Introduction to the Oracle® Solaris Developer Documentation
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Contents

Preface ... 5

1 Introduction to the Oracle Solaris Developer Documentation ... 9
 Learning About Development on the Oracle Solaris OS ... 9
 Map to the Oracle Solaris OS Man Page Collection .. 11
 Building Applications in the Oracle Solaris OS ... 12
 Oracle Solaris Developer Tools .. 13
 Using the Oracle Solaris Studio Tools ... 14
 Using the NetBeans IDE .. 15
 AMP Stack for Web Application Development and Deployment ... 16
 Using Oracle Message Passing Toolkit .. 17
 Packaging Applications for the Oracle Solaris OS ... 18
 Oracle Solaris Dynamic Tracing ... 18
 Writing Java Programs for the Oracle Solaris OS ... 18
 Supplying Platform-Independent Online Help ... 18
 Programming to Specific Hardware and Configurations .. 19
 Known Oracle Solaris Compatible Hardware .. 19
 Testing x86 Hardware for Oracle Solaris Compatibility .. 19
 Developing in the x86 Assembly Language .. 20
 Developing in the SPARC Assembly Language .. 20
 Developing 64-bit Applications for the Oracle Solaris OS .. 20
 Developing for a Cluster Environment ... 20
 Network Programming in the Oracle Solaris OS ... 21
 Making Remote Procedure Calls ... 21
 Adding Device Management Information to the System Management Agent 21
 Developing Web-Based Enterprise Management Applications ... 22
 Programming with Oracle Solaris Interfaces and Frameworks ... 22
 Multithreaded Programming in the Oracle Solaris OS ... 22
Programming Interfaces ... 22
Developing Custom Storage Modules for the DHCP Service .. 23
Developing Security Applications and Services in the Oracle Solaris OS 23
Developing Device Drivers ... 24
Writing System Resource Management Applications ... 24
Developing Software for International Audiences ... 25
Preface

Introduction to the Oracle Solaris Developer Documentation is a starting point for developers working on the Oracle Solaris Operating System (Oracle Solaris OS).

Note – This Solaris release supports systems that use the SPARC and x86 families of processor architectures: UltraSPARC, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported systems appear in the Solaris OS: Hardware Compatibility Lists at http://www.oracle.com/webfolder/technetwork/hcl/index.html. This document cites any implementation differences between the platform types.

In this document these x86 related terms mean the following:

- “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
- “x64” points out specific 64-bit information about AMD64 or EM64T systems.
- “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris OS: Hardware Compatibility Lists.

Who Should Use This Book

This book is suggested for any developer who needs to learn more about the Solaris development environment. The book provides links for many information resources for learning about and developing on the Solaris OS.

How This Book Is Organized

This single-chapter manual consists of the following major sections:

- “Learning About Development on the Oracle Solaris OS” on page 9
- “Map to the Oracle Solaris OS Man Page Collection” on page 11
- “Building Applications in the Oracle Solaris OS” on page 12
- “Programming to Specific Hardware and Configurations” on page 19
- “Network Programming in the Oracle Solaris OS” on page 21
- “Programming with Oracle Solaris Interfaces and Frameworks” on page 22
Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories,</td>
<td>Edit your .login file.</td>
</tr>
<tr>
<td></td>
<td>and onscreen computer output</td>
<td>Use ls -a to list all files.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>machine_name% you have mail.</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with onscreen computer output</td>
<td>machine_name% su</td>
</tr>
<tr>
<td>abbcc123</td>
<td>Placeholder: replace with a real name or value</td>
<td>Password:</td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new terms, and terms to be</td>
<td>The command to remove a file is rm filename.</td>
</tr>
<tr>
<td></td>
<td>emphasized</td>
<td></td>
</tr>
</tbody>
</table>

Shell Prompts in Command Examples

The following table shows the default UNIX system prompt and superuser prompt for shells that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed in command examples varies, depending on the Oracle Solaris release.

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bash shell, Korn shell, and</td>
<td>$</td>
</tr>
<tr>
<td>Bourne shell</td>
<td></td>
</tr>
<tr>
<td>Shell</td>
<td>Prompt</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Bash shell, Korn shell, and Bourne shell for superuser</td>
<td>#</td>
</tr>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell for superuser</td>
<td>machine_name#</td>
</tr>
</tbody>
</table>
The Oracle Solaris Operating System (Oracle Solaris OS) provides developers with numerous interfaces, frameworks, and tools to take advantage of Oracle Solaris technologies. This manual provides a roadmap for developers to learn about the Oracle Solaris OS and provides links to sources of further information. The following topics are covered:

- “Learning About Development on the Oracle Solaris OS” on page 9
- “Map to the Oracle Solaris OS Man Page Collection” on page 11
- “Building Applications in the Oracle Solaris OS” on page 12
- “Programming to Specific Hardware and Configurations” on page 19
- “Network Programming in the Oracle Solaris OS” on page 21
- “Programming with Oracle Solaris Interfaces and Frameworks” on page 22

Learning About Development on the Oracle Solaris OS

The various vehicles for getting information about developing applications in the Oracle Solaris OS are:

- **Man pages** – The reference manual ("man") pages provide syntax and descriptions for commands, functions, structures, and file formats in the Oracle Solaris OS. If you know the name of the item you are seeking information about, type the `man` command followed by the item name at the command line.

- **OS Manuals** – A family of programming manuals describes APIs and frameworks in the Oracle Solaris OS.

- **Developer tools documentation** – Two integrated development environments (IDE) are available for the Oracle Solaris OS: the Oracle Solaris Studio software and the NetBeans IDE. The Oracle Solaris Studio software provides a rich development environment for developers who are writing software for the Oracle Solaris OS. Included are C, C++, and Fortran compilers, the dbx debugger, and performance analysis tools.
The NetBeans IDE provides developers with tools for creating professional cross-platform desktop, enterprise, web, and mobile applications. For documentation, see the Documentation, Training & Support area on the NetBeans.org site. For a summary explanation of the NetBeans software, see “Using the NetBeans IDE” on page 15.

An additional set of tools can be used with the Oracle Solaris Studio tools to develop parallel applications designed to run on distributed-memory systems. See “Using Oracle Message Passing Toolkit” on page 17, formerly Sun HPC ClusterTools, for more information.

- **Oracle University** – Instructor-led courses, online courses, white papers, and other information on the Oracle Solaris OS and other technologies are among the resources available at Oracle University.

- **Retail books** – You can also learn about the Oracle Solaris OS from books published by commercial publishers.

Notable books for Oracle Solaris developers are:

- *Solaris 10 System Administration Essentials* by Solaris Engineers; Prentice Hall PTR; November 30, 2009.
- *Solaris 10 ZFS Essentials* by Scott Watanabe; Prentice Hall PTR; January 4, 2010.
- *Solaris ZFS Administration Guide*; Sun Microsystems; Vervante; 2009.

- **Oracle Solaris 10 OS product literature** – For product literature on the Oracle Solaris 10 OS including data sheets, tours, case studies, and white papers, see the Solaris Operating System web site.

- **Other Oracle Solaris documentation** – The following documentation sources can be useful to developers, although these manuals are less directly involved with Oracle Solaris OS development:
 - Solaris 10 System Administrator Collection
 - Solaris 10 On Sun Hardware Documentation
 - Solaris 10 International Language Support Collection
 - Java Tutorials
 - Java EE 5 Tutorial
Map to the Oracle Solaris OS Man Page Collection

The Oracle Solaris OS provides detailed information about system internals through man pages. If you are unfamiliar with the man page concept, see the man page for the man(1) command itself or type man man on the command line. The Oracle Solaris OS provides more than 13,000 man pages. Man page collections are separated into sections, which vary slightly from vendor to vendor or even from one release to another release. Large sections are sometimes divided into volumes. References to commands often include the reference manual section or volume number next to the command. For example the man command might be referred to as man(1).

Viewing man pages on OTN offers several advantages over viewing man pages from the command line. Each section or volume is presented as a book with an index and preface, and an alphabetized list of items with their short descriptions. In some sections, an introductory page provides an overview of the section.

The man pages for the Oracle Solaris OS are organized into sections and volumes as follows:

- **man pages section 1: User Commands** – Describes the non-administration commands on the system. The Intro(1) man page provides information on man page command syntax for users, guidelines for developers who are designing new man pages, and an explanation of the subdivisions within Section 1.

- **man pages section 1M: System Administration Commands** – Describes commands for system maintenance and other administrative purposes. The Intro(1M) man page repeats the man page command syntax explanation from the User Commands volume.

- **man pages section 2: System Calls** section – Describes prototypes and descriptions for the various system calls that can be made in the Oracle Solaris OS. This section focuses on calls that directly invoke UNIX system primitives. The Intro(2) man page provides a list of error returns from system calls as well as a glossary of system call terminology.

Section 3 provides information on library calls and is divided into the following volumes:

- **man pages section 3: Library Interfaces and Headers** volume – Describes general libraries that do not fit into the other categories. The Intro(3) man page provides the complete organization of the Section 3 libraries, a brief explanation of multithreaded applications, and a few basic definitions.

- **man pages section 3: Basic Library Functions** volume – Describes the core C library functions that are basic to application development.

- **man pages section 3: Networking Library Functions** volume – Describes libraries that are related to networking, such as LDAP and RPC.

- **man pages section 3: Curses Library Functions** volume – Describes libraries for displaying characters and graphics.

- **man pages section 3: Realtime Library Functions** volume – Describes libraries for performing realtime activities.
Building Applications in the Oracle Solaris OS

This section provides information on Oracle Solaris facilities for developing applications, including compiling, debugging, tuning, and packaging applications.

- “Oracle Solaris Developer Tools” on page 13
- “Using the Oracle Solaris Studio Tools” on page 14
- “Using the NetBeans IDE” on page 15
- “AMP Stack for Web Application Development and Deployment” on page 16
- “Using Oracle Message Passing Toolkit” on page 17
- “Packaging Applications for the Oracle Solaris OS” on page 18
- “Oracle Solaris Dynamic Tracing” on page 18
- “Writing Java Programs for the Oracle Solaris OS” on page 18
- “Supplying Platform-Independent Online Help” on page 18
Oracle Solaris Developer Tools

The Oracle Solaris OS includes a number of developer software packages, which are available when you install the appropriate Oracle Solaris software group for developers. For installation purposes, the Oracle Solaris OS is logically divided into software groups, which are collections of Oracle Solaris packages.

When you install the Oracle Solaris OS, you must select one of the following software groups, which contain the developer packages:

- Developer
- Entire
- Entire Plus OEM

With these software groups, you get compilers such as the GNU C compiler (gcc) and the Java compiler (javac). Also installed are the GNU source-level debugger (gdb) and the modular debugger (mdb and kmdb), a linker (ld), source control utilities (sccs), and build utilities such as make. See the article Building Software on the Solaris OS for a quick lesson in using some of the standard tools.

Note – Most developers should use the more powerful Oracle Solaris Studio and NetBeans development and build tools. See “Using the Oracle Solaris Studio Tools” on page 14 and “Using the NetBeans IDE” on page 15.

Using the Runtime Linker and Link Editor

The Oracle Solaris OS provides a link editor and runtime linker. The Oracle Solaris 10/11 Linker and Libraries Guide covers the link editor `ld(1)`, the runtime linker `ld.so.1(1)`, the ELF object file format, and shared objects, which are sometimes referred to as shared libraries.

The manual is intended for a range of programmers who are interested in the Oracle Solaris linkers, from the beginner to the advanced user. Beginners learn the principal operations of the link editor and runtime linker. Intermediate programmers learn to create and use efficient custom libraries. Advanced programmers, such as language-tools developers, learn how to interpret and generate object files. A chapter on application binary interfaces describes how to manage the evolution of an interface that is provided by a dynamic object. Other chapters cover thread-local storage and mapfile directives.

Kernel-Level Debugging

The Modular Debugger `mdb` is an extensible, general purpose debugging tool for the Oracle Solaris OS. The Oracle Solaris Modular Debugger Guide describes how to use the `mdb(1)` command to debug complex software systems. The guide emphasizes the facilities that are available for debugging the Oracle Solaris kernel and associated device drivers and modules. The guide includes a complete reference for the `mdb` language syntax, debugger features, and the `mdb` module programming API.
The Oracle Solaris Modular Debugger Guide also features information on kmdb, the kernel-level analogue to mdb.

Using the Oracle Solaris Studio Tools

The Oracle Solaris Studio software provides modules for creating, editing, building, debugging, and analyzing the performance of a C, C++, or Fortran application. Many Oracle Solaris Studio tools have both a GUI and command-line equivalent. Those tools with GUIs provide online help. For the command-line versions, use the associated man pages. If you start dbx from the command line, type commands at the (dbx) prompt to get a brief description of each dbx command.

Download Oracle Solaris Studio software from Oracle Solaris Studio Downloads.

Note that the Oracle Solaris Studio IDE installs its own version of the NetBeans IDE. This NetBeans installation is not intended to be used independently of the Oracle Solaris Studio software, and you might experience errors if you use it separately. If you want to use the NetBeans IDE, you should install the NetBeans IDE separately from installing Oracle Solaris Studio or Oracle Solaris Studio Express software.

The Oracle Solaris Studio software includes the following tools:

- **Oracle Solaris Studio IDE** – An integrated development environment that provides access to the Oracle Solaris Studio C, C++, and Fortran tools.

 A NetBeans plugin enables you to use the Oracle Solaris Dynamic Tracing facility (DTrace) from the Oracle Solaris Studio IDE. DTrace enables you to explore the inner workings of the software programs running on your system. The DTrace GUI plugin enables you to use DTrace from the IDE by running D scripts in a window. The plugin includes several D scripts that can be easily extended and customized to suit your needs. See "Oracle Solaris Dynamic Tracing" on page 18 in this manual for more information about DTrace. The Oracle Solaris Studio 12 Update 1 IDE includes the NetBeans DTrace GUI plugin. For Oracle Solaris Studio 12.2, the DTrace GUI plugin is separate. See NetBeans DTrace GUI FAQ and documentation.

 The Oracle Solaris Studio 12 Update 1 IDE also includes the DLight tool, which offers a variety of instrumentation that takes advantage of the Oracle Solaris Dynamic Tracing (DTrace) debugging and performance analysis functionality.

- **Oracle Solaris Studio C compiler** – Includes a C compiler, incremental link editor, and lint program.

- **Oracle Solaris Studio C++ compiler** – Includes a full-featured C++ compiler and interval arithmetic library.

- **Oracle Solaris Studio Fortran compiler** – Includes a full-featured environment and libraries for both f95 and f77.

- **dbx Debugger** – An interactive, source-level, command-line debugging tool.
- **Sun Memory Error Discovery Tool** (Discover) – An advanced development tool for detecting memory access errors.
- **Uncover** – A simple and easy to use command-line tool for measuring code coverage of applications.
- **DLight** – A separate tool for Oracle Solaris Studio 12.2, different from the DLight tool that is integrated into the Oracle Solaris Studio 12 Update 1 IDE. The Oracle Solaris Studio 12.2 DLight tool includes three profiling tools for processes in the AMP stack, in addition to profiling tools for C, C++, and Fortran programs.
- **Oracle Solaris Studio** `make make tool` – A command-line tool for building targets in distributed, parallel, or serial mode.
- **Math libraries** – A floating-point environment that is supported by software and hardware on SPARC and x86 platforms that run the Oracle Solaris OS.
- **OpenMP** – A portable, pragma-based parallel programming model for shared memory multiprocessor architectures, is natively accepted and compiled by all three Oracle Solaris Studio compilers.
- **Performance Analyzer** – A GUI and command-line tool for collecting and analyzing performance data.
- **Thread Analyzer** – A GUI and command-line tool for analyzing the execution of multithreaded programs and checking for a variety of multithreaded programming errors.
- **Sun Performance Library** – A library of Sun-specific extensions and features for using optimized, high-speed mathematical subroutines for solving linear algebra and other numerically intensive problems.

For more information, see [Oracle Solaris Studio Documentation](#).

Using the NetBeans IDE

NetBeans IDE (Integrated Development Environment) provides tools to help you build cross-platform applications for the Oracle Solaris OS and other operating platforms. The NetBeans IDE is available from netbeans.org. To see the installation guide, go to the [Releases & Planning](#) page, click the "General Info" link for the release you want, and then find the [Installation Instructions](#) on that page.

The NetBeans IDE contains the following features:

- **Java Desktop Applications** – Create professional desktop applications using the NetBeans Java GUI Builder with Swing Application Framework and Beans Binding support. Build rich internet applications with JavaFX.
- **PHP Development** – A fast and lightweight PHP IDE with code completion and quick fixes, integrated FTP and Xdebug, and support for popular Web Services.
Java EE and Web Applications – Build web applications using Ajax, JavaScript, and CSS. Support for frameworks including JSF, Struts, Spring and Hibernate. Full set of tools for EJB development.

Ruby and Ruby on Rails Development – Powerful Ruby editor with code completion and debugger, and full support for Ruby on Rails. Includes the JRuby runtime.

Visual Mobile Development – Create, test and debug GUI applications that run on mobile phones, set-top boxes, and PDAs.

C and C++ Development – Full-featured C/C++ editor, debugger, project templates, support for multiple project configurations, remote development, performance profiling, and packaging of completed projects.

Visit the netbeans.org web site for more information. New users might find the following pages particularly useful:

- Guided Video Tour of the NetBeans IDE
- NetBeans IDE Java Quick Start Tutorial
- NetBeans documentation
- NetBeans Plugin Portal for plugin modules
- NetBeans Wiki with New and Noteworthy, community documentation, and answers to Frequently Asked Questions

AMP Stack for Web Application Development and Deployment

Web Stack software is a collection of popular open source web technologies that enable developers to easily build and deploy web applications. Web Stack includes an AMP (Apache/MySQL/Perl or PHP) stack that has been optimized for the Oracle Solaris OS.

The Web Stack components include the following technologies:

- Apache – An HTTP web server, which serves web pages to web clients such as browsers.
- MySQL – A relational database engine (DBMS) that can be used to store most dynamic data for web applications.
- PHP – A scripting language, which is used to embed instructions within HTML pages to provide dynamic content. A NetBeans plugin for PHP can also be installed in the NetBeans IDE from the Tools > Plugins > Available Plugins menu.
- PostgreSQL – An object-relational database management system (ORDBMS). PostgreSQL uses a client/server model.
- Ruby on Rails – A framework for web application development. Ruby is the object-oriented programming language. Rails is an open source Ruby framework for developing web-based, database-driven applications. In Web Stack, Ruby includes extensions for OpenSSL, curses, Tcl/Tk, and readline. The NetBeans IDE includes support for Ruby and JRuby.

- Squid – A fully-featured HTTP/1.0 proxy server. Squid offers a rich access control, authorization and logging environment to develop web proxy and content serving applications.

- memcached – memcached is a high-performance, distributed memory object caching system, which speeds up dynamic web applications by alleviating database load.

- Tomcat Servlet container server software, which processes Java Servlet and JavaServer Pages (JSP) applications to provide dynamic web pages.

Using Oracle Message Passing Toolkit

The Oracle Message Passing Toolkit, formerly Sun HPC ClusterTools, is a set of development tools that you can use to develop parallel applications designed to run on distributed-memory systems.

For Oracle Solaris 10, the latest Oracle Message Passing Toolkit can be downloaded from the Oracle Message Passing Toolkit page.

Oracle Message Passing Toolkit includes the following technologies:

- Open Message Passing Interface (Open MPI) – an open source implementation of the Message Passing Interface (MPI) standard. Open MPI is fully compliant with the MPI 2 standard including complete MPI I/O implementation and one-sided communications between MPI processes.

- Open Run-Time Environment (ORTE) – provides a basic set of parallel job management facilities, and includes plugin modules to support the following technologies:
 - The Oracle Grid Engine, which allows parallel jobs to be launched and maximizes the utilization of shared resources.
 - The Portable Batch System (PBS), a job scheduler that allocates network resources to batch jobs on networked, multi-platform environments.

The Oracle Message Passing Toolkit can be used with the Oracle Solaris Studio compilers for C, C++, and Fortran. The Oracle Message Passing Toolkit is integrated with Oracle Solaris Studio Performance Analyzer to deliver full profiling capabilities for MPI applications, including MPI States, a feature unique to Performance Analyzer. The Oracle Message Passing Toolkit also supports the popular Totalview and Allinea DDT parallel debuggers.

See the Sun HPC ClusterTools documentation set for complete information about using the Oracle Message Passing Toolkit.
Packaging Applications for the Oracle Solaris OS

Software programs must be incorporated into a package to be installed in the Oracle Solaris OS. The *Application Packaging Developer’s Guide* provides step-by-step instructions and relevant background information for designing, building, and verifying System V, or SVR4 packages on the Oracle Solaris OS. A chapter with case studies provides several package creation examples in a variety of situations. This document also includes descriptions of advanced techniques that you might find to be helpful during the package creation process.

- Unbundled packages, which are not part of the Oracle Solaris OS, can use the class mechanism to customize server/client installations.
- Relocatable packages can be designed to accommodate the desires of the administrator.
- A complex product can be delivered as a set of composite packages that automatically resolve package dependencies.
- A package designer can customize the upgrading and patching process.
- Patched packages can be delivered in the same way as unpatched packages. Archives for backing out the software can also be included in the product.

Oracle Solaris Dynamic Tracing

Oracle Solaris Dynamic Tracing (DTrace) is a comprehensive dynamic tracing framework for the Oracle Solaris OS. The DTrace facility provides a powerful infrastructure to enable administrators, developers, and service personnel to concisely answer arbitrary questions about the behavior of the operating system and user programs. DTrace can help developers identify performance issues and bugs in applications. The *DTrace User’s Guide* describes in depth how to use DTrace to observe, debug, and tune system behavior. This guide also includes a complete reference for bundled DTrace observability tools and the D programming language.

Writing Java Programs for the Oracle Solaris OS

Supplying Platform-Independent Online Help

The JavaHelp system is a full-featured, platform-independent, extensible help system that enables you to incorporate online help in applets, components, applications, operating systems, and devices. You can also use the JavaHelp software to deliver online documentation for web
Programming to Specific Hardware and Configurations

This section provides information for development on specific hardware platforms and architectures, including clustered environments.

Known Oracle Solaris Compatible Hardware

The Hardware Compatibility Lists (HCL) identifies hardware that is compatible with the Oracle Solaris 10 OS. Separate lists identify systems and components that are compatible with the latest commercial versions of the Oracle Solaris OS and with the latest development versions. The HCL is available in a comma-separated value (CSV) format, for searching and sorting the list in a spreadsheet or database.

The Solaris on x86 Platforms Device Support list shows drivers and the devices they support for x86 Oracle Solaris 10 systems. Select an Oracle Solaris 10 release and then select a device type such as Network, Storage, or Video. Drivers of that type that are bundled in that selected release are displayed.

The Oracle Device Detection Tool helps you to detect whether the Oracle Solaris 10 OS can be installed on your x86, x64, or SPARC systems.

Testing x86 Hardware for Oracle Solaris Compatibility

See Solaris on x86 Platforms Device Support for the latest list of device support that comes built in to the Oracle Solaris OS.

The Hardware Certification Test Suite (HCTS) includes system certification tests, controller certification tests, a command-line interface, and a browser-based user interface. HCTS tests certify systems, motherboards, and various network, storage, and serial I/O controllers to work with the Oracle Solaris OS. HCTS collects log files, determines test pass or fail results, and generates a final test report. Hardware that passes HCTS certification testing is eligible to be included in the Hardware Compatibility List as Certified.
Developing in the x86 Assembly Language

The Oracle Solaris OS provides an assembly language for the x86 platform. The x86 Assembly Language Reference Manual describes the assembler that generates code for the 32-bit x86 processor architecture and translates source files that are in assembly language format into object files in linking format. This book describes the syntax of the Oracle Solaris x86 assembly language. The book also maps the instruction mnemonics of the Oracle Solaris x86 assembly language to the native x86 instruction set.

Developing in the SPARC Assembly Language

The Oracle Solaris OS provides an assembly language for the SPARC platform. The SPARC Assembly Language Reference Manual describes the assembler that runs on the SPARC architecture. The assembler translates source files that are in assembly language format into object files in linking format. The book describes the assembler syntax, and the executable and linking format. The relationship between hardware instructions of the SPARC architecture and the assembly language instruction set is discussed. The book also contains a description of the SPARC-V9 instruction set. Appendixes list the pseudo-operations that the SPARC assembler supports, with examples of their use. Other appendixes describe the available assembler command-line options and an example of the correspondence between the assembly code and the C code.

Developing 64-bit Applications for the Oracle Solaris OS

The Oracle Solaris OS provides a 64-bit computing environment along with backward compatibility for 32-bit applications. The Solaris 64-bit Developer’s Guide is written primarily for the application developer. The book provides guidance for choosing whether to use the 32-bit Oracle Solaris application development environment or the 64-bit environment. The manual explains the similarities and differences between the two environments, and explains how to write code that is portable between the two environments. This book also describes some of the tools provided by the operating system for developing 64-bit applications.

Developing for a Cluster Environment

The Oracle Solaris OS can be configured into a cluster environment to improve availability. The Oracle Solaris Cluster Data Services Developer’s Guide describes the Sun Cluster data service API. Developers can use this API to turn a standard user application such as a web browser or database into a highly available data service that can run in the Oracle Solaris Cluster environment. For high availability in virtualized environments, see the Oracle Solaris Containers feature and Oracle VM Server for SPARC.
In addition, you can parallelize applications to enable them to reap the benefits of running in a clustered environment. Oracle Message Passing Toolkit, formerly Sun HPC ClusterTools, is a set of parallel development tools for high-end distributed memory applications. See “Using Oracle Message Passing Toolkit” on page 17 for more information.

Network Programming in the Oracle Solaris OS

This section provides information on making remote procedure calls, programming a system management agent, and developing web-based enterprise management applications.

Making Remote Procedure Calls

The Oracle Solaris OS provides ONC+ distributed services for making remote procedure calls (RPC). The ONC+ Developer's Guide describes the ONC+ distributed services that were developed at Sun.

ONC+ technologies consist of a family of technologies, services, and tools:

- Remote procedure calls (RPC).
- Transport-independent remote procedure calls (TI-RPC) to make RPC applications transport independent.
- External data representation (XDR), an architecture-independent specification for representing data.
- Network Information Services Plus (NIS+), the enterprise naming service in the Oracle Solaris environment. This service provides a scalable and secure information base.

The book contains information on the `rpcgen` tool and the `portmap` utility. The book also contains code examples on the use of RPC.

Adding Device Management Information to the System Management Agent

The System Management Agent (SMA) is based on the open source Net-SNMP agent. The Solaris System Management Agent Developer’s Guide provides information for developers who want to extend the functionality of the agent. The manual provides information on the creation of Management Information Base (MIB) modules for SMA, and the interfaces that MIB modules use. Modules enable a specific application, device, system, or network to be managed through an SNMP management application. An appendix provides information about migrating an SEA subagent from the Solstice Enterprise Agents software for use in the System Management Agent.
Developing Web-Based Enterprise Management Applications

The Solaris WBEM Developer’s Guide describes the components of the Oracle Solaris Web-Based Enterprise Management (WBEM) Software Development Kit (SDK). The manual explains how to use these components to develop WBEM-based applications.

The book describes the following subjects:

- The Common Information Model (CIM) Object Manager
- The WBEM Query Language (WQL)
- Creating JavaBeans components with the Managed Object Format (MOF) compiler
- WBEM security mechanisms

Programming with Oracle Solaris Interfaces and Frameworks

This section provides information on interfaces and frameworks that are unique to the Oracle Solaris OS.

Multithreaded Programming in the Oracle Solaris OS

The Oracle Solaris OS provides the ability to develop applications with separate, parallel threads to improve application performance. The Multithreaded Programming Guide covers the POSIX and Oracle Solaris threads APIs, programming with synchronization objects, and compiling multithreaded programs. This guide is for developers who want to use multithreading to separate a process into independent execution threads, improving application performance and structure. Appendixes contain examples of code for both POSIX and Oracle Solaris threads.

For a more comprehensive understanding of programming with POSIX threads, consider reading the following retail books:

Programming Interfaces

The Programming Interfaces Guide describes programming interfaces that are specific to the Oracle Solaris environment.
The Programming Interfaces Guide has information on the following subjects:

- Memory and CPU management
- Process scheduling
- Input and output interfaces
- Interprocess communication and sockets
- The Transport Layer Interface (TLI) and the X/Open Transport Interface (XTI)
- Transport selection
- The Oracle Solaris application binary interface

The Oracle Solaris OS includes two utilities that enable application developers to verify an application's compliance with the Oracle Solaris Application Binary Interface (ABI). Compliance with the Oracle Solaris ABI ensures that your code is portable across releases of the Oracle Solaris OS. The Oracle Solaris ABI defines the interfaces that are available for the use of application developers.

The **appcert** utility statically examines the Oracle Solaris library interfaces used by ELF binaries for instances of private interface usage. The **apptrace** tool uses the link-auditing capability of the run time linker to dynamically trace library routine calls as the application runs.

Developing Custom Storage Modules for the DHCP Service

The Oracle Solaris OS provides Dynamic Host Configuration Protocol (DHCP) services. The Oracle Solaris DHCP service provides a framework that enables the development and use of custom databases for storing DHCP data. The Solaris DHCP Service Developer's Guide describes how to enable the DHCP service to use additional data storage facilities. The manual enables developers to write a module to store DHCP data in a database that is not currently supported by the Oracle Solaris DHCP service. The manual gives an overview of the data access framework used by Oracle Solaris DHCP and general guidelines for developers. The book also provides sample code templates.

Developing Security Applications and Services in the Oracle Solaris OS

The Developer's Guide to Oracle Solaris 10 Security is for developers of applications that consume security services as well as developers of applications that provide security services. Programming interfaces are documented for the following services: PAM, SASL, GSS-API, the Oracle Solaris cryptographic framework, and process privileges. The book provides examples of use for the Generic Security Standard API and the Simple Authentication Security Layer.
Developing Device Drivers

The Oracle Solaris OS includes a set of standard interfaces for developing device drivers. The interfaces are known as the DDI/DKI, or Device Driver Interface/Driver-Kernel Interface. The DDI/DKI interfaces enable you to upgrade to a new Oracle Solaris release or migrate to a new platform without recompiling your driver. These interfaces are documented in man page section 9, described in “Map to the Oracle Solaris OS Man Page Collection” on page 11.

The Device Driver Tutorial provides hands-on information about how to develop device drivers for the Oracle Solaris OS. This book includes step-by-step descriptions for writing, building, installing, loading, and testing simple device drivers. This book also gives an overview of the driver development environment and the tools available to develop drivers. Links to driver development resources and techniques for avoiding some driver development problems are also provided.

The Writing Device Drivers manual provides much more complete information about developing drivers for character-oriented devices and block-oriented devices. Specific devices such as network devices, USB devices, and SCSI target and HBA devices are covered as well.

The Writing Device Drivers manual includes the following additional topics:

- Multithreaded re-entrant drivers
- Driver autoconfiguration
- Programmed I/O
- Direct Memory Access (DMA)
- Power management
- Hardening drivers
- Device context management
- Compilation, installation, testing, and debugging drivers
- Guidelines for drivers for 64-bit environments

Writing System Resource Management Applications

The Solaris Containers: Resource Management and Solaris Zones Developer’s Guide describes how to write applications that partition and manage system resources such as processor sets and thread scheduling classes. This book references the programming APIs provided to partition, schedule, and set bounds on the consumption of system resources. This book provides programming examples and a discussion of programming issues to consider when writing an application. This book also includes a brief overview of Oracle Solaris Zones technology and discusses design considerations for applications that run in zones.
Developing Software for International Audiences

The Oracle Solaris OS provides an internationalization architecture to assist in the development, deployment, and management of applications and language services from around the world. A single multilingual product provides support for 39 different languages and 162 locales. In addition, support is available for the complex text layout that is required for Thai and Hindi scripts. Bidirectional text capability is also supported for languages such as Arabic and Hebrew. The *International Language Environments Guide* describes how to use the current Oracle Solaris release to build global software products that support a variety of languages and cultural conventions.