
Enterprise PeopleTools 8.51
PeopleBook: SQR for PeopleSoft
Developers

October 2011

Enterprise PeopleTools 8.51 PeopleBook: SQR for PeopleSoft Developers
SKU pt8.51tsqr-b1011

Copyright © 1988, 2011, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. iii

Contents

Preface

SQR for PeopleSoft Developers Preface ... xiii

SQR for PeopleSoft Developers ... xiii
PeopleBooks and the PeopleSoft Online Library ... xiii

Chapter 1

Getting Started with SQR for PeopleSoft .. 1

SQR for PeopleSoft Overview .. 1
SQR for PeopleSoft Implementation .. 1
Other Sources of Information .. 2

Chapter 2

Introducing the Sample SQR Program .. 3

Using with This Guide ... 3
Setting Up the Sample Database ... 5
Considerations for DBX .. 6
Understanding the Sample Program for Printing a Text String .. 6
Creating and Running a Sample SQR Program ... 7

Creating an SQR Program .. 7
Running an SQR Program .. 7

Viewing SQR Output .. 8

Chapter 3

Creating Headings and Footings ... 11

Understanding SQR Pages .. 11
Creating Page Headings and Footings ... 11

Understanding the Heading and Footing Code Example ... 11
Adding Page Headings ... 12
Adding Page Footings .. 12

Contents

iv Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Selecting Data from the Database .. 15

Understanding the Sample Program for Listing and Printing Data .. 15
Creating SQR Select Paragraphs ... 16

Chapter 5

Using Column Variables ... 19

Using a Column Variable in a Condition .. 19
Changing the Column Variable Name .. 20

Chapter 6

Using Break Logic ... 21

Understanding Break Logic .. 21
Using ON-BREAK ... 22
Skipping Lines Between Groups .. 23
Arranging Multiple Break Columns ... 24
Using Break Processing Enhancements ... 25

Controlling Page Breaks and Calculating Subtotals and Totals ... 25
Handling Page Breaks .. 27
Printing the Date ... 28
Obtaining Totals ... 28
Using Hyphens and Underscores ... 29

Setting Break Procedures with BEFORE and AFTER ... 29
Understanding the Order of Events ... 30

Controlling Page Breaks with Multiple ON-BREAK Columns ... 33
Saving a Value When a Break Occurs .. 34
Using ON-BREAK on a Hidden Column ... 34
Performing Break Processing on Numeric Values ... 36

Chapter 7

Adding Declarations Using the SETUP Section ... 39

Understanding the SETUP Section ... 39
Creating the SETUP Section ... 39
Using the DECLARE-LAYOUT Command .. 40

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. v

Sample SETUP Program ... 40
Defining the SQR Page Layout ... 41

Overriding the Default Settings .. 41
Declaring the Page Orientation .. 42

Chapter 8

Creating Master and Detail Reports ... 43

Understanding Master and Detail Reports ... 43
Understanding the Sample Program for Master and Detail Reports ... 43
Correlating Subqueries .. 45

Sample Program Output .. 45

Chapter 9

Creating Cross-Tabular Reports ... 47

Understanding Cross-Tabular Reports ... 47
Using an Array .. 48
Creating an Array .. 50
Grouping by Category ... 51
Using Multiple Arrays .. 53

Chapter 10

Printing Mailing Labels .. 57

Understanding Mailing Label Printing ... 57
Understanding the Sample Program for Printing Mailing Labels ... 57
Defining Columns and Rows .. 58
Running the Print Mailing Labels Program .. 59

Chapter 11

Creating Form Letters .. 61

Understanding the DOCUMENT Paragraph .. 61
Understanding the Sample Program for Form Letters .. 61

Contents

vi Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12

Exporting Data to Other Applications .. 65

Understanding the Sample Program for Exporting Data .. 65
Creating an Export File ... 66

Chapter 13

Using Graphics .. 69

Understanding the Sample Program for Simple Tabular Reports ... 69
Adding Graphics ... 70
Sharing Images Among Reports ... 72
Printing Bar Codes ... 75

Chapter 14

Using Business Charts ... 77

Understanding Business Charts .. 77
Creating a Chart .. 78
Defining a Chart .. 81
Printing a Chart ... 81
Running the Program to Create a Graphical Report ... 82
Passing Data to the Chart .. 82

Chapter 15

Changing Fonts .. 85

Setting Fonts ... 85
Positioning Text .. 85
Using the WRAP Option .. 88

Chapter 16

Writing Printer-Independent Reports ... 89

Understanding Printer-Independent Reports ... 89
Reviewing the Sample Program for Selecting the Printer Type at Runtime .. 90

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. vii

Chapter 17

Using Dynamic SQL and Error Checking ... 93

Using Variables in SQL .. 93
Using Dynamic SQL ... 94
Using SQL Error Checking ... 96
Using SQL and Substitution Variables ... 97

Chapter 18

Using Procedures and Local Variables and Passing Arguments ... 99

Using Procedures .. 99
Using Local Variables ... 99
Passing Arguments .. 100

Chapter 19

Creating Multiple Reports from One Program .. 107

Understanding How to Create Multiple Reports ... 107
Understanding the Sample Program for Multiple Reports .. 107
Defining Heading and Footing Sections ... 110
Defining Program Output .. 110

Chapter 20

Using Additional SQL Statements with SQR .. 111

Using SQL Statements in SQR ... 111
Using BEGIN-SQL .. 111

Chapter 21

Working with Dates .. 115

Understanding Dates and Date Arithmetic .. 115
Using Literal Date Formats ... 117
Using String-to-Date Conversions .. 118
Using Date-to-String Conversions .. 118
Using Dates with the INPUT Command .. 119

Contents

viii Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Using Date Edit Masks ... 119
Declaring Date Variables .. 121

Chapter 22

Using National Language Support .. 123

Understanding Locales .. 123
Selecting Locales .. 123
Defining a Default Locale ... 124
Switching Locales ... 124
Modifying Locale Preferences .. 125
Specifying NUMBER, MONEY, and DATE Keywords .. 125

Chapter 23

Using Interoperability Features .. 127

Calling SQR from Another Application ... 127
Invoking an SQR Program by Using the SQR API .. 127
Invoking an External Application API by Using the UFUNC.C Interface ... 130
Adding a User Function .. 130

Understanding the UFUNC.C File ... 131
Adding a Function Prototype ... 131
Adding an Entry to the USERFUNCS Table ... 131
Adding an Implementation Code ... 132
Relinking SQR ... 133

Using UFUNC in Microsoft Windows ... 134
Implementing New User Functions in Microsoft Windows ... 134

Chapter 24

Testing and Debugging .. 135

Using the Test Feature .. 135
Using the #DEBUG Command ... 136
Using Compiler Directives for Debugging ... 136
Avoiding Common Programming Errors ... 137

Chapter 25

Increasing Performance and Tuning .. 139

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. ix

Understanding SQR Performance and SQL Statements ... 139
Simplifying a Complex Select Paragraph ... 139
Using LOAD-LOOKUP to Simplify Joins ... 140
Improving SQL Performance with Dynamic SQL ... 141
Examining SQL Cursor Status .. 142
Avoiding Temporary Database Tables ... 143

Understanding Temporary Database Tables ... 143
Using and Sorting Arrays ... 143
Using and Sorting Flat Files ... 147

Creating Multiple Reports in One Pass ... 149
Tuning SQR Numerics .. 149
Compiling SQR Programs and Using SQR Execute .. 150
Setting Processing Limits .. 150
Buffering Fetched Rows ... 151
Running Programs on the Database Server ... 151

Chapter 26

Compiling Programs and Using SQR Execute .. 153

Understanding Compile Features .. 153
Compiling and Running an SQR Program .. 154

Chapter 27

Printing with SQR .. 157

Specifying Output File Types by Using SQR Command-Line Flags ... 157
Using the DECLARE-PRINTER Command .. 158

Chapter 28

Using the SQR Command Line .. 161

Understanding the SQR Command Line .. 161
Specifying Command-Line Arguments ... 162

Understanding Command-Line Arguments ... 162
Retrieving the Arguments .. 163
Specifying Arguments and Argument Files ... 163
Using an Argument File ... 163
Using Other Approaches to Pass Command-Line Arguments ... 164
Using Reserved Characters .. 164
Creating an Argument File from a Report ... 165

Using Batch Mode .. 165

Contents

x Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 29

Generating and Publishing HTML from an SQR Program .. 167

Understanding SQR Capabilities That Are Available with HTML ... 167
Generating HTML Output .. 168

Understanding HTML Output ... 168
Producing HTML Output ... 168
Using -PRINTER:EH ... 169
Setting HTML Attributes Under -PRINTER:EH ... 170
Using -PRINTER:HT ... 172
Bursting Reports ... 173
Setting Attributes with HTML Procedures ... 173
Using Additional HTML Procedures .. 174
Setting Output File Types ... 174
Testing HTML Output ... 174

Using HTML Procedures in an SQR Program ... 174
Understanding HTML Procedures ... 175
Using HTML Procedures .. 175
Positioning Objects .. 176
Displaying Records in Tables .. 177
Creating Headings .. 178
Highlighting Text ... 178
Creating Links .. 179
Including Images ... 180
Displaying Text in Lists ... 180
Formatting Paragraphs ... 181
Incorporating Your Own HTML Tags ... 182

Modifying an Existing SQR Program for HTML ... 182
Publishing a Report .. 184

Publishing a Report .. 184
Supporting Older Browsers .. 185
Viewing a Published Report ... 185
Publishing by Using an Automated Process .. 185
Publishing by Using a CGI Script .. 186

Chapter 30

Creating a Table of Contents .. 189

Using the DECLARE-TOC Command ... 189
Using the TOC-ENTRY Command .. 190
Adding a Table of Contents to the CUST.SQR Sample Program ... 191

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. xi

Index .. 195

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. xiii

SQR for PeopleSoft Developers Preface

This book discusses Structured Query Reports (SQR) for PeopleSoft.

SQR for PeopleSoft Developers

SQR is a specialized language for database processing and reporting. By working through the code examples
in this developer's guide, you will learn how to write SQR programs that select data from a database and
present it in a report.

This guide contains code examples and sample programs that you can copy to create SQR programs that are
relevant to your organization.

See Also

Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft, "Understanding SQR for
PeopleSoft"

PeopleBooks and the PeopleSoft Online Library

A companion PeopleBook called PeopleBooks and the PeopleSoft Online Library contains general
information, including:

• Understanding the PeopleSoft online library and related documentation.

• How to send PeopleSoft documentation comments and suggestions to Oracle.

• How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

• Understanding PeopleBook structure.

• Typographical conventions and visual cues used in PeopleBooks.

• ISO country codes and currency codes.

• PeopleBooks that are common across multiple applications.

• Common elements used in PeopleBooks.

• Navigating the PeopleBooks interface and searching the PeopleSoft online library.

• Displaying and printing screen shots and graphics in PeopleBooks.

• How to manage the locally installed PeopleSoft online library, including web site folders.

Preface

xiv Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Understanding documentation integration and how to integrate customized documentation into the library.

• Application abbreviations found in application fields.

You can find PeopleBooks and the PeopleSoft Online Library in the online PeopleBooks Library for your
PeopleTools release.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 1

Chapter 1

Getting Started with SQR for PeopleSoft

This chapter discusses:

• SQR for PeopleSoft overview.

• SQR for PeopleSoft implementation.

• Other sources of information.

SQR for PeopleSoft Overview

SQR for PeopleSoft is both a language and a set of tools that enable you to create professional reports:

• SQR is a programming language for accessing and manipulating data to create custom reports. SQR has
many advantages, including that it is portable across multiple platforms and relational database
management systems, and it supports the data manipulation capabilities SQL. It is also a fourth-generation
language; it is closer to human languages and therefore more intuitive than first-, second-, or third-
generation languages. SQR for PeopleSoft enables you to design report layouts, generate a variety of
output types—including complex tabular reports, multiple page reports, form letters, mailing labels, and
more—and create HTML, PDF, or configured output for laser printers and phototypesetters.

• SQR Execute enables you to run previously compiled SQR programs.

• SQR Print enables you to configure reports for most printers.

• SQR also provides a library of sample programs and output that you can use both as a learning tool and as
a basis for creating your own reports. These samples reside in the SQR for PeopleSoft directory
<PS_HOME>\bin\sqr\<database_platform>\SAMPLE (or SAMPLEW, for Windows).

See Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft, "Understanding
SQR for PeopleSoft."

SQR for PeopleSoft Implementation

This section describes the prerequisites for implementing SQR for PeopleSoft.

You can run SQR programs locally by using the SQR executable (for Microsoft Windows it's SQRW) and
through the PeopleSoft Process Scheduler. For the details on installing Process Scheduler:

See The PeopleTools 8.50 Installation guide for your database platform.

Getting Started with SQR for PeopleSoft Chapter 1

2 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

For the details on running SQRs using the Process Scheduler:

See Enterprise PeopleTools 8.51 PeopleBook: PeopleSoft Process Scheduler, "Submitting and Scheduling
Process Requests."

• You need a sound understanding of SQL and structured programming languages to use the SQR language.

• You do not need to carry out a separate installation procedure because SQR for PeopleSoft is installed
automatically when you install PeopleTools.

See PeopleTools 8.50 Installation Guides for your database platform.

• Typically, you should use Application Engine to run background SQL processing programs. You may
want to explore whether Application Engine can meet your needs before delving into SQR.

See Enterprise PeopleTools 8.51 PeopleBook: Application Engine, "Getting Started With Application
Engine."

• You can run SQR programs locally by using the SQR executable (for Microsoft Windows it's SQRW) and
through the PeopleSoft Process Scheduler. For the details on installing Process Scheduler:

See The PeopleTools 8.50 Installation guide for your database platform.

For the details on running SQRs using the Process Scheduler:

See Enterprise PeopleTools 8.51 PeopleBook: PeopleSoft Process Scheduler, "Submitting and
Scheduling Process Requests."

•

Other Sources of Information

This section provides information to consider before you begin to use SQR for PeopleSoft.

In addition to implementation considerations presented in this section, take advantage of all PeopleSoft
sources of information, including the installation guides, release notes, PeopleBooks, red papers, the Updates
+ Fixes area of My Oracle Support, and the PeopleSoft curriculum courses.

See Also

"SQR for PeopleSoft Developers Preface," page xiii

PeopleTools 8.51 PeopleBook: PeopleSoft Applications User's Guide, "Working With Browser-Based
Applications"

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 3

Chapter 2

Introducing the Sample SQR Program

This chapter discusses how to:

• Use this guide..

• Set up the sample database.

• Understand the sample program for printing a text string.

• Create and run a sample SQR (Structured Query Report) program.

• View SQR output.

Using with This Guide

Initial sections of this guide teach the basic uses of SQR. You learn how to:

• Create a variety of reports, such as tabular, cross-tabular, and master and detail reports.

• Produce mailing labels, form letters, and envelopes.

• Enhance your reports with typeset-quality fonts and graphics.

• Produce graphs and charts that help you present data and trends visually.

Subsequent sections describe the advanced features and uses of SQR. You learn how to:

• Create HTML output and publish reports on the internet, an intranet, or an extranet.

• Create reports that can be easily ported between different systems and databases and that support different
printer and display types.

• Create reports that format dates, numbers, and money according to local preferences.

• Integrate SQR with other software packages, such as front-end user interface tools and spreadsheets.

• Extend SQR with procedures and functions that are written in C.

• Test and debug programs.

• Tune programs for optimum performance.

The code examples demonstrate standard SQR programming style. Use this standard style to make your code
easier for other SQR programmers to understand.

Introducing the Sample SQR Program Chapter 2

4 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

You can run the program examples in this guide without modification against the Oracle, Sybase, and
Informix databases and run against other databases with minor modifications.

Audience

This guide was written for programmers who develop reports for relational databases. To use this guide
effectively, you need a working knowledge of SQL and experience writing software programs. You also must
be familiar with your particular database and operating system.

How to Use SQR for PeopleSoft Developers

You can just read this book and study the sample programs. However, Oracle encourages you to try these
programs for yourself and to experiment with them. Make some changes to the sample programs and see how
they run.

To use the sample programs, you must first install SQR for PeopleSoft. SQR for PeopleSoft is installed
automatically when you install PeopleTools.

If you installed all of the program components, the sample programs are located in the TUTORIAL directory
underneath <PS_HOME>\bin\sqr\<database_platform>.

You can run the sample programs on any hardware platform, but you may find it somewhat easier to review
SQR program results from the Microsoft Windows platform by using the SQR Viewer or a web browser to
verify your results.

Note. You can set up the sample database, as described in a moment, and run the sample programs with any
username and password, although you may want to use an account that does not hold important data.

Related Documents

In addition to this developer's guide, SQR for PeopleSoft includes SQR for PeopleSoft Language Reference, a
complete reference to SQR commands, arguments, and command-line flags.

For information about supported database platforms, see Supported Platforms on My Oracle Support. You
can also consult the PeopleTools Hardware and Software Requirements guide for a snapshot of current
requirements.

Syntax Conventions

Syntax and code examples use the following conventions:

Convention Description

{ } Braces enclose required items.

[] Square brackets enclose optional items.

... Ellipses indicate that the preceding parameter can be repeated.

Chapter 2 Introducing the Sample SQR Program

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 5

Convention Description

| A vertical bar separates alternatives within brackets, braces, or parentheses.

' A single quote starts and ends a literal text constant or any argument that has more than
one word.

Important! If you are copying code directly from the examples in the PDF file, make
sure that you change the slanted quotes to regular quotes; otherwise, you will receive an
error message.

, A comma separates multiple arguments.

() Parentheses must enclose an argument or element.

UPPERCASE SQR commands and arguments are uppercase within the text, but lowercase in the code
examples. (Note that these commands are case-insensitive.)

Variable Information and values that you must supply appear in variable style.

hyphen versus
underscore

Many SQR commands, such as BEGIN-PROGRAM, use a hyphen, whereas procedure
and variable names use an underscore. Procedure and variable names can contain either
a hyphen or underscores, but using underscores in procedure and variable names to
distinguish them from SQR commands is best.

It also prevents confusion when you mix variable names and numbers in an expression,
where hyphens could be mistaken for minus signs.

Setting Up the Sample Database

To run the sample programs in this guide, you must create a sample database. To do so, run the loadall.sqr
program.

1. Change to the SAMPLE (or SAMPLEW, for Microsoft Windows) directory under
<PS_HOME>\bin\sqr\<database_platform>.

2. At the command line, enter:

sqr loadall username/password

If SQR is installed on Microsoft Windows, you can run loadall.sqr by double-clicking the Loadall icon. If
your system does not display this icon, run loadall.sqr from the SAMPLEW directory of SQR for PeopleSoft.

If an individual table already exists, you are prompted to enter:

• A: Abort the load.

Introducing the Sample SQR Program Chapter 2

6 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• S: Skip the specified table.

• R: Reload the specified table.

• C: Reload all tables.

You can also run this as a batch program by entering the preferred option (A,S,R, or C) at the command-line.
For example:

sqr loadall username/password a

Considerations for DBX

The following considerations apply for DB2 on AIX and DB2 on ZOS.

DB2 on AIX

The DB2CLI.INI file (on Windows with the DB2 ODBC connection) should have the following entry.

This file is typically located in C:\Apps\DB\Db2 directory

[common]PATCH2=6DISABLEKEYSETCURSOR=1

DB2 on ZOS

PSSQR.UNX or PSSQR.INI file should have the following line.

FORCESPACEAFTERCOMMA=TRUE

Understanding the Sample Program for Printing a Text String

The first sample program is the simplest SQR program. It prints a text string:

Program ex1a.sqr
begin-program
 print 'Hello, World.' (1,1)
end-program

Note. For your convenience, all of the program examples and their output files are included with the
installation. As mentioned, these samples are in the SQR for PeopleSoft directory
<PS_HOME>\bin\sqr\<database_platform>\SAMPLE (or SAMPLEW, for Microsoft Windows).

Take another look at the sample program. This program contains three lines of code, starting with BEGIN-
PROGRAM and ending with END-PROGRAM. These two commands and the code between them make up
the PROGRAM section, which is used to control the order of processing. The PROGRAM section is required,
and you can have only one. It typically goes at or near the top of the program.

The PROGRAM section contains a PRINT command, which in this case prints the text Hello, World. This
text is enclosed in single quotation marks ('), which are used in SQR to distinguish literal text from other
program elements.

Chapter 2 Introducing the Sample SQR Program

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 7

The last element of the PRINT command indicates the position on the output page. An output page can be
thought of as a grid of lines and columns. The (1,1) indicates line 1, column 1, which is the upper-left corner
of the page.

Note. In SQR, you must place each command on a new line. You can indent SQR commands.

Creating and Running a Sample SQR Program

This section discusses how to:

• Create an SQR program.

• Run an SQR program.

Creating an SQR Program

To create an SQR program:

1. Open a text editor and enter the code in the sample program exactly as shown, or open the ex1a.sqr file
from the TUTORIAL directory.

2. If you are writing the sample program, save your code with the name ex1a.sqr.

SQR programs usually have a file extension of .sqr.

Running an SQR Program

To run the sample program:

1. Change to the directory in which you saved the program using the command that is appropriate to your
operating system.

2. Enter the appropriate SQR program command at the system command prompt (UNIX/Linux or Microsoft
Windows) or from within the SQR application's graphical user interface (GUI), where available
(Microsoft Windows only).

If you are using the command line, use SQR (UNIX/Linux) or SQRW (Microsoft Windows) to invoke
SQR. Enter sqr or sqrw, the SQR program name, and the connectivity string, all on one line, by using this
syntax:

[sqr or sqrw] [program] [connectivity] [flags ...] [args ...] [@file ...]

In a common configuration, you may be running SQR on Microsoft Windows against an Oracle database that
is located on another machine in the network. Use this command format:

sqrw ex1a username/password@servername -KEEP

If you correctly replace username,password, and servername with the appropriate information, you should
have a command line like this:

Introducing the Sample SQR Program Chapter 2

8 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

sqrw ex1a sammy/baker@rome -KEEP

To produce the output file for this exercise, the example uses the -KEEP flag, which is defined later in this
guide.

See Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft.

See Chapter 27, "Printing with SQR," Specifying Output File Types by Using SQR Command-Line Flags,
page 157.

Command Line Examples

Here are some examples for running SQR from the command line for different databases and platforms.

DB2 on Microsoft Windows

%PS_HOME%\bin\sqr\DB2\BINW\sqrw %PS_HOME%\sqr\xrfwin.sqr T846U10/testdb2/t3stdb20
-oc:\sqr_out\xrfwin.out -i%PS_HOME%\sqr\; -zif%PS_HOME%\sqr\pssqr.ini
-fc:\sqr_out\ T846U10 T846U10 952 VP1 testEnglish

Sybase on Microsoft Windows

%PS_HOME%\bin\sqr\syb\binw\sqrw %PS_HOME%\sqr\sysaudit.sqr sa/sybase
-vPTSUN15_ANSI_12503 -dbT846A60 -tb -xp -oc:\sqr_out\sysaudit.log
-i%PS_HOME%\sqr\ -ZIF%PS_HOME%\sqr\pssqr.ini -fc:\sqr_out\sysaudit.pdf
-PRINTER:PD T846A60 254 VP1 PSTEST

Sybase on Unix

$PS_HOME/bin/sqr/SYB/bin/sqr $PS_HOME/sqr/xrfwin t847a60/t847a60 -dbT847A60
-o/tmp/x1.out -xb -xi -i$PS_HOME/sqr -zif$PS_HOME/sqr/pssqr.unx -f/tmp/x1.htm
-PRINTER:HT T847A60 1 VP1 TEST

Informix

%PS_HOME%\BIN\SQR\INF\BINW\sqrw %PS_HOME%\sqr\xrfwin.sqr H890R33B/h890r33b⇒
/h890r33b
-PB -oc:\sqr_out\xrfwinx.out -i%PS_HOME%\sqr_ifx\ -ZIF%PS_HOME%\sqr_ifx\pssqr.ini
"-fc:\sqr_out\xrfwinx.pdf" -PRINTER:PD

Oracle on Unix

$PS_HOME/bin/sqr/ORA/bin/sqr $PS_HOME/sqr/xrfwin.sqr T846U22/T846U22@T846U22
-o$PS_HOME/xrfwin_689.out -i$PS_HOME/sqr/ -ZIF$PS_HOME/sqr/pssqr.unx
"-f$PS_HOME/xrfwin_689.pdf" -printer:pd T846U22 689 VP1 PJS

Microsoft SQL Server on Microsoft Windows

%PS_HOME%\bin\sqr\MSS\BINW\sqrw %PS_HOME%\sqr\xrfwin.sqr T846U10/testdb2/t3stdb20
-oc:\sqr_out\xrfwin.out -i%PS_HOME%\sqr\; -zif%PS_HOME%\sqr\pssqr.ini
-fc:\sqr_out\ T846U10 T846U10 952 VP1 testEnglish

Viewing SQR Output

SQR normally places the SQR program output files in the directory from which you run the program. The
output file has the same file name as the SQR file that created it, but the file extension is different.

Chapter 2 Introducing the Sample SQR Program

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 9

The output files should appear as soon as your program has finished running. If you specified the -KEEP
argument, one output file is in SQR Portable Format (recognizable by its .spf extension). SQR Portable
Format is discussed later in this guide, but for now, you can view the sample program's .spf file output,
<filename>.spf, on Microsoft Windows platforms with the SQR Viewer GUI (sometimes referred to as an
SPF Viewer). Invoke the SQR Viewer by entering sqrw at the command line.

On Microsoft Windows and UNIX/Linux systems, the program also produces an output file with an .lis
extension. You can view this output file type from the command line with such commands as TYPE on
Microsoft Windows systems or CAT, MORE, and VI on UNIX/Linux systems. Use the command that is
appropriate to your system to view or print the .lis file.

The output for the example program looks like this for all platforms:

Hello, World.

You may also see a character such as ^L or <FF> at the end of this output file. It is the form-feed character
that ejects the last page. This guide does not show the form-feed characters.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 11

Chapter 3

Creating Headings and Footings

This chapter provides an overview of SQR pages and discusses how to create page headings and footings.

Understanding SQR Pages

Typically, every page of a report has some information about the report itself, such as the title, the date, and
the page number. In SQR, the page can be subdivided into three logical areas:

• The top area of the page is the heading, which is where the report title and the date normally print.

• The middle part of the page is the body, where the report data prints.

• The bottom area of the page is the footing, where the page number normally prints.

The heading, body, and footing of the page each have independent line numbers. You can print in each of
these page areas by using line numbers that are relative to the top corner of that area without being concerned
about the size of the other areas. That is, you can print to the first line of the body by using line number 1,
independent of the size of the heading.

Note. Any space that is reserved for the heading and footing is taken from the body area of the page. With
one line each in the heading and footing, the maximum possible size of the body of the report is reduced by
two lines. Note also that line 1 of the body is actually the first line after the heading.

Creating Page Headings and Footings

This section provides an overview of the heading and footing code example and discusses how to:

• Add page headings.

• Add page footings.

Understanding the Heading and Footing Code Example

Here is an example of the code that is required to add a page heading and footing to a program:

Creating Headings and Footings Chapter 3

12 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex2a.sqr
begin-program
 print 'Hello, World.' (1,1)
end-program
begin-heading 1
 print 'Tutorial Report' (1) center
end-heading
begin-footing 1
 ! print "Page n of m" in the footing
 page-number (1,1) 'Page '
 last-page () ' of '
end-footing

The output for the ex2a.sqr program is:

Tutorial Report
Hello, World.

Page 1 of 1

Note. The PRINT command places text in memory, not on paper. SQR for PeopleSoft always prepares a page
in memory before printing it to paper, creating the body first, then the HEADING and FOOTING sections. In
this example, Hello, World is run first, then Tutorial Report and Page 1 of 1.

Adding Page Headings

Define the page heading in the HEADING section. Begin the section with BEGIN-HEADING and end it with
END-HEADING. Follow the BEGIN-HEADING command with a number that represents the number of
lines that are reserved for the heading. (In this example, the 1 indicates a heading of one line.)

In the heading and footing sample program, the heading uses exactly one line and contains the text Tutorial
Report. The CENTER argument ensures that the text is centered on the line.

Adding Page Footings

Define the page footing in the FOOTING section. Begin the section with BEGIN-FOOTING, and end it with
END-FOOTING. Follow the BEGIN-FOOTING command with a number that represents the number of lines
that are reserved for the footing. (In this example, the 1 indicates a footing of one line.) This line consists of
the text Page 1 of 1.

Adding Comments

Precede comments with an exclamation mark. The comment extends from the exclamation mark to the end of
the line.

In the heading and footing sample program, the first line in the FOOTING section is a comment.

To print an exclamation mark, enter it twice to indicate that it is not the beginning of a comment. For
example:

print 'Hello, World!!' (1,1)

Chapter 3 Creating Headings and Footings

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 13

Adding Page Numbers

Use the PAGE-NUMBER command to print the text Page and the current page number. Use the LAST-
PAGE command to print the number of the last page, preceded by the word of, which is bracketed by spaces.

In the headings and footings code example, Page 1 of 1 appears because only one page exists.

Indicating the Print Position

Include numbers in parentheses following the PRINT, PAGE-NUMBER, and LAST-PAGE commands to
indicate the position for printing. Express a position in SQR language with three numbers in parentheses: line
number, column number (character position), and width of the text.

In many cases, a position contains only the line and column numbers. The width is normally omitted because
it is set by default to the width of the text that is being printed. If you also omit the line and column numbers,
the print position is set by default to the current position, which is the position following the last printed item.

In the heading and footing sample program, the LAST-PAGE command has the position (), so the current
position is the position following the page number.

The print position is a point within the area of the page, or more precisely, within the heading, body, or
footing. The position (1,1) in the heading is not the same as the position (1,1) in the body. Line 1 of the body
is the first line following the heading. In the program, the heading has only one line, so line 1 of the body is
actually the second line of the page. Similarly, line 1 of the footing is at the bottom of the page. It is the first
line following the body.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 15

Chapter 4

Selecting Data from the Database

This chapter provides an overview of the sample program for listing and printing data and describes how to
create SQR select paragraphs.

Understanding the Sample Program for Listing and Printing Data

Here is a sample program that selects data from the database and prints it in columns:

Program ex3a.sqr
begin-program
 do list_customers
end-program
begin-heading 4
 print 'Customer Listing' (1) center
 print 'Name' (3,1)
 print 'City' (,32)
 print 'State' (,49)
 print 'Phone' (,55)
end-heading
begin-footing 1
 ! Print "Page n of m" in the footing
 page-number (1,1) 'Page '
 last-page () ' of '
end-footing
begin-procedure list_customers
begin-select
name (,1)
city (,32)
state (,49)
phone (,55)
 position (+1) ! Advance to the next line
from customers
end-select
end-procedure ! list_customers

The output for the ex3a.sqr program is:

Selecting Data from the Database Chapter 4

16 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 Customer Listing

Name City State Phone
Gregory Stonehaven Everretsville OH 2165553109
John Conway New York NY 2125552311
Eliot Richards Queens NY 2125554285
Isaiah J Schwartz and Company Zanesville OH 5185559813
Harold Alexander Fink Davenport IN 3015553645
Harriet Bailey Mamaroneck NY 9145550144
Clair Butterfield Teaneck NJ 2015559901
Quentin Fields Cleveland OH 2165553341
Jerry's Junkyard Specialties Frogline NH 6125552877
Kate's Out of Date Dress Shop New York NY 2125559000
Sam Johnson Bell Harbor MI 3135556732
Joe Smith and Company Big Falls NM 8085552124
Corks and Bottles, Inc. New York NY 2125550021
Harry's Landmark Diner Miningville IN 3175550948

Page 1 of 1

The PROGRAM section contains a single DO command, which invokes the list_customers procedure.

In SQR language, a procedure is a group of commands that are performed one after the other, like a procedure
(or subroutine) in other programming languages. A DO command invokes a procedure.

Break your program logic into procedures and keep the PROGRAM section small. It should normally contain
a few DO commands for the main components of your report.

The HEADING section creates headings for the report columns. In this example, four lines are reserved for
the heading:

begin-heading 4
 print 'Customer Listing' (1) center
 print 'Name' (3,1)
 print 'City' (,32)
 print 'State' (,49)
 print 'Phone' (,55)
end-heading

The Customer Listing title is printed on line 1. Line 2 is left blank. The first column heading, Name, is
positioned at line 3 of the heading, in character position 1. The rest of the column heading commands omit
the line numbers in their positions and are set by default to the current line. Line 4 of the heading is left blank.

In this sample program, the footing is the same as the one in the previous sample program.

Creating SQR Select Paragraphs

The BEGIN-SELECT command is the principal method of retrieving data from the database and printing it in
a report. Look again at the sample program for listing and printing data, in which the list_customers
procedure starts with BEGIN-PROCEDURE and ends with END-PROCEDURE.

Note the comment following the END-PROCEDURE command. It indicates that the procedure is being
ended, which is helpful when you have a program with many procedures. (You can also omit the exclamation
point, for example, END-PROCEDURE main.)

The procedure itself contains a select paragraph, which starts with BEGIN-SELECT and ends with END-
SELECT.

Chapter 4 Selecting Data from the Database

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 17

The select paragraph is unique. It combines an SQL SELECT statement with SQR processing in a seamless
way. The actual SQL statement is:

SELECT NAME, CITY, STATE, PHONE
FROM CUSTOMERS

Syntax of the Select Paragraph

In an SQR select paragraph, the SQL statement SELECT is omitted, and no commas are between the column
names. Instead, each column is on its own line. You can also place SQR commands between the column
names, and these commands are run for every record that the select fetches.

Note. You must name each individual column in a table—the SQL SELECT * FROM statement is not
allowed in SQR.

SQR distinguishes column names from SQR commands in a select paragraph by their indentation. Column
names must be placed at the beginning of a line. SQR commands must be indented at least one space. In the
following example, the POSITION command is indented to prevent it from being taken as a column name.
The word From must be the first word in a line. The rest of the SQR select paragraph is then written freely,
after SQL syntax.

Think of the select paragraph as a loop. The SQR commands, including printing of columns, are run in a loop,
once for each record that Select returns. The loop ends after the last record is returned.

Positioning Data

In a select paragraph, you see positioning after each column name. This positioning implies a PRINT
command for that column. Omitting the line number in the position causes it to be set by default to the current
line.

begin-select
name (,1)
city (,32)
state (,49)
phone (,55)
 position (+1) ! Advance to the next line
from customers
end-select

The implied PRINT command is a special SQR feature that is designed to save you coding time. It works
only inside a select paragraph.

After the last column is a POSITION command: POSITION(+1). The plus sign (or minus sign) indicates
relative positioning in SQR. A plus sign moves the print position forward from the current position, and a
minus sign moves it back. The +1 in the sample program specifies one line down from the current line. This
command advances the current print position to the next line.

Note. When you indicate print positions by using plus or minus signs, be sure that your numbers do not
specify a position outside of the page boundaries.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 19

Chapter 5

Using Column Variables

This chapter discusses how to:

• Use a column variable in a condition.

• Change the column variable name.

Using a Column Variable in a Condition

You can name database columns with variables and use their values in conditions and commands.

When you select columns from the database in a select paragraph, you can immediately print them by using a
position. For example:

begin-select
phone (,1)
 position (+1)
from customers
end-select

This example shows how to use the value of phone for another purpose, for example, in a condition:

begin-program
 do list_customers
end-program
begin-procedure list_customers
begin-select
phone
 if &phone = ''
 print 'No phone' (,1)
 else
 print &phone (,1)
 end-if
 position (+1)
from customers
end-select
end-procedure ! list_customers

The phone column is a SQR column variable. Precede column variables with an ampersand (&).

Unlike other program variables, column variables are read-only. You can use their existing value, but you
cannot assign a new value to a column variable.

In the sample program, &phone is a column variable that you can use in SQR commands as if it were a string,
date, or numeric variable, depending on its contents. In the condition, &phone is compared to ' ', which is an
empty string. If &phone is an empty string, the program prints No phone instead.

Using Column Variables Chapter 5

20 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Changing the Column Variable Name

Note that the &phone column variable illustrated in the previous section inherited its name from the phone
column. This is the default, but you can change it, as the following example demonstrates:

begin-select
phone &cust_phone
 if &cust_phone = ''
 print 'No phone' (,1)
 else
 print &cust_phone (,1)
 end-if
 position (+1)
from customers
end-select

One reason for changing the name of the column variable is to use a selected column in an expression that has
no name. For example:

begin-select
count(name) &cust_cnt (,1)
 if &cust_cnt < 100
 print 'Less than 100 customers'
 end-if
 position (+1)
from customers
group by city, state
end-select

In this example, the expression COUNT (name) is selected. In the program, you store this expression in the
&cust_cnt column variable and refer to it afterwards by that name.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 21

Chapter 6

Using Break Logic

This chapter provides an overview of break logic and discusses how to:

• Use ON-BREAK.

• Skip lines between groups.

• Arrange multiple break columns.

• Use break processing enhancements.

• Set break procedures with BEFORE and AFTER.

• Control page breaks with multiple ON-BREAK columns.

• Save a value when a break occurs.

• Use ON-BREAK on a hidden column.

• Perform break processing on numeric values.

Understanding Break Logic

A break is a change in the value of a column or variable. Records with the same value—for example, records
with the same value for state—logically belong to a group. When a break occurs, a new group begins.

Use break logic in a report to:

• Add white space to reports.

• Avoid printing redundant data.

• Perform conditional processing on variables that change.

• Print subtotals.

For example, you can use break logic to prepare a sales report with records that are grouped by product,
region, or salesperson (or all three). Break logic also enables you to print column headings, count records,
subtotal a column, and perform additional processing on the count or subtotal.

Here is the sample program without break logic:

Using Break Logic Chapter 6

22 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex5a.sqr
begin-program
 do list_customers
end-program
begin-heading 2
 print 'State' (1,1)
 print 'City' (1,7)
 print 'Name' (1,24)
 print 'Phone' (1,55)
end-heading
begin-procedure list_customers
begin-select
state (,1)
city (,7)
name (,24)
phone (,55)
 position (+1) ! Advance to the next line
from customers
order by state, city, name
end-select
end-procedure ! list_customers

The output for the ex4a.sqr program is:

State City Name Phone

IN Davenport Harold Alexander Fink 3015553645
IN Miningville Harry's Landmark Diner 3175550948
MI Bell Harbor Sam Johnson 3135556732
NH Frogline Jerry's Junkyard Specialties 6125552877
NJ Teaneck Clair Butterfield 2015559901
NM Big Falls Joe Smith and Company 8085552124
NY Mamaroneck Harriet Bailey 9145550144
NY New York John Conway 2125552311
NY New York Corks and Bottles, Inc. 2125550021
NY New York Kate's Out of Date Dress Shop 2125559000
NY Queens Eliot Richards 2125554285
OH Cleveland Quentin Fields 2165553341
OH Everretsville Gregory Stonehaven 2165553109
OH Zanesville Isaiah J Schwartz and Company 5185559813

When you sort the output by state, city, and name (note the ORDER BY clause in the BEGIN-SELECT), the
records are grouped by state. To make the grouping more apparent, you can add a break.

Using ON-BREAK

In the following program, the ON-BREAK option of the PRINT command accomplishes two related tasks: it
starts a new group each time the value of state changes, and it prints state only when its value changes. Note
that ON-BREAK works as well for implicit as for explicit PRINT commands, such as in the following
example, where state, city, name, and phone are implicitly printed as part of the select paragraph.

The sample program here is identical to ex5a.sqr except for the line that prints the state column, which
appears like this:

Chapter 6 Using Break Logic

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 23

Program ex5b.sqr
begin-program
 do list_customers
end-program
begin-heading 2
 print 'State' (1,1)
 print 'City' (1,7)
 print 'Name' (1,24)
 print 'Phone' (1,55)
end-heading
begin-procedure list_customers
begin-select
state (,1) on-break
city (,7)
name (,24)
phone (,55)
 position (+1) ! Advance to the next line
from customers
order by state, city, name
end-select
end-procedure ! list_customers

The output for the ex5b.sqr program is:

State City Name Phone

IN Davenport Harold Alexander Fink 3015553645
 Miningville Harry's Landmark Diner 3175550948
MI Bell Harbor Sam Johnson 3135556732
NH Frogline Jerry's Junkyard Specialties 6125552877
NJ Teaneck Clair Butterfield 2015559901
NM Big Falls Joe Smith and Company 8085552124
NY Mamaroneck Harriet Bailey 9145550144
 New York John Conway 2125552311
 New York Corks and Bottles, Inc. 2125550021
 New York Kate's Out of Date Dress Shop 2125559000
 Queens Eliot Richards 2125554285
OH Cleveland Quentin Fields 2165553341
 Everretsville Gregory Stonehaven 2165553109
 Zanesville Isaiah J Schwartz and Company 5185559813

With break processing, the state abbreviation is printed only once for each group.

Skipping Lines Between Groups

You can further enhance the visual effect of break processing by inserting one or more lines between groups.
To do so, use the SKIPLINES qualifier with ON-BREAK. Here is the list_customers procedure from
ex5b.sqr, with the modified line shown like this:

begin-select
state (,1) on-break skiplines=1
city (,7)
name (,24)
phone (,55)
 position (+1) ! Advance to the next line
from customers
order by state, city, name
end-select

Using Break Logic Chapter 6

24 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

The output for the modified ex5b.sqr program is:

State City Name Phone
IN Davenport Harold Alexander Fink 3015553645
 Miningville Harry's Landmark Diner 3175550948

MI Bell Harbor Sam Johnson 3135556732

NH Frogline Jerry's Junkyard Specialties 6125552877
.....

Arranging Multiple Break Columns

As you can see in the previous example, you can also have multiple customers within a city. You can apply
the same break concept to the city column to make this grouping of customers more apparent. Add another
ON-BREAK to the program so that city is also printed only when its value changes.

When you have multiple breaks, you must arrange them in a hierarchy. In the sample program, the breaks are
for geographical units, so arranging them according to size is logical: first state, then city. This sort of
arrangement is called nesting, and the breaks are considered nested.

To ensure that the breaks are properly nested, use the LEVEL keyword. This argument numbers breaks by
level and specifies that the columns are printed in order of increasing break levels, from left to right. Number
breaks in the same order in which they are sorted in the ORDER BY clause.

See Chapter 6, "Using Break Logic," Understanding the Order of Events, page 30.

The LEVEL argument enables you to control the order in which you call break procedures. The next sample
program is identical to ex5a.sqr except for the two lines that print the state and city columns, which are shown
like this:

Program ex5c.sqr
begin-program
 do list_customers
end-program
begin-heading 2
 print 'State' (1,1)
 print 'City' (1,7)
 print 'Name' (1,24)
 print 'Phone' (1,55)
end-heading
begin-procedure list_customers
begin-select
state (,1) on-break level=1
city (,7) on-break level=2
name (,24)
phone (,55)
 position (+1) ! Advance to the next line
from customers
order by state, city, name
end-select
end-procedure ! list_customers

The output for the ex5c.sqr program is:

Chapter 6 Using Break Logic

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 25

State City Name Phone

IN Davenport Harold Alexander Fink 3015553645
 Miningville Harry's Landmark Diner 3175550948
MI Bell Harbor Sam Johnson 3135556732
NH Frogline Jerry's Junkyard Specialties 6125552877
NJ Teaneck Clair Butterfield 2015559901
NM Big Falls Joe Smith and Company 8085552124
NY Mamaroneck Harriet Bailey 9145550144
 New York John Conway 2125552311
 Corks and Bottles, Inc. 2125550021
 Kate's Out of Date Dress Shop 2125559000
 Queens Eliot Richards 2125554285
OH Cleveland Quentin Fields 2165553341
 Everretsville Gregory Stonehaven 2165553109
 Zanesville Isaiah J Schwartz and Company 5185559813

As you can see, three customers are in New York, so the city name for the second and third customers is left
blank.

Using Break Processing Enhancements

This section discusses how to:

• Control page breaks and calculate subtotals and totals.

• Handle page breaks.

• Print the date.

• Obtain totals.

• Use hyphens and underscores.

Controlling Page Breaks and Calculating Subtotals and Totals

When you use break logic, you may want to enhance your report by controlling page breaks or calculating
subtotals and totals for the ON-BREAK column. The following example illustrates these techniques.

The sample program selects the customer's name, address, and telephone number from the database. The
break processing is performed on the state column:

Using Break Logic Chapter 6

26 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex5d.sqr
begin-program
 do list_customers
end-program
begin-heading 4
 print 'Customers Listed by State' (1) center
 print $current-date (1,1) Edit 'DD-Mon-YYYY'
 print 'State' (3,1)
 print 'Customer Name, Address and Phone Number' (,11)
 print '-' (4,1,9) fill
 print '-' (4,11,40) fill
end-heading
begin-footing 2
 ! print "Page n of m"
 page-number (1,1) 'Page '
 last-page () ' of '
end-footing
begin-procedure state_tot
 print ' Total Customers for State: ' (+1,1)
 print #state_total () edit 999,999
 position (+3,1) ! Leave 2 blank lines.
 let #cust_total = #cust_total + #state_total
 let #state_total = 0
end-procedure ! state_tot
begin-procedure list_customers
let #state_total = 0
let #cust_total = 0
begin-select
! The 'state' field will only be printed when it
! changes. The procedure 'state_tot' will also be
! executed only when the value of 'state' changes.
state (,1) on-break print=change/top-page after=state_tot
name (,11)
addr1 (+1,11) ! continue on second line
addr2 (+1,11) ! continue on third line
city (+1,11) ! continue on fourth line
phone (,+2) edit (xxx)bxxx-xxxx ! Edit for easy reading.
 ! Skip 1 line between listings.
 ! Since each listing takes 4 lines, we specify 'need=4' to
 ! prevent a customer's data from being broken across two pages.
 next-listing skiplines=1 need=4
 let #state_total = #state_total + 1
from customers
order by state, name
end-select
if #cust_total > 0
 print ' Total Customers: ' (+3,1)
 print #cust_total () edit 999,999 ! Total customers printed.
else
 print 'No customers.' (1,1)
end-if
end-procedure ! list_customers

The output for the ex5d.sqr program is:

Chapter 6 Using Break Logic

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 27

29-Apr-2004

Customers Listed by State

State Customer Name, Address and Phone Number
--------- --
IN Harold Alexander Fink
 32077 Cedar Street
 West End
 Davenport (301) 555-3645

 Harry's Landmark Diner
 17043 Silverfish Road
 South Park
 Miningville (317) 555-0948

Total Customers for State: 2

MI Sam Johnson
 37 Cleaver Street
 Sandy Acres
 Bell Harbor (313) 555-6732

 Total Customers for State: 1

NH Jerry's Junkyard Specialties
 Crazy Lakes Cottages
 Rural Delivery #27
 Frogline (612) 555-2877

Total Customers for State: 1

...

Take a close look at the code. The data is printed by using a select paragraph in the list_customer procedure.
The state and the customer name are printed on the first line. The customer's address and phone number are
printed on the next three lines.

The program also uses the argument AFTER=STATE_TOT. This argument calls the state_tot procedure
after each change in the value of state.

See Chapter 6, "Using Break Logic," Setting Break Procedures with BEFORE and AFTER, page 29.

Handling Page Breaks

If a page break occurs within a group, you may want to reprint headings and the value of the break column at
the top of the new page.

To control the printing of the value, use PRINT=CHANGE/TOP-PAGE. With this qualifier, the value of the
ON-BREAK column is printed when it changes and after every page break. In this example, the value of state
is printed not only when it changes, but whenever the report starts a new page.

Using Break Logic Chapter 6

28 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

To format records, use the NEXT-LISTING command. This command serves two purposes. The
SKIPLINES=1 argument skips one line between records, then renumbers the current line as line 1. The
NEED=4 argument prevents a listing from being split over two pages by specifying the minimum number of
lines that are needed to write a new listing on the current page. In this case, if fewer than four lines are left on
a page, SQR starts a new page.

Printing the Date

In the HEADING section, the reserved variable $current-date prints the date and the time. This variable is
initialized with the date and time of the client machine when the program starts to run. SQR provides
predefined, or reserved, variables for a variety of uses.

In this example, the complete command is PRINT $current-date (1,1) EDIT 'DD/Mon/YYYY'.
It prints the date and time at position 1,1 of the heading. The EDIT argument specifies an edit mask, or
format, for printing the date. SQR provides a variety of edit masks for use in formatting numbers, dates, and
strings.

See Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft, "SQR Command
Reference," PRINT.

Note that the PRINT command for the report title precedes the command for the $current-date reserved
variable, even though the date is on the left and the title is on the right. SQR always assembles a page in
memory before printing, so the order of these commands does not matter if you use the correct print position
qualifiers.

The last two commands in the HEADING section print a string of hyphens under the column headings. Note
the use of the FILL option with the PRINT command. This tells SQR to fill the specified width with this
pattern, which is a useful method to print a line.

The FOOTING section prints the Page n of m as in earlier examples.

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR for PeopleSoft Developers

Obtaining Totals

The ex5d.sqr program also prints two totals: a subtotal of customers in each state and a grand total of all
customers. These calculations are performed with two numeric variables, one for the subtotals and one for the
grand totals. These variables are:

• #state_total

• #cust_total

SQR for PeopleSoft has a small set of variable types. The most common types are numeric variables and
string variables. All numeric variables in SQR are preceded by a pound sign (#) and all string variables are
preceded by a dollar sign ($). An additional SQR variable type is the date variable.

Chapter 6 Using Break Logic

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 29

In SQR for PeopleSoft, numeric and string variables are not explicitly declared. Instead, they are implicitly
defined by their first use. All numeric variables start out as zero and all string variables start out as null, so
they do not need to be initialized. The string variables are of varying length and can hold long strings of
characters and short ones. Assigning a new value to a string variable automatically adjusts its length.

In the list_customers procedure, #state_total and #cust_total are set to zero at the beginning of the procedure.
This initialization is optional and is done for clarity only. The #state_total variable is incremented by 1 for
every row that is selected.

When the value of state changes, the program calls the state_tot procedure and prints the value of
#state_total. Note the use of the EDIT 999,999 edit mask, which formats the number.

This procedure also employs the LET command. LET is the assignment command in SQR, for building
complex expressions. Here, LET adds the value of #state_total to #cust_total. At the end of the procedure,
#state_total is reset to zero.

The list_customers procedure contains an example of the SQR if-then-else logic. The condition starts with IF
followed by an expression. If the expression evaluates to true or to a number other than zero, the subsequent
commands are run. Otherwise, if there is an ELSE part to the IF, those commands are run. IF commands
always end with an END-IF.

In ex5d.sqr, the value of #cust_total is examined. If it is greater than zero, the query has returned rows of
data, and the program prints the string Total Customers: and the value of #cust_total.

If #cust_total is zero, the query has not returned any data. In that case, the program prints the string No
customers.

Using Hyphens and Underscores

Many SQR commands, such as BEGIN-PROGRAM and BEGIN-SELECT, use a hyphen, whereas procedure
and variable names use an underscore.

Procedure and variable names can contain either a hyphen or underscore, but it's best to use underscores in
procedure and variable names to distinguish them from SQR commands. It also prevents confusion when you
mix variable names and numbers in an expression, where hyphens could be mistaken for minus signs.

Setting Break Procedures with BEFORE and AFTER

When you print variables with ON-BREAK, you can automatically call procedures before and after each
break in a column. The BEFORE and AFTER qualifiers provide this capability. For example:

begin-select
state (,1) on-break before=state_heading after=state_tot

The BEFORE qualifier automatically calls the state_heading procedure to print headings before each group
of records of the same state. Similarly, the AFTER qualifier automatically calls the state_tot procedure to
print totals after each group of records.

All BEFORE procedures are automatically invoked before each break, including the first: that is, before the
select paragraph is even processed. Similarly, all AFTER procedures are invoked after each break, including
the last group: that is, upon completion of the select paragraph.

Using Break Logic Chapter 6

30 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Understanding the Order of Events

You can define a hierarchy of break columns by using the LEVEL qualifier of ON-BREAK. In the ex5c.sqr
sample program, for example, state was defined as LEVEL=1 and city as LEVEL=2.

When a break occurs at one level, it also forces breaks on variables with higher LEVEL qualifiers. In the
sample program, a break on state also means a break on city.

A break on a variable can initiate many other events. The value can be printed, lines can be skipped,
procedures can be called automatically, and the old value can be saved. Knowing the order of events is
important, particularly where multiple ON-BREAK columns exist.

The following select paragraph has breaks on three levels:

begin-select
state (,1) on-break level=1 after=state_tot skiplines=2
city (,7) on-break level=2 after=city_tot skiplines=1
zip (,45) on-break level=3 after=zip_tot
from customers
order by state, city, zip
end-select

The breaks are processed in the following way:

1. When zip breaks, the city_tot procedure is run.

2. When city breaks, first the zip_tot procedure is run, then the city_tot procedure is run, and one line is
skipped (SKIPLINES=1).

Both city and zip are printed in the next record.

3. When state breaks, the zip_tot, city_tot, and state_tot procedures are processed in that order.

One line is skipped after the city_tot procedure is run, and two lines are skipped after the state_tot
procedure is run. All three columns—state, city, and zip—are printed in the next record.

The following program (ex5e.sqr) demonstrates the order of events in break processing. It has three ON-
BREAK columns, each with a LEVEL argument and a BEFORE and AFTER procedure. The BEFORE and
AFTER procedures print strings to indicate the order of processing.

Chapter 6 Using Break Logic

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 31

Program ex5e.sqr
begin-setup
 declare-Layout
 default
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure a
print 'AFTER Procedure for state LEVEL 1' (+1,40)
end-procedure
begin-procedure b
print 'AFTER Procedure city LEVEL 2' (+1,40)
end-procedure
begin-procedure c
print 'AFTER Procedure zip LEVEL 3' (+1,40)
end-procedure
begin-procedure aa
print 'BEFORE Procedure state LEVEL 1' (+1,40)
end-procedure
begin-procedure bb
print 'BEFORE Procedure city LEVEL 2' (+1,40)
end-procedure
begin-procedure cc
print 'BEFORE Procedure zip LEVEL 3' (+1,40)
end-procedure
begin-procedure main local
begin-select
 add 1 to #count
 print 'Retrieved row #' (+1,40)
 print #count (,+10)Edit 9999
 position (+1)
state (3,1) On-Break Level=1 after=a before=aa
city (3,10) On-Break Level=2 after=b before=bb
zip (3,25) On-Break Level=3 after=c before=cc Edit xxxxx
 next-listing Need=10
from customers
order by state,city,zip
end-select
end-procedure
begin-heading 3
 print $current-date (1,1) edit 'DD-MM-YYYY'
 page-number (1,60) 'Page '
 last-page () ' of '
 print 'STATE' (3,1)
 print 'CITY' (3,10)
 print 'ZIP' (3,25)
 print 'Break Processing sequence' (3,40)
end-heading

The output for the ex5e.sqr program is:

Using Break Logic Chapter 6

32 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

02-05-2004 Page 1 of 3

STATE CITY ZIP Break Processing sequence

 BEFORE Procedure state LEVEL 1
IN Davenport 62130 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3

 Retrieved row #1
 Retrieved row #2
 Miningville 40622
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3

 Retrieved row #3
MI Bell Harbor 40674
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 AFTER Procedure for state LEVEL 1
 BEFORE Procedure state LEVEL 1
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3

 Retrieved row #4
NH Frogline 04821
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 AFTER Procedure for state LEVEL 1
 BEFORE Procedure state LEVEL 1
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3

 Retrieved row #5
NJ Teaneck 00355
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 AFTER Procedure for state LEVEL 1
 BEFORE Procedure state LEVEL 1
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3

 Retrieved row #6
NM Big Falls 87893
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 AFTER Procedure for state LEVEL 1
 BEFORE Procedure state LEVEL 1
 BEFORE Procedure city LEVEL 2
 BEFORE Procedure zip LEVEL 3

02-05-2004 Page 2 of 3

STATE CITY ZIP Break Processing sequence

 Retrieved row #7
NY Mamaroneck 10833
 AFTER Procedure zip LEVEL 3
 AFTER Procedure city LEVEL 2
 AFTER Procedure for state LEVEL 1
 BEFORE Procedure state LEVEL 1
 BEFORE Procedure city LEVEL 2

Chapter 6 Using Break Logic

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 33

 BEFORE Procedure zip LEVEL 3

...

The following steps explain the order of processing in detail:

1. Process BEFORE procedures.

BEFORE procedures are processed in ascending order by LEVEL before the first row of the query is
retrieved. If no data is selected, BEFORE procedures are not run.

2. Select the first row of data.

3. Select subsequent rows of data.

Processing of the select paragraph continues. When a break occurs on any column, it also initiates breaks
on columns at the same or higher levels. Events occur in the following order:

a. AFTER procedures are processed in descending order from the highest level to the level of the current
ON-BREAK column.

b. SAVE variables are set with the value of the previous ON-BREAK column.

c. BEFORE procedures are processed in ascending order from the current level to the highest level.

d. If SKIPLINES was specified, the current line position is advanced.

e. The value of the new group is printed (unless PRINT=NEVER is specified).

4. Process AFTER procedures.

After the select paragraph is complete, if any rows were selected, AFTER procedures are processed in
descending order by LEVEL.

See Chapter 6, "Using Break Logic," Saving a Value When a Break Occurs, page 34.

Controlling Page Breaks with Multiple ON-BREAK Columns

Where multiple columns have ON-BREAK, page breaks need careful planning. While having a page break
within a group, you probably would not want to have one within a record.

You can prevent page breaks within a record by following four simple rules:

• Place ON-BREAK columns ahead of other columns in the select paragraph.

• Place the lower-level ON-BREAK columns ahead of the higher-level ON-BREAK columns in the select
paragraph.

• Use the same line positions for all ON-BREAK columns.

• Avoid using WRAP and ON-BREAK together on one column.

Using Break Logic Chapter 6

34 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Saving a Value When a Break Occurs

In ex5d.sqr, the state_tot procedure prints the total number of customers per state. Because it is called with
the AFTER argument, this procedure is run only after the value of the ON-BREAK column, state, has
changed.

Sometimes, however, you may want to print the previous value of the ON-BREAK column in the AFTER
procedure. For example, you may want to print the state name and the totals for each state. Printing the value
of state will not work because its value will have changed by the time the AFTER procedure is called.

The solution is to save the previous break value in a string variable. To do this, use the SAVE qualifier of
ON-BREAK. For example:

begin-select
state (,1) on-break after=state_tot save=$old_state

You can then print the value of $old_state in the state_tot procedure.

Using ON-BREAK on a Hidden Column

In some reports, you may want to use the features of break processing without printing the ON-BREAK
option. For example, you may want to incorporate the ON-BREAK option into a subheading. This format
might make your report more readable. It is also useful when you want to leave room on the page for
additional columns.

To create such a report, you can hide the break option using the PRINT=NEVER qualifier and print it in a
heading procedure that is called by BEFORE.

The following code is based on the ex5b.sqr program, with the key lines shown like this:

Chapter 6 Using Break Logic

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 35

Program ex5f.sqr

begin-program
 do list_customers
end-program
begin-procedure list_customers
begin-select
state () on-break before=state_heading print=never level=1
city (,1) on-break level=2
name (,18)
phone (,49)
 position (+1) ! Advance to the next line
from customers
order by state, city, name
end-select
end-procedure ! list_customers
begin-procedure state_heading
 print 'State: ' (+1,1) bold ! Advance a line and print 'State:'
 print &state (,8) bold ! Print the state column here
 print 'City' (+1,1) bold ! Advance a line and print 'City'
 print 'Name' (,18) bold
 print 'Phone' (,49) bold
 print '-' (+1,1,58) fill
 position (+1) ! Advance to the next line
end-procedure ! state_heading

Note. This program has no HEADING section. Instead, a procedure prints column headings for each state
rather than at the top of each page. The &state variable can be referenced throughout the program, even
though the state column was not printed as part of the break.

Examine the following line in the program from the select paragraph:

state () on-break before=state_heading print=never level=1

This line defines the break processing for state. The BEFORE qualifier specifies that the state_heading
procedure is automatically called when the state changes. In this program, the break is set to LEVEL=1.

The PRINT=NEVER qualifier hides the state column and specifies that it is not printed as part of the select
paragraph. Instead, it is printed in the state_heading procedure. In this procedure, the state column is referred
to as the &state column variable.

The city column is assigned a LEVEL=2 break.

The output for the ex5f.sqr program is:

Using Break Logic Chapter 6

36 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

State: IN
City Name Phone
--
Davenport Harold Alexander Fink 3015553645
Miningville Harry's Landmark Diner 3175550948

State: MI
City Name Phone
--
Bell Harbor Sam Johnson 3135556732

State: NH
City Name Phone
--
Frogline Jerry's Junkyard Specialties 6125552877

State: NJ
City Name Phone
--
Teaneck Clair Butterfield 2015559901

State: NM
City Name Phone
--
Big Falls Joe Smith and Company 8085552124

State: NY
City Name Phone
--
Mamaroneck Harriet Bailey 9145550144
New York John Conway 2125552311
 Corks and Bottles, Inc. 2125550021
 Kate's Out of Date Dress Shop 2125559000
Queens Eliot Richards 2125554285

State: OH
City Name Phone
--
Cleveland Quentin Fields 2165553341
Everretsville Gregory Stonehaven 2165553109
Zanesville Isaiah J Schwartz and Company 5185559813

Performing Break Processing on Numeric Values

You cannot use ON-BREAK with SQR numeric variables. To perform break processing on a numeric
variable, you must first move its value to a string variable and then set ON-BREAK on that. For example:

begin-select
amount_received &amount
 move &amount to $amount $$9,999.99
 print $amount (+1,1) on-break
from cash_receipts
order by amount_received
end-select

Chapter 6 Using Break Logic

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 37

The maximum number of ON-BREAK levels is determined by the ON-BREAK setting in the [Processing-
Limits] section of the PSSQR.INI file. The default is 30, but you can increase this setting. Its maximum value
is 64K-1 (65,535).

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 39

Chapter 7

Adding Declarations Using the SETUP
Section

This chapter provides an overview of the SETUP section and discusses how to:

• Create the SETUP section.

• Use the DECLARE-LAYOUT command.

• Override the default settings.

• Declare the page orientation.

Understanding the SETUP Section

The SETUP section of the program is where you place all of the declarations. Declarations define certain
report characteristics and the source and attributes of various report components, such as charts and images.
The SETUP section is evaluated when you compile the program, before you run the program. A program
doesn't have to have a SETUP section, but it can be useful.

Creating the SETUP Section

Place the SETUP section, if present, at the beginning of the program before the PROGRAM section. Begin
with BEGIN-SETUP and end with END-SETUP.

Use the following commands in the SETUP section:

Command Comments

ALTER-LOCALE Can also appear in a procedure.

ASK Allowed only in a SETUP section.

BEGIN-SQL Can also appear in a procedure. Processed when a
runtime file (with .SQT extension) is loaded.

Adding Declarations Using the SETUP Section Chapter 7

40 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Command Comments

CREATE-ARRAY Can also appear in a procedure.

DECLARE-CHART NA

DECLARE-IMAGE NA

DECLARE-LAYOUT NA

DECLARE-PRINTER NA

DECLARE-PROCEDURE NA

DECLARE-REPORT NA

DECLARE-TOC NA

DECLARE-VARIABLE Can also appear in a local procedure.

LOAD-LOOKUP Can also appear in a procedure.

USE Sybase only.

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Using the DECLARE-LAYOUT Command

Use the DECLARE-LAYOUT command to set the page layout and include important options, such as the
paper size and margins.

Sample SETUP Program

Here is a typical SETUP section:

Chapter 7 Adding Declarations Using the SETUP Section

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 41

begin-setup
 ! Declare the default layout for this report
 declare-layout default
 paper-size=(8.5,11)
 left-margin=1 right-margin=1
 top-margin=1 bottom-margin=1
 end-declare
end-setup

In the preceding example, the DECLARE-LAYOUT command sets the paper size to 8 1/2 by 11 inches, with
all margins at 1 inch.

In SQR for PeopleSoft, data is positioned on the page using line and character position coordinates. Think of
the page as a grid where each cell holds one character. With such a grid, in a position qualifier consisting of
(line, column, width),column and width are numbers that denote characters and spaces.

Defining the SQR Page Layout

The main attributes of the DECLARE-LAYOUT command affect the structure of the page.

The PAPER-SIZE argument defines the dimensions of the entire page, including the margins. The TOP-
MARGIN, LEFT-MARGIN, BOTTOM-MARGIN, and RIGHT-MARGIN arguments define the margins. In
SQR, you cannot print in the margins.

In the preceding sample program, the left margin uses 10 spaces and the top margin uses 6 lines. The page
width accommodates 65 characters (without the margins) and 54 lines.

The default mapping of characters and lines to inches is 10 characters per inch (CPI) and six lines per inch
(LPI). This means that each character cell is 1/10 inch wide and 1/6 inch high. These settings are used when a
program does not contain a DECLARE-LAYOUT command.

Overriding the Default Settings

Override the default settings by using the LINE-HEIGHT and CHAR-WIDTH arguments in the DECLARE-
LAYOUT command. These arguments adjust the dimensions of the grid, which implies a change in the
meaning of column and line. If the DECLARE-LAYOUT paragraph includes the LINE-HEIGHT=1 and
CHAR-WIDTH=1 arguments, the cells in the grid measure one point by one point (one point is 1/72 inch or
approximately 0.35 millimeters). In that case, column is a dimension given in points. The length of a string,
however, is still given in characters.

Alternatively, you can use the MAX-LINES and MAX-COLUMNS arguments of the DECLARE-LAYOUT
command to specify the number of lines on the page and the number of characters to fit across the page. SQR
calculates the line height and character width based on these settings and the size of the page and margins.

Specify coordinates in terms of lines and character positions. The first line from the top is 1 and the first
column (from the left) is 1. No coordinate 0 exists.

Adding Declarations Using the SETUP Section Chapter 7

42 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Declaring the Page Orientation

Use the DECLARE-LAYOUT command to declare the page orientation. Note that this declaration does not
affect how SQR uses position coordinates. Line and character positions are not transposed when page
orientation is switched. The only effect of the ORIENTATION option of the DECLARE-LAYOUT command
is that SQR switches the printer to the specified orientation: portrait or landscape. The default mode is
portrait.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 43

Chapter 8

Creating Master and Detail Reports

This chapter provides overviews of master and detail reports and the sample program for master and detail
reports and discusses how to correlate subqueries:

Understanding Master and Detail Reports

Master and detail reports show hierarchical information. The information is normally retrieved from multiple
tables that have a one-to-many relationship, such as customers and orders. The customer information is the
master and the orders are the detail.

Often, you can obtain such information with a single SQR select paragraph. In such a program, the data from
the master table is joined with data from the detail table. You can implement break logic to group the detail
records for each master record. This type of report has one major disadvantage: if a master record has no
associated detail records, it is not displayed. If you need to show all master records, whether they have detail
records or not, this type of report will not meet your needs.

See Chapter 6, "Using Break Logic," page 21.

To show all master records, whether or not they have detail records, create a master and detail report with one
SELECT statement that retrieves records from the master table, followed by separate SELECT statements
that retrieve the detail records that are associated with each master record.

The sample program in this chapter produces just such a report. In the example, one BEGIN-SELECT returns
the names of customers. For each customer, two additional BEGIN-SELECT commands are run—one to
retrieve order information and another to retrieve payment information.

When one query returns master information and another query returns detail information, the detail query is
nested within the master query.

Understanding the Sample Program for Master and Detail Reports

In the sample program, the nested queries are invoked once for each customer, each one retrieving records
that correspond to the current customer. A bind variable correlates the subqueries in the WHERE clause. This
variable correlates the customer number (cust_num) with the current customer record.

Creating Master and Detail Reports Chapter 8

44 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex7a.sqr
begin-program
 do main
end-program
begin-procedure main
begin-select
 Print 'Customer Information' (,1)
 Print '-' (+1,1,45) Fill
name (+1,1,25)
city (,+1,16)
state (,+1,2)
cust_num
 do cash_receipts(&cust_num)
 do orders(&cust_num)
 position (+2,1)
from customers
end-select
end-procedure ! main
begin-procedure cash_receipts (#cust_num)
 let #any = 0
begin-select
 if not #any
 print 'Cash Received' (+2,10)
 print '-------------' (+1,10)
 let #any = 1
 end-if
date_received (+1,10,20) edit 'DD-MON-YY'
amount_received (,+1,13) Edit $$$$,$$0.99
from cash_receipts a
where a.cust_num = #cust_num
end-select
end-procedure ! cash_receipts
begin-procedure orders (#cust_num)
 let #any = 0
begin-select
 if not #any
 print 'Orders Booked' (+2,10)
 print '-------------' (+1,10)
 let #any = 1
 end-if
a.order_num
order_date (+1,10,20) Edit 'DD-MON-YY'
description (,+1,20)
c.price * b.quantity (,+1,13) Edit $$$$,$$0.99
from orders a, ordlines b, products c
where a.order_num = b.order_num
 and b.product_code = c.product_code
 and a.cust_num = #cust_num
end-select
end-procedure ! orders
begin-heading 3
 print $current-date (1,1) Edit 'DD-MON-YYYY'
 page-number (1,69) 'Page '
end-heading

Chapter 8 Creating Master and Detail Reports

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 45

Correlating Subqueries

The ex7a.sqr sample program contains three procedures—main, cash_receipts, and orders—which correspond
to the three queries. The main procedure is the master. It retrieves the customer names. For each customer, we
the program invokes the cash_receipts procedure to list the cash receipts, if any, and orders to list the
customer's orders, if any.

The procedures take the cust_num variable as an argument. As you can see, cash_receipts and orders are
called many times, once for each customer. Each time, the procedures perform the same query with a
different value for the cust_num variable in the WHERE clause.

Note the use of the IF command and the #any numeric variable in these procedures. When the BEGIN-
SELECT command returns no records, SQR does not process the following PRINT commands. Thus, the
headings for these procedures are displayed only for those customers who have records in the detail tables.

The orders procedure demonstrates the use of an expression in the BEGIN-SELECT. The expression is
c.price * b.quantity.

Note. Examine the format of the dollar amount with the argument EDIT $$$$,$$0.99. This format uses
a "floating-to-the-right" money symbol. If fewer digits are used than the six that we specified here, the dollar
sign floats to the right and remains close to the number.

See Chapter 18, "Using Procedures and Local Variables and Passing Arguments," page 99.

Sample Program Output

The following is the output for for program ex7a.sqr.

Creating Master and Detail Reports Chapter 8

46 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

6-APR-2004 Page 1

Customer Information

Gregory Stonehaven Everretsville OH

 Cash Received

 01-FEB-03 $130.00

Customer Information

John Conway New York NY

 Cash Received

 01-MAR-03 $140.00

Customer Information

Eliot Richards Queens NY

 Cash Received

 16-JAN-03 $220.12
 17-JAN-03 $260.00

 Orders Booked

 02-MAY-03 Whirlybobs $239.19
 02-MAY-03 Canisters $3,980.25

Customer Information

Isaiah J Schwartz and Com Zanesville OH

 Cash Received

 18-JAN-03 $190.00
 02-JAN-03 $1,100.00

 Orders Booked

 02-MAY-03 Hop scotch kits $6,902.00
 02-MAY-03 Wire rings $19,872.90

Customer Information

Harold Alexander Fink Davenport IN

 Cash Received

 01-FEB-03 $1,200.00
 01-MAR-03 $1,300.00

 Orders Booked

 19-MAY-03 Ginger snaps $44.28
 19-MAY-03 Modeling clay $517.05

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 47

Chapter 9

Creating Cross-Tabular Reports

This chapter provides an overview of cross-tabular reports and discusses how to:

• Use an array.

• Create an array.

• Group by category.

• Use multiple arrays.

Understanding Cross-Tabular Reports

Cross-tabular reports are matrix-like or spreadsheet-like reports. These reports are useful for presenting
summary numeric data. Cross-tabular reports vary in format. The following example shows sales revenue
summarized by product by sales channel:

Revenue by product by sales channel

Product Direct Sales Resellers Mail Order Total
---------- ------------ --------- ----------- -------
A 2,100 1,209 0 3,309
B 120 311 519 950
C 2 0 924 926
---------- ------------ --------- ----------- -------
Total 2,222 1,520 1,443 5,185

This report is based on many sales records. The three middle columns correspond to sales channel categories.
Each row corresponds to a product. The records fall into nine groups: three products sold through three sales
channels. Some groups have no sales (such as mail order for product A).

Each category can be a discrete value of some database column or a set of values. For example, Resellers can
be domestic resellers plus international distributors.

A category can also represent a range, as demonstrated in this example:

 Orders by Product by Order Size
Product
Category Less than 10 10 to 100 More than 100 Total
----------- ------------ --------- ------------- -------
Durable 200 120 0 320
Nondurable 122 311 924 1876
----------- ------------ --------- ------------- -------
Total 322 431 1443 2196

In this example, the rows correspond to the categories durable or nondurable. The columns represent ranges
of order size.

Creating Cross-Tabular Reports Chapter 9

48 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

For each record that is selected, the program must determine the range to which it belongs and add 1 to the
count for that category. The numbers in the cells are counts, but they could be sums, averages, or any other
expression.

Of course, other types of cross-tabular reports exist. These reports become more complex when the number of
columns is not predefined and when more columns exist than can fit across the page.

Using an Array

Often, the program must process all of the records before it can begin to print the data. During processing, the
program must keep the data in a buffer where it can accumulate the numbers. This can be done in an SQR
array.

An array is a unit of storage that contains rows and columns. An array is similar to a database table, but it
exists only in memory.

The sample program specifies an array called order_qty to hold the sum of the quantity of orders in a given
month. You could program this specific example without an array, but using one can be beneficial. Data that
you retrieve once and store in an array can be presented in many ways without additional database queries.
The data can even be presented in a chart.

The sample program also demonstrates an SQR feature called a three-dimensional array. This type of array
has fields (columns) and rows, and it also has repeating fields (the third dimension). In the order_qty array,
the first field is the product description. The second field is the order quantity of each month. The example
includes three months; therefore, this field repeats three times.

SQR references arrays in expressions such as array_name.field(sub1[,sub2]). The first
subscript, sub1, is the row number. The row count starts with zero. The second subscript, sub2, is
specified when the field repeats. Repeating fields are also numbered starting with zero. The subscript can be a
literal or an SQR numeric variable.

Chapter 9 Creating Cross-Tabular Reports

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 49

program ex8a.sqr

#define max_products 100
begin-setup
 create-array
 name=order_qty size={max_products}
 field=product:char field=month_qty:number:3
end-setup
begin-program
 do select_data
 do print_array
end-program
begin-procedure print_array
 let #entry_cnt = #i
 let #i = 0
 while #i <= #entry_cnt
 let $product = order_qty.product(#i)
 let #jan = order_qty.month_qty(#i,0)
 let #feb = order_qty.month_qty(#i,1)
 let #mar = order_qty.month_qty(#i,2)
 let #prod_tot = #jan + #feb + #mar
 print $product (,1,30)
 print #jan (,32,9) edit 9,999,999
 print #feb (,42,9) edit 9,999,999
 print #mar (,52,9) edit 9,999,999
 print #prod_tot (,62,9) edit 9,999,999
 position (+1)
 let #jan_total = #jan_total + #jan
 let #feb_total = #feb_total + #feb
 let #mar_total = #mar_total + #mar
 let #i = #i + 1
 end-while
 let #grand_total = #jan_total + #feb_total + #mar_total
 print 'Totals' (+2,1)
 print #jan_total (,32,9) edit 9,999,999
 print #feb_total (,42,9) edit 9,999,999
 print #mar_total (,52,9) edit 9,999,999
 print #grand_total (,62,9) edit 9,999,999
end-procedure print_array
begin-procedure select_data
begin-select
order_date
! The quantity for this order
quantity
! the product for this order
description
 if #i = 0 and order_qty.product(#i) = ''
 let order_qty.product(#i) = &description
 end-if
 if order_qty.product(#i) != &description
 let #i = #i + 1
 if #i >= {max_products}
 display 'Error: There are more than {max_products} products'
 stop
 end-if
 let order_qty.product(#i) = &description
 end-if
 let #j = to_number(datetostr(&order_date,'MM')) - 1
 if #j < 3
 let order_qty.month_qty(#i,#j) =
 order_qty.month_qty(#i,#j) + &quantity
 end-if
from orders a, ordlines b, products c
where a.order_num = b.order_num

Creating Cross-Tabular Reports Chapter 9

50 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

and b.product_code = c.product_code
order by description
end-select
end-procedure ! select_data
begin-heading 4
 print $current-date (1,1)
 print 'Order Quantity by Product by Month' (1,18)
 page-number (1,64) 'Page '
 print 'Product' (3,1)
 print ' January' (,32)
 print ' February' (,42)
 print ' March' (,52)
 print ' Total' (,62)
 print '-' (4,1,70) Fill
end-heading

The following output is the output for program ex8a.sqr.

11-JUN-04 Order Quantity by Product by Month Page 1

Product January February March Total

Canisters 3 0 0 3
Curtain rods 2 8 18 28
Ginger snaps 1 10 0 11
Hanging plants 1 20 0 21
Hookup wire 16 15 0 31
Hop scotch kits 2 0 0 2
Modeling clay 5 0 0 5
New car 1 9 0 10
Thimble 7 20 0 27
Thingamajigs 17 0 120 137
Widgets 4 0 12 16
Wire rings 1 0 0 1
Totals 60 82 150 292

See Chapter 14, "Using Business Charts," page 77.

Creating an Array

You must define the size of an array when you create it. The sample program creates the order_qty array with
a size of 100.

The #DEFINE MAX_PRODUCTS 100 command defines the max_products constant as a substitution
variable. The sample program uses this constant to define the size of the array. Using #DEFINE is a good
practice because it displays the limit at the top of the program source. Otherwise, it would be hidden in the
code.

The SETUP section creates the array by using the CREATE-ARRAYcommand. All SQR arrays are created
before the program begins running. Their size must be known at compile time. If you do not know exactly
how many rows you have, you must overallocate and specify an upper bound. In the example, the array has
100 rows, even though the program uses only 12 rows to process the sample data.

Chapter 9 Creating Cross-Tabular Reports

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 51

The preceding program has two procedures: select_data and print_array.Select_data performs the database
query, as its name suggests. While the database records are being processed, nothing prints, and the data
accumulates in the array. When the processing is complete, the print_array procedure does two things: the
procedure loops through the array and prints the data, and it also adds the month totals and prints them at the
bottom.

The report summarizes the product order quantities for each month, which are the records ordered by the
product description. The procedure then fills the array one product at a time. For each record that is selected,
the procedure checks to see whether it is a new product; if it is, the array is incremented by row subscript #i.
The procedure also adds the quantity to the corresponding entry in the array based on the month.

This program has one complication: how to obtain the month. Date manipulation can vary among databases,
and to write truly portable code requires careful planning.

The key is the datetostr function in the following command:

let #j = to_number(datetostr(&order_date, 'MM')) - 1

This function converts the order_date column into a string. (The 'MM' edit mask specifies that only the month
part be converted.) The resulting string is then converted to a number; if it is less than 3, it represents January,
February, or March and is added to the array.

Grouping by Category

The following output is a cross-tabular report that groups the products by price range. This grouping cannot
be done by using a SQL GROUP BY clause. Moreover, to process the records in order of price category, the
program would have to sort the table by price. The sample program shows how to do it without sorting the
data.

The sample program uses an SQR EVALUATE command to determine the price category and assign the
array subscript #i to 0, 1, or 2. Then it adds the order quantity to the array cell that corresponds to the price
category (row) and the month (column).

Creating Cross-Tabular Reports Chapter 9

52 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex8b.sqr

#define max_categories 3
begin-setup
 create-array
 name=order_qty size={max_categories}
 field=category:char field=month_qty:number:3
end-setup
begin-program
 do select_data
 do print_array
end-program
begin-procedure print_array
 let #i = 0
 while #i < {max_categories}
 let $category = order_qty.category(#i)
 let #jan = order_qty.month_qty(#i,0)
 let #feb = order_qty.month_qty(#i,1)
 let #mar = order_qty.month_qty(#i,2)
 let #category_tot = #jan + #feb + #mar
 print $category (,1,31)
 print #jan (,32,9) edit 9,999,999
 print #feb (,42,9) edit 9,999,999
 print #mar (,52,9) edit 9,999,999
 print #category_tot (,62,9) edit 9,999,999
 position (+1)
 let #jan_total = #jan_total + #jan
 let #feb_total = #feb_total + #feb
 let #mar_total = #mar_total + #mar
 let #i = #i + 1
 end-while
 let #grand_total = #jan_total + #feb_total + #mar_total
 print 'Totals' (+2,1)
 print #jan_total (,32,9) edit 9,999,999
 print #feb_total (,42,9) edit 9,999,999
 print #mar_total (,52,9) edit 9,999,999
 print #grand_total (,62,9) edit 9,999,999
end-procedure print_array
begin-procedure select_data
 let order_qty.category(0) = '$0-$4.99'
 let order_qty.category(1) = '$5.00-$100.00'
 let order_qty.category(2) = 'Over $100'
begin-select
order_date
! the price / price category for the order
c.price &price
 move &price to #price_num
 evaluate #price_num
 when < 5.0
 let #i = 0
 break
 when <= 100.0
 let #i = 1
 break
 when-other
 let #i = 2
 break
 end-evaluate
! The quantity for this order
quantity
 let #j = to_number(datetostr(&order_date,'MM')) - 1
 if #j < 3
 let order_qty.month_qty(#i,#j) =
 order_qty.month_qty(#i,#j) + &quantity

Chapter 9 Creating Cross-Tabular Reports

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 53

 end-if
from orders a, ordlines b, products c
where a.order_num = b.order_num
and b.product_code = c.product_code
end-select
end-procedure ! select_databegin-heading 5
 print $current-date (1,1)
 page-number (1,64) 'Page '
 print 'Order Quantity by Product Price Category by Month' (2,11)
 print 'Product Price Category' (4,1)
 print ' January' (,32)
 print ' February' (,42)
 print ' March' (,52)
 print ' Total' (,62)
 print '-' (5,1,70) Fill
end-heading

The following is the output for program ex8b.sqr.

11-JUN-04 Page 1
 Order Quantity by Product Price Category by Month

Product Price Category January February March Total

0-4.99 28 45 12 85
5.00-100.00 25 28 138 191
Over 100 7 9 0 16

Totals 60 82 150 292

Using Multiple Arrays

Using SQR arrays to buffer the data offers several advantages. In the previous example, it eliminated the need
to sort the data. Another advantage is that you can combine the two sample reports into one. With one pass on
the data, you can fill the two arrays and then print the two parts of the report.

The following sample program performs the work that is done by the first two programs. The SETUP section
specifies two arrays: one to summarize monthly orders by product, and another to summarize monthly orders
by price range.

Creating Cross-Tabular Reports Chapter 9

54 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex8c.sqr

#define max_categories 3
#define max_products 100
begin-setup
 create-array
 name=order_qty size={max_products}
 field=product:char field=month_qty:number:3
 create-array
 name=order_qty2 size={max_categories}
 field=category:char field=month_qty:number:3
end-setup
begin-program
 do select_data
 do print_array
 print '-' (+2,1,70) fill
 position (+1)
 do print_array2
end-program
 begin-procedure print_array
 let #entry_cnt = #i
 let #i = 0
 while #i <= #entry_cnt
 let $product = order_qty.product(#i)
 let #jan = order_qty.month_qty(#i,0)
 let #feb = order_qty.month_qty(#i,1)
 let #mar = order_qty.month_qty(#i,2)
 let #prod_tot = #jan + #feb + #mar
 print $product (,1,30)
 print #jan (,32,9) edit 9,999,999
 print #feb (,42,9) edit 9,999,999
 print #mar (,52,9) edit 9,999,999
 print #prod_tot (,62,9) edit 9,999,999
 position (+1)
 let #i = #i + 1
 end-while
end-procedure ! print_array
begin-procedure print_array2
 let #i = 0
 while #i < {max_categories}
 let $category = order_qty2.category(#i)
 let #jan = order_qty2.month_qty(#i,0)
 let #feb = order_qty2.month_qty(#i,1)
 let #mar = order_qty2.month_qty(#i,2)
 let #category_tot = #jan + #feb + #mar
 print $category (,1,31)
 print #jan (,32,9) edit 9,999,999
 print #feb (,42,9) edit 9,999,999
 print #mar (,52,9) edit 9,999,999
 print #category_tot (,62,9) edit 9,999,999
 position (+1)
 let #jan_total = #jan_total + #jan
 let #feb_total = #feb_total + #feb
 let #mar_total = #mar_total + #mar
 let #i = #i + 1
 end-while
 let #grand_total = #jan_total + #feb_total + #mar_total
 print 'Totals' (+2,1)
 print #jan_total (,32,9) edit 9,999,999
 print #feb_total (,42,9) edit 9,999,999
 print #mar_total (,52,9) edit 9,999,999
 print #grand_total (,62,9) edit 9,999,999
end-procedure ! print_array2
begin-procedure select_data

Chapter 9 Creating Cross-Tabular Reports

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 55

 let order_qty2.category(0)='$0-$4.99'
 let order_qty2.category(1)='$5.00-$100.00'
 let order_qty2.category(2)='Over $100'
begin-select
order_date
! the price / price category for the order
c.price &price
 move &price to #price_num
 evaluate #price_num
 when < 5.0
 let #x = 0
 break
 when <= 100.0
 let #x = 1
 break
 when-other
 let #x = 2
 break
 end-evaluate
! The quantity for this order
quantity
 let #j = to_number(datetostr(&order_date,'MM')) - 1
 if #j < 3
 let order_qty2.month_qty(#x,#j) =
 order_qty2.month_qty(#x,#j) + &quantity
 end-if
! the product for this order
description
 if #i = 0 and order_qty.product(#i) = ''
 let order_qty.product(#i) = &description
 end-if
 if order_qty.product(#i) != &description
 let #i = #i + 1
 if #i >= {max_products}
 display 'Error: There are more than {max_products} products'
 stop
 end-if
 let order_qty.product(#i) = &description
 end-if
 if #j < 3
 let order_qty.month_qty(#i,#j) =
 order_qty.month_qty(#i,#j) + &quantity
 end-if
from orders a, ordlines b, products c
where a.order_num = b.order_num
and b.product_code = c.product_code
order by description
end-select
end-procedure ! select_data
begin-heading 5
print $current-date (1,1)
 page-number (1,64) 'Page '
 print 'Order Quantity by Product and Price Category by Month' (2,10)
 print 'Product / Price Category' (4,1)
 print ' January' (,32)
 print ' February' (,42)
 print ' March' (,52)
 print ' Total' (,62)
 print '-' (5,1,70) Fill
end-heading

The following is the output for program ex8c.sqr.

Creating Cross-Tabular Reports Chapter 9

56 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

11-JUN-04 Page 1
 Order Quantity by Product and Price Category by Month

Product / Price Category January February March Total
--
Canisters 3 0 0 3
Curtain rods 2 8 18 28
Ginger snaps 1 10 0 11
Hanging plants 1 20 0 21
Hookup wire 16 15 0 31
Hop scotch kits 2 0 0 2
Modeling clay 5 0 0 5
New car 1 9 0 10
Thimble 7 20 0 27
Thingamajigs 17 0 120 137
Widgets 4 0 12 16
Wire rings 1 0 0 1
--
0-4.99 28 45 12 85
5.00-100.00 25 28 138 191
Over 100 7 9 0 16

Totals 60 82 150 292

SQR arrays are also advantageous in programs that produce charts. With the data for the chart already in the
array, presenting this cross-tabular report as a bar chart is easy.

See Chapter 14, "Using Business Charts," page 77.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 57

Chapter 10

Printing Mailing Labels

This chapter provides overviews of mailing label printing and the sample program for printing mailing labels
and discusses how to:

• Define columns and rows.

• Run the print mailing labels program.

Understanding Mailing Label Printing

An SQR select paragraph retrieves the addresses and prints them on the page.

Sometimes you need to print labels in multiple columns. The page then becomes a matrix of rows and
columns of labels. SQR enables you to print in column format with the COLUMNS and NEXT-COLUMN
commands in conjunction with NEXT-LISTING.

Understanding the Sample Program for Printing Mailing Labels

The following sample program prints mailing labels in a format of 3 columns by 10 rows. It also counts the
number of labels that are printed and prints that number on the last sheet of the report.

Printing Mailing Labels Chapter 10

58 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex9a.sqr
#define MAX_LABEL_LINES 10
#define LINES_BETWEEN_LABELS 3
begin-setup
 declare-layout default
 paper-size=(10,11) left-margin=0.33
 end-declare
end-setup
begin-program
 do mailing_labels
end-program
begin-procedure mailing_labels
 let #label_count = 0
 let #label_lines = 0
 columns 1 29 57 ! enable columns
 alter-printer font=5 point-size=10
begin-select
name (1,1,30)
addr1 (2,1,30)
city
state
zip
 move &zip to $zip XXXXX-XXXX
 let $last_line = &city || ', ' || &state || ' ' || $zip
 print $last_line (3,1,30)
 next-column at-end=newline
 add 1 to #label_count
 if #current-column = 1
 add 1 to #label_lines
 if #label_lines = {MAX_LABEL_LINES}
 new-page
 let #label_lines = 0
 else
 next-listing no-advance skiplines={LINES_BETWEEN_LABELS}
 end-if
 end-if
from customers
end-select
 use-column 0 ! disable columns
 new-page
 print 'Labels printed on ' (,1)
 print $current-date ()
 print 'Total labels printed = ' (+1,1)
 print #label_count () edit 9,999,999
end-procedure ! mailing_labels

Defining Columns and Rows

The COLUMNS 1 29 57 command defines the starting position for three columns. The first column starts at
character position 1, the second at character position 29, and the third at character position 57.

The ex9a.sqr program writes the first address into the first column, the second address into the second, and
the third address into the third. The fourth address is written into the second row of the first column,
following the first label. When ten lines of labels are complete, a new page starts. After the last page of labels
has been printed, the program prints a summary page showing the number of labels that have been printed.

Chapter 10 Printing Mailing Labels

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 59

Note the technique for composing the last line of the label. The city, state, and zip columns are moved to
string variables. The command LET $last_line = &city || ', ' || &state || ' ' ||
$zip combines the city, state, and zip code, plus appropriate punctuation and spacing, into a string, which it
stores in the $last_line variable. In this way, city, state, and zip code are printed without unnecessary gaps.

The program defines two counters: #label_count and #label_lines. The first counter, #label_count, counts the
total number of labels and prints it on the summary page. The second counter, #label_lines, counts the
number of rows of labels that were printed. When the program has printed the number of lines that are
defined by {MAX_LABEL_LINES}, it starts a new page and resets the #label_lines counter.

After each row of labels, the NEXT-LISTING command redefines the print position for the next row of labels
as line 1. NEXT-LISTING skips the specified number of lines (SKIPLINES) from the last line that was
printed (NO-ADVANCE) and sets the new position as line 1.

Note the use of the ALTER-PRINTER command. This command changes the font in which the report is
printed.

The sample program prints the labels in 10-point Times Roman, which is a proportionally spaced font. In
Microsoft Windows, you can use proportionally spaced fonts with any printer that supports fonts or graphics.
On other platforms, SQR directly supports HP LaserJet printers and PostScript printers.

In the sample program, the DECLARE-LAYOUT command defines a page width of 10 inches. This width
accommodates the printing of the third column, which contains 30 characters and begins at character position
57. SQR assumes a default character grid of 10 characters per inch, which would cause the third column to
print beyond the paper edge if this report used the default font. The 10-point Times Roman that is used here,
however, condenses the text so that it fits on the page. The page width is set at 10 inches to prevent SQR from
treating the third-column print position as an error.

See Chapter 15, "Changing Fonts," page 85 and Chapter 27, "Printing with SQR," page 157.

Running the Print Mailing Labels Program

When you print with a proportionally spaced font, you must use a slightly different technique for running the
program and viewing the output. If you are using a platform such as UNIX/Linux, specify the printer type
with the -PRINTER:xx flag. If you are using an HP LaserJet, enter -PRINTER:HP (or -printer:hp). If you are
using a PostScript printer, enter -PRINTER:PS (or -printer:ps) on the command line.

For example:

sqr ex9a username/password -printer:hp

You can also use the -KEEP command-line flag to produce output in the SQR Portable File format (SPF) and
print it by using SQR Print. You still need to use the -PRINTER:xx flag when printing.

See Chapter 27, "Printing with SQR," page 157.

The report produces the output in three columns corresponding to the dimensions of a sheet of mailing label
stock. In the preceding example, the report prints the labels from left to right, filling each row of labels before
moving down the page.

You can also print the labels from the top down, filling each column before moving to the next column of
labels. The code to do this is shown next. The differences between this code and the previous one are shown
like this. The output is not printed here, but you can run the file and view it by using the same procedure that
you used for the previous example.

Printing Mailing Labels Chapter 10

60 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex9b.sqr
#define MAX_LABEL_LINES 10
#define LINES_BETWEEN_LABELS 3
begin-setup
 declare-layout default
 paper-size=(10,11) left-margin=0.33
 end-declare
end-setup
begin-program
 do mailing_labels
end-program
begin-procedure mailing_labels
 let #Label_Count = 0
 let #Label_Lines = 0
 columns 1 29 57 ! enable columns
alter-printer font=5 point-size=10
begin-select
name (0,1,30)
addr1 (+1,1,30)
city
state
zip
 move &zip to $zip xxxxx-xxxx
 let $last_line = &city || ', ' || &state || ' ' || $zip
 print $last_line (+1,1,30)
 add 1 to #label_count
 add 1 to #label_lines
 if #label_lines = {MAX_LABEL_LINES}
 next-column goto-top=1 at-end=newpage
 let #label_lines = 0
 else
 position (+1)
 position (+{LINES_BETWEEN_LABELS})
 end-if
from customers
end-select
 use-column 0 ! disable columns
 new-page
 print 'Labels printed on ' (,1)
 print $current-date ()
 print 'Total labels printed = ' (+1,1)
 print #label_count () edit 9,999,999
end-procedure ! mailing_labels

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 61

Chapter 11

Creating Form Letters

This chapter provides an overview of the document paragraph and the sample program for form letters.

Understanding the DOCUMENT Paragraph

To create form letters, use a document paragraph. It starts with a BEGIN-DOCUMENT command and ends
with an END-DOCUMENT command. Between these commands, lay out the letter and insert variables where
you want data from the database to be inserted. SQR inserts the value of the variable when the document
prints. To leave blank lines in a letter, you must explicitly mark them with .b (see the sample program).

Document markers provide another way to add data to the letter. They are special variables whose names
begin with the @ sign. They mark a location in the document where you place data from areas external to the
document paragraph. Document markers defined in document paragraphs can be referenced in the POSITION
command outside the document paragraph to establish the next printing position.

The sample program demonstrates the use of variables and document markers. SQR prints the contents of the
variable in the position where it is placed in the document paragraph. For example, in the sample program,
the customer's name is printed on the first line.

Using a document marker gives you more flexibility in positioning the contents of variables. The sample
program uses a document marker to position the city, state, and zip code because the city name varies in
length and thus affects the position of the state name and zip code.

Understanding the Sample Program for Form Letters

The following simple form letter program, ex10a.sqr, demonstrates the use of document markers:

Creating Form Letters Chapter 11

62 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex10a.sqr
begin-program
 do main
end-program
begin-procedure main
begin-select
name
addr1
addr2
city
state
zip
 do write_letter
from customers
order by name
end-select
end-procedure ! main
begin-procedure write_letter
begin-document (1,1)
&name
&addr1
&addr2
@city_state_zip
.b
.b
 $current-date
Dear Sir or Madam:
.b
 Thank you for your recent purchases from ACME Inc. We would like
 to tell you about our limited-time offer.
 During this month, our entire inventory is marked down by 25%.
 Yes, you can buy your favorite merchandise and save too.
 To place an order simply dial 800-555-ACME.
 Delivery is free too, so don't wait.
.b
.b
 Sincerely,
 Clark Axelotle
 ACME Inc.
end-document
position () @city_state_zip
print &city ()
print ', ' ()
print &state ()
print ' ' ()
print &zip () edit xxxxx-xxxx
new-page
end-procedure ! write_letter

First, SQR performs the main procedure and the select paragraph. Next, it performs the write_letter
procedure and the document paragraph. The POSITION command sets the position to the appropriate line,
which is given by the @city_state_zip marker. The program prints the city, then continues printing the other
elements to the current position. The state name and zip code automatically print in the correct positions with
appropriate punctuation.

The following is the output for program ex10a.sqr.

Chapter 11 Creating Form Letters

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 63

John Conway
2837 East Third Street
Greenwich Village
New York, NY 10002-1001

10-MAY-2004

Dear Sir or Madam:

Thank you for your recent purchases from ACME Inc. We would like to tell you
about our limited-time offer.

During this month, our entire inventory is marked down by 25%. Yes, you can
buy your favorite merchandise and save too. To place an order simply dial
800-555-ACME. Delivery is free too, so don't wait.

 Sincerely,
 Clark Axelotle
 ACME Inc.

See Chapter 13, "Using Graphics," page 69.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 65

Chapter 12

Exporting Data to Other Applications

This chapter provides an overview of the sample program for exporting data and discusses how to create an
export file.

Understanding the Sample Program for Exporting Data

The following sample program creates an export file that you can load into a document such as a spreadsheet
or word processing file. The tabs create columns in your spreadsheet or word processing document that
correspond to the columns in your database table.

Exporting Data to Other Applications Chapter 12

66 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex11a.sqr
begin-setup
 ! No margins, wide enough for the widest record
 ! and no page breaks
 declare-layout default
 left-margin=0 top-margin=0
 max_columns=160 formfeed=no
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure main
encode '<009>' into $sep ! Separator character is TAB
let $cust_num = 'Customer Number'
let $name = 'Customer Name'
let $addr1 = 'Address Line 1'
let $addr2 = 'Address Line 2'
let $city = 'City'
let $state = 'State'
let $zip = 'Zip Code'
let $phone = 'Phone Number'
let $tot = 'Total'
string $cust_num $name $addr1 $addr2
 $city $state $zip $phone $tot by $sep into $col_hds
print $col_hds (1,1)
new-page
begin-select
cust_num
name
addr1
addr2
city
state
zip
phone
tot
 string &cust_num &name &addr1 &addr2
 &city &state &zip &phone &tot by $sep into $db_cols
 print $db_cols ()
 new-page
from customers
end-select
end-procedure ! main

Creating an Export File

The ENCODE command stores the code for the tab character in the $sep variable. The code <009> is
enclosed within angle brackets to indicate that it is a character that is not displayed. SQR treats it as a
character code and sets the variable accordingly. ENCODE is a useful way to place nonalphabetical and
nonnumeric characters into variables.

The LET command creates variables for the text strings that are used as column headings in the export file.
The STRING command combines these variables in the $col_hds variable, with each heading separated by a
tab.

The select paragraph uses the STRING command again, this time to combine the records (named as column
variables) in the $db_cols variable, with each record similarly separated by a tab.

Chapter 12 Exporting Data to Other Applications

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 67

The NEW-PAGE command is used in this example in an unusual way. It causes a new line and carriage
return at the end of each record, with the line number reset to 1. The page is not ejected because of the
FORMFEED=NO argument in the DECLARE-LAYOUT command. Remember that this report is for
exporting, not printing.

You can now load the output file (ex11a.lis) into a spreadsheet or other application.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 69

Chapter 13

Using Graphics

This chapter provides an overview of the sample program for simple tabular reports and discusses how to:

• Add graphics.

• Share images among reports.

• Print bar codes.

Understanding the Sample Program for Simple Tabular Reports

The following sample program produces a simple tabular report, similar to the one in the chapter "Selecting
Data from the Database":

Program ex12a.sqr
begin-setup
 declare-layout default
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure main
begin-select
name (,1,30)
city (,+1,16)
state (,+1,5)
tot (,+1,11) edit 99999999.99
 next-listing no-advance need=1
 let #grand_total = #grand_total + &tot
from customers
end-select
print '-' (,55,11) fill
print 'Grand Total' (+1,40)
print #grand_total (,55,11) edit 99999999.99
end-procedure ! main
begin-heading 5
 print $current-date (1,1) Edit 'DD-MON-YYYY'
 page-number (1,60) 'Page '
 print 'Name' (3,1)
 print 'City' (,32)
 print 'State' (,49)
 print 'Total' (,61)
 print '-' (4,1,65) fill
end-heading

Using Graphics Chapter 13

70 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

The SETUP section contains a DECLARE-LAYOUT command that specifies the default layout without
defining any options. The purpose of specifying the default layout is to use its margin settings, which are
defined as 1/2 inch. Without DECLARE-LAYOUT, the report would have no margins.

Note the PRINT command with the FILL option. This command produces dashed lines, which is a simple
way to draw lines for a report that is printed on a line printer. On a graphical printer, however, you can draw
solid lines.

The following is the output for program ex12a.sqr.

 06-JUN-04 Page 1

 Name City State Total

 Gregory Stonehaven Everretsville OH 39.00
 John Conway New York NY 42.00
 Eliot Richards Queens NY 30.00
 Isaiah J Schwartz and Company Zanesville OH 33.00
 Harold Alexander Fink Davenport IN 36.00
 Harriet Bailey Mamaroneck NY 21.00
 Clair Butterfield Teaneck NJ 24.00
 Quentin Fields Cleveland OH 27.00
 Jerry's Junkyard Specialties Frogline NH 12.00
 Kate's Out of Date Dress Shop New York NY 15.00
 Sam Johnson Bell Harbor MI 18.00
 Joe Smith and Company Big Falls NM 3.00
 Corks and Bottles, Inc. New York NY 6.00
 Harry's Landmark Diner Miningville IN 9.00

 Grand Total 315.00

See Chapter 4, "Selecting Data from the Database," page 15 and Chapter 13, "Using Graphics," Adding
Graphics, page 70.

Adding Graphics

The following sample program includes graphical features: a logo, solid lines, and a change of font in the
heading:

Chapter 13 Using Graphics

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 71

Program ex12b.sqr
begin-setup
 declare-layout default
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure main
begin-select
name (,1,30)
city (,+1,16)
state (,+1,5)
tot (,+1,11) edit 99999999.99
 next-listing no-advance need=1
 let #grand_total = #grand_total + &tot
from customers
end-select
graphic (,55,12) horz-line 20
print 'Grand Total' (+2,40)
print #grand_total (,55,11) Edit 99999999.99
end-procedure ! main
begin-heading 11
 print $current-date (1,1)
 page-number (1,60) 'Page '
 alter-printer point-size=14 font=4 ! switch font
 print 'Name' (9,1) bold
 print 'City' (,32) bold
 print 'State' (,49) bold
 print 'Total' (,61) bold
 alter-printer point-size=12 font=3 ! restore font
 graphic (9,1,66) horz-line 20
 print-image (1,23)
 type=bmp-file
 image-size=(21,5)
 source='acmelogo.bmp'
end-heading

The GRAPHIC command draws solid lines with the HORZ-LINE argument. The line is positioned by using a
normal SQR position specifier. Note that the third number in the position specifier is the length of the line,
which is given in characters. (The actual width of a character cell is determined by the CHAR-WIDTH or
MAX-COLUMNS arguments of DECLARE-LAYOUT.)

The HORZ-LINE argument of the GRAPHIC HORZ-LINE command is the thickness of the line, specified in
decipoints (an inch has 720 decipoints). For example, the graphic (10,1,66) horz-line 20
command specifies a horizontal line following line 10 in the report, starting with position 1 (the left side of
the report) and stretching for 66 character positions (at 10 characters per inch, this is 6.6 inches). The
thickness of the line is 20 decipoints, which is 1/36 of an inch (about 0.7 mm).

You can also use the GRAPHIC command to draw vertical lines, boxes, and shaded boxes. See the
sqrlaser.sqr program in the SAMPLE (or SAMPLEW) subdirectory for an example.

The ALTER-PRINTER command in ex12b.sqr changes the font for the heading. When used a second time, it
restores the normal font for the rest of the report. The FONT option selects a font (typeface) that is supported
by the printer. The font is specified by number, but the number is printer-specific. On a PostScript printer, for
example, font 3 is Courier, font 4 is Helvetica, and font 5 is Times Roman.

The POINT-SIZE option specifies type size in points. You can use a whole number or even a fraction (for
example, POINT-SIZE=10.5). The following command changes the font to 14-point Helvetica:

alter-printer point-size=14 font=4 ! switch font

Using Graphics Chapter 13

72 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

The PRINT-IMAGE command inserts the logo. PRINT-IMAGE is followed by a print position corresponding
to the upper-left corner of the image (line 1, column 19 in the sample program). The TYPE option specifies
the image file type. In the example, the image is stored in Microsoft Windows bitmap format (bmp-file). The
size of the image is specified in terms of columns (width) and lines (height). In the example, the image is 30
characters wide (3 inches) and 7 lines high (1-1/6 inches).

In SQR, images are always stored in external files. The format of the image must match that of the printer that
you are using. These formats are:

• Microsoft Windows: bmp file images.

• PostScript printer or view: eps file.

• HP LaserJet:hpgl file images.

• HTML output: GIF or JPEG formats (gif file or jpeg file).

The SOURCE option specifies the file name of the image file. In the example, the file is Acmelogo.bmp. The
file is assumed to reside in the current directory or in the directory in which SQR is installed (you can place
the logo file in either of these places). The file can reside in any directory, however, as long as you specify a
full path name for the image file.

The output file now contains graphic language commands. SQR can produce output that is suitable for HP
LaserJet printers in a file format that uses the HP PCL language or output that is suitable for PostScript
printers in a file format that uses the PostScript language. SQR can also produce printer-independent output
files in a special format called SQR Portable Format (SPF).

SQR can create a printer-specific output file (an .lis file) or create the output in portable format (SPF). When
you create an .spf file, the name of the image file is copied into it, and the image is processed at print time,
when printer-specific output is generated. When you use .spf files, a change in the contents of the image file
is reflected in the report the next time that you print it or view it. You can create printer-specific output by
using SQR or SQR Execute to directly generate an .lis file or by using SQR Print to generate an .lis file from
an .spf file.

See Chapter 7, "Adding Declarations Using the SETUP Section," page 39 and Chapter 27, "Printing with
SQR," page 157.

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Sharing Images Among Reports

You can place logos and other images in a report by using only the PRINT-IMAGE command. However, the
DECLARE-IMAGE command is useful if you want several programs to share the definition of an image.

The ex12c.sqr program prints a simple form letter. It shows how to print a logo by using the DECLARE-
IMAGE and PRINT-IMAGE commands and how to print a signature by using only PRINT-IMAGE.

Because the image is shared among several reports, the DECLARE-IMAGE command is contained in the
acme.inc file:

Chapter 13 Using Graphics

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 73

File acme.inc
declare-image acme_logo
 type=bmp-file
 image-size=(30,7)
 source='acmelogo.bmp'
end-declare

This file declares an image with acme-logo as the name. It specifies the logo that is used in the previous
sample program. The declaration includes the type and source file for the image. When the image is printed,
you do not need to respecify these attributes.

Multiple programs can share the declaration and include the acme.inc file. If you later need to change an
attribute, such as the source, you need to change it in only one place. The image size is specified and provides
the default.

To change the size of an image in a particular report, use the IMAGE-SIZE argument of the PRINT-IMAGE
command. It overrides the image size that is specified in DECLARE-IMAGE.

Using Graphics Chapter 13

74 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex12c.sqr
begin-setup
#include 'acme.inc'
end-setup
begin-program
 do main
end-program
begin-procedure main
begin-select
name
addr1
addr2
city
state
zip
phone
 do write_letter
from customers
order by name
end-select
end-procedure ! main
begin-procedure write_letter
move &city to $csz
concat ', ' with $csz
concat &state with $csz
concat ' ' with $csz
move &zip to $zip xxxxx-xxxx
concat $zip with $csz
move &phone to $phone_no (xxx)bxxx-xxxx ! Edit phone number.
begin-document (1,1,0)
&name @logo
&addr1
&addr2
$csz
.b
.b
.b
 $current-date
Dear &name
.b
 Thank you for your inquiry regarding Encore, Maestro!!, our revolutionary
teaching system for piano and organ. If you've always wanted to play an
instrument but felt you could never master one, Encore, Maestro!! is made for
you.
.b
 Now anyone who can hum a tune can play one too. Encore, Maestro!! begins
with a step-by-step approach to some of America's favorite songs. You'll learn
the correct keyboarding while hearing the sounds you make through the
headphones provided with the Encore, Maestro!! system. From there, you'll
advance to intricate compositions with dazzling melodic runs. Encore, Maestro!!
can even teach you to improvise your own solos.
.b
 Whether you like classical, jazz, pop, or blues, Encore, Maestro!! is the
music teacher for you.
.b
 A local representative will be calling you at $phone_no
to set up an in-house demonstration, so get ready to play your favorite tunes!!
.b
 Sincerely,
 @signature
.b
.b
 Clark Axelotle
end-document

Chapter 13 Using Graphics

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 75

position () @logo
print-image acme-logo ()
 image-size=(16,4)
position () @signature
print-image ()
 type=bmp-file
 image-size=(12,3)
 source='clark.bmp'
new-page
end-procedure ! write_letter

The #INCLUDE command, which is performed at compile time, gets text from another file. In this program,
the #INCLUDE 'acme.inc' command includes the code from the acme.inc file.

The document paragraph begins with a BEGIN-DOCUMENT command and ends with an END-
DOCUMENT command. It uses variables and document markers to print inside the letter. The program uses
variables for the name and address, the date, and the phone number. It uses document markers for the logo
and signature.

Document markers are placeholders in the letter. The program uses the @logo and @signature document
markers in a POSITION command before printing each image. The document markers make unnecessary
specifying the position of these items in the PRINT-IMAGE command. Instead, you print to the current
position.

The date is prepared with the $current-date reserved variable. It is printed directly in the document paragraph
without issuing a PRINT command.

The program uses the CONCAT command to put together the city, state, and zip code. In the document
paragraph, variables retain their predefined sizes. A column variable, for example, remains the width of the
column as defined in the database. You can print the date and phone number directly, however, because they
occur at the end of a line, without any following text.

Printing Bar Codes

SQR supports a wide variety of bar code types, which you can include in an SQR report.

To create a bar code, use the PRINT-BAR-CODE command. Specify the position of the bar code in an
ordinary position qualifier. In separate arguments, specify the bar code type, height, text to be encoded,
caption, and optional check sum. For example:

print-bar-code (1,1)
 type=1
 height=0.5
 text='01234567890'
 caption='0 12345 67890'

Arguments to PRINT-BAR-CODE can be variables or literals.

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 77

Chapter 14

Using Business Charts

This chapter provides an overview of business charts and discusses how to:

• Create a chart.

• Define a chart.

• Print a chart.

• Run the program to create a graphical report.

• Pass data to the chart.

Understanding Business Charts

Business charts are useful tools for presenting summary data. SQR provides two commands for creating
charts— DECLARE-CHART and PRINT-CHART—and a varied set of chart types, including:

• Line

• Pie

• Bar

• Stacked bar

• 100 percent bar

• Overlapped bar

• Floating bar

• Histogram

• Area

• Stacked area

• 100 percent area

• XY scatter plot

• High-low close

Using Business Charts Chapter 14

78 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

You can configure many attributes of SQR charts by activating three-dimensional effects or setting titles and
legends. SQR charts are also portable: you can move them from one hardware platform to another.

You can prepare a business chart by using data that is held in an array, just as you would for a cross-tabular
report. If you have already written a cross-tabular report, you need to take just one additional step to create a
chart using the data that is already collected in the array.

See Chapter 9, "Creating Cross-Tabular Reports," page 47.

Creating a Chart

The following sample program builds on the report that you created in the chapter "Creating Cross-Tabular
Reports" (ex8c.sqr). That sample program combined the two reports in one program. The following sample
program produces two charts corresponding to the two cross-tabs.

Here is the code, with the lines that were changed or added shown like this:

Chapter 14 Using Business Charts

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 79

Program ex13a.sqr
#define max-categories 3
#define max-products 100
begin-setup
 create-array
 name=order_qty size={max-products}
 field=product:char field=month_qty:number:3
 create-array
 name=order_qty2 size={max-categories}
 field=category:char field=month_qty:number:3
 declare-chart orders-stacked-bar
 chart-size=(70,30)
 title='Order Quantity'
 legend-title='Month'
 type=stacked-bar
 end-declare ! orders-stacked-bar
end-setup
begin-program
 do select_data
 do print_array
 print '-' (+2,1,70) fill
 position (+1)
 do print_array2
 new-page
 let $done = 'YES' ! Don't need heading any more
 do print_the_charts
end-program
begin-procedure print_array
 let #entry_cnt = #i
 let #i = 0
 while #i <= #entry_cnt
 let $product = order_qty.product(#i)
 let #jan = order_qty.month_qty(#i,0)
 let #feb = order_qty.month_qty(#i,1)
 let #mar = order_qty.month_qty(#i,2)
 let #prod_tot = #jan + #feb + #mar
 print $product (,1,30)
 print #jan (,32,9) edit 9,999,999
 print #feb (,42,9) edit 9,999,999
 print #mar (,52,9) edit 9,999,999
 print #prod_tot (,62,9) edit 9,999,999
 position (+1)
 let #i = #i + 1
 end-while
end-procedure ! print_array
begin-procedure print_array2
 let #i = 0
 while #i < {max_categories}
 let $category = order_qty2.category(#i)
 let #jan = order_qty2.month_qty(#i,0)
 let #feb = order_qty2.month_qty(#i,1)
 let #mar = order_qty2.month_qty(#i,2)
 let #category_tot = #jan + #feb + #mar
 print $category (,1,31)
 print #jan (,32,9) edit 9,999,999
 print #feb (,42,9) edit 9,999,999
 print #mar (,52,9) edit 9,999,999
 print #category_tot (,62,9) edit 9,999,999
 position (+1)
 let #jan_total = #jan_total + #jan
 let #feb_total = #feb_total + #feb
 let #mar_total = #mar_total + #mar
 let #i = #i + 1
 end-while

Using Business Charts Chapter 14

80 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 let #grand_total = #jan_total + #feb_total + #mar_total
 print 'Totals' (+2,1)
 print #jan_total (,32,9) edit 9,999,999
 print #feb_total (,42,9) edit 9,999,999
 print #mar_total (,52,9) edit 9,999,999
 print #grand_total (,62,9) edit 9,999,999
end-procedure ! print_array2
begin-procedure select_data
 let order_qty2.category(0)='$0-$4.99'
 let order_qty2.category(1)='$5.00-$100.00'
 let order_qty2.category(2)='Over $100'
begin-select
order_date
! the price / price category for the order
c.price &price
 move &price to #price_num
 evaluate #price_num
 when < 5.0
 let #x = 0
 break
 when <= 100.0
 let #x = 1
 break
 when-other
 let #x = 2
 break
 end-evaluate
! The quantity for this order
quantity
 let #j = to_number(datetostr(&order_date,'MM')) - 1
 if #j < 3
 let order_qty2.month_qty(#x,#j) =
 order_qty2.month_qty(#x,#j) + &quantity
 end-if
! the product for this order
description
 if #i = 0 and order_qty.product(#i) = ''
 let order_qty.product(#i) = &description
 end-if
 if order_qty.product(#i) != &description
 let #i = #i + 1
 if #i >= {max_products}
 display 'Error: There are more than {max_products} products'
 stop
 end-if
 let order_qty.product(#i) = &description
 end-if
 if #j < 3
 let order_qty.month_qty(#i,#j) =
 order_qty.month_qty(#i,#j) + &quantity
 end-if
from orders a, ordlines b, products c
where a.order_num = b.order_num
and b.product_code = c.product_code
order by description
end-select
end-procedure ! select_data
begin-heading 5
 if not ($done = 'YES')
 print $current-date (1,1)
 page-number (1,64) 'Page '
 print 'Order Quantity by Product and Price Category by Month' (2,10)
 print 'Product / Price Category' (4,1)
 print ' January' (,32)

Chapter 14 Using Business Charts

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 81

 print ' February' (,42)
 print ' March' (,52)
 print ' Total' (,62)
 Print '-' (5,1,70) Fill
 end-if
end-heading
 begin-procedure print_the_charts
 print-chart orders-stacked-bar (+2,1)
 data-array=order_qty
 data-array-row-count=12
 data-array-column-count=4
 data-array-column-labels=('Jan','Feb','Mar')
sub-title='By Product By Month'
 new-page
 print-chart orders-stacked-bar (+2,1)
 data-array=order_qty2
 data-array-row-count=3
 data-array-column-count=4
 data-array-column-labels=('Jan','Feb','Mar')
 sub-title='By Price Category By Month'
end-procedure ! print_the_charts

Defining a Chart

The two chart sections in the ex13a.sqr program are specified with the DECLARE-CHART command in the
SETUP section and are named orders-stacked-bar. The width and height of the charts are specified in terms of
character cells. The charts that are generated by this program are 70 characters wide, which is 7 inches on a
default layout. The height of the charts is 30 lines, which translates to 5 inches at 6 lines per inch. These
dimensions define a rectangle that contains the chart. The box that surrounds the chart is drawn by default,
but you can disable it by using the qualifier BORDER=NO.

The title is centered at the top of the chart. The text that is generated by LEGEND-TITLE must fit in the
small legend box preceding the categories, so keep this description short. Generally, charts look best when the
text items are short. Here is the DECLARE-CHART command:

declare-chart orders-stacked-bar
 chart-size=(70,30)
 title='Order Quantity'
 legend-title='Month'
 type=stacked-bar
 end-declare ! orders-stacked-bar

The heading is printed on the first page only.

Printing a Chart

The PRINT-CHART commands are based on the orders-stacked-bar chart that was declared in the preceding
section.

Using Business Charts Chapter 14

82 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 print-chart orders-stacked-bar (+2,1)
 data-array=order_qty
 data-array-row-count=12
 data-array-column-count=4
 data-array-column-labels=('Jan','Feb','Mar')
sub-title='By Product By Month'
 new-page
 print-chart orders-stacked-bar (+2,1)
 data-array=order_qty2
 data-array-row-count=3
 data-array-column-count=4
 data-array-column-labels=('Jan','Feb','Mar')
 sub-title='By Price Category By Month'

The data source is specified by using the DATA-ARRAY option. The named array has a structure that is
specified by the TYPE option. For a stacked-bar chart, the first field in the array gives the names of the
categories for the bars. The rest of the fields are series of numbers. In this case, each series corresponds to a
month.

The subtitle follows the title and can be used as a second line of the title. A legend labels the series. The
DATA-ARRAY-COLUMN-LABELS argument passes these labels. The DATA-ARRAY-ROW-COUNT
argument is the number of rows (bars) to chart and DATA-ARRAY-COLUMN-COUNT is the number of
fields in the array that the chart uses. The array has four fields: the product (or price category) field and the
series that specifies three months.

Running the Program to Create a Graphical Report

When you create a graphical report, you must use a slightly different technique for running the program and
viewing the output:

• If you are using a platform such as UNIX/Linux, specify the printer type with the -PRINTER:xx flag.

• If you are using an HP LaserJet, enter -PRINTER:HP (or -printer:hp).

• If you are using a PostScript printer, enter -PRINTER:PS (or -printer:ps) on the command line.

For example:

sqr test username/password -printer:hp

You can also use the -KEEP command-line flag to produce output in the SQR Portable File format (SPF) and
print it by using SQR Print. You still must use the -PRINTER:xx flag when printing.

See Chapter 27, "Printing with SQR," page 157.

Passing Data to the Chart

To pass the data to the chart, use the first field for the descriptions of bars (or lines or areas), and then use one
or more additional fields with series of numbers. This procedure is common to many chart types, including
line, bar, stacked-bar, 100 percent bar, overlapped bar, histogram, area, stacked-area, and 100 percent area.
You can omit the first field and SQR uses cardinal numbers (1, 2, 3, and so on) for the bars. Only text fields
are used for these options.

Chapter 14 Using Business Charts

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 83

For pie charts, only one series is allowed. Pie charts are also a special case because you can specify which
segments to explode, or pull away, from the center of the pie. By using a third field in the array, you can have
a series of Y and N values that indicate whether to explode the segment. If Y is the value in the first row of the
array, the pie segment that corresponds to the first row is exploded. With pie charts, you cannot omit the first
field with the descriptions. Pie charts cannot have more than 12 segments.

Pie charts display the numeric value next to each segment. The description is displayed in the legend. In
addition, SQR displays the percentage next to the value. You can disable this feature by using the qualifier
PIE-SEGMENT-PERCENT-DISPLAY=NO.

When data is passed to an xy scatter plot or a floating-bar chart, the series are paired. A pair in a floating-bar
chart represents the base and height of the bars. A pair in an xy-scatter plot represents x and y coordinates. In
an xy-scatter plot, the first field does not have descriptions. In a floating-bar chart, the first field may have
descriptions for the bars. For both types, you can have one or more pairs of series.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 85

Chapter 15

Changing Fonts

This chapter discusses how to:

• Set fonts.

• Position text.

• Use the WRAP option.

Setting Fonts

To select a font in SQR for PeopleSoft, use the DECLARE-PRINTER and ALTER-PRINTER commands.
The DECLARE-PRINTER command sets the default font for the entire report. The ALTER-PRINTER
command changes the font anywhere in the report and the change remains in effect until the next ALTER-
PRINTER.

To set a font for the entire report, use ALTER-PRINTER, which is not printer-specific, at the beginning of
the program. If you are writing a printer-independent report, the attributes that you set with DECLARE-
PRINTER take effect only when you print your report with the printer that you specify with the TYPE
argument. To specify a printer at print time, use the -PRINTER:xx command-line flag.

See Also

Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft, "SQR Command
Reference," ALTER-PRINTER

Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft, "SQR Command
Reference," DECLARE-PRINTER

Positioning Text

In SQR for PeopleSoft, you position text according to a grid. That grid is set by default to 10 characters per
inch and 6 lines per inch, but you can give it another definition by altering the CHAR-WIDTH and LINE-
HEIGHT parameters of the DECLARE-LAYOUT command.

Changing Fonts Chapter 15

86 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note, however, that character grid and character size function independently of one another. Fonts print in the
size that is set by DECLARE-PRINTER or ALTER-PRINTER, not the size that is defined by the grid. A
character grid is best used for positioning the first character in a string. It can express the width of a string
only in terms of the number of characters that it contains, not in an actual linear measurement, such as inches
or picas.

When you use a proportionally spaced font, the number of letters that you print may no longer match the
number of character cells that the text actually fills. For example, in the following sample code, the word
Proportionally fills only 9 cells, although it contains 14 letters.

When you print consecutive text strings, the actual position at the end of a string may differ from the position
that SQR assumes according to the grid. For this reason, concatenate consecutive pieces of text and print
them as one.

For example, don't write code like this:

alter-printer font=5 ! select a proportional font
print &first_name () ! print first name
print ' ' () ! print a space
print &last_name () ! print the last name
alter-printer font=3 ! restore the font

Instead, write code like this:

alter-printer font=5 ! select a proportional font
! concatenate the name
let $full_name = &first_name || ' ' || &last_name
print $full_name () ! print the name
alter-printer font=3 ! restore the font

The WRAP and CENTER options of the PRINT command also require special consideration when used with
proportional fonts. They both calculate the text length based on the character count in the grid, which is not
the same as its dimensional width.

Look at the sample program. It contains a list of reminders from the reminders table. It is printed in a mix of
fonts: Times Roman in two different sizes, plus Helvetica bold.

Chapter 15 Changing Fonts

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 87

Program ex14a.sqr
begin-setup
 declare-layout default
 paper-size=(10,11)
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure main
! Set Times Roman as the font for the report
alter-printer font=5 point-size=12
begin-select
remind_date (,1,20) edit 'DD-MON-YY'
reminder (,+1) wrap 60 5
 position (+2)
from reminders
end-select
end-procedure ! main
begin-heading 7
 print $current-date (1,1) Edit 'DD-MON-YYYY'
 page-number (1,60) 'Page '
 ! Use large font for the title
 alter-printer font=5 point-size=24
 print 'Reminder List' (3,25)
 ! Use Helvetica for the column headings
 alter-printer font=4 point-size=12
 print 'Date' (6,1) bold
 print 'Reminder' (6,22) bold
 graphic (6,1,66) horz-line
 ! Restore the font
 alter-printer font=5 point-size=12
end-heading

The report uses the default layout grid of 10 characters per inch and 6 lines per inch, both for positioning the
text and for setting the length of the solid line.

The font is set at the beginning of the main procedure to font 5, which is Times Roman. The point size is set
to 12. In the HEADING section, its size is set to 24 points to print the title.

The column headings are set to 12-point Helvetica with the ALTER-PRINTER FONT=4 POINT-SIZE=12
command. The BOLD option of the PRINT command specifies that they are printed in bold.

A solid line is under the column headings. Note that it is positioned at line 6, the same as the column
headings. SQR draws the solid line as an underline. At the end the HEADING section, the font is restored to
Times Roman.

In an SQR program, the report heading is performed after the body. A font change in the heading does not
affect the font that is used in the body of the current page, although it changes the font that is used in the body
of subsequent pages. Keep track of your font changes and return fonts to their original settings in the same
section in which you change them.

Positioning the title requires careful coding. The CENTER option of the PRINT command does not work
because it does not account for the actual size of the text. Instead, position the title by estimating its length. In
this case, the title should start 2 1/2 inches from the left margin. The character coordinates are (3,25), which
are line 3, character position 25. Remember that the character grid that is used for positioning assumes 10
characters per inch. Therefore, 25 characters is 2 1/2 inches.

Changing Fonts Chapter 15

88 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Using the WRAP Option

The WRAP option of the PRINT command prints the text of the reminder column. This option wraps text
based on a given width, which is 60 characters in the sample program.

The WRAP option works only on the basis of the width that is given in the character grid. It does not depend
on the font.

Text that is printed in Times Roman takes about 30–50 percent less space than the same text in Courier (the
default font, which is a fixed-size font). This means that a column with a nominal width of 44 characters (the
width of the reminder column) can actually hold as many as 66 letters when it is printed in the Times Roman
font. To be conservative, specify a width of 60.

The other argument of the WRAP option is the maximum number of lines. Because the reminder column in
the database is 240 characters wide, at 60 characters per line, no more than five lines are needed. Remember,
this setting specifies only the maximum number of lines. SQR does not use more lines than necessary.

SQR calculates the maximum number of characters on a line by using the page dimensions in the DECLARE-
LAYOUT command (the default is 8 1/2 inches wide). In the sample program, 8 1/2 inches minus the inch
that is used in the margins is 7 1/2 inches, or 75 characters at 10 characters per inch (CPI). Printing 60
characters starting from position 22 could exceed this maximum and cause an error or undesirable output. To
avoid this error, define the page as wider than it actually is. This definition is given by the argument PAPER-
SIZE=(10,11) in the DECLARE-LAYOUT command.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 89

Chapter 16

Writing Printer-Independent Reports

This chapter provides an overview of printer-independent reports and discusses the sample program for
selecting the printer type at runtime.

Understanding Printer-Independent Reports

To create a printer-independent report, you must write a program that avoids using any characteristics that are
unique to a specific printer. Although complete printer independence may be too restrictive, make your report
as printer-independent as you can by following these guidelines:

• Your program should be free of the following commands:

• GRAPHIC FONT (use ALTER-PRINTER instead).

• PRINTER-INIT, PRINTER-DEINIT, and USE-PRINTER-TYPE (except for using this command to
select a printer at runtime, as demonstrated in the sample program that follows).

• CODE-PRINTER and CODE qualifiers of the PRINT command.

• DECLARE-PRINTER and PRINT-DIRECT.

• The SYMBOL-SET argument of the ALTER-PRINTER command.

• The report should be readable if printed on a line printer. Graphics or solid lines printed with the graphic
command are not printed on a line printer. Test your graphical report on a line printer.

• Use only a small set of fonts. Font numbers 3, 4, and 5 and their boldface versions are the same regardless
of the type of printer that you use (except for a line printer). Font 3 is Courier, font 4 is Helvetica, and
font 5 is Times Roman. Note that on some HP printers, Helvetica may not be available. This reduces the
common fonts to fonts 3 and 5 only.

• Be aware of certain limitations. EPS-file images can be printed only on PostScript printers. HPGL-file
images can be printed only on HP LaserJet Series 3 or higher or printers that emulate HP PCL at that
level. BMP-file images can be printed using Microsoft Windows only. GIF-file and JPEG-file images are
suitable only for HTML output. PRINT-IMAGE and PRINT-CHART may not work with old printers that
use PostScript Level 1 or HP LaserJet Series II.

If your report is printer-neutral and does not specify a printer, you can specify the printer at runtime in two
ways.

The first method is to use the -PRINTER:xx command-line flag, which specifies the output type for your
report. Use the following commands:

• -PRINTER:LP for line-printer output.

Writing Printer-Independent Reports Chapter 16

90 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• -PRINTER:PS for PostScript output.

• -PRINTER:HP for HP LaserJet output.

• -PRINTER:WP for Microsoft Windows output.

• -PRINTER:HT for HTML output.

If you are using the system shell, enter this command on the command line:

sqr test username/password -printer:ps

Note. Currently, PRINTER:WP sends output to the default Microsoft Windows printer. To specify a
nondefault Microsoft Windows printer, enter the following command: -PRINTER:WP:{Printer Name}
. The {Printer Name} is the name assigned to your printer. For example, to send output to a Microsoft
Windows printer named NewPrinter, you would use -PRINTER:WP:NewPrinter. If your printer name
has spaces, enclose the entire command in double quotes.

The second method of specifying the printer type is by using the USE-PRINTER-TYPE command.

See Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft, "SQR Command
Reference," USE-PRINTER-TYPE.

Reviewing the Sample Program for Selecting the Printer Type at
Runtime

In the following example, the PROGRAM section prompts the user to select the printer type at runtime. The
relevant lines are shown like this:

begin-program
 input $p 'Printer type' ! Prompt user for printer type
 let $p = lower($p) ! Convert type to lowercase
 evaluate $p ! Case statement
 when = 'hp'
 when = 'hplaserjet' ! HP LaserJet
 use-printer-type hp
 break
 when = 'lp'
 when = 'lineprinter' ! Line Printer
 use-printer-type lp
 break
 when = 'ps'
 when = 'postscript' ! PostScript
 use-printer-type ps
 break
 when-other
 display 'Invalid printer type.'
 stop
 end-evaluate
 do list_customers
end-program

In this code, the INPUT command prompts the user to enter the printer type. Because the USE-PRINTER-
TYPE command does not accept a variable as an argument, the EVALUATE command is used to test for the
six possible values and set the printer type accordingly.

Chapter 16 Writing Printer-Independent Reports

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 91

The EVALUATE command is similar to a switch statement in the C language. It compares a variable to
multiple constants and carries out the appropriate code.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 93

Chapter 17

Using Dynamic SQL and Error Checking

This chapter discusses how to:

• Use variables in SQL.

• Use dynamic SQL.

• Use SQL error checking.

• Use SQL and substitution variables.

Using Variables in SQL

SQL supports the use of variables. A SQL statement containing variables is considered static. When SQR
runs this statement several times, it runs the same statement, even if the values of the variables change.
Because SQL allows variables only in places where literals are allowed (such as in a WHERE clause or
INSERT statement), the database can parse the statement before the values for the variables are given.

The ex16a.sqr sample program selects customers from a state that the user specifies:

Program ex16a.sqr
begin-program
 do list_customers_for_state
end-program
begin-procedure list_customers_for_state
input $state maxlen=2 type=char 'Enter state abbreviation'
let $state = upper($state)
begin-select
name (,1)
 position (+1)
from customers
where state = $state
end-select
end-procedure ! list_customers_for_state

Note the use of the $state variable in the select paragraph. When you use a variable in a SQL statement in
SQR for PeopleSoft, the SQL statement that is sent to the database contains that variable. SQR binds the
variable before the SQL is run. In many cases, the database needs to parse the SQL statement only once. The
only item that changes between runs of the select paragraph is the value of the variable. This is the most
common example of varying a select paragraph.

In the sample program, the INPUT command prompts the user to enter the value of state. The MAXLEN and
TYPE arguments verify the input, ensuring that the user enters a string of no more than two characters. If the
entry is incorrect, INPUT reprompts.

Using Dynamic SQL and Error Checking Chapter 17

94 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

The sample program converts the contents of the $state variable to uppercase, which enables the user to enter
the state without worrying about the case. In the example, state is uppercase in the database. The sample
program shows the LET command that is used with the SQR upper function.

You can let the SQL perform the conversion to uppercase by using where state = upper($state)
if you are using an Oracle or Sybase database or by using where state = ucase($state) if you are
using another database. However, SQR enables you to write database-independent code by moving the use of
such SQL extensions to the SQR code.

When you run this program, you must specify one of the states that is included in the sample data for the
program to return any records. At the prompt, enter IN, MI, NH, NJ, NM, NY, or OH. If you enter NY (the
state where most of the customers in the sample data reside), SQR generates the following output:

Output for program ex16a.sqr
John Conway
Eliot Richards
Harriet Bailey
Kate's Out of Date Dress Shop
Corks and Bottles, Inc.

Using Dynamic SQL

You may find it too restrictive that you can use variables only where literals are allowed. In the following
example, the ordering of the records changes based on the user's selection. The program runs the select
statement twice. The first time, the first column is called name and the second column is called city, and the
program sorts the records by name with a secondary sort by city. The second time, the first column is the city
and the second is name, and the program sorts by city with a secondary sort by name. This is the first select
paragraph:

select name, city
from customers
order by name, city

This is the second select paragraph:

select city, name
from customers
order by city, name

These statements are different. SQR constructs the statement each time before running it. This technique is
called dynamic SQL, and it is illustrated in the following sample program. To take full advantage of the error-
handling procedure, run it with the -CB command-line flag.

Chapter 17 Using Dynamic SQL and Error Checking

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 95

Program ex16b.sqr
begin-program
 let $col1 = 'name'
 let $col2 = 'city'
 let #pos = 32
 do list_customers_for_state
 position (+1)
 let $col1 = 'city'
 let $col2 = 'name'
 let #pos = 18
 do list_customers_for_state
end-program
begin-procedure give_warning
 display 'Database error occurred'
 display $sql-error
end-procedure ! give_warning
begin-procedure list_customers_for_state
 let $my_order = $col1 || ',' || $col2
begin-select on-error=give_warning
[$col1] &column1=char (,1)
[$col2] &column2=char (,#pos)
 position (+1)
from customers
order by [$my_order]
end-select
end-procedure ! list_customers_for_state

When you use variables in an SQL statement in SQR to replace literals and more, you make them dynamic
variables by enclosing them in square brackets. For example, when you use the [$my_order] dynamic
variable in the ORDER BY clause of the select paragraph, SQR places the text from the $my_order variable
in that statement. Each time the statement is run, if the text changes, a new statement is compiled and run.

Note. The z/OS operating system does not support square brackets for dynamic variables. Use slashes (/)
instead.

Other dynamic variables are [$col1] and [$col2]. They substitute the names of the columns in the select
paragraph. The &column1 and &column2 variables are column variables.

You can use dynamic variables to produce reports like this one. The data in the first half of the report is sorted
differently from the data in the second half. Also note the give_warning error-handling procedure, discussed
next.

The following is the output for Program ex16b.sqr:

Using Dynamic SQL and Error Checking Chapter 17

96 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

John Conway New York
Clair Butterfield Teaneck
Corks and Bottles, Inc. New York
Eliot Richards Queens
Gregory Stonehaven Everretsville
Harold Alexander Fink Davenport
Harriet Bailey Mamaroneck
Harry's Landmark Diner Miningville
Isaiah J Schwartz and Company Zanesville
Jerry's Junkyard Specialties Frogline
Joe Smith and Company Big Falls
Kate's Out of Date Dress Shop New York
Quentin Fields Cleveland
Sam Johnson Bell Harbor

Bell Harbor Sam Johnson
Big Falls Joe Smith and Company
Cleveland Quentin Fields
Davenport Harold Alexander Fink
Everretsville Gregory Stonehaven
Frogline Jerry's Junkyard Specialties
Mamaroneck Harriet Bailey
Miningville Harry's Landmark Diner
New York John Conway
New York Corks and Bottles, Inc.
New York Kate's Out of Date Dress Shop
Queens Eliot Richards
Teaneck Clair Butterfield
Zanesville Isaiah J Schwartz and Company

Using SQL Error Checking

SQR for PeopleSoft checks and reports database errors for SQL statements. When an SQR program is
compiled, SQR checks the syntax of the SELECT, UPDATE, INSERT, and DELETE SQL statements in the
program. Any SQL syntax error is detected and reported at compile time, before the report is run.

When you use dynamic SQL, SQR cannot check the syntax until runtime. In that case, the content of the
dynamic variable is used to construct the SQL statement, which can allow syntax errors to occur in runtime.
Errors could occur if the dynamic variables that are selected or used in a WHERE or ORDER BY clause are
incorrect.

SQR traps any runtime error, reports the error, and ends the program. To change this default behavior, use the
ON-ERROR option of the BEGIN-SELECT or BEGIN-SQL paragraphs.

begin-select on-error=give_warning
[$col1] &column1=char (,1)
[$col2] &column2=char (,#pos)
 position (+1)
from customers
order by [$my_order]
end-select

In this sample program, if a database error occurs, SQR invokes a procedure called give_warning instead of
reporting the problem and ending. Write this procedure like this:

Chapter 17 Using Dynamic SQL and Error Checking

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 97

begin-procedure give_warning
 display 'Database error occurred'
 display $sql-error
end-procedure ! give_warning

This procedure displays the error message but does not stop running the program. Instead, the program
continues at the statement immediately following the SQL or SELECT paragraph. Note the use of the $sql-
error variable, which is a special SQR-reserved variable. It contains the error message text from the database
and is automatically set by SQR after a database error occurs.

SQR has a number of reserved, or predefined, variables. For example, the $sqr-program variable has the
name of the program that is running. The$username variable has the user name that was used to sign in to the
database. The #page-count variable has the page number for the current page.

Using SQL and Substitution Variables

SQR uses the value of a substitution variable to complete the select paragraph at compile time. Because the
select paragraph is complete at compile time, SQR can check its syntax before running the program. From
this point on, the value of {my_order} cannot change and the SQL statement is considered static.

In the following program, the ASK command in the SETUP section prompts the user at compile time. The
value that the user enters is placed in a special kind of variable called a substitution variable. This variable
can be used to substitute any command, argument, or part of a SQL statement at compile time. This example
is less common, but it demonstrates the difference between compile-time and runtime substitutions.

Program ex16c.sqr
begin-setup
 ask my_order 'Enter the column name to sort by (name or city)'
end-setup
begin-program
 do list_customers_for_state
end-program
begin-procedure give_warning
 display 'Database error occurred'
 display $sql-error
end-procedure ! give_warning
begin-procedure list_customers_for_state
begin-select on-error=give_warning
name (,1)
city (,32)
 position (+1)
from customers
order by {my_order}
end-select
end-procedure ! list_customers_for_state

In this case, the ASK command prompts the user for the value of the {my_order} substitution variable, which
is used to sort the output. If the argument is passed on the command line, no prompt appears. When you run
this program, enter name, city, or both (in either order and separated by a comma). The program produces a
report that is sorted accordingly.

You can use the ASK command only in the SETUP section. SQR processes ASK commands at compile time
before running the program. Therefore, all ASK commands are run before any INPUT command.

INPUT is more flexible than ASK. You can use INPUT inside loops. You can validate the length and type of
data input and reprompt if it is not valid. The sample program at the beginning of this chapter contains an
example of reprompting .

Using Dynamic SQL and Error Checking Chapter 17

98 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

ASK can be more powerful. Substitution variables that are set in an ASK command enable you to modify
commands that are normally quite restrictive. The following code shows this technique:

begin-setup
 ask hlines 'Number of lines for heading'
end-setup
begin-program
 print 'Hello, World!!' (1,1)
end-program
begin-heading {hlines}
 print 'Report Title' () center
end-heading

In this example, the {hlines} substitution variable defines the number of lines that the heading will occupy.
The BEGIN-HEADING command normally expects a literal and does not allow a runtime variable. When a
substitution variable is used with this command, its value is modified at compile time.

See Chapter 26, "Compiling Programs and Using SQR Execute," page 153.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 99

Chapter 18

Using Procedures and Local Variables
and Passing Arguments

This chapter discusses how to:

• Use procedures.

• Use local variables.

• Pass arguments.

Using Procedures

The code example in this section shows a procedure that spells out a number. The sample program for
printing checks uses this procedure. When printing checks, you normally need to spell out the dollar amount.

In the spell.inc code example, the assumption is that the checks are preprinted and that the program has to
print only items such as the date, name, and amount.

SQR procedures that contain variables that are visible throughout the program are called global procedures.
These procedures can also directly reference any program variable.

In contrast, procedures that take arguments, such as the spell_number procedure in this section's check-
printing sample program, are local procedures. In SQR for PeopleSoft, any procedure that takes arguments is
automatically considered local.

Variables that are introduced in a local procedure are readable only inside the spell.inc procedure. This useful
feature avoids name collisions. The spell_number procedure is in an include file because other reports may
also want to use it.

Using Local Variables

When you create library procedures that can be used in many programs, make them local. Then, if a program
has a variable with the same name as a variable that is used in the procedure, a collision will not occur. SQR
treats the two variables as separate.

Declare a procedure as local even if it does not take any arguments. To do this, place the LOCAL keyword
following the procedure name in the BEGIN-PROCEDURE command.

Using Procedures and Local Variables and Passing Arguments Chapter 18

100 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

To reference a global variable from a local procedure, insert an underscore between the prefix character (#, $,
or &) and the variable name. Use the same technique to reference reserved variables, such as #current-line.
These variables are always global so that you can reference them from a local procedure.

SQR supports recursive procedure calls, but it maintains only one copy of a local variable. A procedure does
not allocate new instances of the local variables on a stack, as C or Pascal would.

Passing Arguments

Procedure arguments are treated as local variables. Arguments can be numeric, date, or text variables or
strings. If an argument is preceded with a colon, its value is passed back to the calling procedure.

In the following code example, spell_number takes two arguments. The first argument is the check
amount. This argument is a number, and the program passes it to the procedure. The procedure does not need
to pass it back.

The second argument is the result that the procedure passes back to the calling program. We precede this
variable with a colon, which means that the value of this argument is copied back at the end of the procedure.
The colon is used only when the argument is declared in the BEGIN-PROCEDURE command.

Look at the following sample program. It is not a complete program, but it is the spell_number procedure,
which is stored in the spell.inc file. The check-printing sample program includes this code by using an
#INCLUDE command.

Chapter 18 Using Procedures and Local Variables and Passing Arguments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 101

File spell.inc
begin-procedure spell_number(#num,:$str)
 let $str = ''
 ! break the number to it's 3-digit parts
 let #trillions = floor(#num / 1000000000000)
 let #billions = mod(floor(#num / 1000000000),1000)
 let #millions = mod(floor(#num / 1000000),1000)
 let #thousands = mod(floor(#num / 1000),1000)
 let #ones = mod(floor(#num),1000)
 ! spell each 3-digit part
 do spell_3digit(#trillions,'trillion',$str)
 do spell_3digit(#billions,'billion',$str)
 do spell_3digit(#millions,'million',$str)
 do spell_3digit(#thousands,'thousand',$str)
 do spell_3digit(#ones,'',$str)
end-procedure ! spell_number
begin-procedure spell_3digit(#num,$part_name,:$str)
 let #hundreds = floor(#num / 100)
 let #rest = mod(#num,100)
 if #hundreds
 do spell_digit(#hundreds,$str)
 concat 'hundred ' with $str
 end-if
 if #rest
 do spell_2digit(#rest,$str)
 end-if
 if #hundreds or #rest
 if $part_name != ''
 concat $part_name with $str
 concat ' ' with $str
 end-if
 end-if
end-procedure ! spell_3digit
begin-procedure spell_2digit(#num,:$str)
 let #tens = floor(#num / 10)
 let #ones = mod(#num,10)
 if #num < 20 and #num > 9
 evaluate #num
 when = 10
 concat 'ten ' with $str
 break
 when = 11
 concat 'eleven ' with $str
 break
 when = 12
 concat 'twelve ' with $str
 break
 when = 13
 concat 'thirteen ' with $str
 break
 when = 14
 concat 'fourteen ' with $str
 break
 when = 15
 concat 'fifteen ' with $str
 break
 when = 16
 concat 'sixteen ' with $str
 break
 when = 17
 concat 'seventeen ' with $str
 break
 when = 18
 concat 'eighteen ' with $str

Using Procedures and Local Variables and Passing Arguments Chapter 18

102 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 break
 when = 19
 concat 'nineteen ' with $str
 break
 end-evaluate
 else
 evaluate #tens
 when = 2
 concat 'twenty' with $str
 break
 when = 3
 concat 'thirty' with $str
 break
 when = 4
 concat 'forty' with $str
 break
 when = 5
 concat 'fifty' with $str
 break
 when = 6
 concat 'sixty' with $str
 break
 when = 7
 concat 'seventy' with $str
 break
 when = 8
 concat 'eighty' with $str
 break
 when = 9
 concat 'ninety' with $str
 break
 end-evaluate
 if #num > 20
 if #ones
 concat '-' with $str
 else
 concat ' ' with $str
 end-if
 end-if
 if #ones
 do spell_digit(#ones,$str)
 end-if
 end-if
end-procedure ! spell_2digit
begin-procedure spell_digit(#num,:$str)
 evaluate #num
 when = 1
 concat 'one ' with $str
 break
 when = 2
 concat 'two ' with $str
 break
 when = 3
 concat 'three ' with $str
 break
 when = 4
 concat 'four ' with $str
 break
 when = 5
 concat 'five ' with $str
 break
 when = 6
 concat 'six ' with $str
 break

Chapter 18 Using Procedures and Local Variables and Passing Arguments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 103

 when = 7
 concat 'seven ' with $str
 break
 when = 8
 concat 'eight ' with $str
 break
 when = 9
 concat 'nine ' with $str
 break
 end-evaluate
end-procedure ! spell_digit

The result argument is reset in the procedure because the program begins with an empty string and keeps
concatenating the parts of the number to it. The program supports numbers up to 999 trillion only.

The number is divided into its three-digit parts: trillions, billions, millions, thousands, and ones. Another
procedure spells out the three-digit numbers such as one hundred twelve. Note that the word and is inserted
only between dollars and cents, but not between three-digit parts. This format is common for check printing
in dollars.

Note the use of math functions, such as floor and mod. SQR for PeopleSoft has a large set of functions that
can be used in expressions. These functions are listed and described under the LET command.

See Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft, "SQR Command
Reference," LET.

The series of EVALUATE commands in the number-spelling procedures are used to correlate the numbers
that are stored in the variables with the strings that are used to spell them out.

This is the sample program that prints the checks:

Using Procedures and Local Variables and Passing Arguments Chapter 18

104 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex17a.sqr
#include 'spell.inc'
begin-setup
 declare-layout default
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure main
 alter-printer font=5 point-size=15
begin-select
name &name
sum(d.price * c.quantity) * 0.10 &refund
 do print_check(&refund)
from customers a, orders b,
 ordlines c, products d
 where a.cust_num = b.cust_num
 and b.order_num = c.order_num
 and c.product_code = d.product_code
 group by name
 having sum(d.price * c.quantity) * 0.10 >= 0.01
end-select
end-procedure ! main
begin-procedure print_check(#amount)
 print $_current-date (3,45) edit 'DD-Mon-YYYY'
 print &_name (8,12)
 move #amount to $display_amt 9,999,990.99
 ! enclose number with asterisks for security
 let $display_amt = '**' || ltrim($display_amt,' ') || '**'
 print $display_amt (8,58)
 if #amount < 1.00
 let $spelled_amount = 'Zero dollars '
 else
 do spell_number(#amount,$spelled_amount)
 let #len = length($spelled_amount)
 ! Change the first letter to uppercase
 let $spelled_amount = upper(substr($spelled_amount,1,1))
 || substr($spelled_amount,2,#len - 1)
 concat 'dollars ' with $spelled_amount
 end-if
 let #cents = round(mod(#amount,1) * 100, 0)
 let $cents_amount = 'and ' || edit(#cents,'00') || ' cents'
 concat $cents_amount with $spelled_amount
 print $spelled_amount (12,12)
 print 'Rebate' (16,12)
 print ' ' (20)
 next-listing need=20
end-procedure ! print_check

The main procedure starts by setting the font to 15-point Times Roman. The select paragraph is a join of
several tables. (A join is created when you select data from more than one database table in the same select
paragraph.) The customers table has the customer's name. The program joins it with the orders and ordlines
tables to get the customer's order details. It also joins with the products table for the price.

The following expression adds up all of the customer's purchases and calculates a 10 percent rebate:

sum(d.price * c.quantity) * 0.10

The statement groups the records by the customer name, one check per customer. This is done with the
following clause:

Chapter 18 Using Procedures and Local Variables and Passing Arguments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 105

group by name
having sum(d.price * c.quantity) * 0.10 >= 0.01

The having clause eliminates checks for less than 1 cent.

The print_check procedure is a local procedure. Note the way that it references the date and customer name
with &_current-date and &_name, respectively.

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 107

Chapter 19

Creating Multiple Reports from One
Program

This chapter provides overviews of how to create multiple reports and the sample program for multiple
reports and discusses how to:

• Define heading and footing sections.

• Define program output.

Understanding How to Create Multiple Reports

You can create multiple reports based on common data, selecting the database records only once and creating
different reports simultaneously. The alternative—writing separate programs for the different reports—would
require you to perform a separate database query for each report. Repeated queries are costly because
database operations are often the most resource-consuming or time-consuming part of creating a report.
Creating multiple reports from one program can save a significant amount of processing time.

Understanding the Sample Program for Multiple Reports

The following sample program, ex18a.sqr, shows how SQR for PeopleSoft enables you to write multiple
reports with different layouts and different heading and footing sections. The sample program prints three
reports: the labels from the chapter "Printing Mailing Labels," the form letter from "Creating Form Letters"
and the listing report from "Selecting Data from the Database." All three reports are based on the same data.

Creating Multiple Reports from One Program Chapter 19

108 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex18a.sqr
#define MAX_LABEL_LINES 10
#define LINES_BETWEEN_LABELS 3
begin-setup
 declare-layout labels
 paper-size=(10,11) left-margin=0.33
 end-declare
 declare-layout form_letter
 end-declare
 declare-layout listing
 end-declare
 declare-report labels
 layout=labels
 end-declare
 declare-report form_letter
 layout=form_letter
 end-declare
 declare-report listing
 layout=listing
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure main
 do init_mailing_labels
begin-select
name
addr1
addr2
city
state
zip
 move &zip to $zip xxxxx-xxxx
phone
 do print_label
 do print_letter
 do print_listing
from customers
end-select
 do end_mailing_labels
end-procedure ! main
begin-procedure init_mailing_labels
 let #label_count = 0
 let #label_lines = 0
 use-report labels
 columns 1 29 57 ! enable columns
 alter-printer font=5 point-size=10
end-procedure ! init_mailing_labels
begin-procedure print_label
 use-report labels
 print &name (1,1,30)
 print &addr1 (2,1,30)
 let $last_line = &city || ', ' || &state || ' ' || $zip
 print $last_line (3,1,30)
 next-column at-end=newline
 add 1 to #label_count
 if #current-column = 1
 add 1 to #label_lines
 if #label_lines = {MAX_LABEL_LINES}
 new-page
 let #label_lines = 0
 else
 next-listing no-advance skiplines={LINES_BETWEEN_LABELS}

Chapter 19 Creating Multiple Reports from One Program

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 109

 end-if
 end-if
end-procedure ! print_label
begin-procedure end_mailing_labels
 use-report labels
 use-column 0 ! disable columns
 new-page
 print 'Labels printed on ' (,1)
 print $current-date ()
 print 'Total labels printed = ' (+1,1)
 print #label_count () edit 9,999,999
end-procedure ! end_mailing_labels
begin-procedure print_letter
use-report form_letter
begin-document (1,1)
&name
&addr1
&addr2
@city_state_zip
.b
.b
 $current-date
Dear Sir or Madam:
.b
 Thank you for your recent purchases from ACME Inc. We would
like to tell you about our limited time offer. During this month,
our entire inventory is marked down by 25%. Yes, you can buy your
favorite merchandise and save too.
 To place an order simply dial 800-555-ACME.
 Delivery is free too, so don't wait.
.b
.b
 Sincerely,
 Clark Axelotle
 ACME Inc.
end-document
position () @city_state_zip
print &city ()
print ', ' ()
print &state ()
print ' ' ()
move &zip to $zip xxxxx-xxxx
print $zip ()
new-page
end-procedure ! print_letter
begin-heading 4 for-reports=(listing)
print 'Customer Listing' (1) center
 print 'Name' (3,1)
 print 'City' (,32)
 print 'State' (,49)
 print 'Phone' (,55)
end-heading
begin-footing 1 for-reports=(listing)
 ! Print "Page n of m" in the footing
 page-number (1,1) 'Page '
 last-page () ' of '
end-footing
begin-procedure print_listing
 use-report listing
 print &name (,1)
 print &city (,32)
 print &state (,49)
 print &phone (,55)
 position (+1)

Creating Multiple Reports from One Program Chapter 19

110 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

end-procedure ! print_listing

The SETUP section defines three layouts and three different reports that use these layouts. The labels report
requires a layout that is different from the default. The other two reports use a layout that is identical to the
default layout. You can save the last layout declaration and use the form-letter layout for the listing. However,
unless a logical reason exists why the two layouts should be the same, you should keep separate layouts. The
name of the layout indicates which report uses it.

The main procedure performs the Select. It is performed only once and includes all of the columns for all of
the reports. The phone column is used only in the listing report, and the addr2 column is used only in the
form-letter report. The other columns are used in more than one report.

For each record that is selected, three procedures are run. Each procedure processes one record for its
corresponding report. The print_label procedure prints one label, print_letter prints one letter, and
print_listing prints one line in the listing report. Each procedure begins by setting the SQR printing context
to its corresponding report. SQR sets the printing context with the USE-REPORT command.

Defining Heading and Footing Sections

SQR enables you to define HEADING and FOOTING sections for each report. This sample program defines
only the heading and footing for the listing report because the other two reports do not use them. The FOR-
REPORTS option of the BEGIN-HEADING and BEGIN-FOOTING commands specifies the report name.
The parentheses are required. The USE-REPORT command is not needed in the heading or footing. The
report is implied by the FOR-REPORTS option.

Defining Program Output

Most of the code for ex18a.sqr is taken from ex9a.sqr, ex10a.sqr, and ex3a.sqr. Because this program creates
output with proportional fonts, you must run it with the -KEEP or -PRINTER:xx command-line flags.

When you run ex18a.sqr, you get three output files that match the output files for ex9a, ex10a, and ex3a,
respectively. These output files have the names ex18a.lis (labels), ex18a.l01 (form letter), and ex18a.l02
(customer listing). If you specify -KEEP, the output files are named ex18a.spf, ex18a.s01, and ex18a.s02,
respectively.

See Also

Chapter 4, "Selecting Data from the Database," page 15

Chapter 10, "Printing Mailing Labels," page 57

Chapter 11, "Creating Form Letters," page 61

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 111

Chapter 20

Using Additional SQL Statements with
SQR

This chapter discusses how to:

• Use SQL statements in SQR.

• Use BEGIN-SQL.

Using SQL Statements in SQR

Although SELECT may be the most common SQL statement, you can also perform other SQL commands in
SQR. Here are a few examples:

• If the program prints important documents such as checks, tickets, or invoices, you may need to update
the database to indicate that the document was printed.

You can do this in SQR with a SQL UPDATE statement.

• You can use SQR to load data into the database.

SQR can read and write external files and construct records. SQR can also insert these records into the
database by using a SQL INSERT statement.

• To hold intermediate results in a temporary database table, you can create two SQL paragraphs in the
SQR program (CREATE TABLE and DROP TABLE) to create this table at the beginning of the program
and drop the table at the end.

These are only a few examples. SQR can perform any SQL statement, and this feature is used often.

Using BEGIN-SQL

A SQL statement other than a select statement must use the BEGIN-SQL paragraph.

The following sample program loads data from an external file into the database. It demonstrates two
important features of SQR: handling external files and performing database inserts. This sample program
loads the tab-delimited file that is created by the program ex11a.sqr:

Using Additional SQL Statements with SQR Chapter 20

112 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex19a.sqr
begin-setup
 begin-sql on-error=skip ! table may already exist
 create table customers_ext (
 cust_num int not null,
 name varchar (30),
 addr1 varchar (30),
 addr2 varchar (30),
 city varchar (16),
 state varchar (2),
 zip varchar (10),
 phone varchar (10),
 tot int
)
 end-sql
end-setupbegin-program
 do main
end-programbegin-procedure main#if {sqr-database} = 'Sybase'
 begin-sql
 begin transaction
 end-sql
#endif
 encode '<009>' into $sep
 open 'ex11a.lis' as 1 for-reading record=160:vary
 read 1 into $rec:160 ! skip the first record, column headings
 while 1
 read 1 into $rec:160
 if #end-file
 break
 end-if
 unstring $rec by $sep into $cust_num $name
 $addr1 $addr2 $city $state $zip $phone $tot
 move $cust_num to #cust_num
 move $tot to #tot
 begin-sql
 insert into customers_ext (cust_num, name,
 addr1, addr2, city, state, zip, phone, tot)
 values
 (#cust_num, $name, $addr1, $addr2, $city,
 $state, $zip, $phone, #tot)
 end-sql
 end-while
#if {sqr-database} = 'Sybase'
 begin-sql
 commit transaction
 end-sql
#else
#if {sqr-database} <> 'Informix'
 begin-sql
 commit
 end-sql
#endif
#endif
 close 1
end-procedure ! main

The sample program begins by creating the customers_ext table. If the table already exists, you receive an
error message. To ignore this error message, use the ON-ERROR=SKIP option.

The program reads the records from the file and inserts each record into the database by using an insert
statement inside a BEGIN-SQL paragraph. The input file format is one record per line, with each field
separated by the separator character. When the end of the file is encountered (if #end-file), the program
branches out of the loop. Note that #end-file is an SQR reserved variable.

Chapter 20 Using Additional SQL Statements with SQR

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 113

The final step is to commit the changes to the database and close the file. You do this with a SQL COMMIT
statement inside a BEGIN-SQL paragraph. Alternatively, you can use the SQR COMMIT command. For
Oracle databases, use the SQR COMMIT command.

The code may be database-specific. If you are using Informix, for example, and your database was created
with transaction logging, you must add a BEGIN WORK and a COMMIT WORK, much like the Sybase
example of BEGIN TRANSACTION and COMMIT TRANSACTION.

See Chapter 17, "Using Dynamic SQL and Error Checking," page 93.

See Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 115

Chapter 21

Working with Dates

This chapter provides an overview of dates and date arithmetic and discusses how to:

• Use literal date formats.

• Use string-to-date conversions.

• Use date-to-string conversions.

• Use dates with the INPUT command.

• Use date edit masks.

• Declare date variables.

Understanding Dates and Date Arithmetic

SQR has powerful capabilities in date arithmetic, editing, and manipulation. A date can be represented as a
character string or in an internal format by using the SQR date data type.

The date data type enables you to store dates in the range of January 1, 4712 BC to December 31, 9999 AD. It
also stores the time of day with the precision of a microsecond. The internal date representation always keeps
the year as a four-digit value. Keep dates with four-digit year values (instead of truncating to two digits) to
avoid date problems at the turn of the century.

You can obtain date values:

• By selecting a date column from the database.

• By using INPUT to get a date from the user.

• By referencing or printing the $current-date reserved variable.

• By using the SQR date functions dateadd, datediff, datenow, or strtodate.

• By declaring a date variable using the DECLARE-VARIABLE command.

For most applications, you do not need to declare date variables. Date variables are discussed later in the
section.

Many applications require date calculations. You may need to add or subtract a number of days from a given
date, subtract one date from another to find a time difference, or compare dates to determine whether one date
is later, earlier, or the same as another date. SQR enables you to perform these calculations in your program.

Working with Dates Chapter 21

116 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Many databases enable you to perform date calculations in SQL, but that can be difficult if you are trying to
write portable code because the syntax varies between databases. Instead, perform those calculations in
SQR—your programs will be portable because they won't rely on a particular SQL syntax.

The dateadd function adds or subtracts a number of specified time units from a given date. The datediff
function returns the difference between two specified dates in the time units that you specify—years, quarters,
months, weeks, days, hours, minutes, or seconds. Fractions are allowed—you can add 2.5 days to a given
date. Conversion between time units is also allowed—you can add, subtract, or compare dates by using days
and state the difference by using weeks.

The datenow function returns the current local date and time. In addition, SQR provides a reserved date
variable, $current-date, which is automatically initialized with the local date and time at the beginning of the
program.

You can compare dates by using the usual operators (< , =, or >) in an expression. The datetostr function
converts a date to a string. The strtodate function converts a string to a date.

The following sample program uses functions to add 30 days to the invoice date and compare it to the current
date:

begin-select
order_num (,1)
invoice_date
 if dateadd(&invoice_date,'day',30) < datenow()
 print 'Past Due Order' (,12)
 else
 print 'Current Order' (,12)
 end-if
 position (+1)
end-select

This code example uses the dateadd and datenow functions to compare dates. The dateadd function adds 30
days to the invoice date (&invoice_date). The resulting date is then compared with the current date,
which is returned by datenow. If the invoice is older than 30 days, the program prints the Past Due Order
string. If the invoice is 30 days old or less, the program prints the Current Order string.

To subtract a given number of days from a date, use the dateadd function with a negative argument. This
technique is demonstrated in the next code example. In this example, the IF condition compares the invoice
date with the date of 30 days before today. The condition is equivalent to that of the previous code example.

 if &invoice_date < dateadd(datenow(),'day',-30)

You can also write this condition as follows by using the datediff function. Note that the comparison is now a
simple numeric comparison, not a date comparison:

 if datediff(datenow(),&invoice_date,'day') > 30

All three IF statements are equivalent, and they demonstrate the flexibility that is provided by these functions.

Here is another technique for comparing dates:

Chapter 21 Working with Dates

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 117

begin-select
order_date
 if &order_date > strtodate('3/1/2004','dd/mm/yyyy')
 print 'Current Order' ()
 else
 print 'Past Due Order' ()
 end-if
from orders
end-select

The IF statement has a date column on the left side and the strtodate function on the right side. The strtodate
function returns a date type, which is compared with the &order_date column. When the order date is later
than January 3, 2004, the condition is satisfied. If the date includes the time of day, the comparison is
satisfied for orders of January 3, 2004, with a time of day greater than 00:00.

In the next code example, the date is truncated to remove the time-of-day portion of a date:

if strtodate(datetostr(&order_date,'dd/mm/yyyy'),'dd/mm/yyyy') >
 strtodate('3/1/2004','dd/mm/yyyy')

In this code example, the datetostr function converts the order date to a string that stores the day, month, and
year only. The strtodate function then converts this value back into a date. With these two conversions, the
time-of-day portion of the order date is omitted. Now when it is compared with January 3, 2004, only dates
that are of January 4 or later satisfy the condition.

Using Literal Date Formats

SQR enables you to specify date constants and date values in a special format that is recognized without the
use of an edit mask. This is called the literal date format. For example, you can use a value in this format in
the strtodate function without the use of an edit mask. This format is independent of any specific database or
language preference.

The literal date format is SYYYYMMDD[HH24[MI[SS[NNNNNN]]]]. The first S in this format represents
an optional minus sign. If preceded with a minus sign, the string represents a BC date. The digits that follow
represent year, month, day, hours, minutes, seconds, and microseconds.

Note. The literal date format assumes a 24-hour clock.

You can omit one or more time elements from the right part of the format. A default is assumed for the
missing elements. Here are some code examples:

let $a = strtodate('20040409')
let $a = strtodate('20040409152000')

The first LET statement assigns the date of April 9, 2004 to the $a variable. The default time portion is 00:00.
The second LET statement assigns 3:20 in the afternoon of April 9, 2004 to $a. The outputs (when printed
with the 'DD-MON-YYYY HH:MI AM' edit mask) are, respectively:

09-APR-2004 12:00 AM
09-APR-2004 03:20 PM

You can also specify a date format with the SQR_DB_DATE_FORMAT environment variable. You can
specify this as an environment variable or in the pssqr.ini file.

Working with Dates Chapter 21

118 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft, "Using the PSSQR.INI
File and the PSSQR Command Line"

Using String-to-Date Conversions

If you convert a string variable or constant to a date variable without specifying an edit mask that identifies
the format of the string, SQR applies a date format. This implicit conversion takes place with these
commands:

• MOVE.

• The strtodate function.

• The DISPLAY, PRINT, or SHOW commands, when used to format a string variable as a date.

SQR attempts to apply date formats in this order:

1. The format specified in SQR_DB_DATE_FORMAT.

2. The database-dependent format.

3. The SYYYYMMDD[HH24[MI[SS[NNNNNN]]]] literal date format.

Using Date-to-String Conversions

If you convert a date variable to a string without specifying an edit mask, SQR applies a date format. The
conversion takes place with these commands:

• MOVE.

• The datetostr function.

• The DISPLAY, PRINT, or SHOW commands, when used to output a date variable.

SQR attempts to apply date formats in this order:

1. The format specified in SQR_DB_DATE_FORMAT.

2. The database-dependent format.

See Also

Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft

Chapter 21 Working with Dates

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 119

Using Dates with the INPUT Command

The INPUT command also supports dates. You can load a date into a date or string variable. For string
variables, use the TYPE=DATE qualifier. Specify a format for the date. Here is a code example:

input $start_date 'Enter starting date' type=date format='dd/mm/yyyy'

In this example, the user is prompted with Enter starting date: (the colon is automatically added). The user
then enters the value, which is validated as a date by using the dd/mm/yyyy format. The value is loaded into
the $start_date variable.

Using Date Edit Masks

When you print dates, you can format them with an edit mask. For example:

print &order_date () edit 'Month dd, YYYY'

This command prints the order date in the specified format. The name of the order date month is printed,
followed by the day of the month, a comma, and four-digit year. SQR for PeopleSoft provides an extensive
set of date edit masks.

See Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft, "SQR Command
Reference," PRINT.

If the value of the date value being edited is March 14, 2004 at 9:35 in the morning, the edit masks produce
the following results:

Edit Mask Result Notes

dd/mm/yyyy 14/03/2004 NA

DD-MON-YYYY 14-MAR-2004 NA

'Month dd, YYYY.' March 14, 2004. An edit mask containing blank
space must be enclosed in single
quotes.

MONTH-YYYY MARCH-2004 The name of the month in
uppercase, followed by the 4-digit
year.

HH:MI 09:35 NA

Working with Dates Chapter 21

120 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Edit Mask Result Notes

'HH:MI AM' 09:35 AM Meridian indicators. An edit mask
containing blank space must be
enclosed in single quotes.

YYYYMMDD 20040314 NA

DD.MM.YY 14.03.99 NA

Mon Mar The abbreviated name of the month.

Day Thursday The day of the week.

DY THU An abbreviation for the day of the
week.

Q 1 Quarter.

WW 11 The week of the year.

W 2 The week of the month.

DDD 74 The day of the year.

DD 14 The day of the month (1–31).

D 3 The day of the week (Sunday is 1).

EY Please see below The Japanese imperial era (Meiji,
Taisho, Showa, Heisei).

ER 16 The year in Japanese imperial era.

The result for EY is:

Japanese Imperial Era

Chapter 21 Working with Dates

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 121

Note. The MON, MONTH, DAY, DY, AM, PM, BC, AD, ER, EY, and RM masks are case-sensitive and
follow the case of the mask that is entered. For example, if the month is January, the Mon mask yields Jan
and MON yields JAN. All other masks are case-insensitive and can be entered in either uppercase or
lowercase.

If the edit mask contains other text, it is also printed. For example:

print &order_date () edit 'As of Month dd, YYYY'

This command prints the As of March 14, 2004 string if the order date is March 14, 2004. Because the words
As of are not recognized as date mask elements, they are printed.

A backslash forces the character that follows into the output. This technique is useful to print text that would
otherwise be recognized as a date mask element. For example, a mask of The \mo\nth is Month results in The
month is March as an output string. Without the backslashes, the output string would be The march is March.
The second backslash is needed because n is a valid date edit mask element.

In some cases, combining date edit mask elements can result in ambiguity. One example is the 'DDDD' mask,
which could be interpreted as various combinations of DDD (day of year), DD (day of month), and D (day of
week). To resolve such ambiguity, use a vertical bar as a delimiter between format elements. For example,
DDD followed by D can be written as DDD|D.

In addition, national language support is provided for the following masks: MON, MONTH, DAY, DY, AM,
PM, BC, and AD.

See Also

Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft

Declaring Date Variables

To hold date values in your program, use date variables. Like string variables, date variables are prefixed with
a dollar sign ($). You must explicitly declare date variables by using the DECLARE-VARIABLE command.

Date variables are useful for holding results of date calculations. For example:

begin-setup
 declare-variable
 date $c
 end-declare
end-setup
...
let $c = strtodate('March 1, 2004 12:00','Month dd, yyyy hh:mi')
print $c () edit 'dd/mm/yyyy'

In this code example, $c is declared as a date variable. Later, it is assigned the value of noon on March 1,
2004. The $c variable is then printed with the dd/mm/yyyy edit mask, which yields 01/03/2004.

Date variables can be initialized with date literals as shown in this example:

Working with Dates Chapter 21

122 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

begin-setup
 declare-variable
 date $c
 end-declare
end-setup
...
let $c = '20040409152000'

The LET statement assigns 3:20 in the afternoon of April 9, 2004 to $c.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 123

Chapter 22

Using National Language Support

This chapter provides an overview of locales and discusses how to:

• Select locales.

• Define a default locale.

• Switch locales.

• Modify locale preferences.

• Specify NUMBER, MONEY, and DATE keywords.

Understanding Locales

National Language Support (NLS) is provided through the concept of locales. A locale is a set of local
preferences for language, currency, and the presentation of dates and numbers. For example, one locale may
use English, dollar currency, dates in dd/mm/yy format, numbers with commas separating the thousands, and
a period for the decimal place.

A locale contains:

• Default edit masks for number, money, and date.

Use these edit masks to specify the NUMBER, MONEY (for currency), and DATE keywords,
respectively. You can specify these keywords in the INPUT, MOVE, DISPLAY, SHOW, and PRINT
commands.

• Settings for currency symbol, thousands separator, decimal separator, date separator, and time separator.

• Settings for not applicable (NA), a.m., p.m., BC, and AD in the language of the locale.

• Settings for names of the days of the week and names of the months in the language of the locale.

• Settings for how to process lowercase and uppercase editing of day and month names.

Selecting Locales

SQR provides predefined locales such as US-English, UK-English, German, French, and Spanish. You can
define additional locales by editing any .ini file.

Using National Language Support Chapter 22

124 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

With the ALTER-LOCALE command, you can select a locale at the beginning of the program or anywhere
else. Different parts of the program can use different locales.

Select a locale with a command such as this:

alter-locale locale = 'German'

Defining a Default Locale

You can define a default locale in any .ini file. Most or all of your programs can use the same locale, and
specifying the default locale makes specifying the locale in every program unnecessary.

When you install SQR, the default locale is set to the reserved locale called System. System is not an actual
locale. It defines the behavior of older versions of SQR, before NLS was added. The preferences in the
system locale are hard-coded in the product and cannot be set or defined in the pssqr.ini; however, you can
alter system settings at runtime by using ALTER-LOCALE. The date preferences depend on the database that
you are using. Therefore, date format preferences in the system locale are different for every database that
you use with SQR.

Note. If you are running SQR outside of the PeopleSoft Process Scheduler, the PS_HOME environment
variable must be set to a proper PeopleSoft installation.

Different sites can have different locales as the default. For example, an office in Paris might use the French
locale, and an office in London might use the UK-English locale. To adapt a program to any location, use the
default locale. The program automatically uses the local preferences, which are specified in the pssqr.ini file
of the machine on which it is run. For example, you can print the number 5120 by using the following
command:

print #invoice_total () edit '9,999,999.99'

The setting of the default locale in the pssqr.ini file controls the format. In London, the result might be
5,120.00, and in Paris it might be 5.120,00. The delimiters for thousands and the decimal—the comma and
the period—are switched automatically according to the preferences of the locale.

Note. Changing the settings of the default locale can change the behavior of existing programs. For example,
if you change the default locale to French, programs that used to print dates in English can now print them in
French. Be sure that you review and test existing programs when making a change to the default locale.

Switching Locales

You can switch from one locale to another any number of times while the program is running. This technique
is useful for writing reports that use multiple currencies, or reports that have different sections for different
locales.

To switch to another locale, use the ALTER-LOCALE command. For example, to switch to the Spanish
locale:

alter-locale locale = 'Spanish'

From this point in the program, the locale is Spanish.

Chapter 22 Using National Language Support

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 125

Consider this code example:

begin-procedure print_data_in_spanish
 ! Save the current locale
 let $old_locale = $sqr-locale
 ! Change the locale to "Spanish"
 alter-locale locale = 'Spanish'
 ! Print the data
 do print_data
 ! restore the locale to the previous setting
 alter-locale locale = $old_locale
end-procedure

In this code example, the locale is switched to Spanish and later restored to the previous locale before it was
switched. To do that, the locale setting before it is changed is read in the$sqr-locale reserved variable and
stored in $old_locale. The value of $old_locale is then used in the ALTER-LOCALE command at the end of
the procedure.

Modifying Locale Preferences

With the ALTER-LOCALE command, you can modify any individual preference in a locale. The ALTER-
LOCALE command affects only the current program. It does not modify the pssqr.ini file.

Here is a code example of how you can modify default preferences in a locale:

alter-locale
 date-edit-mask = 'Mon-DD-YYYY'
 money-edit-mask = '$$,$$$,$$9.99'

To restore modified locale preferences to their defaults, reselect the modified locale. For example, suppose
that the locale was US-English and the date and money edit masks were modified by using the preceding
code. The following code resets the changed date and money edit masks:

alter-locale locale = 'US-English'

Specifying NUMBER, MONEY, and DATE Keywords

The DISPLAY, MOVE, PRINT, and SHOW commands enable you to specify the NUMBER, MONEY and
DATE keywords in place of an explicit number or date edit mask. These keywords can be useful in two
cases.

The first case is when you want to write programs that automatically adapt to the default locale. By using the
NUMBER,MONEY and DATE keywords, you instruct SQR to take these edit masks from the default locale
settings.

The second case is when you want to specify number, money, and date formats once at the top of the program
and use these formats throughout the report. In this case, you define these formats with an ALTER-LOCALE
command at the top of the program. When you use the NUMBER,MONEY,and DATE keywords later in the
program, they format number, money, and date outputs with the masks that you defined in the ALTER-
LOCALE command.

Using National Language Support Chapter 22

126 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Whether you set the locale in the pssqr.ini file or in the program, these keywords have the same effect. In the
following code example, these keywords are used with the PRINT command to produce output for the US-
English and French locales:

let #num_var = 123456
let #money_var = 123456
let $date_var = strtodate('20040520152000')
! set locale to US-English
alter-locale locale = 'US-English'
print 'US-English locale' (1,1)
print 'With NUMBER keyword ' (+1,1)
print #num_var (,22) NUMBER
print 'With MONEY keyword ' (+1,1)
print #money_var (,22) MONEY
print 'With DATE keyword ' (+1,1)
print $date_var (,22) DATE! set locale to French
ALTER-LOCALE locale = 'French'
print 'French locale' (+2,1)
print 'With NUMBER keyword ' (+1,1)
print #num_var (,22) NUMBER
print 'With MONEY keyword ' (+1,1)
print #money_var (,22) MONEY
print 'With DATE keyword ' (+1,1)
print $date_var (,22) DATE

Here is the program output:

US-English locale
With NUMBER keyword 123,456.00
With MONEY keyword $ 123,456.00
With DATE keyword May 20, 2004

French locale
With NUMBER keyword 123.456,00
With MONEY keyword 123.456,00 F
With DATE keyword 20 Mai 2004

See Also

Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 127

Chapter 23

Using Interoperability Features

Applications can run SQR programs by using the SQR application program interface (API). An SQR program
can also call an external application's API.

This chapter discusses how to:

• Call SQR from another application.

• Invoke an SQR program by using the SQR API.

• Invoke an external application API by using the ufunc.c interface.

• Add a user function.

• Use UFUNC in Microsoft Windows.

• Implement new user functions in Microsoft Windows.

Calling SQR from Another Application

To invoke an SQR program from another application, use:

• The SQR command line

The application initiates a process for running SQR. The SQR command includes all of the necessary
parameters.

• The SQR API

The application makes a call to the SQR API. This method is covered in the next section.

See Chapter 28, "Using the SQR Command Line," page 161.

Invoking an SQR Program by Using the SQR API

The SQR API is provided in Microsoft Windows through a Dynamic Link Library (dll). You can use the SQR
API from any application that is capable of calling dll functions. For C and C++ applications, a header file
(sqrapi.h) and an import library (sqrwin.lib) are provided. SQR requires the following .dll files to run for
Microsoft Windows: sqrw.dll, bclw32.dll, libsti32.dll, and stimages.dll. These dll files are located in the
BINW directory.

Using Interoperability Features Chapter 23

128 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

On platforms other than Microsoft Windows, the SQR API is provided as a static library (sqr.a or sqr.lib). For
C and C++ applications, a header file (SQRAPI.H or sqrapi.h) is provided. Be sure to include the SQR API
library and your database library when you link your C or C++ application. Two additional libraries are
required: bcl.a and libsti.a.

The following table describes the API functions that are defined for calling SQR:

Function Description

int sqr(char *) Runs an SQR program. Passes the address of a null
terminated string containing an SQR command line,
including program name, connectivity information,
flags, and arguments. This is a synchronous call. It
returns when the SQR program has finished. This
function returns zero if it is successful.

void sqrcancel(void) Cancels a running SQR program. The program may not
stop immediately because SQR waits for any currently
pending database operations to finish.

Because the SQR function does not return until the SQR
program has finished, sqrcancel is called by using
another thread or some similar asynchronous method.

int sqrend(void) Releases memory and closes cursors. Cursors can be left
open to speed up repeated running of the same SQR
program. Call this function after the last program has
run or optionally between SQR program runs.

This function always returns zero.

For the benefit of C and C++ programmers, the APIs are declared in the sqrapi.h file. Include this header file
in your source code:

#include 'sqrapi.h'

When you call SQR from a program, the most recently run SQR program is saved in memory. If the same
SQR program is run again with either the same or different arguments, the program is not scanned again and
the SQL statements are not parsed again. This feature provides a significant improvement in processing time.

To force SQR to release its memory and database cursors, call sqrend() at any time.

Although memory is automatically released when the program exits, you must call sqrend before the calling
program quits to ensure that SQR properly cleans up any database resources such as database cursors and
temporary stored procedures.

To relink SQR on all UNIX/Linux platforms, use the sqrmake and makefile files that are located in
$SQRDIR/../lib. After you invoke sqrmake and optionally select the specific database version to link with, the
SQR executables are re-created.

Check which cc command line gets created and invoked for SQR, and adapt it to your program. Each
UNIX/Linux platform and database has its own requirements. Consult your operating system and database
product documentation for specific information.

You may see the following output when you relink with Sybase CT-LIB under Sun/Solaris:

Chapter 23 Using Interoperability Features

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 129

cc -o {user program} {user objects} {user libraries} \
$SQRDIR/../lib/sqr.a $SQRDIR/../lib/bcl.a \
$SQRDIR/../lib/pdf.a $SQRDIR/../lib/libsti.a \
-L$ (SYBASE) /lib -Bstatic -lct -lcs -ltcl -lcomm \
-lintl -Bdynamic -lm -lnsl -ldl

Check the make files or link scripts that are supplied with SQR for details. You may want to copy and modify
those to link in your program.

To call SQR, call sqr() and pass a command line. For example, in C:

status = sqr("myprog sammy/baker arg1 arg2 arg3");
if (status != 0)
 ...error occurred...

The following table describes error values that are returned by SQR, both standalone and callable:

Error Value Reason

0 Normal exit

1 Error exit

2 Cannot process SQRERR.DAT

3 Command-line flag in error

4 Problem creating the .SQT file

5 Program did not compile

6 Problem with the .SQR/.SQT file (open/read)

7 Problem with the .LIS file (create/write)

8 Problem with the .ERR file (create/write)

9 Problem with the .LOG file (create/write)

10 Problem with the POSTSCRI.STR file (open/read)

11 Cannot call SQR recursively

12 Problem with Microsoft Windows

Using Interoperability Features Chapter 23

130 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Error Value Reason

13 Internal error occurred

14 Problem with SQRWIN.DLL

15 Problem with -ZCF file

The error codes 9 and 12 are applicable to the Microsoft Windows release only.

For more information about linking with SQR, see your installation guide.

See PeopleTools 8.50 Installation Guide for your database platform.

Invoking an External Application API by Using the UFUNC.C
Interface

The SQR language can be extended by adding user functions that are written in standard languages, such as
C. This feature enables you to integrate your own code and third-party libraries into SQR. For example,
suppose that you had a library for communication over a serial line, with functions for initiating the
connection and sending and receiving data. SQR enables you to call these functions from SQR programs.

To extend SQR in this way, you must prepare the functions, specify them to SQR, and then link the objects
(and libraries) with the SQR objects and libraries to form a new SQR executable. The new SQR executable
then recognizes the new functions as if they were standard SQR functions.

One example of such an extension would be an initcap function. Oracle users are familiar with this function.
The initcap function changes the first letter of every word to uppercase and changes the rest of the letters to
lowercase. The result value in the following code example would be Mr. Joseph Jefferson:

let $a = initcap('MR. JOSEPH JEFFERSON')

Adding a User Function

This section provides an overview of the ufunc.c file and discusses how to:

• Add a function prototype.

• Add an entry to the USERFUNCS table.

• Add an implementation code.

• Relink SQR.

Chapter 23 Using Interoperability Features

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 131

Understanding the UFUNC.C File

The code examples in the following sections demonstrate how to extend SQR with an initcap function.

The key to this process is an SQR source file called ufunc.c. This file contains the list of user-defined
functions. It also contains comments with a description of the process of adding a function to SQR. Ufunc.c is
in the lib subdirectory (LIBW in Microsoft Windows).

To add initcap to SQR, you must add it to a global array called userfuncs in ufunc.c.

Adding a Function Prototype

Begin by adding a function prototype to the function declaration list:

static void max CC_ARGS((int, double *[], double *));
static void split CC_ARGS((int, char *[], double *));
static void printarray CC_ARGS((int, char*[], double *));
static void initcap CC_ARGS((int, char *[], char *, int));

The preceding code segment is taken from the file ufunc.c. The first three lines are part of the original
ufunc.c. The line that adds the initcap function is shown like this. The modified version of ufunc.c is in the
LIBW (Microsoft Windows) or LIB (UNIX) directory under <PS_HOME>\bin\sqr\<database_platform>.

This code defines a prototype for a C function called initcap. The prototype is required by the C compiler.
The name of the C function does not have to be the same as the name of the SQR function. The SQR name
for the function is defined in the next step.

The CC_ARGS macro makes the code portable between compilers that expect full prototyping and compilers
in which the argument prototype is omitted. You could also write:

static void initcap();

Note also that the STATIC keyword means that the code for initcap will be added in the file ufunc.c. If you
have the code in a separate file, remove the STATIC keyword.

The first argument of the C function is the argument count of the corresponding SQR function. In the case of
initcap, this argument count should be 1 because initcap takes exactly one argument.

The second argument of the C function is an array of pointers. This array is the argument list. In this case,
because initcap takes only one argument, only the first pointer is actually used.

The third argument of the C function is a pointer to the result buffer. Because initcap returns a string, it is
defined as char*.

The last argument sets the maximum length of the result string. The length of this string is the size of the
result buffer, which you must not overflow. You cannot return a value that is longer than the maximum
length. The maximum length is typically around 2000 bytes, depending on the platform.

Adding an Entry to the USERFUNCS Table

The next step is to define the initcap function to SQR. As stated before, this table exists in the ufunc.c file.
Here is the modified code:

Using Interoperability Features Chapter 23

132 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

} userfuncs[] =
 {
 /* (2) Define functions in userfuncs table:
 Number of
 Name Return_type Arguments Arg_Types Function
 ---- ----------- --------- --------- -------- */
 "max", 'n', 0, "n", PVR max,
 "split", 'n', 0, "C", PVR split,
 "printarray", 'n', 4, "cnnc", PVR printarray,
 "initcap", 'c', 1, "c", PVR initcap,
 /* Last entry must be NULL do not change */
 "", '\0', 0, "", 0
};

The userfuncs table is an array of structures. The added line is shown like this, and it initializes one structure
in the array. The line contains five arguments, which correspond to the five fields of the structure.

The first argument is the name of the SQR function that is being added. This is the name that you will use in
the LET, IF, and WHILE commands. The second argument is the return type, which 'c' (enclosed in single
quotation marks) indicates is a character string. The third argument is the number of arguments that initcap
will take. Set it to 1.

The fourth argument is a string representing the types of the arguments. Because initcap has only one
argument, the string contains one character enclosed in double quotation marks, "c". This character indicates
that the argument for initcap is a string. The last argument is a pointer to a C function that implements the
SQR function that you are adding. This argument is the initcap function for which we have provided a
prototype in the previous step. Note that the PVR macro provides proper cast for the pointer.

Adding an Implementation Code

The next step is to add the implementation code for initcap. You can insert it into the file ufunc.c.

Note. To put the code in a separate file, you must remove the STATIC keyword from the prototype. You may
also need to include standard C header files, such as CTYPE.H.

Here is the code that is inserted at the end of ufunc.c:

Chapter 23 Using Interoperability Features

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 133

static void initcap CC_ARGL((argc,argv,result,maxlen))
CC_ARG(int, argc) /* Number of actual arguments */
CC_ARG(char*, argv[]) /* Pointers to arguments: */
CC_ARG(char*, result) /* Where to store result */
CC_LARG(int, maxlen) /* Result's maximum length */
{
 int flag = 1;
 char *ptr;
 char *p;
 ptr = argv[0];
 p = result;
 while (*ptr) {
 if (ptr - argv[0] >= maxlen) break; /* don't exceed maxlen */
 if (isalnum(*ptr)) {
 if (flag) *p = islower(*ptr)?toupper(*ptr):*ptr;
 else *p = isupper(*ptr)?tolower(*ptr):*ptr;
 flag = 0;
 } else {
 flag = 1;
 *p = *ptr;
 }
 p++; ptr++;
 }
 *p = '\0';
 return;
}

Note the use of the CC_ARGL, CC_ARG, and CC_LARG macros. You can also write the code as follows
(only the first five lines are shown):

static void initcap(argc,argv,result,maxlen)
int argc; /* Number of actual arguments */
char* argv[]; /* Pointers to arguments: */
char* result; /* Where to store result */
int maxlen; /* Result's maximum length */

Relinking SQR

After you have modified ufunc.c, you must relink SQR. Use the make file that is provided in the LIB (or
LIBW) subdirectory of SQR. This step is very specific to the operating system and database. SQR is linked
with the database libraries, whose names and locations may vary. You may have to modify the make file for
your system.

See PeopleTools 8.50 Installation Guide for your database platform.

After SQR is relinked, you are ready to test. Try the following program:

begin-program
 let $a = initcap('MR. JOSEPH JEFFERSON')
 print $a ()
end-program

The result in the output file should be:

Mr. Joseph Jefferson

See the ufunc.c file for further information about argument types in user-defined functions.

Using Interoperability Features Chapter 23

134 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Using UFUNC in Microsoft Windows

In Microsoft Windows, ufunc resides in sqrext.dll. You can rebuild sqrext.dll by using any language or tool,
as long as the appropriate calling protocol is maintained. The source code for sqrext.dll is included in the
shipped package (extufunc.c).

When sqrw.dll and sqrwt.dll are loaded, they look for sqrext.dll in the same directory and for any .dlls that are
specified in the SQR Extension section in pssqr.ini. If sqrw.dll and sqrwt.dll find sqrext.dll and the .dlls that
are specified in the pssqr.ini file, they make the following calls in all of the .dlls, passing the instance handle
(of the calling module) and three function pointers:

void InitSQRExtension (
 HINSTANCE hInstance,
 FARPROC lpfnUFuncRegister,
 FARPROC lpfnConsole,
 FARPROC lpfnError
);

Implementing New User Functions in Microsoft Windows

You can implement new user functions in sqrext.dll or any other extension .dll. All of the extension .dlls must
have the InitSQRExtension() function exported. If you implement user functions in sqrext.dll, you should
rebuild the .dll by using the supplied make file, sqrext.mak. If new extension .dlls containing new user
functions are to be used, they must be listed in the SQR Extension section in pssqr.ini in the system directory.

For any ufunc, you must register it by making the following call in InitSQRExtension():

lpfnUFuncRegister(struct ufnns* ufunc);

The function pointer, lpfnUFuncRegister, is passed in from the calling module. Refer to extufunc.c for the
definition of struct ufnns and the sample user functions.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 135

Chapter 24

Testing and Debugging

This chapter discusses how to:

• Use the test feature.

• Use the #DEBUG command.

• Use compiler directives for debugging.

• Avoid common programming errors.

Using the Test Feature

When developing an SQR program, you frequently test it by running it and examining its output. Often, you
are interested only in the first few pages of the report.

To speed up the cycle of running and viewing a few pages, use the -T command-line flag. The -T flag enables
reports to finish more quickly because all BEGIN-SELECT ORDER BY clauses are ignored. The database
does not sort the data, and the first set of records are selected sooner. Enter the appropriate number of test
pages following the -T flag. For example, -T6 causes the program to stop after six pages of output have been
created.

Note. If the program contains break logic, the breaks can occur in unexpected locations because the ORDER
BY clause is ignored.

To test a report file called customer.sqr, enter the following command:

sqr customer username/password -T3

The -T3 flag specifies that the program stops running after three pages have been produced.

When the test finishes successfully, check it by displaying the output file on the screen or by printing it. The
default name of the output file is the same as the program file with the .LIS extension. For example, if the
report is named customer.sqr, the output file is named customer.lis.

When you finish developing the program, run it without the -T flag. The program processes all ORDER BY
clauses and runs to completion. If the program creates more than one report, the -T flag restriction applies
only to the first report.

Testing and Debugging Chapter 24

136 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Using the #DEBUG Command

When debugging a program, you should:

• Display data or show when a procedure or query runs by using temporary SHOW or DISPLAY
commands in key places in the program.

• Isolate problem areas by temporarily skipping the parts of the program that work correctly.

• Temporarily cause additional behavior in questionable areas of the program.

For example, display or modify variables that you suspect are causing a problem.

SQR provides the #DEBUG command to help you make temporary changes to the code. Use the #DEBUG
command to conditionally process portions of the program.

Precede the command with #DEBUG, as shown in the following example:

#debug display $s

When the #DEBUG precedes a command, that command is processed only if the -DEBUG flag is specified
on the SQR command line. In this example, the value of $s is displayed only when you run the program with
-DEBUG.

You can obtain multiple debug commands by using up to 10 letters or digits to differentiate between them.
Indicate which command is to be debugged on the -DEBUG flag, as shown in the following example:

sqr myreport username/password -DEBUGabc

In this example, commands that are preceded by #DEBUG, #DEBUGa, #DEBUGb, or #DEBUGc are
compiled when the program is run. Commands that are preceded with #DEBUGd are not compiled because d
was not specified in the -DEBUG command-line flag.

Using Compiler Directives for Debugging

You can conditionally compile entire sections of a program by using the five compiler directives:

• #IF

• #ELSE

• #END-IF or #ENDIF

• #IFDEF

• #IFNDEF

Use the value of a substitution variable, declared by a #DEFINE command, to activate or deactivate a set of
statements, as shown in the following example:

Chapter 24 Testing and Debugging

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 137

#define DEBUG_SESSION Y
#if DEBUG_SESSION = 'Y'
begin-procedure dump_array
 let #i = 0
 while #i < #counter
 ! Get data from the array
 get $state $city $name $phone from customer_array(#i)
 print $state (,1)
 print $city (,7)
 print $name (,24)
 print $phone (,55)
 position (+1)
 add 1 to #i
 end-while
end-procedure ! dump_array
#end-if

The dump_array procedure is used only for debugging. Because DEBUG_SESSION is defined as Y, the
dump_array procedure is included in the program. Later, you can change DEBUG_SESSION to N and
exclude the dump_array procedure from the program.

Avoiding Common Programming Errors

The most common programming error when you are using SQR is misspelling variable names. Because SQR
does not require variables to be declared, it does not issue an error message when variable names are
misspelled. Instead, SQR considers the misspelled variable as if it is another variable.

For example:

let #customer_access_code = 55
print #customer_acess_code ()

This example does not print 55 because the variable name is misspelled. One c in access in the PRINT
command is missing.

A related problem involves global versus local variables. If you refer to a global variable in a local procedure
without preceding it with an underscore, SQR does not issue an error message. Instead, it is taken as a new
local variable name. For example:

begin-procedure main
 let $area = 'North'
 do proc
end-procedure ! main
begin-procedure proc local
 print $area () ! Should be $_area
end-procedure

In this example, the proc local procedure prints the value of the local $area variable and not the global
$area variable. It prints nothing because the local $area variable did not receive a value. To refer to the
global variable, use $_area.

Such small errors are difficult to detect because SQR considers #customer_acess_code as just another
variable with a value of zero.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 139

Chapter 25

Increasing Performance and Tuning

This chapter provides an overview of SQR performance and SQL statements and discusses how to:

• Simplify a complex select paragraph.

• Use LOAD-LOOKUP to simplify joins.

• Improve SQL performance with dynamic SQL.

• Examine SQL cursor status.

• Avoid temporary database tables.

• Create multiple reports in one pass.

• Tune SQR numerics.

• Compile SQR programs and use SQR Execute.

• Set processing limits.

• Buffer fetched rows.

• Run programs on the database server.

Understanding SQR Performance and SQL Statements

Whenever a program contains a BEGIN-SELECT, BEGIN-SQL, or EXECUTE command, it performs a SQL
statement. Processing SQL statements typically consumes significant computing resources. Tuning SQL
statements typically yields higher performance gains than tuning any other part of the program.

General tuning of SQL is outside the scope of this book. Tuning SQL is often specific to the type of database
that you are using—tuning SQL statements for an Oracle database may be different from tuning SQL
statements for DB2. This chapter focuses on SQR tools for simplifying SQL statements and reducing the
number of times SQL is run.

Simplifying a Complex Select Paragraph

With relational database design, information is often normalized by storing data entities in separate tables. To
display the normalized information, you must write a select paragraph that joins these tables together. With
many database systems, performance suffers when you join more than three or four tables in one select
paragraph.

Increasing Performance and Tuning Chapter 25

140 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

With SQR, you can perform multiple select paragraphs and nest them. In this way, you can break a large join
into several simpler selects. For example, you can break a select paragraph that joins the orders and the
products tables into two selects. The first select retrieves the orders that you want. For each order that is
retrieved, a second select retrieves the products that were ordered. The second select is correlated to the first
select by having a condition such as:

where order_num = &order_num

This condition specifies that the second select retrieves only products for the current order.

Similarly, if the report is based on products that were ordered, you can make the first select retrieve the
products and make the second select retrieve the orders for each product.

This method improves performance in many cases, but not all. To achieve the best performance, you may
need to experiment with the different alternatives.

You can use master and detail reports to perform multiple select paragraphs and nest them.

See Chapter 17, "Using Dynamic SQL and Error Checking," page 93.

Using LOAD-LOOKUP to Simplify Joins

Database tables often contain key columns, such as a product code or customer number. To retrieve a certain
piece of information, you join two or more tables that contain the same column. For example, to obtain a
product description, you can join the orderlines table with the products table by using the product_code
column as the key.

With LOAD-LOOKUP, you can reduce the number of tables that are joined in one select. Use this command
with LOOKUP commands.

The LOAD-LOOKUP command defines an array containing a set of keys and values and loads it into
memory. The LOOKUP command looks up a key in the array and returns the associated value. In some
programs, this technique performs better than a conventional table join.

You can use LOAD-LOOKUP in the SETUP section or in a procedure. If used in the SETUP section, it is
processed only once. If used in a procedure, it is processed each time that it is encountered.

LOAD-LOOKUP retrieves two fields from the database: the KEY field and the RETURN_VALUE field.
Rows are ordered by KEY and stored in an array. The KEY field must be unique and contain no null values.

When the LOOKUP command is used, the array is searched (by using a binary search) to find the
RETURN_VALUE field corresponding to the KEY that is referenced in the lookup.

The following code example illustrates LOAD-LOOKUP and LOOKUP:

Chapter 25 Increasing Performance and Tuning

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 141

begin-setup
 load-lookup
 name=prods
 table=products
 key=product_code
 return_value=description
end-setup
...
begin-select
order_num (+1,1)
product_code
 lookup prods &product_code $desc
 print $desc (,15)
from orderlines
end-select

In this code example, the LOAD-LOOKUP command loads an array with the product_code and description
columns from the products table. The lookup array is named prods. The product_code column is the key and
the description column is the return value. In the select paragraph, a LOOKUP on the prods array retrieves the
description for each product_code. This technique eliminates the need to join the products table in the select.

If the orderlines and products tables were joined in the select (without LOAD-LOOKUP), the code would
look like this:

begin-select
order_num (+1,1)
ordlines.product_code
description (,15)
from ordlines, products
where ordlines.product_code = products.product_code
end-select

Whether a database join or LOAD-LOOKUP is faster depends on the program. LOAD-LOOKUP improves
performance when:

• It is used with multiple select paragraphs.

• It keeps the number of tables being joined from exceeding three or four.

• The number of entries in the LOAD-LOOKUP table is small compared with the number of rows in the
select, and they are used often.

• Most entries in the LOAD-LOOKUP table are used.

Note. You can concatenate columns if you want RETURN_VALUE to return more than one column. The
concatenation symbol is database-specific.

Improving SQL Performance with Dynamic SQL

You can use dynamic SQL in some situations to simplify a SQL statement and gain performance:

Increasing Performance and Tuning Chapter 25

142 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

begin-select
order_num
from orders, customers
where order.customer_num = customers.customer_num
and ($state = 'CA' and order_date > $start_date
 or $state != 'CA' and ship_date > $start_date)
end-select

In this example, a given value of $state, order_date, or ship_date is compared with
$start_date. The OR operator in the condition makes such multiple comparisons possible. With most
databases, an OR operator slows processing. It can cause the database to perform more work than necessary.

However, the same work can be done with a simpler select. For example, if $state is 'CA,' the following
select works:

begin-select
order_num
from orders, customers
where order.customer_num = customers.customer_num
and order_date > $start_date
end-select

Dynamic SQL enables you to check the value of $state and create the simpler condition:

if $state = 'CA'
 let $datecol = 'order_date'
else
 let $datecol = 'ship_date'
end-if
begin-select
order_num
from orders, customers
where order.customer_num = customers.customer_num
and [$datecol] > $start_date
end-select

The [$datecol] substitution variable substitutes the name of the column to be compared with
$start_date. The select is simpler and no longer uses an OR operator. In most cases, this use of dynamic
SQL improves performance.

See Chapter 17, "Using Dynamic SQL and Error Checking," page 93.

Examining SQL Cursor Status

Because SQR programs select and manipulate data from a SQL database, you should understand how SQR
processes SQL statements and queries.

SQR programs can perform multiple SQL statements. Moreover, they can run the same SQL statement
multiple times.

When a program runs, a pool of SQL statement handles, called cursors, is maintained. A cursor is a storage
location for one SQL statement—for example, SELECT, INSERT, or UPDATE. Every SQL statement uses a
cursor for processing. A cursor holds the context for the execution of a SQL statement.

The cursor pool contains 30 cursors, and you cannot change its size. When a SQL statement is rerun, its
cursor can be immediately reused if it is still in the cursor pool. When an SQR program runs more than 30
different SQL statements, cursors in the pool are reassigned.

Chapter 25 Increasing Performance and Tuning

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 143

To examine how cursors are managed, use the -S command-line flag. This flag displays cursor status
information at the end of a run.

The following information appears for each cursor:

Cursor #nn:
SQL = <SQL statement>
Compiles = nn
Executes = nn
Rows = nn

The listing also includes the number of compiles, which vary according to the database and the complexity of
the query. With Oracle, for example, a simple query is compiled only once. With Sybase, a SQL statement is
compiled before it is first run and recompiled for the purpose of validation during the SQR compile phase.
Therefore, you may see two compiles for a SQL statement. Later, when the SQL is rerun, if its cursor is found
in the cursor pool, it can proceed without recompiling.

Avoiding Temporary Database Tables

This section provides an overview of temporary database tables and discusses how to:

• Use and sort arrays.

• Use and sort flat files.

Understanding Temporary Database Tables

Programs often use temporary database tables to hold intermediate results. Creating, updating, and deleting
temporary tables is a resource-consuming task, however, and can slow the program's performance. SQR
provides two alternatives to using temporary database tables:

• Store intermediate results in an SQR array.

• Store intermediate results in a local flat file.

Both techniques can yield a significant performance gain. Use the SQR language to manipulate the data that
is stored in an array or a flat file.

Using and Sorting Arrays

An SQR array can hold as many records as can fit in memory. During the first pass, when records are
retrieved from the database, you can store them in the array. Subsequent passes on the data can be made
without additional database access.

The following code example retrieves records, prints them, and saves them into an array named
customer_array:

Increasing Performance and Tuning Chapter 25

144 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

create-array name=customer_array size=1000
 field=state:char field=city:char
 field=name:char field=phone:char
let #counter = 0
begin-select
state (,1)
city (,7)
name (,24)
phone (,55)
 position (+1)
 put &state &city &name &phone into customer_array(#counter)
 add 1 to #counter
from customers
end-select

The customer_array array has four fields that correspond to the four columns that are selected from the
customers table, and it can hold up to 1,000 rows. If the customers table had more than 1,000 rows, you
would need to create a larger array.

The select paragraph prints the data. The PUT command then stores the data in the array. You could use the
LET command to assign values to array fields; however, the PUT command performs the same work, with
fewer lines of code. With PUT, you can assign all four fields in one command.

The #counter variable serves as the array subscript. It starts with zero and maintains the subscript of the next
available entry. At the end of the select paragraph, the value of #counter is the number of records in the array.

The next code example retrieves the data from customer_array and prints it:

let #i = 0
while #i < #counter
 get $state $city $name $phone from customer_array(#i)
 print $state (,1)
 print $city (,7)
 print $name (,24)
 print $phone (,55)
 position (+1)
 add 1 to #i
end-while

In this code example, #i goes from 0 to #counter– 1. The fields from each record are moved into the
corresponding variables: $name,$city,$state, and $phone. These values are then printed.

Sorting Arrays

In many cases, intermediate results must be sorted by a different field. The following sample program
indicates how to sort customer_array by name. The sample program uses a well-known sorting algorithm
called QuickSort. You can copy this code into your program, make appropriate changes, and use it to sort
your array:

Chapter 25 Increasing Performance and Tuning

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 145

Program ex24a.sqr
#define MAX_ROWS 1000
begin-setup
create-array name=customer_array size={MAX_ROWS}
 field=state:char field=city:char
 field=name:char field=phone:char
!
! Create a helper array that is used in the sort
!
create-array name=QSort size={MAX_ROWS}
 field=n:number field=j:number
end-setup
begin-program
 do main
end-program
begin-procedure main
let #counter = 0
!
! Print customers sorted by state
!
begin-select
state (,1)
city (,7)
name (,24)
phone (,55)
 position (+1)
 ! Put data in the array
 put &state &city &name &phone into customer_array(#counter)
 add 1 to #counter
from customers
order by state
end-select
position (+2)
!
! Sort customer_array by name
!
let #last_row = #counter - 1
do QuickSort(0, 0, #last_row)
!
! Print customers (which are now sorted by name)
!
let #i = 0
while #i < #counter
 ! Get data from the array
 get $state $city $name $phone from customer_array(#i)
 print $state (,1)
 print $city (,7)
 print $name (,24)
 print $phone (,55)
 position (+1)
 add 1 to #i
end-while
end-procedure ! main
!
! QuickSort
!
! Purpose: Sort customer_array by name.
! This is a recursive function. Since SQR does not allocate
! local variables on a stack (they are all static), this
! procedure uses a helper array.
!
! #level - Recursion level (used as a subscript to the helper
! array)
! #m - The "m" argument of the classical QuickSort

Increasing Performance and Tuning Chapter 25

146 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

! #n - The "n" argument of the classical QuickSort
!
begin-procedure QuickSort(#level, #m, #n)
 if #m < #n
 let #i = #m
 let #j = #n + 1
 ! Sort key is "name"
 let $key = customer_array.name(#m)
 while 1
 add 1 to #i
 while #i <= #j and customer_array.name(#i) < $key
 add 1 to #i
 end-while
 subtract 1 from #j
 while #j >= 0 and customer_array.name(#j) > $key
 subtract 1 from #j
 end-while
 if #i < #j
 do QSortSwap(#i, #j)
 else
 break
 end-if
 end-while
 do QSortSwap(#m, #j)
 add 1 to #level
 ! Save #j and #n
 let QSort.j(#level - 1) = #j
 let QSort.n(#level - 1) = #n
 subtract 1 from #j
 do QuickSort(#level, #m, #j)
 ! restore #j and #n
 let #j = QSort.j(#level - 1)
 let #n = QSort.n(#level - 1)
 add 1 to #j
 do QuickSort(#level, #j, #n)
 subtract 1 from #level
 end-if
end-procedure ! QuickSort
!
!
! QSortSwap
!
! Purpose: Swaps records #i and #j of customer_array
 !
! #i - Array subscript
! #j - Array subscript
!
begin-procedure QSortSwap(#i, #j)
 get $state $city $name $phone from customer_array(#i)
 let customer_array.state(#i) = customer_array.state(#j)
 let customer_array.city(#i) = customer_array.city(#j)
 let customer_array.name(#i) = customer_array.name(#j)
 let customer_array.phone(#i) = customer_array.phone(#j)
 put $state $city $name $phone into customer_array(#j)
end-procedure ! QSortSwap

The QuickSort algorithm uses a recursive procedure, which means that it calls itself. SQR maintains only one
copy of the procedure's local variables. In QuickSort, the #j and #n variables are overwritten when QuickSort
calls itself.

Chapter 25 Increasing Performance and Tuning

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 147

For the algorithm to work properly, the program must save the values of these two variables before making
the recursive call, and then restore those values when the call finishes. QuickSort can call itself recursively
many times, so the program may need to save many copies of #j and #n. To have the program do this, add a
#level variable that maintains the depth of recursion. In this example, a helper array, Qsort, is used to hold
multiple values of #j and #n.

The QuickSort procedure takes three arguments. The first is the recursion level (or depth), which is #level, as
previously described. The second and third arguments are the beginning and end of the range of rows to be
sorted. Each time QuickSort calls itself, the range gets smaller. The main procedure starts QuickSort by
calling it with the full range of rows.

The QSortSwap procedure swaps two rows in customer_array. Typically, rows with a lower key value are
moved up.

The QuickSort and QSortSwap procedures in ex24a.sqr refer to customer_array and its fields. If you plan to
use these procedures to sort an array in your applications, you must change these references to the applicable
array and fields. The QuickSort procedure sorts in ascending order.

SQR and Language Sensitive Sorting

SQR does not natively support National Language Sensitive sorting. SQR compares characters based on
Unicode codepoint, and sorting based on Unicode codepoint does not correctly sort order language-sensitive
data.

See PeopleTools 8.51 PeopleBook: Global Technology, "Sorting in PeopleTools."

The QuickSort procedure does not support National Language Sensitive character string sort. The
comparisons are simple string comparisons based on Unicode codepoint used internally in SQR to represent
string data. For instance, the following code lines from the preceding code sample would sort data in Unicode
codepoint order. Unicode codepoints are not ordered to make a correct sorting order of any language.

while #i <= #j and customer_array.name(#i) < $key
and
while #j >= 0 and customer_array.name(#j) > $key

If you want to sort string data in SQR, you may need to write a National Language Sensitive character string
comparison and add that to SQR. The QuickSort procedure will then be modified in the following way:

while #i <= #j and NLS_STRING_COMPARE(customer_array.name(#i),$key)
while #j >= 0 and NLS_STRING_COMPARE($key,customer_array.name(#j))

Using and Sorting Flat Files

An alternative to an array is a flat file. You can use a flat file when the required array size exceeds the
available memory.

The code example in the previous section can be rewritten to use a file instead of an array. The advantage of
using a file is that the program is not constrained by the amount of memory that is available. The
disadvantage of using a file is that the program performs more input and output (I/O). However, it may still
be faster than performing another SQL statement to retrieve the same data.

This program uses the UNIX/Linux sort utility to sort the file by name. This example can be extended to
include other operating systems.

The following code example is rewritten to use the cust.dat file instead of the array:

Increasing Performance and Tuning Chapter 25

148 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex24b.sqr
begin-program
 do main
end-program
begin-procedure main
!
! Open cust.dat
!
open 'cust.dat' as 1 for-writing record=80:vary
begin-select
state (,1)
city (,7)
name (,24)
phone (,55)
 position (+1)
 ! Put data in the file
 write 1 from &name:30 &state:2 &city:16 &phone:10
from customers
order by state
end-select
position (+2)
!
! Close cust.dat
close 1
! Sort cust.dat by name
!
call system using 'sort cust.dat > cust2.dat' #status
if #status <> 0
 display 'Error in sort'
 stop
end-if
!
! Print customers (which are now sorted by name)
!
open 'cust2.dat' as 1 for-reading record=80:vary
while 1 ! loop until break
 ! Get data from the file
 read 1 into $name:30 $state:2 $city:16 $phone:10
 if #end-file
 break ! End of file reached
 end-if
 print $state (,1)
 print $city (,7)
 print $name (,24)
 print $phone (,55)
 position (+1)
end-while
!
! close cust2.dat
close 1
end-procedure ! main

The program starts by opening a cust.dat file:

open 'cust.dat' as 1 for-writing record=80:vary

The OPEN command opens the file for writing and assigns it file number 1. You can open as many as 12 files
in one SQR program. The file is set to support records of varying lengths with a maximum of 80 bytes
(characters). For this example, you can also use fixed-length records.

As the program selects records from the database and prints them, it writes them to cust.dat:

write 1 from &name:30 &state:2 &city:16 &phone:10

Chapter 25 Increasing Performance and Tuning

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 149

The WRITE command writes the four columns into file number 1, the currently open cust.dat. It writes the
name first, which simplifies sorting the file by name. The program writes fixed-length fields. For example,
&name:30 specifies that the name column uses exactly 30 characters. If the actual name is shorter, it is
padded with blanks. When the program has finished writing data to the file, it closes the file by using the
CLOSE command.

The file is sorted with the UNIX sort utility:

call system using 'sort cust.dat > cust2.dat' #status

The sort cust.dat > cust2.dat command is sent to the UNIX system. It invokes the UNIX sort
command to sort cust.dat and direct the output to cust2.dat. The completion status is saved in #status; a
status of 0 indicates success. Because name is at the beginning of each record, the file is sorted by name.

Next, open cust2.dat for reading. The following command reads one record from the file and places the first
30 characters in $name:

read 1 into $name:30 $state:2 $city:16 $phone:10

The next two characters are placed in $state, and so on. When the end of the file is encountered, the #end-
file reserved variable is automatically set to 1 (true). The program checks for #end-file and breaks out of the
loop when the end of the file is reached. Finally, the program closes the file by using the CLOSE command.

Creating Multiple Reports in One Pass

Sometimes you must create multiple reports that are based on the same data. In many cases, these reports are
similar, with only a difference in layout or summary. Typically, you can create multiple programs and even
reuse code. However, if each program is run separately, the database has to repeat the query. Such repeated
processing is often unnecessary.

With SQR, one program can create multiple reports simultaneously. In this method, a single program creates
multiple reports, making just one pass on the data and reducing the amount of database processing.

See Chapter 19, "Creating Multiple Reports from One Program," page 107.

Tuning SQR Numerics

SQR for PeopleSoft provides three types of numeric values:

• Machine floating point numbers

• Decimal numbers

• Integers

Machine floating point numbers are the default. They use the floating point arithmetic that is provided by the
hardware. This method is very fast. It uses binary floating point and normally holds up to 15 digits of
precision.

Increasing Performance and Tuning Chapter 25

150 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Some accuracy can be lost when you are converting decimal fractions to binary floating point numbers. To
overcome this loss of accuracy, you can sometimes use the ROUND option of commands such as ADD,
SUBTRACT, MULTIPLY, and DIVIDE. You can also use the round function of LET or numeric edit masks
that round the results to the needed precision.

Decimal numbers provide exact math and precision of up to 38 digits. Math is performed in the software. This
is the most accurate method, but also the slowest.

You can use integers for numbers that are known to be integers. Using integers is beneficial because they:

• Enforce the integer type by not allowing fractions.

• Adhere to integer rules when dividing numbers.

Integer math is also the fastest method, typically faster than floating point numbers.

If you use the DECLARE-VARIABLE command, the -DNT command-line flag, or the DEFAULT-
NUMERIC entry in the Default-Settings section of the PSSQR.INI file, you can select the type of numbers
that SQR uses. Moreover, you can select the type for individual variables in the program with the
DECLARE-VARIABLE command. When you select decimal numbers, you can also specify the needed
precision.

Selecting the numeric type for variables enables you to fine-tune the precision of numbers in your program.
For most applications, however, this type of tuning does not yield a significant performance improvement, so
selecting decimal is best. The default is machine floating point to provide compatibility with older releases of
the product.

Compiling SQR Programs and Using SQR Execute

Compiling an SQR program can improve its performance. The compiled program is stored in a runtime
(.SQT) file. You can then run it with SQR Execute. Your program runs faster because it bypasses the compile
phase.

See Chapter 26, "Compiling Programs and Using SQR Execute," page 153.

Setting Processing Limits

Use a startup file and the Processing-Limits section of pssqr.ini to define the sizes and limitations of some of
the internal structures that SQR uses. An -M command-line flag can specify a startup file whose entries
override those in pssqr.ini. If you use the -Mb command-line flag, then corresponding sections of the file are
not processed. Many of these settings have a direct effect on memory requirements.

Tuning of memory requirements used to be a factor with older, 16-bit operating systems, such as Microsoft
Windows 3.1. Today, most operating systems use virtual memory, and tuning memory requirements normally
do not affect performance in any significant way. The only case in which you might need to be concerned
with processing limit settings is with large SQR programs that exceed default processing limit settings. In
such cases you must increase the corresponding settings.

Chapter 25 Increasing Performance and Tuning

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 151

Buffering Fetched Rows

When you run a BEGIN-SELECT command, SQR fetches records from the database server. For better
performance, SQR fetches them in groups rather than one at a time—by default in groups of 10 records. SQR
buffers the records, and a program processes these records one at a time. SQR therefore performs a database
fetch operation after every 10 records, instead of after every single record—a substantial performance gain. If
the database server is on another computer, network traffic is also significantly reduced.

Modify the number of records to fetch together by using the -B command-line flag or, for an individual
BEGIN-SELECT command, by using its -B option. In both cases, specify the number of records to be fetched
together. For example -B100 specifies that records be fetched in groups of 100. This means that the number
of database fetch operations is further reduced.

This feature is currently available with SQR for Oracle or Sybase databases and SQR for ODBC.

Running Programs on the Database Server

To reduce network traffic and improve performance, run SQR programs directly on the database server
machine. The SQR server is available on many server platforms including Microsoft Windows and
UNIX/Linux.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 153

Chapter 26

Compiling Programs and Using SQR
Execute

This chapter provides an overview of compile features and discusses how to compile and run an SQR
program.

Understanding Compile Features

The following table lists SQR features that apply at compile time and their possible runtime equivalents. In
some cases, no equivalent exists and you must work around the limitation. For example, you may have to use
substitution variables with commands that require a constant and do not allow a variable. The chapter
"Writing Printer-Independent Reports" includes an example that works around the limitation of the USE-
PRINTER-TYPE command, which does not accept a variable as an argument.

See Chapter 16, "Writing Printer-Independent Reports," page 89.

 Compile Time Runtime

Substitution variables Use regular SQR variables. If you are substituting parts
of an SQL statement, use dynamic SQL instead.

See Chapter 17, "Using Dynamic SQL and Error
Checking," page 93.

ASK INPUT

#DEFINE LET

#IF IF

INCLUDE No equivalent

DECLARE-LAYOUT, margins No equivalent

Number of heading or footing lines No equivalent

Compiling Programs and Using SQR Execute Chapter 26

154 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 Compile Time Runtime

DECLARE-CHART PRINT-CHART

DECLARE-IMAGE PRINT-IMAGE

DECLARE-PROCEDURE USE-PROCEDURE

DECLARE-PRINTER ALTER-PRINTER (where possible)

USE (Sybase only) -DB command-line flag

Compiling and Running an SQR Program

For the user, running an SQR program is a one-step process. For SQR, however, two steps are involved:
compiling the program and running it. When compiling a program, SQR:

• Reads, interprets, and validates the program.

• Preprocesses substitution variables and certain commands: ASK, #DEFINE, #INCLUDE, #IF, and
#IFDEF.

• Validates SQL statements.

• Performs the SETUP section.

Note. Make sure that SQRBIN (defined in psprcs.cfg) is pointing to the correct location
(PS_HOME/bin/SQR/<DB>/bin for Unix and PS_HOME/bin/sqrw/<DB>/BINW for Microsoft Windows)
before executing an SQR program.

SQR enables you to save the compiled version of a program and use it when you rerun a report. That way,
you perform the compile step only once and bypass it in subsequent runs. SQR does not compile the program
into machine language. SQR creates a ready-to-run version of the program that is already compiled and
validated. This file is portable between different hardware platforms and between some databases.

Run the SQR executable (SQR for UNIX/Linux or SQRW for Microsoft Windows) against the SQR program
file and include the -RS command-line flag to save the runtime file. SQR creates a file with a file name
extension of .sqt. You should enter something like this:

sqrw ex1a.sqr sammy/baker@rome -RS

Run the SQR executable with the -RT command-line flag to run the .sqt file. It runs faster because the
program is already compiled. Here is an example:

sqrw ex1a.sqt sammy/baker@rome -RT

Chapter 26 Compiling Programs and Using SQR Execute

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 155

The SQR product distribution includes SQR Execute (the SQRT program). SQR Execute can run .sqt files,
but does not include the code that compiles an SQR program. (This program is equivalent to running SQR
with -RT.) Here is an example of running SQR Execute from the command line:

sqrwt ex1a.sqt sammy/baker@rome

After you save the runtime (.sqt) file, SQR no longer performs any compile-time steps such as running #IF,
#INCLUDE, or ASK commands or performing the SETUP section. These were already performed when the
program was compiled and the runtime file was saved.

You must make a clear distinction between what is performed at compile time and what is performed at
runtime. Think of compile-time steps as defining what the report is. Commands such as #IF or ASK enable
you to adapt your report at compile time. For runtime adaptation, use commands such as IF and INPUT.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 157

Chapter 27

Printing with SQR

This chapter discusses how to:

• Specify output file types by using SQR command-line flags.

• Use the DECLARE-PRINTER command.

Specifying Output File Types by Using SQR Command-Line Flags

Except on the Microsoft Windows platform, SQR does not actually print a report. SQR creates an output file
that contains the report, but does not print it directly. The output file can be a printer-specific file or an SQR
portable file (SPF). SQR portable files have a default extension of .spf or .snn (for multiple reports).

The following table summarizes SQR command-line flags and the types of output that they produce:

Command-Line Flag Output File Extension File Format Suitable Usage

-PRINTER:EH .htm Enhanced HTML Intranet or internet

-PRINTER:HP .lis PCL HP LaserJet printer

-PRINTER:HT .htm HTML Intranet and internet

-PRINTER:LP .lis US ASCII Line printer

-PRINTER:PS .lis PostScript PostScript printer

-PRINTER:WP None.

Output goes directly to
the default printer without
being saved to a file. You
can set the default printer
by using the Microsoft
Windows Control Panel.

Not applicable Microsoft Windows

Printing with SQR Chapter 27

158 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Command-Line Flag Output File Extension File Format Suitable Usage

-NOLIS .spf or .snn SQR Portable file SQR Print and SQR
Viewer can print this file
to different printers.

-KEEP .spf or .snn (in addition to
the .lis file that is
normally created)

SQR Portable file and the
format of the .lis file

SQR Print and SQR
Viewer can print this .spf
file to different printers.

No flag .lis US ASCII, PCL, or
PostScript

Line printer, HP LaserJet,
or PostScript,
respectively

Note. When no flags are specified, SQR produces a line printer output unless it is otherwise set in the SQR
program with DECLARE-PRINTER, USE-PRINTER-TYPE, or the PRINTER-TYPE option of DECLARE-
REPORT.

SPF is a printer-independent file format that supports all of the SQR graphical features, including fonts, lines,
boxes, shaded areas, charts, bar codes, and images.

This file format is useful for saving the output of a report. SPFs can be distributed electronically and read
with the SQR Viewer. Producing SPF output also enables you to decide later where to print it. Use SQR
Viewer or SQR Print to print an SPF.

Using the DECLARE-PRINTER Command

The DECLARE-PRINTER command specifies printer-specific settings for the output file types that SQR
supports: line printer, PostScript, HP LaserJet, and HTML. The DECLARE-PRINTER command itself does
not cause the report to be produced for a specific printer. To specify a specific format, use one of these three
methods:

• The -PRINTER:xx command-line flag.

For example -PRINTER:PS produces PostScript output. If the program creates multiple reports, such as
the sample program ex18a.sqr, the -PRINTER:xx flag produces the same output format for all of the
reports.

• The USE-PRINTER-TYPEcommand.

You must use this command before you print because SQR cannot switch the printer type in the middle of
a program. USE-PRINTER-TYPE PS, for example, produces PostScript output.

• The PRINTER-TYPE option of the DECLARE-REPORT command.

The DECLARE-REPORT command is normally used when a program generates more than one report.

For example, the following code example produces PostScript output for the labels report:

Chapter 27 Printing with SQR

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 159

declare-report labels
 layout=labels
 printer-type=ps
end-declare

The DECLARE-PRINTER command defines settings for line printers, PostScript, or HP LaserJet printers.
Specify the type of printer by using the type option of the DECLARE-PRINTER command or one of the
predefined printers: DEFAULT-LP, DEFAULT-PS, DEFAULT-HP, and DEFAULT-HT.

A program can have more than one DECLARE-PRINTER command if you define settings for each of the
printer types. The settings for a particular printer take effect only when output is produced for that printer.
When the program generates multiple reports, you can define settings for each printer for each report. To
make a DECLARE-PRINTER command apply to a specific report, use the FOR-REPORTS option.

The output file normally has the same name as the program, but with a different file extension. The default
file extension is .lis for PostScript (PS), HP LaserJet (HP), or Line Printer (LP). If you are generating an SPF,
the default extension is .spf. If you want SQR to use another name for the output file (including a user-
defined file extension), use the -F option on the command line. For example, to use chapter1.out as the output
of the sample program ex1a.sqr, use this command to run SQR:

sqr ex1a username/password -fchapter1.out

When a program creates more than one report, you can name the output file by using multiple -F flags:

sqr ex20a username/password -flabel.lis -fletter.lis -flisting.lis

You cannot directly name .spf files. You can still use the -F command-line flag to name the file, but you
cannot control the file name extension. For example:

sqr ex20a username/password -flabel.lis -fletter.lis -flisting.lis -nolis

The -NOLIS command-line flag causes SQR to produce .spf files instead of .lis files. The actual file names
are label.spf, letter.s01, and listing.s02. The second .spf file is named .s01 and the third is named .s02. SQR
supplies file extensions such as these when a program generates multiple reports.

Different operating systems require different techniques for printing the output. On platforms other than
Microsoft Windows, if the output is in SPF format, you first use SQR Print to create the printer-specific file.
For example, the following command invokes SQR Print to create a PostScript file named myreport.lis from
the output file named myreport.spf:

sqrp myreport.spf -printer:ps

This is a one-way conversion—an .spf file can be converted to an .lis file, but an .lis file cannot be converted
to an .spf file.

The following table summarizes the commands and command-line options that you can use on different
systems to send a report output to the printer. Consult your operating system documentation for details.

Operating System Command Command-Line Options

UNIX lp myreport.lis

lp myreport.lis -d ...

Use -D for printer destination. You can
use the UNIX at command to schedule the
printing time.

Printing with SQR Chapter 27

160 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Operating System Command Command-Line Options

Microsoft Windows SQR prints directly. You can also use
SQR Viewer.

Use the Print Setup dialog box in SQR
Print or the SQR Viewer to select a printer
destination. Use SQR Print to print
multiple copies.

You can also use the File Manager Copy
command to copy the file to the printer
destination (for example, lpt1).

Check with your systems administrator about other procedures or commands that are applicable to printing
output files at your site.

See Also

Chapter 19, "Creating Multiple Reports from One Program," page 107

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 161

Chapter 28

Using the SQR Command Line

This chapter provides an overview of the SQR command line and discusses how to:

• Specify command-line arguments.

• Use batch mode.

Understanding the SQR Command Line

You can use the SQR command line to specify flags and to pass arguments to modify your program at
runtime.

You can enter command-line flags such as -Bnn, -KEEP, or -S on the command line to modify some aspect of
program processing or output. Command-line arguments are typically answers to requests (done in the SQR
program by ASK or INPUT commands) for user input.

The following code example and table describes the syntax of the SQR command line:

SQR [program] [connectivity] [flags ...] [args ...] [@file ...]

Argument Description

program The name of the program. The default file type or extension is .sqr. If the
parameterentered as a question mark (?) or omitted, SQR prompts you for the program
name. On UNIX/Linux-based systems, if your shell uses the question mark as a wildcard
character, you must precede it with a backslash (\).

connectivity Oracle:Use [Username]/[Password[@Database]] as your username and password for
the database. You can also specify the connection string for the database (for example,
@B:ORASERVER).

The information that SQR needs to connect to the database. If the parameter is entered as
a question mark or omitted, SQR prompts you for it. The information you enter depends
on the database you're using:

DB2:Use Ssname and SQLid for the subsystem name and SQL authorization ID.

Informix:Use Database as the name of the database.

ODBC:Use Data_Source_Name/[Username]/[Password] as the name of the ODBC
driver when you set up the driver and your username and password for the database.

Sybase:Use Username/[Password] as your username and password for the database.

Using the SQR Command Line Chapter 28

162 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Argument Description

flags Any of the flags that are listed in the SQR Language Reference. Begin command-line
flags with a hyphen. When a flag has an argument, enter the argument directly following
the flag with no intervening space.

See Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft,
"Understanding SQR for PeopleSoft," SQR Command-Line Flags.

args... Arguments that are used by SQR while the program is running. Arguments that are listed
here are used by the ASK and INPUT commands rather than prompting the user.
Arguments must be entered on the command line in the same sequence that they are
expected by the program: first all ASK arguments in order and then INPUT arguments in
order.

@file... File containing program arguments, one argument per line. Arguments listed in the file
are processed one at a time. You can specify the command-line arguments program,
connectivity, and args in this file.

Specifying Command-Line Arguments

This section provides an overview of command-line arguments and discusses how to:

• Retrieve the arguments.

• Specify arguments and argument files.

• Use an argument file.

• Use other approaches to pass command-line arguments.

• Use reserved characters.

• Create an argument file from a report.

Understanding Command-Line Arguments

You can pass an almost unlimited number of command-line arguments to SQR at runtime. On some
platforms, the operating system imposes a limit on the number of arguments or the total size of the command
line. Passing arguments is especially useful in automated reports, such as those that are invoked by scripts or
menu-driven applications.

You can pass arguments to SQR on the command line, in files, or with the SQRFLAGS environment variable.
When you pass arguments in a file, reference the file name on the command line and put one argument on
each line of the file. This avoids any limits that are imposed by the operating system.

To reference a file on the command line, precede its name with the @ sign as shown in the following code
example:

sqr myreport sammy/baker arg1 arg2 @file.dat

Chapter 28 Using the SQR Command Line

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 163

In this example, arg1 and arg2 are passed to SQR, followed by the file.dat file. Each line in file.dat has an
additional argument.

Retrieving the Arguments

When the ASK and INPUT commands run, SQR determines whether you entered any arguments on the
command line or whether an argument file has been opened. If either has happened, SQR uses this input
instead of prompting the user. After the available arguments are used, subsequent ASK or INPUT commands
prompt the user for input. If you use the INPUT command with the BATCH-MODE argument, SQR does not
prompt the user, but instead returns a status meaning No more arguments.

SQR processes all ASK commands before INPUT commands.

Note. If you compiled the SQR program into an .SQT file, ASK commands will have already been processed.
Use INPUT instead.

Specifying Arguments and Argument Files

You can mix argument files with simple arguments, as shown in the following code example:

sqr rep2 sammy/baker 18 @argfile1.dat "OH" @argfile2.dat "New York"

This command line passes SQR the number 18, the contents of argfile1.dat, the value OH, the contents of
argfile2.dat, and the value New York, in that order.

The OH argument is in quotes to ensure that SQR uses uppercase OH. When a command-line argument is
case-sensitive or contains spaces, you must enclose it within quotes. Arguments that are stored in files do not
require quotes and cannot contain them; the actual strings with uppercase characters and any spaces are
passed to SQR.

Using an Argument File

To print the same report on different printers with different characteristics, you can save values for the
different page sizes, printer initializations, and fonts in separate files and use a command-line argument to
specify which file to use. For example, the following command line code example passes the value 18 to
SQR:

sqr myreport sammy/baker 18

An #INCLUDE command in the report file selects the printer18.dat file based on the command-line
argument:

begin-setup
 ask num ! Printer number.
 #include 'printer{num}.dat' ! Contains #DEFINE commands for
 ! printer and paper width and length
 declare-layout report
 paper-size =({paper_width} {paper_length})
 end-declare
end-setup

Using the SQR Command Line Chapter 28

164 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

In this example, the ASK command assigns the value 18 to the num variable; 18 is a compile-time argument.
The #INCLUDE command then uses the value of num to include the printer18.dat file, which could include
commands like this:

! Printer18.dat-definitions for printer in Bldg 4.
#define paper_length 11
#define paper_width 8.5
#define bold_font LS12755
#define light_font LS13377
#define init HM^J73011

Using Other Approaches to Pass Command-Line Arguments

SQR examines an argument file for a program name, username, or password if none is provided on the
command line. The following command line omits the program name, username, and password:

sqr @argfile.dat

The first two lines of the argument file for this code example contain the program name and the username and
password:

myreport
sammy/baker
18
OH
...

If you do not want to specify the report name, username, or password on the command line or in an argument
file, use the question mark (?). SQR prompts the user to supply these. For example:

sqr myreport ? @argfile.dat

In this example, the program prompts the user for the username and password instead of taking them from the
first line in the argument file.

You can use more than one question mark on the command line, as shown in the following code example:

sqr ? ? @argfile.dat

In this example, the program prompts the user for the program name and the username and password.

Note. SQR for Microsoft Windows does not accept the SQR program name and database connectivity to be
part of the argument file.

Using Reserved Characters

The hyphen (-) and @ sign characters have special meanings on the command line. The hyphen precedes an
SQR flag, and the @ sign precedes an argument file name. To use either of these characters as the first
character of a command-line argument, enter the character twice to indicate that it is a literal hyphen or @
sign, as shown in the following code example:

sqr myreport ? --17 @argfile.dat @@X2H44

In this example, the double hyphen and double @ sign are interpreted as single literal characters.

Chapter 28 Using the SQR Command Line

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 165

Creating an Argument File from a Report

You can create an argument file for one program from the output of another program. For example, you can
print a list of account numbers to the acctlist.dat file, then run a second report with the following command:

sqr myreport sammy/baker @acctlist.dat

End acctlist.dat with a flag such as END, as shown in the following code example:

123344
134455
156664
 ...
END

An SQR program can use the numbers in acctlist.dat with an INPUT command, as shown in the following
code example:

begin-procedure get_company
next:
input $account batch-mode status = #status
 if #status = 3
 goto end_proc
 end-if
begin-select
cust_num, co_name, contact, addr, city, state, zip
 do print-page ! Print page with
 ! complete company data
from customers
where cust_num = $account
end-select
goto next ! Get next account number
end_proc:
end-procedure !get_company

Using Batch Mode

SQR enables you to run reports in batch mode in:

• UNIX/Linux.

• Microsoft Windows.

You can create UNIX/Linux shell scripts or MS-DOS batch (.bat) files to run SQR. Include the SQR
command line in the file as you enter it.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 167

Chapter 29

Generating and Publishing HTML from an
SQR Program

This chapter provides an overview of SQR capabilities that are available with HTML and discusses how to:

• Generate HTML output.

• Use HTML procedures in an SQR program.

• Modify an existing SQR program for HTML.

• Publish a report.

Understanding SQR Capabilities That Are Available with HTML

The SQR language has a rich set of features, but some of these features are not available for HTML output
due to the limitations of that format.

The SQR features that are supported for HTML include:

• Images.

• Font sizing.

The SQR language specifies font sizes in points. HTML specifies font sizes in a value from 1 to 6. A
point size that is specified in an SQR program is mapped to an appropriate HTML font size.

• Font styles.

The bold and underline font styles are supported.

• Centering.

The SQR features that are not currently supported for HTML output include:

• Font selection.

• Bar codes.

• Lines and boxes (using -PRINTER:HT).

Note. You can generate professional quality HTML report files with SQR without having to be an HTML
expert. However, if you want to adapt HTML output by using SQR's HTML procedures, you may want to
learn more about HTML.

Generating and Publishing HTML from an SQR Program Chapter 29

168 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Generating HTML Output

This section provides an overview of HTML output and discusses how to:

• Produce HTML output.

• Use -PRINTER:EH.

• Set HTML attributes under -PRINTER:EH.

• Use -PRINTER:HT.

• Burst reports.

• Set attributes with HTML procedures.

• Use additional HTML procedures.

• Set output file types.

• Test HTML Output.

Understanding HTML Output

When an SQR program generates HTML output, that output contains HTML tags. An HTML tag is a
character sequence that defines how information appears in a web browser.

Typically, HTML output looks like this:

<HTML><HEAD><TITLE>myreport.lis</TITLE></HEAD><BODY>

This code is only a portion of the HTML output that SQR generates. The tags that it contains indicate the start
and end points of HTML formatting.

For example, in the code example, the <HTML> tag identifies the output that follows as HTML output. The
<TITLE> and </TITLE> tags enclose the report title, in this case, myreport.lis. The <BODY> tag indicates
that the information following it makes up the body of the report.

Producing HTML Output

You can produce HTML output from an SQR program by using one of four methods, each of which provides
a different level of HTML features:

• Running an unmodified SQR program with the -PRINTER:EH command-line flag makes the HTML 3.0
or 3.2 output viewable in a web browser.

• Running an unmodified SQR program with the -PRINTER:HT command-line flag makes the HTML 2.0
output viewable in a web browser.

Chapter 29 Generating and Publishing HTML from an SQR Program

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 169

• Using two HTML procedures, html_set_head_tags and html_set_body_attributes, enables you to define a
title and background image for the HTML output.

With this method, you must still use the -PRINTER:HT command-line flag.

• Using additional HTML procedures produces output with a full set of HTML features, including lists,
tables, and links.

With this method, you must still use the -PRINTER:HT command-line flag.

The procedures that are used in the last two options are contained in a file called html.inc. To use HTML
procedures, the SQR program must include this command:

#include 'html.inc'

The HTML.INC file is located in the SAMPLE (or SAMPLEW) directory. Use the -I command-line flag to
specify its path.

Using -PRINTER:EH

You can generate enhanced HTML output from an SQR program by using the -PRINTER:EH command-line
flag. This produces output that contains HTML formatting tags. All output is displayed as fully formatted
HTML 3.0 or 3.2 text. You can generate high-quality HTML from SQR programs by using -PRINTER:EH to
issue a command like this:

sqrw myreport.sqr sammy/baker@rome -PRINTER:EH

You can control the version of HTML that is used by editing the FullHTML enhanced HTML parameter in
the PSSQR.INI file. Set FullHTML to be equal to TRUE for HTML 3.2 or FALSE for HTML 3.0. Adjust this
based on the level of HTML that your web browser supports. The -PRINTER:EH default output is HTML
3.0.

If you have existing .spf files for which you want to generate enhanced HTML output, you do not need to
rerun your SQR program. You can invoke SQR Print (with SQRP or SQRWP, depending on your platform)
to generate enhanced HTML from .spf files by using a command like this:

sqrwp myreport.spf -PRINTER:EH

From within the SQR Viewer, you can also generate this same, high-quality HTML by selecting File, Save as
HTML. The HTML level output from the SQR Viewer is also determined by the PSSQR.INI file settings and
has the same default value.

You can also generate enhanced HTML files with precompiled SQR program files (.sqt files). Run the .sqt
file against SQR Execute with a command like this:

sqrwt myreport.sqt sammy/baker@rome -PRINTER:EH

As is true when running any .sqt file, you can run it against SQR (or sqrw, on Microsoft Windows platforms)
by including the -RT flag. To generate enhanced HTML, use the -PRINTER:EH flag in the command:

sqrw myreport.sqr sammy/baker@rome -RT -PRINTER:EH

The sample program ex7a.sqr produces a simple master and detail report. By running it with -PRINTER:EH,
you can produce HTML output. A left frame is produced with links to each page of the report. The right
frame also features a navigation bar that appears at the top of every page in the report. The navigation bar
enables you to move to the first or last page or to move one page forward or back from your relative page-
viewing position.

Generating and Publishing HTML from an SQR Program Chapter 29

170 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

With -PRINTER:EH, you can also use additional flags to modify the output, such as:

• -EH_CSV

This creates an additional output file in Comma Separated Value (CSV) format.

• -EH_CSV:file

This associates the CSV icon with the specified file.

• -EH_Icons:dir

This specifies the directory in which the HTML should find the referenced icons.

• -EH_Scale:{nn}

This sets the scaling factor from 50 to 200.

These flags work only with -PRINTER:EH.

Setting HTML Attributes Under -PRINTER:EH

In certain cases, you may want additional control over the enhanced HTML code that is generated with -
PRINTER:EH. SQR supports extensions that enable you to control the generated HTML, specifying titles,
background colors and images, links, text colors, and more.

Specifying HTML Titles

The HTML page title normally appears on the caption bar of the browser window and is also used when you
are creating a bookmark for the page. It is placed between the <TITLE> and </TITLE> HTML tags. Specify
the title of the HTML page by using the %%Title extension at the beginning of the SQR program by entering:

Print-Direct Printer=html '%%Title Monthly Sales'

Specifying Background Colors

Specify a background color for the pages that are generated with -PRINTER:EH by using the %%Body-
BgColor extension. Enter code like this at the beginning of the program:

Print-Direct Printer=html '%%Body-BgColor #0000FF'

To set the background color for the navigation bar, enter code like this:

Print-Direct Printer=html '%%Nav-Body-BgColor #0000FF'

See "Specifying HTML Colors" subsequently.

Specifying Background Images

To use a background image for the report pages that the enhanced HTML generates, insert the
%%Background extension at the beginning of the program:

Print-Direct Printer=html '%%Background tile.gif'

To set the background image for the navigation bar, enter code like this:

Chapter 29 Generating and Publishing HTML from an SQR Program

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 171

Print-Direct Printer=html '%%Nav-Background D:\jpegdir\house.jpg'

The background attribute can be any valid Uniform Resource Locator (URL). If you do not specify the
%%Nav-Background extension while specifying the body background, the background image that you
specify for the body is used both in the body and in the navigation bar. If you do not want an image to appear
in the navigation bar, use code like this:

Print-Direct printer=html '%%Nav-Background EMPTY'

Specifying Links

The %%Href extension specifies a link in the report. This extension enables you to make a text, number,
image, or chart object into a link. The object can be the item that you click to activate the link or it can be the
location on the page where the link takes you. Specify the latter by using the %%Anchor extension. For
example:

Print-Direct Printer=html '%%Href #section2'
Print 'ABC' ()
...
Print-Direct Printer=html '%%Anchor section2'
Print 'XYZ' ()

In this example, clicking the ABC text on the page jumps to the XYZ text. When using frames or multiple
browser windows, you can control which frame displays the target of the link by using the target option of the
%%Href extension. For example, specify on one line:

Print-Direct Printer=html '%%Href target="_top" http://www.peoplesoft.com'

Specifying Text Colors

Use the %%Color and %%ResetColor extensions to change the color of text. The following code example
demonstrates this capability:

If &Salary > 100000
Print-Direct Printer=html '%%Color #FF0000'
End-If
Print &Salary ()
If &Salary > 100000
Print-Direct Printer=html '%%ResetColor'
End-If

In this example, when the value of the column is over 100000, it prints in red. The %%Color extension affects
all text (and number) printing from this point on. This is similar to the behavior of the ALTER-PRINTER
command. A subsequent invocation of %%Color with a different color value sets the current color to the new
color. To restore the color back to the default (normally, black) use the %%ResetColor extension.

Specifying HTML Colors

Specifying color as a red-green-blue (RGB) hexadecimal value is the only way to designate color in SQR.
Your browser documentation should contain a listing of supported colors and their hexadecimal values. To
specify color as an RGB hexadecimal value, enter a # character followed by six hexadecimal digits. The first
two digits specify the intensity of the red, the next two specify the green, and the last two specify the blue.
For example, green is #00FF00.

Generating and Publishing HTML from an SQR Program Chapter 29

172 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Including Your Own HTML Tags

Enhanced HTML extensions enable you to include your own HTML tags in the output. These tags are passed
through to the output without change. Use this feature to include advanced HTML capabilities such as
JavaScript and <APPLET> tags .

SQR PRINT with CODE-PRINTER=HT enables you to inject any text into the HTML output. SQR does not
check the text that you are printing. This text can contain anything that your browser understands. Do not use
this method for formatting, because your formatting may conflict with -PRINTER:EH enhanced HTML
formatting. -PRINTER:EH enhanced HTML uses HTML tables extensively. To fully control the formatting,
use the HTML procedures that are defined in html.inc and that are documented in this section. By invoking
the html_on procedure, you instruct the enhanced HTML to perform no formatting. Specify all formatting by
using the HTML procedures in html.inc or by using SQR PRINT with CODE-PRINTER=HT to insert HTML
codes. When you use SQR PRINT with CODE-PRINTER=HT, the enhanced HTML does not translate
special symbols that are used in HTML tags, such as <, >, and &.

See Also

Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft

Using -PRINTER:HT

Another method for generating HTML output from an SQR program is running a program with the
command-line flag -PRINTER:HT. Alternatively, you can make some simple modifications to the program.
Add either DECLARE-PRINTER with the TYPE=HT argument or USE-PRINTER-TYPE HT.

With these methods, HTML output is generated in the following way:

• All output appears as preformatted text by using the <PRE> and </PRE> HTML tags.

• Text appears on the page at the position coordinates that are specified in the SQR program.

• Text appears in a fixed-width font, such as Courier.

• Font sizes map to HTML font sizes.

• HTML reserved characters map to the corresponding HTML sequence.

The <, >, &, and " characters map to the <, >, &, and ", character sequences,
respectively. This prevents the web browser from mistaking such output as an HTML sequence.

The sample program ex7a.sqr produces a simple master and detail report. By running it with -PRINTER:HT,
you can produce HTML output. A left frame is produced with links to each page of the report. The right
frame also features a navigation bar that appears at the top of every page in the report. The navigation bar
enables you to move to the first or last page or to move one page forward or back from your relative page
viewing position.

See Chapter 8, "Creating Master and Detail Reports," page 43.

Chapter 29 Generating and Publishing HTML from an SQR Program

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 173

Bursting Reports

With SQR, you can generate HTML format reports by using -PRINTER:EH or -PRINTER:HT command-line
flags. If you want HTML files to be smaller in size for faster in load time or to be divided on the basis of
report page ranges, or if you want to preview a report's table of contents in your web browser without
generating an entire report, use -BURST:{xx} with -PRINTER:EH or -PRINTER:HT.

By using -BURST:P (or BURST:P1) with -PRINTER:EH, or by using -BURST:P1 with -PRINTER:HT, you
can generate HTML output files that are burst by report page numbers, one report page per .htm file. (This is
frequently referred to as demand paging.) So a 25-page report would be divided into 25 separate .htm output
files. By using -PRINTER:HT, you can also specify the report page ranges that you want within an HTML
file. For example, -BURST:P0,1,3-5 generates an HTML file containing only report page numbers 1, 3, 4,
and 5. You can then focus on information that is truly of interest.

Similarly, if you specify -PRINTER:HT with -BURST:T, only the table of contents file is generated. And if
you specify -PRINTER:HT with -BURST:S, report output is generated according to symbolic table of
contents entries. By using -BURST:S, you can specify the numeric level to burst on (for example, -
BURST:S2 bursts on level 2). If you have used DECLARE-TOC and TOC-ENTRY commands in the SQR
program, the table of contents provides more detailed information than just page number links, as illustrated
in the following code example.

To use DECLARE-TOC and TOC-ENTRY to improve the information that is available in generated HTML
output, this example adds the following code example to the beginning of the sample program ex7a.sqr:

begin-setup
declare-toc common
 for-reports=(all)
 dot-leader=yes
 indentation=2
end-declare
end-setup

The code example also adds this code to the body of the program, in the main procedure immediately
following the begin-select and Print 'Customer Information' (,1):

toc-entry text = &name

Setting Attributes with HTML Procedures

Use the SQR HTML procedures html_set_head_tags and html_set_body_attributes to define a title and
background image for a report. To use these procedures, the SQR program must include the html.inc file. You
must also run the program by using the -PRINTER:HT command-line flag.

These procedures must be called at the start of the program. For example:

do html_set_head_tags('<TITLE>Monthly Report</TITLE>')
do html_set_body_attributes('BACKGROUND="/images/mylogo.gif"')

The first line of this code example displays the Monthly Report title. Specifically, the entire
'<TITLE>Monthly Report</TITLE>' sequence is passed as an argument to the html_set_head_tags procedure.
The argument is enclosed in single quotes.

The second line displays the mylogo.gif background image for the web page. Again, an argument is passed to
the procedure. The entire argument is enclosed in single quotes, and the file name and path are enclosed in
double quotes.

Generating and Publishing HTML from an SQR Program Chapter 29

174 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Together, these two lines of code generate the following HTML output:

<HTML><HEAD><TITLE>Monthly Report</TITLE></HEAD>
<BODY BACKGROUND="/images/mylogo.gif">

Using Additional HTML Procedures

Using additional HTML procedures in the SQR program provides enhanced capabilities, including:

• Highlighting,, including HTML physical tags and logical markup tags.

HTML physical tags include subscript, superscript, and strikethrough. HTML logical markup tags include
citation, code, keyboard, and sample.

• Headings.

• Links.

• Lists, including ordered lists, unordered lists, definition lists, directory lists, and menus.

• Paragraph formatting, including paragraph breaks, line breaks, and horizontal dividers.

• Tables, including captions, rows, columns, and column headings.

Setting Output File Types

An SQR report named myreport.sqr creates a FRAME file (myreport.htm) and report output files. The
OUTPUT-FILE-MODE entry in the Default-Setting section of the PSSQR.INI file controls the report output
file extensions. When this entry is set to SHORT, the report output files use the form myreport.hzz, and when
set to LONG, the files use the form myreport_zz.htm. The value of zz ranges from 00 to 99 and reflects the
report number.

The FRAME file displays a list (links) of report pages in one frame and the report text in another frame. Each
report output file contains a list of pages (links) at the end of the file. If myreport.sqr created multiple reports,
then the FRAME file contains a link to each report output file. In addition, each report output file contains
links to the other report output files that were created during the program run.

Testing HTML Output

When an SQR program produces HTML output, you can preview it on a local system. This is a good way to
test the output before you publish it on a website.

To test the output of the program, open the file in the web browser. If your web browser supports the HTML
FRAME construct, open the FRAME file (myreport_frm.htm); otherwise, open the report output file
(myreport.h00, myreport_00.htm).

Using HTML Procedures in an SQR Program

This section provides an overview of HTML procedures and discusses how to:

Chapter 29 Generating and Publishing HTML from an SQR Program

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 175

• Use HTML procedures.

• Position objects.

• Display records in tables.

• Create headings.

• Highlight text.

• Create links.

• Include images.

• Display text in lists.

• Format paragraphs.

• Incorporate your own HTML tags.

See Also

Enterprise PeopleTools 8.51 PeopleBook: SQR Language Reference for PeopleSoft

Understanding HTML Procedures

To enhance the appearance of the HTML output, use HTML procedures in an SQR program.

An SQR program with these procedures generates output as described previously in "Using PRINTER:HT,"
with these exceptions:

• The <PRE> and </PRE> HTML tags are not used.

• Text is displayed in a proportional font, such as Arial.

• Positioning values that are specified in the SQR program are ignored.

Text, HTML tags, and other information are placed in the HTML output in the order in which they are
generated by the SQR program.

• White space, such as spaces between PRINT commands, is removed.

Using HTML Procedures

When using the HTML procedures, include the html.inc file. As before, you must run the SQR program with
the -PRINTER:HT command-line flag.

The SQR program must also call the html_on procedure at the start of the program. The command that calls
this procedure is:

do html_on

Generating and Publishing HTML from an SQR Program Chapter 29

176 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Additionally, the program must specify a large page length to prevent page breaks. SQR automatically inserts
the page navigation links and an <HR> HTML tag at a page break. If a page break occurs in the middle of an
HTML construct, such as a table, the output can appear incorrectly. Use the DECLARE-LAYOUT command
with a large MAX-LINES setting to prevent page breaks from occurring.

Positioning Objects

When HTML procedures are activated:

• HTML output is generated without the <PRE> and </PRE> tags.

• All position qualifiers in the SQR program are ignored, and program output and HTML tags are placed in
the output file in the order in which they are generated, regardless of their position qualifiers.

• The text that is printed in a BEGIN-HEADING section does not appear at the top of the page.

Because no positioning is done, text in the heading appears at the bottom.

• White space, such as spaces between PRINT commands, is removed.

Thus, the HTML procedures must be used to format the report.

The following code example does not use the HTML procedures to format the output:

print 'Report summary:' (1,1)
print 'Amount billed:' (3,1)
print #amount_amount (3,20)
print 'Total billed:' (4,1)
print #total_amount (4,20)

In this case, all of the text appears on the same line with no spaces between the data.

With the HTML procedures for line breaks and a table, the output can be formatted properly.

The following code example uses the html_br procedure to separate the first two lines of text. The html_table,
html_tr, html_td, and html_table_end procedures display the totals in a tabular format. An empty string is
passed to each procedure as it is called. This empty string is required if no other argument is passed.

print 'Report summary:' (1,1)
do html_br(2,'')
do html_table('')
do html_tr('')
do html_td('WIDTH=300')
print 'Amount billed:' (3,1)
do html_td('')
print #amount_amount (3,20)
do html_tr('')
do html_td('WIDTH=300')
print 'Total billed:' (4,1)
do html_td('')
print #total_amount (4,20)
do html_table_end

Chapter 29 Generating and Publishing HTML from an SQR Program

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 177

Displaying Records in Tables

When the HTML procedures are activated, all positioning values in the SQR program are ignored. Thus, the
position values cannot be used to display records in a tabular format. To display records in a tabular format,
use the following procedures:

Description Beginning Procedure End Procedure

Create a table html_table html_table_end

Create a caption. The end is typically
implied and html_caption_end is not
required, but you can use it for
completeness.

html_caption html_caption_end

Create rows. The end is typically
implied and html_tr_end is not
required, but you can use it for
completeness.

html_tr html_tr_end

Create column headings. The end is
typically implied and html_th_end is
not required, but you can use it for
completeness.

html_th html_th_end

Create columns. The end is typically
implied and html_td_end is not
required, but you can use it for
completeness.

html_td html_td_end

The following sample program uses these table procedures to display information in a tabular format:

Generating and Publishing HTML from an SQR Program Chapter 29

178 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Program ex28a.sqr
#include 'html.inc'
begin-program
 do main
end-program
! set a large page length to prevent page breaks
begin-setup
 declare-layout default
 max-lines=750
 end-declare
end-setup
begin-procedure main
! turn on HTML procedures
 do html_on
! start the table and display the column headings
do html_table('border')
do html_caption('')
print 'Customer Records' (1,1)
do html_tr('')
do html_th('')
print 'Cust No' (+1,1)
do html_th('')
print 'Name' (,10)
! display each record
begin-select
 do html_tr('')
 do html_td('')
cust_num (1,1,6) edit 099999
 do html_td('')
name (1,10,25)
 next-listing skiplines=1 need=1
from customers
end-select
! end the table
do html_table_end
end-procedure

Creating Headings

The heading procedures display text by using heading levels like those in a book. The available heading
levels range from 1 to 6; a first-level heading is the highest. To use the heading procedures, call the
appropriate heading procedure before the text is generated. After the text is generated, call the corresponding
end procedure.

The following code example displays text as a second-level heading:

do html_h2('')
print 'A Level 2 Heading' (1,1)
do html_h2_end

Highlighting Text

The highlighting procedures enable you to display text in the various HTML highlighting styles. Highlighting
is also called logical markup.

To use the highlighting procedures, call the appropriate highlighting procedure before the text is generated.
After the text is generated, call the corresponding end procedure.

Chapter 29 Generating and Publishing HTML from an SQR Program

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 179

The following highlighting procedures are available:

Type of Highlighting Beginning Procedure End Procedure

Blink html_blink html_blink_end

Citation html_cite html_cite_end

Code html_code html_code_end

Keyboard html_kbd html_kbd_end

Sample html_sample html_sample_end

Strike html_strike html_strike_end

Subscript html_sub html_sub_end

Superscript html_sup html_sup_end

The following code example displays text in the subscript style:

print 'Here is ' (1,1)
do html_sub('')
print 'subscript' ()
do html_sub_end
print ' text' ()

Creating Links

The link procedures enable you to create links and link anchors. When the user clicks the link, the web
browser switches to the top of the specified HTML document, to a point within the specified document, or to
a link anchor within the same document. A link can point to the home page of a website, for example.

To insert a link, use the html_a procedure to format the information that is to become the link, and use the
html_a_end procedure to mark the end of the link. Two useful attributes for the html_a procedure are the
HREF and NAME attributes:

• Use the HREF attribute to specify the location to which the link points.

• Use the NAME attribute to specify an anchor to which a link can point.

These attributes are passed as arguments to the html_a procedure.

The following code example creates an anchor and two links. The anchor is positioned at the top of the
document. The first link points to the HTML home.html document. The second link points to the anchor
named TOP in the current document. Note the # sign in the argument, which indicates that the named anchor
is a point within a document. The third link points to an anchor named POINT1 in the mydoc.html document.

Generating and Publishing HTML from an SQR Program Chapter 29

180 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

do html_a('HREF=home.html')
print 'Goto home page' ()
do html_a_end

do html_a('NAME=TOP')
do html_a_end

print 'At the top of document' ()
do html_br(40, '')
print 'At the bottom of document' ()
do html_p('')

do html_a('HREF=#TOP')
print 'Goto top of document' ()
do html_a_end

do html_a ('HREF=mydoc.html#POINT1')
print 'Goto point1 in mydoc.html' ()
do html_a_end

Including Images

You can include an image in an HTML output with the PRINT-IMAGE command or the html_img
procedure. Both of these produce the HTML tag.

The PRINT-IMAGE command displays images for all printer types but enables you to specify only the image
type and source. The html_img procedure displays images only for the HTML printer type, but it enables you
to specify any of the attributes that are available for an HTML tag.

For HTML output, you can use only Graphics Interchange Format (GIF) or JPEG files. With PRINT-IMAGE,
use the TYPE=GIF-FILE or TYPE=JPEG-FILE argument, respectively.

Displaying Text in Lists

The list procedures display lists. To use these procedures, call the appropriate procedure before the list is
generated. After the list is generated, call the corresponding end procedure.

The following list procedures are available:

List Type Beginning Procedure End Procedure

Definition (terms and their
definitions)

html_dl html_dl_end

Directory html_dir html_dir_end

Menus html_menu html_menu_end

Ordered (numbered or lettered) html_ol html_ol_end

Unordered (bulleted) html_ul html_ul_end

Chapter 29 Generating and Publishing HTML from an SQR Program

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 181

To display a list, except for the definition list, call the appropriate list procedure before starting the output.
Call html_li to identify each item in the list; you can also call html_li_end for completeness. After specifying
the output, call the corresponding end procedure.

The following code example displays an ordered list:

do html_ol('')
do html_li('')
print 'First item in list' (1,1)
do html_li_end
do html_li('')
print 'Second item in list' (+1,1)
do html_li_end
do html_li('')
print 'Last item in list' (+1,1)
do html_li_end
do html_ol_end

To display a definition list, call html_dl before starting the output. Call html_dt to identify a term and
html_dd to identify a definition. After specifying the output, call html_dl_end. You can also call html_dd_end
and html_dt_end for completeness.

The following code example displays a definition list:

do html_dl('')
do html_dt('')
print 'A daisy' (1,1)
do html_dt_end
do html_dd('')
print 'A sweet and innocent flower' (+1,1)
do html_dd_end
do html_dt('')
print 'A rose' (+1,1)
do html_dt_end
do html_dd('')
print 'A very passionate flower' (+1,1)
do html_dd_end
do html_ol_end

Formatting Paragraphs

The HTML procedures provide various paragraph-formatting capabilities. To use these procedures, call the
appropriate paragraph procedure before the list is created.

The following procedures are available:

Formatting Type Beginning Procedure End Procedure

Paragraph breaks html_p html_p_end

Many HTML constructs imply an end
of paragraph; thus, the html_th_end
procedure is not needed, but you can
use it for completeness.

Line breaks html_br NA

Generating and Publishing HTML from an SQR Program Chapter 29

182 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Formatting Type Beginning Procedure End Procedure

Horizontal dividers (usually a
sculpted line)

html_hr NA

Prevent text wrapping html_nobr html_nobr_end

The following code example uses the paragraph-formatting procedures to format text into paragraphs:

print 'Here is some normal text' (1,1)
do html_p('ALIGN=RIGHT')
print 'Here is right aligned text' (+1,1)
do html_br(1,'')
print 'and a line break' (+1,1)
do html_p_end
do html_hr('')
do html_nobr('')
print 'A very long line of text that cannot be wrapped' (+1,1)
do html_nobr_end

Incorporating Your Own HTML Tags

You can incorporate your own HTML tags into the HTML output. To do so, use the PRINT command with
the CODE-PRINTER=HT argument.

Text that is printed with this argument is placed only in the HTML output that is generated when the HTML
printer type is specified. With all other printer types, the text is not placed in the output. In addition, the
specified text is placed directly in the HTML output without any modifications, such as the mapping of
reserved characters.

The following code example uses the HTML tag to print bold text:

print '' () code-printer=ht
print 'Bold text' ()
print '' () code-printer=ht

Modifying an Existing SQR Program for HTML

In this section, an existing sample program, ex12a.sqr, is modified to use HTML procedures. The modified
program is named program ex28b.sqr. First, examine the output from ex12a.sqr when this program is run
without modifications by using the -PRINTER:HT command-line flag. Three HTML files are generated:
ex12a.htm, ex12a_frm.htm, and ex12a_toc.htm.

Chapter 29 Generating and Publishing HTML from an SQR Program

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 183

Program ex28b.sqr
#include 'html.inc'
begin-setup
 declare-layout default
 max-lines=10000
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure main
do html_on
print $current-date (1,1) edit 'DD-MON-YYYY'
do html_p('')
do html_table('BORDER')
do html_tr('')
do html_th('WIDTH=250')
print 'Name' (3,1)
do html_th('WIDTH=120')
print 'City' (,32)
do html_th('WIDTH=60')
print 'State' (,49)
do html_th('WIDTH=90')
print 'Total' (,61)
begin-select
 do html_tr('')
 do html_td('')
name (,1,30)
 do html_td('')
city (,+1,16)
 do html_td('')
state (,+1,5)
 do html_td('ALIGN=RIGHT')
tot (,+1,11) edit 99999999.99
 next-listing no-advance need=1
 let #grand_total = #grand_total + &tot
from customers
end-select
 do html_tr('')
 do html_tr('')
 do html_td('COLSPAN=3 ALIGN=RIGHT')
print 'Grand Total' (+1,40)
 do html_td('ALIGN=RIGHT')
print #grand_total (,55,11) edit 99999999.99
do html_table_end
end-procedure ! main

In this code example, a DECLARE-LAYOUT command with a large page length setting that is specified in
the MAX-LINES argument is issued to prevent page breaks.

The html_on procedure activates the HTML procedures.

The html_table, html_tr, html_td, and html_th procedures position the information in a tabular format. Note
the arguments that are passed to the HTML procedures:

• BORDER produces the sculpted border.

• WIDTH defines the width of the columns.

• ALIGN right-aligns the text in the Total column.

• COLSPAN causes the Grand Total label to be spanned beneath three columns of data.

Generating and Publishing HTML from an SQR Program Chapter 29

184 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Instead of using a HEADING section, use the html_tr and html_th procedures to display column headings.

See Chapter 29, "Generating and Publishing HTML from an SQR Program," Displaying Records in Tables,
page 177.

Publishing a Report

This section discusses how to:

• Publish a report.

• Support older browsers.

• View a published report.

• Publish by using an automated process.

• Publish by using a Common Gateway Interface (CGI) script.

Publishing a Report

You can publish an SQR report on a website, and then anyone with a web browser can view the report over
the internet or an intranet by specifying its URL.

To publish a report:

1. Run the SQR program.

2. Determine where the report output will be stored on the web server.

The directory must be one that is referenced by a URL on the server. See your webmaster for more details
on creating a URL.

3. Copy the generated HTML output files to the selected directory on the web server.

If the output is generated on a client workstation, use a utility such as FTP to transfer the HTML output
files to the web server.

Note. If you select the zip file option, a zip file is created for the generated HTML output in addition to
the files being placed in the file system.

4. Create links on a home page or other website that point to the report files so that users browsing the
network can navigate to the report and view it.

Chapter 29 Generating and Publishing HTML from an SQR Program

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 185

Supporting Older Browsers

To support older web browsers that do not support the HTML FRAME construct, create two separate links:
one pointing to the FRAME file (.htm) and labeled to indicate the frame version, and another pointing to the
report output file and labeled to indicate the nonframe version. If the report was created with HTML
procedures, however, it should contain only a single page. In that case, a listing of report pages that are
contained in the FRAME file is not needed. Only the report output file is required for publication on a
website.

Viewing a Published Report

Use a web browser to view a report that is published on a website. To do this, specify a URL in your web
browser, for example: http://www.myserver.com/myreport.htm.

Publishing by Using an Automated Process

The webmaster can create a program that automates the publishing process. The program should run the SQR
program and copy the output to the appropriate location. You can start the program by using a scheduling
utility to automatically run the program and publish it on the website at specified times.

The sample Bourne shell program:

• Sets the necessary environment variables.

• Runs the /usr2/reports/myreport.sqr program and generates the /usr2/reports/myreport.htm and
/usr2/reports/myreport.h00 output files.

• Specifies /dev/null as the source of standard input to prevent the program from stopping if it requires
input.

• Redirects the standard output to /usr2/reports/myreport.out to capture any status messages.

You can view the output file at a later time to diagnose any problems.

• Copies the generated report files to the /usr2/web/docs directory to publish it on the web server.

(Use the directory name that is appropriate for your server.)

Here is the code example:

#! /bin/sh
set the appropriate environment values
ORACLE_SID=oracle7; export ORACLE_SID
ORACLE_HOME=/usr2/oracle7; export ORACLE_HOME
SQRDIR=/usr2/sqr/bin; export SQRDIR
invoke the SQR program
sqr /usr2/reports/myreport.sqr orauser/orapasswd \
 -PRINTER:ht -I$SQRDIR \
 > /usr2/reports/myreport.out 2>&1 < /dev/null
copy over the output
cp /usr2/reports/myreport.htm /usr2/web/docs
cp /usr2/reports/myreport.h00 /usr2/web/docs

Generating and Publishing HTML from an SQR Program Chapter 29

186 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. You must adjust the environment variables and the file names to fit your particular environment. See
the documentation of your scheduling software for more details.

Publishing by Using a CGI Script

If you use the CGI script method, any user with a web browser can run an SQR and view the output. You can
enable the user to run an SQR by providing a form to fill out.

When a user runs an SQR report through a website:

1. The user navigates to a form.

2. The user enters information on the form and clicks a button to invoke the CGI script.

3. The CGI script runs the SQR program.

4. The CGI script copies the report output file to the standard output.

5. The user views the report.

This process requires:

• The form

• The CGI script

• The SQR program

Creating the Form

Create an HTML form to enable the user to enter some values and start the request.

The following HTML code example defines a form with three radio buttons and a submit button. The radio
buttons enable the user to specify the sorting criteria. The Submit button invokes the CGI script.

Here is the HTML code:

<HTML>
<TITLE>View Customer Information</TITLE>
<FORM METHOD=POST ACTION="/cgi-bin/myreport.sh">
Select the Field to Sort By<P><DIR>
<INPUT TYPE="radio" NAME="rb1" VALUE="cust_num" CHECKED> Number

<INPUT TYPE="radio" NAME="rb1" VALUE="name"> Name

<INPUT TYPE="radio" NAME="rb1" VALUE="city"> City

<P><INPUT TYPE="submit" NAME="run" VALUE="Run Report"></DIR>
</FORM>
</HTML>

The FORM METHOD tag specifies that the /cgi-bin/myreport.sh CGI script is invoked when the Submit
button is pressed. Adjust the URL of the CGI script to fit your particular environment.

In the INPUT tags, the TYPE="radio" attribute defines a radio button. The VALUE attribute of the selected
radio button is passed by the CGI script to the SQR program.

Chapter 29 Generating and Publishing HTML from an SQR Program

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 187

Creating the CGI Script

The CGI script is started when a user makes a request from a form. A CGI script can be any executable
program. Don't call SQR directly as a CGI script—a PERL script, a shell script, or a C program all provide
simpler routines for processing as a CGI script.

The CGI script:

1. Reads the contents of the standard input stream and parses them to obtain the values that were entered on
the form.

If the form has no input fields, this step is not required.

2. Identifies the output as being in HTML format by sending the Content-type: text/html string and an extra
empty line to the standard output stream.

3. Invokes the SQR program.

Values that the user entered on the form are passed to the SQR program by the CGI script and the
command line.

4. Sends the generated .lis file to the standard output stream.

The .htm file is not used because it points to the .lis file with a relative URL.

The relative URL does not specify to the web browser where to find the .lis file. You should make
provisions within your SQR program to send an error message.

The following Bourne shell is an example of a CGI script:

#! /bin/sh
set the appropriate environment values
ORACLE_SID=oracle7; export ORACLE_SID
ORACLE_HOME=/usr2/oracle7; export ORACLE_HOME
SQRDIR=/usr2/sqr/bin; export SQRDIR
identify the output as being HTML format
echo "Content-type: text/html"
echo ""
get values from fill-out form using the POST method
read TEMPSTR
SORTBY=`echo $TEMPSTR | sed "s;.*rb1=;;
s;&.*;;"`
invoke the SQR program
sqr7 /usr2/reports/myreport.sqr orauser/orapasswd \
 -PRINTER:ht -f/tmp/myreport$$.lis -I$SQRDIR "$SORTBY" \
 > /tmp/myreport$$.out 2>&1 < /dev/null
if [$? -eq 0]; then
 # display the output
 cat /tmp/myreport$$.lis
else
 # error occurred, display the error
 echo "<HTML><BODY><PRE>"
 echo "FAILED TO RUN SQR PROGRAM"
 cat /tmp/myreport$$.out
 echo "</PRE></BODY></HTML>"
fi# remove temp files
rm /tmp/myreport$$.*

The script performs the following tasks:

Generating and Publishing HTML from an SQR Program Chapter 29

188 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

1. Sets the necessary environment variables. Then it sends the Content-type: text/html string and an extra
empty line to the standard output stream to identify the text as being HTML format.

2. Retrieves the value of the selected radio button into the SORTBY variable. The script passes the value to
the SQR program on the command line.

3. Runs the SQR program. The script uses the /usr2/reports/myreport.sqr report file and generates the
/tmp/myreport$$.lis file. In addition, the script redirects the standard input from /dev/null to prevent the
program from stopping if the program requires any input. It also redirects the standard output to
/tmp/myreport$$.out to capture any status messages. The $$ is the process ID of the program and is used
as a unique identifier to prevent any multiuser problems.

4. Copies the generated report file to the standard output stream. If an error occurs, the script generates the
status message file instead to enable the user to view the status messages. It then deletes any temporary
files.

Passing Arguments to the SQR Program

You must modify the SQR program to accept values that the user enters on the form.

The following code example is the main procedure from sample program ex28b.sqr. It has been modified to
use the SORT BY value that is passed from the CGI script. The $sortby variable is obtained from the
command line with an INPUT command and is used as dynamic variables in the ORDER BY clause. The
modified lines are shown like this:

begin-procedure main
input $sortby 'Sort by' type=char
do html_on
do html_table('')
do html_tr('')
do html_th('')
print 'Name' (3,1)
do html_th('')
print 'City' (,32)
do html_th('')
print 'State' (,49)
begin-select
 do html_tr('')
 do html_td('')
name (,1,30)
 do html_td('')
city (,+1,16)
 do html_td('')
state (,+1,5)
next-listing no-advance need=1
 let #grand_total = #grand_total + &tot
from customers
order by [$sortby]
end-select

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 189

Chapter 30

Creating a Table of Contents

This chapter discusses how to:

• Use the DECLARE-TOC command.

• Use the TOC-ENTRY command.

• Add a table of contents to the cust.sqr sample program.

Using the DECLARE-TOC Command

Use DECLARE-TOC to define a table of contents and its attributes. When generating multiple reports and
tables of contents from one SQR program, you can also use the TOC argument of the DECLARE-REPORT
command.

You must issue the DECLARE-TOC command in the SETUP section of the program. For example:

begin-setup
 declare-toc toc_name
 for-reports = (all)
 dot-leader = yes
 indentation = 2
 end-declare
 .
 .
 .
end-setup

Following the DECLARE-TOC command, specify a table of contents name. Use the FOR-REPORTS
argument to specify the reports within the SQR program that use this table of contents. Use (all) if you want
all of the reports to use one table of contents. You need to specify individual report names only if you are
generating multiple reports with different tables of contents from one program. Use DOT-LEADER to
specify whether a dot leader precedes the page number. The default setting is NO and the dot leader is
suppressed in all HTML output except when you also specify -BURST:T with -PRINTER:HT. Use
INDENTATION to specify the number of spaces by which each level is indented. (The default setting is 4.)

DECLARE-TOC also supports procedures that are frequently used for setup and initialization purposes:

Procedure Usage

BEFORE-TOC Specify a procedure to be run before the table of contents
is generated. If no table of contents is generated, the
procedure does not run.

Creating a Table of Contents Chapter 30

190 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Procedure Usage

AFTER-TOC Specify a procedure to be run after the table of contents is
generated. If no table of contents is generated, the
procedure does not run.

BEFORE-PAGE Specify a procedure to be run at the start of each page.

AFTER-PAGE Specify a procedure to be run at the end of each page.

Using the TOC-ENTRY Command

Use TOC-ENTRY to place an entry into the table of contents and take the mandatory TEXT argument, which
specifies the text to be placed in the table of contents. Legal text includes text literals, variables, and columns.
To include levels in a table of contents, use the LEVEL argument, which specifies the level at which to place
the text. If you do not specify this argument, the value of the previous level is used.

If you are writing programs that generate multiple reports, you can:

• Use the FOR-REPORTS argument of the DECLARE-TOC command to identify the reports to which the
DECLARE-TOC applies.

• Use the TOC argument of the DECLARE-REPORT command to specify the name of the table of contents
for the report.

A program can have multiple DECLARE-TOC statements and multiple DECLARE-REPORT statements.
However, you must include the FOR-TOCS argument in the DECLARE-TOC statements or the TOC
argument in the DECLARE-REPORT statements.

To specify the name of the table of contents for a given report by using the TOC argument of the DECLARE-
REPORT command, include code in the SETUP section of the program. For example:

 begin-setup
 declare-report
 toc = toc_name
 end-declare
 .
 .
 .
end-setup

Earlier, we modified the sample program ex7a.sqr to use the DECLARE-TOC and TOC-ENTRY commands.
Then, we generated HTML output from the modified program by using the -PRINTER:EH and -
PRINTER:HT command-line flags. In HTML, the table of contents file is a linked point of navigation for the
online report.

However, you may also want to generate output files for printing reports on paper. The table of contents
features can also perform this task. To test this, run the modified version of the sample program ex7a.sqr and
print it from an .lis file (or use -PRINTER:WP in Microsoft Windows). The table of contents output contains
the traditional dot leaders and necessary page numbers relating to a hard-copy report.

See Chapter 27, "Printing with SQR," page 157.

Chapter 30 Creating a Table of Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 191

Adding a Table of Contents to the CUST.SQR Sample Program

The following program is based on cust.sqr, which is located in the SAMPLE (or SAMPLEW) directory. The
program identifies the table of contents with the specific name of cust_toc. The dot leader is turned on.
Indentation is set to 3. One table of contents level is set by using the LEVEL=1 argument or the TOC-
ENTRY command. The BEFORE-PAGE and AFTER-TOC arguments of the DECLARE-TOC command are
used to print simple messages here.

Table of Contents Sample Program 1

Consider this sample program:

begin-setup
 declare-toc cust_toc
 for-reports=(all)
 dot-leader=yes
 indentation=3
 after-toc=after_toc
 before-page=before_page
 end-declare
end-setup
begin-program
 do main
end-program
begin-procedure after_toc
 position (+1,1)
 print 'After TOC' () bold
 position (+1,1)
end-procedure
begin-procedure before_page
 position (+1,1)
 print 'Before Page' () bold
 position (+1,1)
end-procedure
begin-procedure main
begin-select
 print 'Customer Info' ()
 print '-' (+1,1,62) Fill
name (+1,1,25)
 toc-entry text = &name level = 1
cust_num (,35,30)
city (+1,1,16)
state (,17,2)
phone (+1,1,15) edit (xxx)bxxx-xxxx
 position (+2,1)
from customers
order by name
end-select
end-procedure ! main
begin-heading 3
 print $current-date (1,1) Edit 'DD-MON-YYYY'
 page-number (1,69) 'Page '
end-heading

Creating a Table of Contents Chapter 30

192 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Table of Contents Sample Program 2

The following program is also based on cust.sqr. It is similar to the previous program but declares two table
of contents levels. This program also creates headings and footings that are specific to the table of contents.
The FOR-TOCS argument of the BEGIN-HEADING and BEGIN-FOOTING commands enables you to
specify, by name, the table of contents to which the particular heading or footing section applies. So if the
program is generating multiple reports with multiple tables of contents, you can apply unique or common
headings and footings to different reports and tables of contents. The table of contents heading of this
program prints Table of Contents and the page number. The page numbers in the table of contents print as
roman numerals. The table of contents footing prints Company Confidential.

Chapter 30 Creating a Table of Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 193

begin-setup
 declare-report cust
 end-declare
 declare-toc cust_toc
 for-reports=(cust)
 dot-leader=yes
 indentation=3
 after-toc=after_toc
 before-page=before_page
 end-declare
 declare-variable
 integer #num_toc
 integer #num_page
 end-declare
end-setup
begin-program
 use-report cust
 do main
end-program
begin-procedure after_toc
 position (+1,1)
 print 'After TOC' () bold
 position (+1,1)
end-procedure
begin-procedure before_page
 position (+1,1)
 print 'Before Page' () bold
 position (+1,1)
end-procedure
begin-procedure main
begin-select
 print 'Customer Info' ()
 print '-' (+1,1,62) Fill
name (+1,1,25)
 toc-entry text = &name level = 1
cust_num (,35,30)
city (+1,1,16)
state (,17,2)
phone (+1,1,15) edit (xxx)bxxx-xxxx
 position (+2,1)
 do orders(&cust_num)
 position (+2,1)
from customers
order by name
end-select
end-procedure ! main
begin-procedure orders (#cust_num)
 let #any = 0
begin-select
 if not #any
 print 'Orders Booked' (+2,10)
 print '-------------' (+1,10)
 let #any = 1
 end-if
b.order_num
b.product_code
order_date (+1,10,20) Edit 'DD-MON-YYYY'
description (,+1,20)
 toc-entry text = &description level=2c.price * b.quantity
(,+1,13) Edit $$$$,$$0.99
from orders a, ordlines b, products c
where a.order_num = b.order_num
 and b.product_code = c.product_code
 and a.cust_num = #cust_num

Creating a Table of Contents Chapter 30

194 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

order by b.order_num, b.product_code
end-select
end-procedure ! orders
begin-footing 3
 for-tocs=(cust_toc)
 print 'Company Confidential' (1,1,0) center
print $current-date (1,1) Edit 'DD-MON-YYYY'
end-footing
begin-heading 3
 for-tocs=(cust_toc)
 print 'Table of Contents' (1,1) bold center
 let $page = roman(#page-count)
 print 'Page ' (1,69)
 print $page ()
end-heading
begin-heading 3
 print $current-date (1,1) Edit 'DD-MON-YYYY'
 page-number (1,69) 'Page '
end-heading

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 195

Symbols
-BURST

{xx} 173
P 173
S 173
T 173

_ character 29
- character 29
-DEBUG flag 136
-F command-line flag 159
-KEEP flag 59, 82, 158
-NOLIS command-line flag 158, 159
-PRINTER flags

EH 157, 168, 169, 170
HP 82, 90, 157
HT 90, 157, 168, 172
LP 89, 157
PS 59, 82, 90, 157
WP 90, 157
xx 158

-RS command-line flag 154
-RT command-line flag 154
-T command-line flag 135
$current-date

obtaining date values with 115
using with PRINT command 28

$old-locale reserved variable 125
$sql-error reserved variable 97
$sqr-locale reserved variable 125
$sqr-program reserved variable 97
$username reserved variable 97
! character 12

printing 12
\ character, in edit masks 121
& character 19
character 28
#DEBUG command 136
#ELSE compiler directive 136
#ENDIF compiler directive 136
#IF compiler directive 136
#IFDEF compiler directive 136
#IFNDEF compiler directive 136
#INCLUDE command 75
#page-count reserved variable 97
<APPLET> tags 172

A
AFTER-PAGE procedure 190
AFTER-TOC procedure 190
AFTER procedure

order of processing 33
using with ON-BREAK 29

ALIGN argument 183
ALTER-LOCALE command 124, 125
ALTER-PRINTER command 59

selecting fonts 85
API See See application programming interface

Application Engine 2
application programming interface

functions for calling SQR 128
invoking an SQR program using the SQR

API 127
invoking for an external application 130
SQR 127

argument files 163
creating from reports 165
using 163

arguments 163
command-line 162
passing 100, 188
used with ASK or INPUT command 163

arrays 48
creating 50
multiple 53
performance issues 143
sorting 143
three-dimensional 48

ASK command 163

B
background colors, HTML 170
background images, HTML 170
bar codes 75
BATCH-MODE argument 163
batch mode 165
bat files 165
bcl.a 128
bclw32.dll 127
BEFORE-PAGE procedure 190
BEFORE-TOC procedure 189
BEFORE procedure

order of processing 33
using with ON-BREAK 29

BEGIN-DOCUMENT command 61
BEGIN-FOOTING command 12, 192
BEGIN-HEADING command 12, 192
BEGIN-PROCEDURE command 16
BEGIN-PROGRAM command 6
BEGIN-SELECT command 16

HAVING clause 105
ORDER BY clause with 22

BEGIN-SQL paragraph 111
blank lines 61
bmp files 72
body, of SQR page 11
BORDER argument 183
BOTTOM-MARGIN argument 41
boxes, drawing 71
break logic 21, 22

-T command-line flag and 135
multiple breaks 24
nesting breaks 24
order of events 30
understanding 21

break procedures, with BEFORE and AFTER 29
break values, saving 34

Index

196 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

browser support 185
buffering

records 151
rows 151

bursting reports 173
business charts 77

C
C, extending SQR with 130
categories, grouping by in cross-tabular reports 51
CENTER argument, PRINT command 12, 86
CGI scripts

creating 187
publishing with 186

CHAR-WIDTH argument
DECLARE-LAYOUT command 85

CHAR-WIDTH argument, DECLARE-LAYOUT
command 41

character grid 7, 41, 59, 85
character size 86
charts

available types 77
business 77
creating 78
defining 81
passing data to 82
printing 81

CODE-PRINTER=HT 172, 182
CODE-PRINTER argument, PRINT command 89
CODE argument, PRINT command 89
colors, HTML 171
COLSPAN argument 183
columns

calculating totals 28
calculating totals with ON-BREAK 25
calling procedures before and after breaks 29
choosing not to print ON-BREAK 34
defining 58
nesting multiple 24
printing multiple 57
reprinting values on a new page 27
with multiple breaks 33

COLUMNS command 57, 58
column variables 19

changing the name 20
using in a condition 19

command-line flags 7
-F 159
-KEEP 158
-NOLIS 158, 159
-PRINTER:EH 157, 168
-PRINTER:HP 157
-PRINTER:HT 157, 168
-PRINTER:LP 157
-PRINTER:PS 157
-PRINTER:WP 157
-PRINTER:xx 158
-RS 154
-RT 154
-T 135
output files 157
syntax 162

command line
arguments 162, 164
reserved characters 164

special characters 164
SQR 127, 161

comments 12
COMMIT statement 113
compile time 155
compile time features 153
compiling SQR programs 150
CONCAT command 75
conditional processing 21
connectivity 7
counters 59
CREATE-ARRAY command 50
CREATE TABLE, SQL statement 111
cross-tabular reports

creating 47
grouping by categories in 51

cursor status, SQL 142

D
data

avoiding redundant 21
exporting 65
listing 15
passing to charts 82
printing 15
selecting from database 15, 16

DATA-ARRAY-COLUMN-COUNT argument,
PRINT-CHART command 82

DATA-ARRAY-COLUMN-LABELS argument,
PRINT-CHART command 82

DATA-ARRAY-ROW-COUNT argument,
PRINT-CHART command 82

DATA-ARRAY option, PRINT-CHART
command 82

database platforms supported 4
database server, running programs on 151
dateadd function 116
date arithmetic 115
date data type 115
datediff function 116
date edit masks

case sensitivity 121
table of 119
using 119

date formats, literal 117
DATE keyword 125
datenow function 116
dates 11

converting from strings 115, 118
converting to strings 115, 118
edit masks 119
entering with INPUT command 119
performing arithmetic with 115
printing 28
variables 121

datetostr function 51, 116, 118
date variables 28
DB2 161
debugging SQR programs

using #DEBUG 136
using compiler directives 136

decimal numbers, performance issues 149
declarations

adding with SETUP 39
understanding 39

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 197

DECLARE-CHART command
LEGEND-TITLE option 81
understanding 77

DECLARE-IMAGE command 72
DECLARE-LAYOUT command 40

CHAR-WIDTH argument 41, 85
defining page width with 59
LINE-HEIGHT argument 41, 85
MAX-COLUMNS argument 41
MAX-LINES argument 41
ORIENTATION argument 42
setting margins with 41, 70
setting paper size with 41

DECLARE-PRINTER command 89, 158
FOR-REPORTS option 159
selecting fonts 85
type option 159

DECLARE-REPORT command
PRINTER-TYPE option 158
using 158

DECLARE-TOC command 189
DECLARE-VARIABLE command 115, 121
demand paging 173
DISPLAY command 118
DO command 16
document markers 61, 75
document paragraph 61
DROP TABLE, SQL statement 111
dynamic SQL

checking syntax 96
performance issues 141
understanding 94

dynamic variables 95
in z/OS 95

E
edit masks 28, 119

and literal date formats 117
case sensitivity 121
default 123

ELSE command 29
ENCODE command 66
END-DOCUMENT command 61
END-FOOTING command 12
END-HEADING command 12
END-IF command 29
END-PROCEDURE command 16
END-PROGRAM command 6
END-SELECT command 16
enhanced HTML 169
eps files 72
error checking 96
error values, SQR 129
EVALUATE command 51, 91
event order, in ON-BREAK processing 30
exclamation mark 12

printing 12
export file, creating 66
exporting data 65
extufunc.c 134

F

FILL option, PRINT command 28, 70
flags See Also command-line flags
flat files

performance issues 147
sorting 147

FONT option, ALTER-PRINTER command 71
fonts

changing 70
defaults 85
for printer-independent reports 89
setting 85

footings 11
adding 12
adding comments 12
adding page numbers 13
defining for multiple reports 110
designating number of lines for 12
indicating the print position 13
sample program 11

FOOTING section 12
FOR-REPORTS option

BEGIN-FOOTING command 110
BEGIN-HEADING command 110
DECLARE-PRINTER command 159

form-feed characters 9
FORMFEED argument 67
form letters

creating 61
sample program 61

FRAME file 174
FullHTML, enhanced HTML parameter 169
functions 103

application programming interface 128
user 130, 131, 134

G
gif files 72
GIF format 180
global procedures 99
global variables 100
graphical reports, creating 82
GRAPHIC command 71
GRAPHIC FONT command 89
graphics

adding 70
using 69

grid 7, 41, 59
for positioning text 85

groups
creating new with break logic 21
inserting lines between 23
starting new 22

H
having clause, BEGIN-SELECT command 105
headings 11

adding 12
defining for multiple reports 110
designating number of lines for 12
HTML 174, 178
reprinting on a new page 27
sample program 11

Index

198 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

HEADING section 12, 16
highlighting, HTML text 174, 178
HORZ-LINE argument, GRAPHIC command 71
hpgl files 72
HP LaserJet printers 59
HTML

adding your own tags 182
background colors 170
background images 170
bursting files 173
centering 167
colors 171
enhanced 169
extensions 172
font sizing 167
font styles 167
formatting paragraphs 181
forms 186
FRAME construct 185
headings 174
highlighting 174
images 167, 180
links 171, 174
lists 174, 180
modifying existing SQR program for 182
paragraph formatting 174
procedures 175
producing output 168, 172
reserved characters 172
setting attributes 170
SQR features supported 167
tables 174
tags 168
testing output 174
text colors 171
titles 170

html_br HTML procedure 181
html_hr HTML procedure 182
html_img HTML procedure 180
html_nobr HTML procedure 182
html_on HTML procedure 175
html_p HTML procedure 181
html_set_body_attributes HTML procedure

169, 173
html_set_head_tags HTML procedure 169, 173
HTML.INC 169
hyphens, using with commands 29

I
if-then-else logic 29
IF command 29
IMAGE-SIZE argument, PRINT-IMAGE

command 73
images

HTML 180
sharing 72
supported file formats 72

implementation codes, adding to ufunc.c 132
Informix 161
InitSQRExtension() function 134
INPUT command 163

and dates 119
INSERT, SQL statement 111
installing SQR 2, 4
integers, performance issues 149

J
JavaScript tags 172
joins

defining 104
simplifying 140

jpeg files 72
JPEG format 180

L
landscape orientation 42
LAST-PAGE command 13
LEFT-MARGIN argument 41
LEGEND-TITLE option, DECLARE-CHART

command 81
LET command 29

using functions in 131
using to create export file 66

LEVEL argument, using with ON-BREAK 24, 30
libsti.a 128
libsti32.dll 127
LINE-HEIGHT argument, DECLARE-LAYOUT

command 41, 85
line numbers 11
lines

adding 70
blank 61
specifying thickness 71

link anchors 179
links 171, 174, 179
lis files 9, 72
listing data, sample program 15
lists, HTML 174, 180
literal date formats 117
literal text 6
LOAD-LOOKUP command 140
loadall.sqr, loading sample database with 5
locales

default 124
modifying preferences 125
restoring defaults 125
selecting 123
switching 124
System 124
understanding 123

local procedures 99
local variables 99
logos

adding 70, 72
sharing 72
supported file formats 72

LOOKUP command 140

M
machine floating point numbers, performance

issues 149
mailing labels 57

printing 57
running the program for printing 59
sample program 57

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 199

makefile file 128
margins 41, 70
margins, setting with DECLARE-LAYOUT

command 40
master and detail reports 43

correlating subqueries in 45
one-to-many relationships 43
sample program 43

MONEY keyword 125
MOVE command 118
multiple reports, creating 149
myreport.sqr 174

N
national language support 123

for date edit masks 121
NEED qualifier, using with ON-BREAK 27
NEVER qualifier, using with ON-BREAK 34
NEW-PAGE command 67
NEXT-COLUMN command 57
NEXT-LISTING command 28
NLS See national language support
NO-ADVANCE option 59
NUMBER keyword 125
numeric variables

and ON-BREAK 36
understanding 28

O
ODBC 161
ON-BREAK 21

and WRAP argument 33
BEFORE and AFTER procedures 29
calculating column totals 25
choosing not to print columns 34
controlling page breaks 25
controlling page breaks with multiple

columns 33
LEVEL argument 24, 30
limitations 36
maximum levels 37
NEED qualifier 27
NEVER qualifier 34
numeric variables and 36
order of events 30
PRINT command 22
reprinting column values on a new page 27
reprinting headings on a new page 27
SAVE qualifier 34
SKIPLINES qualifier 23, 27

one-to-many relationships, in master and detail
reports 43

Oracle 161
ORDER BY clause, with BEGIN-SELECT

command 22
ORIENTATION argument 42
output

file names 8
files 110
file types 157
printer-independent files 72
printer-specific files 72

types available in SQR 1
viewing SQR 8

P
PAGE-NUMBER command 13
page body 11
page breaks

controlling with multiple ON-BREAK
columns 33

controlling with ON-BREAK 25
handling 27
preventing 33

page footings 11
adding 12
adding comments 12
adding page numbers 13
indicating the print position 13
sample program 11

page headings 11
adding 12
sample program 11

page layout
overriding the defaults 41
setting with DECLARE-LAYOUT command

40
page numbers 11, 13
page orientation 42
page setup 11
paper size, setting with DECLARE-LAYOUT

command 40
paragraphs

formatting with HTML 174, 181
select 16, 17

performance issues 139
POINT-SIZE option, ALTER-PRINTER

command 71
portrait orientation 42
position, print 7, 13, 17, 41
POSITION command 17
positioning objects, using HTML procedures 176
PostScript printers 59
PRINT-BAR-CODE command 75
PRINT-CHART command 77, 81
PRINT-DIRECT command 89
PRINT-IMAGE command 72, 180
PRINT command 6, 12, 13, 118

CENTER argument 86
choosing not to print ON-BREAK columns

34
FILL option 28, 70
implied in select paragraphs 17
ON-BREAK option with 22
using with $current-date 28
WRAP argument 86, 88

PRINTER-DEINIT command 89
printer-independent output files 72
printer-independent reports

commands to avoid in 89
understanding 89

PRINTER-INIT command 89
printer-specific output files 72
PRINTER-TYPE option 158
printers 59

selecting at runtime 89, 90
printing

Index

200 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

data, sample program for 15
DECLARE-PRINTER command 158
specifying output file types 157
text strings 6

procedures 99
arguments 100
calling before and after column breaks 29
global 99
local 99
naming 29
recursive 146

Process Scheduler 2
program output

output files 110
programs

creating 7
running 7

PROGRAM section 6
pssqr.ini 117, 124

modifying with ALTER-LOCALE command
125

Processing-Limits section 150
publishing

automated 185
reports 184
using CGI scripts 186

Q
queries

correlating subqueries 45
detail 43
master 43
nested 43

QuickSort algorithm 144

R
records

buffering 151
displaying in tables 177
performance issues 151

recursive procedures 146
relinking SQR 133
report dates 11
reports

bursting 173
cross-tabular 47
graphical 82
master and detail 43
multiple 107, 149
printer-independent 89
publishing 184
sample program for creating multiple 107
viewing published 185

report titles 11
reserved characters

HTML 172
using on command line 164

reserved variables 28, 97, 100
RIGHT-MARGIN argument 41
rows

buffering 151
defining 58

performance issues 151
running SQR programs

in Microsoft Windows 7
in UNIX/Linux 7

runtime 155
arguments 163
features 153
files 154

S
sample database, setting up 5
sample programs 1

locating 4
reviewing results 4

SAVE qualifier, using with ON-BREAK 34
SAVE variables 33
script files 165
selecting data 15
select paragraphs

creating 16
defining 16
indentation 17
naming columns 17
simplifying 139
syntax 17

SETUP section 39
commands used in 39
creating 39
understanding 39
with multiple reports 110

shell scripts 165
SHOW command 118
SKIPLINES qualifier 59

using 33
using with ON-BREAK 23, 27

SOURCE option, PRINT-IMAGE command 72
spf files 9, 72, 82, 157, 158, 159
SPF Viewer 8
spreadsheets, exporting to 65
SQL 4

COMMIT statement 113
CREATE TABLE statement 111
cursor status 142
DELETE statement 96
DROP TABLE statement 111
dynamic 94, 141
entering with BEGIN-SQL paragraph 111
error checking 96
INSERT statement 96, 111
SELECT statement 17, 96
statements, and SQR performance 139
substitution variables 97
UPDATE statement 96, 111
using in SQR 111
variables 93

SQR
API 127
calling from another application 127
command-line arguments 162
command line 127, 161
compiling programs 154
creating programs 7
designating print position 13
error values 129
extending with user functions 130

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 201

functions 103
HTML support 167
if-then-else logic 29
implementation 1
installing 2, 4
integrating third-party libraries with 130
invoking using the SQR API 127
numerics 149
output types 1
overview 1
portable file format 9, 82
programming language 1
relinking 133
running programs 154
sample programs 1, 4
SQL statements in 111
testing programs 135
viewing output 8

SQR_DB_DATE_FORMAT 117
sqr.a 128
sqr.lib 128
sqrapi.h 127
sqrend 128
SQR executable 1, 2
SQR Execute 1, 150, 155
sqrext.dll 134
sqrext.mak 134
sqrmake file 128
SQR Print 1, 158
SQR PRINT, with CODE-PRINTER=HT 172
SQR Viewer 4, 158
sqrw.dll 127, 134
SQRW executable 1, 2, 7
sqrwin.lib 127
sqrwt.dll 134
sqt files 154
STATIC keyword 131
stimages.dll 127
STRING command 66
strings

converting from dates 118
converting to dates 118

string variables 28
strtodate function 116, 118
subqueries, correlating 45
substitution variables 97
subtotals

calculating for ON-BREAK column 25
printing 21

Sybase 161
SYMBOL-SET argument, ALTER-PRINTER

command 89
syntax conventions 4
System locale 124

T
tab-delimited file 65
table of contents

adding entries 190
defining 189

tables
displaying records in 177
using multiple 43
with HTML 174

tabular reports, sample program 69

temporary database tables
alternatives to 143
performance issues 143

testing SQR programs 135
text

highlighting with HTML 178
literal 6
positioning 85
printing strings 6
specifying colors in HTML 171

text editors 7
three-dimensional arrays 48
times, printing 28
titles 11
titles, HTML 170
TOC-ENTRY command 190
TOP-MARGIN argument 41
totals

calculating 28
calculating for ON-BREAK column 25

tuning issues 139
type option

DECLARE-PRINTER command 159
PRINT-IMAGE command 72

U
ufunc.c

adding an implementation code to 132
adding user-defined functions to 130
adding user function prototypes to 131
understanding 131
USERFUNCS table in 131
using in Windows 134
using to invoke an external application API

130
underscores, using with procedure and variable

names 29
Unicode 147
UPDATE, SQL statement 111
USE-PRINTER-TYPE command 89, 158
USERFUNCS table, adding entries to 131
user functions 131

adding prototype 131
adding to ufunc.c 130
implementing in Microsoft Windows 134

V
variables

adding nonalphabetical and nonnumeric
characters 66

column 19
conditional processing of 21
date 28, 121
dynamic 95
for positioning 61
global 100
global versus local 137
initializing 29
local 99
misspelling names 137
naming 29
numeric 28

Index

202 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

numeric and ON-BREAK 36
predefined 28
reserved 28, 97, 100
string 28
substitution 97
understanding 28
using in SQL 93

W
white space, adding 21
WIDTH argument 183
word processing files, exporting to 65
WRAP argument

and ON-BREAK 33
PRINT command 86, 88

Z
z/OS, dynamic variables in 95

	Enterprise PeopleTools 8.51 PeopleBook: SQR for PeopleSoft Developers
	Copyright
	Contents
	Preface: SQR for PeopleSoft Developers Preface
	SQR for PeopleSoft Developers
	PeopleBooks and the PeopleSoft Online Library

	Chapter 1: Getting Started with SQR for PeopleSoft
	SQR for PeopleSoft Overview
	SQR for PeopleSoft Implementation
	Other Sources of Information

	Chapter 2: Introducing the Sample SQR Program
	Using with This Guide
	Setting Up the Sample Database
	Considerations for DBX
	Understanding the Sample Program for Printing a Text String
	Creating and Running a Sample SQR Program
	Creating an SQR Program
	Running an SQR Program

	Viewing SQR Output

	Chapter 3: Creating Headings and Footings
	Understanding SQR Pages
	Creating Page Headings and Footings
	Understanding the Heading and Footing Code Example
	Adding Page Headings
	Adding Page Footings

	Chapter 4: Selecting Data from the Database
	Understanding the Sample Program for Listing and Printing Data
	Creating SQR Select Paragraphs

	Chapter 5: Using Column Variables
	Using a Column Variable in a Condition
	Changing the Column Variable Name

	Chapter 6: Using Break Logic
	Understanding Break Logic
	Using ON-BREAK
	Skipping Lines Between Groups
	Arranging Multiple Break Columns
	Using Break Processing Enhancements
	Controlling Page Breaks and Calculating Subtotals and Totals
	Handling Page Breaks
	Printing the Date
	Obtaining Totals
	Using Hyphens and Underscores

	Setting Break Procedures with BEFORE and AFTER
	Understanding the Order of Events

	Controlling Page Breaks with Multiple ON-BREAK Columns
	Saving a Value When a Break Occurs
	Using ON-BREAK on a Hidden Column
	Performing Break Processing on Numeric Values

	Chapter 7: Adding Declarations Using the SETUP Section
	Understanding the SETUP Section
	Creating the SETUP Section
	Using the DECLARE-LAYOUT Command
	Sample SETUP Program
	Defining the SQR Page Layout

	Overriding the Default Settings
	Declaring the Page Orientation

	Chapter 8: Creating Master and Detail Reports
	Understanding Master and Detail Reports
	Understanding the Sample Program for Master and Detail Reports
	Correlating Subqueries
	Sample Program Output

	Chapter 9: Creating Cross-Tabular Reports
	Understanding Cross-Tabular Reports
	Using an Array
	Creating an Array
	Grouping by Category
	Using Multiple Arrays

	Chapter 10: Printing Mailing Labels
	Understanding Mailing Label Printing
	Understanding the Sample Program for Printing Mailing Labels
	Defining Columns and Rows
	Running the Print Mailing Labels Program

	Chapter 11: Creating Form Letters
	Understanding the DOCUMENT Paragraph
	Understanding the Sample Program for Form Letters

	Chapter 12: Exporting Data to Other Applications
	Understanding the Sample Program for Exporting Data
	Creating an Export File

	Chapter 13: Using Graphics
	Understanding the Sample Program for Simple Tabular Reports
	Adding Graphics
	Sharing Images Among Reports
	Printing Bar Codes

	Chapter 14: Using Business Charts
	Understanding Business Charts
	Creating a Chart
	Defining a Chart
	Printing a Chart
	Running the Program to Create a Graphical Report
	Passing Data to the Chart

	Chapter 15: Changing Fonts
	Setting Fonts
	Positioning Text
	Using the WRAP Option

	Chapter 16: Writing Printer-Independent Reports
	Understanding Printer-Independent Reports
	Reviewing the Sample Program for Selecting the Printer Type at Runtime

	Chapter 17: Using Dynamic SQL and Error Checking
	Using Variables in SQL
	Using Dynamic SQL
	Using SQL Error Checking
	Using SQL and Substitution Variables

	Chapter 18: Using Procedures and Local Variables and Passing Arguments
	Using Procedures
	Using Local Variables
	Passing Arguments

	Chapter 19: Creating Multiple Reports from One Program
	Understanding How to Create Multiple Reports
	Understanding the Sample Program for Multiple Reports
	Defining Heading and Footing Sections
	Defining Program Output

	Chapter 20: Using Additional SQL Statements with SQR
	Using SQL Statements in SQR
	Using BEGIN-SQL

	Chapter 21: Working with Dates
	Understanding Dates and Date Arithmetic
	Using Literal Date Formats
	Using String-to-Date Conversions
	Using Date-to-String Conversions
	Using Dates with the INPUT Command
	Using Date Edit Masks
	Declaring Date Variables

	Chapter 22: Using National Language Support
	Understanding Locales
	Selecting Locales
	Defining a Default Locale
	Switching Locales
	Modifying Locale Preferences
	Specifying NUMBER, MONEY, and DATE Keywords

	Chapter 23: Using Interoperability Features
	Calling SQR from Another Application
	Invoking an SQR Program by Using the SQR API
	Invoking an External Application API by Using the UFUNC.C Interface
	Adding a User Function
	Understanding the UFUNC.C File
	Adding a Function Prototype
	Adding an Entry to the USERFUNCS Table
	Adding an Implementation Code
	Relinking SQR

	Using UFUNC in Microsoft Windows
	Implementing New User Functions in Microsoft Windows

	Chapter 24: Testing and Debugging
	Using the Test Feature
	Using the #DEBUG Command
	Using Compiler Directives for Debugging
	Avoiding Common Programming Errors

	Chapter 25: Increasing Performance and Tuning
	Understanding SQR Performance and SQL Statements
	Simplifying a Complex Select Paragraph
	Using LOAD-LOOKUP to Simplify Joins
	Improving SQL Performance with Dynamic SQL
	Examining SQL Cursor Status
	Avoiding Temporary Database Tables
	Understanding Temporary Database Tables
	Using and Sorting Arrays
	Using and Sorting Flat Files

	Creating Multiple Reports in One Pass
	Tuning SQR Numerics
	Compiling SQR Programs and Using SQR Execute
	Setting Processing Limits
	Buffering Fetched Rows
	Running Programs on the Database Server

	Chapter 26: Compiling Programs and Using SQR Execute
	Understanding Compile Features
	Compiling and Running an SQR Program

	Chapter 27: Printing with SQR
	Specifying Output File Types by Using SQR Command-Line Flags
	Using the DECLARE-PRINTER Command

	Chapter 28: Using the SQR Command Line
	Understanding the SQR Command Line
	Specifying Command-Line Arguments
	Understanding Command-Line Arguments
	Retrieving the Arguments
	Specifying Arguments and Argument Files
	Using an Argument File
	Using Other Approaches to Pass Command-Line Arguments
	Using Reserved Characters
	Creating an Argument File from a Report

	Using Batch Mode

	Chapter 29: Generating and Publishing HTML from an SQR Program
	Understanding SQR Capabilities That Are Available with HTML
	Generating HTML Output
	Understanding HTML Output
	Producing HTML Output
	Using -PRINTER:EH
	Setting HTML Attributes Under -PRINTER:EH
	Using -PRINTER:HT
	Bursting Reports
	Setting Attributes with HTML Procedures
	Using Additional HTML Procedures
	Setting Output File Types
	Testing HTML Output

	Using HTML Procedures in an SQR Program
	Understanding HTML Procedures
	Using HTML Procedures
	Positioning Objects
	Displaying Records in Tables
	Creating Headings
	Highlighting Text
	Creating Links
	Including Images
	Displaying Text in Lists
	Formatting Paragraphs
	Incorporating Your Own HTML Tags

	Modifying an Existing SQR Program for HTML
	Publishing a Report
	Publishing a Report
	Supporting Older Browsers
	Viewing a Published Report
	Publishing by Using an Automated Process
	Publishing by Using a CGI Script

	Chapter 30: Creating a Table of Contents
	Using the DECLARE-TOC Command
	Using the TOC-ENTRY Command
	Adding a Table of Contents to the CUST.SQR Sample Program

	Index

