Managing System Information, Processes, and Performance in Oracle® Solaris 11.1
Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est concédé sous licence au Gouvernement des États-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l'utilise pour le compte du Gouvernement des États-Unis, la notice suivante s'applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour ce type d'applications.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée d'Unix System Laboratories, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée d'Open Group.
Contents

Preface ... 7

1 Managing System Information (Tasks) .. 11
What’s New in Displaying and Changing System Information ... 11
 Enhancements to hostname and domainname Commands ... 11
Displaying System Information ... 12
 Displaying System Information (Task Map) .. 12
 Commands That Are Used to Display System Information .. 13
 ▼ How to Display a System’s Release Information ... 13
 ▼ How to Display the Date and Time ... 14
 ▼ How to Display a System’s Host ID Number .. 14
 Displaying a System’s Architecture and Processor Type ... 14
 ▼ How to Display a System’s Product Name .. 15
 ▼ How to Display a System’s Installed Memory .. 16
 ▼ How to Display Default and Customized Property Values for a Device 16
 ▼ How to Display System Diagnostic Information ... 20
 Identifying Information About Chip Multithreading Features .. 22
 ▼ How to Display a System’s Physical Processor Type .. 22
 ▼ How to Display a System’s Virtual Processor Type .. 23
Changing System Information .. 24
 Changing System Information (Task Map) .. 24
 ▼ How to Manually Set a System’s Date and Time ... 24
 ▼ How to Set Up a Message-Of-The-Day ... 25
 ▼ How to Change a System’s Identity .. 26

2 Managing System Processes (Tasks) ... 27
What’s New in Managing System Processes ... 27
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo System Processes</td>
<td>27</td>
</tr>
<tr>
<td>Managing System Processes</td>
<td>28</td>
</tr>
<tr>
<td>Commands for Managing System Processes</td>
<td>28</td>
</tr>
<tr>
<td>Managing Process Class Information</td>
<td>38</td>
</tr>
<tr>
<td>Changing the Scheduling Priority of Processes (priocntl)</td>
<td>39</td>
</tr>
<tr>
<td>▼ How to Display Basic Information About Process Classes (priocntl)</td>
<td>39</td>
</tr>
<tr>
<td>▼ How to Display the Global Priority of a Process</td>
<td>40</td>
</tr>
<tr>
<td>▼ How to Designate a Process Priority (priocntl)</td>
<td>41</td>
</tr>
<tr>
<td>▼ How to Change Scheduling Parameters of a Timesharing Process (priocntl)</td>
<td>42</td>
</tr>
<tr>
<td>▼ How to Change the Class of a Process (priocntl)</td>
<td>43</td>
</tr>
<tr>
<td>▼ How to Change the Priority of a Timesharing Process (nice)</td>
<td>43</td>
</tr>
<tr>
<td>▼ How to Change the Priority of a Process (nice)</td>
<td>44</td>
</tr>
<tr>
<td>Troubleshooting Problems With System Processes</td>
<td>45</td>
</tr>
<tr>
<td>3 Monitoring System Performance (Tasks)</td>
<td>47</td>
</tr>
<tr>
<td>Where to Find System Performance Tasks</td>
<td>47</td>
</tr>
<tr>
<td>System Performance and System Resources</td>
<td>48</td>
</tr>
<tr>
<td>Processes and System Performance</td>
<td>48</td>
</tr>
<tr>
<td>About Monitoring System Performance</td>
<td>50</td>
</tr>
<tr>
<td>Monitoring Tools</td>
<td>50</td>
</tr>
<tr>
<td>Displaying System Performance Information</td>
<td>51</td>
</tr>
<tr>
<td>Displaying System Performance Information (Task Map)</td>
<td>51</td>
</tr>
<tr>
<td>Displaying Virtual Memory Statistics (vmstat)</td>
<td>52</td>
</tr>
<tr>
<td>Displaying Disk Utilization Information (iostat)</td>
<td>55</td>
</tr>
<tr>
<td>Displaying Disk Space Statistics (df)</td>
<td>58</td>
</tr>
<tr>
<td>Monitoring System Activities</td>
<td>59</td>
</tr>
<tr>
<td>Monitoring System Activities (Task Map)</td>
<td>60</td>
</tr>
<tr>
<td>Monitoring System Activities (sar)</td>
<td>61</td>
</tr>
<tr>
<td>Collecting System Activity Data Automatically (sar)</td>
<td>77</td>
</tr>
<tr>
<td>4 Scheduling System Tasks (Tasks)</td>
<td>81</td>
</tr>
<tr>
<td>Ways to Automatically Executing System Tasks</td>
<td>81</td>
</tr>
<tr>
<td>For Scheduling Repetitive Jobs: crontab</td>
<td>82</td>
</tr>
</tbody>
</table>
For Scheduling a Single Job: \texttt{at} ... 82
Scheduling System Tasks .. 83
Creating and Editing \texttt{crontab} Files (Task Map) ... 83
Scheduling a Repetitive System Task (\texttt{cron}) ... 84
Creating and Editing \texttt{crontab} Files .. 86
Displaying \texttt{crontab} Files ... 88
Removing \texttt{crontab} Files ... 89
Controlling Access to the \texttt{crontab} Command .. 90
Scheduling Tasks by Using the \texttt{at} Command ... 93
Using the \texttt{at} Command (Task Map) ... 93
Scheduling a Single System Task (\texttt{at}) ... 94

5 Managing the System Console, Terminal Devices, and Power Services (Tasks) 101
What’s New in Managing the System Console, Terminal Devices, and Power Services ... 101
Changes to How System Power Services Are Managed 101
Managing System Console and Locally Connected Terminal Devices 102
SMF Services That Manage the System Console and Locally Connected Terminal Devices ... 102
Managing System Power Services .. 105
Troubleshooting System Power Problems ... 108

Index ... 109
Preface

Managing System Information, Processes and Performance in Oracle Solaris 11.1 is part of a documentation set that provides a significant portion of the Oracle Solaris system administration information. This guide contains information for both SPARC based and x86 based systems.

This book assumes you have completed the following tasks:

- Installed the Oracle Solaris software
- Set up all the networking software that you plan to use

For Oracle Solaris, new features that might be interesting to system administrators are covered in sections called What's New in ... ? in the appropriate chapters.

Note – This Oracle Solaris release supports systems that use the SPARC and x86 families of processor architectures. The supported systems appear in the Oracle Solaris OS: Hardware Compatibility Lists. This document cites any implementation differences between the platform types.

In this document, these x86 related terms mean the following:

- x86 refers to the larger family of 64-bit and 32-bit x86 compatible products.
- x64 relates specifically to 64-bit x86 compatible CPUs.
- "32-bit x86" points out specific 32-bit information about x86 based systems.

For supported systems, see the Oracle Solaris OS: Hardware Compatibility Lists.

Who Should Use This Book

This book is intended for anyone responsible for administering one or more systems running the Oracle Solaris 11 release. To use this book, you should have 1–2 years of UNIX system administration experience. Attending UNIX system administration training courses might be helpful.
Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories, and onscreen computer output</td>
<td>Edit your .login file. Use ls -a to list all files. machine_name% you have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with onscreen computer output</td>
<td>machine_name% su</td>
</tr>
<tr>
<td>aabbcc123</td>
<td>Placeholder: replace with a real name or value</td>
<td>Password:</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new terms, and terms to be emphasized</td>
<td>Read Chapter 6 in the User’s Guide. A cache is a copy that is stored locally. Do not save the file. Note: Some emphasized items appear bold online.</td>
</tr>
</tbody>
</table>

Shell Prompts in Command Examples

The following table shows the default UNIX system prompt and superuser prompt for shells that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed in command examples varies, depending on the Oracle Solaris release.

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bash shell, Korn shell, and Bourne shell</td>
<td>$</td>
</tr>
<tr>
<td>Shell</td>
<td>Prompt</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>Bash shell, Korn shell, and Bourne shell for superuser</td>
<td>#</td>
</tr>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell for superuser</td>
<td>machine_name#</td>
</tr>
</tbody>
</table>
Managing System Information (Tasks)

This chapter describes the tasks that are required to display and change the most common system information.

This chapter does not cover information about resource management that enables you to allocate, monitor, and control system resources in a flexible way. For information about managing system resources with resource management, see Chapter 1, “Introduction to Resource Management,” in Oracle Solaris Administration: Oracle Solaris Zones, Oracle Solaris 10 Zones, and Resource Management.

This is a list of the information that is in this chapter:

- “What’s New in Displaying and Changing System Information” on page 11
- “Displaying System Information” on page 12
- “Changing System Information” on page 24

What’s New in Displaying and Changing System Information

Enhancements to hostname and domainname Commands

In this release, the hostname and domainname commands have been enhanced to enable you to permanently set hostname and domainname more easily. When you use these commands, the corresponding SMF properties and associated SMF service, are also automatically updated.

For more information, see “How to Change a System’s Identity” on page 26 and the hostname(1), domainname(1M), and nodename(4) man pages.
Displaying System Information

The following table describes commands that enable you to display general system information.

Displaying System Information (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display a system’s release information.</td>
<td>Display the contents of the /etc/release file to identify the Oracle Solaris release version.</td>
<td>“How to Display a System’s Release Information” on page 13</td>
</tr>
<tr>
<td>Display a system’s date and time.</td>
<td>Use the date command to display your system’s date and time.</td>
<td>“How to Display the Date and Time” on page 14</td>
</tr>
<tr>
<td>Display a system’s host ID number.</td>
<td>Use the host id command to display your system’s host id.</td>
<td>“How to Display a System’s Host ID Number” on page 14</td>
</tr>
<tr>
<td>Display a system’s architecture or processor type.</td>
<td>Use the isainfo command to display a system’s architecture type. Use the isalist command to display a system’s processor type.</td>
<td>“Displaying a System’s Architecture and Processor Type” on page 14</td>
</tr>
<tr>
<td>Display a system’s product name.</td>
<td>You can use the prtconf -b command to display the product name of a system.</td>
<td>“How to Display a System’s Product Name” on page 15</td>
</tr>
<tr>
<td>Display a system’s installed memory.</td>
<td>Use the prtconf command to display information about your system’s installed memory.</td>
<td>“How to Display a System’s Installed Memory” on page 16</td>
</tr>
<tr>
<td>Display the original and default values for a device.</td>
<td>Use the prtconf command with the -u option to display both the default and updated property values for a device.</td>
<td>“How to Display Default and Customized Property Values for a Device” on page 16</td>
</tr>
<tr>
<td>Display a system’s configuration and diagnostic information.</td>
<td>Use the prtdiag command with the appropriate option to display a system’s configuration and diagnostic information.</td>
<td>“How to Display System Diagnostic Information” on page 20</td>
</tr>
</tbody>
</table>
Displaying System Information

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display a system’s physical and</td>
<td>Use the <code>psrinfo -p</code> command to list the total number of physical processors</td>
<td>“How to Display a System’s Physical Processor Type” on page 22</td>
</tr>
<tr>
<td>virtual processor information.</td>
<td>on a system.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use the <code>psrinfo -pv</code> command to list all physical processors on a system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and the virtual processors that are associated with each physical processor.</td>
<td></td>
</tr>
</tbody>
</table>

Commands That Are Used to Display System Information

TABLE 1–1 Commands for Displaying System Information

<table>
<thead>
<tr>
<th>Command</th>
<th>System Information Displayed</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>Date and time</td>
<td>date(1)</td>
</tr>
<tr>
<td>hostid</td>
<td>Host ID number</td>
<td>hostid(1)</td>
</tr>
<tr>
<td>isainfo</td>
<td>The number of bits supported by native applications on the running system, which can</td>
<td>isainfo(1)</td>
</tr>
<tr>
<td></td>
<td>be passed as a token to scripts</td>
<td></td>
</tr>
<tr>
<td>isalist</td>
<td>Processor type</td>
<td>isalist(1)</td>
</tr>
<tr>
<td>prtconf</td>
<td>System configuration information, installed memory, device properties, and product name</td>
<td>prtconf(1M)</td>
</tr>
<tr>
<td>prtdiag</td>
<td>System configuration and diagnostic information, including any failed field replacement</td>
<td>prtdiag(1M)</td>
</tr>
<tr>
<td></td>
<td>units (FRUs)</td>
<td></td>
</tr>
<tr>
<td>psrinfo</td>
<td>Processor information</td>
<td>psrinfo(1M)</td>
</tr>
<tr>
<td>uname</td>
<td>Operating system name, release, version, node name, hardware name, and processor type</td>
<td>uname(1)</td>
</tr>
</tbody>
</table>

How to Display a System’s Release Information

- Display the contents of the `/etc/release` file to identify your release version.

  ```bash
  $ cat /etc/release
  ```
How to Display the Date and Time

To display the current date and time according to your system clock, use the `date` command.

Example 1–1 Displaying the Date and Time

The following example shows sample output from the `date` command.

```
$ date
Fri Jun 1 16:07:44 MDT 2012
$ 
```

How to Display a System's Host ID Number

To display the host ID number in a numeric (hexadecimal) format, use the `hostid` command.

Example 1–2 Displaying a System's Host ID Number

The following example shows sample output from the `hostid` command.

```
$ hostid
80a5d34c
```

Displaying a System's Architecture and Processor Type

The following examples show the output of the `isainfo` and `isalist` commands when run on x86 and SPARC based systems.

Example 1–3 Displaying a System's Architecture Type

The following examples show how to display the architecture type and names of the native instruction sets for applications that are supported by the current operating system.

The following output is from an x86 based system:

```
$ isainfo
amd64 i386
```

The following output is from a SPARC based system:

```
$ isainfo
sparcv9 sparc
```

The `isainfo -v` command displays 32-bit and 64-bit application support. For example, the following output if from a SPARC based system:
EXAMPLE 1–3 Displaying a System's Architecture Type (Continued)

$ isainfo -v
64-bit sparcv9 applications
 asi_blk_init
32-bit sparc applications
 asi_blk_init v8plus div32 mul32
#

This example shows the output of the isainfo -v command from an x86 based system:

$ isainfo -v
64-bit amd64 applications
 sse4.1 ssse3 ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu
32-bit i386 applications
 sse4.1 ssse3 ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu

See the isainfo(1) man page.

EXAMPLE 1–4 Displaying a System's Processor Type

The following example shows how to display information about an x86 based system's processor type.

$ isalist
pentium_pro+mmx pentium_pro pentium+mmx pentium i486 i386 186

The following example shows how to display information about a SPARC based system's processor type.

$ isalist
sparcv9 sparcv8plus sparcv8 sparcv8-fsmuld sparcv7 sparc sparcv9+vis sparcv9+vis2 \ sparcv8plus+vis sparcv8plus+vis2

See the isalist(1) man page.

▼ How to Display a System's Product Name

The -b option to the prtconf command enables you to display the product name of a system. For more information, see the prtconf(1M) man page.

● To display the product name for your system, use the prtconf command with the -b option, as follows:
 $ prtconf -b

Example 1–5 SPARC: Displaying a System's Product Name

This example shows sample output from the prtconf -b command on a SPARC based system.
$ prtconf -b
name: ORCL,SPARC-T4-2
banner-name: SPARC T4-2
compatible: 'sun4v'
$

This example shows sample output from the `prtconf -vb` command on a SPARC based system.

$ prtconf -vb
name: ORCL,SPARC-T3-4
banner-name: SPARC T3-4
compatible: 'sun4v'
idprom: 01840014.4fa02d28.00000000.a02d28de.00000000.00000000.00000000.00000000
openprom model: SUNW,4.33.0.b
openprom version: 'OBP 4.33.0.b 2011/05/16 16:26'

▼ How to Display a System’s Installed Memory

● To display the amount of memory that is installed on your system, use the `prtconf` command.

Example 1–6 Displaying a System’s Installed Memory

The following example shows sample output from the `prtconf` command. The `grep Memory` command selects output from the `prtconf` command to display memory information only.

$ prtconf | grep Memory
Memory size: 523776 Megabytes

▼ How to Display Default and Customized Property Values for a Device

To display both the default and customized property values for devices, use the `prtconf` command with the `-u` option. For more information about this option, see the `prtconf(1M)` man page.

● Display the default and customized properties of a `driver.conf` file.

 $ prtconf -u

 The output of the `prtconf -u` command displays the default and customized properties for all of the drivers that are on the system.

Example 1–7 SPARC: Displaying Default and Custom Device Properties

This example shows the default and custom properties for the `bge.conf` file. Note that vendor-provided configuration files are located in the `/kernel` and `/platform` directories, while the corresponding modified driver configuration files are located in the `/etc/driver/drv` directory.
prtconf -u
System Configuration: Oracle Corporation sun4v
Memory size: 52376 Megabytes
System Peripherals (Software Nodes):

ORCL,SPARC-T3-4
 scsi_vhci, instance #0
 disk, instance #4
 disk, instance #5
 disk, instance #6
 disk, instance #8
 disk, instance #9
 disk, instance #10
 disk, instance #11
 disk, instance #12
packages (driver not attached)
 SUNW,builtin-drivers (driver not attached)
 deblocker (driver not attached)
 disk-label (driver not attached)
 terminal-emulator (driver not attached)
 dropins (driver not attached)
 SUNW,asr (driver not attached)
 kbd-translator (driver not attached)
 obp-tftp (driver not attached)
 zfs-file-system (driver not attached)
 hsfs-file-system (driver not attached)
 chosen (driver not attached)
 openprom (driver not attached)
 client-services (driver not attached)
 options, instance #0
 aliases (driver not attached)
 memory (driver not attached)
 virtual-memory (driver not attached)
 iscsi-hba (driver not attached)
virtual-devices, instance #0
 disk, instance #0 (driver not attached)
 virtual-channel, instance #0
 virtual-channel, instance #1
 virtual-channel-client, instance #2
 virtual-channel-client, instance #3
 virtual-domain-service, instance #0
 cpu (driver not attached)
 cpu (driver not attached)
Example 1–8 x86: Displaying Default and Custom Device Properties

This example shows the default and custom properties for the bge.conf file. Note that vendor-provided configuration files are located in the /kernel and /platform directories, while the corresponding modified driver configuration files are located in the /etc/driver/drv directory.

$ prtconf -u
System Configuration: Oracle Corporation i86pc
Memory size: 8192 Megabytes
System Peripherals (Software Nodes):

i86pc
 scsi_vhci, instance #0
 pci, instance #0
 pci10de,5e (driver not attached)
 isa, instance #0
 asy, instance #0
 motherboard (driver not attached)
 pit beep, instance #0
 pci10de,cb84 (driver not attached)
 pci108e,cb84, instance #0
 device, instance #0
 keyboard, instance #0
 mouse, instance #1
 pci108e,cb84, instance #0
 pci-ide, instance #0
 ide, instance #0
 sd, instance #0
 ide (driver not attached)
 pci10de,5c, instance #0
 display, instance #0
 pci10de,cb84, instance #0
 pci10de,5d (driver not attached)
 pci10de,5d (driver not attached)
 pci10de,5d (driver not attached)
 pci10de,5d (driver not attached)
 pci10de,5d (driver not attached)
 pci1022,1100, instance #0
 pci1022,1101, instance #1
 pci1022,1102, instance #2
 pci1022,1103 (driver not attached)
 pci1022,1100, instance #3
 pci1022,1101, instance #4
 pci1022,1102, instance #5
 pci1022,1103 (driver not attached)
 pci, instance #1
 pci10de,5e (driver not attached)
 pci10de,cb84 (driver not attached)
 pci10de,cb84, instance #1
 pci10de,5d (driver not attached)
 pci1022,7458, instance #1
 pci1022,7459 (driver not attached)
 pci1022,7458, instance #2
 pci8086,1011, instance #0
x86: Displaying System Configuration Information

The following example shows how to use the `prtconf` command with the `-v` option on an x86 based system to identify which disk, tape, and DVD devices are connected to a system. The output of this command displays the driver not attached messages next to the device instances. This message usually indicates that no device exists at that device instance.

```
$ prtconf -v | more
```

```
Example 1–9
Displaying System Information
Chapter 1 • Managing System Information (Tasks) 19
```
Displaying System Information

See Also

For more information, see the `driver(4)`, `driver.conf(4)`, and `prtconf(1M)` man pages.

For instructions on how to create administratively provided configuration files, see Chapter 3, "Managing Devices (Overview/Tasks)," in *Oracle Solaris 11.1 Administration: Devices and File Systems.*

How to Display System Diagnostic Information

Display configuration and diagnostic information for a system.

```
$ prtdiag [-v] [-l]
```

- `-v` Verbose mode.
- `-l` Log output. If failures or errors exist in the system, output this information to `syslogd(1M)` only.

Example 1–10 SPARC: Displaying System Diagnostic Information

The following example shows the output for the `prtdiag -v` command on a SPARC based system. For the sake of brevity, the example has been truncated.

```
$ prtdiag -v | more
System Configuration: Oracle Corporation sun4v Sun Fire T200
Memory size: 16256 Megabytes

System Configuration: Oracle Corporation sun4v Sun Fire T200
Memory size: 16256 Megabytes

Virtual CPUs

<table>
<thead>
<tr>
<th>CPU ID</th>
<th>Frequency</th>
<th>Implementation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1200 MHz</td>
<td>SUNW,UltraSPARC-T1</td>
<td>on-line</td>
</tr>
<tr>
<td>1</td>
<td>1200 MHz</td>
<td>SUNW,UltraSPARC-T1</td>
<td>on-line</td>
</tr>
<tr>
<td>2</td>
<td>1200 MHz</td>
<td>SUNW,UltraSPARC-T1</td>
<td>on-line</td>
</tr>
<tr>
<td>3</td>
<td>1200 MHz</td>
<td>SUNW,UltraSPARC-T1</td>
<td>on-line</td>
</tr>
<tr>
<td>4</td>
<td>1200 MHz</td>
<td>SUNW,UltraSPARC-T1</td>
<td>on-line</td>
</tr>
<tr>
<td>5</td>
<td>1200 MHz</td>
<td>SUNW,UltraSPARC-T1</td>
<td>on-line</td>
</tr>
<tr>
<td>6</td>
<td>1200 MHz</td>
<td>SUNW,UltraSPARC-T1</td>
<td>on-line</td>
</tr>
</tbody>
</table>

Physical Memory Configuration

Segment Table:

<table>
<thead>
<tr>
<th>Base Address</th>
<th>Segment Size</th>
<th>Interleave Factor</th>
<th>Bank Size</th>
<th>Contains Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>16 GB</td>
<td>4</td>
<td>2 GB</td>
<td>MB/CMP0/CH0/R0/D0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 GB</td>
<td>MB/CMP0/CH0/R1/D0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 GB</td>
<td>MB/CMP0/CH1/R0/D0</td>
</tr>
</tbody>
</table>
System PROM revisions:  
----------------------  
OBP 4.30.4.d 2011/07/06 14:29

IO ASIC revisions:  
------------------  
Location Path Device  
-------------------- ------------------  
IOBD/IO-BRIDGE /pci@780 SUNW,sun4v-pci 0

Example 1–11  x86: Displaying System Diagnostic Information

The following example shows the output for the `prtdiag -l` command on an x86 based system.

```
$ prtdiag -l

System Configuration: ... Sun Fire X4100 M2
BIOS Configuration: American Megatrends Inc. OABJX104 04/09/2009
BMC Configuration: IPMI 1.5 (KCS: Keyboard Controller Style)

====== Processor Sockets ====================================

Version Location Tag
------------------- --------------------------

Dual-Core AMD Opteron(tm) Processor 2220 CPU 1
Dual-Core AMD Opteron(tm) Processor 2220 CPU 2

====== Memory Device Sockets ================================

Type Status Set Device Locator Bank Locator
---------- ------ --- ------------------- ----------------
unknown empty 0 DIMM0 NODE0
unknown empty 0 DIMM1 NODE0
DDR2 in use 0 DIMM2 NODE0
DDR2 in use 0 DIMM3 NODE0
unknown empty 0 DIMM0 NODE1
unknown empty 0 DIMM1 NODE1
DDR2 in use 0 DIMM2 NODE1
DDR2 in use 0 DIMM3 NODE1

====== On-Board Devices -------------------------------------

LSI serial-SCSI #1
Gigabit Ethernet #1
ATI Rage XL VGA

====== Upgradeable Slots ------------------------------------

ID Status Type Description

```
Identifying Information About Chip Multithreading Features

The `psrinfo` command has been modified to provide information about physical processors, in addition to information about virtual processors. This enhanced functionality has been added to identify chip multithreading (CMT) features. The new `-p` option reports the total number of physical processors that are in a system. Using the `psrinfo -pv` command will list all the physical processors that are in the system, as well as the virtual processors that are associated with each physical processor. The default output of the `psrinfo` command continues to display the virtual processor information for a system.

For more information, see the `psrinfo(1M)` man page.

For information about the procedures that are associated with this feature, see “How to Display a System’s Physical Processor Type” on page 22.

▼ How to Display a System’s Physical Processor Type

- Use the `psrinfo -p` command to display the total number of physical processors on a system.
  
  $ psrinfo -p
  
  1

  Use the `psrinfo -pv` command to display information about each physical processor on a system, and the virtual processor that is associated with each physical processor. For example:

  $ psrinfo -pv
  
  The physical processor has 8 cores and 32 virtual processors (0-31)
  The core has 4 virtual processors (0-3)
  The core has 4 virtual processors (4-7)
  The core has 4 virtual processors (8-11)
  The core has 4 virtual processors (12-15)
  The core has 4 virtual processors (16-19)
  The core has 4 virtual processors (20-23)
  The core has 4 virtual processors (24-27)
  The core has 4 virtual processors (28-31)
  UltraSPARC-T1 (chipid 0, clock 1000 MHz)
When you use the `psrinfo -pv` command on an x86 based system, the following output is displayed:

```
$ psrinfo -pv
The physical processor has 2 virtual processors (0 1)
 x86 (AuthenticAMD 40F13 family 15 model 65 step 3 clock 2793 MHz)
 Dual-Core AMD Opteron(tm) Processor 2220 [Socket: F(1207)]
The physical processor has 2 virtual processors (2 3)
 x86 (AuthenticAMD 40F13 family 15 model 65 step 3 clock 2793 MHz)
 Dual-Core AMD Opteron(tm) Processor 2220 [Socket: F(1207)]
```

#### How to Display a System's Virtual Processor Type

- **Use the `psrinfo -v` command to display information about a system's virtual processor type.**

  ```
 $ psrinfo -v
  ```

  On an x86 based system, use the `isalist` command to display the virtual processor type. For example:

  ```
 $ isalist
 amd64 pentium_pro+mmx pentium_pro pentium+mmx pentium i486 i386 i86
  ```

**Example 1–12**  
**SPARC: Displaying a System's Virtual Processor Type**

This example shows how to display information about a SPARC based system's virtual processor type.

```
$ psrinfo -v
Status of virtual processor 28 as of: 09/13/2010 14:07:47
 The sparcv9 processor operates at 1400 MHz,
 and has a sparcv9 floating point processor.
Status of virtual processor 29 as of: 09/13/2010 14:07:47
 The sparcv9 processor operates at 1400 MHz,
 and has a sparcv9 floating point processor.
```

**Example 1–13**  
**SPARC: Displaying the Virtual Processor That Is Associated With Each Physical Processor on a System**

The following example shows the output of the `psrinfo` command, when run with the `-pv` options on an Oracle SPARC T4-4 server. The output displays both the chip (physical processor) and the core information about the thread location. This information can be helpful in determining which physical CPU a thread is on, and how it is mapped at the core level.

```
$ psrinfo -pv
The physical processor has 8 cores and 64 virtual processors (0-63)
```
The core has 8 virtual processors (0-7)
The core has 8 virtual processors (8-15)
The core has 8 virtual processors (16-23)
The core has 8 virtual processors (24-31)
The core has 8 virtual processors (32-39)
The core has 8 virtual processors (40-47)
The core has 8 virtual processors (48-55)
The core has 8 virtual processors (56-63)

SPARC-T4 (chipid 0, clock 2998 MHz)
The physical processor has 8 cores and 64 virtual processors (64-127)
The core has 8 virtual processors (64-71)
The core has 8 virtual processors (72-79)
The core has 8 virtual processors (80-87)
The core has 8 virtual processors (88-95)
The core has 8 virtual processors (96-103)
The core has 8 virtual processors (104-111)
The core has 8 virtual processors (112-119)
The core has 8 virtual processors (120-127)

SPARC-T4 (chipid 1, clock 2998 MHz)

Changing System Information

This section describes commands that enable you to change general system information.

Changing System Information (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Directions</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manually set a system's date and</td>
<td>Manually set your system's date and time by using the date mmmddHHMM[[cc]yy]</td>
<td>&quot;How to Manually Set a System's Date and Time&quot; on page 24</td>
</tr>
<tr>
<td>time.</td>
<td>command-line syntax.</td>
<td></td>
</tr>
<tr>
<td>Set up a message-of-the-day.</td>
<td>Set up a message-of-the-day on your system by editing the /etc/motd file.</td>
<td>&quot;How to Set Up a Message-Of-The-Day&quot; on page 25</td>
</tr>
<tr>
<td>Change a system's identity.</td>
<td>Change a system's identity by using the hostname command.</td>
<td>&quot;How to Change a System's Identity&quot; on page 26</td>
</tr>
</tbody>
</table>

▼ How to Manually Set a System's Date and Time

1 Become an administrator.
2 Enter the new date and time.
   $ date mmdHHMM[cc]yy
   mm   Month, using two digits.
   dd   Day of the month, using two digits.
   HH   Hour, using two digits and a 24-hour clock.
   MM   Minutes, using two digits.
   cc   Century, using two digits.
   yy   Year, using two digits.
See the date(1) man page for more information.

3 Verify that you have reset your system's date correctly by using the date command with no options.

Example 1–14 Manually Setting a System’s Date and Time

The following example shows how to use the date command to manually set a system's date and time.

# date
Monday, September 13. 2010 02:00:16 PM MDT
# date 0921173404
Thu Sep 17:34:34 MST 2010

▼ How to Set Up a Message-Of-The-Day

You can edit the message-of-the-day file, /etc/motd, to include announcements or inquiries to all users of a system when they log in. Use this feature sparingly, and edit this file regularly to remove obsolete messages.

1 Assume the root role or a role that has the Administrator Message Edit profile assigned to it.

2 Use the pedit command to edit the /etc/motd file and add a message of your choice.
   $ pedit /etc/motd
Edit the text to include the message that will be displayed during user login. Include spaces, tabs, and carriage returns.
3 Verify the changes by displaying the contents of the /etc/motd file.
   $ cat /etc/motd
   Welcome to the UNIX Universe. Have a nice day.

▼ How to Change a System's Identity

1 Assume the root role.

2 Set the name of the host for the system.
   # hostname mynodename
Managing System Processes (Tasks)

This chapter describes the procedures for managing system processes.

This is a list of the information that is in this chapter:

- “What’s New in Managing System Processes” on page 27
- “Managing System Processes” on page 28
- “Managing Process Class Information” on page 38
- “Troubleshooting Problems With System Processes” on page 45

What’s New in Managing System Processes

The following features for managing system processes are new or changed in this release.

Pseudo System Processes

Oracle Solaris 10 and Oracle Solaris 11 releases include system processes that perform a specific task, but do not require any administration.

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsflush</td>
<td>System daemon that flushes pages to disk</td>
</tr>
<tr>
<td>init</td>
<td>Initial system process that starts and restarts other processes and SMF components</td>
</tr>
<tr>
<td>intrd</td>
<td>System process that monitors and balances system load due to interrupts</td>
</tr>
<tr>
<td>kmem_task</td>
<td>System process that monitors memory cache sizes</td>
</tr>
<tr>
<td>pageout</td>
<td>System process that controls memory paging to disk</td>
</tr>
</tbody>
</table>
Managing System Processes

This section describes the various tasks for managing system processes.

Managing System Processes (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>List processes.</td>
<td>Use the ps command to list all the processes on a system.</td>
<td>&quot;How to List Processes&quot; on page 32</td>
</tr>
<tr>
<td>Display information about</td>
<td>Use the pgrep command to obtain the process IDs for processes that you want</td>
<td>&quot;How to Display Information</td>
</tr>
<tr>
<td>processes.</td>
<td>to display more information about.</td>
<td>About Processes&quot; on page 33</td>
</tr>
<tr>
<td>Control processes.</td>
<td>Locate processes by using the pgrep command. Then, use the appropriate</td>
<td>&quot;How to Control Processes&quot; on</td>
</tr>
<tr>
<td></td>
<td>pcommand (/proc) to control the process. See Table 2–3 for a description of</td>
<td>page 34</td>
</tr>
<tr>
<td></td>
<td>the (/proc) commands.</td>
<td></td>
</tr>
<tr>
<td>Kill a process.</td>
<td>Locate a process, either by process name or process ID. You can use either</td>
<td>&quot;How to Terminate a Process</td>
</tr>
<tr>
<td></td>
<td>the pkill or kill commands to terminate the process.</td>
<td>(pkill)&quot; on page 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&quot;How to Terminate a Process (kill)&quot; on page 36</td>
</tr>
</tbody>
</table>

Commands for Managing System Processes

The following table describes the commands for managing system processes.

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sched</td>
<td>System process that is responsible for OS scheduling and process swapping</td>
</tr>
<tr>
<td>vm_tasks</td>
<td>System process with one thread per processor that balances and distributes</td>
</tr>
<tr>
<td></td>
<td>virtual memory related workloads across CPUs for better performance.</td>
</tr>
<tr>
<td>zpool-pool-name</td>
<td>System process for each ZFS storage pool containing the I/O taskq threads</td>
</tr>
<tr>
<td></td>
<td>for the associated pool.</td>
</tr>
</tbody>
</table>
### TABLE 2-1  Commands for Managing Processes

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Man Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ps, pgrep, prstat, pkill</td>
<td>Checks the status of active processes on a system, as well as displays detailed information about the processes.</td>
<td>ps(1), pgrep(1), and prstat(1M)</td>
</tr>
<tr>
<td>pkill</td>
<td>Functions identically to pgrep but finds or signals processes by name or other attribute and terminates the process. Each matching process is signaled as if by the kill command, instead of having its process ID printed.</td>
<td>pgrep(1), and pkill(1)</td>
</tr>
<tr>
<td>pargs, preap</td>
<td>Assists with processes debugging.</td>
<td>pargs(1), and preap(1)</td>
</tr>
<tr>
<td>dispadmin</td>
<td>Lists default process scheduling policies.</td>
<td>dispadmin(1M)</td>
</tr>
<tr>
<td>priocntl</td>
<td>Assigns processes to a priority class and manages process priorities.</td>
<td>priocntl(1)</td>
</tr>
<tr>
<td>nice</td>
<td>Changes the priority of a timesharing process.</td>
<td>nice(1)</td>
</tr>
<tr>
<td>psrset</td>
<td>Binds specific process groups to a group of processors rather than to just a single processor.</td>
<td>psrset(1M)</td>
</tr>
</tbody>
</table>

### Using the ps Command

The `ps` command enables you to check the status of active processes on a system, as well as display technical information about the processes. This data is useful for administrative tasks, such as determining how to set process priorities.

Depending on which options you use, the `ps` command reports the following information:

- Current status of the process
- Process ID
- Parent process ID
- User ID
- Scheduling class
- Priority
- Address of the process
- Memory used
- CPU time used
The following table describes some fields that are reported by the `ps` command. Which fields are displayed depend on which option you choose. For a description of all available options, see the `ps(1)` man page.

**TABLE 2–2  Summary of Fields in ps Reports**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>The effective user ID of the process’s owner.</td>
</tr>
<tr>
<td>PID</td>
<td>The process ID.</td>
</tr>
<tr>
<td>PPID</td>
<td>The parent process ID.</td>
</tr>
<tr>
<td>C</td>
<td>The processor utilization for scheduling. This field is not displayed when the <code>-c</code> option is used.</td>
</tr>
<tr>
<td>CLS</td>
<td>The scheduling class to which the process belongs such as real-time, system, or timesharing. This field is included only with the <code>-c</code> option.</td>
</tr>
<tr>
<td>PRI</td>
<td>The kernel thread’s scheduling priority. Higher numbers indicate a higher priority.</td>
</tr>
<tr>
<td>NI</td>
<td>The process’s <code>nice</code> number, which contributes to its scheduling priority. Making a process “nicer” means lowering its priority.</td>
</tr>
<tr>
<td>ADDR</td>
<td>The address of the <code>proc</code> structure.</td>
</tr>
<tr>
<td>SZ</td>
<td>The virtual address size of the process.</td>
</tr>
<tr>
<td>WCHAN</td>
<td>The address of an event or lock for which the process is sleeping.</td>
</tr>
<tr>
<td>STIME</td>
<td>The starting time of the process in hours, minutes, and seconds.</td>
</tr>
<tr>
<td>TTY</td>
<td>The terminal from which the process, or its parent, was started. A question mark indicates that there is no controlling terminal.</td>
</tr>
<tr>
<td>TIME</td>
<td>The total amount of CPU time used by the process since it began.</td>
</tr>
<tr>
<td>CMD</td>
<td>The command that generated the process.</td>
</tr>
</tbody>
</table>

**Using the `/proc File System and Commands**

You can display detailed information about the processes that are listed in the `/proc` directory by using process commands. The following table lists the `/proc` process commands. The `/proc` directory is also known as the process file system (PROCFS). Images of active processes are stored here by their process ID number.

**TABLE 2–3  Process Commands (`/proc`)**

<table>
<thead>
<tr>
<th>Process Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pcred</code></td>
<td>Displays process credential information</td>
</tr>
</tbody>
</table>
### Process Commands (/proc)

<table>
<thead>
<tr>
<th>Process Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pfiles</code></td>
<td>Reports <code>fstat</code> and <code>fcntl</code> information for open files in a process</td>
</tr>
<tr>
<td><code>pflags</code></td>
<td>Prints <code>/proc</code> tracing flags, pending signals and held signals, and other status information</td>
</tr>
<tr>
<td><code>pldd</code></td>
<td>Lists the dynamic libraries that are linked into a process</td>
</tr>
<tr>
<td><code>pmap</code></td>
<td>Prints the address space map of each process</td>
</tr>
<tr>
<td><code>psig</code></td>
<td>Lists the signal actions and handlers of each process</td>
</tr>
<tr>
<td><code>prun</code></td>
<td>Starts each process</td>
</tr>
<tr>
<td><code>pstack</code></td>
<td>Prints a hex+symbolic stack trace for each lwp in each process</td>
</tr>
<tr>
<td><code>pstop</code></td>
<td>Stops each process</td>
</tr>
<tr>
<td><code>ptime</code></td>
<td>Times a process by using microstate accounting</td>
</tr>
<tr>
<td><code>ptree</code></td>
<td>Displays the process trees that contain the process</td>
</tr>
<tr>
<td><code>pwait</code></td>
<td>Displays status information after a process terminates</td>
</tr>
<tr>
<td><code>pwdx</code></td>
<td>Displays the current working directory for a process</td>
</tr>
</tbody>
</table>

For more information, see `proc(1)`.

The process tools are similar to some options of the `ps` command, except that the output that is provided by these commands is more detailed.

In general, the process commands do the following:

- Display more information about processes, such as `fstat` and `fcntl`, working directories, and trees of parent and child processes.
- Provide control over processes by allowing users to stop or resume them.

### Managing Processes by Using Process Commands (/proc)

You can display detailed, technical information about processes or control active processes by using some of the process commands. Table 2–3 lists some of the `/proc` commands.

If a process becomes trapped in an endless loop, or if the process takes too long to execute, you might want to stop (kill) the process. For more information about stopping processes using the `kill` or the `pkill` command, see Chapter 2, “Managing System Processes (Tasks)”.

The `/proc` file system is a directory hierarchy that contains additional subdirectories for state information and control functions.
The `/proc` file system also provides an xwatchpoint facility that is used to remap read-and-write permissions on the individual pages of a process's address space. This facility has no restrictions and is MT-safe.

Debugging tools have been modified to use `/proc`'s xwatchpoint facility, which means that the entire xwatchpoint process is faster.

The following restrictions have been removed when you set xwatchpoints by using the dbx debugging tool:

- Setting xwatchpoints on local variables on the stack due to SPARC based system register windows.
- Setting xwatchpoints on multithreaded processes.

For more information, see the `proc(4)`, and `mdb(1)` man pages.

### How to List Processes

- **Use the `ps` command to list all the processes on a system.**
  
  $ ps -efc
  
  - `ps` Displays only the processes that are associated with your login session.
  - `-ef` Displays full information about all the processes that are being executed on the system.
  - `-c` Displays process scheduler information.

**Example 2-1 Listing Processes**

The following example shows output from the `ps` command when no options are used.

```
$ ps
 PID TTY TIME CMD
 1664 pts/4 0:06 csh
 2081 pts/4 0:00 ps
```

The following example shows output from the `ps -ef` command. This output shows that the first process that is executed when the system boots is `sched` (the swapper) followed by the `init` process, pageout, and so on.

```
$ ps -ef
 UID PID PPID C STIME TTY TIME CMD
 root 0 0 0 18:04:04 ? 0:15 sched
 root 5 0 0 18:04:03 ? 0:05 zpool-rpool
 root 1 0 0 18:04:05 ? 0:00 /sbin/init
 root 2 0 0 18:04:05 ? 0:00 pageout
 root 3 0 0 18:04:05 ? 2:52 fsflush
 root 6 0 0 18:04:05 ? 0:02 vmtasks
daemon 739 1 0 19:03:58 ? 0:00 /usr/lib/nfs/nfs4cbd
```
How to Display Information About Processes

1. Obtain the process ID of the process that you want to display more information about.
   
   ```bash
 # pgrep process
   ```
   
   where `process` is the name of the process you want to display more information about.

   The process ID is displayed in the first column of the output.

2. Display the process information that you need.
   
   ```bash
 # /usr/bin/pcommand pid
   ```
   
   `pcommand` is the `/proc` command that you want to run. Table 2–3 lists and describes these commands.

   `pid` identifies the process ID.

Example 2–2  Displaying Information About Processes

The following example shows how to use process commands to display more information about a cron process.

```bash
pgrep cron 1
4780
pwdx 4780 2
4780: /var/spool/cron/atjobs
```
Managing System Processes

# ptree 4780 3
4780 /usr/sbin/cron
# pfiles 4780 4
4780: /usr/sbin/cron

Current rlimit: 256 file descriptors
0: S_IFCHR mode:0666 dev:290,0 ino:6815752 uid:0 gid:3 rdev:13,2
   O_RDONLY|O_LARGEFILE
   /devices/pseudo/mm@0:null
1: S_IFREG mode:0600 dev:32,128 ino:42054 uid:0 gid:0 size:9771
   O_WRONLY|O_APPEND|O_CREAT|O_LARGEFILE
   /var/cron/log
2: S_IFREG mode:0600 dev:32,128 ino:42054 uid:0 gid:0 size:9771
   O_WRONLY|O_APPEND|O_CREAT|O_LARGEFILE
   /var/cron/log
3: S_IFIFO mode:0600 dev:32,128 ino:42049 uid:0 gid:0 size:0
   O_RDWR|O_LARGEFILE
   /etc/cron.d/FIFO
4: S_IFIFO mode:0000 dev:293,0 ino:4630 uid:0 gid:0 size:0
   O_RDWR
5: S_IFIFO mode:0000 dev:293,0 ino:4630 uid:0 gid:0 size:0
   O_RDWR

1. Obtains the process ID for the cron process
2. Displays the current working directory for the cron process
3. Displays the process tree that contains the cron process
4. Displays fstat and fcntl information

▼ How to Control Processes

1. Obtain the process ID of the process that you want to control.
   # pgrep process
   where process is the name of the process you want to control.
   The process ID displayed in the first column of the output.

2. Use the appropriate process command to control the process.
   # /usr/bin/pcommand pid
   pcommand Is the process (/proc) command that you want to run. Table 2-3 lists and
describes these commands.
   pid Identifies the process ID.

3. Verify the process status.
   # ps -ef | grep pid
Terminating a Process (pkill, kill)

Sometimes, you might need to stop (kill) a process. The process might be in an endless loop. Or, you might have started a large job that you want to stop before it is completed. You can kill any process that you own. Superuser can kill any process in the system except for those processes with process IDs of 0, 1, 2, 3, and 4. Killing these processes most likely will crash the system.

For more information, see the pgrep(1) and pkill(1) and kill(1) man pages.

▼ How to Terminate a Process (pkill)

1 To terminate the process of another user, assume the root role.

2 Obtain the process ID for the process that you want to terminate.

   $ pgrep process
   where process is the name of the process that you want to terminate.

   For example:

   $ pgrep netscape
   587
   566

   The process ID is displayed in the output.

   Note – To obtain process information about a Sun Ray, use the following commands:

   # ps -fu user

   This command lists all user processes.

   # ps -fu user | grep process

   This command locates a specific process for a user.

3 Terminate the process.

   $ pkill [signal] process

   signal When no signal is included in the pkill command-line syntax, the default signal that is used is –15 (SIGKILL). Using the –9 signal (SIGTERM) with the pkill command ensures that the process terminates promptly. However, the –9 signal should not be used to kill certain processes, such as a database process, or an LDAP server process. The result is that data might be lost.

   process Is the name of the process to stop.
Tip – When using the `pkill` command to terminate a process, first try using the command by itself, without including a signal option. Wait a few minutes to see if the process terminates before using the `pkill` command with the `-9` signal.

4 Verify that the process has been terminated.
   $ pgrep process
   The process you terminated should no longer be listed in the output of the `pgrep` command.

▼ How to Terminate a Process (`kill`)

1 To terminate the process of another user, assume the `root` role.

2 Obtain the process ID of the process that you want to terminate.
   # ps -fu user
   where `user` is the user that you want to display processes for.
   The process ID is displayed in the first column of the output.

3 Terminate the process.
   # kill [signal-number] pid
   `signal` When no signal is included in the `kill` command-line syntax, the default signal that is used is –15 (SIGKILL). Using the –9 signal (SIGTERM) with the `kill` command ensures that the process terminates promptly. However, the –9 signal should not be used to kill certain processes, such as a database process, or an LDAP server process. The result is that data might be lost.
   `pid` Is the process ID of the process that you want to terminate.

   Tip – When using the `kill` command to stop a process, first try using the command by itself, without including a signal option. Wait a few minutes to see if the process terminates before using the `kill` command with the `-9` signal.

4 Verify that the process has been terminated.
   $ pgrep pid
   The process you terminated should no longer be listed in the output of the `pgrep` command.

Debugging a Process (`pargs, preap`)
The `pargs` command and the `preap` command improve process debugging. The `pargs` command prints the arguments and environment variables that are associated with a live
process or core file. The prep command removes defunct (zombie) processes. A zombie process has not yet had its exit status claimed by its parent. These processes are generally harmless but can consume system resources if they are numerous. You can use the pargs and prep commands to examine any process that you have the privileges to examine. As superuser, you can examine any process.

For information about using the prep command, see the prep(1) man page. For information about using the pargs command, see the pargs(1) man page. See also, the proc(1) man page.

EXAMPLE 2-3 Debugging a Process (pargs)

The pargs command solves a long-standing problem of being unable to display with the ps command all the arguments that are passed to a process. The following example shows how to use the pargs command in combination with the pgrep command to display the arguments that are passed to a process.

```bash
pargs 'pgrep ttymon'
579: /usr/lib/saf/ttymon -g -h -p system-name console login:
 -T sun -d /dev/console -l
argv[0]: /usr/lib/saf/ttymon
argv[1]: -g
argv[2]: -h
argv[3]: -p
argv[4]: system-name console login:
argv[5]: -T
argv[6]: sun
argv[7]: -d
argv[8]: /dev/console
argv[9]: -l
argv[10]: console
argv[11]: -m
argv[12]: ldterm,ttcompat
548: /usr/lib/saf/ttymon
argv[0]: /usr/lib/saf/ttymon
argv[0]: /usr/lib/saf/ttymon
```

The following example shows how to use the pargs -e command to display the environment variables that are associated with a process.

```bash
$ pargs -e 6763
6763: tcsh
envp[0]: DISPLAY=:0.0
```
Managing Process Class Information

The following list identifies the process scheduling classes that can be configured on your system. Also included is the user priority range for the timesharing class.

The possible process scheduling classes are as follows:

- **Fair share (FSS)**
- **Fixed (FX)**
- **System (SYS)**
- **Interactive (IA)**
- **Real-time (RT)**
- **Timesharing (TS)**
  - The user-supplied priority ranges from -60 to +60.
  - The priority of a process is inherited from the parent process. This priority is referred to as the **user-mode priority**.
  - The system looks up the user-mode priority in the timesharing dispatch parameter table. Then, the system adds in any nice or priocntl (user-supplied) priority and ensures a 0–59 range to create a **global priority**.

Managing Process Class Information (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display basic information about process classes.</td>
<td>Use the <strong>priocntl -l</strong> command to Display process scheduling classes and priority ranges.</td>
<td>&quot;How to Display Basic Information About Process Classes (priocntl)&quot; on page 39</td>
</tr>
<tr>
<td>Display the global priority of a process.</td>
<td>Use the <strong>ps -e cl</strong> command to display the global priority of a process.</td>
<td>&quot;How to Display the Global Priority of a Process&quot; on page 40</td>
</tr>
<tr>
<td>Designate a process priority.</td>
<td>Start a process with a designated priority by using the <strong>priocntl -e -c</strong> command.</td>
<td>&quot;How to Designate a Process Priority (priocntl)&quot; on page 41</td>
</tr>
<tr>
<td>Change scheduling parameters of a timesharing process.</td>
<td>Use the <strong>priocntl -s -m</strong> command to change scheduling parameters in a timesharing process.</td>
<td>&quot;How to Change Scheduling Parameters of a Timesharing Process (priocntl)&quot; on page 42</td>
</tr>
<tr>
<td>Change the class of a process.</td>
<td>Use the <strong>priocntl -s -c</strong> command to change the class of a process.</td>
<td>&quot;How to Change the Class of a Process (priocntl)&quot; on page 43</td>
</tr>
</tbody>
</table>
Task | Description | For Instructions
--- | --- | ---
Change the priority of a process. | Use the /usr/bin/nice command with the appropriate options to lower or raise the priority of a process. | “How to Change the Priority of a Process (nice)” on page 44

Changing the Scheduling Priority of Processes (priocntl)

The scheduling priority of a process is the priority assigned by the process scheduler, according to scheduling policies. The dispadmin command lists the default scheduling policies. For more information, see the dispadmin(1M) man page.

You can use the priocntl command to assign processes to a priority class and to manage process priorities. For instructions on using the priocntl command to manage processes, see “How to Designate a Process Priority (priocntl)” on page 41.

How to Display Basic Information About Process Classes (priocntl)

- Display process scheduling classes and priority ranges with the priocntl -l command.

  $ priocntl -l

Example 2–4 Displaying Basic Information About Process Classes (priocntl)

The following example shows output from the priocntl -l command.

```
priocntl -l
CONFIGURED CLASSES
==================
SYS (System Class)
TS (Time Sharing)
 Configured TS User Priority Range: -60 through 60
FX (Fixed priority)
 Configured FX User Priority Range: 0 through 60
IA (Interactive)
 Configured IA User Priority Range: -60 through 60
```
How to Display the Global Priority of a Process

- Display the global priority of a process by using the `ps` command.

```
$ ps -ecl
```

The global priority is listed under the PRI column.

Example 2–5  Displaying the Global Priority of a Process

The following example shows `ps -ecl` command output. The values in the PRI column show the priority for each process.

```
$ ps -ecl
```

<table>
<thead>
<tr>
<th>F S</th>
<th>UID</th>
<th>PID</th>
<th>PPID</th>
<th>CLS</th>
<th>PRI</th>
<th>ADDR</th>
<th>SZ</th>
<th>WCHAN</th>
<th>TTY</th>
<th>TIME</th>
<th>CMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 T</td>
<td>0</td>
<td>0</td>
<td>SYS 96</td>
<td>?</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:11 sched</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 S</td>
<td>0</td>
<td>5</td>
<td>SDC 99</td>
<td>?</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:01 zpool-rp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>1</td>
<td>TS 59</td>
<td>?</td>
<td>688</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 init</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 S</td>
<td>0</td>
<td>2</td>
<td>SYS 98</td>
<td>?</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 pageout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 S</td>
<td>0</td>
<td>3</td>
<td>SYS 60</td>
<td>?</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>2:31 fsflush</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 S</td>
<td>0</td>
<td>6</td>
<td>SDC 99</td>
<td>?</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 vmtasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>16</td>
<td>56</td>
<td>TS 59</td>
<td>?</td>
<td>1026</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:01 ipmgmtd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>9</td>
<td>TS 59</td>
<td>?</td>
<td>3480</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:04 svc.star</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>11</td>
<td>TS 59</td>
<td>?</td>
<td>3480</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:13 svc.conf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>162</td>
<td>TS 59</td>
<td>?</td>
<td>533</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 pexecd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>1738</td>
<td>TS 59</td>
<td>?</td>
<td>817</td>
<td>?</td>
<td>?</td>
<td>pts/ 1</td>
<td>0:00 bash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>1</td>
<td>852</td>
<td>TS 59</td>
<td>?</td>
<td>851</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:17 rpcbind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>17</td>
<td>43</td>
<td>TS 59</td>
<td>?</td>
<td>1096</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:01 netcfgd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>15</td>
<td>47</td>
<td>TS 59</td>
<td>?</td>
<td>765</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 dlmgmtd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>68</td>
<td>TS 59</td>
<td>?</td>
<td>694</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:01 in.mpath</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>1</td>
<td>1220</td>
<td>TS 60</td>
<td>?</td>
<td>682</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 nfs4cbsd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>16</td>
<td>89</td>
<td>TS 59</td>
<td>?</td>
<td>1673</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:02 nwamd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>146</td>
<td>TS 59</td>
<td>?</td>
<td>629</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:01 dhcpagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>1</td>
<td>129</td>
<td>TS 59</td>
<td>?</td>
<td>1843</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 kcfid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>1</td>
<td>1215</td>
<td>TS 60</td>
<td>?</td>
<td>738</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 lockd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>829</td>
<td>TS 59</td>
<td>?</td>
<td>968</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 hald-run</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>361</td>
<td>TS 59</td>
<td>?</td>
<td>1081</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:01 devfsadm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>879</td>
<td>TS 59</td>
<td>?</td>
<td>1166</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:01 inetd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>119764</td>
<td>TS 59</td>
<td>?</td>
<td>557</td>
<td>cons ole</td>
<td>0:00 ps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>844</td>
<td>TS 59</td>
<td>?</td>
<td>996</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 hald-add</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>895</td>
<td>TS 59</td>
<td>?</td>
<td>590</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 ttymon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>840</td>
<td>TS 59</td>
<td>?</td>
<td>495</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 cron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>874</td>
<td>TS 59</td>
<td>?</td>
<td>425</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 utmpd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>1</td>
<td>1724</td>
<td>TS 59</td>
<td>?</td>
<td>2215</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 sshd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>119764</td>
<td>TS 59</td>
<td>?</td>
<td>565</td>
<td>cons ole</td>
<td>0:00 csh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>210</td>
<td>TS 59</td>
<td>?</td>
<td>1622</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 syssevent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>279</td>
<td>TS 59</td>
<td>?</td>
<td>472</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 iscsid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>1</td>
<td>1221</td>
<td>TS 59</td>
<td>?</td>
<td>1349</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 nfsmapid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 S</td>
<td>0</td>
<td>374</td>
<td>SDC 99</td>
<td>?</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 zpool-us</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>1287</td>
<td>TS 59</td>
<td>?</td>
<td>1063</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 rvolmgr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>828</td>
<td>TS 59</td>
<td>?</td>
<td>1776</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:03 hald</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>853</td>
<td>TS 59</td>
<td>?</td>
<td>896</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:02 hald-add</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>373</td>
<td>TS 59</td>
<td>?</td>
<td>985</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 picld</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>0</td>
<td>299</td>
<td>TS 59</td>
<td>?</td>
<td>836</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0:00 dbus-dae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 S</td>
<td>12524</td>
<td>TS 59</td>
<td>?</td>
<td>452</td>
<td>pts/ 1</td>
<td>0:00 csh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to Designate a Process Priority (priocntl)

1 Assume the root role.


2 Start a process with a designated priority.

   # priocntl -e -c class -m user-limit -p pri command-name
   -e          Executes the command.
   -c class    Specifies the class within which to run the process. The valid classes are TS (timesharing), RT (real time), IA (interactive), FSS (fair share), and FX (fixed priority).
   -m user-limit When you use the -p option with this option, the maximum amount you can raise or lower your priority is also specified.
   -p pri command-name Enables you specify the relative priority in the RT class for a real-time thread. For a timesharing process, the -p option lets you specify the user-supplied priority, which ranges from -60 to +60.

3 Verify the process status.

   # ps -ecl | grep command-name
Designating a Process Priority (priocntl)

The following example shows how to start the `find` command with the highest possible user-supplied priority.

```bash
priocntl -e -c TS -m 60 -p 60 find . -name core -print
ps -ecl | grep find
```

How to Change Scheduling Parameters of a Timesharing Process (priocntl)

1. Assume the root role.

2. Change the scheduling parameters of a running timesharing process.
   ```bash
 # priocntl -s -m user-limit [-p user-priority] -i xidtype idlist
 -s Lets you set the upper limit on the user priority range and change the current priority.
 -m user-limit When you use the -p option, specifies the maximum amount you can raise or lower the priority.
 -p user-priority Allows you to designate a priority.
 -i xidtype xidlist Uses a combination of xidtype and xidlist to identify the process or processes. The xidtype specifies the type of ID, such as the process ID or the user ID. Use xidlist to identify a list of process IDs or user IDs.
   ```

3. Verify the process status.
   ```bash
 # ps -ecl | grep idlist
   ```

Changing Scheduling Parameters of a Timesharing Process (priocntl)

The following example shows how to execute a command with a 500-millisecond time slice, a priority of 20 in the RT class, and a global priority of 120.

```bash
priocntl -e -c RT -m 500 -p 20 myprog
ps -ecl | grep myprog
```
How to Change the Class of a Process (priocntl)

1. **(Optional) Assume the root role.**

2. **Change the class of a process.**
   
   ```bash
 # priocntl -s -c class -i idtype idlist

 -s Lets you set the upper limit on the user priority range and change the current priority.

 -c class Specifies the class, TS for time-sharing or RT for real-time, to which you are changing the process.

 -i idtype idlist Uses a combination of xidtype and xidlist to identify the process or processes. The xidtype specifies the type of ID, such as the process ID or user ID. Use xidlist to identify a list of process IDs or user IDs.

 Note – You must assume the root role or be working in a real-time shell to change a process from, or to, a real-time process. If, as root, you change a user process to the real-time class, the user cannot subsequently change the real-time scheduling parameters by using the priocntl -s command.

 3. **Verify the process status.**

   ```bash
   # ps -ecl | grep idlist
   ```

Example 2–8 Changing the Class of a Process (priocntl)

The following example shows how to change all the processes that belong to user 15249 to real-time processes.

```bash
# priocntl -s -c RT -i uid 15249
# ps -ecl | grep 15249
```

Changing the Priority of a Timesharing Process (nice)

The nice command is only supported for backward compatibility to previous releases. The priocntl command provides more flexibility in managing processes.
The priority of a process is determined by the policies of its scheduling class and by its \textit{nice number}. Each timesharing process has a global priority. The global priority is calculated by adding the user-supplied priority, which can be influenced by the \texttt{nice} or \texttt{priocntl} commands, and the system-calculated priority.

The execution priority number of a process is assigned by the operating system. The priority number is determined by several factors, including the process's scheduling class, how much CPU time it has used, and in the case of a timesharing process, its \textit{nice} number.

Each timesharing process starts with a default \textit{nice} number, which it inherits from its parent process. The \textit{nice} number is shown in the \texttt{NI} column of the \texttt{ps} report.

A user can lower the priority of a process by increasing its user-supplied priority. However, only superuser can lower a \textit{nice} number to increase the priority of a process. This restriction prevents users from increasing the priorities of their own processes, thereby monopolizing a greater share of the CPU.

The \textit{nice} numbers range from 0 to +39, with 0 representing the highest priority. The default \textit{nice} value for each timesharing process is 20. Two versions of the command are available: the standard version, \texttt{/usr/bin/nice}, and the C shell built-in command.

\section*{How to Change the Priority of a Process (\texttt{nice})}

Using this procedure, a user can lower the priority of a process. However, the \texttt{root} role can raise or lower the priority of a process.

1. Determine whether you want to change the priority of a process, either as a user or as superuser. Then, select one of the following:

 - As a user, follow the examples in Step 2 to lower the priority of a command.
 - As a superuser, follow the examples in Step 3 to raise or lower priorities of a command.

2. As a user, lower the priority of a command by increasing the \texttt{nice} number.

 The following \texttt{nice} command executes \texttt{command-name} with a lower priority by raising the \textit{nice} number by 5 units.

 $ \texttt{/usr/bin/nice -5 command-name}$

 In the preceding command, the minus sign designates that what follows is an option. This command could also be specified as follows:

 $ \texttt{/usr/bin/nice -n 5 command-name}$
The following `nice` command lowers the priority of `command-name` by raising the nice number by the default increment of 10 units, but not beyond the maximum value of 39.

```
$ /usr/bin/nice command-name
```

3 As superuser, raise or lower the priority of a command by changing the `nice` number.

The following `nice` command raises the priority of `command-name` by lowering the nice number by 10 units, but not below the minimum value of 0.

```
# /usr/bin/nice --10 command-name
```

In the preceding command, the first minus sign designates that what follows is an option. The second minus sign indicates a negative number.

The following `nice` command lowers the priority of `command-name` by raising the nice number by 5 units, but not beyond the maximum value of 39.

```
# /usr/bin/nice -5 command-name
```

See Also For more information, see the `nice(1)` man page.

Troubleshooting Problems With System Processes

Here are some tips on obvious problems you might encounter:

- Look for several identical jobs that are owned by the same user. This problem might occur because of a running script that starts a lot of background jobs without waiting for any of the jobs to finish.

- Look for a process that has accumulated a large amount of CPU time. You can identify this problem by checking the `TIME` field in the `ps` output. Possibly, the process is in an endless loop.

- Look for a process that is running with a priority that is too high. Use the `ps -c` command to check the `CLS` field, which displays the scheduling class of each process. A process executing as a real-time (RT) process can monopolize the CPU. Or, look for a timesharing (TS) process with a high `nice` number. A user with superuser privileges might have increased the priority of a process. The system administrator can lower the priority by using the `nice` command.

- Look for a runaway process. A runaway process progressively uses more and more CPU time. You can identify this problem by looking at the time when the process started (`STIME`) and by watching the cumulation of CPU time (`TIME`) for a while.
Achieving good performance from a computer or network is an important part of system administration. This chapter provides overview of some factors that contribute to managing the performance of the computer systems in your care. In addition, this chapter describes procedures for monitoring system performance by using the `vmstat`, `iostat`, `df`, and `sar` commands.

This is a list of the information that is in this chapter.

- “Where to Find System Performance Tasks” on page 47
- “System Performance and System Resources” on page 48
- “Processes and System Performance” on page 48
- “About Monitoring System Performance” on page 50
- “Displaying System Performance Information” on page 51
- “Monitoring System Activities” on page 59

Where to Find System Performance Tasks

<table>
<thead>
<tr>
<th>System Performance Task</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manage processes</td>
<td>Chapter 2, “Managing System Processes (Tasks)”</td>
</tr>
<tr>
<td>Monitor system performance</td>
<td>Chapter 3, “Monitoring System Performance (Tasks)”</td>
</tr>
</tbody>
</table>
The performance of a computer system depends upon how the system uses and allocates its resources. Monitor your system’s performance regularly so that you know how it behaves under normal conditions. You should have a good idea of what to expect, and be able to recognize a problem when it occurs.

System resources that affect performance are described in the following table.

<table>
<thead>
<tr>
<th>System Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central processing unit (CPU)</td>
<td>The CPU processes instructions by fetching instructions from memory and executing them.</td>
</tr>
<tr>
<td>Input/output (I/O) devices</td>
<td>I/O devices transfer information into and out of the computer. Such a device could be a terminal and keyboard, a disk drive, or a printer.</td>
</tr>
<tr>
<td>Memory</td>
<td>Physical (or main) memory is the amount of random access memory (RAM) on the system.</td>
</tr>
</tbody>
</table>

Chapter 3, "Monitoring System Performance (Tasks)," describes the tools that display statistics about the system’s activity and performance.

The following table describes terms that are related to processes.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>Any system activity or job. Each time you boot a system, execute a command, or start an application, the system activates one or more processes.</td>
</tr>
</tbody>
</table>
TABLE 3–1 Process Terminology (Continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightweight process (LWP)</td>
<td>A virtual CPU or execution resource. LWPs are scheduled by the kernel to use available CPU resources based on their scheduling class and priority. LWPs include a kernel thread and an LWP. A kernel thread contains information that has to be in memory all the time. An LWP contains information that is swappable.</td>
</tr>
<tr>
<td>Application thread</td>
<td>A series of instructions with a separate stack that can execute independently in a user's address space. Application threads can be multiplexed on top of LWPs.</td>
</tr>
</tbody>
</table>

A process can consist of multiple LWPs and multiple application threads. The kernel schedules a kernel-thread structure, which is the scheduling entity in the SunOS environment. Various process structures are described in the following table.

TABLE 3–2 Process Structures

<table>
<thead>
<tr>
<th>Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proc</td>
<td>Contains information that pertains to the whole process and must be in main memory all the time</td>
</tr>
<tr>
<td>kthread</td>
<td>Contains information that pertains to one LWP and must be in main memory all the time</td>
</tr>
<tr>
<td>user</td>
<td>Contains the "per process" information that is swappable</td>
</tr>
<tr>
<td>klwp</td>
<td>Contains the "per LWP process" information that is swappable</td>
</tr>
</tbody>
</table>

The following figure illustrates the relationships among these process structures.
Most process resources are accessible to all the threads in the process. Almost all process virtual memory is shared. A change in shared data by one thread is available to the other threads in the process.

About Monitoring System Performance

While your computer is running, counters in the operating system are incremented to track various system activities.

System activities that are tracked are as follows:

- Central processing unit (CPU) utilization
- Buffer usage
- Disk and tape input/output (I/O) activity
- Terminal device activity
- System call activity
- Context switching
- File access
- Queue activity
- Kernel tables
- Interprocess communication
- Paging
- Free memory and swap space
- Kernel memory allocation (KMA)

Monitoring Tools

The Oracle Solaris software provides several tools to help you track how your system is performing.
Displaying System Performance Information

This section describes the tasks for monitoring displaying system performance information.

Displaying System Performance Information (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display virtual memory Statistics</td>
<td>Collect virtual memory statistics by using the vmstat command.</td>
<td>“How to Display Virtual Memory Statistics (vmstat)” on page 53</td>
</tr>
</tbody>
</table>
Displaying System Performance Information

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display system event information.</td>
<td>Display system event information by using the <code>vmstat</code> command with the <code>-s</code> option.</td>
<td>"How to Display System Event Information (<code>vmstat -s</code>)" on page 54</td>
</tr>
<tr>
<td>Display swapping statistics.</td>
<td>Use the <code>vmstat</code> command with the <code>-S</code> option to display swapping statistics.</td>
<td>"How to Display Swapping Statistics (<code>vmstat -S</code>)" on page 54</td>
</tr>
<tr>
<td>Display interrupts per device.</td>
<td>Use the <code>vmstat</code> command with the <code>-i</code> option to show the number of interrupts per device.</td>
<td>"How to Display Interrupts Per Device (<code>vmstat -i</code>)" on page 55</td>
</tr>
<tr>
<td>Display disk utilization.</td>
<td>Use the <code>iostat</code> command to report disk input and output statistics.</td>
<td>"How to Display Disk Utilization Information (<code>iostat</code>)" on page 56</td>
</tr>
<tr>
<td>Display extended disk statistics.</td>
<td>Use the <code>iostat</code> command with the <code>-xtc</code> option to display extended disk statistics.</td>
<td>"How to Display Extended Disk Statistics (<code>iostat -xtc</code>)" on page 57</td>
</tr>
<tr>
<td>Display disk space information.</td>
<td>The <code>df -k</code> command displays disk space information in Kbytes.</td>
<td>"How to Display Disk Space Information (<code>df -k</code>)" on page 58</td>
</tr>
</tbody>
</table>

Displaying Virtual Memory Statistics (`vmstat`)

You can use the `vmstat` command to report virtual memory statistics and information about system events such as CPU load, paging, number of context switches, device interrupts, and system calls. The `vmstat` command can also display statistics on swapping, cache flushing, and interrupts.

TABLE 3-4 Output From the `vmstat` Command

<table>
<thead>
<tr>
<th>Category</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>procs</td>
<td></td>
<td>Reports on the following:</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>The number of kernel threads in the dispatch queue</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>The number of blocked kernel threads that are waiting for resources</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>The number of swapped out LWPs that are waiting for processing resources to finish</td>
</tr>
<tr>
<td>memory</td>
<td></td>
<td>Reports on usage of real memory and virtual memory:</td>
</tr>
<tr>
<td></td>
<td>swap</td>
<td>Available swap space</td>
</tr>
<tr>
<td></td>
<td>free</td>
<td>Size of the free list</td>
</tr>
</tbody>
</table>
Output From the `vmstat` Command (Continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>page</td>
<td>re</td>
<td>Pages reclaimed</td>
</tr>
<tr>
<td></td>
<td>mf</td>
<td>Minor faults and major faults</td>
</tr>
<tr>
<td></td>
<td>pi</td>
<td>Kbytes paged in</td>
</tr>
<tr>
<td></td>
<td>po</td>
<td>Kbytes paged out</td>
</tr>
<tr>
<td></td>
<td>fr</td>
<td>Kbytes freed</td>
</tr>
<tr>
<td></td>
<td>de</td>
<td>Anticipated memory that is needed by recently swapped-in processes</td>
</tr>
<tr>
<td></td>
<td>sr</td>
<td>Pages scanned by the page daemon not currently in use. If sr does not equal zero, the page daemon has been running.</td>
</tr>
<tr>
<td>disk</td>
<td></td>
<td>Reports the number of disk operations per second, showing data on up to four disks</td>
</tr>
<tr>
<td>faults</td>
<td></td>
<td>Reports the trap/interrupt rates per second:</td>
</tr>
<tr>
<td></td>
<td>in</td>
<td>Interrupts per second</td>
</tr>
<tr>
<td></td>
<td>sy</td>
<td>System calls per second</td>
</tr>
<tr>
<td></td>
<td>cs</td>
<td>CPU context switch rate</td>
</tr>
<tr>
<td>cpu</td>
<td></td>
<td>Reports on the use of CPU time:</td>
</tr>
<tr>
<td></td>
<td>us</td>
<td>User time</td>
</tr>
<tr>
<td></td>
<td>sy</td>
<td>System time</td>
</tr>
<tr>
<td></td>
<td>id</td>
<td>Idle time</td>
</tr>
</tbody>
</table>

For a more detailed description of this command, see the `vmstat(1M)` man page.

How to Display Virtual Memory Statistics (`vmstat`)

- Collect virtual memory statistics by using the `vmstat` command with a time interval in seconds.

  ```bash
  $ vmstat n
  ```

 where `n` is the interval in seconds between reports.

Example 3–1 Displaying Virtual Memory Statistics

The following example shows the `vmstat` display of statistics that were gathered at five-second intervals:
Displaying System Performance Information

How to Display System Event Information (vmstat -s)

- Run the `vmstat -s` command to show how many system events have taken place since the last time the system was booted.

```
$ vmstat -s
0 swap ins
 0 swap outs
 0 pages swapped in
 0 pages swapped out
522586 total address trans. faults taken
17006 page ins
 25 page outs
23361 pages paged in
 28 pages paged out
45594 total reclaim
45592 reclaim from free list
 0 micro (hat) faults
522586 minor (as) faults
16189 major faults
98241 copy-on-write faults
137280 zero fill page faults
45052 pages examined by the clock daemon
 0 revolutions of the clock hand
 26 pages freed by the clock daemon
2857 forks
 78 vforks
1647 execs
34673885 cpu context switches
65943468 device interrupts
711250 traps
63957605 system calls
3523925 total name lookups (cache hits 99%)
92590 user cpu
65952 system cpu
16085832 idle cpu
7450 wait cpu
```

How to Display Swapping Statistics (vmstat -S)

- Run `vmstat -S` to show swapping statistics.

```
$ vmstat -S
kthr memory page disk faults cpu
```
The swapping statistics fields are described in the following list. For a description of the other fields, see Table 3–4.

- **si**: Average number of LWP(s) that are swapped in per second
- **so**: Number of whole processes that are swapped out

Note – The `vmstat` command truncates the output of `si` and `so` fields. Use the `sar` command to display a more accurate accounting of swap statistics.

How to Display Interrupts Per Device (`vmstat -i`)

- Run the `vmstat -i` command to show the number of interrupts per device.

Example 3–2

Displaying Interrupts Per Device

The following example shows output from the `vmstat -i` command.

```
$ vmstat -i
 interrupt total rate
 ------------------------
clock 52163269 100
esp0 2600877 4
zsc0 25341 0
zsc1 48917 0
cgsixc0 459 0
lec0 400882 0
fdc0 14 0
bppc0 0 0
audiocs0 0 0
------------------------
Total 55238959 105
```

Displaying Disk Utilization Information (`iostat`)

Use the `iostat` command to report statistics about disk input and output, and to produce measures of throughput, utilization, queue lengths, transaction rates, and service time. For a detailed description of this command, refer to the `iostat(1M)` man page.
How to Display Disk Utilization Information (iostat)

You can display disk utilization information by using the `iostat` command with a time interval in seconds.

```
$ iostat 5
```

TTY fd0 sd3 nfs1 nfs31 cpu
tin tout kps tps serv kps tps serv kps tps serv kps tps serv
0 1 0 0 410 3 0 29 0 0 0 0 47 4 2 0 94

The first line of output shows the statistics since the last time the system was booted. Each subsequent line shows the interval statistics. The default is to show statistics for the terminal (tty), disks (fd and sd), and CPU (cpu).

Example 3–3 Displaying Disk Utilization Information

The following example shows disk statistics that were gathered every five seconds.

```
$ iostat 5
```

TTY sd0 sd6 nfsl nfso cpu
tin tout kps tps serv kps tps serv kps tps serv
0 47 0 0 0 0 0 0 0 0 0 0 0 15 0 0 100
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
0 16 3 1 23 0 0 0 0 0 0 0 0 0 0 1 99
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

The following table describes the fields in the output of the `iostat` command.

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal</td>
<td>tin</td>
<td>Number of characters in the terminal input queue</td>
</tr>
<tr>
<td></td>
<td>tout</td>
<td>Number of characters in the terminal output queue</td>
</tr>
<tr>
<td>Disk</td>
<td>bps</td>
<td>Blocks per second</td>
</tr>
</tbody>
</table>
Device Type | Field Name | Description
---|---|---
| | tps | Transactions per second
| | serv | Average service time, in milliseconds

CPU

- **us**: In user mode
- **sy**: In system mode
- **wt**: Waiting for I/O
- **id**: Idle

How to Display Extended Disk Statistics (iostat -xtc)

- **Run the** iostat -xtc **command to display extended disk statistics.**

```bash
$ iostat -xtc
```

```
extended device statistics
device   r/s  w/s  kr/s  kw/s  wait  actv  svc_t  %w  %b  tty
tty      tin  tout  us  sy  wt  id
fd0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  100
sd0  0.0  0.0  0.0  0.4  0.0  0.0  49.5  0.0  0.0  0.0  0.0  0.0
sd6  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
nfs1  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
nfs49  0.0  0.0  0.0  0.0  0.0  0.0  15.1  0.0  0.0  0.0  0.0  0.0
nfs53  0.0  0.0  0.4  0.0  0.0  0.0  24.5  0.0  0.0  0.0  0.0  0.0
nfs54  0.0  0.0  0.0  0.0  0.0  0.0  6.3  0.0  0.0  0.0  0.0  0.0
nfs55  0.0  0.0  0.0  0.0  0.0  0.0  4.9  0.0  0.0  0.0  0.0  0.0
```

The iostat -xtc command displays a line of output for each disk. The output fields are described in the following list.

- **r/s**: Reads per second
- **w/s**: Writes per second
- **kr/s**: Kbytes read per second
- **kw/s**: Kbytes written per second
- **wait**: Average number of transactions that are waiting for service (queue length)
- **actv**: Average number of transactions that are actively being serviced
- **svc_t**: Average service time, in milliseconds
- **%w**: Percentage of time that the queue is not empty
- **%b**: Percentage of time that the disk is busy
Displaying Disk Space Statistics (**df**)

Use the `df` command to show the amount of free disk space on each mounted disk. The *usable* disk space that is reported by `df` reflects only 90 percent of full capacity, as the reporting statistics allows for 10 percent above the total available space. This *headroom* normally stays empty for better performance.

The percentage of disk space actually reported by the `df` command is used space divided by usable space.

If the file system exceeds 90 percent capacity, you could transfer files to a disk that is not as full by using the `cp` command. Alternately, you could transfer files to a tape by using the `tar` or `cpio` commands. Or, you could remove the files.

For a detailed description of this command, see the `df(1M)` man page.

How to Display Disk Space Information (df -k**)**

- Use the `df -k` command to display disk space information in Kbytes.

```bash
$ df -k
```

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>1024-blocks</th>
<th>Used</th>
<th>Available</th>
<th>Capacity</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpool/ROOT/solaris-161</td>
<td>191987712</td>
<td>6084395</td>
<td>140577816</td>
<td>5%</td>
<td>/</td>
</tr>
<tr>
<td>/devices</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>/devices</td>
</tr>
<tr>
<td>/dev</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>/dev</td>
</tr>
<tr>
<td>/ctfs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>/system/contract</td>
</tr>
<tr>
<td>/proc</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>/proc</td>
</tr>
<tr>
<td>/mnttab</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>/etc/mnttab</td>
</tr>
<tr>
<td>swap</td>
<td>4184236</td>
<td>496</td>
<td>4183740</td>
<td>1%</td>
<td>/system/volatile</td>
</tr>
<tr>
<td>/objfs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>/system/object</td>
</tr>
<tr>
<td>/shares</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>/etc/fs/sharetab</td>
</tr>
<tr>
<td>/usr/lib/libc/libc_hwcap1.so.1</td>
<td>146582211</td>
<td>6084395</td>
<td>140577816</td>
<td>5%</td>
<td>/lib/libc.so.1</td>
</tr>
<tr>
<td>/dev/fd</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>/dev/fd</td>
</tr>
<tr>
<td>/swap</td>
<td>4183784</td>
<td>60</td>
<td>4183724</td>
<td>1%</td>
<td>/tmp</td>
</tr>
<tr>
<td>rpool/export</td>
<td>191987712</td>
<td>35</td>
<td>140577816</td>
<td>1%</td>
<td>/export</td>
</tr>
<tr>
<td>rpool/export/home</td>
<td>191987712</td>
<td>32</td>
<td>140577816</td>
<td>1%</td>
<td>/export/home</td>
</tr>
<tr>
<td>rpool/export/home/123</td>
<td>191987712</td>
<td>13108813</td>
<td>140577816</td>
<td>9%</td>
<td>/export/home/123</td>
</tr>
<tr>
<td>rpool/export/repo</td>
<td>191987712</td>
<td>11187204</td>
<td>140577816</td>
<td>8%</td>
<td>/export/repo</td>
</tr>
<tr>
<td>rpool/export/repo2010_11</td>
<td>191987712</td>
<td>31</td>
<td>140577816</td>
<td>1%</td>
<td>/export/repo2010_11</td>
</tr>
<tr>
<td>rpool</td>
<td>191987712</td>
<td>5239974</td>
<td>140577816</td>
<td>4%</td>
<td>/rpool</td>
</tr>
<tr>
<td>/export/home/123</td>
<td>153686630</td>
<td>13108813</td>
<td>140577816</td>
<td>9%</td>
<td>/home/123</td>
</tr>
</tbody>
</table>

Example 3–4 Displaying File System Information

The following example shows the output from the `df -k` command.
The following table describes the output of the `df -k` command.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kbytes</td>
<td>Total size of usable space in the file system</td>
</tr>
<tr>
<td>used</td>
<td>Amount of space used</td>
</tr>
<tr>
<td>avail</td>
<td>Amount of space available for use</td>
</tr>
<tr>
<td>capacity</td>
<td>Amount of space used, as a percentage of the total capacity</td>
</tr>
<tr>
<td>mounted on</td>
<td>Mount point</td>
</tr>
</tbody>
</table>

Example 3–5 Displaying File System Information by Using the `df` Command Without Any Options

When the `df` command is used without operands or options, it reports on all mounted file systems, as shown in the following example:

```
$ df
/ (rpool/ROOT/solaris):100715496 blocks 100715496 files
devices (/devices ): 0 blocks 0 files
/dev (/dev ): 0 blocks 0 files
/system/contract (ctfs ): 0 blocks 2147483601 files
/proc (proc ): 0 blocks 29946 files
/etc/mnttab (mnttab ): 0 blocks 0 files
/system/volatile (swap ):42257568 blocks 2276112 files
/system/object (objfs ): 0 blocks 2147483441 files
/etc/dfs/sharetab (sharefs ): 0 blocks 2147483646 files
/dev/fd (fd ): 0 blocks 0 files
/tmp (swap ):42257568 blocks 2276112 files
/export (rpool/export ):100715496 blocks 100715496 files
/export/home (rpool/export/home ):100715496 blocks 100715496 files
/export/home/admin (rpool/export/home/admin):100715496 blocks 100715496 files
/rpool (rpool ):100715496 blocks 100715496 files
/rpool (rpool ):281155639 blocks 281155639 files
```

Monitoring System Activities

This section describes tasks for monitoring system activities.
Monitoring System Activities (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check file access.</td>
<td>Display file access operation status by using the <code>sar</code> command with the <code>-a</code> option.</td>
<td>"How to Check File Access (<code>sar -a</code>)" on page 61</td>
</tr>
<tr>
<td>Check buffer activity.</td>
<td>Display buffer activity statistics by using the <code>sar</code> command with the <code>-b</code> option.</td>
<td>"How to Check Buffer Activity (<code>sar -b</code>)" on page 62</td>
</tr>
<tr>
<td>Check system call statistics.</td>
<td>Display system call statistics by using the <code>sar</code> command with the <code>-c</code> option.</td>
<td>"How to Check System Call Statistics (<code>sar -c</code>)" on page 63</td>
</tr>
<tr>
<td>Check disk activity.</td>
<td>Check disk activity by using the <code>sar</code> command with the <code>-d</code> option.</td>
<td>"How to Check Disk Activity (<code>sar -d</code>)" on page 65</td>
</tr>
<tr>
<td>Check page-out and memory.</td>
<td>Use the <code>sar</code> command with the <code>-g</code> option to display page-out memory freeing activities.</td>
<td>"How to Check Page-Out and Memory (<code>sar -g</code>)" on page 66</td>
</tr>
<tr>
<td>Check kernel memory allocation.</td>
<td>The kernel memory allocation (KMA) allows a kernel subsystem to allocate and free memory, as needed. Use the <code>sar</code> command with the <code>-k</code> option to check KMA.</td>
<td>"How to Check Kernel Memory Allocation (<code>sar -k</code>)" on page 68</td>
</tr>
<tr>
<td>Check interprocess communication.</td>
<td>Use the <code>sar</code> command with the <code>-m</code> option to report interprocess communication activities.</td>
<td>"How to Check Interprocess Communication (<code>sar -m</code>)" on page 69</td>
</tr>
<tr>
<td>Check page-in activity.</td>
<td>Use the <code>sar</code> command with the <code>-p</code> option to report page-in activity.</td>
<td>"How to Check Page-In Activity (<code>sar -p</code>)" on page 70</td>
</tr>
<tr>
<td>Check queue activity.</td>
<td>Use the <code>sar</code> command with the <code>-q</code> option to check the following:</td>
<td>"How to Check Queue Activity (<code>sar -q</code>)" on page 71</td>
</tr>
<tr>
<td></td>
<td>■ Average queue length while queue is occupied</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Percentage of time that the queue is occupied</td>
<td></td>
</tr>
<tr>
<td>Check unused memory.</td>
<td>Use the <code>sar</code> command with the <code>-r</code> option to report the number of memory pages and swap file disk blocks that are currently used.</td>
<td>"How to Check Unused Memory (<code>sar -r</code>)" on page 72</td>
</tr>
<tr>
<td>Check CPU utilization.</td>
<td>Use the <code>sar</code> command with the <code>-u</code> option to display CPU utilization statistics.</td>
<td>"How to Check CPU Utilization (<code>sar -u</code>)" on page 73</td>
</tr>
<tr>
<td>Check system table status.</td>
<td>Use the <code>sar</code> command with the <code>-v</code> option to report status on the following system tables:</td>
<td>"How to Check System Table Status (<code>sar -v</code>)" on page 74</td>
</tr>
<tr>
<td></td>
<td>■ Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Inode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ File</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Shared memory record</td>
<td></td>
</tr>
</tbody>
</table>
Task Description For Instructions

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check swapping activity.</td>
<td>Use the sar command with the <code>-w</code> option to check swapping activity.</td>
<td>"How to Check Swapping Activity (sar -w)" on page 75</td>
</tr>
<tr>
<td>Check terminal activity.</td>
<td>Use the sar command with the <code>-y</code> option to monitor terminal device activity.</td>
<td>"How to Check Terminal Activity (sar -y)" on page 76</td>
</tr>
<tr>
<td>Check overall system performance.</td>
<td>The sar -A command displays statistics from all options to provide overall system performance information.</td>
<td>"How to Check Overall System Performance (sar -A)" on page 77</td>
</tr>
<tr>
<td>Set up automatic data collection.</td>
<td>To set up your system to collect data automatically and to run the sar commands, do the following:</td>
<td>"How to Set Up Automatic Data Collection" on page 80</td>
</tr>
<tr>
<td></td>
<td>■ Run the svcadm enable system/sar:default command</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Edit the /var/spool/cron/crontabs/sys file</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring System Activities (sar)

Use the sar command to perform the following tasks:

- Organize and view data about system activity.
- Access system activity data on a special request basis.
- Generate automatic reports to measure and monitor system performance, as well as special request reports to pinpoint specific performance problems. For information about how to set up the sar command to run on your system, as well as a description of these tools, see "Collecting System Activity Data Automatically (sar)" on page 77.

For a detailed description of this command, see the sar(1) man page.

How to Check File Access (sar -a)

Display file access operation statistics with the sar -a command.

```
$ sar -a
```

SunOS t2k-brm-24 5.10 Generic_144500-10 sun4v ... 00:00:00 iget/s namei/s dirbk/s 01:00:00 0 3 0 02:00:00 0 3 0 03:00:00 0 3 0 04:00:00 0 3 0 05:00:00 0 3 0 06:00:00 0 3 0 07:00:00 0 3 0 08:00:00 0 3 0
The following list describes the field names and description of operating system routines that are reported by the `sar -a` command.

- **iget/s**: The number of requests made for inodes that were not in the directory name look-up cache (DNLC).
- **namei/s**: The number of file system path searches per second. If `namei` does not find a directory name in the DNLC, it calls `iget` to get the inode for either a file or directory. Hence, most `igets` are the result of DNLC misses.
- **dirbk/s**: The number of directory block reads issued per second.

The larger the reported values for these operating system routines, the more time the kernel is spending to access user files. The amount of time reflects how heavily programs and applications are using the file systems. The `-a` option is helpful for viewing how disk-dependent an application is.

How to Check Buffer Activity (sar -b)

- **Display buffer activity statistics with the sar -b command.**

 The buffer is used to cache metadata. Metadata includes inodes, cylinder group blocks, and indirect blocks.

  ```
  $ sar -b
  00:00:00 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
  01:00:00 0 0 100 0 0 55 0 0
  02:00:00 0 0 100 0 0 94 0 0
  03:00:00 0 0 100 0 0 94 0 0
  04:00:00 0 0 100 0 0 94 0 0
  05:00:00 0 0 100 0 0 93 0 0
  ```

Example 3–6 Checking Buffer Activity (sar -b)

The following example of `sar -b` command output shows that the `%cache` and `%wcache` buffers are not causing any slowdowns. All the data is within acceptable limits.

```
$ sar -b
SunOS t2k-brm-24 5.10 Generic_144500-10 sun4v ...
00:00:04 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
01:00:00 0 0 100 0 0 94 0 0
02:00:01 0 0 100 0 0 94 0 0
03:00:00 0 0 100 0 0 92 0 0
04:00:00 0 1 100 0 1 94 0 0
05:00:00 0 0 100 0 0 93 0 0
```
The following table describes the buffer activities that are displayed by the -b option.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bread/s</code></td>
<td>Average number of reads per second that are submitted to the buffer cache from the disk</td>
</tr>
<tr>
<td><code>\read/s</code></td>
<td>Average number of logical reads per second from the buffer cache</td>
</tr>
<tr>
<td><code>%rcache</code></td>
<td>Fraction of logical reads that are found in the buffer cache (100% minus the ratio of <code>bread/s</code> to <code>\read/s</code>)</td>
</tr>
<tr>
<td><code>bwrit/s</code></td>
<td>Average number of physical blocks (512 bytes) that are written from the buffer cache to disk, per second</td>
</tr>
<tr>
<td><code>\writ/s</code></td>
<td>Average number of logical writes to the buffer cache, per second</td>
</tr>
<tr>
<td><code>%wcache</code></td>
<td>Fraction of logical writes that are found in the buffer cache (100% minus the ratio of <code>bwrit/s</code> to <code>\writ/s</code>)</td>
</tr>
<tr>
<td><code>pread/s</code></td>
<td>Average number of physical reads, per second, that use character device interfaces</td>
</tr>
<tr>
<td><code>pwr/s</code></td>
<td>Average number of physical write requests, per second, that use character device interfaces</td>
</tr>
</tbody>
</table>

The most important entries are the cache hit ratios `%rcache` and `%wcache`. These entries measure the effectiveness of system buffering. If `%rcache` falls below 90 percent, or if `%wcache` falls below 65 percent, it might be possible to improve performance by increasing the buffer space.

How to Check System Call Statistics (sar -c)

- Display system call statistics by using the `sar -c` command.

```bash
$ sar -c
00:00:00 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
```
Example 3–7 Checking System Call Statistics (sar -c)

The following example shows output from the `sar -c` command.

```bash
$s sar -c
SunOS balmy 5.10 Generic_144500-10 sun4v ...
00:00:04 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
01:00:00 89 14 9 0.01 0.00 2906 2394
02:00:01 89 14 9 0.01 0.00 2905 2393
03:00:00 89 14 9 0.01 0.00 2908 2393
04:00:00 90 14 9 0.01 0.00 2912 2393
05:00:00 89 14 9 0.01 0.00 2905 2393
06:00:00 89 14 9 0.01 0.00 2905 2393
07:00:00 89 14 9 0.01 0.00 2905 2393
08:00:00 89 14 9 0.01 0.00 2906 2393
08:20:00 90 14 9 0.01 0.01 2914 2395
08:40:01 90 14 9 0.01 0.00 2914 2396
09:00:00 90 14 9 0.01 0.01 2915 2396
09:20:00 90 14 9 0.01 0.01 2915 2396
09:40:00 880 207 156 0.08 0.08 26671 9290
10:00:00 2020 530 322 0.14 0.13 57675 36393
10:20:00 853 129 75 0.02 0.01 10500 8594
10:40:00 2061 524 450 0.08 0.08 579217 567872
11:00:00 1658 404 350 0.07 0.06 1152916 1144203
Average 302 66 49 0.02 0.01 57842 55544
```

The following table describes the system call categories that are reported by the `-c` option. Typically, reads and writes account for about half of the total system calls. However, the percentage varies greatly with the activities that are being performed by the system.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>SCALL/s</code></td>
<td>The number of all types of system calls per second, which is generally about 30 per second on a system with 4 to 6 users.</td>
</tr>
<tr>
<td><code>SREAD/s</code></td>
<td>The number of read system calls per second.</td>
</tr>
<tr>
<td><code>SWRITE/s</code></td>
<td>The number of write system calls per second.</td>
</tr>
<tr>
<td><code>FORK/s</code></td>
<td>The number of fork system calls per second, which is about 0.5 per second on a system with 4 to 6 users. This number increases if shell scripts are running.</td>
</tr>
<tr>
<td><code>EXEC/s</code></td>
<td>The number of exec system calls per second. If <code>EXEC/s</code> divided by <code>FORK/s</code> is greater than 3, look for inefficient PATH variables.</td>
</tr>
<tr>
<td><code>RCCHAR/s</code></td>
<td>The number of characters (bytes) transferred by read system calls per second.</td>
</tr>
</tbody>
</table>
How to Check Disk Activity (sar -d)

Display disk activity statistics with the `sar -d` command.

```bash
$ sar -d
```

Checking Disk Activity

This abbreviated example illustrates the output from the `sar -d` command.

```bash
$ sar -d
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Device</th>
<th>%busy</th>
<th>avque</th>
<th>r+w/s</th>
<th>blks/s</th>
<th>avwait</th>
<th>avserv</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:36:32</td>
<td>dad1</td>
<td>15</td>
<td>0.7</td>
<td>26</td>
<td>399</td>
<td>18.1</td>
<td>10.0</td>
</tr>
<tr>
<td>12:40:01</td>
<td>dad1,a</td>
<td>15</td>
<td>0.7</td>
<td>26</td>
<td>398</td>
<td>18.1</td>
<td>10.0</td>
</tr>
<tr>
<td>12:40:01</td>
<td>dad1,b</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>1</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>12:40:01</td>
<td>dad1,c</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12:40:01</td>
<td>dad1,h</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>6.0</td>
</tr>
<tr>
<td>12:40:01</td>
<td>fd0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12:40:01</td>
<td>nfs1</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12:40:01</td>
<td>nfs2</td>
<td>1</td>
<td>0.0</td>
<td>1</td>
<td>12</td>
<td>0.0</td>
<td>13.2</td>
</tr>
<tr>
<td>12:40:01</td>
<td>nfs3</td>
<td>0</td>
<td>0.0</td>
<td>2</td>
<td>0.0</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>12:40:01</td>
<td>nfs4</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>7.0</td>
</tr>
<tr>
<td>12:40:01</td>
<td>nfs5</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>57.1</td>
</tr>
<tr>
<td>12:40:01</td>
<td>nfs6</td>
<td>1</td>
<td>0.0</td>
<td>6</td>
<td>125</td>
<td>4.3</td>
<td>3.2</td>
</tr>
<tr>
<td>12:40:01</td>
<td>nfs7</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>6.0</td>
</tr>
<tr>
<td>12:40:01</td>
<td>sd1</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>5.4</td>
</tr>
<tr>
<td>12:40:01</td>
<td>ohci0, bu</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12:40:01</td>
<td>ohci0, ct</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12:40:01</td>
<td>ohci0, in</td>
<td>0</td>
<td>0.0</td>
<td>7</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12:40:01</td>
<td>ohci0, is</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12:40:01</td>
<td>ohci0, to</td>
<td>0</td>
<td>0.0</td>
<td>7</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

The following table describes the disk device activities that are reported by the `-d` option.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>device</td>
<td>Name of the disk device that is being monitored.</td>
</tr>
<tr>
<td>%busy</td>
<td>Portion of time the device was busy servicing a transfer request.</td>
</tr>
<tr>
<td>avqueue</td>
<td>Average number of requests during the time the device was busy servicing a transfer request.</td>
</tr>
</tbody>
</table>
Field Name Description

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r+w/s</td>
<td>Number of read-and-write transfers to the device, per second.</td>
</tr>
<tr>
<td>blks/s</td>
<td>Number of 512-byte blocks that are transferred to the device, per second.</td>
</tr>
<tr>
<td>await</td>
<td>Average time, in milliseconds, that transfer requests wait idly in the queue. This time is measured only when the queue is occupied.</td>
</tr>
<tr>
<td>avserv</td>
<td>Average time, in milliseconds, for a transfer request to be completed by the device. For disks, this value includes seek times, rotational latency times, and data transfer times.</td>
</tr>
</tbody>
</table>

Note that queue lengths and wait times are measured when something is in the queue. If %busy is small, large queues and service times probably represent the periodic efforts by the system to ensure that altered blocks are promptly written to the disk.

How to Check Page-Out and Memory (sar -g)

- **Use the sar -g command to display page-out and memory freeing activities in averages.**

  ```bash
  $ sar -g
  00:00:00 pgout/s ppgout/s pgfree/s pgscan/s %ufs_ipf
  01:00:00 0.00 0.00 0.00 0.00 0.00
  02:00:00 0.01 0.01 0.01 0.00 0.00
  03:00:00 0.00 0.00 0.00 0.00 0.00
  04:00:00 0.00 0.00 0.00 0.00 0.00
  05:00:00 0.00 0.00 0.00 0.00 0.00
  06:00:00 0.00 0.00 0.00 0.00 0.00
  07:00:00 0.00 0.00 0.00 0.00 0.00
  08:00:00 0.00 0.00 0.00 0.00 0.00
  ```

 The output displayed by the sar -g command is a good indicator of whether more memory might be needed. Use the ps -elf command to show the number of cycles that are used by the page daemon. A high number of cycles, combined with high values for the pgfree/s and pgscan/s fields, indicates a memory shortage.

 The sar -g command also shows whether inodes are being recycled too quickly and causing a loss of reusable pages.

Example 3–9 Checking Page-Out and Memory (sar -g)

The following example shows output from the sar -g command.

```bash
$ sar -g
SunOS balmy 5.10 Generic 144500-10 sun4v ...
00:00:00 pgout/s ppgout/s pgfree/s pgscan/s %ufs_ipf
01:00:00 0.00 0.00 0.00 0.00 0.00
02:00:00 0.01 0.01 0.01 0.00 0.00
03:00:00 0.00 0.00 0.00 0.00 0.00
04:00:00 0.00 0.00 0.00 0.00 0.00
05:00:00 0.00 0.00 0.00 0.00 0.00
06:00:00 0.00 0.00 0.00 0.00 0.00
07:00:00 0.00 0.00 0.00 0.00 0.00
08:00:00 0.00 0.00 0.00 0.00 0.00
```
The following table describes the output from the `-g` option.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pgout/s</td>
<td>The number of page-out requests per second.</td>
</tr>
<tr>
<td>ppgout/s</td>
<td>The actual number of pages that are paged-out, per second. A single page-out request might involve paging-out multiple pages.</td>
</tr>
<tr>
<td>pgfree/s</td>
<td>The number of pages, per second, that are placed on the free list.</td>
</tr>
<tr>
<td>pgsan/s</td>
<td>The number of pages, per second, that are scanned by the page daemon. If this value is high, the page daemon is spending a lot of time checking for free memory. This situation implies that more memory might be needed.</td>
</tr>
<tr>
<td>%ufs_ipf</td>
<td>The percentage of ufs inodes taken off the free list by iget that had reusable pages that are associated with them. These pages are flushed and cannot be reclaimed by processes. Thus, this field represents the percentage of igets with page flushes. A high value indicates that the free list of inodes is page-bound, and that the number of ufs inodes might need to be increased.</td>
</tr>
</tbody>
</table>

Checking Kernel Memory Allocation

The KMA allows a kernel subsystem to allocate and free memory, as needed.

Rather than statically allocating the maximum amount of memory it is expected to require under peak load, the KMA divides requests for memory into three categories:

- Small (less than 256 bytes)
- Large (512 bytes to 4 Kbytes)
- Oversized (greater than 4 Kbytes)

The KMA keeps two pools of memory to satisfy small requests and large requests. The oversized requests are satisfied by allocating memory from the system page allocator.

If you are checking a system that is being used to write drivers or STREAMS that use KMA resources, then the `sar -k` command will likely prove useful. Otherwise, you will probably not need the information it provides. Any driver or module that uses KMA resources, but does not specifically return the resources before it exits, can create a memory leak. A memory leak causes
the amount of memory that is allocated by KMA to increase over time. Thus, if the alloc fields of the sar - k command increase steadily over time, there might be a memory leak. Another indication of a memory leak is failed requests. If this problem occurs, a memory leak has probably caused KMA to be unable to reserve and allocate memory.

If it appears that a memory leak has occurred, you should check any drivers or STREAMS that might have requested memory from KMA and not returned it.

▼ How to Check Kernel Memory Allocation (sar - k)

- Use the sar - k command to report on the following activities of the Kernel Memory Allocator (KMA).

```
$ sar -k
00:00:00 sml_mem alloc fail lg_mem alloc fail ovsz_alloc fail
01:00:00 2523136 1686512 0 186939904 14762364 0 360448 0
02:00:00 2523136 1861724 0 186939904 14778748 0 360448 0
```

Example 3–10 Checking Kernel Memory Allocation (sar - k)

The following is an abbreviated example of sar - k output.

```
$ sar -k
SunOS balmy 5.10 Generic_144500-10 sun4v ...
00:00:00 6119744 4852865 0 60243968 54334888 156 966560 0
01:00:00 6119744 4853057 0 60243968 54335760 156 966560 0
02:00:00 6119744 4853297 0 60243968 54336088 156 966560 0
03:00:00 6119744 4857673 0 60252160 54375280 156 966560 0
04:00:00 6119744 4858097 0 60252160 54376240 156 966560 0
05:00:00 6119744 4858289 0 60252160 54375608 156 966560 0
06:00:00 6119744 4858289 0 60252160 54375608 156 966560 0
07:00:00 6119744 4858793 0 60252160 54442424 156 966560 0
08:00:00 6119744 4858985 0 60252160 54474552 156 966560 0
09:00:00 62967734 4859433 0 60252160 54539752 156 966560 0
09:20:00 62967734 4858633 0 60252160 54410920 156 966560 0
09:40:00 6297396 5262064 0 60530688 55619808 156 966560 0
10:00:00 6545728 5823137 0 62996480 58391136 156 966560 0
10:20:00 6545728 5758997 0 62996480 57907400 156 966560 0
10:40:00 6734144 6035759 0 64389120 59743064 156 10493952 0
11:00:00 6996288 6394872 0 65437696 60935936 156 10493952 0
Average 6258044 5150556 0 61138340 55689004 156 9763900 0
```

The following table describes the output from the - k option.
Field Name Description

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sml_mem</td>
<td>The amount of memory, in bytes, that the KMA has available in the small memory request pool. In this pool, a small request is less than 256 bytes.</td>
</tr>
<tr>
<td>alloc</td>
<td>The amount of memory, in bytes, that the KMA has allocated from its small memory request pool to small memory requests.</td>
</tr>
<tr>
<td>fail</td>
<td>The number of requests for small amounts of memory that failed.</td>
</tr>
<tr>
<td>lg_mem</td>
<td>The amount of memory, in bytes, that the KMA has available in the large memory request pool. In this pool, a large request is from 512 bytes to 4 Kbytes.</td>
</tr>
<tr>
<td>alloc</td>
<td>The amount of memory, in bytes, that the KMA has allocated from its large memory request pool to large memory requests.</td>
</tr>
<tr>
<td>fail</td>
<td>The number of failed requests for large amounts of memory.</td>
</tr>
<tr>
<td>ovsz_alloc</td>
<td>The amount of memory that is allocated for oversized requests, which are requests that are greater than 4 Kbytes. These requests are satisfied by the page allocator. Thus, there is no pool.</td>
</tr>
<tr>
<td>fail</td>
<td>The number of failed requests for oversized amounts of memory.</td>
</tr>
</tbody>
</table>

▼ **How to Check Interprocess Communication (sar -m)**

- **Use the sar -m command to report interprocess communication activities.**

```
$ sar -m
```

<table>
<thead>
<tr>
<th>Time</th>
<th>msg/s</th>
<th>sema/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>01:00:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

These figures are usually zero (0.00), unless you are running applications that use messages or semaphores.

The following list describes the output from the -m option.

- **msg/s** The number of message operations (sends and receives) per second
- **sema/s** The number of semaphore operations per second

Example 3–11 Checking Interprocess Communication (sar -m)

The following abbreviated example shows output from the sar -m command.

```
$ sar -m
```

<table>
<thead>
<tr>
<th>Time</th>
<th>msg/s</th>
<th>sema/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>SunOS balmy 5.10 Generic_144500-10 sun4v ...</td>
<td>00:00:00</td>
<td>msg/s</td>
</tr>
</tbody>
</table>
How to Check Page-In Activity (sar -p)

- Use the `sar -p` command to report page-in activity, which includes protection and translation faults.

```
$ sar -p
00:00:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
01:00:00 0.07 0.00 0.00 0.21 0.39 0.00 0.00
```

Example 3–12 Checking Page-In Activity (sar -p)

The following example shows output from the `sar -p` command.

```
$ sar -p
SunOS balmy 5.10 Generic_144500-10 sun4v ...
00:00:04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
01:00:00 0.09 0.00 0.00 0.78 2.02 0.00 0.00
```

The following table describes the reported statistics from the `-p` option.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>attach/s</td>
<td>The number of page faults, per second, that are satisfied by reclaiming a page currently in memory (attaches per second). Instances include reclaiming an invalid page from the free list and sharing a page of text that is currently being used by another process. An example is two or more processes that are accessing the same program text.</td>
</tr>
<tr>
<td>pgin/s</td>
<td>The number of times, per second, that file systems receive page-in requests.</td>
</tr>
<tr>
<td>ppgin/s</td>
<td>The number of pages paged in, per second. A single page-in request, such as a soft-lock request (see slock/s) or a large block size, might involve paging-in multiple pages.</td>
</tr>
<tr>
<td>pflt/s</td>
<td>The number of page faults from protection errors. Instances of protection faults indicate illegal access to a page and "copy-on-writes." Generally, this number consists primarily of "copy-on-writes."</td>
</tr>
<tr>
<td>vflt/s</td>
<td>The number of address translation page faults, per second. These faults are known as validity faults. Validity faults occur when a valid process table entry does not exist for a given virtual address.</td>
</tr>
<tr>
<td>slock/s</td>
<td>The number of faults, per second, caused by software lock requests that require physical I/O. An example of the occurrence of a soft-lock request is the transfer of data from a disk to memory. The system locks the page that is to receive the data so that the page cannot be claimed and used by another process.</td>
</tr>
</tbody>
</table>

▼ **How to Check Queue Activity (sar -q)**

- Use the **sar -q command** to report the following information:
 - The Average queue length while the queue is occupied.
 - The percentage of time that the queue is occupied.

```
$ sar -q
00:00:00  runq-sz %runocc swpq-sz %swpocc
```

The following list describes the output from the -q option.

- **runq-sz** The number of kernel threads in memory that are waiting for a CPU to run. Typically, this value should be less than 2. Consistently higher values mean that the system might be CPU-bound.
- **%runocc** The percentage of time that the dispatch queues are occupied.
- **swpq-sz** The average number of swapped out processes.
- **%swpocc** The percentage of time in which the processes are swapped out.
Example 3–13 Checking Queue Activity

The following example shows output from the `sar -q` command. If the `%runocc` value is high (greater than 90 percent) and the `runq-sz` value is greater than 2, the CPU is heavily loaded and response is degraded. In this case, additional CPU capacity might be required to obtain acceptable system response.

```
# sar -q
SunOS balmy 5.10 Generic_144500-10 sun4v ...  
00:00:00 runq-sz %runocc swpq-sz %swpocc
01:00:00 1.0 7 0.0 0
02:00:00 1.0 7 0.0 0
03:00:00 1.0 7 0.0 0
04:00:00 1.0 7 0.0 0
05:00:00 1.0 6 0.0 0
06:00:00 1.0 7 0.0 0
Average 1.0 7 0.0 0
```

\[\copyright \]

\[▼ \]

How to Check Unused Memory (`sar -r`)

- Use the `sar -r` command to report the number of memory pages and swap-file disk blocks that are currently unused.

```
$ sar -r
00:00:00 freemem freeswap
01:00:00 2135 401922
```

The following list describes the output from the `-r` option:

- `freemem` The average number of memory pages that are available to user processes over the intervals sampled by the command. Page size is machine-dependent.

- `freeswap` The number of 512-byte disk blocks that are available for page swapping.

Example 3–14 Checking Unused Memory (`sar -r`)

The following example shows output from the `sar -r` command.

```
$ sar -r
SunOS balmy 5.10 Generic_144500-10 sun4v ...  
00:00:04 freemem freeswap
01:00:00 44717 1715062
02:00:00 44733 1715496
03:00:00 44733 1715496
04:00:00 44715 1714746
05:00:00 44751 1715403
06:00:00 44784 1714743
07:00:00 44794 1715186
```

Managing System Information, Processes, and Performance in Oracle Solaris 11.1 • October 2012
How to Check CPU Utilization (sar -u)

Use the sar -u command to display CPU utilization statistics.

```
$ sar -u
00:00:00 %usr %sys %wio %idle
01:00:00 0 0 0 100
```

The sar command without any options is equivalent to the sar -u command. At any given moment, the processor is either busy or idle. When busy, the processor is in either user mode or system mode. When idle, the processor is either waiting for I/O completion or "sitting still" with no work to do.

The following list describes output from the -u option:

- %usr: Lists the percentage of time that the processor is in user mode.
- %sys: Lists the percentage of time that the processor is in system mode.
- %wio: Lists the percentage of time that the processor is idle and waiting for I/O completion.
- %idle: Lists the percentage of time that the processor is idle and not waiting for I/O.

A high %wio value generally means that a disk slowdown has occurred.

Example 3–15 Checking CPU Utilization (sar -u)

The following example shows output from the sar -u command.

```
$ sar -u
00:00:04 %usr %sys %wio %idle
01:00:00 0 0 0 100
02:00:01 0 0 0 100
03:00:00 0 0 0 100
04:00:00 0 0 0 100
05:00:00 0 0 0 100
06:00:00 0 0 0 100
07:00:00 0 0 0 100
08:00:00 0 0 0 100
08:20:00 0 0 0 99
```
How to Check System Table Status (sar -v)

- Use the `sar -v` command to report the status of the process table, inode table, file table, and shared memory record table.

```bash
$ sar -v
00:00:00 proc-sz ov inod-sz ov file-sz ov lock-sz
01:00:00 43/922 0 2984/4236 0 322/322 0 0/0
```

Example 3–16 Checking System Table Status (sar -v)

The following abbreviated example shows output from the `sar -v` command. This example shows that all tables are large enough to have no overflows. These tables are all dynamically allocated based on the amount of physical memory.

```bash
$ sar -v
00:00:04 proc-sz ov inod-sz ov file-sz ov lock-sz
01:00:00 69/8010 0 3476/34703 0 0/0 0 0/0
02:00:01 69/8010 0 3476/34703 0 0/0 0 0/0
03:00:00 69/8010 0 3476/34703 0 0/0 0 0/0
04:00:00 69/8010 0 3494/34703 0 0/0 0 0/0
05:00:00 69/8010 0 3494/34703 0 0/0 0 0/0
06:00:00 69/8010 0 3494/34703 0 0/0 0 0/0
07:00:00 69/8010 0 3494/34703 0 0/0 0 0/0
08:00:00 69/8010 0 3494/34703 0 0/0 0 0/0
09:00:00 69/8010 0 3494/34703 0 0/0 0 0/0
09:20:00 69/8010 0 3494/34703 0 0/0 0 0/0
09:40:00 74/8010 0 3494/34703 0 0/0 0 0/0
10:00:00 75/8010 0 4918/34703 0 0/0 0 0/0
10:20:00 72/8010 0 4918/34703 0 0/0 0 0/0
10:40:00 71/8010 0 4918/34703 0 0/0 0 0/0
11:00:00 77/8010 0 4918/34703 0 0/0 0 0/0
```

Output from the `-v` option is described in the following table.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proc-sz</td>
<td>The number of process entries (proc structures) that are currently being used, or allocated, in the kernel.</td>
</tr>
<tr>
<td>inod-sz</td>
<td>The total number of inodes in memory compared to the maximum number of inodes that are allocated in the kernel. This number is not a strict high watermark. The number can overflow.</td>
</tr>
<tr>
<td>file-sz</td>
<td>The size of the open system file table. The sz is given as 0, because space is allocated dynamically for the file table.</td>
</tr>
<tr>
<td>ov</td>
<td>The overflows that occur between sampling points for each table.</td>
</tr>
<tr>
<td>lock-sz</td>
<td>The number of shared memory record table entries that are currently being used, or allocated, in the kernel. The sz is given as 0 because space is allocated dynamically for the shared memory record table.</td>
</tr>
</tbody>
</table>

How to Check Swapping Activity (sar -w)

- **Use the sar -w command to report swapping and switching activity.**

  ```
  $ sar -w
  00:00:00 swpin/s bswin/s swpot/s bswot/s pswch/s
  01:00:00 0.00 0.00 0.00 0.00 22
  ```

 The following list describes target values and observations related to the sar -w command output.

 - **swpin/s**: The number of LWP transfers into memory per second.
 - **bswin/s**: The number of blocks transferred for swap-ins per second. */
 (float)PGTOBLK(xx->cvmi.pgswapin) / sec_diff */.
 - **swpot/s**: The average number of processes that are swapped out of memory per second. If the number is greater than 1, you might need to increase memory.
 - **bswot/s**: The number of blocks that are transferred for swap-outs per second.
 - **pswich/s**: The number of kernel thread switches, per second.

 Note – All process swap-ins include process initialization.

Example 3–17 Checking Swap Activity (sar -w)

The following example shows output from the sar -w command.
$ sar -w

00:00:04 swpin/s bswin/s swpot/s bswot/s pswch/s
01:00:00 0.00 0.0 0.00 0.0 132
02:00:01 0.00 0.0 0.00 0.0 133
03:00:00 0.00 0.0 0.00 0.0 133
04:00:00 0.00 0.0 0.00 0.0 134
05:00:00 0.00 0.0 0.00 0.0 133
06:00:00 0.00 0.0 0.00 0.0 133
07:00:00 0.00 0.0 0.00 0.0 132
08:00:00 0.00 0.0 0.00 0.0 133
08:20:00 0.00 0.0 0.00 0.0 133
08:40:01 0.00 0.0 0.00 0.0 132
09:00:00 0.00 0.0 0.00 0.0 132
09:20:00 0.00 0.0 0.00 0.0 132
09:40:00 0.00 0.0 0.00 0.0 335
10:00:00 0.00 0.0 0.00 0.0 601
10:20:00 0.00 0.0 0.00 0.0 353
10:40:00 0.00 0.0 0.00 0.0 747
11:00:00 0.00 0.0 0.00 0.0 804

Average 0.00 0.0 0.00 0.0 198

How to Check Terminal Activity (sar -y)

- Use the `sar -y` command to monitor terminal device activities.

```bash
$ sar -y
```

00:00:00 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
01:00:00 0 0 0 0 0 0

If you have a lot of terminal I/O, you can use this report to determine if any bad lines exist. The activities recorded are defined in the following list.

- `rawch/s` Input characters (raw queue) per second.
- `canch/s` Input characters that are processed by canon (canonical queue) per second.
- `outch/s` Output characters (output queue) per second.
- `rcvin/s` Receiver hardware interrupts per second.
- `xmtin/s` Transmitter hardware interrupts per second.
- `mdmin/s` Modem interrupts per second.

The number of modem interrupts per second (`mdmin/s`) should be close to zero. The receive and transmit interrupts per second (`xmtin/s` and `rcvin/s`) should be less than or equal to the number of incoming or outgoing characters, respectively. If not, check for bad lines.

Example 3-18 Checking Terminal Activity (sar -y)

The following example shows output from the `sar -y` command.
$ sar -y

00:00:04 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
01:00:00 0 0 0 0 0
02:00:01 0 0 0 0 0
03:00:00 0 0 0 0 0
04:00:00 0 0 0 0 0
05:00:00 0 0 0 0 0
06:00:00 0 0 0 0 0
07:00:00 0 0 0 0 0
08:00:00 0 0 0 0 0
08:20:00 0 0 0 0 0
08:40:01 0 0 0 0 0
09:00:00 0 0 0 0 0
09:20:00 0 0 0 0 0
09:40:00 0 0 1 0 0
10:00:00 0 0 37 0 0
10:20:00 0 0 0 0 0
10:40:00 0 0 3 0 0
11:00:00 0 0 3 0 0

Average 0 0 1 0 0

▼ How to Check Overall System Performance (sar -A)

- Use the sar -A command to display statistics from all options to provide a view of overall system performance.

This command provides a more global perspective. If data from more than a single time segment is shown, the report includes averages.

Collecting System Activity Data Automatically (sar)

Three commands are involved in the automatic collection of system activity data: sadc, sa1, and sa2.

The sadc data collection utility periodically collects data on system activity and saves the data in a file in binary format, one file for each 24-hour period. You can set up the sadc command to run periodically (usually once each hour), and whenever the system boots to multiuser mode. The data files are placed in the /var/adm/sa directory. Each file is named sadd, where dd is the current date. The format of the command is as follows:

/usr/lib/sa/sadc [t n] [ofile]

The command samples n times with an interval of t seconds, which should be greater than five seconds between samples. This command then writes to the binary ofile file, or to standard output.
Running the sadc Command When Booting

The sadc command should be run at system boot time to record the statistics from when the counters are reset to zero. To make sure that the sadc command is run at boot time, the svcadm enable system/sar:default command writes a record to the daily data file.

The command entry has the following format:

```
/usr/bin/su sys -c "/usr/lib/sa/sadc /var/adm/sa/sa'date +%d"
```

Running the sadc Command Periodically With the sa1 Script

To generate periodic records, you need to run the sadc command regularly. The simplest way to do so is to uncomment the following lines in the /var/spool/cron/crontabs/sys file:

```
# 0 * * 0-6 /usr/lib/sa/sa1
# 20,40 8-17 * * 1-5 /usr/lib/sa/sa1
# 5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A
```

The sys crontab entries do the following:

- The first two crontab entries cause a record to be written to the /var/adm/sa/sadd file every 20 minutes from 8 a.m. to 5 p.m., Monday through Friday, and every hour on the hour otherwise.
- The third entry writes a record to the /var/adm/sa/sar dd file hourly, Monday through Friday, and includes all sar options.

You can change these defaults to meet your needs.

Producing Reports With the sa2 Shell Script

Another shell script, sa2, produces reports rather than binary data files. The sa2 command invokes the sar command and writes the ASCII output to a report file.

Setting Up Automatic Data Collection (sar)

The sar command can be used either to gather system activity data itself or to report what has been collected in the daily activity files that are created by the sadc command.

The sar command has the following formats:

```
sar [-aAbcdgkmqruvw] [-o file] t [n]
sar [-aAbcdgkmqruvw] [-s time] [-e time] [-i sec] [-f file]
```

The following sar command samples cumulative activity counters in the operating system every t seconds, n times. The t should be five seconds or greater. Otherwise, the command itself
might affect the sample. You must specify a time interval in which to take the samples. Otherwise, the command operates according to the second format. The default value of \(n \) is 1. The following example takes two samples separated by 10 seconds. If the \(-o\) option were specified, samples are saved in binary format.

\$ sar -u 10 2

Other important information about the sar command includes the following:

- With no sampling interval or number of samples specified, the sar command extracts data from a previously recorded file. This file is either the file specified by the \(-f\) option or, by default, the standard daily activity file, \(/var/adm/sa/sadd \), for the most recent day.
- The \(-s\) and \(-e\) options define the starting time and the ending time for the report. Starting and ending times are of the form \(hh[:mm][:ss] \), where \(hh, mm, \) and \(ss \) represent hours, minutes, and seconds.
- The \(-i\) option specifies, in seconds, the intervals between record selection. If the \(-i\) option is not included, all intervals that are found in the daily activity file are reported.

The following table lists the sar options and their actions.

<table>
<thead>
<tr>
<th>Option</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-a)</td>
<td>Checks file access operations</td>
</tr>
<tr>
<td>(-b)</td>
<td>Checks buffer activity</td>
</tr>
<tr>
<td>(-c)</td>
<td>Checks system calls</td>
</tr>
<tr>
<td>(-d)</td>
<td>Checks activity for each block device</td>
</tr>
<tr>
<td>(-g)</td>
<td>Checks page-out and memory freeing</td>
</tr>
<tr>
<td>(-k)</td>
<td>Checks kernel memory allocation</td>
</tr>
<tr>
<td>(-m)</td>
<td>Checks interprocess communication</td>
</tr>
<tr>
<td>(-nv)</td>
<td>Checks system table status</td>
</tr>
<tr>
<td>(-p)</td>
<td>Checks swap and dispatch activity</td>
</tr>
<tr>
<td>(-q)</td>
<td>Checks queue activity</td>
</tr>
<tr>
<td>(-r)</td>
<td>Checks unused memory</td>
</tr>
<tr>
<td>(-u)</td>
<td>Checks CPU utilization</td>
</tr>
<tr>
<td>(-w)</td>
<td>Checks swapping and switching volume</td>
</tr>
<tr>
<td>(-y)</td>
<td>Checks terminal activity</td>
</tr>
</tbody>
</table>
TABLE 3–5 Options for the sar Command (Continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>-A</td>
<td>Reports overall system performance, which is the same as entering all options.</td>
</tr>
</tbody>
</table>

Using no option is equivalent to calling the sar command with the -u option.

▼ How to Set Up Automatic Data Collection

1 Assume the root role.

2 Run the svcadm enable system/sar:default command.
 This version of the sadc command writes a special record that marks the time when the counters are reset to zero (boot time).

3 Edit the /var/spool/cron/crontabs/sys crontab file.

 Note – Do not edit a crontab file directly. Instead, use the crontab -e command to make changes to an existing crontab file.

 # crontab -e sys

4 Uncomment the following lines:
 0 * * * 0-6 /usr/lib/sa/sal
 20,40 8-17 * * 1-5 /usr/lib/sa/sal
 5 18 * * 1-5 /usr/lib/sa2 -s 8:00 -e 18:01 -i 1200 -A

 For more information, see the crontab(1) man page.
Scheduling System Tasks (Tasks)

This chapter describes how to schedule routine or single (one-time) system tasks by using the crontab and at commands.

This chapter also explains how to control access to these commands by using the following files:

- `cron.deny`
- `cron-allow`
- `at.deny`

This is a list of the information that is in this chapter:

- “Ways to Automatically Executing System Tasks” on page 81
- “Scheduling System Tasks” on page 83
- “Scheduling Tasks by Using the at Command” on page 93

Ways to Automatically Executing System Tasks

You can set up many system tasks to execute automatically. Some of these tasks should occur at regular intervals. Other tasks need to run only once, perhaps during off hours such as evenings or weekends.

This section contains overview information about two commands, `crontab` and `at`, which enable you to schedule routine tasks to execute automatically. The `crontab` command schedules repetitive commands. The `at` command schedules tasks that execute once.

The following table summarizes `crontab` and `at` commands, as well as the files that enable you to control access to these commands.
TABLE 4–1 Command Summary: Scheduling System Tasks

<table>
<thead>
<tr>
<th>Command</th>
<th>What It Schedules</th>
<th>Location of Files</th>
<th>Files That Control Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>crontab</td>
<td>Multiple system tasks at regular intervals</td>
<td>/var/spool/cron/crontabs /etc/cron.d/cron.allow and /etc/cron.d/cron.deny</td>
<td></td>
</tr>
<tr>
<td>at</td>
<td>A single system task</td>
<td>/var/spool/cron/atjobs</td>
<td>/etc/cron.d/at.deny</td>
</tr>
</tbody>
</table>

For Scheduling Repetitive Jobs: crontab

You can schedule routine system administration tasks to execute daily, weekly, or monthly by using the `crontab` command.

Daily crontab system administration tasks might include the following:

- Removing files more than a few days old from temporary directories
- Executing accounting summary commands
- Taking snapshots of the system by using the `df` and `ps` commands
- Performing daily security monitoring
- Running system backups

Weekly crontab system administration tasks might include the following:

- Rebuilding the `catman` database for use by the `man -k` command
- Running the `fsck -n` command to list any disk problems

Monthly crontab system administration tasks might include the following:

- Listing files not used during a specific month
- Producing monthly accounting reports

Additionally, users can schedule `crontab` commands to execute other routine system tasks, such as sending reminders and removing backup files.

For step-by-step instructions on scheduling `crontab` jobs, see "How to Create or Edit a crontab File" on page 87.

For Scheduling a Single Job: at

The `at` command allows you to schedule a job for execution at a later time. The job can consist of a single command or a script.

Similar to `crontab`, the `at` command allows you to schedule the automatic execution of routine tasks. However, unlike `crontab` files, `at` files execute their tasks once. Then, they are removed.
from their directory. Therefore, the at command is most useful for running simple commands or scripts that direct output into separate files for later examination.

Submitting an at job involves typing a command and following the at command syntax to specify options to schedule the time your job will be executed. For more information about submitting at jobs, see “Description of the at Command” on page 94.

The at command stores the command or script you ran, along with a copy of your current environment variable, in the /var/spool/cron/atjobs directory. Your at job file name is given a long number that specifies its location in the at queue, followed by the .a extension, such as 793962000.a.

The cron daemon checks for at jobs at startup and listens for new jobs that are submitted. After the cron daemon executes an at job, the at job’s file is removed from the atjobs directory. For more information, see the at(1) man page.

For step-by-step instructions on scheduling at jobs, see “How to Create an at Job” on page 95.

Scheduling System Tasks

This section includes tasks for scheduling system tasks by using crontab files.

Creating and Editing crontab Files (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create or edit a crontab file.</td>
<td>Use the crontab -e command to create or edit a crontab file.</td>
<td>"How to Create or Edit a crontab File" on page 87</td>
</tr>
<tr>
<td>Verify that a crontab file exists.</td>
<td>Use the ls -l command to verify the contents of the /var/spool/cron/crontabs file.</td>
<td>"How to Verify That a crontab File Exists" on page 88</td>
</tr>
<tr>
<td>Display a crontab file.</td>
<td>Use the ls -l command to display the crontab file.</td>
<td>"How to Display a crontab File" on page 88</td>
</tr>
<tr>
<td>Remove a crontab file.</td>
<td>The crontab file is set up with restrictive permissions. Use the crontab -r command, rather than the rm command to remove a crontab file.</td>
<td>"How to Remove a crontab File" on page 89</td>
</tr>
<tr>
<td>Deny crontab access.</td>
<td>To deny users access to crontab commands, add user names to the /etc/cron.d/cron.deny file by editing this file.</td>
<td>"How to Deny crontab Command Access" on page 91</td>
</tr>
</tbody>
</table>
Scheduling a Repetitive System Task (cron)

The following sections describe how to create, edit, display, and remove `crontab` files, as well as how to control access to them.

Inside a crontab File

The `cron` daemon schedules system tasks according to commands found within each `crontab` file. A `crontab` file consists of commands, one command per line, that will be executed at regular intervals. The beginning of each line contains date and time information that tells the `cron` daemon when to execute the command.

For example, a `crontab` file named `root` is supplied during SunOS software installation. The file's contents include these command lines:

1. `10 3 * * * /usr/sbin/logadm`

2. `15 3 * * 0 /usr/lib/fs/nfs/nfsfind`

3. `1 2 * * * [-x /usr/sbin/rtc] && /usr/sbin/rtc -c > /dev/null 2>&1`

4. `30 3 * * * [-x /usr/lib/gss/gsscred_clean] && /usr/lib/gss/gsscred_clean`

The following describes the output for each of these command lines:

- The first line runs the `logadm` command at 3:10 a.m. every day.
- The second line executes the `nfsfind` script every Sunday at 3:15 a.m.
- The third line runs a script that checks for daylight savings time (and make corrections, if necessary) at 2:10 a.m. daily.

 If there is no RTC time zone, nor an `/etc/rtc_config` file, this entry does nothing.

x86 only – The `/usr/sbin/rtc` script can only be run on an x86 based system.

- The fourth line checks for (and removes) duplicate entries in the Generic Security Service table, `/etc/gss/gsscred_db`, at 3:30 a.m. daily.

For more information about the syntax of lines within a `crontab` file, see “Syntax of `crontab` File Entries” on page 85.

The `crontab` files are stored in the `/var/spool/cron/crontabs` directory. Several `crontab` files besides `root` are provided during SunOS software installation. See the following table.
TABLE 4–2 Default crontab Files

<table>
<thead>
<tr>
<th>crontab File</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>adm</td>
<td>Accounting</td>
</tr>
<tr>
<td>root</td>
<td>General system functions and file system cleanup</td>
</tr>
<tr>
<td>sys</td>
<td>Performance data collection</td>
</tr>
<tr>
<td>uucp</td>
<td>General uucp cleanup</td>
</tr>
</tbody>
</table>

Besides the default crontab files, users can create crontab files to schedule their own system tasks. Other crontab files are named after the user accounts in which they are created, such as bob, mary, smith, or jones.

To access crontab files that belong to root or other users, superuser privileges are required.

Procedures explaining how to create, edit, display, and remove crontab files are described in subsequent sections.

How the cron Daemon Handles Scheduling

The cron daemon manages the automatic scheduling of crontab commands. The role of the cron daemon is to check the /var/spool/cron/crontab directory for the presence of crontab files.

The cron daemon performs the following tasks at startup:

- Checks for new crontab files.
- Reads the execution times that are listed within the files.
- Submits the commands for execution at the proper times.
- Listens for notifications from the crontab commands regarding updated crontab files.

In much the same way, the cron daemon controls the scheduling of at files. These files are stored in the /var/spool/cron/atjobs directory. The cron daemon also listens for notifications from the crontab commands regarding submitted at jobs.

Syntax of crontab File Entries

A crontab file consists of commands, one command per line, that execute automatically at the time specified by the first five fields of each command line. These five fields, described in the following table, are separated by spaces.
Follow these guidelines for using special characters in `crontab` time fields:

- Use a space to separate each field.
- Use a comma to separate multiple values.
- Use a hyphen to designate a range of values.
- Use an asterisk as a wildcard to include all possible values.
- Use a comment mark (#) at the beginning of a line to indicate a comment or a blank line.

For example, the following `crontab` command entry displays a reminder in the user’s console window at 4 p.m. on the first and fifteenth days of every month.

```
0 16 1,15 * * echo Timesheets Due > /dev/console
```

Each command within a `crontab` file must consist of one line, even if that line is very long. The `crontab` file does not recognize extra carriage returns. For more detailed information about `crontab` entries and command options, refer to the `crontab(1)` man page.

Creating and Editing `crontab` Files

The simplest way to create a `crontab` file is to use the `crontab -e` command. This command invokes the text editor that has been set for your system environment. The default editor for your system environment is defined in the `EDITOR` environment variable. If this variable has not been set, the `crontab` command uses the default editor, `ed`. Preferably, you should choose an editor that you know well.

The following example shows how to determine if an editor has been defined, and how to set up `vi` as the default.

```
$ which $EDITOR
$EDITOR=vi
export EDITOR
```
When you create a crontab file, it is automatically placed in the /var/spool/cron/crontabs directory and is given your user name. You can create or edit a crontab file for another user, or root, if you have root privileges.

▼ How to Create or Edit a crontab File

Before You Begin

If you are creating or editing a crontab file that belongs to root or another user, you must assume the root role. See “How to Use Your Assigned Administrative Rights” in Oracle Solaris 11.1 Administration: Security Services.

You do not need to assume the root role to edit your own crontab file.

1 **Create a new crontab file, or edit an existing file.**

 # crontab -e [username]

 where *username* specifies the name of the user’s account for which you want to create or edit a crontab file. You can create your own crontab file without superuser privileges, but you must have superuser privileges to creating or edit a crontab file for root or another user.

 Caution – If you accidentally type the crontab command with no option, press the interrupt character for your editor. This character allows you to quit without saving changes. If you instead saved changes and exited the file, the existing crontab file would be overwritten with an empty file.

2 **Add command lines to the crontab file.**

 Follow the syntax described in “Syntax of crontab File Entries” on page 85. The crontab file will be placed in the /var/spool/cron/crontabs directory.

3 **Verify your crontab file changes.**

 # crontab -l [username]

Example 4–1 Creating a crontab File

The following example shows how to create a crontab file for another user.

 # crontab -e jones

The following command entry added to a new crontab file automatically removes any log files from the user’s home directory at 1:00 a.m. every Sunday morning. Because the command entry does not redirect output, redirect characters are added to the command line after *.log > /dev/null 2>&1. Doing so ensures that the command executes properly.

 # This command helps clean up user accounts.
 1 0 * * 0 rm /home/jones/*.log > /dev/null 2>&1
How to Verify That a crontab File Exists

To verify that a crontab file exists for a user, use the `ls -l` command in the /var/spool/cron/crontabs directory. For example, the following output shows that crontab files exist for users jones and smith.

```
$ ls -l /var/spool/cron/crontabs
```

Verify the contents of user's crontab file by using the `crontab -l` command as described in “How to Display a crontab File” on page 88.

Displaying crontab Files

The `crontab -l` command displays the contents of a crontab file much the same way that the `cat` command displays the contents of other types of files. You do not have to change the directory to /var/spool/cron/crontabs directory (where crontab files are located) to use this command.

By default, the `crontab -l` command displays your own crontab file. To display crontab files that belong to other users, you must be superuser.

How to Display a crontab File

Before You Begin

Assume the root role to display a crontab file that belongs to root or another user. See “How to Use Your Assigned Administrative Rights” in Oracle Solaris 11.1 Administration: Security Services.

You do not need to assume the root role to display your own crontab file.

Display the crontab file.

```
# crontab -l [username]
```

where `username` specifies the name of the user's account for which you want to display a crontab file. Displaying another user's crontab file requires superuser privileges.

Caution – If you accidentally type the `crontab` command with no option, press the interrupt character for your editor. This character allows you to quit without saving changes. If you instead saved changes and exited the file, the existing crontab file would be overwritten with an empty file.

Example 4–2 Displaying a crontab File

This example shows how to use the `crontab -l` command to display the contents of the user's default crontab file.
Displaying the Default root crontab file.

This example shows how to display the default root crontab file.

Example 4–3

```
$ su
Password:
```

```
# crontab -l
#ident "@(#)root 1.19 98/07/06 SMI" /* SVr4.0 1.1.3.1 */
#
# The root crontab should be used to perform accounting data collection.
#
# 10 3 * * /usr/sbin/logadm
15 3 * * /usr/lib/fs/nfs/nfsfind
30 3 * * [ -x /usr/lib/gss/gsscred_clean ] && /usr/lib/gss/gsscred_clean
#10 3 * * /usr/lib/krb5/kprop_script ___slave_kdcs___
```

Displaying the crontab File of Another User

This example shows how to display the crontab file that belongs to another user.

Example 4–4

```
$ su
Password:
```

```
# crontab -l jones
13 13 * * * cp /home/jones/work_files /usr/backup/ . > /dev/null 2>&1
```

Removing crontab Files

By default, crontab file protections are set up so that you cannot inadvertently delete a crontab file by using the `rm` command. Instead, use the `crontab -r` command to remove crontab files.

By default, the `crontab -r` command removes your own crontab file.

You do not have to change the directory to `/var/spool/cron/crontabs` (where crontab files are located) to use this command.

How to Remove a crontab File

Before You Begin

Assume the root role to remove a crontab file that belongs to root or another user. Roles contain authorizations and privileged commands. See “How to Use Your Assigned Administrative Rights” in *Oracle Solaris 11.1 Administration: Security Services*.

You do not need to assume the root role to remove your own crontab file.

1. Remove the crontab file.

   ```
   # crontab -r [username]
   ```
where *username* specifies the name of the user’s account for which you want to remove a crontab file. Removing crontab files for another user requires superuser privileges.

Caution – If you accidentally type the `crontab` command with no option, press the interrupt character for your editor. This character allows you to quit without saving changes. If you instead saved changes and exited the file, the existing `crontab` file would be overwritten with an empty file.

2 **Verify that the crontab file has been removed.**

   ```
   # ls /var/spool/cron/crontabs
   ```

Example 4-5 **Removing a crontab File**

The following example shows how user *smith* uses the `crontab -r` command to remove his own crontab file.

```
$ ls /var/spool/cron/crontabs
adm  jones  root  smith  sys  uucp
$ crontab -r
$ ls /var/spool/cron/crontabs
adm  jones  root  sys  uucp
```

Controlling Access to the crontab Command

You can control access to the `crontab` command by using two files in the `/etc/cron.d` directory: `cron.deny` and `cron.allow`. These files permit only specified users to perform `crontab` command tasks such as creating, editing, displaying, or removing their own crontab files.

The `cron.deny` and `cron.allow` files consist of a list of user names, one user name per line.

These access control files work together as follows:

- If `cron.allow` exists, only the users who are listed in this file can create, edit, display, or remove crontab files.
- If `cron.allow` does not exist, all users can submit crontab files, except for users who are listed in `cron.deny`.
- If neither `cron.allow` nor `cron.deny` exists, superuser privileges are required to run the crontab command.

Superuser privileges are required to edit or create the `cron.deny` and `cron.allow` files.

The `cron.deny` file, which is created during SunOS software installation, contains the following user names:
None of the user names in the default `cron.deny` file can access the `crontab` command. You can edit this file to add other user names that will be denied access to the `crontab` command.

No default `cron.allow` file is supplied. So, after Oracle Solaris software installation, all users (except users who are listed in the default `cron.deny` file) can access the `crontab` command. If you create a `cron.allow` file, only these users can access the `crontab` command.

▼ How to Deny `crontab` Command Access

1 **Assume the root role.**

 See “How to Use Your Assigned Administrative Rights” in *Oracle Solaris 11.1 Administration: Security Services.*

 $ su -
 Password:
 #

2 **Edit the `/etc/cron.d/cron.deny` file and add user names, one user per line. Include users who will be denied access to the `crontab` commands.**

 daemon
 bin
 smtp
 nuucp
 listen
 nobody
 noaccess
 username1
 username2
 username3
 ...
 ...

3 **Verify that the `/etc/cron.d/cron.deny` file contains the new entries.**

 # cat /etc/cron.d/cron.deny
 daemon
 bin
 smtp
 nuucp
 listen
 nobody
 noaccess
How to Limit crontab Command Access to Specified Users

1. Assume the root role.

2. Create the /etc/cron.d/cron.allow file.

3. Add the root role to the cron.allow file.
 If you do not add root to the file, superuser access to crontab commands will be denied.

4. Add the user names, one user name per line.
 Include users that will be allowed to use the crontab command.
 root
 username1
 username2
 username3
 .
 .

Example 4-6 Limiting crontab Command Access to Specified Users

The following example shows a cron.deny file that prevents user names jones, temp, and visitor from accessing the crontab command.

$ cat /etc/cron.d/cron.deny
daemon
bin
smtp
nuucp
listen
nobody
noaccess
jones
temp
visitor

The following example shows a cron.allow file. The users root, jones, and smith are the only users who can access the crontab command.

$ cat /etc/cron.d/cron.allow
root
jones
smith
How to Verify Limited crontab Command Access

To verify if a specific user can access the crontab command, use the `crontab -l` command while you are logged into the user account.

```
$ crontab -l
```

If the user can access the crontab command, and already has created a crontab file, the file is displayed. Otherwise, if the user can access the crontab command but no crontab file exists, a message similar to the following message is displayed:

```
crontab: can't open your crontab file
```

Either this user either is listed in the `cron.allow` file (if the file exists), or the user is not listed in the `cron.deny` file.

If the user cannot access the crontab command, the following message is displayed whether or not a previous crontab file exists:

```
crontab: you are not authorized to use cron. Sorry.
```

This message means that either the user is not listed in the `cron.allow` file (if the file exists), or the user is listed in the `cron.deny` file.

Scheduling Tasks by Using the at Command

This section includes tasks for scheduling system tasks by using the at command.

Using the at Command (Task Map)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create an at job</td>
<td>Use the at command to do the following:</td>
<td>"How to Create an at Job" on page 95</td>
</tr>
<tr>
<td></td>
<td>■ Start the at utility from the command line.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Type the commands or scripts that you want to execute, one per line.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Exit the at utility and save the job.</td>
<td></td>
</tr>
<tr>
<td>Display the at queue</td>
<td>User the atq command to display the at queue.</td>
<td>"How to Display the at Queue" on page 96</td>
</tr>
</tbody>
</table>
Scheduling Tasks by Using the at Command

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>For Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify an at job.</td>
<td>Use the <code>atq</code> command to confirm that at jobs that belong to a specific user have been submitted to the queue.</td>
<td>"How to Verify an at Job" on page 96</td>
</tr>
<tr>
<td>Display at jobs.</td>
<td>Use the <code>at -l [job-id]</code> command to display at jobs that have been submitted to the queue.</td>
<td>"How to Display at Jobs" on page 96</td>
</tr>
<tr>
<td>Remove at jobs.</td>
<td>Use the <code>at -r [job-id]</code> command to remove at jobs from the queue.</td>
<td>"How to Remove at Jobs" on page 97</td>
</tr>
<tr>
<td>Deny access to the at command.</td>
<td>To deny users access to the at command, edit the <code>/etc/cron.d/at</code> deny file.</td>
<td>"How to Deny Access to the at Command" on page 98</td>
</tr>
</tbody>
</table>

Scheduling a Single System Task (at)

The following sections describe how to use the at command to perform the following tasks:

- Schedule jobs (command and scripts) for execution at a later time
- How to display and remove these jobs
- How to control access to the at command

By default, users can create, display, and remove their own at job files. To access at files that belong to root or other users, you must have superuser privileges.

When you submit an at job, it is assigned a job identification number along with the .a extension. This designation becomes the job’s file name, as well as its queue number.

Description of the at Command

Submitting an at job file involves these steps:

1. Invoking the at utility and specifying a command execution time.
2. Typing a command or script to execute later.

 Note – If output from this command or script is important, be sure to direct the output to a file for later examination.

 For example, the following at job removes core files from the user account smith near midnight on the last day of July.
Controlling Access to the at Command

You can set up a file to control access to the `at` command, permitting only specified users to create, remove, or display queue information about their at jobs. The file that controls access to the `at` command, `/etc/cron.d/at.deny`, consists of a list of user names, one user name per line. The users who are listed in this file cannot access at commands.

The `at.deny` file, which is created during SunOS software installation, contains the following user names:

```
daoen
bin
smtp
nuucp
listen
nobody
noaccess
```

With superuser privileges, you can edit the `at.deny` file to add other user names whose `at` command access you want to restrict.

▼ How to Create an at Job

1. **Start the at utility, specifying the time you want your job executed.**

   ```
   $ at [-m] time [date]
   
   -m Sends you email after the job is completed.
   
   time Specifies the hour that you want to schedule the job. Add am or pm if you do not specify the hours according to the 24-hour clock. Acceptable keywords are midnight, noon, and now. Minutes are optional.
   
   date Specifies the first three or more letters of a month, a day of the week, or the keywords today or tomorrow.
   
   $ at
   ```

2. **At the at prompt, type the commands or scripts that you want to execute, one per line.**

 You may type more than one command by pressing Return at the end of each line.

3. **Exit the at utility and save the at job by pressing Control-D.**

 Your at job is assigned a queue number, which is also the job’s file name. This number is displayed when you exit the at utility.
Example 4-7 Creating an at Job

The following example shows the at job that user jones created to remove her backup files at 7:30 p.m. She used the `-m` option so that she would receive an email message after her job completed.

```
$ at -m 1930
at> rm /home/jones/*.backup
at> Press Control-D
job 897355800.a at Thu Jul 12 19:30:00 2004
```

She received an email message which confirmed the execution of her at job.

Your “at” job “rm /home/jones/*.backup” completed.

The following example shows how jones scheduled a large at job for 4:00 a.m. Saturday morning. The job output was directed to a file named big.file.

```
$ at 4 am Saturday
at> sort -r /usr/dict/words > /export/home/jones/big.file
```

How to Display the at Queue

- To check your jobs that are waiting in the at queue, use the `atq` command.

  ```
  $ atq
  ```

 This command displays status information about the at jobs that you have created.

How to Verify an at Job

- To verify that you have created an at job, use the `atq` command. In the following example, the `atq` command confirms that at jobs that belong to jones have been submitted to the queue.

  ```
  $ atq
  Rank   Execution Date  Owner   Job   Queue   Job     Name
  1st    Jul 12, 2004  19:30    jones  897355800.a  a  stdin
  2nd    Jul 14, 2004  23:45    jones  897543900.a  a  stdin
  3rd    Jul 17, 2004  04:00    jones  897732000.a  a  stdin
  ```

How to Display at Jobs

- To display information about the execution times of your at jobs, use the `at -l` command.

  ```
  $ at -l [job-id]
  ```

 where the `-l job-id` option identifies the identification number of the job whose status you want to display.
Example 4–8 Displaying at Jobs

The following example shows output from the at -l command, which provides information about the status of all jobs submitted by a user.

```
$ at -l
897543900.a Sat Jul 14 23:45:00 2004
897355800.a Thu Jul 12 19:30:00 2004
897732000.a Tue Jul 17 04:00:00 2004
```

The following example shows the output that is displayed when a single job is specified with the at -l command.

```
$ at -l 897732000.a
897732000.a Tue Jul 17 04:00:00 2004
```

▼ How to Remove at Jobs

Before You Begin

Assume the root role to remove an at job that belongs to root or another user. Roles contain authorizations and privileged commands. See “How to Use Your Assigned Administrative Rights” in Oracle Solaris 11.1 Administration: Security Services.

You do not need to assume the root role to remove your own at job.

1 Remove the at job from the queue before the job is executed.

```
# at -r [job-id]
```

where the -r job-id option specifies the identification number of the job you want to remove.

2 Verify that the at job is removed by using the at -l (or the atq) command.

The at -l command displays the jobs remaining in the at queue. The job whose identification number you specified should not appear.

```
$ at -l [job-id]
```

Example 4–9 Removing at Jobs

In the following example, a user wants to remove an at job that was scheduled to execute at 4 a.m. on July 17th. First, the user displays the at queue to locate the job identification number. Next, the user removes this job from the at queue. Finally, the user verifies that this job has been removed from the queue.

```
$ at -l
897543900.a Sat Jul 14 23:45:00 2003
897355800.a Thu Jul 12 19:30:00 2003
897732000.a Tue Jul 17 04:00:00 2004
$ at -r 897732000.a
$ at -l 897732000.a
at: 858142000.a: No such file or directory
```
How to Deny Access to the at Command

1 Assume the root role.

2 Edit the /etc/cron.d/at.deny file and add the names of users, one username per line, that will be prevented from using the at commands.

 daemon
 bin
 smtp
 nuucp
 listen
 nobody
 noaccess
 username1
 username2
 username3
 .
 .
 .

Example 4–10 Denying at Access

The following example shows an at.deny file that has been edited so that the users smith and jones cannot access the at command.

 $ cat at.deny
daemon
 bin
 smtp
 nuucp
 listen
 nobody
 noaccess
 jones
 smith

How to Verify That at Command Access Is Denied

To verify that a username was added correctly to the /etc/cron.d/at.deny file, use the at -l command while logged in as the user. If the user smith cannot access the at command, the following message is displayed:

 # su smith
 Password:
 # at -l
 at: you are not authorized to use at. Sorry.
Likewise, if the user tries to submit an at job, the following message is displayed:

```
# at 2:30pm
at: you are not authorized to use at. Sorry.
```

This message confirms that the user is listed in the at.deny file.

If at command access is allowed, then the at -l command returns nothing.
Managing the System Console, Terminal Devices, and Power Services (Tasks)

This chapter describes how to manage the system console and locally connected terminal devices through the `ttymon` program and system power services.

This is a list of the information that is in this chapter:

- “What's New in Managing the System Console, Terminal Devices, and Power Services” on page 101
- “Managing System Console and Locally Connected Terminal Devices” on page 102
- “Managing System Power Services” on page 105

What's New in Managing the System Console, Terminal Devices, and Power Services

The following features are new or changed in Oracle Solaris 11.

Changes to How System Power Services Are Managed

Power management configuration has moved into an SMF configuration repository. The `poweradm` command is used to manage system power management properties directly rather than using a combination of power-related command, daemon, and configuration file. These changes are part of a wider set of changes to modernize the power management framework in Oracle Solaris 11. For more information, see “Managing System Power Services” on page 105.
Managing System Console and Locally Connected Terminal Devices

The system console is a terminal that has special attributes and is used for certain purposes. For example, kernel messages that are meant for an administrator are sent to the Console and not other terminals.

A terminal is a means of interacting with Oracle Solaris. Your system’s bitmapped graphics display is not the same as an alphanumeric terminal. An alphanumeric terminal connects to a serial port and displays only text. You do not have to perform any special steps to administer the graphics display.

A terminal could also be associated with the physical monitor and keyboard layout of a computer. What sets the graphical terminal apart is that it must be associated with the graphics card and monitor of a computer. So, instead of transmitting characters out of a serial port, the characters are drawn onto the memory of the graphics card that is in the computer.

SMF Services That Manage the System Console and Locally Connected Terminal Devices

The system console and locally connected terminal devices are represented as instances of the SMF service, svc:/system/console. This service defines most of the behavior, with each instance having specific overrides to the settings that are inherited from the service. The ttymon program is used to offer login services for these terminals. Each terminal uses a separate instance of the ttymon program. Command-line arguments that are passed by the service to the ttymon program govern its behavior.

The service instances that are supplied with the system are as follows:

- `svc:/system/console-login:default`
 The default instance always represents that the ttymon program offer a login to the system hardware console. For an example, see “How to Modify Settings for the System Console” on page 103.

- `svc:/system/console-login:{vt2,vt3,vt4,vt5,vt6}`
 Additional service instances are provided for the system’s virtual consoles. If virtual consoles are not available, these services are automatically disabled. For more information, see the vtdaemon(1M) man page.

- `svc:/system/console-login:{terma,termb}`
 The svc:/system/console-login:terma and svc:/system/console-login:termb services are provided as a convenience. These services can assist you in setting up login services for additional /dev/term/a and /dev/term/b ports. These services are disabled by default.
You can define additional service instances as part of the svc:/system/console-login service. For example, if you had a /dev/term/f device which you needed to support, you could instantiate svc:/system/console-login:termf and configure it appropriately.

▼ How to Modify Settings for the System Console

Administration of the system console is managed by SMF. Use the svccfg command to set the system console properties.

The following procedure shows how to change the console terminal type by using the svccfg command.

1 **Assume the root role.**


   ```
   $ su -
   Password: #
   ```

2 **Use the svccfg command to set the property for the service instance that you want to change.**

 For example, to change the terminal type for the system console, which is represented by the :default service, you would type the following command:

   ```
   # svccfg -s svc:/system/console-login:default "setprop ttymon/terminal_type = xterm"
   ```

 Caution – It is not advisable to set the terminal type of the svc:/system/console-login service because the change will affect all instances.

▼ How to Set Up Login Services on Auxiliary Terminals

For terminals that are connected to /dev/term/a or /dev/term/b serial ports on a system, predefined services are provided.

To enable login services for /dev/term/a, use the following procedure.

1 **Assume the root role.**

2 **Enable the service instance as follows:**

   ```
   # svcadm enable svc:/system/console-login:term
   ```

3 **Check that the service is online.**

   ```
   # svcsc svc:/system/console-login:term
   ```
The output should show that the service is online. If the service is in maintenance mode, consult the service’s log file for further details.

▼ How to Set the Baud Rate Speed on the System Terminal

This procedure shows how to set the baud rate speed on the console. Support for console speeds on x86 based systems are dependent on the specific platform.

The following are supported console speeds for SPARC based systems:
- 9600 bps
- 19200 bps
- 38400 bps

1 Become an administrator.

2 Use the eeprom command to set a baud rate speed that is appropriate for your system type.

`# eeprom ttya-mode=baud-rate,8,n,1,-`

For example, to change the baud rate on an x86 based system’s console to 38400, type:

`# eeprom ttya-mode=38400,8,n,1,-`

3 Change the console line in the /etc/ttydefs file as follows:

```
console baud-rate hupcl opost onlcr: baud-rate:: console
```

4 Make the following additional changes for your system type.

Note that these changes are platform-dependent.

- **On SPARC based systems**: Change the baud rate speed in the version of the options.conf file that is in the /etc/driver/drv directory.

 Use the following command to change the baud rate to 9600:

 `# 9600 :bd:

 Use the following command to change the baud rate speed to 19200.

 `# 19200 :be:

 Use the following command to change the baud rate speed to 38400:

 `# 38400 :bf:

- **On x86 based systems**: Change the console speed if the BIOS serial redirection is enabled.
Managing System Power Services

In the Oracle Solaris 11 release, power management configuration has moved into an SMF configuration repository. The new `poweradm` command is used to manage system power management properties directly rather than using a combination of power-related command, daemon, and configuration file. These changes are part of a wider set of changes to modernize the power management framework in Oracle Solaris 11.

The following power management features are no longer available:

- `/etc/power.conf`
- `pmconfig` and `powerd`
- Device power management

The following properties describe power management components:

- **administrative-authority** – Defines the source of administrative control for Oracle Solaris power management. This property can be set to `none`, `platform` (default value), or `smf`. When set to `platform`, the values of `time-to-full-capacity` and `time-to-minimum-responsiveness` are taken from the platform's power management commands. When set to `smf`, the values of `time-to-full-capacity` and `time-to-minimum-responsiveness` are taken from SMF. If you attempt to set `time-to-full-capacity` or `time-to-minimum-responsiveness` from either a platform command or an SMF service property when in the opposite venue, the value is ignored. When `administrative-authority` is set to `none`, power management within the Solaris instance is turned off.

- **time-to-full-capacity** – Defines the maximum time (in microseconds) the system is allowed to reach its full capacity, from any lower-capacity or less-responsive state, while the system is in active state. The maximum time includes when the system is allowed to reach (re-provision and make available) its full capacity, returning from any lower-capacity/less-responsive state, while it has been using any or all of the PM features falling within this boundary.

 By default, this value is taken from the platform, `i86pc` for example, because the default setting for `administrative-authority` is set to `platform`. Alternatively, if `administrative-authority` is set to `smf`, this value is taken from the definition provided by the SMF power service. At installation time, this value is undefined. If you choose to modify this property, a value appropriate to the needs of the system's workload or applications should be considered.

- **time-to-minimum-responsiveness** – Defines how long the system is allowed to return to its active state in milliseconds. This parameter provides the minimum capacity required to meet the `time-to-full-capacity` constraint. By default, this parameter value is taken from the platform, `i86pc` for example, because the default setting for `administrative-authority` is set to `platform`.
Alternatively, if `administrative-authority` is set to `smf`, this value is taken from the definition provided by the SMF power service. At installation time, this value is undefined. If you choose to modify this property, a value appropriate to the needs of the system’s workload or applications should be considered.

Moderate values, seconds for example, allow hardware components or subsystems on the platform to be placed in slower-response inactive states. Larger values, 30 seconds to minutes for example, allow for whole system suspension, using techniques such as `suspend-to-RAM`.

- `suspend-enable` – By default, no system running Solaris is permitted to attempt a suspend operation. Setting this property to true permits a suspend operation to be attempted. The value of the `administrative-authority` has no effect upon this property.
- `platform-disabled` – When `platform-disabled` is set to true, the platform has disabled power management. When set to false, the default value, power management is controlled by the value of the above properties.

A brief summary of power management status can be displayed by using the following command:

```
$ /usr/sbin/poweradm show
Power management is enabled with the hardware platform as the authority:
time-to-full-capacity set to 250 microseconds
time-to-minimum-responsiveness set to 0 milliseconds
```

All power management properties can be displayed by using the following command:

```
$ /usr/sbin/poweradm list
active_config/time-to-full-capacity current=250, platform=250
active_config/time-to-minimum-responsiveness current=0, platform=0
active_control/administrative-authority current=platform, smf=platform
suspend/suspend-enable current=false
platform-disabled current=false
```

In the above output, the `active_control/administrative-authority` indicates the source of the configuration with two settings:

- `platform` – Configuration for power management comes from the platform. This is the default value.
- `smf` – Allows the other power management properties to be set using the `poweradm` command.

The `platform-disabled` property in the above output indicates that the platform power management is enabled:

```
platform-disabled current=false
```

For more information, see `poweradm(1M)`.
Enabling and Disabling Power Management

If you previously enabled S3-support in the /etc/power.conf file to suspend and resume your system, similar poweradm syntax is:

```
# poweradm set suspend-enable=true
```

The suspend-enable property is set to false by default.

Use the following syntax to disable power management:

```
# poweradm set administrative-authority=none
```

Disabling the following SMF power management service does not disable power management:

```
online Sep_02 svc:/system/power:default
```

Use the following syntax to disable suspend and resume.

```
# poweradm set suspend-enable=false
```

Setting and Displaying Power Management Parameters

The following examples show how to set time-to-full-capacity to 300 microseconds and time-to-minimum-responsiveness to 500 milliseconds. Lastly, the Oracle Solaris instance is informed of the new values.

```
# poweradm set time-to-full-capacity=300
# poweradm set time-to-minimum-responsiveness=500
# poweradm set administrative-authority=smf
```

The following command shows the current time-to-full-capacity value.

```
# poweradm get time-to-full-capacity
300
```

The following command retrieves the time-to-full-capacity value set by the platform.

```
# poweradm get -a platform time-to-full-capacity
```

Note that this value will only be the same as the current value if administrative-authority is set to platform. For more information, see the above administrative-authority property description.
Troubleshooting System Power Problems

▼ How to Recover from Power Service in Maintenance Mode

If administrative-authority is set to smf before both time-to-full-capacity and time-to-minimumresponsiveness have been set, the service will go into maintenance mode. See the steps below to recover from this scenario.

1 Become an administrator.

2 Set administrative-authority to none.
 # poweradm set administrative-authority=none

3 Set both time-to-full-capacity and time-to-minimum-responsiveness to their desired values.
 # poweradm set time-to-full-capacity=value
 # poweradm set time-to-minimum-responsiveness=value

4 Clear the service.
 # svcadm clear power

5 Set administrative-authority to smf.
 # poweradm set administrative-authority=smf
Index

A
address space map, 31
application threads, 48, 50
at command, 94, 95, 98
 · l option (list), 97
 · m option (mail), 95, 96
 automatic scheduling of, 85
 controlling access to, 95, 98
 overview, 81
 denying access, 98
 error messages, 98
 overview, 81, 82, 94
at . deny file, 95, 98
 description, 81
at job files, 94, 97
 creating, 95, 96
 deleting, 97
 description, 82
 displaying, 97
 location of, 83
 submitting, 94
at jobs directory, 85
 description, 81
automatic system activity data collection, 77, 78
automatic system activity reporting, 77, 78
automatic system task execution
 repetitive tasks, 91, 92
 single tasks, 94, 95, 98
automating system task execution, 81

B
baud rate
 how to set on ttymon terminal, 104
 how to set with the eeprom command, 104
booting, running sadc command when, 78

C
changing
 crontab files, 86
 date, 25
 priority, 42, 44
 timesharing processes, 43, 44
 scheduling classes, 43
console terminal, how to set the baud rate on, 104
console terminal baud rate, setting with the eeprom command, 104
controlling
 access to at command, 81, 95, 98
 access to crontab command, 91, 92
 overview, 81
 processes, 34
core files, automatically deleting, 94
CPU (central processing unit)
 displaying information on
 time usage, 30, 45
 high-usage processes, 45
creating
 at jobs, 96
 at jobs, 95
 crontab files, 86, 87
/etc/cron.d/cron.deny file, 90, 91
executing routine tasks automatically (overview), 81

F
fcntl information, 31, 33
file systems
disk space usage, 58
mount point, 59
files
checking access operations, 61, 62
fstat and fcntl information display, 31, 33
fsck command, 82
fstat information, 31, 33

G
global priorities
defined, 38
displaying, 40

I
iostat command
basic information display, 56
overview, 55

K
kernel thread
scheduling and, 30
structures, 30, 49
killing processes, 31, 35
klwp structure, 49
kthread structure, 49

L
listing
processes, 32

M
maximums, nice number, 44
memory
example of displaying information about, 16
process structures and, 49
shared
process virtual memory, 50
virtual
process, 50
message of the day (MOTD) facility, 25–26
minimums, nice number, 44
monthly tasks (scheduling with crontab), 82
MOTD (message of the day) facility, 25–26
motd file, 25–26

N
new features, svcadm enable system/sar:default
command, 78
nice command, 43, 44, 45
nice number, 30, 44

P
perf file, 78
performance
activities that are tracked, 50
automatic collection of activity data, 77, 78
file access, 61, 62
manual collection of activity data, 61, 78
process management, 31, 44, 48
reports on, 61

Index

111
Index

performance (Continued)
 system activity monitoring, 50, 61, 77
 tools for monitoring, 50
 pfiles command, 31, 33
 pflags command, 31
 pkill command, 31, 35
 pldd command, 31
 pmap command, 31
 priocntl command
 overview, 39
 -c option (scheduling class designation), 43
 -i option (ID type), 42, 43
 -l option (scheduling class display), 39
 -m option (max/min priority), 42
 -p option (priority designation), 42
 -s option (priority upper limit/change priority), 42, 43
 priority (process)
 changing, 42, 44
 timesharing processes, 42, 43, 44
 designating, 42
 displaying information about, 30, 40
 global
 defined, 38
 displaying, 40
 overview, 38, 44
 scheduling classes and, 42
 user-mode priority, 38
 /proc directory, 30
 proc structure, 30, 49
 process file system (PROCFS), 30
 processes
 address space map, 31
 application threads and, 48, 50
 controlling, 34
 current working directory for, 31, 33
 defined, 48
 displaying information (how to), 33–34
 displaying information about
 priocntl command, 39
 displaying information on, 29
 listing processes, 32
 listing processes being executed, 32
 LWPs, 31
 processes, displaying information on (Continued)
 priocntl command, 39
 ps command, 29, 32, 40
 displaying information with proc tool
 commands, 31
 displaying information with proc tools, 30
 fstat and fcntl information for open files, 31, 33
 killing, 31, 35
 libraries linked into, 31
 nice number of, 30, 43, 44, 45
 priority, 44
 changing, 42, 44
 changing timesharing process priority, 42, 43, 44
 designating, 42
 displaying information about, 30, 40
 global priorities, 38, 40
 overview, 38, 44
 scheduling classes and, 38, 42
 user-mode priority, 38
 proc tool commands, 30
 restarting, 31
 runaway, 45
 scheduling classes, 38
 changing, 43
 changing priority of, 42, 44
 designating, 42
 displaying information about, 30, 39
 displaying information on, 40
 priority levels and, 38, 42
 signal actions, 31
 stack trace, 31
 stopping temporarily, 31
 structures for, 30, 49
 terminology, 48, 50
 tool commands, 31
 tracing flags, 31
 trees, 31, 33
 troubleshooting, 45
 PROCFS (process file system), 30
 product name for a system, displaying with prtconf
 command, 15–16
 programs, disk-dependency of, 62
 prtconf command, 16
 displaying a system’s product name, 15–16
ps command, 29, 32
 fields reported, 30
 overview, 29
 -c option (scheduling class), 30, 45
 -ecl option (global priority), 40
 -ef option (full information), 32
psig command, 31
psrinfo command option to identify chip multithreading features, psrinfo -p, 22
pstack command, 31
ptime command, 31
ptree command, 31, 33
pwait command, 31
pwdx command, 31, 33

R
real-time processes, changing class of, 43
removing, crontab files, 89–90
repetitive system tasks, 91
restarting, processes, 31
runaway processes, 45

S
sael command, 77
sa2 command, 77, 78
sadc command, 77, 78
sadd file, 78
sar command, 61, 78
 description of all options, 79
 options listed, 79
 overview, 61, 78
 -a option (file access), 61, 62
 -A option (overall performance), 77, 79
 -b option (buffers), 62
 -c option (system calls), 64
 -e option (ending time), 79
 -f option (file to extract data from), 79
 -i option (interval), 79
 -m option (interprocess communication), 69
 -p option (page-in/page faults), 70
 -q option (queue), 71, 72
sar command (Continued)
 -r option (unused memory), 72
 -s option (starting time), 79
 -u option (CPU usage), 73
 -v option (system tables), 74
 -y option (terminal devices), 76
scheduling
 See also crontab command, atcommand
 one-time system tasks, 82, 94
 repetitive system tasks, 82, 84
scheduling classes, 38
 changing, 43
 changing priority of, 42, 44
 designating, 42
 displaying information about, 30, 39, 40
 priority levels and, 38, 42
security
 at command, 95
 crontab command, 91
setting the baud rate on the ttymon console terminal, how to, 104
shared memory, process virtual memory, 50
stopping, processes temporarily, 31
svcadm enable system/sar:default command, 78
sys crontab, 78
system activities
 automatic collection of data on, 77, 78
 list of activities tracked, 50
 manual collection of data on, 78
system resources
 monitoring, 95
 automatic, 95
 overview, 48
system tasks
 See also crontab command, atcommand
 scheduling
 one-time tasks, 82, 94
 repetitive tasks, 82, 84
 scheduling automatically, 81
T
terminals, process controlling, 30