
 disclosedRowKeys = treeState;
 }
 return disclosedRowKeys;
}

12.6.5 What You May Need to Know About Programmatically Selecting Nodes

The tree and tree table components allow nodes to be selected, either a single node only, or multiple nodes. If the component allows multiple selections, users can select multiple nodes using Control+click and Shift+click operations.

When a user selects or deselects a node, the tree component fires a selectionEvent event. This event has two RowKeySet objects: the RemovedSet object for all the deselected nodes and the AddedSet object for all the selected nodes.

Tree and tree table components keep track of which nodes are selected using an instance of the class oracle.adf.view.rich.model.RowKeySet. This instance is stored as the selectedRowKeys attribute on the component. You can use this instance to control the selection state of a node in the hierarchy programatically. Any node contained by the RowKeySet instance is deemed selected, and all other nodes are not selected. The addAll() method adds all nodes to the set, and the and removeAll() method removes all the nodes from the set. Tree and tree table node selection works in the same way as table row selection. You can refer to sample code for table row selection in Section 12.3.8, "What You May Need to Know About Performing an Action on Selected Rows in Tables."

12.7 Displaying Data in Tree Tables

The ADF Faces tree table component displays hierarchical data in the form of a table. The display is more elaborate than the display of a tree component, because the tree table component can display columns of data for each tree node in the hierarchy. The component includes mechanisms for focusing on subtrees within the main tree, as well as expanding and collapsing nodes in the hierarchy. Figure 12-23 shows the tree table used in the File Explorer application. Like the tree component, the tree table can display the hierarchical relationship between the files in the collection. And like the table component, it can also display attribute values for each file.

Figure 12-23 Tree Table in the File Explorer Application

[image: Tree table in the File Explorer application]

The immediate children of a tree table component must be column components, in the same way as for table components. Unlike the table, the tree table component has a nodeStamp facet which holds the column that contains the primary identifier of an node in the hierarchy. The treeTable component supports the same stamping behavior as the Tree component (for details, see Section 12.6, "Displaying Data in Trees").

	
Note:

The nodeStamp facet can only contain one column (which becomes the node in the tree).

For example, in the File Explorer application (as shown in Figure 12-23), the primary identifier is the file name. This column is what is contained in the nodeStamp facet. The other columns, such as Type and Size, display attribute values on the primary identifier, and these columns are the direct children of the tree table component. This tree table uses node as the value of the variable that will be used to stamp out the data for each node in the nodeStamp facet column and each component in the child columns. Example 12-16 shows abbreviated code for the tree table in the File Explorer application.

Example 12-16 Stamping Rows in a TreeTable

<af:treeTable id="folderTreeTable" var="file"
 value="#{explorer.contentViewManager.treeTableContentView.
 contentModel}"
 binding="#{explorer.contentViewManager.treeTableContentView.
 contentTreeTable}"
 emptyText="#{explorerBundle['global.no_row']}"
 columnStretching="last"
 rowSelection="single"
 selectionListener="#{explorer.contentViewManager.
 treeTableContentView.treeTableSelectFileItem}"
 summary="treeTable data">
 <f:facet name="nodeStamp">
 <af:column headerText="#{explorerBundle['contents.name']}"
 width="200" sortable="true" sortProperty="name">
 <af:panelGroupLayout>
 <af:image source="#{file.icon}"
 shortDesc="#{file.name}"
 inlineStyle="margin-right:3px; vertical-align:middle;"/>
 <af:outputText id="nameStamp" value="#{file.name}"/>
 </af:panelGroupLayout>
 </af:column>
 </f:facet>
 <f:facet name="pathStamp">
 <af:panelGroupLayout>
 <af:image source="#{file.icon}"
 shortDesc="#{file.name}"
 inlineStyle="margin-right:3px; vertical-align:middle;"/>
 <af:outputText value="#{file.name}"/>
 </af:panelGroupLayout>
 </f:facet>
 <af:column headerText="#{explorerBundle['contents.type']}">
 <af:outputText id="typeStamp" value="#{file.type}"/>
 </af:column>
 <af:column headerText="#{explorerBundle['contents.size']}">
 <af:outputText id="sizeStamp" value="#{file.property.size}"/>
 </af:column>
 <af:column headerText="#{explorerBundle['contents.lastmodified']}"
 width="140">
 <af:outputText id="modifiedStamp"
 value="#{file.property.lastModified}"/>
 </af:column>
</af:treeTable>

The tree table component supports many of the same attributes as both tables and trees. For more information about these attributes see Section 12.3, "Using the Table Component" and Section 12.6, "Displaying Data in Trees."

12.7.1 How to Display Data in a Tree Table

You use the Insert Tree Table wizard to create a tree table. Once the wizard is complete, you can use the Property Inspector to configure additional attributes on the tree table.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 12.7, "Displaying Data in Tree Tables."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."

To add a tree table to a page:

	
In the Component Palette, from the Data Views panel, drag and drop a Tree Table onto the page to open the Insert Tree Table wizard. Configure the table by completing the wizard. If you need help, press F1 or click Help.

	
Use the Property Inspector to configure any other attributes.

	
Tip:

The attributes of the tree table are the same as those on the table and tree components. Refer to Section 12.3.4, "How to Display a Table on a Page," and Section 12.6.1, "How to Display Data in Trees" for help in configuring the attributes.

12.8 Passing a Row as a Value

There may be a case where you need to pass an entire row from a collection as a value. To do this, you pass the variable used in the table to represent the row, or used in the tree to represent a node, and pass it as a value to a property in the pageFlow scope. Another page can then access that value from the scope. The setPropertyListener tag allows you to do this (for more information about the setPropertyListener tag, including procedures for using it, see Section 5.7, "Passing Values Between Pages").

For example, suppose you have a master page with a single-selection table showing employees, and you want users to be able to select a row and then click a command button to navigate to a new page to edit the data for that row, as shown in Example 12-17. The EL variable name emp is used to represent one row (employee) in the table. The action attribute value of the commandButton component is a static string outcome showEmpDetail, which allows the user to navigate to the Employee Detail page. The setPropertyListener tag takes the from value (the variable emp), and stores it with the to value.

Example 12-17 Using SetPropertyListener and PageFlowScope

<af:table value="#{myManagedBean.allEmployees}" var="emp"
 rowSelection="single">
 <af:column headerText="Name">
 <af:outputText value="#{emp.name}"/>
 </af:column>
 <af:column headerText="Department Number">
 <af:outputText value="#{emp.deptno}"/>
 </af:column>
 <af:column headertext="Select">
 <af:commandButton text="Show more details" action="showEmpDetail">
 <af:setPropertyListener from="#{emp}"
 to="#{pageFlowScope.empDetail}"
 type="action"/>
 </af:commandButton>
 </af:column>
</af:table>

When the user clicks the command button on an employee row, the listener executes, and the value of #{emp} is retrieved, which corresponds to the current row (employee) in the table. The retrieved row object is stored as the empDetail property of pageFlowScope with the #{pageFlowScope.empDetail} EL expression. Then the action event executes with the static outcome, and the user is navigated to a detail page. On the detail page, the outputText components get their value from pageFlowScope.empDetail objects, as shown in Example 12-18.

Example 12-18 Retrieving PageFlowScope Objects

<h:panelGrid columns="2">
 <af:outputText value="Firstname:"/>
 <af:inputText value="#{pageFlowScope.empDetail.name}"/>
 <af:outputText value="Email:"/>
 <af:inputText value="#{pageFlowScope.empDetail.email}"/>
 <af:outputText value="Hiredate:"/>
 <af:inputText value="#{pageFlowScope.empDetail.hiredate}"/>
 <af:outputText value="Salary:"/>
 <af:inputText value="#{pageFlowScope.empDetail.salary}"/>
</h:panelGrid>

12.9 Displaying Table Menus, Toolbars, and Status Bars

You can use the panelCollection component to add menus, toolbars, and status bars to tables, trees, and tree tables. To use the panelCollection component, you add the table, tree, or tree table component as a direct child of the panelCollection component. The panelCollection component provides default menus and toolbar buttons.

Figure 12-24 shows the panelCollection component with the tree table component in the File Explorer application. The toolbar contains a menu that provides actions that can be performed on the tree table (such as expanding and collapsing nodes), a button that allows users to detach the tree table, and buttons that allow users to change the rows displayed in the tree table. You can configure the toolbar to not display certain toolbar items. For example, you can turn off the buttons that allow the user to detach the tree or table. For more information about menus, toolbars, and toolbar buttons, see Chapter 16, "Using Menus, Toolbars, and Toolboxes."

Figure 12-24 Panel Collection for Tree Table with Menus and Toolbar

[image: panelCollection holds menus and toolbar]

Among other facets, the panelCollection component contains a menu facet to hold menu components, a toolbar facet for toolbar components, a secondaryToolbar facet for another set of toolbar components, and a statusbar facet for status items.

The default top-level menu and toolbar items vary depending on the component used as the child of the panelCollection component:

	
Table and tree: Default top-level menu is View.

	
Table and tree table with selectable columns: Default top-level menu items are View and Format.

	
Table and tree table: Default toolbar menu is Detach.

	
Table and tree table with selectable columns: Default top-level toolbar items are Freeze, Detach, and Wrap

	
Tree and tree table (when the pathStamp facet is used): The toolbar buttons Go Up, Go To Top, and Show as Top also appear.

Example 12-19 shows how the panelCollection component contains menus and toolbars.

Example 12-19 The panelCollection Component with Table, Menus, and Toolbars

<af:panelCollection
 binding="#{editor.component}">
 <f:facet name="viewMenu">
 <af:group>
 <af:commandMenuItem text="View Item 1..."/>
 <af:commandMenuItem text="View Item 2.."/>
 <af:commandMenuItem text="View Item 3..." disabled="true"/>
 <af:commandMenuItem text="View Item 4"/>
 </af:group>
 </f:facet>

 <f:facet name="menus">
 <af:menu text="Actions">
 <af:commandMenuItem text="Add..." />
 <af:commandMenuItem text="Create.." />
 <af:commandMenuItem text="Update..." disabled="true"/>
 <af:commandMenuItem text="Copy"/>
 <af:commandMenuItem text="Delete"/>
 <af:commandMenuItem text="Remove" accelerator="control A"/>
 <af:commandMenuItem text="Preferences"/>
 </af:menu>
 </f:facet>
 <f:facet name="toolbar">
 <af:toolbar>
 <af:commandToolbarButton shortDesc="Create" icon="/new_ena.png">
 </af:commandToolbarButton>
 <af:commandToolbarButton shortDesc="Update" icon="/update_ena.png">
 </af:commandToolbarButton>
 <af:commandToolbarButton shortDesc="Delete" icon="/delete_ena.png">
 </af:commandToolbarButton>
 </af:toolbar>
 </f:facet>
 <f:facet name="secondaryToolbar">
 </f:facet>
 <f:facet name="statusbar">
 <af:toolbar>
 <af:outputText id="statusText" ... value="Custom Statusbar Message"/>
 </af:toolbar>
 </f:facet>
 <af:table rowselection="multiple" columnselection="multiple"
 ...
 <af:column
 ...
 </af:column>

	
Tip:

You can make menus detachable in the panelCollection component. For more information, see Section 16.2, "Using Menus in a Menu Bar." Consider using detached menus when you expect users to do any of the following:

	
Execute similar commands repeatedly on a page.

	
Execute similar commands on different rows of data in a large table, tree table, or tree.

	
View data in long and wide tables or tree tables, and trees. Users can choose which columns or branches to hide or display with a single click.

	
Format data in long or wide tables, tree tables, or trees.

12.9.1 How to Add a panelCollection with a Table, Tree, or Tree Table

You add a panelCollection component and then add the table, tree, or tree table inside the panelCollection component. You can then add and modify the menus and toolbars for it.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."

To create a panelCollection component with an aggregate display component:

	
In the Component Palette, from the Layout panel, drag and drop a Panel Collection onto the page. Add the table, tree, or tree table as a child to that component.

Alternatively, if the table, tree, or tree table already exists on the page, you can right-click the component and choose Surround With. Then select Panel Collection to wrap the component with the panelCollection component.

	
Optionally, customize the panelCollection toolbar by turning off specific toolbar and menu items. To do so, select the panelCollection component in the Structure window. In the Property Inspector, set the featuresOff attribute. Table 12-1 shows the valid values and the corresponding effect on the toolbar.

Table 12-1 Valid Values for the featuresOff Attribute

	Value	Will not display...
	
statusBar

	
status bar

	
viewMenu

	
View menu

	
formatMenu

	
Format menu

	
columnsMenuItem

	
Columns menu item in the View menu

	
columnsMenuItem:colId

For example:

columnsMenuItem:col1, col2

	
Columns with matching IDs in the Columns menu

For example, the value to the left would not display the columns whose IDs are col1 and col2

	
freezeMenuItem

	
Freeze menu item in the View menu

	
detachMenuItem

	
Detach menu item in the View menu

	
sortMenuItem

	
Sort menu item in the View menu

	
reorderColumnsMenuItem

	
Reorder Columns menu item in the View menu

	
resizeColumnsMenuItem

	
Resize Columns menu item in the Format menu

	
wrapMenuItem

	
Wrap menu item in the Format menu

	
showAsTopMenuItem

	
Show As Top menu item in the tree's View menu

	
scrollToFirstMenuItem

	
Scroll To First menu item in the tree's View menu

	
scrollToLastMenuItem

	
Scroll To Last menu item in the tree's View menu

	
freezeToolbarItem

	
Freeze toolbar item

	
detachToolbarItem

	
Detach toolbar item

	
wrapToolbarItem

	
Wrap toolbar item

	
showAsTopToolbarItem

	
Show As Top toolbar item

	
wrap

	
Wrap menu and toolbar items

	
freeze

	
Freeze menu and toolbar items

	
detach

	
Detach menu and toolbar items

	
Add your custom menus and toolbars to the component:

	
Menus: Add a menu component inside the menu facet.

	
Toolbars: Add a toolbar component inside the toolbar or secondaryToolbar facet.

	
Status items: Add items inside the statusbar facet.

	
View menu: Add commandMenuItem components to the viewMenu facet. For multiple items, use the group component as a container for the commandMenuItem components.

From the Component Palette, drag and drop the component into the facet. For example, drop Menu into the menu facet, then drop Menu Items into the same facet to build a menu list. For more instructions about menus and toolbars, see Chapter 16, "Using Menus, Toolbars, and Toolboxes."

12.10 Exporting Data from Table, Tree, or Tree Table

You can export the data from a table, tree, or tree table, or from a table region of the DVT project Gantt chart to a Microsoft Excel spreadsheet. To allow users to export a table, you create an action source, such as a command button or command link that will be used to invoke the export, and add an exportCollectionActionListener component and associate it with the data you wish to export. You can configure the table so that all the rows will be exported, or so that only the rows selected by the user will be exported.

	
Tip:

You can also export data from a DVT pivot table. For more information, see Section 24.8, "How to Export from a Pivot Table."

For example, Figure 12-25 shows the table from the ADF Faces demo that includes a command button component that allows users to export the data to an Excel spreadsheet.

Figure 12-25 Table with Command Button for Exporting Data

[image: Command button will allow data to be exported]

When the user clicks the command button, the listener processes the exporting of all the rows to Excel. As shown in Figure 12-25, you can also configure the exportCollectionActionListener component so that only the rows the user selects are exported.

	
Note:

Only the following can be exported:

	
Value of value holder components (such as input and output components).

	
Value of selectItem components used in selelctOneChoice and selectOneListbox components (the value of selectItem components in other selection components are not exported).

	
Value of the text attribute of a command component.

Depending on the browser, and the configuration of the listener, the browser will either open a dialog, allowing the user to either open or save the spreadsheet as shown in Figure 12-26, or the spreadsheet will be displayed in the browser. For example, if the user is viewing the page in Microsoft Internet Explorer, and no file name has been specified on the exportCollectionActionListener component, the file is displayed in the browser. In Mozilla Firefox, the dialog opens.

Figure 12-26 Exporting to Excel Dialog

[image: Exporting to Excel dialog]

If the user chooses to save the file, it can later be opened in Excel, as shown in Figure 12-27. If the user chooses to open the file, what happens depends on the browser. For example, if the user is viewing the page in Microsoft Internet Explorer, the spreadsheet opens in the browser window. If the user is viewing the page in Mozilla Firefox, the spreadsheet opens in Excel.

Figure 12-27 Exported Data File in Excel

[image: Data now shown in Excel]

	
Note:

You may receive a warning from Excel stating that the file is in a different format than specified by the file extension. This warning can be safely ignored.

12.10.1 How to Export Table, Tree, or Tree Table Data to an External Format

You create a command component, such as a button, link, or menu item, and add the exportCollectionActionListener inside this component. Then you associate the data collection you want to export by setting the exportCollectionActionListener component's exportedId attribute to the ID of the collection component whose data you wish to export.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 12.10, "Exporting Data from Table, Tree, or Tree Table."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."

You should already have a table, tree, or tree table on your page. If you do not, follow the instructions in this chapter to create a table, tree, or tree table. For example, to add a table, see Section 12.3, "Using the Table Component."

	
Tip:

If you want users to be able to select rows to export, then set your table to allow selection. For more information, see Section 12.3.2, "Formatting Tables."

To export collection data to an external format:

	
In the Component Palette, from the General Controls panel, drag and drop a command component, such as a button, to your page.

	
Tip:

If you want your table, tree, or tree table to have a toolbar that will hold command components, you can wrap the collection component in a panelCollection component. This component adds toolbar functionality. For more information, see Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars."

You may want to change the default label of the command component to a meaningful name such as Export to Excel.

	
In the Component Palette, from the Operations panel, drag an Export Collection Action Listener as a child to the command component.

	
In the Insert Export Collection Action Listener dialog, set the following:

	
ExportedId: Specify the ID of the table, tree, or tree table to be exported. Either enter it manually or use the dropdown menu to choose Edit. Use the Edit Property dialog to select the component.

	
Type: Set to excelHTML.

	
With the exportCollectionActionListener component still selected, in the Property Inspector, set the following:

	
Filename: Specify the proposed file name for the exported content. When this attribute is set, a "Save File" dialog will typically be displayed, though this is ultimately up to the browser. If the attribute is not set, the content will typically be displayed inline, in the browser, if possible.

	
Title: Specify the title of the exported document. Whether or not the title is displayed and how exactly it is displayed depends on Excel.

	
ExportedRows: Set to all if you want all rows to be automatically selected and exported. Set to selected if you want only the rows the user has selected to be exported.

Example 12-20 shows the code for a table and its exportCollectionActionListener component. Note that the exportedId value is set to the table id value.

Example 12-20 Using the exportCollectionActionListener to Export a Table

<af:table contextMenuId="thePopup" selectionListener="#{fs.Table}"
 rowselection="multiple" columnselection="multiple"
 columnBandingInterval="1"
 binding="#{editor.component}" var="test1" value="#{tableTestData}"
 id="table" summary="table data">
 <af:column>
 . . .
 </af:column>
</af:table>
<af:commandButton text="Export To Excel" immediate="true">
 <af:exportCollectionActionListener type="excelHTML" exportedId="table"
 filename="export.xls" title="ADF Faces Export"/>

12.10.2 What Happens at Runtime: How Row Selection Affects the Exported Data

Exported data is exported in index order, not selected key order. This means that if you allow selected rows to be exported, and the user selects rows (in this order) 8, 4, and 2, then the rows will be exported and displayed in Excel in the order 2, 4, 8.

12.11 Accessing Selected Values on the Client from Components That Use Stamping

Since there is no client-side support for EL in the ADF Faces framework, nor is there support for sending entire table models to the client, if you need to access values on the client using JavaScript, the client-side code cannot rely on component stamping to access the value. Instead of reusing the same component instance on each row, a new JavaScript component is created on each row (assuming any component needs to be created at all for any of the rows), using the fully resolved EL expressions.

Therefore, to access row-specific data on the client, you need to use the stamped component itself to access the value. To do this without a client-side data model, you use a client-side selection change listener.

12.11.1 How to Access Values from a Selection in Stamped Components.

To access values on the client from a stamped component, you first need to make sure the component has a client representation. Then you need to register a selection change listener on the client and then have that listener handle determining the selected row, finding the associated stamped component for that row, use the stamped component to determine the row-specific name, and finally interact with the selected data as needed.

Before you begin:

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."

To access selected values from stamped components:

	
In the Structure window for your page, select the component associated with the stamped row. For example, in Example 12-21 the table uses an outputText component to display the stamped rows.

Example 12-21 Table Component Uses an outputText Component for Stamped Rows

<af:table var="row" value="#{data}" rowSelection="single">
 <af:column headerText="Name">
 <af:outputText value="#{row.name}"/>
 </af:column>
</af:table>

Set the following on the component:

	
Expand the Common section of the Property Inspector and if one is not already defined, set a unique ID for the component using the Id attribute.

	
Expand the Advanced section and set ClientComponent to True.

	
In the Component Palette, from the Operations panel, drag and drop a Client Listener as a child to the table.

	
In the Insert Client Listener dialog, enter a function name in the Method field (you will implement this function in the next step), and select selection from the Type dropdown.

If for example, you entered mySelectedRow as the function, JDeveloper would enter the code shown in bold in Example 12-22.

Example 12-22 Using a clientListener to Register a Selection

<af:table var="row" value="#{data}" rowSelection="single">
 <af:clientListener type="selection" method="mySelectedRow"/>
 ...
</af:table>

This code causes the mySelectedRow function to be called any time the selection changes.

	
In your JavaScript library, implement the function entered in the last step. This function should do the following:

	
Figure out what row was selected. To do this, use the event object that is passed into the listener. In the case of selection events, the event object is of type AdfSelectionEvent. This type provides access to the newly selected row keys via the getAddedSet() method, which returns a POJSO (plain old JavaScript object) that contains properties for each selected row key. Once you have access to this object, you can iterate over the row keys using a "for in" loop. For example, the code in Example 12-23 extracts the first row key (which in this case, is the only row key).

Example 12-23 Iterating Over Row Keys Using a "for" in Loop

function showSelectedName(event)
{
 var firstRowKey;
 var addRowKeys=event.getAddedSet();

 for(var rowKey in addedRowKeys)
 {
 firstRowKey=rowKey;
 break;
 }
}

	
Find the stamped component associated with the selected row. The client-side component API AdfUIComponent exposes a findComponent() method that takes the ID of the component to find and returns the AdfUIComponent instance. When using stamped components, you need to find a component not just by its ID, but by the row key as well. In order to support this, the AdfUITable class provides an overloaded method of findComponent(), which takes both an ID as well as a row key.

In the case of selection events, the component is the source of the event. So you can get the table from the source of the event and then use the table to find the instance using the ID and row key. Example 12-24 shows this, where nameStamp is the ID of the table.

Example 12-24 Finding a Stamped Component Instance Given a Selected Row

// We need the table to find our stamped component.
// Fortunately, in the case of selection events, the
 // table is the event source.
 var table = event.getSource();

 // Use the table to find the name stamp component by id/row key:
 var nameStamp = table.findComponent("nameStamp", firstRowKey);

	
Add any additional code needed to work with the component. Once you have the stamped component, you can interact with it as you would with any other component. For example, Example 12-25 shows how to use the stamped component to get the row-specific value of the name attribute (which was the stamped value as shown in Example 12-21)and then display the name in an alert.

Example 12-25 Retrieving the Name of the Row in a Stamped Component

if (nameStamp)
 { // This is the row-specific name
 var name = nameStamp.getValue();

 alert("The selected name is: " + name);
 }

Example 12-26 shows the entire code for the JavaScript.

Example 12-26 JavaScript Used to Access Selected Row Value

function showSelectedName(event)
{
 var firstRowKey;
 var addedRowKeys = event.getAddedSet();

 for (var rowKey in addedRowKeys)
 {
 firstRowKey = rowKey;
 break;
 }
 // We need the table to find our stamped component.
 // Fortunately, in the case of selection events, the
 // table is the event source.
 var table = event.getSource();

 // We use the table to find the name stamp component by id/row key:
 var nameStamp = table.findComponent("nameStamp", firstRowKey);

 if (nameStamp)
 {
 // This is the row-specific name
 var name = nameStamp.getValue();

 alert("The selected name is: " + name);
 }
}

12.11.2 What You May Need to Know About Accessing Selected Values

Row keys are tokenized on the server, which means that the row key on the client may have no resemblance to the row key on the server. As such, only row keys that are served up by the client-side APIs (like AdfSelectionEvent.getAddedSet()) are valid.

Also note that AdfUITable.findComponent(id, rowKey)method may return null if the corresponding row has been scrolled off screen and is no longer available on the client. Always check for null return values from AdfUITable.findComponent() method.

13 Using List-of-Values Components

This chapter describes how to use a list-of-values component to display a model-driven list of objects from which a user can select a value.

This chapter includes the following sections:

	
Section 13.1, "About List-of-Values Components"

	
Section 13.2, "Creating the ListOfValues Data Model"

	
Section 13.3, "Using the inputListOfValues Component"

	
Section 13.4, "Using the InputComboboxListOfValues Component"

13.1 About List-of-Values Components

ADF Faces provides two list-of-values (LOV) input components that can display multiple attributes of each list item and can optionally allow the user to search for the needed item. These LOV components are useful when a field used to populate an attribute for one object might actually be contained in a list of other objects, as with a foreign key relationship in a database. For example, suppose you have a form that allows the user to edit employee information. Instead of having a separate page where the user first has to find the employee record to edit, that search and select functionality can be built into the form, as shown in Figure 13-1.

Figure 13-1 List-of-Values Input Field

[image: List of Values field displayed in a browser]

In this form, the employee name field is an LOV that contains a list of employees. When the user clicks the search icon of the inputListOfValues component, a Search and Select popup dialog displays all employees, along with a search field that allows the user to search for the employee, as shown in Figure 13-2.

Figure 13-2 The Search Popup Dialog for a List-of-Values Component

[image: Search popup for a list of values component]

When the user returns to the page, the current information for that employee is displayed in the form, as shown in Figure 13-3. The user can then edit and save the data.

Figure 13-3 Form Populated Using LOV Component

[image: Fields populated by LOV component]

As shown in the preceding figures, the inputListOfValues component provides a popup dialog from which the user can search for and select an item. The list is displayed in a table. In contrast, the inputComboboxListOfValues component allows the user two different ways to select an item to input: from a simple dropdown list, or by searching as you can in the inputListOfValues component. Note that the columns of the table will not stretch to the full width of the dialog.

You can also create custom content to be rendered in the Search and Select dialog by using the searchContent facet. You define the returnPopupDataValue attribute and programmatically set it with a value when the user selects an item from the Search and Select dialog and then closes the dialog. This value will be the return value from the ReturnPopupEvent to the returnPopupListener. When you implement the returnPopupListener, you can perform functions such as setting the value of the LOV component and its dependent components, and displaying the custom content. In the searchContent facet you can add components such as tables, trees, and input text to display your custom content.

If you implement both the searchContent facet and the ListOfValues model, the searchContent facet implementation will take precedence in rendering the Search and Select dialog. Example 13-1 shows the code to display custom content using a table component.

Example 13-1 Adding Custom Content to the Search and Select Dialog

<af:inputListOfValues model="#{bean.listOfValuesModel}"
...
 returnPopupDataValue="#{bean.returnPopupDataValue}"
 returnPopupListener="#{bean.returnPopupListener}">
 <f:facet name="searchContent">
 <af:table id="t1" value="#{bean.listModel}" var="row"
 selectionListener="#{bean.selected}"
 ...
 </f:facet>
</af:inputListOfValues>

Both components support the auto-complete feature, which allows the user to enter a partial value in the input field, tab out, and have the dialog populated with the rows that match the partial criteria. For this to work, you must implement logic so that when the user tabs out after a partial entry, the entered value is posted back to the server. On the server, your model implementation filters the list using the partially entered value and performs a query to retrieve the list of values. ADF Faces provides APIs for this functionality.

If you want to add the auto-complete feature when the user tabs out after entering a partial entry, you will need to disable the custom popup. In your LaunchPopupListener()code, add launchPopupEvent.setLaunchPopup(false) to prevent the custom popup from launching when the user tabs out. Clicking on the Search link will still launch the Search and Select dialog. Example 13-2 shows the listener code in a managed bean that is used to disable the custom popup.

Example 13-2 Disabling the Custom Popup

public void LaunchPopupListener(LaunchPopupEvent launchPopupEvent) {
 if (launchPopupEvent.getPopupType().equals
 (LaunchPopupEvent.PopupType.SEARCH_DIALOG)
 {
 ...

 launchPopupEvent.setLaunchPopup(false);
 }
}

If the readOnly attribute is set to true, the input field is disabled. If readOnly is set to false, then the editMode attribute determines which type of input is allowed. If editMode is set to select, the value can be entered only by selecting from the list. If editMode is set to input, then the value can also be entered by typing.

You can also implement the LOV component to automatically display a list of suggested items when the user types in a partial value. For example, when the user enters Ca, then a suggested list which partially matches Ca is displayed as a suggested items list, as shown in Figure 13-4. If there are no matches, a "No results found." message will be displayed.

Figure 13-4 Suggested Items List for an LOV

[image: Suggested Items list.]

The user can select an item from this list to enter it into the input field, as shown in Figure 13-5.

Figure 13-5 Suggested Items Selected

[image: Suggested Items selected.]

You add the auto-suggest behavior by adding the af:autoSuggestBehavior tag inside the LOV component with the tag's suggestItems values set to a method that retrieves and displays the list. You can create this method in a managed bean. If you are using ADF Model, the method is implemented by default. You also need to set the component's autoSubmit property to true.

In your LOV model implementation, you can implement a smart list that filters the list further. You can implement a smart list for both LOV components. If you are using ADF Model, the inputComboboxListOfValues allows you declaratively select a smart list filter defined as a view criteria for that LOV. If the smart list is implemented, and auto-suggest behavior is also used, auto-suggest will search from the smart list first. If the user waits for two seconds without a gesture, auto-suggest will also search from the full list and append the results. The maxSuggestedItems attribute specifies the number of items to return (-1 indicates a complete list). If maxSuggestedItems > 0, a More link is rendered for the user to click to launch the LOV's Search and Select dialog. Example 13-3 shows the code for an LOV component with both auto-suggest behavior and a smart list.

Example 13-3 Auto-Suggest Behavior and Smart List

af:autoSuggestBehavior
 suggestItems="#{bean.suggestItems}"
 smartList="#{bean.smartList}"/>
 maxSuggestedItems="7"/>

Figure 13-6 shows how a list can be displayed by an inputComboboxListOfValues component. If the popup dialog includes a query panel, then a Search link is displayed at the bottom of the dropdown list. If a query panel is not used, a More link is displayed.

Figure 13-6 InputComboboxListOfValues Displays a List of Employee Names

[image: inputComboboxListOfValues shows list]

The dropdown list of the inputComboboxListOfValues component can display the following:

	
Full list: As shown in Figure 13-6, a complete list of items returned by the ListOfValuesModel.getItems() method.

	
Favorites list: A list of recently selected items returned by the ListOfValuesModel.getRecentItems() method.

	
Search link: A link that opens a popup Search and Select dialog. The link is not on the scrollable region on the dropdown list.

	
customActions facet: A facet for adding additional content. Typically, this contains one or more commandLink components. You are responsible for implementing any logic for the commandLink to perform its intended action, for example, launching a popup dialog.

The number of columns to be displayed for each row can be retrieved from the model using the getItemDescriptors() method. The default is to show all the columns.

The popup dialog from within an inputListOfValues component or the optional search popup dialog in the inputComboboxListOfValues component also provides the ability to create a new record. For the inputListOfValues component, when the createPopupId attribute is set on the component, a toolbar component with a commandToolbarButton is displayed with a create icon. At runtime, a commandToolbarButton component appears in the LOV popup dialog, as shown in Figure 13-7.

Figure 13-7 Create Icon in Toolbar of Popup Dialog

[image: Create icon in toolbar of popup]

When the user clicks the Create button, a popup dialog is displayed that can be used to create a new record. For the inputComboboxListOfValues, instead of a toolbar, a commandLink with the label Create is displayed in the customActions facet, at the bottom of the dialog. This link launches a popup where the user can create a new record. In both cases, you must provide the code to actually create the new record.

Both the inputListOfValues and the inputComboboxListOfValues components support the context facet. This facet allows you to add the af:contextInfo control, which can be used to show contextual information. When the user clicks in this area, it launches a popup window displaying contextual information.

	
Tip:

Instead of having to build your own create functionality, you can use ADF Business Components and ADF data binding. For more information, see the "Creating an Input Table" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Like the query components, the LOV components rely on a data model to provide the functionality. This data model is the ListOfValuesModel class. This model uses a table model to display the list of values, and can also access a query model to perform a search against the list. You must implement the provided interfaces for the ListOfValuesModel in order to use the LOV components.

	
Tip:

Instead of having to build your own ListOfValuesModel class, you can use ADF Business Components to provide the needed functionality. For more information, see the "Creating Databound Selection Lists and Shuttles" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

When the user selects an item in the list, the data is returned as a list of objects for the selected row, where each object is the rowData for a selected row. The list of objects is available on the ReturnPopupEvent event, which is queued after a selection is made.

If you choose to also implement a QueryModel class, then the popup dialog will include a Query component that the user can use to perform a search and to filter the list. Note the following about using the Query component in an LOV popup dialog:

	
The saved search functionality is not supported.

	
The Query component in the popup dialog and its functionality is based on the corresponding QueryDescriptor class.

	
The only components that can be included in the LOV popup dialog are query, toolbar, and table.

When the user clicks the Search button to start a search, the ListOfValuesModel.performQuery() method is invoked and the search is performed. For more information about the query model, see Chapter 14, "Using Query Components."

You should use the list-of-values components when you have a more complex selection process than can be handled by the simpler select components. With list-of-values components, you can filter the selection list using accessors, smart list, auto-suggest, and other features to fine-tune the list criteria. You can create custom content in the popup window. You can add code to the returnPopupListener to perform functions when the popup window closes. A customActions facet can be used to add additional content. A create feature allows the user to create a new record. The list-of-values components offer a rich set of data input features for easier data entry.

13.1.1 Additional Functionality for List-of-Values Components

You may find it helpful to understand other ADF Faces features before you implement your list-of-values components. Additionally, once you have added a list-of-value component to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that input components can use.

	
Client components: Components can be client components. To work with the components on the client, see Chapter 4, "Using ADF Faces Client-Side Architecture."

	
JavaScript APIs: All list-of-value components have JavaScript client APIs that you can use to set or get property values. For more information, see the ADF Faces JavaScript API documentation.

	
Events: List-of-value components fire both server-side and client-side events that you can have your application react to by executing some logic. For more information, see Chapter 6, "Handling Events."

	
You can add validation and conversion to list-of-values components. For more information, see Chapter 7, "Validating and Converting Input."

	
You can display tips and messages, as well as associate online help with list-of-values components. For more information, see Chapter 19, "Displaying Tips, Messages, and Help."

	
There may be times when you want the certain list-of-values components to be validated before other components on the page. For more information, see Section 5.2, "Using the Immediate Attribute."

	
You may want other components on the page to update based on selections you make from a list-of-values component. For more information, see Section 5.3, "Using the Optimized Lifecycle."

	
You can change the appearance of the components using skins. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
You can make your list-of-values components accessible. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
Instead of entering values for attributes that take strings as values, you can use property files. These files allow you to manage translation of these strings. For more information, see Chapter 29, "Internationalizing and Localizing Pages."

	
The LOV components use the query component to populate the search list. For more information on the query component, see Chapter 14, "Using Query Components."

	
Other list components, such as selectOneChoice, also allow users to select from a list, but they do not include a popup dialog and they are intended for smaller lists. For more information about select choice components, list box components, and radio buttons, see Chapter 11, "Using Input Components and Defining Forms."

	
If your application uses the Fusion technology stack, then you can create list-of-value components based on how your ADF Business components are configured. For more information, see the "Creating a Basic Databound Page" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. If your application uses Enterprise JavaBeans, you can do the same. For more information, see the “Creating a Basic Databound Page" of the Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework.

13.2 Creating the ListOfValues Data Model

Before you can use the LOV components, you must have a data model that uses the ADF Faces API to access the LOV functionality. Figure 13-8 shows the class diagram for a ListOfValues model.

Figure 13-8 Class Diagram for LIstOfValues Model

[image: Class diagram for ListOfValues model]

13.2.1 How to Create the ListOfValues Data Model

Begin you begin:

It may be helpful to have an understanding of the list-of-values data model. For more information, see Section 13.2, "Creating the ListOfValues Data Model."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 13.1.1, "Additional Functionality for List-of-Values Components."

To create a ListOfValues model and associated events:

	
Create implementations of each of the interface classes shown in Figure 13-8. Table 13-1 provides a description of the APIs.

Table 13-1 ListOfValues Model API

	Method	Functionality
	
autoCompleteValue()

	
Called when the search icon is clicked or the value is changed and the user tabs out from the input field, as long as autoSubmit is set to true on the component. This method decides whether to open the dialog or to auto-complete the value. The method returns a list of filtered objects.

	
valueSelected(value)

	
Called when the value is selected from the Search and Select dialog and the OK button is clicked. This method gives the model a chance to update the model based on the selected value.

	
isAutoCompleteEnabled()

	
Returns a boolean to decide whether or not the auto complete is enabled.

	
getTableModel()

	
Returns the implementation of the TableModel class, on which the table in the search and select dialog will be based and created.

	
getItems() and getRecentItems()

	
Return the items and recentItems lists to be displayed in the combobox dropdown. Valid only for the inputComboboxListOfValues component. Returns null for the inputListOfValues component.

	
getItemDescriptors()

	
Return the list of columnDescriptors to be displayed in the dropdown list for an inputComboboxListOfValues component.

	
getQueryModel() and getQueryDescriptor()

	
Return the queryModel based on which the query component inside the Search and Select dialog is created.

	
performQuery()

	
Called when the search button in the query component is clicked.

For an example of a ListOfValues model, see the DemoLOVBean and DemoComboboxLOVBean classes located in the oracle.adfdemo.view.lov package, found in the Application Sources directory of the ADF Faces application.

	
For the inputListOfValues component, provide logic in a managed bean (it can be the same managed bean used to create your LOV model) that accesses the attribute used to populate the list. The inputComboboxListOfValues component uses the getItems() and getRecentItems() methods to return the list.

	
For the Search and Select popup dialog used in the InputListOfValues component, or if you want the InputComboboxListOfValues component to use the Search and Select popup dialog, implement the ListOfValuesModel.autoCompleteValue() and ListOfValuesModel.valueSelected() methods. These methods open the popup dialog and apply the selected values onto the component.

13.3 Using the inputListOfValues Component

The inputListOfValues component uses the ListOfValues model you implemented to access the list of items, as documented in Section 13.2, "Creating the ListOfValues Data Model."

13.3.1 How to Use the InputListOfValues Component

Before you begin:

It may be helpful to have an understanding of the inputListOfValues component. For more information, see Section 13.3, "Using the inputListOfValues Component."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 13.1.1, "Additional Functionality for List-of-Values Components."

You will need to complete this task:

	Create a page or page fragment. If you also implemented the search API in the model, the component would also allows the user to search through the list for the value.

To add an inputListOfValues component:

	
In the Component Palette, from the Common panel, drag an Input List Of Values and drop it onto the page.

	
In the Property Inspector, expand the Common section and set the following attributes:

	
model: Enter an EL expression that resolves to your ListOfValuesModel implementation, as created in Section 13.2.1, "How to Create the ListOfValues Data Model."

	
value: Enter an EL expression that resolves to the attribute values used to populate the list, as created in Section 13.2.1, "How to Create the ListOfValues Data Model."

	
Expand the Appearance section and set the following attribute values:

	
popupTitle: Specify the title of the Search and Select popup dialog.

	
searchDesc: Enter text to display as a mouseover tip for the component.

The rest of the attributes in this section can be populated in the same manner as with any other input component. For more information, see Section 11.3, "Using the inputText Component."

	
Expand the Behavior section and set the following attribute values:

	
autoSubmit: Set to true if you want the component to automatically submit the enclosing form when an appropriate action takes place (a click, text change, and so on). This will allow the auto-complete feature to work. If you are adding the auto-suggest behavior, you must set autoSubmit to true.

	
createPopupId: If you have implemented a popup dialog used to create a new object in the list, specify the ID of that popup component. Doing so will display a toolbar component above the table that contains a commandToolbarButton component bound to the popup dialog you defined. If you have added a dialog to the popup, then it will intelligently decide when to refresh the table. If you have not added a dialog to the popup, then the table will be always refreshed.

	
launchPopupListener: Enter an EL expression that resolves to a launchPopupListener that you implement to provide additional functionality when the popup is launched.

	
returnPopupListener: Enter an EL expression that resolves to a returnPopupListener component that you implement to provide additional functionality when the value is returned.

The rest of the attributes in this section can be populated in the same manner as with any other input component. For more information, see Section 11.3, "Using the inputText Component."

	
If you want users to be able to create a new item, create a popup dialog with the ID given in Step 4. For more information, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."

	
In the Component Palette, from the Operations panel, drag an Auto Suggest Behavior and drop it as a child to the inputListOfValues component.

	
In the Property Inspector, for each of the auto-suggest attributes, enter the:

	
EL expression that resolves to the suggestItems method.

The method should return List<javax.model.SelectItem> of the suggestItems. The method signature should be of the form List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext, oracle.adf.view.rich.model.AutoSuggestUIHints)

	
EL expression that resolves to the smartList method. The method should return List<javax.model.SelectItem> of the smart list items.

	
Number of items to be displayed in the auto-suggest list. Enter -1 to display the complete list.

If you are implementing this method in a managed bean, the JSF page entry should have the format shown in Example 13-4

Example 13-4 autoSuggestBehavior Tag in an LOV

<af:inputListOfValues value="#{bean.value}" id="inputId">
 ...
 <af:autoSuggestBehavior
 suggestItems="#{bean.suggestItems}"
 smartList="#{bean.smartList}"
 maxSuggestedItems="7"/>
</af:inputListOfValues>

If the component is being used with a data model such as ADF Model, the suggestItem method should be provided by the default implementation.

	
If you are not using ADF Model, create the suggestItems method to process and display the list. The suggestItems method signature is shown in Example 13-5.

Example 13-5 suggestItems Method Signature

List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext,
 oracle.adf.view.rich.model.AutoSuggestUIHints)

13.4 Using the InputComboboxListOfValues Component

The inputComboboxListOfValues component allows a user to select a value from a dropdown list and populate the LOV field, and possibly other fields, on a page, similar to the inputListOfValues component. However, it also allows users to view the values in the list either as a complete list, or by most recently viewed. You can also configure the component to perform a search in a popup dialog, as long as you have implemented the query APIs, as documented in Section 13.2, "Creating the ListOfValues Data Model."

13.4.1 How to Use the InputComboboxListOfValues Component

Before you begin:

It may be helpful to have an understanding of the inputComboboxListOfValues component. For more information, see Section 13.4, "Using the InputComboboxListOfValues Component."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 13.1.1, "Additional Functionality for List-of-Values Components."

To add an inputComboboxListOfValues component:

	
In the Component Palette, from the Common panel, drag an Input Combobox List Of Values and drop it onto the page.

	
In the Property Inspector, expand the Common section and set the following attributes:

	
model: Enter an EL expression that resolves to your ListOfValuesModel implementation, as created in Section 13.2.1, "How to Create the ListOfValues Data Model."

	
value: Enter an EL expression that resolves to the attribute values used to populate the list, as created in Section 13.2.1, "How to Create the ListOfValues Data Model."

	
Expand the Appearance section and set the following attribute values:

	
popupTitle: Specify the title of the Search and Select popup dialog.

	
searchDesc: Enter text to display as a mouseover tip for the component.

The rest of the attributes in this section can be populated in the same manner as with any other input component. For more information, see Section 11.3, "Using the inputText Component."

	
Expand the Behavior section and set the following attribute values:

	
autoSubmit: Set to true if you want the component to automatically submit the enclosing form when an appropriate action takes place (a click, text change, and so on). This will allow the auto complete feature to work. If you are adding the auto-suggest behavior, you must set autoSubmit to true.

	
createPopupId: If you have implemented a popup dialog used to create a new object in the list, specify the ID of that popup component. Doing so will display a toolbar component above the table that contains a commandToolbarButton component bound to the dialog you defined. If you have added a dialog to the popup, then it will intelligently decide when to refresh the table. If you have not added a dialog to the popup, then the table will always be refreshed.

	
launchPopupListener: Enter an EL expression that resolves to a launchPopupListener handler that you implement to provide additional functionality when the popup dialog is opened.

	
returnPopupListener: Enter an EL expression that resolves to a returnPopupListener handler that you implement to provide additional functionality when the value is returned.

The rest of the attributes in this section can be populated in the same manner as with any other input component. For more information, see Section 11.3, "Using the inputText Component."

	
If you are using a launchPopupListener, you can use the getPopupType() method of the LaunchPopupEvent class to differentiate the source of the event. getPopupType() returns DROPDOWN_LIST if the event is a result of the launch of the LOV Search and Select dialog, and SEARCH_DIALOG if the event is the result of the user clicking the Search button in the dialog.

	
If you want users to be able to create a new item, create a popup dialog with the ID given in Step 5. For more information, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."

	
In the Component Palette, from the Operations panel, drag an Auto Suggest Behavior and drop it as child to the inputComboboxListOfValues component.

	
In the Property Inspector, for each of the auto-suggest attributes, enter the:

	
EL expression that resolves to the suggestItems method.

The method should return List<javax.model.SelectItem> of the suggestItems. The method signature should be of the form List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext, oracle.adf.view.rich.model.AutoSuggestUIHints)

	
EL expression that resolves to the smartList method. The method should return List<javax.model.SelectItem> of the smart list items.

	
Number of items to be displayed in the auto-suggest list. Enter -1 to display the complete list.

If you are implementing this method in a managed bean, the JSF page entry should have the format shown in Example 13-6.

Example 13-6 autoSuggestBehavior Tag in an LOV

<af:inputComboboxListOfValues value="#{bean.value}" id="inputId">
 ...
 <af:autoSuggestBehavior
 suggestItems="#{bean.suggestItems}"
 smartList="#{bean.smartList}"
 maxSuggestedItems="7"/>
</af:inputComboboxListOfValues>

If the component is being used with a data model such as ADF Model, the suggestItem method should be provided by the default implementation.

	
If you are not using the component with ADF Model, create the suggestItems method to process and display the list. The suggestItems method signature is shown in Example 13-7.

Example 13-7 suggestItems Method Signature

List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext,
 oracle.adf.view.rich.model.AutoSuggestUIHints)

14 Using Query Components

This chapter describes how to use the query and quickQuery search panel components.

This chapter includes the following sections:

	
Section 14.1, "About Query Components"

	
Section 14.2, "Creating the Query Data Model"

	
Section 14.3, "Using the quickQuery Component"

	
Section 14.4, "Using the query Component"

14.1 About Query Components

The query and quickQuery components are used to search through data sets. The query component provides a comprehensive set of search criteria and controls, while the quickQuery component can be used for searching on a single criterion.

The query component supports the following functionality:

	
Selecting and searching against multiple search criteria

	
Dynamically adding and deleting criteria items

	
Selecting search operators (associated to a single criterion)

	
Choosing match all or match any conjunction

	
Displaying in a basic or advanced mode

	
Creating saved searches

	
Personalizing saved searches

By default, the advanced mode of the query component allows the user to add and delete criteria items to the currently displayed search. However you can implement your own QueryModel class that can hide certain features in basic mode (and expose them only in advanced mode). For example, you might display operators only in advanced mode or display more criteria in advanced mode than in basic mode.

Typically, the results of the query are displayed in a table or tree table, which is identified using the resultComponentId attribute of the query component. However, you can display the results in any other output components as well. The component configured to display the results is automatically rerendered when a search is performed.

Figure 14-1 shows an advanced mode query component with three search criteria.

Figure 14-1 Query Component with Three Search Criteria

[image: ADF Faces query component with three search criteria]

You can create seeded searches, that is, searches whose criteria are already determined and from which the user can choose, or you can allow the user to add criterion and then save those searches. For example, Figure 14-1 shows a seeded search for an employee. The user can enter values for the criteria on which the search will execute. The user can also choose the operands (greater than, equals, less than) and the conjunction (matches all or matches any, which creates either an "and" or "or" query). The user can click the Add Fields dropdown list to add one or more criteria and then save that search. If the application is configured to use persistence, then those search criteria, along with the chosen operands and conjunctions, can be saved and reaccessed using a given search name (for more information about persistence, see Chapter 32, "Allowing User Customization on JSF Pages").

The quickQuery component is a simplified version of the query component. The user can perform a search on any one of the searchable attributes by selecting it from a dropdown list. Figure 14-2 shows a quickQuery component in horizontal layout.

Figure 14-2 A QuickQuery Component in Horizontal Layout

[image: Horizontal quick query component]

Both the query and quickQuery components use the QueryModel class to define and execute searches. Create the associated QueryModel classes for each specific search you want users to be able to execute.

	
Tip:

Instead of having to build your own QueryModel implementation, you can use ADF Business Components, which provide the needed functionality. For more information, see the "Creating ADF Databound Search Forms" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

The QueryModel class manages QueryDescriptor objects, which define a set of search criteria. The QueryModel class is responsible for creating, deleting, and updating QueryDescriptor objects. The QueryModel class also retrieves saved searches, both those that are seeded and those that the user personalizes. For more information, refer to the ADF Faces Javadoc.

You must create a QueryDescriptor class for each set of search criteria items. The QueryDescriptor class is responsible for accessing the criteria and conjunction needed to build each seeded search. It is also responsible for dynamically adding, deleting, or adding and deleting criteria in response to end-user's actions. The QueryDescriptor class also provides various UI hints such as mode, auto-execute, and so on. For more information, refer to the ADF Faces Javadoc. One QueryModel class can manage multiple QueryDescriptor objects.

When a user creates a new saved search, a new QueryDescriptor object is created for that saved search. The user can perform various operations on the saved search, such as deleting, selecting, resetting, and updating. When a search is executed or changed, in addition to calling the appropriate QueryModel method to return the correct QueryDescriptor object, a QueryOperationEvent event is broadcast during the Apply Request Values phase. This event is consumed by the QueryOperationListener handlers during the Invoke Application phase of the JSF lifecycle. The QueryOperationEvent event takes the QueryDescriptor object as an argument and passes it to the listener. ADF Faces provides a default implementation of the listener. For details of what the listener does, see Table 14-2.

For example, updating a saved search would be accomplished by calling the QueryModel's update() method. A QueryOperationEvent event is queued, and then consumed by the QueryOperationListener handler, which performs processing to change the model information related to the update operation.

The query operation actions that generate a QueryOperationEvent event are:

	
Saving a search

	
Deleting a saved search

	
Toggling between the basic and advanced mode

	
Resetting a saved search

	
Selecting a different saved search

	
Updating a saved search

	
Updating the value of a criterion that has dependent criteria

The hasDependentCriterion method of the AttributeCriterion class can be called to check to see whether a criterion has dependents. By default, the method returns false, but it returns true if the criterion has dependent criteria. When that criterion's value has changed, a QueryOperationEvent is queued for the Update Model Values JSF lifecycle phase. The model will need a listener to update the values of the dependent criterion based on the value entered in its root criteria.

14.1.1 Query Component Use Cases and Examples

The query component can be used in several different modes to accommodate the needs of your application. It can be configured with seeded searches and provide customization and personalization functions.The query component is a feature-rich component that can be used to implement enterprise search functions.

You can use query and quick query components to build complex transactional search forms. The query components are model-driven and provide many functional and display options. The quick query component has a small footprint and provide a simple search on one attribute. The query component has a larger footprint but provides multiple criterion searches and other search features.

14.1.2 Additional Functionality for the Query Components

You may find it helpful to understand other ADF Faces features before you implement your query components. Additionally, once you have added a query or quick query component to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that query components can use.

	
All query components have JavaScript client APIs that you can use to set or get property values. For more information, see the ADF Faces JavaScript API documentation.

	
You can display tips and messages, as well as associate online help with query components. For more information, see Chapter 19, "Displaying Tips, Messages, and Help."

	
You can change appearance of the components using skins. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
You can make your query components accessible. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
Instead of entering values for attributes that take strings as values, you can use property files. These files allow you to manage translation of these strings. For more information, see Chapter 29, "Internationalizing and Localizing Pages."

	
If your application uses the Fusion technology stack, then you can create search forms based on how your ADF Business components are configured. For more information, see the "Creating Databound Search Forms" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. If your application uses Enterprise JavaBeans, you can do the same. For more information, see the “Creating a Basic Databound Page" of the Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework.

14.2 Creating the Query Data Model

Before you can use the query components, you must to create your QueryModel classes.

	
Tip:

You can use the quickQuery component without implementing a QueryModel class. However, you will have to add some additional logic to a managed bean. For more information, see Section 14.3.2, "How to Use a quickQuery Component Without a Model."

Figure 14-3 shows the class diagram for a QueryModel class.

Figure 14-3 Class Diagram for QueryModel

[image: Class diagram for query model.]

Query component has a refresh() method on the UIXQuery component. This method should be called when the model definition changes and the query component need to be refreshed (i.e., all its children removed and recreated). When a new criterion is added to the QueryDescriptor or an existing one is removed, if the underlying model returns a different collection of criterion objects than what the component subtree expects, then this method should be called. QueryOperationListener, QueryListener, and ActionListener should all call this method. The query component itself will be flushed at the end of the Invoke Application Phase. This method is a no-op when called during the Render Response Phase.

To better understand what your implementations must accomplish, Table 14-1 and Table 14-2 map the functionality found in the UI component shown in Figure 14-4 with the corresponding interface.

Figure 14-4 Query Component and Associated Popup Dialog

[image: query component’s buttons and fields]

Table 14-1 shows UI artifacts rendered for the query component, the associated class, class property, and methods used by the artifact.

Table 14-1 Query UI Artifacts and Associated Model Class Operations and Properties

	
	UI Artifact	Class Property/Methods Used	Comments
	
1

	
Search panel

	
The QueryDescriptor instance provides the items displayed in the panel.

	
Based on a saved search.

	
2

	
Disclosure icon

	
	
Opens or closes the search panel

	
3

	
Match type radio button

	
Available through the getConjunction() method on the ConjunctionCriterion class.

	
Displays the default conjunction to use between search fields, when a query is performed. If a default is set, and it is the same for all search fields, it appears selected. If the search fields are configured such that a mix of different conjunctions must be used between them, then a value may not be selected on the UI.

For example, if the All conjunction type is used between all the search fields, then All appears selected. If it is a mix of All and Any, then none of the radio buttons appears selected.

The Match Type will be read only if the conjunctionReadOnly property is set to true. Its not rendered at all when the displayMode attribute is set to simple.

	
4

	
Group of search fields

	
The collection of search fields for a QueryDescriptor object is represented by a ConjunctionCriterion object, returned by the method getConjunctionCriterion() on the QueryDescriptor class. The getCriterionList() method returns a List<Criterion> list.

	
Displays one or more search fields associated with the currently selected search.

	
5

	
Search field

	
An AttributeCriterion class provides information specific to a search field instance. An AttributeCriterion object is an item in the List<Criterion> list returned by getCriterionList() method on the ConjunctionCriterion class (see #4).

An AttributeDescriptor class provides static information pertaining to a search field. This is available through the method getAttribute(), on the AttributeCriterion class.

The getConverter() method of the AttributeDescriptor class can be overridden to return a converter object of type javax.faces.convert.Converter. When defined, the attribute value is converted using this converter instance. The default return value is null.

The hasDependentCriterion method in the AttributeCriterion class returns true if the criterion has dependents. If the criterion has dependents, then the dependent criterion fields are refreshed when the value for this criterion changes. By default this method returns false.

	
Each search field contains a label, an operator, one or more value components (for example, an input text component), and an optional delete icon. The information required to render these can be either specific to an instance of a search field (in a saved search) or it can be generic and unchanging regardless of which saved search it is part of.

For example, assume an Employee business object contains the search fields Employee Name and Salary.

A user can then configure two different searches: one named Low Salaried Employees and one named High Salaried Employees. Both searches contain two search fields based on the Employee and Salary attributes. Even though both saved searches are based on the same attributes of the Employee object, the search field Salary is configured to have its default operator as less than and value as 50000.00 for the low Salaried Employees search and for the High Salaried Employees search, with a default operator of greater than and value of 100000.00. Selecting the saved searches on the UI will show the appropriate operator and values for that search.

Regardless of the search selected by the user, the search field for Salary always has to render a number component, and the label always has to show Salary.

	
6

	
Saved Searches dropdown

	
System- and user-saved searches are available through the methods getSystemQueries() and getUserQueries() on the QueryModel class.

	
Displays a list of available system- and user-saved searches.

A Personalize option is also added if the saveQueryMode property is set to default. Selecting this option opens a Personalize dialog, which allows users to personalize saved searches. They can duplicate or update an existing saved search.

Table 14-2 shows the behaviors of the different UI artifacts, and the associated methods invoked to execute the behavior.

Table 14-2 UI Artifact Behaviors and Associated Methods

	
	UI Artifact	Class Method Invoked	Event Generated	Comments
	
7

	
Delete icon

	
During the Invoke Application phase, the method removeCriterion() on the QueryDescriptor class is called automatically by an internal ActionListener handler registered with the command component.

	
ActionEvent

	
Deletes a search field from the current QueryDescriptor object.

	
8

	
Search button

	
During the Apply Request Values phase of the JSF lifecycle, a QueryEvent event is queued, to be broadcast during the Invoke Application phase.

During the Update Model Values phase, the selected operator and the values entered in the search fields are automatically updated to the model using the EL expressions added to the operator and value components (for more information, see Section 14.4.1, "How to Add the Query Component"). These expressions should invoke the get/setOperator(); get/setOperators(); and getValues() methods, respectively, on the AttributeCriterion class.

During the Invoke Application phase, the QueryListener registered with the query component is invoked and this performs the search.

You must implement this listener.

	
QueryEvent

	
Rendered always on the footer (footer contents are not rendered at all when the displayMode attribute is simple)

Performs a query using the select operator and selected Match radio (if no selection is made the default is used), and the values entered for every search field.

	
9

	
Reset button

	
During the Apply Request Values phase of the JSF lifecycle, a QueryOperationEvent event is queued with the operation type QueryOperationEvent.

Operation.RESET, to be broadcast during the Invoke Application phase.

During the Invoke Application phase, the method reset() on the QueryModel class is called. This is done automatically by an internal QueryOperationListener handler registered with the query component. You must override this method to reset the QueryDescriptor object to its original state.

	
QueryOperationEvent (an internal QueryOperation

Listener handler is registered with the query component that in turn calls the model methods).

	
Resets the search fields to its previous saved state.

	
10

	
Save button

	
During the Apply Request Values phase of the JSF lifecycle, a QueryOperationEvent event is queued with the operation type QueryOperationEvent.

Operation.SAVE, to be broadcast during the Invoke Application phase.

During the Invoke Application phase, the method create() on the QueryModel class is called. After the call to the create() method, the update() method is called to save the hints (selected by the user in the dialog) onto the new saved search. This is done automatically by an internal QueryOperationListener handler registered with the query component. You must override this method to create a new object based on the argument passed in.

	
QueryOperationEvent (an internal QueryOperation

Listener handler is registered with the query component that in turn calls the model methods).

	
Creates a new saved search based on the current saved search settings, including any new search fields added by the user.

	
11

	
Add Fields dropdown list

	
During the Invoke Application phase, the method addCriterion() on the QueryDescriptor class is called automatically by an internal ActionListener handler registered with the command component. You must override this method to create a new AttributeCriterion object based on the AttributeDescriptor object (identified by the name argument).

	
ActionEvent

	
Adds an attribute as a search field to the existing saved search.

	
12

	
Mode (Basic or Advanced) button

	
During the Apply Request Values phase of the JSF lifecycle, a QueryOperationEvent event is queued with the operation type QueryOperationEvent.

Operation.MODE_CHANGE, to be broadcast during the Invoke Application phase.

During the Invoke Application phase, the method changeMode()on the QueryModel class is called.

	
QueryOperationEvent (an internal QueryOperation

Listener handler is registered with the query component that in turn calls the model methods).

	
Clicking the mode button toggles the mode.

	
13

	
Delete button

	
During the Invoke Application phase, the method delete() on the QueryModel class is called. This is done automatically by an internal QueryOperationListener handler registered with the query component. You must override this method order to delete the QueryDescriptor object.

	
ActionEvent

	
Deletes the selected saved search, unless it is the one currently in use.

	
14

	
Apply button

	
During the Apply Request Values phase of the JSF lifecycle, a QueryOperationEvent event is queued with the operation type QueryOperationEvent.

Operation.UPDATE, to be broadcast during the Invoke Application phase.

During the Invoke Application phase, the method update() on the QueryModel class is called. This is done automatically by an internal QueryOperationListener handler registered with the query component. You must override this method in order to update the QueryDescriptor object using the arguments passed in.

	
QueryOperationEvent (an internal QueryOperation

Listener is registered with the query component that in turn calls the model methods).

	
Applies changes made to the selected saved search.

	
15

	
OK button

	
Same as the Apply button.

	
QueryOperationEvent (an internal QueryOperation

Listener handler is registered with the query component that in turn calls the model methods).

	
Applies changes made to the selected saved search and the dialog is closed afterwards.

	
16

	
Cancel button

	
No method defined for this action.

	
QueryOperationEvent (an internal QueryOperation

Listener handler is registered with the query component that in turn calls the model methods).

	
Cancels any edits made in the dialog.

14.2.1 How to Create the Query Data Model

Begin you begin:

It may be helpful to have an understanding of the query data model. For more information, see Section 14.2, "Creating the Query Data Model."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 14.1.2, "Additional Functionality for the Query Components."

To create a query model classes:

	
Create implementations of each of the interface classes shown in Figure 14-3. Implement one QueryModel class and then a QueryDescriptor class with appropriate criteria (operators and values) for each system-seeded search. For example implementations of the different model classes for a query, see the classes located in the oracle.adfdemo.view.query.rich package of the ADF Faces sample application.

	
Note:

If your query uses composition (for example, ConjunctionCriterion 1...n with AttributeCriterion/ConjunctionCriterion), this relationship is not enforced by the abstract interfaces. Your implementation must decide whether to use composition over association, and determine how the lifecyle of these objects are managed.

	
Create a QueryListener handler method on a managed bean that listens for the QueryEvent event (this will be referenced by a button on the query component). This listener will invoke the proper APIs in the QueryModel to execute the query. Example 14-1 shows the listener method of a basic QueryListener implementation that constructs a String representation of the search criteria. This String is then displayed as the search result.

Example 14-1 A QueryListener Handler Method

 public void processQuery(QueryEvent event)
 {
 DemoQueryDescriptor descriptor = (DemoQueryDescriptor) event.getDescriptor();
 String sqlString = descriptor.getSavedSearchDef().toString();
 setSqlString(sqlString);
 }

14.3 Using the quickQuery Component

The quickQuery component has one dropdown list that allows a user to select an attribute to search on. The available searchable attributes are drawn from your implementation of the model or from a managed bean. The user can search against the selected attribute or against all attributes.

A quickQuery component may be used as the starting point of a more complex search using a query component. For example, the user may perform a quick query search on one attribute, and if successful, may want to continue to a more complex search. The quickQuery component supports this by allowing you to place command components in the end facet, which you can bind to a method on a managed bean that allows the user to switch from a quickQuery to a query component.

The quickQuery component renders the searchable criteria in a dropdown list and then, depending on the type of the criteria chosen at runtime, the quickQuery component renders different criteria fields based on the attribute type. For example, if the attribute type is Number, it renders an inputNumberSpinbox component. You do not need to add these components as long as you have implemented the complete model for your query. If instead you have the logic in a managed bean and do not need a complete model, then you create the quickQuery component artifacts manually. For more information, see Section 14.3.2, "How to Use a quickQuery Component Without a Model."

14.3.1 How to Add the quickQuery Component Using a Model

Before you begin

It may be helpful to have an understanding of forms and subforms. For more information, see Section 14.3, "Using the quickQuery Component."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 14.1.2, "Additional Functionality for the Query Components."

You will need to complete this task:

	Create a QueryModel class and associated classes. For more information, see Section 14.2, "Creating the Query Data Model."

To add a quickQuery component:

	
In the Component Palette, from the Common Components panel, drag a Quick Query and drop it onto the page.

	
Expand the Common section of the Property Inspector and set the following attributes:

	
id: Enter a unique ID for the component.

	
layout: Specify if you want the component to be displayed horizontally with the criterion and value next to each other, as shown in Figure 14-2, or vertically as shown in Figure 14-5.

Figure 14-5 A quickQuery Component Set to Display Vertically

[image: quick query vertical mode]

	
model: Enter an EL expression that evaluates to the class that implements the QueryModel class, as created in Section 14.2, "Creating the Query Data Model."

	
value: Enter an EL expression that evaluates to the class that implements the QueryDescriptor class, as created in Section 14.2, "Creating the Query Data Model."

	
Expand the Behavior section and set the following attributes:

	
conjunctionReadOnly: Specify whether or not the user should be able to set the Match Any or Match All radio buttons. When set to false, the user can set the conjunction. When set to true, the radio buttons will not be rendered.

	
queryListener: Enter an EL expression that evaluates to the QueryListener handler you created in Section 14.2, "Creating the Query Data Model."

	
Drag and drop a table (or other component that will display the search results) onto the page. Set the results component's PartialTriggers with the ID of the quickQuery component. The value of this component should resolve to a CollectionModel object that contains the filtered results.

	
If you want users to be able to click the Advanced link to turn the quickQuery component into a full query component, add a command component to the End facet of the quickQuery component, and implement logic that will hide the quickQuery component and display the query component.

14.3.2 How to Use a quickQuery Component Without a Model

You can use the quickQuery component without a model, for example if all your query logic resides in a simple managed bean, including a QueryListener handler that will execute the search and return the results. You must to manually add and bind the components required to create the complete quickQuery component.

Before you begin:

It may be helpful to have an understanding of forms and subforms. For more information, see Section 14.3, "Using the quickQuery Component."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 14.1.2, "Additional Functionality for the Query Components."

To add a quickQuery component:

	
On a managed bean, create a valueChangeListener handler for the selectOneChoice component that will display the attributes on which the user can search. The valueChangeListener handler should handle the choice for which attribute to search on.

	
On a managed bean, create the QueryListener handle to execute the search. This handle will use the ID of the input component used to enter the search criterion value, to retrieve the component and the value to execute the query.

	
In the Component Palette, from the Common Components panel, drag a Quick Query and drop it onto the page.

	
In the Property Inspector, expand the Common section, and set the following attributes:

	
id: Enter a unique ID for the component.

	
layout: Specify if you want the component to display horizontally with the criterion and value next to each other, as shown in Figure 14-2, or vertically, as shown in Figure 14-5.

	
Expand the Behavior section and set the QueryListener attribute to an EL expression that evaluates to the QueryListener handler created in Step 2.

	
In the Component Palette, from the Common Components panel, drag a Select One Choice and drop it onto the criteriaItems facet of the quickQuery component. In the dialog, choose either to enter an EL expression that evaluates to the list of attributes on which the user can search, or to enter a static list. For help with the dialog, press F1 or click Help.

	
In the Structure window, select the selectOneChoice component in the criteriaItems facet, and set the following attributes:

	
simple: Set to true so that no label for the component displays.

	
valueChangeListener: Enter an EL expression that evaluates to the listener created in Step 1.

	
autoSubmit: Set to true.

	
From the Component Palette, add select list items as needed. For more information about using the selectOneChoice and selectItems components, see Section 11.6, "Using Selection Components."

	
In the Component Palette, from the Common Components panel, drag an inputText component as a direct child to the quickQuery component. Set the following attributes:

	
simple: Set to true so that the label is not displayed.

	
value: Enter an EL expression that evaluates to the property that will contain the value that the user enters.

	
Tip:

If you do not provide an inputText component, then at runtime, a disabled inputText component and a disabled Go icon will be rendered.

	
If you want users to be able to click the Advanced link to turn the quickQuery component into a full query component, add a command component to the End facet of the quickQuery component, and implement logic that will hide the quickQuery component and display the query component.

	
In the Component Palette, from the Common Components panel, drag a table (or other component that will display the search results) onto the page. Set the results component's PartialTriggers with the ID of the quickQuery component. The value of this component should resolve to a CollectionModel object that contains the filtered results.

14.3.3 What Happens at Runtime: How the Framework Renders the quickQuery Component and Executes the Search

When the quickQuery component is bound to a QueryDescriptor object, the selectOneChoice and inputText components are automatically added at runtime as the page is rendered. However, you can provide your own components. If you do provide both the component to display the searchable attributes and the inputText components, then you need the QueryListener handler to get the name-value pair from your components.

If you provide only your own component to show the searchable attributes (and use the default input text component), the framework will display an input text component. You must have your QueryListener handler get the attribute name from the dropdown list and the value from the QueryDescriptor.getCurrentCriterion() method to perform the query.

If you provide only your own component to collect the searchable attribute value (and use the default selectOneChoice component to provide the attribute name), then the framework will display the selectOneChoice component. You must have your QueryListener handler get the attribute name from the QueryDescriptor.getCurrentCriterion() method and the value from your component.

If you choose not to bind the QuickQuery component value attribute to a QueryDescriptor object, and you provide both components, when the Go button is clicked, the framework queues a QueryEvent event with a null QueryDescriptor object. The provided QueryListener handler then executes the query using the changeValueListener handler to access the name and the input component to access the value. You will need to implement a QueryListener handler to retrieve the attribute name from your selectOneChoice component and the attribute value from your inputText component, and then perform a query.

14.4 Using the query Component

The query component is used for full feature searches. It has a basic and an advanced mode, which the user can toggle between by clicking a button.

The features for a basic mode query include:

	
Dropdown list of selectable search criteria operators

	
Selectable WHERE clause conjunction of either AND or OR (match all or match any)

	
Saved (seeded) searches

	
Personalized saved searches

The advanced mode query form also includes the ability for the user to dynamically add search criteria by selecting from a list of searchable attributes. The user can subsequently delete any criteria that were added.

The user can select from the dropdown list of operators to create a query for the search. The input fields may be configured to be list-of-values (LOV), number spinners, date choosers, or other input components.

To support selecting multiple items from a list, the model must expose a control hint on viewCriteriaItem and the underlying attribute must be defined as an LOV in the corresponding view object. The hint is used to enable or disable the multiple selection or "in" operator functionality. When multiple selection is enabled, selecting the Equals or Does not equal operator will render the search criteria field as a selectManyChoice component. The user can choose multiple items from the list.

The component for the search criteria field depends on the underlying attribute data type, the operator that was chosen, and whether multiple selection is enabled. For example, a search field for an attribute of type String with the Contains operator chosen would be rendered as an inputText component, as shown in Table 14-3.

If the operator is Equals or Does not equal, but multiple selection is not enabled, the component defaults to the component specified in the Default List Type hint from the model.

Table 14-3 Rendered Component for Search Criteria Field of Type String

	Operator	Component	Component When Multiple Select Is Enabled
	
Starts with

	
af:inputText

	
af:inputText

	
Ends with

	
af:inputText

	
af:inputText

	
Equals

	
Default list type hint

	
af:selectManyChoice

	
Does not equal

	
Default list type hint

	
af:selectManyChoice

	
Contains

	
af:inputText

	
af:inputText

	
Does not contain

	
af:inputText

	
af:inputText

	
Is blank

	
None

	
None

	
Is not blank

	
None

	
None

If the underlying attribute is the Number data type, the component that will be rendered is shown in Table 14-4.

Table 14-4 Rendered Component for Search Criteria Field of Type Number

	Operator	Component	Component When Multiple Select Is Enabled
	
Equals

	
Default list type hint

	
af:selectManyChoice

	
Does not equal

	
Default list type hint

	
af:selectManyChoice

	
Less than

	
af:inputNumberSpinBox

	
af:inputNumberSpinBox

	
Less than or equal to

	
af:inputNumberSpinBox

	
af:inputNumberSpinBox

	
Greater than

	
af:inputNumberSpinBox

	
af:inputNumberSpinBox

	
Greater than or equal to

	
af:inputNumberSpinBox

	
af:inputNumberSpinBox

	
Between

	
af:inputNumberSpinBox

	
af:inputNumberSpinBox

	
Not between

	
af:inputNumberSpinBox

	
af:inputNumberSpinBox

	
Is blank

	
None

	
None

	
Is not blank

	
None

	
None

If the underlying attribute is the Date data type, the component that will be rendered is shown in Table 14-5.

Table 14-5 Rendered Component for Search Criteria Field of Type Date

	Operator	Component	Component When Multiple Select Is Enabled
	
Equals

	
Default list type hint

	
af:selectManyChoice

	
Does not equal

	
Default list type hint

	
af:selectManyChoice

	
Before

	
af:inputDate

	
af:inputDate

	
After

	
af:inputDate

	
af:inputDate

	
On or before

	
af:inputDate

	
af:inputDate

	
On or after

	
af:inputDate

	
af:inputDate

	
Between

	
af:inputDate (2)

	
af:inputDate (2)

	
Not between

	
af:inputDate (2)

	
af:inputDate (2)

	
Is blank

	
None

	
None

	
Is not blank

	
None

	
None

If a search criterion's underlying attribute was defined as an LOV, in order for the auto-complete feature to work, the ListOfValues model instance returned by the getModelList method of the AttributeCriterion class must return true for its isAutoCompleteEnabled method. For more information about LOV, see Chapter 13, "Using List-of-Values Components."

When autoSubmit is set to true, any value change on the search criterion will be immediately pushed to the model. The query component will automatically flush its criterion list only when it has dependent criteria. If the criterion instance has no dependent criteria but autoSubmit is set to true, then the query component will be only partially refreshed.

A Match All or Match Any radio button group further modifies the query. A Match All selection is essentially an AND function. The query will return only rows that match all the selected criteria. A Match Any selection is an OR function. The query will return all rows that match any one of the criteria items.

After the user enters all the search criteria values (including null values) and selects the Match All or Match Any radio button, the user can click the Search button to initiate the query. The query results can be displayed in any output component. Typically, the output component will be a table or tree table, but you can associate other display components such as af:forms, af:outputText, and graphics to be the results component by specifying it in the resultComponentId attribute.

If the Basic or Advanced button is enabled and displayed, the user can toggle between the two modes. Each mode will display only the search criteria that were defined for that mode. A search criteria field can be defined to appear only for basic, only for advanced, or for both modes.

In advanced mode, the control panel also includes an Add Fields button that exposes a popup list of searchable attributes. When the user selects any of these attributes, a dynamically generated search criteria input field and dropdown operator list is displayed. The position of all search criteria input fields, as well as newly added fields, are determined by the model implementation.

This newly created search criteria field will also have a delete icon next to it. The user can subsequently click this icon to delete the added field. The originally defined search criteria fields do not have a delete icon and therefore cannot be deleted by the user. Figure 14-6 shows an advanced mode query component with a dynamically added search criteria field named Salary. Notice the delete icon (an X) next to the field.

Figure 14-6 Advanced Mode Query with Dynamically Added Search Criteria

[image: Dynamic search criteria]

The user can also save the entered search criteria and the mode by clicking the Save button. A popup dialog allows the user to provide a name for the saved search and specify hints by selecting checkboxes. A persistent data store is required if the saved search is to be available beyond the session. For more information about persistence, see Chapter 32, "Allowing User Customization on JSF Pages."

A seeded search is essentially a saved search that was created by the application developer. When the component is initialized, any seeded searches associated with that query component become available for the user to select.

Any user-created saved searches and seeded system searches appear in the Saved Search dropdown list. The seeded searches and user-saved searches are separated by a divider.

Users can also personalize the saved and seeded searches for future use. Personalization of saved searches requires the availability of a persistent data store. For more information about persistence, see Chapter 32, "Allowing User Customization on JSF Pages."

Along with the default display described previously, you can also configure the query component to display in a compact mode or simple mode. The compact mode has no header or border, and the Saved Search dropdown list moves next to the expand or collapse icon. Figure 14-7 shows the same query component as in Figure 14-6, but set to compact mode.

Figure 14-7 Query Component in Compact Mode

[image: Query Component in Compact Mode]

The simple mode displays the component without the header and footer, and without the buttons typically displayed in those areas. Figure 14-8 shows the same query component set to simple mode.

Figure 14-8 Query Component in Simple Mode

[image: Query Component in Simple Mode]

The query component supports toolbar and footer facets that allow you to add additional components to the query, such as command buttons. For example, you can create command components to toggle between the quickQuery and query components and place those in a toolbar in the toolbar facet.

Because the query component is responsible for rendering its subcomponents (input fields, selection list, buttons, etc.), you should not use inlineStyle with the query. If you use inlineStyle, it may result in unexpected display behavior.

14.4.1 How to Add the Query Component

Before you begin:

It may be helpful to have an understanding of forms and subforms. For more information, see Section 14.4, "Using the query Component."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 14.1.2, "Additional Functionality for the Query Components."

You will need to complete this task:

	Create a QueryModel class and associated classes. For more information, see Section 14.2, "Creating the Query Data Model."

To add a query component:

	
In the Component Palette, from the Common Components panel, drag a Query and drop it onto the page.

	
In the Property Inspector, expand the Common section and set the following attributes:

	
id: Set a unique ID for the component.

	
model: Enter an EL expression that resolves to the QueryModel class, as created in Section 14.2, "Creating the Query Data Model."

	
value: Enter an EL expression that resolves to the QueryDescriptor class, as created in Section 14.2, "Creating the Query Data Model."

	
Expand the Appearance section and set the following attributes:

	
displayMode: Specify if you want the component to display in Default, Simple, or Compact mode.

	
saveQueryMode: Specify if you want saved searches to be displayed and used at runtime. Set to default if you want the user to be able to view and edit all saved searches. Set to readOnly if you want the user to only be able to view and select saved searches, but not update them. Set to hidden if you do not want any saved searches to be displayed.

	
modeButtonPosition: Specify if you want the button that allows the user to switch the mode from basic to advanced to be displayed in toolbar (the default) or in the footer facet.

	
modeChangeVisible: Set to false if you want to hide the basic or advanced toggle button.

	
Expand the Behavior section and set the following:

	
conjunctionReadOnly: Set to false if you want the user to be able to select a radio button to determine if the search should match all criteria (query will use the AND function) or any criteria (query will use the OR function). When set to true, the radio buttons will not be rendered.

	
queryListener: Enter an EL expression that evaluates to the QueryListener handler, as created in Section 14.2, "Creating the Query Data Model."

	
Expand the Other section and set the following:

	
CriterionFeatures: Set to matchCaseDisplayed will require all string-based search criterion to be case-sensitive. Set to requiredDisplayed will require all criterion be displayed.

	
In the Component Palette, from the Common Components panel, drag a table (or other component that will display the search results) onto the page. Set an ID on the table. The value of this component should resolve to a CollectionModel object that contains the filtered results.

	
In the Structure window, select the query component and set the resultComponentID to the ID of the table.

19 Displaying Tips, Messages, and Help

This chapter describes how to define and display tips and messages for ADF Faces components, and how to provide different levels of help information for users.

This chapter includes the following sections:

	
Section 19.1, "About Displaying Tips and Messages"

	
Section 19.2, "Displaying Tips for Components"

	
Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion"

	
Section 19.4, "Grouping Components with a Single Label and Message"

	
Section 19.5, "Displaying Help for Components"

19.1 About Displaying Tips and Messages

ADF Faces provides many different ways for displaying informational text in an application. You can create simple tip text, validation and conversion tip text, validation and conversion failure messages, as well as elaborate help systems.

Figure 19-1 ADF Messaging Components

[image: Messaging components]

Many ADF Faces components support the shortDesc attribute, which for most components, displays tip information when a user hovers the cursor over the component. Figure 19-2 shows a tip configured for a toolbar button. For more information about creating tips, see Section 19.2, "Displaying Tips for Components."

Figure 19-2 Tip Displays Information

[image: Tooltip displays information]

Along with tips, EditableValueHolder components (such as the inputText component, or the selection components) can display hints used for validation and conversion. When you configure validation or conversion, a default hint automatically displays in a note window (for more information, see Chapter 7, "Validating and Converting Input").

ADF Faces uses the standard JSF messaging API. JSF supports a built-in framework for messaging by allowing FacesMessage instances to be added to the FacesContext object using the addMessage(java.lang.String clientId, FacesMessage message) method. In general there are two types of messages that can be created: component-level messages, which are associated with a specific component based on any client ID that was passed to the addMessage method, and global-level messages, which are not associated with a component because no client ID was passed to the addMessage method.

When conversion or validation fails on an EditableValueHolder ADF Faces component, FacesMessages objects are automatically added to the message queue on the FacesContext instance, passing in that component's ID. These messages are then displayed in the note window for the component. ADF Faces components are able to display their own messages. You do not need to add any tags.

Similarly, the document tag handles and displays all global FacesMessages objects (those that do not contain an associated component ID), as well as component FacesMessages. Like component messages, you do not need to add any tags for messages to be displayed. Whenever a global message is created (or more than one component message), all messages in the queue will be displayed in a popup window, as shown in Figure 19-3.

Figure 19-3 Global and Component Messages Displayed by the Document

[image: Global and component messages]

Alternatively, you can use the ADF Faces messages component if you want messages to display on the page rather than in a popup window. For more information about displaying hints and messages for components, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."

	
Tip:

While ADF Faces provides messages for validation and conversion, you can add your own FacesMessages objects to the queue using the standard JSF messaging API. When you do so, ADF Faces will display icons with the message based on the message level, as follows:

[image: Message icons]

Instead of having each component display its own messages, you can use the panelLabelAndMessage component to group components and display a message in one area. This can be very useful when you have to group components together. For example, the File Explorer application uses a panelLabelAndMessage component where users enter a telephone number. The telephone number input field is actually three separate inputText components. The panelLabelAndMessage component wraps three inputText components. Instead of each having its own label and message, the three have just one label and one message, as shown in Figure 19-8. For more information, see Section 19.4, "Grouping Components with a Single Label and Message."

Along with configuring messages for individual component instances, you can create a separate help system that provides information that can be reused throughout the application.You create help information using different types of providers, and then reference the help text from the UI components. The following are the three types of help supported by ADF Faces:

	
Definition: Provides a help icon (question mark in a blue circle) with the help text appearing when the user mouses over the icon, as shown in Figure 19-4.

Figure 19-4 Definition Messages Display When Mousing Over the Icon

[image: Definition message is a mouseover tip]

	
Instruction: Depending on the component, this type of help either provides instruction text within the component (as with panelHeader components), or displays text in the note window that is opened when the user clicks in the component, as shown in Figure 19-5. The text can be any length.

Figure 19-5 Instruction Messages Display in a Note Window

[image: Instruction message in a note window]

	
External URL: You can have a help topic that resides in an external application, which will open in a separate browser window. For example, instead of displaying instruction help, Figure 19-6 shows the Select Skin selectOneChoice component configured to open a help topic about skins. When a user clicks the help icon, the help topic opens.

Figure 19-6 External URL Help Opens in a New Window

[image: Help can display in a separate window]

For more information about creating help systems, see Section 19.5, "Displaying Help for Components."

19.1.1 Messaging Components Use Cases and Examples

Messages can typically be divided into to types: error messages that display when an error occurs in the application, for example when a user enters incompatible information, and informational messages that provide for example, hints for using a component or for completing a task on a page.

Error messages use the JSF messaging API. There are two types of error messages: component messages where the message applies to the specific component only, and global messages, where the message applies to more than one component or the whole page.

By default, the noteWindow component is used for component error messages. When you configure conversion or validation on any input component, validation and conversion hints and errors are automatically displayed in the noteWindow component. You do not need to add the component to the page.

For example, when users click Help > Give Feedback in the File Explorer application, a dialog displays where they can enter a time and date for a customer service representative to call. Because the inputDate component contains a converter, when the user clicks in the field, a note window displays a hint that shows the expected pattern, as shown in Figure 19-7. If the inputDate component was also configured with a minimum or maximum value, the hint would display that information as well. These hints are provided by the converters and validators automatically.

Figure 19-7 Attached Converters and Validators Include Messages

[image: Messages in converters and validators]

If a user enters a date incorrectly in the field shown in Figure 19-7, an error message is displayed, as shown in Figure 19-8. Note that the error message appears in the note window along with the hint.

Figure 19-8 Validation and Conversion Errors Display in Note Window

[image: Errors display in note window]

If you want to display an error message for a non-ADF Faces component, or if you want the message to be displayed inline instead of the note window, use the ADF Faces message component. When you use this component, messages are displayed next to the component, as shown in Figure 19-9.

Figure 19-9 Use the message Component to Display Messages Inline

[image: Messages displayed inline]

Global messages are by default displayed in a dialog, as shown in Figure 19-10. You do not need to add the popup component to the page.

Figure 19-10 Global Messages Display in a Popup Dialog

[image: Global messages displayed in a popup]

If instead you want the error messages to display directly on the page, use the messages component. When you use this component, the messages are displayed in a list at the top of the page, as shown in Figure 19-11.

Figure 19-11 Use the messages Component to Display Global Messages on the Page

[image: Global messages displayed in a list]

For more information about error messages, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."

Informational messages can range from simple tooltips to comprehensive help systems. Tooltips should be used when the component for which you want to display hints or information does not support help text. However, tooltip text must be very brief. If you have to display more detailed information, or if the text can be reused among many component instances, consider using help text instead.

You create tooltips by configuring the shortDesc attribute on a component. The value of that attribute then displays in a note window when the user hovers over the component, as shown in Figure 19-12.

Figure 19-12 Tooltip for a Component

[image: Tooltip displays in noteWindow]

For more information about tooltips, see Section 19.2, "Displaying Tips for Components."

Use definition help when you need to display more information than can fit in a tooltip. When you configure definition help for most components, a help icon is displayed next to the component. The help text is displayed when the mouse hovers over the component, as shown in Figure 19-13.

Figure 19-13 Definition Help for a Column Component

[image: Help icon displayed in column header]

For more information about definition help, see Section 19.5, "Displaying Help for Components."

When you want to display field-level help, configure an input component to use instruction text. When the user clicks in the component, the help text is displayed in a note window, as shown in Figure 19-14.

Figure 19-14 Instruction Text for a Component

[image: Instruction text displayed for input text component]

When you want to display instructions for a task, configure instruction help for a container component. The text will appear in the header of the component, as shown in Figure 19-15.

Figure 19-15 Instruction Text for the panelHeader Component

[image: Definition help]

	
Best Practice:

Instruction text for input components should be used only when the typical user may fail to perform a task without assistance. Excessive use of instruction text clutters the page with directions or distracts users with note windows that may also obscure related page elements.

When you need to provide comprehensive help, you can use the help icon to link to an external help system available through a URL.

For more information about instruction and external help, see Section 19.5, "Displaying Help for Components."

19.1.2 Additional Functionality for Message Components

You may find it helpful to understand other ADF Faces features before you implement your message components and help functionality. Additionally, once you have added these components to your page, you may find that you need to add functionality such as skinning to change icons and accessibility and using resource bundles to store message text. Following are links to other functionality that message components can use.

	
Using parameters in text: You can use the ADF Faces EL format tags if you want text displayed in a component to contain parameters that will resolve at runtime. For more information, see Section 3.5.2, "How to Use the EL Format Tags."

	
Client events: If you want your help topic to launch using JavaScript, you use a listener for a client event. For more information about client-side events, see Section 6.3, "Using JavaScript for ADF Faces Client Events."

	
Skinning: The icons displayed for messages and help are determined by the skin used by the application. You can change the icons by creating a new skin. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Localization: Instead of directly entering text for messages, you can use property files. These files allow you to manage translation of these strings. For more information, see Chapter 29, "Internationalizing and Localizing Pages."

19.2 Displaying Tips for Components

ADF Faces components use the shortDesc attribute to display a tip when the user hovers the mouse over the component. Input components display the tips in their note window. Other component types display the tip in a standard tip box. This text should be kept short. If you have to display more detailed information, or if the text can be reused among many component instances, consider using help text, as described in Section 19.5, "Displaying Help for Components."

Figure 19-16 shows the effect when the cursor hovers over an inputText component.

Figure 19-16 Tip for an inputText Component

[image: Tooltip displayed in a browser]

Figure 19-17 shows a tip as displayed for a showDetailItem component.

Figure 19-17 Tip for a showDetailItem Component

[image: Tip for command component]

19.2.1 How to Display Tips for Components

You use the shortDesc attribute on a component to display a tip.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.2, "Displaying Tips for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To define a tip for a component:

	
In the Structure window, select the component for which you want to display the tip.

	
In the Property Inspector, expand the Appearance section and enter a value for the shortDesc attribute.

	
Tip:

The value should be less than 80 characters, as some browsers will truncate the tip if it exceeds that length.

If the text to be used is stored in a resource bundle, use the dropdown list to select Select Text Resource. Use the Select Text Resource dialog to either search for appropriate text in an existing bundle, or to create a new entry in an existing bundle. For more information about using resource bundles, see Chapter 29, "Internationalizing and Localizing Pages."

19.3 Displaying Hints and Error Messages for Validation and Conversion

Validators and converters have a default hint that is displayed to users when they click in the associated field. For converters, the hint usually tells the user the correct format to use. For validators, the hint is used to convey what values are valid.

For example, in the File Explorer application, when a user clicks in the input date field on the Speak with Customer Service page, a tip is displayed showing the correct format to use, as shown in Figure 19-18.

Figure 19-18 Validators and Converters Have Built-in Messages

[image: Message is based on converter pattern]

When the value of an ADF Faces component fails validation, or cannot be converted by a converter, the component displays the resulting FacesMessage instance.

For example, entering a date that does not match the dateStyle attribute of the converter results in an error message, as shown in Figure 19-19.

Figure 19-19 Validation Error at Runtime

[image: Validation error displayed in a browser]

You can override the default validator and converter hint and error messages for either a component instance, or globally for all instances. To define a custom message for a component instance you set attributes to the detail messages to be displayed. The actual attributes vary according to the validator or converter. Figure 19-20 shows the attributes that you can populate to override the messages for the convertDateTime converter, as displayed in the Property Inspector.

Figure 19-20 Message Attributes on a Converter

[image: Message attributes for convertDateTime]

To define an error message that will be used by all instances of the component, you need to create an entry in a resource bundle that will override the default message.

If you do not want messages to be displayed in the note window, you can use the message component, and messages will be displayed inline with the component. Figure 19-21 shows how messages are displayed using the message component.

Figure 19-21 Use the message Component to Display Messages Inline

[image: Messages displayed inline]

JSF pages in an ADF Faces application use the document tag, which among other things, handles displaying all global messages (those not associated with a component) in a popup window. However, if you want to display global messages on the page instead, use the messages component.

19.3.1 How to Define Custom Validator and Converter Messages for a Component Instance

To override the default validator and converter messages for a single component instance, set values for the different message attributes.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To define a validator or converter message:

	
In the Structure window, select the converter or validator for which you want to create the error message.

	
Note:

You can override messages only for ADF Faces components. If you want to create a message for a non-ADF Faces component (for example for the f:validator component), then use the message component. For more information, see Section 19.3.3, "How to Display Component Messages Inline."

	
In the Property Inspector, expand the Messages section and enter a value for the attribute for which you want to provide a message.

The values can include dynamic content by using parameter placeholders such as {0}, {1}, {2}, and so on. For example, the messageDetailConvertDate attribute on the convertDateTime converter uses the following parameters:

	
{0} the label that identifies the component

	
{1} the value entered by the user

	
{2}an example of the format expected by the component.

	
Tip:

your application uses bidirectional or right-to-left display, do not start the message with the expected format parameter (2), as it may not display correctly in Internet Explorer.

Using these parameters, you could create this message:

{1} is not using the correct date format. Please enter the date as follows: {2}.

The error message would then be displayed as shown in Figure 19-22.

Figure 19-22 Detail Message at Runtime

[image: Inline detail message displayed in a browser]

	
Tip:

Use the dropdown menu to view the property help, which includes the parameters accepted by the message.

If the text to be used is stored in a resource bundle, use the dropdown list to select Select Text Resource. Use the Select Text Resource dialog to either search for appropriate text in an existing bundle, or to create a new entry in an existing bundle. For more information about using resource bundles, see Chapter 29, "Internationalizing and Localizing Pages."

	
Note:

The message text is for the detail message of the FacesMessage object. If you want to override the summary (the text shown at the top of the message), you can only do this globally. For more information, see Section 19.3.2, "How to Define Custom Validator and Converter Messages for All Instances of a Component."

19.3.2 How to Define Custom Validator and Converter Messages for All Instances of a Component

Instead of changing the message string per component instance with the messageDetail[XYZ] attributes, you can override the string globally so that the custom string will be displayed for all instances. The global messages are handled by key/value pairs in a message bundle. You can override summary, detail, and hint messages.

To globally override a default validator or converter message:

	
Refer to Appendix B, "Message Keys for Converter and Validator Messages" to determine the message key for the message you want to override. For example, to override the detail message displayed when the input value exceeds the maximum value length, you would use the key org.apache.myfaces.trinidad.validator.LengthValidator.

MAXIMUM_detail, as shown in Section B.3.8, "af:validateLength."

	
Create or open a message bundle. For procedures how to create message bundles, see Section 29.3.1, "How to Define the Base Resource Bundle."

	
Add the key override to the message bundle. For example, to override the message for the input value length, you might add:

org.apache.myfaces.trinidad.validator.LengthValidator.MAXIMUM_detail: Your value exceeds the limit.

	
If the message bundle is a new resource bundle, you need to register the bundle with the application using the faces-config.xml file, following the procedures in Section 29.3.3, "How to Register Locales and Resource Bundles in Your Application." However, use the <message-bundle> tag, rather than the <resource-bundle> tag.

19.3.3 How to Display Component Messages Inline

Instead of having a component display its messages in the note window, use the message component to display the messages inline on the page. In order for the message component to display the correct messages, associate it with a specific component.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To display component messages inline:

	
In the Structure window, select the component that will display its messages using the message component. If not already set, enter an ID for the component.

	
In the Component Palette, from the Text and Selection panel, drag a Message and drop it where you want the message to be displayed on the page.

	
Use the dropdown menu for the for attribute to select Edit.

	
In the Edit Property dialog, locate the component for which the message component will display messages. Only components that have their ID set are valid selections.

	
Note:

The message icon and message content that will be displayed are based on what was given when the FacesMessage object was created. Setting the messageType or message attributes on the message component causes the messageType or message attribute values to be displayed at runtime, regardless of whether or not an error has occurred. Only populate these attributes if you want the content to always be displayed when the page is rendered.

19.3.4 How to Display Global Messages Inline

Instead of displaying global messages in a popup window for the page, display them inline using the messages component.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To display global messages inline:

	
In the Component Palette, from the Text and Selection panel, drag a Messages and drop it onto the page where you want the messages to be displayed.

	
In the Property Inspector set the following attributes:

	
globalOnly: By default, ADF Faces displays global messages (messages that are not associated with components) followed by individual component messages. If you want to display only global messages in the box, set this attribute to true. Component messages will continue to be displayed with the associated component.

	
inline: Set to true to show messages at the top of the page. Otherwise, messages will be displayed in a dialog.

19.4 Grouping Components with a Single Label and Message

By default, ADF Faces input and select components have built-in support for label and message display. If you want to group components and use a single label, wrap the components using the panelLabelAndMessage component.

For example, the File Explorer application collects telephone numbers using four separate inputText components; one for the area code, one for the exchange, one for the last four digits, and one for the extension. Because a single label is needed, the four inputText components are wrapped in a panelLabelAndMessage component, and the label value is set on that component. However, the input component for the extension requires an additional label, so an outputText component is used. Example 19-1 shows the JSF code for the panelLabelAndMessage component.

Example 19-1 panelLabelAndMessage Can Display a Single Label and Help Topic

<af:panelLabelAndMessage labelAndAccessKey="#{explorerBundle['help.telephone']}"
 helpTopicId="HELP_TELEPHONE_NUMBER"
 labelStyle="vertical-align: top;
 padding-top: 0.2em;">
 <af:inputText autoTab="true" simple="true" maximumLength="3"
 columns="3">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
 <af:inputText autoTab="true" simple="true" maximumLength="3"
 columns="3">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
 <af:inputText autoTab="true" simple="true" maximumLength="4"
 columns="4">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
 <af:outputText value="#{explorerBundle['help.extension']}"/>
 <af:inputText simple="true" columns="4">
 <af:convertNumber type="number" integerOnly="true"/>
 </af:inputText>
</af:panelLabelAndMessage>

Figure 19-23 shows how the panelLabelAndMessage and nested components are displayed in a browser.

Figure 19-23 Examples Using the panelLabelAndMessage Component

[image: Examples using PanelLabelAndMessage]

The panelLabelAndMessage component also includes an End facet that can be used to display additional components at the end of the group. Figure 19-24 shows how the telephone number fields would be displayed if the End facet was populated with an outputText component.

Figure 19-24 End Facet in a panelLabelAndMessage Component

[image: End facet text]

Use a panelGroupLayout component within a panelLabelAndMessage component to group the components for the required layout. For information about using the panelGrouplayout component, see Section 9.13, "Grouping Related Items."

You set the simple attribute to true on each of the input components so that their individual labels are not displayed. However, you may want to set a value for the label attribute on each of the components for messaging purposes and for accessibility.

	
Tip:

If you have to use multiple panelLabelAndMessage components one after another, wrap them inside an af:panelFormLayout component, so that the labels line up properly. For information about using the panelFormLayout component, see Section 9.7, "Arranging Content in Forms."

Group and wrap components using the panelLabelAndMessage component. The panelLabelAndMessage component can be used to wrap any components, not just those that typically display messages and labels.

19.4.1 How to Group Components with a Single Label and Message

You use the panelLabelAndMessage component to group components and display a single label for that group.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.4, "Grouping Components with a Single Label and Message."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To arrange form input components with one label and message:

	
Add input or select components as needed to the page.

For each input and select component:

	
Set the simple attribute to true.

	
For accessibility reasons, set the label attribute to a label for the component.

	
In the Structure window, select the input and/or select components created in Step 1. Right-click the selection and choose Surround With > Panel Label And Message.

	
With the panelLabelAndMessage component selected, in the Property Inspector, set the following:

	
label: Enter the label text to be displayed for the group of components.

	
for: Use the dropdown menu to choose Edit. In the Edit Property dialog, select the ID of the child input component. If there is more than one input component, select the first component.

Set the for attribute to the first inputComponent to meet accessibility requirements.

If one or more of the nested input components is a required component and you want a marker to be displayed indicating this, set the showRequired attribute to true.

	
To place content in the End facet, drag and drop the desired component into the facet.

Because facets accept one child component only, if you want to add more than one child component, you must wrap the child components inside a container, such as a panelGroupLayout or group component.

	
Tip:

If the facet is not visible in the visual editor:

	
Right-click the panelLabelAndMessage component in the Structure window.

	
From the context menu, choose Facets - Panel Label And Message >facet name. Facets in use on the page are indicated by a checkmark in front of the facet name.

19.5 Displaying Help for Components

ADF Faces provides a framework that allows you to create and display three different types of help whose content comes from an external source, rather than as text configured on the component. Because it is not configured directly on the component, the content can be used by more than one component, saving time in creating pages and also allowing you to change the content in one place rather than everywhere the content appears.

The first type of external help provided by ADF Faces is Definition help. Like a standard tip, the content appears in a message box. However, instead of appearing when the user mouses over the component, Definition help provides a help icon (a blue circle with a question mark). When the user mouses over the icon, the content is displayed, as shown in Figure 19-25.

Figure 19-25 Definition Text for a Component

[image: Help text displayed for inputText component]

Table 19-1 shows the components that support Definition help.

Table 19-1 Components That Support Definition Help

	Supported Components	Help Icon Placement	Example
	
All input components, Select components, Choose Color, Choose Date, Query components

	
Before the label, or if no label exists, at the start of the field

	
[image: inputComponent with message]

	
Panel Header, PanelBox, Show Detail Header

	
End of header text

	
[image: panelHeader definition]

	
Panel Window, Dialog

	
Next to close icon in header

	[image: help icon in right corner]

	
Columns in table and tree

	
Below header text

	
[image: Definition in a column]

The second type of help is Instruction help. Where Instruction help is displayed depends on the component with which it is associated. The panelHeader and Search panel components display Instruction help within the header. Figure 19-26 shows how the text that typically is displayed as Definition help as shown in Figure 19-25 would be displayed as Instruction help within the panelHeader component.

Figure 19-26 Instruction Text for panelHeader

[image: Definition help]

All other components that support Instruction help display the text within a note window, as shown in Figure 19-27. Note that no help icon is displayed.

Figure 19-27 Instruction Text for a Component

[image: Instruction text displayed for input text component]

Table 19-2 shows the components that support Instruction help.

Table 19-2 Components That Support Instruction Help

	Supported Components	Help Placement	Example
	
Input components, Choose Color, Choose Date, Quick Query

	
Note window, on focus only

	
[image: inputComponent with instruction help]

	
Select components

	
Note window, on hover and focus

	
[image: panelHeader definition]

	
Panel Header, Panel Box, Query

	
Text below header text

	
[image: panelHeader with Instruction help]

The last type of help is External URL help. You provide a URL to a web page in an external application, and when the help icon is clicked, the web page opens in a separate browser window, as shown in Figure 19-28. Instead of clicking a help icon, you can use JavaScript to open a help window based on any client-based event.

Figure 19-28 External URL Help

[image: External URL help]

ADF Faces includes a variety of help providers. The ResourceBundleHelpProvider help provider allows you to create resource bundles that hold the help content. The ELHelpProvider help provider allows you to create XLIFF files that get converted into maps, or create a managed bean that contains a map of help text strings. You can use a combination of the different help providers. You can also create your own help provider class.

To create help for your application, do the following:

	
Determine the help provider(s) to use and then implement the required artifacts.

	
Register the help provider(s), specifying the prefix that will be used to access the provider's help. Each help provider has its own unique prefix, which is used as its identifier. A particular provider will be called to produce help only for help topic IDs that start with the prefix under which the provider is registered.

	
Have the UI components access the help contained in the providers by using the component's helpTopicId attribute. A helpTopicId attribute contains the following.

	
The prefix that is used by the provider of the help

	
The topic name

For example, the value of the helpTopicId attribute on the inputText component shown in Figure 19-27 might be RBHELP_FILE_NAME, where RBHELP is the resource bundle help providers prefix, and FILE_NAME is the help topic name.

19.5.1 How to Create Resource Bundle-Based Help

You can store help text within standard resource bundle property files and use the ResourceBundleHelpProvider class to deliver the content.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To create resource bundle-based help:

	
Create a properties file that contains the topic ID and help text for each help topic. The topic ID must contain the following:

	
The prefix that will be used by this provider, for example, RBHELP.

	
The topic name, for example, TELEPHONE_NUMBER.

	
The help type, for example, DEFINITION.

For example, a topic ID might be RBHELP_TELEPHONE_NUMBER_DEFINITION.

	
Note:

All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes AAB and AC, then the following prefixes are all invalid and will cause an exception to be thrown at registration time: AABC, A, AA, AC, ACB. However, the following are valid: AAD, AB, and so on.

UI components access the help content based on the topic name. Therefore, if you use the same topic name for two different types of help (as shown in Example 19-2), then both types of help will be displayed by the UI component.

Example 19-2 shows an example resource bundle with three topics.

Example 19-2 Resource Bundle Help

RBHELP_CUST_SERVICE_EMAIL_DEFINITION=For security reasons,
 we strongly discourage the submission of credit card numbers.
RBHELP_TELEPHONE_NUMBER_DEFINITION=We only support calling telephone numbers
 in the United States at this time.
RBHELP_TELEPHONE_NUMBER_INSTRUCTIONS=Enter a telephone number.

	
Note:

If you wish to use an external URL help type, create a subclass of the ResourceBundleHelpProvider class. For more information, see Step 3.

	
Register the resource bundle as a help provider in the adf-settings.xml file

To register the provider, from the META-INF directory, open the adf-settings.xml file, click the Source tab, and add the following elements:

	
<help-provider>: Use the prefix attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application, and must match the prefix used in the resource bundle.

	
Note:

If the prefix attribute is missing, or is empty, then the help provider will be registered as a special default help provider. It will be used to produce help for help topic IDs that cannot be matched with any other help provider. Only one default help provider is permitted.

	
<help-provider-class>: Create as a child element to the <help-provider> element and enter oracle.adf.view.rich.help.ResourceBundleHelpProvider.

	
<property>: Create as a child element to the <help-provider> element. The property defines the actual help source.

	
<property-name>: Create as a child element to the <property> element, and enter a name for the source, for example, baseName.

	
<value>: Create as a child element to the <property> element and enter the fully qualified class name of the resource bundle. For example, the qualified class name of the resource bundle used in the ADF Faces demo application is oracle.adfdemo.view.resource.DemoResources.

Example 19-3 shows how the resource bundle in Example 19-2 would be registered in the adf-settings.xml file.

Example 19-3 Registering a Resource Bundle as a Help Provider

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="RBHELP_">
 <help-provider-class>
 oracle.adf.view.rich.help.ResourceBundleHelpProvider
 </help-provider-class>
 <property>
 <property-name>baseName</property-name>
 <value>oracle.adfdemo.view.resource.DemoResources</value>
 </property>
 </help-provider>
</adf-faces-config>
</adf-settings>

	
If you want to use External URL help, then you also must extend the ResourceBundleHelpProvider class and implement the getExternalUrl method. Example 19-4 shows an example method.

Example 19-4 Overriding the getExternalURL Method

protected String getExternalUrl(FacesContext context, UIComponent component,
 String topicId)
 {
 if (topicId == null)
 return null;
 if (topicId.contains("TOPICID_ALL") ||
 topicId.contains("TOPICID_DEFN_URL") ||
 topicId.contains("TOPICID_INSTR_URL") ||
 topicId.contains("TOPICID_URL"))
 return http://www.myURL.com;
 else
 return null;
 }

In Example 19-4, all the topics in the method return the same URL. You would have to create separate if statements to return different URLs.

If you want the external window to be launched based on a component's client event instead of from a help icon, use a JavaScript function. For more information, see Section 19.5.4, "How to Use JavaScript to Launch an External Help Window."

19.5.2 How to Create XLIFF-Based Help

You can store the help text in XLIFF XML files and use the ELHelpProvider class to deliver the content. This class translates the XLIFF file to a map of strings that will be used as the text in the help.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To create XLIFF help:

	
Create an XLIFF file that defines your help text, using the following elements within the <body> tag:

	
<trans-unit>: Enter the topic ID. This must contain the prefix, the topic name, and the help type, for example, XLIFFHELP_CREDIT_CARD_DEFINITION. In this example, XLIFFHELP will become the prefix used to access the XLIFF file. CREDIT_CARD is the topic name, and DEFINITION is the type of help.

	
Note:

All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes AAB and AC, then the following prefixes are all invalid and will cause an exception to be thrown at registration time: AABC, A, AA, AC, ACB. However, the following are valid: AAD, AB, and so on.

UI components access the help content based on the topic name. Therefore, if you use the same topic name for two different types of help (as shown in Example 19-5), then both types of help will be displayed by the UI component.

	
<source>: Create as a direct child of the <trans-unit> element and enter the help text.

	
<target>: Create as a direct child of the <trans-unit> element and leave it blank. This element is used to hold translated help text.

	
<note>: Create as a direct child of the <trans-unit> element and enter a description of the help text.

Example 19-5 shows an example of an XLIFF file that contains two topics.

Example 19-5 XLIFF Help

<?xml version="1.0" encoding="UTF-8" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
 <file source-language="en" original="this" datatype="xml">
 <body>
 <trans-unit id="XLIFF_CREDIT_CARD_DEFINITION">
 <source>Credit Card Definition</source>
 <target/>
 <note>Credit Card definition text.</note>
 </trans-unit>
 <trans-unit id="XLIFF_CREDIT_CARD_INSTRUCTIONS">
 <source>Credit Card Instructions</source>
 <target/>
 <note>Credit card instruction text.</note>
 </trans-unit>
 </body>
 </file>
</xliff>

	
Register XLIFF as a help provider in the adf-settings.xml file.

To register the provider, from the META-INF directory, open the adf-settings.xml file and add the following elements:

	
<help-provider>: Use the prefix attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application, and must match the prefix used in the XLIFF file.

	
Note:

If the prefix attribute is missing, or is empty, then the help provider will be registered as a special default help provider. It will be used to produce help for help topic IDs that cannot be matched with any other help provider. Only one default help provider is permitted.

	
<help-provider-class>: Create as a child element to the <help-provider> element and enter oracle.adf.view.rich.help.ELHelpProvider.

	
<property>: Create as a child element to the <help-provider> element. The property values define the actual help source.

	
<property-name>: Create as a child element to the <property> element and enter a name for the help, for example, helpSource.

	
<value>: Create as a child element to the <property> element and enter an EL expression that resolves to the XLIFF file, wrapped in the adfBundle EL function, for example, #{adfBundle['project1xliff.view.Project1XliffBundle']}.

Example 19-6 shows how the XLIFF file in Example 19-5 would be registered in the adf-settings.xml file.

Example 19-6 Registering an XLIFF File as a Help Provider

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="XLIFF">
 <help-provider-class>
 oracle.adf.view.rich.help.ELHelpProvider
 </help-provider-class>
 <property>
 <property-name>helpSource</property-name>
 <value>#{adfBundle['project1xliff.view.Project1XliffBundle']}</value>
 </property>
 </help-provider>
 </adf-faces-config>
</adf-settings>

19.5.3 How to Create Managed Bean Help

To implement managed bean help, create a managed bean that contains a map of strings that will be used as the text in the help. Managed bean help providers use the ELHelpProvider class to deliver the help.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To create managed bean help:

	
Create a managed bean that returns a map of strings, each of which is the ID and content for a help topic, as shown in Example 19-7.

Example 19-7 Managed Bean that Returns a Map of Help Text Strings

public class ELHelpProviderMapDemo
{
 public ELHelpProviderMapDemo()
 {
 }

 /* To use the ELHelpProvider, the EL expression must point to a Map, otherwise
 * you will get a coerceToType error. */

 public Map<String, String> getHelpMap()
 {
 return _HELP_MAP;
 }

 static private final Map<String, String> _HELP_MAP =
 new HashMap<String, String>();
 static
 {
 _HELP_MAP.put("MAPHELP_CREDIT_CARD_DEFINITION",
 "Map value for credit card definition");
 _HELP_MAP.put("MAPHELP_CREDIT_CARD_INSTRUCTIONS",
 "Map value for credit card instructions");
 _HELP_MAP.put("MAPHELP_SHOPPING_DEFINITION",
 "Map value for shopping definition");
 _HELP_MAP.put("MAPHELP_SHOPPING_INSTRUCTIONS",
 "Map value for shopping instructions");
 }

}

The first string must contain the prefix, the topic name, and the help type, for example, MAPHELP_CREDIT_CARD_DEFINITION. In this example, MAPHELP will become the prefix used to access the bean. CREDIT_CARD is the topic name, and DEFINITION is the type of help. The second string is the help text.

	
Note:

All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes AAB and AC, then the following prefixes are all invalid and will cause an exception to be thrown at registration time: AABC, A, AA, AC, ACB. However, the following are valid: AAD, AB, and so on.

UI components access the help content based on the topic name. Therefore, if you use the same topic name for two different types of help (as shown in Example 19-7), then both types of help will be displayed by the UI component.

	
Note:

If you wish to use external URL help, create a subclass of the ELHelpProvider class. For more information, see Step 4.

	
Register the managed bean in the faces-config.xml file. Example 19-8 shows the bean shown in Example 19-7 registered in the faces-config.xml file.

Example 19-8 Managed Bean Registration in the faces-config.xml File.

<managed-bean>
 <managed-bean-name>helpTranslationMap</managed-bean-name>
 <managed-bean-class>
 oracle.adfdemo.view.webapp.ELHelpProviderMapDemo
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

For more information about using and registering managed beans, see Section 3.6, "Creating and Using Managed Beans."

	
Register the managed bean as a help provider in the adf-settings.xml file.

To register the provider, from the META-INF directory, open the adf-settings.xml file and add the following elements:

	
<help-provider>: Create and use the prefix attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application.

	
Note:

If the prefix attribute is missing, or is empty, then the help provider will be registered as a special default help provider. It will be used to produce help for help topic IDs that cannot be matched with any other help provider. Only one default help provider is permitted.

	
<help-provider-class>: Create as a child element to the <help-provider> element and enter the fully qualified class path to the class created in Step 1.

	
<property>: Create as a child element to the <help-provider> element. The property defines the map of help strings on the managed bean.

	
<property-name>: Create as a child element to the <property> element and enter a property name, for example helpSource.

	
<value>: Create as a child element to the <property> element and enter an EL expression that resolves to the help map on the managed bean.

Example 19-9 shows how the bean in Example 19-8 would be registered in the adf-settings.xml file.

Example 19-9 Registering a Managed Bean as a Help Provider

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="MAPHELP_">
 <help-provider-class>
 oracle.adf.view.rich.help.ELHelpProvider
 </help-provider-class>
 <property>
 <property-name>helpSource</property-name>
 <value>#{helpTranslationMap.helpMap}</value>
 </property>
 </help-provider>
 </adf-faces-config>
</adf-settings>

	
If you want to use External URL help with the managed bean provider, then extend the ELHelpProvider class and implement the getExternalUrl method. Example 19-10 shows an example method.

Example 19-10 Overriding the getExternalURL Method

protected String getExternalUrl(FacesContext context, UIComponent component,
 String topicId)
 {
 if (topicId == null)
 return null;
 if (topicId.contains("TOPICID_ALL") ||
 topicId.contains("TOPICID_DEFN_URL") ||
 topicId.contains("TOPICID_INSTR_URL") ||
 topicId.contains("TOPICID_URL"))
 return http://www.myURL.com;
 else
 return null;
 }

In Example 19-10, all the topics in the method return the same URL. You must create separate if statements to return different URLs.

If you want the external window to be launched based on a component's client event instead of from a help icon, use a JavaScript function. For more information, see Section 19.5.4, "How to Use JavaScript to Launch an External Help Window."

19.5.4 How to Use JavaScript to Launch an External Help Window

If you want to use external URL help, by default, the user clicks a help icon to launch the help window. Instead, you can use JavaScript and a client event listener for a specific component's event to launch the help window.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To use JavaScript to launch an external help window:

	
Create a JavaScript function that uses the launchHelp API to launch a specific URL or page.

Example 19-11 shows the launchHelp function used to launch the helpClient.jspx.

Example 19-11 JavaScript to Launch an External Help Page

<af:resource type="javascript">
 function launchHelp(event)
 {
 AdfPage.PAGE.launchHelpWindow("helpClient.jspx");
 }
</af:resource>

	
Drag and drop a component whose client event will cause the function to be called. You must set the clientId on this component to true.

	
In the Component Palette, from the Operations panel, drag and drop a Client Listener as a child to the component created in Step 2. Configure the clientListener to invoke the function created in Step 1. For more information about using the clientListener tag, see Section 4.2, "Listening for Client Events."

Example 19-12 shows the code used to have a click event on a commandToolbarButton component launch the helpClient.jspx page.

Example 19-12 Page Code Used to Launch an External Help Window

<af:toolbar id="tb1">
 <af:commandToolbarButton text="Launch help window" id="ctb1"
 icon="/images/happy_computer.gif">
 <af:clientListener method="launchHelp" type="click"/>
 </af:commandToolbarButton>
</af:toolbar>
<af:resource type="javascript">
 function launchHelp(event)
 {
 AdfPage.PAGE.launchHelpWindow("helpClient.jspx");
 }
</af:resource>

19.5.5 How to Create a Java Class Help Provider

Instead of using one of the ADF Faces help providers, create your own. Create the actual text in some file that your help provider will be able to access and display. To create a Java class help provider, extend the HelpProvider class. For more information about this class, refer to the ADF Faces Javadoc.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To create a Java class help provider:

	
Create a Java class that extends oracle.adf.view.rich.help.HelpProvider.

	
Create a public constructor with no parameters. You also must implement the logic to access and return help topics.

	
This class will be able to access properties and values that are set in the adf-settings.xml file when you register this provider. For example, the ADF Faces providers all use a property to define the actual source of the help strings. To access a property in the adf-settings.xml file, create a method that sets a property that is a String. For example:

public void setMyCustomProperty(String arg)

	
To register the provider, from the META-INF directory, open the adf-settings.xml file and add the following elements:

	
<help-provider>: Use the prefix attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application.

	
Note:

If the prefix attribute is missing, or is empty, then the help provider will be registered as a special default help provider. It will be used to produce help for help topic IDs that cannot be matched with any other help provider. Only one default help provider is permitted. All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes AAB and AC, then the following prefixes are all invalid and will cause an exception to be thrown at registration time: AABC, A, AA, AC, ACB. However, the following are valid: AAD, AB, and so on.

	
<help-provider-class>: Create as a child element to the <help-provider> element and enter the fully qualified class path to the class created in Step 1.

	
<property>: Create as a child element to the <help-provider> element and use it to define the property that will be used as the argument for the method created in Step 3.

	
<property-name>: Create as a child element to the <property> element and enter the property name.

	
<value>: Create as a child element to the <property> element and enter the value for the property.

Example 19-13 shows an example of a help provider class registered in the adf-settings.xml file.

Example 19-13 Registering a Help Provider Class

<adf-settings xmlns="http://xmlns.oracle.com/adf/settings">
<adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/settings">
 <help-provider prefix="MYAPP">
 <help-provider-class>
 oracle.adfdemo.view.webapp.MyHelpProvider
 </help-provider-class>
 <property>
 <property-name>myCustomProperty</property-name>
 <value>someValue</value>
 </property>
 </help-provider>
</adf-faces-config>
</adf-settings>

19.5.6 How to Access Help Content from a UI Component

Use the HelpTopicId attribute on components to access and display the help.

Before you begin:

It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."

To access help from a component:

	
In the Structure window, select the component to which you want to add help. For a list of components that support help, see Table 19-1 and Table 19-2.

	
In the Property Inspector, expand the Appearance section, and enter a value for the helpTopicId attribute. This should include the prefix to access the correct help provider and the topic name. It should not include the help type, as all help types registered with that name will be returned and displayed, for example:

<af:inputText label="Credit Card" helpTopicId="XLIFF_CREDIT_CARD"/>

This example will return both the definition and instruction help defined in the XLIFF file in Example 19-5.

	
If you want to provide help for a component that does not support help, you can instead add an outputText component to display the help text, and then bind that component to the help provider, for example:

<af:outputFormatted
 value="#{adfFacesContext.helpProvider['XLIFF_CREDIT_CARD'].instructions}"/>

This will access the instruction help text.

19.5.7 What You May Need to Know About Combining Different Message Types

When you add help messages to input components that may already display messages for validation and conversion, ADF Faces displays the messages in the following order within the note window:

	
Validation and conversion error messages.

	
Validation and conversion hints.

	
For input and select components only, Instruction help. For panelHeader components, Instruction help is always displayed below the header.

	
Value for shortDesc attribute.

Figure 19-29 shows an inputDate component that contains a converter, instruction help, and a tip message.

Figure 19-29 Different Message Types Can Be Displayed at One Time

[image: Different message types displayed]

23 Using Gauge Components

This chapter describes how to display data in gauges using the ADF Data Visualization gauge component. If your application uses the Fusion technology stack, then you can use data controls to create gauges. For more information, see the "Creating Databound ADF Gauges" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

This chapter includes the following sections:

	
Section 23.1, "About the Gauge Component"

	
Section 23.2, "Using the Gauge Component"

	
Section 23.3, "Configuring Gauge Display Elements"

	
Section 23.4, "Formatting Gauge Style Elements"

	
Section 23.5, "Formatting Numeric Data Values in Gauges"

	
Section 23.6, "Adding Gauge Special Effects and Animation"

	
Section 23.7, "Using Custom Shapes for Gauges"

23.1 About the Gauge Component

Gauges are measuring instruments for indicating a quantity such as sales, stock levels, temperature, or speed. Gauges typically display a single data value, often more effectively than a graph. Gauges can show state information such as acceptable or unacceptable ranges using color. For example, a gauge value axis might show ranges colored red, yellow, and green to represent low, medium, and high states. When you need to compare many data values at a glance, multiple gauges can be shown inside table cells, or in a vertical, horizontal, or grid layout as a gauge set.

	
Best Practice Tip:

When multiple data values, such as the text values of thresholds and the current value are required, a list or table component may be a better choice than a gauge.

The gauge component supports four categories of gauge types: dial, status meter, vertical status meter, and LED. All gauge types can display a title, bottom label, data label, and legend.

23.1.1 End User and Presentation Features of Gauge Components

To understand how gauges are used and can be customized, it may be helpful to review these elements and features:

	
Display elements including:

	
Gauge and gauge set backgrounds

	
Gauge frames

	
Dial gauge plot area

	
Indicators and indicator bars

	
Gauge top, bottom, and metric labels

	
Thresholds and labels

	
Legends

	
Tick marks and labels

	
Tooltips: A tooltip of contextual information automatically displays when a user moves a cursor over the plot area, indicator, or threshold region. Figure 23-1 shows the indicator tooltip for a dial gauge.

Figure 23-1 Indicator Tooltip for Dial Gauge

[image: Indicator tooltip for dial gauge.]

23.1.2 Gauge Component Use Cases and Examples

Gauges are typically used to display a single data point. The following types of gauges are supported by the gauge component:

	
Dial: Indicates its metric along a configurable arc value axis. This is the default gauge type. Dial gauges can display as a simple gauge, a gauge with thresholds, or as a set of dial gauges.

Figure 23-2 shows a dial gauge with thresholds indicating a Plasma HD TV stock level within an acceptable range.

Figure 23-2 Dial Gauge with Thresholds

[image: Gauge dial with thresdholds.]

	
Status Meter: Indicates the progress of a task or the level of some measurement along a horizontal rectangular bar. An inner rectangle shows the current level of a measurement against the ranges marked on an outer rectangle. Status meter gauges can display as a simple gauge, a gauge with thresholds, or as a set of status meter gauges.

Figure 23-3 shows the Plasma HD TV stock level using a status meter gauge.

Figure 23-3 Status Meter Gauge with Thresholds

[image: Status meter gauge with thresholds.]

	
Status Meter (vertical): Indicates the progress of a task or the level of some measurement along a vertical rectangular bar. Vertical status meter gauges can display as a simple gauge, a gauge with thresholds, or as a set of vertical status meter gauges.

Figure 23-4 shows the Plasma HD TV stock level using a vertical status meter gauge.

Figure 23-4 Vertical Status Meter Gauge with Thresholds

[image: Vertical status meter gauge with thresholds.]

	
LED (light-emitting diode): Graphically depicts a measurement, such as a key performance indicator (KPI). Several styles of graphics are available for LED gauges, such as round or rectangular shapes that use color to indicate status and triangles or arrows that indicate good (up), fair (left- or right-pointing), or poor (down) states in addition to a color indicator. LED gauges can also display as a gauge set.

Figure 23-5 shows the Plasma HD TV stock level using a LED bulb indicator using color to indicate status.

Figure 23-5 LED Bulb Gauge

[image: LED bulb gauge.]

Figure 23-6 shows the same stock level using a LED arrow.

Figure 23-6 LED Arrow Gauge

[image: LED arrow gauge]

All gauge types can be displayed as a set of gauges in a built-in grid layout. Gauge sets are useful when displaying individual values for a group of related items. Figure 23-7 shows a gauge set comparing performance measures across three cities.

Figure 23-7 Gauge Set Comparing Performance Across Cities

[image: Gauge Set Comparing Performance Across Cities]

Horizontal status meter and LED gauges are well-suited for display in table cells where users can see and compare them alongside related information such as labels, links, and icons. Figure 23-8 shows a table comparing the population density in countries with the highest population in 2010.

Figure 23-8 Horizontal Status Meter Gauges Displayed in Table

[image: Horizontal status meter gauges displayed in table.]

23.1.3 Additional Functionality of Gauge Components

You may find it helpful to understand other ADF Faces features before you implement your gauge component. Additionally, once you have added a gauge component to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that gauge components can use:

	
Partial page rendering: You may want a gauge to refresh to show new data based on an action taken on another component on the page. For more information, see Chapter 8, "Rerendering Partial Page Content."

	
Personalization: When enabled for users to change the way the gauge displays at runtime, those values will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 32, "Allowing User Customization on JSF Pages."

	
Accessibility: You can make your gauge components accessible. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
Skins and styles: You can customize the appearance of gauge components using an ADF skin that you apply to the application or by applying CSS style properties directly using a style-related property (styleClass or inlineStyle). For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Automatic data binding: If your application uses the Fusion technology stack, then you can create automatically bound gauges based on how your ADF Business components are configured. For more information, see the "Creating Databound Gauges" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Note:

If you know the UI components on your page will eventually use ADF data binding, but you need to develop the pages before the data controls are ready, then you should consider using placeholder data controls, rather than manually binding the components. Using placeholder data controls will provide the same declarative development experience as using developed data controls. For more information, see the "Designing a Page Using Placeholder Data Controls" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such as how data is delivered, automatic partial page rendering (PPR), and how data can be displayed and edited. For more information, see Section 21.2, "Common Functionality in Data Visualization Components."

23.2 Using the Gauge Component

Gauges display the following kinds of data values:

	
Metric: The value that the gauge is to plot. This value can be specified as static data in the Gauge Data attributes category in the Property Inspector. It can also be specified through data controls or through the tabularData attribute of the gauge tag. This is the only required data for a gauge. The number of metric values supplied affects whether a single gauge is displayed or a series of gauges are displayed in a gauge set.

	
Minimum and maximum: Optional values that identify the lowest and highest points on the gauge value axis. These values can be provided as dynamic data from a data collection. They can also be specified as static data in the Gauge Data attributes category in the Property Inspector for the gauge tag. For more information, see Section 23.3.1, "How to Configure Gauge Thresholds."

	
Threshold: Optional values that can be provided as dynamic data from a data collection to identify ranges of acceptability on the value axis of the gauge. You can also specify these values as static data using gauge threshold tags in the Property Inspector. For more information, see Section 23.3.1, "How to Configure Gauge Thresholds."

23.2.1 Configuring Gauges

The properties for the gauge component are sufficient to produce a gauge, but you can also add and configure child components or supported facets to further customize the display and behavior of the gauge or gauge set. The prefix dvt:occurs at the beginning of each gauge component name indicating that the component belongs to the ADF Data Visualization Tools (DVT) tag library. You can configure gauge child components and supported facets in the following areas:

	
Gauge display elements:

	
Gauge background (gaugeBackground) and gauge set background (gaugeSetBackground): Bounded area behind the gauge or gauge set.

	
Gauge frame (gaugeFrame): Refers to the decorative frame that encloses the plot area on dial gauges.

	
Plot area (gaugePlotArea): Indicates the graphical representation of the metric value of the gauge.

	
Indicator (indicator): Points to the value that is plotted in a dial gauge, typically in the form of a line or an arrow.

	
Indicator bar (indicatorBar): The inner rectangle in a status meter gauge.

	
Indicator base (indicatorBase): The circular base of a line or needle style indicator in a dial gauge.

	
Gauge labels:

	
Top label (topLabel): Shows the gauge title appearing at the top or inside of a gauge. You can configure an upper label frame (upperLabelFrame) for this label to specify border color and fill color. Turn off the default title separator when using this frame.

	
Bottom label (bottomLabel): Refers to an optional label that appears below or inside the gauge. By default, displays the label for the data row. You can configure a lower label frame (lowerLabelFrame) for this label to specify border color and fill color.

	
Metric label (metricLabel): Shows the value of the metric that the gauge is plotting in text.

	
Thresholds and legend: Use a threshold set (thresholdSet) to specify the threshold sections (threshold) for the metrics of a gauge. You can create an unlimited number of thresholds for a gauge.

A legend displays a description of the threshold set with the color and the name or range of each threshold. Legend elements include legend area (gaugeLegendArea), text (gaugeLegendText), and title (gaugeLegendTitle).

	
Tick marks (tickMark): Refers to the markings along the value axis of the gauge. These can identify regular intervals, from minimum value to maximum value, and can also indicate threshold values. Tick marks can specify major increments that may include tick mark labels (tickLabel) or minor increments.

	
Context menus (bodyContextMenu facet): Use this facet to support a single af:popup component containing the context menu that will be shown on right click on any non-selectable object within the component. The af:popup must contain an af:menu to display the context menu.

	
Data values: Format categorical and numeric data values with standard ADF converters. For more information, see Section 23.5, "Formatting Numeric Data Values in Gauges."

	
Interactivity: Use a shape attributes set (shapeAttributesSet) to configure behavior properties for gauge child elements. For example, the alt text of a gauge plot area can be displayed as a tooltip when the user moves the mouse over that area at runtime. For more information, see Section 23.6.3, "How to Add Interactivity to Gauges."

	
Custom shapes: You can use a set of pre-built custom styles for gauges, or specify a vector graphics file that is used for output by setting the customShapesPath attribute. For more information, see Section 23.7, "Using Custom Shapes for Gauges."

	
Image formats: Gauges support the Flash and PNG image formats. By default, gauges display in Flash, but you can change the default image format. You can also disable Flash across your application or customize its behavior on client platforms. For more information, see Section 23.2.5, "What You May Need to Know About Gauge Image Formats."

23.2.2 How to Add a Gauge to a Page

When you are designing your page using simple UI-first development, you use the Component Palette to add a gauge to a JSF page. When you drag and drop a gauge component onto the page, the Component Gallery displays available categories of gauge types, with descriptions, to provide visual assistance when creating gauges. You can also specify a quick-start layout of the gauge's title and legend. Figure 23-9 shows the Component Gallery for gauges with the dial gauge type selected.

Figure 23-9 Component Gallery for Gauges

[image: Gauge Component Gallery.]

Once you complete the dialog, and the gauge is added to your page, you can use the Property Inspector to specify data values and configure additional display attributes for the gauge.

In the Property Inspector you can use the dropdown menu for each attribute field to display a property description and options such as displaying an EL Expression Builder or other specialized dialogs. Figure 23-10 shows the dropdown menu for a gauge component value attribute.

Figure 23-10 Gauge Component Value Attribute Dropdown Menu

[image: gauge component attribute field dropdown list]

	
Note:

If your application uses the Fusion technology stack, then you can use data controls to create a gauge and the binding will be done for you. For more information, see the "Creating Databound ADF Gauges" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child components can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 23.1.3, "Additional Functionality of Gauge Components."

To add a gauge to a page:

	
In the Component Palette, from the ADF Data Visualizations page, in the Gauge panel, drag and drop a Gauge onto the page to open the Create Gauge dialog in the Component Gallery.

Use the dialog to select the gauge category and type, and the quick start layout for display of gauge title, legend, and labels. If you need help, press F1 or click Help.

	
In the Property Inspector, view the attributes for the gauge or gauge set. Use the help button to display the complete tag documentation for the gauge component.

	
Expand the Common section. Use this section to set the following attributes:

	
GaugeType: If you wish to change the category of gauge types selected in the Component Gallery, use the dropdown list to select any of the following valid values: DIAL, LED, STATUSMETER, or VERTICALSTATUSMETER.

	
GaugeSetColumnCount, GaugeSetAlignment, and GaugeSetDirection: Use one or more of these attributes to determine the layout of gauges in a gauge set. For more information see, Section 23.3.4, "How to Specify the Layout of Gauges in a Gauge Set."

	
Expand the Gauge Data section. Specify data values for the gauge by setting the value in these fields:

	
Value: For a single gauge, specify the data model, which must be an instance of DataModel, using an EL Expression. Alternatively, set a metric value as either a Java.lang.Number object or a String.

	
TabularData: For a gauge set, specify a tabular data set as a Java.util.List object. For more information, see Section 23.2.4, "How to Create a Gauge Using Tabular Data."

	
MinValue and MaxValue: Optionally, set the lowest and greatest values on the gauge axis. These values are set automatically if not specified.

	
Expand the Appearance section. Specify display attributes by setting the value in these fields:

	
LedStyle: If you wish to change the shape of the LED gauge selected in the Component Gallery, use the dropdown list to select any of the following valid values: LS_DOT, LS_ARROW, LS_RECTANGLE, or LS_TRIANGLE. You can also use the LS_CUSTOM value if you wish to specify a custom image.

	
ThresholdDialStyle: If you wish to change the default style (TDS_SEGMENTS) of thresholds in dial gauges, use the dropdown list to select any of the following valid values: TDS_PIE_FILL, TDS_RING_FILL.

	
AngleExtent: Use to specify the range of degrees that sweeps through angles other than the standard 220-degree arc in a dial gauge.

	
CustomShapesPath: Use to specify the path to the custom shape definition file. For more information, see Section 23.7, "Using Custom Shapes for Gauges."

	
ShortDesc: Enter a description of the gauge. This description is accessed by screen reader users.

	
AnimationOnDisplay, AnimationOnDataChange, AnimationDuration (Animation sub-section): Use one or more of these attributes to set animation effects for the gauge. For more information, see Section 23.6.4, "Animating Gauges."

By default, your gauge will display in the Flash image format. If you want to change the default image format or restrict the usage of Flash content, see Section 23.2.5, "What You May Need to Know About Gauge Image Formats."

23.2.3 What Happens When You Add a Gauge to a Page

When a gauge component is inserted into a JSF page using the Component Gallery, a set of child tags that support customization of the gauge is automatically inserted. Example 23-1 shows the code inserted in the JSF page for a dial gauge with the quick-start layout selected in the Component Gallery in Figure 23-9.

Example 23-1 Gauge Sample Code

<dvt:gauge id="gauge1" gaugeType="DIAL">
 <dvt:gaugeBackground>
 <dvt:specialEffects/>
 </dvt:gaugeBackground>
 <dvt:gaugeFrame/>
 <dvt:indicator/>
 <dvt:indicatorBase/>
 <dvt:gaugePlotArea/>
 <dvt:tickLabel/>
 <dvt:tickMark/>
 <dvt:topLabel/>
 <dvt:bottomLabel/>
 <dvt:metricLabel position="LP_WITH_BOTTOM_LABEL"/>
</dvt:gauge>

23.2.4 How to Create a Gauge Using Tabular Data

A gauge set is created when a grid of data is used for the gauge component. The tabularData attribute of a gauge component lets you specify a list of values that the gauge uses to create a grid and to populate itself. To create a gauge using tabular data you must store the data in a method in the gauge's managed bean, and then use the gauge component's tabularData attribute to reference the data.

When you provide only the metric value through the tabularData attribute, each value in the grid is represented by a separate gauge. In this case you must specify any desired thresholds and minimum or maximum values through the Property Inspector.

For example, the table in Figure 23-11 has five columns: Quota, Sales, Margin, Costs, and Units, and three rows: London, Paris, and New York. This data produces a gauge set with five gauges in each row and lets you compare values such as sales across the three cities.

Figure 23-11 Comparison of Annual Results

[image: Comparison of annual results for 3 cities.]

In a managed bean, the structure of the list of tabular data consists of a three-member Object array for each data value to be passed to the gauge. The members of each array must be organized as follows:

	
The first member (index 0) is the column label of the data value in the grid. This is generally a String.

	
The second member (index 1) is the row label of the data value in the grid. This is generally a String.

	
The third member (index 2) is the data value, which is usually Double.

Example 23-2 shows code in a managed bean that creates the list of tabular data required for the gauge that compares annual results for three cities displayed in Figure 23-11.

Example 23-2 Managed Bean to Create a List of Tabular Data for Annual Results

public List getGaugeData()
{
 ArrayList list = new ArrayList();
 String[] rowLabels = new String[] {"London", "Paris", "New York"};
 String[] colLabels = new String[] {"Quota", "Sales", "Margin", "Costs", "Units"};
 double [] [] values = new double[][]{
 {60, 90, 135},
 {50, -100, -150},
 {130, 140, 150},
 {70, 80, -130},
 {110, 120, 130}
 };
 for (int c = 0; c < colLabels.length; c++)
 {
 for (int r = 0; r < rowLabels.length; r++)
 {
 list.add (new Object [] {colLabels[c], rowLabels[r],
 new Double (values [c][r])});
 }
 }
 return list;
}

To provide the metric value and optionally threshold. minimum, and maximum values, use data specification to set the columns or rows of data through the tabularData attribute.

For example, the data in Figure 23-12 provides the metric values and minimum, maximum, and threshold values for two cities. The data produces a gauge set of two gauges comparing sales results by desired specifications.

Figure 23-12 Comparison of Sales Results by Specification

[image: Comparison of desired specifications.]

Example 23-3 shows code in a managed bean that creates the list of tabular data required for the gauge that compares sales results by specification for two cities displayed in Figure 23-12.

Example 23-3 Managed Bean to Create a List of Tabular Data for Sales Results

CommonGauge gauge = new CommonGauge();
 Object[] specs = { DataSpecification.METRIC, DataSpecification.MINIMUM, DataSpecification.MAXIMUM, DataSpecification.THRESHOLD, DataSpecification.THRESHOLD };
 String[] colLabels = new String[] { "Sales", "Min", "Max", "Quota", "Target" };
 String[] rowLabels = new String[] { "Boston", "Chicago" };
 double[][] values = new double[][] { {40, 60}, {0,0}, {100,80}, {30,35}, {50,70} };
 List gaugeData = new ArrayList();
 for (int c = 0; c < colLabels.length; c++) {
 for (int r = 0; r < rowLabels.length; r++) {
 gaugeData.add(new Object[] { colLabels[c], rowLabels[r], new Double(values[c][r]) });
 }
 }
 gauge.setTabularData(specs, gaugeData);

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a managed bean that creates a list of tabular data. If you do not, follow the instructions in Section 3.6, "Creating and Using Managed Beans."

You should already have a gauge set on your page. If you do not, follow the instructions in this chapter to create a gauge set. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

To create a gauge set using tabular data from a managed bean:

	
In the Structure window, select the dvt:gauge component.

	
In the Property Inspector expand the Gauge Data section.

	
From the TabularData attribute menu, choose Expression Builder.

	
In the Expression Builder dialog, use the search box to locate the gauge's managed bean.

	
Expand the managed bean node and select the method that creates the list of tabular data.

	
Click OK.

The Expression is created.

For example, if the name of the managed bean is sampleGauge and the name of the method that creates the list of tabular data is getGaugeData, the Expression Builder generates the code #{sampleGauge.gaugeData} as the value for the tabularData attribute of the gauge component.

23.2.5 What You May Need to Know About Gauge Image Formats

By default, gauges are displayed using a Flash player as specified in the gauge component imageFormat attribute. Alternatively, gauges can be displayed using a Portable Network Graphics (PNG) output format, as in the case when plug-ins are not allowed on client machines. A PNG output format is also used when printing gauges. Although static rendering is fully supported when using a PNG output format, certain interactive features are not available including

	
Animation

	
Context menus

	
Popup support

You can disable the use of Flash content across the entire application by setting a flash-player-usage context parameter in adf-config.xml. For more information, see Section A.4.3, "Configuring Flash as Component Output Format."

If the specified image format is not available on the client, the application will default to an available format. For example, if the client does not support Flash or you have disabled its use in the application, the gauge will display in the PNG image format.

To improve performance, inline PNG images using data URIs are used when there is browser support for URIs and the images are sufficiently small. However, if the application specifies a path to a stored image using the imageSource attribute on the gauge component, it will be respected and inline images will not be sent.

23.2.6 Using Gauges in Tables

You can display gauges in table cells where users can see and compare them alongside related information. The immediate children of an ADF table component must be column components. Each visible column component is displayed as a separate column in the table. Column components contain components used to display content, images, or provide further functionality.

The child components of each column display the data for each row in that column. The column does not create child components per row; instead, the table uses stamping to render each row. Each child is stamped once per row, repeatedly for all the rows. As each row is stamped, the data for the current row is copied into a property that can be addressed using an EL expression. You specify the name to use for this property using the var property on the table. Once the table has completed rendering, this property is removed or reverted back to its previous value.

Example 23-4 shows sample code for displaying gauges in an ADF table component.

Example 23-4 Gauge Component Stamped in Table Column

<af:table summary="table" value="#{gaugeData.gaugeTableData}" var="testvar"
 rowBandingInterval="0" id="t1" columnStretching="last"
 inlineStyle="height:400px" styleClass="AFStretchWidth">
 <af:column rowHeader="true" sortable="false" headerText="Country"
 align="center" id="c1" width="120"
 inlineStyle="font-weight:bold; font-size: 12px;">
 <af:outputText value="#{testvar.name}" id="ot1"/>
 </af:column>
 <af:column sortable="true" headerText="Density (1/km^2)"
 align="center" id="c2" width="300"
 sortProperty="density">
 <dvt:gauge shortDesc="Gauge" id="gauge77" gaugeType="STATUSMETER"
 binding="#{editor.component}" dynamicResize="DYNAMIC_SIZE"
 value="#{testvar.density}"
 inlineStyle="height:22px" styleClass="AFStretchWidth"
 minValue="0.0" maxValue="1200.0">
 <dvt:indicatorBar/>
 <dvt:thresholdSet>
 <dvt:threshold fillColor="#00aa00" thresholdMaxValue="300"/>
 <dvt:threshold fillColor="#ffcc00" thresholdMaxValue="700"/>
 <dvt:threshold fillColor="#cc2255"/>
 </dvt:thresholdSet>
 <dvt:topLabel position="LP_NONE"/>
 <dvt:bottomLabel position="LP_NONE"/>
 <dvt:metricLabel position="LP_NONE"/>
 </dvt:gauge>
 </af:column>
</af:table>

When configuring gauges in table cells, use these guidelines to improve usability:

	
Vertical status meter gauges are not recommended for use in table cells as the table rows would have to be very tall.

	
Make gauges as small as possible while maintaining legibility.

	
To maximize use of space, use table column and row headers to describe gauges, rather than using gauge titles or bottom labels.

	
Use only one type of gauge per column or row, and use the same axis values and thresholds.

	
Display horizontal status meters in columns, and dial and LED gauges in rows or columns.

	
Avoid displaying so many gauges that users must scroll to see them all.

23.3 Configuring Gauge Display Elements

You can customize gauge display elements including thresholds, labels, indicators, tick marks, and the layout of gauge sets.

23.3.1 How to Configure Gauge Thresholds

Thresholds are numerical data values in a gauge that highlight a particular range of values. Thresholds must be values between the minimum and the maximum value for a gauge. The range identified by a threshold is filled with a color that is different from the color of other ranges.

The data collection for a gauge can provide dynamic values for thresholds when the gauge is databound. For information about using dynamic values for thresholds, see

After the gauge is created, you can also specify static threshold values by configuring a thresholdSet child component that wraps an unlimited number of threshold child components in a gauge. If threshold values are supplied in both the data collection and in threshold components, the gauge honors the values in the threshold components.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

	
Note:

If you create a gauge using a gauge type with thresholds in the Component Gallery, a dvt:thresholdSet component and dvt:threshold component children are automatically added to the dvt:gauge component in the Structure window.

To add static thresholds to a gauge:

	
In the Structure window, right-click the dvt:gauge component and choose Insert inside dvt:gauge > ADF Data Visualization > Threshold Set.

	
Right-click the dvt:thresholdSet component and choose Insert inside dvt:thresholdSet > Threshold.

	
In the Property Inspector, set the following attributes:

	
ThresholdMaxValue: Specify the maximum value for the threshold section you are configuring. Values can be an integer or

	
Note:

For the final threshold, the maximum value of the gauge is used as the threshold maximum value regardless of any entry you make in the ThresholdMaxValue attribute for the final threshold.

	
FillColor and BorderColor: Optionally, specify a RGB value for the fill color and border color respectively for the threshold section you are configuring. You can also change the color from opaque to transparent. For more information, see Section 23.4.2, "Specifying Transparency for Gauge Elements."

	
Text: Optionally, specify the text to be displayed in the legend to identify this threshold. You can also bind the text to a text resource. For more information, see Section 23.4.3, "How to Format Gauge Text and Use Text Resources."

	
Repeat Step 2 and Step 3 to create each threshold in the gauge from the lowest minimum value to the highest maximum value.

	
Note:

You have the option of adding any number of thresholds to gauges. However, arrow and triangle LED gauges support thresholds only for the three directions to which they point

23.3.2 How to Customize Gauge Labels

By default gauges display a metric label, and optional top and bottom labels using the child components metricLabel, topLabel, and bottomLabel. You can customize the display and positioning of each label, as well as control the fill and border colors of the optional top and bottom gauge label frames.

The categorical data value represented by the top or bottom label can also be customized using an attributeFormat tag and ADF Faces converter tags to format percents, scale numbers, control the number of decimal places, placement of signs, and so on. For more information, see Section 23.5.1, "How to Format Numeric Data Values in Gauges."

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

	
Note:

When you add a gauge to your page, gauge child label components are automatically added to the gauge component. The default location, if any, of each gauge label is specified in the position attribute of the component, based on the choice you make for a quick-layout option in the Component Gallery.

To customize a gauge label:

	
In the Structure window, select the gauge child label component (dvt:metricLabel, dvt:topLabel, or dvt:bottomLabel) you wish to configure.

	
In the Property Inspector, set the following attributes:

	
Position: Use to specify the location, if any, of the gauge label. Valid values include:

	
LP_NONE: No label is displayed.

	
LP_INSIDE_GAUGE: Label is displayed inside the plot area of the gauge. Labels are horizontally centered across a gauge. When set to this value, top and bottom labels are also vertically centered inside the plot area. Good choice for the LED gauge.

	
LP_INSIDE_GAUGE_RIGHT and LP_INSIDE_GAUGE_LEFT: Metric label is displayed either to the right or lefts of the plot area.

	
LP_ABOVE_GAUGE: The default value for the top label. Displays the label above the gauge.

	
LP_BELOW_GAUGE: The default value for the bottom label. Displays the label below the gauge. If the position of both the bottom and metric labels are set to this value, then both labels are displayed below the gauge. However, the bottom label is displayed above the metric label.

	
LP_WITH_BOTTOM_GAUGE: The default value for the metric label. Displays the label beside the bottom label.

	
Text: The text displayed in the top or bottom label. In the attribute menu, choose Select Text Resources for a dialog to associate the text with application text resources. For more information, see Section 23.4.3, "How to Format Gauge Text and Use Text Resources."

	
NumberType, Scaling, and AutoPrecision: Available only for metric labels. Use these attributes to configure the display of numeric data values in the gauge. For more information, see Section 23.5.2, "What You May Need to Know About Automatic Scaling and Precision."

	
If you wish to configure the text font used in the gauge label, do the following:

	
In the Structure window, right-click the gauge child label component (dvt:metricLabel, dvt:topLabel, or dvt:bottomLabel) you wish to configure and select Insert inside label component > Font.

	
In the Property Inspector, set the attributes for the font. For more information, see Section 23.4.3, "How to Format Gauge Text and Use Text Resources."

	
If you wish to configure a frame around the top or bottom gauge label, do the following:

	
In the Structure window, right-click the dvt:gauge component and select Insert inside dvt:gauge > Upper Label Frame or Lower Label Frame.

	
In the Property Inspector, specify a RGB value for the FillColor and BorderColor attributes for the label frame you are configuring. You can also change the color from opaque to transparent. For more information, see Section 23.4.2, "Specifying Transparency for Gauge Elements."

23.3.3 How to Customize Gauge Indicators and Tick Marks

Gauges use a graphic to indicate the precise gauge value. By default gauges display a line for dial gauges using the child component indicator, and a bar inside status meter or vertical status meter gauges using the child component indicatorBar. The child component indicatorBase is used to set the fill properties of the circular base of all indicators of a dial gauge. You can customize the appearance of gauge indicators.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

	
Note:

When you add a gauge to your page, gauge child indicator components are automatically added to the gauge component based on the gauge type you chose in the Component Gallery. LED gauges do not have indicators.

To customize the appearance of gauge indicators:

	
For dial gauge indicators, do the following:

	
In the Structure window, select the dvt:indicator component.

	
In the Property Inspector, set the following attributes:

	
Type: Identifies the kind of indicator: a line indicator (default), a fill indicator, or a needle indicator.

	
BorderColor: Specifies the color of the border of the indicator.

	
FillColor: Specifies the color of the fill for the indicator.

	
UseThresholdFillColor: Determines whether the color of the threshold area in which the indicator falls should override the specified color of the indicator.

	
In the Structure window, select the dvt:indicatorBase component.

	
In the Property Inspector, set the following attributes:

	
Rendered: Identifies the kind of indicator: a line indicator (default), a fill indicator, or a needle indicator.

	
BorderColor: Specifies the color of the border of the indicator.

	
FillColor: Specifies the color of the fill for the indicator.

	
For status meter and vertical status meter gauges, do the following:

	
In the Structure window, select the dvt:indicatorBar component.

	
In the Property Inspector, set the following attributes:

	
BorderColor: Specifies the color of the border of the indicator.

	
FillColor: Specifies the color of the fill for the indicator.

	
Note:

If you want to specify that the color of the threshold area in which the indicator bar falls should override the specified color of the indicator, add an indicator component to the gauge, and set its UseThresholdFillColor attribute to true.

Tick marks are incremental marks along the gauge value axis for dial, status meter, and vertical status meter gauges. LED gauges do not have tick marks. By default, gauges display tick marks using the gauge child tickMark component to specify the display, spacing, and color or major and minor tick marks.

The gauge child tickLabel component identifies major tick labels to specify the location of the labels (interior or exterior of the gauge), and the format for numbers displayed in the tick labels. Minor tick marks do not support labels.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

	
Note:

When you add a gauge to your page, gauge child tick mark and tick mark label components are automatically added to the gauge component based on the choices you make in the Component Gallery. LED gauges do not have tick marks.

To customize the tick marks and tick labels for a gauge:

	
In the Structure window, select the dvt:tickMark component.

	
In the Property Inspector, set values for the following attributes:

	
MajorIncrement and MinorIncrement: Sets the distance between two major tick marks and two minor tick marks, respectively. If the value is less than zero for either attribute, the tick marks are not displayed.

	
MajorTickColor and MinorTickColor: Sets the hexidecimal color of major tick marks and minor tick marks, respectively.

	
Content: Specifies where tick marks occur within a gauge set. Valid values are any combination separated by spaces or commas including:

	
TC_INCREMENTS: Display tick marks in increments.

	
TC_MAJOR_TICK: Display tick marks for minimum, maximum, and incremental values.

	
TC_MIN_MAX: Display tick marks for minimum and maximum values.

	
TC_METRIC: Display tick marks for actual metric values.

	
TC_NONE: Display no tick marks.

	
TC_THRESHOLD: Display tick marks for threshold values.

	
In the Structure window, select the dvt:tickLabel component.

	
In the Property Inspector, set values for the following attributes:

	
Position: By default, the dial gauge displays interior tick labels to provide a cleaner look when the gauge is contained entirely within the gauge frame. Because the tick labels lie within the plot area, the length of the tick labels must be limited to fit in this space. You can customize your gauge to use exterior labels by setting the value for this attribute to TLP_EXTERIOR from the default TLP_INTERIOR.

	
Content: Specifies where tick labels occur within a gauge set. Valid values are any combination separated by spaces or commas including:

	
TC_INCREMENTS: Display tick labels in increments.

	
TC_MAJOR_TICK: Display tick labels for minimum, maximum, and incremental values.

	
TC_MIN_MAX: Display tick labels for minimum and maximum values.

	
TC_METRIC: Display tick labels for actual metric values.

	
TC_NONE: Display no tick labels.

	
TC_THRESHOLD: Display tick labels for threshold values.

	
NumberType, Scaling, and AutoPrecision: Available only for metric labels. Use these attributes to configure the display of numeric data values in the gauge. For more information, see Section 23.5.1, "How to Format Numeric Data Values in Gauges."

23.3.4 How to Specify the Layout of Gauges in a Gauge Set

A single gauge can display one row of data bound to a gauge component. A gauge set displays a gauge for each row in multiple rows of data in a data collection.

You can specify the location of gauges within a gauge set by specifying values for attributes in the gauge component.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child components can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge set on your page. If you do not, follow the instructions in this chapter to create a gauge set. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

To specify the layout of gauges in a gauge set:

	
In the Structure window, right-click the dvt:gauge component and choose Go to Properties.

	
In the Property Inspector, expand the Common section and set the following attributes:

	
GaugeSetColumnCount: Specify the number of columns of gauges that will appear in the gauge set.

A setting of zero causes all gauges to appear in a single row. Any positive integer determines the exact number of columns in which the gauges are displayed. A setting of -1 causes the number of columns to be determined automatically from the data source.

	
GaugeSetDirection: Use the dropdown list to select a value for the placement of gauges in columns.

If you select GSD_ACROSS, then the default layout of the gauges is used and the gauges appear from left to right, then top to bottom. If you select GSD_DOWN, the layout of the gauges is from top to bottom, then left to right.

	
GaugesSetAlignment: Use the dropdown list to select a value for the alignment of gauges within a gauge set.

This attribute defaults to the setting GSA_NONE, which divides the available space equally among the gauges in the gauge set. Other options use the available space and optimal gauge size to allow for alignment towards the left or right and the top or bottom within the gauge set. You can also select GSA_CENTER to center the gauges within the gauge set.

23.3.5 What You May Need to Know About Configuring Gauge Set Display

When configuring gauge set display, use these guidelines to improve usability:

	
When the individual gauges in a gauge set do not have titles or axes, specify a label above the gauge set that displays the name of the data set and its units of measure, for example, "2010 Population (Millions)."

	
When thresholds are defined, include a legend. For more information, see Section 23.3.1, "How to Configure Gauge Thresholds."

	
Avoid displaying so many gauges that users must scroll to view all of the gauges.

23.4 Formatting Gauge Style Elements

You can customize the styling of gauges to change the initial size or a gauge, specify dynamic resizing to fit the presentation area of a gauge, and apply style elements. You can also use text formatting and text resource, and transparency in gauges.

23.4.1 How to Change Gauge Size and Apply CSS Styles

Gauges are displayed in a default size of 200 X 200 pixels. You can customize the size of a gauge or specify dynamic resizing to fit an area across different browser window sizes. When gauges are displayed in a horizontally or vertically restricted area, for example in a web page sidebar, the gauge is displayed in a small image size. Although fully featured, the smaller image is a simplified display.

You can customize the width and height of a gauge, and you can allow for dynamic resizing of a gauge based on changes to the size of its container. These two aspects of a gauge are interrelated in that they share the use of the gauge inlineStyle attribute.

You can also apply CSS styles such as active, focus, hover, link, and visited to use for a gauge.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

To specify the size of a gauge:

	
In the Structure window, select the dvt:gauge component.

	
In Property Inspector, expand the Style section. Specify the initial size of the gauge in the InlineStyle attribute. If you do not also provide for dynamic resizing of the gauge, then the initial size becomes the only display size for the gauge. For example,

width:200px;height:200px

If you are specifying dynamic resizing for the gauge, you can enter a fixed number of pixels or a relative percent for both width and height. For example, to create a gauge that fills 50% of its container's width and has a height of 200 pixels, use the following setting for the InlineStyle attribute:

width:50%;height:200px

	
Best Practice Tip:

Instead of specifying width at 100% in the inlineStyle attribute, set the styleClass attribute to AFStretchWidth.

	
If you want to specify dynamic resizing for the gauge, expand the Behavior section. From the DynamicResize attribute dropdown list, select DYNAMIC_SIZE.

To apply CSS styles to a gauge:

	
In the Structure window, select the dvt:gauge component.

	
In the Property Inspector, expand the Style section. From the StyleClass attribute menu, choose Edit and use the property editor dialog to select the CSS styles to apply to the gauge.

23.4.2 Specifying Transparency for Gauge Elements

You can specify that various elements of a gauge display a transparent color instead of the default opaque color by setting the borderColor and fillColor attributes on the gauge child components related to those elements. These color properties accept a 6 or 8 RGB hexidecimal value. When an 8-digit value is used, the first two digits represent transparency. For example, you can set transparency by using a value of 00FFFFFF.

Any gauge child component that supports borderColor or fillColor attributes can be set to transparency. The following are examples of gauge child components that support transparency:

	
gaugeBackground

	
gaugeFrame

	
gaugePlotArea

	
gaugeLegendArea

23.4.3 How to Format Gauge Text and Use Text Resources

You can format the text in gauges using a gaugeFont component as a child for any of the these gauge child components that represent titles and labels in a gauge:

	
bottomLabel

	
metricLabel

	
gaugeLegendText

	
gaugeLegendTitle

	
tickLabel

	
topLabel

The attributes of the gaugeFont component allows you to specify these font attributes for the gauge child element:

	
name: Specifies the name of the font, for example San Serif.

	
size: Specifies the font size in pixels, for example 11.

	
color: Specifies the color of the font. This color property accepts a 6 or 8 RGB hexidecimal value. When an 8-digit value is used, the first two digits represent transparency. For example, you can set transparency by using a value of 00FFFFFF

	
bold: Specifies whether or not the font is bold. The default value is FALSE.

	
italic: Specifies whether or not the text is in italics. The default value is FALSE.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

	
Note:

When you add a gauge to your page, gauge child components for titles or labels are automatically added to the gauge component, based on the choices you make in the Component Gallery.

To specify a text font for a gauge title or label component:

	
In the Structure window, right-click the gauge child component for a title or label, for example, dvt:metricLabel, and choose Insert inside dvt:metricLabel > Font.

If the component is not available, right-click the dvt:gauge component, and choose Insert inside dvt:gauge > ADF Data Visualization > gauge child title or label component.

	
In the Property Inspector, set values for one or more of the dvt:gaugeFont component attributes. Use the help button to display the complete tag documentation for the dvt:gaugeFont component.

You can also set the font attributes of gauge components globally across all pages in your application by using a cascading style sheet (CSS) to build a skin, and configuring your application to use the skin. By applying a skin to define the fonts used in gauge components, the pages in an application will be smaller and more organized, with a consistent style easily modified by changing the CSS file. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

JDeveloper supports easy localization of DVT components using the abstract class java.util.ResourceBundle to provide locale-specific resources. For those gauge child components that represent titles and labels in a gauge you can associate a text resource referenced in an application resource bundle. For more information, see Chapter 29, "Internationalizing and Localizing Pages."

To specify a text resource for a gauge title or label component:

	
In the Structure window, select the gauge child component for a title or label, for example, dvt:metricLabel.

	
In the Property Inspector, in the text attribute menu, choose Select Text Resources to open the Select Text Resource dialog.

Use the dialog to associate the component text with a text resource. If you need help, press F1 or click Help

23.5 Formatting Numeric Data Values in Gauges

Gauge child components including metricLabel, tickLabel, and gaugeLgendText display numeric data values in gauges. Each component has a numberType attribute that lets you specify whether you want to display the value itself, or a percentage that the value represents. In some cases, this might be sufficient numeric formatting.

If you wish to further format the gauge metric or tick label value, you can use an ADF Faces standard converter, af:convertNumber. For example, you may wish to display the value as currency or display specific decimal settings.

23.5.1 How to Format Numeric Data Values in Gauges

The metrics represented in gauges are numeric data values. You can apply specific formatting rules to these values.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

	
Note:

When you add a gauge to your page, gauge child components that display configurable data values are automatically added to the gauge component, based on the choices you make in the Component Gallery.

To format numeric data values in a gauge:

	
In the Structure window, select the gauge child component displaying data values (metricLabel, tickLabel, or gaugeLegendText) that you wish to configure.

If the component is not available, right-click the dvt:gauge component, and choose Insert inside dvt:gauge > ADF Data Visualization > (metricLabel, tickLabel, or gaugeLegendText).

	
In the Property Inspector, if you want to display the data value as a percentage rather than as a value, set the NumberType attribute of the component to NT_PERCENT.

	
If you want to specify additional formatting for the data values displayed in the gauge metric or tick label, do the following:

	
In the Structure window, right-click the dvt:metricLabel or dvt:tickLabel, and choose Insert inside (dvt:metricLabel or dvt:tickLabel) > Convert Number.

	
In the Property Inspector, specify values for the attributes of the af:convertNumber component to produce additional formatting. Use the help button to display the complete tag documentation for the af:convertNumber component.

	
Note:

When the numberType attribute of metric or tick labels is set to percent (NT_PERCENT), a child af:convertNumber tag, if used, will be automatically set to percent for its type attribute. When af:convertNumber is forced to percent, gauge clears the pattern attribute. This means that patterns are ignored when a gauge forces percent formatting.

23.5.2 What You May Need to Know About Automatic Scaling and Precision

In order to achieve a compact and clean display, gauges automatically determine the scale and precision of the values being displayed in metric labels and tick labels. For example, a value of 40,000 will be formatted as 40K, and 0.230546 will be displayed with 2 decimal points as 0.23.

Automatic formatting still occurs when af:convertNumber is specified. Gauge tags that support af:convertNumber child tags have scaling and autoPrecision attributes that can be used to control the gauge's automatic number formatting. By default, these attribute values are set to scaling="auto" and autoPrecision="on". Fraction digit settings specified in af:convertNumber, such as minFractionDigits, maxFractionDigits, or pattern, are ignored unless autoPrecision is set to off.

23.6 Adding Gauge Special Effects and Animation

You can add special features to a gauge such as applying gradient effects to parts of a gauge, adding interactivity to gauges, animating gauges, and taking advantage of gauge support for active data.

23.6.1 How to Add Gradient Special Effects to a Gauge

A gradient is a special effect in which an object changes color gradually. Each color in a gradient is represented by a stop. The first stop is stop 0, the second is stop 1, and so on. You must specify the number of stops in the special effects for a child component of a gauge that supports special effects.

You can define gradient special effects for the following child components of a gauge:

	
gaugeBackground

	
gaugeSetBackground

	
gaugePlotArea

	
gaugeFrame

	
gaugeLegendArea

	
lowerLabelFrame

	
upperLabelFrame

	
indicator

	
indicatorBar

	
indicatorBase

	
threshold

For each child component of a gauge to which you want to add special effects, you must insert a child specialEffects component. For example, if you want to add a gradient to the background of a gauge, then you would add a child specialEffects component to the background component. You must also set the specialEffects component fillType attribute to FT_GRADIENT.

Then, optionally if you want to control the rate of change for the fill color of the child component, you add as many gradientStopStyle components as you need to control the color and rate of change for the fill color of the component. The gradientStopStyle components are added as child components to the specialEffects component.

The approach that you use to define gradient special effects is identical for each child component of the gauge that supports these effects. The procedure defines how to add gradient special effects to the background of a gauge.

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

	
Note:

When you add a gauge to your page, gauge child components are automatically added to the gauge component based on the gauge type you chose in the Component Gallery.

To add a gradient special effect to the background of a gauge:

	
In the Structure window, right-click the gauge child component that supports gradient special effects, for example dvt:gaugeBackground, and choose Insert inside dvt:gaugeBackground > Special Effects.

	
In the Property Inspector, set the following attributes:

	
FillType: From the dropdown list select FT_GRADIENT.

	
GradientDirection: From the dropdown list select the direction of change that you want to use for the gradient fill. The default value is GD_RIGHT.

	
NumStops: Enter the number of stops to use for the gradient.

	
Optionally, in the Property Inspector, click Configure Gradient Stops to control the color and rate of change for the first gradient stop.

	
In the Property Inspector, set the following attributes:

	
StopIndex: Enter a zero-based integer as an index for the component.

	
GradientStopColor: Specify a RGB value for the color that you want to use at this specific point along the gradient. You can also change the color from opaque to transparent. For more information, see Section 23.4.2, "Specifying Transparency for Gauge Elements."

	
GradientStopPosition: Enter the proportional distance along a gradient for the identified stop color. The gradient is scaled from 0 to 100. If 0 or 100 is not specified, default positions are used for those points.

	
If you wish to configure additional gradient stops, in the Structure window, right-click the dvt:specialEffects component and choose Insert inside dvt:specialEffects > dvt:gradientStopStyle.

	
Repeat Step 4 for each gradient stop you want to configure.

23.6.2 What Happens When You Add a Gradient Special Effect to a Gauge

When you add a gradient fill to the background of a gauge, specify two stops, and configure the color and rate of change for each stop, XML code is generated. Example 23-5 shows the XML code that is generated.

Example 23-5 XML Code Generated for Adding a Gradient to the Background of a Gauge

<dvt:gauge>
 <dvt:gaugeBackground borderColor="#848284">
 <dvt:specialEffects fillType="FT_GRADIENT" gradientDirection="GD_RADIAL">
 <dvt:gradientStopStyle stopIndex="0" gradientStopPosition="60"
 gradientStopColor="FFFFCC"/>
 <dvt:gradientStopStyle stopIndex="1" gradientStopPosition="90"
 gradientStopColor="FFFF99"/>
 </dvt:specialEffects>
 </dvt:gaugeBackground>
</dvt:gauge>

23.6.3 How to Add Interactivity to Gauges

Interactivity in gauges involves associating a specified part of a gauge with an HTML attribute such as a hyperlink, or a JavaScript event such as a user moving the cursor over that part of the gauge. For example, a gauge indicator could be associated with a hyperlink, or a tooltip of a gauge indicator could change from "Indicator" to "Indicator is Clicked" when the user clicks the indicator.

You specify interactivity properties on one or more shapeAttributes components wrapped in a gauge child shapeAttributesSet component. The interactivity provides a connection between the gauge subcomponent, as specified in the component attribute of a shapeAttributes component, and an HTML attribute or a JavaScript event. Each shapeAttributes component must contain a subcomponent and at least one attribute in order to be functional.

The valid values for gauge subcomponents, as specified in the component attribute of the shapeAttributes component, are:

	
GAUGE_BOTTOMLABEL: the label below the gauge

	
GAUGE_INDICATOR: the indicator in the gauge

	
GAUGE_LEGENDAREA: the legend area of the gauge

	
GAUGE_LEGENDTEXT: the text label of the legend area

	
GAUGE_METRICLABEL: the label showing the metric value

	
GAUGE_TOPLABEL: the label above the gauge

	
GAUGE_PLOTAREA: the area inside the gauge

	
GAUGE_THRESHOLD: the threshold area of the gauge

Interactivity attributes associated with the gauge subcomponent can be any of the following:

	
Behavior attributes: An attribute such as onClick, onMouseMove, onKeyDown, or any attribute with a prefix of on that takes a string containing JavaScript code or a reference to a managed bean method that returns JavaScript code as its value. If the value is a managed bean method, the method takes the subcomponent handle as its input parameter.

	
Common attributes: An HTML attribute such as alt, href, nohref, target, title, and tabindix that takes a string or a managed bean method that returns a string as its value. The value can be a string, or a boolean depending on the attribute. Other attributes control the basic settings of the interactivity, such as clickable, clickAction, and clickListener to control the click events, and id to reference the subcomponent.

For example, Example 23-6 shows the code for a dial gauge where the tooltip of the indicator changes from "Indicator" to "Indicator is Clicked" when the user clicks the indicator, and the tooltip for the gauge metric label displays "Metric Label" when the user mouses over that label at runtime.

Example 23-6 Sample Code for Gauge shapeAttributes Component

<dvt:gauge>
 <dvt:shapeAttributesSet>
 <dvt:shapeAttributes component="GAUGE_INDICATOR" alt="Indicator"
 onClick="document.title="onClick";"/>
 <dvt:shapeAttributes component="GAUGE_METRICLABEL" alt="Metric Label"
 onMouseMove="document.title="onMouseMove";"/>
 </dvt:shapeAttributesSet>
</dvt:gauge>

You can also use a managed bean method to return the value of the interactivity attribute. Example 23-7 shows a managed bean sample code.

Example 23-7 Sample Managed Bean Code

public String alt(oracle.dss.dataView.ComponentHandle handle) {
 return handle.getName(); }
 public String onClick(oracle.dss.dataView.ComponentHandle handle) {
 return ("document.title=\"onClick\";"); }
 public String onMouseMove(oracle.dss.dataView.ComponentHandle handle) {
 return ("document.title=\"onMouseMove\";"); }

Example 23-8 shows sample code for referencing the managed bean in a shapeAttributes component.

Example 23-8 Gauge shapeAttributes Component Referencing a Managed Bean

<dvt:gauge>
 <dvt:shapeAttributesSet>
 <dvt:shapeAttributes component="GAUGE_INDICATOR" alt="#{sampleGauge.alt}"
 onClick="#{sampleGauge.onClick}"/>
 <dvt:shapeAttributes component="GAUGE_METRICLABEL"
 alt="#{sampleGauge.alt}"
 onMouseMove="#{sampleGauge.onMouseMove}"/>
 </dvt:shapeAttributesSet>
</dvt:gauge>

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You may find it helpful to understand how managed beans are used in JDeveloper. For more information, see Section 3.6, "Creating and Using Managed Beans."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

To add interactivity to a gauge subcomponent:

	
In the Structure window, right-click the dvt:gauge component, and choose Insert inside dvt:gauge > ADF Data Visualizations > Shape Attributes Set.

	
Right-click the dvt:shapeAttributesSet component, and choose Insert inside dvt:shapeAttributesSet > Shape Attributes.

	
In the Property Inspector, expand the Common Section. For the Component attribute, use the dropdown list to select the gauge subcomponent to which you are adding interactivity, for example GAUGE_INDICATOR

	
Set one or more of the other attributes in this section to specify the interactivity properties for the subcomponent.

	
Note:

You can use the attribute dropdown menu on the attributes in this section to choose a Method Expression Builder dialog when creating a reference to a managed bean. For some attributes you can also choose Edit > Edit Property to select an available managed bean from a dropdown list, or choose New to create a managed bean using the Create Managed Bean dialog.

	
Expand the Behavior section. Use this section to set one or more of these attributes with a prefix of on that takes a string containing JavasScript code or a reference to a managed bean method that returns JavaScript code as its value.

	
If you wish to configure additional interactivity effects for a gauge subcomponent, repeat step 2 through step 5 for each subcomponent.

23.6.4 Animating Gauges

You can animate gauges (not gauge sets) upon initial display, or to show changes in data. Animation effects are specified in the gauge's animationOnDisplay and animationOnDataChange properties. For example, a dial gauge indicator can change color at initial display or when a data value increases or decreases. Figure 23-13 shows a dial gauge with the dial indicator animated to display the data change at each threshold level.

Figure 23-13 Animated Dial Gauge

[image: Animated dial gauge.]

Animation effects can also be performed using active data. The Active Data Service (ADS) allows you to bind ADF Faces components to an active data source using the ADF model layer. To allow this, you must configure the components and the bindings so that the components can display the data as it is updated in the source. Alternatively, you can configure the application to poll the data source for changes at prescribed intervals.

23.6.5 How to Specify Animation Effects for Gauges

You can set animation effects for gauges upon initial display, or upon data change associated with partial page rerendering (PPR), or Active Data Service (ADS). For more information about PPR, see Chapter 8, "Rerendering Partial Page Content." For more information about ADS, see Chapter 35, "Using the Active Data Service with an Asynchronous Backend."

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

To specify animation effects for a gauge:

	
In the Structure window, select the dvt:gauge component.

	
In the Property Inspector, expand the Appearance section. Use the Animation subsection to set these attributes:

	
AnimationOnDisplay: Use to specify the type of initial rendering effect to apply. Valid values are:

	
NONE (default): Do not show any initial rendering effect.

	
AUTO: Apply an initial rendering effect automatically chosen based on graph or gauge type.

	
AnimationOnDataChange: Use to specify the type of data change animation to apply. Valid values are:

	
NONE: Apply no data change animation effects.

	
AUTO (default): Apply Active Data Service (ADS) data change animation events. For more information about ADS, see Section 23.6.6, "How to Configure Gauges to Display Active Data."

	
ON: Apply partial page refresh (PPR) data change animation events. Use this setting to configure the application to poll the data source for changes at prescribed intervals.

23.6.6 How to Configure Gauges to Display Active Data

Animation effects using Active Data Service (ADS) can be added to dial and status meter gauge types. ADS allows you to bind ADF Faces components to an active data source using the ADF model layer. To allow this, you must configure the components and the bindings so that the components can display the data as it is updated in the data source. For more information about ADS and configuring your application, see Chapter 35, "Using the Active Data Service with an Asynchronous Backend."

You configure a databound gauge to display active data by setting a value on the binding element in the corresponding page definition file.

Before you begin:

You should have a data source that publishes events when data is changed and you should have created business services that react to those events and the associated data controls to represent those services.

To configure a gauge to display active data:

	
In the Structure window, select the dvt:gauge component.

	
In the Property Inspector, expand the Common section and enter a unique value for the ID attribute.

If you do not select an identifier, one will be entered for you.

	
In the Structure window, right-click the dvt:gauge component, and select Go to Page Definition.

	
In the Structure window, expand the Bindings folder, and select the node that represents the attribute binding for the component.

	
In the Property Inspector, expand the Advanced section, and from the ChangeEventPolicy attribute dropdown list, select Push.

23.7 Using Custom Shapes for Gauges

A set of prebuilt custom shapes styles are provided for the gauge component. You can also create and use a graphics file to create a custom shape for a gauge. Set the customShapesPath attribute for the gauge component to use an available custom shapes style, or to point to the vector graphics file that is processed into the graphics used for output.

23.7.1 How to Use Prebuilt Custom Shapes Styles

You can choose from a set of prebuilt custom shapes styles to specify a custom shape for a gauge. The custom shapes styles are:

	
Rounded rectangle

	
Full circle

	
Beveled circle

Figure 23-14 shows a dial gauge displayed with each of the custom shapes styles applied.

Figure 23-14 Dial Gauges with Custom Shapes Styles

[image: Dial gauges with custom shapes]

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

To apply a custom shapes style to a gauge:

	
In the Structure window, right-click the dvt:gauge component and choose Go to Properties.

	
In the Property Inspector, expand the Appearance section, and select the custom shapes style from the CustomShapesPath attribute dropdown list. Valid values include: Rounded Rectangle, Full Circle, and Beveled Circle.

23.7.2 How to Use a Custom Shapes Graphic File

Due to the requirements for rotating and resizing a gauge's components, such as the plot area or tick marks, a vector graphics file is required when creating a custom shapes graphic file. Scalable Vector Graphics (SVG) is the supported file format for creating custom shapes for gauges.

After designing the gauge and exporting it to an SVG file, a designer can add information to identify, scale, and position the gauge shapes and components, and to specify other metadata used in processing.

In the SVG file, gauge components are identified using an ID. For example, an SVG file with <polygon id="indicator"/> would be interpreted as using a polygon shape for the indicator component. To specify multiple shapes to create the desired visual for a component, the ID can be modified as in id="indicator_0", id="indicator_1", and id="indicator_2".

Table 23-1 shows the gauge component IDs and their descriptions.

Table 23-1 Gauge Component IDs for Custom Shapes

	ID	Description
	
indicator

	
Points to the value represented by the gauge. If not specified, the gauge will use the indicator specified in the application.

For the dial gauge, the indicator must be specified while pointing up (90 degrees), so that the shape can be properly rotated.

For the status meter gauge, the indicator should be specified with its full extent, and the gauge will be cropped to point to the metric value.

	
indicatorBase

	
For a dial gauge, refers to the object that appears at the base of the indicator component. If specified, and the indicatorCenter is not, then the center of the indicatorBase will be taken as the indicatorCenter.

	
gaugeFrame

	
Refers to the optional component that adds visual distinction to the plotArea. It can be turned on or off in the application by setting the rendered property. Used primarily when the user wants to use the default gauge plotArea. If no plotArea is specified, then the gauge will insert the default plotArea within the plotAreaBounds. This provides a quick way to change the look of the gauge without having to create a custom plotArea or tickMark.

	
lowerLabelFrame

	
Refers to the frame that contains the bottomLabel when its position is LP_BELOW_GAUGE; allows the user to customize the look of this frame. The gauge will position the lowerLabelFrame in the same relative position to other gauge components when it is found in the custom shapes file.

	
plotArea

	
For the dial gauge, refers to the circular area within which the indicator moves.

For the status meter gauge, refers to the area that contains the indicator.

For the LED gauge, refers to the area that contains any graphics that will not be filled with the LED fill color.

When a plotArea is not specified, the gauge will draw the default plotArea. For tick marks to be drawn, a specification of the plotArea also requires either tickMarkPath or a set of tick marks.

	
tickMark

	
Used to define increments on the gauge. When a set of tick marks is specified with no tickMarkPath, the gauge will use the tick marks exactly where they appear on the plotArea. In this case, it is up to the user to ensure that the tick marks appear at equal increments. If a tickMarkPath is specified, the gauge will accept a single tickMark, at 90 degrees for the dial, and it will rotate and position the tickMark along the tickMarkPath.

	
upperLabelFrame

	
Refers to the frame that contains the topLabel when its position is LP_ABOVE_GAUGE. Setting the upperLabelFrame allows the user to customize the look of this frame. The gauge will position the upperLabelFrame in the same relative position to other gauge components when it is found in the custom shapes file.

Table 23-2 shows the metadata IDs and the descriptions used for internal calculations, not rendered in the gauge.

Table 23-2 Metadata IDs for Custom Shapes

	ID	Description
	
indicatorBarBounds

	
Specifies the box containing the minimum and maximum extent of the indicator bar. If not specified, the bounding box is taken to be the entire indicator as specified in the input file.

	
indicatorCenter

	
Specifies the center of rotation for the indicator that rotates around in a dial gauge. The center of the shape with this ID is considered to be the indicator center. If not specified, it is assumed to be the center of the bottom edge of the plot area for an 180-degree dial gauge, and the center of the plot area for an N-degree dial gauge.

	
ledFillArea

	
Specifies the area of the LED gauge that should be filled with the appropriate threshold color. If not specified, then the entire plotArea shape specified in the graphics file will be filled with the threshold color.

	
lowerLabelFrameTextBox

	
For complex lowerLabelFrame shapes, specifies a rectangle that can be set as the lowerLabelFrameTextBox. This box determines the position of the bottom label within the lowerLabelFrame.

	
plotAreaBounds

	
Specified the bounding box for the plotArea. If no plotArea has been specified in this file, then a bounding box is needed for the gauge to draw the plot area of the gauge. If not specified, then the gaugeFrame will use its own bounding box for this purpose.

	
thresholdFillArea

	
Defines the area that will be filled with the threshold colors.

For a dial gauge, specifies the thresholdFillArea that will be filled by sweeping an arc from the indicatorCenter.

For a status meter gauge, specifies the thresholdFillArea that will be filled based on the orientation of the status meter gauge.

	
tickMarkPath

	
Defines the path in which to draw tick marks. This is necessary for the gauge to calculate where tick marks should be drawn on a custom plot area, and the gauge will be unable to change the majorTickCount if this is not specified.

	
upperLabelFrameTextBox

	
For complex upperLabelFrame shapes, specifies a rectangle that can be set as the upperLabelFrameTextBox. This box determines the position of the topLabel within the upperLabelFrame.

Example 23-9 shows a sample SVG file used to specify custom shapes for the components of a gauge.

Example 23-9 Sample SVG File Used for Gauge Custom Shapes

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg xmlns:svg="http://www.w3.org/2000/svg"
 xmlns="http://www.w3.org/2000/svg"
 version="1.0">
 <rect width="264.72726" height="179.18887" rx="8.2879562"
 ry="10.368411" x="152.76225" y="202.13995"
 style="fill:#c83737;fill-opacity:1;stroke:none"
 id="gaugeFrame"/>
 <rect width="263.09058" height="42.581127" rx="3.0565372"
 ry="3.414634" x="155.11697" y="392.35468"
 fill="#c83737"
 id="lowerLabelFrame" />
 <rect width="241.79999" height="120.13961"
 x="164.2415" y="215.94714"
 style="fill:#ffeeaa"
 id="plotAreaBounds"/>
 <rect width="74.516975" height="44.101883"
 rx="2.6630435" ry="3.5365853"
 x="247.883" y="325.4415"
 style="fill:#ffd5d5;fill-opacity:1;stroke:none"
 id="indicatorBase"/>
 <rect width="6.0830183" height="98.849045" rx="2.6630435"
 ry="2.2987804" x="282.86035" y="237.23772"
 style="fill:#00aa00;fill-opacity:1;stroke:none"
 id="indicator"/>
</svg>

Before you begin:

It may be helpful to have an understanding of how gauge attributes and gauge child tags can affect functionality. For more information, see Section 23.2.1, "Configuring Gauges."

You should already have a gauge on your page. If you do not, follow the instructions in this chapter to create a gauge set. For information, see Section 23.2.2, "How to Add a Gauge to a Page."

To use a custom shapes graphics file for a gauge:

	
In the Structure window, right-click the dvt:gauge component and choose Go to Properties.

	
In the Property Inspector, expand the Appearance section, and in the CustomShapesPath attribute field, enter the path to the SVG file to be used to specify the custom shapes for your gauge. For example:

/path/customShapesFile.svg

23.7.3 What You May Need to Know About Supported SVG Features

The custom shapes available to you support the following SVG features:

	
Transformations

	
Paths

	
Basic shapes

	
Fill and stroke painting

	
Linear and radial gradients

SVG features that are not supported by custom shapes include:

	
Unit Identifiers: All coordinates and lengths should be specified without the unit identifiers, and are assumed to be in pixels. The parser does not support unit identifiers, because the size of certain units can vary based on the display used. For example, an inch may correspond to different numbers of pixels on different displays. The only exceptions to this are gradient coordinates, which can be specified as percentages.

	
Text: All text on the gauge is considered data, and should be specified through the tags or data binding.

	
Specifying Paint: The supported options are none, 6-digit hexadecimal, and a <uri> reference to a gradient.

	
Fill Properties: The fill-rule attribute is not supported.

	
Stroke Properties: The stroke-linecap, stroke-linejoin, stroke-miterlimit, stroke-disarray, and stroke-opacity attributes are not supported.

	
Linear Gradients and Radial Gradients: The gradientUnits, gradientTransform, spreadMethod, and xlink:href are not supported. Additionally, the r, fx, and fy attributes on the radial gradient are not supported.

	
Elliptical Arc Out-of-Range Parameters: If rx, ry, and x-axis-rot are too small such that there is no solution, the ellipse should be scaled uniformly until there is exactly one solution. The SVG parser will not support this.

	
General Error Conditions: The SVG input is expected to be well formed and without errors. The SVG parser will not perform any error checking or error recovery for incorrectly formed files, and it will stop parsing when it encounters an error in the file.

24 Using Pivot Table Components

This chapter describes how to display data in pivot tables using the ADF Data Visualization pivotTable and pivotFilterBar components. If your application uses the Fusion technology stack, then you can use data controls to create pivot tables. For more information, see the "Creating Databound Pivot Tables" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

This chapter includes the following sections:

	
Section 24.1, "About the Pivot Table Component"

	
Section 24.2, "Using the Pivot Table Component"

	
Section 24.3, "Using Stamping in Pivot Tables"

	
Section 24.4, "Using a Pivot Filter Bar with a Pivot Table"

	
Section 24.5, "Customizing Pivot Table Cell Content"

	
Section 24.6, "Using Selection in Pivot Tables"

	
Section 24.7, "Updating Pivot Tables with Partial Page Rendering"

	
Section 24.8, "How to Export from a Pivot Table"

24.1 About the Pivot Table Component

Pivot tables display data in a grid layout with unlimited layers of nested rows and columns. Similar to spreadsheets, pivot tables provide the option of automatically generating subtotals and totals for grid data. The power of the pivot table's interactive capability is based in its display of multiple nested attributes on row and column headers. Users can dynamically change the layout of these attributes using drag-and-drop operations. A pivot table lets you pivot or reposition data labels and the associated data layer from one location on the row or column edge to another to obtain different views of your data, supporting interactive analysis.

A pivot filter bar is a component that can be added to a pivot table to provide the user with a way to filter pivot table data in layers not displayed in one of the row or column edges of the pivot table. Users can also drag and drop these layers between the pivot filter bar and the associated pivot table to change the view of the data.

24.1.1 End User and Presentation Features of Pivot Table Components

The ADF Data Visualization pivot table component provides a range of features for end users, such as pivoting, sorting columns, and selecting one or more rows and then executing an application defined action on the selected rows. It also provides a range of presentation features, such as unlimited layers of hierarchically nested rows and columns.

24.1.1.1 Pivot Filter Bar

The data filtering capacity in a pivot table can be enhanced with an optional pivot filter bar. Zero or more layers of data not already displayed in the pivot table row edge or column edge are displayed in the page edge. Figure 24-22 shows a pivot filter bar with Quarter and Month layers that can be used to filter the data displayed in the pivot table.

Figure 24-1 Pivot Filter Bar with Data Layer Filters

[image: Pivot filter bar with data layer filters.]

24.1.1.2 Pivoting

You can drag any layer in a pivot table to a different location on the same edge, to the opposite edge, or to the associated pivot filter bar (if present), to change the view of the data in the pivot table. Any layer in a pivot filter bar can be dragged to a different location within the pivot filter bar, or to the row or column edge of the pivot table. This operation is called pivoting and is enabled by default.

When you move the mouse over a layer, the layer's pivot handle and an optional pivot label are displayed. If you move the mouse over the pivot handle, the cursor changes to a four-point arrow drag cursor. You can then use the handle to drag the layer to the new location. If you move the mouse over a layer on the row edge, the pivot handle appears above the layer, as shown in Figure 24-2.

Figure 24-2 Display of Pivot Handle on the Row Edge

[image: Display of pivot handle on the row edge.]

If you move the cursor over a layer in the column edge, the pivot handle appears to the left of the layer, as shown in Figure 24-3.

Figure 24-3 Display of Pivot Handle on the Column Edge

[image: Display of pivot handle on the column edge.]

If, in Figure 24-2, you drag the pivot handle of the Time (Year) layer from the row edge to the column edge between the Measure (Sales) layer and the Channel layer, the pivot table will change shape as shown in Figure 24-4.

Figure 24-4 Sales Pivot Table After Pivot of Year

[image: Sales pivot table after pivot of year.]

You can customize pivoting to disable pivot labels and pivoting. If both are disabled, the pivot handle does not display when mousing over the layer.

24.1.1.3 Editing Data Cells

Pivot tables can contain both read-only and editable data cells. Editable cells are those containing an input component, for example, af:inputText. When a pivot table containing editable cells is initially displayed, the first data cell is selected and the pivot table is open for editing. Users can initiate editing anywhere in the pivot table through a single click to overwrite the value in a cell, or double-click to edit the cell. Double-clicking in editable cells enables the user to identify a specific location within the cell, and then navigate within that cell using the arrow keys. Any edit performed on an editable cell can be reverted by pressing Esc.

While in editing mode, you can navigate through pivot table data cells using Tab, Enter or the arrow keys. To quickly navigate to the cell below or above the currently selected cell, use the arrow keys. When using the Enter key to navigate, an active link will automatically be launched for a cell containing an active link. When using Tab or Shift+Tab to navigate, data cells containing multiple editable components, as in the case of both an af:inputDate and date picker in the same cell, the Tab highlights each editable component in turn. When tabbing through the last column of the pivot table, the first column of the next row is highlighted, and when Shift-Tabbing through the first column in the pivot table, the last column of the previous row is highlighted. When using arrow keys to navigate, you can press F2 to navigate within a cell containing an af:inputText component, and Esc to return to arrow key data cell navigation. Any edits to a cell can be discarded by pressing Esc.

Once editing mode is initiated, users can navigate through read-only data cells to editable data cells, maintaining the editing mode. While an editable cell is selected, you can select other cells using Ctrl or Shift+click without enabling editing in the new cells and maintaining editing in the original cell.

To support rapid data entry, pivot tables also support pattern navigation using a single click or arrow key. For example, if a user clicks a cell for editing and then tabs through additional cells in a row, pressing Enter highlights the cell below the initial cell in the next row.

	
Note:

In order to temporarily or permanently write values back to a set of cells within a cube, called a writeback, the pivot table must be bound to a data control or data model that supports writeback operations. A row set based data control is transformed into a cube and therefore cannot support writeback operations.

24.1.1.4 Sorting

Pivot tables support sorting of data within the pivot table. When sorting is enabled, ascending and descending sort icons are displayed as the user hovers the mouse over the innermost layer of the column header. By default, the sortMode attribute of the pivotTable component is set to grouped, effectively sorting the data grouped by the second-to-innermost layer of the row edge. Figure 24-5 shows the sort icons in the World Sales column of the pivot table, where the data is grouped by Year, the second-to-innermost layer of the row edge.

Figure 24-5 Ascending and Descending Sorting Icons in a Pivot Table

[image: Ascending and descending sorting icons in pivot table]

24.1.1.5 Drilling

Pivot tables support two types of drilling including insert drilling, and filter drilling. With insert drilling. the expand operation reveals the detail data while preserving the sibling and aggregate data. With filter drilling, the expand operation displays the detail data only, filtering out sibling and aggregate data.

For example, Figure 24-6 and Figure 24-7 illustrate how drilling is used to display product data within each year; revealing that the 2007 total sales number of 52,500 is composed of 25,500 for tents and 27,000 for canoes. This total contributes to the aggregated total of all sales for all years of 128,172. Figure 24-6 shows a pivot table using insert drilling with the total number of 52,500 displayed alongside the detail numbers. The data for other years and the aggregated total for all years is also available.

Figure 24-6 Pivot Table with Insert Drilling Enabled

[image: pivot table with insert drilling]

Figure 24-7 shows a pivot table using filter drilling with only the detail numbers are displayed. The numbers for other years, and the aggregated total for all years is filtered out.

Figure 24-7 Pivot Table with Filter Drilling Enabled

[image: pivot table with filter drilling enabled.]

At runtime, a drill icon is enabled in the parent attribute display label for both types of drilling.

24.1.1.6 On Demand Data Scrolling

Pivot tables support on-demand data scrolling for in order to support large data sets while maintaining performance. Only the data that is scrolled into view in the pivot table is loaded. As the user scrolls vertically or horizontally, data is fetched for the portion of the pivot table that has scrolled into view, and data that is no longer needed is discarded. Figure 24-8 shows a pivot table with a large data set using on-demand data scrolling.

Figure 24-8 On-Demand Data Scrolling in a Pivot Table

[image: on-demand data scrolling in a pivot table]

24.1.1.7 Sizing

The default size of a pivot table is a width of 300 pixels and a height of 300 pixels. The pivot table autosizes rows, columns, and layers within the space allowed when the pivot table is initially displayed. At runtime, you can change the size of rows, columns, or layers by dragging the row, column, or layer separator to a new location. You position the cursor in the row or column header on the separator between the row, column, or layer you want to resize and the next row, column, or layer. When the cursor changes to a double-sided arrow, click and drag the row, column, or layer separator to the desired location.

When you resize rows, columns, or layers, the new sizes remain until you perform a pivot operation. After a pivot operation, the new sizes are cleared and the pivot table rows, columns, and layers return to their original sizes.

If you do not perform a pivot operation, then the new sizes remain for the life of the session. However, you cannot save these sizes through MDS (Metadata Services) customization.

24.1.2 Pivot Table and Pivot Filter Bar Component Use Cases and Examples

A pivot table display a grid of data with rows and columns.Figure 24-9 shows a pivot table with multiple attributes nested on its rows and columns.

Figure 24-9 Sales Pivot Table with Multiple Rows and Columns

[image: sales pivot table with rows and columns]

A pivot filter bar is a component that can be associated with a pivot table to provide the user with a way to filter pivot table data in layers not displayed in the row or column edges of the pivot table. Users can also drag and drop these layers between the pivot filter bar and the associated pivot table to change the view of the data. Figure 24-10 Figure 24-10 shows a pivot filter bar associated with a pivot table.

Figure 24-10 Pivot Filter Bar Component Associated with Pivot Table

[image: Pivot filter bar component]

Pivot table data cells support other data display components such as sparkcharts, gauges, and graphs. Figure 24-11 shows a pivot table with sparkcharts illustrating data trends over time in a data cell.

Figure 24-11 Pivot Table with Sparkcharts Stamped in Data Cells

[image: Pivot table with stamped sparkcharts]

Figure 24-12 shows a pivot table with gauges stamped in data cells.

Figure 24-12 Pivot Table with Gauges Stamped in Data Cells

[image: pivot table with gauges stamped in data cells]

Figure 24-13 shows a pivot table with graphs stamped in data cells.

Figure 24-13 Pivot Table with Graphs Stamped in Data Cells

[image: Pivot table with graphs stamped in data cells]

Pivot tables can support editable data cells. Editable cells are those containing an input component, for example, af:inputText. At runtime, editing can be initiated anywhere in the pivot table by single click for direct editing or double-clicking to edit in a cell. Figure 24-14 shows a pivot table data cell open for direct editing.

Figure 24-14 Data Cell Open for Direct Editing

[image: Data cell open for direct editing.]

Data cells selected for dropdown list editing are displayed as shown in Figure 24-15.

Figure 24-15 Data Cell Open for Dropdown List Editing

[image: Data cell open for dropdown list editing.]

Header and data cells in pivot tables can be customized to display image, icons or links, and to display stoplight and conditional formatting. Figure 24-16 shows a pivot table with conditional formatting to display levels of sales performance.

Figure 24-16 Conditional Data Cell Formatting

[image: Conditional Data Cell Formatting]

24.1.3 Additional Functionality for the Pivot Table Component

You may find it helpful to understand other ADF Faces features before you implement your pivot table component. Additionally, once you have added a pivot table component to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that pivot table components can use:

	
Partial page rendering: You may want a pivot table to refresh a header cell, a data cell, or the entire pivot table to show new data based on an action taken on another component on the page. For more information, see Chapter 8, "Rerendering Partial Page Content."

	
Personalization: If enabled, users can change the way the pivot table displays at runtime, and those values will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 32, "Allowing User Customization on JSF Pages."

	
Accessibility: You can make your pivot table and pivot filter bar components accessible. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
Skins and styles: You can customize the appearance of pivot table and pivot filter bar components using an ADF skin that you apply to the application or by applying CSS style properties directly using a style-related property (styleClass or inlineStyle). For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."

	
Content Delivery: You can configure your pivot table and pivot filter bar to fetch data from the data source immediately upon rendering the components, or on a second request after the components have been rendered using the contentDelivery attribute. For more information, see Section 12.2.2, "Content Delivery."

	
Automatic data binding: If your application uses the Fusion technology stack, then you can create automatically bound pivot tables based on how your ADF Business components are configured. For more information, see the "Creating Databound Pivot Tables" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Note:

If you know the UI components on your page will eventually use ADF data binding, but you need to develop the pages before the data controls are ready, then you should consider using placeholder data controls, rather than manually binding the components. Using placeholder data controls will provide the same declarative development experience as using developed data controls. For more information, see the "Designing a Page Using Placeholder Data Controls" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such as how data is delivered, automatic partial page rendering (PPR), image formats, and how data can be displayed and edited. For more information, see Section 21.2, "Common Functionality in Data Visualization Components."

24.2 Using the Pivot Table Component

The pivot table component uses a data model to display and interact with data. The specific model class used is oracle.adf.view.faces.bi.model.pivotTable.PivotTableModel.

	
Note:

If you are linking a pivot table and a graph to the same set of data, the model class oracle.adf.view.faces.bi.model.DataModel should be used

You can use any row set (flat file) data collection to supply data to a pivot table. During the data binding operation, you have the opportunity to drag each data element to the desired location on the row edge or column edge of the pivot table in the data binding dialog.

During data binding, you also have the option of specifying subtotals and totals for pivot table rows and columns, specifying drill operations at runtime, defining how to aggregate duplicate records, and setting up initial sort criteria.

For information about the data binding of ADF pivot tables, see the "Creating Databound ADF Pivot Tables" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

24.2.1 Configuring Pivot Tables

The pivot table (pivotTable) component has two child components, a header cell (headerCell) and a data cell (dataCell). The pivot filter bar (pivotFilterBar) is a sibling component that can be associated with the pivot table. The prefix dvt: occurs at the beginning of each pivot table and pivot filter bar component name indicating that the component belongs to the ADF Data Visualization Tools (DVT) tag library.

Pivot tables display data in a grid layout with unlimited layers of nested rows and columns. Figure 24-17 shows a pivot table and its associated pivot filter bar displaying the sales of electronic equipment.

Figure 24-17 Electronic Sales Pivot Table

[image: Electronic sales pivot table and pivot filter bar.]

Pivot table and pivot filter bar components are defined by the following terms using the Electronic Sales Pivot Table in Figure 24-17:

	
Edges: The axes in pivot tables, including:

	
Row edge: The vertical axis to the left of the body of the pivot table. In Figure 24-17, the row edge contains two layers, Product Category and Product, and each row in the pivot table represents the combination of a particular category and a particular product.

	
Column edge: The horizontal axis above the body of the pivot table. In Figure 24-17, the column edge contains two layers, Measure and US State, and each column in the pivot table represents the combination of a particular measure value (Sales or Units), and a particular geographic location (US State).

	
Page edge: The edge represented by the pivot filter bar, whose layers can be filtered or pivoted with the layers in the row and column edges.

	
Layers: Nested attributes that appear in a single edge. In Figure 24-17, the following two layers appear in the column edge: Measure and Geography (Sales and US State). The following two layers appear in the row edge: Category and Product (Product Category and Product).

	
Header cell: The labels that identify the data displayed in a row or column. Row header cells appear on the row edge, and column header cells appear on the column edge. In the sample, header cells include Cell Phones, iPod Speakers, Sales, and Colorado.

	
Data cell: The cells within the pivot table that contain data values, not header information. In the sample, the first data cell contains a value of 1,499.99.

	
QDR (Qualified Data Reference): A fully qualified data reference to a row, a column, or an individual cell. For example, in Figure 24-17, the QDR for the first data cell in the pivot table must provide the following information:

	
Category=Audio Video

	
Product=iPod Nano 1Gb

	
Measure=Sales

	
Geography=Colorado

Likewise, the QDR for the first row in the pivot table, which is also the QDR of the "iPod Nano 1Gb" header cell, contains the following information:

	
Category=Audio Video

	
Product=iPod Nano 1Gb

Finally, the QDR for the "Sales" header cell contains the following information:

	
Measure=Sales

24.2.2 How to Add a Pivot Table to a Page

When you are designing your page using simple UI-first development, you use the Component Palette to add a pivot table to the page. Once the pivot table is added to your page, you can use the Property Inspector to specify data values and configure additional display attributes for the pivot table.

In the Property Inspector you can use the dropdown menu for each attribute field to display a property description and options such as displaying an EL Expression Builder or other specialized dialogs. Figure 24-18 shows the dropdown menu for a pivot table component value attribute.

Figure 24-18 Pivot Table Value Attribute Dropdown Menu

[image: Pivot table value attribute dropdown menu]

	
Note:

If your application uses the Fusion technology stack, then you can use data controls to create a pivot table and the binding will be done for you. JDeveloper provides a wizard for data binding and configuring your pivot table. For more information, see the "Creating Databound ADF Pivot Tables" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Before you begin:

It may be helpful to have an understanding of how pivot table attributes and child tags can affect functionality. For more information, see Section 24.2.1, "Configuring Pivot Tables."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 24.1.3, "Additional Functionality for the Pivot Table Component."

To add a pivot table to a page:

	
In the Component Palette, from the ADF Data Visualizations page, in the Pivot Table panel, drag and drop a Pivot Table onto the page.

	
In the Property Inspector, view the attributes for the pivot table. Use the help button to display the complete tag documentation for the pivotTable component.

	
Expand the Data section. Use this section to set the following attributes:

	
Value: Specify an EL expression for the object to which you want the pivot table to be bound. Can be an instance of oracle.adf.view.faces.bi.model.pivotTable.PivotTableModel or

oracle.adf.view.faces.bi.model.DataModel.

	
Var and VarStatus: Use to specify a variable to access cell data in stamped dataCell and headerCell components. For more information, see Section 24.3.2, "What You May Need to Know About Using var and varStatus Properties."

	
Expand the Appearance section. Use this section to set the following attributes:

	
DataFormat and HeaderFormat: Use to create formatting rules to customize content in data and header cells. For more information, see Section 24.5, "Customizing Pivot Table Cell Content."

	
PivotLabelVisible: Specify whether or not to display the labels on the pivot handles. The default value is true.

	
Sizing: Use to specify how the pivot table's size in width and height is determined. The default value is fixed where the pivot table is sized based on the width and height CSS properties in its default style or inline style property.

You can also set the attribute to auto where the height of the pivot table is determined by the size of the content that is being displayed by the pivot table. If the content is smaller than the default size of the pivot table, then the pivot table will shrink. If the content is larger than the default size of the pivot table, the pivot table will grow.

You can control the maximum height and width of the pivot table by using the inlineStyle property as follows:

max-width:400px, max-height:300px

Once the maximum height or width is exceeded, then pivot table will display scrollbars as needed.

	
Note:

When this attribute is set to auto, the pivot table frame will initially be displayed with the default size of the pivot table and then readjusted to fit its contents. This can cause the layout of the page displaying the pivot table to change after the page is initially displayed.

	
StatusBarRendered: Use to specify whether or not the pivot table status bar is display. The default value is false.

	
EmptyText: Enter the text to use to describe an empty pivot table. If the text is enclosed in an HTML tag, it will be formatted.

	
Summary: Enter a statement of the pivot table's purpose and structure for use by screen readers.

	
Expand the Behavior section. Use this section to set the following attributes:

	
PivotEnabled: Specify whether or not to allow the end user to reposition the view of the data in the pivot table. The default value is true. If you choose to disallow pivoting, you should also set the PivotLabelVisible attribute to false.

	
ColumnFetchSize and RowFetchSize: Use to specify the number of columns and rows in a data fetch block. The default value for columns is 10 and the default value for rows is 25. For more information about content delivery to pivot tables, see Section 21.2.1, "Content Delivery."

24.2.3 What Happens When You Add a Pivot Table to a Page

When a pivot table component is inserted into a JSF page using the Component Gallery, a basic pivot table tag is added to the source code as follows:

<dvt:pivotTable id="pt1"/>

You can then use the Component Palette to insert a header cell and data cell and then configure the cell content through stamping. For more information, see Section 24.3, "Using Stamping in Pivot Tables."

A Create Pivot Table wizard provides declarative support for data-binding and configuring the pivot table. In the wizard pages you can:

	
Specify the initial layout of the pivot table

	
Associate and configure a pivot filter bar

	
Specify alternative labels for the data layers

	
Configure insert or filter drilling

	
Define aggregation of data values

	
Configure category and data sorting

	
View a live data preview of the pivot table

For more information, see the "Creating Databound ADF Pivot Tables" chapter in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

24.3 Using Stamping in Pivot Tables

Each immediate child of a pivot table component must be either a headerCell or dataCell component. The pivot table can contain at most one headerCell and at most one dataCell component. These components make it possible to customize the cell content through stamping. When you use stamping, child components are not created for every header cell or data cell in a pivot table. Rather, the content of the component is repeatedly rendered, or stamped, once per cell, such as the rows in the pivot table.

Each time a header or data cell is stamped, the value for the current cell is copied into a var property, and additional data for the cell is copied into a varStatus property. These properties can be accessed in EL expressions inside the header or data cell component, for example, to pass the cell value to a stamped af:outputText component. Once the pivot table has completed rendering, the var and varStatus properties are removed, or reverted back to their previous values.

24.3.1 How to Configure Header and Data Cells as Stamps

Only certain types of child components are supported by header cells or data cells. For example, each header cell can contain read-only components. Each data cell can contain read-only or input components, including all components with no activity and most components that implement the EditableValueHolder or ActionSource interfaces.

Header cells and data cells should have only one child component. If multiple children are desired, they should be wrapped in another component. If no layout is desired, af:group can be used, which simply renders its children without adding layout, and is consequently lightweight. If layout is desired, a layout component like af:panelGroupLayout can be used instead. For more information, see Section 9.13, "Grouping Related Items."

Data cell editing is enabled by using an input component as the child component of dataCell. At runtime you can open the cell for editing by single or double-clicking the cell in the pivot table. For more information, see Section 24.1.1.3, "Editing Data Cells."

Example 24-1 shows a code sample for configuring header cell stamping using af:switcher to vary the type of stamped component by layer name, that is, a different content for Geography, Channel, and so on. The example also illustrates components that can be used as children of headerCell.

Example 24-1 Code Sample for Header Cell Stamping

<dvt:pivotTable id="goodPT"
 inlineStyle="width:100%;height:600px;"
 binding="#{editor.component}"
 contentDelivery="immediate"
 value="#{pivotTableHeaderCellDemo.dataModel}"
 headerFormat="#{pivotTableHeaderCellDemo.getHeaderFormat}"
 dataFormat="#{pivotTableHeaderCellDemo.getDataFormat}"
 var="cellData"
 varStatus="cellStatus"
 summary="pivot table">
 <dvt:headerCell id="goodHC>
 <af:switcher id="sw" facetName="#{cellData.layerName}" defaultFacet="Other">
 <f:facet name="Geography">
 <af:group id="g1">
 <af:icon id="idicon11" name="info" shortDesc="Icon" />
 <af:outputText value="#{cellData.dataValue}" id="ot11"
 shortDesc="#{cellData.dataValue}" />
 </af:group>
 </f:facet>
 <f:facet name="Channel">
 <af:group id="g2">
 <af:panelGroupLayout id="pgl2" layout="vertical">
 <af:commandImageLink shortDesc="Sample commandImageLink"
 icon="/images/pivotTableCSVDemo/smily-normal.gif"
 hoverIcon="/images/pivotTableCSVDemo/smily-glasses.gif"
 id="cil1"/>
 <af:outputText value="#{cellData.dataValue}" id="ot1" />
 </af:group>
 <af:commandButton text="Go to Tag Guide page" immediate="true"
 action="guide" id="cb1"/>
 </af:panelGroupLayout>
 </f:facet>
 <f:facet name="Product">
 <af:panelGroupLayout id="pgl3" layout="vertical">
 <af:outputText value="#{cellData.dataValue}" id="ot12" />
 <af:commandButton text="Go to Tag Guide page" immediate="true"
 action="guide" id="cb2"/>
 </af:panelGroupLayout>
 </f:facet>
 <f:facet name="Other">
 <af:commandLink text="#{cellData.dataValue}"
 shortDesc="#{cellData.dataValue}" immediate="true"
 action="guide" id="idcommandlink11"/>
 </f:facet>
 </af:switcher>
 </dvt:headerCell>
</dvt:pivotTable>

Figure 24-19 shows the resulting pivot table for the code sample.

Figure 24-19 Pivot Table Header Cell Stamps

[image: Pivot table with customized header cell]

Example 24-2 shows a code sample for configuring data cell stamping using af:switcher to vary the type of stamped component by measure, that is, a different content for Sales, Weight, and so on. The example also illustrates components that can be used as children of dataCell.

Example 24-2 Code Sample for Data Cell Stamping

<dvt:pivotTable id="goodPT" var="cellData" varStatus="cellStatus">
 <dvt:dataCell>
 <af:switcher id="sw" facetName="#{cellStatus.members.MeasDim.value}"
 defaultFacet="Other">
 <f:facet name="Sales">
 <af:inputText id="idinputtext1" value="#{cellData.dataValue}" />
 </f:facet>
 <f:facet name="Units">
 <af:inputText id="idinputtext2" value="#{cellData.dataValue}" >
 <af:validateLength maximum="6" minimum="2" />
 </af:inputText>
 </f:facet>
 <f:facet name="Weight">
 <af:outputText id="idoutputtext1" value="#{cellData.dataValue}" />
 </f:facet>
 <f:facet name="Color">
 <af:selectOneChoice id="idselectonechoice"
 value="#{cellData.dataValue}" label="Color">
 <af:selectItem label="red" value="red" shortDesc="shortDesc sample"/>
 <af:selectItem label="coffee" value="coffee"
 shortDesc="Sample shortDesc text"/>
 <af:selectItem label="milk" value="milk"
 shortDesc="Another shortDesc sample"/>
 </af:selectOneChoice>
 </f:facet>
 <f:facet name="Available">
 <af:selectBooleanCheckbox id="idselectbooleancheckbox"
 label="Availability" text="Item Available"
 autoSubmit="true"
 value="#{cellData.dataValue}"/>
 </f:facet>
 <f:facet name="Supply Date">
 <af:inputDate id="idinputdate1" value="#{cellData.dataValue}"
 label="Change Date:" simple="true" >
 <af:validateDateTimeRange maximum="2020-12-31" minimum="1980-12-31" />
 </af:inputDate>
 </f:facet>
 <f:facet name="Link">
 <af:commandLink text="#{cellData.dataValue}" immediate="true"
 action="guide" id="idcommandlink"/>
 </f:facet>
 <f:facet name="Size">
 <af:inputComboboxListOfValues label="Size"id="idInputComboboxListOfValues"
 value="#{cellData.dataValue}"
 searchDesc="Search Size"
 model="#{pivotTableEditBean.listOfValuesModel}"
 columns="3" />
 </f:facet>
 <f:facet name="Other">
 <af:outputText id="idoutputtext2" value="#{cellData.dataValue}" />
 </f:facet>
 </af:switcher>
 </dvt:dataCell>
</dvt:pivotTable>

Figure 24-20 shows the resulting pivot table for the code sample.

Figure 24-20 Pivot Table Data Cell Stamps

[image: Pivot table data cell stamps]

You can also specify header and data cell CSS styling using the style attributes of their child components. shows custom CSS styling using inlineStyle and contentStyle attributes of af:outputText and af:inputText respectively.

Example 24-3 Code Sample for Data Cell CSS Styling

<dvt:pivotTable id="goodPT"
 value="#{richPivotTableModel.dataModel}"
 var="cellData"
 varStatus="cellStatus">

 <dvt:dataCell id="dc1">
 <af:switcher id="sw1" facetName="#{richPivotTableModel.stampFacet}">
 <f:facet name="outputText">
 <af:outputText id="ot1" value="#{cellData.dataValue}"
 inlineStyle="#{myBean.textStyle}"/>
 </f:facet>
 <f:facet name="inputText">
 <af:inputText id="ot2" value="#{cellData.dataValue}"
 contentStyle="#{myBean.textStyle}" />
 </f:facet>
 </af:switcher>
 </dvt:dataCell>
 </dvt:pivotTable>

Before you begin:

It may be helpful to have an understanding of how pivot table attributes and child tags can affect functionality. For more information, see Section 24.2.1, "Configuring Pivot Tables."

You should already have a pivot table on your page. If you do not, follow the instructions in this chapter to create a pivot table. For more information, see Section 24.2.2, "How to Add a Pivot Table to a Page."

To add and configure a header or data cell stamp:

	
In the Component Palette, from the ADF Data Visualizations page, in the Pivot Table panel, drag and drop a Header Cell or Data Cell onto the pivot table in the visual editor.

	
In the Structure window, right-click the dvt:headerCell or dvt:dataCell and choose insert inside dvt:headerCell or insert inside dvt:dataCell > ADF Data Visualization Components or ADF Faces.

	
In the Insert Item dialog, select the component you wish to stamp in the header or data cell.

	
In the Structure window, select the component you inserted, and in the Property Inspector, set the component attributes.

24.3.2 What You May Need to Know About Using var and varStatus Properties

Pivot table var and varStatus properties are used to access cell data in stamped dataCell and headerCell components. The var property names the EL expression variable used to reference cell data within pivot table data cell stamps. In the stamped dataCell or headerCell component, the var property must be referenced and followed by a metadata keyword. The optional varStatus property names the EL expression variable used to provide contextual information about the state of the component. In stamped dataCell or headerCell components, the varStatus property must be referenced and followed by one of the following:

	
members: Valid only for the dataCell component. Provides access to the header cells corresponding to the same row or column as the current data cell.

	
model: Returns the DataModel for this component.

	
cellIndex: Returns the cell index for this component.

	
cellKey: Returns the cell key for this component.

Example 24-4 shows a code sample for using var and varStatus to access data from a stamped data cell.

Example 24-4 Code Sample for Data Cell Stamping

<dvt:pivotTable id="pt1" var="cellData" varStatus="cellStatus">
 <dvt:dataCell>
 <af:outputText id="ot1" value="#{cellData.dataValue}"/>
 inlineStyle="color:#{(cellStatus.members.Product.dataValue == 'Canoes' ? 'red' : 'blue')};"/>
 </dvt:dataCell>
</dvt:pivotTable>

The code sample illustrates the syntax for using each data cell value property as follows:

	
var: [var property].[data cell metadata keyword]

In the code sample, the value of af:outputText is set to #{cellData.dataValue}, the value of the current cell.

	
varStatus: [varStatus property].[members, model, cellIndex, or cellKey].[layer name].[header cell metadata keyword]

The data cell component value references the pivot table varStatus (cellStatus) followed by members to access the header cells corresponding to the same row or column as the current data cell, followed by the name of the layer (Product) containing the desired header cell, followed by the header cell metadata keyword dataValue.

Table 24-1 shows the metadata keywords supported for data cells in a rowset data model.

Table 24-1 Supported Metadata Keywords for Data Cells

	Keyword	Description
	
dataValue

	
Most frequently useful keyword. Returns the data value Object for the current cell. To specify the object's accessible field through EL Expression, use the setting dataValue.fieldName.

	
dataCubeMax and dataCubeMin

	
Returns a number that is the maximum and minimum, respectively, for the measure of the cell across the values in the cube.

	
dataIsTotal

	
Returns a Boolean true if this cell is an aggregate.

	
dataAggregates

	
If the cell is an aggregate, returns a List<String,Object> of the column and value pairs representing the cells (non-aggregate) that make up the aggregation for the given cell.

	
aggregateCollection

	
If the cell is an aggregate, returns the List<String,Object> of the column and value pairs in the cube that make up the cell's aggregate value. Note that aggregateCollection is post-cube and dataAggregates is not.

	
dataRow

	
Returns a Map<String,Object> from attribute name to data Object in the original row mapping. Usage: dataRow.foo, where "foo" is one of the rowset attribute (column) names.

	
dataTypeColumn

	
Returns a String representing the name of the rowset attribute from which the value comes.

	
dataRowKey

	
Returns the row data model's ADF model row key,

	
dataKeyPath

	
Returns the ADF model key path object.

Table 24-2 shows the metadata keywords supported for header cells in a rowset data model.

Table 24-2 Supported Metadata Keywords for Header Cells

	Keyword	Description
	
dataValue

	
Most frequently useful keyword. Returns the data value Object for the current cell. To specify the object's accessible field through EL Expression, use the setting dataValue.fieldName.

	
value

	
Returns the String value of the header cell. Also available in cubic data models.

	
label

	
Returns the String label for the header cell. Also available in cubic data models.

	
isTotal

	
Returns a Boolean true if the header cell represents an aggregate.

	
drillState

	
Returns an Integer value representing the drill state of the current header cell, if applicable. 0 indicates "not drillable", 1 indicates "drillable", and 2 indicates "drilled". Also available in cubic data models

	
memberMetadataColumn

	
Returns the String attribute column of the header cell.

	
layerName

	
Returns a String representing the name of the layer containing the header cell.

	
layerLabel

	
Returns a String representing the label (if any) for the layer containing this header cell. May fall back to layerName.

Example 24-5 shows a code sample using sparkcharts stamped in data cells. The resulting pivot table is shown in Figure 24-11.

Example 24-5 Code Sample for Stamping Sparkcharts in Data Cells

<dvt:pivotTable id="pivotTable1"
 value="#{pivotTableSparkChart.dataModel}"
 var="cellData"
 varStatus="cellStatus">
 <dvt:dataCell>
 <af:switcher id="s2"
 facetname="O___b_cellData_dataIsTotal__b__"
 defaultFacet="false">
 <f:facet name="true">
 <dvt:sparkChart id="sc1" shortDesc="Spark Chart"
 highMarkerColor="#008200"
 lowMarkerColor="#ff0000">
 <af:iterator id="i1"
 value="#{cellData.aggregateCollection}"
 var="sparks" >
 <dvt:sparkItem id="si1"
 value="#{sparks.dataValue}"/>
 </af:iterator>
 </dvt:sparkChart>
 </f:facet>
 <f:facet name="false">
 <af:outputText id="ot1" value="#{cellData.dataValue}"/>
 </f:facet>
 </af:switcher>
 </dvt:dataCell>

 <dvt:headerCell>
 <af:switcher id="s3"
 facetname="O___b_cellData_isTotal__b__"
 defaultFacet="false">
 <f:facet name="true">
 <af:outputText id="ot2" value="Trend"/>
 </f:facet>
 <f:facet name="false">
 <af:outputText id="ot3" value="#{cellData.dataValue}"/>
 </f:facet>
 </af:switcher>
 </dvt:headerCell>
</dvt:pivotTable>

Example 24-6 shows a code sample for using gauges in data cells. The resulting pivot table is displayed in Figure 24-13.

Example 24-6 Code Sample for Stamping Gauges in Data Cells

<dvt:pivotTable
 id="pivotTable2"
 value="#{pivotTableGauge.dataModel}"
 var="cellData"
 varStatus="cellStatus">
 <dvt:dataCell>
 <dvt:gauge id="g1" shortDesc="Gauge"
 imageWidth="80" imageHeight="80" imageFormat="PNG_STAMPED"
 value="#{cellData.dataValue}"
 minValue="#{cellData.dataCubeMin}"
 maxValue="#{cellData.dataCubeMax}"/>
 </dvt:dataCell>
</dvt:pivotTable>

Example 24-7 shows a code sample for formatting based on pivot table header cells.

Example 24-7 Code Sample for Formatting Based on Header Cells

<dvt:pivotTable
 id="pivotTable3"
 value="#{pivotTableMemberFormatting.dataModel}"
 var="cellData"
 varStatus="cellStatus">
 <dvt:headerCell>
 <af:switcher
 facetname="O___b_cellData_layerName__b__"
 defaultFacet="Other">
 <f:facet name="Product">
 <af:outputText id="ot1"
 value="#{cellData.dataValue}"
 inlineStyle="color:#{(cellData.dataValue == 'Canoes' ? 'red' : 'blue')};"/>
 </f:facet>
 <f:facet name="Other">
 <af:outputText id="ot2" value="#{cellData.dataValue}"/>
 </f:facet>
 </af:switcher>
 </dvt:headerCell>

 <dvt:dataCell>
 <af:outputText id="ot3" value="#{cellData.dataValue}"
 inlineStyle="color:#{(cellStatus.members.Product.dataValue == 'Canoes' ? 'red' : 'blue')};"/>
 </dvt:dataCell>
</dvt:pivotTable>

Figure 24-21 shows the pivot table resulting from the code sample for formatting based on header cells.

Figure 24-21 Formatting Based on Header Cells

[image: Formatting based on header cells]

24.4 Using a Pivot Filter Bar with a Pivot Table

You can enhance the data filtering capacity in a pivot table by adding a pivot filter bar. Zero or more layers of data not already displayed in the pivot table row edge or column edge are displayed in the page edge. Figure 24-22 shows a pivot filter bar with Quarter and Month layers that can be used to filter the data displayed in the pivot table.

Figure 24-22 Pivot Filter Bar with Data Layer Filters

[image: Pivot filter bar with data layer filters.]

You can also change the display of data in the pivot table by pivoting layers between the row, column, or page edges. Use the pivot handle to drag the layers between the edges as desired. Figure 24-23 shows the modified pivot table and pivot filter bar when the Channel data layer is pivoted to the page edge.

Figure 24-23 Pivot Table and Pivot Filter Bar After Pivot

[image: Pivot table and filter bar after pivot.]

24.4.1 How to Associate a Pivot Filter Bar with a Pivot Table

You associate a pivot filter bar component, pivotFilterBar, to work with a pivot table component, pivotTable, by configuring the data model and associated properties to work with both components. Example 24-8 shows a code sample for associating a pivot filter bar with a pivot table.

Example 24-8 Code Sample for Pivot Filter Bar

<dvt:pivotFilterBar id="pf1" value="#{binding.pt.pivotFilterBarModel}"
 modelName="pt1Model"/>
<dvt:pivotTable id="pt1" value="#{binding.pt.dataModel}" modelName="pt1Model"
 partialTriggers="pf1"/>

You can associate a pivot filter bar with a pivot table in any of the following ways:

	
Create a pivot table using the Data Controls Panel.

When you drag a data collection from the Data Controls Panel to create a pivot table on your page, the Select Display Attributes page of the Create Pivot Table wizard provides the option to create a pivot filter bar to associate with the pivot table. You can choose to specify zero or more attributes representing data layers in the page edge. The data model and associated properties are automatically configured for you. For detailed information, see the "Creating Databound ADF Pivot Tables" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Add a pivot filter bar to a pivot table bound to data.

From the ADF Data Visualizations page of the Component Palette, Pivot Table panel, you can drag a pivotFilterBar element adjacent to a pivotTable element that has been bound to a data collection and the data binding will be done for you.

	
Add a pivot filter bar to a pivot table not bound to data.

From ADF Data Visualizations page of the Component Palette, Pivot Table panel, you can drag a pivotFilterBar element adjacent to a pivotTable element that has not been bound to a data collection. In this instance, you must configure the data model and associated properties in order for the pivot filter bar to work with the pivot table.

24.5 Customizing Pivot Table Cell Content

All cells in a pivot table are either header cells or data cells. Before rendering a cell, the pivot table calls a method expression. You can customize the content of pivot table header cells and data cells by providing method expressions for the following attributes of the pivotTable component:

	
For header cells, use one of the following attributes:

	
headerFormat: Use to create formatting rules to customize header cell content.

	
headerFormatManager: Use only if you want to provide custom state saving for the formatting rules of the application's pivot table header cells.

	
For data cells, use one of the following attributes:

	
dataFormat: Use to create formatting rules to customize data cell content.

	
dataFormatManager: Use only if you want to provide custom state saving for the formatting rules of the application's pivot table data cells.

24.5.1 How to Create a CellFormat Object for a Data Cell

To specify customization of the content of a data cell, you must code a method expression that returns an instance of oracle.dss.adf.view.faces.bi.component.pivotTable.CellFormat.

An instance of a CellFormat object lets you specify an argument to change the CSS style of a cell. For example, you might use this argument to change the background color of a cell.

	
Converter: An instance of javax.faces.convert.Converter, which is used to perform number, date, or text formatting of a raw value in a cell.

	
CSS style: Used to change the CSS style of a cell. For example, you might use this argument to change the background color of a cell.

	
CSS text style: Used to change the CSS style of the text in a cell. For example, you might use this argument to set text to bold.

	
New raw value: Used to change the cell's underlying value that was returned from the data model. For example, you might choose to change the abbreviated names of states to longer names. In this case, the abbreviation NY might be changed to New York.

To create an instance of a CellFormat object for a data cell:

	
Construct an oracle.adf.view.faces.bi.component.pivotTable.DataCellContext object for the data cells that you want to format. The DataCellContext method requires the following parameters in its constructor:

	
model: The name of the dataModel used by the pivot table.

	
row: An integer that specifies the zero-based row that contains the data cell on which you are operating.

	
column: An integer that specifies the zero-based column that contains the data cell that you want to format.

	
qdr: The QDR that is a fully qualified reference for the data cell that you want to format.

	
value: A java.lang.Object that contains the value in the data cell that you want to format.

	
Pass the DataCellContext to a method expression for the dataFormat attribute of the pivot table.

	
In the method expression, write code that specifies the kind of formatting you want to apply to the data cells of the pivot table. This method expression must return a CellFormat object.

24.5.2 How to Change Cell Format

You can apply header and data cell formatting styles to emphasize aspects of the data displayed in the pivot table. Figure 24-24 shows a pivot table with sales totals generated for products and for product categories. In the rows that contain totals, this pivot table displays bold text against a shaded background, a style change. This change shows in both the row header cells and the data cells for the pivot table. The row headers for totals contain the text "Sales Total."

The pivot table also shows stoplight and conditional formatting of data cells. For more information, see Section 24.5.3, "How to Create Stoplight and Conditional Formatting in a Pivot Table."

Figure 24-24 Sales Data Per Product Category

[image: Sales data per product category]

Example 24-9 shows sample code that produces the required custom formats for the sales totals, but not for the stoplight formatting. The example includes the code for method expressions for both the dataFormat attribute and the headerFormat attribute of the dvt:pivotTable tag. If you want to include stoplight formatting in the pivot table, you might want to include the code from Example 24-10.

Example 24-9 Sample Code to Change Style in a Pivot Table

public CellFormat getDataFormat(DataCellContext cxt)
{
 CellFormat cellFormat = new CellFormat(null, null, null);
 QDR qdr = cxt.getQDR();
 //Obtain a reference to the product category column.
 Object productCateg = qdr.getDimMember("ProductCategory");
 //Obtain a reference to the product column.
 Object product = qdr.getDimMember("ProductId");

 if (productCateg != null && productCateg.toString().equals("Sales Total"))
 {
 cellFormat.setStyle("background-color:#C0C0C0");
 }
 else if (product != null && product.toString().equals("Sales Total")
 {
 cellFormat.setStyle("background-color:#C0C0C0");
 }
 return cellFormat;
}

public CellFormat getHeaderFormat(HeaderCellContext cxt)
{
 if (cxt.getValue() != null)
 {
 String header = cxt.getValue().toString();
 if (header.equals("Sales Total"))
 {
 return new CellFormat(null, "background-color:#C0C0C0",
 "font-weight:bold");
 }
 }
 return null;
 }

24.5.3 How to Create Stoplight and Conditional Formatting in a Pivot Table

Stoplight and conditional formatting of the cells in a pivot table are examples of customizing the cell content. For this kind of customization, an application might prompt a user for a high value and a low value to be associated with the stoplight formatting. Generally three colors are used as follows:

	
Values equal to and above the high value are colored green to indicate they have no issues.

	
Values above the low value but below the high value are colored yellow to warn that they are below the high standard.

	
Values at or below the low value are colored red to indicate that they fall below the minimum acceptable level.

Figure 24-24 shows data cells with stoplight formatting for minimum, acceptable, and below standards sales for States.

Example 24-10 shows code that performs stoplight formatting in a pivot table that does not display totals. If you want to do stoplight formatting for a pivot table that displays totals, then you might want to combine the code from Example 24-9 (which addresses rows with totals) with the code for stoplight and conditional formatting.

Example 24-10 Sample Code for Stoplight and Conditional Formatting

public CellFormat getDataFormat(DataCellContext cxt)
{
 //Use low and high values provided by the application.
 double low = m_rangeValues.getMinimum().doubleValue() * 100;
 double high = m_rangeValues.getMaximum().doubleValue() * 100;

 CellFormat cellFormat = new CellFormat(null, null, null);

 // Create stoplight format
 if (isStoplightingEnabled())
 {
 String color = null;
 Object value = cxt.getValue();
 if (value != null && value instanceof Number)
 {
 double dVal = ((Number)value).doubleValue();
 if (dVal <= low)
 {
 color = "background-color:" + ColorUtils.colorToHTML(m_belowColor) + ";";
 }
 else if (dVal > low && dVal <= high)
 {
 color = "background-color:" + ColorUtils.colorToHTML(m_goodColor) + ";";
 }
 else if (dVal > high)
 {
 color = "background-color:" + ColorUtils.colorToHTML(m_aboveColor) + ";";
 }
 }
 cellFormat.setStyle(color);
 }
 return cellFormat;
}

24.6 Using Selection in Pivot Tables

Selection in a pivot table allows a user to select one or more cells in a pivot table. Only one of the three areas including the row header, column header, or data cells can be selected at one time.

An application can implement features such as displaying customized content for a context menu, based on currently selected cells. Example 24-11 shows sample code for getting the currently selected header cells.

Example 24-11 Sample Code to Get Selected Header Cells

UIPivotTable pt = getPivotTable()
if (pt == null)
 return null;
HeaderCellSelectionSet headerCells = null;
if (pt.getSelection().getColumnHeaderCells().size() > 0) {
 headerCells = pt.getSelection().getColumnHeaderCells();
} else if (pt.getSelection().getRowHeaderCells().size() > 0) {
 headerCells = pt.getSelection().getRowHeaderCells();
}

At runtime, selection in a data cell highlights the cell, as shown in Figure 24-25.

Figure 24-25 Selected Data Cell

[image: Selected data cell]

24.7 Updating Pivot Tables with Partial Page Rendering

You can update pivot tables, data cells, and header cells by using partial page rendering (PPR). For example, you may display totals in a pivot table when triggered by a checkbox. PPR allows individual components on a page to be re-rendered without the need to refresh the entire page. For more information about PPR, see Chapter 8, "About Partial Page Rendering."

	
Note:

By default, ADF pivot tables support automatic PPR, where any component whose values change as a result of backend business logic is automatically rerendered. If your application uses the Fusion technology stack, you can enable the automatic partial page rendering feature on any page. For more information, see the "What You May Need to Know About Automatic Partial Page Rendering" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

For a component to be rerendered based on an event caused by another component, it must declare which other components are the triggers. Use the partialTriggers attribute to provide a list of IDs of the components that should trigger a partial update of the pivot table. The pivot table listens on the trigger components and if one of the trigger components receives an event that will cause it to update in some way, the pivot table is also updated.

Example 24-12 shows sample code for updating a pivot table by displaying the totals when a checkbox is triggered. The triggering component uses the ID as the partialTriggers value.

Example 24-12 Partial Update of a Pivot Table

<dvt:pivotTable id="goodPT"
 value="#{richPivotTableModel.dataModel}"
 partialTriggers="showTotals"/>

 <af:selectBooleanCheckbox id="showTotals" autoSubmit="true" label="Show Totals"
 value="#{richPivotTableModel.totalsEnabled}"/>

24.8 How to Export from a Pivot Table

You can export the data from a pivot table to a Microsoft Excel spreadsheet. You create an action source, such as a command button or command link, add a exportPivotTableData component, and associate it with the data you wish to export. You can configure the exportPivotTableData component so that the entire pivot table will be exported, or so that only the rows selected by the user will be exported. For example, Figure 24-26 shows a pivot table that includes command button components that allow users to export the data to an Excel spreadsheet.

Figure 24-26 Pivot Table with Export to Excel Command Buttons

[image: pivot table with export to excel buttons]

At runtime, when the user clicks the command button, by default all the rows and columns are exported in an Excel format written to the file specified in the filename attribute of the component. Alternatively, you can configure the exportPivotTableData component so that only the rows the user selects are exported, by setting the exportedData attribute to selected. Example 24-13 shows the code sample for the Export to Excel command buttons.

Example 24-13 Code Sample for Export to Excel Command Button

<dvt:pivotTable id="pivotTableToExport"
 binding="#{editor.component}"
 contentDelivery="immediate"
 value="#{pivotTableExport.dataModel}" summary="pivot table"/>

<h:panelGrid id="pfl" columns="2" cellpadding="3">
 <af:commandButton text="Export All" id="exportAll">
 <dvt:exportPivotTableData exportedId="pivotTableToExport" type="excelHTML"
 exportedData="all" filename="all.xls"
 title="All pivotTable data"/>
 </af:commandButton>
 <af:commandButton text="Export Selected" id="exportSelected">
 <dvt:exportPivotTableData exportedId="pivotTableToExport" type="excelHTML"
 exportedData="selected" filename="selected.xls"
 title="Selected pivotTable data"/>
 </af:commandButton>
</h:panelGrid>

Figure 24-27 shows the resulting Excel spreadsheet when the Export All button is clicked.

Figure 24-27 Pivot Table Export to Excel Spreadsheet

[image: pivot table export to excel spreadsheet]

	
Note:

You may receive a warning from Excel stating that the file is in a different format than specified by the file extension. This warning can be safely ignored.

27 Using Hierarchy Viewer Components

This chapter describes how to display data in hierarchy viewers using the ADF Data Visualization hierarchyViewer component. If your application uses the Fusion technology stack, then you can use data controls to create hierarchy viewers. For more information, see the "Creating Databound Hierarchy Viewers" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

This chapter includes the following sections:

	
Section 27.1, "About Hierarchy Viewer Components"

	
Section 27.2, "Using Hierarchy Viewer Components"

	
Section 27.3, "Managing Nodes in a Hierarchy Viewer"

	
Section 27.4, "Using Panel Cards"

	
Section 27.5, "Configuring Navigation in a Hierarchy Viewer"

	
Section 27.6, "Customizing the Appearance of a Hierarchy Viewer"

	
Section 27.7, "Adding Interactivity to a Hierarchy Viewer Component"

	
Section 27.8, "Adding Search to a Hierarchy Viewer"

27.1 About Hierarchy Viewer Components

Hierarchy viewers are used to visually display hierarchical data. Hierarchical data contains master-detail relationships within the data. For example, you could create a hierarchy viewer that renders an organization chart from a data collection that contains information about the relationships between employees in an organization.

Hierarchy viewers use a shape called a node to reference the data in a hierarchy. The shape and content of the nodes is configurable, as well as the visual layout of the nodes. nodes can display multiple views in a panel card.

27.1.1 End User and Presentation Features

The ADF Data Visualization hierarchy viewer component provides a range of features for end users, such as panning and zooming, changing the layout view, It also provides a range of presentation features, such as changing node shape, and lines and labels.

27.1.1.1 Layouts

You can define the initial layout of the hierarchy viewer when you insert the component on the page from either the Data Controls panel to bind a data collection to the hierarchy viewer component, or from the Component Palette to insert the component and bind to data later. The layouf of nodes in a hierarchy viewer is configurable, and include the following types of layouts:

	
Vertical top down

Figure 27-1 shows an example of a vertical top down layout.

Figure 27-1 Hierarchy Viewer Vertical Top Down Layout

[image: vertical top down layout]

	
Vertical bottom up

	
Horizontal left-to-right

Figure 27-2 shows an example of a horizontal left-to-right layout.

Figure 27-2 Hierarchy Viewer Horizontal Left-to-Right Layout

[image: horizontal left to right layout]

	
Horizontal right-to-left

	
Horizontal, direction depends on the locale

	
Tree, indented tree

Figure 27-3 shows an example of a tree layout.

Figure 27-3 Hierarchy Viewer Tree Layout

[image: tree layout]

	
Radial, root node in center and successive child levels radiating outward from their parent nodes

	
Circle, root node in center and all leaf nodes arranged in concentric circle, with parent nodes arranged within the circle

Figure 27-4 shows an example of a circle layout.

Figure 27-4 Hierarchy Viewer Circle Layout

[image: Hierarchy viewer circle layout]

27.1.1.2 Navigation

At runtime, the node contains controls that allow users to navigate between nodes and to show or hide other nodes by default.

At runtime, the end user uses the controls on the node to dynamically switch between the content that the af:showDetailItem elements reference.

At runtime, if a user double-clicks another node that has a value specified for its setAnchorListener property, that node becomes the anchor node.

At runtime, when a user moves the mouse over a node at any zoom level, a hover window displaying node content at zoom level 100% is automatically displayed, allowing the user to see the full information regardless of zoom level. The controls on the hover window are active when the node has been selected in the hierarchy viewer.

27.1.1.3 Tilt Panning

If enabled, instead of browsing through a hierarchy viewer with a large quantity of nodes one page at a time, users can initiate a tilt panning effect that animates the hierarchy viewer to visually fly through the hierarchy viewer nodes. Once set in motion toward the edge of a view, the effect continues automatically until it reaches the end of the nodes on an edge. Figure 27-5 shows the tilt panning effect as it reaches the edge of the view.

Figure 27-5 Hierarchy Viewer Tilt Panning Effect

[image: hierarchy viewer tilt panning effect.]

To use the tilt panning effect you should first adjust the zoom level on the hierarchy view for an acceptable view of the content of the nodes. You can initiate the effect in any of these ways:

	
Click and drag when using the pan control in the control panel to initiate tilt panning after a short period of regular panning.

	
Click and drag the view one-third of the way across the viewport.

	
Click and hold the cursor near the edge of the view to initiate tilt panning in that direction.

Once the tilt panning effect is initiated, you can move the mouse within the view to change the direction of the pan through the view. Exit tilt panning by selecting any node in the view.

27.1.1.4 Control Panel

The hierarchy viewer Control Panel provides tools for a user to manipulate the position and appearance of a hierarchy viewer component at runtime. By default, it appears in a hidden state in the upper left-hand corner of the hierarchy viewer, as illustrated by Figure 27-6.

Figure 27-6 Control Panel in Hidden State

[image: Control Panel in Hidden State]

Users click the Hide or Show Control Panel button shown in Figure 27-6 to hide or expand the Control Panel. Figure 27-7 shows the expanded Control Panel.

Figure 27-7 Control Panel in Show State

[image: Control Panel in Show State]

Table 27-1 describes the functionality that the controls in the Control Panel provide to users. The Panel Selector is automatically enabled if a node in your hierarchy viewer component contains a nodes with panel cards. The Layout Selector appears automatically if the hierarchy viewer component uses one of the following layouts:

	
Vertical top down

	
Horizontal left to right

	
Tree

	
Radial

	
Circle

Table 27-1 Elements in the Control Panel

	Control	Name	Description
	[image: Zoom Control]
	
Pan Control

	
Allows user to reposition the hierarchy viewer component within the viewport.

	[image: Zoom to Fit control]
	
Zoom to Fit

	
Allows user to zoom a hierarchy viewer component so that all nodes are visible within the viewport.

	[image: Zoom Control]
	
Zoom Control

	
Allows user to zoom the hierarchy viewer component.

	[image: Hide or Show Control Panel]
	
Hide or Show

	
Hides or shows the Control Panel.

	[image: Panel Selector]
	
Panel Selector

	
Displays a list of node panels that you have defined. Users can use the panel selector to show the same panel on all nodes at once.

	[image: layout selector]
	
Layout Selector

	
Allows a choice of layouts. Users can change the layout of the hierarchy viewer component from the layout you defined to one of the layout options presented by the component.

27.1.1.5 Printing

Hierarchy viewers are printed using the HMTL view in the browser.

27.1.1.6 Bi-directional Support

Hierarchy viewers support bi-directional text in node content, the search panel, and the display of search results. Bi-directional text is text containing text in both text directionalities, both right-to-left (RTL) and left-to-right (LTR). It generally involves text containing different types of alphabets such as Arabic or Hebrew scripts.

Hierarchy viewers also support bi-directional support for flipping panel cards from one node view to the next.

27.1.1.7 Disable Features

End user features including hierarchy viewer hover window display, panning and zooming, modify layout, node detail display and synchronizing the panel card can be disabled.

27.1.1.8 State Management

By default, specify the expansion state of the hierarchy viewer at initial display, and selected row key.

27.1.2 Hierarchy Viewer Use Cases and Examples

A hierarchy viewer visually displays hiearchical data and the master-detail relationships. Figure 27-8 shows a segment of a hierarchy viewer component at runtime that includes a control panel, a number of nodes, and links that connect the nodes. The nodes include a panel card with

Figure 27-8 Hierarchy Viewer Component with Control Panel and Nodes

[image: Hierarchy Viewer Component with Control Panels and Nodes]

27.1.3 Additional Functionality for Hierarchy Viewer Components

You may find it helpful to understand other ADF Faces features before you implement your hierarchy viewer component. Additionally, once you have added a hierarchy viewer component to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that hierarchy viewer components can use:

	
Partial page rendering: You may want a hierarchy viewer to refresh to show new data based on an action taken on another component on the page. For more information, see Chapter 8, "Rerendering Partial Page Content."

	
Personalization: Users can change the way the hierarchy viewer displays at runtime, those values will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 32, "Allowing User Customization on JSF Pages."

	
Accessibility: You can make your hierarchy viewer components accessible. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."

	
Content Delivery: You can configure your hierarchy viewer to fetch a certain number of rows at a time from your data source using the contentDelivery attribute. For more information, see Section 12.2.2, "Content Delivery."

	
Automatic data binding: If your application uses the Fusion technology stack, then you can create automatically bound hierarchy viewers based on how your ADF Business components are configured. For more information, see the "Creating Databound Hierarchy Viewer" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Note:

If you know the UI components on your page will eventually use ADF data binding, but you need to develop the pages before the data controls are ready, then you should consider using placeholder data controls, rather than manually binding the components. Using placeholder data controls will provide the same declarative development experience as using developed data controls. For more information, see the "Designing a Page Using Placeholder Data Controls" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Additionally, data visualization components share much of the same functionality, such as how data is delivered, automatic partial page rendering (PPR), image formats, and how data can be displayed and edited. For more information, see Section 21.2, "Common Functionality in Data Visualization Components."

27.2 Using Hierarchy Viewer Components

A hierarchy viewer component requires data collections where a master-detail relationship exists between one or more detail collections and a master detail collection. The hierarchy viewer component uses the same data model as the ADF Faces tree component. You can test whether it is possible to bind a data collection to a hierarchy viewer component by first binding it to an ADF Faces tree component. If you can navigate the data collection using the ADF Faces tree component, it should be possible to bind it to a hierarchy viewer component.

When you add a hierarchy viewer component to a JSF page, JDeveloper adds a tree binding to the page definition file for the JSF page. For information about how to populate nodes in a tree binding with data, see the "Using Trees to Display Master-Detail Objects" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

The data collections that you bind to nodes in a hierarchy viewer component must contain a recursive accessor if you want users to be able to navigate downward from the root node of the hierarchy viewer component. For more information about navigating a hierarchy viewer component, see Section 27.5, "Configuring Navigation in a Hierarchy Viewer."

27.2.1 Configuring Hierarchy Viewer Components

JDeveloper generates the following elements in JSF pages when you drag and drop components from the Component Gallery onto a JSF page or when you use the Create Hierarchy Viewer dialog to create a hierarchy viewer component as described in the "Creating Databound Hierarchy Viewers" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Hierarchy viewer (hierarchyViewer): Wraps the node and link elements.

	
Node (node): A node is a shape that references the data in a hierarchy, for example, employees in an organization or computers in a network. You configure the child elements of the node element to reference whatever data you want to display. The node element supports the use of one or more f:facet elements that display content at different zoom levels (100%, 75%, 50%, and 25%). The f:facet element supports the use of many ADF Faces components, such as af:outputText, af:image, and af:panelGroupLayout, in addition to the ADF Data Visualization panelCard component.

At runtime, the node contains controls that allow users to navigate between nodes and to show or hide other nodes by default. For information about specifying node content and defining zoom levels, see Section 27.3.1, "How to Specify Node Content."

	
Link (link): You set values for the attributes of the link element to connect one node with another node. For information about how to customize the appearance of the link and add labels, see Section 27.6.4, "How to Configure the Display of Links and Labels."

	
Panel card (panelCard): Provides a method to dynamically switch between multiple sets of content referenced by a node element using animation by, for example, horizontally sliding the content or flipping a node over.

The f:facet tag for each zoom level supports the use of a dvt:panelCard element that contains one or more af:showDetailItem elements defining the content to be displayed at the specified zoom level. At runtime, the end user uses the controls on the node to dynamically switch between the content that the af:showDetailItem elements reference. For more information, see Section 27.4, "Using Panel Cards."

	
Note:

Unlike the other elements, the dvt:panelCard element is not generated if you choose the default quick layout option when using the Component Gallery to create a hierarchy viewer.

27.2.2 How to Add a Hierarchy Viewer to a Page

You use the Component Palette to add a hierarchy viewer to a JSF page. When you drag and drop a hierarchy viewer component onto the page, the Component Gallery displays available categories of hierarchy viewer layouts, with descriptions, to provide visual assistance when creating hierarchy viewers. Figure 27-9 shows the Component Gallery for hierarchy viewers with the vertical top down layout type selected.

Figure 27-9 Component Gallery for Hierarchy Viewers

[image: component gallery for hierarchy viewer]

Once you select the hierarchy viewer layout, and the hierarchy viewer is added to your page, you can use the Property Inspector to specify data values and configure additional display attributes for the hierarchy viewer.

In the Property Inspector you can use the dropdown menu for each attribute field to display a property description and options such as displaying an EL Expression Builder or other specialized dialogs. Figure 27-10 shows the dropdown menu for a hierarchy viewer component value attribute.

Figure 27-10 Hierarchy Viewer Ancestor Level Attribute Dropdown Menu

[image: ancestor level attribute dropdown menu.]

	
Note:

If your application uses the Fusion technology stack, then you can use data controls to create a hierarch viewer and the binding will be done for you. For more information, see the "Creating Databound Hierarchy Viewers" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

Before you begin:

It may be helpful to have an understanding of how hierarchy viewer attributes and hierarchy child tags can affect functionality. For more information, see Section 27.2.1, "Configuring Hierarchy Viewer Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 27.1.3, "Additional Functionality for Hierarchy Viewer Components."

To add a hierarchy viewer to a page:

	
In the Component Palette, from the ADF Data Visualizations page, in the Hierarchy Viewer panel, drag and drop a Hierarchy Viewer onto the page to open the Create Hierarchy Viewer dialog in the Component Gallery.

Use the dialog to select the hierarchy viewer layout type. If you need help, press F1 or click Help.

	
In the Property Inspector, view the attributes for the hierarchy viewer. Use the help button to display the complete tag documentation for the hierarchyViewer component.

	
Expand the Common section. Use this section to set the following attributes:

	
Layout: Specify the hiearchical layout of the hierarchy viewer. For a description with illustration of the valid values, see Section 27.1.1.1, "Layouts."

	
Ancestor Levels (show sub-menu): Use to set the displayLevelsAncestor attribute that specifies the number of ancestor levels to display during initial render. This property is zero-based. A value of 0 means that no ancestor levels above the root will be shown. The default value is 0.

You can click Configure to open a Configure Ancestor Display dialog and specify the ancestor data collection to use.

	
Descendent Levels (show sub-menu): Use to set the displayLevelsChildren attribute that specifies the number of child levels to display during initial render. This property is zero-based. A value of 0 means that no child levels below the root will be shown; the root itself will be shown. The default value is 1, which means that the root and the first level of children will be shown.

	
Nodes Per Level (show sub-menu): Use to set the levelFetchSize attribute that specified the number of child nodes that will be fetched and displayed at a single time for each expanded parent node. Additional child nodes may be fetched and displayed by using the lateral navigation controls shown in the hierarchy viewer. The default value is 25.

	
Expand the Hierarchy Viewer Data section. Use this section to set the following attributes:

	
Value: Specify the data model for the hierarchy viewer; can be an instance of javax.faces.TreeModel.

	
Var: Specify the variable used to reference each element of the hierarchy viewer data collection. Once this component has completed rendering, this variable is removed, or reverted back to its previous value.

	
Expand the Appearance section. Use this section to set the following attributes:

	
Summary: Enter a description of the hierarchy viewer. This description is accessed by screen reader users.

	
EmptyText: Specify the text to display when a hierarchy viewer does not display data.

	
Expand the Behavior section. Use this section to set the following attributes:

	
ControlPanelBehavior: Specify the behavior of the Control Panel. For more information, see Section 27.6.3, "How to Configure the Display of the Control Panel."

	
FeaturesOff: Specify a space delimited list of default features to turn off for the hierarchy viewer. Valid values are: pan, zoom, zoomToFit, changeLayout, cardSync, and nodeDetail.

	
Panning: Specify panning behavior. The default value is default for click and drag panning. You can also specify a tilt value for click and drag panning with automatic 3D tilt panning enabled.

27.2.3 What Happens When You Add a Hierarchy Viewer to a Page

When a hierarchy viewer component is inserted into a JSF page using the Component Gallery, a set of child tags that support customization of the gauge is automatically inserted.

The hierarchy viewer component uses elements such as af:panelGroupLayout, af:spacer, and af:separator to define how content is displayed in the nodes. Example 27-1 shows the code generated when the component is created by insertion from the Component Palette. Code related to the hierarchy viewer elements is highlighted in the example.

Example 27-1 Hierarchy Viewer Sample Code

<dvt:hierarchyViewer id="hierarchyViewer1" layout="hier_vert_top"
 inlineStyle="width:100%;height:600px;">
 <dvt:link linkType="orthogonalRounded" id="l1"/>
 <dvt:node width="233" height="330" id="n1">
 <f:facet name="zoom100">
 <af:panelGroupLayout layout="vertical"
 inlineStyle="width:100%;height:100%;padding:5px"
 id="pgl2">
 <af:panelGroupLayout layout="horizontal" id="pgl3">
 <af:panelGroupLayout inlineStyle="width:85px;height:120px"
 id="pgl4">
 <af:image id="i1"/>
 </af:panelGroupLayout>
 <af:spacer width="5" height="5" id="s2"/>
 <af:panelGroupLayout layout="vertical" id="pgl1">
 <af:outputText value=" attribute value1 "
 inlineStyle="font-weight:bold;font-size:20px;color:#383A47"
 id="ot5"/>
 <af:outputText value=" attribute value2"
 inlineStyle="font-size:20px;color:#383A47"
 id="ot9"/>
 <af:outputText value=" attribute value3"
 inlineStyle="font-size:11px;font-stCompleting Your View

Part VI

Completing Your View

Part VI contains the following chapters:

	
Chapter 28, "Customizing the Appearance Using Styles and Skins"

	
Chapter 29, "Internationalizing and Localizing Pages"

	
Chapter 30, "Developing Accessible ADF Faces Pages"

	
Chapter 31, "Creating Custom ADF Faces Components"

	
Chapter 32, "Allowing User Customization on JSF Pages"

	
Chapter 33, "Adding Drag and Drop Functionality"

	
Chapter 34, "Using Different Output Modes"

	
Chapter 35, "Using the Active Data Service with an Asynchronous Backend"

Allowing User Customization on JSF Pages

32 Allowing User Customization on JSF Pages

This chapter describes how changes to certain UI components that the user makes at runtime can persist for the duration of the session.

Alternatively, you can configure your application so that changes persist in a permanent data repository. Doing so means that the changes remain whenever the user reenters the application. To allow this permanent persistence, you need to use the Oracle Metadata Service (MDS), which is part of the full Fusion technology stack. Using MDS and the full Fusion stack also provides the following additional persistence functionality:

	
Persisting additional attribute values

	
Persisting search criteria

	
Persisting the results of drag and drop gestures in the UI

	
Reordering components on a page at runtime

	
Adding and removing components and facets from the page at runtime

For information and procedures for using Oracle MDS, see the "Allowing User Customizations at Runtime" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

This chapter includes the following sections:

	
Section 32.1, "About User Customization"

	
Section 32.2, "Implementing Session Change Persistence"

32.1 About User Customization

Many ADF Faces components allow users to change the display of the component at runtime. For example, a user can change the location of the splitter in the panelSplitter component or change whether or not a panel displays detail contents. By default, these changes live only as long as the page request. If the user leaves the page and then returns, the component displays in the manner it is configured by default. However, you can configure your application so that the changes persist through the length of the user's session. This way the changes will stay in place until the user leaves the application.

Table 32-1 shows the changes by component that provide default personalization capabilities:

Table 32-1 Implicitly Persisted Attribute Values

	Component	Attribute	Affect at Runtime
	
panelBox

showDetail

showDetailHeader

showDetailItem

	
disclosed

	
Users can display or hide content using an icon in the header. Detail content will either display or be hidden, based on the last action of the user.

	
showDetailItem (used in a panelAccordion component)

	
flex

	
The heights of multiple showDetailItem components are determined by their relative value of the flex attribute. The showDetailItem components with larger flex values will be taller than those with smaller values. Users can change these proportions, and the new values will be persisted.

	
showDetailItem (used in a panelAccordion component)

	
inflexibleHeight

	
Users can change the size of a panel, and that size will remain.

	
panelSplitter

	
collapsed

	
Users can collapse either side of the splitter. The collapsed state will remain as last configured by the user.

	
panelSplitter

	
splitterPosition

	
The position of the splitter in the panel will remain where last moved by user.

	
richTextEditor

	
editMode

	
The editor will display using the mode (either WYSIWYG or source) last selected by the user.

	
calendar

	
activeDay

	
The day considered active in the current display will remain the active day.

	
calendar

	
view

	
The view (day, week, month, or list) that currently displays activities will be retained.

	
panelWindow

dialog

	
contentHeight

	
Users can change the height of a panelWindow or dialog popup component, and that height will remain.

	
panelWindow

dialog

	
contentWidth

	
Users can change the width of a panelWindow or dialog popup component, and that width will remain.

	
activeCommandToolbarButton

commandButton

commandImageLink

commandLink

commandMenuItem

commandNavigationItem

commandToolbarButton

	
windowHeight

	
When an inline popup dialog is launched using the ADF Faces dialog framework or an ADF taskflow, if the user manually resizes the dialog, any associated windowHeight value on the command component that launched the dialog is also changed and will remain This feature only applies to inline dialogs and not browser window dialogs.

	
activeCommandToolbarButton

commandButton

commandImageLink

commandLink

commandMenuItem

commandNavigationItem

commandToolbarButton

	
windowWidth

	
When an inline popup dialog is launched using the ADF Faces dialog framework or an ADF taskflow, if the user manually resizes the dialog, any associated windowWidth value on the command component that launched the dialog is also changed and will remain This feature only applies to inline dialogs and not browser window dialogs.

	
column

	
displayIndex

	
ADF Faces columns can be reordered by the user at runtime. The displayIndex attribute determines the order of the columns. (By default, the value is set to -1 for each column, which means the columns will display in the same order as the data source). When a user moves a column, the value on each column is changed to reflect the new order. These new values will be persisted.

	
column

	
frozen

	
ADF Faces columns can be frozen so that they will not scroll. When a column's frozen attribute is set to true, all columns before that column (based on the displayIndex value) will not scroll. When you use the table with a panelCollection component, you can configure the table so that a button appears that allows the user to freeze a column. For more information, see Section 12.3.4, "How to Display a Table on a Page."

	
column

	
noWrap

	
The content of the column will either wrap or not. You need to create code that allows the user to change this attribute value. For example, you might create a context menu that allows a user to toggle the value from true to false.

	
column

	
selected

	
The selected column is based on the column last selected by the user.

	
column

	
visible

	
The column will either be visible or not, based on the last action of the user. You will need to write code that allows the user to change this attribute value. For example, you might create a context menu that allows a user to toggle the value from true to false.

	
column

	
width

	
The width of the column will remain the same size as the user last set it.

	
table

	
filterVisible

	
ADF Faces tables can contain a component that allows users to filter the table rows by an attribute value. For a table that is configured to use a filter, the filter will either be visible or not, based on the last action of the user. You will need to write code that allows the user to change this attribute value. For example, you might create a button that allows a user to toggle the value from true to false.

	
dvt:areaGraph

dvt:barGraph

dvt:bubbleGraph

dvt:comboGraph

dvt:horizontal

BarGraph

dvt:lineGraph

dvt:scatterGraph

	
timeRangeMode

	
The time range for the data displayed on a graph time axis can be specified for all data visualization graph components. By default, all data is displayed. The time range can also be set for a relative time range from the last or first data point, or an explicit time range. You will need to write code that allows the user to change this attribute value. For example, you might create a dropdown list to choose the time range for a graph.

	
dvt:ganttLegend

	
visible

	
The legend for data visualization project, resource utilization, and scheduling Gantt chart components will either be visible or not inside the information panel. You will need to write code that allows the user to change this attribute value, for example, a hide and show button to display the legend.

	
dvt:hierarchyViewer

	
layout

	
The data visualization hierarchy viewer component supports nine hierarchy layout options including a top-to-bottom vertical, tree, circle, radial, and so on. Users can change the layout in the map control panel and the last selected layout will be retained.

	
dvt:map

	
mapZoom

	
This data visualization geographic map component attribute specifies the beginning zoom level of the map. The zoom levels are defined in the map cache instance as part of the base map. You will need to write code that allows the user to change this attribute value.

	
dvt:map

	
srid

	
This data visualization geographic map component attribute specifies the srid (spatial reference id) of all the coordinates of the map, which includes the center of the map, defined by starting X and starting Y, and all the points in the point theme. You will need to write code that allows the user to change this attribute value.

	
dvt:map

	
startingX, startingY

	
This data visualization geographic map component attribute specifies the X and Y coordinate of the center of the map. The srid for the coordinate is specified in the srid attribute. If the srid attribute is not specified, this attribute assumes that its value is the longitude of the center of the map. You will need to write code that allows the user to change this attribute value.

	
dvt:projectGantt

dvt:resource

UtilizationGantt

dvt:schedulingGantt

	
splitterPosition

	
The position of the splitter in the panel will remain where last moved by user.

	
dvt:timeAxis

	
scale

	
Data visualization components for project, resource utilization, and scheduling Gantt charts use this facet to specify the major and minor time axes in the Gantt chart. The time scale (twoyears, year, halfyears, quarters, twomonths, months, weeks, twoweeks, days, sixhours, threehours, hours, halfhours, quarterhours) can be set by the user using the menu bar View menu and the selection will be retained. Note that a custom time scale can also be named for this component value.

	
dvt:timeSelector

	
explicitStart, explicitEnd

	
Data visualization area, bar, combo, line, scatter, and bubble graph components use this child tag attribute to specify the explicit start and end dates for the time selector. Only value-binding is supported for this attribute. You will need to write code that allows the user to change this attribute value.

32.1.1 User Customization Use Cases and Examples

You can configure an application so that the value of the attributes listed in Table 32-1 can be persisted through the length of the user's session. For example, say your application contains a table, and a user adjusts the width of a column so that the contents all display on one line. If you configure your application to use session change persistence, when the user leaves and then returns to that page, the column will still be expanded to the previously set width.

	
Note:

For additional functionality, you can configure your application so that changes persist in a permanent data repository, meaning they will persist for that user across multiple sessions. To allow this permanent persistence, you need to use the full Fusion technology stack. For more information, see the "Allowing User Customizations at Runtime" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

32.2 Implementing Session Change Persistence

In order for the application to persist user changes to the session, you must configure your project to enable customizations.

	
Note:

MDS requires that pages be XML-based to be customized. Therefore, customizations are not allowed on .jsp files; use .jspx files instead.

Additionally, Facelets files must have a .jsf extension to be customizable. MDS uses this extension to recognize it as a Facelets file.

32.2.1 How to Implement Session Change Persistence

You configure your application to enable customizations in the web.xml file.

To implement session change persistence:

	
In the Application Navigator, double-click the web project.

	
In the Project Properties dialog, select the ADF View node.

	
On the ADF View page, activate the Enable User Customizations checkbox, select the For Duration of Session radio button, and click OK.

32.2.2 What Happens When You Configure Your Application to Use Change Persistence

When you elect to save changes to the session, JDeveloper adds the CHANGE_PERSISTENCE context parameter to the web.xml file, and sets the value to session. This context parameter registers the ChangeManager class that will be used to handle persistence. Example 32-1 shows the context parameter in the web.xml file.

Example 32-1 Context Parameter in web.xml Used for Change Persistence

<context-param>
 <param-name>org.apache.myfaces.trinidad.CHANGE_PERSISTENCE</param-name>
 <param-value>session</param-value>
</context-param>

32.2.3 What Happens at Runtime: How Changes are Persisted

When an application is configured to persist changes to the session, any changes are recorded in a session variable in a data structure that is indexed according to the view ID. Every time the page is requested, in the subsequent view or restore view phase, the tag action classes look up all changes for a given component and apply the changes in the same order as they were added. This means that the changes registered through the session will be applied only during subsequent requests in the same session.

32.2.4 What You May Need to Know About Using Change Persistence on Templates and Regions

When you use session persistence, changes are recorded and restored on components against the viewId for the given session. As a result, when the change is applied on a component that belongs to a fragment or page template, it is applicable only in scope of the page that uses the fragment or template. It does not span all pages that consume the fragment or template.For example, say your project has the pageOne.jspx and pageTwo.jspx JSF pages, and they both contain the fragment defined in the region.jsff page fragment, which in turn contains a showDetail component. When the pageOne.jspx JSF page is rendered and the disclosed attribute on the showDetail component changes, the implicit attribute change is recorded and will be applied only for the pageOne.jspx page. If the user navigates to the pageTwo.jspx page, no attribute change is applied.

Adding Drag and Drop Functionality

33 Adding Drag and Drop Functionality

This chapter describes how to add drag and drop functionality to your pages, which allows users to drag the values of attributes or objects from one component to another, or allows users to drag and drop components.

This chapter includes the following sections:

	
Section 33.1, "About Drag and Drop Functionality"

	
Section 33.2, "Adding Drag and Drop Functionality for Attributes"

	
Section 33.3, "Adding Drag and Drop Functionality for Objects"

	
Section 33.4, "Adding Drag and Drop Functionality for Collections"

	
Section 33.5, "Adding Drag and Drop Functionality for Components"

	
Section 33.6, "Adding Drag and Drop Functionality Into and Out of a panelDashboard Component"

	
Section 33.7, "Adding Drag and Drop Functionality to a Calendar"

	
Section 33.8, "Adding Drag and Drop Functionality for DVT Graphs"

	
Section 33.9, "Adding Drag and Drop Functionality for DVT Gantt Charts"

33.1 About Drag and Drop Functionality

The ADF Faces framework provides the ability to drag and drop items from one place to another on a page. In most cases, drag and drop can easily be implemented by added the appropriate tags to the source and target and implementing code in a managed bean. Drag and drop provides users with the GUI experience that is expected in web applications. For example, in the File Explorer application, you can drag a file from the Table tab and drop it into another directory folder, as shown in Figure 33-1.

Figure 33-1 Drag and Drop in the File Explorer Application

[image: You can drag a file to another directory folder]

In this scenario, you are actually dragging an object from one collection (Folder0) and dropping it into another collection (Folder2). This is one of the many supported drag and drop scenarios. ADF Faces supports the following scenarios:

	
Dragging an attribute value from one component instance and copying it to another. For example, a user might be able to drag an outputText component onto an inputText component, which would result in the value of the text attribute of the outputText component becoming the value of the text attribute on the inputText component.

	
Dragging the value of one object and dropping it so that it becomes the value of another object. For example, a user might be able to drag an outputText component onto another outputText component, which would result in an array of String objects populating the text attribute of the second outputText component.

	
Dragging an object from one collection and dropping it into another, as shown in Figure 33-1.

	
Dragging a component from one place on a page to another. For example, a user might be able to drag an existing panelBox component to a new place within a panelGrid component.

	
Dragging an activity in a calendar from one start time or date to another.

	
Dragging a component into or out of a panelDashboard component.

	
Dragging a marker in a DVT scatter or bubble graph to change its value.

	
Dragging an object from a DVT Gantt chart to another component.

When users click on a source and begin to drag, the browser displays the element being dragged as a ghost element attached to the mouse pointer. Once the ghost element hovers over a valid target, the target component shows some feedback (for example, it becomes highlighted). If the user drags the ghost element over an invalid target, the cursor changes to indicate that the target is not valid.

When dragging attribute values, the user can only copy the value to the target. For all other drag and drop scenarios, on the drop, the element can be copied (copy and paste), moved (cut and paste), or linked (creating a shortcut for a file in a directory in which the link is a reference to the real file object).

The component that will be dragged and that contains the value is called the source. The component that will accept the drop is called the target. You use a specific tag as a child to the source and target components that tells the framework to allow the drop. Table 33-1 shows the different drag and drop scenarios, the valid source(s) and target(s), and the associated tags to be used for that scenario.

Table 33-1 Drag and Drop Scenarios

	Scenario	Source	Target
	
Dragging an attribute value

	
An attribute value on a component

	
An attribute value on another component, as long as it is the same object type

	
Tag:

attributeDragSource

	
Tag:

attributeDropTarget

	
Dragging an object from one component to another

	
Any component

	
Any component

	
Tag:

attributeDragSource

	
Tag:

dropTarget

	
Dragging an item from one collection and dropping it into another

	
table, tree, and treeTable components

	
table, tree, and treeTable components

	
Tag:

dragSource

	
Tag:

collectionDropTarget

	
Dragging a component from one container to another

	
Any component

	
Any component

	
Tag:

componentDragSource

	
Tag:

dropTarget

	
Dragging a calendar activity from one start time or date to another

	
calendarActivity object

	
calendar component

	
Tag:

None needed

	
Tag:

calendarDropTarget

	
Dragging a panelBox component into a panelDashboard component.

	
panelBox component

	
panelDashboard component

	
Tag:

componentDragSource

	
Tag:

dataFlavor

	
Dragging a panelBox component out of a panelDashboard component.

	
panelBox component in a panelDashboard component

	
Any component

	
Tag:

componentDragSource

	
Tag:

dropTarget

	
Dragging a marker in a DVT graph

	
graph component

	
graph component

	
Tag:

dragSource

	
Tag:

dropTarget

	
Dragging an object from a DVT Gantt chart and dropping it on another component

	
Gantt chart

	
Any component

	
Tag:

dragSource

	
Tag:

dropTarget

You can restrict the type of the object that can be dropped on a target by adding a dataFlavor tag. This helps when the target can accept only one object type, but the source may be one of a number of different types. The dataFlavor tag also allows you to set multiple types so that the target can accept objects from more than one source or from a source that may contain more than one type. Both the target and the source must contain the dataFlavor tag, and the values must be the same in order for the drop to be successful.

	
Note:

Drag and drop functionality is not supported between windows. Any drag that extends past the window boundaries will be canceled. Drag and drop functionality is supported between popup windows and the base page for the popup.

Also note that drag and drop functionality is not accessible; that is, there are no keyboard strokes that can be used to execute a drag and drop. Therefore, if your application requires all functionality to be accessible, you must provide this logic. For example, your page might also present users with a method for selecting objects and a Move button or menu item that allows them to move those selected objects.

33.1.1 Additional Functionality for Drag and Drop

You may find it helpful to understand other ADF Faces features before you implement drag and drop. Following are links to other sections that may be useful for implementing drag and drop.

	
Managed beans: You may be using managed beans for your code. For information about using managed beans, see Section 3.6, "Creating and Using Managed Beans."

	
Events: Table and tree components fire both server-side and client-side events that you can have your application react to by executing some logic. For more information, see Chapter 6, "Handling Events."

33.2 Adding Drag and Drop Functionality for Attributes

You add drag and drop functionality for attributes by defining one component's attribute to be a target and another component's attribute to be a source.

	
Note:

The target and source attribute values must both be the same data type. For example, attribute drag and drop is available when both the source and target are of type String. If they are both of type number, they both use the same converters.

The following procedure assumes you have your target and source components already on the JSF page.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.2, "Adding Drag and Drop Functionality for Attributes."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

To add drag and drop functionality for attributes:

	
In the Component Palette, from the Operations panel, drag and drop an Attribute Drop Target as a child to the target component.

	
In the Insert Attribute Drop Target dialog, use the Attribute dropdown to select the attribute that will be populated by the drag and drop action. This dropdown list shows all valid attributes on the target component.

	
From the Component Palette, drag and drop an Attribute Drag Source as a child to the component that can provide a value for the target.

	
In the Insert Attribute Drag Source dialog, use the Attribute dropdown to select the attribute whose value will be used to populate the target attribute. This dropdown list shows all valid attributes on the source component.

33.3 Adding Drag and Drop Functionality for Objects

When you want users to be able to drag things other than attribute values, or you want users to be able to do something other than copy attributes from one component to another, you use the dropTarget tag. Additionally, use the DataFlavor object to determine the valid Java types of sources for the drop target. Because there may be several drop targets and drag sources, you can further restrict valid combinations by using discriminant values. You also must implement any required functionality in response to the drag and drop action.

For example, suppose you have an outputText component and you want the user to be able to drag the outputText component to a panelBox component and have that component display an array, as shown in Figure 33-6.

Figure 33-2 Dragging and Dropping an Array Object

[image: Drag and drop an object]

The outputText component contains an attributeDragSource tag. However, because you want to drag an array (and not just the String value of the attribute), you must use the dropTarget tag instead of the attributeDropTarget tag. Also use a dataFlavor tag to ensure that only an array object will be accepted on the target.

You can also define a discriminant value for the dataFlavor tag. This is helpful if you have two targets and two sources, all with the same object type. By creating a discriminant value, you can be sure that each target will accept only valid sources. For example, suppose you have two targets that both accept an EMPLOYEE object, TargetA and TargetB. Suppose you also have two sources, both of which are EMPLOYEE objects. By setting a discriminant value on TargetA with a value of alpha, only the EMPLOYEE source that provides the discriminant value of alpha will be accepted.

You also must implement a listener for the drop event. The object of the drop event is called the transferable, which contains the payload of the drop. Your listener must access the transferable object, and from there, use the DataFlavor object to verify that the object can be dropped. You then use the drop event to get the target component and update the property with the dropped object. More details about this listener are covered in the procedure in Section 33.9.1, "How to Add Drag and Drop Functionality for a DVT Component".

33.3.1 How to Add Drag and Drop Functionality for a Single Object

To add drag and drop functionality, first add tags to a component that define it as a target for a drag and drop action. Then implement the event handler method that will handle the logic for the drag and drop action. Last, you define the sources for the drag and drop.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.3, "Adding Drag and Drop Functionality for Objects."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

You will need to complete this task:

	Create the source and target components on the page.

To add drag and drop functionality:

	
In the JSF page that contains the target, add a dropTarget tag as a child to the target component by dragging and dropping a Drop Target tag (located in the Operations panel) from the Component Palette.

	
In the Insert Drop Target dialog, enter an expression that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 5).

For information about using managed beans, see Section 3.6, "Creating and Using Managed Beans."

	
Tip:

You can also intercept the drop on the client by populating the clientDropListener attribute. For more information, see Section 33.3.3, "What You May Need to Know About Using the ClientDropListener."

	
In the Insert Data Flavor dialog, enter the class for the object that can be dropped onto the target, for example java.lang.Object. This selection will be used to create a dataFlavor tag, which determines the type of object that can be dropped onto the target, for example a String or a Date. Multiple dataFlavor tags are allowed under a single drop target to allow the drop target to accept any of those types.

	
Tip:

To specify a typed array in a DataFlavor tag, add brackets ([]) to the class name, for example, java.lang.Object[].

	
In the Structure window, select the dropTarget tag. In the Property inspector, select a value for the actions attribute. This defines what actions are supported by the drop target. Valid values can be COPY (copy and paste), MOVE (cut and paste), and LINK (copy and paste as a link), for example:.

MOVE COPY

If no actions are specified, the default is COPY.

Example 33-1 shows the code for a dropTarget component inserted into an panelBox component that takes an array object as a drop target. Note that because an action was not defined, the only allowed action will be COPY.

Example 33-1 JSP Code for a dropTarget tag

<af:panelBox text="PanelBox2">
 <f:facet name="toolbar"/>
 <af:dropTarget dropListener="#{myBean.handleDrop}">
 <af:dataFlavor flavorClass="java.lang.Object[]"/>
 </af:dropTarget>
</af:panelBox>

	
In the managed bean referenced in the EL expression created in Step 2, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a DnDAction object, which is the action that will be performed when the source is dropped. Valid return values are DnDAction.COPY, DnDAction.MOVE, and DnDAction.LINK, and were set when you defined the target attribute in Step 5. This method should check the DropEvent event to determine whether or not it will accept the drop. If the method accepts the drop, it should perform the drop and return the DnDAction object it performed. Otherwise, it should return DnDAction.NONE to indicate that the drop was rejected.

The method must also check for the presence for each dataFlavor object in preference order.

	
Tip:

If your target has more than one defined dataFlavor object, then you can use the Transferable.getSuitableTransferData() method, which returns a List of TransferData objects available in the Transferable object in order, from highest suitability to lowest.

The DataFlavor object defines the type of data being dropped, for example java.lang.Object, and must be as defined in the DataFlavor tag on the JSP, as created in Step 3.

	
Tip:

To specify a typed array in a DataFlavor object, add brackets ([]) to the class name, for example, java.lang.Object[].

DataFlavor objects support polymorphism so that if the drop target accepts java.util.List, and the transferable object contains a java.util.ArrayList, the drop will succeed. Likewise, this functionality supports automatic conversion between Arrays and Lists.

If the drag and drop framework doesn't know how to represent a server DataFlavor object on the client component, the drop target will be configured to allow all drops to succeed on the client.

Example 33-2 shows a private method that the event handler method calls (the event handler itself does nothing but call this method; it is needed because this method also needs a String parameter that will become the value of the outputText component in the panelBox component). This method copies an array object from the event payload and assigns it to the component that initiated the event.

Example 33-2 Event Handler Code for a dropListener

public DnDAction handleDrop(DropEvent dropEvent)
{
 Transferable dropTransferable = dropEvent.getTransferable();
 Object[] drinks = dropTransferable.getData(DataFlavor.OBJECT_ARRAY_FLAVOR);

 if (drinks != null)
 {
 UIComponent dropComponent = dropEvent.getDropComponent();

// Update the specified property of the drop component with the Object[] dropped
 dropComponent.getAttributes().put("value", Arrays.toString(drinks));

 return DnDAction.COPY;
 }
 else
 {
 return DnDAction.NONE;
 }
 }

	
Add a clientAttribute tag as a child to the source component by dragging a Client Attribute (located in the Operations panel), from the Component Palette. This tag is used to define the payload of the source for the event. Define the following for the clientAttribute tag in the Property Inspector:

	
Name: Enter any name for the payload.

	
Value: Enter an EL expression that evaluates to the value of the payload. In the drinks example, this would resolve to the Array that holds the different drink values.

	
Drag and drop an Attribute Drag Source (located in the Operations panel), from the palette as another child to the source component. In the Insert Attribute Drag Source dialog, use the dropdown list to select the name defined for the clientAttribute tag created in the previous step. Doing so makes the value of the clientAttribute tag the source's payload. Example 33-3 shows the code for an outputText component that is the source of the drag and drop operation.

Example 33-3 JSP Code for a Drag Source

<af:outputText value="Drag to see drinks">
 <af:clientAttribute name="drinks" value="#{myBean.drinks}"/>
 <af:attributeDragSource attribute="drinks"/>
</af:outputText>

33.3.2 What Happens at Runtime

When performing a drag and drop operation, users can press keys on the keyboard (called keyboard modifiers) to select the action they wish to take on a drag and drop. The drag and drop framework supports the following keyboard modifiers:

	
SHIFT: MOVE

	
CTRL: COPY

	
CTRL+SHIFT: LINK

When a user executes the drag and drop operation, the drop target first determines that it can accept the drag source's data flavor value. Next, if the source and target are collections, the framework intersects the actions allowed between the drag source and drop target and executes the action (one of COPY, MOVE, or LINK) in that order from the intersection. When there is only one valid action, that action is executed. When there is more than one possible action and the user's keyboard modifier matches that choice, then that is the one that is executed. If either no keyboard modifier is used, or the keyboard modifier used does not match an allowed action, then the framework chooses COPY, MOVE, LINK in that order, from the set of allowed actions.

For example, suppose you have a drop target that supports COPY and MOVE. First the drop target determines that drag source is a valid data flavor. Next, it determines which action to perform when the user performs the drop. In this example, the set is COPY and MOVE. If the user holds down the SHIFT key while dragging (the keyboard modifier for MOVE), the framework would choose the MOVE action. If the user is doing anything other than holding down the SHIFT key when dragging, the action will be COPY because COPY is the default when no modifier key is chosen (it is first in the order). If the user is pressing the CTRL key, that modifier matches COPY, so COPY would be performed. If the user was pressing the CTRL+SHIFT keys, the action would still be COPY because that modifier matches the LINK action which is not in the intersected set of allowed actions.

	
Note:

Because information is lost during the roundtrip between Java and JavaScript, the data in the drop may not be the type that you expect. For example, all numeric types appear as double objects, char objects appear as String objects, List and Array objects appear as List objects, and most other objects appear as Map objects. For more information, see Section 6.4.3, "What You May Need to Know About Marshalling and Unmarshalling Data.".

33.3.3 What You May Need to Know About Using the ClientDropListener

The dropTarget tag contains the clientDropListener attribute where you can reference JavaScript that will handle the drop event on the client. The client handler should not take any parameters and returns an AdfDnDContext action. For example, if the method returns AdfDnDContext.ACTION_NONE the drop operation will be canceled and no server call will be made; if the method returns AdfDnDContext.ACTION_COPY, a copy operation will be allowed and a server call will be made which will execute the dropListener method if it exists.

For example, suppose you want to log a message when the drop event is invoked. You might create a client handler to handle logging that message and then returning the correct action so that the server listener is invoked. Example 33-4 shows a client handler that uses the logger to print a message.

Example 33-4 clientDropListener Handler

<script>
/**
 * Shows a message.
 */
function showMessage()
{
 AdfLogger.LOGGER.logMessage(AdfLogger.ALL, "clientDropListener handler,
 copying...");
 return AdfDnDContext.ACTION_COPY;
}
</script>

33.4 Adding Drag and Drop Functionality for Collections

You use the collectionDropTarget and dragSource tags to add drag and drop functionality that allows users to drag an item from one collection (for example, a row from a table), and drop it into another collection component such, as a tree. For example, in the File Explorer application, users can drag a file from the table that displays directory contents to any folder in the directory tree. Figure 33-3 shows the File0.doc object being dragged from the table displaying the contents of the Folder0 directory to the Folder3 directory. Once the drop is complete, the object will become part of the collection that makes up Folder3.

Figure 33-3 Drag and Drop Functionality in the File Explorer Application

[image: Drag a file to a directory]

As with dragging and dropping single objects, you can have a drop on a collection with a copy, move, or copy and paste as a link (or a combination of the three), and use dataFlavor tags to limit what a target will accept.

When the target source is a collection and it supports the move operation, you may also want to also implement a method for the dragDropEndListener attribute, which is referenced from the source component and is used to clean up the collection after the drag and drop operation. For more information, see Section 33.4.2, "What You May Need to Know About the dragDropEndListener".

33.4.1 How to Add Drag and Drop Functionality for Collections

To add drag and drop functionality for collections, instead of using the dropTarget tag, you use the collectionDropTarget tag. You then must implement the event handler method that will handle the logic for the drag and drop action. Next, you define the source for the drag and drop operation using the dragSource tag.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.4, "Adding Drag and Drop Functionality for Collections."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

You will need to complete this task:

	Create the source and target components on the page.

To add drag and drop functionality:

	
Add a collectionDropTarget tag as a child to the target collection component by dragging a Collection Drop Target from the Component Palette.

	
In the Insert Collection Drop Target dialog, enter an expression for the dropListener attribute that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 4).

	
In the Property Inspector, set the following:

	
actions: Select the actions that can be performed on the source during the drag and drop operation.

If no actions are specified, the default is COPY.

	
modelName: Define the model for the collection.

The value of the modelName attribute is a String object used to identify the drag source for compatibility purposes. The value of this attribute must match the value of the discriminant attribute of the dragSource tag you will use in a Step 6. In other words, this is an arbitrary name and works when the target and the source share the same modelName value or discriminant value.

	
In the managed bean inserted into the EL expression in Step 2, implement the handler for the drop event.

This method must take a DropEvent event as a parameter and return a DnDAction. This method should use the DropEvent to get the Transferable object and from there get the RowKeySet (the rows that were selected for the drag). Using the CollectionModel obtained through the Transferable object, the actual rowData can be obtained to complete the drop. The method should then check the DropEvent to determine whether it will accept the drop or not. If the method accepts the drop, it should perform the drop and return the DnDAction it performed -- DnDAction.COPY, DnDAction.MOVE or DnDAction.LINK, otherwise it should return DnDAction.NONE to indicate that the drop was rejected.

Example 33-5 shows the event handler method on the CollectionDnd.java managed bean used in the collectionDropTarget demo that handles the copy of the row between two tables.

Example 33-5 Event Handler Code for a dropListener for a Collection

public DnDAction handleDrop(DropEvent dropEvent)
{
 Transferable transferable = dropEvent.getTransferable();
 // The data in the transferable is the row key for the dragged component.
 DataFlavor<RowKeySet> rowKeySetFlavor =
 DataFlavor.getDataFlavor(RowKeySet.class, "DnDDemoModel");
 RowKeySet rowKeySet = transferable.getData(rowKeySetFlavor);
 if (rowKeySet != null)
 {
 // Get the model for the dragged component.
 CollectionModel dragModel = transferable.getData(CollectionModel.class);
 if (dragModel != null)
 {
 // Set the row key for this model using the row key from the transferable.
 Object currKey = rowKeySet.iterator().next();
 dragModel.setRowKey(currKey);

 // And now get the actual data from the dragged model.
 // Note this won't work in a region.
 DnDDemoData dnDDemoData = (DnDDemoData)dragModel.getRowData();

 // Put the dragged data into the target model directly.
 // Note that if you wanted validation/business rules on the drop,
 // this would be different.
 // getTargetValues() is the target collection used by the target component
 getTargetValues().add(dnDDemoData);
 }
 return dropEvent.getProposedAction();
 }
 else
 {
 return DnDAction.NONE;
 }
}

	
In the Component Palette, from the Operations panel, drag and drop a Drag Source as a child to the source component.

	
With the dragSource tag selected, in the Property Inspector set the actions, discriminant, and any dragDropEndListener as configured for the target. For instance, the dragSource tag may appear similar to the following:

<af:dragSource actions="MOVE" discriminant="DnDDemoModel
dragDropEndListener="#{collectionDnD.endListener}"/>

33.4.2 What You May Need to Know About the dragDropEndListener

There may be cases when after a drop event, you have to clean up the source collection. For example, if the drag caused a move, you may have to clean up the source component so that the moved item is no longer part of the collection.

The dragSource tag contains the dragDropEndListener attribute that allows you to register a handler that contains logic for after the drag drop operation ends.

For example, if you allow a drag and drop to move an object, you may have to physically remove the object from the source component once you know the drop succeeded. Example 33-6 shows a handler for a dragDropEndListener. attribute

Example 33-6 Handler for dragDropEndListener

public void endListener(DropEvent dropEvent)
{
 Transferable transferable = dropEvent.getTransferable();

 // The data in the transferrable is the row key for the dragged component.
 DataFlavor<RowKeySet> rowKeySetFlavor =
 DataFlavor.getDataFlavor(RowKeySet.class, "DnDDemoModel");
 RowKeySet rowKeySet = transferable.getData(rowKeySetFlavor);
 if (rowKeySet != null)
 {
 Integer currKey = (Integer)rowKeySet.iterator().next();

 // Remove the dragged data from the source model directly.
 // getSourceValues() represents a collection object used by the source
 // component
 Object removed = getSourceValues().remove(currKey.intValue());
 }
 // Need to add the drag source table so it gets redrawn.
 // The drag source component needs to be partially refreshed explicitly, while
 // drop target component automatically refreshed and displayed.
 AdfFacesContext.getCurrentInstance().addPartialTarget(dropEvent.getDragComponent());

33.5 Adding Drag and Drop Functionality for Components

You can allow components to be moved from one parent to another, or you can allow child components of a parent component to be reordered. For example, Figure 33-4 shows the darker panelBox component being moved from being the first child component of the panelGrid component to the last.

Figure 33-4 Drag and Drop Functionality Between Components

[image: You can drag and drop components]

	
Note:

If you want to move components into or out of a panelDashboard component, then you need to use procedures specific to that component. For more information, see Section 33.6, "Adding Drag and Drop Functionality Into and Out of a panelDashboard Component."

33.5.1 How to Add Drag and Drop Functionality for Components

Adding drag and drop functionality for components is similar for objects. However, instead of using the attributeDragSource tag, use the componentDragSource tag. As with dragging and dropping objects or collections, you also must implement a dropListener handler.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.5, "Adding Drag and Drop Functionality for Components."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

To add drag and drop functionality:

	
From the Operations panel of the Component Palette, drag and drop a Drop Target as a child to the target component.

	
In the Insert Drop Target dialog, enter an expression that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 4).

	
With the dropTarget tag still selected, in the Property Inspector, select a valid action set for the actions attribute.

	
In the managed bean referenced in the EL expression created in Step 2 for the dropListener attribute, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.

If the method accepts the drop, it should perform the drop and return the DnDAction it performed -- DnDAction.COPY, DnDAction.MOVE or DnDAction.LINK, otherwise it should return DnDAction.NONE to indicate that the drop was rejected

This handler method should use the DropEvent event to get the transferable object and its data and then complete the move or copy, and reorder the components as needed. Once the method completes the drop, it should return the DnDAction it performed. Otherwise, it should return DnDAction.NONE to indicate that the drop was rejected.

Example 33-7 shows the handleComponentMove event handler on the DemoDropHandler.java managed bean used by the componentDragSource JSF page in the demo application.

Example 33-7 Event Handler Code for a dropListener That Handles a Component Move

public DnDAction handleComponentMove(DropEvent dropEvent)
{
 Transferable dropTransferable = dropEvent.getTransferable();
 UIComponent movedComponent = dropTransferable.getData
 (DataFlavor.UICOMPONENT_FLAVOR);
 if ((movedComponent != null) &&
 DnDAction.MOVE.equals(dropEvent.getProposedAction()))
 {
 UIComponent dropComponent = dropEvent.getDropComponent();
 UIComponent dropParent = dropComponent.getParent();
 UIComponent movedParent = movedComponent.getParent();
 UIComponent rootParent = null;
 ComponentChange change = null;

 // Build the new list of IDs, placing the moved component after the dropped
 //component.
 String movedLayoutId = movedParent.getId();
 String dropLayoutId = dropComponent.getId();

 List<String> reorderedIdList = new
 ArrayList<String>(dropParent.getChildCount());

 for (UIComponent currChild : dropParent.getChildren())
 {
 String currId = currChild.getId();

 if (!currId.equals(movedLayoutId))
 {
 reorderedIdList.add(currId);
 if (currId.equals(dropLayoutId))
 {
 reorderedIdList.add(movedLayoutId);
 }
 }
 }

 change = new ReorderChildrenComponentChange(reorderedIdList);
 rootParent = dropParent;
 // apply the change to the component tree immediately
 // change.changeComponent(rootParent);

 // redraw the shared parent
 AdfFacesContext.getCurrentInstance().addPartialTarget(rootParent);

 return DnDAction.MOVE;
 }
 else
 {
 return DnDAction.NONE;
 }
}

	
Add a componentDragSource tag to the source component by dragging and dropping a Component Drag Source from the Component Palette as a child of the source component. For instance, the componentDragSource tag may appear similar to the following:

<af:componentDragSource discriminant="col2"/>

33.6 Adding Drag and Drop Functionality Into and Out of a panelDashboard Component

By default the panelDashboard component supports dragging and dropping components within itself. That is, you can reorder components in a panelDashboard component without needing to implement a listener or use additional tags. However, if you want to be able to drag a component into a panelDashboard component, or to drag a component out of a panelDashboard component, you do need to use tags and implement a listener. Because you would be dragging and dropping a component, you use the componentDragSource tag when dragging into the panelDashboard. However, because the panelDashboard already supports being a drop target, you do not need to use the dropTarget tag. Instead, you need to use a dataFlavor tag with a discriminant. The tag and discriminant notify the framework that the drop is from an external component.

Dragging a component out of a panelDashboard is mostly the same as dragging and dropping any other component. You use a dropTarget tag for the target and the componentDragSource tag for the source. However, you must also use the dataFlavor tag and a discriminant.

33.6.1 How to Add Drag and Drop Functionality Into a panelDashboard Component

Because the panelDashboard component has built-in drag and drop functionality used to reorder panelBox components within the dashboard, you need not use a dropTarget tag, but you do need to use a dataFlavor tag with a discriminant and implement the dropListener. In that implementation, you need to handle the reorder of the components.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.6, "Adding Drag and Drop Functionality Into and Out of a panelDashboard Component."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

Before you begin:

	
Create a panelDashboard component. For more information, see Section 9.8, "Arranging Contents in a Dashboard."

	
Create another component outside of the panelDashboard that contains panelBox components. For more information about panelBox components, see Section 9.9.3, "How to Use the panelBox Component."

To add drag and drop functionality into a panelDashboard component:

	
In the Structure window, select the panelDashboard component that is to be the target component.

	
In the Property Inspector, for DropListener, enter an expression that evaluates to a method on a managed bean that will handle the drop event (you will create this code in Step 6).

	
In the Component Palette, from the Operations panel, drag a Data Flavor and drop it as a child to the panelDashboard component.

	
In the Insert Data Flavor dialog, enter javax.faces.component.UIComponent.

	
In the Property Inspector, set Discriminant to a unique name that will identify the components allowed to be dragged into the panelDashboard component, for example, dragIntoDashboard.

	
In the managed bean referenced in the EL expression created in Step 2 for the dropListener attribute, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a DnDAction of NONE, because the panelDashboard handles the positioning of its child components.

This handler method should use the dropEvent.getTransferable().getData(DataFlavor.UICOMPONENT_FLAVOR) to get the transferable object and its data. Once the method completes the drop, you can use the org.apache.myfaces.trinidad.change.ReorderChildrenComponent

Change method to preserve the new ordering of the children and the dropEvent.getDropSiteIndex() method to get the location at which the user wants the dragged component. You can also use the dashboardComponent.prepareOptimizedEncodingOfInsertedChild() method to animate the drop of the component.

Example 33-8 shows the move event handler and helper methods on the DemoDashboardBean.java managed bean used by the dashboard JSF page in the ADF Faces demo application.

Example 33-8 Handler for DropListener on a panelDashboard Component

public DnDAction move(DropEvent e)
{
 UIComponent dropComponent = e.getDropComponent();
 UIComponent movedComponent = e.getTransferable().getData(DataFlavor.UICOMPONENT_FLAVOR);
 UIComponent movedParent = movedComponent.getParent();
 // Ensure that we are handling the re-order of a direct child of the panelDashboard:
 if (movedParent.equals(dropComponent) && dropComponent.equals(_dashboard))
 {
 // Move the already rendered child and redraw the side bar since the insert indexes have
 // changed:
 _moveDashboardChild(e.getDropSiteIndex(), movedComponent.getId());
 }
 else
 {
 // This isn't a re-order but rather the user dropped a minimized side bar item into the
 // dashboard, in which case that item should be restored at the specified drop location.
 String panelKey = _getAssociatedPanelKey(movedComponent);
 if (panelKey != null)
 {
 UIComponent panelBoxToShow = _dashboard.findComponent(panelKey);
 // Make this panelBox rendered:
 panelBoxToShow.setRendered(true);

 int insertIndex = e.getDropSiteIndex();

 // Move the already rendered child and redraw the side bar since the insert indexes have
 // changed and because the side bar minimized states are out of date:
 _moveDashboardChild(insertIndex, panelKey);

 // Let the dashboard know that only the one child should be encoded during the render phase:
 _dashboard.prepareOptimizedEncodingOfInsertedChild(
 FacesContext.getCurrentInstance(),
 insertIndex);
 }
 }

 return DnDAction.NONE; // the client is already updated, so no need to redraw it again
}

 private void _moveDashboardChild(int dropIndex, String movedId)
 {
 // Build the new list of IDs, placing the moved component at the drop index.
 List<String> reorderedIdList = new ArrayList<String>(_dashboard.getChildCount());
 int index = 0;
 boolean added = false;

 for (UIComponent currChild : _dashboard.getChildren())
 {
 if (currChild.isRendered())
 {
 if (index == dropIndex)
 {
 reorderedIdList.add(movedId);
 added = true;
 }

 String currId = currChild.getId();
 if (currId.equals(movedId) && index < dropIndex)
 {
 // component is moved later, need to shift the index by 1
 dropIndex++;
 }

 if (!currId.equals(movedId))
 {
 reorderedIdList.add(currId);
 }
 index++;
 }
 }

 if (!added)
 {
 // Added to the very end:
 reorderedIdList.add(movedId);
 }

 // Apply the change to the component tree immediately:
 ComponentChange change = new ReorderChildrenComponentChange(reorderedIdList);
 change.changeComponent(_dashboard);

 // Add the side bar as a partial target since we need to redraw the state of the side bar items
 // since their insert indexes are changed and possibly because the side bar minimized states
 // are out of date:
 RequestContext rc = RequestContext.getCurrentInstance();
 rc.addPartialTarget(_sideBarContainer);
 }

	
In the Component Palette, from the Operations panel, drag a Component Drag Source and drop it as a child to the panelBox component that will be the source component.

	
In the Property Inspector, set Discriminant to be the same value as entered for the Discriminant on the panelDashboard in Step 5.

33.6.2 How to Add Drag and Drop Functionality Out of a panelDashboard Component

Implementing drag and drop functionality out of a panelDashboard component is similar to standard drag and drop functionality for other components, except that you must use a dataFlavor tag with a discriminant.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.6, "Adding Drag and Drop Functionality Into and Out of a panelDashboard Component."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

How to add drag and drop functionality out of a panelDashboard component:

	
In the Component Palette, from the Operations panel, drag and drop a Drop Target as a child to the target component.

	
In the Insert Drop Target dialog, enter an expression that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 5) and enter javax.faces.component.UIComponent as the FlavorClass.

	
With the dropTarget tag still selected, in the Property Inspector, select MOVE as the value action attribute.

	
In the Structure window, select the dataFlavor tag and in the Property Inspector, set Discriminant to a unique name that will identify the panelBox components allowed to be dragged into this component, for example, dragOutOfDashboard.

	
In the managed bean referenced in the EL expression created in Step 2 for the dropListener attribute, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.

This handler method should use the DropEvent event to get the transferable object and its data and then complete the move and reorder the components as needed. Once the method completes the drop, it should return a DnDAction of NONE.

You can use the dashboardComponent.prepareOptimizedEncodingOfDeletedChild() method to animate the removal of the panelBox component.

Example 33-9 shows the handleSideBarDrop event handler and helper methods on the oracle.adfdemo.view.layout.DemoDashboardBean.java managed bean used by the dashboard JSF page in the demo application.

Example 33-9 Event Handler Code for a dropListener That Handles a panelBox Move Out of a panelDashboard Component

public DnDAction handleSideBarDrop(DropEvent e)
{
 UIComponent movedComponent = e.getTransferable().getData(DataFlavor.UICOMPONENT_FLAVOR);
 UIComponent movedParent = movedComponent.getParent();

 // Ensure that the drag source is one of the items from the dashboard:
 if (movedParent.equals(_dashboard))
 {
 _minimize(movedComponent);
 }

 return DnDAction.NONE; // the client is already updated, so no need to redraw it again
}

 private void _minimize(UIComponent panelBoxToMinimize)
 {
 // Make this panelBox non-rendered:
 panelBoxToMinimize.setRendered(false);

 // If the dashboard is showing, let's perform an optimized render so the whole dashboard doesn't
 // have to be re-encoded.
 // If the dashboard is hidden (because the panelBox is maximized), we will not do an optimized
 // encode since we need to draw the whole thing.
 if (_maximizedPanelKey == null)
 {
 int deleteIndex = 0;
 List<UIComponent> children = _dashboard.getChildren();
 for (UIComponent child : children)
 {
 if (child.equals(panelBoxToMinimize))
 {
 _dashboard.prepareOptimizedEncodingOfDeletedChild(
 FacesContext.getCurrentInstance(),
 deleteIndex);
 break;
 }

 if (child.isRendered())
 {
 // Only count rendered children since that's all that the panelDashboard can see:
 deleteIndex++;
 }
 }
 }

 RequestContext rc = RequestContext.getCurrentInstance();
 if (_maximizedPanelKey != null)
 {
 // Exit maximized mode:
 _maximizedPanelKey = null;

 _switcher.setFacetName("restored");
 rc.addPartialTarget(_switcher);
 }

 // Redraw the side bar so that we can update the colors of the opened items:
 rc.addPartialTarget(_sideBarContainer);
 }

	
In the Component Palette, from the Operations panel, drag and drop a Component Drag Source as a child of the source panelBox component within the panelDashboard component.

	
In the Property Inspector, set Discriminant to be the same value as entered for the Discriminant on the dataFlavor tag for the target component in Step 4.

33.7 Adding Drag and Drop Functionality to a Calendar

The calendar includes functionality that allows users to drag the handle of an activity to change the end time. However, if you want users to be able to drag and drop an activity to a different start time, or even a different day, then you implement drag and drop functionality. Drag and drop allows you to not only move an activity, but also to copy one.

33.7.1 How to Add Drag and Drop Functionality to a Calendar

You add drag and drop functionality by using the calendarDropTarget tag. Unlike dragging and dropping a collection, there is no need for a source tag; the target (that is the object to which the activity is being moved, in this case, the calendar) is responsible for moving the activities. If the source (that is, the item to be moved or copied), is an activity within the calendar, then you use only the calendarDropTarget tag. The tag expects the transferable to be a CalendarActivity object.

However, you can also drag and drop objects from outside the calendar. When you want to enable this, use dataFlavor tags configured to allow the source object (which will be something other than a calendarActivity object) to be dropped.

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.7, "Adding Drag and Drop Functionality to a Calendar."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

To add drag and drop functionality to a calendar:

	
In the Component Palette, from the Operations panel, drag and drop a Calendar Drop Target as a child to the calendar component.

	
In the Insert Calendar Drop Target dialog, enter an expression for the dropListener attribute that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 4).

	
In the Property Inspector, set Actions. This value determines whether the activity (or other source) can be moved, copied, or copied as a link, or any combination of the three. If no action is specified, the default is COPY.

	
In the managed bean inserted into the EL expression in Step 2, implement the handler for the drop event.

This method must take a DropEvent event as a parameter and return a DnDAction. The DnDAction is the action that will be performed when the source is dropped. Valid return values are COPY, MOVE, and LINK, and are set when you define the actions attribute in Step 3. This method should use the DropEvent to get the transferable object, and from there, access the CalendarModel object in the dragged data and from there, access the actual data. The listener can then add that data to the model for the source and then return the DnDAction it performed: DnDAction.COPY, DnDAction.MOVE or DnDAction.LINK; otherwise, the listener should return DnDAction.NONE to indicate that the drop was rejected.

The drop site for the drop event is an instance of the oracle.adf.view.rich.dnd.CalendarDropSite class. For an example of a drag and drop handler for a calendar, see the handleDrop method on the oracle.adfdemo.view.calendar.rich.DemoCalendarBean managed bean in the ADF Faces demo application.

	
If the source for the activity is external to the calendar, drag a Data Flavor and drop it as a child to the calendarDropTarget tag. This tag determines the type of object that can be dropped onto the target, for example a String or a Date object. Multiple dataFlavor tags are allowed under a single drop target to allow the drop target to accept any of those types.

	
In the Insert Data Flavor dialog, enter the class for the object that can be dropped onto the target, for example java.lang.Object.

	
Tip:

To specify a typed array in a dataFlavor tag, add brackets ([]) to the class name, for example, java.lang.Object[].

33.7.2 What You May Need to Know About Dragging and Dropping in a Calendar

For dragging and dropping activities within a calendar, users can drag and drop only within a view. That is, users can drag an activity from one time slot to another in the day view, but cannot cut an activity from a day view and paste it into a month view.

When the user is dragging and dropping activities in the day or week view, the calendar marks the drop site by half-hour increments. The user cannot move any all-day or multi-day activities in the day view.

In the week view, users can move all-day and multi-day activities, however, they can be dropped only within other all-day slots. That is, the user cannot change an all-day activity to an activity with start and end times. In the month view, users can move all-day and multi-day activities to any other day.

33.8 Adding Drag and Drop Functionality for DVT Graphs

You can configure drag and drop for the DVT bubble and scatter graphs, which allows the user to change the value of a marker by repositioning it. When you want users to be able to drag and drop in a graph, you use the dragSource and dropTarget tags. Additionally, you use the DataFlavor object to determine the valid Java type of the sources for the drop target, in this case a GraphSelection object. You also must implement any required functionality in response to the drag and drop action.

For example, you might have a scatterGraph component and you want the user to be able to drag a human scatter marker to adjust the performance rating of an employee, as shown in Figure 33-6.

Figure 33-5 Dragging and Dropping an Object

[image: Drag and drop an object]

The scatterGraph component contains both a dragSource tag and a dropTarget tag. You also use a dataFlavor tag to determine the type of object being dropped.

You also must implement a listener for the drop event. The object of the drop event is called the transferable, which contains the payload of the drop. Your listener must access the transferable object, and from there, use the DataFlavor object to verify that the object can be dropped. You then use the drop event to get the target component and update the property with the dropped object.

33.8.1 How to Add Drag and Drop Functionality for a DVT Graph

To add drag and drop functionality, first add source and target tags to the graph. Then implement the event handler method that will handle the logic for the drag and drop action. For information about what happens at runtime, see Section 33.3.2, "What Happens at Runtime."

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.8, "Adding Drag and Drop Functionality for DVT Graphs."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

To add drag and drop functionality:

	
In the Component Palette, from the Operations panel, drag a Drop Target tag and drop it as a child to the graph component.

	
In the Insert Drop Target dialog, enter an expression that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 6).

	
In the Insert Data Flavor dialog, enter oracle.adf.view.faces.bi.component.graph.GraphSelection, which is the class for the object that can be dropped onto the target. This entry will be used to create a dataFlavor tag, which determines the type of object that can be dropped onto the target.

	
In the Property Inspector, set a value for Discriminant, if needed. A discriminant is an arbitrary string used to determine which source can drop on the target. For example, suppose you have two graphs that both accept an GraphSelection object, GraphA and GraphB. You also have two sources, both of which are GraphSelection objects. By setting a discriminant value on GraphA with a value of alpha, only the GraphSelection source that provides the discriminant value of alpha will be accepted.

	
In the Structure window, select the dropTarget tag. In the Property inspector, select MOVE as the value for Actions.

	
In the Component Palette, from the Operations panel, drag and drop a Drag Source as a child to the graph component.

	
With the dragSource tag selected, in the Property Inspector set MOVE as the allowed Action and add any needed discriminant, as configured for the dataFlavor tag.

	
In the managed bean referenced in the EL expression created in Step 2, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a DnDAction object, which is the action that will be performed when the source is dropped, in this case DnDAction.MOVE. This method should check the DropEvent event to determine whether or not it will accept the drop. If the method accepts the drop, it should perform the drop and return the DnDAction object it performed. Otherwise, it should return DnDAction.NONE to indicate that the drop was rejected. The method must also check for the presence of the dataFlavor object, in this case oracle.adf.view.faces.bi.component.graph.GraphSelection.

33.9 Adding Drag and Drop Functionality for DVT Gantt Charts

When you want users to be able to drag and drop between Gantt charts and other components, you use the dragSource and dropTarget tags. Additionally, you use the DataFlavor object to determine the valid Java types of sources for the drop target. You also must implement any required functionality in response to the drag and drop action. Both the projectGantt and schedulingGantt components support drag and drop functionality.

For example, suppose you have an projectGantt component and you want the user to be able to drag one timeline to a treeTable component and have that component display information about the timeline, as shown in Figure 33-6.

Figure 33-6 Dragging and Dropping an Object

[image: Drag and drop an object]

The projectGantt component contains a dragSource tag. And because the user will drag the whole object and not just the String value of the output text that is displayed, you use the dropTarget tag instead of the attributeDropTarget tag.

You also use a dataFlavor tag to determine the type of object being dropped. On this tag, you can define a discriminant value. This is helpful if you have two targets and two sources, all with the same object type. By creating a discriminant value, you can be sure that each target will accept only valid sources. For example, suppose you have two targets that both accept an TaskDragInfo object, TargetA and TargetB. Suppose you also have two sources, both of which are TaskDragInfo objects. By setting a discriminant value on TargetA with a value of alpha, only the TaskDragInfo source that provides the discriminant value of alpha will be accepted.

You also must implement a listener for the drop event. The object of the drop event is called the transferable, which contains the payload of the drop. Your listener must access the transferable object, and from there, use the DataFlavor object to verify that the object can be dropped. You then use the drop event to get the target component and update the property with the dropped object.

33.9.1 How to Add Drag and Drop Functionality for a DVT Component

To add drag and drop functionality, first add tags to a component that define it as a target for a drag and drop action. Then implement the event handler method that will handle the logic for the drag and drop action. Last, you define the sources for the drag and drop. For information about what happens at runtime, see Section 33.3.2, "What Happens at Runtime." For information about using the clientDropListener attribute, see Section 33.3.3, "What You May Need to Know About Using the ClientDropListener."

Before you begin:

It may be helpful to have an understanding of drag and drop functionality. For more information, see Section 33.9, "Adding Drag and Drop Functionality for DVT Gantt Charts."

You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 33.1.1, "Additional Functionality for Drag and Drop."

To add drag and drop functionality:

	
In the Component Palette, from the Operations panel, drag a Drop Target tag and drop it as a child to the target component.

	
In the Insert Drop Target dialog, enter an expression that evaluates to a method on a managed bean that will handle the event (you will create this code in Step 6).

	
Tip:

You can also intercept the drop on the client by populating the clientDropListener attribute. For more information, see Section 33.3.3, "What You May Need to Know About Using the ClientDropListener".

	
In the Insert Data Flavor dialog, enter the class for the object that can be dropped onto the target, for example java.lang.Object. This selection will be used to create a dataFlavor tag, which determines the type of object that can be dropped onto the target. Multiple dataFlavor tags are allowed under a single drop target to allow the drop target to accept any of those types.

	
Tip:

To specify a typed array in a DataFlavor tag, add brackets ([]) to the class name, for example, java.lang.Object[].

	
In the Property Inspector, set a value for Discriminant, if needed. A discriminant is an arbitrary string used to determine what sources of the type specified by the dataFlavor will be allowed as a source.

	
In the Structure window, select the dropTarget tag. In the Property inspector, select a value for Actions. This defines what actions are supported by the drop target. Valid values can be COPY (copy and paste), MOVE (cut and paste), and LINK (copy and paste as a link), for example:.

MOVE COPY

If no actions are specified, the default is COPY.

Example 33-10 shows the code for a dropTarget component that takes a TaskDragInfo object as a drop source. Note that because COPY was set as the value for the actions attribute, that will be the only allowed action.

Example 33-10 JSP Code for a dropTarget tag

<af:treeTable id="treeTableDropTarget"
 var="task" value="#{projectGanttDragSource.treeTableModel}">
 <f:facet name="nodeStamp">
 <af:column headerText="Task Name">
 <af:outputText value="#{task.taskName}"/>
 </af:column>
 </f:facet>
 <af:column headerText="Resource">
 <af:outputText value="#{task.resourceName}"/>
 </af:column>
 <af:column headerText="Start Date">
 <af:outputText value="#{task.startTime}"/>
 </af:column>
 <af:column headerText="End Date">
 <af:outputText value="#{task.endTime}"/>
 </af:column>
 <af:dropTarget actions="COPY"
 dropListener="#{projectGanttDragSource.onTableDrop}">
 <af:dataFlavor flavorClass= "oracle.adf.view.faces.bi.component.gantt.TaskDragInfo"/>
 </af:dropTarget>
</af:treeTable>

	
In the managed bean referenced in the EL expression created in Step 2, create the event handler method (using the same name as in the EL expression) that will handle the drag and drop functionality.

This method must take a DropEvent event as a parameter and return a DnDAction object, which is the action that will be performed when the source is dropped. Valid return values are DnDAction.COPY, DnDAction.MOVE, and DnDAction.LINK, and were set when you defined the target attribute in Step 5. This method should check the DropEvent event to determine whether or not it will accept the drop. If the method accepts the drop, it should perform the drop and return the DnDAction object it performed. Otherwise, it should return DnDAction.NONE to indicate that the drop was rejected.

The method must also check for the presence for each dataFlavor object in preference order.

	
Tip:

If your target has more than one defined dataFlavor object, then you can use the Transferable.getSuitableTransferData() method, which returns a List of TransferData objects available in the Transferable object in order, from highest suitability to lowest.

The DataFlavor object defines the type of data being dropped, for example java.lang.Object, and must be as defined in the DataFlavor tag on the JSP, as created in Step 3.

	
Tip:

To specify a typed array in a DataFlavor object, add brackets ([]) to the class name, for example, java.lang.Object[].

DataFlavor objects support polymorphism so that if the drop target accepts java.util.List, and the transferable object contains a java.util.ArrayList, the drop will succeed. Likewise, this functionality supports automatic conversion between Arrays and Lists.

If the drag and drop framework doesn't know how to represent a server DataFlavor object on the client component, the drop target will be configured to allow all drops to succeed on the client.

Example 33-11 shows a handler method that copies a TaskDragInfo object from the event payload and assigns it to the component that initiated the event.

Example 33-11 Event Handler Code for a dropListener

public DnDAction onTableDrop(DropEvent evt)
{
 // retrieve the information about the task dragged
 DataFlavor<TaskDragInfo> _flv = DataFlavor.getDataFlavor(TaskDragInfo.class, null);
 Transferable _transferable = evt.getTransferable();

 // if there is no data in the transferable, then the drop is unsuccessful
 TaskDragInfo _info = _transferable.getData(_flv);
 if (_info == null)
 return DnDAction.NONE;

 // find the task
 Task _draggedTask = findTask(_info.getTaskId());
 if (_draggedTask != null) {
 // process the dragged task here and indicate the drop is successful by returning DnDAction.COPY
 return DnDAction.COPY;
 }
 else
return DnDAction.NONE;
}

	
In the Component Palette, from the Operations panel, drag and drop a Drag Source as a child to the source component.

	
With the dragSource tag selected, in the Property Inspector set the allowed Actions and any needed discriminant, as configured for the target.

Using the Active Data Service with an Asynchronous Backend

35 Using the Active Data Service with an Asynchronous Backend

This chapter provides information on registering an asynchronous backend to provide real-time data updates to ADF Faces components.

This chapter includes the following sections:

	
Section 35.1, "About the Active Data Service"

	
Section 35.2, "Process Overview for Using Active Data Service"

	
Section 35.3, "Implement the ActiveModel Interface in a Managed Bean"

	
Section 35.4, "Pass the Event Into the Active Data Service"

	
Section 35.5, "Register the Data Update Event Listener"

	
Section 35.6, "Configure the ADF Component to Display Active Data"

35.1 About the Active Data Service

The Fusion technology stack includes the Active Data Service (ADS), which is a server-side push framework that allows you to provide real-time data updates for ADF Faces components. You bind ADF Faces components to a data source and ADS pushes the data updates to the browser client without requiring the browser client to explicitly request it. For example, you may have a table bound to attributes of an ADF data control whose values change on the server periodically, and you want the updated values to display in the table. You can create a Java bean to implement the ActiveModel interface and register it as an event listener to notify the component of a data event from the backend, and the component rerenders the changed data with the new value highlighted, as shown in Figure 35-1.

Figure 35-1 Table Displays Updated Data as Highlighted

[image: Changed data is shown in blue highlight]

35.1.1 Active Data Service Use Cases and Examples

Using ADS is an alternative to using automatic partial page rendering (PPR) to rerender data that changes on the backend as a result of business logic associated with the ADF data control bound to the ADF Faces component. Whereas automatic PPR requires sending a request to the server (typically initiated by the user), ADS enables changed data to be pushed from the data store as the data arrives on the server. Also, in contrast to PPR, ADS makes it possible for the component to rerender only the changed data instead of the entire component. This makes ADS ideal for situations where the application needs to react to data that changes periodically.

To use this functionality, you must configure the application to use ADS. If your application services do not support ADS, then you also need to create a proxy of the service so that the components can display the data as it updates in the source.

Any ADF Faces page can use ADS. However, you can configure only the following ADF Faces components to work with active data:

	
activeCommandToolbarButton

	
activeImage

	
activeOutputText

	
table

	
Note:

Do not use filtering on a table that will be using active data. Once a table is filtered at runtime, active data cannot be displayed. Currently, ADS supports table components with the outputText component contained within a column; other components are not supported inside the table column.

	
tree

	
treeTable

	
DVT graph, gauge, and geographical map components

For details about the active data service framework and important configuration information, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

35.2 Process Overview for Using Active Data Service

To use ADS, you can optionally configure your application to determine the method of data transport, as well as other performance options.

Before you begin:

Complete the following tasks:

	
Implement the logic to fire the active data events asynchronously from the data source. For example, this logic might be a business process that updates the database, or a JMS client that gets notified from JMS.

	
The Active Data framework does not support complicated business logic or transformations that require the ADF runtime context, such as a user profile or security. For example, the framework cannot convert an ADF context locale-dependent value and return a locale-specific value. Instead, you need to have your data source handle this before publishing the data change event.

	
Before users can run the ADF Faces page with ADS configured for the application, they must disable the popup blocker for their web browser. Active data is not supported in web browsers that have popup blockers enabled.

To use the Active Data Service:

	
Optionally, configure ADS to determine the data transport mode, as well as to set other configurations, such as a latency threshold and reconnect information. Configuration for ADS is done in the adf-config.xml file.

For details about configuring ADS, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

	
Create a backing bean that implements the ActiveModel interface and register it as the listener for active data events from your backend.

	
Create a class that extends the BaseActiveDataModel API to pass the Event object to the ADS framework.

	
Register a data change listener for data change events from the backend.

	
In the web page, configure the ADF Faces component to capture and display the pushed data by adding an expression to name the managed bean that implements the the ADF component that you use to capture and display the pushed data.

35.3 Implement the ActiveModel Interface in a Managed Bean

Create a backing bean that contains the active model implementation as its property. This class uses an ADS decorator class to wrap the JSF model. This class should also implement a callback from the backend that will push data into the ADS framework.

You need to create a Java class that subclasses one of the following ADS decorator classes:

	
ActiveCollectionModelDecorator class

	
ActiveDataModelDecorator class (for use with graphs)

	
ActiveGeoMapDataModelDecorator class

	
ActiveGaugeDataModelDecorator class

These classes are wrapper classes that delegate the active data functionality to a default implementation of ActiveDataModel. The ActiveDataModel class listens for data change events and interacts with the Event Manager.

Specifically, when you implement the ActiveModel interface, you accomplish the following:

	
Wraps the JSF model interface. For example, the ActiveCollectionModelDecorator class wraps the CollectionModel class.

	
Generates active data events based on data change events from the data source.

To implement the ActiveModel interface, you need to implement methods on your Java class that gets the model to which the data is being sent and registers itself as the listener of the active data source (as illustrated in Example 35-1):

	
Create a Java class that extends the decorator class appropriate for your component.

Example 35-1 shows a StockManager class that extends ActiveCollectionModelDecorator. In this case, the data is displayed for an ADF Faces table component.

	
Implement the methods of the decorator class that will return the ActiveDataModel class and implement the method that returns the scalar model.

Example 35-1 shows an implementation of the getCollectionModel() method that registers with an existing asynchronous backend. The method returns the list of stocks collection from the backend.

	
Implement a method that creates application-specific events that can be used to insert or update data on the active model.

Example 35-1 shows the onStockUpdate() callback method from the backend, which uses the active model (an instance of ActiveStockModel) to create ActiveDataUpdateEvent objects to push data to the ADF Faces component.

Example 35-1 Extend the Decorator Class

package sample.oracle.ads;

import java.util.List;
import sample.backend.IBackendListener;
import sample.bean.StockBean;
import sample.oracle.model.ActiveStockModel;

import oracle.adf.view.rich.event.ActiveDataEntry;
import oracle.adf.view.rich.event.ActiveDataUpdateEvent;
import oracle.adf.view.rich.model.ActiveCollectionModelDecorator;
import oracle.adf.view.rich.model.ActiveDataModel;

import oracle.adfinternal.view.faces.activedata.ActiveDataEventUtil;

import org.apache.myfaces.trinidad.model.CollectionModel;
import org.apache.myfaces.trinidad.model.SortableModel;

// 1. This example wraps the existing collection model in the page and implements
// the ActiveDataModel interface to enable ADS for the page.

public StockManager extends ActiveCollectionModelDecorator implements
 IBackendListener
{
 // 2. Implement methods from ADF ActiveCollectionModelDecorator class to
 // return the model.
 @Override
 public ActiveDataModel getActiveDataModel()
 {
 return stockModel;
 }

 @Override
 protected CollectionModel getCollectionModel()
 {
 if(collectionModel == null)
 {
 // connect to a backend system to get a Collection
 List<StockBean> stocks = FacesUtil.loadBackEnd().getStocks();
 // make the collection become a (Trinidad) CollectionModel
 collectionModel = new SortableModel(stocks);
 }

 return collectionModel;
 }

 // 3. Implement a callback method to create active data events and deliver to
 // the ADS framework.

 /**
 * Callback from the backend to push new data to our decorator.
 * The decorator itself notifies the ADS system that there was a data change.
 *
 * @param key the rowKey of the updated Stock
 * @param updatedStock the updated stock object
 */
 @Override
 public void onStockUpdate(Integer rowKey, StockBean stock)
 {
 ActiveStockModel asm = getActiveStockModel();

 // start the preparation for the ADS update
 asm.prepareDataChange();

 // Create an ADS event, using an _internal_ util.
 // This class is not part of the API
 ActiveDataUpdateEvent event = ActiveDataEventUtil.buildActiveDataUpdateEvent(
 ActiveDataEntry.ChangeType.UPDATE, // type
 asm.getCurrentChangeCount(), // changeCount
 new Object[] {rowKey}, // rowKey
 null, //insertKey, null as we don't insert stuff
 new String[] {"value"}, // attribute/property name that changes
 new Object[] { stock.getValue()} // the payload for the above attribute
);

 // Deliver the new Event object to the ADS framework
 asm.notifyDataChange(event);

 }

 /**
 * Typesafe caller for getActiveDataModel()
 * @return
 */
 protected ActiveStockModel getActiveStockModel()
 {
 return (ActiveStockModel) getActiveDataModel();
 }

 // properties
 private CollectionModel collectionModel; // see getCollectionModel()...
 private ActiveStockModel stockModel = new ActiveStockModel();
}

Register the class as a managed bean in the faces-config.xml file. Example 35-2 shows the bean StockManager is registered. Defining the managed bean allows you to specify the managed bean in an expression for the ADF Faces component's value property.

Example 35-2 Register as a Managed Bean

...
<managed-bean>
 <managed-bean-name>stockManager</managed-bean-name>
 <managed-bean-class>
 oracle.afdemo.view.feature.rich.StockManager
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

35.3.1 What You May Need to Know About Read Consistency

Using active data means that your component has two sources of data: the active data feed and the standard data fetch. Because of this, you must make sure your application maintains read consistency.

For example, say your page contains a table and that table has active data enabled. The table has two methods of delivery from which it updates its data: normal table data fetch and active data push. Say the back end data changes from foo to bar to fred. For each of these changes, an active data event is fired. If the table is refreshed before those events hit the browser, the table will display fred because standard data fetch will always get the latest data. But then, because the active data event might take longer, some time after the refresh the data change event would cause foo to arrive at the browser, and so the table would update to display foo instead of fred for a period of time. Therefore, you must implement a way to maintain the read consistency.

To achieve read consistency, the ActiveDataModel has the concept of a change count, which effectively timestamps the data. Both data fetch and active data push need to maintain this changeCount object by monotonically increasing the count, so that if any data returned has a lower changeCount, the active data event can throw it away. Example 35-3 shows how you can use your implementation of the ActiveDataModel class to maintain read consistency.

35.4 Pass the Event Into the Active Data Service

You need to create a class that extends BaseActiveDataModel class to pass the event created by your managed bean. The ActiveDataModel class listens for data change events and interacts with the Event Manager. Specifically, the methods you implement do the following:

	
Optionally, starts and stops the active data and the ActiveDataModel object, and registers and unregisters listeners to the data source.

	
Manages listeners from the Event Manager and pushes active data events to the Event Manager.

Example 35-3 shows the notifyDataChange() method of the model passes the Event object to the ADS framework, by placing the object into the fireActiveDataUpdate() method.

Example 35-3 Pass the Event Object into ADS

import java.util.Collection;

import java.util.concurrent.atomic.AtomicInteger;

import oracle.adf.view.rich.activedata.BaseActiveDataModel;
import oracle.adf.view.rich.event.ActiveDataUpdateEvent;

public class ActiveStockModel extends BaseActiveDataModel
{

 // -------------- API from BaseActiveDataModel ----------

 @Override
 protected void startActiveData(Collection<Object> rowKeys,
 int startChangeCount)
 {
 /* We don't do anything here as there is no need for it in this example.
 * You could use a listenerCount to see if the maximum allowed listerners
 * are already attached. You could register listeners here.
 */
 }

 @Override
 protected void stopActiveData(Collection<Object> rowKeys)
 {
 // same as above... no need to disconnect here
 }

 @Override
 public int getCurrentChangeCount()
 {
 return changeCounter.get();
 }

 // -------------- Custom API -----------

 /**
 * Increment the change counter.
 */
 public void prepareDataChange()
 {
 changeCounter.incrementAndGet();
 }

 /**
 * Deliver an ActiveDataUpdateEvent object to the ADS framework.
 *
 * @param event the ActiveDataUpdateEvent object
 */
 public void notifyDataChange(ActiveDataUpdateEvent event)
 {
 // Delegate to internal fireActiveDataUpdate() method.
 fireActiveDataUpdate(event);
 }

 // properties
 private final AtomicInteger changeCounter = new AtomicInteger();
}

35.5 Register the Data Update Event Listener

You need to register a data change listener for data change events from the backend. Example 35-4 shows the listener bean StockBackEndSystem is registered in the faces-config.xml file. Note that for this example, expression language is used to inject a listener to the backend.

Example 35-4 Register the Data Update Event Listener

...
<managed-bean>
 <managed-bean-name>backend</managed-bean-name>
 <managed-bean-class>
 oracle.afdemo.backend.StockBackEndSystem
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>listener</property-name>
 <value>#{stockManager}</value>
 </managed-property>
</managed-bean>

35.6 Configure the ADF Component to Display Active Data

ADF components that display collection-based data can be configured to work with ADS and require no extra setup in the view layer. Once the listener is registered, you can use ADS to stream the data to the view layer. For example, imagine that your JSPX page uses a table component to display stock updates from a backend source on which you register a listener.

Example 35-5 shows the expression language used on the table component value attribute to receive the pushed data.

Example 35-5 Display the Active Data

...
<f:view>
 <af:document id="d1">
 <af:form id="f1">
 <af:panelStretchLayout topHeight="50px" id="psl1">
 <f:facet name="top">
 <af:outputText value="Oracle ADF Faces goes Push!" id="ot1"/>
 </f:facet>
 <f:facet name="center">
 <!-- id="af_twocol_left_full_header_splitandstretched" -->
 <af:decorativeBox theme="dark" id="db2">
 <f:facet name="center">
 <af:panelSplitter orientation="horizontal"
 splitterPosition="100" id="ps1">
 <f:facet name="first">
 <af:outputText value="Some content here." id="menu"/>
 </f:facet>
 <f:facet name="second">
 <af:decorativeBox theme="medium" id="db1">
 <f:facet name="center">
 <af:table value="#{stockManager}" var="row"
 rowBandingInterval="0"
 id="table1" emptyText="No data...">
 <af:column sortable="false" headerText="Name"
 id="column1">
 <af:outputText value="#{row.name}" id="outputText1"/>
 </af:column>
 <af:column sortable="false"
 headerText="Value...." id="column2">
 <af:outputText value="#{row.value}"
 id="outputText2" />
 </af:column>
 </af:table>
 </f:facet>
 </af:decorativeBox>
 </f:facet>
 </af:panelSplitter>
 </f:facet>
 </af:decorativeBox>
 </f:facet>
 </af:panelStretchLayout>
 </af:form>
 </af:document>
</f:view>

Message Keys for Converter and Validator Messages

B Message Keys for Converter and Validator Messages

This appendix lists all the message keys and message setter methods for ADF Faces converters and validators.

This chapter includes the following sections:

	
Section B.1, "About ADF Faces Default Messages"

	
Section B.2, "Message Keys and Setter Methods"

	
Section B.3, "Converter and Validator Message Keys and Setter Methods"

B.1 About ADF Faces Default Messages

The FacesMessage class supports both summary and detailed messages. The convention is that:

	
The summary message is defined for the main key. The key value is of the form classname.MSG_KEY.

	
The detailed message is of the form classname.MSG_KEY_detail.

In summary, to override a detailed message you can either use the setter method on the appropriate class or enter a replacement message in a resource bundle using the required message key.

You can also override the message string globally instead of having to change the message string per instance. You use a message bundle so that the custom string will be available for all instances. For more information about overriding default converter and validator error messages globally, see Section 19.3.2, "How to Define Custom Validator and Converter Messages for All Instances of a Component."

Placeholders are used in detail messages to provide relevant details such as the value the user entered and the label of the component for which this is a message. The general order of placeholder identifiers is:

	
component label

	
input value (if present)

	
minimum value (if present)

	
maximum value (if present)

	
pattern (if present)

You can also use message bundles to set message strings globally at the application-level. For more information, see Section 19.3.2, "How to Define Custom Validator and Converter Messages for All Instances of a Component."

B.2 Message Keys and Setter Methods

The following information is given for each of the ADF Faces converter and validators:

	
The set method you can use to override the message.

	
The message key you can use to identify your own version of the message in a resource bundle.

	
How placeholders can be used in the message to include details such as the input values and patterns.

B.3 Converter and Validator Message Keys and Setter Methods

This section gives the reference details for all ADF Faces converter and validator detail messages.

B.3.1 af:convertColor

Converts strings representing color values to and from java.awt.Color objects. The set of patterns used for conversion can be overriden.

Convert color: Input value cannot be converted to a color based on the patterns set

Set method:

setMessageDetailConvertBoth(java.lang.String convertBothMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.ColorConverter.CONVERT_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} A date-time example, based on the dateStyle and timeStyle set in the converter

B.3.2 af:convertDateTime

Converts a string to and from java.util.Date and the converse based on the pattern and style set.

Convert date and time: Date-time value that cannot be converted to Date object when type is set to both

Set method:

setMessageDetailConvertBoth(java.lang.String convertBothMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.DateTimeConverter.CONVERT_BOTH_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} Example of the format the converter is expecting
Convert date: Input value cannot be converted to a Date when the pattern or secondary pattern is set or when type is set to date

Set method:

setMessageDetailConvertDate(java.lang.String convertDateMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.DateTimeConverter.CONVERT_DATE_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} Example of the format the converter is expecting
Convert date: Input value cannot be converted to a Date when the pattern or secondary pattern is set or when type is set to date

Set method:

setMessageDetailConvertTime(java.lang.String convertTimeMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.DateTimeConverter.CONVERT_TIME_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} Example of the format the converter is expecting

B.3.3 af:convertNumber

Provides an extension of the standard JSF javax.faces.convert.NumberConverter class. The converter provides all the standard functionality of the default NumberConverter and is strict while converting to an object.

Convert number: Input value cannot be converted to a Number, based on the pattern set

Set method:

setMessageDetailConvertPattern(java.lang.String convertPatternMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.NumberConverter.CONVERT_PATTERN_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} The specified conversion pattern
Convert number: Input value cannot be converted to a Number when type is set to number and pattern is null or not set

Set method:

setMessageDetailConvertNumber(java.lang.String convertNumberMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.NumberConverter.CONVERT_NUMBER_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user
Convert number: Input value cannot be converted to a Number when type is set to currency and pattern is null or not set

Set method:

setMessageDetailConvertCurrency(java.lang.String convertCurrencyMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.NumberConverter.CONVERT_CURRENCY_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user
Convert number: Input value cannot be converted to a Number when type is set to percent and pattern is null or not set

Set method:

setMessageDetailConvertPercent(java.lang.String convertPercentMessageDetail)

Message key:

org.apache.myfaces.trinidad.convert.NumberConverter.CONVERT_PERCENT_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

B.3.4 af:validateByteLength

Validates the byte length of strings when encoded.

Validate byte length: The input value exceeds the maximum byte length

Set method:

setMessageDetailMaximum(java.lang.String maximumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.ByteLengthValidator.MAXIMUM_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} Maximum length

B.3.5 af:validateDateRestriction

Validates that the date is valid with some given restrictions.

Validate date restriction - Invalid Date: The input value is invalid when invalidDate is set

Set method:

setMessageDetailInvalidDays(java.lang.String invalidDays)

Message key:

org.apache.myfaces.trinidad.validator.DateRestrictionValidator.WEEKDAY_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} The invalid date
Validate date restriction - Invalid day of the week: The input value is invalid when invalidDaysOfWeek is set

Set method:

setMessageDetailInvalidDaysOfWeek(java.lang.String invalidDaysOfWeek)

Message key:

org.apache.myfaces.trinidad.validator.DateRestrictionValidator.DAY_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} The invalid month
Validate date restriction - Invalid month: The input value is invalid when invalidMonths is set

Set method:

setMessageDetailInvalidMonths(java.lang.String invalidMonths)

Message key:

org.apache.myfaces.trinidad.validator.DateRestrictionValidator.MONTH_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} The invalid weekday

B.3.6 af:validateDateTimeRange

Validates that the date entered is within a given range.

Validate date-time range: The input value exceeds the maximum value set

Set method:

setMessageDetailMaximum(java.lang.String maximumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DateTimeRangeValidator.MAXIMUM_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} The maximum allowed date
Validate date-time range: The input value is less than the minimum value set

Set method:

setMessageDetailMinimum(java.lang.String minimumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DateTimeRangeValidator.MINIMUM_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} The minimum allowed date
Validate date-time range: The input value is not within the range, when minimum and maximum are set

Set method:

setMessageDetailNotInRange(java.lang.String notInRangeMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DateTimeRangeValidator.NOT_IN_RANGE_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} The minimum allowed date

{3} The maximum allowed date

B.3.7 af:validateDoubleRange

Validates that the value entered is within a given range.

Validate double range: The input value exceeds the maximum value set

Set method:

setMessageDetailMaximum(java.lang.String maximumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DoubleRangeValidator.MAXIMUM_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} The maximum allowed value
Validate double range: The input value is less than the minimum value set

Set method:

setMessageDetailMinimum(java.lang.String minimumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DoubleRangeValidator.MINIMUM_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} The minimum allowed value
Validate double range: The input value is not within the range, when minimum and maximum are set

Set method:

setMessageDetailNotInRange(java.lang.String notInRangeMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.DoubleRangeValidator.NOT_IN_RANGE_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} The minimum allowed value

{3} The maximum allowed value

B.3.8 af:validateLength

Validates that the value entered is within a given range.

Validate length: The input value exceeds the maximum value set

Set method:

setMessageDetailMaximum(java.lang.String maximumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.LengthValidator.MAXIMUM_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} The maximum allowed length
Validate length: The input value is less than the minimum value set

Set method:

setMessageDetailMinimum(java.lang.String minimumMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.LengthValidator.MINIMUM_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} The minimum allowed length
Validate length: The input value is not within the range, when minimum and maximum are set

Set method:

setMessageDetailNotInRange(java.lang.String notInRangeMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.LengthValidator.NOT_IN_RANGE_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} The minimum allowed length

{3} The maximum allowed length

B.3.9 af:validateRegExp

Validates an expression using Java regular expression syntax.

Validate regular expression: The input value does not match the specified pattern

Set method:

setMessageDetailNoMatch(java.lang.String noMatchMessageDetail)

Message key:

org.apache.myfaces.trinidad.validator.RegExpValidator.NO_MATCH_detail

Placeholders:

{0} The label that identifies the component

{1} Value entered by the user

{2} The expected pattern

Quick Start Layout Themes

D Quick Start Layout Themes

This appendix shows how each of the quick start layouts are affected when you choose to apply themes to them. ADF Faces provides a number of components that you can use to define the overall layout of a page. JDeveloper contains predefined quick start layouts that use these components to provide you with a quick and easy way to correctly build the layout. You can choose from one, two, or three column layouts. When you choose to apply a theme to the chosen quick layout, color and styling are added to some of the components used in the quick start layout.

Figure D-1 and Figure D-2 show each of the layouts with and without themes applied. For more information about themes, see Chapter 28, "Customizing the Appearance Using Styles and Skins"

Figure D-1 Quick Start Layouts With and Without Themes

[image: Quick Start Layouts With and Without Thems]

Figure D-2 Quick Start Layouts With and Without Themes

[image: Quick Start Layouts With and Without Thems]

Code Samples

E Code Samples

This appendix provides the full length code samples referenced from sections throughout this guide.

E.1 Samples for Chapter 4, "Using ADF Faces Client-Side Architecture"

Following are code examples for using ADF Faces architecture

E.1.1 The adf-js-partitions.xml File

The default ADF Faces adf-js-partitions.xml file has partitions that you can override by creating your own partitions file. For more information, see Section 4.9, "JavaScript Library Partitioning." Example E-1 shows the default ADF Faces adf-js-partitions.xml file.

Example E-1 The Default adf-js-partitions.xml File

<?xml version="1.0" encoding="utf-8"?>

<partitions xmlns="http://xmlns.oracle.com/adf/faces/partition">

 <partition>
 <partition-name>boot</partition-name>
 <feature>AdfBootstrap</feature>
 </partition>

 <partition>
 <partition-name>core</partition-name>

 <feature>AdfCore</feature>

 <!-- Behavioral component super classes -->
 <feature>AdfUIChoose</feature>
 <feature>AdfUICollection</feature>
 <feature>AdfUICommand</feature>
 <feature>AdfUIDialog</feature>
 <feature>AdfUIDocument</feature>
 <feature>AdfUIEditableValue</feature>
 <feature>AdfUIForm</feature>
 <feature>AdfUIGo</feature>
 <feature>AdfUIInput</feature>
 <feature>AdfUIObject</feature>
 <feature>AdfUIOutput</feature>
 <feature>AdfUIPanel</feature>
 <feature>AdfUIPopup</feature>
 <feature>AdfUISelectBoolean</feature>
 <feature>AdfUISelectInput</feature>
 <feature>AdfUISelectOne</feature>
 <feature>AdfUISelectMany</feature>
 <feature>AdfUIShowDetail</feature>
 <feature>AdfUISubform</feature>
 <feature>AdfUIValue</feature>

 <!-- These are all so common that we group them with core -->
 <feature>AdfRichDocument</feature>
 <feature>AdfRichForm</feature>
 <feature>AdfRichPopup</feature>
 <feature>AdfRichSubform</feature>
 <feature>AdfRichCommandButton</feature>
 <feature>AdfRichCommandLink</feature>

 <!--
 Dialog is currently on every page for messaging. No use
 in putting these in a separate partition.
 -->
 <feature>AdfRichPanelWindow</feature>
 <feature>AdfRichDialog</feature>

 <!-- af:showPopupBehavior is so small/common, belongs in core -->
 <feature>AdfShowPopupBehavior</feature>
 </partition>

 <partition>
 <partition-name>accordion</partition-name>
 <feature>AdfRichPanelAccordion</feature>
 </partition>

 <partition>
 <partition-name>border</partition-name>
 <feature>AdfRichPanelBorderLayout</feature>
 </partition>

 <partition>
 <partition-name>box</partition-name>
 <feature>AdfRichPanelBox</feature>
 </partition>

 <partition>
 <partition-name>calendar</partition-name>
 <feature>AdfUICalendar</feature>
 <feature>AdfRichCalendar</feature>
 <feature>AdfCalendarDragSource</feature>
 <feature>AdfCalendarDropTarget</feature>
 </partition>

 <partition>
 <partition-name>collection</partition-name>
 <feature>AdfUIDecorateCollection</feature>
 <feature>AdfRichPanelCollection</feature>
 </partition>

 <partition>
 <partition-name>color</partition-name>
 <feature>AdfRichChooseColor</feature>
 <feature>AdfRichInputColor</feature>
 </partition>

 <partition>
 <partition-name>date</partition-name>
 <feature>AdfRichChooseDate</feature>
 <feature>AdfRichInputDate</feature>
 </partition>

 <partition>
 <partition-name>declarativeComponent</partition-name>
 <feature>AdfUIInclude</feature>
 <feature>AdfUIDeclarativeComponent</feature>
 <feature>AdfRichDeclarativeComponent</feature>
 </partition>

 <partition>
 <partition-name>detail</partition-name>
 <feature>AdfRichShowDetail</feature>
 </partition>

 <partition>
 <partition-name>dnd</partition-name>
 <feature>AdfDragAndDrop</feature>
 <feature>AdfCollectionDragSource</feature>
 <feature>AdfStampedDropTarget</feature>
 <feature>AdfCollectionDropTarget</feature>
 <feature>AdfAttributeDragSource</feature>
 <feature>AdfAttributeDropTarget</feature>
 <feature>AdfComponentDragSource</feature>
 <feature>AdfDropTarget</feature>
 </partition>

 <partition>
 <partition-name>detailitem</partition-name>
 <feature>AdfRichShowDetailItem</feature>
 </partition>

 <partition>
 <partition-name>file</partition-name>
 <feature>AdfRichInputFile</feature>
 </partition>

 <partition>
 <partition-name>form</partition-name>
 <feature>AdfRichPanelFormLayout</feature>
 <feature>AdfRichPanelLabelAndMessage</feature>
 </partition>

 <partition>
 <partition-name>format</partition-name>
 <feature>AdfRichOutputFormatted</feature>
 </partition>

 <partition>
 <partition-name>frame</partition-name>
 <feature>AdfRichInlineFrame</feature>
 </partition>

 <partition>
 <partition-name>header</partition-name>
 <feature>AdfRichPanelHeader</feature>
 <feature>AdfRichShowDetailHeader</feature>
 </partition>

 <partition>
 <partition-name>imagelink</partition-name>
 <feature>AdfRichCommandImageLink</feature>
 </partition>

 <partition>
 <partition-name>iedit</partition-name>
 <feature>AdfInlineEditing</feature>
 </partition>

 <partition>
 <partition-name>input</partition-name>
 <feature>AdfRichInputText</feature>
 <feature>AdfInsertTextBehavior</feature>
 </partition>

 <partition>
 <partition-name>label</partition-name>
 <feature>AdfRichOutputLabel</feature>
 </partition>

 <partition>
 <partition-name>list</partition-name>
 <feature>AdfRichPanelList</feature>
 </partition>

 <partition>
 <partition-name>lov</partition-name>
 <feature>AdfUIInputPopup</feature>
 <feature>AdfRichInputComboboxListOfValues</feature>
 <feature>AdfRichInputListOfValues</feature>
 </partition>

 <partition>
 <partition-name>media</partition-name>
 <feature>AdfRichMedia</feature>
 </partition>

 <partition>
 <partition-name>message</partition-name>
 <feature>AdfUIMessage</feature>
 <feature>AdfUIMessages</feature>
 <feature>AdfRichMessage</feature>
 <feature>AdfRichMessages</feature>
 </partition>

 <partition>
 <partition-name>menu</partition-name>
 <feature>AdfRichCommandMenuItem</feature>
 <feature>AdfRichGoMenuItem</feature>
 <feature>AdfRichMenuBar</feature>
 <feature>AdfRichMenu</feature>
 </partition>

 <partition>
 <partition-name>nav</partition-name>
 <feature>AdfUINavigationPath</feature>
 <feature>AdfUINavigationLevel</feature>
 <feature>AdfRichBreadCrumbs</feature>
 <feature>AdfRichCommandNavigationItem</feature>
 <feature>AdfRichNavigationPane</feature>
 </partition>

 <partition>
 <partition-name>note</partition-name>
 <feature>AdfRichNoteWindow</feature>
 </partition>

 <partition>
 <partition-name>poll</partition-name>
 <feature>AdfUIPoll</feature>
 <feature>AdfRichPoll</feature>
 </partition>

 <partition>
 <partition-name>progress</partition-name>
 <feature>AdfUIProgress</feature>
 <feature>AdfRichProgressIndicator</feature>
 </partition>

 <partition>
 <partition-name>print</partition-name>
 <feature>AdfShowPrintablePageBehavior</feature>
 </partition>

 <partition>
 <partition-name>scrollComponentIntoView</partition-name>
 <feature>AdfScrollComponentIntoViewBehavior</feature>
 </partition>

 <partition>
 <partition-name>query</partition-name>
 <feature>AdfUIQuery</feature>
 <feature>AdfRichQuery</feature>
 <feature>AdfRichQuickQuery</feature>
 </partition>

 <partition>
 <partition-name>region</partition-name>
 <feature>AdfUIRegion</feature>
 <feature>AdfRichRegion</feature>
 </partition>

 <partition>
 <partition-name>reset</partition-name>
 <feature>AdfUIReset</feature>
 <feature>AdfRichResetButton</feature>
 </partition>

 <partition>
 <partition-name>rte</partition-name>
 <feature>AdfRichTextEditor</feature>
 <feature>AdfRichTextEditorInsertBehavior</feature>
 </partition>

 <partition>
 <partition-name>select</partition-name>

 <feature>AdfRichSelectBooleanCheckbox</feature>
 <feature>AdfRichSelectBooleanRadio</feature>
 <feature>AdfRichSelectManyCheckbox</feature>
 <feature>AdfRichSelectOneRadio</feature>
 </partition>

 <partition>
 <partition-name>selectmanychoice</partition-name>
 <feature>AdfRichSelectManyChoice</feature>
 </partition>

 <partition>
 <partition-name>selectmanylistbox</partition-name>
 <feature>AdfRichSelectManyListbox</feature>
 </partition>

 <partition>
 <partition-name>selectonechoice</partition-name>
 <feature>AdfRichSelectOneChoice</feature>
 </partition>

 <partition>
 <partition-name>selectonelistbox</partition-name>
 <feature>AdfRichSelectOneListbox</feature>
 </partition>

 <partition>
 <partition-name>shuttle</partition-name>
 <feature>AdfUISelectOrder</feature>
 <feature>AdfRichSelectManyShuttle</feature>
 <feature>AdfRichSelectOrderShuttle</feature>
 </partition>

 <partition>
 <partition-name>slide</partition-name>
 <feature>AdfRichInputNumberSlider</feature>
 <feature>AdfRichInputRangeSlider</feature>
 </partition>

 <partition>
 <partition-name>spin</partition-name>
 <feature>AdfRichInputNumberSpinbox</feature>
 </partition>

 <partition>
 <partition-name>status</partition-name>
 <feature>AdfRichStatusIndicator</feature>
 </partition>

 <partition>
 <partition-name>stretch</partition-name>
 <feature>AdfRichDecorativeBox</feature>
 <feature>AdfRichPanelSplitter</feature>
 <feature>AdfRichPanelStretchLayout</feature>
 <feature>AdfRichPanelDashboard</feature>
 <feature>AdfPanelDashboardBehavior</feature>
 <feature>AdfDashboardDropTarget</feature>
 </partition>

 <partition>
 <partition-name>tabbed</partition-name>
 <feature>AdfUIShowOne</feature>
 <feature>AdfRichPanelTabbed</feature>
 </partition>

 <partition>
 <partition-name>table</partition-name>
 <feature>AdfUIIterator</feature>
 <feature>AdfUITable</feature>
 <feature>AdfUITable2</feature>
 <feature>AdfUIColumn</feature>
 <feature>AdfRichColumn</feature>
 <feature>AdfRichTable</feature>
 </partition>

 <partition>
 <partition-name>toolbar</partition-name>
 <feature>AdfRichCommandToolbarButton</feature>
 <feature>AdfRichToolbar</feature>
 </partition>

 <partition>
 <partition-name>toolbox</partition-name>
 <feature>AdfRichToolbox</feature>
 </partition>

 <partition>
 <partition-name>train</partition-name>
 <feature>AdfUIProcess</feature>
 <feature>AdfRichCommandTrainStop</feature>
 <feature>AdfRichTrainButtonBar</feature>
 <feature>AdfRichTrain</feature>
 </partition>

 <partition>
 <partition-name>tree</partition-name>
 <feature>AdfUITree</feature>
 <feature>AdfUITreeTable</feature>
 <feature>AdfRichTree</feature>
 <feature>AdfRichTreeTable</feature>
 </partition>

 <!--
 Some components which typically do have client-side representation,
 but small enough that we might as well download in a single partition
 in the event that any of these are needed.
 -->
 <partition>
 <partition-name>uncommon</partition-name>
 <feature>AdfRichGoButton</feature>
 <feature>AdfRichIcon</feature>
 <feature>AdfRichImage</feature>
 <feature>AdfRichOutputText</feature>
 <feature>AdfRichPanelGroupLayout</feature>
 <feature>AdfRichSeparator</feature>
 <feature>AdfRichSpacer</feature>
 <feature>AdfRichGoLink</feature>
 </partition>

 <partition>
 <partition-name>eum</partition-name>
 <feature>AdfEndUserMonitoring</feature>
 </partition>

 <partition>
 <partition-name>ads</partition-name>
 <feature>AdfActiveDataService</feature>
 </partition>

 <partition>
 <partition-name>automation</partition-name>
 <feature>AdfAutomationTest</feature>
 </partition>

</partitions>

E.2 Samples for Chapter 31, "Creating Custom ADF Faces Components"

Following are code examples for creating a custom component.

E.2.1 Event Code for JavaScript

When you create a custom component, you need to provide code in JavaScript that will perform the functions required when a event is fired, such as a mouse click. Example E-2 shows the event code that might be added for the tagPane component.

Example E-2 tagPane Event JavaScript

/**
 * Fires a select type event to the server for the source component
* when a tag is clicked.
*/
function AcmeTagSelectEvent(source, tag)
{
 AdfAssert.assertPrototype(source, AdfUIComponent);
 AdfAssert.assertString(tag); this.Init(source, tag);
}
// make AcmeTagSelectEvent a subclass of AdfComponentEvent

AdfObject.createSubclass(AcmeTagSelectEvent, AdfComponentEvent);
/**
 * The event type
*/
AcmeTagSelectEvent.SELECT_EVENT_TYPE = "tagSelect";
/**
 * Event Object constructor
*/
AcmeTagSelectEvent.prototype.Init = function(source, tag)
{
 AdfAssert.assertPrototype(source, AdfUIComponent);
 AdfAssert.assertString(tag);
 this._tag = tag;
 AcmeTagSelectEvent.superclass.Init.call(this, source, AcmeTagSelectEvent.SELECT_EVENT_TYPE);}
/**
 * Indicates this event should be sent to the server
*/
AcmeTagSelectEvent.prototype.propagatesToServer = function()
{
 return true;
}
/**
 * Override of AddMarshalledProperties to add parameters * sent server side.
*/
AcmeTagSelectEvent.prototype.AddMarshalledProperties = function(properties)
{
 properties.tag = this._tag;

 }
/**
 * Convenient method for queue a AcmeTagSelectEvent.
 */
AcmeTagSelectEvent.queue = function(component, tag)
{
AdfAssert.assertPrototype(component, AdfUIComponent);
 AdfAssert.assertString(tag);
 AdfLogger.LOGGER.logMessage(AdfLogger.FINEST, "AcmeTagSelectEvent.queue(component, tag)");
 new AcmeTagSelectEvent(component, tag).queue(true);
}
/**
 * returns the selected file type
*/
AcmeTagSelectEvent.prototype.getTag = function()
{
 return this._tag;}
/**
 * returns a debug string
*/
AcmeTagSelectEvent.prototype.toDebugString = function()
{
 var superString = AcmeTagSelectEvent.superclass.toDebugString.call(this);
 return superString.substring(0, superString.length - 1)
 + ", tag="
 + this._tag + "]";
}
/*
*
* Make sure that this event only invokes immediate validators
* on the client.
*/
AcmeTagSelectEvent.prototype.isImmediate = function()
{
 return true;
}

E.2.2 Example Tag Library Descriptor File Code

When you create a custom component, you need to create a tag library descriptor (TLD) file, which provides more information on the Java Class to the JSP compilation engine and IDE tools. Example E-3 shows an example TLD file that defines the tagPane component.

Example E-3 tagPane acme.tld Tag Library Descriptor Code

<?xml version = '1.0' encoding = 'windows-1252'?>
<taglib xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
 version="2.1" xmlns="http://java.sun.com/xml/ns/javaee">
 <description>Acme Corporation JSF components</description>
 <display-name>acme</display-name>
 <tlib-version>1.0</tlib-version>
 <short-name>acme</short-name>
 <uri>http://oracle.adfdemo.acme</uri>
 <tag>
 <description>
 </description>
 <name>tagPane</name>
 <tag-class>oracle.adfdemo.acme.faces.taglib.TagPaneTag</tag-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>id</name>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>rendered</name>
 <deferred-value>
 <type>boolean</type>
 </deferred-value>
 </attribute>
 <attribute>
 <name>tagSelectListener</name>
 <deferred-method>
 <method-signature>void
 </method-signature>
 myMethod(oracle.adfdemo.acme.faces.event.TagSelectEvent)
 </deferred-method>
 </attribute>
 <attribute>
 <name>visible</name>
 <deferred-value>
 <type>boolean</type>
 </deferred-value>
 </attribute>
 <attribute>
 <name>partialTriggers</name>
 <deferred-value>
 </deferred-value>
 </attribute>
 <attribute>
 <name>inlineStyle</name>
 <deferred-value/>
 </attribute>
 <attribute>
 <name>inlineClass</name>
 <deferred-value/>
 </attribute>
 <attribute>
 <name>tags</name>
 <deferred-value/>
 </attribute>
 <attribute>
 <name>binding</name>
 <deferred-value/>
 </attribute>
 <attribute>
 <name>orderBy</name>
 <deferred-value/>
 </attribute>
 </tag>
</taglib>

Oracle Legal Notices

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or serv