man pages section 3: Library Interfaces and Headers
Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le dés assembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des États-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise pour le compte du Gouvernement des États-Unis, la notice suivante s’applique :

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné à être utilisé dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX est une marque déposée d(The Open Group).

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou services tiers, ou à leur utilisation.
Contents

Preface ... 9

Introduction ... 13
Intro(3) .. 14

Library Interfaces and Headers ... 27
acct.h(3HEAD) ... 28
aio.h(3HEAD) ... 30
archives.h(3HEAD) .. 31
ar.h(3HEAD) ... 36
assert.h(3HEAD) .. 41
complex.h(3HEAD) ... 42
cpio.h(3HEAD) .. 44
dirent.h(3HEAD) .. 46
erro.h(3HEAD) .. 47
fenv.h(3HEAD) .. 48
fenv.h(3HEAD) .. 53
float.h(3HEAD) .. 56
floatingpoint.h(3HEAD) .. 59
fmtmsg.h(3HEAD) ... 61
fnmatch.h(3HEAD) .. 63
ftw.h(3HEAD) .. 64
glob.h(3HEAD) ... 66
grp.h(3HEAD) .. 68
iconv.h(3HEAD) .. 69
if.h(3HEAD) .. 71
inet.h(3HEAD) .. 72
in.h(3HEAD) ... 73
inttypes.h(3HEAD) .. 75
ipc.h(3HEAD) ... 77
iso646.h(3HEAD) ... 79
langinfo.h(3HEAD) ... 80
libadm(3LIB) ... 84
libaio(3LIB) ... 85
libauto_ef(3LIB) .. 86
libbsdmalloc(3LIB) ... 87
libc(3LIB) .. 88
libc_db(3LIB) ... 119
libcfgadm(3LIB) .. 122
libcommutil(3LIB) .. 123
libcontract(3LIB) .. 125
libcpc(3LIB) ... 127
libcrypt(3LIB) ... 129
libcurses(3LIB) ... 130
libdat(3LIB) ... 137
libdevid(3LIB) ... 140
libdevinfo(3LIB) .. 141
libdl(3LIB) ... 146
libdtrace(3LIB) ... 147
libdns_sd(3LIB) .. 148
libdoor(3LIB) ... 149
libelf(3LIB) ... 150
libelf(3LIB) ... 151
libelf(3LIB) ... 152
libexact(3LIB) ... 155
libfco(3LIB) ... 157
libfmevent(3LIB) ... 158
libfph(3LIB) ... 160
libform(3LIB) ... 162
libgen(3LIB) ... 163
libgen.h(3HEAD) ... 165
libgss(3LIB) ... 166
libgssapi(3LIB) .. 168
libicudata(3LIB) ... 172
libicui8n(3LIB) ... 173
libicuio(3LIB) ... 174
libicule(3LIB) ... 175
libiculx(3LIB) ... 176
libiccutu(3LIB) ... 177
libicuuc(3LIB) ... 178
libilb(3LIB) ... 179
libintl(3LIB) .. 181
libintl.h(3HEAD) ... 182
libiscsit(3LIB) ... 183
libkkmf(3LIB) ... 184
libkrb5(3LIB) ... 188
libkstat(3LIB) ... 195
lib kvm(3LIB) ... 196
libl(3LIB) ... 197
liblayout(3LIB) ... 198
liblgrp(3LIB) ... 199
libm(3LIB) .. 200
libmail(3LIB) .. 217
libmalloc(3LIB) ... 218
libmapmalloc(3LIB) .. 219
libmd(3LIB) .. 220
libmd5(3LIB) .. 222
libmenu(3LIB) ... 223
libmlib(3LIB) ... 225
libmlib_mt(3LIB) ... 296
libmp(3LIB) .. 298
libMPAPI(3LIB) ... 299
libmtrmalloc(3LIB) .. 304
libmvec(3LIB) ... 306
libns1(3LIB) .. 308
libnvpair(3LIB) ... 315
libpam(3LIB) .. 318
libpanel(3LIB) ... 320
libpapi(3LIB) ... 321
Contents

libpctx(3LIB) ... 324
libpicl(3LIB) ... 325
libpicltree(3LIB) .. 326
libpkcs11(3LIB) ... 328
libplot(3LIB) ... 332
libpool(3LIB) ... 334
libproject(3LIB) .. 342
libpthread(3LIB) ... 343
libreparse(3LIB) ... 346
libresolv(3LIB) .. 349
librpcsvc(3LIB) .. 351
librt(3LIB) ... 352
librtld_db(3LIB) ... 354
libaslr(3LIB) ... 355
libscf(3LIB) ... 357
libscrypt(3LIB) .. 363
libsec(3LIB) ... 364
libsecdb(3LIB) ... 365
libsendfile(3LIB) ... 367
libsip(3LIB) ... 368
libslp(3LIB) ... 373
libSMHBAAPI(3LIB) ... 374
libsocket(3LIB) .. 378
libsrpt(3LIB) ... 380
libssagent(3LIB) .. 381
libssasnmp(3LIB) ... 382
libstmf(3LIB) ... 383
libsys(3LIB) ... 386
libsys-event(3LIB) ... 392
libtecla(3LIB) ... 393
libthread(3LIB) .. 396
libtsalarm(3LIB) .. 398
libtsnet(3LIB) ... 399
libtsol(3LIB) ... 400
libumem(3LIB) ... 402
libusb(3LIB) ... 403
<table>
<thead>
<tr>
<th>Library/Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>libuuid(3LIB)</td>
<td>405</td>
</tr>
<tr>
<td>libv12n(3LIB)</td>
<td>406</td>
</tr>
<tr>
<td>libvolmgt(3LIB)</td>
<td>407</td>
</tr>
<tr>
<td>libw(3LIB)</td>
<td>408</td>
</tr>
<tr>
<td>libxnet(3LIB)</td>
<td>410</td>
</tr>
<tr>
<td>libXtsol(3LIB)</td>
<td>413</td>
</tr>
<tr>
<td>liby(3LIB)</td>
<td>414</td>
</tr>
<tr>
<td>libzonestat(3LIB)</td>
<td>415</td>
</tr>
<tr>
<td>limits.h(3HEAD)</td>
<td>424</td>
</tr>
<tr>
<td>locale.h(3HEAD)</td>
<td>434</td>
</tr>
<tr>
<td>math.h(3HEAD)</td>
<td>436</td>
</tr>
<tr>
<td>mman.h(3HEAD)</td>
<td>439</td>
</tr>
<tr>
<td>monetary.h(3HEAD)</td>
<td>441</td>
</tr>
<tr>
<td>mqueue.h(3HEAD)</td>
<td>442</td>
</tr>
<tr>
<td>msg.h(3HEAD)</td>
<td>443</td>
</tr>
<tr>
<td>ndbm.h(3HEAD)</td>
<td>444</td>
</tr>
<tr>
<td>netdb.h(3HEAD)</td>
<td>445</td>
</tr>
<tr>
<td>nl_types.h(3HEAD)</td>
<td>447</td>
</tr>
<tr>
<td>paths.h(3HEAD)</td>
<td>448</td>
</tr>
<tr>
<td>poll.h(3HEAD)</td>
<td>450</td>
</tr>
<tr>
<td>pthread.h(3HEAD)</td>
<td>452</td>
</tr>
<tr>
<td>pwd.h(3HEAD)</td>
<td>454</td>
</tr>
<tr>
<td>regex.h(3HEAD)</td>
<td>455</td>
</tr>
<tr>
<td>resource.h(3HEAD)</td>
<td>457</td>
</tr>
<tr>
<td>sched.h(3HEAD)</td>
<td>459</td>
</tr>
<tr>
<td>search.h(3HEAD)</td>
<td>460</td>
</tr>
<tr>
<td>select.h(3HEAD)</td>
<td>461</td>
</tr>
<tr>
<td>semaphore.h(3HEAD)</td>
<td>462</td>
</tr>
<tr>
<td>sem.h(3HEAD)</td>
<td>463</td>
</tr>
<tr>
<td>setjmp.h(3HEAD)</td>
<td>465</td>
</tr>
<tr>
<td>shm.h(3HEAD)</td>
<td>466</td>
</tr>
<tr>
<td>siginfo.h(3HEAD)</td>
<td>467</td>
</tr>
<tr>
<td>signal.h(3HEAD)</td>
<td>471</td>
</tr>
<tr>
<td>socket.h(3HEAD)</td>
<td>478</td>
</tr>
<tr>
<td>spawn.h(3HEAD)</td>
<td>484</td>
</tr>
<tr>
<td>stat.h(3HEAD)</td>
<td>485</td>
</tr>
<tr>
<td>Header</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>statvfs.h</td>
<td>487</td>
</tr>
<tr>
<td>stdbool.h</td>
<td>488</td>
</tr>
<tr>
<td>stddef.h</td>
<td>489</td>
</tr>
<tr>
<td>stdint.h</td>
<td>490</td>
</tr>
<tr>
<td>stdio.h</td>
<td>497</td>
</tr>
<tr>
<td>stdlib.h</td>
<td>499</td>
</tr>
<tr>
<td>string.h</td>
<td>501</td>
</tr>
<tr>
<td>strings.h</td>
<td>502</td>
</tr>
<tr>
<td>stropts.h</td>
<td>503</td>
</tr>
<tr>
<td>syslog.h</td>
<td>508</td>
</tr>
<tr>
<td>tar.h</td>
<td>510</td>
</tr>
<tr>
<td>tcp.h</td>
<td>513</td>
</tr>
<tr>
<td>termios.h</td>
<td>514</td>
</tr>
<tr>
<td>tgmath.h</td>
<td>519</td>
</tr>
<tr>
<td>timeb.h</td>
<td>523</td>
</tr>
<tr>
<td>time.h</td>
<td>524</td>
</tr>
<tr>
<td>times.h</td>
<td>526</td>
</tr>
<tr>
<td>types32.h</td>
<td>527</td>
</tr>
<tr>
<td>types.h</td>
<td>528</td>
</tr>
<tr>
<td>ucontext.h</td>
<td>532</td>
</tr>
<tr>
<td>uio.h</td>
<td>533</td>
</tr>
<tr>
<td>ulimit.h</td>
<td>534</td>
</tr>
<tr>
<td>un.h</td>
<td>535</td>
</tr>
<tr>
<td>unistd.h</td>
<td>536</td>
</tr>
<tr>
<td>utime.h</td>
<td>547</td>
</tr>
<tr>
<td>utmpx.h</td>
<td>548</td>
</tr>
<tr>
<td>utlsname.h</td>
<td>550</td>
</tr>
<tr>
<td>values.h</td>
<td>551</td>
</tr>
<tr>
<td>wait.h</td>
<td>552</td>
</tr>
<tr>
<td>wchar.h</td>
<td>554</td>
</tr>
<tr>
<td>wctype.h</td>
<td>556</td>
</tr>
<tr>
<td>wordexp.h</td>
<td>557</td>
</tr>
</tbody>
</table>
Both novice users and those familiar with the SunOS operating system can use online man pages to obtain information about the system and its features. A man page is intended to answer concisely the question “What does it do?” The man pages in general comprise a reference manual. They are not intended to be a tutorial.

Overview

The following contains a brief description of each man page section and the information it references:

- Section 1 describes, in alphabetical order, commands available with the operating system.
- Section 1M describes, in alphabetical order, commands that are used chiefly for system maintenance and administration purposes.
- Section 2 describes all of the system calls. Most of these calls have one or more error returns. An error condition is indicated by an otherwise impossible returned value.
- Section 3 describes functions found in various libraries, other than those functions that directly invoke UNIX system primitives, which are described in Section 2.
- Section 4 outlines the formats of various files. The C structure declarations for the file formats are given where applicable.
- Section 5 contains miscellaneous documentation such as character-set tables.
- Section 7 describes various special files that refer to specific hardware peripherals and device drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls are also described.
- Section 9E describes the DDI (Device Driver Interface)/DKI (Driver/Kernel Interface), DDI-only, and DKI-only entry-point routines a developer can include in a device driver.
- Section 9F describes the kernel functions available for use by device drivers.
- Section 9S describes the data structures used by drivers to share information between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section generally follow this order, but include only needed headings. For example, if there are no bugs to report,
there is no BUGS section. See the intro pages for more information and detail about each section, and man(1) for more information about man pages in general.

NAME This section gives the names of the commands or functions documented, followed by a brief description of what they do.

SYNOPSIS This section shows the syntax of commands or functions. When a command or file does not exist in the standard path, its full path name is shown. Options and arguments are alphabetized, with single letter arguments first, and options with arguments next, unless a different argument order is required.

The following special characters are used in this section:

[] Brackets. The option or argument enclosed in these brackets is optional. If the brackets are omitted, the argument must be specified.

... Ellipses. Several values can be provided for the previous argument, or the previous argument can be specified multiple times, for example, “filename...”.

| Separator. Only one of the arguments separated by this character can be specified at a time.

{ } Braces. The options and/or arguments enclosed within braces are interdependent, such that everything enclosed must be treated as a unit.

PROTOCOL This section occurs only in subsection 3R to indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior of the service. Thus it describes concisely what the command does. It does not discuss OPTIONS or cite EXAMPLES. Interactive commands, subcommands, requests, macros, and functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only. Only the device class that supplies appropriate parameters to the ioctl(2) system call is called ioctl and generates its own heading. ioctl calls for a specific device are listed alphabetically (on the man page for that specific device).
ioctl calls are used for a particular class of devices all of which have an io ending, such as mtio(7I).

OPTIONS This section lists the command options with a concise summary of what each option does. The options are listed literally and in the order they appear in the SYNOPSIS section. Possible arguments to options are discussed under the option, and where appropriate, default values are supplied.

OPERANDS This section lists the command operands and describes how they affect the actions of the command.

OUTPUT This section describes the output – standard output, standard error, or output files – generated by the command.

RETURN VALUES If the man page documents functions that return values, this section lists these values and describes the conditions under which they are returned. If a function can return only constant values, such as 0 or –1, these values are listed in tagged paragraphs. Otherwise, a single paragraph describes the return values of each function. Functions declared void do not return values, so they are not discussed in RETURN VALUES.

ERRORS On failure, most functions place an error code in the global variable errno indicating why they failed. This section lists alphabetically all error codes a function can generate and describes the conditions that cause each error. When more than one condition can cause the same error, each condition is described in a separate paragraph under the error code.

USAGE This section lists special rules, features, and commands that require in-depth explanations. The subsections listed here are used to explain built-in functionality:

- Commands
- Modifiers
- Variables
- Expressions
- Input Grammar

EXAMPLES This section provides examples of usage or of how to use a command or function. Wherever possible a complete
example including command-line entry and machine response is shown. Whenever an example is given, the prompt is shown as `example%`, or if the user must be superuser, `example#`. Examples are followed by explanations, variable substitution rules, or returned values. Most examples illustrate concepts from the SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that the command or function affects, followed by a brief description of the effect.

EXIT STATUS This section lists the values the command returns to the calling program or shell and the conditions that cause these values to be returned. Usually, zero is returned for successful completion, and values other than zero for various error conditions.

FILES This section lists all file names referred to by the man page, files of interest, and files created or required by commands. Each is followed by a descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands, utilities, and device drivers by defining the attribute type and its corresponding value. See `attributes(5)` for more information.

SEE ALSO This section lists references to other man pages, in-house documentation, and outside publications.

DIAGNOSTICS This section lists diagnostic messages with a brief explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions which could seriously affect your working conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does not belong anywhere else on the page. It takes the form of an aside to the user, covering points of special interest. Critical information is never covered here.

BUGS This section describes known bugs and, wherever possible, suggests workarounds.
REFERENCE

Introduction
This section describes functions found in various Solaris libraries, other than those functions described in Section 2 of this manual that directly invoke UNIX system primitives. Function declarations can be obtained from the `#include` files indicated on each page. Pages are grouped by library and are identified by the library name (or an abbreviation of the library name) after the section number. Collections of related libraries are grouped into volumes as described below. The first volume contains pages describing the contents of each shared library and each header used by the functions, macros, and external variables described in the remaining volumes.

The libraries described in this section are implemented as shared objects.

Descriptions of shared objects can include a definition of the global symbols that define the shared objects' public interface, for example `SUNW_1.1`. Other interfaces can exist within the shared object, for example `SUNW_private_1.1`. The public interface provides a stable, committed set of symbols for application development. The private interfaces are for internal use only, and could change at any time.

The headers described in this section are used by functions, macros, and external variables. Headers contain function prototypes, definitions of symbolic constants, common structures, preprocessor macros, and defined types. Each function described in the remaining five volumes specifies the headers that an application must include in order to use that function. In most cases only one header is required. These headers are present on an application development system; they do have to be present on the target execution system.

The functions described in this volume are the core C library functions that are basic to application development.

These functions, together with those of Section 2, constitute the standard C library, `libc`, which is automatically linked by the C compilation system. The standard C library is implemented as a shared object, `libc.so`. See `libc(3LIB)` and the “C Compilation System” chapter of the ANSI C Programmer's Guide for a discussion. Some functions behave differently in standard-conforming environments. This behavior is noted on the individual manual pages. See `standards(5)`.

The `libpthread` and `libthread` libraries are filter libraries on `libc` that are used for building multithreaded applications: `libpthread` implements the POSIX (see `standards(5)`) threads interface, whereas `libthread` implements the Solaris threads interface. See MULTITHREADED APPLICATIONS, below.
These functions constitute the threads debugging library, libc_db. This library is implemented as a shared object, libc_db.so, but is not automatically linked by the C compilation system. Specify -lc_db on the cc command line to link with this library. See libc_db(3LIB).

These functions constitute the various memory allocation libraries: libmalloc, libbsdmalloc, libmapmalloc, libmtmalloc, and libumem. Each of these libraries is implemented as a shared object (libmalloc.so, libbsdmalloc.so, libmapmalloc.so, libmtmalloc.so, and libumem.so). These libraries are not automatically linked by the C compilation system. Specify -lmalloc, -lbsdmalloc, -lmapmalloc, -lmtmalloc, and -lumem to link with, respectively, libmalloc, libbsdmalloc, libmapmalloc, libmtmalloc, and libumem. See libmalloc(3LIB), libbsdmalloc(3LIB), libmapmalloc(3LIB), libmtmalloc(3LIB), and libumem(3LIB).

The functions described in this volume comprise the various networking libraries.

These functions constitute the communication protocol parser utilities library, libcommputil. This library is implemented as a shared object, libcommputil.so, but it is not automatically linked by the C compilation system. Specify -lcommputil on the cc command line to link with this library. See libcommputil(3LIB).

These functions constitute the data link provider interface library, libdlpi. This library is implemented as a shared object, libdlpi.so, but it is not automatically linked by the C compilation system. Specify -ldlpi on the cc command line to link with this library. See libdlpi(3LIB).

These functions constitute the DNS service discovery library, libdns_sd. This library is implemented as a shared object, libdns_sd.so, but it is not automatically linked by the C compilation system. Specify -ldns_sd on the cc command line to link with this library. See libdns_sd(3LIB).

These functions constitute the generic security services library. This library is implemented as a shared object, libgss.so, but it is not automatically linked by the C compilation system. Specify -lgss on the cc command line to link with this library. See libgss(3LIB).

These functions constitute the lightweight directory access protocol library, libldap. This library is implemented as a shared object, libldap.so, but is not automatically linked by the C compilation system. Specify -lldap on the cc command line to link with this library. See ldap(3LDAP).
These functions constitute the network service library, \texttt{libnsl}. This library is implemented as a shared object, \texttt{libnsl.so}, but is not automatically linked by the C compilation system. Specify \texttt{-lnsl} on the \texttt{cc} command line to link with this library. See \texttt{libnsl(3LIB)}.

Many base networking functions are also available in the X/Open networking interfaces library, \texttt{libxnet}. See section (3XNET) below for more information on the \texttt{libxnet} interfaces.

These functions constitute the resolver library, \texttt{libresolv}. This library is implemented as a shared object, \texttt{libresolv.so}, but is not automatically linked by the C compilation system. Specify \texttt{-lresolv} on the \texttt{cc} command line to link with this library. See \texttt{libresolv(3LIB)}.

These functions constitute the remote procedure call libraries, \texttt{librpcsvc} and \texttt{librpcsoc}. The latter is provided for compatibility only; new applications should not link to it. Both libraries are implemented as shared objects, \texttt{librpcsvc.so} and \texttt{librpcsoc.so}, respectively. Neither library is automatically linked by the C compilation system. Specify \texttt{-lrpcsvc} or \texttt{-lrpcsoc} on the \texttt{cc} command line to link with these libraries. See \texttt{librpcsvc(3LIB)}.

These functions constitute the simple authentication and security layer library, \texttt{libsasl}. This library is implemented as a shared object, \texttt{libsasl.so}, but it is not automatically linked by the C compilation system. Specify \texttt{-lsasl} on the \texttt{cc} command line to link with this library. See \texttt{libsasl(3LIB)}.

These functions constitute the session initiation protocol library, \texttt{libsip}. This library is implemented as a shared object, \texttt{libsip.so}, but it is not automatically linked by the C compilation system. Specify \texttt{-lsip} on the \texttt{cc} command line to link with this library. See \texttt{libsip(3LIB)}.

These functions constitute the service location protocol library, \texttt{libsip}. This library is implemented as a shared object, \texttt{libsip.so}, but it is not automatically linked by the C compilation system. Specify \texttt{-lsip} on the \texttt{cc} command line to link with this library. See \texttt{libsip(3LIB)}.

These functions constitute the sockets library, \texttt{libsocket}. This library is implemented as a shared object, \texttt{libsocket.so}, but is not automatically linked by the C compilation system. Specify \texttt{-lsocket} on the \texttt{cc} command line to link with this library. See \texttt{libsocket(3LIB)}.

These functions constitute X/Open networking interfaces which comply with the X/Open CAE Specification, Networking Services, Issue 4 (September, 1994). This library is
implemented as a shared object, libxnet.so, but is not automatically linked by the C compilation system. Specify -lxnet on the cc command line to link with this library. See libxnet(3LIB) and standards(5) for compilation information.

Under all circumstances, the use of the Sockets API is recommended over the XTI and TLI APIs. If portability to other XPGV4v2 (see standards(5)) systems is a requirement, the application must use the libxnet interfaces. If portability is not required, the sockets interfaces in libsocket and libnsl are recommended over those in libxnet. Between the XTI and TLI APIs, the XTI interfaces (available with libxnet) are recommended over the TLI interfaces (available with libnsl).

The functions described in this volume comprise the libraries that provide graphics and character screen updating capabilities.

(3CURSES)
The functions constitute the following libraries:

libcurses
These functions constitute the curses library, libcurses. This library is implemented as a shared object, libcurses.so, but is not automatically linked by the C compilation system. Specify -lcurses on the cc command line to link with this library. See libcurses(3LIB).

libform
These functions constitute the forms library, libform. This library is implemented as a shared object, libform.so, but is not automatically linked by the C compilation system. Specify -lform on the cc command line to link with this library. See libform(3LIB).

libmenu
These functions constitute the menus library, libmenu. This library is implemented as a shared object, libmenu.so, but is not automatically linked by the C compilation system. Specify -lmenu on the cc command line to link with this library. See libmenu(3LIB).

libpanel
These functions constitute the panels library, libpanel. This library is implemented as a shared object, libpanel.so, but is not automatically linked by the C compilation system. Specify -lpanel on the cc command line to link with this library. See libpanel(3LIB).

(3PLOT)
These functions constitute the graphics library, libplot. This library is implemented as a shared object, libplot.so, but is not automatically linked by the C compilation system. Specify -lplot on the cc command line to link with this library. See libplot(3LIB).

(3XCURSES)
These functions constitute the X/Open curses library, located in /usr/xpg4/lib/libcurses.so. This library provides a set of internationalized functions and macros for creating and modifying input and output to a terminal screen. Included in
this library are functions for creating windows, highlighting text, writing to the screen, reading from user input, and moving the cursor. X/Open Curses is designed to optimize screen update activities. The X/Open Curses library conforms fully with Issue 4 of the X/Open Extended Curses specification. See `libcurses(3XCURSES)`.

The functions described in this volume comprise the following specialized libraries:

(3CFGADM)

These functions constitute the configuration administration library, `libcfgadm`. This library is implemented as a shared object, `libcfgadm.so`, but is not automatically linked by the C compilation system. Specify `-lcfgadm` on the `cc` command line to link with this library. See `libcfgadm(3LIB)`.

(3CONTRACT)

These functions constitute the contract management library, `libcontract`. This library is implemented as a shared object, `libcontract.so`, but is not automatically linked by the C compilation system. Specify `-lcontract` on the `cc` command line to link with this library. See `libcontract(3LIB)`.

(3CPC)

These functions constitute the CPU performance counter library, `libcpc`, and the process context library, `libpctx`. These libraries are implemented as shared objects, `libcpc.so` and `libpctx.so`, respectively, but are not automatically linked by the C compilation system. Specify `-lcpc` or `-lpctx` on the `cc` command line to link with these libraries. See `libcpc(3LIB)` and `libpctx(3LIB)`.

(3DAT)

These functions constitute the direct access transport library, `libdat`. This library is implemented as a shared object, `libdat.so`, but is not automatically linked by the C compilation system. Specify `-ldat` on the `cc` command line to link with this library. See `libdat(3LIB)`.

(3DEVID)

These functions constitute the device ID library, `libdevid`. This library is implemented as a shared object, `libdevid.so`, but is not automatically linked by the C compilation system. Specify `-ldevil` on the `cc` command line to link with this library. See `libdevid(3LIB)`.

(3DEVINFO)

These functions constitute the device information library, `libdevinfo`. This library is implemented as a shared object, `libdevinfo.so`, but is not automatically linked by the C compilation system. Specify `-ldenv` on the `cc` command line to link with this library. See `libdevinfo(3LIB)`.

(3ELF)

These functions constitute the ELF access library, `libelf`. (Extensible Linking Format). This library provides the interface for the creation and analyses of “elf” files; executables, objects, and shared objects. `libelf` is implemented as a shared object, `libelf.so`, but is
not automatically linked by the C compilation system. Specify `-lelf` on the `cc` command line to link with this library. See `libelf(3LIB)`.

(3EXACCT) These functions constitute the extended accounting access library, `libexacct`, and the project database access library, `libproject`. These libraries are implemented as shared objects, `libexacct.so` and `libproject.so`, respectively, but are not automatically linked by the C compilation system. Specify `-lexacct` or `-lproject` on the `cc` command line to link with these libraries. See `libexacct(3LIB)` and `libproject(3LIB)`.

(3FCOE) These functions constitute the Fibre Channel over Ethernet port management library. This library is implemented as a shared object, `libfcoe.so`, but is not automatically linked by the C compilation system. Specify `-lfcoe` on the `cc` command line to link with this library. See `libfcoe(3LIB)`.

(3FM) These functions constitute the fault management events library. This library is implemented as a shared object, `libfmevent.so`, but is not automatically linked by the C compilation system. Specify `-lfmevent` on the `cc` command line to link with this library. See `libfmevent(3LIB)`.

(3FSTYP) These functions constitute the file system type identification library. This library is implemented as a shared object, `libfstyp.so`, but is not automatically linked by the C compilation system. Specify `-lfstyp` on the `cc` command line to link with this library. See `libfstyp(3LIB)`.

The functions described in this volume comprise the following specialized libraries:

(3GEN) These functions constitute the string pattern-matching and pathname manipulation library, `libgen`. This library is implemented as a shared object, `libgen.so`, but is not automatically linked by the C compilation system. Specify `-lgen` on the `cc` command line to link with this library. See `libgen(3LIB)`.

(3HBAAPI) These functions constitute the common fibre channel HBA information library, `libhbaapi`. This library is implemented as a shared object, `libhbaapi.so`, but is not automatically linked by the C compilation system. Specify `-lhbaapi` on the `cc` command line to link with this library. See `libhbaapi(3LIB)`.

(3ISCSCIT) These functions constitute the iSCSI Management library, `libiscscit`. This library is implemented as a shared object, `libiscscit.so`, but is not automatically linked by the C compilation system. Specify `-lishscsit` on the `cc` command line to link with this library. See `libiscscit(3LIB)`.
These functions constitute the kernel statistics library, which is implemented as a shared object, libkstat.so, but is not automatically linked by the C compilation system. Specify -lkstat on the cc command line to link with this library. See libkstat(3LIB).

These functions allow access to the kernel's virtual memory library, which is implemented as a shared object, libkvm.so, but is not automatically linked by the C compilation system. Specify -lkvm on the cc command line to link with this library. See libkvm(3LIB).

These functions constitute the layout service library, which is implemented as a shared object, liblayout.so, but is not automatically linked by the C compilation system. Specify -lllayout on the cc command line to link with this library. See liblayout(3LIB).

These functions constitute the locality group library, which is implemented as a shared object, liblgrp.so, but is not automatically linked by the C compilation system. Specify -llgrp on the cc command line to link with this library. See liblgrp(3LIB).

These functions constitute the mathematical library, libm. This library is implemented as a shared object, libm.so, but is not automatically linked by the C compilation system. Specify -lm on the cc command line to link with this library. See libm(3LIB).

These functions constitute the user mailbox management library, libmail. This library is implemented as a shared object, libmail.so, but is not automatically linked by the C compilation system. Specify -lmail on the cc command line to link with this library. See libmail(3LIB).

These functions constitute the integer mathematical library, libmp. This library is implemented as a shared object, libmp.so, but is not automatically linked by the C compilation system. Specify -lmp on the cc command line to link with this library. See libmp(3LIB).

These functions constitute the Common Multipath Management library, libMPAPI. This library is implemented as a shared object, libMPAPI.so, but is not automatically linked by the C compilation system. Specify -lMPAPI on the cc command line to link with this library. See libMPAPI(3LIB).

These functions constitute the vector mathematical library, libmvec. This library is implemented as a shared object, libmvec.so, but is not automatically linked by the C compilation system. Specify -lmvec on the cc command line to link with this library. See libmvec(3LIB).
The functions described in this volume comprise the following specialized libraries:

(3NVPAIR)
These functions constitute the name–value pair library, libnvpair. This library is implemented as a shared object, libnvpair.so, but is not automatically linked by the C compilation system. Specify -lnvpair on the cc command line to link with this library. See libnvpair(3LIB).

(3PAM)
These functions constitute the pluggable authentication module library, libpam. This library is implemented as a shared object, libpam.so, but is not automatically linked by the C compilation system. Specify -lpam on the cc command line to link with this library. See libpam(3LIB).

(3PAPI)
These functions constitute the Free Standards Group Open Printing API (PAPI) library, libpapi. This library is implemented as a shared object, libpapi.so, but is not automatically linked by the C compilation system. Specify -lpapi on the cc command line to link with this library. See libpapi(3LIB).

(3PICL)
These functions constitute the PICL library, libpicl. This library is implemented as a shared object, libpicl.so, but is not automatically linked by the C compilation system. Specify -lpicl on the cc command line to link with this library. See libpicl(3LIB) and libpicl(3PICL).

(3PICLTREE)
These functions constitute the PICL plug-in library, libpicltree. This library is implemented as a shared object, libpicltree.so, but is not automatically linked by the C compilation system. Specify -lpicltree on the cc command line to link with this library. See libpicltree(3LIB) and libpicltree(3PICLTREE).

(3POOL)
These functions constitute the pool configuration manipulation library, libpool. This library is implemented as a shared object, libpool.so, but is not automatically linked by the C compilation system. Specify -lpool on the cc command line to link with this library. See libpool(3LIB).

(3PROJECT)
These functions constitute the project database access library, libproject. This library is implemented as a shared object, libproject.so, but is not automatically linked by the C compilation system. Specify -lproject on the cc command line to link with this library. See libproject(3LIB).

(3REPARSE)
These functions constitute the reparse point library, libreparse. This library is implemented as a shared object, libreparse.so, but is not automatically linked by the C compilation system. Specify -lreparse on the cc command line to link with this library.
The functions described in this volume comprise the following specialized libraries:

(3SCF) These functions constitute the object-caching memory allocation library, libscf. This library is implemented as a shared object, libscf.so, but is not automatically linked by the C compilation system. Specify `-lscf` on the `cc` command line to link with this library. See `libscf(3LIB)`.

(3SEC) These functions constitute the file access control library, libsec. This library is implemented as a shared object, libsec.so, but is not automatically linked by the C compilation system. Specify `-lsec` on the `cc` command line to link with this library. See `libsec(3LIB)`.

(3SNMP) These functions constitute the SNMP libraries, libssagent and libssasnmp. These libraries are implemented as shared objects, libssagent.so and libssasnmp.so, respectively, but are not automatically linked by the C compilation system. Specify `-lssagent` or `-lssasnmp` on the `cc` command line to link with these libraries. See `libssagent(3LIB)` and `libssasnmp(3LIB)`.

(3SRPT) These functions constitute the SRP Target Management library, libsrpt. This library is implemented as a shared object, libsrpt.so, but is not automatically linked by the C compilation system. Specify `-lsrpt` on the `cc` command line to link with this library. See `libsrpt(3LIB)`.

(3STMF) These functions constitute the SCSI Target Mode Framework library, libstmf. This library is implemented as a shared object, libstmf.so, but is not automatically linked by the C compilation system. Specify `-lstmf` on the `cc` command line to link with this library. See `libstmf(3LIB)`.

(3SYSEVENT) These functions constitute the system event library, libsysevent. This library is implemented as a shared object, libsysevent.so, but is not automatically linked by the C compilation system. Specify `-lsysevent` on the `cc` command line to link with this library. See `libsysevent(3LIB)`.

(3TECLA) These functions constitute the interactive command-line input library, libtecla. This library is implemented as a shared object, libtecla.so, but is not automatically linked by the C compilation system. Specify `-ltecla` on the `cc` command line to link with this library. See `libtecla(3LIB)`.

See `libreparse(3LIB)`.
These functions constitute the Trusted Extensions library, libtsol, and the Trusted Extensions network library, libtsnet. These libraries are implemented as shared objects, libtsol.so and libtsnet.so, but are not automatically linked by the C compilation system. Specify -ltsol or -ltsnet on the cc command line to link with these libraries. See libtsol(3LIB) and libtsnet(3LIB).

These functions constitute the universally unique identifier library, libuuid. This library is implemented as a shared object, libuuid.so, but is not automatically linked by the C compilation system. Specify -luuid on the cc command line to link with this library. See libuuid(3LIB).

These functions constitute the volume management library, libvolmgt. This library is implemented as a shared object, libvolmgt.so, but is not automatically linked by the C compilation system. Specify -lvolmgt on the cc command line to link with this library. See libvolmgt(3LIB).

These functions constitute the Trusted Extensions to the X windows library, libXtsol. This library is implemented as a shared object, libXtsol.so, but is not automatically linked by the C compilation system. Specify -lX11 and then -lXtsol on the cc command line to link with this library. See libXtsol(3LIB).

These functions constitute the zones statistics library, libzonestat. This library is implemented as a shared object, libzonestat.so, but is not automatically linked by the C compilation system. Specify -lzonestat on the cc command line to link with this library. See libzonestat(3LIB).

These functions constitute the mediaLib library, libmlib. This library is implemented as a shared object, libmlib.so, but is not automatically linked by the C compilation system. Specify -lmlib on the cc command line to link with this library. See libmlib(3LIB).

A character is any bit pattern able to fit into a byte on the machine. In some international languages, however, a “character” might require more than one byte, and is represented in multi-bytes.

The null character is a character with value 0, conventionally represented in the C language as \0. A character array is a sequence of characters. A null-terminated character array (a string) is a sequence of characters, the last of which is the null character. The null string is a character array containing only the terminating null character. A null pointer is the value that is obtained by casting 0 into a pointer. C guarantees that this value will not match that of any legitimate pointer, so many functions that return pointers return NULL to indicate an error. The macro NULL is defined in <stdio.h>. Types of the form size_t are defined in the appropriate headers.
Both POSIX threads and Solaris threads can be used within the same application. Their implementations are completely compatible with each other; however, only POSIX threads guarantee portability to other POSIX-conforming environments.

The `libpthread(3LIB)` and `libthread(3LIB)` libraries are implemented as filters on `lib(3LIB)`.

When compiling a multithreaded application, the `-mt` option must be specified on the command line.

There is no need for a multithreaded application to link with `-lthread`. An application must link with `-lpthread` only when POSIX semantics for `fork(2)` are desired. When an application is linked with `-lpthread`, a call to `fork()` assumes the behavior `fork1(2)` rather than the default behavior that forks all threads.

When compiling a POSIX-conforming application, either the `_POSIX_C_SOURCE` or `_POSIX_PTHREAD_SEMANTICS` option must be specified on the command line. For POSIX.1c-conforming applications, define the `_POSIX_C_SOURCE` flag to be >= 199506L:

```bash
cc -mt [ flag... ] file... -D_POSIX_C_SOURCE=199506L -lpthread
```

For POSIX behavior with the Solaris `fork()` and `fork1()` distinction, compile as follows:

```bash
cc -mt [ flag... ] file... -D_POSIX_PTHREAD_SEMANTICS
```

For Solaris threads behavior, compile as follows:

```bash
cc -mt [ flag... ] file...
```

Unsafe interfaces should be called only from the main thread to ensure the application’s safety.

MT-Safe interfaces are denoted in the ATTRIBUTES section of the functions and libraries manual pages (see `attributes(5)`). If a manual page does not state explicitly that an interface is MT-Safe, the user should assume that the interface is unsafe.

The environment variable `LD_BIND_NOW` must be set to a non-null value to enable early binding. Refer to the “When Relocations are Processed” chapter in `Linker and Libraries Guide` for additional information.

Files

- **INCDIR**
 - usually `/usr/include`

- **LIBDIR**
 - usually either `/lib` or `/usr/lib` (32-bit) or either `/lib64` or `/usr/lib64` (64-bit)

- **LIBDIR/*.so**
 - shared libraries

Acknowledgments

Oracle America, Inc. gratefully acknowledges The Open Group for permission to reproduce portions of its copyrighted documentation. Original documentation from The Open Group can be obtained online at http://www.opengroup.org/bookstore/.
The Institute of Electrical and Electronics Engineers and The Open Group, have given us permission to reprint portions of their documentation.

In the following statement, the phrase "this text" refers to portions of the system documentation.

Portions of this text are reprinted and reproduced in electronic form in the SunOS Reference Manual, from IEEE Std 1003.1, 2004 Edition, Standard for Information Technology -- Portable Operating System Interface (POSIX), The Open Group Base Specifications Issue 6, Copyright (C) 2001-2004 by the Institute of Electrical and Electronics Engineers, Inc and The Open Group. In the event of any discrepancy between these versions and the original IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The original Standard can be obtained online at http://www.opengroup.org/unix/online.html.

This notice shall appear on any product containing this material.

See Also ar(1), ld(1), fork(2), stdio(3C), attributes(5), standards(5)

Linker and Libraries Guide
Performance Profiling Tools
ANSI C Programmer's Guide

Diagnostics For functions that return floating-point values, error handling varies according to compilation mode. Under the -Xt (default) option to cc, these functions return the conventional values 0, ±HUGE, or NaN when the function is undefined for the given arguments or when the value is not representable. In the -Xa and -Xc compilation modes, ±HUGE_`VAL is returned instead of ±HUGE. (HUGE_`VAL and HUGE are defined in `math.h to be infinity and the largest-magnitude single-precision number, respectively.)

Notes None of the functions, external variables, or macros should be redefined in the user's programs. Any other name can be redefined without affecting the behavior of other library functions, but such redefinition might conflict with a declaration in an included header.

The headers in INCDIR provide function prototypes (function declarations including the types of arguments) for most of the functions listed in this manual. Function prototypes allow the compiler to check for correct usage of these functions in the user's program. The lint program checker can also be used and will report discrepancies even if the headers are not included with #include statements. Definitions for Sections 2 and 3C are checked automatically. Other definitions can be included by using the -I option to lint. (For example, -I/usr includes definitions for /usr/include.) Use of lint is highly recommended. See the lint chapter in Performance Profiling Tools.
Users should carefully note the difference between STREAMS and stream. STREAMS is a set of kernel mechanisms that support the development of network services and data communication drivers. It is composed of utility routines, kernel facilities, and a set of data structures. A stream is a file with its associated buffering. It is declared to be a pointer to a type FILE defined in <stdio.h>.

In detailed definitions of components, it is sometimes necessary to refer to symbolic names that are implementation-specific, but which are not necessarily expected to be accessible to an application program. Many of these symbolic names describe boundary conditions and system limits.

In this section, for readability, these implementation-specific values are given symbolic names. These names always appear enclosed in curly brackets to distinguish them from symbolic names of other implementation-specific constants that are accessible to application programs by headers. These names are not necessarily accessible to an application program through a header, although they can be defined in the documentation for a particular system.

In general, a portable application program should not refer to these symbolic names in its code. For example, an application program would not be expected to test the length of an argument list given to a routine to determine if it was greater than {ARG_MAX}.
REFERENCE

Library Interfaces and Headers
Name acct.h, acct – per-process accounting file format

Synopsis
#include <sys/types.h>
#include <sys/acct.h>

Description Files produced as a result of calling acct(2) have records in the form defined by <sys/acct.h>, whose contents are:

typedef ushort_t comp_t; /* pseudo "floating point" representation */
 /* 3 bit base-8 exponent in the high */
 /* order bits, and a 13-bit fraction */
 /* in the low order bits. */*/

struct acct
{
 char ac_flag; /* Accounting flag */
 char ac_stat; /* Exit status */
 uid_t ac_uid; /* Accounting user ID */
 gid_t ac_gid; /* Accounting group ID */
 dev_t ac_tty; /* control tty */
 time_t ac_btime; /* Beginning time */
 comp_t ac_utime; /* accounting user time in clock ticks */
 comp_t ac_stime; /* accounting system time in clock ticks */
 comp_t ac_etime; /* accounting total elapsed time in clock ticks */
 comp_t ac_mem; /* memory usage in clicks (pages) */
 comp_t ac_io; /* chars transferred by read/write */
 comp_t ac_rw; /* number of block reads/writes */
 char ac_comm[8]; /* command name */
};

/* Accounting Flags */
#define AFORK 01 /* has executed fork, but no exec */
#define ASU 02 /* used super-user privileges */
#define ACCTF 0300 /* record type */
#define AEXPND 040 /* Expanded Record Type — default */

In ac_flag, the AFORK flag is turned on by each fork and turned off by an exec. The ac_comm field is inherited from the parent process and is reset by any exec. Each time the system charges the process with a clock tick, it also adds to ac_mem the current process size, computed as follows:

\[(\text{data size}) + (\text{text size}) / (\text{number of in-core processes using text})\]

The value of ac_mem / (ac_stime + ac_utime) can be viewed as an approximation to the mean process size, as modified by text sharing.
The structure tacct, (which resides with the source files of the accounting commands), represents a summary of accounting statistics for the user id ta_uid. This structure is used by the accounting commands to report statistics based on user id.

```c
/*
 * total accounting (for acct period), also for day
 */
struct tacct {
    uid_t   ta_uid;  /* user id */
    char    ta_name[8];  /* login name */
    float   ta_cpu[2];  /* cum. cpu time in minutes, */
    /* p/np (prime/non-prime time) */
    float   ta_kcore[2];  /* cum. kcore-minutes, p/np */
    float   ta_con[2];  /* cum. connect time in minutes, */
    /* p/np */
    float   ta_du;  /* cum. disk usage (blocks)*/
    long    ta_pc;  /* count of processes */
    unsigned short ta_sc;  /* count of login sessions */
    unsigned short ta_dc;  /* count of disk samples */
    unsigned short ta_fee;  /* fee for special services */
};
```

The ta_cpu, ta_kcore, and ta_con members contain usage information pertaining to prime time and non-prime time hours. The first element in each array represents the time the resource was used during prime time hours. The second element in each array represents the time the resource was used during non-prime time hours. Prime time and non-prime time hours may be set in the holidays file (see holidays(4)).

The ta_kcore member is a cumulative measure of the amount of memory used over the accounting period by processes owned by the user with uid ta_uid. The amount shown represents kilobyte segments of memory used, per minute.

The ta_con member represents the amount of time the user was logged in to the system.

Files

/etc/acct/holidays prime/non-prime time table

See Also

acctcom(1), acct(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M),
prtacct(1M), runacct(1M), shutacct(1M), acct(2), exec(2), fork(2)

Notes

The ac_mem value for a short-lived command gives little information about the actual size of the command, because ac_mem may be incremented while a different command (for example, the shell) is being executed by the process.
The `<aio.h>` header defines the `aiocb` structure which includes the following members:

- `int aio_fildes` file descriptor
- `off_t aio_offset` file offset
- `volatile void* aio_buf` location of buffer
- `size_t aio_nbytes` length of transfer
- `int aio_reqprio` request priority offset
- `struct sigevent aio_sigevent` notification type
- `int aio_lio_opcode` listio operation

This header also includes the following constants:

- `AIO_ALLDONE` A return value indicating that none of the requested operations could be canceled since they are already complete.
- `AIO_CANCELED` A return value indicating that all requested operations have been canceled.
- `AIO_NOTCANCELED` A return value indicating that some of the requested operations could not be canceled since they are in progress.
- `LIO_NOP` A listio() element operation option indicating that no transfer is requested.
- `LIO_NOWAIT` A listio() synchronization operation indicating that the calling thread is to continue execution while the listio() operation is being performed, and notification is to be given when the operation is complete.
- `LIO_READ` A listio() element operation option requesting a read.
- `LIO_WAIT` A listio() synchronization operation indicating that the calling thread is to suspend until the listio() operation is complete.
- `LIO_WRITE` A listio() element operation option requesting a write.

See Also `lseek(2), read(2), write(2), fsync(3C), libaio(3LIB), lio_listio(3C)`
Name archives.h, archives – device header

Description /* Magic numbers */

#define CMN_ASC 0x070701 /* Cpio Magic Number for -c header */
#define CMN_BIN 070707 /* Cpio Magic Number for Binary header */
#define CMN_BBS 0143561 /* Cpio Magic Number for Byte-Swap header */
#define CMN_CRC 0x070702 /* Cpio Magic Number for CRC header */
#define CMS_ASC "070701" /* Cpio Magic String for -c header */
#define CMS_CHR "070707" /* Cpio Magic String for odc header */
#define CMS_CRC "070702" /* Cpio Magic String for CRC header */
#define CMS_LEN 6 /* Cpio Magic String length */
/* Various header and field lengths */
#define CHRSZ 76 /* -H odc size minus filename field */
#define ASCSZ 110 /* -c and CRC hdr size minus filename field */
#define TARSZ 512 /* TAR hdr size */
#define HNAMLEN 256 /* maximum filename length for binary and
 odc headers */
#define EXPNLEN 1024 /* maximum filename length for -c and
 CRC headers */
#define HTIMLEN 2 /* length of modification time field */
#define HSIZLEN 2 /* length of file size field */
/* cpio binary header definition */
struct hdr_cpio {
 short h_magic, /* magic number field */
 h_dev; /* file system of file */
 ushort_t h_ino, /* inode of file */
 h_mode, /* modes of file */
 h_uid, /* uid of file */
 h_gid; /* gid of file */
 short h_nlink, /* number of links to file */
 h_rdev, /* maj/min numbers for special files */
 h_mtime[HTIMLEN], /* modification time of file */
 h_namesize, /* length of filename */
 h_filesize[HSIZLEN]; /* size of file */
 char h_name[HNAMLEN]; /* filename */
};
/* cpio -H odc header format */
struct c_hdr {
 char c_magic[CMS_LEN], /* magic number field */
 c_dev[6], /* -H odc size minus filename field */
 c_ino[6], /* -c and CRC hdr size minus filename field */
 c_mode[6], /* TAR hdr size */
 c_uid[6], /* maximum filename length for binary and
 odc headers */
 c_gid[6], /* maximum filename length for -c and
 CRC headers */
 c_nlink[6], /* length of modification time field */
 c_rdev[6], /* length of file size field */
 c_mtime[11], /* cpio binary header definition */
 c_namesz[6], /* filename */
};
c_errno,C_CTIME,
c_name[HNAMLEN];
}
/* -c and CRC header format */
struct Exp_cpio_hdr {
 char E_magic[CMS_LEN],
 E_ino[8],
 E_mode[8],
 E_uid[8],
 E_gid[8],
 E_nlink[8],
 E_mtime[8],
 E_filesize[8],
 E_maj[8],
 E_min[8],
 E_rmaj[8],
 E_rmin[8],
 E_namesize[8],
 E_chksum[8],
 E_name[EXPNLEN];
};
/* Tar header structure and format */
#define TBLOCK 512 /* length of tar header and data blocks */
#define TNAMLEN 100 /* maximum length for tar file names */
#define TMODLEN 8 /* length of mode field */
#define TUIDLEN 8 /* length of uid field */
#define TGIDLEN 8 /* length of gid field */
#define TSIZLEN 12 /* length of size field */
#define TTIMLEN 12 /* length of modification time field */
#define TCRCLEN 8 /* length of header checksum field */
/* tar header definition */
union tblock {
 char dummy[TBLOCK];
 struct {
 char t_name[TNAMLEN]; /* name of file */
 char t_mode[TMODLEN]; /* mode of file */
 char t_uid[TUIDLEN]; /* uid of file */
 char t_gid[TGIDLEN]; /* gid of file */
 char t_size[TSIZLEN]; /* size of file in bytes */
 char t_mtime[TTIMLEN]; /* modification time of file */
 char t_chksum[TCRCLEN]; /* checksum of header */
 char t_typeflag; /* flag to indicate type of file */
 char t_linkname[TNAMLEN]; /* file this file is linked with */
 char t_magic[6]; /* magic string always "ustar" */
 char t_version[2]; /* version strings always '00' */
 char t_uname[32]; /* owner of file in ASCII */
 char t_gname[32]; /* group of file in ASCII */
 };
};
char t_devmajor[8]; /* major number for special files */
char t_devminor[8]; /* minor number for special files */
char t_prefix[155]; /* pathname prefix */
} tbuf;

/* volcopy tape label format and structure */
#define VMAGLEN 8
#define VVOLLEN 6
#define VFILLEN 464
struct volcopy_label {
 char v_magic[VMAGLEN],
 v_volume[VVOLLEN],
 v_reels,
 v_reel;
 long v_time,
 v_length,
 v_dens,
 v_reelblks, /* u370 added field */
 v_blksize, /* u370 added field */
 v_nblocks; /* u370 added field */
 char v_fill[VFILLEN];
 long v_offset; /* used with -e and -reel options */
 int v_type; /* does tape have nblocks field */
};

/* Define archive formats for extended attributes.*
 * Extended attributes are stored in two pieces.*
 * 1. An attribute header which has information about*
 * what file the attribute is for and what the attribute*
 * is named.*
 * 2. The attribute record itself. Stored as a normal file type*
 * of entry.*
 * Both the header and attribute record have special modes/typeflags*
 * associated with them.*
 * The names of the header in the archive look like:*
 * /dev/null/attr.hdr*
 * The name of the attribute looks like:*
 * /dev/null/attr.*
 * This is done so that an archiver that doesn't understand these formats*
 * can just dispose of the attribute records unless the user chooses to*
 * rename them via cpio -r or pax -i*
The format is composed of a fixed size header followed by a variable sized xattr_buf. If the attribute is a hard link to another attribute, then another xattr_buf section is included for the link.

The xattr_buf is used to define the necessary "pathing" steps to get to the extended attribute. This is necessary to support a fully recursive attribute model where an attribute may itself have an attribute.

The basic layout looks like this.

```
 --------------------------------
| |  xattr_hdr  |
| --------------------------------
|  xattr_buf  |
| --------------------------------
|  (optional link info)  |
|  attribute itself  |
| | stored as normal tar or cpio data with special mode or typeflag |
| --------------------------------
```

`#define XATTR_ARCH_VERS "1.0"`

`/*
* extended attribute fixed header
*
* h_version format version.
* h_size size of header + variable sized data sections.
* h_component_len Length of entire pathing section.
* h_link_component_len Length of link component section. Again same
*/`
*/
struct xattr_hdr {
 char h_version[7];
 char h_size[10];
 char h_component_len[10]; /* total length of path component */
 char h_link_component_len[10];
};
*/

/*
 * The name is encoded like this:
 * filepathNULattrpathNUL[attrpathNULL]...
 */
struct xattr_buf {
 char h_namesz[7]; /* length of h_names */
 char h_typeflag; /* actual typeflag of file being archived */
 char h_names[1]; /* filepathNULattrpathNUL... */
};
*/

/*
 * Special values for tar archives
 */

/*
 * typeflag for tar archives.
 */

/*
 * Attribute hdr and attribute files have the following typeflag
 */
#define _XATTR_HDRTYPE 'E'

/*
 * For cpio archives the header and attribute have
 * _XATTR_CPIO_MODE ORED into the mode field in both
 * character and binary versions of the archive format
 */
#define _XATTR_CPIO_MODE 0xB000
The archive command `ar` is used to combine several files into one. Archives are used mainly as libraries to be searched by the link editor `ld`.

Each archive begins with the archive magic string.

```c
#define ARMAG "!<arch>\n" /* magic string */
#define SARMAG 8 /* length of magic string */
```

Following the archive magic string are the archive file members. Each file member is preceded by a file member header which is of the following format:

```c
#define ARFMAG "\n" /* header trailer string */
struct ar_hdr /* file member header */ {
  char ar_name[16]; /* '/' terminated file member name */
  char ar_date[12]; /* file member date */
  char ar_uid[6]; /* file member user identification */
  char ar_gid[6]; /* file member group identification */
  char ar_mode[8]; /* file member mode (octal) */
  char ar_size[10]; /* file member size */
  char ar_fmag[2]; /* header trailer string */
};
```

All information in the file member headers is in printable ASCII. The numeric information contained in the headers is stored as decimal numbers (except for `ar_mode` which is in octal). Thus, if the archive contains only printable files, the archive itself is printable.

If the file member name is 15 or fewer characters, the `ar_name` field contains the name directly, and is terminated by a slash (`/`) and padded with blanks on the right. If the member's name is longer than 15 characters, `ar_name` contains a slash (`/`) followed by a decimal representation of the name's offset in the archive string table described below.

The `ar_date` field is the modification date of the file at the time of its insertion into the archive. Common format archives can be moved from system to system as long as the portable archive command `ar` is used.

Each archive file member begins on an even byte boundary; a newline is inserted between files if necessary. Nevertheless, the size given reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

Each archive that contains object files (see `a.out(4)`) includes an archive symbol table. This symbol table is used by the link editor `ld` to determine which archive members must be loaded.
during the link edit process. The archive symbol table (if it exists) is always the first file in the archive (but is never listed) and is automatically created and/or updated by ar.

The archive symbol table comes in 32 and 64-bit formats. These formats differ only in the width of the integer word used to represent the number of symbols and offsets into the archive. The 32-bit format can be used with archives smaller than 4GB, while the 64-bit format is required for larger archives. The ar command selects the symbol table format to used based on the size of the archive it is creating, and will use the smaller format when possible.

A 32-bit archive symbol table has a zero length name, so ar_name contains the string “/” padded with 15 blank characters on the right. A 64-bit archive symbol table sets ar_name to the string “/SYM64/”, padded with 9 blank characters to the right.

All integer words in a 32-bit symbol table have four bytes, while all integer words in a 64-bit symbol table have eight bytes. Both formats use the machine-independent encoding shown below. All machines use the encoding described here for the symbol table, even if the machine’s natural byte order is different.

<table>
<thead>
<tr>
<th>Offset</th>
<th>0123</th>
<th>0x01020304 01 02 03 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td>01234567</td>
<td></td>
</tr>
<tr>
<td>0x0102030405060708 01 02 03 04 05 06 07 08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The contents of an archive symbol table file are as follows, where wordsize is 4 bytes for a 32-bit symbol table and 8 bytes for a 64-bit symbol table.

1. The number of symbols. Length: wordsize bytes.
2. The array of offsets into the archive file. Length: wordsize bytes * “the number of symbols”.
3. The symbol name string table. Length: ar_size – wordsize bytes * (“the number of symbols” + 1).

As an example, the following 32–bit symbol table defines 4 symbols. The archive member at file offset 114 defines name. The archive member at file offset 122 defines object. The archive member at file offset 426 defines function and the archive member at file offset 434 defines name2.

<table>
<thead>
<tr>
<th>Example Symbol Table</th>
<th>Offset</th>
<th>+0</th>
<th>+1</th>
<th>+2</th>
<th>+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>122</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>426</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The same example, using a 64-bit symbol table would be rendered as follows. The archive member at file offset 134 defines name. The archive member at file offset 142 defines object. The archive member at file offset 446 defines function and the archive member at file offset 454 defines name2.

Offset +0 +1 +2 +3 +4 +5 +6 +7

0	4							
8	134							
16	142							
24	446							
32	454							
40	n	a	m	e	\0	o	b	j
48	e	c	t	\0	f	u	n	c
56	t	i	o	n	\0	n	a	m
64	e	2	\0					

The symbol string table contains exactly as many null terminated strings as there are elements in the offsets array. Each offset from the array is associated with the corresponding name from
the string table (in order). The names in the string table are all the defined global symbols found in the common object files in the archive. Each offset is the location of the archive header for the associated symbol.

If some archive member's name is more than 15 bytes long, a special archive member contains a table of file names, each followed by a slash and a new-line. This string table member, if present, will precede all “normal” archive members. The special archive symbol table is not a "normal" member, and must be first if it exists. The ar_name entry of the string table's member header holds a zero length name ar_name[0]='/', followed by one trailing slash (ar_name[1]='/'), followed by blanks (ar_name[2]=' ', etc.). Offsets into the string table begin at zero. Example ar_name values for short and long file names appear below.

<table>
<thead>
<tr>
<th>Offset</th>
<th>+0</th>
<th>+1</th>
<th>+2</th>
<th>+3</th>
<th>+4</th>
<th>+5</th>
<th>+6</th>
<th>+7</th>
<th>+8</th>
<th>+9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f i l e _ n a m e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>s a m p l e / \n l o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>n g e r f i l e n a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>m e x a m p l e / \n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member Name</th>
<th>ar_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>short-name</td>
<td>short-name/</td>
</tr>
<tr>
<td>file_name_sample</td>
<td>/0</td>
</tr>
<tr>
<td>longerfilenamexample</td>
<td>/18</td>
</tr>
</tbody>
</table>

See Also ar(1), ld(1), strip(1), a.out(4)

Notes The strip utility will remove all archive symbol entries from the header. The archive symbol entries must be restored with the -ts options of the ar command before the archive can be used with the link editor ld.

The maximum size of a single file within an archive is limited to 4GB by the size of the ar_size field in the archive member structure. An archive can therefore exceed 4GB in size, but no single member within the archive can be larger than 4GB.

The maximum user ID for an individual file within an archive is limited to 6 characters by the ar_uid field of the archive member header. Any file with a user ID greater than 999999 is set to user ID “nobody” (60001).
The maximum group ID for an individual file within an archive is limited to 6 characters by the `ar_gid` field of the archive member header. Any file with a group ID greater than 999999 is set to group ID “nobody” (60001).
assert.h, assert – verify program assertion

Synopsis
#include <assert.h>

Description
The `<assert.h>` header defines the `assert()` macro. It refers to the macro `NDEBUG` which is not defined in the header. If `NDEBUG` is defined as a macro name before the inclusion of this header, the `assert()` macro is defined simply as:

```c
#define assert(ignore)((void) 0)
```

Otherwise, the macro behaves as described in `assert(3C)`.

The `assert()` macro is redefined according to the current state of `NDEBUG` each time `<assert.h>` is included.

The `assert()` macro is implemented as a macro, not as a function. If the macro definition is suppressed in order to access an actual function, the behavior is undefined.

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also
`assert(3C), attributes(5), standards(5)`
complex.h, complex – complex arithmetic

#include <complex.h>

The `<complex.h>` header defines the following macros:

- `complex` expands to `_Complex`.
- `_Complex_I` expands to a constant expression of type `const float _Complex`, with the value of the imaginary unit (that is, a number `i` such that `i^2=−1`).
- `imaginary` expands to `_Imaginary`.
- `_Imaginary_I` expands to a constant expression of type `const float _Imaginary` with the value of the imaginary unit.
- `I` expands to either `_Imaginary_I` or `_Complex_I`. If `_Imaginary_I` is not defined, `I` expands to `_Complex_I`.

An application can redefine and then, if appropriate, redefine the `complex`, `imaginary`, and `I` macros.

Values are interpreted as radians, not degrees.

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also `cabs(3M), cacos(3M), cacosh(3M), carg(3M), casin(3M), casinh(3M), catan(3M), catanh(3M), ccos(3M), ccosh(3M), cexp(3M), cimag(3M), clog(3M), conj(3M), cpow(3M), cproj(3M), creal(3M), csin(3M), csinh(3M), csqrt(3M), ctan(3M), ctanh(3M), attributes(5), standards(5)`

Notes The choice of `I` instead of `i` for the imaginary unit concedes to the widespread use of the identifier `i` for other purposes. The application can use a different identifier, say `j`, for the imaginary unit by following the inclusion of the `<complex.h>` header with:

```c
#undef I
#define j _Imaginary_I
```

An `I` suffix to designate imaginary constants is not required, as multiplication by `I` provides a sufficiently convenient and more generally useful notation for imaginary terms. The corresponding real type for the imaginary unit is `float`, so that use of `I` for algorithmic or notational convenience does not result in widening types.
On systems with imaginary types, the application has the ability to control whether use of the macro \(I \) introduces an imaginary type, by explicitly defining \(I \) to be _Imaginary_I or _Complex_I.

Disallowing imaginary types is useful for some applications intended to run on implementations without support for such types.

The macro _Imaginary_I provides a test for whether imaginary types are supported. The \(\text{cis}(x) \) function \(\cos(x) + I\sin(x) \) was considered but rejected because its implementation is easy and straightforward, even though some implementations could compute sine and cosine more efficiently in tandem.
Name cpio.h, cpio – cpio archive values

Synopsis #include <cpio.h>

Description Values needed by the c_mode field of the cpio archive format are described as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_IRUSR</td>
<td>Read by owner</td>
</tr>
<tr>
<td>C_IWUSR</td>
<td>Write by owner</td>
</tr>
<tr>
<td>C_IXUSR</td>
<td>Execute by owner</td>
</tr>
<tr>
<td>C_IRGRP</td>
<td>Read by group</td>
</tr>
<tr>
<td>C_IWGRP</td>
<td>Write by group</td>
</tr>
<tr>
<td>C_IXGRP</td>
<td>Execute by group</td>
</tr>
<tr>
<td>C_IROTH</td>
<td>Read by others</td>
</tr>
<tr>
<td>C_IWOTH</td>
<td>Write by others</td>
</tr>
<tr>
<td>C_IXOTH</td>
<td>Execute by others</td>
</tr>
<tr>
<td>C_ISUID</td>
<td>Set user ID</td>
</tr>
<tr>
<td>C_ISGID</td>
<td>Set group ID</td>
</tr>
<tr>
<td>C_ISVTX</td>
<td>On directories, restricted deletion flag</td>
</tr>
<tr>
<td>C_ISDIR</td>
<td>Directory</td>
</tr>
<tr>
<td>C_ISFIFO</td>
<td>FIFO</td>
</tr>
<tr>
<td>C_ISREG</td>
<td>Regular file</td>
</tr>
<tr>
<td>C_ISBLK</td>
<td>Block special</td>
</tr>
<tr>
<td>C_ISCHR</td>
<td>Character special</td>
</tr>
<tr>
<td>C_ISCTG</td>
<td>Reserved</td>
</tr>
<tr>
<td>C_ISLNK</td>
<td>Symbolic link</td>
</tr>
<tr>
<td>C_ISSOCK</td>
<td>Socket</td>
</tr>
</tbody>
</table>

The header defines the symbolic constant:

MAGIC "070707"

Attributes See attributes(5) for descriptions of the following attributes:
ATTRIBUTE TYPE

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>

See Also
[`pax(1)`](pax(1)), [`attributes(5)`](attributes(5)), [`standards(5)`](standards(5))
Name
dirent.h, dirent – format of directory entries

Synopsis
#include <dirent.h>

Description
The internal format of directories is unspecified. The <dirent.h> header defines the following type:

DIR A type representing a directory stream.

The header also defines the structure dirent, which includes the following members:

ino_t d_ino /* file serial number */
char d_name[] /* name of entry */

The type ino_t is defined as described in <sys/types.h>. See types(3HEAD).

The character array d_name is of unspecified size, but the number of bytes preceding the terminating null byte must not exceed {NAME_MAX}.

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also
closdir(3C), opendir(3C), readdir(3C), readdir(3C), seekdir(3C), telldir(3C),
types.h(3HEAD), attributes(5), standards(5)
#include <errno.h>

The `errno.h` header provides a declaration for `errno` and gives positive values for the symbolic constants listed on the `Intro(2)` manual page.

Values for `errno` are required to be distinct positive values rather than non-zero values.

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code>.</td>
</tr>
</tbody>
</table>

See Also `Intro(2), attributes(5), standards(5)`
#include <fcntl.h>

The `<fcntl.h>` header defines the following requests and arguments for use by the functions `fcntl(2)`, `open(2)`, and `openat(2)`.

Values for `cmd` used by `fcntl()` (the following values are unique):

- **F_DUPFD**: Duplicate file descriptor.
- **F_DUPFD_CLOEXEC**: Duplicate file descriptor with the close-on-exec flag `FD_CLOEXEC` set.
- **F_DUP2FD**: Similar to `F_DUPFD`, but always returns `arg`.
- **F_DUP2FD_CLOEXEC**: Similar to `F_DUP2FD`, but with the close-on-exec flag `FD_CLOEXEC` set.
- **F_GETFD**: Get file descriptor flags.
- **F_SETFD**: Set file descriptor flags.
- **F_GETFL**: Get file status flags.
- **F_SETFL**: Set file status flags.
- **F_GETOWN**: Get process or process group ID to receive SIGURG signals.
- **F_SETOWN**: Set process or process group ID to receive SIGURG signals.
- **F_FREESP**: Free storage space associated with a section of the ordinary file `fildes`.
- **F_ALLOCSP**: Allocate space for a section of the ordinary file `fildes`.
- **F_ALLOCSP64**: Equivalent to `F_ALLOCSP`, but takes a struct `flock64` argument rather than a struct `flock` argument.
- **F_GETLK**: Get record locking information.
- **F_GETLK64**: Equivalent to `F_GETLK`, but takes a struct `flock64` argument rather than a struct `flock` argument.
- **F_SETLK**: Set record locking information.
- **F_SETLK64**: Equivalent to `F_SETLK`, but takes a struct `flock64` argument rather than a struct `flock` argument.
- **F_SETLKW**: Set record locking information; wait if blocked.
- **F_SETLKW64**: Equivalent to `F_SETLKW`, but takes a struct `flock64` argument rather than a struct `flock` argument.
- **F_SHARE**: Set share reservation.
- **F_UNSHARE**: Remove share reservation.

File descriptor flags used for `fcntl()`:
FD_CLOEXEC Close the file descriptor upon execution of an exec function (see exec(2)).

Values for l_type used for record locking with fcntl() (the following values are unique):

- F_RDLCK Shared or read lock.
- F_UNLCK Unlock.
- F_WRLCK Exclusive or write lock.

Values for f_access used for share reservations with fcntl() (the following values are unique):

- F_RDACC Read-only share reservation.
- F_WRACC Write-only share reservation.
- F_RWACC Read and write share reservation.

Values for f_deny used for share reservations with fcntl() (the following values are unique):

- F_COMPAT Compatibility mode share reservation.
- F_RDDNY Deny other read access share reservations.
- F_WRDNY Deny other write access share reservations.
- F_RWDNY Deny other read or write access share reservations.
- F_NODNY Do not deny other read or write access share reservations.

File creation and assignment flags are used in the oflag argument by open() and openat(). All of these values are bitwise distinct:

- O_CREAT Create file if it does not exist.
- O_EXCL Exclusive use flag.
- O_NOCTTY Do not assign controlling tty.
- O_TRUNC Truncate flag.
- O_TTY_INIT Set terminal parameters to have conforming behavior.
- O_XATTR When opening a file, this flag affects the way in which relative paths are resolved by open() and openat(). With this flag set, the path argument is resolved as an extended attribute reference on either the current working directory (if open) or of the file referenced by the file descriptor argument of openat().

File status flags used for fcntl(), open(), and openat():

- O_APPEND Set append mode.
0_NDELAY Non-blocking mode.

O_NONBLOCK Non-blocking mode (POSIX; see standards(5)).

O_DSYNC Write I/O operations on the file descriptor complete as defined by synchronized I/O data integrity completion.

O_RSYNC Read I/O operations on the file descriptor complete at the same level of integrity as specified by the O_DSYNC and O_SYNC flags. If both O_DSYNC and O_RSYNC are set in oflag, all I/O operations on the file descriptor complete as defined by synchronized I/O data integrity completion. If both O_SYNC and O_RSYNC are set in oflag, all I/O operations on the file descriptor complete as defined by synchronized I/O file integrity completion.

O_SYNC When opening a regular file, this flag affects subsequent writes. If set, each write(2) will wait for both the file data and file status to be physically updated. Write I/O operations on the file descriptor complete as defined by synchronized I/O file integrity completion.

Mask for use with file access modes:

O_ACCMODE Mask for file access modes.

File access modes used for fcntl(), open(), and openat():

O_EXEC Open ordinary file for execute only.

O_RDONLY Open for reading only.

O_RDWR Open for reading and writing.

O_SEARCH Opendirectory for search only.

O_WRONLY Open for writing only.

The following constants are used by system calls capable of resolving paths relative to a provided open file descriptor:

AT_FDCWD Special value to pass in place of a file descriptor to inform the called routine that relative path arguments should be resolved from the current working directory.

The following constant is a value to be used for the flag passed to faccessat():

AT_EACCESS Check access using effective user and group ID.

The following constant is a value to be used for the flag passed to fstatat(), fchmodat(), fchownat(), and utimensat():

AT_SYMLINK_NOFOLLOW Do not follow symbolic links. In this case the functions operate on the symbolic link file rather than the file the link references.
The following constant is a value to be used for the flag passed to `linkat()`:

`AT_SYMLINK_FOLLOW` Follow symbolic link.

The following constants are values to be used for the `oflag` passed to `open()` and `openat()`:

- `O_CLOEXEC` Set the `FD_CLOEXEC` flag on the new file descriptor.
- `O_DIRECTORY` Fail if not a directory.
- `O_NOFOLLOW` Do not follow symbolic links.

The following constant is a value to be used for the flag passed to `unlinkat()`:

`AT_REMOVEDIR` Remove directory instead of file.

The `flock` structure describes a file lock. It includes the following members:

- `short l_type; /* Type of lock */`
- `short l_whence; /* Flag for starting offset */`
- `off_t l_start; /* Relative offset in bytes */`
- `off_t l_len; /* Size; if 0 then until EOF */`
- `long l_sysid; /* Returned with F_GETLK */`
- `pid_t l_pid; /* Returned with F_GETLK */`

The structure `fshare` describes a file share reservation. It includes the following members:

- `short f_access; /* Type of reservation */`
- `short f_deny; /* Type of reservations to deny */`
- `long f_id; /* Process unique identifier */`

Attributes See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also `creat(2), exec(2), fcntl(2), open(2), fdatasync(3C), fsync(3C), fsattr(5), attributes(5), standards(5)`

Notes

Data is successfully transferred for a write operation to a regular file when the system ensures that all data written is readable on any subsequent open of the file (even one that follows a system or power failure) in the absence of a failure of the physical storage medium.

Data is successfully transferred for a read operation when an image of the data on the physical storage medium is available to the requesting process.

Synchronized I/O data integrity completion (see `fdatasync(3C)`):
For reads, the operation has been completed or diagnosed if unsuccessful. The read is complete only when an image of the data has been successfully transferred to the requesting process. If there were any pending write requests affecting the data to be read at the time that the synchronized read operation was requested, these write requests will be successfully transferred prior to reading the data.

For writes, the operation has been completed or diagnosed if unsuccessful. The write is complete only when the data specified in the write request is successfully transferred, and all file system information required to retrieve the data is successfully transferred.

File attributes that are not necessary for data retrieval (access time, modification time, status change time) need not be successfully transferred prior to returning to the calling process.

Synchronized I/O file integrity completion (see fsync(3C)):

- Identical to a synchronized I/O data integrity completion with the addition that all file attributes relative to the I/O operation (including access time, modification time, status change time) will be successfully transferred prior to returning to the calling process.
<table>
<thead>
<tr>
<th>Name</th>
<th>fenv.h, fenv – floating-point environment</th>
</tr>
</thead>
</table>

Synopsis

```
#include <fenv.h>
```

Description

The `<fenv.h>` header defines the following data types through **typedef**:

- `fenv_t` Represents the entire floating-point environment. The floating-point environment refers collectively to any floating-point status flags and control modes supported by the implementation.

- `fexcept_t` Represents the floating-point status flags collectively, including any status the implementation associates with the flags. A floating-point status flag is a system variable whose value is set (but never cleared) when a floating-point exception is raised, which occurs as a side effect of exceptional floating-point arithmetic to provide auxiliary information. A floating-point control mode is a system variable whose value can be set by the user to affect the subsequent behavior of floating-point arithmetic.

The `<fenv.h>` header defines the following constants if and only if the implementation supports the floating-point exception by means of the floating-point functions `fclearexcept()`, `fegetexceptflag()`, `feraiseexcept()`, `fesetexceptflag()`, and `fetestexcept()`. Each expands to an integer constant expression with values such that bitwise-inclusive ORs of all combinations of the constants result in distinct values.

- `FE_DIVBYZERO`
- `FE_INEXACT`
- `FE_INVALID`
- `FE_OVERFLOW`
- `FE_UNDERFLOW`

The `<fenv.h>` header defines the following constant, which is simply the bitwise-inclusive OR of all floating-point exception constants defined above:

- `FE_ALL_EXCEPT`

The `<fenv.h>` header defines the following constants. Each expands to an integer constant expression whose values are distinct non-negative values.

- `FE_DOWNWARD`
- `FE_TONEAREST`
- `FE_TOWARDZERO`
- `FE_UPWARD`

The `<fenv.h>` header defines the following constant, which represents the default floating-point environment (that is, the one installed at program startup) and has type pointer to const-qualified `fenv_t`. It can be used as an argument to the functions within the `<fenv.h>` header that manage the floating-point environment.

- `FE_DFL_ENV`
The `FENV_ACCESS` pragma provides a means to inform the implementation when an application might access the floating-point environment to test floating-point status flags or run under non-default floating-point control modes. The pragma occurs either outside external declarations or preceding all explicit declarations and statements inside a compound statement. When outside external declarations, the pragma takes effect from its occurrence until another `FENV_ACCESS` pragma is encountered, or until the end of the translation unit. When inside a compound statement, the pragma takes effect from its occurrence until another `FENV_ACCESS` pragma is encountered (including within a nested compound statement), or until the end of the compound statement; at the end of a compound statement the state for the pragma is restored to its condition just before the compound statement. If this pragma is used in any other context, the behavior is undefined.

If part of an application tests floating-point status flags, sets floating-point control modes, or runs under non-default mode settings, but was translated with the state for the `FENV_ACCESS` pragma off, the behavior is undefined. The default state (on or off) for the pragma is implementation-defined. (When execution passes from a part of the application translated with `FENV_ACCESS` off to a part translated with `FENV_ACCESS` on, the state of the floating-point status flags is unspecified and the floating-point control modes have their default settings.)

Usage
This header is designed to support the floating-point exception status flags and directed-rounding control modes required by the IEC 60559: 1989 standard, and other similar floating-point state information. Also, it is designed to facilitate code portability among all systems. Certain application programming conventions support the intended model of use for the floating-point environment:

- A function call does not alter its caller’s floating-point control modes, clear its caller’s floating-point status flags, or depend on the state of its caller’s floating-point status flags unless the function is so documented.
- A function call is assumed to require default floating-point control modes, unless its documentation promises otherwise.
- A function call is assumed to have the potential for raising floating-point exceptions, unless its documentation promises otherwise.

With these conventions, an application can safely assume default floating-point control modes (or be unaware of them). The responsibilities associated with accessing the floating-point environment fall on the application that does so explicitly.

Even though the rounding direction macros might expand to constants corresponding to the values of `FLT_ROUNDS`, they are not required to do so. For example:

```c
#include <fenv.h>
void f(double x)
{
    #pragma STDC FENV_ACCESS ON
    void g(double);
```
void h(double);
 /* ... */
g(x + 1);
h(x + 1);
 /* ... */
}

If the function `g()` might depend on status flags set as a side effect of the first `x+1`, or if the second `x+1` might depend on control modes set as a side effect of the call to function `g()`, then the application must contain an appropriately placed invocation as follows:

```c
#pragma STDC FENV_ACCESS ON
```

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also
`feclearexcept(3M), fegetenv(3M), fegetexceptflag(3M), fegetround(3M), feholdexcept(3M), feraiseexcept(3M), fesetenv(3M), fesetexceptflag(3M), fesetround(3M), fetestexcept(3M), feupdateenv(3M), attributes(5), standards(5)`
The characteristics of floating types are defined in terms of a model that describes a representation of floating-point numbers and values that provide information about an implementation's floating-point arithmetic.

The following parameters are used to define the model for each floating-point type:

- s: sign (±1)
- b: base or radix of exponent representation (an integer > 1)
- e: exponent (an integer between a minimum e_{min} and a maximum e_{max})
- p: precision (the number of base-b digits in the significand)
- f_k: non-negative integers less than b (the significand digits)

In addition to normalized floating-point numbers ($f_1 > 0$ if $x \neq 0$), floating types might be able to contain other kinds of floating-point numbers, such as subnormal floating-point numbers ($x \neq 0, e = e_{\text{min}}, f_1 = 0$) and unnormalized floating-point numbers ($x \neq 0, e = e_{\text{min}}, f_1 = 0$), and values that are not floating-point numbers, such as infinities and NaNs. A NaN is an encoding signifying Not-a-Number. A quiet NaN propagates through almost every arithmetic operation without raising a floating-point exception; a signaling NaN generally raises a floating-point exception when occurring as an arithmetic operand.

The accuracy of the library functions in `math.h(3HEAD)` and `complex.h(3HEAD)` that return floating-point results is defined on the `libm(3LIB)` manual page.

All integer values in the `<float.h>` header, except FLT_ROUNDS, are constant expressions suitable for use in #if preprocessing directives; all floating values are constant expressions. All except DECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX, and FLT_ROUNDS have separate names for all three floating-point types. The floating-point model representation is provided for all values except FLT_EVAL_METHOD and FLT_ROUNDS.

The rounding mode for floating-point addition is characterized by the value of FLT_ROUNDS:

- -1: Indeterminable.
- 0: Toward zero.
- 1: To nearest.
- 2: Toward positive infinity.
- 3: Toward negative infinity.

The values of operations with floating operands and values subject to the usual arithmetic conversions and of floating constants are evaluated to a format whose range and precision
might be greater than required by the type. The use of evaluation formats is characterized by the architecture-dependent value of FLT_EVAL_METHOD:

-1 Indeterminate.
0 Evaluate all operations and constants just to the range and precision of the type.
1 Evaluate operations and constants of type float and double to the range and precision of the double type; evaluate long double operations and constants to the range and precision of the long double type.
2 Evaluate all operations and constants to the range and precision of the long double type.

The values given in the following list are defined as constants.

- Radix of exponent representation, \(b \).
 - FLT_RADIX

- Number of base-FLT_RADIX digits in the floating-point significand, \(p \).
 - FLT_MANT_DIG
 - DBL_MANT_DIG
 - LDBL_MANT_DIG

- Number of decimal digits, \(n \), such that any floating-point number in the widest supported floating type with \(p_{\text{max}} \) radix \(b \) digits can be rounded to a floating-point number with \(n \) decimal digits and back again without change to the value.
 - DECIMAL_DIG

- Number of decimal digits, \(q \), such that any floating-point number with \(q \) decimal digits can be rounded into a floating-point number with \(p \) radix \(b \) digits and back again without change to the \(q \) decimal digits.
 - FLT_DIG
 - DBL_DIG
 - LDBL_DIG

- Minimum negative integer such that FLT_RADIX raised to that power minus 1 is a normalized floating-point number, \(e_{\text{min}} \).
 - FLT_MIN_EXP
 - DBL_MIN_EXP
 - LDBL_MIN_EXP

- Minimum negative integer such that 10 raised to that power is in the range of normalized floating-point numbers.
 - FLT_MIN_10_EXP
 - DBL_MIN_10_EXP
 - LDBL_MIN_10_EXP
- Maximum integer such that FLT_RADIX raised to that power minus 1 is a representable finite floating-point number, e_{max}
 - FLT_MAX_EXP
 - DBL_MAX_EXP
 - LDBL_MAX_EXP

- Maximum integer such that 10 raised to that power is in the range of representable finite floating-point numbers.
 - FLT_MAX_10_EXP
 - DBL_MAX_10_EXP
 - LDBL_MAX_10_EXP

The values given in the following list are defined as constant expressions with values that are greater than or equal to those shown:
- Maximum representable finite floating-point number.
 - FLT_MAX
 - DBL_MAX
 - LDBL_MAX

The values given in the following list are defined as constant expressions with implementation-defined (positive) values that are less than or equal to those shown:
- The difference between 1 and the least value greater than 1 that is representable in the given floating-point type, $b^{1 - p}$.
 - FLT_EPSILON
 - DBL_EPSILON
 - LDBL_EPSILON

- Minimum normalized positive floating-point number, $b^{e_{min} - 1}$.
 - FLT_MIN
 - DBL_MIN
 - LDBL_MIN

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also complex.h(3HEAD), math.h(3HEAD), attributes(5), standards(5)
floatingpoint.h, floatingpoint – IEEE floating point definitions

Synopsis
#include <floatingpoint.h>

Description
This file defines constants, types, and functions used to implement standard floating point according to ANSI/IEEE Std 754-1985. The functions are implemented in libc. The included header file <sys/ieeefp.h> defines certain types of interest to the kernel.

IEEE Rounding Modes
- **fp_direction_type**: The type of the IEEE rounding direction mode. Note: the order of enumeration varies according to hardware.
- **fp_precision_type**: The type of the IEEE rounding precision mode, which only applies on systems that support extended precision such as machines based on the Intel 80387 FPU or the 80486. SIGFPE handling:
- **sigfpe_code_type**: The type of a SIGFPE code.
- **sigfpe_handler_type**: The type of a user-definable SIGFPE exception handler called to handle a particular SIGFPE code.
- **SIGFPE_DEFAULT**: A macro indicating the default SIGFPE exception handling, namely to perform the exception handling specified by the user, if any, and otherwise to dump core using abort(3C).
- **SIGFPE_IGNORE**: A macro indicating an alternate SIGFPE exception handling, namely to ignore and continue execution.
- **SIGFPE_ABORT**: A macro indicating an alternate SIGFPE exception handling, namely to abort with a core dump.

IEEE Exception Handling
- **N_IEEE_EXCEPTION**: The number of distinct IEEE floating-point exceptions.
- **fp_exception_type**: The type of the N_IEEE_EXCEPTION exceptions. Each exception is given a bit number.
- **fp_exception_field_type**: The type intended to hold at least N_IEEE_EXCEPTION bits corresponding to the IEEE exceptions numbered by fp_exception_type. Thus fp_inexact corresponds to the least significant bit and fp_invalid to the fifth least significant bit. Note: some operations may set more than one exception.

IEEE Formats and Classification
- **single; extended; quadruple**: Definitions of IEEE formats.
- **fp_class_type**: An enumeration of the various classes of IEEE values and symbols.

IEEE Base Conversion
The functions described under floating_to_decimal(3C) and decimal_to_floating(3C) satisfy not only the IEEE Standard, but also the stricter requirements of correct rounding for all arguments.
<table>
<thead>
<tr>
<th>DECIMAL_STRING_LENGTH</th>
<th>The length of a decimal_string.</th>
</tr>
</thead>
<tbody>
<tr>
<td>decimal_string</td>
<td>The digit buffer in a decimal_record.</td>
</tr>
<tr>
<td>decimal_record</td>
<td>The canonical form for representing an unpacked decimal floating-point number.</td>
</tr>
<tr>
<td>decimal_form</td>
<td>The type used to specify fixed or floating binary to decimal conversion.</td>
</tr>
<tr>
<td>decimal_mode</td>
<td>A struct that contains specifications for conversion between binary and decimal.</td>
</tr>
<tr>
<td>decimal_string_form</td>
<td>An enumeration of possible valid character strings representing floating-point numbers, infinities, or NaNs.</td>
</tr>
</tbody>
</table>

Files
/usr/include/sys/ieeefp.h

See Also
abort(3C), decimal_to_floating(3C), econvert(3C), floating_to_decimal(3C), sigfpe(3C), string_to_decimal(3C), strtod(3C)
#include <fmtmsg.h>

The `<fmtmsg.h>` header defines the following macros, which expand to constant integer expressions:

- **MM_HARD**: Source of the condition is hardware.
- **MM_SOFT**: Source of the condition is software.
- **MM_FIRM**: Source of the condition is firmware.
- **MM_APL**: Condition detected by application.
- **MM_UTIL**: Condition detected by utility.
- **MM_OPSYS**: Condition detected by operating system.
- **MM_RECOVER**: Recoverable error.
- **MM_NRECOV**: Non-recoverable error.
- **MM_HALT**: Error causing application to halt.
- **MM_ERROR**: Application has encountered a non-fatal fault.
- **MM_WARNING**: Application has detected unusual non-error condition.
- **MM_INFO**: Informative message.
- **MM_NOSEV**: No severity level provided for the message.
- **MM_PRINT**: Display message on standard error.
- **MM_CONSOLE**: Display message on system console.

The table below indicates the null values and identifiers for `fmtmsg(3C)` arguments. The `<fmtmsg.h>` header defines the macros in the Identifier column, which expand to constant expressions that expand to expressions of the type indicated in the Type column:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Type</th>
<th>Null-Value</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>label</td>
<td>char*</td>
<td>(char*) NULL</td>
<td>MM_NULLLBL</td>
</tr>
<tr>
<td>severity</td>
<td>int</td>
<td>0</td>
<td>MM_NULLSEV</td>
</tr>
<tr>
<td>class</td>
<td>long</td>
<td>0L</td>
<td>MM_NULLMC</td>
</tr>
<tr>
<td>text</td>
<td>char*</td>
<td>(char*) NULL</td>
<td>MM_NULLTXT</td>
</tr>
<tr>
<td>action</td>
<td>char*</td>
<td>(char*) NULL</td>
<td>MM_NULLLACT</td>
</tr>
<tr>
<td>tag</td>
<td>char*</td>
<td>(char*) NULL</td>
<td>MM_NULLTAG</td>
</tr>
</tbody>
</table>
The `<fmtmsg.h>` header also defines the following macros for use as return values for `fmtmsg()`:

- **MM_OK**: The function succeeded.
- **MM_NOTOK**: The function failed completely.
- **MM_NOMSG**: The function was unable to generate a message on standard error, but otherwise succeeded.
- **MM_NOCON**: The function was unable to generate a console message, but otherwise succeeded.

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also `fmtmsg(3C), attributes(5), standards(5)`
#include <fnmatch.h>

The `<fnmatch.h>` header defines the following constants:

- **FNM_NOMATCH**: The string does not match the specified pattern.
- **FNM_PATHNAME**: Slash in string only matches slash in pattern.
- **FNM_FILE_NAME**: An alias of **FNM_PATHNAME**.
- **FNM_PERIOD**: Leading period in string must be exactly matched by period in pattern.
- **FNM_NOESCAPE**: Disable backslash escaping.
- **FNM_IGNORECASE**: Ignore case when making comparisons.
- **FNM_CASEFOLD**: An alias of **FNM_IGNORECASE**.
- **FNM_LEADING_DIR**: Match pattern as leading directory path.
- **FNM_NOSYS**: Reserved.

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>

See Also

`fnmatch(3C), attributes(5), standards(5)`
Name ftw.h, ftw – file tree traversal

Synopsis
```c
#include <ftw.h>
```

Description The `<ftw.h>` header defines the FTW structure that includes the following members:

```c
int base
int level
```

The `<ftw.h>` header defines macros for use as values of the third argument to the application-supplied function that is passed as the second argument to `ftw()` and `nftw()` (see `ftw(3C)`):

- **FTW_F** file
- **FTW_D** directory
- **FTW_DNR** directory without read permission
- **FTW_DP** directory with subdirectories visited
- **FTW_NS** unknown type; `stat()` failed
- **FTW_SL** symbolic link
- **FTW_SLN** symbolic link that names a nonexistent file

The `<ftw.h>` header defines macros for use as values of the fourth argument to `nftw()`:

- **FTW_PHYS** Physical walk, does not follow symbolic links. Otherwise, `nftw()` follows links but does not walk down any path that crosses itself.
- **FTW_MOUNT** The walk does not cross a mount point.
- **FTW_DEPTH** All subdirectories are visited before the directory itself.
- **FTW_CHDIR** The walk changes to each directory before reading it.

The `<ftw.h>` header defines the `stat` structure and the symbolic names for `st_mode` and the file type test macros as described in `<sys/stat.h>`.

Inclusion of the `<ftw.h>` header might also make visible all symbols from `<sys/stat.h>`.

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>
See Also ftw(3C), stat.h(3HEAD), attributes(5), standards(5)
glob.h, glob – pathname pattern-matching types

#include <glob.h>

The <glob.h> header defines the structures and symbolic constants used by the glob(3).

The structure type glob_t contains the following members:

 size_t gl_pathc /* count of paths matched by pattern */
 char **gl_pathv /* pointer to a list of matched pathnames */
 size_t gl_offs /* lots to reserve at the beginning of gl_pathv */

The following constants are provided as values for the flags argument:

- GLOB_APPEND: Append generated pathnames to those previously obtained.
- GLOB_DOOFFS: Specify how many null pointers to add to the beginning of gl_pathv.
- GLOB_ERR: Cause glob() to return on error.
- GLOB_MARK: Each pathname that is a directory that matches pattern has a slash appended.
- GLOB_NOCHECK: If pattern does not match any pathname, then return a list consisting of only pattern.
- GLOB_NOESCAPE: Disable backslash escaping.
- GLOB_NOSORT: Do not sort the pathnames returned.

The following constants are defined as error return values:

- GLOB_ABORTED: The scan was stopped because GLOB_ERR was set or (*errfunc)() returned non-zero.
- GLOB_NOMATCH: The pattern does not match any existing pathname, and GLOB_NOCHECK was not set in flags.
- GLOB_NOSPACE: An attempt to allocate memory failed.
- GLOB_NOSYS: Reserved.

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>
See Also
glob(3C), attributes(5), standards(5)
grp.h (3HEAD)

Name grp.h, grp – group structure
Synopsis #include <grp.h>
Description The <grp.h> header declares the structure group, which includes the following members:

```c
char *gr_name /* name of the group */
gid_t gr_gid /* numerical group ID */
char **gr_mem /* pointer to a null-terminated array of
character pointers to member names */
```

The gid_t type is defined as described in <sys/types.h> (see types(3HEAD)).
Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>
See Also getgrnam(3C), types.h(3HEAD), attributes(5), standards(5)
The `<iconv.h>` header defines the following type:

```c
iconv_t
```

Identifies the conversion from one codeset to another.

The following symbolic constants are defined as possible values for an operation request in query or setting of the `iconv` code conversion behavior of the current conversion:

- `ICONV_GET_CONVERSION_BEHAVIOR`
- `ICONV_GET_DISCARD_ILSEQ`
- `ICONV_GET_TRANSLITERATE`
- `ICONV_IGNORE_NULL`
- `ICONV_REPLACE_INVALID`
- `ICONV_SET_CONVERSION_BEHAVIOR`
- `ICONV_SET_DISCARD_ILSEQ`
- `ICONV_SET_TRANSLITERATE`
- `ICONV_TRIVIALP`

The following symbolic constants are defined, zero or more of which can be bitwise-inclusively OR'ed together to form the conversion behavior settings for some of the above operation requests:

- `ICONV_CONV_ILLEGAL_DISCARD`
- `ICONV_CONV_ILLEGAL_REPLACE_HEX`
- `ICONV_CONV_ILLEGAL_RESTORE_HEX`
- `ICONV_CONV_NON_IDENTICAL_DISCARD`
- `ICONV_CONV_NON_IDENTICAL_REPLACE_HEX`
- `ICONV_CONV_NON_IDENTICAL_RESTORE_HEX`
- `ICONV_CONV_NON_IDENTICAL_TRANSLITERATE`

For more information on the above symbolic constants, see `iconv(3C)`, `iconvctl(3C)`, `iconv_open(3C)`, and `iconvstr(3C)`.

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>

See Also iconv(3C), iconv_close(3C), iconv_open(3C), iconvctl(3C), iconvstr(3C), attributes(5), standards(5)
Name if.h, if – sockets local interfaces

Synopsis #include <net/if.h>

Description The <net/if.h> header defines the if_nameindex structure, which includes the following members:

```c
unsigned if_index /* numeric index of the interface */
char *if_name /* null-terminated name of the interface */
```

The <net/if.h> header defines the following macro for the length of a buffer containing an interface name (including the terminating null character):

```c
IF_NAMESIZE interface name length
```

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also if_nametoindex(3XNET), attributes(5), standards(5)
inet.h, inet– definitions for internet operations

Synopsis
#include <arpa/inet.h>

Description
The <arpa/inet.h> header defines the type in_port_t, the type in_addr_t, and the in_addr structure, as described in in.h(3HEAD).

Inclusion of the <arpa/inet.h> header may also make visible all symbols from in.h(3HEAD).

The following are declared as functions, and may also be defined as macros:

```
in_addr_t inet_addr(const char *);
in_addr_t inet_lnaof(struct in_addr);
struct in_addr inet_makeaddr(in_addr_t, in_addr_t);
in_addr_t inet_netof(struct in_addr);
in_addr_t inet_network(const char *);
char *inet_ntoa(struct in_addr);
```

Default
For applications that do not require standard-conforming behavior (those that use the socket interfaces described in section 3N of the reference manual; see Intro(3) and standards(5)), the following may be declared as functions, or defined as macros, or both:

```
uint32_t htonl(uint32_t);
uint16_t htons(uint16_t);
uint32_t ntohl(uint32_t);
uint16_t ntohs(uint16_t);
```

Standard conforming
For applications that require standard-conforming behavior (those that use the socket interfaces described in section 3XN of the reference manual; see Intro(3) and standards(5)), the following may be declared as functions, or defined as macros, or both:

```
in_addr_t htonl(in_addr_t);
in_port_t htons(in_port_t);
in_addr_t ntohl(in_addr_t);
in_port_t ntohs(in_port_t);
```

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also
Intro(3), htonl(3SOCKET), htonl(3XNET), inet_addr(3SOCKET), inet_addr(3XNET), in.h(3HEAD), attributes(5), standards(5)
Name
in.h, in – Internet Protocol family

Synopsis
#include <netinet/in.h>

Description
The `<netinet/in.h>` header defines the following types through typedef:

- `in_port_t` An unsigned integral type of exactly 16 bits.
- `in_addr_t` An unsigned integral type of exactly 32 bits. The `<netinet/in.h>` header defines the `in_addr` structure that includes the following member:

 The `<netinet/in.h>` header defines the `in_addr` structure that includes the following member:

  ```
  in_addr_t s_addr
  ```

- The `<netinet/in.h>` header defines the type `sa_family_t` as described in `socket.h(3HEAD)`.

 The `<netinet/in.h>` header defines the following macros for use as values of the `level` argument of `getsockopt()` and `setsockopt()`:

  ```
  IPPROTO_IP Dummy for IP
  IPPROTO_ICMP Control message protocol
  IPPROTO_TCP TCP
  IPPROTO_UDP User datagram protocol
  ```

 The `<netinet/in.h>` header defines the following macros for use as destination addresses for `connect()`, `sendmsg()`, and `sendto()`:

  ```
  INADDR_ANY Local host address
  INADDR.Broadcast Broadcast address
  ```

 The `<netinet/in.h>` header defines the `sockaddr_in` structure that is used to store addresses for the Internet protocol family. Values of this type must be cast to `struct sockaddr` for use with the socket interfaces.

Default
For applications that do not require standard-conforming behavior (those that use the socket interfaces described in section (3SOCKET) of the reference manual; see `Intro(3)` and `standards(5)`), the `<netinet/in.h>` header defines the `sockaddr_in` structure that includes the following members:

```
sa_family_t sin_family
in_port_t sin_port
struct in_addr sin_addr
char sin_zero[8]
```
In applications that require standard-conforming behavior (those that use the socket interfaces described in section (3XNET) of the reference manual; see Intro(3) and standards(5)), the <netinet/in.h> header defines the sockaddr_in structure that includes the following members:

- sa_family_t sin_family
- in_port_t sin_port
- struct in_addr sin_addr
- unsigned char sin_zero[8]

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also

Intro(3), connect(3SOCKET), connect(3XNET), getsockopt(3SOCKET), getsockopt(3XNET), sendmsg(3SOCKET), sendmsg(3XNET), sendto(3SOCKET), sendto(3XNET), setsockopt(3SOCKET), setsockopt(3XNET), socket.h(3HEAD), attributes(5), standards(5)
inttypes.h, inttypes – fixed size integer types

Synopsis
#include <inttypes.h>

Description
The <inttypes.h> header includes the <stdint.h> header.

The <inttypes.h> header includes a definition of the following type:

imaxdiv_t structure type that is the type of the value returned by the imaxdiv() function.

The following macros are defined. Each expands to a character string literal containing a
conversion specifier, possibly modified by a length modifier, suitable for use within the format
argument of a formatted input/output function when converting the corresponding integer
type. These macros have the general form of PRI (character string literals for the fprintf() and
fprintf() family of functions) or SCN (character string literals for the fscanf() and
fscanf() family of functions), followed by the conversion specifier, followed by a name
corresponding to a similar type name in <stdint.h>. In these names, N represents the width
of the type as described in <stdint.h>. For example, PRIdFAST32 can be used in a format
string to print the value of an integer of type int_fast32_t.

The fprintf() macros for signed integers are:
PRIiN PRIileASTN PRIiFASTN PRIimax PRIipTR
PRIIN PRIileASTN PRIiFASTN PRIimax PRIipTR

The fprintf() macros for unsigned integers are:
PRIoN PRIoleASTN PRIoFASTN PRIoMAX PRIopTR
PRIuN PRIuleASTN PRIuFASTN PRIumAX PRIupTR
PRIxN PRIxleASTN PRIxFASTN PRIxMAX PRIxpTR
PRIxN PRIxleASTN PRIxFASTN PRIxMAX PRIxpTR

The fscanf() macros for signed integers are:
SCNiN SCNileASTN SCNiFASTN SCNimax SCNipTR
SCNiN SCNileASTN SCNiFASTN SCNimax SCNipTR

The fscanf() macros for unsigned integers are:
SCNoN SCNoleASTN SCNoFASTN SCNOMAX SCNoPTR
SCNuN SCNuleASTN SCNuFASTN SCNumAX SCNupTR
SCNxN SCNxleASTN SCNxFASTN SCNxMAX SCNxPTR

For each type that the implementation provides in <stdint.h>, the corresponding fprintf() and
fprintf() macros must be defined. The corresponding fscanf() and fscanf() macros must be defined as well, unless the implementation does not have a suitable modifier
for the type.
Usage The purpose of `<inttypes.h>` is to provide a set of integer types whose definitions are consistent across machines and independent of operating systems and other implementation idiosyncrasies. It defines, with a typedef, integer types of various sizes. Implementations are free to typedef them as ISO C standard integer types or extensions that they support. Consistent use of this header greatly increases the portability of applications across platforms.

Examples EXAMPLE 1 Use of Macro

The following code uses one of the macros available through `<inttypes.h>`.

```c
#include <inttypes.h>
#include <wchar.h>
int main(void)
{
    uintmax_t i = UINTMAX_MAX; // This type always exists.
    wprintf("The largest integer value is %" PRIxMAX "\n", i);
    return 0;
}
```

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also `imaxdiv(3C), attributes(5), standards(5)`
#include <sys/ipc.h>

The `<sys/ipc.h>` header is used by three mechanisms for interprocess communication (IPC): messages, semaphores, and shared memory. All use a common structure type, `ipc_perm`, to pass information used in determining permission to perform an IPC operation.

The `ipc_perm` structure contains the following members:

```c
uid_t uid /* owner's user ID */
gid_t gid /* owner's group ID */
uid_t cuid /* creator's user ID */
gid_t cgid /* creator's group ID */
mode_t mode /* read/write permission */
```

The `uid_t`, `gid_t`, `mode_t`, and `key_t` types are defined as described in `<sys/types.h>`. See `types.h(3HEAD)`.

Definitions are provided for the constants listed below.

Mode bits:
- `IPC_CREAT` Create entry if key does not exist.
- `IPC_EXCL` Fail if key exists.
- `IPC_NOWAIT` Error if request must wait.

Keys:
- `IPC_PRIVATE` Private key.

Control commands:
- `IPC_RMID` Remove identifier.
- `IPC_SET` Set options.
- `IPC_STAT` Get options.

Attributes See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>
See Also ftok(3C), types.h(3HEAD), attributes(5), standards(5)
Name
iso646.h, iso646 – alternative spellings

Synopsis
#include <iso646.h>

Description
The `<iso646.h>` header defines the following macros (on the left) that expand to the corresponding tokens (on the right):

- `and` `&&`
- `and_eq` `&=`
- `bitand` `&`
- `bitor` `|`
- `compl` `~`
- `not` `!`
- `not_eq` `!=`
- `or` `||`
- `or_eq` `|=`
- `xor` `^`
- `xor_eq` `^=`

Attributes
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>

See Also
`attributes(5), standards(5)`
The `<langinfo.h>` header contains the constants used to identify items of `langinfo` data (see `nl_langinfo(3C)`). The type of the constant, `nl_item`, is defined as described in `<nl_types.h>`.

The following constants are defined. The entries under Category indicate in which `setlocale(3C)` category each item is defined.

<table>
<thead>
<tr>
<th>Constant</th>
<th>Category</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODESET</td>
<td>LC_TYPE</td>
<td>codeset name</td>
</tr>
<tr>
<td>D_FMT</td>
<td>LC_TIME</td>
<td>string for formatting date and time</td>
</tr>
<tr>
<td>T_FMT</td>
<td>LC_TIME</td>
<td>date format string</td>
</tr>
<tr>
<td>T_FMT_AMPM</td>
<td>LC_TIME</td>
<td>time format string</td>
</tr>
<tr>
<td>AM_STR</td>
<td>LC_TIME</td>
<td>a.m. or p.m. time format string</td>
</tr>
<tr>
<td>PM_STR</td>
<td>LC_TIME</td>
<td>ante-meridiem affix</td>
</tr>
<tr>
<td>DAY_1</td>
<td>LC_TIME</td>
<td>name of the first day of the week (for example, Sunday)</td>
</tr>
<tr>
<td>DAY_2</td>
<td>LC_TIME</td>
<td>name of the second day of the week (for example, Monday)</td>
</tr>
<tr>
<td>DAY_3</td>
<td>LC_TIME</td>
<td>name of the third day of the week (for example, Tuesday)</td>
</tr>
<tr>
<td>DAY_4</td>
<td>LC_TIME</td>
<td>name of the fourth day of the week (for example, Wednesday)</td>
</tr>
<tr>
<td>DAY_5</td>
<td>LC_TIME</td>
<td>name of the fifth day of the week (for example, Thursday)</td>
</tr>
<tr>
<td>DAY_6</td>
<td>LC_TIME</td>
<td>name of the sixth day of the week (for example, Friday)</td>
</tr>
<tr>
<td>DAY_7</td>
<td>LC_TIME</td>
<td>name of the seventh day of the week (for example, Saturday)</td>
</tr>
<tr>
<td>ABDAY_1</td>
<td>LC_TIME</td>
<td>abbreviated name of the first day of the week</td>
</tr>
<tr>
<td>ABDAY_2</td>
<td>LC_TIME</td>
<td>abbreviated name of the second day of the week</td>
</tr>
<tr>
<td>ABDAY_3</td>
<td>LC_TIME</td>
<td>abbreviated name of the third day of the week</td>
</tr>
<tr>
<td>Constant</td>
<td>Category</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>ABDAY_4</td>
<td>LC_TIME</td>
<td>abbreviated name of the fourth day of the week</td>
</tr>
<tr>
<td>ABDAY_5</td>
<td>LC_TIME</td>
<td>abbreviated name of the fifth day of the week</td>
</tr>
<tr>
<td>ABDAY_6</td>
<td>LC_TIME</td>
<td>abbreviated name of the seventh day of the week</td>
</tr>
<tr>
<td>ABDAY_7</td>
<td>LC_TIME</td>
<td>abbreviated name of the seventh day of the week</td>
</tr>
<tr>
<td>MON_1</td>
<td>LC_TIME</td>
<td>name of the first month of the year</td>
</tr>
<tr>
<td>MON_2</td>
<td>LC_TIME</td>
<td>name of the second month</td>
</tr>
<tr>
<td>MON_3</td>
<td>LC_TIME</td>
<td>name of the third month</td>
</tr>
<tr>
<td>MON_4</td>
<td>LC_TIME</td>
<td>name of the fourth month</td>
</tr>
<tr>
<td>MON_5</td>
<td>LC_TIME</td>
<td>name of the fifth month</td>
</tr>
<tr>
<td>MON_6</td>
<td>LC_TIME</td>
<td>name of the sixth month</td>
</tr>
<tr>
<td>MON_7</td>
<td>LC_TIME</td>
<td>name of the seventh month</td>
</tr>
<tr>
<td>MON_8</td>
<td>LC_TIME</td>
<td>name of the eighth month</td>
</tr>
<tr>
<td>MON_9</td>
<td>LC_TIME</td>
<td>name of the ninth month</td>
</tr>
<tr>
<td>MON_10</td>
<td>LC_TIME</td>
<td>name of the tenth month</td>
</tr>
<tr>
<td>MON_11</td>
<td>LC_TIME</td>
<td>name of the eleventh month</td>
</tr>
<tr>
<td>MON_12</td>
<td>LC_TIME</td>
<td>name of the twelfth month</td>
</tr>
<tr>
<td>ABMON_1</td>
<td>LC_TIME</td>
<td>abbreviated name of the first month</td>
</tr>
<tr>
<td>ABMON_2</td>
<td>LC_TIME</td>
<td>abbreviated name of the second month</td>
</tr>
<tr>
<td>ABMON_3</td>
<td>LC_TIME</td>
<td>abbreviated name of the third month</td>
</tr>
<tr>
<td>ABMON_4</td>
<td>LC_TIME</td>
<td>abbreviated name of the fourth month</td>
</tr>
<tr>
<td>ABMON_5</td>
<td>LC_TIME</td>
<td>abbreviated name of the fifth month</td>
</tr>
<tr>
<td>ABMON_6</td>
<td>LC_TIME</td>
<td>abbreviated name of the sixth month</td>
</tr>
<tr>
<td>ABMON_7</td>
<td>LC_TIME</td>
<td>abbreviated name of the seventh month</td>
</tr>
<tr>
<td>ABMON_8</td>
<td>LC_TIME</td>
<td>abbreviated name of the eighth month</td>
</tr>
<tr>
<td>ABMON_9</td>
<td>LC_TIME</td>
<td>abbreviated name of the ninth month</td>
</tr>
<tr>
<td>ABMON_10</td>
<td>LC_TIME</td>
<td>abbreviated name of the tenth month</td>
</tr>
<tr>
<td>ABMON_11</td>
<td>LC_TIME</td>
<td>abbreviated name of the eleventh month</td>
</tr>
<tr>
<td>ABMON_12</td>
<td>LC_TIME</td>
<td>abbreviated name of the twelfth month</td>
</tr>
<tr>
<td>Constant</td>
<td>Category</td>
<td>Meaning</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>ERA</td>
<td>LC_TIME</td>
<td>era description segments</td>
</tr>
<tr>
<td>ERA_D_FMT</td>
<td>LC_TIME</td>
<td>era date format string</td>
</tr>
<tr>
<td>ERA_D_T_FMT</td>
<td>LC_TIME</td>
<td>era date and time format string</td>
</tr>
<tr>
<td>ERA_T_FMT</td>
<td>LC_TIME</td>
<td>era time format string</td>
</tr>
<tr>
<td>ALT_DIGITS</td>
<td>LC_TIME</td>
<td>alternative symbols for digits</td>
</tr>
<tr>
<td>RADIXCHAR</td>
<td>LC_NUMERIC</td>
<td>radix character</td>
</tr>
<tr>
<td>THOUSEP</td>
<td>LC_NUMERIC</td>
<td>separator for thousands</td>
</tr>
<tr>
<td>YESEXPR</td>
<td>LC_MESSAGES</td>
<td>affirmative response expression</td>
</tr>
<tr>
<td>NOEXPR</td>
<td>LC_MESSAGES</td>
<td>negative response expression</td>
</tr>
<tr>
<td>YESSTR</td>
<td>LC_MESSAGES</td>
<td>affirmative response for yes/no queries</td>
</tr>
<tr>
<td>NOSTR</td>
<td>LC_MESSAGES</td>
<td>negative response for yes/no queries</td>
</tr>
<tr>
<td>CRNCYSTR</td>
<td>LC_MONETARY</td>
<td>local currency symbol, preceded by '-' if the symbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>should appear before the value, '+' if the symbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>should appear after the value, or '.' if the symbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>should replace the radix character</td>
</tr>
</tbody>
</table>

If the locale's values for `p_cs_precedes` and `n_cs_precedes` do not match, the value of `nl_langinfo(CRNCYSTR)` is unspecified.

The `<langinfo.h>` header declares the following as a function:

```c
char *nl_langinfo(nl_item);
```

Inclusion of `<langinfo.h>` header may also make visible all symbols from `<nl_types.h>`.

Usage

Wherever possible, users are advised to use functions compatible with those in the ISO C standard to access items of `langinfo` data. In particular, the `strftime(3C)` function should be used to access date and time information defined in category `LC_TIME`. The `localeconv(3C)` function should be used to access information corresponding to `RADIXCHAR`, `THOUSEP`, and `CRNCYSTR`.

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>
See Also mkmsgs(1), localeconv(3C), nl_langinfo(3C), nl_types.h(3HEAD), setlocale(3C), strftime(3C), attributes(5), standards(5)
libadm(3LIB)

Name libadm – general administrative library

Synopsis cc [flag...] file... -ladm [library...]

Description Functions in this library provide device management, VTOC handling, regular expressions, and packaging routines.

Interfaces The shared object libadm.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

circf loc1
loc2 locs
nbra pkgdir
read_extvtoc read_vtoc
sed write_extvtoc
write_vtoc

Files /lib/libadm.so.1 shared object
/lib/64/libadm.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also pvs(1), Intro(3), read_vtoc(3EXT), attributes(5), regexp(5)
Name
libaio - asynchronous I/O library

Synopsis
cc [flag...] file... -laio [library...]

Description
Historically, functions in this library provided asynchronous I/O operations. This functionality now resides in libc(3LIB).

This library is maintained to provide backward compatibility for both runtime and compilation environments. The shared object is implemented as a filter on libc.so.1. New application development need not specify -laio.

Interfaces
The shared object libaio.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

- aiocancel
- aioread
- aiowait
- aiowrite
- assfail
- close
- fork
- sigaction

The following interfaces are unique to the 32-bit version of this library:

- aioread64
- aiowrite64

Files
/lib/libaio.so.1 shared object

/lib/64/libaio.so.1 64-bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also

pvs(1), Intro(2), Intro(3), aiocancel(3C), aioread(3C), aiowait(3C), aiowrite(3C), aio.h(3HEAD), libc(3LIB), attributes(5)
Name libauto_ef – auto encoding finder library

Synopsis cc [flag...] file... -lauto_ef [library...] #include <auto_ef.h>

Description Functions in this library provide automatic encoding identification.

Interface Level The shared object libauto_ef.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto_ef_file</td>
<td></td>
</tr>
<tr>
<td>auto_ef_free</td>
<td></td>
</tr>
<tr>
<td>auto_ef_get_encoding</td>
<td></td>
</tr>
<tr>
<td>auto_ef_get_score</td>
<td></td>
</tr>
<tr>
<td>auto_ef_str</td>
<td></td>
</tr>
</tbody>
</table>

Files
/usr/lib/libauto_ef.so.1 shared object
/usr/lib/64/libauto_ef.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>text/auto_ef</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also auto_ef(1), auto_ef(3EXT), attributes(5)

International Language Environments Guide
libbsdmalloc – memory allocator interface library

Synopsis

cc [flag...] file... -lbsdmalloc [library...]
#include <stdlib.h>

Description

Functions in this library provide a collection of malloc routines that use BSD semantics.

Interfaces

The shared object /usr/lib/libbsdmalloc.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

```
free          malloc
realloc
```

Files

/usr/lib/libbsdmalloc.so.1 shared object
/usr/lib64/libbsdmalloc.so.1 64−bit shared object

Attributes

See attributes(5) for description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT−Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also

pvs(1), Intro(3), bsdmalloc(3MALLOC), attributes(5)
Description
Functions in this library provide various facilities defined by System V, ANSI C, POSIX, and so on. See standards(5). In addition, those facilities previously defined in the internationalization and the wide-character libraries are now defined in this library, as are the facilities previously defined in the multithreading libraries, libthread and libpthread.

Interfaces
The shared object libc.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

```
__loc1, __errno, __builtin_alloca, __ctype, __fbufsize, __flbf,
__flt_rounds, __fpending, __fwrite
__freading, __fsetlocking, __fwritable, __fwriting,
__huge_val, __iob, __loc1, __major,
__makedev, __minor,
__nsw_extended_action, __nsf_freeconfig,
__nsw_getconfig, __posix_asctime_r,
__posix_ctime_r, __posix_getgrgid_r,
__posix_getgrnam_r, __posix_getlogin_r,
__posix_getpwnam_r, __posix_getpwuid_r,
__posix_sigwait, __posix_ttyname_r,
__priocntl, __priocntlset,
__pthread_cleanup_pop, __pthread_cleanup_push,
__sysconf_xpg5, __xpg4,
__xpg4_putmsg, __xpg4_putpmsg,
_exit, __altzone
__assert, __cleanup
__ctype, __daylight
```
<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>_environ</td>
</tr>
<tr>
<td>_exit</td>
</tr>
<tr>
<td>_exithandle</td>
</tr>
<tr>
<td>_flsbuf</td>
</tr>
<tr>
<td>_getdate_err</td>
</tr>
<tr>
<td>_iob</td>
</tr>
<tr>
<td>_isnan</td>
</tr>
<tr>
<td>_isnand</td>
</tr>
<tr>
<td>_lwp_cond_reltimedwait</td>
</tr>
<tr>
<td>_lwp_cond_timedwait</td>
</tr>
<tr>
<td>_lwp_continue</td>
</tr>
<tr>
<td>_lwp_kill</td>
</tr>
<tr>
<td>_lwp_mutex_trylock</td>
</tr>
<tr>
<td>_lwp_self</td>
</tr>
<tr>
<td>_lwp_sema_post</td>
</tr>
<tr>
<td>_lwp_sema_wait</td>
</tr>
<tr>
<td>_lwp_suspend</td>
</tr>
<tr>
<td>_lwp_suspend2</td>
</tr>
<tr>
<td>_nextafter</td>
</tr>
<tr>
<td>_nss_XbyY_buf_alloc</td>
</tr>
<tr>
<td>_nss_netdb_aliases</td>
</tr>
<tr>
<td>_scalb</td>
</tr>
<tr>
<td>_sobuf</td>
</tr>
<tr>
<td>_sys_buslist</td>
</tr>
<tr>
<td>_sys_fpelist</td>
</tr>
<tr>
<td>_sys_segvlist</td>
</tr>
<tr>
<td>_sys_siglist</td>
</tr>
<tr>
<td>_sys_siglistp</td>
</tr>
<tr>
<td>_timezone</td>
</tr>
<tr>
<td>_tolower</td>
</tr>
<tr>
<td>_toupper</td>
</tr>
<tr>
<td>_xftw</td>
</tr>
<tr>
<td>abort</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Library Interfaces and Headers</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Library Interfaces and Headers</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>a64l</td>
</tr>
<tr>
<td>Function</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>access</td>
</tr>
<tr>
<td>acl</td>
</tr>
<tr>
<td>addsev</td>
</tr>
<tr>
<td>adjtime</td>
</tr>
<tr>
<td>aio_error</td>
</tr>
<tr>
<td>aio_read</td>
</tr>
<tr>
<td>aio_suspend</td>
</tr>
<tr>
<td>aio_write</td>
</tr>
<tr>
<td>aioread</td>
</tr>
<tr>
<td>aiowrite</td>
</tr>
<tr>
<td>alphasort</td>
</tr>
<tr>
<td>asctime</td>
</tr>
<tr>
<td>asctime_r</td>
</tr>
<tr>
<td>atexit</td>
</tr>
<tr>
<td>atoi</td>
</tr>
<tr>
<td>atoll</td>
</tr>
<tr>
<td>atomic_add_16_nv</td>
</tr>
<tr>
<td>atomic_add_32_nv</td>
</tr>
<tr>
<td>atomic_add_64_nv</td>
</tr>
<tr>
<td>atomic_add_8_nv</td>
</tr>
<tr>
<td>atomic_add_char_nv</td>
</tr>
<tr>
<td>atomic_add_int_nv</td>
</tr>
<tr>
<td>atomic_add_long_nv</td>
</tr>
<tr>
<td>atomic_add_ptr_nv</td>
</tr>
<tr>
<td>atomic_add_short_nv</td>
</tr>
<tr>
<td>atomic_and_16_nv</td>
</tr>
<tr>
<td>atomic_and_32_nv</td>
</tr>
<tr>
<td>atomic_and_64_nv</td>
</tr>
<tr>
<td>atomic_and_8_nv</td>
</tr>
</tbody>
</table>
atomic_and_uchar_nv atomic_and_ushort
atomic_and_uint_nv atomic_and_ulong
atomic_and_ulong_nv atomic_and_uchar
atomic_and_ushort_nv
atomic_cas_16
atomic_cas_32
atomic_cas_64
atomic_cas_8
atomic_cas_ptr
atomic_cas_uint
atomic_cas_uchar
atomic_cas_ulong
atomic_clear_long_excl
atomic_dec_16
atomic_dec_16_nv
atomic_dec_32
atomic_dec_32_nv
atomic_dec_64
atomic_dec_64_nv
atomic_dec_8
atomic_dec_8_nv
atomic_dec_ptr
atomic_dec_ptr_nv
atomic_dec_uchar
atomic_dec_uchar_nv
atomic_dec_uint
atomic_dec_uint_nv
atomic_dec_ulong
atomic_dec_ulong_nv
atomic_dec_ulong
atomic_dec_ulong_nv
atomic_dec_ushort
atomic_dec_ushort_nv
atomic_inc_16
atomic_inc_16
atomic_inc_32
atomic_inc_32
atomic_inc_64
atomic_inc_64
atomic_inc_8
atomic_inc_8
atomic_inc_ptr
atomic_inc_ptr
atomic_inc_uchar
atomic_inc_uchar
atomic_inc_uint
atomic_inc_uint
atomic_inc_ulong
atomic_inc_ulong
atomic_inc_ushort
atomic_inc_ushort
atomic_or_16
atomic_or_16
atomic_or_32
atomic_or_32
atomic_or_64
atomic_or_64_nv
atomic_or_8_nv
atomic_or_uchar_nv
atomic_or_uint_nv
atomic_or_ulong_nv
atomic_or_ushort_nv
atomic_swap_16
atomic_swap_64
atomic_swap_ptr
atomic_swap_uint
atomic_swap_ushort
backtrace
backtrace_symbols_fd
bcmp
bindtextdomain
brk
bsearch
bzero
canonize_filename
catgets
catclose
catopen
cfgetispeed
cfgetospeed
cfsetispeed
cftime
chdir
chkauthattr
chmod
chown
chroot
clearenv
clearerr
clock
clock_getres
clock_gettime
clock_settime
close
atomic_or_8
atomic_or_uchar
atomic_or_uint
atomic_or_ulong
atomic_or_ushort
atomic_set_long_excl
atomic_swap_32
atomic_swap_8
atomic_swap_uchar
atomic_swap_ulong
attropen
backtrace_symbols
basename
bcopy
bind_textdomain_codeset
bsd_signal
btowc
calloc
chdir
chmod
chroot
clearerr
clock_getres
clock_gettime
clock_settime
close
<table>
<thead>
<tr>
<th>Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>closedir</td>
<td>closefrom</td>
</tr>
<tr>
<td>closelog</td>
<td>cond_broadcast</td>
</tr>
<tr>
<td>cond_destroy</td>
<td>cond_init</td>
</tr>
<tr>
<td>cond_reltimedwait</td>
<td>cond_signal</td>
</tr>
<tr>
<td>cond_timedwait</td>
<td>cond_wait</td>
</tr>
<tr>
<td>confstr</td>
<td>creat</td>
</tr>
<tr>
<td>crypt</td>
<td>crypt_genhash_impl</td>
</tr>
<tr>
<td>crypt_gensalt</td>
<td>crypt_gensalt_impl</td>
</tr>
<tr>
<td>csetcol</td>
<td>csetlen</td>
</tr>
<tr>
<td>ctermid</td>
<td>ctermid_r</td>
</tr>
<tr>
<td>ctime</td>
<td>ctime_r</td>
</tr>
<tr>
<td>cuserid</td>
<td>daemon</td>
</tr>
<tr>
<td>daylight</td>
<td>dbm_clearerr</td>
</tr>
<tr>
<td>dbm_close</td>
<td>dbm_delete</td>
</tr>
<tr>
<td>dbm_error</td>
<td>dbm_fetch</td>
</tr>
<tr>
<td>dbm_firstkey</td>
<td>dbm_nextkey</td>
</tr>
<tr>
<td>dbm_open</td>
<td>dbm_store</td>
</tr>
<tr>
<td>dgettext</td>
<td>dgettext</td>
</tr>
<tr>
<td>decimal_to_double</td>
<td>decimal_to_extended</td>
</tr>
<tr>
<td>decimal_to_quadruple</td>
<td>decimal_to_single</td>
</tr>
<tr>
<td>dgettext</td>
<td>difftime</td>
</tr>
<tr>
<td>directio</td>
<td>dirfd</td>
</tr>
<tr>
<td>dirname</td>
<td>div</td>
</tr>
<tr>
<td>dl_iterate_phdr</td>
<td>dladdr</td>
</tr>
<tr>
<td>dladdr1</td>
<td>dlclose</td>
</tr>
<tr>
<td>dl_dump</td>
<td>dlsym</td>
</tr>
<tr>
<td>dl_info</td>
<td>dlsym</td>
</tr>
<tr>
<td>dlopen</td>
<td>dlsym</td>
</tr>
<tr>
<td>dngettext</td>
<td>door_bind</td>
</tr>
<tr>
<td>Function</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>door_call</td>
<td></td>
</tr>
<tr>
<td>door_cred</td>
<td></td>
</tr>
<tr>
<td>door_info</td>
<td></td>
</tr>
<tr>
<td>door_revoke</td>
<td></td>
</tr>
<tr>
<td>door_setparam</td>
<td></td>
</tr>
<tr>
<td>door_unbind</td>
<td></td>
</tr>
<tr>
<td>double_to_decimal</td>
<td></td>
</tr>
<tr>
<td>dup</td>
<td></td>
</tr>
<tr>
<td>econvert</td>
<td></td>
</tr>
<tr>
<td>enable_extended_FILE_stdio</td>
<td></td>
</tr>
<tr>
<td>endauthattr</td>
<td></td>
</tr>
<tr>
<td>endgrent</td>
<td></td>
</tr>
<tr>
<td>endprofattr</td>
<td></td>
</tr>
<tr>
<td>enduserattr</td>
<td></td>
</tr>
<tr>
<td>endusershell</td>
<td></td>
</tr>
<tr>
<td>endutxent</td>
<td></td>
</tr>
<tr>
<td>erand48</td>
<td></td>
</tr>
<tr>
<td>errno</td>
<td></td>
</tr>
<tr>
<td>euccol</td>
<td></td>
</tr>
<tr>
<td>eucscol</td>
<td></td>
</tr>
<tr>
<td>execle</td>
<td></td>
</tr>
<tr>
<td>execv</td>
<td></td>
</tr>
<tr>
<td>execvex</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>facessat</td>
<td></td>
</tr>
<tr>
<td>fatattach</td>
<td></td>
</tr>
<tr>
<td>fchmod</td>
<td></td>
</tr>
<tr>
<td>fchown</td>
<td></td>
</tr>
<tr>
<td>fchroot</td>
<td></td>
</tr>
<tr>
<td>C Function</td>
<td>C Function</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>fcloseall</td>
<td>fcntl</td>
</tr>
<tr>
<td>fconvert</td>
<td>fcvt</td>
</tr>
<tr>
<td>fdatasync</td>
<td>fdetach</td>
</tr>
<tr>
<td>fdopen</td>
<td>fdopendir</td>
</tr>
<tr>
<td>fdwalk</td>
<td>feof</td>
</tr>
<tr>
<td>ferror</td>
<td>fexecve</td>
</tr>
<tr>
<td>fflush</td>
<td>ffs</td>
</tr>
<tr>
<td>ffsl</td>
<td>ffsl</td>
</tr>
<tr>
<td>fgetattr</td>
<td>fgetc</td>
</tr>
<tr>
<td>fgetgrent</td>
<td>fgetgrent_r</td>
</tr>
<tr>
<td>fgetpos</td>
<td>fgetpwent</td>
</tr>
<tr>
<td>fgetpwent_r</td>
<td>fgets</td>
</tr>
<tr>
<td>fgetspent</td>
<td>fgetspent_r</td>
</tr>
<tr>
<td>fgetuserattr</td>
<td>fgetwc</td>
</tr>
<tr>
<td>fgetws</td>
<td>file_to_decimal</td>
</tr>
<tr>
<td>fileno</td>
<td>finite</td>
</tr>
<tr>
<td>fsl</td>
<td>flsl</td>
</tr>
<tr>
<td>flsll</td>
<td>flockfile</td>
</tr>
<tr>
<td>fmtnmsg</td>
<td>fnmatch</td>
</tr>
<tr>
<td>fopen</td>
<td>fork</td>
</tr>
<tr>
<td>fork1</td>
<td>forkall</td>
</tr>
<tr>
<td>forkallx</td>
<td>forkx</td>
</tr>
<tr>
<td>fpathconf</td>
<td>fpclass</td>
</tr>
<tr>
<td>fpgetmask</td>
<td>fpgetround</td>
</tr>
<tr>
<td>fpgetsticky</td>
<td>fprintf</td>
</tr>
<tr>
<td>fpsetmask</td>
<td>fpsetround</td>
</tr>
<tr>
<td>fpsetsticky</td>
<td>fputc</td>
</tr>
<tr>
<td>fputs</td>
<td>fputwc</td>
</tr>
<tr>
<td>fputws</td>
<td>fread</td>
</tr>
</tbody>
</table>
frealpath
free
free_execattr
free_profattr
free_proflist
free_userattr
freopen
frexp
fscanf
fseek
fseeko
fsetattr
fsetpos
fstat
fstatat
fstatfs
fstatvfs
fsync
ftell
ftello
ftime
ftok
ftruncate
ftrylockfile
ftw
func_to_decimal
funlockfile
futimens
futimesat
fwide
fwprintf
fwscanf
gconvert
gcvt
getacct
getauthattr
getauthnam
getc
getc_unlocked
getchar
getchar_unlocked
getcontext
getcpuid
getdate
getdate_err
getdelim
getdents
getdtablesize
getegid
getenv
geteuid
getexecattr
getexecname
<table>
<thead>
<tr>
<th>Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>getexecprof</td>
<td>getexecuser</td>
</tr>
<tr>
<td>getextmntent</td>
<td>getgid</td>
</tr>
<tr>
<td>getgrent</td>
<td>getgrent_r</td>
</tr>
<tr>
<td>getgrgid</td>
<td>getgrgid_r</td>
</tr>
<tr>
<td>getgrnam</td>
<td>getgrnam_r</td>
</tr>
<tr>
<td>getgroups</td>
<td>gethomegroup</td>
</tr>
<tr>
<td>gethostid</td>
<td>gethostname</td>
</tr>
<tr>
<td>gethrtime</td>
<td>gethrtime</td>
</tr>
<tr>
<td>getsisax</td>
<td>getitimer</td>
</tr>
<tr>
<td>getline</td>
<td>getloadavg</td>
</tr>
<tr>
<td>getlogin</td>
<td>getlogin_r</td>
</tr>
<tr>
<td>getmntany</td>
<td>getmntent</td>
</tr>
<tr>
<td>getmsg</td>
<td>getnetgrent</td>
</tr>
<tr>
<td>getnetgrent_r</td>
<td>getopt</td>
</tr>
<tr>
<td>getopt_clip</td>
<td>getopt_long</td>
</tr>
<tr>
<td>getopt_long_only</td>
<td>getpagesize</td>
</tr>
<tr>
<td>getpagesize</td>
<td></td>
</tr>
<tr>
<td>getpassphrase</td>
<td>getpeerucred</td>
</tr>
<tr>
<td>getflags</td>
<td>getpgid</td>
</tr>
<tr>
<td>getpgid</td>
<td>getppid</td>
</tr>
<tr>
<td>getpgrp</td>
<td>getpriority</td>
</tr>
<tr>
<td>getpmsg</td>
<td>getprofattr</td>
</tr>
<tr>
<td>getprofilename</td>
<td>getprofnam</td>
</tr>
<tr>
<td>getprofilename</td>
<td>getprojid</td>
</tr>
<tr>
<td>getpw</td>
<td>getpwent</td>
</tr>
<tr>
<td>getpwent_r</td>
<td>getpwnam</td>
</tr>
<tr>
<td>getpwnam</td>
<td>getpwuid</td>
</tr>
<tr>
<td>getpwuid</td>
<td>getrctl</td>
</tr>
<tr>
<td>getrlimit</td>
<td>getrusage</td>
</tr>
</tbody>
</table>
gets getsid
getspent getspent_r
getspnam getspnam_r
getsubopt gettaskid
gettext gettimeofday
gettext getuid
getuserattr getuserattrnam
getuserattruid getusernam
getusershell getuserid
getutack getutent
getutid getutline
getutmp getutmpx
getutxent getuxid
getutxline getvtsany
getvfsent getvfsfile
getvffsspec getw
getwc getwchar
getwd getwidth
getws getzoneid
getzoneidbyname getzonedenamebyid
glob globfree
gmtime gmt ime_r
grantpt gsignal
hasmntopt hcreate
hdestroy hsearch
iconv iconv_close
iconv_open iconvctl
iconvstr imaxabs
imaxdiv index
initgroups
innetgr
ioctl
isaexec
isalpha
isastream
isblank
isdigit
isgraph
islower
isnand
isnumber
isprint
issetugid
isspecial
iswalnum
iswblank
iswctype
iswgraph
iswprint
iswspace
iswxdigit
jrand48
killpg
l64a
ladd
lckpwsdf
ldexp
lexp10
initstate
insque
is_system_labeled
isalnum
isascii
isatty
iscntrl
isenglish
isideogram
isnan
isnanf
isphonogram
ispunct
isspace
isupper
iswalpha
iswcntrl
iswdigit
iswlower
iswpunct
iswupper
isxdigit
kill
kva_match
labs
lchown
lcong48
ldivide
lfind
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>lflags</code></td>
<td><code>link</code></td>
</tr>
<tr>
<td><code>linkat</code></td>
<td><code>lio_listio</code></td>
</tr>
<tr>
<td><code>llabs</code></td>
<td><code>lldiv</code></td>
</tr>
<tr>
<td><code>lllog10</code></td>
<td><code>llseek</code></td>
</tr>
<tr>
<td><code>lltostr</code></td>
<td><code>localeconv</code></td>
</tr>
<tr>
<td><code>localelist</code></td>
<td><code>localelistfree</code></td>
</tr>
<tr>
<td><code>localtime</code></td>
<td><code>localtime_r</code></td>
</tr>
<tr>
<td><code>lockf</code></td>
<td><code>logb</code></td>
</tr>
<tr>
<td><code>lone</code></td>
<td><code>longjmp</code></td>
</tr>
<tr>
<td><code>lrand48</code></td>
<td><code>lsearch</code></td>
</tr>
<tr>
<td><code>lseek</code></td>
<td><code>lshifl</code></td>
</tr>
<tr>
<td><code>lstat</code></td>
<td><code>lsub</code></td>
</tr>
<tr>
<td><code>lten</code></td>
<td><code>lzero</code></td>
</tr>
<tr>
<td><code>madvise</code></td>
<td><code>makecontext</code></td>
</tr>
<tr>
<td><code>makeutx</code></td>
<td><code>malloc</code></td>
</tr>
<tr>
<td><code>match_execattr</code></td>
<td><code>mblen</code></td>
</tr>
<tr>
<td><code>mbrlen</code></td>
<td><code>mbrtowc</code></td>
</tr>
<tr>
<td><code>mbsinit</code></td>
<td><code>mbsrtowcs</code></td>
</tr>
<tr>
<td><code>mbstowcs</code></td>
<td><code>mbtowc</code></td>
</tr>
<tr>
<td><code>memalign</code></td>
<td><code>membar_consumer</code></td>
</tr>
<tr>
<td><code>membar_enter</code></td>
<td><code>membar_exit</code></td>
</tr>
<tr>
<td><code>membar_producer</code></td>
<td><code>memccpy</code></td>
</tr>
<tr>
<td><code>memchr</code></td>
<td><code>memcpy</code></td>
</tr>
<tr>
<td><code>memcntl</code></td>
<td><code>memcpy</code></td>
</tr>
<tr>
<td><code>meminfo</code></td>
<td><code>memmem</code></td>
</tr>
<tr>
<td><code>memmove</code></td>
<td><code>memset</code></td>
</tr>
<tr>
<td><code>mincore</code></td>
<td><code>mkdir</code></td>
</tr>
<tr>
<td><code>mkdirat</code></td>
<td><code>mkfifo</code></td>
</tr>
<tr>
<td><code>mknod</code></td>
<td><code>mknod</code></td>
</tr>
<tr>
<td>Library Functions</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>mknodat, mkstemp</td>
<td></td>
</tr>
<tr>
<td>mktemp, mktime</td>
<td></td>
</tr>
<tr>
<td>mlock, mlockall</td>
<td></td>
</tr>
<tr>
<td>mmap, mmapobj</td>
<td></td>
</tr>
<tr>
<td>modctl, modf</td>
<td></td>
</tr>
<tr>
<td>modff, modutx</td>
<td></td>
</tr>
<tr>
<td>monitor, mount</td>
<td></td>
</tr>
<tr>
<td>mprotect, mq_close</td>
<td></td>
</tr>
<tr>
<td>mq_getattr, mq_notify</td>
<td></td>
</tr>
<tr>
<td>mq_open, mq_receive</td>
<td></td>
</tr>
<tr>
<td>mq_reltimedreceive_np, mq_reltimedsend_np</td>
<td></td>
</tr>
<tr>
<td>mq_send, mq_setattr</td>
<td></td>
</tr>
<tr>
<td>mq_timedreceive, mq_timedsend</td>
<td></td>
</tr>
<tr>
<td>mq_unlink, mrand48</td>
<td></td>
</tr>
<tr>
<td>msgctl, msgget</td>
<td></td>
</tr>
<tr>
<td>msgids, msgrcv</td>
<td></td>
</tr>
<tr>
<td>msgsnap, msgsnd</td>
<td></td>
</tr>
<tr>
<td>msync, munlock</td>
<td></td>
</tr>
<tr>
<td>munlockall, munmap</td>
<td></td>
</tr>
<tr>
<td>mutex_consistent, mutex_destroy, mutex_lock, mutex_unlock</td>
<td></td>
</tr>
<tr>
<td>nanosleep, nextafter</td>
<td></td>
</tr>
<tr>
<td>nfs_getfh, nftw</td>
<td></td>
</tr>
<tr>
<td>ngettext, nice</td>
<td></td>
</tr>
<tr>
<td>nl_langinfo, nrand48</td>
<td></td>
</tr>
<tr>
<td>nss_default_finders, nss_delete, nss_getent, nss_setent</td>
<td></td>
</tr>
</tbody>
</table>
ntp_adjtime
open
opendir
optarg
optind
p_online
pause
csample
pfmt
plock
popen
port_associate
port_dissociate
port_getn
port_sendn
posix_fallocate
posix_fadvise
posix_memalign
posix_madvise
posix_memalign
posix_strerror
posix_spawn
posix_spawn_file_actions_addclosefrom_np
posix_spawn_file_actions_adddup2
posix_spawn_file_actions_addopen
posix_spawn_file_actions_init
posix_spawnattr_getflags
posix_spawnattr_getschedparam
posix_spawnattr_getsigdefault
posix_spawnattr_getsigmask
posix_spawnattr_setflags
posix_spawnattr_setschedparam
posix_spawnattr_setsigdefault
posix_spawnattr_setsigignore_np
posix_spawnattr_setsigmask
ppoll
printf
priocntl
priv_addset
priv_basicset
priv_delset
priv_fillset
priv_getbyname
priv_getsetbyname
priv_gettext
priv_intersect
priv_isemptyset
priv_isfullset
priv_issubset
priv_set_to_str
priv_union
processor_info
pselect
pset_bind
pset_destroy
pset_getloadavg
pset_list
psiginfo
pthread_atfork
pthread_attr_getdetachstate
pthread_attr_getinheritsched
pthread_attr_getschedpolicy
pthread_attr_getstack
posix_spawnp
pread
printstack
priocntlset
priv_allocset
priv_copyset
priv_emptyset
priv_freeset
priv_getbyname
priv_getsetbyname
priv_ineffect
priv_inverse
priv_isequalset
priv_ismember
priv_set
priv_str_to_set
processor_bind
profil
pset_assign
pset_create
pset_getattr
pset_info
pset_setattr
psignal
pthread_attr_destroy
pthread_attr_getguardsize
pthread_attr_getschedparam
pthread_attr_getscope
pthread_attr_getstackaddr
pthread_attr_getstacksize
pthread_attr_setdetachstate
pthread_attr_setinheritssched
pthread_attr_setschedpolicy
pthread_attr_setstack
pthread_attr_setstcksize
pthread_barrier_init
pthread_barrier_destroy
pthread_barrierattr_destroy
pthread_barrierattr_init
pthread_barrierattr_setpshared
pthread_cancel
pthread_cond_destroy
pthread_cond_init
pthread_cond_sigtimedwait_np
pthread_cond_signal
pthread_cond_timedwait
pthread_condattr_destroy
pthread_condattr_init
pthread_condattr_setpshared
pthread_counter
pthread_detach
pthread_equal
pthread_getconcurrency
pthread_getspecific
pthread_key_create
pthread_key_delete
pthread_mutex_consistent
pthread_mutex_destroy
pthread_mutex_getprioceiling
pthread_mutex_init
pthread_mutex_lock
pthread_mutex_reltimedlock_np
pthread_mutex_setprioceiling
pthread_mutex_trylock
pthread_mutex_unlock
pthread_mutexattr_destroy
pthread_mutexattr_getprioceiling
pthread_mutexattr_getprotocol
pthread_mutexattr_getpshared
pthread_mutexattr_setclock
pthread_mutexattr_setpshared
pthread_newphase
pthread_thread
pthread_whoami
pthread_yield
pthread_attr_init
pthread_attr_setguardsize
pthread_attr_setschedparam
pthread_attr_setscope
pthread_attr_setstackaddr
pthread_barrier_destroy
pthread_barrier_wait
pthread_barrierattr_getpshared
pthread_barrierattr_setpshared
pthread_cond_broadcast
pthread_cond_init
pthread_cond_signal
pthread_cond_timedwait
pthread_condattr_getclock
pthread_condattr_setpshared
pthread_counter
pthread_detach
pthread_equal
pthread_getconcurrency
pthread_getspecific
pthread_key_create
pthread_key_delete
pthread_mutex_consistent
pthread_mutex_destroy
pthread_mutex_getprioceiling
pthread_mutex_init
pthread_mutex_lock
pthread_mutex_reltimedlock_np
pthread_mutex_setprioceiling
pthread_mutex_trylock
pthread_mutex_unlock
pthread_mutexattr_destroy
pthread_mutexattr_getprioceiling
pthread_mutexattr_getprotocol
pthread_mutexattr_getpshared
pthread_mutexattr_getrobust
pthread_mutexattr_init
pthread_mutexattr_setprotocol
pthread_mutexattr_setrobust
pthread_once
pthread_rwlock_init
pthread_rwlock_reltimedrdlock
pthread_rwlock_timedrdlock
pthread_rwlock_tryrdlock
pthread_rwlock_unlock
pthread_rwlock_attr_destroy
pthread_rwlockattr_init
pthread_self
pthread_setscancertype
pthread_setspecific
pthread_setschedparam
pthread_spin_destroy
pthread_spin_init
pthread_spin_lock
pthread_spin_unlock
ptsname
putc
putchar
putenv
putmsg
putmsg
puts
pututline
putw
putwchar
pwrite

pthread_mutexattr_gettime
pthread_mutexattr_setprioceiling
pthread_mutexattr_setpshared
pthread_mutexattr_setprotocol
pthread_rwlock_destroy
pthread_rwlock_rdlock
pthread_rwlock_reltimedwrlock
pthread_rwlock_timedwrlock
pthread_rwlock_trywrlock
pthread_rwlock_unlock
pthread_rwlockattr_getpshared
pthread_rwlockattr_setpshared
pthread_setcancelstate
pthread_setconcurrency
pthread_setspecific
pthread_setschedparam
pthread_spin_destroy
pthread_spin_init
pthread_spin_lock
pthread_spin_unlock
putacct
putc_unlocked
putchar_unlocked
putmsg
putpmgr
putspent
putstr
pututxline
putwc
putws
qecompare
libc(3LIB)

qecvt qfconvert
qfcv t qgconvert
qgcvt qsort
quadruple_to_decimal raise
rand rand_r
random rctl_walk
rctlblk_get_enforced_value rctlblk_get_firing_time
rctlblk_get_global_action rctlblk_get_global_flags
rctlblk_get_local_action rctlblk_get_local_flags
rctlblk_get_privilege rctlblk_get_recipient_pid
rctlblk_get_value rctlblk_set_local_action
rctlblk_set_local_flags rctlblk_set_privilege
rctlblk_set_recipient_pid rctlblk_set_value
rctlblk_size re_comp
re_exec read
readdir readdir_r
readlink readlinkat
readv realloc
realpath reboot
regcmp regcomp
regerror regex
regexec regfree
remove remque
rename renameat
resetmnttab resolvemount
rewind rewinddir
rindex rmdir
rw_rdlock rw_read_held
rw_tryrdlock rw_trywrlock
<table>
<thead>
<tr>
<th>Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>rw_unlock</td>
<td>rw_write_held</td>
</tr>
<tr>
<td>rw_wrlock</td>
<td>rwlock_destroy</td>
</tr>
<tr>
<td>rwlock_init</td>
<td>sbrk</td>
</tr>
<tr>
<td>scalb</td>
<td>scandir</td>
</tr>
<tr>
<td>scanf</td>
<td>sched_get_priority_max</td>
</tr>
<tr>
<td>sched_get_priority_min</td>
<td>sched_getparam</td>
</tr>
<tr>
<td>sched_getscheduler</td>
<td>sched_rr_get_interval</td>
</tr>
<tr>
<td>sched_setparam</td>
<td>sched_setscheduler</td>
</tr>
<tr>
<td>sched_yield</td>
<td>schedcti_exit</td>
</tr>
<tr>
<td>schedctl_init</td>
<td>schedctl_lookup</td>
</tr>
<tr>
<td>schedctl_start</td>
<td>schedctl_stop</td>
</tr>
<tr>
<td>seconvert</td>
<td>seed48</td>
</tr>
<tr>
<td>seekdi</td>
<td>select</td>
</tr>
<tr>
<td>sem_close</td>
<td>sem_destroy</td>
</tr>
<tr>
<td>sem_getvalue</td>
<td>sem_init</td>
</tr>
<tr>
<td>sem_open</td>
<td>sem_post</td>
</tr>
<tr>
<td>sem_reltimedwait_np</td>
<td>sem_timedwait</td>
</tr>
<tr>
<td>sem_trywait</td>
<td>sem_unlink</td>
</tr>
<tr>
<td>sem_wait</td>
<td>sema_destroy</td>
</tr>
<tr>
<td>sema_held</td>
<td>sema_init</td>
</tr>
<tr>
<td>sema_post</td>
<td>sema_trywait</td>
</tr>
<tr>
<td>sema_wait</td>
<td>semctl</td>
</tr>
<tr>
<td>semget</td>
<td>semids</td>
</tr>
<tr>
<td>semop</td>
<td>semtimedop</td>
</tr>
<tr>
<td>setauthattr</td>
<td>setattrat</td>
</tr>
<tr>
<td>setbuf</td>
<td>setbuffer</td>
</tr>
<tr>
<td>setcat</td>
<td>setcontext</td>
</tr>
<tr>
<td>setegid</td>
<td>setenv</td>
</tr>
<tr>
<td>seteuid</td>
<td>setexecattr</td>
</tr>
<tr>
<td>Function</td>
<td>Function</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>setgid</td>
<td>setgrent</td>
</tr>
<tr>
<td>setgroups</td>
<td>sethostname</td>
</tr>
<tr>
<td>setitimer</td>
<td>setjmp</td>
</tr>
<tr>
<td>setkey</td>
<td>setlabel</td>
</tr>
<tr>
<td>setlinebuf</td>
<td>setlocale</td>
</tr>
<tr>
<td>setlogmask</td>
<td>setnetgrent</td>
</tr>
<tr>
<td>setpflags</td>
<td>setpgid</td>
</tr>
<tr>
<td>setpgrp</td>
<td>setpriv</td>
</tr>
<tr>
<td>setpriority</td>
<td>setprofattr</td>
</tr>
<tr>
<td>setprocname</td>
<td>setpwent</td>
</tr>
<tr>
<td>setrctl</td>
<td>setregid</td>
</tr>
<tr>
<td>setreuid</td>
<td>setrlimit</td>
</tr>
<tr>
<td>setsid</td>
<td>setspent</td>
</tr>
<tr>
<td>setstate</td>
<td>settaskid</td>
</tr>
<tr>
<td>settimeofday</td>
<td>setuid</td>
</tr>
<tr>
<td>setuserattr</td>
<td>setusershell</td>
</tr>
<tr>
<td>setustack</td>
<td>setutent</td>
</tr>
<tr>
<td>setuxent</td>
<td>setvbuf</td>
</tr>
<tr>
<td>sfconvert</td>
<td>sgconvert</td>
</tr>
<tr>
<td>shm_open</td>
<td>shm_unlink</td>
</tr>
<tr>
<td>shmadv</td>
<td>shmat</td>
</tr>
<tr>
<td>shmctl</td>
<td>shmdt</td>
</tr>
<tr>
<td>shmget</td>
<td>shmids</td>
</tr>
<tr>
<td>sig2str</td>
<td>sigaction</td>
</tr>
<tr>
<td>sigaddset</td>
<td>sigaltstack</td>
</tr>
<tr>
<td>sigdelset</td>
<td>sigemptyset</td>
</tr>
<tr>
<td>sigfillset</td>
<td>sigfpe</td>
</tr>
<tr>
<td>sighold</td>
<td>sigignore</td>
</tr>
<tr>
<td>siginterrupt</td>
<td>sigismember</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>siglongjmp</td>
<td>signal</td>
</tr>
<tr>
<td>sigpause</td>
<td>sigpending</td>
</tr>
<tr>
<td>sigprocmask</td>
<td>sigqueue</td>
</tr>
<tr>
<td>sigrelse</td>
<td>sigset</td>
</tr>
<tr>
<td>sigsendset</td>
<td>sigset</td>
</tr>
<tr>
<td>sigsetjmp</td>
<td>sigstack</td>
</tr>
<tr>
<td>sigsuspend</td>
<td>sigtimedwait</td>
</tr>
<tr>
<td>sigwait</td>
<td>sigwaitinfo</td>
</tr>
<tr>
<td>single_to_decimal</td>
<td>sleep</td>
</tr>
<tr>
<td>smt_pause</td>
<td>snprintf</td>
</tr>
<tr>
<td>sprintf</td>
<td>srand</td>
</tr>
<tr>
<td>srand48</td>
<td>srandom</td>
</tr>
<tr>
<td>sscanf</td>
<td>ssignal</td>
</tr>
<tr>
<td>stack_getbounds</td>
<td>stack_inbounds</td>
</tr>
<tr>
<td>stack_setbounds</td>
<td>stackViolation</td>
</tr>
<tr>
<td>stat</td>
<td>statfs</td>
</tr>
<tr>
<td>statvfs</td>
<td>stime</td>
</tr>
<tr>
<td>stpcpy</td>
<td>stpcpy</td>
</tr>
<tr>
<td>str2sig</td>
<td>strcasecmp</td>
</tr>
<tr>
<td>strcasestr</td>
<td>strncasecmp</td>
</tr>
<tr>
<td>strchrnul</td>
<td>strchr</td>
</tr>
<tr>
<td>strcmp</td>
<td>strcoll</td>
</tr>
<tr>
<td>strcpy</td>
<td>strcspn</td>
</tr>
<tr>
<td>strdup</td>
<td>strdup</td>
</tr>
<tr>
<td>strerror</td>
<td>strerror_r</td>
</tr>
<tr>
<td>strftime</td>
<td>strftime_r</td>
</tr>
<tr>
<td>string_to_decimal</td>
<td>strlcat</td>
</tr>
<tr>
<td>strlcpy</td>
<td>strlen</td>
</tr>
<tr>
<td>strncasecmp</td>
<td>strncat</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>strncpy</td>
<td>strncpy</td>
</tr>
<tr>
<td>strndup</td>
<td>strndupa</td>
</tr>
<tr>
<td>strnstr</td>
<td>strpbrk</td>
</tr>
<tr>
<td>strptime</td>
<td>strrrchr</td>
</tr>
<tr>
<td>strsep</td>
<td>strsignal</td>
</tr>
<tr>
<td>strspn</td>
<td>strstr</td>
</tr>
<tr>
<td>strtod</td>
<td>strtof</td>
</tr>
<tr>
<td>strtold</td>
<td>strtoll</td>
</tr>
<tr>
<td>strtoul</td>
<td>strtoull</td>
</tr>
<tr>
<td>strtoimax</td>
<td>strtok</td>
</tr>
<tr>
<td>strtok</td>
<td>strtof</td>
</tr>
<tr>
<td>strxfrm</td>
<td>swab</td>
</tr>
<tr>
<td>symlink</td>
<td>symlinkat</td>
</tr>
<tr>
<td>sync</td>
<td>sync_instruction_memory</td>
</tr>
<tr>
<td>sysconf</td>
<td>sysfs</td>
</tr>
<tr>
<td>syslog</td>
<td>sysinfo</td>
</tr>
<tr>
<td>system</td>
<td>tcdrain</td>
</tr>
<tr>
<td>tcflow</td>
<td>tcflush</td>
</tr>
<tr>
<td>tcgetattr</td>
<td>tcgetpgrp</td>
</tr>
<tr>
<td>tcgetsid</td>
<td>tcsendbreak</td>
</tr>
<tr>
<td>tcsetattr</td>
<td>tcsetpgrp</td>
</tr>
<tr>
<td>tdelete</td>
<td>tell</td>
</tr>
<tr>
<td>telldir</td>
<td>tempnam</td>
</tr>
<tr>
<td>textdomain</td>
<td>tfind</td>
</tr>
<tr>
<td>thr_continue</td>
<td>thr_create</td>
</tr>
<tr>
<td>thr_exit</td>
<td>thr_getconcurrency</td>
</tr>
</tbody>
</table>
thr_getprio thr_getspecific
thr_join thr_keycreate
thr_keycreate_once thr_kill
thr_main thr_min_stack
thr_self thr_setconcurrency
thr_setprio thr_setspecific
thr_sigsetmask thr_stksegment
thr_suspend thr_yield
time timer_create
timer_delete timer_getoverrun
timer_gettime timer_settime
times timezone
tmpfile tmpnam
tmpnam_r toascii
tolower toupper
towctrans towlower
towupper truncate
tsearch ttyname
ttyname_r ttyslot
twalk tzname
tzset u8_strcmp
u8_textprep_str u8_validate
uadmin ualarm
uconv_u16tou32 uconv_u16tou8
uconv_u32tou16 uconv_u32tou8
uconv_u8tou16 uconv_u8tou32
ucred_free ucred_get
ucred_getegid ucred_geteuid
uccred_getgroups ucred_getpflags
<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ucred_getpid</td>
</tr>
<tr>
<td>ucred_getprojid</td>
</tr>
<tr>
<td>ucred_getruid</td>
</tr>
<tr>
<td>ucred_getsuid</td>
</tr>
<tr>
<td>ucred_size</td>
</tr>
<tr>
<td>ulimit</td>
</tr>
<tr>
<td>umask</td>
</tr>
<tr>
<td>umount2</td>
</tr>
<tr>
<td>ungetc</td>
</tr>
<tr>
<td>unlink</td>
</tr>
<tr>
<td>unlockpt</td>
</tr>
<tr>
<td>unsetenv</td>
</tr>
<tr>
<td>updwtmp</td>
</tr>
<tr>
<td>ustat</td>
</tr>
<tr>
<td>utimensat</td>
</tr>
<tr>
<td>utmpname</td>
</tr>
<tr>
<td>uucopy</td>
</tr>
<tr>
<td>vasprintf</td>
</tr>
<tr>
<td>verrx</td>
</tr>
<tr>
<td>vforkx</td>
</tr>
<tr>
<td>vfscanf</td>
</tr>
<tr>
<td>vfwscanf</td>
</tr>
<tr>
<td>vfwscanf</td>
</tr>
<tr>
<td>vfprintf</td>
</tr>
<tr>
<td>vscanf</td>
</tr>
<tr>
<td>vsprintf</td>
</tr>
<tr>
<td>vsscanf</td>
</tr>
<tr>
<td>vswscanf</td>
</tr>
<tr>
<td>vsyslog</td>
</tr>
<tr>
<td>vwarn</td>
</tr>
<tr>
<td>vwprintf</td>
</tr>
<tr>
<td>Function</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>wait</td>
</tr>
<tr>
<td>wait4</td>
</tr>
<tr>
<td>waitpid</td>
</tr>
<tr>
<td>warn</td>
</tr>
<tr>
<td>watoll</td>
</tr>
<tr>
<td>wcpcpy</td>
</tr>
<tr>
<td>wcscasecmp</td>
</tr>
<tr>
<td>wcscat</td>
</tr>
<tr>
<td>wcschr</td>
</tr>
<tr>
<td>wcscpyp</td>
</tr>
<tr>
<td>wcscpspn</td>
</tr>
<tr>
<td>wcsftime</td>
</tr>
<tr>
<td>wcsncasecmp</td>
</tr>
<tr>
<td>wcsncmp</td>
</tr>
<tr>
<td>wcnlen</td>
</tr>
<tr>
<td>wcsrchr</td>
</tr>
<tr>
<td>wcsspn</td>
</tr>
<tr>
<td>wcstod</td>
</tr>
<tr>
<td>wcstoiMAX</td>
</tr>
<tr>
<td>wcstol</td>
</tr>
<tr>
<td>wcstoll</td>
</tr>
<tr>
<td>wcstoull</td>
</tr>
<tr>
<td>wcstoumax</td>
</tr>
<tr>
<td>wcswidth</td>
</tr>
<tr>
<td>wcwidth</td>
</tr>
<tr>
<td>wcwidth</td>
</tr>
<tr>
<td>wmemcmp</td>
</tr>
<tr>
<td>wmemmove</td>
</tr>
<tr>
<td>wmemmove</td>
</tr>
<tr>
<td>wordexp</td>
</tr>
</tbody>
</table>

Library Interfaces and Headers 113
The following interfaces are unique to the 32-bit version of this library:

<table>
<thead>
<tr>
<th>32-bit</th>
<th>64-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>_div64</td>
<td>_mul64</td>
</tr>
<tr>
<td>__posix_readdir_r</td>
<td>__rem64</td>
</tr>
<tr>
<td>__udiv64</td>
<td>__urem64</td>
</tr>
<tr>
<td>_bufendtab</td>
<td>_lastbuf</td>
</tr>
<tr>
<td>_s_fcntl</td>
<td>_sys_nsig</td>
</tr>
<tr>
<td>_xftw64</td>
<td>aio_cancel64</td>
</tr>
<tr>
<td>aio_error64</td>
<td>aio_fsync64</td>
</tr>
<tr>
<td>aio_read64</td>
<td>aio_return64</td>
</tr>
<tr>
<td>aio_suspend64</td>
<td>aio_waitn64</td>
</tr>
<tr>
<td>aio_write64</td>
<td>creat64</td>
</tr>
<tr>
<td>fgetpos64</td>
<td>fopen64</td>
</tr>
</tbody>
</table>
The following interfaces are unique to the 32-bit SPARC version of this library:

```
.div .mul
.rem .stret1
.stret2 .stret4
.stret8 .udiv
.umul .urem
._Q_add .Q_cmp
._Q_cmpe .Q_div
._Q DTOQ .Q_feq
._Q_fge .Q_fgt
._Q_fle .Q_flt
```
The following interfaces are unique to the 32-bit x86 version of this library:

```c
__fpstart
_fp_hw
_fpstart
_fxstat
_lxstat
_nuname
_thr_errno_addr
_xmknod
_xstat
_nuname
```

The following interfaces are unique to the 64-bit SPARC version of this library:

```c
_Qp_add
_Qp_cmp
_Qp_cmppe
_Qp_div
_Qp DTOQ
_Qp_fge
_Qp_fgt
_Qp_fle
_Qp_flt
_Qp_fne
_Qp_itoq
_Qp_mul
_Qp_neg
```
The synonyms compatibility library, c_synonyms.so.1, provides a mechanism to support old applications and libraries that were mistakenly built using now-obsolete synonym symbols from libc.

Before the advent of direct binding (-B direct) libc provided many functions with two names. For example, getpwent() and _getpwent(). These two names referred to exactly the same function in libc. The leading-underscore symbol was intended to be used by system libraries in order to avoid conflicting with an application that might define its own version of getpwent() with completely different semantics. Standard-conforming applications may not define and use function names with leading underscores.

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also
pvs(1), Intro(2), Intro(3), attributes(5), lf64(5), standards(5)

Notes
The synonyms compatibility library, c_synonyms.so.1, provides a mechanism to support old applications and libraries that were mistakenly built using now-obsolete synonym symbols from libc.

Before the advent of direct binding (-B direct) libc provided many functions with two names. For example, getpwent() and _getpwent(). These two names referred to exactly the same function in libc. The leading-underscore symbol was intended to be used by system libraries in order to avoid conflicting with an application that might define its own version of getpwent() with completely different semantics. Standard-conforming applications may not define and use function names with leading underscores.

Files
/lib/libc.so.1 shared object
/lib/64/libc.so.1 64-bit shared object
/lib/c_synonyms.so.1 A compatibility library to provide access to obsolete libc synonym symbols
/lib/64/c_synonyms.so.1 A 64-bit compatibility library to provide access to obsolete libc synonym symbols
Solaris system libraries are now built with direct binding. This means that a system library that calls `getpwent()` will bind directly to the instance of `getpwent()` in libc, even if the application to which it is linked defines a different `getpwent()` for its own use. The application binds to its instance of `getpwent()` and there is no resulting conflict. The direct binding mechanism is equally available to libraries not delivered with Solaris.

As a result of this evolution, most of the leading-underscore synonym symbols have been removed from libc. This means that applications that call these now-obsolete function names will cease to work. They will typically draw the error:

```
$ ./application
ld.so.1: fatal: relocation error: symbol _getpwent:
referenced symbol not found
Killed
```

All of the old leading-underscore symbols have been copied to the synonyms compatibility library. This library simply redirects the calls to the non-underscore instances of the corresponding functions in libc. Use it as a pre-loaded object:

```
$ LD_PRELOAD=c_synonyms.so.1 ./application
```

The synonyms compatibility library is intended neither to enable the generation of applications that call the obsolete leading-underscore synonym functions, nor to endorse this particular programming practice.
The **libc_db** library provides support for monitoring and manipulating threads-related aspects of a multithreaded program. There are at least two processes involved, the controlling process and one or more target processes. The controlling process is the **libc_db** client, which links with **libc_db** and uses **libc_db** to inspect or modify threads-related aspects of one or more target processes. The target processes must be multithreaded processes that use **libc**. The controlling process might or might not be multithreaded itself.

The most commonly anticipated use for **libc_db** is that the controlling process will be a debugger for a multithreaded program, hence the “db” in **libc_db**.

The **libc_db** library is dependent on the internal implementation details of **libc**. It is a “friend” of **libc** in the C++ sense, which is precisely the “value added” by **libc_db**. It encapsulates the knowledge of **libc** internals that a debugger needs to manipulate the threads-related state of a target process.

To be able to inspect and manipulate target processes, **libc_db** makes use of certain process control primitives that must be provided by the process using **libc_db**. The imported interfaces are defined in **proc_service(3PROC)**. In other words, the controlling process is linked with **libc_db** and calls routines in **libc_db**. In turn, **libc_db** calls certain routines that it expects the controlling process to provide. These process control primitives allow **libc_db** to:

- Look up symbols in a target process.
- Stop and continue individual lightweight processes (LWPs) within a target process.
- Stop and continue an entire target process.
- Read and write memory and registers in a target process.

Initially, a controlling process obtains a handle for a target process. Through that handle it can then obtain handles for the component objects of the target process, its threads, its synchronization objects, and its thread-specific-data keys.

When **libc_db** needs to return sets of handles to the controlling process, for example, when returning handles for all the threads in a target process, it uses an iterator function. An iterator function calls back a client-specified function once for each handle to be returned, passing one handle back on each call to the callback function. The calling function also passes another parameter to the iterator function, which the iterator function passes on to the callback function. This makes it easy to build a linked list of thread handles for a particular target process. The additional parameter is the head of the linked list, and the callback function simply inserts the current handle into the linked list.
Callback functions are expected to return an integer. Iteration terminates early if a callback function returns a non-zero value. Otherwise, iteration terminates when there are no more handles to pass back.

Interfaces The shared object libc_db.so.1 provides the public interfaces defined below. See *Intro(3)* for additional information on shared object interfaces.

```c
    td_init          td_log
    td_sync_get_info td_sync_get_stats
    td_sync_setstate td_sync_waiters
    td_ta_clear_event td_ta_delete
    td_ta_enable_stats td_ta_event_addr
    td_ta_event_getmsg td_ta_get_ntreads
    td_ta_get_ph     td_ta_get_stats
    td_ta_map_addr2sync td_ta_map_id2thr
    td_ta_map_lwp2thr td_ta_new
    td_ta_reset_stats td_ta_set_event
    td_ta_setconcurrency td_ta_sync_iter
    td_ta_sync_tracking_enable td_ta_thr_iter
    td_ta_tsx_iter   td_thr_clear_event
    td_thr_dbresume  td_thr_dbsuspend
    td_thr_event_enable td_thr_event_getmsg
    td_thr_get_info  td_thr_getxregs
    td_thr_getxregsize td_thr_getfpregs
    td_thr_getregs   td_thr_getxregs
    td_thr_getxregsize td_thr_getprio
    td_thr_setcxregs td_thr_set_event
    td_thr_setfpregs td_thr_setgregs
    td_thr_setprio   td_thr_setsigpending
    td_thr_setxregs  td_thr_sigsetmask
    td_thr_sleepinfo td_thr_tlsbase
```
Files

/lib/libc_db.so.1 shared object
/lib/64/libc_db.so.1 64-bit shared object

Attributes See attributes(5) for description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), td_ta_new(3C_DB), attributes(5), threads(5)
Name libcfgadm – configuration administration library

Synopsis cc [flag...] file... -lcfgadm -ldevinfo -ldl [library...]
 #include <config_admin.h>

Description Functions in this library provide services for configuration administration.

Interfaces The shared object libcfgadm.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

 config_ap_id_cmp
 config_help
 config_list_ext
 config_stat
 config_test
 config_change_state
 config_list
 config_private_func
 config_strerror
 config_unload_libs

Files /usr/lib/libcfgadm.so.1 shared object
 /usr/lib/64/libcfgadm.so.1 64–bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Mt-Safe</td>
</tr>
</tbody>
</table>

See Also pvs(1), cfgadm(1M), Intro(3), config_admin(3CFGADM), attributes(5)
libcommputil(3LIB)

Name libcommputil – communication protocol parser utilities library

Synopsis cc [flag...] file... -lcommputil [library...]
 #include <sdp.h>

Description The communication protocol parser utilities library is a placeholder for public interfaces that facilitate parsing of various communication protocols. Functions in this library parse the SDP (Session Description Protocol) description, check for syntax conformance, and generate SDP descriptions.

SDP (Session Description Protocol), described in RFC 4566, describes multimedia sessions for the purposes of session announcement, session invitation, and other forms of multimedia session initiation. SDP is used to convey session information in Session Initiation Protocol (SIP), Streaming Media (Real Time Streaming Protocol, RTSP), email, and World Wide Web and Multicast Session Announcement.

Interfaces The shared object libcommputil.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

 sdp_add_attribute sdp_add_bandwidth
 sdp_add_connection sdp_add_email
 sdp_add_information sdp_add_key
 sdp_add_media sdp_add_name
 sdp_add_origin sdp_add_phone
 sdp_add_repeat sdp_add_time
 sdp_add_uri sdp_add_zone
 sdp_clone_session sdp_delete_attribute
 sdp_delete_field sdp_delete_media
 sdp_delete_media_field sdp_find_attribute
 sdp_find_media sdp_find_media_rtpmap
 sdp_free_session sdp_new_session
 sdp_parse sdp_session_to_str

Files /lib/libcommputil.so.1 shared object.
 /lib/64/libcommputil.so.1 64-bit shared object.
Attributes See attributes(5) for description of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), attributes(5)
libcontract - contract management library

Synopsis

```
cc [ flag... ] 'getconf LFS_CFLAGS' file... -lcontract [ library... ]
#include <libcontract.h>
```

Description

Functions in this library provide various interfaces to interact with the contract(4) file system. The header provides structure and function declarations for all library interfaces.

Interfaces

The shared object libcontract.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

```
ct_ctl_abandon  ct_ctl_ack
ct_ctl_adopt    ct_ctl_nack
ct_ctl_newct    ct_ctl_qack
ct_dev_status_get_aset ct_dev_status_get_dev_state
ct_dev_status_get_minor ct_dev_status_get_neg
ct_dev_tmpl_clear_neg ct_dev_tmpl_get_aset
ct_dev_tmpl_get_minor ct_dev_tmpl_get_neg
ct_dev_tmpl_set_aset ct_dev_tmpl_set_minor
ct_dev_tmpl_set_neg ct_dev_tmpl_set_neg
ct_event_free   ct_event_get_aset
ct_event_get_ctid ct_event_get_evid
ct_event_get_flags ct_event_get_real
ct_event_get_newct ct_event_get_type
ct_event_read   ct_event_read_critical
ct_event_reliable ct_event_reset
ct_pr_event_get_exitstatus ct_pr_event_get_gcorefile
ct_pr_event_get_pcorefile ct_pr_event_get_pid
ct_pr_event_get_ppid ct_pr_event_get_sender
ct_pr_event_get_senderct ct_pr_event_get_signal
ct_pr_event_get_zcorefile ct_pr_status_get_contracts
ct_pr_status_get_fatal ct_pr_status_get_members
ct_pr_status_get_param ct_pr_status_get_aux
ct_pr_status_get_creator ct_pr_status_get_ctid
```
ct_pr_status_get_fmri ct_pr_tmpl_get_fatal
ct_pr_tmpl_get_param ct_pr_tmpl_get_transfer
ct_pr_tmpl_set_fatal ct_pr_tmpl_set_param
ct_pr_tmpl_set_transfer ct_status_free
ct_status_get_cookie ct_status_get_critical
ct_status_get_holder ct_status_get_id
ct_status_get_informative ct_status_get_nevents
ct_status_get_nevid ct_status_get_ntime
ct_status_get_qtime ct_status_get_state
ct_status_get_type ct_status_get_zoneid
ct_status_read ct_tmpl_activate
ct_tmpl_clear ct_tmpl_create
ct_tmpl_get_cookie ct_tmpl_get_critical
ct_tmpl_get_informative ct_tmpl_get_svc_aux
ct_tmpl_get_svc_fmri ct_tmpl_set_cookie
ct_tmpl_set_critical ct_tmpl_set_informative
ct_tmpl_set_svc_aux ct_tmpl_set_svc_fmri

Files /usr/lib/libcontract.so.1 shared object
 /usr/lib/64/libcontract.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also pvs(1), Intro(3), contract(4), attributes(5), lfcompile(5)
Name libcpc – CPU performance counter library

Synopsis
```bash
cc [ flag... ] file... -lcpc [ library... ]
```

Description Functions in this library provide access to CPU performance counters on platforms that contain the appropriate hardware.

Interfaces The shared object `libcpc.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpc_access</td>
<td></td>
</tr>
<tr>
<td>cpc_bind_cpu</td>
<td></td>
</tr>
<tr>
<td>cpc_bind_curlwp</td>
<td></td>
</tr>
<tr>
<td>cpc_bind_pctx</td>
<td></td>
</tr>
<tr>
<td>cpc_buf_copy</td>
<td></td>
</tr>
<tr>
<td>cpc_buf_destroy</td>
<td></td>
</tr>
<tr>
<td>cpc_buf_hrtime</td>
<td></td>
</tr>
<tr>
<td>cpc_buf_sub</td>
<td></td>
</tr>
<tr>
<td>cpc_buf_zero</td>
<td></td>
</tr>
<tr>
<td>cpc_cciname</td>
<td></td>
</tr>
<tr>
<td>cpc_cpuref</td>
<td></td>
</tr>
<tr>
<td>cpc_count_usr_events</td>
<td></td>
</tr>
<tr>
<td>cpc_enable</td>
<td></td>
</tr>
<tr>
<td>cpc_event_diff</td>
<td></td>
</tr>
<tr>
<td>cpc_getcciname</td>
<td></td>
</tr>
<tr>
<td>cpc_getcpuref</td>
<td></td>
</tr>
<tr>
<td>cpc_getcpuver</td>
<td></td>
</tr>
<tr>
<td>cpc_getusage</td>
<td></td>
</tr>
<tr>
<td>cpc_open</td>
<td></td>
</tr>
<tr>
<td>cpc_pctx_invalidate</td>
<td></td>
</tr>
<tr>
<td>cpc_pctx_take_sample</td>
<td></td>
</tr>
<tr>
<td>cpc_request_preset</td>
<td></td>
</tr>
<tr>
<td>cpc_set_create</td>
<td></td>
</tr>
<tr>
<td>cpc_set_restart</td>
<td></td>
</tr>
<tr>
<td>cpc_seterrfn</td>
<td></td>
</tr>
<tr>
<td>cpc_seterrhndl</td>
<td></td>
</tr>
</tbody>
</table>

Library Interfaces and Headers 127
libcpc(3LIB)

c pc_shared_bound_event c pc_shared_close
pc_shared_open cpc_shared_rele
pc_shared_take_sample cpc_strtoevent
pc_take_sample c pc.unbind
pc_version cpc_walk_attrs
pc_walk_events_all cpc_walk_events_pic
pc_walk_generic_events_all cpc_walk_generic_events_pic
pc_walk_names cpc_walk_requests

Files
/usr/lib/libcpc.so.1 shared object
/usr/lib/64/libcpc.so.1 64-bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>diagnostic/cpu-counters</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also
cputrack(1), cpustat(1M), Intro(3), cpc(3CPC), attributes(5)
Name libcrypt – encryption/decryption library

Synopsis cc [flag...] file... -lcrypt [library...]

Description Functions in this library provide encoding and decoding handling routines.

Interfaces The shared object libcrypt.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

crypt encrypt setkey

Files /usr/lib/libcrypt.so.1 shared object
 /usr/lib/64/libcrypt.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also Intro(3), encrypt(3C), setkey(3C), attributes(5)
Name libcurses, libtermcap, libtermlib – screen handling and optimization library

Synopsis cc [flag...] file... -lcurses [library...]

Description Functions in the libcurses library provide a terminal-independent method of updating character screens with reasonable optimization. The libtermcap and libtermlib libraries are identical to libcurses and are maintained for backward compatibility.

See libcurses(3XCURSES) for information about the curses library that conforms to X/Open Curses, Issue 4, Version 2.

Interfaces The shared objects libcurses.so.1, libtermcap.so.1, and libtermlib.so.1 provide the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

_getsyx _meta
_ring _setecho
_setnonl _setqiflush
addch addchnstr
addchstr addnstr
addmstr addstr
addwch addwchnstr
addwchstr addwstr
attroff attron
attrset baudrate
beep bkgd
bkgdset border
box can_change_color
cbreak clear
clearok clrtobot
clrtoeol color_content
copywin crmode
curs_set curserr
def_prog_mode def_shell_mode
del_curterm delay_output
<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>delch</td>
</tr>
<tr>
<td>deleteln</td>
</tr>
<tr>
<td>delkeymap</td>
</tr>
<tr>
<td>delscreen</td>
</tr>
<tr>
<td>delwin</td>
</tr>
<tr>
<td>derwin</td>
</tr>
<tr>
<td>dupdate</td>
</tr>
<tr>
<td>dupwin</td>
</tr>
<tr>
<td>echo</td>
</tr>
<tr>
<td>echochar</td>
</tr>
<tr>
<td>echowchar</td>
</tr>
<tr>
<td>endwin</td>
</tr>
<tr>
<td>erase</td>
</tr>
<tr>
<td>erasechar</td>
</tr>
<tr>
<td>filter</td>
</tr>
<tr>
<td>flash</td>
</tr>
<tr>
<td>flushinp</td>
</tr>
<tr>
<td>getbmap</td>
</tr>
<tr>
<td>getch</td>
</tr>
<tr>
<td>getmouse</td>
</tr>
<tr>
<td>getnwstr</td>
</tr>
<tr>
<td>getstr</td>
</tr>
<tr>
<td>getwch</td>
</tr>
<tr>
<td>getwin</td>
</tr>
<tr>
<td>getwstr</td>
</tr>
<tr>
<td>halfdelay</td>
</tr>
<tr>
<td>has_colors</td>
</tr>
<tr>
<td>has_ic</td>
</tr>
<tr>
<td>has_il</td>
</tr>
<tr>
<td>idcok</td>
</tr>
<tr>
<td>idlok</td>
</tr>
<tr>
<td>immedok</td>
</tr>
<tr>
<td>inch</td>
</tr>
<tr>
<td>inchstr</td>
</tr>
<tr>
<td>init_color</td>
</tr>
<tr>
<td>init_pair</td>
</tr>
<tr>
<td>initscr</td>
</tr>
<tr>
<td>innstr</td>
</tr>
<tr>
<td>innwstr</td>
</tr>
<tr>
<td>insch</td>
</tr>
<tr>
<td>insdellln</td>
</tr>
<tr>
<td>insertln</td>
</tr>
<tr>
<td>insnstr</td>
</tr>
<tr>
<td>insnwstr</td>
</tr>
<tr>
<td>insstr</td>
</tr>
<tr>
<td>inswch</td>
</tr>
<tr>
<td>inswstr</td>
</tr>
<tr>
<td>intrflush</td>
</tr>
<tr>
<td>imwch</td>
</tr>
<tr>
<td>imwchnstr</td>
</tr>
<tr>
<td>imwchstr</td>
</tr>
<tr>
<td>is_linetouched</td>
</tr>
<tr>
<td>is_wintouched</td>
</tr>
<tr>
<td>isendwin</td>
</tr>
<tr>
<td>keyname</td>
</tr>
<tr>
<td>Function</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>keypad</td>
</tr>
<tr>
<td>leaveok</td>
</tr>
<tr>
<td>m_addch</td>
</tr>
<tr>
<td>m_clear</td>
</tr>
<tr>
<td>m_initscr</td>
</tr>
<tr>
<td>m_newterm</td>
</tr>
<tr>
<td>map_button</td>
</tr>
<tr>
<td>mouse_off</td>
</tr>
<tr>
<td>mouse_set</td>
</tr>
<tr>
<td>mvaddch</td>
</tr>
<tr>
<td>mvaddchstr</td>
</tr>
<tr>
<td>mvaddnstr</td>
</tr>
<tr>
<td>mvaddwch</td>
</tr>
<tr>
<td>mvaddwchstr</td>
</tr>
<tr>
<td>mvcur</td>
</tr>
<tr>
<td>mvderwin</td>
</tr>
<tr>
<td>mvgetnwstr</td>
</tr>
<tr>
<td>mvgetwch</td>
</tr>
<tr>
<td>mvinch</td>
</tr>
<tr>
<td>mvinchstr</td>
</tr>
<tr>
<td>mvinnwstr</td>
</tr>
<tr>
<td>mvinsnstr</td>
</tr>
<tr>
<td>mvinsstr</td>
</tr>
<tr>
<td>mvinswch</td>
</tr>
<tr>
<td>mvinwch</td>
</tr>
<tr>
<td>mvinwchstr</td>
</tr>
<tr>
<td>mvprintw</td>
</tr>
<tr>
<td>mvwaddch</td>
</tr>
<tr>
<td>mvwaddchstr</td>
</tr>
<tr>
<td>Function</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>mvwaddnstr</td>
</tr>
<tr>
<td>mvwaddwch</td>
</tr>
<tr>
<td>mvwaddwchstr</td>
</tr>
<tr>
<td>mvwdelch</td>
</tr>
<tr>
<td>mvwgetnstr</td>
</tr>
<tr>
<td>mvwgetwch</td>
</tr>
<tr>
<td>mvwin</td>
</tr>
<tr>
<td>mvwinch</td>
</tr>
<tr>
<td>mvwinchnstr</td>
</tr>
<tr>
<td>mvwinnstr</td>
</tr>
<tr>
<td>mvwinsch</td>
</tr>
<tr>
<td>mvwinsnstr</td>
</tr>
<tr>
<td>mvwinmwstr</td>
</tr>
<tr>
<td>mvwinmwstr</td>
</tr>
<tr>
<td>mvwscansw</td>
</tr>
<tr>
<td>newkey</td>
</tr>
<tr>
<td>newpad</td>
</tr>
<tr>
<td>newscreen</td>
</tr>
<tr>
<td>newwin</td>
</tr>
<tr>
<td>nocbreak</td>
</tr>
<tr>
<td>nodelay</td>
</tr>
<tr>
<td>noraw</td>
</tr>
<tr>
<td>overlay</td>
</tr>
<tr>
<td>pair_content</td>
</tr>
<tr>
<td>pechowchar</td>
</tr>
<tr>
<td>prefresh</td>
</tr>
<tr>
<td>pnoutrefresh</td>
</tr>
<tr>
<td>putp</td>
</tr>
<tr>
<td>putwin</td>
</tr>
<tr>
<td>qiflush</td>
</tr>
<tr>
<td>raw</td>
</tr>
<tr>
<td>Function</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>redrawwin</td>
</tr>
<tr>
<td>request_mouse_pos</td>
</tr>
<tr>
<td>reset_shell_mode</td>
</tr>
<tr>
<td>restartterm</td>
</tr>
<tr>
<td>savetty</td>
</tr>
<tr>
<td>scr_dump</td>
</tr>
<tr>
<td>scr_restore</td>
</tr>
<tr>
<td>scrl</td>
</tr>
<tr>
<td>scrollok</td>
</tr>
<tr>
<td>setcurscreen</td>
</tr>
<tr>
<td>setsyx</td>
</tr>
<tr>
<td>setupterm</td>
</tr>
<tr>
<td>slk_attron</td>
</tr>
<tr>
<td>slk_clear</td>
</tr>
<tr>
<td>slk_label</td>
</tr>
<tr>
<td>slk_refresh</td>
</tr>
<tr>
<td>slk_set</td>
</tr>
<tr>
<td>slk_touch</td>
</tr>
<tr>
<td>standout</td>
</tr>
<tr>
<td>subpad</td>
</tr>
<tr>
<td>syncok</td>
</tr>
<tr>
<td>termname</td>
</tr>
<tr>
<td>tgetflag</td>
</tr>
<tr>
<td>tgetstr</td>
</tr>
<tr>
<td>tigetflag</td>
</tr>
<tr>
<td>tigetstr</td>
</tr>
<tr>
<td>touchline</td>
</tr>
<tr>
<td>tparm</td>
</tr>
<tr>
<td>traceoff</td>
</tr>
<tr>
<td>Function</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>typeahead</td>
</tr>
<tr>
<td>ungetch</td>
</tr>
<tr>
<td>untouchwin</td>
</tr>
<tr>
<td>vidputs</td>
</tr>
<tr>
<td>vwprintw</td>
</tr>
<tr>
<td>waddch</td>
</tr>
<tr>
<td>waddchstr</td>
</tr>
<tr>
<td>waddnwstr</td>
</tr>
<tr>
<td>waddwch</td>
</tr>
<tr>
<td>waddwchstr</td>
</tr>
<tr>
<td>wadjcurspos</td>
</tr>
<tr>
<td>wattron</td>
</tr>
<tr>
<td>wbkgd</td>
</tr>
<tr>
<td>wborder</td>
</tr>
<tr>
<td>wclrtobot</td>
</tr>
<tr>
<td>wctorsyncup</td>
</tr>
<tr>
<td>wdeleteeln</td>
</tr>
<tr>
<td>wechowchar</td>
</tr>
<tr>
<td>wgetch</td>
</tr>
<tr>
<td>wgetnwstr</td>
</tr>
<tr>
<td>wgetwch</td>
</tr>
<tr>
<td>whline</td>
</tr>
<tr>
<td>winchnstr</td>
</tr>
<tr>
<td>winnstr</td>
</tr>
<tr>
<td>winsch</td>
</tr>
<tr>
<td>winsertln</td>
</tr>
<tr>
<td>winswmstr</td>
</tr>
<tr>
<td>winstr</td>
</tr>
<tr>
<td>winswmstr</td>
</tr>
</tbody>
</table>
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also Intro(3), curses(3CURSES), libcurses(3XCURSES), attributes(5)
libdat – direct access transport library

Synopsis
cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

Description The libdat library provides an application with the User Direct Access Programming Library (uDAPL) 1.2 functions to access the underlying RDMA-able interconnects. Different uDAPL service providers listed in the DAT static registry `dat.conf(4)` can be registered during runtime with the DAT library. After an application opens an interface adapter belonging to a particular service provider, all function calls will be redirected to that service provider's library.

Interfaces The shared object `libdat.so.1` provides the public interfaces defined below for applications. See `Intro(3)` for additional information on shared object interfaces.

<table>
<thead>
<tr>
<th>uDAPL 1.1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dat_cno_create</code></td>
<td><code>dat_cno_free</code></td>
</tr>
<tr>
<td><code>dat_cno_modify_agent</code></td>
<td><code>dat_cno_query</code></td>
</tr>
<tr>
<td><code>dat_cno_wait</code></td>
<td><code>dat_cr_accept</code></td>
</tr>
<tr>
<td><code>dat_cr_handoff</code></td>
<td><code>dat_cr_query</code></td>
</tr>
<tr>
<td><code>dat_cr_reject</code></td>
<td><code>dat_ep_connect</code></td>
</tr>
<tr>
<td><code>dat_ep_create</code></td>
<td><code>dat_ep_disconnect</code></td>
</tr>
<tr>
<td><code>dat_ep_dup_connect</code></td>
<td><code>dat_ep_free</code></td>
</tr>
<tr>
<td><code>dat_ep_get_status</code></td>
<td><code>dat_ep_modify</code></td>
</tr>
<tr>
<td><code>dat_ep_post_rdma_read</code></td>
<td><code>dat_ep_post_rdma_write</code></td>
</tr>
<tr>
<td><code>dat_ep_post_recv</code></td>
<td><code>dat_ep_post_send</code></td>
</tr>
<tr>
<td><code>dat_ep_query</code></td>
<td><code>dat_ep_reset</code></td>
</tr>
<tr>
<td><code>dat_evd_clear_unwaitable</code></td>
<td><code>dat_evd_create</code></td>
</tr>
<tr>
<td><code>dat_evd_dequeue</code></td>
<td><code>dat_evd_disable</code></td>
</tr>
<tr>
<td><code>dat_evd_enable</code></td>
<td><code>dat_evd_free</code></td>
</tr>
<tr>
<td><code>dat_evd_modify_cno</code></td>
<td><code>dat_evd_post_se</code></td>
</tr>
<tr>
<td><code>dat_evd_query</code></td>
<td><code>dat_evd_resize</code></td>
</tr>
<tr>
<td><code>dat_evd_set_unwaitable</code></td>
<td><code>dat_evd_wait</code></td>
</tr>
<tr>
<td><code>dat_get_consumer_context</code></td>
<td><code>dat_get_handle_type</code></td>
</tr>
<tr>
<td><code>dat_ia_close</code></td>
<td><code>dat_ia_open</code></td>
</tr>
<tr>
<td><code>dat_ia_query</code></td>
<td><code>dat_lmr_create</code></td>
</tr>
</tbody>
</table>
libdat(3LIB)

dat_lmr_free dat_lmr_query

dat_provider_fini dat_provider_init

dat_psp_create dat_psp_create_any

dat_psp_free dat_psp_query

dat_pz_create dat_pz_free

dat_pz_query dat_registry_list_providers

dat_rmr_bind dat_rmr_create

dat_rmr_free dat_rmr_query

dat_rsp_create dat_rsp_free

dat_rsp_query dat_set_consumer_context

dat_strerror

dat_ep_create_with_srq dat_ep_recv_query

dat_ep_set_watermark dat_lmr_sync_rdma_read

dat_lmr_sync_rdma_write dat_srq_create

dat_srq_free dat_srq_post_recv

dat_srq_query dat_srq_resize

dat_srq_set_lw

uDAPL 1.2

dat_registry_add_provider dat_registry_remove_provider

Files

/usr/lib/libdat.so.1 shared object
/usr/lib/64/libdat.so.1 64-bit shared object

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/io/infiniband/udapl</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
</tbody>
</table>
libdat(3LIB)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
<tr>
<td>Standard</td>
<td>uDAPL 1.1, 1.2</td>
</tr>
</tbody>
</table>

See Also
`datadm(1M), Intro(3), dat.conf(4), attributes(5)`

Notes
The `libdat` library supports service providers written according to the uDAPL 1.2 specification. A service provider library has to be a dynamic loadable shared object with two public entry points exported:

```c
dat_provider_init  dat_provider_fini
```

In terms of installation, the service provider package should include a `service_provider.conf(4)` file. The `datadm(1M)` administrative configuration program should be used to add and remove service provider’s entries in the system-wide `dat.conf(4)`.
libdevid – device ID library

Synopsis cc [flag...] file... -ldevid [library...]
 #include <devid.h>

Description Functions in this library provide unique device IDs for identifying a device, independent of the device name or device number.

Interfaces The shared object /lib/libdevid.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

 devid_compare devid_deviceid_to_nmlist
 devid_free devid_free_nmlist
 devid_get devid_get_minor_name
 devid_sizeof devid_str_decode
 devid_str_encode devid_str_free
 devid_valid

Files /lib/libdevid.so.1 shared object.
 /lib/64/libdevid.so.1 64-bit shared object.

Attributes See attributes(5) for description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also pvs(1), Intro(3), attributes(5)
Description

Functions in this library access device configuration information.

Device configuration data is organized as a tree of device nodes, defined as `di_node_t` in the `libdevinfo` interfaces. Each `di_node_t` represents a physical or logical (pseudo) device. The types of data associated with device nodes are:

- data defined for all device nodes (attributes)
- data defined for all multipath path nodes
- data defined for all minor node data
- properties specific to nodes

All device nodes have a set of common attributes, such as a node name, an instance number, and a driver binding name. Common device node attributes are accessed by calling interfaces listed on the `di_binding_name(3DEVINFO)` manual page. Each device node also has a physical path, which is accessed by calling `di_devfs_path(3DEVINFO)`.

Properties provide device specific information for device configuration and usage. Properties can be defined by software (`di_prop_t`) or by firmware (`di_prom_prop_t`). One way to access each `di_prop_t` is to make successive calls to `di_prop_next(3DEVINFO)` until `DI_PROP_NIL` is returned. For each `di_prop_t`, use interfaces on the `di_prop_bytes(3DEVINFO)` manual page to obtain property names and values. Another way to access these properties is to call `di_prop_lookup_bytes(3DEVINFO)` to find the value of a property with a given name. Accessing a `di_prom_prop_t` is similar to accessing a `di_prop_t`, except that the interface names start with `di_prom_prop` and additional calls to `di_prom_init(3DEVINFO)` and `di_prom_fini(3DEVINFO)` are required.

Minor nodes contain information exported by the device for creating special files for the device. Each device node has 0 or more minor nodes associated with it. A list of minor nodes (`di_minor_t`) can be obtained by making successive calls to `di_minor_next(3DEVINFO)` until `DI_MINOR_NIL` is returned. For each minor node, `di_minor_dev(3DEVINFO)` and related interfaces are called to get minor node data.

In some configurations, multipath device access via a virtual host controller interface (vHCl) abstraction is possible. An example of a driver using this abstraction is `scsi_vhci(7D)`. In such cases, devices are not directly represented as children of their physical host controller interface (pHCI) bus adapter. Instead, devices have an identity-oriented representation as a child of a vHCl. All paths leading to the same identity are represented by a common child endpoint of the vHCl called the "client" device node. The vHCl virtualizes access among the underlying pHCI physical paths. The underlying connection between vHCl-managed client endpoints and the pHCI paths to that endpoint is represented by a class of nodes called "path" nodes (`di_path_t`).

Name
libdevinfo – device information library

Synopsis

```bash
cc [ flag... ] file... -ldevinfo [ library... ]  
#include <libdevinfo.h>
```

Description

Library Interfaces and Headers 141
Each path node is associated with two device nodes: its pHCI device node, and its client device node. A list of paths associated with a specific pHCI device node can be obtained using `di_path_phci_next_path(3DEVINFO)`, and a list of paths associated with a specific client device node can be obtained using `di_path_client_next_path(3DEVINFO)`. These functions return `DI_PATH_NIL` when the end of the list of path nodes is reached.

For each path node, `di_path_state(3DEVINFO)` and related interfaces are called to get path node data.

Using `libdevinfo` involves three steps:

- Creating a snapshot of the device tree
- Traversing the device tree to get information of interest
- Destroying the snapshot of the device tree

A snapshot of the device tree is created by calling `di_init(3DEVINFO)` and destroyed by calling `di_fini(3DEVINFO)`. An application can specify the data to be included in the snapshot (full or partial tree, include or exclude properties and minor nodes) and get a handle to the root of the device tree. See `di_init(3DEVINFO)` for details. The application then traverses the device tree in the snapshot to obtain device configuration data.

The device tree is normally traversed through parent-child-sibling linkage. Each device node contains references to its parent, its next sibling, and the first of its children. Given the `di_node_t` returned from `di_init()`, one can find all children by first calling `di_child_node(3DEVINFO)`, followed by successive calls to `di_sibling_node(3DEVINFO)` until `DI_NODE_NIL` is returned. By following this procedure recursively, an application can visit all device nodes contained in the snapshot. Two interfaces, `di_walk_node(3DEVINFO)` and `di_walk_minor(3DEVINFO)` functions are provided to facilitate device tree traversal. The `di_walk_node()` function visits all device nodes and executes a user-supplied callback function for each node visited. The `di_walk_minor()` function does the same for each minor node in the device tree.

An alternative way to traverse the device tree is through the per-driver device node linkage. Device nodes contain a reference to the next device node bound to the same driver. Given the `di_node_t` returned from `di_init()`, an application can find all device nodes bound to a driver by first calling `di_drv_first_node(3DEVINFO)`, followed by successive calls to `di_drv_next_node(3DEVINFO)` until `DI_NODE_NIL` is returned. Traversing the per-driver device node list works only when the snapshot includes all device nodes.

See `di_init(3DEVINFO)` for examples of `libdevinfo` usage. See *Writing Device Drivers* for information about Solaris device configuration.

Interfaces

The shared object `libdevinfo.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>di_binding_name</code></td>
<td>di_bus_addr</td>
</tr>
<tr>
<td><code>di_child_node</code></td>
<td>di_compatible_names</td>
</tr>
<tr>
<td><code>di_devfs_minor_path</code></td>
<td>di_devfs_path</td>
</tr>
<tr>
<td><code>di_devfs_path_free</code></td>
<td>di_devid</td>
</tr>
<tr>
<td><code>di_driver_major</code></td>
<td>di_driver_name</td>
</tr>
<tr>
<td><code>di_driver_ops</code></td>
<td>di_drv_first_node</td>
</tr>
<tr>
<td><code>di_drv_next_node</code></td>
<td>di_fini</td>
</tr>
<tr>
<td><code>di_init</code></td>
<td>di_instance</td>
</tr>
<tr>
<td><code>di_link_next_by_lnode</code></td>
<td>di_link_next_by_node</td>
</tr>
<tr>
<td><code>di_link_private_get</code></td>
<td>di_link_private_set</td>
</tr>
<tr>
<td><code>di_link_spectype</code></td>
<td>di_link_to_lnode</td>
</tr>
<tr>
<td><code>di_lnode_devinfo</code></td>
<td>di_lnode_devt</td>
</tr>
<tr>
<td><code>di_lnode_name</code></td>
<td>di_lnode_next</td>
</tr>
<tr>
<td><code>di_lnode_private_get</code></td>
<td>di_lnode_private_set</td>
</tr>
<tr>
<td><code>di_minor_devt</code></td>
<td>di_minor_name</td>
</tr>
<tr>
<td><code>di_minor_next</code></td>
<td>di_minor_nodetype</td>
</tr>
<tr>
<td><code>di_minor_private_get</code></td>
<td>di_minor_private_set</td>
</tr>
<tr>
<td><code>di_minor_spectype</code></td>
<td>di_minor_type</td>
</tr>
<tr>
<td><code>di_node_name</code></td>
<td>di_node_private_get</td>
</tr>
<tr>
<td><code>di_node_private_set</code></td>
<td>di_nodeid</td>
</tr>
<tr>
<td><code>di_parent_node</code></td>
<td>di_path_bus_addr</td>
</tr>
<tr>
<td><code>di_path_client_devfs_path</code></td>
<td>di_path_client_next_path</td>
</tr>
<tr>
<td><code>di_path_client_node</code></td>
<td>di_path_devfs_path</td>
</tr>
<tr>
<td><code>di_path_instance</code></td>
<td>di_path_node_name</td>
</tr>
<tr>
<td><code>di_path_phci_next_path</code></td>
<td>di_path_phci_node</td>
</tr>
<tr>
<td><code>di_path_prop_bytes</code></td>
<td>di_path_prop_int64s</td>
</tr>
<tr>
<td><code>di_path_prop_ints</code></td>
<td>di_path_prop_len</td>
</tr>
<tr>
<td><code>di_path_prop_lookup_bytes</code></td>
<td>di_path_prop_lookup_int64s</td>
</tr>
<tr>
<td><code>di_path_prop_lookup_ints</code></td>
<td>di_path_prop_lookup_strings</td>
</tr>
</tbody>
</table>
Examples

EXAMPLE 1. Information accessible through libdevinfo interfaces

The following example illustrates the kind of information accessible through `libdevinfo` interfaces for a device node representing a hard disk (sd2):

Attributes
- **node name:** sd
- **instance:** 2
- **physical path:** /sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@2,0

Properties
- **target=2**
- **lun=0**

Minor nodes
- (disk partition /dev/dsk/c0t2d0s0)
 - **name:** a
 - **dev_t:** 0x0080010 (32/16)
 - **spectype:** IF_BLK (block special)
- (disk partition /dev/rdsk/c0t2d0s2)
 - **name:** c,raw
 - **dev_t:** 0x0080012 (32/18)

EXAMPLE 1 Information accessible through libdevinfo interfaces (Continued)

spectype: IF_CHR (character special)

Files
/lib/libdevinfo.so.1 shared object
/usr/lib/64/libdevinfo.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also pvs(1), devlinks(1M), prtconf(1M), Intro(3), di_binding_name(3DEVINFO),
 di_child_node(3DEVINFO), di_devfs_path(3DEVINFO), di_init(3DEVINFO),
 di_minor_dev(3DEVINFO), di_minor_next(3DEVINFO),
 di_path_bus_addr(3DEVINFO), di_path_client_next_path(3DEVINFO),
 di_path_prop_bytes(3DEVINFO), di_path_prop_lookup_bytes(3DEVINFO),
 di_path_prop_next(3DEVINFO), di_prom_init(3DEVINFO),
 di_prop_bytes(3DEVINFO), di_prop_lookup_bytes(3DEVINFO),
 di_prop_next(3DEVINFO), di_walk_minor(3DEVINFO), di_walk_node(3DEVINFO),
 attributes(5)

Writing Device Drivers
libdl(3LIB)

Name libdl – dynamic linking library

Synopsis

```bash
c c [ flag... ] file... -ldl [ library... ]
```

This library is maintained to provide backward compatibility for both runtime and compilation environments. The shared object is implemented as a filter on the runtime linker. See `ld.so.1`. New application development need not specify `-ldl`.

Description

Historically, functions in `libdl` provided for dynamic linking support. This functionality now resides in `libc(3LIB)`. The shared object is implemented as a filter on the runtime linker. See `ld.so.1`. New application development need not specify `-ldl`.

Interfaces

The shared object `libdl.so.1` provides the following public interfaces. See `Intro(3)` for additional information on shared object interfaces.

- `dladdr`
- `dladdr1`
- `dlclose`
- `dldump`
- `dlerror`
- `dlinfo`
- `dlmopen`
- `dlopen`
- `dlsym`

Files

- `/lib/libdl.so.1` shared object
- `/lib/64/libdl.so.1` 64-bit shared object

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/linker</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also

`ld.so.1(1), pvs(1), Intro(3), libc(3LIB), attributes(5)`
Name
libdlpi – Data Link Provider Interface (DLPI) library

Synopsis
cc [flag...] file... -ldlpi [library...]
#include <libdlpi.h>

Description
The libdlpi library provides functions that support a programming interface for DLPI applications. The functions support only DLPI Version 2 devices in connectionless mode.

Interfaces
The shared object libdlpi.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

```c
  dlpi_arptype dlpi_bind
  dlpi_close dlpi_disabmulti
  dlpi_disabnotify dlpi_enabmulti
  dlpi_enabnotify dlpi_fd
  dlpi_get_physaddr dlpi_iftype
  dlpi_info dlpi_linkname
  dlpi_macdtype dlpi_open
  dlpi_promiscoff dlpi_promiscon
  dlpi_recv dlpi_send
  dlpi_set_physaddr dlpi_set_timeout
  dlpi_strerror dlpi_unbind
  dlpi_walk
```

Files
/lib/libdlpi.so.1 shared object

/lib/64/libdlpi.so.1 64-bit shared object

Attributes
See attributes(5) for description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also
Intro(3), attributes(5)
The `libdns_sd` library functions provide facilities for applications to advertise and discover services that use the DNS protocol.

The shared object `/lib/libdns_sd.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

Interfaces

- `DNSServiceBrowse`
- `DNSServiceCreateConnection`
- `DNSServiceProcessResult`
- `DNSServiceReconfirmRecord`
- `DNSServiceRefSockFD`
- `DNSServiceResolve`
- `TXTRecordCreate`
- `DNSServiceConstructFullName`
- `DNSServiceEnumerateDomains`
- `DNSServiceQueryRecord`
- `DNSServiceRefDeallocate`
- `DNSServiceRegister`

Files

- `/lib/libdns_sd.so.1` shared object
- `/lib/64/libdns_sd.so.1` 64-bit shared object

Attributes

See `attributes(5)` for description of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also

`Intro(3), attributes(5)`
Name libdoor – doors library

Synopsis cc [flag...] file... [library...]
 #include <door.h>

Description Historically, functions in this library provided programmatic access to doors, including the
 ability to create and call them. This functionality now resides in libc(3LIB).

Doors are a fast light-weight RPC mechanism for secure control transfer between processes
on the same machine. Conceptually, a thread in one process can issue a call using a door
descriptor that causes code to be executed in another process and then returns using the
traditional synchronous RPC model. Doors can also be used to pass data and file descriptors
between processes.

This library is maintained to provide backward compatibility for both runtime and
compilation environments. The shared object is implemented as a filter on libc.so.1. New
application development need not specify -ldoor.

Interfaces The shared object libdoor.so.1 provides the public interfaces defined below. See Intro(3)
 for additional information on shared object interfaces.

 door_bind door_call
 door_create door_cred
 door_info door_return
 door_revoke door_server_create
 door_ucred door_unbind

Files /lib/libdoor.so.1 shared object
 /lib/64/libdoor.so.1 64–bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), libc(3LIB), attributes(5)

Stevens, W. Richard. UNIX Network Programming, Volume 2: Interprocess Communications,
libdtrace - DTrace dynamic tracing software library

Description
Functions in this library define the interface for interacting with the DTrace dynamic tracing software, including the D language compiler and facilities for enabling probes and consuming trace data.

Interfaces
The interfaces provided by libdtrace.so.1 are currently private to the implementation of the Solaris system and DTrace subsystem and are subject to change at any time without notice. Applications using these interfaces might fail to run on future releases. Refer to the *Solaris Dynamic Tracing Guide* for a description of the public documented interfaces available for the DTrace facility.

Files
- `/usr/lib/libdtrace.so.1` shared object
- `/usr/lib/64/libdtrace.so.1` 64-bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td><code>system/dtrace</code></td>
</tr>
<tr>
<td>Interface Stability</td>
<td><code>Private</code></td>
</tr>
<tr>
<td>MT-Level</td>
<td><code>Unsafe</code></td>
</tr>
</tbody>
</table>

See Also
dtrace(1M), attributes(5), dtrace(7D)

Solaris Dynamic Tracing Guide
libefi – EFI partition table library

Synopsis cc [flag...] file... -lefi [library...]

Description The functions in this library manipulate a disk's EFI partition table.

Interfaces The shared object libefi.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

 efi_alloc_and_init efi_alloc_and_read
 efi_free efi_use_whole_disk
 efi_write

Files /lib/libefi.so.1 shared object
 /lib/64/libefi.so.1 64–bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also Intro(3), efi_alloc_and_init(3EXT), attributes(5)
Name
libelf – ELF access library

Synopsis
```
cc [ flag... ] file... -lelf [ library... ]
#include <libelf.h>
```

Description
Functions in this library provide routines to manipulate ELF (Executable and Linking Format) object files, archive files, and archive members. The header provides type and function declarations for all library services.

Interfaces
The shared object `libelf.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

```
elf32_checksum  elf32_fsize
elf32_getehdr   elf32_getphdr
elf32_getshdr   elf32_newehdr
elf32_newphdr   elf32_xlatetof
elf32_xlatetom  elf64_checksum
elf64_fsize     elf64_getehdr
elf64_getphdr   elf64_getshdr
elf64_newehdr   elf64_newphdr
elf64_xlatetof  elf64_xlatetom
elf_begin       elf_cntl
elf_end         elf_errmsg
elf_errno       elf_fill
elf_flagdata    elf_flagehdr
elf_flagelf     elf_flagphdr
elf_flagscn     elf_flagshdr
elf_getarhdr    elf_getarsym
elf_getbase     elf_getdata
elf_getident    elf_getphdrnum
elf_getphnum    elf_getscn
elf_getshdrnum  elf_getshdrstrndx
elf_getshnum    elf_getshstrndx
elf_hash        elf_kind
```
elf_memory elf_ndxscn
elf_newdata elf_newscn
elf_next elf_nextscn
elf_rand elf_rawdata
elf_rawfile elf_strptr
elf_update elf_version
gelf_checksum gelf_fsize
gelf_getcap gelf_getclass
gelf_getdyn gelf_getehdr
gelf_getmove gelf_getphdr
gelf_getrel gelf_getrela
gelf_getshdr gelf_getsym
gelf_getsyminfo gelf_getsymshndx
gelf_newehdr gelf_newphdr
gelf_update_cap gelf_update_dyn
gelf_update_ehdr gelf_update_move
gelf_update_phdr gelf_update_rel
gelf_update_rela gelf_update_shdr
gelf_update_sym gelf_update_symshndx
gelf_update_syminfo gelf_xlatetof
gelf_xlatetom nlist

Files
/lib/libelf.so.1 shared object
/lib/64/libelf.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/linker</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>
See Also pvs(1), Intro(3), elf(3ELF), gelf(3ELF), attributes(5)
libexacct – extended accounting file access library

Synopsis

cc [flag...] file... -lexacct [library...]
#include <exacct.h>

#include <exacct.h>

Functionsinthislibrarydefinetheinterfaceforreadingandwritingextended accounting (exacct) files. The <exacct.h> header provides type and function declarations for all library services, as well as for the characteristics of accounting files generated by the Solaris kernel.

Description

The shared object libexacct.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

ea_alloc ea_attach_to_group
ea_attach_to_object ea_close
ea_copy_object ea_copy_object_tree
ea_error ea_free
ea_free_item ea_free_object
ea_get_creator ea_get_hostname
ea_get_object ea_get_object_tree
ea_match_object_catalog ea_next_object
ea_open ea_pack_object
ea_previous_object ea_set_group
ea_set_item ea_strdup
ea_strfree ea_unpack_object
ea_write_object

Files

/usr/lib/libexacct.so.1 shared object
/usr/lib/64/libexacct.so.1 64-bit shared object

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>
See Also acctadm(1M), Intro(3), ea_error(3EXACCT), ea_open(3EXACCT), ea_pack_object(3EXACCT), ea_set_item(3EXACCT), attributes(5)

Notes The source/demo/system package provides source code for the exdump utility that uses the libexacct APIs to dump the contents of extended accounting files. The source code can be compiled in the directory /usr/demo/libexacct.
libfcoe – FCoE Port Management library

Synopsis

```c
cc [ flag... ] file... libfcoe [ library... ]
#include <libfcoe.h>
```

Description

Functions in this library provide management of the FCoE (Fibre Channel over Ethernet) ports in the system, allowing clients to create, delete and list information of FCoE ports.

Interfaces

The shared object `libfcoe.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

`FCOE_CreatePort`
`FCOE_DeletePort`
`FCOE_GetPortList`

Files

- `/lib/libfcoe.so.1`
 shared object
- `/lib/64/libfcoe.so.1`
 64-bit shared object

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library/storage/libfcoe</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also

`Intro(3), FCOE_CreatePort(3FCOE), FCOE_DeletePort(3FCOE), FCOE_GetPortList(3FCOE), attributes(5)"
libfmevent – fault management events library

Synopsis

```
cc [ flag... ] file... -L/usr/lib/fm -lfmevent -lnvpair [ library... ]
#include <fm/libfmevent.h>
#include <libnvpair.h>
```

Description

This library allows a process to subscribe to a subset of fault management protocol events published by the fault management daemon.

Interfaces

The shared object `libfmevent.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

- `fmev_attr_list`
- `fmev_class`
- `fmev_dup`
- `fmev_errno`
- `fmev_ev2shdl`
- `fmev_hrtme`
- `fmev_localtime`
- `fmev_rele`
- `fmev_shdl_alloc`
- `fmev_shdl_fini`
- `fmev_shdl_free`
- `fmev_shdl_getauthority`
- `fmev_shdl_init`
- `fmev_shdl_nvl2str`
- `fmev_shdl_strdup`
- `fmev_shdl_strfree`
- `fmev_shdl_subscribe`
- `fmev_shdl_unsubscribe`
- `fmev_shdl_zalloc`
- `fmev_shdlcttl_serialize`
- `fmev_shdlcttl_sigmask`
- `fmev_shdlcttl_thattr`
- `fmev_shdlcttl_thrcreate`
- `fmev_shdlcttl_thrssetup`
- `fmev_strerror`
- `fmev_time_nsec`
- `fmev_time_nsec`
- `fmev_timespec`

Files

- `usr/lib/fm/libfmevent.so.1` shared object
- `usr/lib/fm/64/libfmevent.so.1` 64-bit shared object

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>all</td>
</tr>
<tr>
<td>Availability</td>
<td>system/fault-management</td>
</tr>
</tbody>
</table>
libfmevent(3LIB)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), fmev_shdl_init(3FM), libnvpair(3LIB), attributes(5)
Name libform – forms library

Synopsis cc [flag...] file... -lform [library...]

Description Functions in this library provide forms using libcurses(3LIB) routines.

Interfaces The shared object libform.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

- current_field
- data_ahead
- data_behind
- dup_field
- dynamic_field_info
- field_arg
- field_back
- field_buffer
- field_count
- field_fore
- field_index
- field_info
- field_init
- field_just
- field_opts
- field_opts_off
- field_opts_on
- field_pad
- field_status
- field_term
- field_type
- field_userptr
- form_driver
- form_fields
- form_init
- form_opts
- form_opts_off
- form_opts_on
- form_page
- form_sub
- form_term
- form_userptr
- form_win
- free_field
- free_form
- free_fieldtype
- link_field
- link_fieldtype
- move_field
- new_field
- new_fieldtype
- new_form
- new_page
- pos_form_cursor
- set_current_field
- set_field_back
LIBFORM(3LIB)

set_field_buffer set_field_fore
set_field_init set_field_just
set_field_opts set_field_pad
set_field_status set_field_term
set_field_type set_field_userptr
set_fieldtype_arg set_fieldtype_choice
set_form_fields set_form_init
set_form_opts set_form_page
set_form_sub set_form_term
set_form_userptr set_form_win
set_max_field set_new_page
unpost_form

Files
/usr/lib/libform.so.1 shared object
/usr/lib64/libform.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also Intro(3), libcurses(3LIB), attributes(5)
Name libfstyp – file system type identification library

Synopsis cc [flag...] file... -lfstyp -lnvpair [library...]
#include <libnvpair.h>
#include <libfstyp.h>

Description The libfstyp library exports a set of functions to identify the file system type of an
unmounted file system using heuristic modules.

Internally, the library is comprised of interfaces exported by file system-specific modules. See
fstyp_mod_init(3FSTYP).

Interfaces The shared object libfstyp.so.1 provides the public interfaces defined below. See Intro(3)
for additional information on shared object interfaces.

fstyp_fini fstyp_get_attr
fstyp_ident fstyp_init
fstyp_mod_dump fstyp_mod_fini
fstyp_mod_get_attr fstyp_mod_ident
fstyp_mod_init fstyp_strerror

Files /lib/libfstyp.so.1 shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library(32–bit)</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), fstyp_mod_init(3FSTYP), libnvpair(3LIB), attributes(5)
Name
libgen – string pattern-matching library

Synopsis
cc [flag...] file... -lgen [library...]

Description
Functions in this library provide routines for string pattern-matching and pathname manipulation.

Interfaces
The shared object `libgen.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

___braelist ___braslist ___loc1
___loc2 ___locs ___nbra
___regerrno ___reglength advance
bgets braelist braslist
bufsplit compile copylist
eaccess gmatch isencrypt
loc1 loc2 locs
mkdirp nbra p2close
p2open pathfind regerrno
reglength rmdirp step
strcadd strccpy streadd
strecpy strfind strrspn
strtrns

The following interface is unique to the 32-bit version of this library:

`copylist64`

Files
`/lib/libgen.so.1` shared object

`/lib/64/libgen.so.1` 64-bit shared object

Attributes
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>
See Also Intro(3), attributes(5)
Name libgen.h, libgen – definitions for pattern matching functions

Synopsis #include <libgen.h>

Description The <libgen.h> header lists definitions used for string pattern-matching and pathname manipulation. See libgen(3LIB).

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also basename(3C), dirname(3C), libgen(3LIB), attributes(5), standards(5)
Name libgss – Generic Security Services library

Synopsis cc [flag...] file... -lgss [library...]
#include <gssapi/gssapi.h>

Description The functions in this library are the routines that comprise the Generic Security Services library.
When libgss fails to load or initialize a mechanism listed in /etc/gss/mech, a message is sent to syslog(3C).

Interfaces The shared object libgss.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

GSS_C_NT_ANONYMOUS GSS_C_NT_EXPORT_NAME
GSS_C_NT_HOSTBASED_SERVICE GSS_C_NT_MACHINE_UID_NAME
GSS_C_NT_STRING_UID_NAME GSS_C_NT_USER_NAME

- gss_accept_sec_context gss_acquire_cred
- gss_add_cred
- gss_canonicalize_name gss_compare_name
- gss_context_time gss_create_empty_oid_set
- gss_delete_sec_context gss_display_name
- gss_display_status gss_duplicate_name
- gss_export_name gss_export_sec_context
- gss_get_mic gss_import_name
- gss_import_sec_context gss_indicate_mechs
- gss_init_sec_context gss_inquire_context
- gss_inquire_creds
- gss_inquire_mechs_for_name gss_inquire_names_for_mech
- gss_process_context_token gss_release_buffer
- gss_release_creds gss_release_name
- gss_release_oid gss_release_oid_set
- gss_seal gss_sign
- gss_store_cred gss_test_oid_set_member
- gss_unseal gss_unwrap
gss_verify gss_verify_mic
gss_wrap gss_wrap_size_limit

There are also the following extensions to the official GSS-API, defined in <gssapi/gssapi_ext.h>.

 gss_add_buffer_set_member gss_create_empty_buffer_set
 gss_inquire_sec_context_by_oid gss_release_buffer_set

Files

/usr/lib/libgss.so.1 shared object
/usr/lib/64/libgss.so.1 64-bit shared object file

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library/security/gss</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also pvs(1), Intro(2), Intro(3), syslog(3C), attributes(5)

Developer's Guide to Oracle Solaris 11 Security
The functions in this library access Fibre Channel HBA data.

Fibre Channel HBA information is provided through a standard interface in a vendor independent manner. This common interface provides access to the following information:

- Local HBA attributes
- Local HBA port attributes and statistics
- Mapping between FCP-2 discovered devices and operating system SCSI information
- Discovered devices port attributes
- SCSI commands for discovered FCP-2 devices (Report LUNS, Read Capacity, and Inquiry)
- Common Transport commands to discover Fabric details

The shared object `libhbaapi.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBA_CloseAdapter</td>
<td></td>
</tr>
<tr>
<td>HBA_GetAdapterAttributes</td>
<td></td>
</tr>
<tr>
<td>HBA_GetAdapterPortAttributes</td>
<td></td>
</tr>
<tr>
<td>HBA_GetBindingSupport</td>
<td></td>
</tr>
<tr>
<td>HBA_GetEventBuffer</td>
<td></td>
</tr>
<tr>
<td>HBA_GetFCPStatistics</td>
<td></td>
</tr>
<tr>
<td>HBA_GetFcpTargetMapping</td>
<td></td>
</tr>
<tr>
<td>HBA_GetNumberOfAdapters</td>
<td></td>
</tr>
<tr>
<td>HBA_GetPortAttributesByWWN</td>
<td></td>
</tr>
<tr>
<td>HBA_GetRNDIMgmtInfo</td>
<td></td>
</tr>
<tr>
<td>HBA_GetVersion</td>
<td></td>
</tr>
<tr>
<td>HBA_LoadLibrary</td>
<td></td>
</tr>
<tr>
<td>HBA_OpenAdapterByWWN</td>
<td></td>
</tr>
<tr>
<td>HBA_RefreshInformation</td>
<td></td>
</tr>
<tr>
<td>HBA_RegisterForAdapterEvents</td>
<td></td>
</tr>
<tr>
<td>HBA_RegisterForAdapterPortEvents</td>
<td></td>
</tr>
<tr>
<td>HBA_RegisterForAdapterPortStatEvents</td>
<td></td>
</tr>
<tr>
<td>HBA_FreeLibrary</td>
<td></td>
</tr>
<tr>
<td>HBA_GetAdapterName</td>
<td></td>
</tr>
<tr>
<td>HBA_GetBindingCapability</td>
<td></td>
</tr>
<tr>
<td>HBA_GetDiscoveredPortAttributes</td>
<td></td>
</tr>
<tr>
<td>HBA_GetFC4Statistics</td>
<td></td>
</tr>
<tr>
<td>HBA_GetFcpTargetMappingV2</td>
<td></td>
</tr>
<tr>
<td>HBA_GetPersistentBindingV2</td>
<td></td>
</tr>
<tr>
<td>HBA_GetPersistentBinding</td>
<td></td>
</tr>
<tr>
<td>HBA_GetPortStatistics</td>
<td></td>
</tr>
<tr>
<td>HBA_GetVendorLibraryAttributes</td>
<td></td>
</tr>
<tr>
<td>HBA_GetWrapperLibraryAttributes</td>
<td></td>
</tr>
<tr>
<td>HBA_OpenAdapter</td>
<td></td>
</tr>
<tr>
<td>HBA_RefreshAdapterConfiguration</td>
<td></td>
</tr>
<tr>
<td>HBA_RegisterForAdapterAddEvents</td>
<td></td>
</tr>
<tr>
<td>HBA_RegisterForAdapterPortEvents</td>
<td></td>
</tr>
<tr>
<td>HBA_RegisterForAdapterPortStatEvents</td>
<td></td>
</tr>
</tbody>
</table>
HBA_RegisterForTargetEvents HBA_RemoveAllPersistentBindings
HBA_RemoveCallback HBA_RemovePersistentBinding
HBA_ResetStatistics HBA_ScsiInquiryV2
HBA_ScsiReadCapacityV2 HBA_ScsiReportLUNsV2
HBA_SendCTPassThru HBA_SendCTPassThruV2
HBA_SendLIRR HBA_SendRLS
HBA_SendRNID HBA_SendRNIDV2
HBA_SendRPL HBA_SendRPS
HBA_SendReadCapacity HBA_SendReportLUNs
HBA_SendSRL HBA_SendScsiInquiry
HBA_SetBindingSupport HBA_SetPersistentBindingV2
HBA_SetRNIDMgmtInfo

Usage
Client applications link with the Common Library (using -lHBAAPI) to access the interfaces. The Common Library dynamically loads individual Vendor-Specific Libraries (VSL) listed in /etc/hba.conf described on the hba.conf(4).

Using the libhbaapi involves the following steps:
1. Optionally determining the version of the library by calling HBA_GetVersion(3HBAAPI).
2. Initializing the Common Library by calling HBA_LoadLibrary(3HBAAPI).
3. Determine the number of HBAs known to the common library by calling HBA_GetNumberOfAdapters(3HBAAPI).
4. Determine each HBA name in turn by calling HBA_GetAdapterName(3HBAAPI).
5. Open each HBA in turn by calling HBA_OpenAdapter(3HBAAPI).
6. Operate on a given HBA by calling the following:
 - HBA_GetAdapterAttributes(3HBAAPI)
 - HBA_GetAdapterPortAttributes(3HBAAPI)
 - HBA_GetDiscoveredPortAttributes(3HBAAPI)
 - HBA_GetPortAttributesByWWN(3HBAAPI)
 - HBA_SendCTPassThru(3HBAAPI)
 - HBA_SendCTPassThruV2(3HBAAPI)
 - HBA_GetEventBuffer(3HBAAPI)
 - HBA_SetRNIDMgmtInfo(3HBAAPI)
 - HBA_GetRNIDMgmtInfo(3HBAAPI)
 - HBA_SendRNID(3HBAAPI)
 - HBA_SendRNIDV2(3HBAAPI)
 - HBA_RefreshInformation(3HBAAPI)
Errors are generally returned from the underlying VSL and can include any of the following values:

- **HBA_STATUS_OK**: Request completed successfully. (No Error)
- **HBA_STATUS_ERROR**: Non-specific error encountered.
- **HBA_STATUS_ERROR_NOT_SUPPORTED**: The VSL does not support this interface.
- **HBA_STATUS_ERROR_INVALID_HANDLE**: The `handle` argument does not refer to an open HBA handle.
- **HBA_STATUS_ERROR_ARG**: An argument in the request was invalid.
- **HBA_STATUS_ERROR_ILLEGAL_WWN**: A WWN in the request was not recognized.
- **HBA_STATUS_ERROR_ILLEGAL_INDEX**: An index in the request was not recognized.
- **HBA_STATUS_ERROR_MORE_DATA**: A larger buffer is required to complete the requested operation.
- **HBA_STATUS_ERROR_STALE_DATA**: The state of the HBA has changed, possibly due to Dynamic Reconfiguration or devices being added or removed. The caller should call `HBA_RefreshInformation(3HBAAPI)` and reissue any discovery logic to reset all indexes related to this HBA.
- **HBA_STATUS_SCSI_CHECK_CONDITION**: A SCSI check-condition was encountered during the I/O operation. Not all VSLs report this error value. Some might return `HBA_STATUS_ERROR` when a check-condition is encountered, or `HBA_STATUS_OK`.

7. Close open HBAs by calling `HBA_CloseAdapter(3HBAAPI)`.
8. Unload the library by calling `HBA_FreeLibrary(3HBAAPI)`.
HBA_STATUS_ERROR_BUSY The requested device is busy. A retry might be effective.

HBA_STATUS_ERROR_TRY_AGAIN The requested I/O timed out. A retry might be effective.

HBA_STATUS_ERROR_UNAVAILABLE The requested HBA has been removed or deactivated.

All other error values are reserved.

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library/storage/snia-hbaapi</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Standard: FC-HBA Version 4 (API version 2)</td>
</tr>
<tr>
<td>Standard</td>
<td>FC-MI 1.92 (API version 1)</td>
</tr>
</tbody>
</table>

See Also HBA_GetAdapterAttributes(3HBAAPI), HBA_GetAdapterName(3HBAAPI),
HBA_GetAdapterPortAttributes(3HBAAPI), HBA_GetBindingCapability(3HBAAPI),
HBA_GetDiscoveredPortAttributes(3HBAAPI), HBA_GetEventBuffer(3HBAAPI),
HBA_GetFcpPersistentBinding(3HBAAPI), HBA_GetFcpTargetException(3HBAAPI),
HBA_GetNumberOfAdapters(3HBAAPI), HBA_GetPortAttributesByWWN(3HBAAPI),
HBA_GetPortStatistics(3HBAAPI), HBA_GetVersion(3HBAAPI),
HBA_GetWrapperLibraryAttributes(3HBAAPI), HBA_LoadLibrary(3HBAAPI),
HBA_OpenAdapter(3HBAAPI), HBA_RefreshInformation(3HBAAPI),
HBA_RegisterForAdapterEvents(3HBAAPI), HBA_SendCTPassThru(3HBAAPI),
HBA_SendRLS(3HBAAPI), HBA_SendScsiInquiry(3HBAAPI),
HBA_SetRNIDMgmtInfo(3HBAAPI), hba.conf(4), attributes(5)

T11 FC-MI Specification
Name
libicudata – ICU data library

Synopsis
`cc [flag...] file... -licudata [library...]`

Description
Functions in this library provide data used by the ICU libraries through C++ and C API.

The library is compiled with Sun Studio 12 version of C++ compiler. To use the C++ API and data from the library, users of the library must also use the same version or compatible version of Sun C++ 5.1 or later compilers to compile their program sources. There is no such restrictions on the C API in terms of compatible compilers in general.

Interfaces
Refer to the following online document for the needed header files and interfaces available with the shared object library:

ICU 4.0 API Reference Usage (http://www.icu-project.org/apiref/icu4c/)

Files
/usr/lib/libicudata.so shared object
/usr/lib/64/libicudata.so 64-bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>library/icu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Volatile</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also
Intro(3), libicui18n(3LIB), libicuo(3LIB), libicule(3LIB), libiculx(3LIB), libicutu(3LIB), libicuc(3LIB), attributes(5), environ(5)

ICU 4.0 API Reference Usage (http://www.icu-project.org/apiref/icu4c/)

libicui18n – ICU i18n library

Synopsis

`cc [flag...] file... -licui18n [library...]`

Description

This library provides i18n functions through C++ and C API.

The library is compiled with Sun Studio 12 version of C++ compiler. To use the C++ API and data from the library, users of the library must also use the same version or compatible version of Sun C++ 5.1 or later compilers to compile their program sources. There is no such restrictions on the C API in terms of compatible compilers in general.

Interfaces

Refer to the following online document for the needed header files and interfaces available with the shared object library:

ICU 4.0 API Reference Usage (http://www.icu-project.org/apiref/icu4c/)

Files

- `/usr/lib/libicui18n.so`
 shared object
- `/usr/lib/64/libicui18n.so`
 64-bit shared object

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>library/icu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Volatile</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also

Intro(3), libicudata(3LIB), libicuio(3LIB), libicule(3LIB), libiculx(3LIB), libicutu(3LIB), libicuuc(3LIB), attributes(5), environ(5)

ICU 4.0 API Reference Usage (http://www.icu-project.org/apiref/icu4c/)

Library Interfaces and Headers 173
Name
libicuio – ICU input/output library

Synopsis
```c
cc [ flag... ] file... -licuio [ library... ]
```

Description
Functions in this library provide reading and writing text through C++ and C API.

The library is compiled with Sun Studio 12 version of C++ compiler. To use the C++ API and data from the library, users of the library must also use the same version or compatible version of Sun C++ 5.1 or later compilers to compile their program sources. There is no such restrictions on the C API in terms of compatible compilers in general.

Interfaces
Refer to the following online document for the needed header files and interfaces available with the shared object library:

[ICU 4.0 API Reference Usage](http://www.icu-project.org/apiref/icu4c/)

Files
```text
/usr/lib/libicuio.so  shared object
/usr/lib/64/libicuio.so  64-bit shared object
```

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>library/icu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Volatile</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also
Intro(3), libicudata(3LIB), libicui18n(3LIB), libicule(3LIB), libiculx(3LIB), libicutu(3LIB), libicuuc(3LIB), attributes(5), environ(5)

[ICU 4.0 API Reference Usage](http://www.icu-project.org/apiref/icu4c/)

[ICU User Guide](http://userguide.icu-project.org/)
Name libicule – ICU layout engine library

Synopsis `cc [flag...] file... -licule [library...]`

Description Functions in this library provide layout engine through C++ and C API.

The library is compiled with Sun Studio 12 version of C++ compiler. To use the C++ API and data from the library, users of the library must also use the same version or compatible version of Sun C++ 5.1 or later compilers to compile their program sources. There is no such restrictions on the C API in terms of compatible compilers in general.

Interfaces Refer to the following online document for the needed header files and interfaces available with the shared object library:

ICU 4.0 API Reference Usage(http://www.icu-project.org/apiref/icu4c/)

Files
- `/usr/lib/libicule.so`
- `/usr/lib/64/libicule.so`

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>library/icu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Volatile</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also
Intro(3), libicudata(3LIB), libicui18n(3LIB), libicuio(3LIB), libiculx(3LIB), libicutu(3LIB), libicuuc(3LIB), attributes(5), environ(5)

ICU 4.0 API Reference Usage(http://www.icu-project.org/apiref/icu4c/)

ICU User Guide(http://userguide.icu-project.org/)
libiculx(3LIB)

Name libiculx – ICU layout extension library

Synopsis cc [flag...] file... -liculx [library...]

Description Functions in this library provide layout extension through C++ and C API.

The library is compiled with Sun Studio 12 version of C++ compiler. To use the C++ API and
data from the library, users of the library must also use the same version or compatible version
of Sun C++ 5.1 or later compilers to compile their program sources. There is no such
restrictions on the C API in terms of compatible compilers in general.

Interfaces Refer to the following online document for the needed header files and interfaces available
with the shared object library:

ICU 4.0 API Reference Usage(http://www.icu-project.org/apiref/icu4c/)

Files /usr/lib/libiculx.so shared object
 /usr/lib/64/libiculx.so 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>library/icu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Volatile</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), libicudata(3LIB), libicui18n(3LIB), libicuio(3LIB), libicule(3LIB),
libicutu(3LIB), libicuuc(3LIB), attributes(5), environ(5)

ICU 4.0 API Reference Usage(http://www.icu-project.org/apiref/icu4c/)

ICU User Guide(http://userguide.icu-project.org/)
libicutu – ICU tool utilities library

Synopsis
cc [flag...] file... -licutu [library...]

Description
Functions in this library provide tool utilities through C++ and C API.

The library is compiled with Sun Studio 12 version of C++ compiler. To use the C++ API and
data from the library, users of the library must also use the same version or compatible version
of Sun C++ 5.1 or later compilers to compile their program sources. There is no such
restrictions on the C API in terms of compatible compilers in general.

Interfaces
Refer to the following online document for the needed header files and interfaces available
with the shared object library:

ICU 4.0 API Reference Usage(http://www.icu-project.org/apiref/icu4c/)

Files
/usr/lib/libicutu.so shared object
/usr/lib/64/libicutu.so 64-bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>library/icu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Volatile</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also
Intro(3), libicudata(3LIB), libicui8n(3LIB), libicui16(3LIB), libicuio(3LIB),
libicule(3LIB), libiculx(3LIB), libicuc(3LIB), attributes(5), environ(5)

ICU 4.0 API Reference Usage(http://www.icu-project.org/apiref/icu4c/)

ICU User Guide(http://userguide.icu-project.org/)
libicuuc -- ICU common library

Synopsis

```
cc [ flag... ] file... -licuuc [ library... ]
```

Description

This library provides ICU common functions through C++ and C API.

The library is compiled with Sun Studio 12 version of C++ compiler. To use the C++ API and data from the library, users of the library must also use the same version or compatible version of Sun C++ 5.1 or later compilers to compile their program sources. There is no such restrictions on the C API in terms of compatible compilers in general.

Interfaces

Refer to the following online document for the needed header files and interfaces available with the shared object library:

[ICU 4.0 API Reference Usage](http://www.icu-project.org/apiref/icu4c/)

Files

```
/usr/lib/libicuuc.so   shared object
/usr/lib/64/libicuuc.so 64-bit shared object
```

Attributes

See [attributes(5)] for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>library/icu</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Volatile</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also

Intro(3), libicudata(3LIB), libicui18n(3LIB), libicuio(3LIB), libicule(3LIB), libiculx(3LIB), libicutu(3LIB), attributes(5), environ(5)

[ICU 4.0 API Reference Usage](http://www.icu-project.org/apiref/icu4c/)

[ICU User Guide](http://userguide.icu-project.org/)
Name libilb – integrated load balancing library

Synopsis cc [flag...] file... -llilb [library...]
#include <libilb.h>

Description Functions in this library provide the following capabilities:
■ create and destroy ILB rules
■ enable and disable rules
■ add and remove back-end server for a given rule
■ enable and disable servers
■ retrieve the list of rules currently known to the kernel
■ provide a walker function that can call a function supplied to the library by means of a
 pointer for every rule, server group, and health check.

Interfaces The shared object libilb.so.1 provides the public interfaces defined below. See Intro(3) for
additional information on shared object interfaces.

 ilb_add_server_to_group ilb_address_to_srvID
 ilb_close ilb_create_hc
 ilb_create_rule ilb_create_servergroup
 ilb_destroy_hc ilb_destroy_rule
 ilb_destroy_servergroup ilb_disable_rule
 ilb_disable_server ilb_enable_rule
 ilb_enable_server ilb_errstr
 ilb_get_hc_info ilb_open
 ilb_rem_server_from_group ilb_reset_config
 ilb_show_nat ilb_show_persist
 ilb_srvID_to_address ilb_walk_hc
 ilb_walk_hc_srvs ilb_walk_rules
 ilb_walk_servergroups ilb_walk_servers

Files /lib/libilb.so.1 shared object
 /lib/sparcv9/libilb.so.1 SPARC shared object
 /lib/amd64/libilb.so.1 x86 64–bit shared object
Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTETYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>service/network/load-balancer/ilb</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), attributes(5)
libintl – internationalization library

Synopsis

cc [-flag...] file... -lintl [library...]

```
#include <libintl.h>
#include <locale.h> /* needed for dcgettext() only */
```

Description

Historically, functions in this library provided wide character translations. This functionality now resides in libc(3LIB).

This library is maintained to provide backward compatibility for both runtime and compilation environments. The shared object is implemented as a filter on libc.so.1. New application development need not specify -lintl.

Interfaces

The shared object libintl.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

```
bindtextdomain          dcgettext
dgettext                gettext
gettextdomain
```

Files

```
/lib/libintl.so.1       a filter on /lib/libc.so.1
/lib/64/libintl.so.1    a filter on /lib/64/libc.so.1
```

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe with exceptions</td>
</tr>
</tbody>
</table>

See Also

pvs(1), Intro(3), gettext(3C), libc(3LIB), attributes(5)
The `<libintl.h>` header provides the following macro:

GNU_GETTEXT_SUPPORTED_REVISION(major)

This macro returns the maximum minor revision number supported for the specified major revision of the GNU MO file format.

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Uncommitted</td>
</tr>
</tbody>
</table>

See Also gettext(3C), attributes(5)
Name
libiscsit – iSCSI Management library

Synopsis
cc [flag...] file... -liscsit [library...]
#include <libiscsit.h>

Description
Functions in this library provide management services for COMSTAR iSCSI target ports.

Interfaces
The shared object `libiscsit.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

- `it_config_commit`
- `it_config_free`
- `it_config_load`
- `it_config_setprop`
- `it_ini_create`
- `it_ini_delete`
- `it_ini_free`
- `it_ini_setprop`
- `it_portal_create`
- `it_portal_delete`
- `it_tgt_create`
- `it_tgt_delete`
- `it_tgt_free`
- `it_tgt_setprop`
- `it_tpg_create`
- `it_tpg_delete`
- `it_tpg_free`
- `it_tpg_setprop`
- `it_tpgt_create`
- `it_tpgt_delete`
- `it_tpgt_free`

Files
/lib/libiscsit.so.1
/lib/64/libiscsit.so.1

Attributes
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/storage/iscsi/iscsi-target</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also
`Intro(3), it_config_load(3ISCSIT), it_ini_create(3ISCSIT), it_portal_create(3ISCSIT), it_tgt_create(3ISCSIT), it_tpg_create(3ISCSIT), attributes(5)`
Synopsis

cc [flag...] file... -lkmf [library...]
#include <kmfapi.h>

These functions comprise the Key Management Framework (KMF) library. They are intended to be used by applications that need to perform operations involving the creation and management of public key objects such as public/private key pairs, certificates, certificate signing requests, certificate validation, certificate revocation lists, and OCSP response processing.

Certificate to name mapping

KMF provides a means to map a certificate to a name according to the configuration from the policy database or through the mapping initialization function. The functions that provide the mapping functionality are kmf_cert_to_name_mapping_initialize(), kmf_cert_to_name_mapping_finalize(), kmf_map_cert_to_name(), kmf_match_cert_to_name(), and kmf_get_mapper_error_str(). KMF provides different types of mapping through shared objects called mappers. Supported mappers are:

- **cn**
 The CN mapper maps a certificate to its value from the Common Name attribute. All other certificate attributes are ignored. The mapper should be used in domains where the Common Name values are unique within the particular domain.

 The mapper accepts only one option, the "case-sensitive" option which defaults to false. If set, the kmf_match_cert_to_name() function will honor the case sensitivity when comparing the mapped name with the name provided. The option has no effect on the kmf_map_cert_to_name() function.

Interfaces

The shared object libkmf.so.1 provides the public interfaces defined below. See *Intro(3)* for additional information on shared object interfaces.
kmf_delete_policy_from_db kmf_der_to_pem
kmf_dn_parser kmf_download_cert
kmf_download_crl kmf_ekuname_to_oid
kmf_encode_cert_record kmf_encrypt
kmf_export_pk12 kmf_finalize
kmf_find_attr kmf_find_cert
kmf_find_cert_in_crl kmf_find_crl
kmf_find_key kmf_find_prikey_by_cert
kmf_free_algoid kmf_free_bigint
kmf_free_crl_dist_pts kmf_free_data
kmf_free_dn kmf_free_eku
kmf_free_eku_policy kmf_free_extn
kmf_free_kmf_cert kmf_free_kmf_key
kmf_free_policy_record kmf_free_raw_key
kmf_free_raw_sym_key kmf_free_signed_cert
kmf_free_signed_csr kmf_free_spki
kmf_free_str kmf_free_tbs_cert
kmf_free_tbs_csr kmf_get_attr
kmf_get_attr_ptr kmf_get_cert_auth_info_access
kmf_get_cert_basic_constraint kmf_get_cert_crl_dist_pts
kmf_get_cert_eku kmf_get_cert_email_str
kmf_get_cert_end_date_str kmf_get_cert_extn
kmf_get_cert_extn_str kmf_get_cert_id_data
kmf_get_cert_id_str kmf_get_cert_issuer_str
kmf_get_cert_ku kmf_get_cert_policies
kmf_get_cert_pubkey_alg_str kmf_get_cert_pubkey_str
kmf_get_cert_serial_str kmf_get_cert_sig_alg_str
kmf_get_cert_start_date_str kmf_get_cert_subject_str
kmf_get_cert_validity kmf_get_cert_version_str
kmf_get_data_format
kmf_get_file_format
kmf_get_mapper_error_str
kmf_get_mapper_options
kmf_get_ocsp_status_for_cert
kmf_get_plugin_error_str
kmf_get_string_attr
kmf_hexstr_to_bytes
kmf_import_cert
kmf_initialize
kmf_is_cert_file
kmf_ku_to_string
kmf_map_cert_to_name
kmf_oid_to_ekuname
kmf_pem_to_der
kmf_read_input_file
kmf_set_attr
kmf_set_cert_basic_constraint
kmf_set_cert_issuer
kmf_set_cert_ku
kmf_set_cert_serial
kmf_set_cert_subject
kmf_set_cert_validity
kmf_set_csr_extn
kmf_set_csr_pubkey
kmf_set_csr_subject
kmf_set_csr_version
kmf_set_mapper_options
kmf_set_token_pin
kmf_set_cert_data
kmf_is_crl_file
kmf_list_crl
kmf_match_cert_to_name
kmf_oid_to_string
kmf_pk11_token_lookup
kmf_select_token
kmf_set_attr_at_index
kmf_set_cert_extn
kmf_set_cert issuer alname
kmf_set_cert pubkey
kmf_set_cert sig alg
kmf_set_cert subject alname
kmf_set_cert_version
kmf_set_csr ku
kmf_set_csr sig alg
kmf_set_csr subject alname
kmf_set_mapper lasterror
kmf_set_policy
kmf_sign_cert
kmf_sign_csr kmf_sign_data
kmf_store_cert kmf_store_key
kmf_string_to_ku kmf_string_to_oid
kmf_validate_cert kmf_verify_cert
kmf_verify_crl_file kmf_verify_csr
kmf_verify_data kmf_verify_policy

Examples EXAMPLE 1 Configuring the certificate to name mapping.

The following example configures the default certificate to name mapping to use the CN mapper while ignoring the case sensitivity when matching the certificates.

```
$ kmfcfg modify policy=default mapper-name=cn \
    mapper-options=casesensitive
```

Files /lib/libkmf.so.1 shared object
 /lib/64/libkmf.so.1 64-bit shared object
 /usr/include/kmfapi.h KMF function definitions
 /usr/include/kmftypes.h KMF structures and types.

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/core-os</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also kmfcfg(1), pktool(1), attributes(5)

Developer’s Guide to Oracle Solaris 11 Security
Name
libkrb5 – MIT Kerberos 5 library

Synopsis
cc -I/usr/include/kerberosv5 [flag...] file... -lkrb5 [library...]
#include <krb5.h>
#include <com_err.h>

Description
The functions in this library are the routines that comprise the MIT Kerberos 5 library.

Interfaces
The shared object libkrb5.so provides the public interface defined below.

The krb5 library is provided as a convenience to allow native krb5 applications to be built and to run. Compatibility between Solaris releases of the krb5 interface is not guaranteed. For new applications that require these features, libgss(3LIB) is recommended.

For detailed documentation on the krb5 interface, see the MIT Kerberos 5 web site at http://web.mit.edu/kerberos.

The krb5_cc_gen_new routine, listed in krb5.h section, is flawed and should be avoided. Until a new routine is available from MIT, the following can be done:

```c
char ccname[40];
int tmpfd;

snprintf(ccname,sizeof(ccname),"FILE:/tmp/krb5cc_%d_XXXXXX", geteuid());

if ((tmpfd = mkstemp(ccname+strlen("FILE:")))==-1) {
    log("mkstemp(): %.100s", strerror(errno));
    problem = errno;
    goto fail;
}
if (fchmod(tmpfd,S_IRUSR | S_IWUSR) == -1) {
    log("fchmod(): %.100s", strerror(errno));
    close(tmpfd);
    problem = errno;
    goto fail;
}
close(tmpfd);
problem = krb5_cc_resolve(authctxt->krb5_ctx, ccname, &ccache);
...
```

The krb5_string_to_key and krb5_string_to_key routines, listed in <krb5.h> section, are part of the old cryptosystem and should not be used in new applications.

```c
#include <com_err.h>
com_err
com_err_va
error_message
```
<libkrb5.h>

- krb5_address_compare
- krb5_address_order
- krb5_address_search
- krb5_allow_weak_crypto
- krb5_aname_to_localname
- krb5_appdefault_boolean
- krb5_appdefault_string
- krb5_anonymous_principal
- krb5_anonymous_realm
- krb5_auth_con_free
- krb5_auth_con_genaddrs
- krb5_auth_con_get_checksum_func
- krb5_auth_con_getaddrs
- krb5_auth_con_getauthenticator
- krb5_auth_con_getflags
- krb5_auth_con_getkey
- krb5_auth_con_getlocalseqnumber
- krb5_auth_con_getrcache
- krb5_auth_con_getrecvsubkey
- krb5_auth_con_getremoteseqnumber
- krb5_auth_con_getsendsubkey
- krb5_auth_con_init
- krb5_auth_con_set_checksum_func
- krb5_auth_con_setaddrs
- krb5_auth_con_setflags
- krb5_auth_con_setports
- krb5_auth_con_setrcache
- krb5_auth_con_setrecvsubkey
- krb5_auth_con_setsendsubkey
- krb5_auth_con_setuseruserkey
- krb5_build_principal
- krb5_build_principal_ext
- krb5_c_block_size
- krb5_c_checksum_length
- krb5_c_decrypt
- krb5_c_encrypt
- krb5_c_encrypt_length
- krb5_c_enctype_compare
- krb5_c_free_state
- krb5_c_init_state
- krb5_c_is_coll_proof_cksum
- krb5_c_is_keyed_cksum
- krb5_c_keyed_checksum_types
- krb5_c_make_checksum

Library Interfaces and Headers 189
krb5_c_make_random_key
krb5_c_random_make_octets
krb5_c_string_to_key
krb5_c_string_to_key_with_params
krb5_c_valid_cksumtype
krb5_c_valid_enctype
krb5_c_verify_checksum
krb5_cc_close
krb5_cc_copy_creds
krb5_cc_default
krb5_cc_default_name
krb5_cc_destroy
krb5_cc_end_seq_get
krb5_cc_gen_new
krb5_cc_get_config
krb5_cc_get_name
krb5_cc_get_principal
krb5_cc_get_type
krb5_cc_initialize
krb5_cc_next_cred
krb5_cc_remove_cred
krb5_cc_resolve
krb5_cc_retrieve_cred
krb5_cc_set_config
krb5_cc_set_default_name
krb5_cc_set_flags
krb5_cc_start_seq_get
krb5_cc_store_cred
krb5_change_password
krb5_cksumtype_to_string
krb5_copy_addresses
krb5_copy_authdata
krb5_copy_authenticator
krb5_copy_checksum
krb5_copy_creds
krb5_copy_data
krb5_copy_keyblock
krb5_copy_keyblock_contents
krb5_copy_principal
krb5_copy_ticket
krb5_decode_authdata_container
krb5_decode_ticket
krb5_deltat_to_string
krb5_encode_authdata_container
krb5_enctype_to_string
krb5_free_addresses
krb5_free_ap_rep_enc_part
krb5_free_authdata
krb5_free Authenticator
krb5_free_checksum
krb5_free_checksum_contents
krb5_free_cksumtypes
krb5_free_context
krb5_free_cred_contents
krb5_free creds
krb5_free data
krb5_free data_contents
krb5_free_default_realm
krb5_free_error
krb5_free_host_realm
krb5_free_keyblock
krb5_free_keyblock_contents
krb5_free_keytab_entry_contents
krb5_free_principal
krb5_free_realm_string
krb5_free_tgt_creds
krb5_free_ticket
krb5_free_unparsed_name
krb5_fwd_tgt_creds
krb5_get_credentials
krb5_get_credentials_renew
krb5_get_credentials_validate
krb5_get_default_realm
krb5_get_error_message
krb5_get_host_realm
krb5_get_init_creds_keytab
krb5_get_init_creds_opt_get_fast_flags
krb5_get_init_creds_opt_init
krb5_get_init_creds_opt_set_address_list
krb5_get_init_creds_opt_set_anonymous
krb5_get_init_creds_opt_set_etype_list
krb5_get_init_creds_opt_set_fast_ccache_name
krb5_get_init_creds_opt_set_fast_flags
krb5_get_init_creds_opt_set_forwardable
krb5_get_init_creds_opt_set_out_ccache
krb5_get_init_creds_opt_set_preauth_list
krb5_get_init_creds_opt_set_proxiable
krb5_get_init_creds_opt_set_renew_life

libkrb5(3LIB)

krb5_get_init_creds_opt_set_salt
krb5_get_init_creds_opt_set_tkt_life
krb5_get_key_data
krb5_get_key_enctype
krb5_get_key_length
krb5_get_init_creds_password
krb5_get_permitted_enctypes
krb5_get_profile
krb5_get_prompt_types
krb5_get_renewed_creds
krb5_get_server_rcache
krb5_get_validated_creds
krb5_init_allocated_keyblock
krb5_init_context
krb5_init_keyblock
krb5_init_secure_context
krb5_is_config_principal
krb5_is_thread_safe
krb5_kt_add_entry
krb5_kt_close
krb5_kt_default
krb5_kt_default_name
krb5_kt_end_seq_get
krb5_kt_get_entry
krb5_kt_get_name
krb5_kt_get_type
krb5_kt_next_entry
krb5_kt_read_service_key
krb5_kt_remove_entry
krb5_kt_resolve
krb5_kt_start_seq_get
krb5_kuserok
krb5_make_authdata_kdc_issued
krb5_mk_error
krb5_mk_ncrd
krb5_mk_priv
krb5_mk_rep
krb5_mk_req
krb5_mk_req_extended
krb5_mk_safe
krb5_mk_1cred
krb5_os_localaddr
krb5_pac_add_buffer
krb5_pac_free
libkrb5(3LIB)

krb5_pac_get_types
krb5_pac_get_buffer
krb5_pac_init
krb5_pac_parse
krb5_pac_verify
krb5_parse_name
krb5_principal_compare
krb5_principal2salt
krb5_prompter_posix
krb5_rd_cred
krb5_rd_error
krb5_rd_priv
krb5_rd_rep
krb5_rd_req
krb5_rd_safe
krb5_read_password
krb5_realm_compare
krb5_realm_iterator
krb5_realm_iterator_create
krb5_realm_iterator_free
krb5_recvauth
krb5_recvauth_version
krb5_salttype_to_string
krb5_sendauth
krb5_set_default_realmd
krb5_set_default_tgs_ectypes
krb5_set_key_data
krb5_set_key_ectype
krb5_set_key_length
krb5_set_password
krb5_set_password_using_ccach
krb5_set_principal_realmd
krb5_set_real_time
krb5_sname_to_principal
krb5_string_to_ctype
krb5_string_to_deltat
krb5_string_to_ectype
krb5_string_to_key
krb5_string_to_salttype
krb5_string_to_timestamp
krb5_timeofday
krb5_timestamp_to_fstring
krb5_timestamp_to_string
krb5_unparse_name
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>service/security/kerberos-5</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Volatile</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also

<table>
<thead>
<tr>
<th>See Also</th>
</tr>
</thead>
<tbody>
<tr>
<td>krb5-config(1), libgss(3LIB), attributes(5)</td>
</tr>
</tbody>
</table>
libkstat – kernel statistics library

Synopsis
cc [flag...] file... -lkstat [library...]
#include <kstat.h>

Description
Functions in this library provide a general-purpose mechanism for providing kernel statistics to users.

Interfaces
The shared object libkstat.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

kstat_chain_update
kstat_close
kstat_data_lookup
kstat_lookup
kstat_open
kstat_read
kstat_write

Files
/lib/libkstat.so.1 shared object
/lib/64/libkstat.so.1 64-bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>See below.</td>
</tr>
</tbody>
</table>

The kstat_open() function is Safe. The remaining kstat functions are MT-Safe with the exception that only one thread may actively use a kstat_ctl_t * value at any time. Synchronization is left to the application.

See Also
pvs(1), Intro(3), kstat(3KSTAT), attributes(5)
Name
libkvm – Kernel Virtual Memory access library

Synopsis
cc [flag...] file... -lkvm [library ...]
#include <kvm.h>

Description
Functions in this library provide application access to kernel symbols, addresses and values. The individual functions are documented in Section 3KVM of the reference manual.

Interfaces
The shared object `libkvm.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

- `kvm_close`
- `kvm_getcmd`
- `kvm_getproc`
- `kvm_getu`
- `kvm_kread`
- `kvm_kwrite`
- `kvm_nextproc`
- `kvm_nlist`
- `kvm_open`
- `kvm_setproc`
- `kvm_uread`
- `kvm_uwrite`
- `kvm_write`

Files
`/usr/lib/libkvm.so.1`
`/usr/lib/64/libkvm.so.1`
64-bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>See below.</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

The `kvm_read()` and `kvm_write()` functions are Obsolete. The remaining functions are Committed.

See Also
pvs(1), Intro(3), attributes(5)
Name libl – lex library

Synopsis cc [flag...] file... [library...]

Description Functions in this library provide user interfaces to the lex(1) library.

Interfaces The shared object libl.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

```
allprint                      allprint_w
main                          sprint
sprint_w                      yyless
yyless_e                     yyless_w
yyracc                        yyreject
yyreject_e                    yyreject_w
yywrap
```

Files /usr/lib/libl.so.1 shared object
 /usr/lib/64/libl.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>developer/base-developer-utilities</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also lex(1), Intro(3), attributes(5)
liblayout – layout service library

Synopsis cc [flag...] file... -llayout [library...]
#include <sys/layout.h>

Description Functions in this library provide various layout service routines.

Interfaces The shared object liblayout.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

m_create_layout m_destroy_layout
m_getvalues_layout m_setvalues_layout
m_transform_layout m_wtransform_layout

Files /usr/lib/liblayout.so.1 shared object
/usr/lib/64/liblayout.so.1 64-bit shared object.

Attributes See attributes(5) for description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library/liblayout</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), attributes(5)
Name liblgrp – locality group library

Synopsis
cc [flag...] file... -llgrp [library...]
#include <sys/lgrp_user.h>

Description The functions in this library traverse the lgroup (locality group) hierarchy, discover its contents, and set a thread’s affinity for an lgroup. A locality group represents the set of CPU-like and memory-like hardware devices that are at most some locality apart from each other.

Interfaces The shared object liblgrp.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

lgrp_affinity_get lgrp_affinity_inherit_get
lgrp_affinity_inherit_set lgrp_affinity_set
lgrp_children lgrp_cookie_stale
lgrp_cpus lgrp_device_lgrps
lgrp_fini lgrp_home
lgrp_init lgrp_latency
lgrp_latency_cookie lgrp_mem_size
lgrp_nlgrps lgrp_parents
lgrp_resources lgrp_root
lgrp_version lgrp_view

Files /usr/lib/liblgrp.so.1 shared object
/usr/lib/64/liblgrp.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), lgrp_affinity_get(3LGRP), lgrp_affinity_inherit_get(3LGRP), lgrp_children(3LGRP), lgrp_cookie_stale(3LGRP), lgrp_cpus(3LGRP), lgrp_fini(3LGRP), lgrp_home(3LGRP), lgrp_init(3LGRP), lgrp_latency(3LGRP), lgrp_mem_size(3LGRP), lgrp_nlgrps(3LGRP), lgrp_parents(3LGRP), lgrp_root(3LGRP), lgrp_version(3LGRP), lgrp_view(3LGRP), attributes(5)
libm – C math library

Synopsis c99 [flag...] file... -lm [library...]

Description Functions in this library provide common elementary mathematical functions and floating point environment routines defined by System V, ANSI C, POSIX, and so on. See standards(5). Additional functions in this library provide extended support for handling floating point exceptions.

Interfaces The shared object libm.so.2 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

acos acosf
acosh acoshf
acoshl acosl
asin asinf
asinh asinhf
asinhl asinl
atan atan2
atan2f atan2l
atanf atanh
atanhf atanhl
atanl cabs
cabsf cabsl
ccos cacosf
ccosh cacoshf
ccoshl cacosl
carg cargf
cargl cargl
ccasin casinh
ccasinhf casinhl
ccasinh casinh
ccasinhf casinhl
cccath catan
cccathf catanh
cccathl catanhl
<table>
<thead>
<tr>
<th>Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>catanl</td>
<td>cbrt</td>
</tr>
<tr>
<td>cbrtf</td>
<td>cbrtl</td>
</tr>
<tr>
<td>ccos</td>
<td>ccosf</td>
</tr>
<tr>
<td>ccosh</td>
<td>ccoshf</td>
</tr>
<tr>
<td>ccoshl</td>
<td>ccosl</td>
</tr>
<tr>
<td>ceil</td>
<td>ceilf</td>
</tr>
<tr>
<td>ceill</td>
<td>cexp</td>
</tr>
<tr>
<td>cexpf</td>
<td>cexpl</td>
</tr>
<tr>
<td>cimag</td>
<td>cimagf</td>
</tr>
<tr>
<td>cimagl</td>
<td>clog</td>
</tr>
<tr>
<td>clogf</td>
<td>clogl</td>
</tr>
<tr>
<td>conj</td>
<td>conjf</td>
</tr>
<tr>
<td>conjl</td>
<td>copysign</td>
</tr>
<tr>
<td>copysignf</td>
<td>copysignl</td>
</tr>
<tr>
<td>cos</td>
<td>cosf</td>
</tr>
<tr>
<td>cosh</td>
<td>coshf</td>
</tr>
<tr>
<td>coshl</td>
<td>cosl</td>
</tr>
<tr>
<td>cpow</td>
<td>cpowf</td>
</tr>
<tr>
<td>cpowl</td>
<td>cproj</td>
</tr>
<tr>
<td>cprojf</td>
<td>cprojl</td>
</tr>
<tr>
<td>creal</td>
<td>crealf</td>
</tr>
<tr>
<td>creall</td>
<td>csin</td>
</tr>
<tr>
<td>csinf</td>
<td>csinh</td>
</tr>
<tr>
<td>csinhf</td>
<td>csinhl</td>
</tr>
<tr>
<td>csinl</td>
<td>csqrt</td>
</tr>
<tr>
<td>csqrtf</td>
<td>csqrtl</td>
</tr>
<tr>
<td>ctan</td>
<td>ctanf</td>
</tr>
<tr>
<td>ctanh</td>
<td>ctanhf</td>
</tr>
<tr>
<td>ctanhl</td>
<td>ctanl</td>
</tr>
</tbody>
</table>
erf erfc
erfcf erfcl
erff erfll
exp exp2
exp2f exp2l
expf expl
expm1 expmlf
expml1 fabs
fabsf fabsl
fdiv fdivl
fdiml feclearexcept
fegetenv fegetexceptflag
fegetround feholdexcept
feraiseexcept fesetenv
fesetexceptflag fesetround
fetestexcept feupdateenv
fex_get_handling fex_get_log
fex_get_log_depth fex_getexcepthandler
fex_log_entry fex_merge_flags
fex_set_handling fex_set_log
fex_set_log_depth fex_setexcepthandler
floor floorl
fma
fmax fmaxl
fmin fminl
fmod fmodl
frexp
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>frexpf</td>
<td>frexpl</td>
</tr>
<tr>
<td>gamma</td>
<td>gamma_r</td>
</tr>
<tr>
<td>gammaf</td>
<td>gammaf_r</td>
</tr>
<tr>
<td>gammal</td>
<td>gammal_r</td>
</tr>
<tr>
<td>hypot</td>
<td>hypotf</td>
</tr>
<tr>
<td>hypotl</td>
<td>ilogb</td>
</tr>
<tr>
<td>ilogbf</td>
<td>ilogbl</td>
</tr>
<tr>
<td>isnan</td>
<td>j0</td>
</tr>
<tr>
<td>j0f</td>
<td>j0l</td>
</tr>
<tr>
<td>j1</td>
<td>j1f</td>
</tr>
<tr>
<td>j1l</td>
<td>jn</td>
</tr>
<tr>
<td>jnf</td>
<td>jnl</td>
</tr>
<tr>
<td>ldexp</td>
<td>ldexpf</td>
</tr>
<tr>
<td>ldexpl</td>
<td>lgamma</td>
</tr>
<tr>
<td>lgamma_r</td>
<td>lgammaf</td>
</tr>
<tr>
<td>lgammaf_r</td>
<td>lgammal</td>
</tr>
<tr>
<td>lgammal_r</td>
<td>llrint</td>
</tr>
<tr>
<td>llrintf</td>
<td>llrintl</td>
</tr>
<tr>
<td>llround</td>
<td>llroundf</td>
</tr>
<tr>
<td>llroundl</td>
<td>log</td>
</tr>
<tr>
<td>log10</td>
<td>log10f</td>
</tr>
<tr>
<td>log10l</td>
<td>log10l</td>
</tr>
<tr>
<td>log1pf</td>
<td>log1pl</td>
</tr>
<tr>
<td>log2</td>
<td>log2f</td>
</tr>
<tr>
<td>log2l</td>
<td>logb</td>
</tr>
<tr>
<td>logbf</td>
<td>logbl</td>
</tr>
<tr>
<td>logf</td>
<td>logl</td>
</tr>
<tr>
<td>lrint</td>
<td>lrintf</td>
</tr>
<tr>
<td>lrintl</td>
<td>lround</td>
</tr>
</tbody>
</table>
libm(3LIB)

\texttt{lroundf}
\texttt{lroundl}
\texttt{matherr}
\texttt{modff}
\texttt{modfl}
\texttt{nan}
\texttt{nanf}
\texttt{nanl}
\texttt{nearbyintf}
\texttt{nearbyintl}
\texttt{nextafter}
\texttt{nextafterf}
\texttt{nextafterl}
\texttt{nexttoward}
\texttt{nexttowardf}
\texttt{nexttowardl}
\texttt{pow}
\texttt{powf}
\texttt{powl}
\texttt{remainder}
\texttt{remainderf}
\texttt{remquo}
\texttt{remquolf}
\texttt{rintf}
\texttt{rintl}
\texttt{round}
\texttt{roundf}
\texttt{roundl}
\texttt{scalbf}
\texttt{scalbl}
\texttt{scalbfn}
\texttt{scalbfnl}
\texttt{scalbfnl}
\texttt{scalbnf}
\texttt{scalbnl}
\texttt{signgam}
\texttt{signgamf}
\texttt{signgaml}
\texttt{significand}
\texttt{significandf}
\texttt{significandl}
\texttt{sin}
\texttt{sinf}
\texttt{sinf}
\texttt{sinhf}
\texttt{sinhl}
\texttt{sinl}
\texttt{sqrt}
The following interfaces are unique to the x86 and x64 versions of this library:

- `fegetprec` `fesetprec`

Accuracy

ISO/IEC 9899:1999, also known as C99, specifies the functions listed in the following tables and states that the accuracy of these functions is "implementation-defined". The information below characterizes the accuracy of these functions as implemented in `libm.so.2`. For each function, the tables provide an upper bound on the largest error possible for any argument and the largest error actually observed among a large sample of arguments. Errors are expressed in "units in the last place", or ulps, relative to the exact function value for each argument (regarding the argument as exact). Ulps depend on the precision of the floating point format: if \(y \) is the exact function value, \(x \) and \(x' \) are adjacent floating point numbers such that \(x < y < x' \), and \(x'' \) is the computed function value, then provided \(x, x', \) and \(x'' \) all lie in the same binade, the error in \(x'' \) is \(|y - x''| / |x - x'| \) ulps. In particular, when the error is less than one ulp, the computed value is one of the two floating point numbers adjacent to the exact value.

The bounds and observed errors listed below apply only in the default floating point modes. Specifically, on SPARC, these bounds assume the rounding direction is round-to-nearest and non-standard mode is disabled. On x86, the bounds assume the rounding direction is round-to-nearest and the rounding precision is round-to-64-bits. Moreover, on x86, floating point function values are returned in a floating point register in extended double precision format, but the bounds below assume that the result value is then stored to memory in the format corresponding to the function’s type. On x64, the bounds assume the rounding
direction in both the x87 floating point control word and the MXCSR is round-to-nearest, the rounding precision in the x87 control word is round-to-64-bits, and the FTZ and DAZ modes are disabled.

The error bounds listed below are believed to be correct, but smaller bounds might be proved later. The observed errors are the largest ones currently known, but larger errors might be discovered later. Numbers in the notes column refer to the notes following the tables.

Real Functions

Single precision real functions (SPARC, x86, and x64)

<table>
<thead>
<tr>
<th>function</th>
<th>error bound (ulps)</th>
<th>largest error observed (ulps)</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>acosf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>acoshf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>asinf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>asinhf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>atanf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>atan2f</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>atanhf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>cbrtf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>cosf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>coshf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>erff</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>erfcf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>expf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>exp2f</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>expm1f</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>hypotf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>lgammaf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>logf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>log10f</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>log1pf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>function</td>
<td>error bound</td>
<td>largest error</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>log2f</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>powf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>sinf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>sinhf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>sqrtf</td>
<td>0.5</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>tanf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>tanhf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>tgammaf</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
</tbody>
</table>

Double precision real functions (SPARC and x64)

<table>
<thead>
<tr>
<th>function</th>
<th>error bound</th>
<th>largest error</th>
</tr>
</thead>
<tbody>
<tr>
<td>acos</td>
<td>1.0</td>
<td>< 1</td>
</tr>
<tr>
<td>acosh</td>
<td>4.0</td>
<td>1.878</td>
</tr>
<tr>
<td>asin</td>
<td>1.0</td>
<td>< 1</td>
</tr>
<tr>
<td>asinh</td>
<td>7.0</td>
<td>1.653</td>
</tr>
<tr>
<td>atan</td>
<td>1.0</td>
<td>< 1</td>
</tr>
<tr>
<td>atan2</td>
<td>2.5</td>
<td>1.475</td>
</tr>
<tr>
<td>atanh</td>
<td>4.0</td>
<td>1.960</td>
</tr>
<tr>
<td>cbrt</td>
<td>1.0</td>
<td>< 1</td>
</tr>
<tr>
<td>cos</td>
<td>1.0</td>
<td>< 1</td>
</tr>
<tr>
<td>cosh</td>
<td>3.0</td>
<td>1.168</td>
</tr>
<tr>
<td>erf</td>
<td>4.0</td>
<td>0.959</td>
</tr>
<tr>
<td>erfc</td>
<td>6.0</td>
<td>2.816</td>
</tr>
<tr>
<td>exp</td>
<td>1.0</td>
<td>< 1</td>
</tr>
<tr>
<td>exp2</td>
<td>2.0</td>
<td>1.050</td>
</tr>
<tr>
<td>expm1</td>
<td>1.0</td>
<td>< 1</td>
</tr>
<tr>
<td>function</td>
<td>error bound</td>
<td>largest error observed</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>hypot</td>
<td>1.0</td>
<td><1</td>
</tr>
<tr>
<td>lgamma</td>
<td>61.5</td>
<td>5.629</td>
</tr>
<tr>
<td>log</td>
<td>1.0</td>
<td><1</td>
</tr>
<tr>
<td>log10</td>
<td>3.5</td>
<td>1.592</td>
</tr>
<tr>
<td>log1p</td>
<td>1.0</td>
<td><1</td>
</tr>
<tr>
<td>log2</td>
<td>1.0</td>
<td><1</td>
</tr>
<tr>
<td>pow</td>
<td>1.0</td>
<td><1</td>
</tr>
<tr>
<td>sin</td>
<td>1.0</td>
<td><1</td>
</tr>
<tr>
<td>sinh</td>
<td>4.0</td>
<td>2.078</td>
</tr>
<tr>
<td>sqrt</td>
<td>0.5</td>
<td>0.500</td>
</tr>
<tr>
<td>tan</td>
<td>1.0</td>
<td><1</td>
</tr>
<tr>
<td>tanh</td>
<td>3.5</td>
<td>2.136</td>
</tr>
<tr>
<td>tgamma</td>
<td>1.0</td>
<td><1</td>
</tr>
</tbody>
</table>

Double precision real functions (x86)

<table>
<thead>
<tr>
<th>function</th>
<th>error bound</th>
<th>largest error observed</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>acos</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>acosh</td>
<td>4.0</td>
<td>1.694</td>
<td></td>
</tr>
<tr>
<td>asin</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>asinh</td>
<td>7.0</td>
<td>1.493</td>
<td></td>
</tr>
<tr>
<td>atan</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>atan2</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>atanh</td>
<td>4.0</td>
<td>1.445</td>
<td></td>
</tr>
<tr>
<td>cbrt</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>cos</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>cosh</td>
<td>3.0</td>
<td>1.001</td>
<td></td>
</tr>
<tr>
<td>function</td>
<td>error bound (ulps)</td>
<td>largest error observed (ulps)</td>
<td>notes</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>erf</td>
<td>4.0</td>
<td>0.932</td>
<td></td>
</tr>
<tr>
<td>erfc</td>
<td>6.0</td>
<td>2.728</td>
<td></td>
</tr>
<tr>
<td>exp</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>exp2</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>expm1</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>hypot</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>lgamma</td>
<td>61.5</td>
<td>2.654</td>
<td>[2]</td>
</tr>
<tr>
<td>log</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>log10</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>log1p</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>log2</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>pow</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>sin</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>sinh</td>
<td>4.0</td>
<td>1.458</td>
<td></td>
</tr>
<tr>
<td>sqrt</td>
<td>0.5003</td>
<td>0.500</td>
<td>[1]</td>
</tr>
<tr>
<td>tan</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>tanh</td>
<td>3.5</td>
<td>1.592</td>
<td></td>
</tr>
<tr>
<td>tgamma</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
</tbody>
</table>

Quadruple precision real functions (SPARC)

<table>
<thead>
<tr>
<th>function</th>
<th>error bound (ulps)</th>
<th>largest error observed (ulps)</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>acosl</td>
<td>3.5</td>
<td>1.771</td>
<td></td>
</tr>
<tr>
<td>acoshl</td>
<td>8.0</td>
<td>1.275</td>
<td></td>
</tr>
<tr>
<td>asinl</td>
<td>4.0</td>
<td>2.007</td>
<td></td>
</tr>
<tr>
<td>asinhl</td>
<td>9.0</td>
<td>1.823</td>
<td></td>
</tr>
<tr>
<td>atanl</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
</tbody>
</table>
Extended precision real functions (x86 and x64)

<table>
<thead>
<tr>
<th>function</th>
<th>error bound (ulps)</th>
<th>largest error observed (ulps)</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>atan2l</td>
<td>2.5</td>
<td>1.102</td>
<td></td>
</tr>
<tr>
<td>atanhl</td>
<td>4.0</td>
<td>1.970</td>
<td></td>
</tr>
<tr>
<td>cbrrtl</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>cosl</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>coshl</td>
<td>3.5</td>
<td>0.985</td>
<td></td>
</tr>
<tr>
<td>erfl</td>
<td>2.0</td>
<td>0.779</td>
<td></td>
</tr>
<tr>
<td>erfcl</td>
<td>68.5</td>
<td>13.923</td>
<td></td>
</tr>
<tr>
<td>expl</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>exp2l</td>
<td>2.0</td>
<td>0.714</td>
<td></td>
</tr>
<tr>
<td>expm1l</td>
<td>2.0</td>
<td>1.020</td>
<td></td>
</tr>
<tr>
<td>hypotl</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>lgamma1</td>
<td>18.5</td>
<td>2.916</td>
<td>[2]</td>
</tr>
<tr>
<td>logl</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>log10l</td>
<td>3.5</td>
<td>1.156</td>
<td></td>
</tr>
<tr>
<td>log1pl</td>
<td>2.0</td>
<td>1.216</td>
<td></td>
</tr>
<tr>
<td>log2l</td>
<td>3.5</td>
<td>1.675</td>
<td></td>
</tr>
<tr>
<td>powl</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>sinl</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>sinh1</td>
<td>4.5</td>
<td>1.589</td>
<td></td>
</tr>
<tr>
<td>sqrt1l</td>
<td>0.5</td>
<td>0.500</td>
<td>[1]</td>
</tr>
<tr>
<td>tanl</td>
<td>4.5</td>
<td>2.380</td>
<td></td>
</tr>
<tr>
<td>tanhl</td>
<td>4.5</td>
<td>1.692</td>
<td></td>
</tr>
<tr>
<td>tgammal</td>
<td>1.0</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>function</td>
<td>error bound (ulps)</td>
<td>largest error observed (ulps)</td>
<td>notes</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>acosl</td>
<td>3.0</td>
<td>1.868</td>
<td></td>
</tr>
<tr>
<td>acoshl</td>
<td>8.0</td>
<td>2.352</td>
<td></td>
</tr>
<tr>
<td>asinl</td>
<td>3.0</td>
<td>1.716</td>
<td></td>
</tr>
<tr>
<td>asinhl</td>
<td>9.0</td>
<td>2.346</td>
<td></td>
</tr>
<tr>
<td>atanl</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>atan2l</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>atanhl</td>
<td>4.0</td>
<td>2.438</td>
<td></td>
</tr>
<tr>
<td>cbrtl</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>cosl</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>coshl</td>
<td>3.5</td>
<td>1.288</td>
<td></td>
</tr>
<tr>
<td>erfcl</td>
<td>78.5</td>
<td>13.407</td>
<td></td>
</tr>
<tr>
<td>expl</td>
<td>3.5</td>
<td>1.291</td>
<td></td>
</tr>
<tr>
<td>exp2l</td>
<td>1.5</td>
<td>0.807</td>
<td></td>
</tr>
<tr>
<td>expml</td>
<td>4.0</td>
<td>1.936</td>
<td></td>
</tr>
<tr>
<td>hypotl</td>
<td>3.5</td>
<td>2.087</td>
<td></td>
</tr>
<tr>
<td>lgammal</td>
<td>22.5</td>
<td>4.197</td>
<td>[2]</td>
</tr>
<tr>
<td>logl</td>
<td>2.0</td>
<td>0.881</td>
<td></td>
</tr>
<tr>
<td>log10l</td>
<td>2.0</td>
<td>1.284</td>
<td></td>
</tr>
<tr>
<td>log1pl</td>
<td>5.0</td>
<td>2.370</td>
<td></td>
</tr>
<tr>
<td>log2l</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>powl</td>
<td>32770.0</td>
<td>4478.132</td>
<td></td>
</tr>
<tr>
<td>sinl</td>
<td>1.0</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>sinh1</td>
<td>4.5</td>
<td>2.356</td>
<td></td>
</tr>
<tr>
<td>sqrtl</td>
<td>0.5</td>
<td>0.500</td>
<td>[1]</td>
</tr>
<tr>
<td>tanl</td>
<td>4.5</td>
<td>2.366</td>
<td></td>
</tr>
<tr>
<td>tanhl</td>
<td>4.5</td>
<td>2.417</td>
<td></td>
</tr>
</tbody>
</table>
Notes:

[1] On SPARC and x64, sqrtf, sqrt, and sqrtl are correctly rounded in accordance with IEEE 754. On x86, sqrtl is correctly rounded, sqrtf is correctly rounded provided the result is narrowed to single precision as discussed above, but sqrt might not be correctly rounded due to “double rounding”: when the intermediate value computed to extended precision lies exactly halfway between two representable numbers in double precision, the result of rounding the intermediate value to double precision is determined by the round-ties-to-even rule. If this rule causes the second rounding to round in the same direction as the first, the net rounding error can exceed 0.5 ulps. (The error is bounded instead by 0.5*(1 + 2^-11) ulps.)

[2] Error bounds for lgamma and lgammal apply only for positive arguments.

Complex functions

The real-valued complex functions cabsf, cabs, cabsl, cargf, carg, and cargl are equivalent to the real functions hypotf, hypot, hypotl, atan2f, atan2, and atan2l, respectively. The error bounds and observed errors given above for the latter functions also apply to the former.

The complex functions listed below are complex-valued. For each function, the error bound shown applies separately to both the real and imaginary parts of the result. (For example, both the real and imaginary parts of cacosf(z) are accurate to within 1 ulp regardless of their magnitudes.) Similarly, the largest observed error shown is the largest error found in either the real or the imaginary part of the result.

Single precision complex functions (SPARC and x64)

<table>
<thead>
<tr>
<th>function</th>
<th>error bound</th>
<th>largest error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ulps)</td>
<td>observed (ulps)</td>
</tr>
<tr>
<td>cacosf, cacoshf</td>
<td>1</td>
<td>< 1</td>
</tr>
<tr>
<td>casinf, casinhf</td>
<td>1</td>
<td>< 1</td>
</tr>
<tr>
<td>catanf, catanhf</td>
<td>6</td>
<td>< 1</td>
</tr>
<tr>
<td>ccosf, ccoshf</td>
<td>10</td>
<td>2.012</td>
</tr>
<tr>
<td>cexpf</td>
<td>3</td>
<td>2.239</td>
</tr>
<tr>
<td>clogf</td>
<td>3</td>
<td>< 1</td>
</tr>
<tr>
<td>cpowf</td>
<td>—</td>
<td>< 1</td>
</tr>
<tr>
<td>function</td>
<td>error bound (ulps)</td>
<td>largest error observed (ulps)</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td><code>csinf, csinhf</code></td>
<td>10</td>
<td>2.009</td>
</tr>
<tr>
<td><code>csqrtf</code></td>
<td>4</td>
<td><1</td>
</tr>
<tr>
<td><code>ctanf, ctanhf</code></td>
<td>13</td>
<td>6.987</td>
</tr>
</tbody>
</table>

Single precision complex functions (x86)

<table>
<thead>
<tr>
<th>function</th>
<th>error bound (ulps)</th>
<th>largest error observed (ulps)</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cacosf, cacoshf</code></td>
<td>1</td>
<td><1</td>
<td>[1]</td>
</tr>
<tr>
<td><code>casinf, casinhf</code></td>
<td>1</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td><code>catanf, catanhf</code></td>
<td>6</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td><code>ccosf, ccoshf</code></td>
<td>10</td>
<td>1.984</td>
<td></td>
</tr>
<tr>
<td><code>cexpf</code></td>
<td>3</td>
<td>1.984</td>
<td></td>
</tr>
<tr>
<td><code>clogf</code></td>
<td>3</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td><code>cpowf</code></td>
<td>—</td>
<td><1</td>
<td>[2]</td>
</tr>
<tr>
<td><code>csinf, csinhf</code></td>
<td>10</td>
<td>1.973</td>
<td></td>
</tr>
<tr>
<td><code>cqrtf</code></td>
<td>4</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td><code>ctanf, ctanhf</code></td>
<td>13</td>
<td>4.657</td>
<td></td>
</tr>
</tbody>
</table>

Double precision complex functions (SPARC and x64)

<table>
<thead>
<tr>
<th>function</th>
<th>error bound (ulps)</th>
<th>largest error observed (ulps)</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cacos, cacosh</code></td>
<td>9</td>
<td>3.831</td>
<td>[1]</td>
</tr>
<tr>
<td><code>casin, casinh</code></td>
<td>9</td>
<td>3.732</td>
<td></td>
</tr>
<tr>
<td><code>catan, catanh</code></td>
<td>6</td>
<td>4.179</td>
<td></td>
</tr>
<tr>
<td><code>ccos, ccosh</code></td>
<td>10</td>
<td>3.832</td>
<td></td>
</tr>
<tr>
<td><code>cexp</code></td>
<td>3</td>
<td>2.255</td>
<td></td>
</tr>
<tr>
<td><code>clog</code></td>
<td>3</td>
<td>2.870</td>
<td></td>
</tr>
</tbody>
</table>
Double precision complex functions (x86)

<table>
<thead>
<tr>
<th>function</th>
<th>error bound</th>
<th>largest error</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpow</td>
<td>-</td>
<td>-</td>
<td>[2]</td>
</tr>
<tr>
<td>csin, csinh</td>
<td>10</td>
<td>3.722</td>
<td></td>
</tr>
<tr>
<td>csqrt</td>
<td>4</td>
<td>3.204</td>
<td></td>
</tr>
<tr>
<td>ctan, ctanh</td>
<td>13</td>
<td>7.143</td>
<td></td>
</tr>
</tbody>
</table>

Quadruple precision complex functions (SPARC)

<table>
<thead>
<tr>
<th>function</th>
<th>error bound</th>
<th>largest error</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cacosl, cacoshl</td>
<td>9</td>
<td>3</td>
<td>[1]</td>
</tr>
<tr>
<td>casinl, casinhl</td>
<td>9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>catanl, catanhl</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ccosl, ccoshl</td>
<td>10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>cexpl</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Extended precision complex functions (x86 and x64)

<table>
<thead>
<tr>
<th>function</th>
<th>error bound (ulps)</th>
<th>largest error observed (ulps)</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cacosl, cacoshl</td>
<td>9</td>
<td>2</td>
<td>[1]</td>
</tr>
<tr>
<td>casinl, casinhl</td>
<td>9</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>catanl, catanhl</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ccosl, ccoshl</td>
<td>10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>cexpl</td>
<td>3</td>
<td>2.699</td>
<td></td>
</tr>
<tr>
<td>clogl</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cpowl</td>
<td>-</td>
<td>-</td>
<td>[2]</td>
</tr>
<tr>
<td>csinl, csinhl</td>
<td>10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>csqrtl</td>
<td>4</td>
<td>1.452</td>
<td></td>
</tr>
<tr>
<td>ctanl, ctanhl</td>
<td>13</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

[1] The complex hyperbolic trigonometric functions are equivalent by symmetries to their circular trigonometric counterparts. Because the implementations of these functions exploit these symmetries, corresponding functions have the same error bounds and observed errors.

[2] For large arguments, the results computed by cpowf, cpow, and cpowl can have unbounded relative error. It might be possible to give error bounds for specific domains, but no such bounds are currently available. The observed errors shown are for the domain \(\{(z, w) : \max(|\Re z|, |\Im z|, |\Re w|, |\Im w|) \leq 1\} \).
Files
/lib/libm.so.2 shared object
/lib/64/libm.so.2 64-bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library/math</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe with exceptions</td>
</tr>
</tbody>
</table>

As described on the lgamma(3M) manual page, gamma() and lgamma() and their float and long double counterparts are Unsafe. All other functions in libm.so.2 are MT-Safe.

See Also Intro(3), lgamma(3M), math.h(3HEAD), attributes(5), standards(5)
libmail – user mailbox lockfile management library

Synopsis
cc { flag... } file... -lmail [library...]
#include <maillock.h>

Description Interfaces in this library provide functions for managing user mailbox lockfiles.

Interfaces The shared object libmail.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

- maillock
- mailunlock
- touchlock

Files
/usr/lib/libmail.so.1 shared object
/usr/lib/64/libmail.so.1 64–bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also Intro(3), maillock(3MAIL), attributes(5)
libmalloc(3LIB)

Name libmalloc – memory allocation library

Synopsis cc [flag...] file... -lmalloc [library...]

Description Functions in this library provide routines for memory allocation. These routines are space-efficient but have lower performance. Their usage can result in serious performance degradation.

Interfaces The shared object `libmalloc.so.1` provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

```plaintext
calloc    cfree
free      mallinfo
malloc    mallopt
memalign  realloc
valloc
```

Files `/usr/lib/libmalloc.so.1` shared object

`/usr/lib/64/libmalloc.so.1` 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), malloc(3MALLOCM), attributes(5)
Name libmapmalloc – alternative memory allocator library

Synopsis cc [flag...] file... -lmapmalloc [library...]
#include <stdlib.h>

Description Functions in this library provide malloc routines that use mmap(2) instead of sbrk(2) for acquiring heap space.

Interfaces The shared object libmapmalloc.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

 calloc cfree
 free malloc
 memalign realloc
 malloc
 malloc
 malloc
 malloc
 malloc
 malloc

Files /usr/lib/libmapmalloc.so.1 shared object
/usr/lib/64/libmapmalloc.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also pvs(1), mmap(2), sbrk(2), Intro(3), malloc(3C), malloc(3MALLOC), mapmalloc(3MALLOC), attributes(5)
Name libmd - Message Digest library

Synopsis cc [flag...] file... -lmd [library...]
#include <md4.h>
#include <md5.h>
#include <sha1.h>
#include <sha2.h>

Description Functions in this library provide hashing routines for MD4 (RFC1320), MD5 (RFC1321), SHA1 (RFC3174), SHA224 (FIPS 180-2), SHA256 (FIPS 180-2), SHA384 (FIPS 180-2), SHA512 (FIPS 180-2), and SHA512/t (FIPS 180-4) for t = 224 and 256.

Interfaces The shared object libmd.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

MD4Final MD4Init
MD4Update md5_calc
MD5Final MD5Init
MD5Update SHA1Final
SHA1Init SHA1Update
SHA224Final SHA224Init
SHA224Update SHA256Final
SHA256Init SHA256Update
SHA2Final SHA2Init
SHA2Update SHA384Final
SHA384Init SHA384Update
SHA512Final SHA512Init
SHA512Update

The shared object libmd.so.1 also provides these public interfaces that implement variants of SHA-2 and may perform faster on some 64-bit processors:

SHA512_t_Final SHA512_t_Init
SHA512_t_Update

The digest values produced by the SHA512/224 and SHA512/256 functions are not the same as those digest values produced by the corresponding SHA2 functions.
Security The MD4 and MD5 algorithms are currently considered weak for cryptographic use. The algorithms should be used only for compatibility with legacy systems or protocols.

The SHA1 algorithm is also believed to have some weaknesses. Migration to one of the SHA2 algorithms—including SHA224, SHA256, SHA386 or SHA512—is highly recommended when compatibility with data formats and on wire protocols is permitted.

Files /lib/libmd.so.1 shared object
 /lib/64/libmd.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>
Name libmd5 – MD5 hashing library

Synopsis cc [flag...] file... -lmd5 [library...]
#include <md5.h>

Description Functions in this library provide MD5 hashing routines.

Interfaces The shared object libmd5.so.1 provides the public interfaces defined below. See *Intro(3)* for additional information on shared object interfaces.

- MD5Final
- MD5Init
- MD5Update
- md5_calc

Files

<table>
<thead>
<tr>
<th>Files</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/lib/libmd5.so.1</td>
<td>shared object</td>
</tr>
<tr>
<td>/lib/64/libmd5.so.1</td>
<td>64-bit shared object</td>
</tr>
</tbody>
</table>

Attributes See *attributes(5)* for description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also *Intro(3), attributes(5)*
Name libmenu – menus library

Synopsis cc [flag...] file... -lmenu [library...]

Description Functions in this library provide menus using libcurses(3LIB) routines.

Interfaces The shared object libmenu.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

<table>
<thead>
<tr>
<th>current_item</th>
<th>free_item</th>
</tr>
</thead>
<tbody>
<tr>
<td>free_menu</td>
<td>item_count</td>
</tr>
<tr>
<td>item_description</td>
<td>item_index</td>
</tr>
<tr>
<td>item_init</td>
<td>item_name</td>
</tr>
<tr>
<td>item_opts</td>
<td>item_opts_off</td>
</tr>
<tr>
<td>item_opts_on</td>
<td>item_term</td>
</tr>
<tr>
<td>item_userptr</td>
<td>item_value</td>
</tr>
<tr>
<td>item_visible</td>
<td>menu_back</td>
</tr>
<tr>
<td>menu_driver</td>
<td>menu_fore</td>
</tr>
<tr>
<td>menu_format</td>
<td>menu_grey</td>
</tr>
<tr>
<td>menu_init</td>
<td>menu_items</td>
</tr>
<tr>
<td>menu_mark</td>
<td>menu_opts</td>
</tr>
<tr>
<td>menu_opts_off</td>
<td>menu_opts_on</td>
</tr>
<tr>
<td>menu_pad</td>
<td>menu_pattern</td>
</tr>
<tr>
<td>menu_sub</td>
<td>menu_term</td>
</tr>
<tr>
<td>menu_sub</td>
<td>menu_win</td>
</tr>
<tr>
<td>new_item</td>
<td>new_menu</td>
</tr>
<tr>
<td>pos_menu_cursor</td>
<td>post_menu</td>
</tr>
<tr>
<td>scale_menu</td>
<td>set_current_item</td>
</tr>
<tr>
<td>set_item_init</td>
<td>set_item_opts</td>
</tr>
<tr>
<td>set_item_term</td>
<td>set_item_userptr</td>
</tr>
<tr>
<td>set_item_value</td>
<td>set_menu_back</td>
</tr>
<tr>
<td>set_menu_fore</td>
<td>set_menu_format</td>
</tr>
<tr>
<td>set_menu_grey</td>
<td>set_menu_init</td>
</tr>
</tbody>
</table>
libmenu(3LIB)

set_menu_items set_menu_mark
set_menu_opts set_menu_pad
set_menu_pattern set_menu_sub
set_menu_term set_menu_userptr
set_menu_win set_top_row

Files
/usr/lib/libmenu.so.1 shared object
/usr/lib/64/libmenu.so.1 64-bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also
Intro(3), libcurses(3LIB), attributes(5)
libmlib(3LIB)

Name libmlib – mediaLib library

Synopsis cc [flag...] file... -lmlib [library...]
#include <mlib.h>

Description Interfaces in this library provide functions for multimedia processing. When executed on an UltraSPARC platform, these functions take advantage of the VIS Instruction Set. When executed on an AMD64 platform, these functions take advantage of the MMX/SSE/SSE2 instructions.

Interfaces The shared object libmlib.so.2 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

System Functions
- mlib_free
- mlib_malloc
- mlib_memcp y
- mlib_memmove
- mlib_memset
- mlib_realloc
- mlib_version

Algebra Functions
- mlib_MatrixAdd_S16C_Mod
- mlib_MatrixAdd_S16C_S16C_Mod
- mlib_MatrixAdd_S16C_S16C_Sat
- mlib_MatrixAdd_S16C_S8C_Mod
- mlib_MatrixAdd_S16C_S8C_Sat
- mlib_MatrixAdd_S16C_Sat
- mlib_MatrixAdd_S16C_U8C_Mod
- mlib_MatrixAdd_S16C_U8C_Sat
- mlib_MatrixAdd_S16_Mod
- mlib_MatrixAdd_S16_S16_Mod
- mlib_MatrixAdd_S16_S16_Sat
- mlib_MatrixAdd_S16_S8_Mod
- mlib_MatrixAdd_S16_S8_Sat
- mlib_MatrixAdd_S16 Sat
- mlib_MatrixAdd_S16_U8_Mod
- mlib_MatrixAdd_S16_U8_Sat
- mlib_MatrixAdd_S32C_Mod
- mlib_MatrixAdd_S32C_S16C_Mod
- mlib_MatrixAdd_S32C_S16C_Sat
- mlib_MatrixAdd_S32C_S32C_Mod
- mlib_MatrixAdd_S32C_S32C_Sat
- mlib_MatrixAdd_S32C Sat
- mlib_MatrixAdd_S32_Mod
- mlib_MatrixAdd_S32_S16_Mod
- mlib_MatrixAdd_S32_S16_Sat
- mlib_MatrixAdd_S32_S32_Mod
- mlib_MatrixAdd_S32_S32_Sat
libmlib(3LIB)

- mlib_MatrixAdd_S32_S32_Sat
- mlib_MatrixAdd_S32_Sat
- mlib_MatrixAdd_S8C_Mod
- mlib_MatrixAdd_S8C_S8C_Mod
- mlib_MatrixAdd_S8C_S8C_Sat
- mlib_MatrixAdd_S8C_Sat
- mlib_MatrixAdd_S8_S8_Mod
- mlib_MatrixAdd_S8_S8_Sat
- mlib_MatrixAdd_S8_Sat
- mlib_MatrixAddS_S16C_Mod
- mlib_MatrixAddS_S16C_S16C_Mod
- mlib_MatrixAddS_S16C_S16C_Sat
- mlib_MatrixAddS_S16C_S8C_Mod
- mlib_MatrixAddS_S16C_S8C_Sat
- mlib_MatrixAddS_S16C_Sat
- mlib_MatrixAddS_S16C_U8C_Mod
- mlib_MatrixAddS_S16C_U8C_Sat
- mlib_MatrixAddS_S16C_S16_Mod
- mlib_MatrixAddS_S16_S16_Mod
- mlib_MatrixAddS_S16_S16_Sat
- mlib_MatrixAddS_S16_S8_Mod
- mlib_MatrixAddS_S16_S8_Sat
- mlib_MatrixAddS_S16_Sat
- mlib_MatrixAddS_S16_U8_Mod
- mlib_MatrixAddS_S16_U8_Sat
- mlib_MatrixAddS_S32C_Mod
- mlib_MatrixAddS_S32C_S16C_Mod
- mlib_MatrixAddS_S32C_S16C_Sat
- mlib_MatrixAddS_S32C_S32C_Mod
- mlib_MatrixAddS_S32C_S32C_Sat
- mlib_MatrixAddS_S32C_Sat
- mlib_MatrixAddS_S32_Mod
- mlib_MatrixAddS_S32_S16_Mod
- mlib_MatrixAddS_S32_S16_Sat
- mlib_MatrixAddS_S32_S32_Mod
- mlib_MatrixAddS_S32_S32_Sat
- mlib_MatrixAddS_S32_Sat
- mlib_MatrixAddS_S8C_Mod
- mlib_MatrixAddS_S8C_S8C_Mod
- mlib_MatrixAddS_S8C_S8C_Sat
- mlib_MatrixAddS_S8C_Sat
- mlib_MatrixAddS_S8_Mod
- mlib_MatrixAddS_S8_S8_Mod
- mlib_MatrixAddS_S8_S8_Sat
- mlib_MatrixAddS_S8_S8_Sat
- mlib_MatrixAddS_S8_Sat
- mlib_MatrixAddS_U8C_Mod
- mlib_MatrixAddS_U8C_Sat
- mlib_MatrixAddS_U8C_U8C_Mod
- mlib_MatrixAddS_U8C_U8C_Sat
- mlib_MatrixAddS_U8_Mod
- mlib_MatrixAddS_U8_Sat
- mlib_MatrixAddS_U8_U8_Mod
- mlib_MatrixAddS_U8_U8_Sat
- mlib_MatrixAdd_U8C_Mod
- mlib_MatrixAdd_U8C_Sat
- mlib_MatrixAdd_U8C_U8C_Mod
- mlib_MatrixAdd_U8C_U8C_Sat
- mlib_MatrixAdd_U8C_Sat
- mlib_MatrixAdd_U8_Sat
- mlib_MatrixAdd_U8_U8_Mod
- mlib_MatrixAdd_U8_U8_Sat
- mlib_MatrixAve_S16
- mlib_MatrixAve_S16C
- mlib_MatrixAve_S16C_S16C
- mlib_MatrixAve_S16C_S8C
- mlib_MatrixAve_S16C_U8C
- mlib_MatrixAve_S16_S16
- mlib_MatrixAve_S16_S8
- mlib_MatrixAve_S16_U8
- mlib_MatrixAve_S32
- mlib_MatrixAve_S32C
- mlib_MatrixAve_S32C_S16C
- mlib_MatrixAve_S32C_S32C
- mlib_MatrixAve_S32_S16
- mlib_MatrixAve_S32_S32
- mlib_MatrixAve_S8
- mlib_MatrixAve_S8C
- mlib_MatrixAve_S8C_S8C
- mlib_MatrixAve_S8_S8
- mlib_MatrixAve_U8
- mlib_MatrixAve_U8C
- mlib_MatrixAve_U8C_U8C
- mlib_MatrixAve_U8_U8
- mlib_MatrixMaximum_D64
- mlib_MatrixMaximum_F32
- mlib_MatrixMaximumMag_D64C
- mlib_MatrixMaximumMag_F32C
- mlib_MatrixMaximumMag_S16C
- mlib_MatrixMaximumMag_S32C
- mlib_MatrixMaximumMag_S8C
- mlib_MatrixMaximumMag_U8C
- mlib_MatrixMaximum_S16
- mlib_MatrixMaximum_S32
- mlib_MatrixMaximum_S8
- mlib_MatrixMaximum_U8
- mlib_MatrixMinimum_D64
- mlib_MatrixMinimum_F32
- mlib_MatrixMinimumMag_D64C
- mlib_MatrixMinimumMag_F32C
- mlib_MatrixMinimumMag_S16C
- mlib_MatrixMinimumMag_S32C
- mlib_MatrixMinimumMag_S8C
- mlib_MatrixMinimumMag_U8C
- mlib_MatrixMinimum_S16
- mlib_MatrixMinimum_S32
- mlib_MatrixMinimum_S8
- mlib_MatrixMinimum_U8
- mlib_MatrixMul_S16C_S16C_Mod
- mlib_MatrixMul_S16C_S16C_Sat
- mlib_MatrixMul_S16C_S8C_Mod
- mlib_MatrixMul_S16C_S8C_Sat
- mlib_MatrixMul_S16C_U8C_Mod
- mlib_MatrixMul_S16C_U8C_Sat
- mlib_MatrixMul_S16_S16_Mod
- mlib_MatrixMul_S16_S16_Sat
- mlib_MatrixMul_S16_S8_Mod
- mlib_MatrixMul_S16_S8_Sat
- mlib_MatrixMul_S16_U8_Mod
- mlib_MatrixMul_S16_U8_Sat
- mlib_MatrixMul_S32C_S16C_Mod
- mlib_MatrixMul_S32C_S16C_Sat
- mlib_MatrixMul_S32C_S32C_Mod
- mlib_MatrixMul_S32C_S32C_Sat
- mlib_MatrixMul_S32C_S32C_Sat
- mlib_MatrixMul_S32C_S32C_Sat
- mlib_MatrixMul_S32_S16_Mod
- mlib_MatrixMul_S32_S16_Sat
- mlib_MatrixMul_S32_S32_Mod
- mlib_MatrixMul_S32_S32_Sat
- mlib_MatrixMul_S8C_S8C_Mod
- mlib_MatrixMul_S8C_S8C_Sat
- mlib_MatrixMul_S8_S8_Mod
- mlib_MatrixMul_S8_S8_Sat
- mlib_MatrixMulShift_S16C_S16C_Mod
- mlib_MatrixMulShift_S16C_S16C_Sat
- mlib_MatrixMulShift_S16_S16_Mod
- mlib_MatrixMulShift_S16_S16_Sat
- mlib_MatrixMulS_S16C_Mod
- mlib_MatrixMulS_S16C_S16C_Mod
- mlib_MatrixMulS_S16C_S16C_Sat
- mlib_MatrixMulS_S16C_S8C_Mod
- mlib_MatrixMulS_S16C_S8C_Sat
- mlib_MatrixMulS_S16C_Sat
- mlib_MatrixMulS_S16C_U8C_Mod
- mlib_MatrixMulS_S16C_U8C_Sat
- mlib_MatrixMulS_S16_Mod
- mlib_MatrixMulS_S16_S16_Mod
- mlib_MatrixMulS_S16_S16_Sat
- mlib_MatrixMulS_S16_S8_Mod
- mlib_MatrixMulS_S16_S8_Sat
- mlib_MatrixMulS_S16_U8_Mod
- mlib_MatrixMulS_S16_U8_Sat
- mlib_MatrixMulS_S32C_Mod
- mlib_MatrixMulS_S32C_S16C_Mod
- mlib_MatrixMulS_S32C_S16C_Sat
- mlib_MatrixMulS_S32C_S32C_Mod
- mlib_MatrixMulS_S32C_S32C_Sat
- mlib_MatrixMulS_S32C_Sat
- mlib_MatrixMulS_S8C_Mod
- mlib_MatrixMulS_S8C_S8C_Mod
- mlib_MatrixMulS_S8C_S8C_Sat
- mlib_MatrixMulS_S8C_Sat
- mlib_MatrixMulS_S8_Mod
- mlib_MatrixMulS_S8_S8_Mod
- mlib_MatrixMulS_S8_S8_Sat
- mlib_MatrixMulS_S8_Sat
- mlib_MatrixMulSShift_S16C_Mod
- mlib_MatrixMulSShift_S16C_S16C_Mod
- mlib_MatrixMulSShift_S16C_S16C_Sat
- mlib_MatrixMulSShift_S16C_Sat
- mlib_MatrixMulSShift_S16_Mod
- mlib_MatrixMulSShift_S16_S16_Mod
- mlib_MatrixMulSShift_S16_S16_Sat
- mlib_MatrixMulSShift_S16_Sat
- mlib_MatrixMulSShift_S32C_Mod
- mlib_MatrixMulSShift_S32C_S32C_Mod
- mlib_MatrixMulSShift_S32C_S32C_Sat
- mlib_MatrixMulSShift_S32C_Sat
- mlib_MatrixMulSShift_S32_Mod
- mlib_MatrixMulSShift_S32_S32_Mod
- mlib_MatrixMulSShift_S32_S32_Sat
- mlib_MatrixMulSShift_S32_Sat
- mlib_MatrixMulSShift_S8C_Mod
- mlib_MatrixMulSShift_S8C_S8C_Mod
- mlib_MatrixMulSShift_S8C_S8C_Sat
- mlib_MatrixMulSShift_S8C_Sat
- mlib_MatrixMulSShift_S8_Mod
- mlib_MatrixMulSShift_S8_S8_Mod
- mlib_MatrixMulSShift_S8_S8_Sat
- mlib_MatrixMulSShift_S8_Sat
- mlib_MatrixMulSShift_U8C_Mod
- mlib_MatrixMulSShift_U8C_U8C_Mod
- mlib_MatrixMulSShift_U8C_U8C_Sat
- mlib_MatrixMulSShift_U8C_Sat
- mlib_MatrixMulS_U8C_Mod
- mlib_MatrixMulS_U8C_U8C_Mod
- mlib_MatrixMulS_U8C_Sat
- mlib_MatrixMulS_U8_Mod
- mlib_MatrixMulS_U8_U8_Mod
- mlib_MatrixMulS_U8_U8_Sat
- mlib_MatrixMulU8C_U8C_Mod
- mlib_MatrixMulU8C_U8C_Sat
- mlib_MatrixMulU8C_U8C_Mod
- mlib_MatrixScale_S16C_S8C_Sat
- mlib_MatrixScale_S16C_Sat
- mlib_MatrixScale_S16C_U8C_Mod
- mlib_MatrixScale_S16C_U8C_Sat
- mlib_MatrixScale_S16_Mod
- mlib_MatrixScale_S16_S16_Mod
- mlib_MatrixScale_S16_S16_Sat
- mlib_MatrixScale_S16_S8_Mod
- mlib_MatrixScale_S16_S8_Sat
- mlib_MatrixScale_S16_Sat
- mlib_MatrixScale_S16_U8_Mod
- mlib_MatrixScale_S16_U8_Sat
- mlib_MatrixScale_S32C_Mod
- mlib_MatrixScale_S32C_S16C_Mod
- mlib_MatrixScale_S32C_S16C_Sat
- mlib_MatrixScale_S32C_S32C_Mod
- mlib_MatrixScale_S32C_S32C_Sat
- mlib_MatrixScale_S32C_Sat
- mlib_MatrixScale_S32_Mod
- mlib_MatrixScale_S32_S16_Mod
- mlib_MatrixScale_S32_S16_Sat
- mlib_MatrixScale_S32_S32_Mod
- mlib_MatrixScale_S32_S32_Sat
- mlib_MatrixScale_S32_Sat
- mlib_MatrixScale_S8C_Mod
- mlib_MatrixScale_S8C_S8C_Mod
- mlib_MatrixScale_S8C_S8C_Sat
- mlib_MatrixScale_S8C_Sat
- mlib_MatrixScale_S8_Mod
- mlib_MatrixScale_S8_S8_Mod
- mlib_MatrixScale_S8_S8_Sat
- mlib_MatrixScale_S8_Sat
- mlib_MatrixScale_U8C_Mod
- mlib_MatrixScale_U8C_U8C_Mod
- mlib_MatrixScale_U8C_U8C_Sat
- mlib_MatrixScale_U8_Mod
- mlib_MatrixScale_U8_Sat
- mlib_MatrixScale_U8_U8_Mod
- mlib_MatrixScale_U8_U8_Sat
- mlib_MatrixSub_S16C_Mod
- mlib_MatrixSub_S16C_S16C_Mod
- mlib_MatrixSub_S16C_S16C_Sat
- mlib_MatrixSub_S16C_S8C_Mod
- mlib_MatrixSub_S16C_S8C_Sat
- mlib_MatrixSub_S16C_S16C_Mod
- mlib_MatrixSub_S16C_S8C_Sat
- mlib_MatrixSub_S16C_Sat
- mlib_MatrixSub_S16C_U8C_Mod
- mlib_MatrixSub_S16C_U8C_Sat
- mlib_MatrixSub_S16_Mod
- mlib_MatrixSub_S16_S16_Mod
- mlib_MatrixSub_S16_S16_Sat
- mlib_MatrixSub_S16_S8_Mod
- mlib_MatrixSub_S16_S8_Sat
- mlib_MatrixSub_S16_Sat
- mlib_MatrixSub_S16_U8_Mod
- mlib_MatrixSub_S16_U8_Sat
- mlib_MatrixSub_S32C_Mod
- mlib_MatrixSub_S32C_S16C_Mod
- mlib_MatrixSub_S32C_S16C_Sat
- mlib_MatrixSub_S32C_S32C_Mod
- mlib_MatrixSub_S32C_S32C_Sat
- mlib_MatrixSub_S32C_Sat
- mlib_MatrixSub_S32_Mod
- mlib_MatrixSub_S32_S16_Mod
- mlib_MatrixSub_S32_S16_Sat
- mlib_MatrixSub_S32_S32_Mod
- mlib_MatrixSub_S32_S32_Sat
- mlib_MatrixSub_S32_Sat
- mlib_MatrixSubS_S16C_Mod
- mlib_MatrixSubS_S16C_S16C_Mod
- mlib_MatrixSubS_S16C_S16C_Sat
- mlib_MatrixSubS_S16C_S8C_Mod
- mlib_MatrixSubS_S16C_S8C_Sat
- mlib_MatrixSubS_S16C_Sat
- mlib_MatrixSubS_S16C_U8C_Mod
- mlib_MatrixSubS_S16C_U8C_Sat
- mlib_MatrixSubS_S16_Mod
- mlib_MatrixSubS_S16_S16_Mod
- mlib_MatrixSubS_S16_S16_Sat
- mlib_MatrixSubS_S16_S8_Mod
- mlib_MatrixSubS_S16_S8_Sat
- mlib_MatrixSubS_S16_S8_Sat
- mlib_MatrixSubS_S16_Sat
- mlib_MatrixSubS_S16_U8_Mod
- mlib_MatrixSubS_S16_U8_Sat
- mlib_MatrixSubS_S32C_Mod
- mlib_MatrixSubS_S32C_S16C_Mod
- mlib_MatrixSubS_S32C_S16C_Sat
- mlib_MatrixSubS_S32C_S32C_Mod
- mlib_MatrixSubS_S32C_S32C_Sat
- mlib_MatrixSubS_S32C_Sat
- mlib_MatrixSubS_S32_Mod
- mlib_MatrixSubS_S32_S16_Mod
- mlib_MatrixSubS_S32_S16_Sat
- mlib_MatrixSubS_S32_S32_Mod
- mlib_MatrixSubS_S32_S32_Sat
- mlib_MatrixSubS_S32_Sat
- mlib_MatrixSubS_S8C_Mod
- mlib_MatrixSubS_S8C_S8C_Mod
- mlib_MatrixSubS_S8C_S8C_Sat
- mlib_MatrixSubS_S8C_Sat
- mlib_MatrixSubS_S8_Mod
- mlib_MatrixSubS_S8_S8_Mod
- mlib_MatrixSubS_S8_S8_Sat
- mlib_MatrixSubS_S8_Sat
- mlib_MatrixSubS_U8C_Mod
- mlib_MatrixSubS_U8C_Sat
- mlib_MatrixSubS_U8C_U8C_Mod
- mlib_MatrixSubS_U8C_U8C_Sat
- mlib_MatrixSubS_U8C_U8_Mod
- mlib_MatrixSubS_U8_Sat
- mlib_MatrixSubS_U8_U8_Mod
- mlib_MatrixSubS_U8_U8_Sat
- mlib_MatrixSubU8C_Mod
- mlib_MatrixSubU8C_Sat
- mlib_MatrixSubU8C_U8C_Mod
- mlib_MatrixSubU8C_U8C_Sat
- mlib_MatrixSubU8C_U8_Mod
- mlib_MatrixSubU8_Sat
- mlib_MatrixSubU8_U8_Mod
- mlib_MatrixSubU8_U8_Sat
- mlib_MatrixTranspose_S16
- mlib_MatrixTranspose_S16C
- mlib_MatrixTranspose_S16C_S16C
- mlib_MatrixTranspose_S16_S16

Library Interfaces and Headers 233
- mlib_MatrixTranspose_S32
- mlib_MatrixTranspose_S32C
- mlib_MatrixTranspose_S32C_S32C
- mlib_MatrixTranspose_S32_S32
- mlib_MatrixTranspose_S8
- mlib_MatrixTranspose_S8C
- mlib_MatrixTranspose_S8C_S8C
- mlib_MatrixTranspose_S8_S8
- mlib_MatrixTranspose_U8
- mlib_MatrixTranspose_U8C
- mlib_MatrixTranspose_U8C_U8C
- mlib_MatrixTranspose_U8_U8
- mlib_MatrixUnit_S16
- mlib_MatrixUnit_S16C
- mlib_MatrixUnit_S32
- mlib_MatrixUnit_S32C
- mlib_MatrixUnit_S8
- mlib_MatrixUnit_S8C
- mlib_MatrixUnit_U8
- mlib_MatrixUnit_U8C
- mlib_VectorAdd_S16C_Mod
- mlib_VectorAdd_S16C_S16C_Mod
- mlib_VectorAdd_S16C_S16C_Sat
- mlib_VectorAdd_S16C_S8C_Mod
- mlib_VectorAdd_S16C_S8C_Sat
- mlib_VectorAdd_S16C_Sat
- mlib_VectorAdd_S16C_U8C_Mod
- mlib_VectorAdd_S16C_U8C_Sat
- mlib_VectorAdd_S16_Mod
- mlib_VectorAdd_S16_S16_Mod
- mlib_VectorAdd_S16_S16_Sat
- mlib_VectorAdd_S16_S8_Mod
- mlib_VectorAdd_S16_S8_Sat
- mlib_VectorAdd_S16_Sat
- mlib_VectorAdd_S16_U8_Mod
- mlib_VectorAdd_S16_U8_Sat
- mlib_VectorAdd_S32C_Mod
- mlib_VectorAdd_S32C_S16C_Mod
- mlib_VectorAdd_S32C_S16C_Sat
- mlib_VectorAdd_S32C_S32C_Mod
- mlib_VectorAdd_S32C_S32C_Sat
- mlib_VectorAdd_S32C_Sat
- mlib_VectorAdd_S32C_U8C_Mod
- mlib_VectorAdd_S32C_U8C_Sat
- mlib_VectorAdd_S32_Mod
- mlib_VectorAdd_S32_S16_Mod
- mlib_VectorAdd_S32_S16_Sat
- mlib_VectorAdd_S32_S32_Mod
- mlib_VectorAdd_S32_S32_Sat
- mlib_VectorAdd_S32_Sat
- mlib_VectorAdd_S8C_Mod
- mlib_VectorAdd_S8C_S8C_Mod
- mlib_VectorAdd_S8C_S8C_Sat
- mlib_VectorAdd_S8C_Sat
- mlib_VectorAdd_S8_Mod
- mlib_VectorAdd_S8_S8_Mod
- mlib_VectorAdd_S8_S8_Sat
- mlib_VectorAdd_S8_Sat
- mlib_VectorAddS_S16C_Mod
- mlib_VectorAddS_S16C_S16C_Mod
- mlib_VectorAddS_S16C_S16C_Sat
- mlib_VectorAddS_S16C_S8C_Mod
- mlib_VectorAddS_S16C_S8C_Sat
- mlib_VectorAddS_S16C_Sat
- mlib_VectorAddS_S16C_U8C_Mod
- mlib_VectorAddS_S16C_U8C_Sat
- mlib_VectorAddS_S16_S16_Mod
- mlib_VectorAddS_S16_S16_Sat
- mlib_VectorAddS_S16_S8_Mod
- mlib_VectorAddS_S16_S8_Sat
- mlib_VectorAddS_S16_Sat
- mlib_VectorAddS_S16_U8_Mod
- mlib_VectorAddS_S16_U8_Sat
- mlib_VectorAddS_S32C_Mod
- mlib_VectorAddS_S32C_S16C_Mod
- mlib_VectorAddS_S32C_S16C_Sat
- mlib_VectorAddS_S32C_S32C_Mod
- mlib_VectorAddS_S32C_S32C_Sat
- mlib_VectorAddS_S32C_Sat
- mlib_VectorAddS_S32_Mod
- mlib_VectorAddS_S32_S16_Mod
- mlib_VectorAddS_S32_S16_Sat
- mlib_VectorAddS_S32_S32_Mod
- mlib_VectorAddS_S32_S32_Sat
- mlib_VectorAddS_S32_Sat
- mlib_VectorAddS_S8C_Mod
- mlib_VectorAddS_S8C_S8C_Mod
- mlib_VectorAddS_S8C_S8C_Sat
- mlib_VectorAddS_S8C_Sat
- mlib_VectorAddS_S8_Mod
- mlib_VectorAddS_S8_S8_Mod
- mlib_VectorAddS_S8_S8_Sat
- mlib_VectorAddS_S8_Sat
- mlib_VectorAddS_U8C_Mod
- mlib_VectorAddS_U8C_Sat
- mlib_VectorAddS_U8C_U8C_Mod
- mlib_VectorAddS_U8C_U8C_Sat
- mlib_VectorAddS_U8_Mod
- mlib_VectorAddS_U8_Sat
- mlib_VectorAddS_U8_U8_Mod
- mlib_VectorAddS_U8_U8_Sat
- mlib_VectorAdd_U8C_Mod
- mlib_VectorAdd_U8C_Sat
- mlib_VectorAdd_U8C_U8C_Mod
- mlib_VectorAdd_U8C_U8C_Sat
- mlib_VectorAdd_U8_Mod
- mlib_VectorAdd_U8_Sat
- mlib_VectorAdd_U8_U8_Mod
- mlib_VectorAdd_U8_U8_Sat
- mlib_VectorAng_S16C
- mlib_VectorAng_S32C
- mlib_VectorAng_S8C
- mlib_VectorAng_U8C
- mlib_VectorAve_S16
- mlib_VectorAve_S16C
- mlib_VectorAve_S16C_S16C
- mlib_VectorAve_S16C_S8C
- mlib_VectorAve_S16C_U8C
- mlib_VectorAve_S16_S16
- mlib_VectorAve_S16_S8
- mlib_VectorAve_S16_U8
- mlib_VectorAve_S32
- mlib_VectorAve_S32C
- mlib_VectorAve_S32C_S16C
- mlib_VectorAve_S32C_S32C
- mlib_VectorAve_S32_S16
- mlib_VectorAve_S32_S32
- mlib_VectorAve_S8
- mlib_VectorAve_S8C
- mlib_VectorAve_S8C_S8C
- mlib_VectorAve_S8_S8
- mlib_VectorAve_U8
- mlib_VectorAve_U8C
- mlib_VectorAve_U8C_U8C
- mlib_VectorAve_U8_U8
- mlib_VectorConjRev_S16C_S16C_Sat
- mlib_VectorConjRev_S32C_S32C_Sat
- mlib_VectorConjRev_S8C_S8C_Sat
- mlib_VectorConj_S16C_S16C_Sat
- mlib_VectorConj_S16C_Sat
- mlib_VectorConj_S32C_S32C_Sat
- mlib_VectorConj_S32C_Sat
- mlib_VectorConj_S8C_S8C_Sat
- mlib_VectorConj_S8C_Sat
- mlib_VectorConjSymExt_S16C_S16C_Sat
- mlib_VectorConjSymExt_S32C_S32C_Sat
- mlib_VectorConjSymExt_S8C_S8C_Sat
- mlib_VectorConvert_S16C_S32C_Mod
- mlib_VectorConvert_S16C_S32C_Sat
- mlib_VectorConvert_S16C_S8C_Mod
- mlib_VectorConvert_S16C_S8C_Sat
- mlib_VectorConvert_S16C_U8C_Mod
- mlib_VectorConvert_S16C_U8C_Sat
- mlib_VectorConvert_S16_S32_Mod
- mlib_VectorConvert_S16_S32_Sat
- mlib_VectorConvert_S16_S8_Mod
- mlib_VectorConvert_S16_S8_Sat
- mlib_VectorConvert_S16_U8_Mod
- mlib_VectorConvert_S16_U8_Sat
- mlib_VectorConvert_S32C_S16C_Mod
- mlib_VectorConvert_S32C_S16C_Sat
- mlib_VectorConvert_S32C_S8C_Mod
- mlib_VectorConvert_S32C_S8C_Sat
- mlib_VectorConvert_S32C_U8C_Mod
- mlib_VectorConvert_S32C_U8C_Sat
- mlib_VectorConvert_S32_S16_Mod
- mlib_VectorConvert_S32_S16_Sat
- mlib_VectorConvert_S32_S8_Mod
- mlib_VectorConvert_S32_S8_Sat
- mlib_VectorConvert_S32_U8_Mod
- mlib_VectorConvert_S32_U8_Sat
- mlib_VectorConvert_S8C_S16C_Mod
- mlib_VectorConvert_S8C_S16C_Sat
- mlib_VectorConvert_S8C_S32C_Mod
- mlib_VectorConvert_S8C_S32C_Sat
- mlib_VectorConvert_S8C_U8C_Mod
- mlib_VectorConvert_S8C_U8C_Sat
- mlib_VectorConvert_S8_S16_Mod
- mlib_VectorConvert_S8_S16_Sat
- mlib_VectorConvert_S8_S32_Mod
- mlib_VectorConvert_S8_S32_Sat
- mlib_VectorConvert_S8_U8_Mod
- mlib_VectorConvert_S8_U8_Sat
- mlib_VectorConvert_U8C_S16C_Mod
- mlib_VectorConvert_U8C_S16C_Sat
- mlib_VectorConvert_U8C_S32C_Mod
- mlib_VectorConvert_U8C_S32C_Sat
- mlib_VectorConvert_U8C_S8C_Mod
- mlib_VectorConvert_U8C_S8C_Sat
- mlib_VectorConvert_U8_S16_Mod
- mlib_VectorConvert_U8_S16_Sat
- mlib_VectorConvert_U8_S32_Mod
- mlib_VectorConvert_U8_S32_Sat
- mlib_VectorDistance_S16_Sat
- mlib_VectorDistance_S32_Sat
- mlib_VectorDistance_S8_Sat
- mlib_VectorDotProd_S16C_Sat
- mlib_VectorDotProd_S16_Sat
- mlib_VectorDotProd_S32C_Sat
- mlib_VectorDotProd_S32_Sat
- mlib_VectorDotProd_S8C_Sat
- mlib_VectorDotProd_S8_Sat
- mlib_VectorDotProd_U8C_Sat
- mlib_VectorDotProd_U8_Sat
- mlib_VectorMag_S16C
- mlib_VectorMag_S32C
- mlib_VectorMag_S8C
- mlib_VectorMag_U8C
- mlib_VectorMaximum_D64
- mlib_VectorMaximum_F32
- mlib_VectorMaximumMag_D64C
- mlib_VectorMaximumMag_F32C
- mlib_VectorMaximumMag_S16C
- mlib_VectorMaximumMag_S32C
- mlib_VectorMaximumMag_S8C
- mlib_VectorMaximumMag_U8C
- mlib_VectorMaximum_S16
- mlib_VectorMaximum_S32
- mlib_VectorMaximum_S8
- mlib_VectorMaximum_U8
- mlib_VectorMerge_S16C_S16
- mlib_VectorMerge_S32C_S32
- mlib_VectorMerge_S8C_S8
- mlib_VectorMerge_U8C_U8
- mlib_VectorMinimum_D64
- mlib_VectorMinimum_F32
- mlib_VectorMinimumMag_D64C
- mlib_VectorMinimumMag_F32C
- mlib_VectorMinimumMag_S16C
- mlib_VectorMinimumMag_S32C
- mlib_VectorMinimumMag_S8C
- mlib_VectorMinimumMag_U8C
- mlib_VectorMinimum_S16
- mlib_VectorMinimum_S32
- mlib_VectorMinimum_S8
- mlib_VectorMinimum_U8
- mlib_VectorMulM_S16C_S16C_Mod
- mlib_VectorMulM_S16C_S16C_Sat
- mlib_VectorMulM_S16C_S8C_Mod
- mlib_VectorMulM_S16C_S8C_Sat
- mlib_VectorMulM_S16C_U8C_Mod
- mlib_VectorMulM_S16C_U8C_Sat
- mlib_VectorMulM_S16_S16_Mod
- mlib_VectorMulM_S16_S16_Sat
- mlib_VectorMulM_S16_S8_Mod
- mlib_VectorMulM_S16_S8_Sat
- mlib_VectorMulM_S16_U8_Mod
- mlib_VectorMulM_S16_U8_Sat
- mlib_VectorMulM_S32C_S16C_Mod
- mlib_VectorMulM_S32C_S16C_Sat
- mlib_VectorMulM_S32C_S32C_Mod
- mlib_VectorMulM_S32C_S32C_Sat
- mlib_VectorMulM_S32_S16_Mod
- mlib_VectorMulM_S32_S16_Sat
- mlib_VectorMulM_S32_S32_Mod
- mlib_VectorMulM_S32_S32_Sat
- mlib_VectorMulM_S8C_S8C_Mod
- mlib_VectorMulM_S8C_S8C_Sat
- mlib_VectorMulM_S8_S8_Mod
- mlib_VectorMulM_S8_S8_Sat
- mlib_VectorMulMShift_S16C_S16C_Mod
- mlib_VectorMulMShift_S16C_S16C_Sat
- mlib_VectorMulMShift_S16_S16_Mod
- mlib_VectorMulMShift_S16_S16_Sat
- mlib_VectorMulM_U8C_U8C_Mod
- mlib_VectorMulM_U8C_U8C_Sat
- mlib_VectorMulM_U8_U8_Mod
- mlib_VectorMulM_U8_U8_Sat
- mlib_VectorMul_S16C_Mod
- mlib_VectorMul_S16C_S16C_Mod
- mlib_VectorMul_S16C_S16C_Sat
- mlib_VectorMul_S16C_S8C_Mod
- mlib_VectorMul_S16C_S8C_Sat
- mlib_VectorMul_S16_S16_Mod
- mlib_VectorMul_S16_S16_Sat
- mlib_VectorMul_S16_S8_Mod
- mlib_VectorMul_S16_S8_Sat
- mlib_VectorMul_S16_Sat
- mlib_VectorMul_S16_U8_Mod
- mlib_VectorMul_S16_U8_Sat
- mlib_VectorMul_S32C_Mod
- mlib_VectorMul_S32C_S16C_Mod
- mlib_VectorMul_S32C_S16C_Sat
- mlib_VectorMul_S32C_S32C_Mod
- mlib_VectorMul_S32C_S32C_Sat
- mlib_VectorMul_S32C_Sat
- mlib_VectorMul_S32_Mod
- mlib_VectorMul_S32_S16_Mod
- mlib_VectorMul_S32_S16_Sat
- mlib_VectorMul_S32_S32_Mod
- mlib_VectorMul_S32_S32_Sat
- mlib_VectorMul_S8C_Mod
- mlib_VectorMul_S8C_S8C_Mod
- mlib_VectorMul_S8C_S8C_Sat
- mlib_VectorMul_S8C_S8C_Sat
- mlib_VectorMul_S8C_Sat
- mlib_VectorMul_S8_Mod
- mlib_VectorMul_S8_S8_Mod
- mlib_VectorMul_S8_S8_Sat
- mlib_VectorMul_S8_Sat
- mlib_VectorMulSAdd_S16C_Mod
- mlib_VectorMulSAdd_S16C_S16C_Mod
- mlib_VectorMulSAdd_S16C_S16C_Sat
- mlib_VectorMulSAdd_S16C_S8C_Mod
- mlib_VectorMulSAdd_S16C_S8C_Sat
- mlib_VectorMulSAdd_S16C_Sat
- mlib_VectorMulSAdd_S16C_U8C_Mod
- mlib_VectorMulSAdd_S16C_U8C_Sat
- mlib_VectorMulSAdd_S16_Mod
- mlib_VectorMulSAdd_S16_S16_Mod
- mlib_VectorMulSAdd_S16_S16_Sat
- mlib_VectorMulSAdd_S16_S8_Mod
- mlib_VectorMulSAdd_S16_S8_Sat
- mlib_VectorMulSAdd_S16_Sat
- mlib_VectorMulSAdd_S16_U8_Mod
- mlib_VectorMulSAdd_S16_U8_Sat
- mlib_VectorMulSAdd_S32C_Mod
- mlib_VectorMulSAdd_S32C_S16C_Mod
- mlib_VectorMulSAdd_S32C_S16C_Sat
- mlib_VectorMulSAdd_S32C_S32C_Mod
- mlib_VectorMulSAdd_S32C_S32C_Sat
- mlib_VectorMulSAdd_S32C_Sat
- mlib_VectorMulSAdd_S32_Mod
- mlib_VectorMulSAdd_S32_S16_Mod
- mlib_VectorMulSAdd_S32_S16_Sat
- mlib_VectorMulSAdd_S32_S32_Mod
- mlib_VectorMulSAdd_S32_S32_Sat
- mlib_VectorMulSAdd_S32_Sat
- mlib_VectorMulSAdd_S8C_Mod
- mlib_VectorMulSAdd_S8C_S8C_Mod
- mlib_VectorMulSAdd_S8C_S8C_Sat
- mlib_VectorMulSAdd_S8C_Sat
- mlib_VectorMulSAdd_S8_Mod
- mlib_VectorMulSAdd_S8_S8_Mod
- mlib_VectorMulSAdd_S8_S8_Sat
- mlib_VectorMulSAdd_S8_Sat
- mlib_VectorMulSAdd_U8C_Mod
- mlib_VectorMulSAdd_U8C_Sat
<table>
<thead>
<tr>
<th>Function Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>mlib_VectorMulSAdd_U8C_U8C_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulSAdd_U8C_U8C_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulSAdd_U8_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulSAdd_U8_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulSAdd_U8_U8_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulSAdd_U8_U8_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S16C_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S16C_S16C_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S16C_S16C_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S16C_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S16_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S16_S16_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S16_S16_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S16_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S32C_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S32C_S32C_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S32C_S32C_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S32C_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S32_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S32_S32_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S32_S32_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S32_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S8C_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S8C_S8C_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S8C_S8C_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S8C_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S8_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S8_S8_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S8_S8_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_S8_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_U8C_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_U8C_U8C_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_U8C_U8C_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_U8_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_U8_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulShift_U8_U8_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulShift_U8_U8_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulS_S16C_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulS_S16C_S16C_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulS_S16C_S16C_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulS_S16C_S8C_Mod</td>
</tr>
<tr>
<td>mlib_VectorMulS_S16C_S8C_Sat</td>
</tr>
<tr>
<td>mlib_VectorMulS_S16C_Sat</td>
</tr>
</tbody>
</table>
- mlib_VectorMulS_S16C_U8C_Mod
- mlib_VectorMulS_S16C_U8C_Sat
- mlib_VectorMulS_S16_Mod
- mlib_VectorMulS_S16_S16_Mod
- mlib_VectorMulS_S16_S16_Sat
- mlib_VectorMulS_S16_S8_Mod
- mlib_VectorMulS_S16_S8_Sat
- mlib_VectorMulS_S16_Sat
- mlib_VectorMulS_S16_U8_Mod
- mlib_VectorMulS_S16_U8_Sat
- mlib_VectorMulS_S32C_Mod
- mlib_VectorMulS_S32C_S16C_Mod
- mlib_VectorMulS_S32C_S16C_Sat
- mlib_VectorMulS_S32C_S32C_Mod
- mlib_VectorMulS_S32C_S32C_Sat
- mlib_VectorMulS_S32C_Sat
- mlib_VectorMulS_S32_Mod
- mlib_VectorMulS_S32_S16_Mod
- mlib_VectorMulS_S32_S16_Sat
- mlib_VectorMulS_S32_S32_Mod
- mlib_VectorMulS_S32_S32_Sat
- mlib_VectorMulS_S32_Sat
- mlib_VectorMulS_S8C_Mod
- mlib_VectorMulS_S8C_S8C_Mod
- mlib_VectorMulS_S8C_S8C_Sat
- mlib_VectorMulS_S8C_Sat
- mlib_VectorMulS_S8_Mod
- mlib_VectorMulS_S8_S8_Mod
- mlib_VectorMulS_S8_S8_Sat
- mlib_VectorMulS_S8_Sat
- mlib_VectorMulSShift_S16C_Mod
- mlib_VectorMulSShift_S16C_S16C_Mod
- mlib_VectorMulSShift_S16C_S16C_Sat
- mlib_VectorMulSShift_S16C_Sat
- mlib_VectorMulSShift_S16_Mod
- mlib_VectorMulSShift_S16_S16_Mod
- mlib_VectorMulSShift_S16_S16_Sat
- mlib_VectorMulSShift_S16_Sat
- mlib_VectorMulSShift_S32C_Mod
- mlib_VectorMulSShift_S32C_S32C_Mod
- mlib_VectorMulSShift_S32C_S32C_Sat
- mlib_VectorMulSShift_S32C_Sat
- mlib_VectorMulSShift_S32_Mod
- mlib_VectorMulSShift_S32_S32_Mod
- mlib_VectorMulSShift_S32_S32_Sat
- mlib_VectorMulSShift_S32_Sat
- mlib_VectorMulSShift_S32C_S32C_Mod
- mlib_VectorMulSShift_S32C_S32C_Sat
- mlib_VectorMulSShift_S32C_Sat
- mlib_VectorMulSShift_S32_Mod
- mlib_VectorMulSShift_S32_S32_Mod
- mlib_VectorMulSShift_S32_S32_Sat
- mlib_VectorMulSShift_S32_Sat
- mlib_VectorMulSShift_S8C_Mod
- mlib_VectorMulSShift_S8C_S8C_Mod
- mlib_VectorMulSShift_S8C_S8C_Sat
- mlib_VectorMulSShift_S8C_Sat
- mlib_VectorMulSShift_S8_S8_Mod
- mlib_VectorMulSShift_S8_S8_Sat
- mlib_VectorMulSShift_S8_Sat
- mlib_VectorMulSShift_U8C_Mod
- mlib_VectorMulSShift_U8C_Sat
- mlib_VectorMulSShift_U8C_U8C_Mod
- mlib_VectorMulSShift_U8C_U8C_Sat
- mlib_VectorMulSShift_U8C_U8C_Sat
- mlib_VectorMulSShift_U8_S8_Mod
- mlib_VectorMulSShift_U8_S8_Sat
- mlib_VectorMulS_U8C_Mod
- mlib_VectorMulS_U8C_Sat
- mlib_VectorMulS_U8C_U8C_Mod
- mlib_VectorMulS_U8C_U8C_Sat
- mlib_VectorMulS_U8_Mod
- mlib_VectorMulS_U8_Sat
- mlib_VectorMulS_U8_U8_Mod
- mlib_VectorMulS_U8_U8_Sat
- mlib_VectorMul_U8C_Mod
- mlib_VectorMul_U8C_Sat
- mlib_VectorMul_U8C_U8C_Mod
- mlib_VectorMul_U8C_U8C_Sat
- mlib_VectorMul_U8_S8_Mod
- mlib_VectorMul_U8_S8_Sat
- mlib_VectorMul_U8_U8_Mod
- mlib_VectorMul_U8_U8_Sat
- mlib_VectorNorm_S16_Sat
- mlib_VectorNorm_S32_Sat
- mlib_VectorNorm_S8_Sat
- mlib_VectorNorm_U8_Sat
- mlib_VectorReverseByteOrder
- mlib_VectorReverseByteOrder_D64
- mlib_VectorReverseByteOrder_D64_D64
- mlib_VectorReverseByteOrder_F32
- mlib_VectorReverseByteOrder_F32_F32
- mlib_VectorReverseByteOrder_Inp
- mlib_VectorReverseByteOrder_S16
- mlib_VectorReverseByteOrder_S16_S16
- mlib_VectorReverseByteOrder_S32
- mlib_VectorReverseByteOrder_S32_S32
- mlib_VectorReverseByteOrder_S64
- mlib_VectorReverseByteOrder_S64_S64
- mlib_VectorReverseByteOrder_U16
- mlib_VectorReverseByteOrder_U16_U16
- mlib_VectorReverseByteOrder_U32
- mlib_VectorReverseByteOrder_U32_U32
- mlib_VectorReverseByteOrder_U64
- mlib_VectorReverseByteOrder_U64_U64
- mlib_VectorScale_S16C_Mod
- mlib_VectorScale_S16C_S16C_Mod
- mlib_VectorScale_S16C_S16C_Sat
- mlib_VectorScale_S16C_S8C_Mod
- mlib_VectorScale_S16C_S8C_Sat
- mlib_VectorScale_S16C_Sat
- mlib_VectorScale_S16C_U8C_Mod
- mlib_VectorScale_S16C_U8C_Sat
- mlib_VectorScale_S16_Mod
- mlib_VectorScale_S16_S16_Mod
- mlib_VectorScale_S16_S16_Sat
- mlib_VectorScale_S16_S8_Mod
- mlib_VectorScale_S16_S8_Sat
- mlib_VectorScale_S16_Sat
- mlib_VectorScale_S16_U8_Mod
- mlib_VectorScale_S16_U8_Sat
- mlib_VectorScale_S32C_Mod
- mlib_VectorScale_S32C_S16C_Mod
- mlib_VectorScale_S32C_S16C_Sat
- mlib_VectorScale_S32C_S32C_Mod
- mlib_VectorScale_S32C_S32C_Sat
- mlib_VectorScale_S32C_Sat
- mlib_VectorScale_S32_Mod
- mlib_VectorScale_S32_S16_Mod
- mlib_VectorScale_S32_S16_Sat
- mlib_VectorScale_S32_S32_Mod
- mlib_VectorScale_S32_S32_Sat
- mlib_VectorScale_S32_Sat
- mlib_VectorScale_S8C_Mod
- mlib_VectorScale_S8C_S8C_Mod
- mlib_VectorScale_S8C_S8C_Sat
- mlib_VectorScale_S8C_Sat
- mlib_VectorScale_S8_Mod
- mlib_VectorScale_S8_S8_Mod
- mlib_VectorScale_S8_S8_Sat
- mlib_VectorScale_S8_Sat
- mlib_VectorScale_U8C_Mod
- mlib_VectorScale_U8C_S8
- mlib_VectorScale_U8C_S8_Sat
- mlib_VectorScale_U8C_Sat
- mlib_VectorScale_U8C_U8C_Mod
- mlib_VectorScale_U8C_U8C_Sat
- mlib_VectorScale_U8_Mod
- mlib_VectorScale_U8_Sat
- mlib_VectorScale_U8_U8_Mod
- mlib_VectorScale_U8_U8_Sat
- mlib_VectorSet_S16
- mlib_VectorSet_S16C
- mlib_VectorSet_S32
- mlib_VectorSet_S32C
- mlib_VectorSet_S8
- mlib_VectorSet_S8C
- mlib_VectorSet_U8
- mlib_VectorSet_U8C
- mlib_VectorSplit_S16_S16C
- mlib_VectorSplit_S32_S32C
- mlib_VectorSplit_S8_S8C
- mlib_VectorSplit_U8_U8C
- mlib_VectorSub_S16C_Mod
- mlib_VectorSub_S16C_S16C_Mod
- mlib_VectorSub_S16C_S16C_Sat
- mlib_VectorSub_S16C_S8C_Mod
- mlib_VectorSub_S16C_S8C_Sat
- mlib_VectorSub_S16C_Sat
- mlib_VectorSub_S16C_U8C_Mod
- mlib_VectorSub_S16C_U8C_Sat
- mlib_VectorSub_S16C_U8C_U8C_Mod
- mlib_VectorSub_S16C_S16C_Mod
- mlib_VectorSub_S16C_S16C_Sat
- mlib_VectorSub_S16C_S8C_Mod
- mlib_VectorSub_S16C_S8C_Sat
- mlib_VectorSub_S16C_Sat
- mlib_VectorSub_S16C_U8C_Mod
- mlib_VectorSub_S16C_U8C_Sat
- mlib_VectorSub_S16C_S16C_Mod
- mlib_VectorSub_S16C_S16C_Sat
- mlib_VectorSub_S16C_S8C_Mod
- mlib_VectorSub_S16C_S8C_Sat
- mlib_VectorSub_S16C_Sat
- mlib_VectorSub_S16C_U8C_Mod
- mlib_VectorSub_S16C_U8C_Sat
- mlib_VectorSub_S16_Mod
- mlib_VectorSub_S16_S16_Mod
- mlib_VectorSub_S16_S16_Sat
- mlib_VectorSub_S16_S8_Mod
- mlib_VectorSub_S16_S8_Sat
- mlib_VectorSub_S16_Sat
- mlib_VectorSub_S16_U8_Mod
- mlib_VectorSub_S16_U8_Sat
- mlib_VectorSub_S16_U8C_Mod
- mlib_VectorSub_S32C_S16C_Mod
- mlib_VectorSub_S32C_S16C_Sat
- mlib_VectorSub_S32C_S32C_Mod
- mlib_VectorSub_S32C_S32C_Sat
- mlib_VectorSub_S32C_Sat
- mlib_VectorSub_S32_Mod
- mlib_VectorSub_S32_S16_Mod
- mlib_VectorSub_S32_S16_Sat
- mlib_VectorSub_S32_S32_Mod
- mlib_VectorSub_S32_S32_Sat
- mlib_VectorSub_S32_Sat
- mlib_VectorSub_S8C_Mod
- mlib_VectorSub_S8C_S8C_Mod
- mlib_VectorSub_S8C_S8C_Sat
- mlib_VectorSub_S8C_Sat
- mlib_VectorSub_S8_Mod
- mlib_VectorSub_S8_S8_Mod
- mlib_VectorSub_S8_S8_Sat
- mlib_VectorSub_S8_Sat
- mlib_VectorSubS_S16C_Mod
- mlib_VectorSubS_S16C_S16C_Mod
- mlib_VectorSubS_S16C_S16C_Sat
- mlib_VectorSubS_S16C_S8C_Mod
- mlib_VectorSubS_S16C_S8C_Sat
- mlib_VectorSubS_S16C_Sat
- mlib_VectorSubS_S16C_U8C_Mod
- mlib_VectorSubS_S16C_U8C_Sat
- mlib_VectorSubS_S16_Mod
- mlib_VectorSubS_S16_S16_Mod
- mlib_VectorSubS_S16_S16_Sat
- mlib_VectorSubS_S16_S8_Mod
- mlib_VectorSubS_S16_S8_Sat
- mlib_VectorSubS_S16_Sat
- mlib_VectorSubS_S16_U8_Mod
- mlib_VectorSubS_S16_U8_Sat
- mlib_VectorSubS_S32C_Mod
- mlib_VectorSubS_S32C_S16C_Mod
- mlib_VectorSubS_S32C_S16C_Sat
- mlib_VectorSubS_S32C_S32C_Mod
- mlib_VectorSubS_S32C_S32C_Sat
- mlib_VectorSubS_S32C_Sat
- mlib_VectorSubS_S32_Mod
- mlib_VectorSubS_S8C_Mod
- mlib_VectorSubS_S8C_S8C_Mod
- mlib_VectorSubS_S8C_S8C_Sat
- mlib_VectorSubS_S8C_Sat
- mlib_VectorSubS_S8_Mod
- mlib_VectorSubS_S8_S8_Mod
- mlib_VectorSubS_S8_S8_Sat
- mlib_VectorSubS_S8_Sat
- mlib_VectorSubS_U8C_Mod
- mlib_VectorSubS_U8C_Sat
- mlib_VectorSubS_U8C_U8C_Mod
- mlib_VectorSubS_U8C_U8C_Sat
- mlib_VectorSubS_U8_Mod
- mlib_VectorSubS_U8_Sat
- mlib_VectorSubS_U8_U8_Mod
- mlib_VectorSubS_U8_U8_Sat
- mlib_VectorSubS_U8C_Mod
- mlib_VectorSubS_U8C_Sat
- mlib_VectorSubS_U8C_U8C_Mod
- mlib_VectorSubS_U8C_U8C_Sat
- mlib_VectorSubS_U8_Mod
- mlib_VectorSubS_U8_Sat
- mlib_VectorSubS_U8_U8_Mod
- mlib_VectorSubS_U8_U8_Sat
- mlib_VectorSumAbsDiff_S16_Sat
- mlib_VectorSumAbsDiff_S32_Sat
- mlib_VectorSumAbsDiff_S8_Sat
- mlib_VectorSumAbsDiff_U8_Sat
- mlib_VectorSumAbs_S16_Sat
- mlib_VectorSumAbs_S32_Sat
- mlib_VectorSumAbs_S8_Sat
- mlib_VectorSumAbs_U8_Sat
- mlib_VectorZero_S16
- mlib_VectorZero_S16C
- mlib_VectorZero_S32
- mlib_VectorZero_S32C
- mlib_VectorZero_S8
- mlib_VectorZero_S8C
- mlib_VectorZero_U8
- mlib_VectorZero_U8C

Graphics Functions
- mlib_GraphicsBoundaryFill_32
- mlib_GraphicsBoundaryFill_8
- mlib_GraphicsDrawArc_32
- mlib_GraphicsDrawArc_8
- mlib_GraphicsDrawArc_A_32
- mlib_GraphicsDrawArc_A_8
- mlib_GraphicsDrawArc_AB_32
- mlib_GraphicsDrawArc_AB_8
- mlib_GraphicsDrawArc_B_32
- mlib_GraphicsDrawArc_B_8
- mlib_GraphicsDrawArc_X_32
- mlib_GraphicsDrawArc_X_8
- mlib_GraphicsDrawCircle_32
- mlib_GraphicsDrawCircle_8
- mlib_GraphicsDrawCircle_A_32
- mlib_GraphicsDrawCircle_A_8
- mlib_GraphicsDrawCircle_AB_32
- mlib_GraphicsDrawCircle_AB_8
- mlib_GraphicsDrawCircle_B_32
- mlib_GraphicsDrawCircle_B_8
- mlib_GraphicsDrawCircle_X_32
- mlib_GraphicsDrawCircle_X_8
- mlib_GraphicsDrawEllipse_32
- mlib_GraphicsDrawEllipse_8
- mlib_GraphicsDrawEllipse_A_32
- mlib_GraphicsDrawEllipse_A_8
- mlib_GraphicsDrawEllipse_AB_32
- mlib_GraphicsDrawEllipse_AB_8
- mlib_GraphicsDrawEllipse_B_32
- mlib_GraphicsDrawEllipse_B_8
- mlib_GraphicsDrawEllipse_X_32
- mlib_GraphicsDrawEllipse_X_8
- mlib_GraphicsDrawLine_32
- mlib_GraphicsDrawLine_8
- mlib_GraphicsDrawLine_A_32
- mlib_GraphicsDrawLine_A_8
- mlib_GraphicsDrawLine_AB_32
- mlib_GraphicsDrawLine_AB_8
- mlib_GraphicsDrawLine_ABG_32
- mlib_GraphicsDrawLine_ABG_8
- mlib_GraphicsDrawLine_ABGZ_32
- mlib_GraphicsDrawLine_ABGZ_8
- mlib_GraphicsDrawLine_ABZ_32
- mlib_GraphicsDrawLine_ABZ_8
- mlib_GraphicsDrawLine_AG_32
- mlib_GraphicsDrawLine_AG_8
- mlib_GraphicsDrawLine_AGZ_32
- mlib_GraphicsDrawLine_AGZ_8
- mlib_GraphicsDrawLine_AZ_32
- mlib_GraphicsDrawLine_AZ_8
- mlib_GraphicsDrawLine_B_32
- mlib_GraphicsDrawLine_B_8
- mlib_GraphicsDrawLine_BG_32
- mlib_GraphicsDrawLine_BG_8
- mlib_GraphicsDrawLine_BGZ_32
- mlib_GraphicsDrawLine_BGZ_8
- mlib_GraphicsDrawLine_BZ_32
- mlib_GraphicsDrawLine_BZ_8
- mlib_GraphicsDrawLineFanSet_32
- mlib_GraphicsDrawLineFanSet_8
- mlib_GraphicsDrawLineFanSet_A_32
- mlib_GraphicsDrawLineFanSet_A_8
- mlib_GraphicsDrawLineFanSet_AB_32
- mlib_GraphicsDrawLineFanSet_AB_8
- mlib_GraphicsDrawLineFanSet_ABG_32
- mlib_GraphicsDrawLineFanSet_ABG_8
- mlib_GraphicsDrawLineFanSet_ABGZ_32
- mlib_GraphicsDrawLineFanSet_ABGZ_8
- mlib_GraphicsDrawLineFanSet_ABZ_32
- mlib_GraphicsDrawLineFanSet_ABZ_8
- mlib_GraphicsDrawLineFanSet_AG_32
- mlib_GraphicsDrawLineFanSet_AG_8
- mlib_GraphicsDrawLineFanSet_AGZ_32
- mlib_GraphicsDrawLineFanSet_AGZ_8
- mlib_GraphicsDrawLineFanSet_AZ_32
- mlib_GraphicsDrawLineFanSet_AZ_8
- mlib_GraphicsDrawLineFanSet_B_32
- mlib_GraphicsDrawLineFanSet_B_8
- mlib_GraphicsDrawLineFanSet_BG_32
- mlib_GraphicsDrawLineFanSet_BG_8
- mlib_GraphicsDrawLineFanSet_BGZ_32
- mlib_GraphicsDrawLineFanSet_BGZ_8
- mlib_GraphicsDrawLineFanSet_BZ_32
- mlib_GraphicsDrawLineFanSet_BZ_8
- mlib_GraphicsDrawLineFanSet_G_32
- mlib_GraphicsDrawLineFanSet_G_8
- mlib_GraphicsDrawLineFanSet_GZ_32
- mlib_GraphicsDrawLineFanSet_GZ_8
- mlib_GraphicsDrawLineFanSet_X_32
- mlib_GraphicsDrawLineFanSet_X_8
- mlib_GraphicsDrawLineFanSet_Z_32
- mlib_GraphicsDrawLineFanSet_Z_8
- mlib_GraphicsDrawLine_G_32
- mlib_GraphicsDrawLine_G_8
- mlib_GraphicsDrawLine_GZ_32
- mlib_GraphicsDrawLine_GZ_8
- mlib_GraphicsDrawLineSet_32
- mlib_GraphicsDrawLineSet_8
- mlib_GraphicsDrawLineSet_A_32
- mlib_GraphicsDrawLineSet_A_8
- mlib_GraphicsDrawLineSet_AB_32
- mlib_GraphicsDrawLineSet_AB_8
- mlib_GraphicsDrawLineSet_ABG_32
- mlib_GraphicsDrawLineSet_ABG_8
- mlib_GraphicsDrawLineSet_ABGZ_32
- mlib_GraphicsDrawLineSet_ABGZ_8
- mlib_GraphicsDrawLineSet_ABZ_32
- mlib_GraphicsDrawLineSet_ABZ_8
- mlib_GraphicsDrawLineSet_AG_32
- mlib_GraphicsDrawLineSet_AG_8
- mlib_GraphicsDrawLineSet_AGZ_32
- mlib_GraphicsDrawLineSet_AGZ_8
- mlib_GraphicsDrawLineSet_AZ_32
- mlib_GraphicsDrawLineSet_AZ_8
- mlib_GraphicsDrawLineSet_B_32
- mlib_GraphicsDrawLineSet_B_8
- mlib_GraphicsDrawLineSet_BG_32
- mlib_GraphicsDrawLineSet_BG_8
- mlib_GraphicsDrawLineSet_BGZ_32
- mlib_GraphicsDrawLineSet_BGZ_8
- mlib_GraphicsDrawLineSet_BZ_32
- mlib_GraphicsDrawLineSet_BZ_8
- mlib_GraphicsDrawLineSet_G_32
- mlib_GraphicsDrawLineSet_G_8
- mlib_GraphicsDrawLineSet_GZ_32
- mlib_GraphicsDrawLineSet_GZ_8
- mlib_GraphicsDrawLineSet_X_32
- mlib_GraphicsDrawLineSet_X_8
- mlib_GraphicsDrawLineSet_Z_32
- mlib_GraphicsDrawLineSet_Z_8
- mlib_GraphicsDrawLineStripSet_32
- mlib_GraphicsDrawLineStripSet_8
- mlib_GraphicsDrawLineStripSet_A_32
- mlib_GraphicsDrawLineStripSet_A_8
- mlib_GraphicsDrawLineStripSet_AB_32
- mlib_GraphicsDrawLineStripSet_AB_8
libmlib(3LIB)

- mlib_GraphicsDrawLineStripSet_ABG_32
- mlib_GraphicsDrawLineStripSet_ABG_8
- mlib_GraphicsDrawLineStripSet_ABGZ_32
- mlib_GraphicsDrawLineStripSet_ABGZ_8
- mlib_GraphicsDrawLineStripSet_ABZ_32
- mlib_GraphicsDrawLineStripSet_ABZ_8
- mlib_GraphicsDrawLineStripSet_AG_32
- mlib_GraphicsDrawLineStripSet_AG_8
- mlib_GraphicsDrawLineStripSet_AGZ_32
- mlib_GraphicsDrawLineStripSet_AGZ_8
- mlib_GraphicsDrawLineStripSet_AZ_32
- mlib_GraphicsDrawLineStripSet_AZ_8
- mlib_GraphicsDrawLineStripSet_B_32
- mlib_GraphicsDrawLineStripSet_B_8
- mlib_GraphicsDrawLineStripSet_BG_32
- mlib_GraphicsDrawLineStripSet_BG_8
- mlib_GraphicsDrawLineStripSet_BGZ_32
- mlib_GraphicsDrawLineStripSet_BGZ_8
- mlib_GraphicsDrawLineStripSet_BZ_32
- mlib_GraphicsDrawLineStripSet_BZ_8
- mlib_GraphicsDrawLineStripSet_G_32
- mlib_GraphicsDrawLineStripSet_G_8
- mlib_GraphicsDrawLineStripSet_GZ_32
- mlib_GraphicsDrawLineStripSet_GZ_8
- mlib_GraphicsDrawLineStripSet_X_32
- mlib_GraphicsDrawLineStripSet_X_8
- mlib_GraphicsDrawLine_X_32
- mlib_GraphicsDrawLine_X_8
- mlib_GraphicsDrawLine_Z_32
- mlib_GraphicsDrawLine_Z_8
- mlib_GraphicsDrawPoint_32
- mlib_GraphicsDrawPoint_8
- mlib_GraphicsDrawPoint_B_32
- mlib_GraphicsDrawPoint_B_8
- mlib_GraphicsDrawPointSet_32
- mlib_GraphicsDrawPointSet_8
- mlib_GraphicsDrawPointSet_B_32
- mlib_GraphicsDrawPointSet_B_8
- mlib_GraphicsDrawPointSet_X_32
- mlib_GraphicsDrawPointSet_X_8
- mlib_GraphicsDrawPoint_X_32
- mlib_GraphicsDrawPoint_X_8
libmlib(3LIB)

- mlib_GraphicsDrawPolygon_32
- mlib_GraphicsDrawPolygon_8
- mlib_GraphicsDrawPolygon_A_32
- mlib_GraphicsDrawPolygon_A_8
- mlib_GraphicsDrawPolygon_AB_32
- mlib_GraphicsDrawPolygon_AB_8
- mlib_GraphicsDrawPolygon_ABG_32
- mlib_GraphicsDrawPolygon_ABG_8
- mlib_GraphicsDrawPolygon_ABGZ_32
- mlib_GraphicsDrawPolygon_ABGZ_8
- mlib_GraphicsDrawPolygon_ABZ_32
- mlib_GraphicsDrawPolygon_ABZ_8
- mlib_GraphicsDrawPolygon_AG_32
- mlib_GraphicsDrawPolygon_AG_8
- mlib_GraphicsDrawPolygon_AGZ_32
- mlib_GraphicsDrawPolygon_AGZ_8
- mlib_GraphicsDrawPolygon_AZ_32
- mlib_GraphicsDrawPolygon_AZ_8
- mlib_GraphicsDrawPolygon_B_32
- mlib_GraphicsDrawPolygon_B_8
- mlib_GraphicsDrawPolygon_BG_32
- mlib_GraphicsDrawPolygon_BG_8
- mlib_GraphicsDrawPolygon_BGZ_32
- mlib_GraphicsDrawPolygon_BGZ_8
- mlib_GraphicsDrawPolygon_BZ_32
- mlib_GraphicsDrawPolygon_BZ_8
- mlib_GraphicsDrawPolygon_G_32
- mlib_GraphicsDrawPolygon_G_8
- mlib_GraphicsDrawPolygon_GZ_32
- mlib_GraphicsDrawPolygon_GZ_8
- mlib_GraphicsDrawPolygon_X_32
- mlib_GraphicsDrawPolygon_X_8
- mlib_GraphicsDrawPolygon_Z_32
- mlib_GraphicsDrawPolygon_Z_8
- mlib_GraphicsDrawPolyline_32
- mlib_GraphicsDrawPolyline_8
- mlib_GraphicsDrawPolyline_A_32
- mlib_GraphicsDrawPolyline_A_8
- mlib_GraphicsDrawPolyline_AB_32
- mlib_GraphicsDrawPolyline_AB_8
- mlib_GraphicsDrawPolyline_ABG_32
- mlib_GraphicsDrawPolyline_ABG_8
- mlib_GraphicsDrawPolyline_ABGZ_32
- mlib_GraphicsDrawPolyline_ABGZ_8
- mlib_GraphicsDrawPolyline_ABG_32
- mlib_GraphicsDrawPolyline_ABG_8
- mlib_GraphicsDrawPolyline_ABGZ_32
- mlib_GraphicsDrawPolyline_ABGZ_8

Library Interfaces and Headers
- mlib_GraphicsDrawPolyline_ABZ_32
- mlib_GraphicsDrawPolyline_ABZ_8
- mlib_GraphicsDrawPolyline_AG_32
- mlib_GraphicsDrawPolyline_AG_8
- mlib_GraphicsDrawPolyline_AGZ_32
- mlib_GraphicsDrawPolyline_AGZ_8
- mlib_GraphicsDrawPolyline_AZ_32
- mlib_GraphicsDrawPolyline_AZ_8
- mlib_GraphicsDrawPolyline_B_32
- mlib_GraphicsDrawPolyline_B_8
- mlib_GraphicsDrawPolyline_BG_32
- mlib_GraphicsDrawPolyline_BGZ_32
- mlib_GraphicsDrawPolyline_BGZ_8
- mlib_GraphicsDrawPolyline_BZ_32
- mlib_GraphicsDrawPolyline_BZ_8
- mlib_GraphicsDrawPolyline_G_32
- mlib_GraphicsDrawPolyline_G_8
- mlib_GraphicsDrawPolyline_GZ_32
- mlib_GraphicsDrawPolyline_GZ_8
- mlib_GraphicsDrawPolyline_X_32
- mlib_GraphicsDrawPolyline_X_8
- mlib_GraphicsDrawPolyline_Z_32
- mlib_GraphicsDrawPolyline_Z_8
- mlib_GraphicsDrawPolypoint_32
- mlib_GraphicsDrawPolypoint_8
- mlib_GraphicsDrawPolypoint_B_32
- mlib_GraphicsDrawPolypoint_B_8
- mlib_GraphicsDrawPolypoint_X_32
- mlib_GraphicsDrawPolypoint_X_8
- mlib_GraphicsDrawRectangle_32
- mlib_GraphicsDrawRectangle_8
- mlib_GraphicsDrawRectangle_B_32
- mlib_GraphicsDrawRectangle_B_8
- mlib_GraphicsDrawRectangle_X_32
- mlib_GraphicsDrawRectangle_X_8
- mlib_GraphicsDrawTriangle_32
- mlib_GraphicsDrawTriangle_8
- mlib_GraphicsDrawTriangle_A_32
- mlib_GraphicsDrawTriangle_A_8
- mlib_GraphicsDrawTriangle_AB_32
- mlib_GraphicsDrawTriangle_AB_8
- mlib_GraphicsDrawTriangle_ABG_32
- mlib_GraphicsDrawTriangle_ABG_8
- mlib_GraphicsDrawTriangle_ABGZ_32
- mlib_GraphicsDrawTriangle_ABGZ_8
- mlib_GraphicsDrawTriangle_ABZ_32
- mlib_GraphicsDrawTriangle_ABZ_8
- mlib_GraphicsDrawTriangle_AG_32
- mlib_GraphicsDrawTriangle_AG_8
- mlib_GraphicsDrawTriangle_AGZ_32
- mlib_GraphicsDrawTriangle_AGZ_8
- mlib_GraphicsDrawTriangle_AZ_32
- mlib_GraphicsDrawTriangle_AZ_8
- mlib_GraphicsDrawTriangle_FanSet_32
- mlib_GraphicsDrawTriangle_FanSet_8
- mlib_GraphicsDrawTriangle_FanSet_A_32
- mlib_GraphicsDrawTriangle_FanSet_A_8
- mlib_GraphicsDrawTriangle_FanSet_AB_32
- mlib_GraphicsDrawTriangle_FanSet_AB_8
- mlib_GraphicsDrawTriangle_FanSet_ABG_32
- mlib_GraphicsDrawTriangle_FanSet_ABG_8
- mlib_GraphicsDrawTriangle_FanSet_ABGZ_32
- mlib_GraphicsDrawTriangle_FanSet_ABGZ_8
- mlib_GraphicsDrawTriangle_FanSet_ABZ_32
- mlib_GraphicsDrawTriangle_FanSet_ABZ_8
- mlib_GraphicsDrawTriangle_FanSet_B_32
- mlib_GraphicsDrawTriangle_FanSet_B_8
- mlib_GraphicsDrawTriangle_FanSet_BG_32
- mlib_GraphicsDrawTriangle_FanSet_BG_8
- mlib_GraphicsDrawTriangle_FanSet_BGZ_32
- mlib_GraphicsDrawTriangle_FanSet_BGZ_8
- mlib_GraphicsDrawTriangle_FanSet_BZ_32
- mlib_GraphicsDrawTriangle_FanSet_BZ_8
- mlib_GraphicsDrawTriangleFanSet_G_32
- mlib_GraphicsDrawTriangleFanSet_G_8
- mlib_GraphicsDrawTriangleFanSet_GZ_32
- mlib_GraphicsDrawTriangleFanSet_GZ_8
- mlib_GraphicsDrawTriangleFanSet_X_32
- mlib_GraphicsDrawTriangleFanSet_X_8
- mlib_GraphicsDrawTriangleFanSet_Z_32
- mlib_GraphicsDrawTriangleFanSet_Z_8
- mlib_GraphicsDrawTriangle_G_32
- mlib_GraphicsDrawTriangle_G_8
- mlib_GraphicsDrawTriangle_GZ_32
- mlib_GraphicsDrawTriangle_GZ_8
- mlib_GraphicsDrawTriangleSet_32
- mlib_GraphicsDrawTriangleSet_8
- mlib_GraphicsDrawTriangleSet_A_32
- mlib_GraphicsDrawTriangleSet_A_8
- mlib_GraphicsDrawTriangleSet_AB_32
- mlib_GraphicsDrawTriangleSet_AB_8
- mlib_GraphicsDrawTriangleSet_ABG_32
- mlib_GraphicsDrawTriangleSet_ABG_8
- mlib_GraphicsDrawTriangleSet_ABGZ_32
- mlib_GraphicsDrawTriangleSet_ABGZ_8
- mlib_GraphicsDrawTriangleSet_ABZ_32
- mlib_GraphicsDrawTriangleSet_ABZ_8
- mlib_GraphicsDrawTriangleSet_G_32
- mlib_GraphicsDrawTriangleSet_G_8
- mlib_GraphicsDrawTriangleSet_GZ_32
- mlib_GraphicsDrawTriangleSet_GZ_8
- mlib_GraphicsDrawTriangleSet_X_32
- mlib_GraphicsDrawTriangleSet_X_8
- mlib_GraphicsDrawTriangleSet_Z_32
- mlib_GraphicsDrawTriangleSet_Z_8
- mlib_GraphicsDrawTriangleStripSet_32
- mlib_GraphicsDrawTriangleStripSet_8
- mlib_GraphicsDrawTriangleStripSet_A_32
- mlib_GraphicsDrawTriangleStripSet_A_8
- mlib_GraphicsDrawTriangleStripSet_AB_32
- mlib_GraphicsDrawTriangleStripSet_AB_8
- mlib_GraphicsDrawTriangleStripSet_ABG_32
- mlib_GraphicsDrawTriangleStripSet_ABG_8
- mlib_GraphicsDrawTriangleStripSet_ABGZ_32
- mlib_GraphicsDrawTriangleStripSet_ABGZ_8
- mlib_GraphicsDrawTriangleStripSet_ABZ_32
- mlib_GraphicsDrawTriangleStripSet_ABZ_8
- mlib_GraphicsDrawTriangleStripSet_AG_32
- mlib_GraphicsDrawTriangleStripSet_AG_8
- mlib_GraphicsDrawTriangleStripSet_AGZ_32
- mlib_GraphicsDrawTriangleStripSet_AGZ_8
- mlib_GraphicsDrawTriangleStripSet_AZ_32
- mlib_GraphicsDrawTriangleStripSet_AZ_8
- mlib_GraphicsDrawTriangleStripSet_B_32
- mlib_GraphicsDrawTriangleStripSet_B_8
- mlib_GraphicsDrawTriangleStripSet_BG_32
- mlib_GraphicsDrawTriangleStripSet_BG_8
- mlib_GraphicsDrawTriangleStripSet_BGZ_32
- mlib_GraphicsDrawTriangleStripSet_BGZ_8
- mlib_GraphicsDrawTriangleStripSet_BZ_32
- mlib_GraphicsDrawTriangleStripSet_BZ_8
- mlib_GraphicsDrawTriangleStripSet_G_32
- mlib_GraphicsDrawTriangleStripSet_G_8
- mlib_GraphicsDrawTriangleStripSet_GZ_32
- mlib_GraphicsDrawTriangleStripSet_GZ_8
- mlib_GraphicsDrawTriangleStripSet_X_32
- mlib_GraphicsDrawTriangleStripSet_X_8
- mlib_GraphicsDrawTriangleStripSet_Z_32
- mlib_GraphicsDrawTriangleStripSet_Z_8
- mlib_GraphicsFillArc_32
- mlib_GraphicsFillArc_8
- mlib_GraphicsFillArc_A_32
- mlib_GraphicsFillArc_A_8
- mlib_GraphicsFillArc_AB_32
- mlib_GraphicsFillArc_AB_8
- mlib_GraphicsFillArc_B_32
- mlib_GraphicsFillArc_B_8
- mlib_GraphicsFillArc_X_32
- mlib_GraphicsFillArc_X_8
- mlib_GraphicsFillCircle_32
- mlib_GraphicsFillCircle_8
- mlib_GraphicsFillCircle_A_32
- mlib_GraphicsFillCircle_A_8
- mlib_GraphicsFillCircle_AB_32
- mlib_GraphicsFillCircle_AB_8
- mlib_GraphicsFillCircle_B_32
- mlib_GraphicsFillCircle_B_8
- mlib_GraphicsFillCircle_X_32
- mlib_GraphicsFillCircle_X_8
- mlib_GraphicsFillEllipse_32
- mlib_GraphicsFillEllipse_8
- mlib_GraphicsFillEllipse_A_32
- mlib_GraphicsFillEllipse_A_8
- mlib_GraphicsFillEllipse_AB_32
- mlib_GraphicsFillEllipse_AB_8
- mlib_GraphicsFillEllipse_B_32
- mlib_GraphicsFillEllipse_B_8
- mlib_GraphicsFillEllipse_X_32
- mlib_GraphicsFillEllipse_X_8
- mlib_GraphicsFillPolygon_32
- mlib_GraphicsFillPolygon_8
- mlib_GraphicsFillPolygon_A_32
- mlib_GraphicsFillPolygon_A_8
- mlib_GraphicsFillPolygon_AB_32
- mlib_GraphicsFillPolygon_AB_8
- mlib_GraphicsFillPolygon_ABG_32
- mlib_GraphicsFillPolygon_ABG_8
- mlib_GraphicsFillPolygon_ABGZ_32
- mlib_GraphicsFillPolygon_ABGZ_8
- mlib_GraphicsFillPolygon_ABZ_32
- mlib_GraphicsFillPolygon_ABZ_8
- mlib_GraphicsFillPolygon_AG_32
- mlib_GraphicsFillPolygon_AG_8
- mlib_GraphicsFillPolygon_AGZ_32
- mlib_GraphicsFillPolygon_AGZ_8
- mlib_GraphicsFillPolygon_AZ_32
- mlib_GraphicsFillPolygon_AZ_8
- mlib_GraphicsFillPolygon_B_32
- mlib_GraphicsFillPolygon_B_8
- mlib_GraphicsFillPolygon_BG_32
- mlib_GraphicsFillPolygon_BG_8
- mlib_GraphicsFillPolygon_BGZ_32
- mlib_GraphicsFillPolygon_BGZ_8
- mlib_GraphicsFillPolygon_BZ_32
- mlib_GraphicsFillPolygon_BZ_8
- mlib_GraphicsFillPolygon_G_32
- mlib_GraphicsFillPolygon_G_8
- mlib_GraphicsFillPolygon_GZ_32
- mlib_GraphicsFillPolygon_GZ_8
- mlib_GraphicsFillPolygon_X_32
- mlib_GraphicsFillPolygon_X_8
- mlib_GraphicsFillPolygon_Z_32
- mlib_GraphicsFillPolygon_Z_8
- mlib_GraphicsFillRectangle_32
- mlib_GraphicsFillRectangle_8
- mlib_GraphicsFillRectangle_B_32
- mlib_GraphicsFillRectangle_B_8
- mlib_GraphicsFillRectangle_X_32
- mlib_GraphicsFillRectangle_X_8
- mlib_GraphicsFillTriangle_32
- mlib_GraphicsFillTriangle_8
- mlib_GraphicsFillTriangle_A_32
- mlib_GraphicsFillTriangle_A_8
- mlib_GraphicsFillTriangle_AB_32
- mlib_GraphicsFillTriangle_AB_8
- mlib_GraphicsFillTriangle_ABG_32
- mlib_GraphicsFillTriangle_ABG_8
- mlib_GraphicsFillTriangle_ABGZ_32
- mlib_GraphicsFillTriangle_ABGZ_8
- mlib_GraphicsFillTriangle_ABZ_32
- mlib_GraphicsFillTriangle_ABZ_8
- mlib_GraphicsFillTriangle_AG_32
- mlib_GraphicsFillTriangle_AG_8
- mlib_GraphicsFillTriangle_AGZ_32
- mlib_GraphicsFillTriangle_AGZ_8
- mlib_GraphicsFillTriangle_AZ_32
- mlib_GraphicsFillTriangle_AZ_8
- mlib_GraphicsFillTriangle_B_32
- mlib_GraphicsFillTriangle_B_8
- mlib_GraphicsFillTriangle_BG_32
- mlib_GraphicsFillTriangle_BG_8
libmlib(3LIB)

- mlib_GraphicsFillTriangle_BGZ_32
- mlib_GraphicsFillTriangle_BGZ_8
- mlib_GraphicsFillTriangle_BZ_32
- mlib_GraphicsFillTriangle_BZ_8
- mlib_GraphicsFillTriangleFanSet_32
- mlib_GraphicsFillTriangleFanSet_8
- mlib_GraphicsFillTriangleFanSet_A_32
- mlib_GraphicsFillTriangleFanSet_A_8
- mlib_GraphicsFillTriangleFanSet_AB_32
- mlib_GraphicsFillTriangleFanSet_AB_8
- mlib_GraphicsFillTriangleFanSet_ABG_32
- mlib_GraphicsFillTriangleFanSet_ABG_8
- mlib_GraphicsFillTriangleFanSet_ABGZ_32
- mlib_GraphicsFillTriangleFanSet_ABGZ_8
- mlib_GraphicsFillTriangleFanSet_ABZ_32
- mlib_GraphicsFillTriangleFanSet_ABZ_8
- mlib_GraphicsFillTriangleFanSet_AG_32
- mlib_GraphicsFillTriangleFanSet_AG_8
- mlib_GraphicsFillTriangleFanSet_AGZ_32
- mlib_GraphicsFillTriangleFanSet_AGZ_8
- mlib_GraphicsFillTriangleFanSet_AZ_32
- mlib_GraphicsFillTriangleFanSet_AZ_8
- mlib_GraphicsFillTriangleFanSet_B_32
- mlib_GraphicsFillTriangleFanSet_B_8
- mlib_GraphicsFillTriangleFanSet_BG_32
- mlib_GraphicsFillTriangleFanSet_BG_8
- mlib_GraphicsFillTriangleFanSet_BGZ_32
- mlib_GraphicsFillTriangleFanSet_BGZ_8
- mlib_GraphicsFillTriangleFanSet_BZ_32
- mlib_GraphicsFillTriangleFanSet_BZ_8
- mlib_GraphicsFillTriangleFanSet_G_32
- mlib_GraphicsFillTriangleFanSet_G_8
- mlib_GraphicsFillTriangleFanSet_GZ_32
- mlib_GraphicsFillTriangleFanSet_GZ_8
- mlib_GraphicsFillTriangleFanSet_X_32
- mlib_GraphicsFillTriangleFanSet_X_8
- mlib_GraphicsFillTriangleFanSet_Z_32
- mlib_GraphicsFillTriangleFanSet_Z_8
- mlib_GraphicsFillTriangle_G_32
- mlib_GraphicsFillTriangle_G_8
- mlib_GraphicsFillTriangle_GZ_32
- mlib_GraphicsFillTriangle_GZ_8
- mlib_GraphicsFillTriangleSet_32
- mlib_GraphicsFillTriangleSet_8
- mlib_GraphicsFillTriangleSet_A_32
- mlib_GraphicsFillTriangleSet_A_8
- mlib_GraphicsFillTriangleSet_AB_32
- mlib_GraphicsFillTriangleSet_AB_8
- mlib_GraphicsFillTriangleSet_ABG_32
- mlib_GraphicsFillTriangleSet_ABG_8
- mlib_GraphicsFillTriangleSet_ABGZ_32
- mlib_GraphicsFillTriangleSet_ABGZ_8
- mlib_GraphicsFillTriangleSet_ABZ_32
- mlib_GraphicsFillTriangleSet_ABZ_8
- mlib_GraphicsFillTriangleSet_AG_32
- mlib_GraphicsFillTriangleSet_AG_8
- mlib_GraphicsFillTriangleSet_AGZ_32
- mlib_GraphicsFillTriangleSet_AGZ_8
- mlib_GraphicsFillTriangleSet_AZ_32
- mlib_GraphicsFillTriangleSet_AZ_8
- mlib_GraphicsFillTriangleSet_B_32
- mlib_GraphicsFillTriangleSet_B_8
- mlib_GraphicsFillTriangleSet_BG_32
- mlib_GraphicsFillTriangleSet_BG_8
- mlib_GraphicsFillTriangleSet_BGZ_32
- mlib_GraphicsFillTriangleSet_BGZ_8
- mlib_GraphicsFillTriangleSet_BZ_32
- mlib_GraphicsFillTriangleSet_BZ_8
- mlib_GraphicsFillTriangleSet_G_32
- mlib_GraphicsFillTriangleSet_G_8
- mlib_GraphicsFillTriangleSet_GZ_32
- mlib_GraphicsFillTriangleSet_GZ_8
- mlib_GraphicsFillTriangleSet_X_32
- mlib_GraphicsFillTriangleSet_X_8
- mlib_GraphicsFillTriangleSet_Z_32
- mlib_GraphicsFillTriangleSet_Z_8
- mlib_GraphicsFillTriangleStripSet_32
- mlib_GraphicsFillTriangleStripSet_8
- mlib_GraphicsFillTriangleStripSet_A_32
- mlib_GraphicsFillTriangleStripSet_A_8
- mlib_GraphicsFillTriangleStripSet_AB_32
- mlib_GraphicsFillTriangleStripSet_AB_8
- mlib_GraphicsFillTriangleStripSet_ABG_32
- mlib_GraphicsFillTriangleStripSet_ABG_8
- mlib_GraphicsFillTriangleStripSet_ABGZ_32
- mlib_GraphicsFillTriangleStripSet_ABGZ_8
- mlib_GraphicsFillTriangleStripSet_ABZ_32
- mlib_GraphicsFillTriangleStripSet_ABZ_8
- mlib_GraphicsFillTriangleStripSet_AG_32
- mlib_GraphicsFillTriangleStripSet_AG_8
- mlib_GraphicsFillTriangleStripSet_AGZ_32
- mlib_GraphicsFillTriangleStripSet_AGZ_8
- mlib_GraphicsFillTriangleStripSet_AZ_32
- mlib_GraphicsFillTriangleStripSet_AZ_8
- mlib_GraphicsFillTriangleStripSet_B_32
- mlib_GraphicsFillTriangleStripSet_B_8
- mlib_GraphicsFillTriangleStripSet_BG_32
- mlib_GraphicsFillTriangleStripSet_BG_8
- mlib_GraphicsFillTriangleStripSet_BGZ_32
- mlib_GraphicsFillTriangleStripSet_BGZ_8
- mlib_GraphicsFillTriangleStripSet_BZ_32
- mlib_GraphicsFillTriangleStripSet_BZ_8
- mlib_GraphicsFillTriangleStripSet_G_32
- mlib_GraphicsFillTriangleStripSet_G_8
- mlib_GraphicsFillTriangleStripSet_GZ_32
- mlib_GraphicsFillTriangleStripSet_GZ_8
- mlib_GraphicsFillTriangleStripSet_X_32
- mlib_GraphicsFillTriangleStripSet_X_8
- mlib_GraphicsFillTriangleStripSet_Z_32
- mlib_GraphicsFillTriangleStripSet_Z_8
- mlib_GraphicsFillTriangleStripSet_AG_32
- mlib_GraphicsFillTriangleStripSet_AG_8
- mlib_GraphicsFillTriangleStripSet_AGZ_32
- mlib_GraphicsFillTriangleStripSet_AGZ_8
- mlib_GraphicsFillTriangleStripSet_AZ_32
- mlib_GraphicsFillTriangleStripSet_AZ_8
- mlib_GraphicsFillTriangleStripSet_B_32
- mlib_GraphicsFillTriangleStripSet_B_8
- mlib_GraphicsFillTriangleStripSet_BG_32
- mlib_GraphicsFillTriangleStripSet_BG_8
- mlib_GraphicsFillTriangleStripSet_BGZ_32
- mlib_GraphicsFillTriangleStripSet_BGZ_8
- mlib_GraphicsFillTriangleStripSet_BZ_32
- mlib_GraphicsFillTriangleStripSet_BZ_8
- mlib_GraphicsFillTriangleStripSet_G_32
- mlib_GraphicsFillTriangleStripSet_G_8
- mlib_GraphicsFillTriangleStripSet_GZ_32
- mlib_GraphicsFillTriangleStripSet_GZ_8
- mlib_GraphicsFillTriangleStripSet_X_32
- mlib_GraphicsFillTriangleStripSet_X_8
- mlib_GraphicsFillTriangleStripSet_Z_32
- mlib_GraphicsFillTriangleStripSet_Z_8
- mlib_GraphicsFillTriangle_X_32
- mlib_GraphicsFillTriangle_X_8
- mlib_GraphicsFillTriangle_Z_32
- mlib_GraphicsFillTriangle_Z_8
- mlib_GraphicsFloodFill_32
- mlib_GraphicsFloodFill_8

Imaging Functions

- mlib_ImageAbs
- mlib_ImageAbs_Fp
- mlib_ImageAbs_Fp_Inp
- mlib_ImageAbs_Inp
- mlib_ImageAdd
- mlib_ImageAdd_Fp
- mlib_ImageAdd_Fp_Inp
- mlib_ImageAdd_Inp
- mlib_ImageAffine
- mlib_ImageAffine_Fp
- mlib_ImageAffineIndex
- mlib_ImageAffineTable
- mlib_ImageAffineTable_Fp
- mlib_ImageAffineTransform
- mlib_ImageAffineTransform_Fp
- mlib_ImageAffineTransformIndex
- mlib_ImageAnd
- mlib_ImageAnd_Inp
- mlib_ImageAndNot
- mlib_ImageAndNot1_Inp
- mlib_ImageAndNot2_Inp
- mlib_ImageAutoCorrel
- mlib_ImageAutoCorrel_Fp
- mlib_ImageAve
- mlib_ImageAve_Fp
- mlib_ImageAve_Fp_Inp
- mlib_ImageAve_Inp
- mlib_ImageBlend
- mlib_ImageBlend1_Fp_Inp
- mlib_ImageBlend1_Inp
- mlib_ImageBlend2_Fp_Inp
- mlib_ImageBlend2_Inp
- mlib_ImageBlendColor
- mlib_ImageBlendColor_Fp
- mlib_ImageBlendColor_Fp_Inp
- mlib_ImageBlendColor_Inp
- mlib_ImageBlend_DA_DA
- mlib_ImageBlend_DA_DA_Inp
- mlib_ImageBlend_DA_DC
- mlib_ImageBlend_DA_DC_Inp
- mlib_ImageBlend_DA_OMDA
- mlib_ImageBlend_DA_OMDA_Inp
- mlib_ImageBlend_DA_OMDC
- mlib_ImageBlend_DA_OMDC_Inp
- mlib_ImageBlend_DA_OMSA
- mlib_ImageBlend_DA_OMSA_Inp
- mlib_ImageBlend_DA_ONE
- mlib_ImageBlend_DA_ONE_Inp
- mlib_ImageBlend_DA_SA
- mlib_ImageBlend_DA_SA_Inp
- mlib_ImageBlend_DA_SAS
- mlib_ImageBlend_DA_SAS_Inp
- mlib_ImageBlend_DA_ZERO
- mlib_ImageBlend_DA_ZERO_Inp
- mlib_ImageBlend_Fp
- mlib_ImageBlendMulti
- mlib_ImageBlendMulti_Fp
- mlib_ImageBlend_OMDA_DA
- mlib_ImageBlend_OMDA_DA_Inp
- mlib_ImageBlend_OMDA_DC
- mlib_ImageBlend_OMDA_DC_Inp
- mlib_ImageBlend_OMDA_OMDA
- mlib_ImageBlend_OMDA_OMDA_Inp
- mlib_ImageBlend_OMDA_OMDC
- mlib_ImageBlend_OMDA_OMDC_Inp
- mlib_ImageBlend_OMDA_OMSA
- mlib_ImageBlend_OMDA_OMSA_Inp
- mlib_ImageBlend_OMDA_ONE
- mlib_ImageBlend_OMDA_ONE_Inp
- mlib_ImageBlend_OMDA_SA
- mlib_ImageBlend_OMDA_SA_Inp
- mlib_ImageBlend_OMDA_SAS
- mlib_ImageBlend_OMDA_SAS_Inp
- mlib_ImageBlend_OMDA_ZERO
- mlib_ImageBlend_OMDA_ZERO_Inp
- mlib_ImageBlend_OMSA_DA
- mlib_ImageBlend_OMSA_DA_Inp
- mlib_ImageBlend_OMSA_DC
- mlib_ImageBlend_OMSA_DC_Inp
- mlib_ImageBlend_OMSA_OMDA
- mlib_ImageBlend_OMSA_OMDA_Inp
- mlib_ImageBlend_OMSA_OMDC
- mlib_ImageBlend_OMSA_OMDC_Inp
- mlib_ImageBlend_OMSA_OMSA
- mlib_ImageBlend_OMSA_OMSA_Inp
- mlib_ImageBlend_OMSA_ONE
- mlib_ImageBlend_OMSA_ONE_Inp
- mlib_ImageBlend_OMSA_SA
- mlib_ImageBlend_OMSA_SA_Inp
- mlib_ImageBlend_OMSA_SAS
- mlib_ImageBlend_OMSA_SAS_Inp
- mlib_ImageBlend_OMSA_ZERO
- mlib_ImageBlend_OMSA_ZERO_Inp
- mlib_ImageBlend_OMSC_DA
- mlib_ImageBlend_OMSC_DA_Inp
- mlib_ImageBlend_OMSC_DC
- mlib_ImageBlend_OMSC_DC_Inp
- mlib_ImageBlend_OMSC_OMDA
- mlib_ImageBlend_OMSC_OMDA_Inp
- mlib_ImageBlend_OMSC_OMDC
- mlib_ImageBlend_OMSC_OMDC_Inp
- mlib_ImageBlend_OMSC_OMSA
- mlib_ImageBlend_OMSC_OMSA_Inp
- mlib_ImageBlend_OMSC_ONE
- mlib_ImageBlend_OMSC_ONE_Inp
- mlib_ImageBlend_OMSC_SA
- mlib_ImageBlend_OMSC_SA_Inp
- mlib_ImageBlend_OMSC_SAS
- mlib_ImageBlend_OMSC_SAS_Inp
- mlib_ImageBlend_OMSC_ZERO
- mlib_ImageBlend_OMSC_ZERO_Inp
- mlib_ImageBlend_ONE_DA
- mlib_ImageBlend_ONE_DA_Inp
- mlib_ImageBlend_ONE_DC
- mlib_ImageBlend_ONE_DC_Inp
- mlib_ImageBlend_ONE_OMDA
- mlib_ImageBlend_ONE_OMDA_Inp
- mlib_ImageBlend_ONE_OMDC
- mlib_ImageBlend_ONE_OMDC_Inp
- mlib_ImageBlend_ONE_OMSA
- mlib_ImageBlend_ONE_OMSA_Inp
- mlib_ImageBlend_ONE_ONE
- mlib_ImageBlend_ONE_ONE_Inp
- mlib_ImageBlend_ONE_SA
- mlib_ImageBlend_ONE_SA_Inp
- mlib_ImageBlend_ONE_SAS
- mlib_ImageBlend_ONE_SAS_Inp
- mlib_ImageBlend_ONE_ZERO
- mlib_ImageBlend_RGBA2ARGB
- mlib_ImageBlend_RGBA2BGRA
- mlib_ImageBlend_SA_DA
- mlib_ImageBlend_SA_DA_Inp
- mlib_ImageBlend_SA_DC
- mlib_ImageBlend_SA_DC_Inp
- mlib_ImageBlend_SA_OMDA
- mlib_ImageBlend_SA_OMDA_Inp
- mlib_ImageBlend_SA_OMDC
- mlib_ImageBlend_SA_OMDC_Inp
- mlib_ImageBlend_SA_OMSA
- mlib_ImageBlend_SA_OMSA_Inp
- mlib_ImageBlend_SA_ONE
- mlib_ImageBlend_SA_ONE_Inp
- mlib_ImageBlend_SA_SA
- mlib_ImageBlend_SA_SA_Inp
- mlib_ImageBlend_SA_SAS
- mlib_ImageBlend_SA_SAS_Inp
- mlib_ImageBlend_SA_ZERO
- mlib_ImageBlend_RGBA2ARGB
- mlib_ImageBlend_RGBA2BGRA
libmlib(3LIB)

- mlib_ImageBlend_SA_ZERO_Inp
- mlib_ImageBlend_SC_DA
- mlib_ImageBlend_SC_DA_Inp
- mlib_ImageBlend_SC_DC
- mlib_ImageBlend_SC_DC_Inp
- mlib_ImageBlend_SC_OMDA
- mlib_ImageBlend_SC_OMDA_Inp
- mlib_ImageBlend_SC_OMDC
- mlib_ImageBlend_SC_OMDC_Inp
- mlib_ImageBlend_SC_OMSA
- mlib_ImageBlend_SC_OMSA_Inp
- mlib_ImageBlend_SC_ONE
- mlib_ImageBlend_SC_ONE_Inp
- mlib_ImageBlend_SC_SA
- mlib_ImageBlend_SC_SA_Inp
- mlib_ImageBlend_SC_SAS
- mlib_ImageBlend_SC_SAS_Inp
- mlib_ImageBlend_SC_ZERO
- mlib_ImageBlend_SC_ZERO_Inp
- mlib_ImageBlend_ZERO_DA
- mlib_ImageBlend_ZERO_DA_Inp
- mlib_ImageBlend_ZERO_DC
- mlib_ImageBlend_ZERO_DC_Inp
- mlib_ImageBlend_ZERO_OMDA
- mlib_ImageBlend_ZERO_OMDA_Inp
- mlib_ImageBlend_ZERO_OMDC
- mlib_ImageBlend_ZERO_OMDC_Inp
- mlib_ImageBlend_ZERO_OMSA
- mlib_ImageBlend_ZERO_OMSA_Inp
- mlib_ImageBlend_ZERO_ONE
- mlib_ImageBlend_ZERO_ONE_Inp
- mlib_ImageBlend_ZERO_SA
- mlib_ImageBlend_ZERO_SA_Inp
- mlib_ImageBlend_ZERO_SAS
- mlib_ImageBlend_ZERO_SAS_Inp
- mlib_ImageBlend_ZERO_ZERO
- mlib_ImageBlendZero_Zero_Inp
- mlib_ImageChannelCopy
- mlib_ImageChannelExtract
- mlib_ImageChannelInsert
- mlib_ImageChannelMerge
- mlib_ImageChannelSplit
- mlib_ImageClear
- mlib_ImageClearEdge
- mlib_ImageClearEdge_Fp
- mlib_ImageClear_Fp
- mlib_ImageColorConvert1
- mlib_ImageColorConvert1_Fp
- mlib_ImageColorConvert2
- mlib_ImageColorConvert2_Fp
- mlib_ImageColorDitherFree
- mlib_ImageColorDitherInit
- mlib_ImageColorErrorDiffusion3x3
- mlib_ImageColorErrorDiffusionMxN
- mlib_ImageColorHSL2RGB
- mlib_ImageColorHSL2RGB_Fp
- mlib_ImageColorHSV2RGB
- mlib_ImageColorHSV2RGB_Fp
- mlib_ImageColorOrderedDither8x8
- mlib_ImageColorOrderedDitherMxN
- mlib_ImageColorRGB2CIEMono
- mlib_ImageColorRGB2CIEMono_Fp
- mlib_ImageColorRGB2HSL
- mlib_ImageColorRGB2HSL_Fp
- mlib_ImageColorRGB2HSV
- mlib_ImageColorRGB2HSV_Fp
- mlib_ImageColorRGB2Mono
- mlib_ImageColorRGB2Mono_Fp
- mlib_ImageColorRGB2XYZ
- mlib_ImageColorRGB2XYZ_Fp
- mlib_ImageColorRGB2YCC
- mlib_ImageColorRGB2YCC_Fp
- mlib_ImageColorTrue2Index
- mlib_ImageColorTrue2IndexFree
- mlib_ImageColorTrue2IndexInit
- mlib_ImageColorXYZ2RGB
- mlib_ImageColorXYZ2RGB_Fp
- mlib_ImageColorYCC2RGB
- mlib_ImageColorYCC2RGB_Fp
- mlib_ImageComposite
- mlib_ImageComposite_Inp
- mlib_ImageConstAdd
- mlib_ImageConstAdd_Fp
- mlib_ImageConstAdd_Fp_Inp
- mlib_ImageConstAdd_Inp
- mlib_ImageConstAnd
- mlib_ImageConstAnd_Inp
- mlib_ImageConstAndNot
- mlib_ImageConstAndNot_Inp
- mlib_ImageConstDiv
- mlib_ImageConstDiv_Fp
- mlib_ImageConstDiv_Fp_Inp
- mlib_ImageConstDiv_Inp
- mlib_ImageConstDivShift
- mlib_ImageConstDivShift_Inp
- mlib_ImageConstMul
- mlib_ImageConstMul_Fp
- mlib_ImageConstMul_Fp_Inp
- mlib_ImageConstMul_Inp
- mlib_ImageConstMulShift
- mlib_ImageConstMulShift_Inp
- mlib_ImageConstNotAnd
- mlib_ImageConstNotAnd_Inp
- mlib_ImageConstNotOr
- mlib_ImageConstNotOr_Inp
- mlib_ImageConstNotXor
- mlib_ImageConstNotXor_Inp
- mlib_ImageConstOr
- mlib_ImageConstOr_Inp
- mlib_ImageConstOrNot
- mlib_ImageConstOrNot_Inp
- mlib_ImageConstSub
- mlib_ImageConstSub_Fp
- mlib_ImageConstSub_Fp_Inp
- mlib_ImageConstSub_Inp
- mlib_ImageConstXor
- mlib_ImageConstXor_Inp
- mlib_ImageConv2x2
- mlib_ImageConv2x2_Fp
- mlib_ImageConv2x2Index
- mlib_ImageConv3x3
- mlib_ImageConv3x3_Fp
- mlib_ImageConv3x3Index
- mlib_ImageConv4x4
- mlib_ImageConv4x4_Fp
- mlib_ImageConv4x4Index
- mlib_ImageConv5x5
- mlib_ImageConv5x5_Fp
- mlib_ImageConv5x5Index
- mlib_ImageConv7x7
- mlib_ImageConv7x7_Fp
- mlib_ImageConv7x7Index
- mlib_ImageConvKernelConvert
- mlib_ImageConvMxN
- mlib_ImageConvMxN_Fp
- mlib_ImageConvMxNIndex
- mlib_ImageConvolveMxN
- mlib_ImageConvolveMxN_Fp
- mlib_ImageCopy
- mlib_ImageCopyArea
- mlib_ImageCopyMask
- mlib_ImageCopyMask_Fp
- mlib_ImageCopySubimage
- mlib_ImageCreate
- mlib_ImageCreateStruct
- mlib_ImageCreateSubimage
- mlib_ImageCrossCorrel
- mlib_ImageCrossCorrel_Fp
- mlib_ImageDataTypeConvert
- mlib_ImageDelete
- mlib_ImageDilate4
- mlib_ImageDilate4_Fp
- mlib_ImageDilate8
- mlib_ImageDilate8_Fp
- mlib_ImageDiv1_Fp_Inp
- mlib_ImageDiv2_Fp_Inp
- mlib_ImageDivAlpha
- mlib_ImageDivAlpha_Fp
- mlib_ImageDivAlpha_Fp_Inp
- mlib_ImageDivAlpha_Inp
- mlib_ImageDivConstShift
- mlib_ImageDivConstShift_Inp
- mlib_ImageDiv_Fp
- mlib_ImageDivShift
- mlib_ImageDivShift1_Inp
- mlib_ImageDivShift2_Inp
- mlib_ImageErode4
- mlib_ImageErode4_Fp
- mlib_ImageErode8
- mlib_ImageErode8_Fp
- mlib_ImageExp
- mlib_ImageExp_Fp
- mlib_ImageExp_Fp_Inp
- mlib_ImageExp_Inp
- mlib_ImageExtrema2
- mlib_ImageExtrema2_Fp
libmlib(3LIB)

- mlib_ImageExtremaLocations
- mlib_ImageExtremaLocations_Fp
- mlib_ImageFilteredSubsample
- mlib_ImageFilteredSubsample_Fp
- mlib_ImageFlipAntiDiag
- mlib_ImageFlipAntiDiag_Fp
- mlib_ImageFlipMainDiag
- mlib_ImageFlipMainDiag_Fp
- mlib_ImageFlipX
- mlib_ImageFlipX_Fp
- mlib_ImageFlipY
- mlib_ImageFlipY_Fp
- mlib_ImageFourierTransform
- mlib_ImageGetBitOffset
- mlib_ImageGetChannels
- mlib_ImageGetData
- mlib_ImageGetFlags
- mlib_ImageGetFormat
- mlib_ImageGetHeight
- mlib_ImageGetPaddings
- mlib_ImageGetStride
- mlib_ImageGetType
- mlib_ImageGetWidth
- mlib_ImageGradient3x3
- mlib_ImageGradient3x3_Fp
- mlib_ImageGradientMxN
- mlib_ImageGradientMxN_Fp
- mlib_ImageGridWarp
- mlib_ImageGridWarp_Fp
- mlib_ImageGridWarpTable
- mlib_ImageGridWarpTable_Fp
- mlib_ImageHistogram
- mlib_ImageHistogram2
- mlib_ImageInterpTableCreate
- mlib_ImageInterpTableDelete
- mlib_ImageInvert
- mlib_ImageInvert_Fp
- mlib_ImageInvert_Fp_Inp
- mlib_ImageInvert_Inp
- mlib_ImageIsNotAligned2
- mlib_ImageIsNotAligned4
- mlib_ImageIsNotAligned64
- mlib_ImageIsNotAligned8
- mlib_ImageIsNotHeight2X
- mlib_ImagesNotHeight4X
- mlib_ImagesNotHeight8X
- mlib_ImagesNotOneDvector
- mlib_ImagesNotStride8X
- mlib_ImagesNotWidth2X
- mlib_ImagesNotWidth4X
- mlib_ImagesNotWidth8X
- mlib_ImagesUserAllocated
- mlib_ImageLog
- mlib_ImageLog_Fp
- mlib_ImageLog_Fp_Inp
- mlib_ImageLog_Inp
- mlib_ImageLookUp
- mlib_ImageLookUp2
- mlib_ImageLookUp_Inp
- mlib_ImageLookUpMask
- mlib_ImageMax
- mlib_ImageMaxFilter3x3
- mlib_ImageMaxFilter3x3_Fp
- mlib_ImageMaxFilter5x5
- mlib_ImageMaxFilter5x5_Fp
- mlib_ImageMaxFilter7x7
- mlib_ImageMaxFilter7x7_Fp
- mlib_ImageMaxFilter7x7_US
- mlib_ImageMaxFilterMxN
- mlib_ImageMaxFilterMxN_Fp
- mlib_ImageMaxFilterMxN_US
- mlib_ImageMean
- mlib_ImageMean_Fp
- mlib_ImageMedianFilter3x3
- mlib_ImageMedianFilter3x3_Fp
- mlib_ImageMedianFilter3x3_US
- mlib_ImageMedianFilter5x5
- mlib_ImageMedianFilter5x5_Fp
- mlib_ImageMedianFilter5x5_US
- mlib_ImageMedianFilter7x7
- mlib_ImageMedianFilter7x7_Fp
- mlib_ImageMedianFilter7x7_US
- mlib_ImageMedianFilterMxN
- mlib_ImageMedianFilterMxN_Fp
- mlib_ImageMedianFilterMxN_US
- mlib_ImageMin
- mlib_ImageMinFilter3x3
- mlib_ImageRankFilter5x5_US
- mlib_ImageRankFilter7x7
- mlib_ImageRankFilter7x7_Fp
- mlib_ImageRankFilter7x7_US
- mlib_ImageRankFilterMxN
- mlib_ImageRankFilterMxN_Fp
- mlib_ImageRankFilterMxN_US
- mlib_ImageReformat
- mlib_ImageReplaceColor
- mlib_ImageReplaceColor_Fp
- mlib_ImageReplaceColor_Fp_Inp
- mlib_ImageReplaceColor_Inp
- mlib_ImageResetStruct
- mlib_ImageResetSubimageStruct
- mlib_ImageRotate
- mlib_ImageRotate180
- mlib_ImageRotate180_Fp
- mlib_ImageRotate270
- mlib_ImageRotate270_Fp
- mlib_ImageRotate90
- mlib_ImageRotate90_Fp
- mlib_ImageRotate_Fp
- mlib_ImageRotateIndex
- mlib_ImageScalarBlend
- mlib_ImageScalarBlend_Fp
- mlib_ImageScalarBlend_Fp_Inp
- mlib_ImageScalarBlend_Inp
- mlib_ImageScale
- mlib_ImageScale2
- mlib_ImageScale2_Inp
- mlib_ImageScale_Fp
- mlib_ImageScale_Fp_Inp
- mlib_ImageScale_Inp
- mlib_ImageSConv3x3
- mlib_ImageSConv3x3_Fp
- mlib_ImageSConv5x5
- mlib_ImageSConv5x5_Fp
- mlib_ImageSConv7x7
- mlib_ImageSConv7x7_Fp
- mlib_ImageSConvKernelConvert
- mlib_ImageSetFormat
- mlib_ImageSetPaddings
- mlib_ImageSetStruct
- mlib_ImageSetSubimageStruct
- mlib_ImageSobel
- mlib_ImageSobel_Fp
- mlib_ImageSqr_Fp
- mlib_ImageSqr_Fp_Inp
- mlib_ImageSqrShift
- mlib_ImageSqrShift_Inp
- mlib_ImageStdDev
- mlib_ImageStdDev_Fp
- mlib_ImageSub
- mlib_ImageSub1_Fp_Inp
- mlib_ImageSub1_Inp
- mlib_ImageSub2_Fp_Inp
- mlib_ImageSub2_Inp
- mlib_ImageSub_Fp
- mlib_ImageSubsampleAverage
- mlib_ImageSubsampleAverage_Fp
- mlib_ImageSubsampleBinaryToGray
- mlib_ImageTestFlags
- mlib_ImageThresh1
- mlib_ImageThresh1_Fp
- mlib_ImageThresh1_Fp_Inp
- mlib_ImageThresh1_Inp
- mlib_ImageThresh2
- mlib_ImageThresh2_Fp
- mlib_ImageThresh2_Fp_Inp
- mlib_ImageThresh2_Inp
- mlib_ImageThresh3
- mlib_ImageThresh3_Fp
- mlib_ImageThresh3_Fp_Inp
- mlib_ImageThresh3_Inp
- mlib_ImageThresh4
- mlib_ImageThresh4_Fp
- mlib_ImageThresh4_Fp_Inp
- mlib_ImageThresh4_Inp
- mlib_ImageThresh5
- mlib_ImageThresh5_Fp
- mlib_ImageThresh5_Fp_Inp
- mlib_ImageThresh5_Inp
- mlib_ImageXor
- mlib_ImageXor_Inp
- mlib_ImageXProj
- mlib_ImageXProj_Fp
- mlib_ImageYProj
- mlib_ImageYProj_Fp
- mlib_ImageZoom
- mlib_ImageZoomBlend
- mlib_ImageZoom_Fp
- mlib_ImageZoomIn2X
- mlib_ImageZoomIn2X_Fp
- mlib_ImageZoomIn2XIndex
- mlib_ImageZoomIndex
- mlib_ImageZoomOut2X
- mlib_ImageZoomOut2X_Fp
- mlib_ImageZoomOut2XIndex
- mlib_ImageZoomTranslate
- mlib_ImageZoomTranslateBlend
- mlib_ImageZoomTranslate_Fp
- mlib_ImageZoomTranslateTable
- mlib_ImageZoomTranslateTableBlend
- mlib_ImageZoomTranslateTable_Fp
- mlib_ImageZoomTranslateToGray

- mlib_SignalADPCM2Bits2Linear
- mlib_SignalADPCM3Bits2Linear
- mlib_SignalADPCM4Bits2Linear
- mlib_SignalADPCM5Bits2Linear
- mlib_SignalADPCMFree
- mlib_SignalADPCMInit
- mlib_SignalALaw2Linear
- mlib_SignalALaw2uLaw
- mlib_SignalAutoCorrel_F32
- mlib_SignalAutoCorrel_F32S
- mlib_SignalAutoCorrel_S16
- mlib_SignalAutoCorrel_S16S
- mlib_SignalCepstral_F32
- mlib_SignalCepstralFree_F32
- mlib_SignalCepstralFree_S16
- mlib_SignalCepstralInit_F32
- mlib_SignalCepstralInit_S16
- mlib_SignalCepstral_S16
- mlib_SignalCepstral_S16_Adp
- mlib_SignalConvertShift_F32_S16
- mlib_SignalConvertShift_F32_S32
- mlib_SignalConvertShift_F32_S8
- mlib_SignalConvertShift_F32S_S16S
- mlib_SignalConvertShift_F32S_S32S
- mlib_SignalConvertShift_F32S_S8S
- mlib_SignalConvertShift_F32S_U8S
- mlib_SignalConvertShift_F32_U8
- mlib_SignalConvertShift_S16_F32_Sat
- mlib_SignalConvertShift_S16_S32_Sat
- mlib_SignalConvertShift_S16_S8_Sat
- mlib_SignalConvertShift_S16S_F32S_Sat
- mlib_SignalConvertShift_S16S_S32S_Sat
- mlib_SignalConvertShift_S16S_S8S_Sat
- mlib_SignalConvertShift_S16S_U8S_Sat
- mlib_SignalConvertShift_S32_F32_Sat
- mlib_SignalConvertShift_S32_S16_Sat
- mlib_SignalConvertShift_S32_S8_Sat
- mlib_SignalConvertShift_S32S_F32S_Sat
- mlib_SignalConvertShift_S32S_S16S_Sat
- mlib_SignalConvertShift_S32S_S8S_Sat
- mlib_SignalConvertShift_S32S_U8S_Sat
- mlib_SignalConvertShift_S8_F32_Sat
- mlib_SignalConvertShift_S8_S16_Sat
- mlib_SignalConvertShift_S8_S8_Sat
- mlib_SignalConvertShift_S8S_F32S_Sat
- mlib_SignalConvertShift_S8S_S16S_Sat
- mlib_SignalConvertShift_S8S_S8S_Sat
- mlib_SignalConvertShift_S8S_U8S_Sat
- mlib_SignalConvertShift_U8_F32_Sat
- mlib_SignalConvertShift_U8_S16_Sat
- mlib_SignalConvertShift_U8_S8_Sat
- mlib_SignalConv_F32F32
- mlib_SignalConv_F32S_F32S
- mlib_SignalConv_S16_S16_Sat
- mlib_SignalConv_S16S_S16S_Sat
- mlib_SignalCrossCorrel_F32
- mlib_SignalCrossCorrel_F32S
- mlib_SignalCrossCorrel_S16
- mlib_SignalDownSample_F32F32
- mlib_SignalDownSample_F32S_F32S
- mlib_SignalDownSample_S16_S16
- mlib_SignalDownSample_S16S_S16S
- mlib_SignalDTWKScalar_F32
- mlib_SignalDTWKScalarFree_F32
- mlib_SignalDTWKScalarFree_S16
- mlib_SignalDTWKScalarInit_F32
- mlib_SignalDTWKScalarInit_S16
- mlib_SignalDTWKScalarPath_F32
- mlib_SignalDTWKScalarPath_S16
- mlib_SignalDTWKScalar_S16
- mlib_SignalDTWKVector_F32
- mlib_SignalDTWKVectorFree_F32
- mlib_SignalDTWKVectorFree_S16
- mlib_SignalDTWKVectorInit_F32
- mlib_SignalDTWKVectorInit_S16
- mlib_SignalDTWKVectorPath_F32
- mlib_SignalDTWKVectorPath_S16
- mlib_SignalDTWKVector_S16
- mlib_SignalDTWScalar_F32
- mlib_SignalDTWScalarFree_F32
- mlib_SignalDTWScalarFree_S16
- mlib_SignalDTWScalarInit_F32
- mlib_SignalDTWScalarInit_S16
- mlib_SignalDTWScalarPath_F32
- mlib_SignalDTWScalarPath_S16
- mlib_SignalDTWScalar_S16
- mlib_SignalDTWVector_F32
- mlib_SignalDTWVectorFree_F32
- mlib_SignalDTWVectorFree_S16
- mlib_SignalDTWVectorInit_F32
- mlib_SignalDTWVectorInit_S16
- mlib_SignalDTWVectorPath_F32
- mlib_SignalDTWVectorPath_S16
- mlib_SignalDTWVector_S16
- mlib_SignalEmphasize_F32_F32
- mlib_SignalEmphasize_F32S_F32S
- mlib_SignalEmphasizeFree_F32_F32
- mlib_SignalEmphasizeFree_F32S_F32S
- mlib_SignalEmphasizeFree_S16_S16
- mlib_SignalEmphasizeFree_S16S_S16S
- mlib_SignalEmphasizeInit_F32_F32
- mlib_SignalEmphasizeInit_F32S_F32S
- mlib_SignalEmphasizeInit_S16_S16
- mlib_SignalEmphasizeInit_S16S_S16S
- mlib_SignalEmphasize_S16_S16_Sat
- mlib_SignalEmphasize_S16S_S16S_Sat
- mlib_SignalFFT_1_D64
- mlib_SignalFFT_1_D64C
- mlib_SignalFFT_1_D64C_D64C
- mlib_SignalFFT_1_D64_D64
- mlib_SignalFFT_1_F32
- mlib_SignalFFT_1_F32C
- mlib_SignalFFT_1_F32C_F32C
- mlib_SignalFFT_1_F32C_F32C_D64C
- mlib_SignalFFT_1_S16C_Mod
- mlib_SignalFFT_1_S16C_S16C_Mod
- mlib_SignalFFT_1_S16C_S16_Mod
- mlib_SignalFFT_1_S16_Mod
- mlib_SignalFFT_2_D64
- mlib_SignalFFT_2_D64C
- mlib_SignalFFT_2_D64C_D64
- mlib_SignalFFT_2_D64C_D64C
- mlib_SignalFFT_2_D64_D64
- mlib_SignalFFT_2_F32
- mlib_SignalFFT_2_F32C
- mlib_SignalFFT_2_F32C_F32C
- mlib_SignalFFT_2_F32C_F32C_D64C
- mlib_SignalFFT_2_S16
- mlib_SignalFFT_2_S16C
- mlib_SignalFFT_2_S16C_S16
- mlib_SignalFFT_2_S16C_S16C
- mlib_SignalFFT_2_S16_S16
- mlib_SignalFFT_3_D64
- mlib_SignalFFT_3_D64C
- mlib_SignalFFT_3_D64C_D64
- mlib_SignalFFT_3_D64C_D64C
- mlib_SignalFFT_3_D64_D64
- mlib_SignalFFT_3_F32
- mlib_SignalFFT_3_F32C
- mlib_SignalFFT_3_F32C_F32C
- mlib_SignalFFT_3_F32C_F32C_D64C
- mlib_SignalFFT_3_S16C_Mod
- mlib_SignalFFT_3_S16C_S16C_Mod
- mlib_SignalFFT_3_S16C_S16_Mod
- mlib_SignalFFT_3_S16_Mod
- mlib_SignalFFT_3_S16_S16_Mod
- mlib_SignalFFT_4_S16
- mlib_SignalFFT_4_S16C
- mlib_SignalFFT_4_S16C_S16
- mlib_SignalFFT_4_S16C_S16C
- mlib_SignalFFT_4_S16_S16
- mlib_SignalFFTW_1_F32
- mlib_SignalFFTW_1_F32C
- mlib_SignalFFTW_1_F32C_F32
- mlib_SignalFFTW_1_F32C_F32C
- mlib_SignalFFTW_1_F32_F32
- mlib_SignalFFTW_1_S16C_Mod
- mlib_SignalFFTW_1_S16C_S16C_Mod
- mlib_SignalFFTW_1_S16C_S16_Mod
- mlib_SignalFFTW_1_S16_Mod
- mlib_SignalFFTW_1_S16_S16_Mod
- mlib_SignalFFTW_2_F32
- mlib_SignalFFTW_2_F32C
- mlib_SignalFFTW_2_F32C_F32
- mlib_SignalFFTW_2_F32C_F32C
- mlib_SignalFFTW_2_F32_F32
- mlib_SignalFFTW_2_S16
- mlib_SignalFFTW_2_S16C
- mlib_SignalFFTW_2_S16C_S16
- mlib_SignalFFTW_2_S16C_S16C
- mlib_SignalFFTW_2_S16_S16
- mlib_SignalFFTW_3_F32
- mlib_SignalFFTW_3_F32C
- mlib_SignalFFTW_3_F32C_F32
- mlib_SignalFFTW_3_F32C_F32C
- mlib_SignalFFTW_3_F32_F32
- mlib_SignalFFTW_3_S16C_Mod
- mlib_SignalFFTW_3_S16C_S16C_Mod
- mlib_SignalFFTW_3_S16C_S16_Mod
- mlib_SignalFFTW_3_S16_Mod
- mlib_SignalFFTW_3_S16_S16_Mod
- mlib_SignalFFTW_4_S16
- mlib_SignalFFTW_4_S16C
- mlib_SignalFFTW_4_S16C_S16
- mlib_SignalFFTW_4_S16C_S16C
- mlib_SignalFFTW_4_S16_S16
- mlib_SignalFIR_F32_F32
- mlib_SignalFIR_F32S_F32S
- mlib_SignalFIRFree_F32_F32
- mlib_SignalFIRFree_F32S_F32S
- mlib_SignalFIRFree_S16_S16
- mlib_SignalFIRFree_S16S_S16S
- mlib_SignalFIRInit_F32_F32
- mlib_SignalFIRInit_F32S_F32S
- mlib_SignalFIRInit_S16_S16
- mlib_SignalFIRInit_S16S_S16S
- mlib_SignalFIR_S16_S16_Sat
- mlib_SignalFIR_S16S_S16S_Sat
- mlib_SignalGaussNoise_F32
- mlib_SignalGaussNoiseFree_F32
- mlib_SignalGaussNoiseFree_S16
- mlib_SignalGaussNoiseInit_F32
- mlib_SignalGaussNoiseInit_S16
- mlib_SignalGenBartlett_F32
- mlib_SignalGenBartlett_S16
- mlib_SignalGenBlackman_F32
- mlib_SignalGenBlackman_S16
- mlib_SignalGenHamming_F32
- mlib_SignalGenHamming_S16
- mlib_SignalGenHanning_F32
- mlib_SignalGenHanning_S16
- mlib_SignalGenKaiser_F32
- mlib_SignalGenKaiser_S16
- mlib_SignalIFFT_1_D64
- mlib_SignalIFFT_1_D64C
- mlib_SignalIFFT_1_D64C_D64C
- mlib_SignalIFFT_1_D64_D64
- mlib_SignalIFFT_1_D64_D64C
- mlib_SignalIFFT_1_F32
- mlib_SignalIFFT_1_F32C
- mlib_SignalIFFT_1_F32C_F32C
- mlib_SignalIFFT_1_F32_F32
- mlib_SignalIFFT_1_F32_F32C
- mlib_SignalIFFT_1_S16
- mlib_SignalIFFT_1_S16C
- mlib_SignalIFFT_1_S16C_S16C
- mlib_SignalIFFT_1_S16_S16
- mlib_SignalIFFT_1_S16_S16C
- mlib_SignalIFFT_2_D64
- mlib_SignalIFFT_2_D64C
- mlib_SignalIFFT_2_D64C_D64C
- mlib_SignalIFFT_2_D64_D64

libmlib(3LIB)
- mlib_SignalIFFT_2_D64_D64C
- mlib_SignalIFFT_2_F32
- mlib_SignalIFFT_2_F32C
- mlib_SignalIFFT_2_F32C_F32C
- mlib_SignalIFFT_2_F32_F32
- mlib_SignalIFFT_2_F32_F32C
- mlib_SignalIFFT_2_S16C_Mod
- mlib_SignalIFFT_2_S16C_S16C_Mod
- mlib_SignalIFFT_2_S16_Mod
- mlib_SignalIFFT_2_S16_S16C_Mod
- mlib_SignalIFFT_2_S16_S16_Mod
- mlib_SignalIFFT_3_D64
- mlib_SignalIFFT_3_D64C
- mlib_SignalIFFT_3_D64C_D64C
- mlib_SignalIFFT_3_D64_D64
- mlib_SignalIFFT_3_D64_D64C
- mlib_SignalIFFT_3_F32
- mlib_SignalIFFT_3_F32C
- mlib_SignalIFFT_3_F32C_F32C
- mlib_SignalIFFT_3_F32_F32
- mlib_SignalIFFT_3_F32_F32C
- mlib_SignalIFFT_3_S16C_Mod
- mlib_SignalIFFT_3_S16C_S16C_Mod
- mlib_SignalIFFT_3_S16_Mod
- mlib_SignalIFFT_3_S16_S16C_Mod
- mlib_SignalIFFT_3_S16_S16_Mod
- mlib_SignalIFFT_4_S16
- mlib_SignalIFFT_4_S16C
- mlib_SignalIFFT_4_S16C_S16C
- mlib_SignalIFFT_4_S16_S16
- mlib_SignalIFFT_4_S16_S16C
- mlib_SignalIFFTW_1_F32
- mlib_SignalIFFTW_1_F32C
- mlib_SignalIFFTW_1_F32C_F32C
- mlib_SignalIFFTW_1_F32_F32
- mlib_SignalIFFTW_1_F32_F32C
- mlib_SignalIFFTW_1_S16
- mlib_SignalIFFTW_1_S16C
- mlib_SignalIFFTW_1_S16C_S16C
- mlib_SignalIFFTW_1_S16_S16
- mlib_SignalIFFTW_1_S16_S16C
- mlib_SignalIFFTW_2_F32
- mlib_SignalIFFTW_2_F32C
- mlib_SignalIFFTW_2_F32C_F32C
- mlib_SignalIIR_P4_S16_S16_Sat
- mlib_SignalIIR_P4_S16S_S16S_Sat
- mlib_SignalIMDCT_D64
- mlib_SignalIMDCT_F32
- mlib_SignalIMDCTSplit_D64
- mlib_SignalIMDCTSplit_F32
- mlib_SignalLimit_F32
- mlib_SignalLimit_F32_F32
- mlib_SignalLimit_F32S
- mlib_SignalLimit_F32S_F32S
- mlib_SignalLimit_S16
- mlib_SignalLimit_S16S
- mlib_SignalLimit_S16_S16
- mlib_SignalLimit_S16S_S16S
- mlib_SignalLinear2ADPCM2Bits
- mlib_SignalLinear2ADPCM3Bits
- mlib_SignalLinear2ADPCM4Bits
- mlib_SignalLinear2ADPCM5Bits
- mlib_SignalLinear2ALaw
- mlib_SignalLinear2uLaw
- mlib_SignalLMSFilter_F32_F32
- mlib_SignalLMSFilter_F32S_F32S
- mlib_SignalLMSFilterFree_F32_F32
- mlib_SignalLMSFilterFree_F32S_F32S
- mlib_SignalLMSFilterFree_S16_S16
- mlib_SignalLMSFilterFree_S16S_S16S
- mlib_SignalLMSFilterInit_F32_F32
- mlib_SignalLMSFilterInit_F32S_F32S
- mlib_SignalLMSFilterInit_S16_S16
- mlib_SignalLMSFilterInit_S16S_S16S
- mlib_SignalLMSFilterNonAdapt_F32_F32
- mlib_SignalLMSFilterNonAdapt_F32S_F32S
- mlib_SignalLMSFilterNonAdapt_S16_S16_Sat
- mlib_SignalLMSFilterNonAdapt_S16S_S16S_Sat
- mlib_SignalLPC2Cepstral_F32
- mlib_SignalLPC2Cepstral_S16
- mlib_SignalLPC2Cepstral_S16_Ad
- mlib_SignalLPC2LSP_F32
- mlib_SignalLPC2LSP_S16
- mlib_SignalLPCAutoCorrel_F32
- mlib_SignalLPCAutoCorrelFree_F32
- mlib_SignalLPCAutoCorrelFree_S16
- mlib_SignalLPCAutoCorrelGetEnergy_F32
- mlib_SignalLPCAutoCorrelGetEnergy_S16
- mlib_SignalLPCAutoCorrelGetEnergy_S16_Adp
- mlib_SignalLPCAutoCorrelGetPARCOR_F32
- mlib_SignalLPCAutoCorrelGetPARCOR_S16
- mlib_SignalLPCAutoCorrelGetPARCOR_S16_Adp
- mlib_SignalLPCAutoCorrelInit_F32
- mlib_SignalLPCAutoCorrelInit_S16
- mlib_SignalLPCAutoCorrel_S16
- mlib_SignalLPCAutoCorrel_S16_Adp
- mlib_SignalLPCCovariance_F32
- mlib_SignalLPCCovarianceFree_F32
- mlib_SignalLPCCovarianceFree_S16
- mlib_SignalLPCCovarianceInit_F32
- mlib_SignalLPCCovarianceInit_S16
- mlib_SignalLPCCovariance_S16
- mlib_SignalLPCCovariance_S16_Adp
- mlib_SignalLPCCovarianceInitFree_F32
- mlib_SignalLPCCovarianceInitFree_S16
- mlib_SignalLPCCovarianceFreeInit_F32
- mlib_SignalLPCCovarianceFreeInit_S16
- mlib_SignalLPCCovarianceInitInit_F32
- mlib_SignalLPCCovarianceInitInit_S16
- mlib_SignalLPCPerceptWeight_F32
- mlib_SignalLPCPerceptWeightFree_F32
- mlib_SignalLPCPerceptWeightFree_S16
- mlib_SignalLPCPerceptWeightInit_F32
- mlib_SignalLPCPerceptWeightInit_S16
- mlib_SignalLPCPerceptWeight_S16
- mlib_SignalLPCPerceptWeight_S16_Adp
- mlib_SignalLPCPitchAnalyze_F32
- mlib_SignalLPCPitchAnalyze_S16
- mlib_SignalLSP2LPC_F32
- mlib_SignalLSP2LPC_S16
- mlib_SignalLSP2LPC_S16_Adp
- mlib_SignalMelCepstral_F32
- mlib_SignalMelCepstralFree_F32
- mlib_SignalMelCepstralFree_S16
- mlib_SignalMelCepstralInit_F32
- mlib_SignalMelCepstralInitInit_F32
- mlib_SignalMelCepstralInitInit_S16
- mlib_SignalMelCepstralS_F32
- mlib_SignalMelCepstral_S16
- mlib_SignalMelCepstral_S16_Adp
- mlib_SignalMerge_F32S_F32
- mlib_SignalMerge_S16S_S16
- mlib_SignalMulBartlett_F32
- mlib_SignalMulBartlett_F32_F32
- mlib_SignalMulBartlett_F32S
- mlib_SignalMulBartlett_F32S_F32S
- mlib_SignalMulBartlett_S16
- mlib_SignalMulBartlett_S16S
<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>mlib_SignalMulBartlett_S16S_S16S</td>
</tr>
<tr>
<td>mlib_SignalMulBlackman_F32</td>
</tr>
<tr>
<td>mlib_SignalMulBlackman_F32_F32</td>
</tr>
<tr>
<td>mlib_SignalMulBlackman_F32S</td>
</tr>
<tr>
<td>mlib_SignalMulBlackman_F32S_F32S</td>
</tr>
<tr>
<td>mlib_SignalMulBlackman_S16</td>
</tr>
<tr>
<td>mlib_SignalMulBlackman_S16_S16</td>
</tr>
<tr>
<td>mlib_SignalMulBlackman_S16S_S16S</td>
</tr>
<tr>
<td>mlib_SignalMul_F32</td>
</tr>
<tr>
<td>mlib_SignalMul_F32_F32</td>
</tr>
<tr>
<td>mlib_SignalMul_F32S</td>
</tr>
<tr>
<td>mlib_SignalMul_F32S_F32S</td>
</tr>
<tr>
<td>mlib_SignalMulHamming_F32</td>
</tr>
<tr>
<td>mlib_SignalMulHamming_F32_F32</td>
</tr>
<tr>
<td>mlib_SignalMulHamming_F32S</td>
</tr>
<tr>
<td>mlib_SignalMulHamming_F32S_F32S</td>
</tr>
<tr>
<td>mlib_SignalMulHamming_S16</td>
</tr>
<tr>
<td>mlib_SignalMulHamming_S16_S16</td>
</tr>
<tr>
<td>mlib_SignalMulHamming_S16S_S16S</td>
</tr>
<tr>
<td>mlib_SignalMulHanning_F32</td>
</tr>
<tr>
<td>mlib_SignalMulHanning_F32_F32</td>
</tr>
<tr>
<td>mlib_SignalMulHanning_F32S</td>
</tr>
<tr>
<td>mlib_SignalMulHanning_F32S_F32S</td>
</tr>
<tr>
<td>mlib_SignalMulHanning_S16</td>
</tr>
<tr>
<td>mlib_SignalMulHanning_S16_S16</td>
</tr>
<tr>
<td>mlib_SignalMulHanning_S16S_S16S</td>
</tr>
<tr>
<td>mlib_SignalMulKaiser_F32</td>
</tr>
<tr>
<td>mlib_SignalMulKaiser_F32_F32</td>
</tr>
<tr>
<td>mlib_SignalMulKaiser_F32S</td>
</tr>
<tr>
<td>mlib_SignalMulKaiser_F32S_F32S</td>
</tr>
<tr>
<td>mlib_SignalMulKaiser_S16</td>
</tr>
<tr>
<td>mlib_SignalMulKaiser_S16_S16</td>
</tr>
<tr>
<td>mlib_SignalMulKaiser_S16S_S16S</td>
</tr>
<tr>
<td>mlib_SignalMulRectangular_F32</td>
</tr>
<tr>
<td>mlib_SignalMulRectangular_F32_F32</td>
</tr>
<tr>
<td>mlib_SignalMulRectangular_F32S</td>
</tr>
<tr>
<td>mlib_SignalMulRectangular_F32S_F32S</td>
</tr>
<tr>
<td>mlib_SignalMulRectangular_S16</td>
</tr>
<tr>
<td>mlib_SignalMulRectangular_S16S</td>
</tr>
<tr>
<td>mlib_SignalMulRectangular_S16_S16</td>
</tr>
</tbody>
</table>
- mlib_SignalMulRectangular_S16_S16_S
- mlib_SignalMul_S16_S16_Sat
- mlib_SignalMul_S16_Sat
- mlib_SignalMul_S16_S16_S_Sat
- mlib_SignalMul_S16_S_Sat
- mlib_SignalMulSAAdd_F32
- mlib_SignalMulSAAdd_F32_F32
- mlib_SignalMulSAAdd_F32S
- mlib_SignalMulSAAdd_F32S_F32S
- mlib_SignalMulSAAdd_S16_S16_Sat
- mlib_SignalMulSAAdd_S16_Sat
- mlib_SignalMulSAAdd_S16S_S16S_Sat
- mlib_SignalMulSAAdd_S16S_Sat
- mlib_SignalMulS_F32
- mlib_SignalMulS_F32_F32
- mlib_SignalMulS_F32S
- mlib_SignalMulS_F32S_F32S
- mlib_SignalMulS_S16_S16_Sat
- mlib_SignalMulS_S16_Sat
- mlib_SignalMulS_S16S_S16S_Sat
- mlib_SignalMulS_S16S_Sat
- mlib_SignalMulSShiftAdd_S16_S16_Sat
- mlib_SignalMulSShiftAdd_S16_Sat
- mlib_SignalMulSShiftAdd_S16S_S16S_Sat
- mlib_SignalMulSShiftAdd_S16S_Sat
- mlib_SignalMulSShift_S16_S16_Sat
- mlib_SignalMulSShift_S16_Sat
- mlib_SignalMulSShift_S16S_S16S_Sat
- mlib_SignalMulSShift_S16S_Sat
- mlib_SignalMulWindow_F32
- mlib_SignalMulWindow_F32_F32
- mlib_SignalMulWindow_F32S
- mlib_SignalMulWindow_F32S_F32S
- mlib_SignalMulWindow_S16
- mlib_SignalMulWindow_S16S
- mlib_SignalMulWindow_S16_S16
- mlib_SignalMulWindow_S16S_S16S
- mlib_SignalNLMSFilter_F32_F32
- mlib_SignalNLMSFilter_F32S_F32S
- mlib_SignalNLMSFilterFree_F32_F32
- mlib_SignalNLMSFilterFree_F32S_F32S
- mlib_SignalNLMSFilterFree_S16_S16
- mlib_SignalNLMSFilterFree_S16S_S16S
- mlib_SignalNLMSFilterInit_F32_F32
- mlib_SignalNLMSFilterInit_F32S_F32S
- mlib_SignalNLMSFilterInit_S16_S16
- mlib_SignalNLMSFilterInit_S16S_S16S
- mlib_SignalNLMSFilterNonAdapt_F32_F32
- mlib_SignalNLMSFilterNonAdapt_F32S_F32S
- mlib_SignalNLMSFilterNonAdapt_S16_S16_Sat
- mlib_SignalNLMSFilterNonAdapt_S16S_S16S_Sat
- mlib_SignalNLMSFilter_S16_S16_Sat
- mlib_SignalNLMSFilter_S16S_S16S_Sat
- mlib_SignalQuant2_S16_F32
- mlib_SignalQuant2_S16S_F32S
- mlib_SignalQuant_S16_F32
- mlib_SignalQuant_S16S_F32S
- mlib_SignalQuant_U8_F32
- mlib_SignalQuant_U8_S16
- mlib_SignalQuant_U8S_F32S
- mlib_SignalQuant_U8S_S16S
- mlib_SignalReSampleFIR_F32_F32
- mlib_SignalReSampleFIR_F32S_F32S
- mlib_SignalReSampleFIRFree_F32_F32
- mlib_SignalReSampleFIRFree_F32S_F32S
- mlib_SignalReSampleFIRFree_S16_S16
- mlib_SignalReSampleFIRFree_S16S_S16S
- mlib_SignalReSampleFIRInit_F32_F32
- mlib_SignalReSampleFIRInit_F32S_F32S
- mlib_SignalReSampleFIRInit_S16_S16
- mlib_SignalReSampleFIRInit_S16S_S16S
- mlib_SignalReSampleFIR_S16_S16_Sat
- mlib_SignalReSampleFIR_S16S_S16S_Sat
- mlib_SignalSineWave_F32
- mlib_SignalSineWaveFree_F32
- mlib_SignalSineWaveFree_S16
- mlib_SignalSineWaveInit_F32
- mlib_SignalSineWaveInit_S16
- mlib_SignalSineWave_S16
- mlib_SignalSplit_F32_F32S
- mlib_SignalSplit_S16_S16S
- mlib_SignaluLaw2ALaw
- mlib_SignaluLaw2Linear
- mlib_SignalUpSample_F32_F32
libmlib(3LIB)

- mlib_SignalUpSample_F32S_F32S
- mlib_SignalUpSampleFIR_F32_F32
- mlib_SignalUpSampleFIR_F32S_F32S
- mlib_SignalUpSampleFIRFree_F32_F32
- mlib_SignalUpSampleFIRFree_F32S_F32S
- mlib_SignalUpSampleFIRFree_S16_S16
- mlib_SignalUpSampleFIRFree_S16S_S16S
- mlib_SignalUpSampleFIRInit_F32_F32
- mlib_SignalUpSampleFIRInit_F32S_F32S
- mlib_SignalUpSampleFIRInit_S16_S16
- mlib_SignalUpSampleFIRInit_S16S_S16S
- mlib_SignalUpSampleFIR_S16_S16_Sat
- mlib_SignalUpSampleFIR_S16S_S16S_Sat
- mlib_SignalUpSample_S16_S16
- mlib_SignalUpSample_S16S_S16S
- mlib_SignalWhiteNoise_F32
- mlib_SignalWhiteNoiseFree_F32
- mlib_SignalWhiteNoiseFree_S16
- mlib_SignalWhiteNoiseInit_F32
- mlib_SignalWhiteNoiseInit_S16
- mlib_SignalWhiteNoise_S16
- mlib_VideoAddBlock_U8_S16
- mlib_VideoColorABGR2JFIFYCC420
- mlib_VideoColorABGR2JFIFYCC422
- mlib_VideoColorABGR2JFIFYCC444
- mlib_VideoColorABGR2RGB
- mlib_VideoColorABGRint_to_ARGBint
- mlib_VideoColorARGB2JFIFYCC420
- mlib_VideoColorARGB2JFIFYCC422
- mlib_VideoColorARGB2JFIFYCC444
- mlib_VideoColorARGB2RGB
- mlib_VideoColorBGR2JFIFYCC420
- mlib_VideoColorBGR2JFIFYCC422
- mlib_VideoColorBGR2JFIFYCC444
- mlib_VideoColorBGR2JFIFYCC444_S16
- mlib_VideoColorBGRint_to_ABGRint
- mlib_VideoColorBlendABGR
- mlib_VideoColorBlendABGR_Inp
- mlib_VideoColorBlendABGR_ResetAlpha
- mlib_VideoColorBlendABGR_ResetAlpha_Inp
- mlib_VideoColorCMYK2JFIFYCC444
- mlib_VideoColorJFIFYCC2ABGR444
- mlib_VideoColorJFIFYCC2RGB444

Video Processing Functions
- mlib_VideoColorJFIFYCC2RGB420
- mlib_VideoColorJFIFYCC2RGB420_Nearest
- mlib_VideoColorJFIFYCC2RGB442
- mlib_VideoColorJFIFYCC2RGB442_Nearest
- mlib_VideoColorJFIFYCC2RGB444
- mlib_VideoColorJFIFYCC2RGB444_S16
- mlib_VideoColorJFIFYCK2CMYK444
- mlib_VideoColorMerge2
- mlib_VideoColorMerge2_S16
- mlib_VideoColorMerge3
- mlib_VideoColorMerge3_S16
- mlib_VideoColorMerge4
- mlib_VideoColorMerge4_S16
- mlib_VideoColorResizeABGR
- mlib_VideoColorRGB2ABGR
- mlib_VideoColorRGB2ARGB
- mlib_VideoColorRGB2JFIFYCC420
- mlib_VideoColorRGB2JFIFYCC422
- mlib_VideoColorRGB2JFIFYCC444
- mlib_VideoColorRGB2JFIFYCC444_S16
- mlib_VideoColorRGBAint_to_ABGRint
- mlib_VideoColorRGBint_to_ABGRint
- mlib_VideoColorRGBint_to_BGRAint
- mlib_VideoColorRGBseq_to_ABGRint
- mlib_VideoColorRGBXint_to_ABGRint
- mlib_VideoColorRGBXint_to_ARGBint
- mlib_VideoColorSplit2
- mlib_VideoColorSplit2_S16
- mlib_VideoColorSplit3
- mlib_VideoColorSplit3_S16
- mlib_VideoColorSplit4
- mlib_VideoColorSplit4_S16
- mlib_VideoColorUYV444int_to_ABGRint
- mlib_VideoColorUYV444int_to_ARGBint
- mlib_VideoColorUYV444int_to_UYVY422int
- mlib_VideoColorUYV444int_to_YUYV422int
- mlib_VideoColorUYVY422int_to_ABGRint
- mlib_VideoColorUYVY422int_to_ARGBint
- mlib_VideoColorXRGBint_to_ABGRint
- mlib_VideoColorXRGBint_to_ARGBint
- mlib_VideoColorYUV2ABGR411
- mlib_VideoColorYUV2ABGR420
- mlib_VideoColorYUV2ABGR420_W
- mlib_VideoColorYUV2ABGR420_WX2
libmlib(3LIB)

- mlib_VideoColorYUV2ABGR420_WX3
- mlib_VideoColorYUV2ABGR420_X2
- mlib_VideoColorYUV2ABGR420_X3
- mlib_VideoColorYUV2ABGR422
- mlib_VideoColorYUV2ABGR444
- mlib_VideoColorYUV2ARGB411
- mlib_VideoColorYUV2ARGB420
- mlib_VideoColorYUV2ARGB422
- mlib_VideoColorYUV2ARGB444
- mlib_VideoColorYUV2RGB411
- mlib_VideoColorYUV2RGB420
- mlib_VideoColorYUV2RGB422
- mlib_VideoColorYUV2RGB444
- mlib_VideoColorYUV411seq_to_ABGRint
- mlib_VideoColorYUV411seq_to_ARGBint
- mlib_VideoColorYUV411seq_to_UYVY422int
- mlib_VideoColorYUV411seq_to_YUYV422int
- mlib_VideoColorYUV420seq_to_ABGRint
- mlib_VideoColorYUV420seq_to_ARGBint
- mlib_VideoColorYUV420seq_to_UYVY422int
- mlib_VideoColorYUV420seq_to_YUYV422int
- mlib_VideoColorYUV422seq_to_ABGRint
- mlib_VideoColorYUV422seq_to_ARGBint
- mlib_VideoColorYUV422seq_to_UYVY422int
- mlib_VideoColorYUV422seq_to_YUYV422int
- mlib_VideoColorYUV444int_to_ABGRint
- mlib_VideoColorYUV444int_to_ARGBint
- mlib_VideoColorYUV444int_to_UYVY422int
- mlib_VideoColorYUV444int_to_YUYV422int
- mlib_VideoColorYUV444seq_to_ABGRint
- mlib_VideoColorYUV444seq_to_ARGBint
- mlib_VideoColorYUV444seq_to_UYVY422int
- mlib_VideoColorYUV444seq_to_YUYV422int
- mlib_VideoColorYUYV422int_to_ABGRint
- mlib_VideoColorYUYV422int_to_ARGBint
- mlib_VideoCopyRefAve_U8_U8
- mlib_VideoCopyRefAve_U8_U8_16x16
- mlib_VideoCopyRefAve_U8_U8_16x8
- mlib_VideoCopyRefAve_U8_U8_8x16
- mlib_VideoCopyRefAve_U8_U8_8x8
- mlib_VideoCopyRef_S16_U8
- mlib_VideoCopyRef_S16_U8_16x16
- mlib_VideoCopyRef_S16_U8_16x8
- mlib_VideoCopyRef_S16_U8_8x16
- mlib_VideoCopyRef_S16_U8_8x8
- mlib_VideoCopyRef_S16_U8_8x16
- mlib_VideoCopyRef_S16_U8_8x4
- mlib_VideoCopyRef_S16_U8_8x8
- mlib_VideoCopyRef_U8_U8
- mlib_VideoCopyRef_U8_U8_16x16
- mlib_VideoCopyRef_U8_U8_16x8
- mlib_VideoCopyRef_U8_U8_8x16
- mlib_VideoCopyRef_U8_U8_8x4
- mlib_VideoCopyRef_U8_U8_8x8
- mlib_VideoDCT16x16_S16_S16
- mlib_VideoDCT16x16_S16_S16_B10
- mlib_VideoDCT2x2_S16_S16
- mlib_VideoDCT4x4_S16_S16
- mlib_VideoDCT8x8Quantize_S16_S16_B12
- mlib_VideoDCT8x8Quantize_S16_S16_B12_NA
- mlib_VideoDCT8x8Quantize_S16_S16_U8
- mlib_VideoDCT8x8Quantize_S16_S16_U8_NA
- mlib_VideoDCT8x8_S16_S16
- mlib_VideoDCT8x8_S16_S16_B10
- mlib_VideoDCT8x8_S16_S16_B10_NA
- mlib_VideoDCT8x8_S16_S16_B12
- mlib_VideoDCT8x8_S16_S16_NA
- mlib_VideoDCT8x8_S16_U8
- mlib_VideoDCT8x8_S16_U8_NA
- mlib_VideoDeQuantizeIDCT8x8_S16_S16_B12
- mlib_VideoDeQuantizeIDCT8x8_S16_S16_B12_NA
- mlib_VideoDeQuantizeIDCT8x8_S16_S16_U8_S16
- mlib_VideoDeQuantizeIDCT8x8_S16_S16_U8_S16_NA
- mlib_VideoDeQuantizeInit_S16
- mlib_VideoDownSample420
- mlib_VideoDownSample420_S16
- mlib_VideoDownSample422
- mlib_VideoDownSample422_S16
- mlib_VideoH263OverlappedMC_S16_U8
- mlib_VideoH263OverlappedMC_U8_U8
- mlib_VideoIDCT8x8_S16_S16
- mlib_VideoIDCT8x8_S16_S16_B12
- mlib_VideoIDCT8x8_S16_S16_B12_NA
- mlib_VideoIDCT8x8_S16_S16_DC
- mlib_VideoIDCT8x8_S16_S16_NA
- mlib_VideoIDCT8x8_S16_S16_Q1
- mlib_VideoIDCT8x8_S16_S16_Q1_Mismatch
- mlib_VideoIDCT8x8_U8_S16

Library Interfaces and Headers 291
- mlib_VideoIDCT8x8_U8_S16_DC
- mlib_VideoIDCT8x8_U8_S16_NA
- mlib_VideoIDCT8x8_U8_S16_Q1
- mlib_VideoIDCT_IEEE_S16_S16
- mlib_VideoInterpAveX_U8_U8
- mlib_VideoInterpAveX_U8_U8_16x16
- mlib_VideoInterpAveX_U8_U8_16x8
- mlib_VideoInterpAveX_U8_U8_8x16
- mlib_VideoInterpAveX_U8_U8_8x4
- mlib_VideoInterpAveX_U8_U8_8x8
- mlib_VideoInterpAveXY_U8_U8
- mlib_VideoInterpAveXY_U8_U8_16x16
- mlib_VideoInterpAveXY_U8_U8_16x8
- mlib_VideoInterpAveXY_U8_U8_8x16
- mlib_VideoInterpAveXY_U8_U8_8x4
- mlib_VideoInterpAveXY_U8_U8_8x8
- mlib_VideoInterpX_S16_U8
- mlib_VideoInterpX_S16_U8_16x16
- mlib_VideoInterpX_S16_U8_16x8
- mlib_VideoInterpX_S16_U8_8x16
- mlib_VideoInterpX_S16_U8_8x4
- mlib_VideoInterpX_S16_U8_8x8
- mlib_VideoInterpX_U8_U8
- mlib_VideoInterpX_U8_U8_16x16
- mlib_VideoInterpX_U8_U8_16x8
- mlib_VideoInterpX_U8_U8_8x16
- mlib_VideoInterpX_U8_U8_8x4
- mlib_VideoInterpX_U8_U8_8x8
- mlib_VideoInterpXY_S16_U8
- mlib_VideoInterpXY_S16_U8_16x16
- mlib_VideoInterpXY_S16_U8_16x8
- mlib_VideoInterpXY_S16_U8_8x16
- mlib_VideoInterpXY_S16_U8_8x4
- mlib_VideoInterpXY_S16_U8_8x8
- mlib_VideoInterpXY_U8_U8
- mlib_VideoInterpXY_U8_U8_16x16
- mlib_VideoInterpXY_U8_U8_16x8
- mlib_VideoInterpXY_U8_U8_8x16
- mlib_VideoInterpXY_U8_U8_8x4
- mlib_VideoInterpXY_U8_U8_8x8
- mlib_VideoInterpXY_U8_U8_8x4
- mlib_VideoInterpXY_U8_U8_8x8
- mlib_VideoInterpXY_XY_U8_U8
- mlib_VideoInterpY_S16_U8
- mlib_VideoInterpY_S16_U8_16x16
- mlib_VideoInterpY_S16_U8_16x8
- mlib_VideoInterpY_S16_U8_8x16
- mlib_VideoInterpY_S16_U8_8x8
- mlib_VideoInterpY_U8_U8
- mlib_VideoInterpY_U8_U8_16x16
- mlib_VideoInterpY_U8_U8_16x8
- mlib_VideoInterpY_U8_U8_8x16
- mlib_VideoInterpY_U8_U8_8x8
- mlib_VideoP64Decimate_U8_U8
- mlib_VideoP64Loop_S16_U8
- mlib_VideoP64Loop_U8_U8
- mlib_VideoQuantizeInit_S16
- mlib_VideoQuantize_S16
- mlib_VideoReversibleColorRGB2YUV_S16_S16
- mlib_VideoReversibleColorRGB2YUV_S16_S32
- mlib_VideoReversibleColorRGB2YUV_U8_U8
- mlib_VideoReversibleColorYUV2RGB_S16_S16
- mlib_VideoReversibleColorYUV2RGB_S16_S32
- mlib_VideoReversibleColorYUV2RGB_U8_S16
- mlib_VideoReversibleColorYUV2RGB_U8_U8
- mlib_VideoSignMagnitudeConvert_S16
- mlib_VideoSignMagnitudeConvert_S16_S16
- mlib_VideoSignMagnitudeConvert_S32
- mlib_VideoSignMagnitudeConvert_S32_S32
- mlib_VideoSumAbsDiff
- mlib_VideoUpSample420
- mlib_VideoUpSample420_Nearest
- mlib_VideoUpSample420_Nearest_S16
- mlib_VideoUpSample420_S16
- mlib_VideoUpSample422
- mlib_VideoUpSample422_Nearest
- mlib_VideoUpSample422_Nearest_S16
- mlib_VideoUpSample422_S16
- mlib_VideoWaveletForwardTwoTenTrans_S16_S16
- mlib_VideoWaveletForwardTwoTenTrans_S16_U8
- mlib_VideoWaveletForwardTwoTenTrans_S32_S16

Library Interfaces and Headers 293
libmlib(3LIB)

- mlib_VideoWaveletForwardTwoTenTrans_S32_S32
- mlib_VideoWaveletInverseTwoTenTrans_S16_S16
- mlib_VideoWaveletInverseTwoTenTrans_S16_S32
- mlib_VideoWaveletInverseTwoTenTrans_S32_S32
- mlib_VideoWaveletInverseTwoTenTrans_U8_S16
- mlib_VolumeFindMaxBMask_S16
- mlib_VolumeFindMaxBMask_U8
- mlib_VolumeFindMaxCMask_S16
- mlib_VolumeFindMaxCMask_U8
- mlib_VolumeFindMax_S16
- mlib_VolumeFindMax_U8
- mlib_VolumeRayCast_Blocked_Divergent_Nearest_S16_S16
- mlib_VolumeRayCast_Blocked_Divergent_Nearest_U8_U8
- mlib_VolumeRayCast_Blocked_Divergent_Trilinear_S16_S16
- mlib_VolumeRayCast_Blocked_Divergent_Trilinear_U8_U8
- mlib_VolumeRayCast_Blocked_Parallel_Nearest_S16_S16
- mlib_VolumeRayCast_Blocked_Parallel_Nearest_U8_U8
- mlib_VolumeRayCast_Blocked_Parallel_Trilinear_S16_S16
- mlib_VolumeRayCast_Blocked_Parallel_Trilinear_U8_U8
- mlib_VolumeRayCast_General_Divergent_Nearest_S16_S16
- mlib_VolumeRayCast_General_Divergent_Nearest_U8_Bit
- mlib_VolumeRayCast_General_Divergent_Nearest_U8_U8
- mlib_VolumeRayCast_General_Divergent_Trilinear_S16_S16
- mlib_VolumeRayCast_General_Divergent_Trilinear_U8_U8
- mlib_VolumeRayCast_General_Parallel_Nearest_S16_S16
- mlib_VolumeRayCast_General_Parallel_Nearest_U8_Bit
- mlib_VolumeRayCast_General_Parallel_Parallel_S16_S16
- mlib_VolumeWindowLevel

Files
/usr/lib/libmlib.so.2 shared object
/usr/lib/64/libmlib.so.2 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>library/medialib</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>
See Also Intro(3), attributes(5)
libmlib_mt(3LIB)

Name libmlib_mt – multi-threaded mediaLib

Synopsis cc [flag...] file... -lmlib_mt -lmlib [library...]
#include <mlib.h>

Description Interfaces in this library provide functions for multimedia processing. Multi-threaded (MT) mediaLib is a software layer developed on top of mediaLib using OpenMP. When it is used with a large data set on a multi-processor system, MT mediaLib will partition data into subsets and process the subsets in parallel, thus greatly improving performance of applications that use mediaLib.

Interfaces The shared object libmlib_mt.so.2 provides the same public interfaces as those defined in libmlib(3LIB). See Intro(3) for additional information on shared object interfaces.

Usage There are two ways to use MT mediaLib.

1. Pre-load a multi-threaded mediaLib library during runtime by setting the LD_PRELOAD environment variable as follows before starting your application, in Bourne/Korn shell:

 LD_PRELOAD=libmlib_mt.so
 export LD_PRELOAD

 or in C shell:

 setenv LD_PRELOAD libmlib_mt.so

 In this way, you can take advantage of MT mediaLib without rebuilding your application.

2. Link your application with a multi-threaded mediaLib library directly as shown under SYNOPSIS. In this way, an MT mediaLib library is always used whenever your application is started.

 The parallelization of MT mediaLib is controlled, in part, by the PARALLEL environment variable. You can change its setting to adjust the degree of parallelization before starting your application, in Bourne/Korn shell:

 PARALLEL=n
 export PARALLEL

 or in C shell:

 setenv PARALLEL n

 where n is a positive integer for number of threads. Note that other factors also affect the degree of parallelization in MT mediaLib.

Files /usr/lib/libmlib_mt.so.2 shared object
/usr/lib/64/libmlib_mt.so.2 64-bit shared object
Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>library/medialib</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), libmlib(3LIB), attributes(5)
Name
libmp – multiple precision library

Synopsis
cc [flag...] file... -lmp [library...]
#include <mp.h>

Description
Functions in this library provide various multiple precision routines.

Interfaces
The shared object libmp.so.2 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

```c
mp_gcd  
mp_madd  
mp_mdiv  
mp_min  
mp_msqrt  
mp_mtox  
mp_pow  
mp_sdiv  
mp_xtom  
mp_itom  
mp_mcmp  
mp_mfree  
mp_mout  
mp_msub  
mp_mult  
mp_rpow
```

Files
/lib/libmp.so.1
/shared object for binary compatibility only

/lib/libmp.so.2
/shared object

/lib/64/libmp.so.2
64-bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTETYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also
pvs(1), Intro(3), exp(3M), mp(3MP), attributes(5)
Name libMPAPI, libmpapi – Common Multipath Management library

Synopsis
```c
cc [ f... ] file... -lMPAPI [ library... ]
#include <mpapi.h>
#include <mpapi-sun.h>
```

Description The functions in this library allow a management application to administer the multipath devices and associated resources through standard interfaces, independent of a vendor-unique multipathing solution.

Interfaces The shared object `libMPAPI.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

- MP_AssignLogicalUnitToTPG
- MP_CancelOverridePath
- MP_CompareOIDs
- MP_DeregisterForObjectPropertyChanges
- MP_DeregisterForObjectVisibilityChanges
- MP_DeregisterPlugin
- MP_DisableAutoFailback
- MP_DisableAutoProbing
- MP_DisablePath
- MP_EnableAutoFailback
- MP_EnableAutoProbing
- MP_EnablePath
- MP_FreeOIDList
- MP_GetAssociatedPathOIDList
- MP_GetAssociatedPluginOID
- MP_GetAssociatedTPG OIDList
- MP_GetDeviceProductOIDList
- MP_GetDeviceProductProperties
- MP_GetInitiatorPortOIDList
- MP_GetInitiatorPortProperties
- MP_GetLibraryProperties
- MP_GetMPLuOIDListFromTPG
- MP_GetMultipathLus
- MP_GetObjectType
- MP_GetPathLogicalUnitProperties
- MP_GetPluginOIDList
- MP_GetPluginProperties
- MP_GetProprietaryLoadBalanceOIDList
- MP_GetProprietaryLoadBalanceProperties
- MP_GetTargetPortGroupProperties
- MP_GetTargetPortOIDList
LibMPAPI(3LIB)

MP_GetTargetPortProperties
MP_RegisterForObjectPropertyChanges
MP_RegisterForObjectVisibilityChanges
MP_RegisterPlugin
MP_SetFailbackPollingRate
MP_SetLogicalUnitLoadBalanceType
MP_SetOverridePath
MP_SetPathWeight
MP_SetPluginLoadBalanceType
MP_SetProbingPollingRate
MP_SetProprietaryProperties
MP_SetTPGAccess
Sun_MP_SendScsiCmd

Usage

Client applications link with the Common Library (using -lMPAPI) to access the interfaces. The Common Library dynamically loads an individual vendor-provided plugin library that is available through MP_RegisterPlugin(3MPAPI) on the host system.

Using LibMPAPI involves the following steps:

1. Optionally calling MP_GetLibraryProperties() to retrieve the properties of the Common Library.
2. Calling MP_GetPluginOidList() to retrieve the registered plugin libraries.
3. Optionally calling MP_GetPluginProperties() to retrieve the properties of the plugin library.
4. Retrieve discovery information and property information on multipath devices and associated resources by calling the following:
 - MP_GetAssociatedPathOidList()
 - MP_GetAssociatedTPGOidList()
 - MP_GetDeviceProductOidList()
 - MP_GetDeviceProductProperties()
 - MP_GetInitiatorPortOidList()
 - MP_GetInitiatorPortProperties()
 - MP_GetMPLuOidListFromTPG()
 - MP_GetMPLogicalUnitProperties()
 - MP_GetMultipathLus()
 - MP_GetPathLogicalUnitProperties()
 - MP_GetProprietaryLoadBalanceOidList()
 - MP_GetProprietaryLoadBalanceProperties()
 - MP_GetTargetPortGroupProperties()
 - MP_GetTargetPortOidList()
 - MP_GetTargetPortProperties()

5. Register and deregister for property and visibility changes on multipath devices and associated resources by calling:
MP_RegisterForObjectPropertyChanges()
MP_RegisterForObjectVisibilityChanges()
MP_DeregisterForObjectPropertyChanges()
MP_DeregisterForObjectVisibilityChanges()

6. Perform administrative operations on multipath devices and associated resources by calling:

- MP_AssignLogicalUnitToTPG()
- MP_CancelOverridePath()
- MP_DisableAutoFailback()
- MP_DisableAutoProbing()
- MP_DisablePath()
- MP_EnableAutoFailback()
- MP_EnableAutoProbing()
- MP_EnablePath()
- MP_SetLogicalUnitLoadBalanceType()
- MP_SetOverridePath()
- MP_SetPathWeight()
- MP_SetPluginLoadBalanceType()
- MP_SetFailbackPollingRate()
- MP_SetProbingPollingRate()
- MP_SetProprietaryProperties()
- MP_SetTPGAccess()
- Sun_MP_SendScsiCmd()

Errors

Errors are generally returned from the underlying VSL and can include any of the following values:

MP_STATUS_SUCCESS
This status value is returned when the requested operation is successfully carried out.

MP_STATUS_INVALID_PARAMETER
This status value is returned when parameters passed to an API are detected to be invalid or inappropriate for a particular API parameter. If the parameter is an object ID, this status indicates that the object type subfield is defined in this specification, but is not appropriate for this API.

MP_STATUS_UNKNOWN_FN
This status value is returned when a client function passed into the API is not a previously registered or known function.

MP_STATUS_FAILED
This status value is returned when the requested operation could not be carried out.

MP_STATUS_INSUFFICIENT_MEMORY
This status value is returned when the API could [not] allocate the memory required to complete the requested operation.
MP_STATUS_INVALID_OBJECT_TYPE
This status value is returned when an object ID includes a type subfield that is not defined in this specification.

MP_STATUS_OBJECT_NOT_FOUND
This status value is returned when the object associated with the ID specified in the API could not be located, or has been deleted. Note that an invalid object type is covered by MP_STATUS_INVALID_OBJECT_TYPE so this status is limited to an invalid object owner identifier or sequence number.

MP_STATUS_UNSUPPORTED
This status value is returned when the implementation does not support the requested function.

MP_STATUS_FN_REPLACED
This status value is returned when a client function passed into the API replaces a previously registered function.

MP_STATUS_ACCESS_STATE_INVALID
This status value is returned when a device processing MP_SetTPGAccess returns a status indicating that the caller is attempting to establish an illegal combination of access states.

MP_STATUS_PATH_NONOPERATIONAL
This status is returned when communication cannot be established with the path selected by the caller.

MP_STATUS_TRY_AGAIN
This status is returned when the plugin or driver is unable to complete the request, but might be able to complete it later.

MP_STATUS_NOT_PERMITTED
The operation is not permitted in the current configuration, but might be permitted in other configurations.

Files
/usr/lib/libMPAPI.so shared object
/usr/lib/64/libMPAPI.so 64–bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library/storage/snia-mpapi</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
<tr>
<td>Standard</td>
<td>ANSI INCITS 412 Multipath Management API (except for Sun_MP_SendScsiCmd)</td>
</tr>
</tbody>
</table>
See Also Intro(3), MP_RegisterPlugin(3MPAPI), attributes(5)

Multipath Management API Version 1.0
libmtmalloc – multi-threaded memory allocator library

Synopsis
cc [flag...] file... -ltmalloc [library...]
#include <mtmalloc.h>

Description
Functions in this library provide concurrent access to heap space.

Interfaces
The shared object libmtmalloc.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

```c
free  malloc
mallocctl memalign
realloc valloc
```

Environment Variables

MTMALLOC_OPTIONS
A comma separated list of options. The supported options are:

- **MTEXCLUSIVE=Y**
 By default, libmtmalloc allocates 2*NCPUS buckets from which allocations occur. Threads share buckets based on their thread ID. If MTEXCLUSIVE is invoked, then 4*NCPUS buckets are used. Threads with thread id less than 2*NCPUS receive an exclusive bucket and thus do not need to use locks. Allocation performance for these buckets may be dramatically increased. One enabled MTEXCLUSIVE can not be disabled. This feature can be enabled by setting the MTMALLOC_OPTION MTEXCLUSIVE to "Y" or "y" or anything beginning with "y". Alternatively it can be enabled by a call to mallocctl(3MALLOC).

- **MTMAXCACHE=16, 17, 18, 19, 20, or 21**
 By default, allocations less than 2\(^{16}\) bytes are allocated from buckets indexed by thread id. Using this MTMALLOC_OPTION setting, variable size of the cached allocations can be increased to 2\(^{17}\), 2\(^{18}\), 2\(^{19}\), 2\(^{20}\), or 2\(^{21}\) by setting MTMAXCACHE to 17, 18, 19, 20, or 21. If MTMAXCACHE is set to less than 16 it is reset to 16. If MTMAXCACHE is set to more than 21, then it is reset to 21. This all occurs silently.

- **MTCHUNKSIZE=xx**
 Allocation buckets are sized by the chunk size and the size of the allocation request. The default setting is 9 for 32-bit applications and 64 for 64 bit applications. For the cost of address space, performance can sometimes be enhanced by increasing this parameter. See mallocctl(3MALLOC).

- **MTREALFREE=xx**
 If xx > 1, set the threshold for calling madvise(3C) with MADV_FREE. Calling madvise() will result in the memory associated with the allocation being returned to the kernel. When freed, allocations greater than xx\(\times\)pagesize will have madvise() called. If xx is less than 2, it will be set to 2.
MTDEBUGPATTERN=Y
Writes misaligned data into the buffer after free(). When the buffer is reallocated, the contents are verified to ensure that there was no access to the buffer after the free. If the buffer has been dirtied, a SIGABRT signal is delivered to the process. The default behavior is not to write misaligned data. The pattern used is 0xdeadbeef. Use of this option results in a performance penalty.

MTINITBUFFER=Y
Writes misaligned data into the newly allocated buffer. This option is useful for detecting some accesses before initialization. The default behavior is not to write misaligned data to the newly allocated buffer. The pattern used is 0xbaddcafe. Use of this option results in a performance penalty.

MTDOUBLEFREE=Y
Allows double free of a pointer. The default behavior of double free results in a core dump.

Files
/usr/lib/libmtmalloc.so.1 shared object
/usr/lib/64/libmtmalloc.so.1 64–bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also
pvs(1), sbrk(2), Intro(3), malloc(3C), malloc(3MALLOC), mapmalloc(3MALLOC), mtmalloc(3MALLOC), attributes(5)
libmvec(3LIB)

Name libmvec – vector math library

Synopsis cc [flag...] file... -lmvec [library...]

Description This library contains function to evaluate common mathematical functions for several arguments at once. The argument values are specified by one or more vectors (arrays) of data, and the corresponding result values are stored in another vector.

Interfaces The shared object \texttt{/lib/libmvec.so.1} provides the public interfaces defined below. See \texttt{Intro(3)} for additional information on shared object interfaces.

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>vatan_</td>
</tr>
<tr>
<td>vatan2_</td>
</tr>
<tr>
<td>vc_abs_</td>
</tr>
<tr>
<td>vc_log_</td>
</tr>
<tr>
<td>vcos_</td>
</tr>
<tr>
<td>vcospi_</td>
</tr>
<tr>
<td>vexp_</td>
</tr>
<tr>
<td>vhypot_</td>
</tr>
<tr>
<td>vlog_</td>
</tr>
<tr>
<td>vpow_</td>
</tr>
<tr>
<td>vrhypot_</td>
</tr>
<tr>
<td>vrsqrt_</td>
</tr>
<tr>
<td>vsin_</td>
</tr>
<tr>
<td>vsincos_</td>
</tr>
<tr>
<td>vsincospi_</td>
</tr>
<tr>
<td>vsinpi_</td>
</tr>
<tr>
<td>vsqrt_</td>
</tr>
<tr>
<td>vz_abs_</td>
</tr>
<tr>
<td>vz_log_</td>
</tr>
</tbody>
</table>

Files

\texttt{/lib/libmvec.so.1} shared object

\texttt{/lib/64/libmvec.so.1} 64-bit shared object
Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library/math</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), complex.h(3HEAD), libm(3LIB), attributes(5)
libnsl – network services library

cc [flag...] file... -lnsl [library...]

Functions in this library provide routines that provide a transport-level interface to networking services for applications, facilities for machine-independent data representation, a remote procedure call mechanism, and other networking services useful for application programs.

Some symbols are not intended to be referenced directly. Rather, they are exposed because they are used elsewhere through a private interface. One such example is the set of symbols beginning with the _xti prefix. Those symbols are used in implementing the X/Open Transport Interface (XTI) interfaces documented in libxnet. See libxnet(3LIB).

The shared object libnsl.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

```
__rpc_createerr
__t_errno
__nderror
__null_auth
_xti_accept
_xti_alloc
_xti_bind
_xti_close
_xti_connect
_xti_error
_xti_free
_xti_getinfo
_xti_getprotaddr
_xti_getstate
_xti_listen
_xti_look
_xti_open
_xti_optmgmt
_xti_rcv
_xti_rcvconnect
_xti_rcvdis
_xti_rcvrel
_xti_rcvreldata
_xti_rcvudata
_xti_rcvuderr
_xti_rcvv
_xti_rcvvdata
_xti_snd
_xti_snddis
_xti_sndrel
_xti_sndreldata
_xti_sndudata
_xti_sndv
_xti_sndvdata
_xti_strerror
_xti_sync
_xti_sysconf
_xti_unbind
```
.xti_xns5_accept auth_destroy authdes_create
authdes_getucred authdes_lock authnone_create
authsys_create authsys_create_default
callrpc clnt_broadcast
clntr_call clnt_control
clntr_create clnt_create_timed
clntr_create_vers clnt_create_vers_timed
clntr_destroy clnt dg create
clntr_door_create clnt_freeres
clntr_geterr clnt_pcreateerror
clntr_perrno clnt perror
clntr_raw_create clnt spcreateerror
clntr_sperno clnt sperror
clntr_tli_create clnt tp create
clntr tp_create_timed clnt vc create
clntraw_create clnttcp_create
clntrudp_bufcreate clntudp_create
dbmclose dbminit
delete des_setparity
dial doconfig
dendhostent endnetconfig
dendnetpath endrpcconfig
dfetch firstkey
ffreehostent freenetconfigent
get_myaddress gethostbyaddr
gethostbyaddr_r gethostbyname
gethostbyname_r gethostent
gethostent_r getipnodebyaddr
getipnodebyname getipsecalgbyname
getipsecalgbyname getipsecprotobynum
getipsecprotobynum getnetconfig
getnetconfig getnetname
getnetpath getpublickey
getrpcbyname getrpcreversedname
getrpcreversedname getrpcreversedname_r
getrpcent getrpcent_r
getrpcport getsecretkey
h_errno host2netname
inet_addr inet_netof
inet_ntoa inet_ntoa_r
inet_ntop inet_pton
key_decryptsession key_encryptsession
key_gendes key_secretkey_is_set
key_setsecret maxbno
nc_errno nc_serror
netdir_free netdir_getbyaddr
netdir_getbyname netdir_options
netdir_error netdir_serror
netname2host netname2user
nextkey
pmap_getmaps pmap_getport
pmap_rmtcall pmap_set
pmap_unset registerrpc
rpc_broadcast rpc_broadcast_exp
rpc_call rpc_control
rpc_createerr rpc_gss_get_error
s AVCerr_decode svcerr_noproc
s AVCerr_noprog svcerr_progvers
s AVCerr_systemerr svcerr_weakauth
s AVCfd_create svcraw_create
s AVCtcp_create svcudp_bufcreate
s AVCudp_create t_accept
 t_alloc t_bind
 t_close t_connect
 t_errno t_error
 t_free t_getinfo
 t_getname t_getstate
 t_listen t_look
 t_nerr t_open
 t_optmgmt t_rcv
 t_rcvconnect t_rcvdis
 t_rcvrel t_rcvudata
 t_rcvuderr t_snd
 t_snddis t_sndrel
 t_sndudata t_strerror
 t_sync t_unbind
 taddr2uaddr uaddr2taddr
 undial user2netname
 xdr_accepted_reply xdr_array
 xdr_authsys_parms xdr_bool
 xdr_bytes xdr_callhdr
 xdr_callmsg xdr_char
 xdr_destroy xdr_double
 xdr_enum xdr_float
 xdr_free xdr_getpos

312 man pages section 3: Library Interfaces and Headers • Last Revised 23 Aug 2011
The following interface is unique to the 32-bit version of this library:
_new_svc_fdset

Files
/lib/libnsl.so.1 shared object
/lib/64/libnsl.so.1 64-bit shared object

Attributes See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe with exceptions</td>
</tr>
</tbody>
</table>

See Also `pvs(1), Intro(2), Intro(3), libxnet(3LIB), attributes(5)`
The `libnvpair` library exports a set of functions for managing name-value pairs.

The library defines four opaque handles:

- `nvpair_t` handle to a name-value pair
- `nvlist_t` handle to a list of name-value pairs
- `nv_alloc_t` handle to a pluggable allocator
- `nv_alloc_ops_t` handle to pluggable allocator operations

The library supports the following operations:

- Allocate and free an `nvlist_t`.
- Specify the allocator to be used when manipulating an `nvlist_t`.
- Add and remove an `nvpair_t` from a list.
- Search `nvlist_t` for a specified name pair.
- Pack an `nvlist_t` into a contiguous buffer.
- Expand a packed `nvlist` into a searchable `nvlist_t`.

The shared object `libnvpair.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

```
nvlist_add_boolean nvlist_add_boolean_value
nvlist_add_boolean_array nvlist_add_byte
nvlist_add_byte_array nvlist_add_double
nvlist_add_int8 nvlist_add_int8_array
nvlist_add_int16 nvlist_add_int16_array
nvlist_add_int32 nvlist_add_int32_array
nvlist_add_int64 nvlist_add_int64_array
nvlist_add_nvlist nvlist_add_nvlist_array
nvlist_add_nvpair nvlist_add_string
nvlist_add_string_array nvlist_add_uint8
nvlist_add_uint8_array   nvlist_add_uint16
nvlist_add_uint16_array  nvlist_add_uint32
```
nvlist_add_uint32_array nvlist_add_uint64
nvlist_add_uint64_array nvlist_alloc
nvlist_dup nvlist_exists
nvlist_free nvlist_lookup_boolean
nvlist_lookup_boolean_value nvlist_lookup_boolean_array
nvlist_lookup_byte nvlist_lookup_byte_array
nvlist_lookup_double nvlist_lookup_int8
nvlist_lookup_int8_array nvlist_lookup_int16
nvlist_lookup_int16_array nvlist_lookup_int32
nvlist_lookup_int32_array nvlist_lookup_int64
nvlist_lookup_int64_array nvlist_lookup_nvlist
nvlist_lookup_nvlist_array nvlist_lookup_nv_alloc
nvlist_lookup_nvpair nvlist_lookup_pairs
nvlist_lookup_string nvlist_lookup_string_array
nvlist_lookup_uint8 nvlist_lookup_uint8_array
nvlist_lookup_uint16 nvlist_lookup_uint16_array
nvlist_lookup_uint32 nvlist_lookup_uint32_array
nvlist_lookup_uint64 nvlist_lookup_uint64_array
nvlist_merge nvlist_next_nvpair
nvlist_nvflag nvlist_pack
nvlist_remove nvlist_remove_all
nvlist_size nvlist_unpack
nvlist_xalloc nvlist_xdup
nvlist_xpack nvlist_xunpack
nvpair_name nvpair_type
nvpair_value_boolean_array nvpair_value_boolean_value
nvpair_value_byte nvpair_value_byte_array
nvpair_value_double nvpair_value_int8
nvpair_value_int8_array nvpair_value_int16
nvpair_value_int16_array nvpair_value_int32
nvpair_value_int32_array nvpair_value_int64
nvpair_value_int64_array nvpair_value_nvlist
nvpair_value_nvlist_array nvpair_value_string
nvpair_value_string_array nvpair_value_uint8
nvpair_value_uint8_array nvpair_value_uint16
nvpair_value_uint16_array nvpair_value_uint32
nvpair_value_uint32_array nvpair_value_uint64
nvpair_value_uint64_array nv_alloc_init
nv_alloc_fini nv_alloc_reset

Files

/lib/libnvpair.so.1 shared object
/lib/64/libnvpair.so.1 64-bit shared object

Attributes

See attributes(5) for description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also

Intro(3), attributes(5)
libpam – PAM (Pluggable Authentication Module) library

Synopsis

cc [flag...] file... -lpam [library...]

#include <security/pam_appl.h>

Functions in this library provide routines for the Pluggable Authentication Module (PAM).

Description

The shared object **libpam.so.1** provides the public interfaces defined below. See **Intro(3)** for additional information on shared object interfaces.

- `pam_acct_mgmt`
- `pam_authenticate`
- `pam_chauthtok`
- `pam_close_session`
- `pam_end`
- `pam_eval`
- `pam_get_data`
- `pam_get_item`
- `pam_get_user`
- `pam_getenv`
- `pam_getenvlist`
- `pam_open_session`
- `pam_putenv`
- `pam_set_data`
- `pam_set_item`
- `pam_setcred`
- `pam_start`
- `pam_strerror`

Files

- `/lib/libpam.so.1`
 - shared object
- `/etc/pam.conf`
 - configuration file
- `/etc/pam.d/service`
 - alternate PAM configuration files
- `/usr/lib/security/pam_dial_auth.so.1`
 - authentication management PAM module for dialups
- `/usr/lib/security/pam_rhosts_auth.so.1`
 - authentication management PAM modules that use `ruserok()`
- `/usr/lib/security/pam_sample.so.1`
 - sample PAM module

Attributes

See **attributes(5)** for description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT Level</td>
<td>MT-Safe with exceptions</td>
</tr>
</tbody>
</table>
The functions in `libpam` are MT-Safe only if each thread within the multithreaded application uses its own PAM handle.

The `pam_unix` module is no longer supported. Similar functionality is provided by `pam_authtok_check`, `pam_authtok_get`, `pam_authtok_store`, `pam_dhkeys`, `pam_passwd_auth`, `pam_unix_account`, `pam_unix_auth`, and `pam_unix_session`.
Name
libpanel – panels library

Synopsis
cc [flag...] file... -lpanel [library...]

Description
Functions in this library provide panels using *libcurses*(3LIB) routines.

Interfaces
The shared object libpanel.so.1 provides the public interfaces defined below. See *Intro*(3) for additional information on shared object interfaces.

```c
bottom_panel
del_panel
hide_panel
move_panel
new_panel
panel_above
panel_below
panel_hidden
panel_window
replace_panel
set_panel_userptr
show_panel
top_panel
update_panels
```

Files
/usr/lib/libpanel.so.1
shared object
/usr/lib/64/libpanel.so.1
64-bit shared object

Attributes
See *attributes*(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also
Intro(3), *libcurses*(3LIB), *attributes*(5)
Name
libpapi – Free Standards Group Open Printing API (PAPI) library functions

Synopsis
cc [flag...] file... -lpapi [library...]
#include <papi.h>

Description
Functions in this library provide an interface for interaction with print services as described in v1.0 of the Free Standards Group (FSG) Open Printing API (PAPI).

This particular implementation of the PAPI supplies support for interaction with local LP services, remote LPD services, and remote IPP services through the use of loadable modules that export the same interface. These modules should not be linked with directly, but can be used directly at runtime through the use of `LD_PRELOAD` for debugging purposes.

Interfaces
The shared object `libpapi.so.0` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

Attribute

- `papiAttributeListAddBoolean`
- `papiAttributeListAddCollection`
- `papiAttributeListAddDatetime`
- `papiAttributeListAddInteger`
- `papiAttributeListAddMetadata`
- `papiAttributeListAddRange`
- `papiAttributeListAddResolution`
- `papiAttributeListAddString`
- `papiAttributeListAddValue`
- `papiAttributeListDelete`
- `papiAttributeListFind`
- `papiAttributeListFree`
- `papiAttributeListFromString`
- `papiAttributeListGetBoolean`
- `papiAttributeListGetCollection`
- `papiAttributeListGetDatetime`
- `papiAttributeListGetInteger`
- `papiAttributeListGetMetadata`
- `papiAttributeListGetNext`
- `papiAttributeListGetRange`
- `papiAttributeListGetResolution`
- `papiAttributeListGetString`
- `papiAttributeListGetValue`
- `papiAttributeListToString`

Service

- `papiServiceCreate`
- `papiServiceDestroy`
- `papiServiceGetAppData`
- `papiServiceGetAttributeList`
- `papiServiceGetEncryption`
- `papiServiceGetPassword`
- `papiServiceGetServiceName`
- `papiServiceGetStatusMessage`
- `papiServiceGetUserName`
- `papiServiceSetAppData`
- `papiServiceSetAuthCB`
- `papiServiceSetEncryption`
libpapi(3LIB)

<table>
<thead>
<tr>
<th>Printer</th>
<th>Job</th>
<th>Miscellaneous</th>
<th>Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>papiServiceSetPassword</td>
<td>papiServiceSetUserName</td>
<td></td>
<td>/usr/lib/libpapi.so.0</td>
</tr>
<tr>
<td>papiPrinterAdd</td>
<td>papiPrinterDisable</td>
<td></td>
<td>/usr/lib/libpapi-common.so.0</td>
</tr>
<tr>
<td>papiPrinterEnable</td>
<td>papiPrinterFree</td>
<td></td>
<td>/usr/lib/print/psm-lpd.so</td>
</tr>
<tr>
<td>papiPrinterGetAttributeList</td>
<td>papiPrinterListFree</td>
<td></td>
<td>/usr/lib/print/psm-lpsched.so</td>
</tr>
<tr>
<td>papiPrinterListJobs</td>
<td></td>
<td></td>
<td>/usr/lib/print/psm-ipp.so</td>
</tr>
<tr>
<td>papiPrinterPause</td>
<td></td>
<td></td>
<td>/usr/lib/libipp-core.so</td>
</tr>
<tr>
<td>papiPrinterQuery</td>
<td></td>
<td></td>
<td>/usr/lib/libipp-listener.so</td>
</tr>
<tr>
<td>papiPrinterResume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiPrinterRemove</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiPrinterModify</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiPrinterList</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobCancel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobGetAttributeList</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobGetJobTicket</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobHold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobModify</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobPromote</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobRelease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobStreamClose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobStreamWrite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobSubmit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobSubmitByReference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobFree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobGetId</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobGetPrinterName</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobListFree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobMove</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobQuery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobRestart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobStreamOpen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiJobSubmit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiLibrarySupportedCall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiLibrarySupportedCalls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>papiStatusString</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Files
- `/usr/lib/libpapi.so.0` - shared object
- `/usr/lib/libpapi-common.so.0` - private shared code
- `/usr/lib/print/psm-lpd.so` - private rfc1179 support
- `/usr/lib/print/psm-lpsched.so` - private LP support
- `/usr/lib/print/psm-ipp.so` - private IPP support
- `/usr/lib/libipp-core.so` - private IPP marshalling support
- `/usr/lib/libipp-listener.so` - private IPP operations support
/usr/lib/libhttp-core.so private HTTP support

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>library/print/open-printing</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Volatile</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), attributes(5)
Name libpctx – process context library

Synopsis cc [flag...] file... -lpctx [library...]

Description Functions in this library provide a simple means to access the underlying facilities of proc(4) to allow a controlling process to manipulate the state of a controlled process.

This library is primarily for use in conjunction with the libcpc(3LIB) library. Used together, these libraries allow developers to construct tools that can manipulate CPU performance counters in other processes. The cputrack(1) utility is an example of such a tool.

Interfaces The shared object libpctx.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

\[
\begin{align*}
\text{pctx_capture} & \quad \text{pctx_create} \\
\text{pctx_release} & \quad \text{pctx_run} \\
\text{pctx_set_events} &
\end{align*}
\]

Files /usr/lib/libpctx.so.1 shared object

\[
\begin{align*}
\text{/usr/lib/64/libpctx.so.1} & \quad \text{64-bit shared object}
\end{align*}
\]

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>diagnostic/cpu-counters</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also cputrack(1), Intro(3), cpc(3CPC), libcpc(3LIB), proc(4), attributes(5)
Name libpicl – PICL library

Synopsis cc [flag...] file... -lpicl [library...]
#include <picl.h>

Description Functions in this library are used to interface with the PICL daemon to access information from the PICL tree.

Interfaces The shared object libpicl.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

picl_find_node picl_get_first_prop
picl_get_fruktree_parent picl_get_next_by_col
picl_get_next_by_row picl_get_next_prop
picl_get_node_by_path picl_get_prop_by_name
picl_get_propinfo picl_get_propinfo_by_name
picl_get_propval picl_get_propval_by_name
picl_get_root picl_get_root
picl_set_propval picl_set_propval_by_name
picl_shutdown picl_shutdown
picl_strerror picl_strerror
picl_wait picl_wait
picl_walk_tree_by_class picl_walk_tree_by_class

Files /usr/lib/libpicl.so.1 shared object
/usr/lib/64/libpicl.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/picl</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also pvs(1), Intro(3), libpicl(3PICL), attributes(5)
Name
libpicltree – PICL plug-in library

Synopsis
cc [flag...] file... -lpicltree [library...]
#include <picltree.h>

Description
Functions in this library are used to by PICL plug-in modules to register with the PICL
daemon and to publish information in the PICL tree.

Interfaces
The shared object libpicltree.so.1 provides the public interfaces defined below. See
Intro(3) for additional information on shared object interfaces.

```
  picld_plugin_register         ptree_add_node
  ptree_add_prop               ptree_add_row_to_table
  ptree_create_and_add_node    ptree_create_and_add_prop
  ptree_create_node            ptree_create_prop
  ptree_create_table           ptree_delete_node
  ptree_delete_prop            ptree_destroy_node
  ptree_destroy_prop           ptree_find_node
  ptree_get_first_prop         ptree_get_fruitree_parent
  ptree_get_next_by_col        ptree_get_next_by_row
  ptree_get_next_prop          ptree_get_node_by_path
  ptree_get_prop_by_name       ptree_get_propinfo
  ptree_get_propval            ptree_get_propval_by_name
  ptree_get_root               ptree_init_propinfo
  ptree_post_event             ptree_register_handler
  ptree_unregister_handler     ptree_update_propval
  ptree_update_propval_by_name ptree_walk_tree_by_class
```

Files
/usr/lib/libpicltree.so.1
shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/picl</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>ATTRIBUTE TYPE</td>
<td>ATTRIBUTE VALUE</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also `pvs(1), Intro(3), libpicltree(3PICLTREE), attributes(5)`
The "libpkcs11" library implements the RSA Security Inc. PKCS#11 Cryptographic Token Interface (Cryptoki), v2.20 specification by using plug-ins to provide the slots. Each plug-in, which also implements RSA PKCS#11 v2.20, represents one or more slots.

The "libpkcs11" library provides a special slot called the metaslot. The metaslot provides a virtual union of capabilities of all other slots. When available, the metaslot is always the first slot provided by "libpkcs11". The order of the rest of the slots is not guaranteed and may vary with every load of this library.

The metaslot feature can be configured either system-wide or by individual users. System-wide configuration for metaslot features is done with the cryptoadm(1M) utility. User configuration for metaslot features is performed with environment variables.

By default, the following is the system-wide configuration for metaslot. Meta slot is enabled. Meta slot provides token-based object support with the Software RSA PKCS#11 softtoken (pkcs11_softtoken(5)). Meta slot is allowed to move sensitive token objects to other slots if that is necessary to perform an operation.

Users can overwrite one or more system-wide configuration options for metaslot using these environment variables.

The "$\{METASLOT_OBJECTSTORE_SLOT\}$" and "$\{METASLOT_OBJECTSTORE_TOKEN\}$" environment variables are used to specify an alternate token object store. A user can specify either slot-description in "$\{METASLOT_OBJECTSTORE_SLOT\}$" or token-label in "$\{METASLOT_OBJECTSTORE_TOKEN\}$", or both. Valid values for slot-description and token-label are available from output of the command:

cryptoadm list -v

The "$\{METASLOT_ENABLED\}$" environment variable is used to specify whether the user wants to turn the metaslot feature on or off. Only two values are recognized. The value "true" means metaslot will be on. The value "false" means metaslot will be off.

The "$\{METASLOT_AUTO_KEY_MIGRATE\}$" environment variable is used to specify whether the user wants sensitive token objects to move to other slots for cryptographic operations. Only two values are recognized. The value "true" means metaslot will migrate sensitive token objects to other slots if necessary. The value "false" means metaslot will not migrate sensitive token objects to other slots even if it is necessary.

When the metaslot feature is enabled, the slot that provides token-based object support is not shown as one of the available slots. All of its functionality can be used with the metaslot.
This library filters the list of mechanisms available from plug-ins based on the policy set by `cryptoadm(1M)`.

This library provides entry points for all PKCS#11 v2.20 functions. See the RSA PKCS#11 v2.20 specification at http://www.rsasecurity.com.

Plug-ins are added to `libpkcs11` by the `pkcs11conf` class action script during execution of `pkgadd(1M)`. The available mechanisms are administered by the `cryptoadm(1M)` utility.

Plug-ins must have all of their library dependancies specified, including `libc(3LIB)`. Libraries that have unresolved symbols, including those from `libc`, will be rejected and a message will be sent to `syslog(3C)` for such plug-ins.

Due to U.S. Export regulations, all plug-ins are required to be cryptographically signed using the `elfsign` utility.

Any plug-in that is not signed or is not a compatible version of PKCS#11 will be dropped by `libpkcs11`. When a plug-in is dropped, the administrator is alerted by the `syslog(3C)` utility.

The `<security/pkcs11f.h>` header contains function definitions. The `<security/pkcs11t.h>` header contains type definitions. Applications can include either of these headers in place of `<security/pkcs11.h>`, which contains both function and type definitions.

Interfaces The shared object `libpkcs11.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

```
PKCS#11 Standard C_CloseAllSessions C_CloseSession
C_CopyObject C_CreateObject
C_Decrypt C_DecryptDigestUpdate
C_DecryptFinal C_DecryptInit
C_DecryptUpdate C_DecryptVerifyUpdate
C_DeriveKey C_DestroyObject
C_Digest C_DigestEncryptUpdate
C_DigestFinal C_DigestInit
C_DigestKey C_DigestUpdate
C_Encrypt C_EncryptFinal
C_EncryptInit C_EncryptUpdate
C_Finalize C_FindObjects
C_FindObjectsFinal C_FindObjectsInit
```
Attributes

See attributes(5) for descriptions of the following attributes:

Availability
- System/library: Committed

Interface Stability
- Stability: Committed

Files

- `/usr/lib/libpkcs11.so.1`
- `/usr/lib/64/libpkcs11.so.1`

Attributes

<table>
<thead>
<tr>
<th>ATTRIBUTEVALUE</th>
<th>ATTRIBUTEVALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUNWExtensions</td>
<td>SUNW_C_GetMechSession</td>
</tr>
<tr>
<td>SUNW_C_KeyToObject</td>
<td>/usr/lib/libpkcs11.so.1</td>
</tr>
</tbody>
</table>

Files

- `/usr/lib/libpkcs11.so.1`
- `/usr/lib/64/libpkcs11.so.1`

Attributes

- SUNW_C_GetMechSession
- C_GetSlotInfo
- C_GetSessionInfo
- C_OpenSession
- C_SeedRandom
- C_SetAttributeValue
- C_SignFinal
- C_SignInit
- C_VerifyFinal
- C_VerifyRecoverInit
- C_VerifyUpdate
- C_WaitForSlotEvent
- C_WrapKey

SUNWExtensions

- SUNW_C_GetMechSession
- C_GetSlotInfo
- C_GetSessionInfo
- C_OpenSession
- C_SeedRandom
- C_SetAttributeValue
- C_SignFinal
- C_SignInit
- C_VerifyFinal
- C_VerifyRecoverInit
- C_VerifyUpdate
- C_WaitForSlotEvent
- C_WrapKey
The SUNW Extension functions are MT-Safe. The PKCS#11 Standard functions are MT-Safe with exceptions. See Section 6.6.2 of RSA PKCS#11 v2.20.

The PKCS#11 Standard functions conform to PKCS#11 v2.20.

See Also
- cryptoadm(1M), pkgadd(1M), Intro(3), SUNW_C_GetMechSession(3EXT), syslog(3C), attributes(5), pkcs11_kernel(5), pkcs11_softtoken(5)
- RSA PKCS#11 v2.20 http://www.rsasecurity.com

Notes
If an application calls \(C_WaitForSlotEvent() \) without the \(\text{CKF_DONT_BLOCK} \) flag set, \libpkcs11 must create threads internally. If, however, \(\text{CKF_LIBRARY_CANT_CREATE_OS_THREADS} \) is set, \(C_WaitForSlotEvent() \) returns \(\text{CKR_FUNCTION_FAILED} \).

The PKCS#11 library does not work with Netscape 4.x but does work with more recent versions of Netscape and Mozilla.

Because \(C_Initialize() \) might have been called by both an application and a library, it is not safe for a library or its plugins to call \(C_Finalize() \). A library can be finished calling functions from \libpkcs11, while an application might not.
Name
libplot, lib300, lib300s, lib4014, lib450, libvt0 – graphics interface libraries

Synopsis
```bash
cc [ flag... ] file... -lplot [ library... ]
#include <plot.h>
```

Description
Functions in this library generate graphics output.

Interfaces
The shared object `libplot.so.1` provides the public interfaces defined below. See `intro(3)` for additional information on shared object interfaces.

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>arc</td>
</tr>
<tr>
<td>circle</td>
</tr>
<tr>
<td>closepl</td>
</tr>
<tr>
<td>closevt</td>
</tr>
<tr>
<td>erase</td>
</tr>
<tr>
<td>label</td>
</tr>
<tr>
<td>linemod</td>
</tr>
<tr>
<td>move</td>
</tr>
<tr>
<td>openpl</td>
</tr>
<tr>
<td>openvt</td>
</tr>
<tr>
<td>point</td>
</tr>
<tr>
<td>space</td>
</tr>
</tbody>
</table>

Files
- `/usr/lib/libplot.so.1` shared object
- `/usr/lib/64/libplot.so.1` 64-bit shared object
- `/usr/lib/lib300.so.1` shared object
- `/usr/lib/64/lib300.so.1` 64-bit shared object
- `/usr/lib/lib300s.so.1` shared object
- `/usr/lib/64/lib300s.so.1` 64-bit shared object
- `/usr/lib/lib4014.so.1` shared object
- `/usr/lib/64/lib4014.so.1` 64-bit shared object
- `/usr/lib/lib450.so.1` shared object
- `/usr/lib/64/lib450.so.1` 64-bit shared object
- `/usr/lib/libvt0.so.1` shared object
- `/usr/lib/64/libvt0.so.1` 64-bit shared object

Attributes
See `attributes(5)` for descriptions of the following attributes:
libplot(3LIB)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also

pvs(1), Intro(3), attributes(5)
The functions in this library define the interface for reading and writing resource pools configuration files, as well as that for committing an existing configuration to becoming the running OS configuration (with respect to partitioning subsystems). The <pool.h> header provides type and function declarations for all library services.

The resource pools facility brings together process-bindable resources into a common abstraction called a pool. Processor sets and other entities can be configured, grouped, and labelled in a persistent fashion such that workload components can be associated with a subset of a system’s total resources. The libpool library provides a C language API for accessing this functionality, while pooladm(1M), poolbind(1M), and poolcfg(1M) make this facility available through command invocations from a shell. Each of those manual pages describes aspects of the pools facility; this page describes the properties available to the various entities managed within the pools facility. These entities include the system, pools, and the pset resources for processor sets.

When the pools facility is enabled on a system, the behavior of the following functions is modified:

<table>
<thead>
<tr>
<th>System Call</th>
<th>Error Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pset_assign(pset!=PS_QUERY)</td>
<td>ENOTSUP</td>
</tr>
<tr>
<td>pset_bind(pset!=PS_QUERY)</td>
<td>ENOTSUP</td>
</tr>
<tr>
<td>pset_create()</td>
<td>ENOTSUP</td>
</tr>
<tr>
<td>pset_destroy()</td>
<td>ENOTSUP</td>
</tr>
<tr>
<td>pset_setattr()</td>
<td>ENOTSUP</td>
</tr>
</tbody>
</table>

Each active entity within the resource pools framework can have an arbitrary collection of named, typed properties associated with it. Properties supported by the pools framework are listed, with descriptions, under each entity below. In general, resource properties can be one of five types: boolean (bool), signed (int64) and unsigned (uint64) integers, floating point (double), and string values.

All entities and resources support a string property for commenting purposes; this property is available for use by management applications to record descriptions and other administrator oriented data. The comment field is not used by the default pools commands, except when a configuration is initiated by the poolcfg utility, in which case an informative message is placed in the system.comment property for that configuration.
<table>
<thead>
<tr>
<th>Property name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>system.allocate-method</td>
<td>string</td>
<td>Allocation method to use when this configuration is instantiated</td>
</tr>
<tr>
<td>system.bind-default</td>
<td>bool</td>
<td>If specified pool not found, bind to pool with 'pool.default' property set to true</td>
</tr>
<tr>
<td>system.comment</td>
<td>string</td>
<td>User description of system</td>
</tr>
<tr>
<td>system.name</td>
<td>string</td>
<td>User name for the configuration</td>
</tr>
<tr>
<td>system.version</td>
<td>int64</td>
<td>libpool version required to manipulate this configuration</td>
</tr>
<tr>
<td>system.poold.log-level</td>
<td>string</td>
<td>poold logging level</td>
</tr>
<tr>
<td>system.poold.log-location</td>
<td>string</td>
<td>poold logging location</td>
</tr>
<tr>
<td>system.poold.history-file</td>
<td>string</td>
<td>poold decision history location</td>
</tr>
<tr>
<td>system.poold.monitor-interval</td>
<td>uint64</td>
<td>poold monitoring sample interval</td>
</tr>
<tr>
<td>system.poold.objectives</td>
<td>string</td>
<td>poold objectives for a system.</td>
</tr>
</tbody>
</table>

The `system.allocate-method`, `system.bind-default`, `system.comment`, `system.name`, `system.poold.log-level`, `system.poold.log-location`, `system.poold.history-file`, `system.poold.monitor-interval`, and `system.poold.objectives` properties are writable; the `system.version` property is not.

The `system.allocate-method` property accepts only two values, “importance based” and “surplus to default”. The default value for this property is “importance based”. The property is optional and if it is not present the library will allocate resources as though it were present and had the default value. These strings are defined in `<pool.h>` as `POA_IMPORTANCE` and `POA_SURPLUS_TO_DEFAULT`.

If “importance based” allocation is defined, then during a commit the library will allocate resources to pools using an algorithm that observes minimum and maximum constraints for resources but favors those resources with greater importance.

If “surplus to default” is defined, then during a commit the library will allocate minimum resources to all resource sets apart from default which will receive any surplus.

The `system.bind-default` property defaults to true. This property interacts with the `project.pool` resource control to specify the binding behavior for processes associated with a project. If `project.pool` is not specified, then this property has no effect. If `project.pool` is specified and the specified pool exists, this property has no effect. If the specified pool does not exist, perhaps because of a reconfiguration, then this property controls the binding behavior for the project member. If `system.bind-default` is true, then the project member is bound to the default pool (identified as the pool for which `pool.default` is true); otherwise the project
member is refused access to the system. Care should be taken with the pools configuration if this property is set to false, so as to avoid denying users access to the system.

The various poold properties are used to configure the operation of poold(1M).

The system.poold.log.level property is used to specify the level of detail provided in log messages. Valid values are: ALERT, CRIT, ERR, WARNING, NOTICE, INFO, and DEBUG.

ALERT provides the least level of detail, DEBUG the greatest. See syslog(3C) for more information about the meaning of these debug levels. If this property is not specified, the default value NOTICE is used.

The system.poold.log.location property is used to specify the location of the logfiles generated by poold. The special value of "syslog" indicates that logged messages should be written to syslog(). If this property is not specified, the default location /var/log/pool is used.

The system.poold.history.file specifies the location of the decision history file which is used by poold to improve the quality of its decision making over time. If this property is not specified, the default location /var/adm/pool is used.

The system.poold.monitor.interval property specifies the monitoring interval (in milliseconds) to be used by poold when sampling utilization statistics. If this property is not specified, the default value of 15 seconds is used.

The system.poold.objectives property specifies any system wide objectives. An objectives property has the following syntax:

```
objectives = objective [ ; objective]*
objective = [n:] keyword [op] [value]
```

All objectives are prefixed with an optional importance. The importance acts as a multiplier for the objective and thus increases the significance of its contribution to the objective function evaluation. If no importance is specified, the default value is 1.

The "wt-load" objective is the only objective to which a system element can be set. This objective favors configurations that match resource allocations to resource utilization. A resource set that uses more resources will be given more resources when this objective is active. An administrator should use this objective when he is relatively satisfied with the constraints established using the minimum and maximum properties and would like the DRP to manipulate resources freely within those constraints.

<table>
<thead>
<tr>
<th>Pools</th>
<th>Property name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pool.active</td>
<td>bool</td>
<td>Mark this pool as active, if true.</td>
</tr>
<tr>
<td></td>
<td>pool.comment</td>
<td>string</td>
<td>User description of pool.</td>
</tr>
</tbody>
</table>
Pool Properties

<table>
<thead>
<tr>
<th>Property name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pool.default</td>
<td>bool</td>
<td>Mark this pool as the default pool, if true; see <code>system.bind-default</code> property.</td>
</tr>
<tr>
<td>pool.importance</td>
<td>int64</td>
<td>Relative importance of this pool; for possible resource dispute resolution.</td>
</tr>
<tr>
<td>pool.name</td>
<td>string</td>
<td>User name for pool; used by <code>setproject(3PROJ)ECT</code> as value for <code>project.pool</code> project attribute in <code>project(4)</code> database.</td>
</tr>
<tr>
<td>pool.scheduler</td>
<td>string</td>
<td>Scheduler class to which consumers of this pool will be bound. This property is optional and if not specified, the scheduler bindings for consumers of this pool are not affected.</td>
</tr>
<tr>
<td>pool.sys_id</td>
<td>int64</td>
<td>System-assigned pool ID.</td>
</tr>
<tr>
<td>pool.temporary</td>
<td>bool</td>
<td>Mark this pool as a temporary resource; if true, this pool can exist only in the dynamic configuration and cannot be committed to a configuration file.</td>
</tr>
</tbody>
</table>

The `pool.default`, `pool.sys_id`, and `pool.temporary` properties are not writable; all other listed properties are writable.

If `pool.scheduler` is specified, it must be set to the name of a valid scheduling class for the system. See the `-c` option for `priocntl(1)` for a list of valid class names.

Processor Sets

<table>
<thead>
<tr>
<th>Property name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pset.comment</td>
<td>string</td>
<td>User description of resource.</td>
</tr>
<tr>
<td>pset.default</td>
<td>bool</td>
<td>Marks default processor set.</td>
</tr>
<tr>
<td>pset.load</td>
<td>uint64</td>
<td>The load for this processor set.</td>
</tr>
<tr>
<td>pset.max</td>
<td>uint64</td>
<td>Maximum number of CPUs permitted in this processor set.</td>
</tr>
<tr>
<td>pset.min</td>
<td>uint64</td>
<td>Minimum number of CPUs permitted in this processor set.</td>
</tr>
<tr>
<td>pset.name</td>
<td>string</td>
<td>User name for resource.</td>
</tr>
<tr>
<td>pset.size</td>
<td>uint64</td>
<td>Current number of CPUs in this processor set.</td>
</tr>
<tr>
<td>pset.sys_id</td>
<td>int64</td>
<td>System-assigned processor set ID.</td>
</tr>
<tr>
<td>Property name</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>pset.temporary</td>
<td>bool</td>
<td>Mark this processor set as a temporary resource; if true, this processor set can exist only in the dynamic configuration and cannot be committed to a configuration file.</td>
</tr>
<tr>
<td>pset.type</td>
<td>string</td>
<td>Names resource type; value for all processor sets is pset.</td>
</tr>
<tr>
<td>pset.units</td>
<td>string</td>
<td>Identifies meaning of size-related properties; value for all processor sets is population.</td>
</tr>
<tr>
<td>pset.poold.objectives</td>
<td>string</td>
<td>Specifies the poold objectives for a pset.</td>
</tr>
</tbody>
</table>

The pset.comment, pset.max, pset.min, pset.name, and pset.poold.objectives properties are writable; the pset.default, pset.load, pset.size, pset.sys_id, pset.temporary, pset.type, and pset.units properties are not.

The pset.load property represents the load on a processor set. The lowest value for this property is 0. The value of pset.load increases in a linear fashion with the load on the set, as measured by the number of jobs in the system run queue.

The pset.poold.objectives property specifies an objective which is specific to a particular pset. See the system.poold.objectives entry for the specification of this property's syntax.

There are two types of objectives that can be set on a pset:

locality

This objective influences the impact that locality, as measured by lgroup data, has upon the chosen configuration. This objective can take one of three values:

- **tight**: If set, configurations that maximize resource locality are favored.
- **loose**: If set, configurations that minimize resource locality are favored.
- **none**: This is the default value for this objective. If set, configuration favorability is uninfluenced by resource locality.

utilization

This objective favors configurations that allocate resources to partitions that are failing to preserve the specified utilization objective.

These objectives are specified in terms of an operator and a value. The operators are

- `<`: The “less than” operator is used to indicate that the specified value should be treated as a maximum target value.
- `>`: The “greater than” operator is used to indicate that the specified value should be treated as a minimum target value.
The “about” operator is used to indicate that the specified value should be treated as a target value about which some fluctuation is acceptable.

Only one objective of each type of operator can be set. For example, if the ~ operator is set, the < and > operators cannot be set. It is possible to set a < and a > operator together; the values will be validated to ensure that they do not overlap.

<table>
<thead>
<tr>
<th>Property name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu.comment</td>
<td>string</td>
<td>User description of CPU.</td>
</tr>
<tr>
<td>cpu.pinned</td>
<td>bool</td>
<td>CPU pinned to this processor set.</td>
</tr>
<tr>
<td>cpu.status</td>
<td>int64</td>
<td>Processor status, on-line, offline or interrupts disabled.</td>
</tr>
<tr>
<td>cpu.sys_id</td>
<td>int64</td>
<td>System-assigned processor ID.</td>
</tr>
</tbody>
</table>

The cpu.comment, cpu.pinned, and cpu.status properties are writeable.

The cpu.status property can be set only to the following values:

- off-line: Set the CPU offline.
- on-line: Set the CPU online.
- no-intr: Disable interrupt processing on the CPU.

These values are defined in `<sys/processor.h>` as the PS_OFFLINE, PS_ONLINE, and PS_NOINTR macros.

Interfaces

The shared object `libpool.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

- `pool_associate`
- `pool_component_to_elem`
- `pool_conf_close`
- `pool_conf_export`
- `pool_conf_info`
- `pool_conf_open`
- `pool_conf_rollback`
- `pool_conf_to_elem`
- `pool_component_info`
- `pool_conf_alloc`
- `pool_conf_commit`
- `pool_conf_free`
- `pool_conf_location`
- `pool_conf_remove`
- `pool_conf_status`
- `pool_conf_update`
pool_conf_validate
pool_create
pool_destroy
pool_dissociate
pool_dynamic_location
pool_error
pool_get_binding
pool_get_owning_resource
pool_get_pool
pool_get_property
pool_get_resource
pool_get_resource_binding
pool_get_status
pool_info
pool_is_readonly_property
pool_put_property
pool_query_components
pool_query_pool_resources
pool_query_pools
pool_query_resource_components
pool_query_resources
pool_resource_create
pool_resource_destroy
pool_resource_info
pool_resource_to_elem
pool_resource_transfer
pool_resource_type_list
pool_resource_xtransfer
pool_rm_property
pool_set_binding
pool_set_status
pool_static_location
pool_strerror
pool_to_elem
pool_value_alloc
pool_value_free
pool_value_get_bool
pool_value_get_double
pool_value_get_int64
pool_value_get_name
pool_value_get_string
pool_value_get_type
pool_value_get_uint64
pool_value_set_bool
pool_value_set_double
pool_value_set_int64
pool_value_set_name
pool_value_set_string
pool_value_set_uint64
pool_version
pool_walk_components
pool_walk_pools
pool_walk_properties
pool_walk_resources

Files

/usr/lib/libpool.so.1 shared object
/usr/lib/64/libpool.so.1 64-bit shared object
Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/resource-mgmt/resource-pools</td>
</tr>
<tr>
<td>CSI</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Uncommitted</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also

Intro(3), pool_component_info(3POOL), pool_conf_open(3POOL),
pool_conf_to_elem(3POOL), pool_create(3POOL), pool_error(3POOL),
pool_get_binding(3POOL), pool_get_property(3POOL), pool_get_resource(3POOL),
pool_resource_create(3POOL), pool_value_alloc(3POOL), pool_walk_pools(3POOL),
attributes(5), smf(5)

Notes

Functions in libpool can be used to manipulate static configurations even when the pools facility is not enabled. See pooladm(1M) and pool_set_status(3POOL) for more information about enabling the pools facility. The pools facility must be enabled, however, to modify the dynamic configuration.

Since the Resource Pools facility is an smf(5) service, it can also be enabled and disabled using the standard Service Management Facility (SMF) interfaces.
libproject(3LIB)

Name libproject – project database access library

Synopsis cc [flag...] file... -lproject [library...]
#include <project.h>

Description Functions in this library provide various interfaces to extract data from the project(4)
database. The header provides structure and function declarations for all library interfaces.

Interfaces The shared object libproject.so.1 provides the public interfaces defined below. See
Intro(3) for additional information on shared object interfaces.

endprojent
getdefaultproj
getprojbyname
getprojidbyname
project_walk
setproject
fgetprojent
getprojbyid
getprojent
inproj
setproject

Files /usr/lib/libproject.so.1 shared object
/usr/lib/64/libproject.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also pvs(1), Intro(3), getprojent(3PROJECT), project(4), attributes(5), standards(5)
libpthread – POSIX threads library

Synopsis cc -mt [flag...] file... -lpthread [-lrt library...]

Description Historically, functions in this library provided POSIX threading support. See standards(5). This functionality now resides in libc(3LIB).

This library is maintained to provide backward compatibility for both runtime and compilation environments. The shared object is implemented as a filter on libc.so.1. New application development needs to specify -lpthread only to obtain POSIX semantics for fork(2) that assumes the behavior of fork1(2) rather than the default behavior that forks all threads.

Interfaces The shared object libpthread.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

<table>
<thead>
<tr>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>_pthread_cleanup_pop</td>
</tr>
<tr>
<td>pthread_attr_destroy</td>
</tr>
<tr>
<td>pthread_attr_getguardsize</td>
</tr>
<tr>
<td>pthread_attr_getschedparam</td>
</tr>
<tr>
<td>pthread_attr_getscope</td>
</tr>
<tr>
<td>pthread_attr_getstacksize</td>
</tr>
<tr>
<td>pthread_attr_getdetachstate</td>
</tr>
<tr>
<td>pthread_attr_getinheritsched</td>
</tr>
<tr>
<td>pthread_attr_getsetschedpolicy</td>
</tr>
<tr>
<td>pthread_attr_getstackaddr</td>
</tr>
<tr>
<td>pthread_attr_init</td>
</tr>
<tr>
<td>pthread_attr_setdetachstate</td>
</tr>
<tr>
<td>pthread_attr_setguardsize</td>
</tr>
<tr>
<td>pthread_attr_setinheritsched</td>
</tr>
<tr>
<td>pthread_attr_setschedpolicy</td>
</tr>
<tr>
<td>pthread_attr_setscope</td>
</tr>
<tr>
<td>pthread_attr_setstackaddr</td>
</tr>
<tr>
<td>pthread_attr_setstacksize</td>
</tr>
<tr>
<td>pthread_cancel</td>
</tr>
<tr>
<td>pthread_cond_destroy</td>
</tr>
<tr>
<td>pthread_cond_reltimedwait_np</td>
</tr>
<tr>
<td>pthread_cond_timedwait</td>
</tr>
<tr>
<td>pthread_condattr_destroy</td>
</tr>
<tr>
<td>pthread_condattr_init</td>
</tr>
<tr>
<td>pthread_create</td>
</tr>
<tr>
<td>pthread_equal</td>
</tr>
<tr>
<td>pthread_getconcurrency</td>
</tr>
</tbody>
</table>

| Library Interfaces and Headers 343 |
libpthread(3LIB)

```c
pthread_getspecific
pthread_key_create
pthread_kill
pthread_mutex_destroy
pthread_mutex_init
pthread_mutex_setprioceiling
pthread_mutex_unlock
pthread_mutexattr_destroy
pthread_mutexattr_getprioceiling
pthread_mutexattr_getshared
pthread_mutexattr_gettype
pthread_mutexattr_setprioceiling
pthread_mutexattr_setshared
pthread_mutexattr_settype
pthread_rwlock_destroy
pthread_rwlock_init
pthread_rwlock_rdlock
pthread_rwlock_tryrdlock
pthread_rwlock_trywrlock
pthread_rwlock_wrlock
pthread_rwlockattr_destroy
pthread_rwlockattr_getpshared
pthread_rwlockattr_setpshared
pthread_setcancelstate
pthread_setspecific
pthread_testcancel
```

Files

- /lib/libpthread.so.1
- /lib/64/libpthread.so.1

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTETYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
</tbody>
</table>

See attributes(5) for descriptions of the following attributes:
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also

`pvs(1), Intro(2), Intro(3), libc(3LIB), libc_db(3LIB), libthread(3LIB), attributes(5), standards(5), threads(5)`
The functions in this library perform operations related to “reparse points”, which are the basis of Microsoft DFS referrals and NFS referrals support on Solaris SMB and NFS file servers. A service which offers namespace redirection can provide “plugins”, libraries which provide creation and interpretation services for reparse points.

The shared object "plugins" must each provide a versioned ops table of the form:

```c
typedef struct reparse_plugin_ops {
    int    rpo_version;    /* version number */
    int (*rpo_init)(void);
    void (*rpo_fini)(void);
    char *(*rpo_svc_types)(void);
    boolean_t (*rpo_supports_svc)(const char *);
    char *(*rpo_form)(const char *, const char *, char *, size_t *);
    int (*rpo_deref)(const char *, const char *, char *, size_t *);
} reparse_plugin_ops_t
```

For example,

```c
reparse_plugin_ops_t reparse_plugin_ops = {
    REPARSE_PLUGIN_V1,
    nfs_init,
    nfs_fini,
    nfs_svc_types,
    nfs_supports_svc,
    nfs_form,
```
nfs_deref

The version 1 ops table supports the following operations:

int (*rpo_init)(void);
 This is a one-time initialization function that will be called by libreparse.so upon
 loading the plugin prior to any other operations. This provides the plugin with an
 opportunity to perform service specific initialization. This function must return zero on
 success or non-zero errno values to indicate an error.

void (*rpo_fini)(void);
 This is a one-time termination function that will be called by libreparse.so prior to closing
 the plugin. Once called, libreparse.so will not call any other operations on the plugin.

char *(*rpo_svc_types)(void);
 Returns a pointer to a string containing a list of comma separated svc_types. svc_type
 names are case-insensitive and white space in the returned string is irrelevant and must be
 ignored by parsers.

boolean_t (*rpo_supports_svc)(const char *svc_type);
 This function will return true if the plugin supports the specified service type, otherwise it
 must return false.

int *(*rpo_form)(const char *svc_type, const char *string, char *buf, size_t *bufsize);
 Formats a string with the appropriate service-specific syntax to create a reparse point of the
 given svc_type, using the string from the reparse_add(3REPARSE) call as part of the string.
 The caller specifies the size of the buffer provided via *bufsize; the routine will fail with
 EOVERFLOW if the results will not fit in the buffer, in which case, *bufsize will contain the
 number of bytes needed to hold the results.

int (*rpo_deref)(const char *svc_type, const char *svc_data, char *buf, size_t *bufsize);
 Accepts the service-specific item from the reparse point and returns the service-specific
 data requested. The caller specifies the size of the buffer provided via *bufsize; the routine
 will fail with EOVERFLOW if the results will not fit in the buffer, in which case, *bufsize will
 contain the number of bytes needed to hold the results.

Files
/usr/lib/libreparse.so.1 shared object
/usr/lib/64/libreparse.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>ATTRIBUTE TYPE</td>
<td>ATTRIBUTE VALUE</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also
Intro(3), reparse_add(3REPARSE), attributes(5)
Name libresolv – resolver library

Synopsis cc [flag...] file... -lresolv -lsocket -lsl [library...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>
#include <netdb.h>

Description Functions in this library provide for creating, sending, and interpreting packets to the Internet domain name servers.

Interfaces The shared object libresolv.so.2 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.
Programs are expected to use the aliases defined in `<resolv.h>` rather than calling the "__" prefixed procedures, as indicated in the following table. Use of the routines in the first column is discouraged.

<table>
<thead>
<tr>
<th>FUNCTION REFERENCED</th>
<th>ALIAS TO USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>__dn_skipname</td>
<td>dn_skipname</td>
</tr>
<tr>
<td>__fp_query</td>
<td>fp_query</td>
</tr>
<tr>
<td>__putlong</td>
<td>putlong</td>
</tr>
<tr>
<td>__p_cdnname</td>
<td>p_cdnname</td>
</tr>
<tr>
<td>__p_class</td>
<td>p_class</td>
</tr>
<tr>
<td>__p_time</td>
<td>p_time</td>
</tr>
<tr>
<td>__p_type</td>
<td>p_type</td>
</tr>
</tbody>
</table>

Files
- `/lib/libresolv.so.1` shared object for backward compatibility only
- `/lib/64/libresolv.so.1` 64-bit shared object for backward compatibility only
- `/lib/libresolv.so.2` shared object
- `/lib/64/libresolv.so.2` 64-bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe for deprecated interfaces; MT-Safe for all others</td>
</tr>
<tr>
<td>Standard</td>
<td>BIND 8.2.4</td>
</tr>
</tbody>
</table>

See Also
`pvs(1), Intro(3), resolver(3RESOLV), attributes(5)`
Name librpcsvc – RPC services library

Synopsis cc [flag...] file... -lrpcsvc [library...]
 #include <rpc/rpc.h>
 #include <rpcsvc/rstat.h>

Description Functions in this library provide RPC services. See the manual pages in Section 3RPC for the
 individual functions.

Interfaces The shared object /lib/librpcsvc.so.1 provides the public interfaces defined below. See Intro(3)
 for additional information on shared object interfaces.

 havedisk rnusers
 rstat rusers
 rwall xdr_statstime
 xdr_statsvar xdr_utmpidlearr

Files /lib/librpcsvc.so.1 shared object
 /lib/64/librpcsvc.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also pvs(1), Intro(3), rstat(3RPC), attributes(5)
Name librt, libposix4 – POSIX.1b Realtime Extensions library

Synopsis cc [flag...] file... -lrt [library...]

Description Historically, functions in this library provided many of the interfaces specified by the POSIX.1b Realtime Extension. See standards(5). This functionality now resides in libc(3LIB).

This library is maintained to provide backward compatibility for both runtime and compilation environments. The shared object is implemented as a filter on libc.so.1. New application development need not specify -lrt.

Interfaces The shared objects librt.so.1 and libposix4.so.1 provide the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

aio_cancel aio_error
aio_fsync aio_read
aio_return aio_suspend
aio_waitn aio_write
clock_getres clock_gettime
clock_nanosleep clock_settime
close fdatasync
fork lio_listio
mq_close mq_getattr
mq_notify mq_open
mq_receive mq_reltimedreceive_np
mq_reltimedsend_np mq_send
mq_setattr mq_timedreceive
mq_timedsend mq_unlink
nanosleep sched_get_priority_max
sched_get_priority_min sched_getparam
sched_getscheduler sched_rr_get_interval
sched_setparam sched_setscheduler
sched_yield sem_close
sem_destroy sem.getvalue
The following interfaces are unique to the 32-bit version of this library:

- `aio_cancel64`
- `aio_fsync64`
- `aio_return64`
- `aio_waitn64`
- `lio_listio64`

Files
- `/lib/librt.so.1` shared object
- `/lib/64/librt.so.1` 64-bit shared object file
- `/lib/libposix4.so.1` shared object
- `/lib/64/libposix4.so.1` 64-bit shared object file

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also
`pvs(1), Intro(3), libc(3LIB), attributes(5), standards(5)`
librtld_db(3LIB)

Name
librtld_db – runtime linker debugging library

Synopsis
cc [flag ...] file ... -l.rtld_db [library ...]
#include <proc_service.h>
#include <rtld_db.h>

Description
Functions in this library are useful for building debuggers for dynamically linked programs. For a full description of these interfaces refer to the *Linker and Libraries Guide*.

To use `librtld_db`, applications need to implement the interfaces documented in `ps_pread(3PROC)` and `proc_service(3PROC)`.

Interfaces
The shared object `librtld_db.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

```
rd_delete       rd_errstr
rd_event_addr   rd_event_enable
rd_event_getmsg rd_init
rd_loadobj_iter rd_log
rd_new          rd_objpad_enable
rd_plt_resolution rd_reset
```

Files
/lib/librtld_db.so.1
/shared object
/lib/64/librtld_db.so.1
64-bit shared object

Attributes
See attributes(5) for description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/linker</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also
`ld.so.1(1), pvs(1), Intro(3), proc_service(3PROC), ps_pread(3PROC), rtld_db(3EXT), attributes(5)`

Linker and Libraries Guide
libsasl – simple authentication and security layer library

Synopsis
cc [flag...] file... -lsasl [library...]
#include <sasl/sasl.h>
#include <sasl/prop.h>
#include <sasl/saslutil.h>

Description
SASL is a security framework used by connection-oriented network applications primarily for authentication. Another way to describe SASL is that it is a glue layer between a network application and some security mechanisms that allow applications to authenticate each other and provide additional security services such as data encryption. As a glue layer, SASL hides the interface specifics of the security mechanism from the application, which allows greater portability and flexibility as new security mechanisms are implemented. SASL is similar to the GSS-API in that it provides a layer of abstraction between an application and one or more security mechanisms.

libsasl provides both an API for applications and an SPI for various plug-ins. To link with this library, specify -lsasl on the cc command line.

Interfaces
The shared object libsasl.so.1 and associated include files provide the public interfaces defined below. The *_t interfaces are function prototypes for callbacks that are defined in the public SASL header files. While libsasl provides default versions for some of the callbacks, this structure allows an application to define its own version of the some of the callback functions.

See Intro(3) for additional information on shared object interfaces.

- prop_clear
- prop_dup
- prop_format
- prop_getnames
- prop_request
- prop_setvals
- sasl_authenticate_t
- sasl_auxprop
- sasl_auxprop_add_plugin
- sasl_auxprop_request
- sasl_canon_user_t
- sasl_canonuser_add_plugin
- sasl_chalprompt_t
- sasl_checkapop
- sasl_checkpass
- sasl_client_add_plugin
- sasl_client_init
- sasl_client_new
sasl_client_plug_init_t sasl_client_start
sasl_client_step sasl_decode
sasl_decode64 sasl_dispose
sasl_done sasl_encode
sasl_encode64 sasl_encodev
sasl_erasebuffer sasl_errdetail
sasl_errors sasl_errstring
sasl_getcallback_t sasl_getopt_t
sasl_getpath_t sasl_getprop
sasl_getrealm_t sasl_getsecret_t
sasl_getsimple_t sasl_global_listmech
sasl_idle sasl_listmech
sasl_log_t sasl_server_add_plugin
sasl_server_init sasl_server_new
sasl_server_plug_init_t sasl_server_start
sasl_server_step sasl_server_userdb_checkpass_t
sasl_server_userdb_setpass_t sasl_set_alloc
sasl_set_mutex sasl_seterror
sasl_setpass sasl_setprop
sasl_utf8verify sasl_verifyfile_t
sasl_version

Files /usr/lib/libsasl.so.1 shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library/security/libsasl</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
</tbody>
</table>

See Also Intro(3), attributes(5),
Name libscf – service configuration facility library

Synopsis cc [flag...] file... -lscf [library...]
 #include <libscf.h>

Description Functions in this library define the interface for reading, writing, and manipulating service
configurations.

Interfaces The shared object libscf.so.1 provides the public interfaces defined below. See Intro(3) for
additional information on shared object interfaces.

 scf_count_ranges_destroy scf_decoration_create
 scf_decoration_destroy scf_decoration_get_bundle
 scf_decoration_get_layer scf_decoration_get_value
 scf_decoration_handle scf_decoration_is_type
 scf_decoration_layer_from_string
 scf_decoration_layer_to_string
 scf_decoration_type
 scf_entry_add_value
 scf_entry_create
 scf_entry_destroy_children
 scf_entry_handle
 scf_entry_reset
 scf_handle_bind
 scf_handle_decode_fmri
 scf_handle_destroy
 scf_handle_unbind
 scf_instance_add_pg
 scf_instance_create
 scf_instance_delcust
 scf_instance_delete
 scf_instance_get_decoration
 scf_instance_get_name
 scf_instance_get_parent
 scf_instance_get_pg
 scf_instance_get_pg_composed
 scf_instance_has_suite
 scf_instance_handle
 scf_instance_is_masked
 scf_instance_to_fmri
 scf_int_ranges_destroy
 scf_iter_decoration_values
 scf_iter_destroy
scf_iter_handle
scf_iter_instance_decorations
scf_iter_instance_pgs
scf_iter_instance_pgs_composed
scf_iter_instance_pgs_typed
scf_iter_instance_snapshots
scf_iter_next_decoration
scf_iter_next_instance
scf_iter_next_pg
scf_iter_next_property
scf_iter_next_scope
scf_iter_next_service
scf_iter_next_snapshot
scf_iter_next_value
scf_iter_pg_decorations
scf_iter_property_decorations
scf_iter_reset
scf_iter_service_decorations
scf_iter_service_pgs
scf_iter_service_pgs_typed
scf_iter_snaplevel_pgs
scf_iter_snaplevel_pgs_typed
scf_limit
scf_pg_create
scf_pg_delcust
scf_pg_delete
scf_pg_destroy
scf_pg_get_decoration
scf_pg_get_flags
scf_pg_get_name
scf_pg_get_parent_instance
scf_pg_get_parent_service
scf_pg_get_parent_snaplevel
scf_pg_get_property
scf_pg_get_type
scf_pg_get_underlying_pg
scf_pg_is_masked
scf_pg_to_fmri
scf_pg_update
scf_property_delcust
scf_property_destroy
scf_property_get_decoration
scf_property_get_name
scf_property_get_value
scf_property_get_value_at_layer
scf_property_handle
scf_property_is_masked
scf_property_is_type
scf_property_to_fmri
scf_property_type scf_scope_add_service
scf_scope_create scf_scope_destroy
scf_scope_get_name scf_scope_get_service
scf_scope_handle scf_scope_to_fmri
scf_scope_add_instance scf_service_add_pg
scf_service_create scf_service_delcust
scf_service_delete scf_service_destroy
scf_service_get_decoration scf_service_get_instance
scf_service_get_name scf_service_get_parent
scf_service_get_pg scf_service_handle
scf_service_is_masked scf_service_to_fmri
scf_simple_app_props_free scf_simple_app_props_get
scf_simple_app_props_next scf_simple_app_props_search
scf_simple_prop_free scf_simple_prop_get
scf_simple_prop_name scf_simple_prop_next_astring
scf_simple_prop_next_boolean scf_simple_prop_next_count
scf_simple_prop_next_integer scf_simple_prop_next_opaque
scf_simple_prop_next_reset scf_simple_prop_next_time
scf_simple_prop_next_ustring scf_simple_prop_next_ustring
scf_simple_prop_next_reset scf_simple_prop_next_ustring
scf_simple_prop_pgname scf_simple_prop_numvalues
scf_simple_walk_instances scf_snaplevel_type
scf_snaplevel_destroy scf_snaplevel_get_instance_name
scf_snaplevel_get_next_snaplevel scf_snaplevel_get_parent
scf_snaplevel_get_pg scf_snaplevel_get_scope_name
scf_snaplevel_get_service_name scf_snaplevel_handle
scf_snapshot_create scf_snapshot_destroy
scf_snapshot_get_base_snaplevel scf_snapshot_get_name
scf_snapshot_get_parent scf_snapshot_handle
scf_strerror scf_string_to_type
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>scf tmpl error pg</code></td>
<td><code>scf tmpl error pg tmpl</code></td>
</tr>
<tr>
<td><code>scf tmpl error prop</code></td>
<td><code>scf tmpl error_prop tmpl</code></td>
</tr>
<tr>
<td><code>scf tmpl error_source_fmri</code></td>
<td><code>scf tmpl error_type</code></td>
</tr>
<tr>
<td><code>scf tmpl error_value</code></td>
<td><code>scf tmpl errors_destroy</code></td>
</tr>
<tr>
<td><code>scf tmpl get by pg</code></td>
<td><code>scf tmpl get by_pg_name</code></td>
</tr>
<tr>
<td><code>scf tmpl get by_prop</code></td>
<td><code>scf tmpl_iter_pgs</code></td>
</tr>
<tr>
<td><code>scf tmpl iter_props</code></td>
<td><code>scf tmpl_next_error</code></td>
</tr>
<tr>
<td><code>scf tmpl pg_common_name</code></td>
<td><code>scf tmpl_pg_create</code></td>
</tr>
<tr>
<td><code>scf tmpl pg_description</code></td>
<td><code>scf tmpl_pg_destroy</code></td>
</tr>
<tr>
<td><code>scf tmpl pg name</code></td>
<td><code>scf tmpl_pg_required</code></td>
</tr>
<tr>
<td><code>scf tmpl pg reset</code></td>
<td><code>scf tmpl_pg_target</code></td>
</tr>
<tr>
<td><code>scf tmpl pg_type</code></td>
<td><code>scf tmpl_prop_cardinality</code></td>
</tr>
<tr>
<td><code>scf tmpl_prop_common_name</code></td>
<td><code>scf tmpl_prop_create</code></td>
</tr>
<tr>
<td><code>scf tmpl_prop_description</code></td>
<td><code>scf tmpl_prop_destroy</code></td>
</tr>
<tr>
<td><code>scf tmpl_prop_internal_seps</code></td>
<td><code>scf tmpl_prop_name</code></td>
</tr>
<tr>
<td><code>scf tmpl_prop_required</code></td>
<td><code>scf tmpl_prop_reset</code></td>
</tr>
<tr>
<td><code>scf tmpl_prop_type</code></td>
<td><code>scf tmpl_prop_units</code></td>
</tr>
<tr>
<td><code>scf tmpl_prop_visibility</code></td>
<td><code>scf tmpl_reset_errors</code></td>
</tr>
<tr>
<td><code>scf tmpl_strerror</code></td>
<td><code>scf tmpl_validate_fmri</code></td>
</tr>
<tr>
<td><code>scf tmpl_value_common_name</code></td>
<td><code>scf tmpl_value_count_range_choices</code></td>
</tr>
<tr>
<td><code>scf tmpl_value_count_range_constraints</code></td>
<td><code>scf tmpl_value_description</code></td>
</tr>
<tr>
<td><code>scf tmpl_value_in_constraint</code></td>
<td><code>scf tmpl_value_int_range_choices</code></td>
</tr>
<tr>
<td><code>scf tmpl_value_int_range_constraints</code></td>
<td><code>scf tmpl_value_name_choices</code></td>
</tr>
<tr>
<td><code>scf tmpl_value_name_constraints</code></td>
<td><code>scf tmpl_visibility_to_string</code></td>
</tr>
<tr>
<td><code>scf_transaction_commit</code></td>
<td><code>scf_transaction_create</code></td>
</tr>
<tr>
<td><code>scf_transaction_destroy</code></td>
<td><code>scf_transaction_destroy_children</code></td>
</tr>
<tr>
<td><code>scf_transaction_handle</code></td>
<td><code>scf_transaction_property_change</code></td>
</tr>
<tr>
<td><code>scf_transaction_property_change_type</code></td>
<td><code>scf_transaction_property_delete</code></td>
</tr>
<tr>
<td><code>scf_transaction_property_new</code></td>
<td><code>scf_transaction_reset</code></td>
</tr>
</tbody>
</table>
scf_transaction_reset_all scf_transaction_start
scf_type_base_type scf_type_to_string
scf_value_base_type scf_value_create
scf_value_destroy scf_value_get_as_string
scf_value_get_as_string_typed scf_value_get_astring
scf_value_get_boolean scf_value_get_count
scf_value_get_integer scf_value_get_opaque
scf_value_get_time scf_value_get_ustring
scf_value_handle scf_value_is_type
scf_value_reset scf_value_set_astring
scf_value_set_boolean scf_value_set_count
scf_value_set_from_string scf_value_set_integer
scf_value_set_opaque scf_value_set_time
scf_value_set_ustring scf_value_type
scf_values_destroy smf_degrade_instance
smf_disable_instance smf_enable_instance
smf_get_state smf_maintain_instance
smf_method_exit smf_notify_del_params
smf_notify_get_params smf_notify_set_params
smf_refresh_instance smf_restart_instance
smf_restore_instance smf_set_restarter
smf_state_from_string smf_state_to_string

Files
/usr/lib/libscf.so.1 shared object
/usr/lib/64/libscf.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
</tbody>
</table>
libscf(3LIB)

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), attributes(5), smf(5)
Name: libsctp – SCTP sockets library

Synopsis: cc [flag...] file... -lsctp [library...]

Description: Functions in this library provide the SCTP socket interface.

Interfaces: The shared object /lib/libsctp.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

- sctp_bindx
- sctp_connectx
- sctp_freeladdr
- sctp_freeaddr
- sctp_getladdr
- sctp_getpaddr
- sctp_opt_info
- sctp_peeloff
- sctp_recvmsg
- sctp_recvv
- sctp_send
- sctp_sendmsg
- sctp_sendv

Files: /usr/lib/libsctp.so.1 shared object
 /usr/lib/64/libsctp.so.1 64-bit shared object

Attributes: See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also: Intro(2), Intro(3), attributes(5), sctp(7P)
libsec(3LIB)

Name libsec – File Access Control List library

Synopsis cc [flag...] file... -lsec [library...]
 #include <sys/acl.h>

Description Functions in this library provide comparison and manipulation of File Access Control Lists.

Interfaces The shared object libsec.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

 acl_check acl_free
 acl_fromtext acl_get
 acl_set acl_strip
 acl_totext acl_trivial
 aclcheck aclfrommode
 aclfromtext aclsort
 acltomode acltotext
 facl_get facl_set

Files /lib/libsec.so.1 shared object
 /lib/64/libsec.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also pvs(1), Intro(3), attributes(5)
Name
libsecdb – security attributes database library

Synopsis
```c
cc [ flag... ] file... [ library... ]
#include <secdb.h>
#include <user_attr.h>
#include <prof_attr.h>
#include <exec_attr.h>
#include <auth_attr.h>
```

Description
Functions in this library provide routines for manipulation of security attribute databases.

Historically, functions in libsecdb provided support for the security attributes database. This functionality now resides in libc(3LIB).

This library is maintained to provide backward compatibility for both runtime and compilation environments. The shared object is implemented as a filter on libc.so.1. New application development need not specify -lsecdb.

Interfaces
The shared object libsecdb.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

```c
chkauthattr
endauthattr
endexecattr
endprofattr
enduserattr
fgetuserattr
free_authattr
free_execattr
free_profatr
free_proflist
free_userattr
getauthattr
getexecattr
getexecprof
getexecuser
getprofatr
getproflist
getprofnam
getuserattr
getusername
getuserid
kva_match
match_execattr
setauthattr
setexecattr
setprofattr
setuserattr
```

Files
```
/lib/libsecdb.so.1   a filter on libc.so.1
/lib/64/libsecdb.so.1 a filter on 64/libc.so.1
```
Attributes See attributes(5) for description of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTETYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), libc(3LIB), attributes(5)
Name libsendfile – sendfile library

Synopsis
cc [flag...] file... -lsendfile [library...]
#include <sys/sendfile.h>

Description The functions in this library provide routines that enable files to be sent over sockets, buffers to be sent over sockets, files to be copied to files, and buffers to be copied to files.

Interfaces The shared object libsendfile.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

 sendfile
 sendfilev

The following interfaces are unique to the 32-bit version of this library:

 sendfile64
 sendfilev64

Files
/lib/libsendfile.so.1 shared object
/lib/64/libsendfile.so.1 64–bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also pvs(1), Intro(3), sendfile(3EXT), sendfilev(3EXT), attributes(5)
Name
libsip – Session Initiation Protocol (SIP) library

Synopsis
c

```
c [ flag... ] file... `lsip [ library... ]`

#include <sip.h>
```

Description
SIP is a control protocol that can establish, modify, and terminate multimedia sessions, conferences, such as Internet telephony calls. Functions in `libsip` provide interfaces to write SIP components and applications.

Interfaces
The shared object `libsip.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sip_add_accept</td>
<td>sip_add_accept_enc</td>
</tr>
<tr>
<td>sip_add_accept_lang</td>
<td>sip_add_alert_info</td>
</tr>
<tr>
<td>sip_add_allow</td>
<td>sip_add_allow_events</td>
</tr>
<tr>
<td>sip_add_authen_info</td>
<td>sip_add_author</td>
</tr>
<tr>
<td>sip_add_branchid_to_via</td>
<td>sip_add_call_info</td>
</tr>
<tr>
<td>sip_add_callid</td>
<td>sip_add_contact</td>
</tr>
<tr>
<td>sip_add_content</td>
<td>sip_add_content_disp</td>
</tr>
<tr>
<td>sip_add_content_enc</td>
<td>sip_add_content_lang</td>
</tr>
<tr>
<td>sip_add_content_type</td>
<td>sip_add_cseq</td>
</tr>
<tr>
<td>sip_add_date</td>
<td>sip_add_error_info</td>
</tr>
<tr>
<td>sip_add_event</td>
<td>sip_addExpires</td>
</tr>
<tr>
<td>sip_add_from</td>
<td>sip_add_header</td>
</tr>
<tr>
<td>sip_add_in_reply_to</td>
<td>sip_add_maxforward</td>
</tr>
<tr>
<td>sip_add_mime_version</td>
<td>sip_add_min Expires</td>
</tr>
<tr>
<td>sip_add_org</td>
<td>sip_add_param</td>
</tr>
<tr>
<td>sip_add_passertedid</td>
<td>sip_add_ppreferredid</td>
</tr>
<tr>
<td>sip_add_priority</td>
<td>sip_add_privacy</td>
</tr>
<tr>
<td>sip_add_proxy_authen</td>
<td>sip_add_proxy_author</td>
</tr>
<tr>
<td>sip_add_proxy_require</td>
<td>sip_add_rack</td>
</tr>
<tr>
<td>sip_add_record_route</td>
<td>sip_add_reply_to</td>
</tr>
<tr>
<td>sip_add_request_line</td>
<td>sip_add_require</td>
</tr>
<tr>
<td>sip_add_response_line</td>
<td>sip_add_retry_after</td>
</tr>
<tr>
<td>Function</td>
<td>Function</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>sip_add_route</td>
<td>sip_add_rseq</td>
</tr>
<tr>
<td>sip_add_server</td>
<td>sip_add_subject</td>
</tr>
<tr>
<td>sip_add_substate</td>
<td>sip_add_supported</td>
</tr>
<tr>
<td>sip_add_to</td>
<td>sip_add_tstamp</td>
</tr>
<tr>
<td>sip_add_unsupported</td>
<td>sip_add_user_agent</td>
</tr>
<tr>
<td>sip_add_via</td>
<td>sip_add_warning</td>
</tr>
<tr>
<td>sip_add_www_authen</td>
<td>sip_branchid</td>
</tr>
<tr>
<td>sip_clear_stale_data</td>
<td>sip_clone_msg</td>
</tr>
<tr>
<td>sip_conn_destroyed</td>
<td>sip_copy_all_headers</td>
</tr>
<tr>
<td>sip_copy_header</td>
<td>sip_copy_header_by_name</td>
</tr>
<tr>
<td>sip_copy_start_line</td>
<td>sip_create_dialog_req</td>
</tr>
<tr>
<td>sip_create_dialog_req_nocontact</td>
<td>sip_create_OKack</td>
</tr>
<tr>
<td>sip_create_response</td>
<td>sip_delete_dialog</td>
</tr>
<tr>
<td>sip_delete_header</td>
<td>sip_delete_header_by_name</td>
</tr>
<tr>
<td>sip_delete_start_line</td>
<td>sip_delete_value</td>
</tr>
<tr>
<td>sip_disable_counters</td>
<td>sip_disable_dialog_logging</td>
</tr>
<tr>
<td>sip_disable_trans_logging</td>
<td>sip_enable_counters</td>
</tr>
<tr>
<td>sip_enable_dialog_logging</td>
<td>sip_enable_trans_logging</td>
</tr>
<tr>
<td>sip_free_msg</td>
<td>sip_free_parsed_uri</td>
</tr>
<tr>
<td>sip_get_accept_enc</td>
<td>sip_get_accept_lang</td>
</tr>
<tr>
<td>sip_get_accept_sub_type</td>
<td>sip_get_accept_type</td>
</tr>
<tr>
<td>sip_get_alert_info_uri</td>
<td>sip_get_allow_events</td>
</tr>
<tr>
<td>sip_get_allow_method</td>
<td>sip_get_author_param</td>
</tr>
<tr>
<td>sip_get_author_scheme</td>
<td>sip_get_call_info_uri</td>
</tr>
<tr>
<td>sip_get_branchid</td>
<td>sip_get_callseq_method</td>
</tr>
<tr>
<td>sip_get_callseq_num</td>
<td>sip_get_contact_display_name</td>
</tr>
<tr>
<td>sip_get_contact_uri_str</td>
<td>sip_get_content_disp</td>
</tr>
<tr>
<td>sip_get_content_enc</td>
<td>sip_get_content_lang</td>
</tr>
</tbody>
</table>
libsip(3LIB)

sip_get_content_length sip_get_content_sub_type
sip_get_content_type sip_get_content
sip_get_counter_value sip_get_cseq
sip_get_date_day sip_get_date_month
sip_get_date_time sip_get_date_timezone
sip_get_date_wkday sip_get_date_year
sip_get_dialog_callid sip_get_dialog_local_cseq
sip_get_dialog_local_tag sip_get_dialog_local_uri
sip_get_dialog_local_contact_uri sip_get_dialog_method
sip_get_dialog_msgcnt sip_get_dialog_remote_cseq
sip_get_dialog_remote_tag sip_get_dialog_remote_target_uri
sip_get_dialog_remote_uri sip_get_dialog_route_set
sip_get_dialog_state sip_get_dialog_type
sip_get_error_info_uri sip_get_event
sip_get_expires sip_get_from_display_name
sip_get_from_tag sip_get_from_uri_str
sip_get_header sip_get_header_value
sip_get_in_reply_to sip_get_maxforward
sip_get_mime_version sip_get_min_expires
sip_get_msg_len sip_get_next_value
sip_get_num_via sip_get_org
sip_get_param_value sip_get_params
sip_get_passertedid_display_name sip_get_passertedid_uri_str
sip_get_ppreferredid_display_name sip_get_ppreferredid_uri_str
sip_get_priority sip_get_priv_value
sip_get_proxy_authen_param sip_get_proxy_authen_scheme
sip_get_proxy_author_param sip_get_proxy_author_scheme
sip_get_proxy_require sip_get_rack_cseq_num
sip_get_rack_method sip_get_rack_resp_num
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sip_get_replyto_display_name</td>
<td>Get reply-to display name</td>
</tr>
<tr>
<td>sip_get_replyto_uri_str</td>
<td>Get reply-to URI string</td>
</tr>
<tr>
<td>sip_get_request_method</td>
<td>Get request method</td>
</tr>
<tr>
<td>sip_get_request_uri_str</td>
<td>Get request URI string</td>
</tr>
<tr>
<td>sip_get_require</td>
<td>Get require</td>
</tr>
<tr>
<td>sip_get_resp_desc</td>
<td>Get response desc</td>
</tr>
<tr>
<td>sip_get_retry_after_cmts</td>
<td>Get retry-after cmts</td>
</tr>
<tr>
<td>sip_get_retry_after_time</td>
<td>Get retry-after time</td>
</tr>
<tr>
<td>sip_get_route_display_name</td>
<td>Get route display name</td>
</tr>
<tr>
<td>sip_get_route_uri_str</td>
<td>Get route URI string</td>
</tr>
<tr>
<td>sip_get_rseq</td>
<td>Get rseq</td>
</tr>
<tr>
<td>sip_get_rseq_resp_num</td>
<td>Get rseq resp num</td>
</tr>
<tr>
<td>sip_get_server</td>
<td>Get server</td>
</tr>
<tr>
<td>sip_get_substate</td>
<td>Get substate</td>
</tr>
<tr>
<td>sip_get_supported</td>
<td>Get supported</td>
</tr>
<tr>
<td>sip_get_to_display_name</td>
<td>Get to display name</td>
</tr>
<tr>
<td>sip_get_to_tag</td>
<td>Get to tag</td>
</tr>
<tr>
<td>sip_get_to_uri_str</td>
<td>Get to URI string</td>
</tr>
<tr>
<td>sip_get_trans</td>
<td>Get trans</td>
</tr>
<tr>
<td>sip_get_trans_method</td>
<td>Get trans method</td>
</tr>
<tr>
<td>sip_get_trans_orig_msg</td>
<td>Get trans orig msg</td>
</tr>
<tr>
<td>sip_get_trans_orig_state</td>
<td>Get trans orig state</td>
</tr>
<tr>
<td>sip_get_trans_route</td>
<td>Get trans route</td>
</tr>
<tr>
<td>sip_get_tstamp_delay</td>
<td>Get tstamp delay</td>
</tr>
<tr>
<td>sip_get_tstamp_value</td>
<td>Get tstamp value</td>
</tr>
<tr>
<td>sip_get_uri_base</td>
<td>Get URI base</td>
</tr>
<tr>
<td>sip_get_uri_base</td>
<td>Get URI base</td>
</tr>
<tr>
<td>sip_get_uri_errflags</td>
<td>Get URI errflags</td>
</tr>
<tr>
<td>sip_get_uri_host</td>
<td>Get URI host</td>
</tr>
<tr>
<td>sip_get_uri_opaque</td>
<td>Get URI opaque</td>
</tr>
<tr>
<td>sip_get_uri_params</td>
<td>Get URI params</td>
</tr>
<tr>
<td>sip_get_uri_password</td>
<td>Get URI password</td>
</tr>
<tr>
<td>sip_get_uri_path</td>
<td>Get URI path</td>
</tr>
<tr>
<td>sip_get_uri_query</td>
<td>Get URI query</td>
</tr>
<tr>
<td>sip_get_uri_regname</td>
<td>Get URI regname</td>
</tr>
<tr>
<td>sip_get_uri_scheme</td>
<td>Get URI scheme</td>
</tr>
<tr>
<td>sip_get_user_agent</td>
<td>Get user agent</td>
</tr>
<tr>
<td>sip_get_via_sent_by_host</td>
<td>Get via sent by host</td>
</tr>
<tr>
<td>sip_get_via_sent_by_port</td>
<td>Get via sent by port</td>
</tr>
<tr>
<td>sip_get_via_sent_protocol_name</td>
<td>Get via sent protocol name</td>
</tr>
<tr>
<td>sip_get_via_sent_protocol_version</td>
<td>Get via sent protocol version</td>
</tr>
<tr>
<td>sip_get_via_transport</td>
<td>Get via transport</td>
</tr>
<tr>
<td>sip_get_warning_agent</td>
<td>Get warning agent</td>
</tr>
<tr>
<td>sip_get_warning_code</td>
<td>Get warning code</td>
</tr>
<tr>
<td>sip_get_warning_text</td>
<td>Get warning text</td>
</tr>
<tr>
<td>sip_get_www_authen_param</td>
<td>Get www authen param</td>
</tr>
<tr>
<td>sip_get_www_authen_scheme</td>
<td>Get www authen scheme</td>
</tr>
</tbody>
</table>

Library Interfaces and Headers 371
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), attributes(5)
libslp - service location protocol library

cc [flag...] file... -lslp [library...]

Functions in this library provide routines that provide the Service Location Protocol C library.

The shared object /usr/lib/libslp.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

SLPClose
SLPDereg
SLPFindAttrs
SLPFindSrvTypes
SLPFindSrvs
SLPFree
SLPGetRefreshInterval
SLPParseSrvURL
SLPSetProperty
SLPUnescape
slp_strerror

Availability service/network/slp

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>service/network/slp</td>
</tr>
</tbody>
</table>

See Also pvs(1), Intro(2), Intro(3), attributes(5)
The functions in this library access Fibre Channel and/or Serial Attached SCSI HBA data depending on vendor provided implementation underneath.

HBA information is provided through a standard interface in a vendor independent manner. This common interface provides access to the following information:

- Local HBA attributes
- Local HBA port attributes and statistics
- Mapping between discovered devices and operating system SCSI information
- Discovered devices port attributes
- SCSI commands for discovered devices (Report LUNS, Read Capacity, and Inquiry)
- Storage Management Protocol commands to discover Serial Attached SCSI configuration details
- Common Transport commands to discover Fibre Channel Fabric details

The shared object `libSMHBAAPI.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.
Client applications link with the Common Library (using `libSMHBAAPI`) to access the interfaces. The Common Library dynamically loads individual Vendor-Specific Libraries (VSL) listed in `/etc/smhba.conf` and described on `smhba.conf(4)`.

Using the `libSMHBAAPI` involves the following steps:

1. Optionally determining the version of the library by calling `SMHBA_GetVersion()`.
2. Initializing the Common Library by calling `HBA_LoadLibrary()`.
3. Determine the number of HBAs known to the common library by calling
 HBA_GetNumberOfAdapters().

4. Determine each HBA name in turn by calling HBA_GetAdapterName().

5. Open each HBA in turn by calling HBA_OpenAdapter().

6. Operate on a given HBA by calling the following:
 - SMHBA_GetAdapterAttributes()
 - SMHBA_GetAdapterPortAttributes()
 - SMHBA_GetDiscoveredPortAttributes()
 - SMHBA_GetPortAttributesByWWN()
 - SMHBA_GetNumberOfPorts()
 - SMHBA_GetPortType()
 - SMHBA_GetProtocolStatistics()
 - SMHBA_GetPhyStatistics()
 - SMHBA_GetBindingCapability()
 - SMHBA_GetBindingSupport()
 - SMHBA_SetBindingSupport()
 - SMHBA_GetTargetMapping()
 - SMHBA_GetPersistentBinding()
 - SMHBA_SetPersistentBinding()
 - SMHBA_CancelAllPersistentBindings()
 - SMHBA_GetLUNStatistics()
 - SMHBA_SendScsiInquiry()
 - SMHBA_SendReportLuns()
 - SMHBA_SendReadCapacity()
 - SMHBA_RegisterForAdapterAddEvents()
 - SMHBA_RegisterForAdapterEvents()
 - SMHBA_RegisterForAdapterPortEvents()
 - SMHBA_RegisterForAdapterPortStatEvents()
 - SMHBA_RegisterForAdapterPhyStatEvents()
 - SMHBA_RegisterForTargetEvents()
 - HBA_RegisterForLinkEvents()
 - HBA_RemoveCallback()

For Serial Attached HBA
 - SMHBA_GetSASPhyAttributes()
 - SMHBA_SendSMPPassThru()

For Fibre Channle HBA
 - SMHBA_GetFCPhyAttributes()
 - HBA_SendCTPassThruV2()
 - HBA_SetRNIDMgmtInfo()
 - HBA_GetRNIDMgmtInfo()
 - HBA_SendRNIDV2()
7. Close open HBAs by calling `HBA_CloseAdapter()`.
8. Unload the library by calling `HBA_FreeLibrary()`.

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library/storage/t11-sm-hba</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
<tr>
<td>Standard</td>
<td>ANSI INCITS 428 Storage Management Host Bus Adapter Application Programming Interface (SM-HBA)</td>
</tr>
</tbody>
</table>

See Also `smhba.conf(4), attributes(5)`
Name libsocket – sockets library

Synopsis cc [flag...] file... -lsocket [library...]

Description Functions in this library provide the socket internetworking interface, primarily used with the TCP/IP protocol suite.

Interfaces The shared object libsocket.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

```
__xnet_bind
__xnet_connect
__xnet_getsockopt
__xnet_listen
__xnet_recvmsg
__xnet_sendmsg
__xnet_sendto
__xnet_socket
__xnet_socketpair
accept
bind
connect
denetent
endprotoent
endservent
ether_aton
ether_hostton
ether_ntoa
freeaddrinfo
gai_strerror
getaddrinfo
getifaddrs
getbynameinfo
getnetbyaddr
getnetbyaddr_r
getnetbyname
getnetbyname_r
getnetent
getnetent_r
getpeername
getprotobynumber
getprotobynumber_r
getprotoent
getprotoent_r
getservbyname
getservbyname_r
getservbyport
getservbyport_r
getservent
getservent_r
getsockname
getsockopt
```
htonl htons htonl if_freenameindex
if_indexoname if_nameindex
if_nametoindex in6addr_any
in6addr_loopback inet_lnaof
inet_makeaddr inet_network
listen ntohl
ntohl ntohs
rcmd rcmd_af
recv recvfrom
recvmsg rexec
reexec rresvport
rresvport_af ruserok
send sendmsg
sendto setnetent
setprotoent setservent
setsockopt shutdown
socket socketpair

Files

/lib/libsocket.so.1 shared object
/lib/64/libsocket.so.1 64-bit shared object

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>See the manual page for each interface.</td>
</tr>
</tbody>
</table>

See Also

pvs(1), Intro(2), Intro(3), socket.h(3HEAD), attributes(5)
Name libsrpt – SRP Target Management library

Synopsis cc [flag...] file... -lsrpt [library...]

Description Functions in this library provide management services for STMF SRP target ports.

Interfaces The shared object libsrpt.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

srpt_GetDefaultState srpt_GetTargetState
srpt_ResetTarget srpt_SetTargetState
srpt_SetTargetState

Files /lib/libsrpt.so.1 shared object
 /lib/64/libsrpt.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/storage/scsi-rdma/scsi-rdma-target</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also srpt_SetDefaultState(3SRPT), srpt_SetTargetState(3SRPT), attributes(5)
Name libssagent – Sun Solstice Enterprise Agent library

Synopsis `cc [flag...] file... -lssagent [library...]`

Description The `libssagent` library is a high level API library that is dependent on `libssasnmp`. This library contains the starting point of the request-driven engine that always runs in the background within the subagent. It receives SNMP requests, evaluates variables, calls the appropriate functions, and sends the correct responses.

Interfaces The shared object `libssagent.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

- `SSAAgentIsAlive`
- `SSAMain`
- `SSARegSubtree`
- `_SSASendTrap`
- `_SSASendTrap2`
- `_SSASendTrap3`
- `callItem`
- `numCallItem`
- `numTrapElem`
- `trapAnyEnterpriseInfo`
- `trapBucket`
- `trapEnterpriseInfo`
- `trapTableMap`

Files
- `/usr/lib/libssagent.so.1` shared object
- `/usr/lib/64/libssagent.so.1` 64-bit shared object

Attributes See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/management/snmp/sea</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also `Intro(3), libssasnmp(3LIB), attributes(5)`
libssasnmp (3LIB)

Name libssasnmp – Sun Solstice Enterprise SNMP library

Synopsis

```
cc [ flag... ] file... -lssasnmp [ library... ]
```

Description

The `libssasnmp` library provides low-level SNMP API functions.

- ASN.1 serialization (encoding/decoding) module
- SNMP PDU development routines
- SNMP session module
- Low level SNMP based API functions
- Error-handling module
- Trace (debugging) module

Interfaces

The shared object `libssasnmp.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

- `SSAoidCmp` `SSAoidCpy`
- `SSAoidDup` `SSAoidFree`
- `SSAoidInit` `SSAoidNew`
- `SSAoidStrToOid` `SSAoidString`
- `SSAoidZero`
- `SSAStringCpy`
- `SSAStringInit` `SSAStringToChar`
- `SSAStringZero`

Files

```
/usr/lib/libssasnmp.so.1     shared object
/usr/lib/64/libssasnmp.so.1  64-bit shared object
```

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTETYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/management/snmp/sea</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also

Intro(3), libssagent(3LIB), attributes(5)
Name libstmf – SCSI Target Mode Framework library

Synopsis cc [flag...] file... -lstmf [library...]

#include <libstmf.h>

Description Functions in this library provide configuration management of the SCSI Target Mode Framework (STMF), allowing clients to manage the provisioning of logical units and targets to the initiator clients of the framework.

Definitions Host Group

A Host Group is a set of one or more initiator ports that are combined together for the purposes of applying access controls to a Logical Unit object and assigning a logical unit number to the Logical Unit. The assigned logical unit number will be reported to the members of that Host Group via the SCSI REPORT LUN command. Host Groups can contain initiator ports that are not visible to the SCSI Target Mode Framework. Initiator ports might not be a member in more than one group. A Host Group is associated with a given Logical Unit via a view entry. Host Group names are unique within the framework.

Logical Unit

A Logical Unit object is provided to the SCSI Target Mode Framework for the purposes of executing SCSI commands. Library clients can manage a Logical Unit object’s accessibility to one or more SCSI initiator clients. libstmf library clients cannot add or remove Logical Unit objects from the system. Every Logical Unit object within the SCSI Target Mode Framework is owned by a logical unit provider whose identity is available via the properties on the Logical Unit object.

Logical Unit Number

A Logical Unit Number is the SCSI identifier of a logical unit within a target.

Target Port

A Target port object is provided to the SCSI Target Mode Framework for the purposes of receiving SCSI commands on a particular logical unit. Library clients can manage a Logical Unit object’s availability to one or more Target port objects. Library clients cannot add or remove Target objects from the system. Every Target port object within the SCSI Target Mode Framework is owned by a Local Port provider whose identity is available via the properties on the Target port object.

Target Port Group

A Target Port Group is a set of one or more Target ports that are combined together for the purposes of applying availability to a Logical Unit object. A Target Port Group may be applied to any given Logical Unit via a view entry. Target ports may not be a member in more than one Target Port Group. Target Port Group names are unique within the framework.

View

A View is a list of logical units exposed to a list of initiator ports through a list of targets.
View Entry

A View Entry object defines the association of an host group, a target group and a logical unit number with a specified logical unit. When a view entry is created for a logical unit, a caller can assign all targets and/or all initiator ports to the logical unit thus making the logical unit accessible to all target ports and/or all initiator ports. A logical unit may have one or more view entries associated with it. Any two view entries are considered to be in conflict when an attempt is made to duplicate the association of any given initiator port, target port and logical unit. Attempting this will result in an error returned from the call to stmfAddViewEntry(3STMF).

Interfaces The shared object libstmf.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

stmfAddToHostGroup stmfAddToHostGroupList
stmfAddToTargetGroup stmfAddViewEntry
stmfAddViewEntryList stmfCheckHostGroupInUse
stmfCheckTargetGroupInUse stmfClearProviderData
stmfCreateHostGroup stmfCreateLu
stmfCreateLuResource stmfCreateTargetGroup
stmfDeleteHostGroup stmfDeleteLu
stmfDeleteTargetGroup stmfDestroyProxyDoor
stmfDevidFromIscsiName stmfDevidFromWwn
stmfFreeLuResource stmfFreeMemory
stmfFreeViewResourceList stmfGetAluaState
stmfGetHostGroupList stmfGetHostGroupMembers
stmfGetLogicalUnitList stmfGetLogicalUnitProperties
stmfGetLuProp stmfGetLuResource
stmfGetPersistMethod stmfGetProviderData
stmfGetProviderDataProt stmfGetState
stmfGetStmfProp stmfGetTargetGroupList
stmfGetTargetGroupMembers stmfGetTargetList
stmfGetTargetProperties stmfGetViewEntryList
stmfGetViewLuNumberList stmfGetViewProp
stmfGetViewResourceList stmfImportLu
stmfInitProxyDoor stmfLuStandby
stmfModifyLu stmfModifyLuByFname
stmfOfflineLogicalUnit stmfOfflineTarget
stmfOnlineLogicalUnit stmfOnlineTarget
stmfPostProxyMsg stmfRemoveFromHostGroup
stmfRemoveFromTargetGroup stmfRemoveViewEntry
stmfSetAluaState stmfSetLuProp
stmfSetPersistMethod stmfSetProviderData
stmfSetProviderDataProt stmfSetStmfProp
stmfValidateView

Files
/lib/libstmf.so.1 shared object
/lib/64/libstmf.so.1 64-bit shared object

Attributes
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/storage/scsi-target-mode-framework</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also
`Intro(3), stmfAddViewEntry(3STMF), attributes(5)`
Name libsys – system library

Synopsis cc [flag...] file... -lsys [library...]

Description Functions in this library provide basic system services. This library is implemented as a filter on the C library (see libc(3LIB)).

Interfaces The shared object libsys.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

```
__ctype __huge_val __access
_acct __alarm __altzone
_close __catgets __catopen
_chdir __chmod __chown
_chroot __close __closedir
_creat __daylight __dup
.environ __excl __execle
_execclp __execv __execve
_execvp __exit __fattach
_fchdir __fchmod __fchown
_fcntl __fdetach __fork
_fpathconf __fstat __fstatvfs
_fsystat __fstat __fsystatvfs
_ftok __fstat __fstatvfs
_gchown __getcontext
_getcwd __getegid __geteuid
_getgid __getgrgid __getgrnam
_getgroups __getlogin __getmsg
_getpgid __getpgrp __getpid
_getpmsg __getppid __getpwnam
_getpwuid __getrlimit __getsid
_gettxt __getuid __grantpt
_initgroups __ioctl __isastream
_kill __lchown __link
_lseek __lstat __makecontext
```
<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>memcntl</td>
</tr>
<tr>
<td>mkdir</td>
</tr>
<tr>
<td>mknod</td>
</tr>
<tr>
<td>mlock</td>
</tr>
<tr>
<td>mmap</td>
</tr>
<tr>
<td>mount</td>
</tr>
<tr>
<td>mprotect</td>
</tr>
<tr>
<td>msgctl</td>
</tr>
<tr>
<td>msgget</td>
</tr>
<tr>
<td>msgrcv</td>
</tr>
<tr>
<td>msnd</td>
</tr>
<tr>
<td>msync</td>
</tr>
<tr>
<td>munlock</td>
</tr>
<tr>
<td>munmap</td>
</tr>
<tr>
<td>nice</td>
</tr>
<tr>
<td>numeric</td>
</tr>
<tr>
<td>open</td>
</tr>
<tr>
<td>opendir</td>
</tr>
<tr>
<td>pathconf</td>
</tr>
<tr>
<td>pause</td>
</tr>
<tr>
<td>pipe</td>
</tr>
<tr>
<td>poll</td>
</tr>
<tr>
<td>profil</td>
</tr>
<tr>
<td>pprobe</td>
</tr>
<tr>
<td>psemop</td>
</tr>
<tr>
<td>semct1</td>
</tr>
<tr>
<td>semget</td>
</tr>
<tr>
<td>semop</td>
</tr>
<tr>
<td>setcontext</td>
</tr>
<tr>
<td>setgid</td>
</tr>
<tr>
<td>setgroups</td>
</tr>
<tr>
<td>setpgid</td>
</tr>
<tr>
<td>setpgp</td>
</tr>
<tr>
<td>setrlimit</td>
</tr>
<tr>
<td>setsid</td>
</tr>
<tr>
<td>setuid</td>
</tr>
<tr>
<td>shmat</td>
</tr>
<tr>
<td>shmct1</td>
</tr>
<tr>
<td>shmdt</td>
</tr>
<tr>
<td>sigaction</td>
</tr>
<tr>
<td>sigaddset</td>
</tr>
<tr>
<td>sigaltstack</td>
</tr>
<tr>
<td>sigdelset</td>
</tr>
<tr>
<td>sigemptyset</td>
</tr>
<tr>
<td>sigfillset</td>
</tr>
<tr>
<td>sghold</td>
</tr>
<tr>
<td>sigignore</td>
</tr>
<tr>
<td>sigismember</td>
</tr>
<tr>
<td>siglongjmp</td>
</tr>
<tr>
<td>sigpause</td>
</tr>
<tr>
<td>sigpending</td>
</tr>
<tr>
<td>sigprocmask</td>
</tr>
<tr>
<td>sigrelse</td>
</tr>
<tr>
<td>sigsend</td>
</tr>
<tr>
<td>sigsendset</td>
</tr>
<tr>
<td>sigset</td>
</tr>
<tr>
<td>sigsetjmp</td>
</tr>
<tr>
<td>sigsuspend</td>
</tr>
<tr>
<td>stat</td>
</tr>
<tr>
<td>statvfs</td>
</tr>
<tr>
<td>stime</td>
</tr>
<tr>
<td>swapcontext</td>
</tr>
<tr>
<td>symlink</td>
</tr>
<tr>
<td>sync</td>
</tr>
<tr>
<td>sysconf</td>
</tr>
<tr>
<td>telldir</td>
</tr>
<tr>
<td>time</td>
</tr>
<tr>
<td>times</td>
</tr>
<tr>
<td>timezone</td>
</tr>
<tr>
<td>ttyname</td>
</tr>
<tr>
<td>ulimit</td>
</tr>
<tr>
<td>umask</td>
</tr>
<tr>
<td>umount</td>
</tr>
<tr>
<td>uname</td>
</tr>
<tr>
<td>unlink</td>
</tr>
</tbody>
</table>

Library Interfaces and Headers
<table>
<thead>
<tr>
<th>Function 1</th>
<th>Function 2</th>
<th>Function 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>_unlockpt</td>
<td>_utime</td>
<td>_wait</td>
</tr>
<tr>
<td>_waitid</td>
<td>_waitpid</td>
<td>_write</td>
</tr>
<tr>
<td>_writev</td>
<td>access</td>
<td>acct</td>
</tr>
<tr>
<td>alarm</td>
<td>atexit</td>
<td>calloc</td>
</tr>
<tr>
<td>catclose</td>
<td>catgets</td>
<td>catopen</td>
</tr>
<tr>
<td>chdir</td>
<td>chmod</td>
<td>chown</td>
</tr>
<tr>
<td>chroot</td>
<td>close</td>
<td>closedir</td>
</tr>
<tr>
<td>creat</td>
<td>daylight</td>
<td>dup</td>
</tr>
<tr>
<td>environ</td>
<td>execl</td>
<td>execle</td>
</tr>
<tr>
<td>execp</td>
<td>execv</td>
<td>execve</td>
</tr>
<tr>
<td>execvp</td>
<td>exit</td>
<td>fattach</td>
</tr>
<tr>
<td>fchdir</td>
<td>chmod</td>
<td>fchown</td>
</tr>
<tr>
<td>fcntl</td>
<td>fdetach</td>
<td>fork</td>
</tr>
<tr>
<td>fpathconf</td>
<td>free</td>
<td>fstat</td>
</tr>
<tr>
<td>fstatvfs</td>
<td>fsync</td>
<td>ftok</td>
</tr>
<tr>
<td>getcontext</td>
<td>getcwd</td>
<td>getegid</td>
</tr>
<tr>
<td>geteuid</td>
<td>getgid</td>
<td>getgrgid</td>
</tr>
<tr>
<td>getgrnam</td>
<td>getgroups</td>
<td>getlogin</td>
</tr>
<tr>
<td>getmsg</td>
<td>getpgrp</td>
<td>getppid</td>
</tr>
<tr>
<td>getpid</td>
<td>getpmsg</td>
<td>getwuid</td>
</tr>
<tr>
<td>getpwnam</td>
<td>getwuid</td>
<td>getrlimit</td>
</tr>
<tr>
<td>getsid</td>
<td>gettxt</td>
<td>getuid</td>
</tr>
<tr>
<td>grantpt</td>
<td>initgroups</td>
<td>ioctl</td>
</tr>
<tr>
<td>isastream</td>
<td>kill</td>
<td>lchown</td>
</tr>
<tr>
<td>link</td>
<td>localeconv</td>
<td>lseek</td>
</tr>
<tr>
<td>lstat</td>
<td>makecontext</td>
<td>malloc</td>
</tr>
<tr>
<td>memcntl</td>
<td>mkdir</td>
<td>mkdod</td>
</tr>
<tr>
<td>mlock</td>
<td>mmap</td>
<td>mount</td>
</tr>
<tr>
<td>mprotect</td>
<td>msgctl</td>
<td>msgget</td>
</tr>
<tr>
<td>Function</td>
<td>Function</td>
<td>Function</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>msgrcv</td>
<td>msgsnd</td>
<td>msync</td>
</tr>
<tr>
<td>munlock</td>
<td>munmap</td>
<td>nice</td>
</tr>
<tr>
<td>open</td>
<td>opendir</td>
<td>pathconf</td>
</tr>
<tr>
<td>pause</td>
<td>pipe</td>
<td>poll</td>
</tr>
<tr>
<td>profil</td>
<td>ptrace</td>
<td>ptsname</td>
</tr>
<tr>
<td>putmsg</td>
<td>putpmsg</td>
<td>read</td>
</tr>
<tr>
<td>readdir</td>
<td>readlink</td>
<td>reav</td>
</tr>
<tr>
<td>realloc</td>
<td>remove</td>
<td>rename</td>
</tr>
<tr>
<td>rewinddir</td>
<td>rmdir</td>
<td>seekdir</td>
</tr>
<tr>
<td>semctl</td>
<td>semget</td>
<td>semop</td>
</tr>
<tr>
<td>setcontext</td>
<td>setgid</td>
<td>setgroups</td>
</tr>
<tr>
<td>setlocale</td>
<td>setpgid</td>
<td>setpgp</td>
</tr>
<tr>
<td>setrlimit</td>
<td>setsid</td>
<td>setuid</td>
</tr>
<tr>
<td>shmat</td>
<td>shmctl</td>
<td>shmdt</td>
</tr>
<tr>
<td>shmget</td>
<td>sigaction</td>
<td>sigaddset</td>
</tr>
<tr>
<td>sigaltstack</td>
<td>sigdelset</td>
<td>sigemptyset</td>
</tr>
<tr>
<td>sigfillset</td>
<td>sighold</td>
<td>sigignore</td>
</tr>
<tr>
<td>sigismember</td>
<td>siglongjmp</td>
<td>signal</td>
</tr>
<tr>
<td>sigpause</td>
<td>sigpending</td>
<td>sigprocmask</td>
</tr>
<tr>
<td>sigreelse</td>
<td>sigsend</td>
<td>sigsendset</td>
</tr>
<tr>
<td>sigset</td>
<td>sigsetjmp</td>
<td>sigsuspend</td>
</tr>
<tr>
<td>stat</td>
<td>statvfs</td>
<td>stime</td>
</tr>
<tr>
<td>strcoll</td>
<td>strerror</td>
<td>strftime</td>
</tr>
<tr>
<td>strncmp</td>
<td>swapcontext</td>
<td>symlink</td>
</tr>
<tr>
<td>sync</td>
<td>sysconf</td>
<td>system</td>
</tr>
<tr>
<td>telldir</td>
<td>time</td>
<td>times</td>
</tr>
<tr>
<td>timezone</td>
<td>ttynname</td>
<td>tzname</td>
</tr>
<tr>
<td>ulimit</td>
<td>umask</td>
<td>umount</td>
</tr>
<tr>
<td>uname</td>
<td>unlink</td>
<td>unlockpt</td>
</tr>
</tbody>
</table>
The following interfaces are unique to the SPARC version of this library:

- `div`
- `mul`
- `rem`
- `stret1`
- `stret2`
- `stret4`
- `stret8`
- `udiv`
- `umul`
- `urem`
- `_Q_add`
- `_Q_cmp`
- `_Q_cmpe`
- `_Q_div`
- `_Q_dtoq`
- `_Q_feq`
- `_Q_fge`
- `_Q_fgt`
- `_Q_fle`
- `_Q_flt`
- `_Q_fne`
- `_Q_itoq`
- `_Q_mul`
- `_Q_neg`
- `_Q_qtod`
- `_Q_qtoi`
- `_Q_qtos`
- `_Q_qtou`
- `_Q_sqrt`
- `_Q_stoq`
- `_Q_sub`
- `_Q_utoq`
- `__dtou`
- `__ftou`

The following interfaces are unique to the x86 version of this library:

- `__flt_rounds`
- `fp_hw`
- `fpstart`
- `fxstat`
- `lxstat`
- `nuname`
- `sbrk`
- `xmknod`
- `xstat`
- `name`
- `sbrk`

Files

USR/lib/libsys.so.1 shared object

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>
See Also pvs(1), Intro(2), Intro(3), libc(3LIB), attributes(5)
libsysevent – system event interface library

Synopsis cc [flag...] file... -lsysevent [library...]
 #include <sysevent.h>

Description Functions in this library extract specific identifier, publisher, and attribute information from a
system event (sysevent) handle, defined as sysevent_t, and allow privileged user-level
applications to queue system events for delivery to the system event daemon, syseventd(1M).

The libsysevent interfaces do not work at all in non-global zones.

Interfaces The shared object /libsysevent.so.1 provides the public interfaces defined below. See
Intro(3) for additional information on shared object interfaces.

 sysevent_bind_handle sysevent_free
 sysevent_get_attr_list sysevent_get_class_name
 sysevent_get_pid sysevent_get_pub_name
 sysevent_get_seq sysevent_get_size
 sysevent_get_subclass_name sysevent_get_time
 sysevent_get_vendor_name sysevent_post_event
 sysevent_subscribe_event sysevent_unbind_handle
 sysevent_unsubscribe_event

Files /usr/lib/libsysevent.so.1 shared object
 /usr/lib/64/libsysevent.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also syseventd(1M), Intro(3), attributes(5)
Name libtecla – interactive command line input library

Synopsis cc [flag...] file... -ltecla [library...]
 #include <libtecla.h>

Description This library provides programs with interactive command line editing facilities, similar to those of the UNIX tcsh shell. In addition to simple command-line editing, it supports recall of previously entered command lines, TAB completion of file names or other tokens, and in-line wildcard expansion of filenames. The internal functions that perform file-name completion and wild-card expansion are also available externally for optional use by the calling program.

Thread Safety The terminfo functions setupterm(3CURSES), tigetstr(3CURSES), tigetnum(3CURSES), and tputs(3CURSES) are not reentrant. This condition, however, should not prevent use of this library in threaded applications, since few applications will want to interact with multiple terminals.

Interfaces The shared object libtecla.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

cfc_file_start cfc_literal_escapes
ncfc_set_check_fn cpl_add_completion
ncpl_check_exe cpl_complete_word
ncpl_file_completions cpl_last_error
ncpl_list_completions cpl_recall_matches
ncpl_record_error del_CplFileConf
ndel_ExpandFile del_GetLine
ndel_PathCache del_PcaPathConf
ndel_WordCompletion ef_expand_file
nef_last_error ef_list_expansions
ngl_abandon_line gl_append_history
ngl_automatic_history gl_bind_keyseq
ngl_catch_blocked gl_change_terminal
ngl_clear_history gl_completion_action
ngl_configure_getline gl_customize_completion
ngl_display_text gl_echo_mode
ngl_erase_terminal gl_error_message

Library Interfaces and Headers 393
libtecla(3LIB)

<table>
<thead>
<tr>
<th>Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>gl_get_line</td>
<td>gl_get_line</td>
</tr>
<tr>
<td>gl_handle_signal</td>
<td>gl_handle_signal</td>
</tr>
<tr>
<td>gl_inactivity_timeout</td>
<td>gl_inactivity_timeout</td>
</tr>
<tr>
<td>gl_last_signal</td>
<td>gl_last_signal</td>
</tr>
<tr>
<td>gl_list_signals</td>
<td>gl_list_signals</td>
</tr>
<tr>
<td>gl_lookup_history</td>
<td>gl_lookup_history</td>
</tr>
<tr>
<td>gl_pending_io</td>
<td>gl_pending_io</td>
</tr>
<tr>
<td>gl_query_char</td>
<td>gl_query_char</td>
</tr>
<tr>
<td>gl_raw_io</td>
<td>gl_raw_io</td>
</tr>
<tr>
<td>gl_register_action</td>
<td>gl_register_action</td>
</tr>
<tr>
<td>gl_resize_history</td>
<td>gl_resize_history</td>
</tr>
<tr>
<td>gl_save_history</td>
<td>gl_save_history</td>
</tr>
<tr>
<td>gl_show_history</td>
<td>gl_show_history</td>
</tr>
<tr>
<td>gl_state_of_history</td>
<td>gl_state_of_history</td>
</tr>
<tr>
<td>gl_toggle_history</td>
<td>gl_toggle_history</td>
</tr>
<tr>
<td>gl/tty_signals</td>
<td>gl/tty_signals</td>
</tr>
<tr>
<td>libtecla_version</td>
<td>libtecla_version</td>
</tr>
<tr>
<td>new_ExpandFile</td>
<td>new_ExpandFile</td>
</tr>
<tr>
<td>new_PathCache</td>
<td>new_PathCache</td>
</tr>
<tr>
<td>new_WordCompletion</td>
<td>new_WordCompletion</td>
</tr>
<tr>
<td>pca_lookup_file</td>
<td>pca_lookup_file</td>
</tr>
<tr>
<td>pca_scan_path</td>
<td>pca_scan_path</td>
</tr>
<tr>
<td>ppc_file_start</td>
<td>ppc_file_start</td>
</tr>
<tr>
<td>ppc_literal_escapes</td>
<td>ppc_literal_escapes</td>
</tr>
<tr>
<td>new_CplFileConf</td>
<td>new_CplFileConf</td>
</tr>
<tr>
<td>new_GetLine</td>
<td>new_GetLine</td>
</tr>
<tr>
<td>new_PcaPathConf</td>
<td>new_PcaPathConf</td>
</tr>
<tr>
<td>pca_last_error</td>
<td>pca_last_error</td>
</tr>
<tr>
<td>pca_path_completions</td>
<td>pca_path_completions</td>
</tr>
<tr>
<td>pca_set_check_fn</td>
<td>pca_set_check_fn</td>
</tr>
</tbody>
</table>

Files

/usr/lib/libtecla.so.1 shared object
/usr/lib/64/libtecla.so.1 64-bit shared object

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>ATTRIBUTE TYPE</td>
<td>ATTRIBUTE VALUE</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also enhance(1), Intro(3), cpl_complete_word(3TECLA), ef_expand_file(3TECLA), gl_get_line(3TECLA), gl_io_mode(3TECLA), pca_lookup_file(3TECLA), attributes(5), tecla(5)
Name
libthread – threads library

Synopsis
cc -mt [flag...] file... [library...]

Description
Historically, functions in libthread provided threading support. This functionality now resides in libc(3LIB).

This library is maintained to provide backward compatibility for both runtime and compilation environments. The shared object is implemented as a filter on libc.so.1. New application development need not specify -lthread.

Interfaces
The shared object libthread.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>cond_broadcast</td>
<td>cond_destroy</td>
</tr>
<tr>
<td>cond_init</td>
<td>cond_reltimedwait</td>
</tr>
<tr>
<td>cond_signal</td>
<td>cond_timedwait</td>
</tr>
<tr>
<td>cond_wait</td>
<td>mutex_destroy</td>
</tr>
<tr>
<td>mutex_init</td>
<td>mutex_lock</td>
</tr>
<tr>
<td>mutex_trylock</td>
<td>mutex_unlock</td>
</tr>
<tr>
<td>rw_rdlock</td>
<td>rw_tryrdlock</td>
</tr>
<tr>
<td>rw_trywrlock</td>
<td>rw_unlock</td>
</tr>
<tr>
<td>rw_wrlock</td>
<td>rwlock_destroy</td>
</tr>
<tr>
<td>rwlock_init</td>
<td>sema_destroy</td>
</tr>
<tr>
<td>sema_init</td>
<td>sema_post</td>
</tr>
<tr>
<td>sema_trywait</td>
<td>sema_wait</td>
</tr>
<tr>
<td>thr_continue</td>
<td>thr_create</td>
</tr>
<tr>
<td>thr_exit</td>
<td>thr_getconcurrency</td>
</tr>
<tr>
<td>thr_getprio</td>
<td>thr_getspecific</td>
</tr>
<tr>
<td>thr_join</td>
<td>thr_keycreate</td>
</tr>
<tr>
<td>thr_kill</td>
<td>thr_main</td>
</tr>
<tr>
<td>thr_min_stack</td>
<td>thr_self</td>
</tr>
<tr>
<td>thr_setconcurrency</td>
<td>thr_setprio</td>
</tr>
<tr>
<td>thr_setspecific</td>
<td>thr_sigsetmask</td>
</tr>
<tr>
<td>thr_stksegment</td>
<td>thr_suspend</td>
</tr>
</tbody>
</table>
thr_yield

Files
/lib/libthread.so.1 a filter on libc.so.1
/lib/64/libthread.so.1 a filter on 64/libc.so.1

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also
pvs(1), Intro(2), Intro(3), libc(3LIB), libc_db(3LIB), libpthread(3LIB), attributes(5), threads(5)
libtsalarm – Telco-Alarm library

Synopsis

cc [flag...] file... -ltsalarm [library...]
#include <tsalarm.h>

Description

Functions in this library are used to interface with the service processor through telco-alarm LDC channel to get or set status of telco alarms.

Interfaces

The shared object libtsalarm.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

- tsalarm_get
- tsalarm_set

Files

/usr/platform/`uname -i`/lib/libtsalarm.so.1

shared object

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library/platform</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Uncommitted</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also

tsalarm_get(3EXT), attributes(5)
Name libtsnet – Solaris Trusted Extensions network library

Synopsis
```
cc [ flag... ] file... [ library... ]
#include <libtsnet.h>
#include <sys/tsol/tndb.h>
```

Description Functions in this library provide programmatic access to Solaris Trusted Extensions features such as labels and Mandatory Access Policy (MAC). These functions are available on systems that are configured with Trusted Extensions software.

Interfaces The shared object `libtsnet.so.1` provides the public interfaces that are defined below. See `Intro(3)` for additional information on shared object interfaces.

```
tsol_getrtype
```

Files
- `/lib/libtsnet.so.1` shared object
- `/lib/64/libtsnet.so.1` 64–bit shared object

Attributes See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also
`Intro(3), libtsol(3LIB), attributes(5)`
libtsol - Solaris Trusted Extensions library

Synopsis
cc [flag...] file... -lstol [library...]
#include <tsol.h>

Description
Functions in this library provide programmatic access to Solaris Trusted Extensions features such as labels and Mandatory Access Policy (MAC) on systems that are configured with Trusted Extensions software.

Interfaces
The shared object libtsol.so.2 provides the public interfaces that are defined below. See Intro(3) for additional information on shared object interfaces.

Committed Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Committed Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>bldominates</td>
<td>blequal</td>
</tr>
<tr>
<td>blstrictdom</td>
<td>getpathbylabel</td>
</tr>
<tr>
<td>getlabel</td>
<td>getuserrange</td>
</tr>
<tr>
<td>getzoneidbylabel</td>
<td>getzonelabelbyid</td>
</tr>
<tr>
<td>getzonerootbyid</td>
<td>getzonerootbylabel</td>
</tr>
<tr>
<td>getzonerootbyname</td>
<td>label_to_str</td>
</tr>
<tr>
<td>labelbuilder</td>
<td>labelclipping</td>
</tr>
<tr>
<td>m_label_alloc</td>
<td>m_label_dup</td>
</tr>
<tr>
<td>m_label_free</td>
<td>setflabel</td>
</tr>
<tr>
<td>str_to_label</td>
<td>tsol_lbuild_create</td>
</tr>
<tr>
<td>tsol_lbuild_destroy</td>
<td>tsol_lbuild_get</td>
</tr>
<tr>
<td>tsol_lbuild_set</td>
<td>Xbcleartos</td>
</tr>
<tr>
<td>Xbsltos</td>
<td></td>
</tr>
</tbody>
</table>

Obsolete Functions
The following functions are preserved to aid porting.

<table>
<thead>
<tr>
<th>Function</th>
<th>Committed Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcleartoh</td>
<td>label_to_str</td>
</tr>
<tr>
<td>bcleartoh_r</td>
<td>label_to_str</td>
</tr>
<tr>
<td>bcleartos</td>
<td>label_to_str</td>
</tr>
<tr>
<td>bltocolor</td>
<td>label_to_str</td>
</tr>
<tr>
<td>bltocolor_r</td>
<td>label_to_str</td>
</tr>
<tr>
<td>bsltosh</td>
<td>label_to_str</td>
</tr>
<tr>
<td>Function</td>
<td>Committed Replacement</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>bsltoh_r</td>
<td>label_to_str</td>
</tr>
<tr>
<td>bsltos</td>
<td>label_to_str</td>
</tr>
<tr>
<td>h_alloc</td>
<td>label_to_str</td>
</tr>
<tr>
<td>h_free</td>
<td>label_to_str</td>
</tr>
<tr>
<td>htobclear</td>
<td>str_to_label</td>
</tr>
<tr>
<td>htobsl</td>
<td>str_to_label</td>
</tr>
<tr>
<td>sbcleartos</td>
<td>str_to_label</td>
</tr>
<tr>
<td>sbsltos</td>
<td>str_to_label</td>
</tr>
<tr>
<td>stobsl</td>
<td>str_to_label</td>
</tr>
<tr>
<td>stobclear</td>
<td>str_to_label</td>
</tr>
</tbody>
</table>

Files

/\lib/libtsol.so.2 shared object
/\lib/64/libtsol.so.2 64-bit shared object

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>See the manual pages for the individual functions.</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also

Intro(3), libtsnet(3LIB), attributes(5)

Notes

The functionality described on this manual page is available only if the system has been configured with Trusted Extensions.
libumem(3LIB)

Name libumem – object-caching memory allocation library

Synopsis cc [flag...] file... -lumem [library...]
#include <umem.h>

Description Functions in this library provide fast, scalable object-caching memory allocation with
multithreaded application support. In addition to the standard malloc(3C) family of
functions and the more flexible umem_alloc(3MALLOC) family, libumem provides powerful
object-caching services as described in umem_cache_create(3MALLOC).

The libumem library also provides extensive debugging support, including detection of
memory leaks, buffer overruns, multiple frees, use of uninitialized data, use of freed data, and
many other common programming errors. See umem_debug(3MALLOC).

Interfaces The shared object libumem.so.1 provides the public interfaces defined below. See Intro(3)
for additional information on shared object interfaces.

calloc free
malloc memalign
realloc umem_alloc
umem_cache_alloc umem_cache_create
umem_cache_destroy umem_cache_free
umem_free umem_nofail_callback
umem_zalloc valloc

Files /usr/lib/libumem.so.1 shared object
/usr/lib/64/libumem.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also Intro(3), malloc(3C), umem_alloc(3MALLOC), umem_cache_create(3MALLOC),
umem_debug(3MALLOC), attributes(5)
The **libusb** library contains interfaces for managing USB devices without a kernel driver. It is an open-source API supported on Linux, macOS X, and NetBSD. See http://libusb.sourceforge.net.

The current implementation is version 0.1.8 of the **libusb** API.

Complete documentation for this library can be found at `/usr/share/doc/libusb/libusb.txt`.

The shared object **libusb.so.1** provides the following public interfaces. See `Intro(3)` for additional information on shared object interfaces.

```
usb_bulk_read               usb_bulk_write
usb_claim_interface        usb_clear_halt
usb_close                  usb_control_msg
usb_find_busses            usb_find_devices
usb_get_busses             usb_get_descriptor_by_endpoint
usb_get_descriptor         usb_get_string
usb_get_string_simple      usb_init
usb_interrupt_read         usb_interrupt_write
usb_open                   usb_release_interface
usb_reset                  usb_ResetEp
usb_set_altinterface      usb_set_configuration
usb_set_debug              usb_strerror
```

Files
- `/usr/lib/libusb.so.1` shared object
- `/usr/lib64/libusb.so.1` 64-bit shared object
- `/usr/libusb_plugins` implementation-specific **libusb** modules
- `/usr/bin/libusb-config` script to determine linking environment

libusb(3LIB)

Name
libusb – user-space USB device management library

Synopsis
```
cc [ flag... ] -I/usr/include_file... -L/usr/lib \
    -R /usr/lib -lusb [ library... ]
#include <usb.h>
```

Description
The **libusb** library contains interfaces for managing USB devices without a kernel driver. It is an open-source API supported on Linux, macOS X, and NetBSD. See http://libusb.sourceforge.net.

The current implementation is version 0.1.8 of the **libusb** API.

Complete documentation for this library can be found at `/usr/share/doc/libusb/libusb.txt`.

Interfaces
The shared object **libusb.so.1** provides the following public interfaces. See `Intro(3)` for additional information on shared object interfaces.

```
usb_bulk_read               usb_bulk_write
usb_claim_interface        usb_clear_halt
usb_close                  usb_control_msg
usb_find_busses            usb_find_devices
usb_get_busses             usb_get_descriptor_by_endpoint
usb_get_descriptor         usb_get_string
usb_get_string_simple      usb_init
usb_interrupt_read         usb_interrupt_write
usb_open                   usb_release_interface
usb_reset                  usb_ResetEp
usb_set_altinterface      usb_set_configuration
usb_set_debug              usb_strerror
```

Files
- `/usr/lib/libusb.so.1` shared object
- `/usr/lib64/libusb.so.1` 64-bit shared object
- `/usr/libusb_plugins` implementation-specific **libusb** modules
- `/usr/bin/libusb-config` script to determine linking environment
Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTETYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library/usb/libusb, system/library/usb/libsut, SUNWlibugenusb</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Volatile</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also Intro(3), attributes(5)

http://libusb.sourceforge.net
The functions in this library perform operations on a universally unique identifier (UUID).

The shared object `libuuid.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

- `uuid_clear`
- `uuid_compare`
- `uuid_copy`
- `uuid_generate`
- `uuid_generate_random`
- `uuid_generate_time`
- `uuid_is_null`
- `uuid_parse`
- `uuid_time`
- `uuid_unparse`

The files

- `/lib/libuuid.so.1` shared object
- `/lib/64/libuuid.so.1` 64-bit shared object

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also `Intro(3), uuid_clear(3UUID), attributes(5)"
libv12n(3LIB)

Name libv12n – virtualization domain information interface library

Synopsis cc [flag ...] file ... -lv12n [library ...]
#include <libv12n.h>

Description The functions in this library extract specific virtualization domain information. For Logical Domains, this information comes from one of the following:

■ Domain's machine description
■ Domain service of the control domain that is provided by the Logical Domains agents daemon (ldmad)

Interfaces The libv12n.so.1 shared object provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

v12n_capabilities v12n_chassis_serialno
v12n_ctrl_domain v12n_domain_name
v12n_domain_roles v12n_domain_uuid

Files /usr/lib/libv12n.so.1 shared object
/usr/lib/64/libv12n.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library, system/header</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>MT-Safe</td>
</tr>
</tbody>
</table>

See Also virtinfo(1M), Intro(3), v12n(3EXT), attributes(5)
Name
libvolmgt – volume management library

Synopsis
cc [flag...] file... -lvolmgt [library...]
#include <volmgt.h>

Description
Functions in this library provide access to the volume management services.

Interfaces
The shared object `libvolmgt.so.1` provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

- media_findname
- media_getattr
- media_getid
- media_setattr
- volmgt_acquire
- volmgt_check
- volmgt_feature_enabled
- volmgt_inuse
- volmgt_ownsname
- volmgt_root
- volmgt_release
- volmgt_running
- volmgt_symdev
- volmgt_symname

Files
/usr/lib/libvolmgt.so.1 shared object
/usr/lib/64/libvolmgt.so.1 64-bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe with exceptions</td>
</tr>
</tbody>
</table>

See Also
pvs(1), Intro(3), media_findname(3VOLMGT), attributes(5)

Notes
The MT-Level for this library of interfaces is Safe, except for media_findname(3VOLMGT), which is Unsafe.
libw(3LIB)

Name libw – wide character library

Synopsis cc [flag...] file... [library...]
#include <wchar.h>

Description Historically, functions in this library provided wide character translations. This functionality now resides in libc(3LIB).

This library is maintained to provide backward compatibility for both runtime and compilation environments. The shared object is implemented as a filter on libc.so.1. New application development need not specify -lw.

Interfaces The shared object libw.so.1 provides the public interfaces defined below. See Intro(3) for additional information on shared object interfaces.

fgetwc fgetws fputwc
fputws getwc getwchar
getws isenglish isideogram
isnumber isphonogram isspecial
iswalnum iswalpha iswcntrl
iswctype iswdigit iswgraph
iswlower iswprint iswpunct
iswspace iswupper iswxdigit
putwc putwchar putws
strtwos towlower towupper
ungetwc watoll wcscat
wcschr wcscmp wcscoll
wcscpy wcscspn wcftime
wcslen wcscat wcsncmp
wcsncpy wcspbrk wcsrchr
wcsspn wcstod wcstok
wcstol wcstoul wcswcs
wcswidth wcsxfrm wctype
wcwidth wcswcs wscat
wschr wcscmp wscol
libw(3LIB)

wscoll wscpy wscspn
wsdup wslen wsncasecmp
wsncat wsncmp wsncpy
wspbrk wspprintf wsrchr
wsscanf wsspn wstod
wstok wstol wstoll
wstosstr wsxfrm

Files
/lib/libw.so.1 a filter on libc.so.1
/lib/64/libw.so.1 a filter on 64/libc.so.1

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
</tbody>
</table>

See Also pvs(1), Intro(3), libc(3LIB), attributes(5)
Name
libxnet – X/Open Networking library

Synopsis
cc [flag...] file... -lxnet [library...]

Description
Functions in this library provide networking interfaces which comply with the X/Open CAE Specification, Networking Services, Issue 4.

Interfaces
The shared object libxnet.so.1 provides the public interfaces defined below. See *Intro(3)* for additional information on shared object interfaces.

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>__t_errno</td>
</tr>
<tr>
<td>__xnet_bind</td>
</tr>
<tr>
<td>__xnet_connect</td>
</tr>
<tr>
<td>__xnet_getsockopt</td>
</tr>
<tr>
<td>__xnet_listen</td>
</tr>
<tr>
<td>__xnet_recvm sg</td>
</tr>
<tr>
<td>__xnet_sendmsg</td>
</tr>
<tr>
<td>__xnet_socket</td>
</tr>
<tr>
<td>__xnet_socketpair</td>
</tr>
<tr>
<td>_xti_accept</td>
</tr>
<tr>
<td>_xti_alloc</td>
</tr>
<tr>
<td>_xti_bind</td>
</tr>
<tr>
<td>_xti_close</td>
</tr>
<tr>
<td>_xti_connect</td>
</tr>
<tr>
<td>_xti_error</td>
</tr>
<tr>
<td>_xti_free</td>
</tr>
<tr>
<td>_xti_getinfo</td>
</tr>
<tr>
<td>_xti_getprotaddr</td>
</tr>
<tr>
<td>_xti_getstate</td>
</tr>
<tr>
<td>_xti_listen</td>
</tr>
<tr>
<td>_xti_look</td>
</tr>
<tr>
<td>_xti_open</td>
</tr>
<tr>
<td>_xti_optmgmt</td>
</tr>
<tr>
<td>_xti_rcv</td>
</tr>
<tr>
<td>_xti_rcvconnect</td>
</tr>
<tr>
<td>_xti_rcvdis</td>
</tr>
<tr>
<td>_xti_rcvrel</td>
</tr>
<tr>
<td>_xti_rcvreldata</td>
</tr>
<tr>
<td>_xti_rcvudata</td>
</tr>
<tr>
<td>_xti_rcvudata</td>
</tr>
<tr>
<td>_xti_rcvudata</td>
</tr>
<tr>
<td>_xti_snd</td>
</tr>
<tr>
<td>_xti_snddis</td>
</tr>
<tr>
<td>_xti_sndrel</td>
</tr>
<tr>
<td>_xti_sndreldata</td>
</tr>
<tr>
<td>_xti_sndudata</td>
</tr>
<tr>
<td>_xti_sndv</td>
</tr>
<tr>
<td>_xti_sndvudata</td>
</tr>
<tr>
<td>_xti_strerror</td>
</tr>
<tr>
<td>_xti_sync</td>
</tr>
<tr>
<td>_xti_sysconf</td>
</tr>
<tr>
<td>_xti_unbind</td>
</tr>
<tr>
<td>_xti_xns5_accept</td>
</tr>
<tr>
<td>_xti_xns5_snd</td>
</tr>
</tbody>
</table>
accept bind
connect endhostent
endnetent endprotoent
endservent freeaddrinfo
gai_strerror getaddrinfo
gethostbyaddr gethostbyname
gethostent gethostname
getnameinfo getnetbyaddr
gethostbyname getnetbyaddr
getnetbyname getnetent
getpeername getprotobynumber
getprotobynumber getprotoent
getservbyname getservbyport
getservent getsockname
getsockopt h_errno
htonl htons
if_freenameindex if_indextoname
if_nameindex if_nametoindex
inet_addr inet_lnaof
inet_makeaddr inet_netof
inet_network inet_ntoa
inet_ntop inet_pton
listen ntohl
ntohs recv
recvfrom recvmsg
send sendmsg
sendto sethostent
setnetent setprotoent
setservent setsockopt
shutdown sockatmark
socket socketpair
t_errno

Files

/`lib/libxnet.so.1` shared object
/`lib/64/libxnet.so.1` 64-bit shared object

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>system/library</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Safe</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also

Intro(3), attributes(5), standards(5)
libXtsol(3LIB)

Name libXtsol, libxtsol – Trusted Extensions to X Windows Library

Synopsis cc [flag...] file... -lx11 -lxtsol [library...]
#include <X11/extensions/Xtsol.h>

Description Functions in this library provide Trusted Extensions to the X windows library.

The functions in this library are available only if the system is configured with Trusted Extensions.

Interfaces The shared object \libXtsol.so.1 provides the public interfaces that are defined below. See Intro(3) for additional information on shared object interfaces.

XTSOLIsWindowTrusted
XTSOLgetClientAttributes
XTSOLgetPropAttributes
XTSOLgetPropLabel
XTSOLgetPropUID
XTSOLgetResAttributes
XTSOLgetResLabel
XTSOLgetResUID
XTSOLgetWorkstationOwner
XTSOLgetPolyInstInfo
XTSOLsetPropLabel
XTSOLsetPropUID
XTSOLsetResLabel
XTSOLsetResUID
XTSOLsetSSHeight
XTSOLsetSessionHI
XTSOLsetSessionLO
XTSOLsetWorkstationOwner

Files /lib/libXtsol.so.1 shared object
/lib/64/libXtsol.so.1 64-bit shared object

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>x11/trusted/libxtsol</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also Intro(3), libtsnet(3LIB), libtsol(3LIB), attributes(5)

Notes The functionality described on this manual page is available only if the system has been configured with Trusted Extensions.
liby(3LIB)

Name
liby – yacc library

Synopsis
c [flag...] file... -ly [library...]

Description
The function in this library provides a user interface to the yacc(1) library.

Interfaces
The shared object `liby.so.1` provides the public interface defined below. See Intro(3) for additional information on shared object interfaces.

```c
main

yyerror
```

Files
/usr/lib/liby.so.1 shared object
/usr/lib/64/liby.so.1 64-bit shared object

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>developer/base-developer-utilities</td>
</tr>
<tr>
<td>MT-Level</td>
<td>Unsafe</td>
</tr>
</tbody>
</table>

See Also
yacc(1), Intro(3), attributes(5)
libzonestat – zones statistics library

Synopsis

cc [flag ...] file -lzonestat [library...]
#include <zonestat.h>

Description

Functions in this library provide a general purpose mechanism for providing zone related resource usage statistics.

The zonestat library reports system wide and per-zone utilization of physical memory, virtual memory, and CPU resources.

Physical memory usage is reported for both RSS and locked memory. Resident set size (RSS) is the quantity of physical memory that is in use by each zone. Locked memory is physical memory pinned by applications in zones, usually for performance purposes. Physical memory which is locked cannot be paged out to disk when there is memory pressure.

The virtual memory reported is the total memory allocated by each zone. This includes both anonymous memory allocated by processes (heap, stack, anon), system V shared memory, and memory consumed by tmpfs file systems (/tmp). The system’s total virtual memory is the sum of its physical memory (RAM) and disk swap devices.

CPU utilization is reported both in terms of total CPU as well as relative to any processor sets. Processor sets can be created by psrset(1M), resource pools (poolcfg(1M)), and by dedicated CPU resources created via zonecfg(1M). It is possible for a zone to consume CPU time in more than one processor set. This can be due a zone’s processes being bound to multiple processor sets, or due to an entire zone being rebound from one processor set to another.

For each physical resource, overall usage is reported, as well as system usage, aggregate usage by all zones, and per-zone usage. system usage reflects usage by the system which cannot be attributed to a particular zone, such as resource usage by service threads in the kernel.

In addition to usage of physical resources, libzonestat also reports resource usage relative to each zone’s configured resource limits.

This library depends on the zones monitoring service:
	svc://system/zones-monitoring:default

The library will fail to open and read resource usage information if this service is not online. From within a NGZ, the global zone must have an online zones monitoring service for the library to function.

Reading Utilization

The zs_open(3ZONESTAT) function is used to create a handle to the zones monitoring service. The zs_usage_read(3ZONESTAT) function is used to read the current usage information. This usage information can then be inspected using the remaining library functions. There are also library functions for comparing two usage readings. These are the zs_usage_*() functions.
Each usage reading contains usage information on a variety of resource types. The `zs_resource_*()` functions can be used to access the usage of each resource stored in a usage reading. The following resource types are supported:

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ZS_RESOURCE_CPU</code></td>
<td>The system’s online CPUs. This includes all CPUs that are either online or in the no-intr state. This resource is an increasing resource, with values reflecting utilization since <code>zs_open()</code> was first called. The CPU resource in terms of <code>ncpus * 100</code> is retrieved via <code>zs_resource_*_int64()</code>. These values will reflect the quantity of CPUs used since <code>zs_open()</code> was first called. The <code>zs_resource_total_time()</code>, <code>zs_resource_used_time()</code>, and <code>zs_resource_zone_used_time()</code> functions return increasing utilization values. These values continually increase, starting from zero at the point when <code>zs_open()</code> was first called.</td>
</tr>
<tr>
<td><code>ZS_RESOURCE_RAM_RSS</code></td>
<td>The system’s physical memory usage in terms of resident pages (RSS).</td>
</tr>
<tr>
<td><code>ZS_RESOURCE_RAM_LOCKED</code></td>
<td>The system’s physical memory usage in terms of locked (unpageable) pages.</td>
</tr>
<tr>
<td><code>ZS_RESOURCE_VM</code></td>
<td>Reserved virtual memory. Virtual memory is comprised of the system’s RAM and disk swap devices. Virtual memory is reserved when applications allocate memory, such as via <code>brk()</code>, <code>malloc()</code>, <code>mmap(MAP_ANON)</code>, or <code>shmget()</code>.</td>
</tr>
<tr>
<td><code>ZS_RESOURCE_DISK_SWAP</code></td>
<td>The amount of space allocated on disk swap devices. This is the amount of memory that is currently paged out to swap devices. Only <code>ZS_USER_ALL</code> and <code>ZS_FREE</code> is available for the disk swap resource (see user options below). <code>libzonestat</code> does not report a disk swap usage breakdown by the system and zones.</td>
</tr>
<tr>
<td><code>ZS_RESOURCE_LWPS</code></td>
<td>The number of lightweight processes allocated. There is no <code>ZS_USER_SYSTEM</code> user for this resource.</td>
</tr>
<tr>
<td><code>ZS_RESOURCE_PROCESS</code></td>
<td>The number of processes allocated. This includes zombie processes. There is no <code>ZS_USER_SYSTEM</code> user for this resource.</td>
</tr>
<tr>
<td><code>ZS_RESOURCE_SHM_MEMORY</code></td>
<td>The total size of all System V shared memory segments created. There is no <code>ZS_USER_SYSTEM</code> user for this resource.</td>
</tr>
<tr>
<td><code>ZS_RESOURCE_SHM_IDS</code></td>
<td>The total number all System V shared memory segments created. There is no <code>ZS_USER_SYSTEM</code> user for this resource.</td>
</tr>
</tbody>
</table>
The total number of System V semaphores created. There is no ZS_USER_SYSTEM user for this resource.

The total number of System V message queues created. There is no ZS_USER_SYSTEM user for this resource.

The following resource properties are defined:

The total number of CPUs.

The total number of CPUs in either the on-line or no-intr state.

The system’s 1 minute load average.

The system’s 5 minute load average.

The system’s 15 minute load average.

Each resource has a type defining the unit of measurement that of the data returned. The supported types are:

The resource is defined as time. A times_t is used to store the value in seconds and nanoseconds.

The resource is defined as an integer number representing a quantity. A uint64_t is used to store the value.

The resource is defined as an integer number of bytes. A uint64_t is used to store the value.

Resource usage can be queried for the following users:

Total resource used.

Resource used by the system. This is any resource usage which cannot be associated with a particular zone, such as resource usage by the kernel.

Aggregate resource used by all zones.

Resource not used.

See individual resource descriptions above for user restrictions on individual resources.
Each usage read via `zs_usage_read()` contains a list of the zone which are running at the time the usage was read. The `zs_zone_*()` functions provide access to this list of zones, and to the following properties and resource limits for each zone:

ZS_ZONE_PROP_NAME
- The name of the zone. The string will be up to length `ZS_ZONENAME_MAX`, including the null terminating character.

ZS_ZONE_PROP_ID
- The `zoneid` of the zone.

ZS_ZONE_PROP_IPTYPE
- The IP networking type of the zone. This property will have a value of `ZS_IPTYPE_SHARED` or `ZS_IPTYPE_EXCLUSIVE`.

ZS_ZONE_PROP_CPUTYPE
- The CPU type of the zone. If the zone has a dedicated CPU resource configured, the CPU type will be `ZS_CPUTYPE_DEDICATED`. Otherwise the CPU type will be `ZS_CPUTYPE_SHARED`.

ZS_ZONE_PROP_DEFAULT_SCHED
- The default scheduling class of the zone.

ZS_ZONE_PROP_SCHEDULERS
- A list of scheduling classes that are found running inside the zone. The value is a set of flags defined as `ZS_SCHED_*`. If the `ZS_SCHED_CONFLICT` flag is included, this means the zone has processes in both FSS, as well as TS, IA, or FX, with priority less than 60. The behavior of the FSS class is undefined in this scenario.

ZS_ZONE_PROP_CPU_SHARES
- The quantity of CPU shares allocated to zone. If the zone has no processes running in the FSS scheduling class, the value will be `ZS_LIMIT_NONE`. If the zone has processes running in FSS, the value will be between 0 and `ZS_SHARES_UNLIMITED`, inclusive.

ZS_ZONE_PROP_POOLNAME
- The name of the resource pool to which the zone is bound. If resource pools are not enabled, the value will be `pool_default`.

ZS_ZONE_PROP_PSETNAME
- The name of the pool pset to which the zone is bound. If resource pools are disabled, the value will be `pset_default`.

Each usage reading contains usage information on a variety of resource types. The `zs_resource_*()` functions can be used to access the usage of each resource stored in a usage reading. The following resource types are supported:

ZS_LIMIT_CPU
- Each zone can be limited to a decimal number of CPUs worth of CPU time. The value of the CPU cap is 100 times the number of CPUs to cap. For instance, a CPU cap of 50 is a limit to 0.50 CPUs worth of CPU time.
The usage values for this limit are increasing, starting at zero when `zs_open()` is first called.

The limit in term of `ncpus * 100` is retrieved via `zs_zone_limit_int64()` and `zs_zone_limit_used_uint64()`. These values will reflect the quantity of CPUs used since `zs_open()` was first called.

The amount of CPU time available and used under the limit is retrieved via `zs_zone_limit_time()` and `zs_zone_limit_used_time()`. These functions return increasing utilization values. These values continually increase, starting from zero at the point when `zs_open()` was first called, or from the point when the zone or pset was first booted or created.

ZS_LIMIT_RAM_RSS
Each zone's limit of resident pages of physical memory in bytes.

ZS_LIMIT_RAM_LOCKED
Each zone's limit of locked pages of physical memory in bytes.

ZS_LIMIT_VM
The zone's limit of virtual memory (swap) reservation in bytes. Each zone's swap reservations are backed by both physical memory and disk swap devices.

ZS_LIMIT_MAX_LWPS
The number of lightweight processes (lwps) executing in each zone.

ZS_LIMIT_MAX_PROCESSES
The number of processes executing in each zone, including zombie processes, which are exited processes that have not been waited upon by their parent process.

ZS_LIMIT_MAX_SHM_MEMORY
Each zone's total size of all System V shared memory segments created. There is no `ZS_USER_SYSTEM()` user for this resource.

ZS_LIMIT_MAX_SHM_IDS
Each zone's number all System V shared memory segments created. There is no `ZS_USER_SYSTEM()` user for this resource.

ZS_LIMIT_MAX_SEM_IDS
Each zone's number of System V semaphores created. There is no `ZS_USER_SYSTEM()` user for this resource.

ZS_LIMIT_MAX_MSG_IDS
Each zone's total number of System V message queues created. There is no `ZS_USER_SYSTEM()` user for this resource.

ZS_LIMIT_MAX_LOFI
Each zone's total number of lofi devices created. See `lofiadm(1M)`.
Each usage read via zs_usage_read() contains a list of the processor sets which existed at the time the usage was read. The zs_pset_t*() functions provide access to this list of pset, and to the following properties defined for each pset:

ZS_PSET_PROP_NAME
The name of the processor set. The string will be up to length ZS_PSETNAME_MAX, including the null terminating character.

ZS_PSET_PROP_ID
The psetid of the processor set.

ZS_PSET_PROP_CPUS
If the processor set was created by a zoneconf add dedicated-CPU resource, the type will be ZS_CPUS_DEDICATED. Otherwise, the type is ZS_CPUS_SHARED.

ZS_PSET_PROP_SIZE
The number CPUs assigned to the processor set.

ZS_PSET_PROP_ONLINE
The number of CPUs assigned to the processor set which are in the on-line or no-intr state.

ZS_PSET_PROP_MIN
The minimum number of CPUs that the system may assign to the processor set.

ZS_PSET_PROP_MAX
The maximum number of CPUs that the system may assign to the processor set.

ZS_PSET_PROP_CPU_SHARES
The total number of CPU shares of all zones running in the processor set.

ZS_PSET_PROP_SCHEDULERS
A list of scheduling classes that are found running inside the processor set. The value is a set of flags defined as ZS_SCHED_*. If the ZS_SCHED_CONFLICT flag is included, this means the zone has processor set has processes both in FSS, as well as TS, IA, or FX, with priority less than 60. The behavior of the FSS class is undefined in this scenario.

ZS_PSET_PROP_LOAD_1MIN
The system's 1 minute load average.

ZS_PSET_PROP_LOAD_5MIN
The system's 5 minute load average.

ZS_PSET_PROP_LOAD_15MIN
The system's 15 minute load average.

In addition to properties, the zs_pset_used_*() functions provide total time, CPU used, percent used, and CPU time used of each processor set.
Each processor set can be in use by one or more zones. The `zs_pset_zone_*()` functions provide per-zone usage information for each pset. It is also possible for an individual zone to be using more than one pset. In this case, the given zone will appear in the per-zone usage information for every pset that it is using.

The following properties exist on each per-zone pset usage:

- **ZS_PZ_PROP_SCHEDULERS**
 A list of scheduling classes that are found running within the zone inside the given pset. The value is a set of flags defined as `ZS_SCHED_*`. If the `ZS_SCHED_CONFLICT` flag is included, this means the zone has processes in TS, IA, or FX, with priority less than 60, while other zones using the processor set are using FSS.

- **ZS_PZ_PROP_CPU_SHARES**
 The number of CPU shares of the zone running in the pset. The value will be `ZS_LIMIT_NONE` if the zone is not running in the FSS scheduling class. If the zone has processes running in FSS in the processor set, the value will be between 0 and `ZS_SHARES_UNLIMITED`, inclusive.

- **ZS_PZ_PROP_CPU_CAP**
 The CPU cap of the zone. See `ZS_LIMIT_CPU` for description.

In addition to properties, the `zs_pset_zone_used_*()` functions provide to per-zone CPUs used, percent used, and CPU time of each processor set. Percent of CPU share, and percent of CPU share used is also provided:

- **ZS_PZ_PCT_PSET**
 The percentage of the pset used by a zone. The value is `pct * 100`, with 10000 meaning 100%.

- **ZS_PZ_PCT_CPU_CAP**
 The percentage of a zone’s CPU cap that is used by the zone in this pset. The value is `pct * 100`, with 10000 meaning 100%.

- **ZS_PZ_PCT_PSET_SHARES**
 Of the total CPU shares of all zones running in the pset, the percent that belong to this zone. The value is `pct * 100`, with 10000 meaning 100%.

 For example, if there are four zones in the pset, each with 10 CPU shares, each would have a value of 2500 (25% * 100).

- **ZS_PZ_PCT_CPU_SHARE**
 Of a zone's CPU shares, the percent of them that are being used by the zone's CPU utilization in this pset. The value is `pct * 100`, with 10000 meaning 100%. This value can exceed 100% (10000) as a zone can use more that its CPU share if there is no contention by other zones.
Interfaces

The shared object `libcpc.so.1` provides the public interfaces defined below. See `Intro(3)` for additional information on shared object interfaces.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zs_close</td>
<td></td>
</tr>
<tr>
<td>zs_property_double</td>
<td></td>
</tr>
<tr>
<td>zs_property_int</td>
<td></td>
</tr>
<tr>
<td>zs_property_int64</td>
<td></td>
</tr>
<tr>
<td>zs_property_type</td>
<td></td>
</tr>
<tr>
<td>zs_property_uint64</td>
<td></td>
</tr>
<tr>
<td>zs_property_uint</td>
<td></td>
</tr>
<tr>
<td>zs_pset_property</td>
<td></td>
</tr>
<tr>
<td>zs_pset_total_time</td>
<td></td>
</tr>
<tr>
<td>zs_pset_used_pct</td>
<td></td>
</tr>
<tr>
<td>zs_pset_walk</td>
<td></td>
</tr>
<tr>
<td>zs_pset_zone_get_zone</td>
<td></td>
</tr>
<tr>
<td>zs_pset_zone_property</td>
<td></td>
</tr>
<tr>
<td>zs_pset_zone_used_pct</td>
<td></td>
</tr>
<tr>
<td>zs_pset_zone_walk</td>
<td></td>
</tr>
<tr>
<td>zs_resource_total_time</td>
<td></td>
</tr>
<tr>
<td>zs_resource_type</td>
<td></td>
</tr>
<tr>
<td>zs_resource_used_time</td>
<td></td>
</tr>
<tr>
<td>zs_resource_used_zone_pct</td>
<td></td>
</tr>
<tr>
<td>zs_resource_used_zone_uint64</td>
<td></td>
</tr>
<tr>
<td>zs_usage_free</td>
<td></td>
</tr>
<tr>
<td>zs_zone_limit_time</td>
<td></td>
</tr>
<tr>
<td>zs_zone_limit_int64</td>
<td></td>
</tr>
<tr>
<td>zs_zone_limit_used_time</td>
<td></td>
</tr>
<tr>
<td>zs_zone_list</td>
<td></td>
</tr>
</tbody>
</table>

Files

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/usr/lib/libzonestat.so.1</code></td>
<td>shared object</td>
</tr>
<tr>
<td><code>/usr/lib/64/libzonestat.so.1</code></td>
<td>64-bit shared object</td>
</tr>
</tbody>
</table>
Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>system/zones</td>
</tr>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>MT-Level</td>
<td>See below.</td>
</tr>
</tbody>
</table>

The zs_open() function is MT-Safe. The remaining zs_*() functions are MT-Safe with the exception that only one thread may actively use a zs_ctl_t object at any time. Synchronization is left to the application.

See Also zonestat(1), pooladm(1M), pset(1M), rcapadm(1M), swap(1M), zoneadm(1M), zoneconf(1M), zonestatd(1M), libpool(3LIB), zs_open(3ZONESTAT), zs_pset(3ZONESTAT), zs_property(3ZONESTAT), zs_pset_zone(3ZONESTAT), zs_resource(3ZONESTAT), zs_usage(3ZONESTAT), zs_zone(3ZONESTAT), attributes(5), resource_controls(5)

Notes The service svc:/system/zones-monitoring:default must be enabled in the global zone in order for zs_open() and zs_read_usage() to succeed. This requirement exists for use of libzonestat in both the global zone and non-global zones.
#include <limits.h>

The `<limits.h>` header defines various symbolic names. Different categories of names are described below.

The names represent various limits on resources that the implementation imposes on applications. Symbolic constant names beginning with `_POSIX` can be found in `unistd.h`.

Applications should not assume any particular value for a limit. An application wishing to avail itself of the full amount of a resource available on an implementation can make use of the value given in `<limits.h>` on that particular implementation by using the symbolic names listed below. Many of the listed limits are not invariant, and at runtime, the value of the limit might differ from those given in this header, for the following reasons:

- The limit is pathname-dependent.
- The limit differs between the compile and runtime machines.

For these reasons, an application can use the `fpathconf(2)`, `pathconf(2)`, and `sysconf(3C)` functions to determine the actual value of a limit at runtime.

A definition of one of the symbolic names in the following list is omitted from `<limits.h>` on specific implementations where the corresponding value is equal to or greater than the stated minimum, but is unspecified.

This indetermination might depend on the amount of available memory space on a specific instance of a specific implementation. The actual value supported by a specific instance will be provided by the `sysconf()` function.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARG_MAX</td>
<td>Maximum length of argument to the <code>exec(2)</code> functions including environment data.</td>
</tr>
<tr>
<td>AIO_LISTIO_MAX</td>
<td>Maximum number of I/O operations in a single list I/O call supported by the implementation.</td>
</tr>
<tr>
<td>AIO_MAX</td>
<td>Maximum number of outstanding asynchronous I/O operations supported by the implementation.</td>
</tr>
<tr>
<td>AIO_PRIO_DELTA_MAX</td>
<td>The maximum amount by which a process can decrease its asynchronous I/O priority level from its own scheduling priority.</td>
</tr>
<tr>
<td>CHILD_MAX</td>
<td>Maximum number of simultaneous processes per real user ID.</td>
</tr>
<tr>
<td>ATEXIT_MAX</td>
<td>Maximum number of functions that can be registered with <code>atexit(3C)</code>.</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>CLK_TCK</td>
<td>Number of clock ticks per second returned by the <code>times(2)</code> function.</td>
</tr>
<tr>
<td>DELAYTIMER_MAX</td>
<td>Maximum number of timer expiration overruns.</td>
</tr>
<tr>
<td>HOST_NAME_MAX</td>
<td>Maximum length of a host name (not including the terminating null) as returned from the <code>gethostname(3C)</code> function.</td>
</tr>
<tr>
<td>IOV_MAX</td>
<td>Maximum number of <code>iovec</code> structures that one process has available for use with <code>read(2)</code> or <code>write(2)</code>.</td>
</tr>
<tr>
<td>LOGIN_NAME_MAX</td>
<td>Maximum length of a login name.</td>
</tr>
<tr>
<td>MQ_OPEN_MAX</td>
<td>The maximum number of open message queue descriptors a process is allowed to hold.</td>
</tr>
<tr>
<td>MQ_PRIO_MAX</td>
<td>The maximum number of message priorities supported by the implementation.</td>
</tr>
<tr>
<td>OPEN_MAX</td>
<td>Maximum number of files that one process can have open at any one time.</td>
</tr>
<tr>
<td>PAGESIZE</td>
<td>Size in bytes of a page.</td>
</tr>
<tr>
<td>PAGE_SIZE</td>
<td>Equivalent to <code>PAGESIZE</code>. If either <code>PAGESIZE</code> or <code>PAGE_SIZE</code> is defined, the other is defined with the same value.</td>
</tr>
<tr>
<td>PASS_MAX</td>
<td>The maximum number of significant bytes in a password, not including the terminating null.</td>
</tr>
<tr>
<td>PTHREAD_DESTRUCTOR_ITERATIONS</td>
<td>Maximum number of attempts made to destroy a thread’s thread-specific data values on thread exit.</td>
</tr>
<tr>
<td>PTHREAD_KEYS_MAX</td>
<td>Maximum number of data keys that can be created by a process.</td>
</tr>
<tr>
<td>PTHREAD_STACK_MIN</td>
<td>Minimum size in bytes of thread stack storage.</td>
</tr>
<tr>
<td>PTHREAD_THREADS_MAX</td>
<td>Maximum number of threads that can be created per process.</td>
</tr>
<tr>
<td>RE_DUP_MAX</td>
<td>The number of repeated occurrences of a BRE permitted by the <code>regexec(3C)</code> and <code>regcomp(3C)</code> functions when using the interval notation <code>{\langle m,n \rangle}</code>.</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>RTSIG_MAX</td>
<td>Maximum number of realtime signals reserved for application use in this implementation.</td>
</tr>
<tr>
<td>SEM_NSEMS_MAX</td>
<td>Maximum number of semaphores that a process can have.</td>
</tr>
<tr>
<td>SEM_VALUE_MAX</td>
<td>The maximum value a semaphore can have.</td>
</tr>
<tr>
<td>SIGQUEUE_MAX</td>
<td>Maximum number of queued signals that a process can send and have pending at the receiver(s) at any time.</td>
</tr>
<tr>
<td>SS_REPL_MAX</td>
<td>The maximum number of replenishment operations that may be simultaneously pending for a particular sporadic server scheduler.</td>
</tr>
<tr>
<td>STREAM_MAX</td>
<td>The number of streams that one process can have open at one time. If defined, it has the same value as FOPEN_MAX.</td>
</tr>
<tr>
<td>SYMLOOP_MAX</td>
<td>Maximum number of symbolic links that can be reliably traversed in the resolution of a pathname in the absence of a loop.</td>
</tr>
<tr>
<td>TIMER_MAX</td>
<td>Maximum number of timers per process supported by the implementation.</td>
</tr>
<tr>
<td>TRACE_EVENT_NAME_MAX</td>
<td>Maximum length of the trace event name.</td>
</tr>
<tr>
<td>TRACE_NAME_MAX</td>
<td>Maximum length of the trace generation version string or of the trace stream name.</td>
</tr>
<tr>
<td>TRACE_SYS_MAX</td>
<td>Maximum number of trace streams that may simultaneously exist in the system.</td>
</tr>
<tr>
<td>TRACE_USER_EVENT_MAX</td>
<td>Maximum number of user trace event type identifiers that may simultaneously exist in a traced process, including the predefined user trace event POSIX_TRACE_UNNAMED_USER_EVENT.</td>
</tr>
<tr>
<td>TTY_NAME_MAX</td>
<td>Maximum length of terminal device name.</td>
</tr>
<tr>
<td>TZNAME_MAX</td>
<td>Maximum number of bytes supported for the name of a timezone (not of the TZ variable).</td>
</tr>
</tbody>
</table>

The values in the following list can be constants within an implementation or can vary from one pathname to another. For example, file systems or directories can have different characteristics. The value supported for a specific pathname is provided by the `pathconf(2)` function.
FILESIZEBITS
Minimum number of bits needed to represent, as a signed integer value, the maximum size of a regular file allowed in the specified directory.

LINK_MAX
Maximum number of links to a single file.

MAX_CANON
Maximum number of bytes in a terminal canonical input line.

MAX_INPUT
Minimum number of bytes for which space is available in a terminal input queue; therefore, the maximum number of bytes a conforming application may require to be typed as input before reading them.

NAME_MAX
Maximum number of bytes in a filename (not including terminating null).

PATH_MAX
Maximum number of bytes in a pathname, including the terminating null character.

PIPE_BUF
Maximum number of bytes that is guaranteed to be atomic when writing to a pipe.

POSIX_ALLOC_SIZE_MIN
Minimum number of bytes of storage actually allocated for any portion of a file.

POSIX_REC_INCR_XFER_SIZE
Recommended increment for file transfer sizes between the POSIX_REC_MIN_XFER_SIZE and POSIX_REC_MAX_XFER_SIZE values.

POSIX_REC_MAX_XFER_SIZE
Maximum recommended file transfer size.

POSIX_REC_MIN_XFER_SIZE
Minimum recommended file transfer size.

POSIX_REC_XFER_ALIGN
Recommended file transfer buffer alignment.

SYMLINK_MAX
Maximum number of bytes in a symbolic link.

The magnitude limitations in the following list are fixed by specific implementations. An application should assume that the value supplied by <limits.h> in a specific implementation is the minimum that pertains whenever the application is run under that implementation. A specific instance of a specific implementation can increase the value relative to that supplied by <limits.h> for that implementation. The actual value supported by a specific instance is provided by the sysconf(3C) function.

BC_BASE_MAX
Maximum obase values allowed by the bc(1) utility.
<table>
<thead>
<tr>
<th>Symbolic Constant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC_DIM_MAX</td>
<td>Maximum number of elements permitted in an array by the <code>bc</code> utility.</td>
</tr>
<tr>
<td>BC_SCALE_MAX</td>
<td>Maximum scale value allowed by the <code>bc</code> utility.</td>
</tr>
<tr>
<td>BC_STRING_MAX</td>
<td>Maximum length of a string constant accepted by the <code>bc</code> utility.</td>
</tr>
<tr>
<td>CHARCLASS_NAME_MAX</td>
<td>Maximum number of bytes in a character class name.</td>
</tr>
<tr>
<td>COLL_WEIGHTS_MAX</td>
<td>Maximum number of weights that can be assigned to an entry of the LC_COLLATE order keyword in the locale definition file.</td>
</tr>
<tr>
<td>EXPR_NEST_MAX</td>
<td>Maximum number of expressions that can be nested within parentheses by the <code>expr(1)</code> utility.</td>
</tr>
<tr>
<td>LINE_MAX</td>
<td>Unless otherwise noted, the maximum length, in bytes, of a utility’s input line (either standard input or another file), when the utility is described as processing text files. The length includes room for the trailing <newline>.</td>
</tr>
<tr>
<td>NGROUPS_MAX</td>
<td>Maximum number of simultaneous supplementary group IDs per process.</td>
</tr>
<tr>
<td>RE_DUP_MAX</td>
<td>Maximum number of repeated occurrences of a regular expression permitted when using the interval notation <code>{m,n}</code>.</td>
</tr>
</tbody>
</table>

Maximum Values

The symbolic constants in the following list are symbolic names for the most restrictive value for certain features on an implementation supporting the POSIX Timers option.

- `_POSIX_CLOCKRES_MIN` - The resolution of the CLOCK_REALTIME clock, in nanoseconds.

Minimum Values

The symbolic constants in the following list are symbolic names for the most restrictive value for certain features on an implementation conforming to various POSIX and Single Unix Specification requirements. See `standards(5)`.

- `_POSIX_AIO_LISTIO_MAX` - The number of I/O operations that can be specified in a list I/O call.
- `_POSIX_AIO_MAX` - The number of outstanding asynchronous I/O operations.
- `_POSIX_ARG_MAX` - Maximum length of argument to the `exec(2)` functions including environment data.
- `_POSIX_CHILD_MAX` - Maximum number of simultaneous processes per real user ID.
- `_POSIX_DELAYTIMER_MAX` - The number of timer expiration overruns.
<p>| <code>_POSIX_HOST_NAME_MAX</code> | Maximum length of a host name (not including the terminating null) as returned from the <code>gethostname(3C)</code> function. |
| <code>_POSIX_LINK_MAX</code> | Maximum number of links to a single file. |
| <code>_POSIX_LOGIN_NAME_MAX</code> | The size of the storage required for a login name, in bytes, including the terminating null. |
| <code>_POSIX_MAX_CANON</code> | Maximum number of bytes in a terminal canonical input queue. |
| <code>_POSIX_MAX_INPUT</code> | Maximum number of bytes allowed in a terminal input queue. |
| <code>_POSIX_MQ_OPEN_MAX</code> | The number of message queues that can be open for a single process. |
| <code>_POSIX_MQ_PRIO_MAX</code> | The maximum number of message priorities supported by the implementation. |
| <code>_POSIX_NAME_MAX</code> | Maximum number of bytes in a filename (not including terminating null). |
| <code>_POSIX_NGROUPS_MAX</code> | Maximum number of simultaneous supplementary group IDs per process. |
| <code>_POSIX_OPEN_MAX</code> | Maximum number of files that one process can have open at any one time. |
| <code>_POSIX_PATH_MAX</code> | Maximum number of bytes in a pathname. |
| <code>_POSIX_PIPE_BUF</code> | Maximum number of bytes that is guaranteed to be atomic when writing to a pipe. |
| <code>_POSIX_RE_DUP_MAX</code> | The number of repeated occurrences of a BRE permitted by the <code>regexec()</code> and <code>regcomp()</code> functions when using the interval notation <code>{\(m,n\)}</code> |
| <code>_POSIX_RTSIG_MAX</code> | The number of realtime signal numbers reserved for application use. |
| <code>_POSIX_SEM_NSEMS_MAX</code> | The number of semaphores that a process can have. |
| <code>_POSIX_SEM_VALUE_MAX</code> | The maximum value a semaphore can have. |
| <code>_POSIX_SIGQUEUE_MAX</code> | The number of queued signals that a process can send and have pending at the receiver(s) at any time. |</p>
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_POSIX_SSIZE_MAX</td>
<td>The value that can be stored in an object of type ssize_t.</td>
</tr>
<tr>
<td>_POSIX_STREAM_MAX</td>
<td>The number of streams that one process can have open at one time.</td>
</tr>
<tr>
<td>_POSIX_SS_REPL_MAX</td>
<td>The number of replenishment operations that can be simultaneously pending for a particular sporadic server scheduler.</td>
</tr>
<tr>
<td>_POSIX_SYMLINK_MAX</td>
<td>The number of bytes in a symbolic link.</td>
</tr>
<tr>
<td>_POSIX_SYMLINK_MAX</td>
<td>The number of symbolic links that can be traversed in the resolution of a pathname in the absence of a loop.</td>
</tr>
<tr>
<td>_POSIX_THREAD_DESTRUCTOR_ITERATIONS</td>
<td>The number of attempts made to destroy a thread's thread-specific data values on thread exit.</td>
</tr>
<tr>
<td>_POSIX_THREAD_KEYS_MAX</td>
<td>The number of data keys per process.</td>
</tr>
<tr>
<td>_POSIX_THREAD_THREADS_MAX</td>
<td>The number of threads per process.</td>
</tr>
<tr>
<td>_POSIX_TIMER_MAX</td>
<td>The per-process number of timers.</td>
</tr>
<tr>
<td>_POSIX_TRACE_EVENT_NAME_MAX</td>
<td>The length in bytes of a trace event name.</td>
</tr>
<tr>
<td>_POSIX_TRACE_NAME_MAX</td>
<td>The length in bytes of a trace generation version string or a trace stream name.</td>
</tr>
<tr>
<td>_POSIX_TRACE_SYS_MAX</td>
<td>The number of trace streams that can simultaneously exist in the system.</td>
</tr>
<tr>
<td>_POSIX_TRACE_USER_EVENT_MAX</td>
<td>The number of user trace event type identifiers that may simultaneously exist in a traced process, including the predefined user trace event POSIX_TRACE_UNNAMED_USER_EVENT.</td>
</tr>
<tr>
<td>_POSIX_TTY_NAME_MAX</td>
<td>The size of the storage required for a terminal device name, in bytes, including the terminating null.</td>
</tr>
<tr>
<td>_POSIX_TZNAME_MAX</td>
<td>Maximum number of bytes supported for the name of a timezone (not of the TZ variable).</td>
</tr>
<tr>
<td>_POSIX2_BC_BASE_MAX</td>
<td>Maximum obase values allowed by the bc utility.</td>
</tr>
<tr>
<td>_POSIX2_BC_DIM_MAX</td>
<td>Maximum number of elements permitted in an array by the bc utility.</td>
</tr>
</tbody>
</table>
The values in the following lists shall be defined in `<limits.h>` and are constant expressions suitable for use in #if preprocessing directives. Moreover, except for CHAR_BIT, DBL_DIG, DBL_MAX, FLT_DIG, FLT_MAX, LONG_BIT, WORD_BIT, and MB_LEN_MAX, the symbolic names are defined as expressions of the correct type.

If the value of an object of type char is treated as a signed integer when used in an expression, the value of CHAR_MIN is the same as that of SCHAR_MIN and the value of CHAR_MAX is the same as that of SCHAR_MAX. Otherwise, the value of CHAR_MIN is 0 and the value of CHAR_MAX is the same as that of UCHAR_MAX.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAR_BIT</td>
<td>Number of bits in a type char.</td>
</tr>
<tr>
<td>CHAR_MAX</td>
<td>Maximum value of type char.</td>
</tr>
<tr>
<td>CHAR_MIN</td>
<td>Minimum value of type char.</td>
</tr>
</tbody>
</table>

POSIX2_BC_SCALE_MAX
Maximum scale value allowed by the bc utility.

POSIX2_BC_STRING_MAX
Maximum length of a string constant accepted by the bc utility.

POSIX2_CHARCLASS_NAME_MAX
Maximum number of bytes in a character class name.

POSIX2_COLL_WEIGHTS_MAX
Maximum number of weights that can be assigned to an entry of the LC_COLLATE order keyword in the locale definition file.

POSIX2_EXPR_NEST_MAX
Maximum number of expressions that can be nested within parentheses by the expr utility.

POSIX2_LINE_MAX
Unless otherwise noted, the maximum length, in bytes, of a utility's input line (either standard input or another file), when the utility is described as processing text files. The length includes room for the trailing <newline>.

POSIX2_RE_DUP_MAX
Maximum number of repeated occurrences of a regular expression permitted when using the interval notation \{m,n\}.

XOPEN_IOV_MAX
Maximum number of iovec structures that one process has available for use with read(2) or write(2).

XOPEN_NAME_MAX
Maximum number of bytes in a filename (not including the terminating null).

XOPEN_PATH_MAX
Maximum number of bytes in a pathname.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBL_DIG</td>
<td>Digits of precision of type double.</td>
</tr>
<tr>
<td>DBL_MAX</td>
<td>Maximum decimal value of a double.</td>
</tr>
<tr>
<td>DBL_MIN</td>
<td>Minimum decimal value of a double.</td>
</tr>
<tr>
<td>FLT_DIG</td>
<td>Digits of precision of type float.</td>
</tr>
<tr>
<td>FLT_MAX</td>
<td>Maximum decimal value of a float.</td>
</tr>
<tr>
<td>FLT_MIN</td>
<td>Minimum decimal value of a float.</td>
</tr>
<tr>
<td>INT_MIN</td>
<td>Minimum value of type int.</td>
</tr>
<tr>
<td>INT_MAX</td>
<td>Maximum value of an int.</td>
</tr>
<tr>
<td>LLONG_MIN</td>
<td>Minimum value of type long long.</td>
</tr>
<tr>
<td>LLONG_MAX</td>
<td>Maximum value of type long long.</td>
</tr>
<tr>
<td>LONG_BIT</td>
<td>Number of bits in a long.</td>
</tr>
<tr>
<td>LONG_MIN</td>
<td>Minimum value of type long.</td>
</tr>
<tr>
<td>LONG_MAX</td>
<td>Maximum value of a long.</td>
</tr>
<tr>
<td>MB_LEN_MAX</td>
<td>Maximum number of bytes in a character, for any supported locale.</td>
</tr>
<tr>
<td>SCHAR_MIN</td>
<td>Minimum value of type signed char.</td>
</tr>
<tr>
<td>SCHAR_MAX</td>
<td>Maximum value of type signed char.</td>
</tr>
<tr>
<td>SHRT_MIN</td>
<td>Minimum value of type short.</td>
</tr>
<tr>
<td>SHRT_MAX</td>
<td>Maximum value of type short.</td>
</tr>
<tr>
<td>SSIZE_MAX</td>
<td>Maximum value of an object of type ssize_t.</td>
</tr>
<tr>
<td>TMP_MAX</td>
<td>Minimum number of unique filename generated by <code>tmpnam(3C)</code>. Maximum number of times an application can call <code>tmpnam()</code> reliably.</td>
</tr>
<tr>
<td>UCHAR_MAX</td>
<td>Maximum value of type unsigned char.</td>
</tr>
<tr>
<td>UINT_MAX</td>
<td>Maximum value of type unsigned.</td>
</tr>
<tr>
<td>ULLONG_MAX</td>
<td>Maximum value of type unsigned long long.</td>
</tr>
<tr>
<td>ULONG_MAX</td>
<td>Maximum value of type unsigned long.</td>
</tr>
<tr>
<td>USHRT_MAX</td>
<td>Maximum value for a type unsigned short.</td>
</tr>
<tr>
<td>WORD_BIT</td>
<td>Number of bits in a word or type int.</td>
</tr>
</tbody>
</table>

Other Invariant Values

The following constants are defined in `<limits.h>`.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARCLASS_NAME_MAX</td>
<td>Maximum number of bytes in a character class name.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>LOGNAME_MAX</td>
<td>The maximum number of bytes supported in a user's login name.</td>
</tr>
<tr>
<td>NL_ARGMAX</td>
<td>Maximum value of digit in calls to the <code>printf(3C)</code> and <code>scanf(3C)</code> functions.</td>
</tr>
<tr>
<td>NL_LANGMAX</td>
<td>Maximum number of bytes in a LANG name.</td>
</tr>
<tr>
<td>NL_MSGMAX</td>
<td>Maximum message number.</td>
</tr>
<tr>
<td>NL_NMAX</td>
<td>Maximum number of bytes in an N-to-1 collation mapping.</td>
</tr>
<tr>
<td>NL_SETMAX</td>
<td>Maximum set number.</td>
</tr>
<tr>
<td>NL_TEXTMAX</td>
<td>Maximum number of bytes in a message string.</td>
</tr>
<tr>
<td>NZERO</td>
<td>Default process priority.</td>
</tr>
</tbody>
</table>

See Also
`fpathconf(2), pathconf(2), sysconf(3C), standards(5)`
locale.h(3HEAD)

Name locale.h, locale – category macros

Synopsis #include <locale.h>

Description The `<locale.h>` header provides a definition for the `lconv` structure, which includes the following members. (See the definition of LC_MONETARY in `locale(5)`.)

```
    char *currency_symbol
    char *decimal_point
    char frac_digits
    char *grouping
    char *int_curr_symbol
    char int_frac_digits
    char int_n_cs_precedes
    char int_n_sep_by_space
    char int_n_sign_posn
    char int_p_cs_precedes
    char int_p_sep_by_space
    char int_p_sign_posn
    char *mon_decimal_point
    char *mon_grouping
    char *mon_thousands_sep
    char *negative_sign
    char n_cs_precedes
    char n_sep_by_space
    char n_sign_posn
    char *positive_sign
    char p_cs_precedes
    char p_sep_by_space
    char p_sign_posn
    char *thousands_sep
```

The `<locale.h>` header defines NULL (as defined in `<stddef.h>`) and the following as macros:

```
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME
```

The preceding expand to distinct integer constant expressions, for use as the first argument to the `setlocale()` function. See `setlocale(3C)`.

Additional macro definitions, beginning with the characters LC_ and an uppercase letter, can also be specified here.
Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5)</td>
</tr>
</tbody>
</table>

See Also setlocale(3C), localeconv(3C), stddef.h(3HEAD), attributes(5), locale(5), standards(5)
The `<math.h>` header includes definitions for the following types:

- float_t: A real-floating type at least as wide as float.
- double_t: A real-floating type at least as wide as double, and at least as wide as float_t.

If FLT_EVAL_METHOD equals 0, float_t and double_t are float and double, respectively. If FLT_EVAL_METHOD equals 1, they are both double. If FLT_EVAL_METHOD equals 2, they are both long double. Other values of FLT_EVAL_METHOD are implementation-defined.

The `<math.h>` header provides the following constants. The values are of type double and are accurate within the precision of the double type.

- M_E: The base of natural logarithms (e).
- M_LOG2E: The base-2 logarithm of e.
- M_LOG10E: The base-10 logarithm of e.
- M_LN2: The natural logarithm of 2.
- M_PI: π, the ratio of the circumference of a circle to its diameter.
- M_PI_2: π/2.
- M_1_PI: 1/π.
- M_2_PI: 2/π.
- M_2_SQRTPI: 2 over the square root of π.
- M_SQRT2: The positive square root of 2.
- M_SQRT1_2: The positive square root of 1/2.

The `<math.h>` header defines the following symbolic constants:

- MAXFLOAT: The maximum value of a non-infinite single-precision floating point number.
- HUGE_VAL: A positive double expression, not necessarily representable as a float. Used as an error value returned by the mathematics library. HUGE_VAL evaluates to +infinity on systems supporting IEEE Std 754-1985.
- HUGE_VALF: A positive float constant expression. Used as an error value returned by the mathematics library. HUGE_VALF evaluates to +infinity on systems supporting IEEE Std 754-1985.
HUGE_VALL A positive `long double` constant expression. Used as an error value returned by the mathematics library. `HUGE_VALL` evaluates to +infinity on systems supporting IEEE Std 754-1985.

INFINITY A constant expression of type `float` representing positive or unsigned infinity, if available; else a positive constant of type `float` that overflows at translation time.

NAN A constant expression of type `float` representing a quiet NaN. This symbolic constant is only defined if the implementation supports quiet NaNs for the `float` type.

The following macros are defined for number classification. They represent the mutually-exclusive kinds of floating-point values. They expand to integer constant expressions with distinct values:

```cpp
FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO
```

The following optional macros indicate whether the `fma()` family of functions are fast compared with direct code:

```cpp
FP_FAST_FMA
FP_FAST_FMAF
FP_FAST_FMAL
```

The `FP_FAST_FMA` macro is defined to indicate that the `fma()` function generally executes about as fast as, or faster than, a multiply and an add of `double` operands. The other macros have the equivalent meaning for the `float` and `long double` versions.

The following macros expand to integer constant expressions whose values are returned by `ilogb(x)` if `x` is zero or NaN, respectively. The value of `FP_ILOGB0` is either [INT_MIN] or -[INT_MAX]. The value of `FP_ILOGBNAN` is either [INT_MAX] or [INT_MIN].

```cpp
FP_ILOGB0
FP_ILOGBNAN
```

The following macros expand to the integer constants 1 and 2, respectively:

```cpp
MATH_ERRNO
MATH_ERREXCEPT
```

The following macro expands to an expression that has type `int` and the value `MATH_ERREXCEPT`:

```cpp
math_errhandling
```
The value of the macro `math_errhandling` is constant for the duration of the program. If a macro definition is suppressed or a program defines an identifier with the name `math_errhandling`, the behavior is undefined.

The `<math.h>` header defines the following external variable:

```c
extern int signgam;
```

The `<math.h>` header defines the structure and constants used by the `matherr(3M)` error-handling mechanisms.

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
</tbody>
</table>
| Standard | See `standards(5)`.

See Also

`Intro(3), fenv.h(3HEAD), libm(3LIB), limits.h(3HEAD), matherr(3M), attributes(5), standards(5)`
mman.h

Name
mman.h, mman – memory management declarations

Synopsis
```
#include <sys/mman.h>
```

Description
The `<sys/mman.h>` header supports the following options:

- the Memory Mapped Files option
- the Shared Memory Objects option
- the Process Memory Locking option
- the Memory Protection option
- the Synchronized Input and Output option

For Memory Mapped Files and Shared Memory Objects options, the following protection options are defined:

- `PROT_READ` Page can be read.
- `PROT_WRITE` Page can be written.
- `PROT_EXEC` Page can be executed.
- `PROT_NONE` Page cannot be accessed.

The following *flag* options are defined:

- `MAP_SHARED` Share changes.
- `MAP_PRIVATE` Changes are private.
- `MAP_FIXED` Interpret addr exactly.

The flags immediately following are defined for `msync()`. See `msync(3C)`.

- `MS_ASYNC` Perform asynchronous writes.
- `MS_SYNC` Perform synchronous writes.
- `MS_INVALIDATE` Invalidate mappings.

The symbolic constants immediately following are defined for the `mlockall()` function. See `mlockall(3C)`.

- `MCL_CURRENT` Lock currently mapped pages.
- `MCL_FUTURE` Lock pages that become mapped.

The symbolic constant `MAP_FAILED` is defined to indicate a failure from the `mmap()` function. See `mmap(2)`.

The `mode_t, off_t, and size_t` types are be defined as described in `<sys/types.h>`. See `types(3HEAD)`.
Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also mmap(2), mprotect(2), munmap(2), madvise(3C), mlock(3C), mlockall(3C), msync(3C), shm_open(3C), shm_unlink(3C), attributes(5), standards(5)
The `<monetary.h>` header defines the following types:

- `size_t` As described in `stddef.h`(3HEAD).
- `ssize_t` As described in `types.h`(3HEAD).

See also `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code>.</td>
</tr>
</tbody>
</table>

See Also `stddef.h`(3HEAD), `strfmon(3C)`, `types.h`(3HEAD), `attributes(5)`, `standards(5)`
#include <mqueue.h>

The `<mqueue.h>` header defines the `mqd_t` type, which is used for message queue descriptors. This will not be an array type. A message queue descriptor may be implemented using a file descriptor, in which case applications can open up to at least `OPEN_MAX` file and message queues.

The `<mqueue.h>` header defines the `sigevent` structure (as described in `<signal.h>`), and the `mq_attr` structure, which is used in getting and setting the attributes of a message queue. Attributes are initially set when the message queue is created. A `mq_attr` structure has the following members:

```
long mq_flags    message queue flags
long mq_maxmsg   maximum number of messages
long mq_msgsize  maximum message size
long mq_curmsgs  number of messages currently queued
```

Inclusion of the `<mqueue.h>` header may make visible symbols defined in the headers `<fcntl.h>`, `<signal.h>`, `<sys/types.h>`, and `<time.h>`.

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also

`fcntl.h(3HEAD)`, `signal.h(3HEAD)`, `time.h(3HEAD)`, `types.h(3HEAD)`, attributes(5), standards(5)
Name msg.h, msg - message queue structures

Synopsis
#include <sys/msg.h>

Description The <sys/msg.h> header defines the following data types through typedef:

msgqnum_t used for the number of messages in the message queue
msglen_t used for the number of bytes allowed in the message queue

These types are unsigned integer types that are able to store values at least as large as a type.
unsigned short.

The <sys/msg.h> header defines the following constant as a message operation flag:

MSG_NOERROR no error if big message

The msqid_ds structure contains the following members:

struct ipc_perm msg_perm Operation permission structure.
msgqnum_t msg_qnum Number of messages currently on queue.
msglen_t msg_qbytes Maximum number of bytes allowed on queue.
pid_t msg_lspid Process ID of last msgsnd(2).
pid_t msg_lrpid Process ID of last msgrcv(2).
time_t msg_stime Time of last msgsnd().
time_t msg_rtime Time of last msgrcv().
time_t msg_ctime Time of last change.

The pid_t, time_t, key_t, size_t, and ssize_t types are defined as described in <sys/types.h>. See types(3HEAD).

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also msgctl(2), msgget(2), msgrcv(2), msgsnd(2), ipc.h(3HEAD), types.h(3HEAD), attributes(5), standards(5)
#include <ndbm.h>

The `<ndbm.h>` header defines the `datum` type as a structure that includes at least the following members:

```c
void *dptr /* pointer to the application’s data */
size_t dsize /* size of the object pointed to by dptr */
```

The `size_t` type is defined through `typedef` as described in `<stddef.h>`.

The `<ndbm.h>` header defines the `DBM` type through `typedef`.

The following constants are defined as possible values for the `store_mode` argument to `dbm_store()`:

- `DBM_INSERT` Insertion of new entries only.
- `DBM_REPLACE` Allow replacing existing entries.

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code>.</td>
</tr>
</tbody>
</table>

See Also

`ndbm(3C), attributes(5), standards(5)`
Name netdb.h, netdb – definitions for network database operations

Synopsis

```
#include <netdb.h>
```

Description The `<netdb.h>` header defines the type `in_port_t` and the type `in_addr_t` as described in `in.h(3HEAD)`.

The `<netdb.h>` header defines the `hostent` structure that includes the following members:

```c
char *h_name /* official name of the host */
char **h_aliases /* pointer to an array of pointers to 
    alternative host names, terminated 
    by a null pointer */
int h_addrtype /* address type */
int h_length /* length, in bytes, of the address */
char **h_addr_list /* pointer to an array of pointers to 
    network addresses (in network byte 
    order) for the host, terminated by a 
    null pointer */
```

The `<netdb.h>` header defines the `netent` structure that includes the following members:

```c
char *n_name /* official, fully-qualified */
    (including the domain) name 
    of the network */
char **n_aliases /* pointer to an array of pointers to 
    alternative network names, terminated */
    by a null pointer */
int n_addrtype /* the address type of the network */
in_addr_t n_net /* the network number, in host byte order */
```

The `<netdb.h>` header defines the `protoent` structure that includes the following members:

```c
char *p_name /* official name of the protocol */
char **p_aliases /* pointer to an array of pointers to 
    alternative protocol names, terminated 
    by a null pointer */
int p_proto /* protocol number */
```

The `<netdb.h>` header defines the `servent` structure that includes the following members:

```c
char *s_name /* official name of the service */
char **s_aliases /* pointer to an array of pointers to 
    alternative service names, terminated by 
    a null pointer */
int s_port /* port number at which the service 
    resides, in network byte order */
char *s_proto /* name of the protocol to use when 
    contacting the service */
```

The `<netdb.h>` header defines the macro `IPPORT_RESERVED` with the value of the highest reserved Internet port number.
The `<netdb.h>` header provides a declaration for `h_errno`:

```c
extern int h_errno;
```

The `<netdb.h>` header defines the following macros for use as error values for `gethostbyaddr()` and `gethostbyname()`:

```c
HOST_NOT_FOUND NO_DATA
NO_RECOVERY TRY_AGAIN
```

Inclusion of the `<netdb.h>` header may also make visible all symbols from `in.h(3HEAD)`.

Attributes
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>

See Also
`Intro(3), endhostent(3NSL), endhostent(3XNET), endnetent(3SOCKET), endnetent(3XNET), endprotoent(3SOCKET), endprotoent(3XNET), endservent(3SOCKET), endservent(3XNET), in.h(3HEAD), attributes(5), standards(5)`
#include <nl_types.h>

This header contains the following definitions:

- **nl_catd**: Used by the message catalog functions `catopen`, `catgets` and `catclose` to identify a catalog.
- **nl_item**: Used by `nl_langinfo` to identify items of `langinfo` data. Values for objects of type `nl_item` are defined in `<langinfo.h>`.
- **NL_SETD**: Used by `gencat` when no `$set` directive is specified in a message text source file. This constant can be used in subsequent calls to `catgets` as the value of the set identifier parameter.
- **NL_MGSMAX**: Maximum number of messages per set.
- **NL_SETMAX**: Maximum number of sets per catalog.
- **NL_TEXTMAX**: Maximum size of a message.

See Also
- `gencat(1)`, `catgets(3C)`, `catopen(3C)`, `nl_langinfo(3C)`, `langinfo.h(3HEAD)`
#include <paths.h>

The `<paths.h>` header defines various symbolic names for pathnames. These have been defined to allow for easier porting software to Solaris.

Pathname Macros

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_PATH_BSHELL</td>
<td>The pathname of the Bourne Shell.</td>
</tr>
<tr>
<td>_PATH_CONSOLE</td>
<td>The pathname of the console device.</td>
</tr>
<tr>
<td>_PATH_CONSOLE_USER_LINK</td>
<td>The link to the current (virtual) console device.</td>
</tr>
<tr>
<td>_PATH_CP</td>
<td>The pathname of the <code>cp(1)</code> command.</td>
</tr>
<tr>
<td>_PATH_CSHHELL</td>
<td>The pathname of the C-shell.</td>
</tr>
<tr>
<td>_PATH_DEFAULT_LOGIN</td>
<td>The pathname of the default login file.</td>
</tr>
<tr>
<td>_PATH_DEVNULL</td>
<td>The pathname of the device <code>null(7D)</code>.</td>
</tr>
<tr>
<td>_PATH_ED</td>
<td>The pathname of the text editor (<code>ed(1)</code>).</td>
</tr>
<tr>
<td>_PATH_ETHERS</td>
<td>The pathname of the name-to-ethernet address mapping table.</td>
</tr>
<tr>
<td>_PATH_GROUP</td>
<td>The pathname of the <code>group</code> file.</td>
</tr>
<tr>
<td>_PATH_HEQUIV</td>
<td>The pathname of the <code>hosts.equiv</code> file.</td>
</tr>
<tr>
<td>_PATH_HESIOD_CONF</td>
<td>The pathname of the <code>hesiod.conf</code> file.</td>
</tr>
<tr>
<td>_PATH_HOSTS</td>
<td>The pathname of the <code>hosts</code> file.</td>
</tr>
<tr>
<td>_PATH_IPNODES</td>
<td>The pathname of the <code>ipnodes</code> file.</td>
</tr>
<tr>
<td>_PATH_IPSECALGS</td>
<td>The pathname of the <code>ipsecalgs</code> file.</td>
</tr>
<tr>
<td>_PATH_IRS_CONF</td>
<td>The pathname of the <code>irs.conf</code> file.</td>
</tr>
<tr>
<td>_PATH_KMEM</td>
<td>The pathname of the device <code>kmem (mem(7D))</code>.</td>
</tr>
<tr>
<td>_PATH_LASTLOG</td>
<td>The pathname of the <code>lastlog</code> file.</td>
</tr>
<tr>
<td>_PATH_MAILDIR</td>
<td>The pathname of the mail spool directory.</td>
</tr>
<tr>
<td>_PATH_NETGROUP</td>
<td>The pathname of the <code>netgroup</code> file.</td>
</tr>
<tr>
<td>_PATH_NETMasks</td>
<td>The pathname of the <code>netmasks</code> file.</td>
</tr>
<tr>
<td>_PATH_NETWORKS</td>
<td>The pathname of the <code>networks</code> file.</td>
</tr>
<tr>
<td>_PATH_NOLOGIN</td>
<td>The pathname of the <code>nologin</code> file.</td>
</tr>
<tr>
<td>_PATH_OPENPROM</td>
<td>The pathname of the <code>openprom(7D)</code> device.</td>
</tr>
<tr>
<td>_PATH_POWER_MGMT</td>
<td>The pathname of the power management driver (<code>pm(7D)</code>).</td>
</tr>
</tbody>
</table>
_PATH_PROTOCOLS The pathname of the protocols file.
(PATH_RANDOM The pathname of the random(7D) device.
_PATH_RESCONF The pathname of the resolv.conf file.
_PATH_RSH The pathname of the remote shell command (rsh(1)).
_PATH_SERVICES The pathname of the services file.
_PATH_SHELLS The pathname of the shell database (shells(4)).
_PATH_SYSCON The pathname of the syscon device.
_PATH_SYSEVENT The pathname of the sysevent device.
_PATH_SYSMSG The pathname of the sysmsg device.
_PATH_SYSTTY The pathname of the system tty.
_PATH_TMP The pathname of the temporary file system.
_PATH_TTY The pathname of the tty device.
_PATH_UNIX The pathname of the kernel namelist (ksyms(7D)).
_PATH_URANDOM The pathname of the urandom(7D) device.
_PATH_USRTMP The pathname of the user temporary directory.
_PATH_UTMPX The pathname of the UTMPX file.
_PATH_VARRUN The pathname of the systems temporary file directory.
_PATH_VARTMP The pathname of the user temporary file directory.
_PATH_VI The pathname of the vi(1) editor.
_PATH_WTMPX The pathname of the WTMPX file.

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Uncommitted</td>
</tr>
</tbody>
</table>

See Also cp(1), ed(1), rsh(1), vi(1), shells(4), attributes(5), ksym(7D), mem(7D), null(7D), openprom(7D), pm(7D), random(7D), urandom(7D)
poll.h, poll – definitions for the poll() function

Synopsis
#include <poll.h>

Description
The <poll.h> header defines the pollfd structure, which includes the following members:

- `int fd` the following descriptor being polled
- `short events` the input event flags (see below)
- `short revents` the output event flags (see below)

The <poll.h> header defines the following type through typedef:

- `nfds_t` an unsigned integer type used for the number of file descriptors

The implementation supports one or more programming environments in which the width of `nfds_t` is no greater than the width of type long. The names of these programming environments can be obtained using the `confstr()` function or the `getconf` utility. See `confstr(3C)` and `getconf(1)`.

The following symbolic constants are defined, zero or more of which can be OR’ed together to form the `events` or `revents` members in the `pollfd` structure:

- `POLLIN` Data other than high-priority data can be read without blocking.
- `POLLRDNORM` Normal data can be read without blocking.
- `POLLRDBAND` Priority data can be read without blocking.
- `POLLPRI` High priority data can be read without blocking.
- `POLLOUT` Normal data can be written without blocking.
- `POLLWRNORM` Equivalent to POLLOUT.
- `POLLWRBAND` Priority data can be written.
- `POLLERR` An error has occurred (revents only).
- `POLLHUP` Device has been disconnected (revents only).
- `POLLNVAL` Invalid fd member (revents only).

The significance and semantics of normal, priority, and high-priority data are file and device-specific.

Attributes
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>ATTRIBUTE TYPE</td>
<td>ATTRIBUTE VALUE</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code>.</td>
</tr>
</tbody>
</table>

See Also
`getconf(1), poll(2), confstr(3C), attributes(5), standards(5)`
The `<pthread.h>` header defines the following symbols:

- PTHREAD_BARRIER_SERIAL_THREAD
- PTHREAD_CANCEL_ASYNCHRONOUS
- PTHREAD_CANCEL_ENABLE
- PTHREAD_CANCEL_DEFERRED
- PTHREAD_CANCEL_DISABLE
- PTHREAD_CANCELED
- PTHREAD_COND_INITIALIZER
- PTHREAD_CREATE_DETACHED
- PTHREAD_CREATE_JOINABLE
- PTHREAD_EXPLICIT_SCHED
- PTHREAD_INHERIT_SCHED
- PTHREAD_MUTEX_DEFAULT
- PTHREAD_MUTEX_ERRORCHECK
- PTHREAD_MUTEX_INITIALIZER
- PTHREAD_MUTEX_NORMAL
- PTHREAD_MUTEX_RECURSIVE
- PTHREAD_MUTEX_ROBUST
- PTHREAD_MUTEX_STALLED
- PTHREAD_ONCE_INIT
- PTHREAD_PRIO_INHERIT
- PTHREAD_PRIO_NONE
- PTHREAD_PRIO_PROTECT
- PTHREAD_PROCESS_SHARED
- PTHREAD_PROCESS_PRIVATE
- PTHREAD_RWLOCK_INITIALIZER
- PTHREAD_SCOPE_PROCESS
- PTHREAD_SCOPE_SYSTEM

The types listed below are defined as described in `<sys/types.h>`. See `types.h`(3HEAD).

- pthread_attr_t
- pthread_barrier_t
- pthread_barrierattr_t
- pthread_cond_t
- pthread_condattr_t
- pthread_key_t
- pthread_mutex_t
- pthread_mutexattr_t
- pthread_once_t
- pthread_rwlock_t
- pthread_rwlockattr_t
- pthread_spinlock_t
- pthread_t
Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also sched.h(3HEAD), time.h(3HEAD), types.h(3HEAD), pthread_attr_getguardsize(3C),
 pthread_attr_init(3C), pthread_attr_setscope(3C), pthread_cancel(3C),
 pthread_cleanup_pop(3C), pthread_cond_init(3C), pthread_cond_signal(3C),
 pthread_cond_wait(3C), pthread_condattr_init(3C), pthread_create(3C),
 pthread_detach(3C), pthread_equal(3C), pthread_exit(3C),
 pthread_getconcurrency(3C), pthread_getschedparam(3C), pthread_join(3C),
 pthread_key_create(3C), pthread_key_delete(3C), pthread_mutex_consistent(3C),
 pthread_mutex_init(3C), pthread_mutex_lock(3C),
 pthread_mutex_setprioceiling(3C), pthread_mutexattr_getrobust(3C),
 pthread_mutexattr_gettype(3C), pthread_mutexattr_getprotocol(3C),
 pthread_mutexattr_init(3C), pthread_once(3C), pthread_rwlock_init(3C),
 pthread_rwlock_rdlock(3C), pthread_rwlock_unlock(3C), pthread_rwlock_wrlock(3C),
 pthread_rwlockattr_getpshared(3C), pthread_rwlockattr_init(3C),
 pthread_self(3C), pthread_setscanclestate(3C), pthread_setspecific(3C),
 attributes(5), standards(5)
Name
pwd.h, pwd – password structure

Synopsis
#include <pwd.h>

Description
The `<pwd.h>` header provides a definition for struct passwd, which includes the following members:

- `char *pw_name`: user’s login name
- `uid_t pw_uid`: numerical user ID
- `gid_t pw_gid`: numerical group ID
- `char *pw_dir`: initial working directory
- `char *pw_shell`: program to use as shell

The `gid_t` and `uid_t` types are defined as described in `<sys/types.h>`. See `types.h(3HEAD)`.

Attributes
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code>.</td>
</tr>
</tbody>
</table>

See Also
`getpwnam(3C), types.h(3HEAD), attributes(5), standards(5)`
regex.h (3HEAD)

Name regex.h, regex – regular expression matching types

Synopsis #include <regex.h>

Description The <regex.h> header defines the structures and symbolic constants used by the `regcomp()`, `regexec()`, `regerror()`, and `regfree()` functions. See `regcomp(3C)`.

The structure type `regex_t` contains the following member:

```
size_t re_nsub  number of parenthesized subexpressions
```

The type `size_t` is defined as described in `<sys/types.h>`. See `types.h(3HEAD)`.

The type `regoff_t` is defined as a signed integer type that can hold the largest value that can be stored in either a type `off_t` or type `ssize_t`. The structure type `regmatch_t` contains the following members:

```
regoff_t rm_so  byte offset from start of string to start of substring
regoff_t rm_eo  byte offset from start of string of the first character after the end of substring
```

Values for the `cflags` parameter to the `regcomp()` function are as follows:

- `REG_EXTENDED` use extended regular expressions
- `REG_ICASE` ignore case in match
- `REG_NOSUB` report only success or fail in `regexec()`
- `REG_NEWLINE` change the handling of `NEWLINE` character

Values for the `eflags` parameter to the `regexec()` function are as follows:

- `REG_NOTBOL` The circumflex character (`^`), when taken as a special character, does not match the beginning of string.
- `REG_NOTEOL` The dollar sign (`$`), when taken as a special character, does not match the end of string.

The following constants are defined as error return values:

- `REG_NOMATCH` `regexec()` failed to match.
- `REG_BADPAT` Invalid regular expression.
- `REG_ECOLLATE` Invalid collating element referenced.
- `REG_ECTYPE` Invalid character class type referenced.
- `REG_EESCAPE` Trailing `\` in pattern.
- `REG_ESUBREG` Number in `\digit` invalid or in error.
- `REG_EBRACK` `[]` imbalance.
REG_EPAREN "\(\)" or "()" imbalance.
REG_EBRACE "\{\}" imbalance.
REG_BADBR Content of "\{\}" invalid: not a number, number too large, more than two numbers, first larger than second.
REG_ERANGE Invalid endpoint in range expression.
REG_ESPACE Out of memory.
REG_BADRPT '?' , '*' , or '+' not preceded by valid regular expression.
REG_ENOSYS Reserved.

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also regcomp(3C), types.h(3HEAD), attributes(5), standards(5)
The `sys/resource.h` header defines the symbolic constants listed below as possible values of the `which` argument of `getpriority()` and `setpriority()`. See `getpriority(3C)`.

- `PRIO_PROCESS` identifies the `who` argument as a process ID
- `PRIO_PGRP` identifies the `who` argument as a process group ID
- `PRIO_USER` identifies the `who` argument as a user ID

The following type is defined through `typedef`:

```
rlim_t unsigned integer type used for limit values
```

The following symbolic constants are defined:

- `RLIM_INFINITY` a value of `rlim_t` indicating no limit
- `RLIM_SAVED_MAX` a value of type `rlim_t` indicating an unrepresentable saved hard limit
- `RLIM_SAVED_CUR` a value of type `rlim_t` indicating an unrepresentable saved soft limit

The symbolic constants listed below are defined as possible values of the `who` parameter of `getrusage()`. See `getrusage(3C)`.

- `RUSAGE_SELF` returns information about the current process
- `RUSAGE_CHILDREN` returns information about children of the current process

The `sys/resource.h` header defines the `rlimit` structure, which includes the following members:

```
rlim_t rlim_cur /* the current (soft) limit */
rlim_t rlim_max /* the hard limit */
```

The `sys/resource.h` header defines the `rusage` structure, which includes the following members:

```
struct timeval ru_utime /* user time used */
struct timeval ru_stime /* system time used */
```

The `timeval` structure is defined as described in `<sys/time.h>`.

The symbolic constants listed below are defined as possible values for the `resource` argument of `getrlimit()` and `setrlimit()`. See `getrlimit(2)`.

- `RLIMIT_CORE` limit on size of core dump file
- `RLIMIT_CPU` limit on CPU time per process
- `RLIMIT_DATA` limit on data segment size
The `id_t` type is defined through `typedef` as described in `<sys/types.h>`. See `types.h(3HEAD)`.

Inclusion of the `<sys/resource.h>` header can also make visible all symbols from `<sys/time.h>`. See `time.h(3HEAD)`.

Attributes See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>

See Also `getrlimit(2), getpriority(3C), time.h(3HEAD), types.h(3HEAD), attributes(5), standards(5)`
#include <sched.h>

The `<sched.h>` header defines the `sched_param` structure, which contains the scheduling parameters required for implementation of each supported scheduling policy. This structure contains the following member:

```c
int sched_priority  // process execution scheduling priority
```

Each process is controlled by an associated scheduling policy and priority. Associated with each policy is a priority range. Each policy definition specifies the minimum priority range for that policy. The priority ranges for each policy may overlap the priority ranges of other policies.

The scheduling policies are indicated by the values of the following symbolic constants:

- **SCHED_OTHER**
 Processes are scheduled according to the traditional Time-Sharing Class (TS) policy as described in `priocntl(2)`.

- **SCHED_FIFO**
 Processes are scheduled in the Real-Time (RT) scheduling class, according to the First-In-First-Out (FIFO) policy. Processes scheduled to this policy, if not preempted by a higher priority or interrupted by a signal, will proceed until completion.

- **SCHED_RR**
 Processes are scheduled in the Real-Time (RT) scheduling class, according to the Round-Robin (RR) policy. Processes scheduled to this policy, if not preempted by a higher priority or interrupted by a signal, will execute for a time period, returned by `sched_rr_get_interval(3C)` or by the system.

- **SCHED_IA**
 Processes are scheduled according to the Inter-Active Class (IA) policy as described in `priocntl(2)`.

- **SCHED_FSS**
 Processes are scheduled according to the Fair-Share Class (FSS) policy as described in `priocntl(2)`.

- **SCHED_FX**
 Processes are scheduled according to the Fixed-Priority Class (FX) policy as described in `priocntl(2)`.

The values of these constants are distinct.

Inclusion of the `<sched.h>` header will make visible symbols defined in the header `<time.h>`.

See Also

`priocntl(2), sched_get_priority_max(3C), sched_get_priority_min(3C), sched_rr_get_interval(3C), time.h(3HEAD)"
search.h(3HEAD)

Name search.h, search – search tables

Synopsis #include <search.h>

Description The <search.h> header defines the ENTRY type for structure entry, which includes the following members:

```c
char *key
void *data
```

and defines ACTION and VISIT as enumeration data types through type definitions as follows:

```c
enum { FIND, ENTER } ACTION;
enum { preorder, postorder, endorder, leaf } VISIT;
```

The size_t type is defined as described in <sys/types.h>. See types.h(3HEAD).

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also hash(3C), insque(3C), lsearch(3C), tsearch(3C), types.h(3HEAD), attributes(5), standards(5)
select.h(3HEAD)

Name select.h, select – select types

Synopsis
#include <sys/select.h>

Description The <sys/select.h> header defines the timeval structure, which includes the following members:

time_t tv_sec /* seconds */
suseconds_t tv_usec /* microseconds */

The time_t and suseconds_t types are defined as described in <sys/types.h>. See types.h(3HEAD).

The sigset_t type is defined as described in signal.h(3HEAD).

The timespec structure is defined as described in <time.h>. See time.h(3HEAD).

The <sys/select.h> header defines the fd_set type as a structure.

The following is defined as a macro:

FD_SETSIZE Maximum number of file descriptors in an fd_set structure.

Inclusion of the <sys/select.h> header can make visible all symbols from the headers <signal.h>, <sys/time.h>, and <time.h>.

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also select(3C), signal.h(3HEAD), time.h(3HEAD), types.h(3HEAD), attributes(5), standards(5)
Name semaphore.h, semaphore – semaphores

Synopsis #include <semaphore.h>

Description The <semaphore.h> header defines the sem_t type, used in performing semaphore operations. The semaphore can be implemented using a file descriptor, in which case applications are able to open up at least a total of {OPEN_MAX} files and semaphores. The symbol SEM_FAILED is defined (see sem_open(3)).

Inclusion of the <semaphore.h> header can make visible symbols defined in the headers <fcntl.h> and <sys/types.h>. See fcntl.h(3HEAD) and types.h(3HEAD).

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also fcntl.h(3HEAD), types.h(3HEAD), sem_destroy(3C), sem_getvalue(3C), sem_init(3C), sem_open(3C), sem_post(3C), sem_timedwait(3C), sem_unlink(3C), sem_wait(3C), attributes(5), standards(5)
sem.h(3HEAD)

Name sem.h, sem – semaphore facility

Synopsis #include <sys/sem.h>

Description The <sys/sem.h> header defines the following constants and structures.

Semaphore operation flags:

SEMT_UNDO Set up adjust on exit entry.

Command definitions for the semctl() function are provided as listed below. See semctl(2).

GETCNT Get semncnt.

GETPID Get sempid.

GETVAL Get semval.

GETALL Get all cases of semval.

GETZCNT Get semzcnt.

SETVAL Set semval.

SETALL Set all cases of semval.

The semid_ds structure contains the following members:

struct ipc_perm sem_perm /* operation permission structure */
unsigned short sem_nsems /* number of semaphores in set */
time_t sem_otime /* last semop() time */
time_t sem_ctime /* last time changed by semctl() */

The pid_t, time_t, key_t, and size_t types are defined as described in <sys/types.h>. See types.h(3HEAD).

A semaphore is represented by an anonymous structure containing the following members:

unsigned short semval /* semaphore value */
pid_t sempid /* process ID of last operation */
unsigned short semncnt /* number of processes waiting for semval to become greater than current value */
unsigned short semzcnt /* number of processes waiting for semval to become 0 */

The sembuf structure contains the following members:

unsigned short sem_num /* semaphore number */
short sem_op /* semaphore operation */
short sem_flg /* operation flags */

All of the symbols from <sys/ipc.h> are defined when this header is included. See ipc.h(3HEAD).
Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5)</td>
</tr>
</tbody>
</table>

See Also semctl(2), semget(2), semop(2), ipc.h(3HEAD), types.h(3HEAD), attributes(5), standards(5)
Name
setjmp.h, setjmp – stack environment declarations

Synopsis
#include <setjmp.h>

Description
The `<setjmp.h>` header defines the array types `jmp_buf` and `sigjmp_buf`. Applications must define the appropriate feature test macro to enable the visibility of the symbols in this header.

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also
`_longjmp(3C), setjmp(3C), attributes(5), standards(5)`
Name
shm.h, shm – shared memory facility

Synopsis
#include <sys/shm.h>

Description
The `<sys/shm.h>` header defines the following symbolic constants:

- `SHM_RDONLY`
 attach read-only (else read-write)
- `SHM_RND`
 round attach address to SHMLBA

The `<sys/shm.h>` header defines the following symbolic value:

- `SHMLBA`
 segment low boundary address multiple

The following data types are defined through `typedef`:

- `shmatt_t`
 Unsigned integer used for the number of current attaches that must be able to store values at least as large as a type unsigned short.

The `shmid_ds` structure contains the following members:

- `struct ipc_perm shm_perm /* operation permission structure */`
- `size_t shmem_segsz /* size of segment in bytes */`
- `pid_t shmem_lpid /* process ID of last shared memory operation */`
- `pid_t shmem_cpid /* process ID of creator */`
- `shmatt_t shmem_nattch /* number of current attaches */`
- `time_t shmem_atime /* time of last shmat() */`
- `time_t shmem_dtime /* time of last shmdt() */`
- `time_t shmem_ctime /* time of last change by shmctl() */`

The `pid_t`, `time_t`, `key_t`, and `size_t` types are defined as described in `<sys/types.h>`. See `types.h(3HEAD)`.

In addition, all of the symbols from `<sys/ipc.h>` are defined when this header is included.

Attributes
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>

See Also
shmctl(2), shmget(2), shmap(2), ipc.h(3HEAD), types.h(3HEAD), attributes(5), standards(5)
Name
siginfo.h, siginfo — signal generation information

Synopsis
#include <siginfo.h>

Description
If a process is catching a signal, it might request information that tells why the system generated that signal. See sigaction(2). If a process is monitoring its children, it might receive information that tells why a child changed state. See waitid(2). In either case, the system returns the information in a structure of type siginfo_t, which includes the following information:

```c
int si_signo /* signal number */
int si_errno /* error number */
int si_code /* signal code */
union sigval si_value /* signal value */
```

- **si_signo** contains the system-generated signal number. For the waitid(2) function, si_signo is always SIGCHLD.

- If si_errno is non-zero, it contains an error number associated with this signal, as defined in <errno.h>.

- **si_code** contains a code identifying the cause of the signal.

If the value of the si_code member is SI_NOINFO, only the si_signo member of siginfo_t is meaningful, and the value of all other members is unspecified.

User Signals

If the value of si_code is less than or equal to 0, then the signal was generated by a user process (see kill(2), _lwp_kill(2), sigqueue(3C), sigsend(2), abort(3C), and raise(3C)) and the siginfo structure contains the following additional information:

```c
pid_t si_pid /* sending process ID */
uid_t si_uid /* sending user ID */
ctid_t si_ctid /* sending contract ID */
zonid_t si_zoneid /* sending zone ID */
```

If the signal was generated by a user process, the following values are defined for si_code:

- **SI_USER** The implementation sets si_code to SI_USER if the signal was sent by kill(2), sigsend(2), raise(3C) or abort(3C).
- **SI_LWP** The signal was sent by _lwp_kill(2).
- **SI_QUEUE** The signal was sent by sigqueue(3C).
- **SI_TIMER** The signal was generated by the expiration of a timer created by timer_settime(3C).
- **SI_ASYNCIO** The signal was generated by the completion of an asynchronous I/O request.
- **SI_MESGQ** The signal was generated by the arrival of a message on an empty message queue. See mq_notify(3C).
si_value contains the application specified value, which is passed to the application’s signal-catching function at the time of the signal delivery if **si_code** is any of **SI_QUEUE**, **SI_TIMER**, **SI_ASYNCIO**, or **SI_MESGQ**.

System Signals

Non-user generated signals can arise for a number of reasons. For all of these cases, **si_code** contains a positive value reflecting the reason why the system generated the signal:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Code</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGILL</td>
<td>ILL_ILLOPC</td>
<td>illegal opcode</td>
</tr>
<tr>
<td></td>
<td>ILL_ILLOPN</td>
<td>illegal operand</td>
</tr>
<tr>
<td></td>
<td>ILL_ILLADR</td>
<td>illegal addressing mode</td>
</tr>
<tr>
<td></td>
<td>ILL_ILLTRP</td>
<td>illegal trap</td>
</tr>
<tr>
<td></td>
<td>ILL_PRVOPC</td>
<td>privileged opcode</td>
</tr>
<tr>
<td></td>
<td>ILL_PRVREG</td>
<td>privileged register</td>
</tr>
<tr>
<td></td>
<td>ILL_COPROC</td>
<td>co-processor error</td>
</tr>
<tr>
<td></td>
<td>ILL_BADSTK</td>
<td>internal stack error</td>
</tr>
<tr>
<td>SIGFPE</td>
<td>FPE_INTDIV</td>
<td>integer divide by zero</td>
</tr>
<tr>
<td></td>
<td>FPE_INTTOVF</td>
<td>integer overflow</td>
</tr>
<tr>
<td></td>
<td>FPE_FLTDIV</td>
<td>floating point divide by zero</td>
</tr>
<tr>
<td></td>
<td>FPE_FLTOVF</td>
<td>floating point overflow</td>
</tr>
<tr>
<td></td>
<td>FPE_FLTUND</td>
<td>floating point underflow</td>
</tr>
<tr>
<td></td>
<td>FPE_FLTRES</td>
<td>floating point inexact result</td>
</tr>
<tr>
<td></td>
<td>FPE_FLTINV</td>
<td>invalid floating point operation</td>
</tr>
<tr>
<td></td>
<td>FPE_FLTSUB</td>
<td>subscript out of range</td>
</tr>
<tr>
<td>SIGSEGV</td>
<td>SEGV_MAPERR</td>
<td>address not mapped to object</td>
</tr>
<tr>
<td></td>
<td>SEGV_ACCERR</td>
<td>invalid permissions for mapped object</td>
</tr>
<tr>
<td>SIGBUS</td>
<td>BUS_ADRALN</td>
<td>invalid address alignment</td>
</tr>
<tr>
<td></td>
<td>BUS_ADRERR</td>
<td>non-existent physical address</td>
</tr>
<tr>
<td></td>
<td>BUS_OBJERR</td>
<td>object specific hardware error</td>
</tr>
<tr>
<td>SIGTRAP</td>
<td>TRAP_BRKPT</td>
<td>process breakpoint</td>
</tr>
<tr>
<td></td>
<td>TRAP_TRACE</td>
<td>process trace trap</td>
</tr>
</tbody>
</table>
Signals can also be generated from the resource control subsystem. Where these signals do not already possess kernel-level siginfo codes, the siginfo si_code will be filled with SI_RCTL to indicate a kernel-generated signal from an established resource control value.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Code</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGXRES</td>
<td>SI_RCTL</td>
<td>resource-control generated signal</td>
</tr>
<tr>
<td>SIGHUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGTERM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The uncatchable signals SIGSTOP and SIGKILL have undefined siginfo codes.

Signals sent with a siginfo code of SI_RCTL contain code-dependent information for kernel-generated signals:

<table>
<thead>
<tr>
<th>Code</th>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI_RCTL</td>
<td>hr_time si_entity</td>
<td>process-model entity of control</td>
</tr>
</tbody>
</table>

In addition, the following signal-dependent information is available for kernel-generated signals:
<table>
<thead>
<tr>
<th>Signal</th>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGILL</td>
<td>caddr_t si_addr</td>
<td>address of faulting instruction</td>
</tr>
<tr>
<td>SIGFPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGSEGV</td>
<td>caddr_t si_addr</td>
<td>address of faulting memory reference</td>
</tr>
<tr>
<td>SIGBUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGCHLD</td>
<td>pid_t si_pid</td>
<td>child process ID</td>
</tr>
<tr>
<td></td>
<td>int si_status</td>
<td>exit value or signal</td>
</tr>
<tr>
<td>SIGPOLL</td>
<td>long si_band</td>
<td>band event for POLL_IN, POLL_OUT, or POLL_MSG</td>
</tr>
</tbody>
</table>

See Also

 lpw_kill(2), kill(2), setrctl(2), sigaction(2), sigsend(2), waitid(2), abort(3C), aio_read(3C), mq_notify(3C), raise(3C), signal.h(3HEAD), sigqueue(3C), timer_create(3C), timer_settime(3C)

Notes

For SIGCHLD signals, if si_code is equal to CLD_EXITED, then si_status is equal to the exit value of the process; otherwise, it is equal to the signal that caused the process to change state. For some implementations, the exact value of si_addr might not be available; in that case, si_addr is guaranteed to be on the same page as the faulting instruction or memory reference.
A signal is an asynchronous notification of an event. A signal is said to be generated for (or sent to) a process when the event associated with that signal first occurs. Examples of such events include hardware faults, timer expiration and terminal activity, as well as the invocation of the `kill(2)` or `sigsend(2)` functions. In some circumstances, the same event generates signals for multiple processes. A process may request a detailed notification of the source of the signal and the reason why it was generated. See `siginfo.h(3HEAD)`.

Signals can be generated synchronously or asynchronously. Events directly caused by the execution of code by a thread, such as a reference to an unmapped, protected, or bad memory can generate `SIGSEGV` or `SIGBUS`; a floating point exception can generate `SIGFPE`; and the execution of an illegal instruction can generate `SIGILL`. Such events are referred to as traps; signals generated by traps are said to be synchronously generated. Synchronously generated signals are initiated by a specific thread and are delivered to and handled by that thread.

Signals may also be generated by calling `kill()`, `sigqueue()`, or `sigsend()`. Events such as keyboard interrupts generate signals, such as `SIGINT`, which are sent to the target process. Such events are referred to as interrupts; signals generated by interrupts are said to be asynchronously generated. Asynchronously generated signals are not directed to a particular thread but are handled by an arbitrary thread that meets either of the following conditions:

- The thread is blocked in a call to `sigwait(2)` whose argument includes the type of signal generated.
- The thread has a signal mask that does not include the type of signal generated. See `pthread_sigmask(3C)`. Each process can specify a system action to be taken in response to each signal sent to it, called the signal's disposition. All threads in the process share the disposition. The set of system signal actions for a process is initialized from that of its parent. Once an action is installed for a specific signal, it usually remains installed until another disposition is explicitly requested by a call to either `sigaction()`, `signal()` or `sigset()`, or until the process execs(). See `sigaction(2)` and `signal(3C)`.

When a process execs, all signals whose disposition has been set to catch the signal will be set to `SIG_DFL`. Alternatively, a process may request that the system automatically reset the disposition of a signal to `SIG_DFL` after it has been caught. See `sigaction(2)` and `signal(3C)`.

SIGNAL DELIVERY

A signal is said to be delivered to a process when a thread within the process takes the appropriate action for the disposition of the signal. Delivery of a signal can be blocked. There are two methods for handling delivery of a signal in a multithreaded application. The first method specifies a signal handler function to execute when the signal is received by the process. See `sigaction(2)`. The second method uses `sigwait(2)` to create a thread to handle the receipt of the signal. The `sigaction()` function can be used for both synchronously and asynchronously generated signals. The `sigwait()` function will work only for asynchronously generated signals, as synchronously generated signals are sent to the thread that caused the event. The `sigwait()` function is the recommended for use with a multithreaded application.
Each thread has a signal mask that defines the set of signals currently blocked from delivery to it. The signal mask of the main thread is inherited from the signal mask of the thread that created it in the parent process. The selection of the thread within the process that is to take the appropriate action for the signal is based on the method of signal generation and the signal masks of the threads in the receiving process. Signals that are generated by action of a particular thread such as hardware faults are delivered to the thread that caused the signal. See `pthread_sigmask(3C)` or `sigprocmask(2)`. See `alarm(2)` for current semantics of delivery of `SIGALRM`. Signals that are directed to a particular thread are delivered to the targeted thread. See `pthread_kill(3C)`. If the selected thread has blocked the signal, it remains pending on the thread until it is unblocked. For all other types of signal generation (for example, `kill(2)`, `sigsend(2)`), terminal activity, and other external events not ascribable to a particular thread) one of the threads that does not have the signal blocked is selected to process the signal. If all the threads within the process block the signal, it remains pending on the process until a thread in the process unblocks it. If the action associated with a signal is set to ignore the signal then both currently pending and subsequently generated signals of this type are discarded immediately for this process.

The determination of which action is taken in response to a signal is made at the time the signal is delivered to a thread within the process, allowing for any changes since the time of generation. This determination is independent of the means by which the signal was originally generated.

The signals currently defined by `<signal.h>` are as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Default</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGHUP</td>
<td>1</td>
<td>Exit</td>
<td>Hangup (see <code>termio(7I)</code></td>
</tr>
<tr>
<td>SIGINT</td>
<td>2</td>
<td>Exit</td>
<td>Interrupt (see <code>termio(7I)</code></td>
</tr>
<tr>
<td>SIGQUIT</td>
<td>3</td>
<td>Core</td>
<td>Quit (see <code>termio(7I)</code></td>
</tr>
<tr>
<td>SIGILL</td>
<td>4</td>
<td>Core</td>
<td>Illegal Instruction</td>
</tr>
<tr>
<td>SIGTRAP</td>
<td>5</td>
<td>Core</td>
<td>Trace or Breakpoint Trap</td>
</tr>
<tr>
<td>SIGABRT</td>
<td>6</td>
<td>Core</td>
<td>Abort</td>
</tr>
<tr>
<td>SIGEMT</td>
<td>7</td>
<td>Core</td>
<td>Emulation Trap</td>
</tr>
<tr>
<td>SIGFPE</td>
<td>8</td>
<td>Core</td>
<td>Arithmetic Exception</td>
</tr>
<tr>
<td>SIGILL</td>
<td>9</td>
<td>Exit</td>
<td>Killed</td>
</tr>
<tr>
<td>SIGBUS</td>
<td>10</td>
<td>Core</td>
<td>Bus Error</td>
</tr>
<tr>
<td>SIGSEGV</td>
<td>11</td>
<td>Core</td>
<td>Segmentation Fault</td>
</tr>
<tr>
<td>SIGSYS</td>
<td>12</td>
<td>Core</td>
<td>Bad System Call</td>
</tr>
<tr>
<td>Name</td>
<td>Value</td>
<td>Default</td>
<td>Event</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>---------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>SIGPIPE</td>
<td>13</td>
<td>Exit</td>
<td>Broken Pipe</td>
</tr>
<tr>
<td>SIGALRM</td>
<td>14</td>
<td>Exit</td>
<td>Alarm Clock</td>
</tr>
<tr>
<td>SIGTERM</td>
<td>15</td>
<td>Exit</td>
<td>Terminated</td>
</tr>
<tr>
<td>SIGUSR1</td>
<td>16</td>
<td>Exit</td>
<td>User Signal 1</td>
</tr>
<tr>
<td>SIGUSR2</td>
<td>17</td>
<td>Exit</td>
<td>User Signal 2</td>
</tr>
<tr>
<td>SIGCHLD</td>
<td>18</td>
<td>Ignore</td>
<td>Child Status Changed</td>
</tr>
<tr>
<td>SIGPWR</td>
<td>19</td>
<td>Ignore</td>
<td>Power Fail or Restart</td>
</tr>
<tr>
<td>SIGWINCH</td>
<td>20</td>
<td>Ignore</td>
<td>Window Size Change</td>
</tr>
<tr>
<td>SIGURG</td>
<td>21</td>
<td>Ignore</td>
<td>Urgent Socket Condition</td>
</tr>
<tr>
<td>SIGPOLL</td>
<td>22</td>
<td>Exit</td>
<td>Pollable Event (see streamio(7I))</td>
</tr>
<tr>
<td>SIGSTOP</td>
<td>23</td>
<td>Stop</td>
<td>Stopped (signal)</td>
</tr>
<tr>
<td>SIGTSTP</td>
<td>24</td>
<td>Stop</td>
<td>Stopped (user) (see termio(7I))</td>
</tr>
<tr>
<td>SIGCONT</td>
<td>25</td>
<td>Ignore</td>
<td>Continued</td>
</tr>
<tr>
<td>SIGTTIN</td>
<td>26</td>
<td>Stop</td>
<td>Stopped (tty input) (see termio(7I))</td>
</tr>
<tr>
<td>SIGTTOU</td>
<td>27</td>
<td>Stop</td>
<td>Stopped (tty output) (see termio(7I))</td>
</tr>
<tr>
<td>SIGVTALRM</td>
<td>28</td>
<td>Exit</td>
<td>Virtual Timer Expired</td>
</tr>
<tr>
<td>SIGPROF</td>
<td>29</td>
<td>Exit</td>
<td>Profiling Timer Expired</td>
</tr>
<tr>
<td>SIGXCPU</td>
<td>30</td>
<td>Core</td>
<td>CPU time limit exceeded (see getrlimit(2))</td>
</tr>
<tr>
<td>SIGXFSZ</td>
<td>31</td>
<td>Core</td>
<td>File size limit exceeded (see getrlimit(2))</td>
</tr>
<tr>
<td>SIGWAITING</td>
<td>32</td>
<td>Ignore</td>
<td>Reserved</td>
</tr>
<tr>
<td>SIGLWP</td>
<td>33</td>
<td>Ignore</td>
<td>Reserved</td>
</tr>
<tr>
<td>SIGFREEZE</td>
<td>34</td>
<td>Ignore</td>
<td>Check point Freeze</td>
</tr>
<tr>
<td>SIGTHAW</td>
<td>35</td>
<td>Ignore</td>
<td>Check point Thaw</td>
</tr>
<tr>
<td>SIGCANCEL</td>
<td>36</td>
<td>Ignore</td>
<td>Reserved for threading support</td>
</tr>
<tr>
<td>SIGLOST</td>
<td>37</td>
<td>Exit</td>
<td>Resource lost (for example, record–lock lost)</td>
</tr>
<tr>
<td>SIGXRES</td>
<td>38</td>
<td>Ignore</td>
<td>Resource control exceeded (see setrctl(2))</td>
</tr>
<tr>
<td>SIGJVM1</td>
<td>39</td>
<td>Ignore</td>
<td>Reserved for Java Virtual Machine 1</td>
</tr>
<tr>
<td>SIGJVM2</td>
<td>40</td>
<td>Ignore</td>
<td>Reserved for Java Virtual Machine 2</td>
</tr>
<tr>
<td>Name</td>
<td>Value</td>
<td>Default</td>
<td>Event</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>---------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>SIGRTMIN</td>
<td>*</td>
<td>Exit</td>
<td>First real time signal</td>
</tr>
<tr>
<td>(SIGRTMIN+1)</td>
<td>*</td>
<td>Exit</td>
<td>Second real time signal</td>
</tr>
<tr>
<td>. . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SIGRTMAX-1)</td>
<td>*</td>
<td>Exit</td>
<td>Second-to-last real time signal</td>
</tr>
<tr>
<td>SIGRTMAX</td>
<td>*</td>
<td>Exit</td>
<td>Last real time signal</td>
</tr>
</tbody>
</table>

The symbols SIGRTMIN through SIGRTMAX are evaluated dynamically to permit future configurability.

Applications should not use any of the signals marked "reserved" in the above table for any purpose, to avoid interfering with their use by the system.

SIGNAL DISPOSITION

A process using a `signal(3C), sigset(3C)` or `sigaction(2)` system call can specify one of three dispositions for a signal: take the default action for the signal, ignore the signal, or catch the signal.

Default Action: SIG_DFL

A disposition of SIG_DFL specifies the default action. The default action for each signal is listed in the table above and is selected from the following:

<table>
<thead>
<tr>
<th>Disposition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit</td>
<td>When it gets the signal, the receiving process is to be terminated with all the consequences outlined in <code>exit(2)</code>.</td>
</tr>
<tr>
<td>Core</td>
<td>When it gets the signal, the receiving process is to be terminated with all the consequences outlined in <code>exit(2)</code>. In addition, a “core image” of the process is constructed in the current working directory.</td>
</tr>
<tr>
<td>Stop</td>
<td>When it gets the signal, the receiving process is to stop. When a process is stopped, all the threads within the process also stop executing.</td>
</tr>
<tr>
<td>Ignore</td>
<td>When it gets the signal, the receiving process is to ignore it. This is identical to setting the disposition to SIG_IGN.</td>
</tr>
</tbody>
</table>

Ignore Signal: SIG_IGN

A disposition of SIG_IGN specifies that the signal is to be ignored. Setting a signal action to SIG_IGN for a signal that is pending causes the pending signal to be discarded, whether or not it is blocked. Any queued values pending are also discarded, and the resources used to queue them are released and made available to queue other signals.

Catch Signal: function address

A disposition that is a function address specifies that, when it gets the signal, the thread within the process that is selected to process the signal will execute the signal handler at the specified address. Normally, the signal handler is passed the signal number as its only argument. If the disposition was set with the `sigaction(2)` function, however, additional arguments can be requested. When the signal handler returns, the receiving process resumes execution at the
point it was interrupted, unless the signal handler makes other arrangements. If an invalid function address is specified, results are undefined.

If the disposition has been set with the `sigset()` or `sigaction()`, the signal is automatically blocked in the thread while it is executing the signal catcher. If a `longjmp()` is used to leave the signal catcher, then the signal must be explicitly unblocked by the user. See `setjmp(3C)`, `signal(3C)` and `sigprocmask(2)`.

If execution of the signal handler interrupts a blocked function call, the handler is executed and the interrupted function call returns -1 to the calling process with `errno` set to `EINTR`. If the `SA_RESTART` flag is set, however, certain function calls will be transparently restarted.

Some signal-generating functions, such as high resolution timer expiration, asynchronous I/O completion, inter-process message arrival, and the `sigqueue(3C)` function, support the specification of an application defined value, either explicitly as a parameter to the function, or in a `sigevent` structure parameter. The `sigevent` structure is defined by `<signal.h>` and contains at least the following members:

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td><code>sigev_notify</code></td>
<td>Notification type</td>
</tr>
<tr>
<td>int</td>
<td><code>sigev_signo</code></td>
<td>Signal number</td>
</tr>
<tr>
<td>union <code>signal</code></td>
<td><code>sigev_value</code></td>
<td>Signal value</td>
</tr>
<tr>
<td>void(*)(union <code>signal</code>)</td>
<td><code>sigev_notify_function</code></td>
<td>Notification function</td>
</tr>
<tr>
<td>(pthread_attr_t *)</td>
<td><code>sigev_notify_attributes</code></td>
<td>Notification attributes</td>
</tr>
</tbody>
</table>

The `signal` union is defined by `<signal.h>` and contains at least the following members:

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td><code>sival_int</code></td>
<td>Integer signal value</td>
</tr>
<tr>
<td>void *</td>
<td><code>sival_ptr</code></td>
<td>Pointer signal value</td>
</tr>
</tbody>
</table>

The `sigev_notify` member specifies the notification mechanism to use when an asynchronous event occurs. The `sigev_notify` member may be defined with the following values:

SIGEV_NONE
No asynchronous notification is delivered when the event of interest occurs.
An asynchronous notification is delivered to an event port when the event of interest occurs. The `sigev_value.sival_ptr` member points to a `port_notify_t` structure defined in `<port.h>` (see `port_associate(3C)`). The event port identifier as well as an application-defined cookie are part of the `port_notify_t` structure.

A queued signal, with its value equal to `sigev_signo`, is generated when the event of interest occurs.

A queued signal directed to the requesting thread, with its value equal to `sigev_signo`, is generated when the event of interest occurs. This notification type currently is supported only by interval timers created using `timer_create(3C)`.

The `sigev_notify_function` is called, with `sigev_value` as its argument, to perform notification when the asynchronous event occurs. The function is executed in an environment as if it were the start routine for a newly created thread with thread attributes `sigev_notify_attributes`. If `sigev_notify_attributes` is `NULL`, the thread runs as a detached thread with default attributes. Otherwise, the thread runs with the specified attributes, but as a detached thread regardless. The thread runs with all blockable signals blocked.

The `sigev_signo` member contains the application-defined value to be passed to the signal-catching function (for notification type `SIGEV_SIGNAL`) at the time of the signal delivery as the `si_value` member of the `siginfo_t` structure, or as the argument to the notification function (for notification type `SIGEV_THREAD`) that is called when the asynchronous event occurs. For notification type `SIGEV_PORT`, `sigev_value.sival_ptr` points to a `port_notify_t` structure that specifies the port and an application-defined cookie.

The `sigev_value` member references the application defined value to be passed to the signal-catching function at the time of the signal delivery as the `si_value` member of the `siginfo_t` structure.

The `sival_int` member is used when the application defined value is of type `int`, and the `sival_ptr` member is used when the application defined value is a pointer.

When a signal is generated by `sigqueue(3C)` or any signal-generating function which supports the specification of an application defined value, the signal is marked pending and, if the SA_SIGINFO flag is set for that signal, the signal is queued to the process along with the application specified signal value. Multiple occurrences of signals so generated are queued in FIFO order. If the SA_SIGINFO flag is not set for that signal, later occurrences of that signal’s generation, when a signal is already queued, are silently discarded.
Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also lockd(1M), Intro(2), alarm(2), exit(2), fcntl(2), getrlimit(2), ioctl(2), kill(2), pause(2), setrlimit(2), sigaction(2), sigaltstack(2), sigprocmask(2), sigsend(2), sigsuspend(2), sigwait(2), port_associate(3C), pthread_create(3C), pthread_kill(3C), pthread_sigmask(3C), setjmp(3C), siginfo.h(3HEAD), signal(3C), sigqueue(3C), sigsetops(3C), timer_create(3C), ucontext.h(3HEAD), wait(3C), attributes(5), standards(5)

Notes The dispositions of the SIGKILL and SIGSTOP signals cannot be altered from their default values. The system generates an error if this is attempted.

The SIGKILL, SIGSTOP, and SIGCANCEL signals cannot be blocked. The system silently enforces this restriction.

The SIGCANCEL signal cannot be directed to an individual thread using pthread_kill(3C), but it can be sent to a process using kill(2), sigsend(2), or sigqueue(3C).

Whenever a process receives a SIGSTOP, SIGTSP, SIGTTIN, or SIGTTOU signal, regardless of its disposition, any pending SIGCONT signal are discarded.

Whenever a process receives a SIGCONT signal, regardless of its disposition, any pending SIGSTOP, SIGTSP, SIGTTIN, and SIGTTOU signals is discarded. In addition, if the process was stopped, it is continued.

SIGPOLL is issued when a file descriptor corresponding to a STREAMS file has a "selectable" event pending. See Intro(2). A process must specifically request that this signal be sent using the I_SETSIG ioctl call. Otherwise, the process will never receive SIGPOLL.

If the disposition of the SIGCHLD signal has been set with signal() or sigset(), or with sigaction() and the SA_NOCLDSTOP flag has been specified, it will only be sent to the calling process when its children exit; otherwise, it will also be sent when the calling process's children are stopped or continued due to job control.

The name SIGCHLD is also defined in this header and identifies the same signal as SIGCHLD. SIGCHLD is provided for backward compatibility, new applications should use SIGCHLD.

The disposition of signals that are inherited as SIG_IGN should not be changed.

Signals which are generated synchronously should not be masked. If such a signal is blocked and delivered, the receiving process is killed.
The `<sys/socket.h>` header defines the `sa_family_t` through typedef.

The `<sys/socket.h>` header defines the `sockaddr` structure that includes the following members:

```c
sa_family_t sa_family /* address family */
char sa_data[] /* socket address (variable-length data) */
```

The `<sys/socket.h>` header defines the `msghdr` structure for `libxnet` interfaces that includes the following members:

```c
void *msg_name /* optional address */
socklen_t msg_namelen /* size of address */
struct iovec *msg_iov /* scatter/gather array */
int msg_iovlen /* members in msg_iov */
void *msg_control /* ancillary data, see below */
socklen_t msg_controllen /* ancillary data buffer len */
int msg_flags /* flags on received message */
```

The `<sys/socket.h>` header defines the `cmsghdr` structure for `libxnet` that includes the following members:

```c
socklen_t cmsg_len /* data byte count, including hdr */
int cmsg_level /* originating protocol */
int cmsg_type /* protocol-specific type */
```

Ancillary data consists of a sequence of pairs, each consisting of a `cmsghdr` structure followed by a data array. The data array contains the ancillary data message, and the `cmsghdr` structure contains descriptive information that allows an application to correctly parse the data.

The values for `cmsg_level` will be legal values for the level argument to the `getsockopt()` and `setsockopt()` functions. The `SCM_RIGHTS` type is supported for level `SOL_SOCKET`.

Ancillary data is also possible at the socket level. The `<sys/socket.h>` header defines the following macros for use as the `cmsg_type` values when `cmsg_level` is `SOL_SOCKET`.

- `SCM_RIGHTS` Indicates that the data array contains the access rights to be sent or received.
- `SCM_UCREDS` Indicates that the data array contains a `ucred_t` to be received. The `ucred_t` is the credential of the sending process at the time the message was sent. This is a Sun-specific, Committed interface. See `ucred_get(3C)`.

The IPv4 data formats generally use the same values for data passed back in `cmsghdr` as for `setsockopt()` to enable the feature. The IPv4 data formats are listed below with the associated payload for each.
The IPv6 data formats use different values for enabling the option and for passing the value back to the application. The IPv6 data formats are listed below with the associated payload for each.

```c
IPPROTO_IPV6
IPV6_RECVPKTINFO
    int_pktinfo, cmsg_type IPV6_PKTINFO
IPPROTO_IPV6
IPV6_RECVTCLASS
    uint_t, cmsg_type IPV6_TCLASS
IPPROTO_IPV6
IPV6_RECVPATHMTU
    ip6_mtuinfo, cmsg_type IPV6_PATHMTU
IPPROTO_IPV6
IPV6_RECVHOLIMIT
    uint_t, cmsg_type IPV6_HOLIMIT
IPPROTO_IPV6
IPV6_RECVHOPOPTS
    variable-length IPv6 options, cmsg_type IPV6_HOPOPTS
IPPROTO_IPV6
IPV6_RECVDSTOPTS
```

The IPv4 data formats used different values for enabling the option and for passing the value back to the application. The IPv4 data formats are listed below with the associated payload for each.

```c
IPPROTO_IP
IP_RECVDSTADDR
    ipaddr_t, IP address
IPPROTO_IP
IP_RECVOPTS
    variable-length IP options, up to 40 bytes
IPPROTO_IP
IP_RECVIF
    uint_t, ifIndex number
IPPROTO_IP
IP_RECVSLLA
    struct sockaddr_dl, link layer address
IPPROTO_IP
IP_RECVTTL
    uint8_t
SOL_SOCKET
SO_RECVUCRED
    ucred_t — cmsghdr.cmsg_type is SCM_UCRED, not SO_RECVUCRED
```
variable-length IPv6 options, cmsg_type IPV6_DSTOPTS
IPPROTO_IPV6
IPV6_RECVHDR
variable-length IPv6 options, cmsg_type IPV6_RTHDR
IPPROTO_IPV6
IPV6_RECVHDR_DSTOPTS
variable-length IPv6 options, cmsg_type IPV6_DSTOPTS

The <sys/socket.h> header defines the following macros to gain access to the data arrays in the ancillary data associated with a message header:

\texttt{CMSG_DATA(cmsg)}

If the argument is a pointer to a \texttt{cmsghdr} structure, this macro returns an unsigned character pointer to the data array associated with the \texttt{cmsghdr} structure.

\texttt{CMSG_NXTHDR(mhdr, cmsg)}

If the first argument is a pointer to a \texttt{msghdr} structure and the second argument is a pointer to a \texttt{cmsghdr} structure in the ancillary data, pointed to by the \texttt{msg_control} field of that \texttt{msghdr} structure, this macro returns a pointer to the next \texttt{cmsghdr} structure, or a null pointer if this structure is the last \texttt{msghdr} in the ancillary data.

\texttt{CMSG_FIRSTHDR(mhdr)}

If the argument is a pointer to a \texttt{msghdr} structure, this macro returns a pointer to the first \texttt{msghdr} structure in the ancillary data associated with this \texttt{msghdr} structure, or a null pointer if there is no ancillary data associated with the \texttt{msghdr} structure.

\texttt{CMSG_SPACE(len)}

Given the length of an ancillary data object, \texttt{CMSG_SPACE()} returns the space required by the object and its \texttt{cmsghdr} structure, including any padding needed to satisfy alignment requirements. This macro can be used, for example, to allocate space dynamically for the ancillary data. This macro should not be used to initialize the \texttt{cmsg_len} member of a \texttt{msghdr} structure. Use the \texttt{CMSG_LEN()} macro instead.

\texttt{CMSG_LEN(len)}

Given the length of an ancillary data object, \texttt{CMSG_LEN()} returns the value to store in the \texttt{cmsg_len} member of the \texttt{msghdr} structure, taking into account any padding needed to satisfy alignment requirements.

The <sys/socket.h> header defines the \texttt{linger} structure that includes the following members:

\begin{verbatim}
int l_onoff /* indicates whether linger option is enabled */
int l_linger /* linger time, in seconds */
\end{verbatim}

The <sys/socket.h> header defines the following macros:

\begin{verbatim}
SOCK_DGRAM Datagram socket
SOCK_STREAM Byte-stream socket
\end{verbatim}
SOCK_SEQPACKET Sequenced-packet socket

The `<sys/socket.h>` header defines the following macros for use as the `level` argument of `setsockopt()` and `getsockopt()`:

- **SOL_SOCKET**: Options to be accessed at the socket level, not the protocol level.
- **SOLROUTE**: Options to be accessed at the routing socket level, not the protocol level.

The `<sys/socket.h>` header defines the following macros for use as the `option_name` argument of `getsockopt()` or `setsockopt()` calls:

- **SO_DEBUG**: Debugging information is being recorded.
- **SO_ACCEPTCONN**: Socket is accepting connections.
- **SO_BROADCAST**: Transmission of broadcast messages is supported.
- **SO_REUSEADDR**: Reuse of local addresses is supported.
- **SO_KEEPALIVE**: Connections are kept alive with periodic messages.
- **SO_LINGER**: Socket lingers on close.
- **SO_OOBINLINE**: Out-of-band data is transmitted in line.
- **SO_SNDBUF**: Send buffer size.
- **SO_RCVBUF**: Receive buffer size.
- **SO_ERROR**: Socket error status.
- **SO_TYPE**: Socket type.
- **SO_RECVCRED**: Request the reception of user credential ancillary data. This is a Sun-specific, Committed interface. See `ucred_get(3C)`.
- **SO_MAC_EXEMPT**: Mandatory Access Control (MAC) exemption for unlabeled peers. This option is available only if the system is configured with Trusted Extensions.
- **SO_ALLZONES**: Bypass zone boundaries (privileged).

The `<sys/socket.h>` header defines the following macros for use as the valid values for the `msg_flags` field in the `msghdr` structure, or the flags parameter in `recvfrom()`, `recvmsg()`, `sendto()`, or `sendmsg()` calls:

- **MSG_CTRUNC**: Control data truncated.
- **MSG_EOR**: Terminates a record (if supported by the protocol).
- **MSG_OOB**: Out-of-band data.
- **MSG_PEEK**: Leave received data in queue.
Normal data truncated.

Wait for complete message.

The `<sys/socket.h>` header defines the following macros:

```
AF_UNIX     UNIX domain sockets
AF_INET     Internet domain sockets
```

The `<sys/socket.h>` header defines the following macros:

```
SHUT_RD     Disables further receive operations.
SHUT_WR     Disables further send operations.
SHUT_RDWR   Disables further send and receive operations.
```

The `<sys/socket.h>` header defines the `msghdr` structure for `libsocket` interfaces that include the following members:

```
void       *msg_name       /* optional address */
socklen_t  msg namelen     /* size of address */
struct iovec *msg iov       /* scatter/gather array */
int        msg iovlen      /* # elements in msg iov */
caddr_t    msg accrights   /* access rights sent/received */
```

The `msg_name` and `msg namelen` parameters specify the destination address when the socket is unconnected. The `msg name` can be specified as a NULL pointer if no names are desired or required. The `msg iov` and `msg iovlen` parameters describe the scatter-gather locations, as described in `read(2)`. The `msg accrights` parameter specifies the buffer in which access rights sent along with the message are received. The `msg accrightslen` specifies the length of the buffer.

Attributes See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also

`accept(3SOCKET), accept(3XNET), bind(3SOCKET), bind(3XNET), connect(3SOCKET), connect(3XNET), getpeername(3SOCKET), getpeername(3XNET), getpeerucred(3C), getsockname(3SOCKET), getsockname(3XNET), getsockopt(3SOCKET), getsockopt(3XNET), libsocket(3LIB), listen(3SOCKET), listen(3XNET), recv(3SOCKET), recv(3XNET), recvfrom(3SOCKET), recvfrom(3XNET), recvmsg(3SOCKET), recvmsg(3XNET), send(3SOCKET), send(3XNET), sendmsg(3SOCKET), sendmsg(3XNET), sendto(3SOCKET), sendto(3XNET),`
setsockopt(3SOCKET), setsockopt(3XNET), shutdown(3SOCKET), shutdown(3XNET),
socket(3SOCKET), socket(3XNET), socketpair(3SOCKET), socketpair(3XNET),
ucred_get(3C), attributes(5), standards(5)
Name

Synopsis

Description

The `<spawn.h>` header defines the `posix_spawnattr_t` and `posix_spawn_file_actions_t` types used in performing spawn operations.

The `<spawn.h>` header defines the flags that can be set in a `posix_spawnattr_t` object using the `posix_spawnattr_setflags()` function:

- POSIX_SPAWN_RESETIDS
- POSIX_SPAWN_SETGID
- POSIX_SPAWN_SETGROUPOID
- POSIX_SPAWN_SETSCHEDPARAM
- POSIX_SPAWN_SETSCHEDULER
- POSIX_SPAWN_SETSIGDEF
- POSIX_SPAWN_SETSIGMASK

Inclusion of the `<spawn.h>` header can make visible symbols defined in the `<sched.h>`, `<signal.h>`, and `<sys/types.h>` headers.

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also

`sched.h(3HEAD)`, `semaphore.h(3HEAD)`, `signal.h(3HEAD)`, `types.h(3HEAD)`, `attributes(5)`, `standards(5)`
The system calls `stat()`, `lstat()` and `fstat()` return data in a `stat` structure, which is defined in `<stat.h>`.

The constants used in the `st_mode` field are also defined in this file:

```c
#define S_IFMT /* type of file */
#define S_IAMB /* access mode bits */
#define S_IFIFO /* fifo */
#define S_IFCHR /* character special */
#define S_IFDIR /* directory */
#define S_IFNAM /* XENIX special named file */
#define S_INSEM /* XENIX semaphore subtype of IFNAM */
#define S_INSHD /* XENIX shared data subtype of IFNAM */
#define S_IFBLK /* block special */
#define S_IFREG /* regular */
#define S_IFLNK /* symbolic link */
#define S_IFSOCK /* socket */
#define S_IFDOOR /* door */
#define S_ISUID /* set user id on execution */
#define S_ISGID /* set group id on execution */
#define S_ISVTX /* save swapped text even after use */
#define S_IREAD /* read permission, owner */
#define S_IWRITE /* write permission, owner */
#define S_IEXEC /* execute/search permission, owner */
#define S_ENFMT /* record locking enforcement flag */
#define S_IRWXU /* read, write, execute: owner */
#define S_IRUSR /* read permission: owner */
#define S_IWUSR /* write permission: owner */
```
#define S_IXUSR /* execute permission: owner */
#define S_IRWXG /* read, write, execute: group */
#define S_IRGRP /* read permission: group */
#define S_IWGRP /* write permission: group */
#define S_IXGRP /* execute permission: group */
#define S_IRWXO /* read, write, execute: other */
#define S_IROTH /* read permission: other */
#define S_IWOTH /* write permission: other */
#define S_IXOTH /* execute permission: other */

The following macros are for POSIX conformance (see standards(5)):

#define S_ISBLK(mode) blockspecialfile
#define S_ISCHR(mode) characterspecialfile
#define S_ISDIR(mode) directoryfile
#define S_ISFIFO(mode) pipeorfifo file
#define S_ISREG(mode) regularfile
#define S_ISSOCK(mode) socketfile

The following symbolic constants are defined as distinct integer values outside of the range [0, 999 999 999], for use with the futimens() and utimensat() functions:

#define UTIME_NOW use the current time
#define UTIME_OMIT no time change

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also futimens(2), stat(2), types.h(3HEAD), attributes(5), standards(5)
The `<sys/statvfs.h>` header defines the `statvfs` structure, which includes the following members:

```c
unsigned long f_bsize /* file system block size */
unsigned long f_frsize /* fundamental file system block size */
fsblkcnt_t f_blocks /* total number of blocks on file system in units of f_frsize */
fsblkcnt_t f_bfree /* total number of free blocks */
fsblkcnt_t f_bavail /* number of free blocks available to non-privileged process */
fsfilcnt_t f_files /* total number of file serial numbers */
fsfilcnt_t f_ffree /* total number of free file serial numbers */
fsfilcnt_t f_favail /* number of file serial numbers available to non-privileged */
unsigned long f_fsid /* process file system ID */
unsigned long f_flag /* bit mask of f_flag values */
unsigned long f_namemax /* maximum filename length */
```

The `fsblkcnt_t` and `fsfilcnt_t` types are defined as described in `<sys/types.h>`. See `types.h(3HEAD)`.

The following flags for the `f_flag` member are defined:

- **ST_RDONLY** read-only file system
- **ST_NOSUID** does not support `setuid()`/`setgid()` semantics

Attributes See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>

See Also `statvfs(2), types.h(3HEAD), attributes(5), standards(5)`
#include <stdbool.h>

The `<stdbool.h>` header defines the following macros:

- `bool` expands to `_Bool`
- `true` expands to the integer constant 1
- `false` expands to the integer constant 0
- `__bool_true_false_are_defined` expands to the integer constant 1

An application can undefine and then possibly redefine the macros `bool`, `true`, and `false`.

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>

See Also `attributes(5), standards(5)`
includé <stddef.h>

The `<stddef.h>` header defines the following macros:

- **NULL**: Null pointer constant.
- **offsetof(type, member-designator)**: Integer constant expression of type `size_t`, the value of which is the offset in bytes to the structure member (`member-designator`), from the beginning of its structure (`type`).

The `<stddef.h>` header defines the following types:

- **ptrdiff_t**: Signed integer type of the result of subtracting two pointers.
- **wchar_t**: Integer type whose range of values can represent distinct wide-character codes for all members of the largest character set specified among the locales supported by the compilation environment: the null character has the code value 0 and each member of the portable character set has a code value equal to its value when used as the lone character in an integer character constant.
- **size_t**: Unsigned integer type of the result of the `sizeof` operator.

The implementation supports one or more programming environments in which the widths of `ptrdiff_t`, `size_t`, and `wchar_t` are no greater than the width of type `long`. The names of these programming environments can be obtained using the `confstr(3C)` function or the `getconf(1)` utility.

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Attribute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>

See Also

`getconf(1), confstr(3C), types.h(3HEAD), wchar.h(3HEAD), attributes(5), standards(5)`
#include <stdint.h>

The `<stdint.h>` header declares sets of integer types having specified widths, and defines corresponding sets of macros. It also defines macros that specify limits of integer types corresponding to types defined in other standard headers.

The "width" of an integer type is the number of bits used to store its value in a pure binary system; the actual type can use more bits than that (for example, a 28-bit type could be stored in 32 bits of actual storage). An N-bit signed type has values in the range -2^{N-1} or $1 - 2^{N-1}$ to $2^{N-1} - 1$, while an N-bit unsigned type has values in the range 0 to $2^N - 1$.

Types are defined in the following categories:

- integer types having certain exact widths
- integer types having at least certain specified widths
- fastest integer types having at least certain specified widths
- integer types wide enough to hold pointers to objects
- integer types having greatest width

Some of these types may denote the same type.

Corresponding macros specify limits of the declared types and construct suitable constants.

For each type described herein that the implementation provides, the `<stdint.h>` header declares that `typedef` name and defines the associated macros. Conversely, for each type described herein that the implementation does not provide, the `<stdint.h>` header does not declare that `typedef` name, nor does it define the associated macros. An implementation provides those types described as required, but need not provide any of the others (described as optional).

Integer Types

When `typedef` names differing only in the absence or presence of the initial `u` are defined, they denote corresponding signed and unsigned types as described in the ISO/IEC 9899:1999 standard, Section 6.2.5; an implementation providing one of these corresponding types must also provide the other.

In the following descriptions, the symbol N represents an unsigned decimal integer with no leading zeros (for example, 8 or 24, but not 04 or 048).

Exact-width integer types

The `typedef` name `int N_t` designates a signed integer type with width N, no padding bits, and a two's-complement representation. Thus, `int 8_t` denotes a signed integer type with a width of exactly 8 bits.

The `typedef` name `uint N_t` designates an unsigned integer type with width N. Thus, `uint 24_t` denotes an unsigned integer type with a width of exactly 24 bits.

The following types are required:
If an implementation provides integer types with width 64 that meet these requirements, then the following types are required:

```c
int64_t
uint64_t
```

In particular, this is the case if any of the following are true:

- The implementation supports the `_POSIX_V6_ILP32_OFFBIG` programming environment and the application is being built in the `_POSIX_V6_ILP32_OFFBIG` programming environment (see the Shell and Utilities volume of IEEE Std 1003.1-200x, c99, Programming Environments).
- The implementation supports the `_POSIX_V6_LP64_OFF64` programming environment and the application is being built in the `_POSIX_V6_LP64_OFF64` programming environment.
- The implementation supports the `_POSIX_V6_LPBIG_OFFBIG` programming environment and the application is being built in the `_POSIX_V6_LPBIG_OFFBIG` programming environment.

All other types of this form are optional.

Minimum-width integer types

The `typedef` name `int_leastN_t` designates a signed integer type with a width of at least \(N\), such that no signed integer type with lesser size has at least the specified width. Thus, `int_least32_t` denotes a signed integer type with a width of at least 32 bits.

The `typedef` name `uint_leastN_t` designates an unsigned integer type with a width of at least \(N\), such that no unsigned integer type with lesser size has at least the specified width. Thus, `uint_least16_t` denotes an unsigned integer type with a width of at least 16 bits.

The following types are required:

```c
int_least8_t
int_least16_t
int_least32_t
int_least64_t
uint_least8_t
uint_least16_t
uint_least32_t
uint_least64_t
```

All other types of this form are optional.
Fastest minimum-width integer types
 Each of the following types designates an integer type that is usually fastest to operate with
 among all integer types that have at least the specified width.

 The designated type is not guaranteed to be fastest for all purposes; if the implementation
 has no clear grounds for choosing one type over another, it will simply pick some integer
 type satisfying the signedness and width requirements.

 The typedef name int_fastN_t designates the fastest signed integer type with a width of
 at least N. The typedef name uint_fastN_t designates the fastest unsigned integer type
 with a width of at least N.

 The following types are required:
 int_fast8_t
 int_fast16_t
 int_fast32_t
 int_fast64_t
 uint_fast8_t
 uint_fast16_t
 uint_fast32_t
 uint_fast64_t

 All other types of this form are optional.

Integer types capable of holding object pointers
 intptr_t Designates a signed integer type with the property that any valid pointer to
 void can be converted to this type, then converted back to a pointer to void,
 and the result will compare equal to the original pointer.

 uintptr_t Designates an unsigned integer type with the property that any valid
 pointer to void can be converted to this type, then converted back to a
 pointer to void, and the result will compare equal to the original pointer.

 On standard-conforming systems, the intptr_t and uintptr_t types are required;
 otherwise, they are optional.

Greatest-width integer types
 intmax_t Designates a signed integer type capable of representing any value of any
 signed integer type.

 uintmax_t Designates an unsigned integer type capable of representing any value of
 any unsigned integer type.

 These types are required.

 Applications can test for optional types by using the corresponding limit macro from
 Limits of Specified-Width Integer Types.
The following macros specify the minimum and maximum limits of the types declared in the `<stdint.h>` header. Each macro name corresponds to a similar type name in `Integer Types`.

Each instance of any defined macro is replaced by a constant expression suitable for use in `#if` preprocessing directives. This expression has the same type as would an expression that is an object of the corresponding type converted according to the integer promotions. Its implementation-defined value is equal to or greater in magnitude (absolute value) than the corresponding value given below, with the same sign, except where stated to be exactly the given value.

Limits of exact-width integer types
- Minimum values of exact-width signed integer types:
 - `{INTN_MIN}` Exactly \(-2^{N-1}\)
- Maximum values of exact-width signed integer types:
 - `{INTN_MAX}` Exactly \(2^{N-1}-1\)
- Maximum values of exact-width unsigned integer types:
 - `{UINTN_MAX}` Exactly \(2^N-1\)

Limits of minimum-width integer types
- Minimum values of minimum-width signed integer types:
 - `{INT_LEASTN_MIN}` \(-2^{N-1}-1\)
- Maximum values of minimum-width signed integer types:
 - `{INT_LEASTN_MAX}` \(2^{N-1}-1\)
- Maximum values of minimum-width unsigned integer types:
 - `{UINT_LEASTN_MAX}` \(2^N-1\)

Limits of fastest minimum-width integer types
- Minimum values of fastest minimum-width signed integer types:
 - `{INT_FASTN_MIN}` \(-2^{N-1}-1\)
- Maximum values of fastest minimum-width signed integer types:
 - `{INT_FASTN_MAX}` \(2^{N-1}-1\)
- Maximum values of fastest minimum-width unsigned integer types:
 - `{UINT_FASTN_MAX}` \(2^N-1\)

Limits of integer types capable of holding object pointers
- Minimum value of pointer-holding signed integer type:
 - `{INTPTR_MIN}` \(-2^{15}-1\)
Maximum value of pointer-holding signed integer type:
\[\text{INTPTR_MAX} = 2^{15} - 1 \]

Minimum value of pointer-holding signed integer type:
\[\text{UINTPTR_MAX} = 2^{16} - 1 \]

Limits of greatest-width integer types
- Minimum value of greatest-width signed integer type:
 \[\text{INTMAX_MIN} = -(2^{63} - 1) \]
- Maximum value of greatest-width signed integer type:
 \[\text{INTMAX_MIN} = 2^{63} - 1 \]
- Maximum value of greatest-width unsigned integer type:
 \[\text{UINTMAX_MIN} = 2^{64} - 1 \]

The following macros specify the minimum and maximum limits of integer types corresponding to types defined in other standard headers.

Each instance of these macros is replaced by a constant expression suitable for use in \#if preprocessing directives. This expression has the same type as would an expression that is an object of the corresponding type converted according to the integer promotions. Its implementation-defined value is equal to or greater in magnitude (absolute value) than the corresponding value given below, with the same sign.

Limits of \texttt{ptrdiff_t}:
- \[\text{PTRDIFF_MIN} = -65535 \]
- \[\text{PTRDIFF_MAX} = +65535 \]

Limits of \texttt{sig_atomic_t}:
- \[\text{SIG_ATOMIC_MIN} \]
- \[\text{SIG_ATOMIC_MAX} \]

Limits of \texttt{size_t}:
- \[\text{SIZE_MAX} = 65535 \]

Limits of \texttt{wchar_t}:
- \[\text{WCHAR_MIN} \]
- \[\text{WCHAR_MAX} \]
Limits of `wint_t`:

\[
\begin{align*}
\{WINT_MIN\} & \quad \text{See below.} \\
\{WINT_MAX\} & \quad \text{See below.}
\end{align*}
\]

If `sig_atomic_t` (see the `<signal.h>` header) is defined as a signed integer type, the value of `SIG_ATOMIC_MIN` is no greater than -127 and the value of `SIG_ATOMIC_MAX` is no less than 127. Otherwise, `sig_atomic_t` is defined as an unsigned integer type, the value of `SIG_ATOMIC_MIN` is 0, and the value of `SIG_ATOMIC_MAX` is no less than 255.

If `wchar_t` (see the `<stddef.h>` header) is defined as a signed integer type, the value of `WCHAR_MIN` is no greater than -127 and the value of `WCHAR_MAX` is no less than 127. Otherwise, `wchar_t` is defined as an unsigned integer type, and the value of `WCHAR_MIN` is 0 and the value of `WCHAR_MAX` is no less than 255.

If `wint_t` (see the `<wchar.h>` header) is defined as a signed integer type, the value of `WINT_MIN` is no greater than -32767 and the value of `WINT_MAX` is no less than 32767. Otherwise, `wint_t` is defined as an unsigned integer type, and the value of `WINT_MIN` is 0 and the value of `WINT_MAX` is no less than 65535.

The following macros expand to integer constant expressions suitable for initializing objects that have integer types corresponding to types defined in the `<stdint.h>` header. Each macro name corresponds to a similar type name listed under minimum-width integer types and greatest-width integer types.

Each invocation of one of these macros expands to an integer constant expression suitable for use in `#if` preprocessing directives. The type of the expression has the same type as would an expression that is an object of the corresponding type converted according to the integer promotions. The value of the expression is that of the argument. The argument in any instance of these macros is a decimal, octal, or hexadecimal constant with a value that does not exceed the limits for the corresponding type.

Macros for minimum-width integer constant expressions

The macro `INTN_C(value)` expands to an integer constant expression corresponding to the type `int_leastN_t`. The macro `UINTN_C(value)` expands to an integer constant expression corresponding to the type `uint_leastN_t`. For example, if `uint_least64_t` is a name for the type unsigned long long, then `UINT64_C(0x123)` might expand to the integer constant `0x123ULL`.

Macros for greatest-width integer constant expressions

The following macro expands to an integer constant expression having the value specified by its argument and the type `intmax_t`:

\[
\text{INTMAX_C(value)}
\]

The following macro expands to an integer constant expression having the value specified by its argument and the type `uintmax_t`:
UINTMAX_C(value)

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also inttypes.h(3HEAD), signal.h(3HEAD), stddef.h(3HEAD), wchar.h(3HEAD), attributes(5), standards(5)
Name	stdio.h, stdin - standard buffered input/output
Synopsis | include stdio.h
Description | The `<stdio.h>` header defines the following macros as positive integer constant expressions:

- `BUFSIZE` | size of `<stdio.h>` buffers
- `_IOFBF` | input/output fully buffered
- `_IOLBF` | input/output line buffered
- `_IONBF` | input/output unbuffered
- `L_ctermid` | maximum size of character array to hold `ctermid()` output
- `L_tmpnam` | maximum size of character array to hold `tmpnam()` output
- `SEEK_CUR` | seek relative to current position
- `SEEK_END` | seek relative to end-of-file
- `SEEK_SET` | seek relative to start-of-file

The following macros are defined as positive integer constant expressions that denote implementation limits:

- `{FILENAME_MAX}` | Maximum size in bytes of the longest filename string that the implementation guarantees can be opened.
- `{FOPEN_MAX}` | Number of streams that the implementation guarantees can be opened simultaneously. The value is at least eight.
- `{TMP_MAX}` | Minimum number of unique filenames generated by `tmpnam()`. Maximum number of times an application can call `tmpnam()` reliably. The value of `{TMP_MAX}` is at least 25. On XSI-conformant systems, the value of `{TMP_MAX}` is at least 10000.

The following macro name is defined as a negative integer constant expression:

- `EOF` | end-of-file return value

The following macro name is defined as a null pointer constant:

- `NULL` | null pointer

The following macro name is defined as a string constant:

- `P_tmpdir` | default directory prefix for `tmpnam()`

The following is defined as expressions of type “pointer to FILE” point to the FILE objects associated, respectively, with the standard error, input, and output streams:

- `stderr` | standard error output stream
stdin standard input stream
stdout standard output stream

The following data types are defined through typedef:

FILE structure containing information about a file
fpos_t non-array type containing all information needed to specify uniquely every position within a file
va_list as described in <stdarg.h>
size_t as described in <stdbool.h>

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also rename(2), ctermid(3C), fclose(3C), flush(3C), fgetc(3C), fgetpos(3C), fgetws(3C), flockfile(3C), fopen(3C), fprintf(3C), fputc(3C), fputc(3C), fputs(3C), putwc(3C), putws(3C), fread(3C), freopen(3C), fseek(3C), fsetpos(3C), ftell(3C), fwrite(3C), getwchar(3C), getopt(3C), perror(3C), popen(3C), printf(3C), remove(3C), rewind(3C), scanf(3C), setbuf(3C), stdio(3C), system(3C), tmpfile(3C), tmpnam(3C), ungetc(3C), vprintf(3C), attributes(5), standards(5)
Synopsis

The `<stdlib.h>` header defines the following macros:

- **EXIT_FAILURE**: Unsuccessful termination for `exit()`; evaluates to a non-zero value. See `exit(3C)`.
- **EXIT_SUCCESS**: Successful termination for `exit()`; evaluates to 0.
- **NULL**: Null pointer.
- **RAND_MAX**: Maximum value returned by `rand()`; at least 32767. See `rand(3C)`.
- **MB_CUR_MAX**: Integer expression whose value is the maximum number of bytes in a character specified by the current locale.

The following data types are defined through `typedef`:

- **div_t**: Structure type returned by the `div()` function
- **ldiv_t**: Structure type returned by the `ldiv()` function
- **lldiv_t**: Structure type returned by the `lldiv()` function
- **size_t**: As described in `<stdlib.h>`
- **wchar_t**: As described in `<stddef.h>`

See `div(3C)`, which covers `div()`, `ldiv()`, and `lldiv()`, and `<stdlib.h>(3HEAD)`.

In addition, the symbolic names and macros listed below are defined as in `<sys/wait.h>`, for use in decoding the return value from `system()`. See `wait.h(3HEAD)` and `system(3C)`.

- **WNOHANG**
- **WUNTRACED**
- **WEXITSTATUS**
- **WIFEXITED**
- **WIFSIGNALED**
- **WIFSTOPPED**
- **WSTOPSIG**
- **WTERMSIG**

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>
See Also a64l(3C), abort(3C), abs(3C), atexit(3C), bsearch(3C), div(3C), drand48(3C), exit(3C),
getenv(3C), getsubopt(3C), grantpt(3C), malloc(3C), mblen(3C), mbstowcs(3C),
mbtowc(3C), mkstemp(3C), ptsname(3C), putenv(3C), qsort(3C), random(3C), realpath(3C),
strtol(3C), strtol(3C), strtoul(3C), unlockpt(3C), wcstombs(3C), wctomb(3C),
limits.h(3HEAD), math.h(3HEAD), stddef.h(3HEAD), types.h(3HEAD),
wait.h(3HEAD), attributes(5), standards(5)
Name string.h, string – string operations

Synopsis #include <string.h>

Description The <string.h> header defines the following:

 NULL null pointer constant
 size_t as described in <stddef.h>

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also memory(3C), strcoll(3C), string(3C), strxfrm(3C), stddef.h(3HEAD), types.h(3HEAD), attributes(5), standards(5)
#include <strings.h>

The `size_t` type specified in `<strings.h>` is defined through `typedef` as described in `<stddef.h>`.

Attributes See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code>.</td>
</tr>
</tbody>
</table>

See Also `ffs(3C), string(3C), stddef.h(3HEAD), attributes(5), standards(5)`
The `stropts.h` header defines the `bandinfo` structure, which includes the following members:

```c
unsigned char bi_pri /* priority band */
int bi_flag /* flushing type */
```

The `stropts.h` header defines the `strpeek` structure that includes the following members:

```c
struct strbuf ctlbuf /* control portion of the message */
struct strbuf databuf /* data portion of the message */
t_uscalar_t flags /* RS_HIPRI or 0 */
```

The `stropts.h` header defines the `strbuf` structure that includes the following members:

```c
int maxlen /* maximum buffer length */
int len /* length of data */
char *buf /* pointer to buffer */
```

The `stropts.h` header defines the `strfdinsert` structure that includes the following members:

```c
struct strbuf ctlbuf /* control portion of the message */
struct strbuf databuf /* data portion of the message */
t_uscalar_t flags /* RS_HIPRI or 0 */
int fildes /* file descriptor of the other stream */
int offset /* relative location of the stored value */
```

The `stropts.h` header defines the `strioctl` structure that includes the following members:

```c
int ic_cmd /* ioctl() command */
int ic_timeout /* timeout for response */
int ic_len /* length of data */
char *ic_dp /* pointer to buffer */
```

The `stropts.h` header defines the `strrecvfd` structure that includes the following members:

```c
int fda /* received file descriptor */
uid_t uid /* UID of sender */
gid_t gid /* GID of sender */
```

The `uid_t` and `gid_t` types are defined through typedef as described in `<sys/types.h>`. See `types.h(3HEAD)`.

The `stropts.h` header defines the `t_scalar_t` and `t_uscalar_t` types, respectively, as signed and unsigned opaque types of equal length of at least 32 bits.
The `<stropts.h>` header defines the `str_list` structure that includes the following members:

```c
int sl_nmods /* number of STREAMS module names */
struct str_mlist *sl_modlist /* STREAMS module names */
```

The `<stropts.h>` header defines the `str_mlist` structure that includes the following member:

```c
char l_name[FMNAMESZ+1] /* a STREAMS module name */
```

The following macros are defined for use as the request argument to `ioctl()`:

- `I_PUSH` Push a STREAMS module.
- `I_POP` Pop a STREAMS module.
- `I_LOOK` Get the top module name.
- `I_FLUSH` Flush a stream.
- `I_FLUSHBAND` Flush one band of a stream.
- `I_SETSIG` Ask for notification signals.
- `I_GETSIG` Retrieve current notification signals.
- `I_FIND` Look for a STREAMS module.
- `I_PEEK` Peek at the top message on a stream.
- `I_SRDOPT` Set the read mode.
- `I_GRDOPT` Get the read mode.
- `I_NREAD` Size the top message.
- `I_FDINSERT` Send implementation-defined information about another stream.
- `I_STR` Send a STREAMS `ioctl()`.
- `I_SWROPT` Set the write mode.
- `I_GWROPT` Get the write mode.
- `I_SENDFD` Pass a file descriptor through a STREAMS pipe.
- `I_RECVFD` Get a file descriptor sent via `I_SENDFD`.
- `I_LIST` Get all the module names on a stream.
- `I_ATMARK` Is the top message “marked”?
- `I_CKBAND` See if any messages exist in a band.
- `I_GETBAND` Get the band of the top message on a stream.
I_CANPUT Is a band writable?
I_SETCLTIME Set close time delay.
I_GETCLTIME Get close time delay.
I_LINK Connect two streams.
I_UNLINK Disconnect two streams.
I_PLINK Persistently connect two streams.
I_PUNLINK Dismantle a persistent STREAMS link.

The following macro is defined for use with I_LOOK:

FMNAMESZ minimum size in bytes of the buffer referred to by the arg argument

The following macros are defined for use with I_FLUSH:

FLUSHR flush read queues
FLUSHW flush write queues
FLUSHRW flush read and write queues

The following macros are defined for use with I_SETSIG:

S_RDNORM A normal (priority band set to 0) message has arrived at the head of a stream head read queue.
S_RDBAND A message with a non-zero priority band has arrived at the head of a stream head read queue.
S_INPUT A message, other than a high-priority message, has arrived at the head of a stream head read queue.
S_HIPRI A high-priority message is present on a stream head read queue.
S_OUTPUT The write queue for normal data (priority band 0) just below the stream head is no longer full. This notifies the process that there is room on the queue for sending (or writing) normal data downstream.
S_WRNORM Equivalent to S_OUTPUT.
S_WRBAND The write queue for a non-zero priority band just below the stream head is no longer full.
S_MSG A STREAMS signal message that contains the SIGPOLL signal reaches the front of the stream head read queue.
S_ERROR Notification of an error condition reaches the stream head.
S_HANGUP Notification of a hangup reaches the stream head.
S_BANDURG When used in conjunction with S_RDBAND, SIGURG is generated instead of SIGPOLL when a priority message reaches the front of the stream head read queue.

The following macro is defined for use with I_PEEK:

RS_HIPRI Only look for high-priority messages.

The following macros are defined for use with I_SRDOPT:

RNORM Byte-stream mode, the default.
RMSGD Message-discard mode.
RMSGN Message-non-discard mode.
RPROTNORM Fail read() with [EBADMSG] if a message containing a control part is at the front of the stream head read queue.
RPROTDAT Deliver the control part of a message as data when a process issues a read()
RPROTDIS Discard the control part of a message, delivering any data part, when a process issues a read()

The following macro is defined for use with I_SWOPT:

SNDZERO Send a zero-length message downstream when a write() of 0 bytes occurs.

The following macros are defined for use with I_ATMARK:

ANYMARK Check if the message is marked.
LASTMARK Check if the message is the last one marked on the queue.

The following macro is defined for use with I_UNLINK:

MUXID_ALL Unlink all stream linked to the stream associated with fildes.

The following macros are defined for getmsg(), getpmsg(), putmsg(), and putpmsg():

MSG_ANY Receive any message.
MSG_BAND Receive message from specified band.
MSG_HIPRI Send/receive high-priority message.
MORECTL More control information is left in message.
MOREDATA More data is left in message.

The <stropts.h> header can make visible all of the symbols from <unistd.h>.
Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also close(2), fcntl(2), getmsg(2), ioctl(2), open(2), pipe(2), poll(2), putmsg(2), read(2), write(2), signal(3C), types.h(3HEAD), unistd.h(3HEAD), attributes(5), standards(5)
The <syslog.h> header defines the following symbolic constants, zero or more of which can be OR'ed together to form the logopt option of openlog():

- LOG_PID: Log the process ID with each message.
- LOG_CONS: Log to the system console on error.
- LOG_NDELAY: Connect to syslog daemon immediately.
- LOG_ODELAY: Delay open until syslog() is called.
- LOG_NOWAIT: Do not wait for child processes.

The following symbolic constants are defined as possible values of the facility argument to openlog():

- LOG_KERN: reserved for message generated by the system
- LOG_USER: message generated by a process
- LOG_MAIL: reserved for message generated by mail system
- LOG_NEWS: reserved for message generated by news system
- LOG_UUCP: reserved for message generated by UUCP system
- LOG_DAEMON: reserved for message generated by system daemon
- LOG_AUTH: reserved for message generated by authorization daemon
- LOG_CRON: reserved for message generated by clock daemon
- LOG_LPR: reserved for message generated by printer system
- LOG_LOCAL0: reserved for local use
- LOG_LOCAL1: reserved for local use
- LOG_LOCAL2: reserved for local use
- LOG_LOCAL3: reserved for local use
- LOG_LOCAL4: reserved for local use
- LOG_LOCAL5: reserved for local use
- LOG_LOCAL6: reserved for local use
- LOG_LOCAL7: reserved for local use
The following is declared as a macro for constructing the `maskpri` argument to `setlogmask()`. The following macro expands to an expression of type `int` when the argument `pri` is an expression of type `int`:

\[\text{LOG_MASK}(\text{pri}) \]
A mask for priority `pri`

The following constants are defined as possible values for the `priority` argument of `syslog()`:

- `LOG_EMERG` A panic condition was reported to all processes.
- `LOG_ALERT` A condition that should be corrected immediately.
- `LOG_CRIT` A critical condition.
- `LOG_ERR` An error message.
- `LOG_WARNING` A warning message.
- `LOG_NOTICE` A condition requiring special handling.
- `LOG_INFO` A general information message.
- `LOG_DEBUG` A message useful for debugging programs.

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also syslog(3C), attributes(5), standards(5)
The `<tar.h>` header defines header block definitions as follows.

General definitions:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMAGIC</td>
<td>"ustar"</td>
<td>ustar plus null byte</td>
</tr>
<tr>
<td>TMAGLEN</td>
<td>6</td>
<td>length of the above</td>
</tr>
<tr>
<td>TVERSION</td>
<td>"00"</td>
<td>00 without a null byte</td>
</tr>
<tr>
<td>TVERSLEN</td>
<td>2</td>
<td>length of the above</td>
</tr>
</tbody>
</table>

Type flag field definitions:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGTYPE</td>
<td>'0'</td>
<td>regular file</td>
</tr>
<tr>
<td>AREGTYPE</td>
<td>'\0'</td>
<td>regular file</td>
</tr>
<tr>
<td>LNKTYPE</td>
<td>'1'</td>
<td>link</td>
</tr>
<tr>
<td>SYMTYPE</td>
<td>'2'</td>
<td>symbolic link</td>
</tr>
<tr>
<td>CHRTYPE</td>
<td>'3'</td>
<td>character special</td>
</tr>
<tr>
<td>BLKTYPE</td>
<td>'4'</td>
<td>block special</td>
</tr>
<tr>
<td>DIRTYPE</td>
<td>'5'</td>
<td>directory</td>
</tr>
<tr>
<td>FIFOTYPE</td>
<td>'6'</td>
<td>FIFO special</td>
</tr>
<tr>
<td>CONTTYPE</td>
<td>'7'</td>
<td>reserved</td>
</tr>
</tbody>
</table>

Mode field bit definitions (octal):

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSUID</td>
<td>04000</td>
<td>set UID on execution</td>
</tr>
<tr>
<td>TGID</td>
<td>02000</td>
<td>set GID on execution</td>
</tr>
<tr>
<td>TSVTX</td>
<td>01000</td>
<td>on directories, restricted deletion flag</td>
</tr>
<tr>
<td>Name</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>TUREAD</td>
<td>00400</td>
<td>read by owner</td>
</tr>
<tr>
<td>TUWRITE</td>
<td>00200</td>
<td>write by owner special</td>
</tr>
<tr>
<td>TUEXEC</td>
<td>00100</td>
<td>execute/search by owner</td>
</tr>
<tr>
<td>TGREAD</td>
<td>00040</td>
<td>read by group</td>
</tr>
<tr>
<td>TGWRITE</td>
<td>00020</td>
<td>write by group</td>
</tr>
<tr>
<td>TGEXEC</td>
<td>00010</td>
<td>execute/search by group</td>
</tr>
<tr>
<td>TOREAD</td>
<td>00004</td>
<td>read by other</td>
</tr>
<tr>
<td>TOWRITE</td>
<td>00002</td>
<td>write by other</td>
</tr>
<tr>
<td>TOEXEC</td>
<td>00001</td>
<td>execute/search by other</td>
</tr>
</tbody>
</table>

Types used in ancillary files:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL_HDR</td>
<td>'A'</td>
<td>Access Control List</td>
</tr>
<tr>
<td>LBL_TYPE</td>
<td>'L'</td>
<td>Trusted Extensions file label</td>
</tr>
<tr>
<td>DIR_TYPE</td>
<td>'D'</td>
<td>Trusted Extensions directory label</td>
</tr>
</tbody>
</table>

Attribute types used in Trusted Solaris ancillary files that are interpreted by Trusted Extensions for backward compatibility:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLD_TYPE</td>
<td>'S'</td>
<td>Single-level directory component</td>
</tr>
<tr>
<td>PATH_TYPE</td>
<td>'P'</td>
<td>Path component</td>
</tr>
<tr>
<td>MLD_TYPE</td>
<td>'M'</td>
<td>Multi-level directory component</td>
</tr>
<tr>
<td>FILE_TYPE</td>
<td>'F'</td>
<td>Must handle files differently</td>
</tr>
<tr>
<td>APRIV_TYPE</td>
<td>'P'</td>
<td>Allowed privileges data type in file</td>
</tr>
<tr>
<td>FPRIV_TYPE</td>
<td>'p'</td>
<td>Forced privileges data type in file</td>
</tr>
<tr>
<td>COMP_TYPE</td>
<td>'C'</td>
<td>Path components, use for MLD</td>
</tr>
<tr>
<td>ATTR_FLAG_TYPE</td>
<td>'F'</td>
<td>File attribute flag bytes data type</td>
</tr>
<tr>
<td>LK_COMP_TYPE</td>
<td>'K'</td>
<td>Link data path component</td>
</tr>
</tbody>
</table>
Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See below.</td>
</tr>
</tbody>
</table>

For the general definitions, the typeflag field definitions, and the mode field bit definitions, see standards(5).

See Also pax(1), attributes(5), standards(5)
Name tcp.h, tcp – definitions for the Internet Transmission Control Protocol (TCP)

Synopsis #include <netinet/tcp.h>

Description The <netinet/tcp.h> header defines the following macro for use as a socket option at the IPPROTO_TCP level:

TCP_NODELAY Avoid coalescing of small segments.

The macro is defined in the header. The implementation need not allow the value of the option to be set with setsockopt() or retrieved with getsockopt().

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also getsockopt(3XNET), socket.h(3HEAD), attributes(5), standards(5), tcp(7P)
The <termios.h> header contains the definitions used by the terminal I/O interfaces. See termios(3C) and termio(7I) for an overview of the terminal interface.

The following data types are defined through typedef:

- cc_t used for terminal special characters
- speed_t used for terminal baud rates
- tcflag_t used for terminal modes

The above types are all unsigned integer types.

The implementation supports one or more programming environments in which the widths of cc_t, speed_t, and tcflag_t are no greater than the width of type long. The names of these programming environments can be obtained using the confstr(3C) function or the getconf(1) utility.

The termios structure is defined and includes the following members:

```c
struct termios {
    tcflag_t c_iflag; /* input modes */
    tcflag_t c_oflag; /* output modes */
    tcflag_t c_cflag; /* control modes */
    tcflag_t c_lflag; /* local modes */
    cc_t c_cc[NCCS]; /* control characters */
};
```

A definition is provided for:

- NCCS size of the array c_cc for control characters

The following subscript names for the array c_cc are defined:

<table>
<thead>
<tr>
<th>Subscript Usage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canonical Mode</td>
<td>Non-Canonical Mode</td>
</tr>
<tr>
<td>VEOF</td>
<td>EOF character</td>
</tr>
<tr>
<td>VEOL</td>
<td>EOL character</td>
</tr>
<tr>
<td>VERASE</td>
<td>ERASE character</td>
</tr>
<tr>
<td>VINTR</td>
<td>INTR character</td>
</tr>
<tr>
<td>VKILL</td>
<td>KILL character</td>
</tr>
<tr>
<td></td>
<td>VMIN</td>
</tr>
</tbody>
</table>
Subscript Usage

<table>
<thead>
<tr>
<th>Subscript Usage</th>
<th>Canonical Mode</th>
<th>Non-Canonical Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VQUIT</td>
<td>VQUIT</td>
<td></td>
<td>QUIT character</td>
</tr>
<tr>
<td>VSTART</td>
<td>VSTART</td>
<td></td>
<td>START character</td>
</tr>
<tr>
<td>VSTOP</td>
<td>VSTOP</td>
<td></td>
<td>STOP character</td>
</tr>
<tr>
<td>VSUSP</td>
<td>VSUSP</td>
<td></td>
<td>SUSP character</td>
</tr>
<tr>
<td>VTIME</td>
<td>VTIME</td>
<td></td>
<td>TIME value</td>
</tr>
</tbody>
</table>

The subscript values are unique, except that the `VMIN` and `VTIME` subscripts can have the same values as the `VEOF` and `VEOL` subscripts, respectively.

The header file provides the flags described below.

Input Modes

- **c_iflag field** describes the basic terminal input control:
 - BRKINT: Signal interrupt on break.
 - ICRNL: Map CR to NL on input.
 - IGNBRK: Ignore break condition.
 - IGNCR: Ignore CR.
 - IGNPAR: Ignore characters with parity errors.
 - INLCR: Map NL to CR on input.
 - INPCK: Enable input parity check.
 - ISTRIP: Strip character.
 - IXANY: Enable any character to restart output.
 - IXOFF: Enable start/stop input control.
 - IXON: Enable start/stop output control.
 - PARMRK: Mark parity errors.

Output Modes

- **c_oflag field** specifies the system treatment of output:
 - OPOST: Post-process output.
 - ONLCR: Map NL to CR-NL on output.
 - OCRNL: Map CR to NL on output.
 - ONOCR: No CR output at column 0.
 - ONLRET: NL performs CR function.
OFILL
Use fill characters for delay.

NLDLY
Select newline delays:
- **NL0** newline type 0
- **NL1** newline type 1

CRDLY
Select carriage-return delays:
- **CR0** carriage-return delay type 0
- **CR1** carriage-return delay type 1
- **CR2** carriage-return delay type 2
- **CR3** carriage-return delay type 3

TABDLY
Select horizontal-tab delays:
- **TAB0** horizontal-tab delay type 0
- **TAB1** horizontal-tab delay type 1
- **TAB2** horizontal-tab delay type 2
- **TAB3** expand tabs to spaces

BSDLY
Select backspace delays:
- **BS0** backspace delay type 0
- **BS1** backspace delay type 1

VTDLY
Select vertical-tab delays:
- **VT0** vertical-tab delay type 0
- **VT1** vertical-tab delay type 1

FFDLY
Select form-feed delays:
- **FF0** form-feed delay type 0
- **FF1** form-feed delay type 1

Baud Rate Selection
The input and output baud rates are stored in the `termios` structure. These are the valid values for objects of type `speed_t`. The following values are defined, but not all baud rates need be supported by the underlying hardware.

- **B0** Hang up
- **BS0** 50 baud
- **B75** 75 baud
- **B110** 110 baud
Control Modes The `c_cflag` field describes the hardware control of the terminal; not all values specified are required to be supported by the underlying hardware:

- **CSIZE** Character size:
 - **CS5** 5 bits
 - **CS6** 6 bits
 - **CS7** 7 bits
 - **CS8** 8 bits
- **CSTOPB** Send two stop bits, else one.
- **CREAD** Enable receiver.
- **PARENB** Parity enable.
- **PARODD** Odd parity, else even.
- **HUPCL** Hang up on last close.
- **CLOCAL** Ignore modem status lines.

The implementation supports the functionality associated with the symbols CS7, CS8, CSTOPB, PARODD, and PARENB.

Local Modes The `c_lflag` field of the argument structure is used to control various terminal functions:

- **ECHO** Enable echo.
ECHOE Echo erase character as error-correcting backspace.
ECHOK Echo KILL.
ECHONL Echo NL.
ICANON Canonical input (erase and kill processing).
IEXTEN Enable extended input character processing.
ISIG Enable signals.
NOFLSH Disable flush after interrupt or quit.
TOSTOP Send SIGTTOU for background output.

Attribute Selection
The following symbolic constants for use with tcsetattr() are defined:

TCSANOW Change attributes immediately.
TCSADRAIN Change attributes when output has drained.
TCSAFLUSH Change attributes when output has drained; also flush pending input.

Line Control
The following symbolic constants for use with tcflush() are defined:

TCIFLUSH Flush pending input.
TCIOFLUSH Flush both pending input and untransmitted output.
TCOFLUSH Flush untransmitted output.

The following symbolic constants for use with tcflow() are defined:

TCIOFF Transmit a STOP character, intended to suspend input data.
TCION Transmit a START character, intended to restart input data.
TCOOFF Suspend output.
TCOON Restart output.

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTETYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also
getconf(1), cfgetispeed(3C), cfsetispeed(3C), confstr(3C), tcdrain(3C), tcflow(3C),
tcflush(3C), tcgetattr(3C), tcgetsid(3C), tcsendbreak(3C), tcsetattr(3C),
attributes(5), standards(5)
Name
tgmath.h, tgmath – type-generic macros

Synopsis
#include <tgmath.h>

Description
The `<tgmath.h>` header includes the headers `<math.h>` and `<complex.h>` and defines several type-generic macros.

Of the functions contained within the `<math.h>` and `<complex.h>` headers without an `f` (float) or `l` (long double) suffix, several have one or more parameters whose corresponding real type is `double`. For each such function except `modf(3M)`, there is a corresponding type-generic macro. The parameters whose corresponding real type is `double` in the function synopsis are generic parameters. Use of the macro invokes a function whose corresponding real type and type domain are determined by the arguments for the generic parameters.

Use of the macro invokes a function whose generic parameters have the corresponding real type determined as follows:

- First, if any argument for generic parameters has type `long double`, the type determined is `long double`.
- Otherwise, if any argument for generic parameters has type `double` or is of integer type, the type determined is `double`.
- Otherwise, the type determined is `float`.

For each unsuffixed function in the `<math.h>` header for which there is a function in the `<complex.h>` header with the same name except for a `c` prefix, the corresponding type-generic macro (for both functions) has the same name as the function in the `<math.h>` header. The corresponding type-generic macro for `fabs()` and `cabs()` is `fabs()`.

<table>
<thead>
<tr>
<th><code><math.h></code> Function</th>
<th><code><complex.h></code> Function</th>
<th>Type-Generic Macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>acos()</td>
<td>cacos()</td>
<td>acos()</td>
</tr>
<tr>
<td>asin()</td>
<td>casin()</td>
<td>asin()</td>
</tr>
<tr>
<td>atan()</td>
<td>catan()</td>
<td>atan()</td>
</tr>
<tr>
<td>acosh()</td>
<td>cacosh()</td>
<td>acosh()</td>
</tr>
<tr>
<td>asinh()</td>
<td>casinh()</td>
<td>asinh()</td>
</tr>
<tr>
<td>atanh()</td>
<td>catanh()</td>
<td>atanh()</td>
</tr>
<tr>
<td>cos()</td>
<td>ccos()</td>
<td>cos()</td>
</tr>
<tr>
<td>sin()</td>
<td>csin()</td>
<td>sin()</td>
</tr>
<tr>
<td>tan()</td>
<td>ctan()</td>
<td>tan()</td>
</tr>
<tr>
<td>cosh()</td>
<td>ccosh()</td>
<td>cosh()</td>
</tr>
</tbody>
</table>
If at least one argument for a generic parameter is complex, then use of the macro invokes a complex function; otherwise, use of the macro invokes a real function.

For each unsuffixed function in the `<math.h>` header without a `c`-prefixed counterpart in the `<complex.h>` header, the corresponding type-generic macro has the same name as the function. These type-generic macros are:

<table>
<thead>
<tr>
<th><code><math.h></code> Function</th>
<th><code><complex.h></code> Function</th>
<th>Type-Generic Macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>sinh()</td>
<td>csinh()</td>
<td>sinh()</td>
</tr>
<tr>
<td>tanh()</td>
<td>ctanh()</td>
<td>tanh()</td>
</tr>
<tr>
<td>exp()</td>
<td>cexp()</td>
<td>exp()</td>
</tr>
<tr>
<td>log()</td>
<td>clog()</td>
<td>log()</td>
</tr>
<tr>
<td>pow()</td>
<td>cpow()</td>
<td>pow()</td>
</tr>
<tr>
<td>sqrt()</td>
<td>csqrt()</td>
<td>sqrt()</td>
</tr>
<tr>
<td>fabs()</td>
<td>cfabs()</td>
<td>fabs()</td>
</tr>
</tbody>
</table>

If all arguments for generic parameters are real, then use of the macro invokes a real function; otherwise, use of the macro results in undefined behavior.

For each unsuffixed function in the `<complex.h>` header that is not a `c`-prefixed counterpart to a function in the `<math.h>` header, the corresponding type-generic macro has the same name as the function. These type-generic macros are:

carg()
cimag()
conj()
cproj()
creal()

Use of the macro with any real or complex argument invokes a complex function.
Usage

Functions invoked by use of type-generic macros are invoked with the declarations listed below.

```c
#include <tgmath.h>
int n;
float f;
double d;
long double ld;
float complex fc;
double complex dc;
long double complex ldc;
```

The following are the type-generic macros that invoke the functions that are invoked with the preceding declarations.

<table>
<thead>
<tr>
<th>Macro</th>
<th>Use Invokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp(n)</td>
<td>exp(n), the function</td>
</tr>
<tr>
<td>acosh(f)</td>
<td>acoshf(f)</td>
</tr>
<tr>
<td>sin(d)</td>
<td>sin(d), the function</td>
</tr>
<tr>
<td>atan(ld)</td>
<td>atanl(ld)</td>
</tr>
<tr>
<td>log(fc)</td>
<td>clogf(fc)</td>
</tr>
<tr>
<td>sqrt(dc)</td>
<td>csqrt(dc)</td>
</tr>
<tr>
<td>pow(ldc,f)</td>
<td>cpowl(ldc, f)</td>
</tr>
<tr>
<td>remainder(n,n)</td>
<td>remainder(n, n), the function</td>
</tr>
<tr>
<td>nextafter(d,f)</td>
<td>nextafter(d, f), the function</td>
</tr>
<tr>
<td>nexttoward(f,ld)</td>
<td>nexttowardf(f, ld)</td>
</tr>
<tr>
<td>copysign(n,ld)</td>
<td>copysign(n, ld)</td>
</tr>
<tr>
<td>ceil(fc)</td>
<td>undefined behavior</td>
</tr>
<tr>
<td>rint(dc)</td>
<td>undefined behavior</td>
</tr>
<tr>
<td>fmax(ldc,ld)</td>
<td>undefined behavior</td>
</tr>
<tr>
<td>carg(n)</td>
<td>carg(n), the function</td>
</tr>
<tr>
<td>cproj(f)</td>
<td>cprojf(f)</td>
</tr>
<tr>
<td>creal(d)</td>
<td>creal(d), the function</td>
</tr>
<tr>
<td>cimag(ld)</td>
<td>cimagl(ld)</td>
</tr>
<tr>
<td>cabs(fc)</td>
<td>cabsf(fc)</td>
</tr>
</tbody>
</table>
Macro Use Invokes

carg(dc) carg(dc), the function
cproj(ldc) cprojl(ldc)

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also modf(3M), complex.h(3HEAD), math.h(3HEAD), cabs(3M), fabs(3M), attributes(5), standards(5)
#include <sys/timeb.h>

The `<sys/timeb.h>` header defines the `timeb` structure, which includes the following members:

```c

time_t time /* the seconds portion of the current time */
unsigned short millitm /* the milliseconds portion of the current time */
short timezone /* the local timezone in minutes west of Greenwich */
short dstflag /* TRUE if Daylight Savings Time is in effect */
```

The `time_t` type is defined as described in `<sys/types.h>.

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5)</td>
</tr>
</tbody>
</table>

See Also
time.h(3HEAD), types.h(3HEAD), attributes(5), standards(5)
Description

The `<time.h>` header declares the structure `tm`, which includes the following members:

```c
int tm_sec /* seconds [0,60] */
int tm_min /* minutes [0,59] */
int tm_hour /* hour [0,23] */
int tm_mday /* day of month [1,31] */
int tm_mon /* month of year [0,11] */
int tm_year /* years since 1900 */
int tm_wday /* day of week [0,6] (Sunday =0) */
int tm_yday /* day of year [0,365] */
int tm_isdst /* daylight savings flag */
```

The value of `tm_isdst` is positive if Daylight Saving Time is in effect, 0 if Daylight Saving Time is not in effect, and negative if the information is not available.

The `<time.h>` header defines the following symbolic names:

- **NULL**: Null pointer constant.
- **CLOCKS_PER_SEC**: A number used to convert the value returned by the `clock()` function into seconds. See `clock(3C)`.
- **CLOCK_PROCESS_CPUTIME_ID**: The identifier of the CPU-time clock associated with the process making a `clock()` or `timer*()` function call.
- **CLOCK_THREAD_CPUTIME_ID**: The identifier of the CPU-time clock associated with the thread making a `clock()` or `timer*()` function call.

The `<time.h>` header declares the `timespec` structure, which has the following members:

```c
time_t tv_sec /* seconds */
long tv_nsec /* nanoseconds */
```

The `<time.h>` header declares the `itimerspec` structure, which has the following members:

```c
struct timespec it_interval /* timer period */
struct timespec it_value /* timer expiration */
```

The following manifest constants are defined:

- **CLOCK_REALTIME**: The identifier of the system-wide realtime clock.
- **TIMER_ABSTIME**: Flag indicating time is absolute. For functions taking timer objects, this refers to the clock associated with the timer.
- **CLOCK_MONOTONIC**: The identifier for the system-wide monotonic clock, which is defined as a clock whose value cannot be set with `clock_settime()` and that cannot have backward clock jumps. The maximum possible clock jump
The `clock_t`, `size_t`, `time_t`, `clockid_t`, and `timer_t` types are defined as described in `<sys/types.h>`. See `types.h(3HEAD)`.

Although the value of `CLOCKS_PER_SEC` is required to be 1 million on all standard-conforming systems, it can be variable on other systems, and it should not be assumed that `CLOCKS_PER_SEC` is a compile-time constant.

The `<time.h>` header provides a declaration for `getdate_err`.

The following are declared as variables:

```c
extern int daylight;
extern long timezone;
extern char *tzname[];
```

Inclusion of the `<time.h>` header can make visible all symbols from the `<signal.h>` header.

Usage
The range [0,60] for `tm_sec` allows for the occasional leap second.

`tm_year` is a signed value; therefore, years before 1900 can be represented.

To obtain the number of clock ticks per second returned by the `times()` function, applications should call `sysconf(_SC_CLK_TCK)`. See `times(2)` and `sysconf(3C)`.

Attributes
See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>

See Also
`time(2)`, `utime(2)`, `clock(3C)`, `ctime(3C)`, `difftime(3C)`, `getdate(3C)`, `mktime(3C)`, `strftime(3C)`, `strptime(3C)`, `types.h(3HEAD)`, `clock_settime(3C)`, `nanosleep(3C)`, `timer_create(3C)`, `timer_delete(3C)`, `timer_settime(3C)`, `attributes(5)`, `standards(5)`
times.h(3HEAD)

Name times.h, times – file access and modification times structure

Synopsis #include <sys/times.h>

Description The <sys/times.h> header defines the structure tms, which is returned by times() and includes the following members:

 clock_t tms_utime /* user CPU time */
 clock_t tms_stime /* system CPU time */
 clock_t tms_cutime /* user CPU time of terminated child processes */
 clock_t tms_cstime /* system CPU time of terminated child processes */

The clock_t type is defined as described in <sys/types.h>.

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also times(2), types.h(3HEAD), attributes(5), standards(5)
Name types32.h, types32 – fixed-width data types

Synopsis #include <sys/types32.h>

Description The following fixed-width data types defined in <sys/types32.h> correspond to the sign and sizes of types in the 32-bit environment that can be used for compatibility and interoperability purposes in either the 32-bit or 64-bit environment.

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>typedef</td>
<td>int32_t</td>
<td>blkcnt32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>uint32_t</td>
<td>caddr32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>int32_t</td>
<td>clock32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>int32_t</td>
<td>daddr32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>uint32_t</td>
<td>dev32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>int32_t</td>
<td>fsblkcnt32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>uint32_t</td>
<td>fsfilcnt32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>int32_t</td>
<td>gid32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>int32_t</td>
<td>id32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>uint32_t</td>
<td>ino32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>int32_t</td>
<td>key32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>uint32_t</td>
<td>major32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>uint32_t</td>
<td>minor32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>uint32_t</td>
<td>mode32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>uint32_t</td>
<td>nlink32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>int32_t</td>
<td>pid32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>uint32_t</td>
<td>rlim32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>uint32_t</td>
<td>size32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>int32_t</td>
<td>ssize32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>time32_t</td>
<td>int32_t</td>
</tr>
<tr>
<td>typedef</td>
<td>uid32_t</td>
<td>int32_t</td>
</tr>
</tbody>
</table>
#include <sys/types.h>

The datatypes defined in `<sys/types.h>` areas follows:

32-bit Solaris

The datatypes listed below are defined in `<sys/types.h>` for 32-bit Solaris.

```c
typedef struct { int r[1]; } *physadr;
typedef long clock_t;
typedef long daddr_t;
typedef char * caddr_t;
typedef unsigned char unchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong_t;
typedef unsigned long ino_t;
typedef long uid_t;
typedef long gid_t;
typedef ulong_t nlink_t;
typedef ulong_t mode_t;
typedef short cnt_t;
typedef long time_t;
typedef int label_t[10];
typedef ulong_t dev_t;
typedef long off_t;
typedef long pid_t;
typedef int key_t;
typedef unsigned char use_t;
typedef short sysid_t;
typedef short index_t;
typedef short lock_t;
typedef unsigned int size_t;
typedef long clock_t;
typedef long pid_t;
```

64-bit Solaris

The datatypes listed below are defined in `<sys/types.h>` for 64-bit Solaris.

```c
typedef long blkcnt_t
typedef long clock_t
typedef long daddr_t
typedef ulong_t dev_t
typedef ulong_t fsblkcnt_t
typedef ulong_t fsfilcnt_t
typedef int gid_t
typedef int id_t
typedef long ino_t
typedef int key_t
typedef uint_t major_t
```
typedef uint_t minor_t
typedef uint_t mode_t
typedef uint_t nlink_t
typedef int pid_t
typedef ptrdiff_t intptr_t
typedef ulong_t rlim_t
typedef ulong_t size_t
typedef uint_t speed_t
typedef long ssize_t
typedef long suseconds_t
typedef uint_t tcflag_t
typedef long time_t
typedef int uid_t
typedef int wchar_t

For 32-bit programs, pointers and the C data types int and long are all 32-bit quantities. For 64-bit programs, pointers and the C data type long are defined as 64-bit quantities.

The preprocessor symbol _ILP32, made visible by the inclusion of <sys/types.h>, can be used with the preprocessor #ifdef construct to define sections of code that will be compiled only as part of a 32-bit version of a given C program.

The preprocessor symbol _LP64 can be used in the same way to define sections of code that will be compiled only as part of a 64-bit version of a given C program. See EXAMPLES.

This header incorporates definitions of other preprocessor symbols that can be useful when keeping code portable between different instruction set architectures.

_LITTLE_ENDIAN
_BIG_ENDIAN
The natural byte order of the processor. A pointer to an int points to the least/most significant byte of that int.

_STACK_GROWS_UPWARD
_STACK_GROWS_DOWNWARD
The processor specific direction of stack growth. A push onto the stack increases/decreases the stack pointer, so it stores data at successively higher/lower addresses.

_CHAR_IS_UNSIGNED
_CHAR_IS_SIGNED
The C Compiler implements objects of type char as unsigned or signed respectively. This is really an implementation choice of the compiler, but it is specified in the ABI and tends to be uniform across compilers for an instruction set architecture.

_CHAR_ALIGNMENT
_SHORT_ALIGNMENT
_INT_ALIGNMENT
_LONG_ALIGNMENT
_LONG_LONG_ALIGNMENT
The ABI defines alignment requirements of each of the primitive object types. Some, if not all, might be hardware requirements as well. The values are expressed in bytes.

The most stringent alignment requirement as specified by the ABI. Equal to the maximum of all the above _XXX_ALIGNMENT values.

The 32-bit ABI supported by a 64-bit kernel may have different alignment requirements for primitive object types. The value of this identifier is expressed in bytes.

The _daddr_t type is used for disk addresses except in an inode on disk. Times are encoded in seconds since 00:00:00 UTC, January 1, 1970. The major and minor parts of a device code specify kind and unit number of a device and are installation-dependent. Offsets are measured in bytes from the beginning of a file.

The label_t[] types are used to save the processor state while another process is running.

In the following example, the preprocessor symbol _LP64 defines sections of code that will be compiled only as part of a 64-bit version of the given C program.

```
#define <sys/types.h>
...

#ifdef _LP64
    printf("The data model is LP64 in this environment\n");
#else
    #ifdef _ILP32
        printf("The data model is ILP32 in this environment\n");
    #else
        #error "Unknown data model!"
    #endif
#endif
```

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTETYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
</tbody>
</table>
See Also types32.h(3HEAD), attributes(5), standards(5)
The <ucontext.h> header defines the ucontext_t type as a structure that includes at least the following members:

```
ucontext_t uc_link
sigset_t uc_sigmask
stack_t uc_stack
mcontext_t uc_mcontext
```

The uc_link member is a pointer to the context to be resumed when this context returns. If uc_link is equal to 0, this context is the main context and the process exits when this context returns.

The uc_sigmask member defines the set of signals that are blocked when this context is active. See sigprocmask(2).

The uc_stack member defines the stack used by this context. See sigaltstack(2).

The uc_mcontext member contains the saved set of machine registers and any implementation-specific context data. Portable applications should not modify or access uc_mcontext.

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also

getcontext(2), sigaction(2), sigaltstack(2), sigprocmask(2), makecontext(3C), attributes(5), standards(5)
Name: uio.h, uio – definitions for vector I/O operations

Synopsis:
#include <sys/uio.h>

Description: The <sys/uio.h> header defines the iovec structure, which includes the following members:

```c
void *iov_base /* base address of a memory region for input or output */
size_t iov_len /* size of the memory pointed to by iov_base */
```

The <sys/uio.h> header uses the iovec structure for scatter/gather I/O.

The ssize_t and size_t types are defined as described in <sys/types.h>.

Usage: The symbol [IOV_MAX] defined in <limits.h> should always be used to learn about the limits on the number of scatter/gather elements that can be processed in one call, instead of assuming a fixed value.

Attributes: See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also: read(2), write(2), limits.h(3HEAD), types.h(3HEAD), attributes(5), standards(5)
ulimit.h, ulimit – ulimit commands

Synopsis

```c
#include <ulimit.h>
```

Description

The `<ulimit.h>` header defines the following symbolic constants used by the `ulimit()` function.

- `UL_GETFSIZE` Get maximum file size.
- `UL_SETFSIZE` Set maximum file size.

Attributes

See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code>.</td>
</tr>
</tbody>
</table>

See Also

`ulimit(2), attributes(5), standards(5)`
Name un.h, un – definitions for UNIX-domain sockets

Synopsis

```
#include <sys/un.h>
```

Description The `<sys/un.h>` header defines the `sockaddr_un` structure that includes the following members:

```
sa_family_t  sun_family  /* address family */
char         sun_path[]  /* socket pathname */
```

The `sockaddr_un` structure is used to store addresses for UNIX domain sockets. Values of this type must be cast to `struct sockaddr` for use with the socket interfaces.

The `<sys/un.h>` header defines the type `sa_family_t` as described in `socket.h(3HEAD)`.

Attributes See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code></td>
</tr>
</tbody>
</table>

See Also `bind(3SOCKET), bind(3XNET), socket.h(3HEAD), socket(3SOCKET), socket(3XNET), socketpair(3SOCKET), socketpair(3XNET), attributes(5), standards(5)`
The `<unistd.h>` header defines the symbolic constants and structures which are not already defined or declared in some other header. The contents of this header are shown below.

The following symbolic constants are defined (with fixed values):

- `__POSIX_VERSION` Integer value indicating version of the POSIX standard (C language binding). See `standards(5)`.
- `__POSIX2_VERSION` Integer value indicating version of the POSIX.2 standard (Commands).
- `__POSIX2_C_VERSION` Integer value indicating version of the POSIX.2 standard (C language binding).
- `__XOPEN_VERSION` Integer value indicating version of the XPG to which system conforms.
- `__XOPEN_XCU_VERSION` Integer value indicating the version of the XCU specification to which the implementation conforms. If this constant is not defined, use the `sysconf(3C)` function to determine which features are supported. This constant is not defined for the SUSv3 environment.

The following symbolic constants, if defined in `<unistd.h>`, have a value of -1, 0, or greater, unless otherwise specified below. If these are undefined, the `fpathconf(2)`, `pathconf(2)`, or `sysconf(3C)` functions can be used to determine whether the option is provided for a particular invocation of the application.

If a symbolic constant is defined with the value -1, the option is not supported. Headers, data types, and function interfaces required only for the option need not be supplied. An application that attempts to use anything associated only with the option is considered to be requiring an extension.

If a symbolic constant is defined with a value greater than zero, the option is always supported when the application is executed. All headers, data types, and functions are present and operate as specified.

If a symbolic constant is defined with the value zero, all headers, data types, and functions are present. The application can check at runtime to see whether the option is supported by calling `fpathconf()`, `pathconf()`, or `sysconf()` with the indicated `name` parameter.

Unless explicitly specified otherwise, the behavior of functions associated with an unsupported option is unspecified, and an application that uses such functions without first checking `fpathconf()`, `pathconf()`, or `sysconf()` is considered to be requiring an extension.
_POSIX_ADVISORY_INFO

Implementation supports the Advisory Information option.

_POSIX_ASYNC_IO

Implementation supports the Asynchronous Input and Output option.

_POSIX_BARRIERS

Implementation supports the Barriers option.

_POSIX_CLOCK_SELECTION

Implementation supports the Clock Selection option.

_POSIX_CPUTIME

Implementation supports the Process CPU-Time Clocks option.

_POSIX_FSYNC

Implementation supports the File Synchronisation option.

_POSIX_IPV6

Implementation supports the IPv6 option.

_POSIX_JOB_CONTROL

Implementation supports job control.

_POSIX_MAPPED_FILES

Implementation supports the Memory Mapped Files option.

_POSIX_MEMLOCK

Implementation supports the Process Memory Locking option.

_POSIX_MEMLOCK_RANGE

Implementation supports the Range Memory Locking option.

_POSIX_MEMORY_PROTECTION

Implementation supports the Memory Protection option.

_POSIX_MESSAGE_PASSING

Implementation supports the Message Passing option.

_POSIX_MONOTONIC_CLOCK

Implementation supports the Monotonic Clock option.

_POSIX_PRIORITY_SCHEDULING

Implementation supports the Process Scheduling option.

_POSIX_RAW_SOCKETS

Implementation supports the Raw Sockets option.

_POSIX_READER_WRITER_LOCKS

Implementation supports the Read-Write Locks option.

_POSIX_REALTIME_SIGNALS

Implementation supports the Realtime Signals Extension option.

_POSIX_REGEXP

Implementation supports the Regular Expression Handling option.

_POSIX_SAVED_IDS

The exec functions (see exec(2)) save the effective user and group.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>_POSIX_SEMAPHORES</code></td>
<td>Implementation supports the Semaphores option.</td>
</tr>
<tr>
<td><code>_POSIX_SHARED_MEMORY_OBJECTS</code></td>
<td>Implementation supports the Shared Memory Objects option.</td>
</tr>
<tr>
<td><code>_POSIX_SHELL</code></td>
<td>Implementation supports the POSIX shell.</td>
</tr>
<tr>
<td><code>_POSIX_SPAWN</code></td>
<td>Implementation supports the Spawn option.</td>
</tr>
<tr>
<td><code>_POSIX_SPIN_LOCKS</code></td>
<td>Implementation supports the Spin Locks option.</td>
</tr>
<tr>
<td><code>_POSIX_SPORADIC_SERVER</code></td>
<td>Implementation supports the Process Sporadic Server option.</td>
</tr>
<tr>
<td><code>_POSIX_SYNCHRONIZED_IO</code></td>
<td>Implementation supports the Synchronized Input and Output option.</td>
</tr>
<tr>
<td><code>_POSIX_THREAD_ATTR_STACKADDR</code></td>
<td>Implementation supports the thread stack address attribute option.</td>
</tr>
<tr>
<td><code>_POSIX_THREAD_ATTR_STACKSIZE</code></td>
<td>Implementation supports the thread stack size attribute option.</td>
</tr>
<tr>
<td><code>_POSIX_THREAD_CPUTIME</code></td>
<td>Implementation supports the Thread CPU-Time Clocks option.</td>
</tr>
<tr>
<td><code>_POSIX_THREAD_PROCESS_SHARED</code></td>
<td>Implementation supports the process-shared synchronization option.</td>
</tr>
<tr>
<td><code>_POSIX_THREAD_SAFE_FUNCTIONS</code></td>
<td>Implementation supports the thread-safe functions option.</td>
</tr>
<tr>
<td><code>_POSIX_THREAD_SPORADIC_SERVER</code></td>
<td>Implementation supports the Thread Sporadic Server option.</td>
</tr>
<tr>
<td><code>_POSIX_THREADS</code></td>
<td>Implementation supports the threads option.</td>
</tr>
<tr>
<td><code>_POSIX_TIMERS</code></td>
<td>Implementation supports the Timers option.</td>
</tr>
<tr>
<td><code>_POSIX_TIMEOUTS</code></td>
<td>Implementation supports the Timeouts option.</td>
</tr>
<tr>
<td><code>_POSIX_TRACE</code></td>
<td>Implementation supports the Trace option.</td>
</tr>
<tr>
<td><code>_POSIX_TRACE_EVENT_FILTER</code></td>
<td>Implementation supports the Trace Event Filter option.</td>
</tr>
<tr>
<td><code>_POSIX_TRACE_INHERIT</code></td>
<td>Implementation supports the Trace Inherit option.</td>
</tr>
<tr>
<td><code>_POSIX_TRACE_LOG</code></td>
<td>Implementation supports the Trace Log option.</td>
</tr>
<tr>
<td><code>_POSIX_TYPED_MEMORY_OBJECTS</code></td>
<td>Implementation supports the Typed Memory Objects option.</td>
</tr>
</tbody>
</table>
Implementation provides a C-language compilation environment with 32-bit `int`, `long`, and `pointer` types and an `off_t` type using at least 64 bits.

Implementation provides a C-language compilation environment with 32-bit `int`, `long`, and `pointer` types and an `off_t` type using at least 64 bits.

Implementation provides a C-language compilation environment with 32-bit `int` and 64-bit `long`, `pointer`, and `off_t` types.

Implementation provides a C-language compilation environment with an `int` type using at least 32 bits and `long`, `pointer`, and `off_t` types using at least 64 bits.

Implementation supports the XSI STREAMS Option Group.

Implementation supports the C Language Binding option.

Implementation supports the C Language Development Utilities option.

Implementation supports at least one terminal type.

Implementation supports the creation of locales by the `localedef(1)` utility.

Implementation supports the Batch Environment Services and Utilities option.

Implementation supports the Batch Accounting option.

Implementation supports the Batch Checkpoint/Restart option.

Implementation supports the Locate Batch Job Request option.

Implementation supports the Batch Job Message Request option.

Implementation supports the Track Batch Job Request option.

Implementation supports the Software Development Utilities option.
<table>
<thead>
<tr>
<th>Symbolic Constant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_POSIX2_UPE</td>
<td>Implementation supports the User Portability Utilities option.</td>
</tr>
<tr>
<td>_XBS5_ILP32_OFF32</td>
<td>Implementation provides a C-language compilation environment with 32-bit int, long, pointer and off_t types.</td>
</tr>
<tr>
<td>_XBS5_ILP32_OFFBIG</td>
<td>Implementation provides a C-language compilation environment with 32-bit int, long and pointer types and an off_t type using at least 64 bits.</td>
</tr>
<tr>
<td>_XBS5_LP64_OFF64</td>
<td>Implementation provides a C-language compilation environment with 32-bit int and 64-bit long, pointer and off_t types.</td>
</tr>
<tr>
<td>_XBS5_LPBIG_OFFBIG</td>
<td>Implementation provides a C-language compilation environment with an int type using at least 32 bits and long, pointer and off_t types using at least 64 bits.</td>
</tr>
<tr>
<td>_XOPEN_ENH_I18N</td>
<td>Implementation supports the Issue 4, Version 2 Enhanced Internationalization Feature Group.</td>
</tr>
<tr>
<td>_XOPEN_LEGACY</td>
<td>Implementation supports the Legacy Feature Group.</td>
</tr>
<tr>
<td>_XOPEN_REALTIME</td>
<td>Implementation supports the X/Open Realtime Feature Group.</td>
</tr>
<tr>
<td>_XOPEN_SHM</td>
<td>Implementation supports the Issue 4, Version 2 Shared Memory Feature Group.</td>
</tr>
</tbody>
</table>

If any of the following constants are not defined in the header `<unistd.h>`, the value varies depending on the file to which it is applied.
If any of the following constants are defined to have value -1 in the header `<unistd.h>`, the implementation will not provide the option on any file; if any are defined to have a value other than -1 in the header `<unistd.h>`, the implementation will provide the option on all applicable files.

All of the following constants, whether defined in `<unistd.h>` or not, can be queried with respect to a specific file using the `pathconf()` or `fpathconf()` functions.

- **_POSIX_ASYNC_IO**
 Asynchronous input or output operations can be performed for the associated file.

- **_POSIX_PRIO_IO**
 Prioritized input or output operations can be performed for the associated file.

- **_POSIX_SYNC_IO**
 Synchronized input or output operations can be performed for the associated file.

The following constant is defined:

- **NULL**
 Null pointer.

The following symbolic constants are defined for the `access(2)` function:

- **R_OK**
 Test for read permission.

- **W_OK**
 Test for write permission.

- **X_OK**
 Test for execute (search) permission.

- **F_OK**
 Test for existence of file.

The constants `F_OK`, `R_OK`, `W_OK`, and `X_OK`, and the expressions `R_OK | W_OK`, `R_OK | X_OK`, and `R_OK | W_OK | X_OK` all have distinct values.

The following symbolic constants are defined for the `lockf(3C)` function:

- **F_ULOCK**
 Unlock a previously locked region.

- **F_LOCK**
 Lock a region for exclusive use.

- **F_TLOCK**
 Test and lock a region for exclusive use.

- **F_TEST**
 Test a region for other processes locks.

The following symbolic constants are defined for the `lseek(2)` and `fcntl(2)` functions (they have distinct values):

- **SEEK_SET**
 Set file offset to `offset`.

- **SEEK_CUR**
 Set file offset to current plus `offset`.

- **SEEK_END**
 Set file offset to EOF plus `offset`.
The following symbolic constants are defined for the `confstr(3C)` function for both SPARC and x86:

- `_CS_LFS64_CFLAGS` _CS_LFS64_LDFLAGS
- `_CS_LFS64_LIBS` _CS_LFS64_LINTFLAGS
- `_CS_LFS_CFLAGS` _CS_LFS_LDFLAGS
- `_CS_LFS_LIBS` _CS_LFS_LINTFLAGS
- `_CS_PATH` _CS_POSIX_V6_ILP32_OFF32_CFLAGS
- `_CS_POSIX_V6_ILP32_OFF32_LDFLAGS` _CS_POSIX_V6_ILP32_OFF32_LIBS
- `_CS_POSIX_V6_ILP32_OFF32_LINTFLAGS` _CS_POSIX_V6_ILP32_OFF32_LDFLAGS
- `_CS_POSIX_V6_ILP32_OFFBIG_CFLAGS` _CS_POSIX_V6_ILP32_OFFBIG_LDFLAGS
- `_CS_POSIX_V6_ILP32_OFFBIG_LDFLAGS` _CS_POSIX_V6_ILP32_OFFBIG_LIBS
- `_CS_POSIX_V6_ILP32_OFFBIG_LINTFLAGS` _CS_POSIX_V6_WIDTH_RESTRICTED_ENV
- `_CS_XBS5_ILP32_OFF32_CFLAGS` _CS_XBS5_ILP32_OFF32_LDFLAGS
- `_CS_XBS5_ILP32_OFF32_LIBS` _CS_XBS5_ILP32_OFF32_LINTFLAGS
- `_CS_XBS5_ILP32_OFFBIG_CFLAGS` _CS_XBS5_ILP32_OFFBIG_LDFLAGS
- `_CS_XBS5_ILP32_OFFBIG_LDFLAGS` _CS_XBS5_ILP32_OFFBIG_LIBS
- `_CS_XBS5_ILP32_OFFBIG_LINTFLAGS` _CS_XBS5_ILP32_OFFBIG_LDFLAGS
- `_CS_XBS5_LP64_OFF64_CFLAGS` _CS_XBS5_LP64_OFF64_LDFLAGS
- `_CS_XBS5_LP64_OFF64_LIBS` _CS_XBS5_LP64_OFF64_LINTFLAGS
- `_CS_XBS5_LPBIG_OFFBIG_CFLAGS` _CS_XBS5_LPBIG_OFFBIG_LDFLAGS
- `_CS_XBS5_LPBIG_OFFBIG_LDFLAGS` _CS_XBS5_LPBIG_OFFBIG_LIBS
- `_CS_XBS5_LPBIG_OFFBIG_LINTFLAGS` _CS_XBS5_LPBIG_OFFBIG_LDFLAGS

The following symbolic constants are defined for the `confstr()` function for SPARC only:

- `_CS_POSIX_V6_LP64_OFF64_CFLAGS` _CS_POSIX_V6_LP64_OFF64_LDFLAGS
- `_CS_POSIX_V6_LP64_OFF64_LIBS` _CS_POSIX_V6_LP64_OFF64_LINTFLAGS
- `_CS_POSIX_V6_LPBIG_OFFBIG_CFLAGS` _CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS
- `_CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS` _CS_POSIX_V6_LPBIG_OFFBIG_LIBS
- `_CS_POSIX_V6_LPBIG_OFFBIG_LINTFLAGS` _CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS
- `_CS_XBS5_LP64_OFF64_CFLAGS` _CS_XBS5_LP64_OFF64_LDFLAGS
- `_CS_XBS5_LP64_OFF64_LIBS` _CS_XBS5_LP64_OFF64_LINTFLAGS
- `_CS_XBS5_LPBIG_OFFBIG_CFLAGS` _CS_XBS5_LPBIG_OFFBIG_LDFLAGS
- `_CS_XBS5_LPBIG_OFFBIG_LDFLAGS` _CS_XBS5_LPBIG_OFFBIG_LIBS
- `_CS_XBS5_LPBIG_OFFBIG_LINTFLAGS` _CS_XBS5_LPBIG_OFFBIG_LDFLAGS

The following symbolic constants are defined for the `sysconf(3C)` function:

- `_SC_2_C_BIND` _SC_2_C_DEV
unistd.h(3HEAD)

_SC_2_C_VERSION
_SC_2_FORT_DEV
_SC_2_FORT_RUN
_SC_2_LOCALEDEF
_SC_2_PBS
_SC_2_PBS_ACCOUNTING
_SC_2_PBS_CHECKPOINT
_SC_2_PBS_LOCATE
_SC_2_PBS_MESSAGE
_SC_2_PBS_TRACK
_SC_2_SW_DEV
_SC_2_UPE
_SC_2_VERSION
_SC_ADVISORY_INFO
_SC_AIO_LISTIO_MAX
_SC_AIO_MAX
_SC_AIO_PRIO_DELTA_MAX
_SC_ARG_MAX
_SCASYNCHRONOUS_IO
_SC_ATEXIT_MAX
_SC_AVPHYS_PAGES
_SC_BARRIERS
_SC_BC_BASE_MAX
_SC_BC_DIM_MAX
_SC_BC_SCALE_MAX
_SC_BC_STRING_MAX
_SC_CHILD_MAX
_SC_CLK_TCK
_SC_CLOCK_SELECTION
_SC_COLL_WEIGHTS_MAX
_SC_CPUTIME
_SC_DELAYTIMER_MAX
_SC_EXPR_NEST_MAX
_SC_FSYNC
_SC_GETGR_R_SIZE_MAX
_SC_GETPWN_R_SIZE_MAX
_SC_HOST_NAME_MAX
_SC_IOV_MAX
_SC_IPV6
_SC_JOB_CONTROL
_SC_LINE_MAX
_SC_LOGIN_NAME_MAX
_SC_LOGNAME_MAX
_SC_MESSAGE_PASSING
_SC_MAPPED_FILES
_SC_MEMLOCK
_SC_MEMLOCK_RANGE
_SC_MEMORY_PROTECTION
_SC_MONOTONIC_CLOCK
_SC_MQ_OPEN_MAX
_SC_MQ_PRIO_MAX
_SC_NGROUPS_MAX
_SC_NPROCESSORS_CONF
_SC_NPROCESSORS_ONLN
_SC_OPEN_MAX
_SC_PAGESIZE
_SC_PAGE_SIZE
_SC_PASS_MAX

Library Interfaces and Headers 543
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_SC_PHYS_PAGES</td>
<td>_SC_PRIORITIZED_IO</td>
</tr>
<tr>
<td>_SC_PRIORITY_SCHEDULING</td>
<td>_SC_RAW_SOCKETS</td>
</tr>
<tr>
<td>_SC_READER_WRITER_LOCKS</td>
<td>_SC_REALTIME_SIGNALS</td>
</tr>
<tr>
<td>_SC_REEGEXP</td>
<td>_SC_RE_DUP_MAX</td>
</tr>
<tr>
<td>_SC_RTSIG_MAX</td>
<td>_SC_SAVED_IDS</td>
</tr>
<tr>
<td>_SC_SEMAPHORES</td>
<td>_SC_SEM_NSEMS_MAX</td>
</tr>
<tr>
<td>_SC_SEM_VALUE_MAX</td>
<td>_SC_SHARED_MEMORY_OBJECTS</td>
</tr>
<tr>
<td>_SC_SHELL</td>
<td>_SC_SIGQUEUE_MAX</td>
</tr>
<tr>
<td>_SC_SPAWN</td>
<td>_SC_SPIN_LOCKS</td>
</tr>
<tr>
<td>_SC_SPORADIC_SERVER</td>
<td>_SC_SS_REPL_MAX</td>
</tr>
<tr>
<td>_SC_STREAM_MAX</td>
<td>_SC_SYMLOOP_MAX</td>
</tr>
<tr>
<td>_SC_SYNCHRONIZED_IO</td>
<td>_SC_THREAD_ATTR_STACKADDR</td>
</tr>
<tr>
<td>_SC_THREAD_ATTR_STACKSIZE</td>
<td>_SC_THREAD_CPUTIME</td>
</tr>
<tr>
<td>_SC_THREAD_DESTRUCTOR_ITERATIONS</td>
<td>_SC_THREAD_KEYS_MAX</td>
</tr>
<tr>
<td>_SC_THREAD_PRIO_INHERIT</td>
<td>_SC_THREAD_PRIO_PROTECT</td>
</tr>
<tr>
<td>_SC_THREAD_PRIORITY_SCHEDULING</td>
<td>_SC_THREAD_PROCESS_SHARED</td>
</tr>
<tr>
<td>_SC_THREAD_SPORADIC_SERVER</td>
<td>_SC_THREADS</td>
</tr>
<tr>
<td>_SC_THREAD_SAFE_FUNCTIONS</td>
<td>_SC_THREAD_STACK_MIN</td>
</tr>
<tr>
<td>_SC_THREAD_THREADS_MAX</td>
<td>_SC_TIMEOUTS</td>
</tr>
<tr>
<td>_SC_TIMER_MAX</td>
<td>_SC_TIMERS</td>
</tr>
<tr>
<td>_SC_TRACE</td>
<td>_SC_TRACE_EVENT_FILTER</td>
</tr>
<tr>
<td>_SC_TRACE_EVENT_NAME_MAX</td>
<td>_SC_TRACE_INHERIT</td>
</tr>
<tr>
<td>_SC_TRACE_LOG</td>
<td>_SC_TRACE_NAME_MAX</td>
</tr>
<tr>
<td>_SC_TRACE_SYS_MAX</td>
<td>_SC_TRACE_USER_EVENT_MAX</td>
</tr>
<tr>
<td>_SC_TTY_NAME_MAX</td>
<td>_SC_TYPED_MEMORY_OBJECTS</td>
</tr>
<tr>
<td>_SC_TZNAME_MAX</td>
<td>_SC_V6_ILP32_OFF32</td>
</tr>
<tr>
<td>_SC_V6_ILP32_OFFBIG</td>
<td>_SC_V6_LP64_OFF64</td>
</tr>
<tr>
<td>_SC_V6_LPBIG_OFFBIG</td>
<td>_SC_VERSION</td>
</tr>
<tr>
<td>_SC_XBS5_ILP32_OFF32</td>
<td>_SC_XBS5_ILP32_OFFBIG</td>
</tr>
</tbody>
</table>
The constants _SC_PAGESIZE and _SC_PAGE_SIZE can be defined to have the same value.

The following symbolic constants are defined for the \texttt{fpathconf(2)} function:

\begin{itemize}
 \item _PC_2_SYMLINKS
 \item _PC_ASYNC_IO
 \item _PC_FILESIZEBITS
 \item _PC_MAX_CANON
 \item _PC_NAME_MAX
 \item _PC_PATH_MAX
 \item _PC_PRIO_IO
 \item _PC_REC_MAX_XFER_SIZE
 \item _PC_REC_XFER_ALIGN
 \item _PC_SYNC_IO
 \item _PC_VDISABLE
 \item _PC_XATTR_EXISTS
\end{itemize}

The following symbolic constants are defined for file streams:

\begin{itemize}
 \item STDIN_FILENO File number (0) of stdin.
 \item STDOUT_FILENO File number (1) of stdout.
 \item STDERR_FILENO File number (2) of stderr.
\end{itemize}

The following pathnames are defined:

\begin{itemize}
 \item GF_PATH Pathname of the group file.
 \item PF_PATH Pathname of the passwd file.
\end{itemize}
Attributes See `attributes(5)` for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See <code>standards(5)</code>.</td>
</tr>
</tbody>
</table>

See Also `access(2), exec(2), fcntl(2), fpathconf(2), lseek(2), confstr(3C), lockf(3C), sysconf(3C), termios(3C), group(4), passwd(4), attributes(5), standards(5), termio(7I)`
Name: utime.h, utime – access and modification times structure

Synopsis:

```c
#include <utime.h>
```

Description: The `<utime.h>` header declares the structure `utimbuf`, which includes the following members:

```c
time_t actime /* access time */
time_t modtime /* modification time */
```

The times are measured in seconds since the Epoch.

The type `time_t` is defined as described in `<sys/types.h>`.

Attributes: See attributes(5) for descriptions of the following attributes:

```
<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>
```

See Also: utime(2), types.h(3HEAD), attributes(5), standards(5)
The `<utmpx.h>` header defines the `utmpx` structure, which includes the following members:

- `char ut_user[]; /* user login name */`
- `char ut_id[]; /* unspecified initialization */ /* process identifier */`
- `char ut_line[]; /* device name */`
- `pid_t ut_pid; /* process ID */`
- `short ut_type; /* type of entry */`

For X/Open compilation environments:

```
struct ut_exit_status ut_exit; /* process termination/exit status*/
```

For all other compilation environments:

```
struct exit_status ut_exit; /* process termination/exit status*/
```

The `pid_t` type is defined through `typedef` as described in `<sys/types.h>`.

The `timeval` structure is defined as described in `<sys/time.h>`.

Inclusion of the `<utmpx.h>` header can also make visible all symbols from `<sys/time.h>`.

The following symbolic constants are defined as possible values for the `ut_type` member of the `utmpx` structure:

- `EMPTY` No valid user accounting information.
- `BOOT_TIME` Identifies time of system boot.
- `OLD_TIME` Identifies time when system clock changed.
- `NEW_TIME` Identifies time after system clock changed.
- `USER_PROCESS` Identifies a process.
- `INIT_PROCESS` Identifies a process spawned by the `init` process.
- `LOGIN_PROCESS` Identifies the session leader of a logged-in user.
- `DEAD_PROCESS` Identifies a session leader who has exited.
Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also endutxent(3C), time(3HEAD), types.h(3HEAD), attributes(5), standards(5)
utsname.h (3HEAD)

Name
utsname.h, utsname – system name structure

Synopsis
#include <sys/utsname.h>

Description
The <sys/utsname.h> header defines the structure utsname, which includes the following members:

```c
char sysname[] /* name of this implementation of the operating system */
char nodename[] /* name of this node within an implementation-defined communications network */
char release[] /* current release level of this implementation */
char version[] /* current version level of this release */
char machine[] /* name of the hardware type on which the system is running */
```

The character arrays are of unspecified size, but the data stored in them is terminated by a null byte.

Attributes
See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also
uname(2), attributes(5), standards(5)
This file contains a set of manifest constants, conditionally defined for particular processor architectures.

The model assumed for integers is binary representation (one’s or two’s complement), where the sign is represented by the value of the high-order bit.

- **BITS(type)**: The number of bits in a specified type (for example, `int`).
- **HIBITS**: The value of a short integer with only the high-order bit set.
- **HIBITL**: The value of a long integer with only the high-order bit set.
- **HIBITI**: The value of a regular integer with only the high-order bit set.
- **MAXSHORT**: The maximum value of a signed short integer.
- **MAXLONG**: The maximum value of a signed long integer.
- **MAXINT**: The maximum value of a signed regular integer.
- **MAXFLOAT, LN_MAXFLOAT**: The maximum value of a single-precision floating-point number, and its natural logarithm.
- **MAXDOUBLE, LN_MAXDOUBLE**: The maximum value of a double-precision floating-point number, and its natural logarithm.
- **MINFLOAT, LN_MINFLOAT**: The minimum positive value of a single-precision floating-point number, and its natural logarithm.
- **MINDOUBLE, LN_MINDOUBLE**: The minimum positive value of a double-precision floating-point number, and its natural logarithm.
- **FSIGNIF**: The number of significant bits in the mantissa of a single-precision floating-point number.
- **DSIGNIF**: The number of significant bits in the mantissa of a double-precision floating-point number.

See Also *Intro(3) math.h(3HEAD)*
wait.h(3HEAD)

Name wait.h, wait – wait status
Synopsis #include <sys/wait.h>
Description When a process waits for status from its children using either the wait(3C) or waitpid(3C)
function, the status returned can be evaluated with the following macros, defined in <sys/wait.h>. These macros evaluate to integral expressions. The stat argument to these macros is the integer value returned from wait() or waitpid().

WCOREDUMP(stat) If the value of WIFSIGNALED(stat) is non-zero, this macro evaluates to
a non-zero value if a core image of the terminated child was created.

WEXITSTATUS(stat) If the value of WIFEXITED(stat) is non-zero, this macro evaluates to
the exit code that the child process passed to _exit() (see exit(2)) or
exit(3C), or the value that the child process returned from main.

WIFCONTINUED(stat) Evaluates to a non-zero value if status was returned for a child process
that has continued.

WIFEXITED(stat) Evaluates to a non-zero value if status was returned for a child process
that terminated normally.

WIFSIGNALED(stat) Evaluates to a non-zero value if status was returned for a child process
that terminated due to the receipt of a signal.

WIFSTOPPED(stat) Evaluates to a non-zero value if status was returned for a child process
that is currently stopped.

WSTOPSIG(stat) If the value of WIFSTOPPED(stat) is non-zero, this macro evaluates to
the number of the signal that caused the child process to stop.

WTERMSIG(stat) If the value of WIFSIGNALED(stat) is non-zero, this macro evaluates to
the number of the signal that caused the termination of the child
process.

The <sys/wait.h> header defines the symbolic constants listed below for use with
waitpid(3C).

WNOHANG Do not hang if no status is available; return immediately.

WUNTRACED Report status of stopped child process.

The symbolic constants listed below are defined as possible values for the options argument to
waitid(2).

WEXITED Wait for processes that have exited.

WSTOPPED Status is returned for any child that has stopped upon receipt of a signal.

WCONTINUED Status is returned for any child that was stopped and has been continued.

WNOHANG Return immediately if there are no children to wait for.
WNOWAIT Keep the process whose status is returned in infop in a waitable state.

The type idtype_t is defined as an enumeration type whose possible values include the following:

P_ALL
P_PID
P_PGID

The id_t and pid_t types are defined as described in <sys/types.h>.

The siginfo_t type is defined as described in <signal.h>.

The rusage structure is defined as described in <sys/resource.h>.

Inclusion of the <sys/wait.h> header can also make visible all symbols from <signal.h> and <sys/resource.h>.

Attributes See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also exit(2), waitid(2), exit(3C), wait(3C), waitpid(3C), attributes(5), standards(5)
The `<wchar.h>` header defines the following types:

- `wchar_t`: As described in `<stddef.h>`.
- `wint_t`: An integer type capable of storing any valid value of `wchar_t` or `WEOF`.
- `wctype_t`: A scalar type of a data object that can hold values which represent locale-specific character classification.
- `mbstate_t`: An object type other than an array type that can hold the conversion state information necessary to convert between sequences of (possibly multi-byte) characters and wide characters. If a codeset is being used such that an `mbstate_t` needs to preserve more than two levels of reserved state, the results are unspecified.
- `FILE`: As described in `<stdio.h>`.
- `size_t`: As described in `<stddef.h>`.
- `va_list`: As described in `<stdarg.h>`.

The implementation supports one or more programming environments in which the width of `wint_t` is no greater than the width of type `long`. The names of these programming environments can be obtained using the `confstr(3C)` function or the `getconf(1)` utility.

The `<wchar.h>` header defines the following macros:

- `WCHAR_MAX`: The maximum value representable by an object of type `wchar_t`.
- `WCHAR_MIN`: The minimum value representable by an object of type `wchar_t`.
- `WEOF`: Constant expression of type `wint_t` that is returned by several WP functions to indicate end-of-file.
- `NULL`: As described in `<stddef.h>`.

The tag `tm` is declared as naming an incomplete structure type, the contents of which are described in the header `<time.h>`.

Inclusion of the `<wchar.h>` header can make visible all symbols from the headers `<ctype.h>`, `<string.h>`, `<stdarg.h>`, `<stdio.h>`, `<stdlib.h>`, `<time.h>`, and `<wchar.h>`.

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>ATTRIBUTE TYPE</td>
<td>ATTRIBUTE VALUE</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also
getconf(1), btowc(3C), confstr(3C), fgetwc(3C), getws(3C), fputwc(3C), fputws(3C), fwide(3C), fprintf(3C), fscanf(3C), getwc(3C), getwchar(3C), iswalpha(3C), iswctype(3C), mbsinit(3C), mbrlen(3C), mbstowc(3C), mbsrtowcs(3C), towlower(3C), towupper(3C), ungetwc(3C), vfprintf(3C), wctomb(3C), wcsrtombs(3C), wcstring(3C), wcsstr(3C), wcstod(3C), wcscoll(3C), wcstol(3C), wcstoul(3C), wcswidth(3C), wcsxfrm(3C), wctob(3C), wctype(3C), wcwidth(3C), wmemchr(3C), wmemcmp(3C), wmemcmpy(3C), wmemmove(3C), wmemset(3C), stdarg(3EXT), stddef.h(3HEAD), stdio.h(3HEAD), stdlib.h(3HEAD), string.h(3HEAD), time.h(3HEAD), wchar.h(3HEAD), attributes(5), standards(5)
The `<wctype.h>` header defines the following types:

- `wint_t` As described in `<wchar.h>`.
- `wctrans_t` A scalar type that can hold values that represent locale-specific character mappings.
- `wctype_t` As described in `<wchar.h>`.

The `<wctype.h>` header defines the following macro name:

- `WEOF` Constant expression of type `wint_t` that is returned by several MSE functions to indicate end-of-file.

For all functions described in this header that accept an argument of type `wint_t`, the value is representable as a `wchar_t` or equals the value of `WEOF`. If this argument has any other value, the behavior is undefined.

The behavior of these functions is affected by the `LC_CTYPE` category of the current locale.

Inclusion of the `<wctype.h>` header can make visible all symbols from the headers `<ctype.h>`, `<stdarg.h>`, `<stddef.h>`, `<stdio.h>`, `<stdlib.h>`, `<string.h>`, `<time.h>`, and `<wchar.h>`.

Attributes

See attributes(5) for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See standards(5).</td>
</tr>
</tbody>
</table>

See Also

- `iswalph(3C)`, `iswctype(3C)`, `locale(3HEAD)`, `setlocale(3C)`, `stdarg(3EXT)`, `stddef.h(3HEAD)`, `stdio.h(3HEAD)`, `stdlib.h(3HEAD)`, `string(3HEAD)`, `time(3HEAD)`, `towctrans(3C)`, `tolower(3C)`, `toupper(3C)`, `wctrans(3C)`, `wctype(3C)`, `attributes(5)`, `standards(5)`
wordexp.h (3HEAD)

Name wordexp.h, wordexp – word-expansion types

Synopsis #include <wordexp.h>

Description The <wordexp.h> header defines the structures and symbolic constants used by the
wordexp() and wordfree() functions. See wordexp(3C).

The structure type wordexp_t contains the following members:

```c
size_t we_wordc  /* count of words matched by words */
char **we_wordv  /* pointer to list of expanded words */
size_t we_offs   /* slots to reserve at the beginning
of we_wordv */
```

The flags argument to the wordexp() function is the bitwise-inclusive OR of the following flags:

- **WRDE_APPEND** Append words to those previously generated.
- **WRDE_DOOFFS** Number of null pointers to prepend to we_wordv.
- **WRDE_NOCMD** Fail if command substitution is requested.
- **WRDE_REUSE** The pwordexp argument was passed to a previous successful call to
wordexp(), and has not been passed to wordfree(). The result is the same
as if the application had called wordfree() and then called wordexp() without WRDE_REUSE.
- **WRDE_SHOWERR** Do not redirect stderr to /dev/null.
- **WRDE_UNDEF** Report error on an attempt to expand an undefined shell variable.

The following constants are defined as error return values:

- **WRDE_BADCHAR** One of the unquoted characters—<newline>, '|', '&', ';', '<', '>', '(', ')', '{', '}'—appears in words in an inappropriate context.
- **WRDE_BADVAL** Reference to undefined shell variable when WRDE_UNDEF is set in flags.
- **WRDE_CMDSUB** Command substitution requested when WRDE_NOCMD was set in flags.
- **WRDE_NOSPACE** Attempt to allocate memory failed.
- **WRDE_NOSYS** Reserved.
- **WRDE_SYNTAX** Shell syntax error, such as unbalanced parentheses or unterminated string.

The <wordexp.h> header defines the following type:

```c
size_t
```
As described in <stdlib.h>.
Attributes

See [attributes(5)] for descriptions of the following attributes:

<table>
<thead>
<tr>
<th>ATTRIBUTE TYPE</th>
<th>ATTRIBUTE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Stability</td>
<td>Committed</td>
</tr>
<tr>
<td>Standard</td>
<td>See [standards(5)].</td>
</tr>
</tbody>
</table>

See Also

[wordexp(3C)], [attributes(5)], [standards(5)]