Oracle® Solaris SAN Configuration and Multipathing Guide
Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le déassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT END USERS. Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées d’ARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou services tiers, ou à leur utilisation.
Contents

Preface ... 7

1 Solaris I/O Multipathing Overview ... 11
 Overview of Solaris I/O Multipathing ... 11
 Fibre Channel Software Features ... 12
 iSCSI Software Features ... 12
 SAS Software Features ... 13
 Solaris I/O Multipathing Features .. 13
 Supported Device Standards ... 15
 FC Device Configuration Overview ... 15
 Configuring FC Devices With Multipathing Considerations 16

2 Configuring Solaris I/O Multipathing Features .. 19
 Configuring Multipathing I/O Features .. 19
 Multipathing Considerations ... 19
 Enabling and Disabling Multipathing .. 20
 ▼ How to Enable Multipathing ... 21
 ▼ How to Disable Multipathing ... 22
 ▼ How to Determine if Multipathing is Enabled or Disabled 23
 Enabling or Disabling Multipathing on a Per-Port Basis .. 23
 Port Configuration Considerations ... 24
 Configuring Third-Party Storage Devices .. 25
 Third-Party Device Configuration Considerations ... 26
 Configuring Third-Party Storage Devices: New Devices .. 26
 Configuring Third-Party Storage Devices: Disabling Devices 27
 Displaying Device Name Changes ... 28
 Configuring Automatic Failback ... 29
Contents

▼ How to Configure Multiple Multipathed FC Devices .. 107
Unconfiguring Fabric Devices .. 108
 Unconfiguring a Fabric Device ... 108

B Supported FC-HBA API .. 115
 Supported Fibre Channel HBA API .. 115

C Troubleshooting Multipathing-Related Problems ... 117
 System Fails to Boot During $stmsboot$.. 117
 ▼ How to Recover Boot Failure in Single User Mode ... 117
 System Crashes During $stmsboot$... 118
 ▼ How to Recover from a System Crash .. 118

Index ... 121
Preface

Oracle Solaris Administration: SAN Configuration and Multipathing provides an overview of the Solaris I/O multipathing features, previously known as the SunStorageTek Traffic Manager software, as an integrated part of the Oracle Solaris Operating System. This guide also includes step-by-step instructions for installing and configuring the software and devices.

This guide is intended for system, storage and network administrators who create and maintain Fibre Channel (FC) storage area networks (SANs) and serial-attached SCSI (SAS) Domains. A high level of expertise in the management and maintenance of SANS and SAS Domains is assumed.

Before You Read This Document

Before you read this book, review the latest Oracle Solaris 10 Operating System (OS) release notes.

How This Document Is Organized

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1, "Solaris I/O Multipathing Overview"</td>
<td>Provides an overview of the Solaris I/O multipathing features.</td>
</tr>
<tr>
<td>Chapter 2, "Configuring Solaris I/O Multipathing Features"</td>
<td>Describes how to configure the multipathing feature for FC devices. In addition, describes how to display multipathed device information and to enable multipathing failback support by using the mpathadm command.</td>
</tr>
<tr>
<td>Chapter 3, "Configuring Fabric-Connected Devices"</td>
<td>Provides the steps for configuring FC devices.</td>
</tr>
<tr>
<td>Chapter 4, "Configuring Oracle Solaris iSCSI Initiators"</td>
<td>Provides steps for configuring iSCSI initiators.</td>
</tr>
<tr>
<td>Chapter 5, "Configuring SAS Domains"</td>
<td>Provides steps for configuring SAS domains.</td>
</tr>
</tbody>
</table>
Access to Oracle Support

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>The names of commands, files, and directories, and onscreen computer output</td>
<td>Edit your <code>.login</code> file. Use <code>ls -a</code> to list all files. <code>machine_name% you have mail.</code></td>
</tr>
<tr>
<td>AaBbCc123</td>
<td>What you type, contrasted with onscreen computer output</td>
<td><code>machine_name% su</code> Password:</td>
</tr>
<tr>
<td>aabbcc123</td>
<td>Placeholder: replace with a real name or value</td>
<td>The command to remove a file is <code>rm filename</code>.</td>
</tr>
</tbody>
</table>
Shell Prompts in Command Examples

The following table shows UNIX system prompts and superuser prompts for shells that are included in the Oracle Solaris OS. In command examples, the shell prompt indicates whether the command should be executed by a regular user or a user with privileges.

<table>
<thead>
<tr>
<th>Shell</th>
<th>Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bash shell, Korn shell, and Bourne shell</td>
<td>$</td>
</tr>
<tr>
<td>Bash shell, Korn shell, and Bourne shell for superuser</td>
<td>#</td>
</tr>
<tr>
<td>C shell</td>
<td>machine_name%</td>
</tr>
<tr>
<td>C shell for superuser</td>
<td>machine_name#</td>
</tr>
</tbody>
</table>

TABLE P–1 Typographic Conventions (Continued)

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaBbCc123</td>
<td>Book titles, new terms, and terms to be emphasized</td>
<td>Read Chapter 6 in the User's Guide. A cache is a copy that is stored locally. Do not save the file. Note: Some emphasized items appear bold online.</td>
</tr>
</tbody>
</table>
This chapter provides an overview of the Solaris I/O multipathing features, formerly known as StorageTek Traffic Manager software.

The following topics are covered:

- “Overview of Solaris I/O Multipathing” on page 11
- “Supported Device Standards” on page 15

Overview of Solaris I/O Multipathing

The Solaris I/O multipathing features enable multiple access paths for systems that are running the Oracle Solaris OS. Multipathing provides higher availability for storage devices through the use of multipathed connections. This section provides the following information:

- “Fibre Channel Software Features” on page 12
- “SAS Software Features” on page 13
- “Solaris I/O Multipathing Features” on page 13

The Solaris I/O multipathing features identify the storage devices on your SAN or SAS Domain. The software enables you to attach Fibre Channel storage devices in either loop, fabric, or point-to-point mode. The software provides a common interface for managing both Fibre Channel, iSCSI, and SAS storage devices.

For information on how to configure targets and initiators in preparation for multipathing, see Chapter 12, “Configuring Oracle Solaris iSCSI Targets (Tasks),” in System Administration Guide: Devices and File Systems.
Fibre Channel Software Features

Solaris I/O multipathing provides the following key features:

- **Dynamic storage discovery** – The software automatically recognizes devices and any modifications made to device configurations. This feature makes devices available to the system without requiring you to reboot or manually change information in configuration files.

- **Persistent device naming** – Devices that are configured within the software maintain their device naming through reboots or reconfiguration. The only exception to this policy are tape devices found in `/dev/rmt` that will not change unless they are removed and then regenerated at a later date.

- **Fibre Channel Arbitrated Loop (FCAL) support** – OpenBoot PROM (OBP) commands that are used on servers can access FCAL attached storage for scanning the FC loop.

- **Fabric booting** – The Solaris OS supports booting from fabric devices as well as non-fabric Fibre Channel devices. Fabric topologies with Fibre Channel switches provide higher speed, more connections, and port isolation.

- **FC-HBA library** – What was previously known as the Storage Networking Industry Association Fibre Channel host bus adapter (SNIA FC-HBA) library is now known as the FC-HBA library. The FC-HBA library application programming interface (API) enables management of FC HBAs and provides a standards-based interface for other applications (such as Oracle’s StorEdge Enterprise Storage Manager) that can be used to gather information about FC HBAs.

For more information about common FC-HBA APIs, see `libhbaapi(3LIB)`. For additional information about FC specifications, go to: http://www.t11.org

iSCSI Software Features

iSCSI is an acronym for Internet SCSI (Small Computer System Interface), an Internet Protocol (IP)-based storage networking standard for linking data storage subsystems. By carrying SCSI commands over IP networks, the iSCSI protocol enables you to access block devices from across the network as if they were connected to the local system.

This feature means that a Solaris system can act as either an iSCSI server (target) or a client (initiator). The advantage of setting up Solaris iSCSI targets is you might have existing fibre-channel devices that can be connected to clients without additional FC HBAs. In addition, systems with dedicated arrays can now share replicated storage with ZFS or UFS file systems.

For more information, see Chapter 4, “Configuring Oracle Solaris iSCSI Initiators.”
SAS Software Features

- Dynamic storage discovery – The Oracle Solaris OS multipathing software automatically recognizes devices and any modifications made to device configurations. This makes devices available to the system without requiring you to reboot or manually change information in configuration files.
- Persistent device naming – Dynamic Storage Discovery Devices that are configured within the Solaris OS multipathing software maintain their device naming through reboots or reconfiguration.

Solaris I/O Multipathing Features

Solaris I/O multipathing is enabled by default for x86 based platforms and optional for SPARC based systems that run the Oracle Solaris OS. The software contains the following features:

- Path management – Solaris I/O multipathing features dynamically manage the paths to any storage devices that the OS supports. The addition or removal of paths to a device is done automatically when a path is brought online or removed from a service. Even with multipathing enabled, you can add more controllers to increase bandwidth and RAS without changing device names or modifying applications. Oracle storage products do not require configuration files to manage or databases to keep current. For storage from vendors other than Oracle, contact the vendor for methods to enable support and to ensure it is qualified with Solaris I/O multipathing features.
- Single device instances – Solaris I/O multipathing features are fully integrated with the Oracle Solaris OS. Multipathed devices are displayed as single device instances instead of as one device or device link per path. This feature reduces the cost of managing complex storage architectures with utilities such as the `format` command or a volume management product to see one representation of a storage device instead of a separate device for each path.
- Failover support – Implementing higher levels of RAS requires redundant host connectivity to storage devices. Solaris I/O multipathing features manage the failure of storage paths while maintaining host I/O connectivity through available secondary paths.

You can determine the failover support for your devices by using the following command:

```
# mpathadm show mpath-support libmpscsi_vhci.so
mpath-support: libmpscsi_vhci.so
  Vendor: Sun Microsystems
  Driver Name: scsi vhci
  Default Load Balance: round-robin
  Supported Load Balance Types:
    round-robin
    logical-block
  Allows To Activate Target Port Group Access: yes
  Allows Path Override: no
  Supported Auto Failback Config: 1
```
Auto Failback: on
Failback Polling Rate (current/max): 0/0
Supported Auto Probing Config: 0
Auto Probing: NA
Probing Polling Rate (current/max): NA/NA
Supported Devices:

- Symmetrical/asymmetrical device support – The following disk storage devices are supported:
 - All Oracle disk storage products, both symmetric and asymmetric
 - All T10/T11 standards-compliant third-party symmetrical disk devices
 - Many third-party asymmetrical disk arrays
 - T10 Asymmetric Logical Unit Access (ALUA) support has been added for asymmetrical devices that support this T10 standard. Contact your storage vendor to see whether your device is supported.

If your disk storage array uses the f_asym_lsi failover module, you will need to manually change the sequence of ddi-forceload section by moving the f_asym_lsi to end of the scsi_vhci.conf file, similar to the following:

```bash
ddi-forceload =
    "misc/scsi_vhci/scsi_vhci_f_asym_sun",
    "misc/scsi_vhci/scsi_vhci_f_asym_emc",
    "misc/scsi_vhci/scsi_vhci_f_sym_emc",
    "misc/scsi_vhci/scsi_vhci_f_sym_hds",
    "misc/scsi_vhci/scsi_vhci_f_sym",
    "misc/scsi_vhci/scsi_vhci_f_tape",
    "misc/scsi_vhci/scsi_vhci_f_tpgs",
    "misc/scsi_vhci/scsi_vhci_f_asym_lsi";
```

- I/O load balancing – In addition to providing simple failover support, Solaris multipathing features can use any active paths to a storage device to send and receive I/O. With I/O routed through multiple host connections, bandwidth can be increased by the addition of host controllers. The software uses a round-robin load-balancing algorithm by which individual I/O requests are routed to active host controllers in a series one after the other.

- Queue depth – SCSI storage arrays present storage to a system in the form of a logical unit number (LUN). LUNs have a finite set of resources available, such as the amount of data that can be stored, as well as the number of active commands that a device or LUN can process at one time. The number of active commands that can be issued before a device blocks further I/O is known as queue depth. When Solaris I/O multipathing is enabled, a single queue is created for each LUN regardless of the number of distinct or separate paths it may have to the host. This feature enables the disk driver to maintain and balance one queue to the LUN, effectively managing queue depth. No other multipathing software available for the Oracle Solaris OS has this ability.
Dynamic reconfiguration – Solaris I/O multipathing features support dynamic reconfiguration (DR) operations.

Supported Device Standards

Solaris I/O multipathing features is based on open standards for communicating with devices and device management, ensuring interoperability with other standards-based devices and software. The following standards are supported by Solaris I/O multipathing features:

- T10 standards, including SCSI-3, SAM, FCP, SPC, and SBC
- T11.3 FC standards, including FC-PH, FC-AL, FC-LS, and FC-GS
- T11.5 storage management standards, including FC-HBA
- IETF standards, including RFC 2625
- Serial Attached SCSI-2 (SAS2)

FC Device Configuration Overview

This section provides a high level overview of the tasks for configuring Solaris I/O multipathing features for FC devices.

The following table lists the configuration tasks, a description of each task, and the reference information where you can find related procedures.
Tasks for Configuring Multipathed FC Devices

<table>
<thead>
<tr>
<th>Configuration Task</th>
<th>Task Description</th>
<th>Reference Information</th>
</tr>
</thead>
</table>
| Enable multipathing features | Multipathing is enabled as follows:
 - By default, for FC devices on x86/x64 platforms
 - By manual configuration on SPARC platforms
 - By manual configuration for SAS devices | Chapter 2, "Configuring Solaris I/O Multipathing Features." |
| Configure FC devices | In the Oracle Solaris OS, FCAL, fabric, and point-to-point connected devices are made available to the host. | Chapter 3, "Configuring Fabric-Connected Devices" |
| Set up FC boot device | Solaris I/O multipathing features enable a Solaris server to boot from a fabric device. | "FC Device Considerations" on page 45 |
| Configure IPFC SAN devices | You can configure host recognition of IPFC devices and implementation of IP over FC in a SAN. Configuration of IPFC depends on the instance of the Fabric Port (FP) driver for the FC adapter ports. | Chapter 6, "Configuring IPFC SAN Devices" |
| Configure SAS devices | In the Oracle Solaris OS, multipathing of SAS devices is supported. | Chapter 5, "Configuring SAS Domains" |

Configuring FC Devices With Multipathing Considerations

Before you configure Solaris I/O multipathing features, consider the following:

- Configure ports and zones according to the vendor-specific documentation for storage and switches.
- LUN masking enables specific LUNs to be seen by specific hosts. See your vendor-specific storage documentation that describes masking.
- Power management needs to be disabled for hosts and devices on a SAN. For more information about power management, see `power.conf(4)`.
- The STMS boot utility is included with Solaris I/O multipathing features that manage the SAN booting process. Issuing the `stmsboot` command automatically updates the `/etc/vfstab` file and the dump configuration to reflect device name changes when enabling or disabling the multipathing software. Note that the software is disabled by default for devices on SPARC based systems and enabled by default for devices on x86 based systems.
- Fabric-connected devices are configured and made available to the host automatically during installation and boot time.
Note – If you are performing an upgrade and want to make any FC devices unavailable after upgrade, you have to be manually unconfigure those devices by using `cfgadm -c unconfigure` commands. However, to make those devices permanently unavailable to the system, you might want to consider using switch zoning or LUN masking. The changes made by `cfgadm -c unconfigure` do not persist after a reboot unless manual configuration for FC devices has been enabled. To find out how to disable the FC devices discovery during boot or install, refer to Appendix A, "Manual Configuration for Fabric-Connected Devices."
This chapter explains how to configure Solaris I/O multipathing features for FC devices in the Oracle Solaris OS. It also provides the considerations while enabling or disabling the multipathing feature on SPARC based systems, x86 based systems, on a per-port basis, and third-party storage devices.

The following topics are covered:
- “Configuring Multipathing I/O Features” on page 19
- “Multipathing Considerations” on page 19
- “Enabling and Disabling Multipathing” on page 20
- “Enabling or Disabling Multipathing on a Per-Port Basis” on page 23
- “Configuring Third-Party Storage Devices” on page 25
- “Configuring Automatic Failback” on page 29

Configuring Multipathing I/O Features

You can configure the multipathing features for FC devices to control all supported FC HBAs. Multipathing is disabled by default for FC devices on SPARC based systems, but is enabled by default on x86 based systems. Configuration of the multipathing features depends on how you intend to use your system.

Note – The multipathing feature is not available for parallel SCSI devices, but is available for FC, SAS, and iSCSI devices.

Multipathing Considerations

Before you change multipathing configuration, note the following considerations. Then follow the instructions for your machine architecture (SPARC or x86) described in the subsequent
sections. Some devices need to be properly configured to work with the multipathing software. Refer to your storage array documentation for details on the device-specific configuration for your device.

- Device-specific and device name change considerations
 In the /dev and /devices trees, multipathed devices receive new names that indicate that they are under multipath control. A device therefore will have a different name from its original name when it is under multipath control.

 Device name with multipath disabled:

 /dev/dsk/c1t1d0s0

 Device name with multipath enabled:

 /dev/dsk/c0t60003BA27D5170003E502A7A0007F3D2d0s0

 Therefore, applications that use device names directly must be configured to use the new names whenever you change a multipath configuration from disabled to enabled or vice versa.

- Updates to /etc/vfstab entries and dump configuration
 The system’s /etc/vfstab file and the dump configuration also contain references to device names. On both SPARC based and x86 based systems, the stmsboot command automatically updates the /etc/vfstab file dump configuration with the new device names. If you have application-dependent file systems which are not listed in the file /etc/vfstab, you can use the stmsboot command to determine the mapping between the old and new device paths.

Caution – If you have run the devfsadm -C or performed a reconfiguration boot, the old device paths will not exist and the stmsboot -L command will fail to provide this information.

Enabling and Disabling Multipathing

You can use the stmsboot command to enable or disable multipathing for Fibre Channel (FC) and SAS devices. The stmsboot command updates the /etc/vfstab file and dump configuration to reflect device name changes during the next reboot. You do not need to manually edit the fp.conf or mpt.conf files.

The following considerations apply to the stmsboot -e, -d, and -u options:

- You should reboot immediately after running the stmsboot command.
- Because the stmsboot command reboots the machine to complete the operation, use the eeprom to ensure the system boots from the current boot device.
The `stmsboot` command saves a copy of the original `/kernel/drv/fp.conf`, `/kernel/drv/mpt.conf`, and `/etc/vfstab` files before modifying them. See Appendix C, “Troubleshooting Multipathing-Related Problems,” if you encounter unexpected problems while using the `stmsboot` command.

Note – In previous Oracle Solaris releases, the `stmsboot` command was used to enable or disable multipathing on the boot device only for SPARC based hosts only. In current Oracle Solaris releases, the command is used to enable or disable multipathing on serial-attached SCSI devices as well as FC devices.

How to Enable Multipathing

Perform the following steps to enable multipathing on all multipath-capable devices on SPARC or x86 based systems. If you want to enable multipathing only on specific FC or SAS HBA ports, refer to “Enabling or Disabling Multipathing on a Per-Port Basis” on page 23.

The multipathing software automatically recognizes Oracle-supported devices. If you want to enable multipathing on third-party devices, add entries to the `/kernel/drv/scsi_vhci.conf` file as described by Device Name Change Considerations in “Multipathing Considerations” on page 19.

1. **Become superuser.**

2. **Confirm that the multipathing software package is installed.**

   ```
   # pkginfo | grep Multipath
   system SUNWmpapi SNIA Multipath Management API Common Library
   system SUNWmpapir SNIA Multipath Management API Common Library (Root)
   system SUNWmpathadm Solaris Multipathing CLI
   system SUNWmpathadmr Solaris Multipathing CLI (Root)
   ```

3. **Enable device multipathing.**

   ```
   # stmsboot -e
   WARNING: stmsboot operates on each supported multipath-capable controller detected in a host. In your system, these controllers are
   /devices/pci@780/pci@0/pci@0/SUNW,qlc@0/pci@0,0
   /devices/pci@780/pci@0/pci@0/SUNW,qlc@0,1/pci@0,0
   /devices/pci@7c0/pci@0/pci@0/pci@0,0,2/LSILogic,sas0
   /devices/pci@7c0/pci@0/pci@0/pci@0,0,2/LSILogic,sas0
   /devices/pci@7c0/pci@0/pci@0/pci@0,0,2/LSILogic,sas0
   /devices/pci@7c0/pci@0/pci@0/pci@0,0,2/LSILogic,sas0
   /devices/pci@7c0/pci@0/pci@0/pci@0,0,2/LSILogic,sas0
   /devices/pci@7c0/pci@0/pci@0/pci@0,0,2/LSILogic,sas0
   If you do NOT wish to operate on these controllers, please quit stmsboot and re-invoke with `-D { fp | mpt }` to specify which controllers you wish to modify your multipathing configuration for.
   ```
Enabling and Disabling Multipathing

4. (Optional) After the reboot, if necessary, configure your applications to use new device names as described by Device Name Change Considerations in “Multipathing Considerations” on page 19.

How to Disable Multipathing

Perform the following steps to disable multipathing on all multipath-capable devices on SPARC or x86 based systems. If you want to disable multipathing only on specific FC or SAS HBA ports, refer to “Enabling or Disabling Multipathing on a Per-Port Basis” on page 23.

1. Disable device multipathing.

 # stmsboot -d

 WARNING: stmsboot operates on each supported multipath-capable controller detected in a host. In your system, these controllers are

 /devices/pci@780/pci@0/pci@8/SUNW,qlc@0/fp@0,0
 /devices/pci@780/pci@0/pci@8/SUNW,qlc@0,1/fp@0,0
 /devices/pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@1
 /devices/pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2
 /devices/pci@7c0/pci@0/pci@0,2/LSILogic,sas@2
 /devices/pci@7c0/pci@0/pci@0/pci@0/LSILogic,sas@0
 /devices/pci@7c0/pci@0/pci@0/pci@0/LSILogic,sas@0

 If you do NOT wish to operate on these controllers, please quit stmsboot and re-invoke with -D { fp | mpt } to specify which controllers you wish to modify your multipathing configuration for.

 Do you wish to continue? [y/n] (default: y) y

 Checking mpxio status for driver fp
 Checking mpxio status for driver mpt

 WARNING: This operation will require a reboot.
 Do you want to continue? [y/n] (default: y) y

 The changes will come into effect after rebooting the system.
 Reboot the system now? [y/n] (default: y) y

 Note – During the reboot, /etc/vfstab and the dump configuration are updated to reflect the device name changes.
(Optional) After the reboot, if necessary, configure your applications to use new device names as described by Device Name Change Considerations in "Multipathing Considerations" on page 19.

How to Determine if Multipathing is Enabled or Disabled

1. Become superuser.

2. Determine if multipathed device information is available on the system.

Multipathing is disabled on this system because the following command returns no multipathed device information.

```bash
# prtconf -vc /devices/scsi_vhci |grep dev_link.*s2
```

Multipathing is enabled on this system because the following command returns multipathed device information.

```bash
# prtconf -vc /devices/scsi_vhci |grep dev_link.*s2
```

Enabling or Disabling Multipathing on a Per-Port Basis

Multipathing can be enabled or disabled on specific Fibre Channel Host Bus Adapter (HBA) controller ports. If you enable multipathing on a specific HBA port controller port, all supported devices connected to that controller port will be enabled for multipath operation.
Port Configuration Considerations

Before you start configuring the software by port, consider the following:

- FC global and per-port multipath settings are specified in the file /kernel/drv/fp.conf. Per-port multipath settings have priority over the global setting. Therefore, if global multipathing is enabled but a specific port has been disabled for multipathing, the port will not be available in the multipathing configuration. Conversely, even if global multipathing has been disabled, specific ports may be enabled for multipathing if they are listed in the appropriate driver.conf file.

- Load balancing is controlled by the global load-balance property in the /kernel/drv/scsi_vhci.conf file and is not controlled on a per-port basis.

- If a device has more than one path to the host, all paths to the device must be configured with multipathing enabled or disabled.

- Configuring multipathing by port enables the multipathing software to coexist with other multipathing solutions like Symantec (VERITAS) Dynamic Multipathing (DMP), or EMC PowerPath. However, devices and paths should not be shared between the multipathing software and other multipathing solutions.

How to Configure Multipathing by Port

The following procedure applies to both SPARC based and x86 based systems.

Depending on how many ports you want the multipathing software to control, you can enable or disable multipathing globally or for specified ports.

1. Become superuser.

2. Determine the HBA controller ports that you want the multipathing software to control.
 To list the available devices, perform an ls -l command on the /dev/cfg directory. The following example shows the ls -l command output.

   ```
   ls -l
   lrwxrwxrwx 1 root root 50 Jan 29 21:33 c0 -> ../../devices/pci@7c0/pci@0/pci@0/ide@0:scsi
   lrwxrwxrwx 1 root root 61 Jan 29 21:33 c1 -> ../../devices/pci@7c0/pci@0/pci@0,2/LSILogic,sas@1:scsi
   lrwxrwxrwx 1 root root 61 Jan 29 21:33 c2 -> ../../devices/pci@7c0/pci@0/pci@0,2/LSILogic,sas@2:scsi
   lrwxrwxrwx 1 root root 53 Jan 29 21:33 c3 -> ../../devices/pci@7c0/pci@0/pci@9/LSILogic,sas@0:scsi
   lrwxrwxrwx 1 root root 54 Apr 16 20:28 c5 -> ../../devices/pci@780/pci@0/pci@8/SUNW,qlc@0/fp@0,0:fc
   lrwxrwxrwx 1 root root 56 Apr 16 20:28 c6 -> ../../devices/pci@780/pci@0/pci@8/SUNW,qlc@0,1/fp@0,0:fc
   ```
Note – Controllers c5 and c6 are ports A and B on a dual-port FC HBA. Controllers c1 and c3 are single port SAS HBA ports. Controller c2 is the internal SAS controller in Oracle’s Sun Fire T2000 server.

Determine the port or ports for which you want to explicitly enable or disable multipathing.

3 Select one of the following to enable or disable specific FC HBA ports:
 ▪ For each FC HBA port that is to be enabled in the /kernel/drv/fp.conf file, add the following line:

     ```
     name="fp" parent="parent-name" port=port-number mpxio-disable="no";
     ```

 where parent-name is the port device name, and port-number is the FC HBA port number.

 For example, the following entries disable multipathing on all FC HBA controller ports except for the two specified ports:

     ```
     mpxio-disable="yes";
     name="fp" parent="/pci@6,2000/SUNW,qlc@2" port=0 mpxio-disable="no";
     name="fp" parent="/pci@13,2000/pci@2/SUNW,qlc@5" port=0 mpxio-disable="no";
     ```

 ▪ For each FC HBA port that is to be disabled, add the following line:

     ```
     name="fp" parent="parent-name" port=port-number mpxio-disable="yes";
     ```

 For example:

     ```
     name="fp" parent="/pci@6,2000/SUNW,qlc@2" port=0 mpxio-disable="yes";
     ```

4 Start the reboot and configuration process.

   ```
   # stmsboot -u
   ```

 You are prompted to reboot. During the reboot, the /etc/vfstab file and your dump device configuration are updated to reflect any device name changes.

5 (Optional) After the reboot, if necessary, configure your applications to use new device names as described in “Multipathing Considerations” on page 19.

Configuring Third-Party Storage Devices

Note – Before configuring any third-party device, ensure that they are supported. Refer to your third-party user documentation or third-party vendor for information on proper vendor and product IDs, modes, and various settings required for the device to work with multipathing software.
Third-Party Device Configuration Considerations

Before you configure third-party devices for multipathing, be aware of the following:

- The device must support the `REPORT_LUNS` SCSI command, and `SCSI-3 INQUIRY` command with Vendor Device Identification Page (0x83).
- You will need the vendor ID (VID) and product ID (PID) of the device. You can obtain them by using the `format` command followed by the inquiry option on your system. For more information, see `format(1M)`.

When multipathing is enabled, the multipath access still depends on a device-specific `scsi_vhci` failover implementation accepting the device. The default is for the `scsi_vhci` code to automatically call a `probe` function in each failover implementation, looking for the first `probe` result that indicates the device is supported.

A `probe` implementation determines support based on some combination of `scsi_inquiry(9S)` data. A device with INQUIRY data indicating T10 Target-Port-Group-Support (TPGS) compliance will use the standards-based TPGS failover implementation. For noncompliant devices, a failover implementation's probe will typically determine support based on VID/PID match against a private compiled-in table.

To override the `probe` process, the `scsi_vhci.conf` file supports a `scsi_vhci-failover-override` property. The value of `scsi_vhci-failover-override` can be used to establish support for a device not currently accepted by `probe`, override `probe` support, or disable multipath support for a device.

Configuring Third-Party Storage Devices: New Devices

Multipathing can be configured on third-party symmetric storage devices. A symmetric storage device is one in which all paths to the storage device are active and I/O commands can be issued through any path.

How to Configure Third-Party Devices

Perform the following steps to configure third-party devices if your system already has multipathing enabled. If your system has multipathing disabled, you can configure third-party devices while enabling multipathing as described earlier in this chapter.

1. **Become superuser.**

2. **Edit the `/kernel/drv/scsi_vhci.conf` file to add the vendor ID and product ID entries.**
 The vendor ID and product ID are the vendor and product identification strings that the device returns in SCSI INQUIRY data. The vendor ID must be eight characters long. You must specify all eight characters even if the trailing characters are spaces.
The product ID can be up to 16 characters long.

```
device-type-scsi-options-list =
"VendorID1ProductID1", "enable-option",
"VendorID2ProductID2", "enable-option",
...
"VendorIDnProductIDn", "enable-option";
enable-option = 0x1000000;
```

Note that the entries are separated by the ',' character (a comma) and the last vendor/product entry is terminated by the ';' character (a semicolon).

For example, to add a device from a vendor, "ACME," with a product ID of "MSU" and a device from vendor "XYZ" with a product ID of "ABC", you would add the following lines to the /kernel/drv/scsi_vhci.conf file:

```
device-type-scsi-options-list =
"ACME MSU", "enable-option",
"XYZ ABC", "enable-option";
enable-option = 0x1000000;
```

3 Save and exit the /kernel/drv/scsi_vhci.conf file.

4 Start the reboot and configuration process.

 # stmsboot -u

 You are prompted to reboot. During the reboot, the /etc/vfstab file and the dump configuration are updated to reflect the device name changes.

5 If necessary, perform device name updates as described in "Enabling and Disabling Multipathing" on page 20.

Configuring Third-Party Storage Devices: Disabling Devices

Multipathing can be disabled for all devices of a certain vendor ID/product ID combination. This exclusion is specified in the scsi_vhci.conf file.
How to Disable Third-Party Devices

1 Become superuser.

2 Add the vendor ID and product ID entries to the /kernel/drv/scsi_vhci.conf file.
 The vendor ID and product ID are the vendor and product identification strings that the device returns in SCSI INQUIRY data. The vendor ID must be eight characters long. You must specify all eight characters even if the trailing characters are spaces. The product ID can be up to 16 characters long.

   ```
   device-type-scsi-options-list = "VendorID1ProductID1", "disable-option",
   "VendorID2ProductID2", "disable-option",
   ...
   "VendorIDnProductIDn", "disable-option";
   disable-option = 0x7000000;
   ```

 The entries in the preceding example are separated by the ‘,’ character (a comma) and the last vendor/product entry is terminated by the ‘;’ character (a semicolon). For example, to add a device from vendor “ACME” with a product ID of “MSU,” and a vendor device from vendor “XYZ” with product ID “ABC,” you would add the following lines to the file /kernel/drv/scsi_vhci.conf:

   ```
   device-type-scsi-options-list = "ACME MSU", "disable-option",
   "XYZ ABC", "disable-option";
   disable-option = 0x7000000;
   ```

3 Save and exit the scsi_vhci.conf file.

4 Start the reboot and configuration process.

   ```
   # stmsboot -u
   ```

 You are prompted to reboot. During the reboot, the /etc/vfstab file and the dump configuration are updated to reflect the device name changes.

5 If necessary, perform the device name updates as described in “Enabling and Disabling Multipathing” on page 20.

Displaying Device Name Changes

You can display the mapping between non-multipathed and multipathed device names after changes are made to the multipath configuration by invoking the stmsboot command with the -e, -d, or -u option. Both non-multipathed and the multipathed device names must exist in order to show the mapping.

Display the mapping of devices on all controllers. For example:
The `-l` option displays the mapping of devices on only the specified controller. The following example displays the mapping of controller 3.

```
# stmsboot -l3
non-STMS device name   STMS device name
-----------------------------------------------
/dev/rdsk/c3t8d0        /dev/rdsk/c10t500000E01046DEE0d0
/dev/rdsk/c3t0d0        /dev/rdsk/c10t500000E01046B070d0
/dev/rdsk/c3t3d0        /dev/rdsk/c10t20000020372A40AFd0
/dev/rdsk/c3t12d0       /dev/rdsk/c10t500000E01046DEF0d0
/dev/rdsk/c3t11d0       /dev/rdsk/c10t500000E01046E390d0
```

Configuring Automatic Failback

Some storage devices have controllers configured as PRIMARY and SECONDARY as part of the array configuration. The secondary paths may operate at a lower performance level than the primary paths. The multipathing software uses the primary path to talk to the storage device and to keep the secondary path on standby.

In the event of a primary path failure, the multipathing software automatically directs all I/O traffic over the secondary path, with the primary path taken offline. This process is called a "failover" operation. When the failure associated with the primary path has been repaired, the multipathing software automatically directs all I/O traffic over the primary path and keeps the secondary path standby as before. This process is called a failback operation.

You can disable the automatic failback operation so the multipathing software does not automatically failback to the primary path. Later, after the failure associated with the primary path has been repaired, you can do a manual failback operation using the `luxadm` command. For more information, see `luxadm(1M)`.

How to Configure Automatic Failback

1. Become superuser.
In the /kernel/drv/scsi_vhci.conf file, enable or disable automatic failback capability by changing the auto-failback entry.

auto-failback="enable";

auto-failback="disable";

Save and exit the file.

Reboot the system.

shutdown -g0 -y -i6

Administering Solaris I/O Multipathing

You determine and configure Solaris OS multipathing support by using mpathadm commands. The mpathadm command enables multipathing administration through the ANSI standard Multipath Management API. The terms used in this chapter to denote a path, initiator port, target port, and LU are consistent with the T10 specification.

Perform the following tasks to administer multipathing devices.

- “Displaying Multipathing Support Information” on page 30
- “Configuring Automatic Failback for Multipathing Support” on page 37

Displaying Multipathing Support Information

You can use the mpathadm command to display multipathing support information and also manage multipathing discovery. Multipathing support and property information is identified with the Multipath Management API plug-in library name, which is displayed by using the mpathadm command.

How to Display Multipathing Support Information

1 Become superuser.

2 Identify the multipathing support on your system.

 # mpathadm list mpath-support
 mpath-support: libmpscsi_vhci.so

3 Display the multipathing support properties for a specified mpath support name.

 # mpathadm show mpath-support libmpscsi_vhci.so
 mpath-support: libmpscsi_vhci.so
 Vendor: Sun Microsystems
 Driver Name: scsi_vhci
Default Load Balance: round-robin
Supported Load Balance Types:
 round-robin
 logical-block
Allows To Activate Target Port Group Access: yes
Allows Path Override: no
Supported Auto Failback Config: yes
Auto Failback: on
Failback Polling Rate (current/max): 0/0
Supported Auto Probing Config: 0
Auto Probing: NA
Probing Polling Rate (current/max): NA/NA
Supported Devices:
 Vendor: SUN
 Product: T300
 Revision:
 Supported Load Balance Types:
 round-robin
 Vendor: SUN
 Product: T4
 Revision:
 Supported Load Balance Types:
 round-robin

The command output also shows a list of device products that is supported by the multipathing support software. The multipathing support `libmpscsi_vhci.so` library file supports T10 target port group compliant devices by default.

▼ How to Display Properties of a Specific Initiator Port

The following steps describe how to display the properties of an initiator port.

1 List the initiator ports.

 # mpathadm list initiator-port
 Initiator Port: iqn.1986-03.com.sun:01:ffffffffffff.4e94f9bd,4000002a00ff
 Initiator Port: 210100e08ba41feb
 Initiator Port: 210000e08b841feb

2 Display the specific initiator port’s properties.

 # mpathadm show initiator-port 200000173018713
 Initiator Port: 210100e08ba41feb
 Transport Type: Fibre Channel
 OS Device File: /devices/pci@1,0/pci1022,7450@1/pci1077,141@2,1/fp@0,0

▼ How to Display Specific LU Information

Display the list of LUs, along with the properties for each LUN by using the `mpathadm` command. The displayed list of LUs contain names that in turn can be used to display the properties of a particular LU.
1 Display a list of multipathed LUs.

```
# mpathadm list lu
/dev/rdsk/c0t600144F08069703400004E828EE10004d0s2
  Total Path Count: 8
  Operational Path Count: 8
/dev/rdsk/c0t600144F08069703400004E8183DF0002d0s2
  Total Path Count: 8
  Operational Path Count: 8
/dev/rdsk/c0t600A0B00026D63A0000A4994E2342D4d0s2
  Total Path Count: 4
  Operational Path Count: 4
/dev/rdsk/c0t600A0B00029065C00007CF54E234013d0s2
  Total Path Count: 4
  Operational Path Count: 4
/dev/rdsk/c0t600A0B00029065C00007CF44E234298d0s2
  Total Path Count: 4
  Operational Path Count: 4
/dev/rdsk/c0t600A0B00026D63A0000A4984E234298d0s2
  Total Path Count: 4
  Operational Path Count: 4
/dev/rdsk/c0t600A0B00026D63A0000A4974E23424Ed0s2
  Total Path Count: 4
  Operational Path Count: 4
```

2 Display configuration information about a specific LU using the LU name from the list.

```
# mpathadm show lu /dev/rdsk/c4t60003BA27D2120004204AC2B000DA800d0s2
mpath-support: libmpscsi_vhci.so
Vendor: SUN
Product: Sun Storage NAS
Revision: 1.0
Name Type: unknown type
Name: 600144f08069703400004e828ee10004
Asymmetric: yes
Current Load Balance: round-robin
Logical Unit Group ID: NA
Auto Failback: on
Auto Probing: NA

Paths:
  Initiator Port Name: 210100e08ba41feb
  Target Port Name: 210000b329b6c3f
  Override Path: NA
  Path State: OK
  Disabled: no

  Initiator Port Name: 210100e08ba41feb
  Target Port Name: 210100b32bb6c3f
  Override Path: NA
  Path State: OK
  Disabled: no

  Initiator Port Name: 210100e08ba41feb
  Target Port Name: 210000b329b793c
  Override Path: NA
```
Administering Solaris I/O Multipathing

Path State: OK
Disabled: no

Target Port Groups:
 ID: 0
 Explicit Failover: no
 Access State: active optimized
 Target Ports:
 Name: 2100001b329b6c3f
 Relative ID: 1
 Name: 2101001b32bb6c3f
 Relative ID: 2

 ID: 1
 Explicit Failover: no
 Access State: standby
 Target Ports:
 Name: 2100001b329b793c
 Relative ID: 257
 Name: 2101001b32bb793c
 Relative ID: 256

▼ How to Display All LUs Associated With a Specific Target Port

Use the steps below to display paths through a target port.

1 Display a list of LUs.
 # mpathadm list lu
 /dev/rdsk/c0t600144F08069703400004E828EE10004d0s2
 Total Path Count: 8
 Operational Path Count: 8
 /dev/rdsk/c0t600144F08069703400004E8183DF0002d0s2
 Total Path Count: 8
 Operational Path Count: 8
 /dev/rdsk/c0t600A0B800026D63A0000A4994E2342D4d0s2
 Total Path Count: 4
 Operational Path Count: 4
 /dev/rdsk/c0t600A0B800029065C00007CF54E234013d0s2
 Total Path Count: 4
 Operational Path Count: 4

2 Display specific LU information to determine the target ports.
 # mpathadm show lu /dev/rdsk/c0t600A0B800029065C00007CF54E234013d0s2
 Logical Unit: /dev/rdsk/c0t600A0B800029065C00007CF54E234013d0s2
 mpath-support: /libmpscsi_vhci.so
 Vendor: SUN
 Product: CSM200 R
 Revision: 0660
3 Display the specific target port information.

```bash
# mpathadm list lu -t 20030003ba27d212
mpath-support: libmpscsi vhci.so
/dev/rdsk/c0t600A0B900029065c00007c54e234013
  Total Path Count: 4
  Operational Path Count: 4
mpath-support: libmpscsi vhci.so
/dev/rdsk/c0t600A0B900029065c00007c54e234013
  Total Path Count: 4
  Operational Path Count: 4
mpath-support: libmpscsi vhci.so
/dev/rdsk/c0t600A0B900029065c00007c54e234013
  Total Path Count: 4
  Operational Path Count: 4
```
Operational Path Count: 4
Operational Path Count: 4

How to Display a LU With a Specific Name

Display detailed information on multipathed LUs, including path and target port group information. Note that the name property in the information represents the identifier for this LU, derived from the hardware, and used by this system. If the name is derived from SCSI Inquiry Vital Product Data (VPD) page 83h, the name type property represents an associated identifier type defined by the SCSI standards.

1 Display a list of multipathed LUs.

```
# mpathadm list lu
```

```
/dev/rdsks/c0t600A0B800029065C00007CF44E233FCFd0s2
  Total Path Count: 4
  Operational Path Count: 4

/dev/rdsks/c0t600A0B800026D63A0000A4994E2342D4d0s2
  Total Path Count: 4
  Operational Path Count: 4

/dev/rdsks/c0t600A0B800026D63A0000A4984E234298d0s2
  Total Path Count: 4
  Operational Path Count: 4
```

2 Display a selected LU's configuration information.

```
# mpathadm show lu /dev/rdsks/c0t600A0B800026D63A0000A4994E2342D4d0s2
Logical Unit: /dev/rdsks/c0t600A0B800026D63A0000A4994E2342D4d0s2
  mpath-support: libmptcscsi_vhci.so
  Vendor: SUN
  Product: CSM200 R
  Revision: 0660
  Name Type: unknown type
  Name: 600a0b800026d63a0000a4994e2342d4
  Asymmetric: yes
  Current Load Balance: round-robin
  Logical Unit Group ID: NA
  Auto Failback: on
```
Auto Probing: NA

Paths:

- Initiator Port Name: 210000e08b841feb
 Target Port Name: 200800a0b826d63b
 Override Path: NA
 Path State: OK
 Disabled: no

- Initiator Port Name: 210000e08b841feb
 Target Port Name: 200900a0b826d63b
 Override Path: NA
 Path State: OK
 Disabled: no

- Initiator Port Name: 210000e08b841feb
 Target Port Name: 200800a0b826d63c
 Override Path: NA
 Path State: OK
 Disabled: no

- Initiator Port Name: 210000e08b841feb
 Target Port Name: 200900a0b826d63c
 Override Path: NA
 Path State: OK
 Disabled: no

Target Port Groups:

- ID: 3
 Explicit Failover: yes
 Access State: active
 Target Ports:
 Name: 200800a0b826d63b
 Relative ID: 0
 Name: 200800a0b826d63c
 Relative ID: 0

- ID: 13
 Explicit Failover: yes
 Access State: standby
 Target Ports:
 Name: 200900a0b826d63b
 Relative ID: 0
 Name: 200900a0b826d63c
 Relative ID: 0

3 Display the selected LU information.

```bash
# mpathadm list lu -n 600a0b000026d63a0000a4994e2342d4
mpath-support: libmpscsi_vhci.so
/dev/rdsk/c0t600A0B00026D63A0000A4994E2342D4d0s2
Total Path Count: 4
Operational Path Count: 4
```
Configuring Automatic Failback for Multipathing Support

Symmetrical devices can provide automatic failback to a possible optimal path. If a failover occurs on the initial path, the standby path becomes the new online path. Usually the standby path is a suboptimal path. When automatic failback is enabled, the initial path comes back online and failover to the initial path automatically occurs.

▼ How to Configure Automatic Failback for Specific Multipathing Support

1 Become superuser.

2 Display the supported multipath driver information.
 # mpathadm list mpath-support
 mpath-support: libmpscsi_vhci.so

3 Enable automatic failback support for the supported multipath driver.
 # mpathadm modify mpath-support -a on libmpscsi_vhci.so

4 Confirm the configuration change.
 # mpathadm show mpath-support libmpscsi_vhci.so
 mpath-support: libmpscsi_vhci.so
 Vendor: Sun Microsystems
 Driver Name: scsi_vhci
 Default Load Balance: round-robin
 Supported Load Balance Types:
 round-robin
 logical-block
 Allows To Activate Target Port Group Access: yes
 Allows Path Override: no
 Supported Auto Failback Config: 1
 Auto Failback: on
 Fallback Polling Rate (current/max): 0/0
 Supported Auto Probing Config: 0
 Auto Probing: NA
 Probing Polling Rate (current/max): NA/NA
 Supported Devices:
 Vendor: SUN
 Product: T300
 Revision:
 Supported Load Balance Types: round-robin
 Vendor: SUN
 Product: T4
 Revision:
 Supported Load Balance Types: round-robin
Note – The automatic display initiated by the mpathadm modify command setting is effective while the system is running. However, to keep the changed setting persistent, you must update the /kernel/driv/scsi_vhci.conf file. Refer to “Configuring Automatic Failback” on page 29.

How to Fail Over a LU

This operation is applicable only to devices in the following two categories:

- Asymmetric devices with a proprietary failover mechanism recognized and supported by multipathing support
- Devices conforming to the T10 Standard Target Port Group Support libmpcsi_vhci.so and providing explicit mode asymmetric LU access

1 Display a list of multipathed LUs.

 # mpathadm list lu
 /dev/rdsk/c0t600a0b8000260d63a0000a4984e234298d0s2
 Total Path Count: 8
 Operational Path Count: 8
 /dev/rdsk/c0t600a0b8000260d63a0000a4984e234298d0s2
 Total Path Count: 8
 Operational Path Count: 8
 /dev/rdsk/c0t600a0b8000260d63a0000a4984e234298d0s2
 Total Path Count: 4
 Operational Path Count: 4
 /dev/rdsk/c0t600a0b8000260d63a0000a4984e234298d0s2
 Total Path Count: 4
 Operational Path Count: 4

2 Display a specific LU’s configuration information.

 # mpathadm show lu /dev/rdsk/c0t600a0b8000260d63a0000a4984e234298d0s2
 Logical Unit: /dev/rdsk/c0t600a0b8000260d63a0000a4984e234298d0s2
 mpath-support: libmpcsi_vhci.so
 Vendor: SUN
 Product: CSM200_R
 Revision: 060
 Name Type: unknown type
 Name: 600a0b8000260d63a0000a4984e234298
 Asymmetric: yes
 Current Load Balance: round-robin
 Logical Unit Group ID: NA
 Auto Failback: on
 Auto Probing: NA
Paths:
- Initiator Port Name: 210000e08b841feb
- Target Port Name: 200800a0b826d63b
- Override Path: NA
- Path State: OK
- Disabled: no

- Initiator Port Name: 210000e08b841feb
- Target Port Name: 200900a0b826d63b
- Override Path: NA
- Path State: OK
- Disabled: no

- Initiator Port Name: 210000e08b841feb
- Target Port Name: 200800a0b826d63c
- Override Path: NA
- Path State: OK
- Disabled: no

- Initiator Port Name: 210000e08b841feb
- Target Port Name: 200900a0b826d63c
- Override Path: NA
- Path State: OK
- Disabled: no

Target Port Groups:
- ID: 5
 - Explicit Failover: yes
 - Access State: active
 - Target Ports:
 - Name: 200800a0b826d63b
 - Relative ID: 0
 - Name: 200800a0b826d63c
 - Relative ID: 0

- ID: 15
 - Explicit Failover: yes
 - Access State: standby
 - Target Ports:
 - Name: 200900a0b826d63b
 - Relative ID: 0
 - Name: 200900a0b826d63c
 - Relative ID: 0

3 Manually force a LU failover.

```
# mpathadm failover lu /dev/rdsk/c0t600A0B800026D63A0000A4984E234298d0s2
```

If this operation is successful, the access state of the device's target port groups changes as a result of the logical unit failover.

4 Confirm the access state change.

```
# mpathadm show lu /dev/rdsk/c0t600A0B800026D63A0000A4984E234298d0s2
Logical Unit: /dev/rdsk/c0t600A0B800026D63A0000A4984E234298d0s2
  mpath-support: libmpscci_vhci.so
```

Chapter 2 • Configuring Solaris I/O Multipathing Features 39
Vendor: SUN
Product: CSM200_R
Revision: 0660
Name Type: unknown type
Name: 600a0b00026d63a0000a4984e234298
Asymmetric: yes
Current Load Balance: round-robin
Logical Unit Group ID: NA
Auto Failback: on
Auto Probing: NA

Paths:
Initiator Port Name: 210000e08b841feb
Target Port Name: 200800a0b826d63b
Override Path: NA
Path State: OK
Disabled: no

Initiator Port Name: 210000e08b841feb
Target Port Name: 200900a0b826d63b
Override Path: NA
Path State: OK
Disabled: no

Initiator Port Name: 210000e08b841feb
Target Port Name: 200800a0b826d63c
Override Path: NA
Path State: OK
Disabled: no

Target Port Groups:
ID: 5
Explicit Failover: yes
Access State: standby
Target Ports:
Name: 200800a0b826d63b
Relative ID: 0
Name: 200800a0b826d63c
Relative ID: 0

ID: 15
Explicit Failover: yes
Access State: active
Target Ports:
Name: 200900a0b826d63b
Relative ID: 0
Name: 200900a0b826d63c
Relative ID: 0
How to Enable a LU Path

If the path to a LU is disabled, the `enable` command changes the path back to enabled. The full path must be specified using the initiator port name, target port name, and the LU. To verify the change, run the `show` command for the logical unit.

1 Display a list of multipathed LUs.

```
# mpathadm list lu
/dev/rdsk/c0t600A0B00026063A00000A4994E2342D4d0s2
   Total Path Count: 8
   Operational Path Count: 8
/dev/rdsk/c0t600A0B00026063A00000A4994E2342D4d0s2
   Total Path Count: 8
   Operational Path Count: 8
```

2 Display the selected LU's configuration information.

```
# mpathadm show lu
Logical Unit: /dev/rdsk/c0t600A0B00026063A00000A4994E2342D4d0s2
   mpath-support: libmpscsi_vhci.so
   Vendor: SUN
   Product: CSM200_R
   Revision: 0660
   Name Type: unknown type
   Name: 600a0b00026063a00000a4994e2342d
   Asymmetric: yes
   Current Load Balance: round-robin
   Logical Unit Group ID: NA
   Auto Failback: on
   Auto Probing: NA

   Paths:
   Initiator Port Name: 210000e008b841feb
   Target Port Name: 200000e0b826d63b
   Override Path: NA
   Path State: OK
   Disabled: no
```

Chapter 2 • Configuring Solaris I/O Multipathing Features
3 Enable the LU path.

```
# mpathadm enable path -i 210000e08b841feb -t 200900a0b826d63b
   -l /dev/rdsk/c0t600A0B00026D63A0000A4984E23298d0s2
```

▼ **How to Disable a LU Path**

This operation makes the path unavailable for the LU, regardless of its operational state.

Note – The disabled state is not persistent across rebooting. If the path is operational before the next boot sequence, it is enabled by default. This operation is not allowed when the given path is the last operational path remaining.

1 **Display a list of multipathed LUs.**

```
# mpathadm list lu
   /dev/rdsk/c0t600144F0806970340004E028EE10004d0s2
   Total Path Count: 8
   Operational Path Count: 8
   /dev/rdsk/c0t600144F0806970340004E8183D0F002d0s2
```
Display the specific LU's configuration information.

```
# mpathadm show lu /dev/rdsk/c0t600a0b800029065c00007cf34e233f89d0s2
Logical Unit: /dev/rdsk/c0t600a0b800029065c00007cf34e233f89d0s2
mpath-support: libmpscsi_vhci.so
Vendor: SUN
Product: CSM200_R
Revision: 0660
Name Type: unknown type
Name: 600a0b800029065c00007cf34e233f89
Asymmetric: yes
Current Load Balance: round-robin
Logical Unit Group ID: NA
Auto Failback: on
Auto Probing: NA

Paths:
  Initiator Port Name: 210000e08b841feb
  Target Port Name: 200800a0b826d63b
  Override Path: NA
  Path State: OK
  Disabled: no

  Initiator Port Name: 210000e08b841feb
  Target Port Name: 200900a0b826d63b
  Override Path: NA
  Path State: OK
  Disabled: no

  Initiator Port Name: 210000e08b841feb
  Target Port Name: 200800a0b826d63c
  Override Path: NA
  Path State: OK
  Disabled: no

  Initiator Port Name: 210000e08b841feb
  Target Port Name: 200900a0b826d63c
  Override Path: NA
  Path State: OK
  Disabled: no
```
Target Port Groups:
 ID: 8
 Explicit Failover: yes
 Access State: standby
 Target Ports:
 Name: 200800a0b826d63b
 Relative ID: 0
 Name: 200800a0b826d63c
 Relative ID: 0

 ID: 18
 Explicit Failover: yes
 Access State: active
 Target Ports:
 Name: 200900a0b826d63b
 Relative ID: 0
 Name: 200900a0b826d63c
 Relative ID: 0

3 Select an initiator port and a target port name.

4 Disable the selected LU path.

 # mpathadm disable path -i 210000e08b841feb -t 200900a0b826d63b \
 -l /dev/rdsk/c0t600A0B800029065C00007CF34E233F89d0s2
This chapter provides a high level overview of the steps used to configure fabric-connected (FC) devices. In the Oracle Solaris OS, FCAL, fabric, and point-to-point connected devices are made available to the system automatically. If you want to manually configure fabric-connected devices, see Appendix A, “Manual Configuration for Fabric-Connected Devices.”

The following topics are covered:
- “FC Device Considerations” on page 45
- “Adding FC Devices” on page 46
- “Configuring Fabric Boot Devices on SPARC” on page 47

FC Device Considerations

Review the following considerations before configuring Solaris I/O multipathing features:

- Configure ports and zones according to the vendor-specific documentation for storage and switches.
- You no longer are required to manually configure devices.
- LUN masking enables specific LUNs to be seen by specific systems. See the vendor-specific storage documentation that describes masking.
- Turn off power management on servers connected to the SAN to prevent unexpected results as one server attempts to power down a device while another attempts to gain access. For more information about power management, see `power.conf(4)`.
- Connect arrays and other storage devices to the SAN with or without multipathing capability. Solaris multipathing is an associated application that is bundled with the product name.
- The STMS boot utility is included with Solaris I/O multipathing features that manage the SAN booting process. Issuing the `stmsboot` command activates the automatic update of `/etc/vfstab` and the dump configuration to reflect device name changes when enabling or
disabling the multipathing software. Note that the software is disabled by default for devices on SPARC based systems and enabled by default for devices on x86 based systems.

Adding FC Devices

The following table lists the common commands used when adding and removing FC devices:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cfgadm</code></td>
<td>Dynamically reconfigures devices and FC devices.</td>
<td><code>cfgadm(1M)</code></td>
</tr>
<tr>
<td><code>cfgadm_fp</code></td>
<td>These commands are used most frequently to configure storage devices on a SAN.</td>
<td><code>cfgadm_fp(1M)</code></td>
</tr>
<tr>
<td><code>format</code></td>
<td>Identifies devices that are connected to the system and provides the ability to label a disk.</td>
<td><code>format(1M)</code></td>
</tr>
<tr>
<td><code>luxadm</code></td>
<td>Administers storage devices and FC_AL devices.</td>
<td><code>luxadm(1M)</code></td>
</tr>
</tbody>
</table>

Note – If you use the `format` command when the multipathing features are enabled, you will see only one instance of a device identifier for each LUN. Without the multipathing features enabled, you will see one identifier for each path.

▼ How to Add a FC Device

1. Create the LUNs desired on the FC device.
2. If necessary, apply LUN masking for HBA control on the FC device.
3. Connect the storage device to the system.
4. If necessary, create port-based or WWN zones on the switch on the FC device.
5. Run the `fsck` or `newfs` commands on the device, if used for file systems.
 - You might need to run the `fsck` command to repair any errors in the file systems listed in the `/etc/vfstab` file.
6. Mount any existing file systems available on the storage device’s LUNs or disk groups.
Configuring Fabric Boot Devices on SPARC

You can set up a SPARC server that is running the Oracle Solaris OS to be booted from a fabric disk device.

Fabric Boot Device Considerations

Fabric boot devices can be accessed through the Oracle Solaris installation methods just as internal boot devices have been accessed in the previous Solaris OS releases. Refer to the Oracle Solaris installation guide for details. Consider the following points while enabling a fabric boot device:

- Minimize interference to boot devices through the following actions:
 - Ensuring the boot device is not an overly subscribed target or LUN
 - Avoiding installation of applications and software on a target or LUN
 - Reducing physical distance between the host and fabric device, as well as the number of hops
- Remove the boot disk from volume manager control prior to beginning the fabric boot procedure.
- Ensure that the latest HBA fcode and drivers are loaded for the HBAs on the system.
- If multipathing is desired on the boot device, use the `stmsboot` command as described in Chapter 2, “Configuring Solaris I/O Multipathing Features.”
This chapter describes how to configure iSCSI initiators in the Oracle Solaris release. For information about the procedures associated with configuring iSCSI initiators, see “Configuring Solaris iSCSI Initiators” on page 52.

The following topics are covered:

- “Oracle Solaris iSCSI Technology (Overview)” on page 49
- “Recommended iSCSI Configuration Practices” on page 52
- “Configuring Solaris iSCSI Initiators” on page 52
- “Configuring Authentication in Your iSCSI-Based Storage Network” on page 58
- “Setting Up Solaris iSCSI Multipathed Devices” on page 63
- “Monitoring Your iSCSI Configuration” on page 66
- “Modifying iSCSI Initiator and Target Parameters” on page 68
- “Troubleshooting iSCSI Configuration Problems” on page 71

For information about configuring iSCSI targets, see Chapter 12, “Configuring Oracle Solaris iSCSI Targets (Tasks),” in System Administration Guide: Devices and File Systems.

For troubleshooting Solaris iSCSI configuration problems, see “Troubleshooting iSCSI Configuration Problems” on page 71.

 Oracle Solaris iSCSI Technology (Overview)

iSCSI is an acronym for Internet SCSI (Small Computer System Interface), an Internet Protocol (IP)-based storage networking standard for linking data storage subsystems.

By carrying SCSI commands over IP networks, the iSCSI protocol enables you to access block devices from across the network as if they were connected to the local system.

If you want to use storage devices in your existing TCP/IP network, the following solutions are available:
- iSCSI block devices or tape – Translates SCSI commands and data from the block level into IP packets. Using iSCSI in your network is advantageous when you need to have block-level access between one system and the target device, such as a tape device or a database. Access to a block-level device is not locked so that you could have multiple users or systems accessing a block-level device such as an iSCSI target device.
- NFS – Transfers file data over IP. The advantage of using NFS in your network is that you can share file data across many systems. Access to file data is locked appropriately when many users are accessing data that is available in an NFS environment.

Here are the benefits of using iSCSI targets and initiators in Oracle Solaris:
- The iSCSI protocol runs across existing Ethernet networks.
 - You can use any supported network interface card (NIC), Ethernet hub, or Ethernet switch.
 - One IP port can handle multiple iSCSI target devices.
 - You can use existing infrastructure and management tools for IP networks.
- You might have existing Fibre-Channel devices that can be connected to clients without the cost of Fibre-Channel HBAs. In addition, systems with dedicated arrays can now export replicated storage with ZFS or UFS file systems.
- There is no upper limit on the maximum number of configured iSCSI target devices.
- The protocol can be used to connect to Fibre Channel or iSCSI Storage Area Network (SAN) environments with the appropriate hardware.

Here are the current limitations or restrictions of using the Solaris iSCSI initiator software:
- Support for iSCSI devices that use SLP is not currently available.
- Boot support for iSCSI devices is not currently available.
- iSCSI targets cannot be configured as dump devices.
- iSCSI supports multiple connections per session, but the current Solaris implementation only supports a single connection per session.
- Transferring large amounts of data over your existing network can have an impact on performance.

Identifying Solaris iSCSI Software and Hardware Requirements
- Solaris iSCSI software and devices
- Solaris 10 release (at least the 1/06 release) for Solaris iSCSI initiator software
- Solaris 10 release (at least the 8/07 release) for Solaris iSCSI target software
- The following Solaris 10 software packages:
- SUNWiscsir – Sun iSCSI Device Driver (root)
- SUNWiscsiu – Sun iSCSI (usr)
- SUNWiscsitgr – Sun iSCSI Target (root)
- SUNWiscsitgtu – Sun iSCSI Target Management Utilities (usr)
- Any supported NIC

Oracle Solaris iSCSI Terminology

Review the following terminology before configuring Oracle Solaris iSCSI initiators.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery</td>
<td>The process that presents the initiator with a list of available targets.</td>
</tr>
<tr>
<td>Discovery method</td>
<td>The way in which the iSCSI targets can be found. Three methods are currently available:</td>
</tr>
<tr>
<td></td>
<td>- Internet Storage Name Service (iSNS) – Potential targets are discovered by interacting with one or more third-party iSNS servers.</td>
</tr>
<tr>
<td></td>
<td>- SendTargets – Potential targets are discovered by using a discovery-address.</td>
</tr>
<tr>
<td></td>
<td>- Static – Static target addressing is configured.</td>
</tr>
<tr>
<td>Initiator</td>
<td>The driver that initiates SCSI requests to the iSCSI target.</td>
</tr>
<tr>
<td>Initiator group</td>
<td>A set of initiators. When an initiator group is associated with a LUN, only initiators from that group may access the LUN.</td>
</tr>
<tr>
<td>iqn or eui address format</td>
<td>An iqn (iSCSI qualified name) address is the unique identifier for a device in an iSCSI network using the form iqn.date.authority:uniqueid. An iSCSI initiator or target is assigned an IQN name automatically when the iSCSI initiator or target is initialized. An eui (extended unique identifier) address consists of 16 hexadecimal digits, and identifies a class of GUIDs that is used in both the SCSI and InfiniBand standards. SRP devices use the eui address format.</td>
</tr>
<tr>
<td>Logical unit</td>
<td>A uniquely numbered component in a storage system. When a is associated with one or more SCSI targets, the target can be accessed by one or more SCSI initiators.</td>
</tr>
<tr>
<td>Target device</td>
<td>The iSCSI storage component.</td>
</tr>
<tr>
<td>Target group</td>
<td>A set of targets. A can be made available to all targets in one target group.</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Target portal group</td>
<td>A list of IP addresses that determines which interfaces a specific iSCSI</td>
</tr>
<tr>
<td></td>
<td>target will listen to. A TPG contains IP addresses and TCP port numbers</td>
</tr>
</tbody>
</table>

Recommended iSCSI Configuration Practices

Review the following iSCSI recommendations before configuring iSCSI devices in your network.

- **Devices**
 - Consider using multipathed device paths for increased availability.
 - Multiple connections per session (MCS) support allow multiple TCP/IP connections from the initiator to the target for the same iSCSI session.

- **Network**
 - Deploy iSCSI devices in a fast (gigE or better), dedicated network.
 - Use jumbo frames, if possible to allow more data to be transferred in each Ethernet transaction to reduce the number of frames.
 - Use CAT6 rated cables for Gigabit network infrastructures.
 - Segregate iSCSI storage networks from your local area network traffic
 - Configure multiple sessions or connections to utilize multiple threads in TCP/IP stack
 - Consider TCP tuning, such as disabling Nagle algorithm

- **Security**
 - In addition to physical security, use CHAP authentication, which ensures that each host has its own password.
 - Consider using iSNS target discovery domains, which enhance security by providing access control to targets that are not enabled with their own access controls, while limiting the login process of each initiator to a relevant subset of the available targets in the network.

Configuring Solaris iSCSI Initiators

This is a general list of tasks associated with configuring Solaris iSCSI initiators. Some of the tasks are optional depending on your network configuration needs. Some of the links below will take you to separate documents that describe network configuration and initiator configuration.

- “Identifying Solaris iSCSI Software and Hardware Requirements” on page 50
- *Oracle Solaris Administration: Network Interfaces and Network Virtualization*
Configuring Dynamic or Static Target Discovery

Determine whether you want to configure one of the dynamic device discovery methods or use static iSCSI initiator targets to perform device discovery.

- **Dynamic device discovery** – If an iSCSI node exposes many targets, such as an iSCSI to Fibre-Channel bridge, you can supply the iSCSI node IP address/port combination and allow the iSCSI initiator to use the SendTargets features to perform device discovery.

 Two dynamic device discovery methods are available:
 - SendTargets - If an iSCSI node exposes a large number of targets, such as an iSCSI to Fibre-Channel bridge, you can supply the iSCSI node IP address/port combination and allow the iSCSI initiator to use the SendTargets features to perform the device discovery.
 - iSNS - iSNS (Internet Storage Name Service) allows the iSCSI initiator to discover the targets to which it has access using as little configuration information as possible. It also provides state change notification to notify the iSCSI initiator when changes in the operational state of storage nodes occur. To use the iSNS discovery method, you can supply the iSNS server address/port combination and allow the iSCSI initiator to query the iSNS servers that you specified to perform the device discovery. The default port for the iSNS server is 3205. For more information about iSNS, see RFC 4171:

 The iSNS discovery service provides an administrative model to discover all targets in a network.

- **Static device discovery** – If an iSCSI node has few targets or if you want to restrict the targets that the initiator attempts to access, you can statically configure the `target-name` by using the following static target address naming convention:

  ```
  target,target-address[:port-number]
  ```

 You can determine the static target address from the array’s management tool.
Note – Do not configure an iSCSI target to be discovered by both static and dynamic device discovery methods. The consequence of using redundant discovery methods might be slow performance when the initiator is communicating with the iSCSI target device.

How to Configure an iSCSI Initiator and Target Discovery

Part of the initiator configuration process is to identify the iSCSI target discovery method, which presents an initiator with a list of available targets. You can configure iSCSI targets for static, SendTargets, or iSNS dynamic discovery. Dynamic discovery using the SendTargets option is the optimum configuration for an iSCSI initiator that accesses a large number of targets, such over an iSCSI to Fibre Channel bridge. SendTargets dynamic discovery requires the IP address and port combination of the iSCSI target for the iSCSI initiator to perform the target discovery. The most common discovery method is SendTargets.

When configuring the target discovery method, you must provide the following information, depending on which method you choose:

- SendTargets – Target IP address
- iSNS – iSNS server address
- Static – Target IP address and target name

For more information about configuring target discovery methods, see “Configuring Dynamic or Static Target Discovery” on page 53.

1 Become superuser.

2 Verify the target's name and IP address while logged in to the server that is providing the target.

 target# ifconfig -a
 lo0: flags=2001000849<UP,LOOPBACK,running,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1
 inet 127.0.0.1 netmask ff000000
 ce0: flags=1000843<UP,BROADCAST,running,MULTICAST,IPv4> mtu 1500 index 2
 inet 1.2.3.4 netmask ffffff00 broadcast 1.2.3.4
 ether 0:3:ba:64:cb:1f
 target# iscsitadm list target -v sandbox
 Target: sandbox
 iSCSI Name: iqn.1986-03.com.sun:02:62d527ac-076d-ea1b-ff4f-cbfca3b12345.sandbox
 Connections: 0
 ACL list:
 TPGT list:
 LUN information:
 LUN: 0
 GUID: 600144f05059f7dd000003ba64calb00
 VID: SUN
 PID: SOLARIS
 Type: disk
 Size: 2.0G
 Status: unknown
3 Configure the target to be statically discovered.
initiator# iscsiadm add static-config iqn.1986-03.com.sun:02:62d527ac-076d-ea1b-ff4f-cbfca3b12345.sanbox, 1.2.3.4

4 Review the static configuration information.
initiator# iscsiadm list static-config
The iSCSI connection is not initiated until the discovery method is enabled. See the next step.

5 Configure one of the following target discovery methods:
- If you have configured a dynamically discovered (SendTargets) target, configure the SendTargets discovery method.
 initiator# iscsiadm add discovery-address 1.2.3.4
- If you have configured a dynamically discovered (iSNS) target, configure the iSNS discovery method.
 initiator# iscsiadm add isns-server 1.2.3.4

6 Enable one of the following the target discovery methods:
- If you have configured a dynamically discovered (SendTargets) target, enable the SendTargets discovery method.
 initiator# iscsiadm modify discovery --sendtargets enable
- If you have configured a dynamically discovered (iSNS) target, enable the iSNS discovery method.
 initiator# iscsiadm modify discovery --iSNS enable
- If you have configured static targets, enable the static target discovery method.
 initiator# iscsiadm modify discovery --static enable

7 Reconfigure the /dev namespace to recognize the iSCSI disk, if necessary.
initiator# devfsadm -i iscsi

How to Access iSCSI Disks

If you want to access the iSCSI disks upon reboot, create the file system on the disk, and add an /etc/vfstab entry as you would with a UFS file system on a SCSI device. Then, create a new SMF service for mounting iSCSI disks that depends on the iSCSI initiator service. For more information, see “How to Access iSCSI Disks Upon Reboot” on page 56.

After the devices have been discovered by the Solaris iSCSI initiator, the login negotiation occurs automatically. The Solaris iSCSI driver determines the number of available LUNs and creates the device nodes. Then, the iSCSI devices can be treated as any other SCSI device.

You can view the iSCSI disks on the local system by using the format utility.
In the following format output, disks 2 and 3 are iSCSI LUNs that are not under MPxIO control. Disks 21 and 22 are iSCSI LUNs under MPxIO control.

initiator# format
AVAILABLE DISK SELECTIONS:
 0. c0t1d0 <SUN72G cyl 14087 alt 2 hd 24 sec 424>
 /pci@8,600000/SUNW,qlc@4/fp@0,0/ssd@g500000e01065cf1,0
 1. c0t2d0 <SUN72G cyl 14087 alt 2 hd 24 sec 424>
 /pci@8,600000/SUNW,qlc@4/fp@0,0/ssd@g500000e0106e3ba1,0
 2. c3t0d0 <ABCSTORAGE-100E-00-2.2 cyl 20813 alt 2 hd 16 sec 63>
 /iscsi/disk@0000iqn.2001-05.com.abcstorage%3A6-8a0900-477d704d5-0b0ff44352423a2-hostname-020000,0
 3. c3t1d0 <ABCSTORAGE-100E-00-2.2 cyl 20813 alt 2 hd 16 sec 63>
 /iscsi/disk@0000iqn.2001-05.com.abcstorage%3A6-8a0900-3fcd704d4-0b0ff44352423a2-hostname-010000,0

...

21. c4t60a980000686f694b2f59775733426b57d0 <ABCSTORAGE-LUN-0.2 cyl 4606 alt 2 hd 16 sec 256>
 /scsi_vhci/ssd@g60a980000686f694b2f59775733426b77
22. c4t60a980000686f694b2f59775733434c41d0 <ABCSTORAGE-LUN-0.2 cyl 4606 alt 2 hd 16 sec 256>
 /scsi_vhci/ssd@g60a980000686f694b2f59775733434c41

▼ How to Access iSCSI Disks Upon Reboot

Follow the steps below to access iSCSI disks after the system is rebooted.

1 Become superuser.

2 Add entries for the iSCSI LUN(s) to the /etc/vfstab file. Set the mount at boot option to iscsi.

initiator# vi /etc/vfstab
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
/dev/dsk/c3t600144F048555F3700000930D04958000d0s0 - /mnt ufs - no -

▼ How to Remove Discovered iSCSI Targets

After removing a discovery address, iSNS server, or static configuration, or after disabling a discovery method, the associated targets are logged out. If these associated targets are still in use, for example, they have mounted file systems, the logout of these devices will fail, and they will remain on the active target list.

This optional procedure assumes that you are logged in to the local system where access to an iSCSI target device has already been configured.

1 Become superuser.
2 (Optional) Disable an iSCSI target discovery method using one of the following:

- If you need to disable the SendTargets discovery method, use the following command:

  ```bash
  initiator# iscsiadm modify discovery --sendtargets disable
  ```

- If you need to disable the iSNS discovery method, use the following command:

  ```bash
  initiator# iscsiadm modify discovery --iSNS disable
  ```

- If you need to disable the static target discovery method, use the following command:

  ```bash
  initiator# iscsiadm modify discovery --static disable
  ```

3 Remove an iSCSI device discovery entry using one of the following:

- Remove an iSCSI SendTargets discovery entry.

 For example:

  ```bash
  initiator# iscsiadm remove discovery-address 10.0.0.1:3260
  ```

- Remove an iSCSI iSNS discovery entry.

 For example:

  ```bash
  # iscsiadm remove isns-server 10.0.0.1:3205
  ```

- Remove a static iSCSI discovery entry.

 For example:

  ```bash
  initiator# iscsiadm remove static-config iqn.1986-03.com.sun:02:62d527ac-076d-ea1b-ff4f-cbfca3b12345.sanpool,1.2.3.4:3260
  ```

Note - If you attempt to disable or remove a discovery entry that has an associated logical unit in use, the disable or remove operation fails with the following message:

```
logical unit in use
```

If this error occurs, stop all associated I/O on the logical unit, unmount the file systems, and so on. Then, repeat the disable or remove operation.

4 Remove the iSCSI target device.

Remove a target by specifying the logical unit number (LUN). If you did not specify a LUN when the target was created, a value of 0 was used. LUN 0 must be the last LUN removed if multiple LUNs are associated with a target.

For example:

```bash
initiator# iscsitadm delete target --lun 0 sandbox
```
Configuring Authentication in Your iSCSI-Based Storage Network

Setting up authentication for your iSCSI devices is optional.

In a secure environment, authentication is not required because only trusted initiators can access the targets.

In a less secure environment, the target cannot determine if a connection request is truly from a given host. In that case, the target can authenticate an initiator by using the Challenge-Handshake Authentication Protocol (CHAP).

CHAP authentication uses the notion of a challenge and response, which means that the target challenges the initiator to prove its identity. For the challenge/response method to work, the target must know the initiator’s secret key, and the initiator must be set up to respond to a challenge. Refer to the array vendor’s documentation for instructions on setting up the secret key on the array.

iSCSI supports unidirectional and bidirectional authentication as follows:

- **Unidirectional authentication** enables the target to authenticate the identity of the initiator. Unidirectional authentication is done on behalf of the target to authenticate the initiator.

- **Bidirectional authentication** adds a second level of security by enabling the initiator to authenticate the identity of the target. Bidirectional authentication is driven from the initiator, which controls whether bidirectional authentication is performed. The only setup required for the target is that the chap user and chap secret must be correctly defined.

▼ How to Configure CHAP Authentication for Your iSCSI Initiator

This procedure assumes that you are logged in to the local system where you want to securely access the configured iSCSI target device.

- The length of the CHAP secret key for the COMSTAR iSCSI target must be a minimum of 12 characters and a maximum of 255 characters. Some initiators support only a shorter maximum length for the secret key.

- Each node identifying itself using CHAP must have both a user name and a password. In the Oracle Solaris OS, the CHAP user name is set to the initiator or target node name (that is, the iqn name) by default. The CHAP user name can be set to any length of text that is less than 512 bytes. The 512-byte length limit is an Oracle Solaris limitation. However, if you do not set the CHAP user name, it is set to the node name upon initialization.

You can simplify CHAP secret key management by using a third-party RADIUS server, which acts as a centralized authentication service. When you use RADIUS, the RADIUS server stores the set of node names and matching CHAP secret keys. The system performing the authentication forwards the node name of the requester and the supplied secret of the requester
to the RADIUS server. The RADIUS server confirms whether the secret key is the appropriate key to authenticate the given node name. Both iSCSI and iSER support the use of a RADIUS server.

For more information about using a third-party RADIUS server, see “Using a Third-Party RADIUS Server to Simplify CHAP Management in Your iSCSI Configuration” on page 61.

1 Become superuser.

2 Determine whether you want to configure unidirectional or bidirectional CHAP.
 - Unidirectional authentication, the default method, enables the target to validate the initiator. Complete steps 3–5 only.
 - Bidirectional authentication adds a second level of security by enabling the initiator to authenticate the target. Complete steps 3–9.

3 Unidirectional CHAP: Set the secret key on the initiator.
 The following command initiates a dialogue to define the CHAP secret key:

 `initiator# iscsiadm modify initiator-node --CHAP-secret`
 `Enter CHAP secret: ************`
 `Re-enter secret: ************`

4 (Optional) Unidirectional CHAP: Set the CHAP user name on the initiator.
 By default, the initiator’s CHAP user name is set to the initiator node name.
 Use the following command to use your own initiator CHAP user name:

 `initiator# iscsiadm modify initiator-node --CHAP-name new-CHAP-name`

5 Unidirectional CHAP – Enable CHAP authentication on the initiator.
 `initiator# iscsiadm modify initiator-node --authentication CHAP`
 CHAP requires that the initiator node have both a user name and a password. The user name is typically used by the target to look up the secret key for the given user name.

6 Select one of the following to enable or disable bidirectional CHAP.
 - Enable bidirectional CHAP for connections with the target.
 `initiator# iscsiadm modify target-param -B enable target-ign`
 - Disable bidirectional CHAP.
 `initiator# iscsiadm modify target-param -B disable target-ign`

7 Bidirectional CHAP: Set the authentication method to CHAP for the target.
 `initiator# iscsiadm modify target-param --authentication CHAP target-ign`
Bidirectional CHAP: Set the target device secret key that identifies the target.

The following command initiates a dialogue to define the CHAP secret key:

```
initiator# iscsiadm modify target-param --CHAP-secret target-iqn
```

Bidirectional CHAP: If the target uses an alternate CHAP user name, set the CHAP name that identifies the target.

By default, the target’s CHAP name is set to the target name.

You can use the following command to change the target’s CHAP name:

```
initiator# iscsiadm modify target-param --CHAP-name target-CHAP-name
```

▶ How to Configure CHAP Authentication for Your iSCSI Target

This procedure assumes that you are logged in to the local system that contains the iSCSI targets.

1 Become superuser.

2 Determine whether you want to configure unidirectional or bidirectional CHAP.

- Unidirectional authentication is the default method. Complete steps 3–5 only.

3 Unidirectional/Bidirectional CHAP: Configure the target to require that initiators identify themselves using CHAP.

```
target# itadm modify-target -a chap target-iqn
```

4 Unidirectional/Bidirectional CHAP: Create an initiator context that describes the initiator.

Create the initiator context with the initiator’s full node name and with the initiator’s CHAP secret key.

```
target# itadm create-initiator -s initiator-iqn
Enter CHAP secret: ************
Re-enter secret: ************
```

5 Unidirectional/Bidirectional CHAP: If the initiator uses an alternate CHAP name, then configure the initiator-context with the alternate name.

```
target# itadm modify-initiator -u initiator-CHAP-name initiator-iqn
```

6 Bidirectional CHAP: Set the target device secret key that identifies this target.

```
target# itadm modify-target -s target-iqn
Enter CHAP secret: ************
Re-enter secret: ************
```

7 (Optional) Bidirectional CHAP: If the target uses an alternate CHAP user name other than the target node name (iqn), modify the target.

```
target# itadm modify-target -u target-CHAP-name target-iqn
```
Using a Third-Party RADIUS Server to Simplify CHAP Management in Your iSCSI Configuration

You can use a third-party RADIUS server that acts as a centralized authentication service to simplify CHAP key secret management. With this method, the recommended practice is to use the default CHAP name for each initiator node. In the common case when all initiators are using the default CHAP name, you do not have to create initiator contexts on the target.

▼ How to Configure a RADIUS Server for Your iSCSI Target

You can use a third-party RADIUS server that acts as a centralized authentication service to simplify CHAP key secret management. With this method, the recommended practice is to use the default CHAP name for each initiator node. In the common case when all initiators are using the default CHAP name, you do not have to create initiator contexts on the target.

This procedure assumes that you are logged in to the local system where you want to securely access the configured iSCSI target device.

1 Become superuser.

2 Configure the initiator node with the IP address and the port of the RADIUS server.
 The default port is 1812. This configuration is completed once for all iSCSI targets on the target system.

   ```
   initiator# itadm modify-defaults -r RADIUS-server-IP-address
   Enter RADIUS secret: ************
   Re-enter secret: ************
   ```

3 Configure the shared secret key that is used for communication between the target system and the RADIUS server.

   ```
   initiator# itadm modify-defaults -d
   Enter RADIUS secret: ************
   Re-enter secret: ************
   ```

4 Configure the target system to require RADIUS authentication.
 This configuration can be performed for an individual target or as a default for all targets.

   ```
   initiator# itadm modify-target -a radius target-qn
   ```

5 Configure the RADIUS server with the following components:
 - The identity of the target node (for example, its IP address)
 - The shared secret key that the target node uses to communicate with the RADIUS server
 - The initiator’s CHAP name (for example, it's iqn name) and the secret key for each initiator that needs to be authenticated
How to Configure a RADIUS Server for Your iSCSI Initiator

You can use a third-party RADIUS server that acts as a centralized authentication service to simplify CHAP secret key management. This setup is only useful when the initiator is requesting bidirectional CHAP authentication. You must still specify the initiator’s CHAP secret key, but you are not required to specify the CHAP secret key for each target on an initiator when using bidirectional authentication with a RADIUS server. RADIUS can be independently configured on either the initiator or the target. The initiator and the target do not have to use RADIUS.

1. Become superuser.
2. Configure the initiator node with the IP address and the port of the RADIUS server.
 The default port is 1812.
   ```
   # iscsiadm modify initiator-node --radius-server ip-address:1812
   ```
3. Configure the initiator node with the shared secret key of the RADIUS server.
 The RADIUS server must be configured with a shared secret for iSCSI to interact with the server.
   ```
   # iscsiadm modify initiator-node --radius-shared-secret
   Enter secret:
   Re-enter secret
   ```
4. Enable the use of the RADIUS server.
   ```
   # iscsiadm modify initiator-node --radius-access enable
   ```
5. Set up the other aspects of CHAP bidirectional authentication.
   ```
   # iscsiadm modify initiator-node --authentication CHAP
   # iscsiadm modify target-param --bi-directional-authentication enable target-qn
   # iscsiadm modify target-param --authentication CHAP target-qn
   ```
6. Configure the RADIUS server with the following components:
 - The identity of this node (for example, its IP address)
 - The shared secret key that this node uses to communicate with the RADIUS server
 - The target’s CHAP name (for example, its iqn name) and the secret key for each target that needs to be authenticated

Oracle Solaris iSCSI and RADIUS Server Error Messages

This section describes the error messages that are related to an Oracle Solaris iSCSI and RADIUS server configuration. Potential solutions for recovery are also provided.
empty RADIUS shared secret

Cause: The RADIUS server is enabled on the initiator, but the RADIUS shared secret key is not set.

Solution: Configure the initiator with the RADIUS shared secret key. For more information, see “How to Configure a RADIUS Server for Your iSCSI Target” on page 61.

WARNING: RADIUS packet authentication failed

Cause: The initiator failed to authenticate the RADIUS data packet. This error can occur if the shared secret key that is configured on the initiator node is different from the shared secret key on the RADIUS server.

Solution: Reconfigure the initiator with the correct RADIUS shared secret. For more information, see “How to Configure a RADIUS Server for Your iSCSI Target” on page 61.

Setting Up Solaris iSCSI Multipathed Devices

Consider the following guidelines for using Solaris iSCSI multipathed (MPxIO) devices:

- **Solaris iSCSI and MPxIO** – MPxIO supports target port aggregation and availability in Solaris iSCSI configurations that configure multiple sessions per target (MS/T) on the iSCSI initiator.
 - Use IPMP for aggregation and failover of two or more NICs.
 - A basic configuration for an iSCSI host is a server with two NICs that are dedicated to iSCSI traffic. The NICs are configured by using IPMP. Additional NICs are provided for non-iSCSI traffic to optimize performance.
 - Active multipathing can only be achieved by using the Solaris iSCSI MS/T feature, and the failover and redundancy of an IPMP configuration.
 - If one NIC fails in an IPMP configuration, IPMP handles the failover. The MPxIO driver does not notice the failure. In a non-IPMP configuration, the MPxIO driver fails and offline the path.
 - If one target port fails in an IPMP configuration, the MPxIO driver notices the failure and provides the failover. In a non-IPMP configuration, the MPxIO driver notices the failure and provides the failover.
 - For information about configuring multiple sessions per target, see “How to Enable Multiple iSCSI Sessions for a Target” on page 64. For information about configuring IPMP, see Part V, “IPMP,” in Oracle Solaris Administration: IP Services.

- **Solaris iSCSI, Fibre-Channel (FC), and MPxIO** – The MPxIO driver provides the following behavior in more complex iSCSI/FC configurations:
 - If you have dual iSCSI to FC bridges in an FC SAN, iSCSI presents target paths to MPxIO. MPxIO matches the unique SCSI per LUN identifier, and if they are identical, presents one path to the iSCSI driver.
If you have a configuration that connects a target by using both iSCSI and FC, the MPxIO driver can provide different transports to the same device. In this configuration, MPxIO utilizes both paths.

If you are using iSCSI and FC in combination with MPxIO, make sure that the MPxIO settings in the `/kernel/drv/fp.conf` file and the `/kernel/drv/iscsi.conf` files match the MPxIO configuration that you want supported. For example, in `fp.conf`, you can determine whether MPxIO is enabled globally on the HBA or on a per-port basis.

Third-party hardware considerations—Find out if your third-party HBA is qualified to work with Solaris iSCSI and MPxIO.

If you are using a third-party HBA, you might need to ask your third-party HBA vendor for the symmetric-option information for the `/kernel/drv/scsi_vhci.conf` file.

How to Enable Multiple iSCSI Sessions for a Target

This procedure can be used to create multiple iSCSI sessions that connect to a single target. This scenario is useful with iSCSI target devices that support login redirection or have multiple target portals in the same target portal group. Use iSCSI multiple sessions per target with Solaris SCSI Multipathing (MPxIO). You can also achieve higher bandwidth if you utilize multiple NICs on the host side to connect to multiple portals on the same target.

The MS/T feature creates two or more sessions on the target by varying the initiator’s session ID (ISID). Enabling this feature creates two SCSI layer paths on the network so that multiple targets are exposed through the iSCSI layer to the Solaris I/O layer. The MPxIO driver handles the reservations across these paths.

For more information about how iSCSI interacts with MPxIO paths, see "Setting Up Solaris iSCSI Multipathed Devices" on page 63.

Review the following items before configuring multiple sessions for an iSCSI target:

- A typical MS/T configuration has two or more configured-sessions.

 However, if your storage supports multiple TPGTs and if you are using SendTarget discovery on your host system, then the number of configured sessions can be set to 1. SendTarget discovery automatically detects the existence of multiple paths and multiple target sessions are created.

- Confirm that the `mpxio` configuration parameter is enabled in the `/kernel/drv/iscsi.conf` file.

  ```
  # cd /kernel/drv
  # grep mpxio iscsi.conf
  iscsi.conf:mpxio-enable="no"
  ```

- Confirm that the multiple network connections are configured by using IPMP.
- Confirm that the multiple network connections are available.

  ```
  # ifconfig -a
  ```
1 Become superuser.

2 List the current parameters for the iSCSI initiator and target.

 a. List the current parameters for the iSCSI initiator. For example:

 initiator# iscsiadm list initiator-node
 Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
 Initiator node alias: zzr1200
 .
 .
 Configured Sessions: 1

 b. List the current parameters of the iSCSI target device. For example:

 initiator# iscsiadm list target-param -v iqn.1992-08.com.abcstorage:sn.84186266
 Alias: -
 .
 .
 Configured Sessions: 1

 The configured sessions value is the number of configured iSCSI sessions that will be created for each target name in a target portal group.

3 Select one of the following to modify the number of configured sessions either at the initiator node to apply to all targets or at a target level to apply to a specific target.

 The number of sessions for a target must be between 1 and 4.

 ▪ Apply the parameter to the iSCSI initiator node.
 For example:

 initiator# iscsiadm modify initiator-node -c 2

 ▪ Apply the parameter to the iSCSI target.
 For example:

 ▪ Bind configured sessions to one or more local IP addresses.

 Configured sessions can also be bound to a specific local IP address. Using this method, one or more local IP addresses are supplied in a comma-separated list. Each IP address represents an iSCSI session. This method can also be done at the initiator-node or target-param level. For example:

 initiator# iscsiadm modify initiator-node -c 10.0.0.1,10.0.0.2

Note – If the specified IP address is not routable, the address is ignored and the default Solaris route and IP address is used for this session.
4 Verify that the parameter was modified.

 a. Display the updated information for the initiator node. For example:

   ```
   initiator# iscsiadm list initiator-node
   Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
   Initiator node alias: zzr1200
   ...
   Configured Sessions: 2
   ```

 b. Display the updated information for the target node. For example:

   ```
   initiator# iscsiadm list target-param -v iqn.1992-08.com.abcstorage:sn.84186266
   Alias: -
   ...
   Configured Sessions: 2
   ```

5 List the multiple paths by using the `mpathadm list lu` command to confirm that the OS device name matches the `iscsiadm list` output, and that the path count is 2 or more.

▼ Monitoring Your iSCSI Configuration

You can display information about the iSCSI initiator and target devices by using the `iscsiadm list` command.

1 Become superuser.

2 Display information about the iSCSI initiator.

 For example:

   ```
   # iscsiadm list initiator-node
   Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
   Initiator node alias: zzr1200
   Login Parameters (Default/Configured):
     Header Digest: NONE/-
     Data Digest: NONE/-
     Authentication Type: NONE
     RADIUS Server: NONE
     RADIUS access: unknown
   Configured Sessions: 1
   ```

3 Display information about which discovery methods are in use.

 For example:

   ```
   # iscsiadm list discovery
   Discovery:
     Static: enabled
Example 4–1  Displaying iSCSI Target Information

The following example shows how to display the parameter settings for a specific iSCSI target.

```bash
iscsiadm list target-param iqn.1992-08.com.abcstorage:sn.33592219
```

The `iscsiadm list target-param -v` command displays the following information:

- The authentication settings for the target
- The default settings for the target login parameters
- The configured value for each login parameter

The `iscsiadm list target-param -v` command displays the default parameter value before the `/` designator and the configured parameter value after the `/` designator. If you have not configured any parameters, the configured parameter value displays as a hyphen (`-`). For more information, see the following examples.

```bash
iscsiadm list target-param -v eui.50060e8004275511
 Target: eui.50060e8004275511
 Alias: -
 Bi-directional Authentication: disabled
 Authentication Type: NONE
 Login Parameters (Default/Configured):
 Data Sequence In Order: yes/-
 Data PDU In Order: yes/-
 Default Time To Retain: 20/-
 Default Time To Wait: 2/-
 Error Recovery Level: 0/-
 First Burst Length: 65536/-
 Immediate Data: yes/-
 Initial Ready To Transfer (R2T): yes/-
 Max Burst Length: 262144/-
 Max Outstanding R2T: 1/-
 Max Receive Data Segment Length: 65536/-
 Max Connections: 1/-
 Header Digest: NONE/-
 Data Digest: NONE/-
 Configured Sessions: 1
```

The following example output displays the parameters that were negotiated between the target and the initiator.

```bash
iscsiadm list target -v eui.50060e8004275511
 Target: eui.50060e8004275511
 TPGT: 1
 ISID: 4000002a0000
 Connections: 1
 CID: 0
 IP address (Local): 172.90.101.71:32813
 IP address (Peer): 172.90.101.40:3260
```
Modifying iSCSI Initiator and Target Parameters

You can modify parameters on both the iSCSI initiator and the iSCSI target device. However, the only parameters that can be modified on the iSCSI initiator are the following:

- **iSCSI initiator node name** – You can change the initiator node name to a different name. If you change the initiator node name, the targets that were discovered by iSNS might be removed from the initiator’s target list, depending on the discovery domain configuration on the iSNS server at the time when the name was changed. For more information, see “Modifying iSCSI Initiator and Target Parameters” on page 68.

- **Header digest** – NONE, the default value or CRC32.

- **Data digest** – NONE, the default value or CRC32.

- **Authentication and CHAP secret** – For more information about setting up authentication, see “How to Configure a RADIUS Server for Your iSCSI Initiator” on page 62.

- **Configured sessions** – For more information about configuring multiple sessions, see “How to Enable Multiple iSCSI Sessions for a Target” on page 64.

The iSCSI driver provides default values for the iSCSI initiator and iSCSI target device parameters. If you modify the parameters of the iSCSI initiator, the modified parameters are inherited by the iSCSI target device, unless the iSCSI target device already has different values.

**Caution** – Ensure that the target software supports the parameter to be modified. Otherwise, you might be unable to log in to the iSCSI target device. See your array documentation for a list of supported parameters.

Modifying iSCSI parameters should be done when I/O between the initiator and the target is complete. The iSCSI driver reconnects the session after the changes are made by using the `iscsiadm modify` command.
How to Modify iSCSI Initiator and Target Parameters

The first part of this procedure illustrates how modified parameters of the iSCSI initiator are inherited by the iSCSI target device. The second part of this procedure shows how to actually modify parameters on the iSCSI target device.

This optional procedure assumes that you are logged in to the local system where access to an iSCSI target device has already been configured.

1. Become superuser.

2. List the current parameters of the iSCSI initiator and target device.

   a. List the current parameters of the iSCSI initiator. For example:

      ```
 initiator# iscsiadm list initiator-node
 Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
 Initiator node alias: zzr1200
 Login Parameters (Default/Configured):
 Header Digest: NONE/-
 Data Digest: NONE/-
 Authentication Type: NONE
 RADIUS Server: NONE
 RADIUS Access: unknown
 Configured Sessions: 1
      ```

   b. List the current parameters of the iSCSI target device. For example:

      ```
 initiator# iscsiadm list target-param -v iqn.1992-08.com.abcstorage:sn.84186266
 Alias: -
 Bi-directional Authentication: disabled
 Authentication Type: NONE
 Login Parameters (Default/Configured):
 Data Sequence In Order: yes/-
 Data PDU In Order: yes/-
 Default Time To Retain: 20/-
 Default Time To Wait: 2/-
 Error Recovery Level: 0/-
 First Burst Length: 65536/-
 Immediate Data: yes/-
 Initial Ready To Transfer (R2T): yes/-
 Max Burst Length: 262144/-
 Max Outstanding R2T: 1/-
 Max Receive Data Segment Length: 65536/-
 Max Connections: 1/-
 Header Digest: NONE/-
 Data Digest: NONE/-
 Configured Sessions: 1
      ```

      Note that both header digest and data digest parameters are currently set to NONE for both the iSCSI initiator and the iSCSI target device.

      To review the default parameters of the iSCSI target device, see the `iscsiadm list target-param` output in Example 4–1.
3 **Modify the parameter of the iSCSI initiator.**

   For example, set the header digest to CRC32.

   ```
 initiator# iscsiadm modify initiator-node -h CRC32
   ```

   If you change the initiator node name, the targets that were discovered by iSNS might be logged out and removed from the initiator’s target list, if the new name does not belong to the same discovery domain as that of the targets. However, if the targets are in use, they are not removed. For example, if a file is open or a file system is mounted on these targets, the targets will not removed.

   You might also see new targets after the name change if these targets and the new initiator node name belong to the same discovery domain.

4 **Verify that the parameter was modified.**

   a. **Display the updated parameter information for the iSCSI initiator.** For example:

      ```
 initiator# iscsiadm list initiator-node
 Initiator node name: iqn.1986-03.com.sun:01:0003ba4d233b.425c293c
 Initiator node alias: zzr1200
 Login Parameters (Default/Configured):
 Header Digest: NONE/CRC32
 Data Digest: NONE/-
 Authentication Type: NONE
 RADIUS Server: NONE
 RADIUS access: unknown
 Configured Sessions: 1
      ```

      Note that the header digest is now set to CRC32.

   b. **Display the updated parameter information for the iSCSI target device.** For example:

      ```
 initiator# iscsiadm list target-param -v iqn.1992-08.com.abcstorage:sn.84186266
 Alias: -
 Bi-directional Authentication: disabled
 Authentication Type: NONE
 Login Parameters (Default/Configured):
 Data Sequence In Order: yes/-
 Data PDU In Order: yes/-
 Default Time To Retain: 20/-
 Default Time To Wait: 2/-
 Error Recovery Level: 0/-
 First Burst Length: 65536/-
 Immediate Data: yes/-
 Initial Ready To Transfer (R2T): yes/-
 Max Burst Length: 262144/-
 Max Outstanding R2T: 1/-
 Max Receive Data Segment Length: 65536/-
 Max Connections: 1/-
 Header Digest: CRC32/-
 Data Digest: NONE/-
 Configured Sessions: 1
      ```

      Note that the header digest is now set to CRC32.
5 Verify that the iSCSI initiator has reconnected to the iSCSI target. For example:

```
initiator# iscsiadm list target -v iqn.1992-08.com.abcstorage:sn.84186266
 TPGT: 2
 ISID: 4000002a0000
 Connections: 1
 CID: 0
 IP address (Local): nnn.nn.nn.nnn:64369
 IP address (Peer): nnn.nn.nn.nnn:3260
 Discovery Method: SendTargets
 Login Parameters (Negotiated):
 .
 .
 Header Digest: CRC32
 Data Digest: NONE
```

6 (Optional) Unset an iSCSI initiator parameter or an iSCSI target device parameter.

You can unset a parameter by setting it back to its default setting by using the `iscsiadm modify` command. Or, you can use the `iscsiadm remove` command to reset all target properties to the default settings.

The `iscsiadm modify target-param` command changes only the parameters that are specified on the command line.

The following example shows how to reset the header digest to NONE:

```
initiator# iscsiadm modify target-param -h none iqn.1992-08.com.abcstorage:sn...
```

For information about the `iscsiadm remove target-param` command, see `iscsiadm(1M)`.

---

**Troubleshooting iSCSI Configuration Problems**

The following tools are available to troubleshoot general iSCSI configuration problems:

- **snoop** – This tool has been updated to support iSCSI packets.
- **wireshark** – This product is available from [http://www.wireshark.org/](http://www.wireshark.org/).

Both tools can filter iSCSI packets on port 3260.

The following sections describe various iSCSI troubleshooting and error message resolution scenarios.
No Connections to the iSCSI Target From the Local System

▼ How to Troubleshoot iSCSI Connection Problems

1 Become superuser.

2 List your iSCSI target information.
   For example:
   
   ```
 initiator# iscsiadm list target
 Target: iqn.2001-05.com.abcstorage:6-8a0900-37ad70401-bcfff02df8a41df-zzr1200-01
 TPGT: default
 ISID: 4000002a0000
 Connections: 0
   ```

3 If no connections are listed in the `iscsiadm list target` output, check the `/var/adm/messages` file for possible reasons why the connection failed.
   You can also verify whether the connection is accessible by using the `ping` command or by connecting to the storage device's iSCSI port by using the `telnet` command to ensure that the iSCSI service is available. The default port is 3260.
   In addition, check the storage device's log file for errors.

4 If your target is not listed in the `iscsiadm list target` output, check the `/var/adm/messages` file for possible causes.
   If you are using SendTargets as the discovery method, try listing the `discovery-address` using the `-v` option to ensure that the expected targets are visible to the host. For example:
   
   ```
 initiator# iscsiadm list discovery-address -v 10.0.0.1
 Discovery Address: 10.0.0.1:3260
 Target name: eui.210000203787dfc0
 Target address: 10.0.0.1:11824
 Target name: eui.210000203787e07b
 Target address: 10.0.0.1:11824
   ```
   If you are using iSNS as the discovery method, try enabling the iSNS discovery method and listing the `isns-server` using the `-v` option to ensure that the expected targets are visible to the host. For example:
   
   ```
 initiator# iscsiadm list isns-server -v
 iSNS Server IP Address: 10.20.56.56:3205
 Target name: iqn.1992-08.com.xyz:sn.1234566
 Target address: 10.20.57.161:3260, 1
 Target address: 10.20.56.206:3260, 1
 Target address: 10.20.56.206:3260, 1
   ```
**iSCSI Device or Disk Is Not Available on the Local System**

**How to Troubleshoot iSCSI Device or Disk Unavailability**

1. Become superuser.

2. Identify the LUNs that were discovered on this target during enumeration.

   For example:

   ```
 # iscsiadm list target -S
 Target: iqn.2001-05.com.abcstorage:6-8a0900-37ad70401-bcfff02df8a421df-zzr1200-01
 TPGT: default
 ISID: 4000002a0000
 Connections: 1
 LUN: 0
 Vendor: ABCSTOR
 Product: 0010
 OS Device Name: /dev/rdsk/c3t34d0s2
   ```

   The `-S` option shows which LUNs were discovered on this target during enumeration. If you think a LUN should be listed but it is not, review the `/var/adm/messages` file to see if an error was reported. Check the storage device's log files for errors. Also, ensure that any storage device LUN masking is properly configured.

**Use LUN Masking When Using the iSNS Discovery Method**

Avoid using the iSNS discovery domain as the means to control storage authorization to specific initiators. Use LUN masking instead if you want to make sure that only authorized initiators can access a LUN.

If you remove a target from a discovery domain while the target is in use, the iSCSI initiator does not log out from this target. If you do not want this initiator to access this target (and the associated LUNs), you must use LUN masking. Removing the target from the discovery domain is not sufficient.
GeneraliSCSI Error Messages

This section describes the iSCSI messages that might be found in the `/var/adm/messages` file and potential solutions for recovery.

The message format is as follows:

```
iscsi TYPE (OID) STRING (STATUS-CLASS#/STATUS-DETAIL#)
```  

- **TYPE**
  - Is either connection or session.
- **OID**
  - Is the object ID of the connection or session. This ID is unique for an OS instance.
- **STRING**
  - Is a description of the condition.
- **STATUS-CLASS#/STATUS-DETAIL#**
  - These values are returned in an iSCSI login response as defined by RFC 3720.

**iscsi connection (OID) login failed - Miscellaneous iSCSI initiator errors.**

_Cause:_ The device login failed due to some form of initiator error.

**iscsi connection (OID) login failed - Initiator could not be successfully authenticated.**

_Cause:_ The device could not successfully authenticate the initiator.

_Solution:_ If applicable, verify that the settings for CHAP names, CHAP passwords, or the RADIUS server are correct.

**iscsi connection (OID) login failed - Initiator is not allowed access to the given target.**

_Cause:_ The device cannot allow the initiator access to the iSCSI target device.

_Solution:_ Verify your initiator name and confirm that it is properly masked or provisioned by the storage device.

**iscsi connection (OID) login failed - Requested ITN does not exist at this address.**

_Cause:_ The device does not provide access to the iSCSI target name (ITN) that you are requesting.

_Solution:_ Verify that the initiator discovery information is specified properly and that the storage device is configured properly.
iscsi connection(OID) login failed - Requested ITN has been removed and no forwarding address is provided.
  
  **Cause:** The device can no longer provide access to the iSCSI target name (ITN) that you are requesting.

  **Solution:** Verify that the initiator discovery information has been specified properly and that the storage device has been configured properly.

iscsi connection(OID) login failed - Requested iSCSI version range is not supported by the target.
  
  **Cause:** The initiator's iSCSI version is not supported by the storage device.

iscsi connection(OID) login failed - No more connections can be accepted on this Session ID (SSID).
  
  **Cause:** The storage device cannot accept another connection for this initiator node to the iSCSI target device.

iscsi connection(OID) login failed - Missing parameters (e.g., iSCSI initiator and/or target name).
  
  **Cause:** The storage device is reporting that the initiator or target name has not been properly specified.

  **Solution:** Properly specify the iSCSI initiator or target name.

iscsi connection(OID) login failed - Target hardware or software error.
  
  **Cause:** The storage device encountered a hardware or software error.

  **Solution:** Consult the storage documentation, or contact the storage vendor for further assistance.

iscsi connection(OID) login failed - iSCSI service or target is not currently operational.
  
  **Cause:** The storage device is currently not operational.

  **Solution:** Consult the storage documentation, or contact the storage vendor for further assistance.

iscsi connection(OID) login failed - Target has insufficient session, connection or other resources.
  
  **Cause:** The storage device has insufficient resources.

  **Solution:** Consult the storage documentation, or contact the storage vendor for further assistance.
iscsi connection(OID) login failed - unable to initialize authentication

iscsi connection(OID) login failed - unable to set authentication
iscsi connection(OID) login failed - unable to set username
iscsi connection(OID) login failed - unable to set password
iscsi connection(OID) login failed - unable to set ipsec
iscsi connection(OID) login failed - unable to set remote authentication

**Cause:** The initiator was unable to initialize or set authentication properly.

**Solution:** Verify that your initiator settings for authentication are properly configured.

iscsi connection(OID) login failed - unable to make login pdu

**Cause:** The initiator was unable to make a login payload data unit (PDU) based on the initiator or storage device settings.

**Solution:** Try resetting any target login parameters or other nondefault settings.

iscsi connection(OID) login failed - failed to transfer login
iscsi connection(OID) login failed - failed to receive login response

**Cause:** The initiator failed to transfer or receive a login payload data unit (PDU) across the network connection.

**Solution:** Verify that the network connection is reachable.

iscsi connection(OID) login failed - received invalid login response (OP CODE)

**Cause:** The storage device has responded to a login with an unexpected response.

iscsi connection(OID) login failed - login failed to authenticate with target

**Cause:** The initiator was unable to authenticate the storage device.

**Solution:** Verify that your initiator settings for authentication are properly configured.

iscsi connection(OID) login failed - initiator name is required

**Cause:** An initiator name must be configured to perform all actions.

**Solution:** Verify that the initiator name is configured.

iscsi connection(OID) login failed - authentication receive failed
iscsi connection(OID) login failed - authentication transmit failed

**Cause:** The initiator was unable to transmit or receive authentication information.

**Solution:** Verify network connectivity with the storage device or the RADIUS server, as applicable.
iscsi connection(OID) login failed - login redirection invalid
  **Cause:** The storage device attempted to redirect the initiator to an invalid destination.
  **Solution:** Consult the storage documentation, or contact the storage vendor for further assistance.

iscsi connection(OID) login failed - target protocol group tag mismatch, expected <TPGT>, received <TPGT>
  **Cause:** The initiator and target had a TPGT (target portal group tag) mismatch.
  **Solution:** Verify your TPGT discovery settings on the initiator or the storage device.

iscsi connection(OID) login failed - can’t accept PARAMETER in security stage
  **Cause:** The device responded with an unsupported login parameter during the security phase of login.
  **Solution:** The parameter name is noted for reference. Consult the storage documentation, or contact the storage vendor for further assistance.

iscsi connection(OID) login failed - HeaderDigest=CRC32 is required, can’t accept VALUE
iscsi connection(OID) login failed - DataDigest=CRC32 is required, can’t accept VALUE
  **Cause:** The initiator is only configured to accept a HeaderDigest or DataDigest that is set to CRC32 for this target. The device returned the value of VALUE.
  **Solution:** Verify that the initiator and device digest settings are compatible.

iscsi connection(OID) login failed - HeaderDigest=None is required, can’t accept VALUE
iscsi connection(OID) login failed - DataDigest=None is required, can’t accept VALUE
  **Cause:** The initiator is only configured to accept a HeaderDigest or DataDigest that is set to NONE for this target. The device returned the value of VALUE.
  **Solution:** Verify that the initiator and device digest settings are compatible.

iscsi connection(OID) login failed - can’t accept PARAMETER
  **Cause:** The initiator does not support this parameter.

iscsi connection(OID) login failed - can’t accept MaxOutstandingR2T VALUE
  **Cause:** The initiator does not accept MaxOutstandingR2T of the noted VALUE.
iscsi connection(OID) login failed - can’t accept MaxConnections \textit{VALUE}  
\textbf{Cause:} The initiator does not accept the maximum connections of the noted \textit{VALUE}.

iscsi connection(OID) login failed - can’t accept ErrorRecoveryLevel \textit{VALUE}  
\textbf{Cause:} The initiator does not accept an error recovery level of the noted \textit{VALUE}.

iscsi session(\textit{OID}) \textit{NAME} offline  
\textbf{Cause:} All connections for this target \textit{NAME} have been removed or have failed.

iscsi connection(\textit{OID}) failure - unable to schedule enumeration  
\textbf{Cause:} The initiator was unable to enumerate the LUNs on this target.

\textbf{Solution:} You can force LUN enumeration by running the \texttt{devfsadm -i iscsi} command. For more information, see \texttt{devfsadm(1M)}.

iscsi connection(\textit{OID}) unable to connect to target \textit{NAME} (errno:\textit{ERRNO})  
\textbf{Cause:} The initiator failed to establish a network connection.

\textbf{Solution:} For information about the specific \textit{ERRNO} on the connection failure, see the \texttt{/usr/include/sys/errno.h} file.
This chapter provides SAS domain considerations, SAS device discovery, and SAS boot device configuration.

The following topics are covered:

- "SAS Multipathing Considerations" on page 79
- "Dynamic Discovery of SAS Devices" on page 79
- "Configuring SAS Boot Devices" on page 80

**SAS Multipathing Considerations**

- SAS multipathing is supported in the Oracle Solaris release when using the bundled `mpt` driver.
- SAS expanders are not supported in the Oracle Solaris release.
- LUN masking is not supported with SAS-attached devices in the Oracle Solaris release.
- Disable power management on system connected to the SAS Domain to prevent unexpected results as one server attempts to power down a device while another attempts to gain access. For information about power management, see `power.conf(4)`.

**Dynamic Discovery of SAS Devices**

Adding and removing SAS devices is performed dynamically when using the `mpt` driver. You are no longer required to edit the `sd.conf` file to enable your system to detect specific targets and LUNs attached with the `mpt` driver. For more information see `mpt(7D)` and `mpt_sas(7D)`.

If you add or remove a device in your SAS domain, messages are written to the `/var/adm/messages` file indicating its presence or removal. If a device has been added, it is visible to and available through the `format` command.
Configuring SAS Boot Devices

Systems running the Oracle Solaris OS can boot from a multipathed SAS device or from a SATA device connected to a SAS controller. Only the bundled mpt driver is supported for SAS multipathing in the Oracle Solaris release.

Some SAS and SATA devices might not support multipathing but will still function as non-multipathed devices. For more information, go to the My Oracle support site.
This chapter provides Internet Protocol over Fibre Channel (IPFC) configuration information for a host system to describe recognition of IPFC devices and implementation of IP over FC in a SAN. The IPFC driver is based on RFC 2625 and allows IP traffic to run over FC.

The following topics are covered:

- “IPFC Considerations” on page 81
- “Invoking and Configuring IPFC” on page 84

**IPFC Considerations**

The following table shows the supported features available for IPFC.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascading</td>
<td>Yes, with fabric zones only</td>
</tr>
<tr>
<td>Zone type</td>
<td>Fabric zone with the HBA configured as an F-port point-to-point connection</td>
</tr>
<tr>
<td>Maximum number of device ports per zone</td>
<td>253</td>
</tr>
</tbody>
</table>

The following restrictions apply:

- IPFC is not supported on Oracle 1 Gbit switches.
- Promiscuous mode is not supported. The snoop utility cannot be used.
- Multicasting is supported through broadcasting only.
- Network cards using IPFC cannot be used as routers. The `/etc/not router` file must be present on the host.
Any standard network commands can be used after IPFC is attached. These commands (telnet, ping, or ftp) are used in this environment in the same way as in an Ethernet setup.

### Determining Fibre Channel Adapter Port Instances

This section explains how to configure the desired host system for IPFC. It includes the procedures to determine the port instance and to plumb an IPFC instance.

#### How to Determine Port Instances

1. **Determine the HBA PCI adapter slot and the I/O board PCI slot.**
   
   You need this information to perform the calculation in "Determining Fibre Channel Adapter Port Instances" on page 82.

   The examples in this procedure assume you have an array with an HBA card located in PCI adapter slot 5, and the PCI adapter is in slot 1 of the I/O board.

2. **Determine the instance number.**
   
   a. **Search for the fp driver binding name in the /etc/path_to_inst file.**

      Note – Determine the correct entry by finding the hardware path described in your server hardware manual.

   b. **Narrow the search by using the I/O board and slot information from Step 1.**

      Note – The following method of deriving the device path of an HBA from its physical location in server might not work for all Oracle's Sun server hardware.

      i. **Multiply the PCI adapter slot number by the number of adapter ports.**

         For example, if the HBA has two ports, multiply by 2. Using the array with an HBA in the PCI adapter slot 5, multiply 5 by 2 to get 10.

      ii. **Add the PCI adapter I/O board slot number to the number derived in Step i.**

         Using an HBA in PCI adapter slot 5 and PCI slot 1 of the I/O board, add 1 to 10 for a sum of 11.

      iii. **Convert the number derived in Step ii to hexadecimal.**

         The number 11 converts to “b” in hexadecimal.
iv. Search for the fp entry with pci@hex where hex is the number you derived in Step iii.

The following table shows the elements of the device path for a PCI single FC network adapter device that has the following path:
"/pci@b,2000/SUNW,qlc@2/fp@0,0" 7 "fp"

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Name</td>
<td>/pci@b,2000/SUNW,qlc@2/fp@0,0</td>
</tr>
<tr>
<td>Instance Number</td>
<td>7</td>
</tr>
<tr>
<td>Driver Binding Name</td>
<td>fp</td>
</tr>
</tbody>
</table>

c. Manually plumb each FP instance.

Use the ifconfig interface-number plumb command. In this example, the value of interface-number is fcip7.

```
ifconfig fcip7 plumb
```

If the command is successful, a message appears on both the console and in the messages file. For example:

```
Sep 13 15:52:30 bytownite ip: ip: joining multicasts failed (7) on fcip0 - will use link layer brocasts for multicast
```

▼ How to Plumb an IPFC Instance

Each FP instance on the system has an entry in /dev/fc. If HBAs have been removed, some stale links might exist. Use this procedure to load and plumb IPFC.

1. For each entry in /dev/fc file, display all the devices that are visible through that HBA port:

```
luxadm -e dump_map /dev/fc/fp0
```

```
Pos Port_ID Hard_Addr Port WWN Node WWN Type
0 610100 0 210000e08b049f53 200000e08b049f53 0x1f (Unknown Type)
1 620d02 0 210000e08b02c32a 200000e08b02c32a 0x1f (Unknown Type)
2 620f00 0 210000e08b03eb4b 200000e08b03eb4b 0x1f (Unknown Type)
3 620e00 0 210100e08b220713 200100e08b220713 0x1f (Unknown Type,Host Bus Adapter)
```

```
luxadm -e dump_map /dev/fc/fp1
No FC devices found. - /dev/fc/fp1
```

2. Based on the list of devices, determine which destination HBAs are visible to the remote host with which you want to establish IPFC communications.

In the example for this procedure, the destination HBAs have port IDs 610100 and 620d02. The originating HBAs port ID is 620e00.

3. List the physical path of the originating HBA port from which you can see the destination HBA port, where originating-hba-link is a variable for the link determined in Step 2.

```
ls -l /dev/fc/fp originating-hba-link
```
In the following example, 0 is the number for the originating-hba-link:

```
ls -l /dev/fc/fp 0
lrwxrwxrwx 1 root root 51 Sep 4 08:23 /dev/fc/fp0 ->
../devices/pci@8,600000/SUNW,qlc@1/fp@0,0:devctl
```

4 Search the physical path identified in Step 3.
You must remove the leading `../devices` from the path name output. For example:

```
grep pci@8,600000/SUNW,qlc@1/fp@0,0 /etc/path_to_inst
"/pci@8,600000/SUNW,qlc@1/fp@0,0" 0 "fp"
```

5 Determine the `fp` instance for the originating HBA port from the output of the command in Step 4.
The instance number precedes “fp” in the output. In the following example output, the instance number is 0.

```
"/pci@8,600000/SUNW,qlc@1/fp@0,0" 0 "fp"
```

6 Use the instance number from Step 5 to load IPFC and plumb the IPFC interface.
In this example, the instance is 0.

```
ifconfig fcip 0 plumb
```

Invoking and Configuring IPFC

Immediately upon installation, start IPFC manually with the `ifconfig` command. You can configure the host so that on subsequent reboot, the IPFC network interface starts automatically. This section describes the procedures to start a network interface manually and to configure the host for automatic plumbing upon reboot.

▼ How to Start a Network Interface Manually

Use this procedure when you want to plumb IPFC with specific netmask values and get the IPFC interface up and running.

1 Become superuser.

2 Configure the appropriate network interface.
Ask your network administrator for an appropriate IP address and netmask information. For example, to enable an IPFC interface associated with `fp` instance 0 and an IP address of 192.9.201.10, type:

```
touch /etc/notrouter
ifconfig fcip0 inet 192.9.201.10 netmask 255.255.255.0 up
```
For more information, see `ifconfig(1M)`.
3 Confirm that the network is operational.

```bash
ifconfig -a
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1
 inet 127.0.0.1 netmask ff000000
fcip0: flags=1001843<UP,BROADCAST,RUNNING,MULTICAST,MULTI_BCAST,IPv4> mtu 1500 index 2
 inet 192.9.201.10 netmask ffffff00 broadcast 192.9.201.255 ether 0:e0:8b:1:3c:f7
hme0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 3
 inet 192.9.200.70 netmask ffffff00 broadcast 192.9.200.255
 ether 8:0:20:fc:e9:49
```


▼ How to Configure the Host for Automatic Network Configuration

Each network interface must have an `/etc/hostname.interface` file defining the name of the IP address associated with it. For example, IPFC network interface `fcip0` has a file named `/etc/hostname.fcip0`.

1 Manually create a `/etc/hostname.interface` file that contains a single line that identifies the host name or interface IP address.

2 Make any additional entries to the `/etc/inet/hosts` file.

   The Oracle Solaris OS installation program creates the `/etc/inet/hosts` file with minimum entries. You must manually make additional entries with a text editor. For additional information see `hosts(4)`.

   The `/etc/inet/hosts` file contains the hosts database. This file contains the host names and the primary network interface IP addresses, as well as the IP addresses of other network interfaces attached to the system and of any other network interfaces that the machine must know about.

   The following example shows an `etc/inet/host` file.

   ```
 127.0.0.1 localhost loghost
 192.9.200.70 sun1 #This is the local host name
 192.9.201.10 fcip0 #Interface to network 192.9.201.10
   ```

3 Edit the `/etc/nsswitch.conf` file so that all uncommented entries have the word `files` before any other name service.

   The `/etc/nsswitch.conf` specifies which name service to use for a particular machine. The following code shows an example of an `/etc/nsswitch.conf` file.

   ```
 hosts: files nis
   ```
Booting the Oracle Solaris OS From Fibre Channel Devices on x86 Based Systems

This chapter describes how to manually install the Oracle Solaris OS that includes the Solaris multipathing I/O features with 2-Gbit and 4-Gbit Fibre Channel (FC) HBA drivers on x86 based systems. You can select Fibre Channel (FC) devices to boot from in the disk selection portion of Solaris installation program.

The following topics are covered:

- “Oracle Solaris OS Setup Requirements” on page 87
- “Oracle Solaris OS Installation Overview” on page 88
- “Oracle Solaris OS Installation Procedure” on page 89

Oracle Solaris OS Setup Requirements

You must have the following items for installation.

- Oracle Solaris OS 10 installation DVD – The following installation methods are available for configuring FC devices on an x86 based system:
  - Automatic (JumpStart) installation – Installs a single system or multiple client systems on the network. You can boot from media for installing a single system, but if you want to customize the installation for multiple client systems, you will need an installation server.
  - If you are installing a single system with the interactive JumpStart method, deselect the reboot option at the end of the installation.
  - If you are installing a system automatically with a JumpStart profile, use the profile keyword syntax that disables an automatic reboot.
  - Interactive (text) installation – Installs a single system from media or from an installation server.
- FC HBA that is connected to an x86 based system:
  - 10/100/1000 Mbit/sec Ethernet network for network-based OS installation
Note –
Oracle’s 1 Gb HBAs do not support booting over a SAN on x86 based systems. Oracle’s 4 Gb HBAs do support booting over a SAN on x86 based systems. Most 2 Gb HBAs do support booting over a SAN on x86 based systems, except for the following:

- Oracle’s StorageTek 2 Gb Enterprise Class Dual-Port Fibre HBA, SG-XPCI2FC-QF2-Z
- Oracle’s StorageTek 2 Gb PCI Dual-Port Fibre HBA, SG-XPCI2FC-QF2
- Oracle’s StorageTek 2 Gb FC PCI Single-Channel Network Adapter, X6767A
- Oracle’s StorageTek 2 Gb FC PCI Dual-Channel Network Adapter, X6768A
- Oracle’s StorageTek 2 Gb FC–PCI–X Enterprise Single-Port HBA, SG-XPCI1FC-QL2
- Oracle’s StorageTek 2 Gb FC PCI Single-Port Host Adapter, SG-XPCI1FC-QF2

After the installation, we recommend that you check for and apply the latest patches for the HBA, FC devices, luxadm and MPxIO that are available in My Oracle Support (MOS).

Oracle Solaris OS Installation Overview

Use an FC-based device during the disk selection portion of the installation to successfully complete the installation. At the end of the interactive installation, you must change the x86 BIOS and FC HBA BIOS to identify the FC initiator that will be used to boot Oracle Solaris from a remote multipathed disk.

After OS installation and before rebooting, gather the configuration information by issuing the luxadm command on the newly installed logical unit number (LUN). The luxadm command output provides a map from c#t#d# to the array WWN and LUN number. Record the HBA World Wide Name (WWN) and array WWN port information.

During rebooting, use the WWN and LUN number to set the HBA BIOS for each HBA to be used to boot from each LUN on the same array. Change the system BIOS to perform booting from CD-ROM or Network to disk.

Note – Console access is required for HBA and system BIOS changes.

In addition, note the following during an Oracle Solaris OS installation.

- If using a custom disk layout, do not remove the overlap (s2) partition. The x86 boot installer has a dependency on this partition.
- By default, Solaris I/O multipathing features manage the FC boot devices with multiple paths to a single boot device.
Oracle Solaris OS Installation Procedure

▼ How to Install the Oracle Solaris OS

1 Install the HBA hardware.
   Follow the instructions in the appropriate Sun HBA installation guide found at http://www.oracle.com/technetwork/documentation/oracle-storage-networking-190061.html.
   If you select an automatic installation and you want to select specific devices to be installed during the installation, see Oracle Solaris 10/13 Installation Guide: Basic Installations.

2 Install the Oracle Solaris OS.

▼ How to Perform a DVD or Network-Based OS Installation

After installing the HBA, perform the following steps for a DVD installation or a network-based installation of the Oracle Solaris OS on an x86 based system.

For more information, refer to Oracle Solaris 10/13 Installation Guide: Basic Installations.

1 If you are installing from a DVD-ROM rather than over a network, insert the Oracle Solaris Software into the DVD-ROM drive.

2 Upon initial power up, provide the system BIOS and configure it to boot from either the network or DVD-ROM as applicable.
   The system BIOS setup screens are different for each system BIOS vendor. For example, from the BIOS setup screen, select the disk as the boot device.
   For detailed information regarding your server’s BIOS, see your system platform’s administration guide.

3 Install the Oracle Solaris OS by selecting one of the following methods.
JumpStart (automatic) installation – If you have a Solaris 10 installation server available, you can begin the automated installation by selecting a network boot from the x86 based system’s BIOS. If you select an automatic installation, skip to step 7.

Interactive text installation – You can begin an interactive installation by selecting the appropriate option from the GRUB menu when booted from media or when booted from an installation server.

After the installation is complete, you can exit the installer and configure the devices.

4 Interactive text installation – select a desired array and its associated LUN.

5 Interactive text installation – Continue the installation by selecting the desired installation options from each installation menu.

6 Interactive text installation – At the end of the installation screens, verify your selections to start the Oracle Solaris OS installation.

7 Before rebooting after the installation completes, issue the `luxadm display` command on the boot LUN.

See Figure 7–2.

```bash
luxadm display /dev/rdsk/c0t600015d00020z5000000000000001142d0s2
DEVICE PROPERTIES for disk: /dev/rdsk/c0t600015d00020z5000000000000001142d0s2
Vendor: SUN
Product ID: SE6920
Revision: 0202
Serial Num: 00500057
```

---

**Figure 7–1  Selecting an FC-based Boot Disk During Disk Selection**

On this screen you must select the disks for installing Solaris software. Start by looking at the Suggested Minimum field; this value is the approximate space needed to install the software you’ve selected. Keep selecting disks until the Total Selected value exceeds the Suggested Minimum value.

**NOTE: ' ' denotes current boot disk**

<table>
<thead>
<tr>
<th>Disk Device</th>
<th>Available Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>^[ ] c0t500000d000000000000000000000001142d0s2</td>
<td>1020 MB</td>
</tr>
<tr>
<td>x[ ] c0t600015d00020z5000000000000001142d0s2</td>
<td>1020 MB (F4 to edit)</td>
</tr>
<tr>
<td>x[ ] c0t600015d00020z5000000000000001142d0s2</td>
<td>1020 MB</td>
</tr>
<tr>
<td>x[ ] c0t600015d00020z5000000000000001142d0s2</td>
<td>1020 MB</td>
</tr>
<tr>
<td>^[ ] c0t600015d00020z5000000000000001142d0s2</td>
<td>1020 MB</td>
</tr>
</tbody>
</table>

Total Selected: 10208 MB
Suggested Minimum: 3574 MB

F2 Continue  F3 Go Back  F4 Edit  F5 Exit  F6 Help
Unformatted capacity: 10240.000 MBytes
Read Cache: Enabled
Minimum prefetch: 0x0
Maximum prefetch: 0xffff
Device Type: Disk device
Path(s):
/dev/rdsk/c0t600015d000202800000000000001142d0s2
/devices/scsi_vhci/diskIdg600015d0002028000000000000001142:c,raw
Controller /dev/cfg/c4
  Device Address 213600015d207200,0
  Host controller port WWN 210100e0bb206812
  Class primary
  State ONLINE
Controller /dev/cfg/c11
  Device Address 213600015d207200,0
  Host controller port WWN 210100e0bb30af2
  Class primary
  State ONLINE

FIGURE 7–2 luxadm display Command and Output

Oracle Solaris OS Installation Procedure
The following luxadm command output from the example in the figure can be used to map the MPxIO based c#t#d# to the HBA WWN and array WWN:

- **MPxIO c#t#d# =** c@600015d000202800000000000001142d0
- **Array WWN =** 213600015d207200, LUN 0
- **HBA WWNs =** 210100e08b206812 and 210100e08b30a2f2

During the reboot process, watch the monitor so you can enter the HBA #1 BIOS screen and specify the boot device to be the FC LUN onto which you just installed the Oracle Solaris OS. Follow this step for each HBA to be used for multipathing, and specify the boot device to be the FC LUN on which you installed the Sun Solaris OS. See Figure 7–3 and Figure 7–4.

- **For the QLogic HBA BIOS, perform the following steps.**
  
  a. During host rebooting, press Control-Q to display the HBA BIOS screen.
  
  b. Select the HBA that you want to enable as the boot device and enable boot.
  
  c. **Configure the boot device:**
     
     i. Select Configuration Settings.
     
     ii. Select Selectable Boot Settings.
     
     iii. Make sure that Selectable Boot is set to enable.
         In this menu, you can select the boot device/LUN by the array WWPN.
     
     iv. Save and then exit the HBA BIOS screen.
  
  - **For the Emulex HBA BIOS, perform the following steps.**
    
    a. During host rebooting, press Alt-E to display the HBA BIOS screen.
    
    b. Select the HBA that you want to enable as the boot device and enable boot.
    
    c. Select Configure Boot Devices.
    
    d. Select a boot entry.
    
    e. Select the WWPN of the desired boot device.
    
    f. Type the LUN number.
    
    g. Select the boot LUN.
h. Select Boot Device with the Array WWPN.

i. Save and exit the HBA BIOS screen.

FIGURE 7-3 HBA BIOS Screen for an HBA WWN
Note –

The figures show the following modifications:

- Selectable boot = Enabled
- ARRAY WWN = 213600015d207200
- ARRAY LUN = 0
- HBA WWN = 210100e08b206812

9 Repeat the appropriate modifications for all HBAs and all LUNs.

10 Type the system BIOS per the vendor’s access method and specify the boot device to be the FC LUN on which you installed the Oracle Solaris OS.

11 Reboot to the newly installed Oracle Solaris OS by using the FC LUN specified in the system BIOS.
This chapter describes how to create persistent bindings for tape devices to ensure the /dev entries are identical across multiple servers on a SAN.

The following topics are covered:
- “Persistent Binding Overview” on page 95
- “Creating Tape Links” on page 96

**Persistent Binding Overview**

To simplify management of servers in SAN-based data-centers, Oracle’s StorageTek SAN Foundation software stack in the Solaris OS dynamically detects devices in a SAN and builds associated /dev tree entries without requiring you to edit configuration files.

In most cases, this process greatly simplifies SAN management. However, for tape devices, you might like the ability to explicitly specify how that /dev entries are created and to ensure the /dev entries are identical across multiple servers on a SAN. This chapter describes how you can specify this tape binding in the Solaris OS while retaining the benefits of automatic discovery for disk-based devices.

The /dev/rmt directory contains links to physical devices under /devices for tape devices. Each tape LUN seen by the system is represented by 24 minor nodes in the form of /dev/rmt/N, /dev/rmt/Nb, and /dev/rmt/Nbn, where N is an integer counter starting from 0. This number is picked by devfsadm during enumeration of new devices. Every new tape logical unit number (LUN) found by devfsadm gets the next available number in /dev/rmt.

Because the /dev/rmt name depends on the order in which devices appear in the device tree, it changes from system to system. For a given tape drive that is seen by two or more different systems, the /dev/rmt link can be different on each of these systems. This difference can cause problems for the most common usage of Symantec (VERITAS) NetBackup (SSO option). Also, if the drive is replaced, the links change unless the vendor provides a way to retain the port World-Wide Name (PWWN) of the drive.
Creating Tape Links

The `/etc/devlink.tab` file is called the default device table file. It specifies rules that `devfsadm` uses to create links in the `/dev` directory. This file does not contain any entries for tapes because `devfsadm` is already able to create links for tape drives, but rules can be added that will modify the default behavior for creating tape links. For more information, see `devlinks(1M)`.

For any tape drive visible to Oracle Solaris OS but not specified in the `devlink` file, `devfsadm` automatically assigns a minor node number starting from 0. These minor node numbers will conflict with any lower numbers assigned manually in `/etc/devlink.tab`, so be sure to assign numbers there that are high enough to avoid conflicts.

This approach can easily lead to duplicate links in `/dev/rmt`. Any tapes discovered before entries were specified in `/etc/devlink.tab` have automatically created links. When entries are added and `devfsadm` is run, the original links remain in `/dev/rmt`, resulting in duplicate links. To remove the original links in `/dev/rmt`, run the `rm /dev/rmt/*` command before running `devfsadm`.

This approach cannot be used with multiple-port tape drives that are attached to multiple HBA ports. If multiple HBA ports are attached to the same tape LUN, the system detects two tape drives instead of one. The one that appears last in the `prtconf` output gets the link generated by the `/etc/devlink.tab`.

The following example shows a sample entry for tape in the `devlink.tab` file.

```
type=ddi_byte:tape;addr=PWWN, LUN-number; rmt/rmt-number\M0
```

Change the rmt # to whatever `/dev/rmt/N` is required. Then change the PWWN and LUN to match the desired tape device. You can obtain this value by running the `ls -l` command on the existing `/dev/rmt/ link as shown below.

```
ls -l /dev/rmt/4
lrwxrwxrwx 1 root root 69 Oct 6 14:57 /dev/rmt/4 ->
../../devices/pci@1f,700000/SUNW,qlc@2/fp@0,0/st@w5005076300617717,0:
```

If, for example, you wanted the `/dev/rmt/ number to be 40, you would create an entry in `/etc/devlink.tab` like the following example:

```
type=ddi_byte:tape;addr=w5005076300617717,0; rmt/40\M0
```

You can then add this line to the `devlink` file on every Solaris server on the SAN that uses this drive so that it always appears as minor node 40.
How to Create Tape Device Links

1. Become superuser.

2. Create the entries in `/etc/devlink.tab` as described in “Creating Tape Links” on page 96.
   If `devfsadm` has previously discovered the devices, you must determine the device address by running the `ls -l` command on the existing link.

   **Note** – Be sure to assign `/dev/rmt/N` numbers to avoid conflicts with any automatically configured devices, as described above.

3. Remove existing links from `/dev/rmt` by running the `rm /dev/rmt/*` command.

4. Run `devfsadm`.
   This command creates new links as per the entries in `/etc/devlink.tab` in addition to automatically creating links for any unspecified devices.
This appendix explains how to configure and unconfigure the fabric devices in the Oracle Solaris OS. It explains how the visible fabric devices on a host are detected and configured with and without enabling the multipathing software.

The following topics are covered:

- “Manually Configuring FC Devices” on page 99
- “Configuring Fabric Device Nodes” on page 100
- “Configuring Device Nodes Without Multipathing Enabled” on page 102
- “Configuring Device Nodes With Solaris Multipathing Enabled” on page 105
- “Unconfiguring Fabric Devices” on page 108

**Manually Configuring FC Devices**

In the Oracle Solaris release, fabric-connected devices are available automatically to the Oracle Solaris system.

If you want to manually configure the fabric-connected devices, use the following steps to change the default behavior.

**Note** – Changing the default behavior makes all of your fabric-connected devices unavailable, which can cause problems for fabric-connected devices that are required to be available at boot time.

► **How to Manually Configure a FC Device**

1. Become superuser.
2 Enable manual configuration by making sure that the following line in the /kernel/drv/fp.conf file is uncommented:

```
manual_configuration_only=1;
```

Refer to the fp(7D) man page and the cfgadm_fp(1M) man page for further information on this setting.

3 Reboot the system.

4 For each fabric-connected device to be made available, select one of the following tasks, depending on whether you are using the Solaris I/O multipathing features.
   - “Configuring Device Nodes Without Multipathing Enabled” on page 102
   - “Configuring Device Nodes With Solaris Multipathing Enabled” on page 105

If the original default behavior for fabric-connected devices is desired, see the next step.

5 Disable manual configuration by making sure that the following line in the /kernel/drv/fp.conf file is commented:

```
manual_configuration_only=1;
```

For more information about this setting, see cfgadm_fp(1M) and fp(7d).

6 Reboot the system.

```
init 6
```

---

**Configuring Fabric Device Nodes**

After you configure the hardware in your direct-attach system or SAN, you must ensure that the systems recognize the devices. This section explains host recognition of fabric devices, also known as 24-bit FC addressing devices on the SAN. After configuring the devices, ports, and zones in your SAN, make sure that the system is aware of the devices. You can have up to 16 million fabric devices connected together on a SAN with FC support.

This section is limited to the operations required from the perspective of the Oracle Solaris OS. It does *not* cover other aspects, such as device availability and device-specific management. If devices are managed by other software, such as a volume manager, refer to the volume manager product documentation for additional instructions.
Ensuring That LUN Level Information Is Visible

▼ How to Ensure LUN Level Information is Visible

1 Become superuser.

2 Identify the LUN level information.

   # cfgadm -al -o show_SCSI_LUN

   If you issue the `cfgadm -al -o show_SCSI_LUN controller-ID` command immediately after a system boots, the output might not show the Fibre Channel Protocol (FCP) SCSI LUN level information. The information does not appear because the storage device drivers, such as the `ssd` and `st` driver, are not loaded yet on the running system.

3 Determine whether the drivers are loaded.

   For example:

   # modinfo | grep ssd

   After the drivers are loaded, the LUN level information is visible in the `cfgadm` output.

▼ How to Detect Visible Fabric Devices on a System

This section provides an example of the procedure for detecting fabric devices using FC host ports `c0` and `c1`. This procedure also shows the device configuration information that is displayed with the `cfgadm` command.

---

**Note** – In the following examples, only failover path attachment point IDs (Ap _Ids) are listed. The Ap _Ids displayed on your system depend on your system configuration.

1 Become superuser.

2 Display the information about the attachment points on the system.

   # cfgadm -l

<table>
<thead>
<tr>
<th>Ap _Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>fc-fabric</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>fc-private</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

   In this example, `c0` represents a fabric-connected host port, and `c1` represents a private, loop-connected host port. Use the `cfgadm` command to manage the device configuration on fabric-connected host ports.

   By default, the device configuration on private, loop-connected host ports is managed by a system running the Oracle Solaris OS.
3 Display information about the host ports and their attached devices.

```
cfgadm -al
Ap_Id Type Receptacle Occupant Condition
--- ------- --------- ---------- ---------
c0:50020f23000006077 disk connected unconfigured unknown
```

**Note** – The `cfgadm -l` command displays information about FC host ports. You can also use the `cfgadm -al` command to display information about FC devices. The lines that include a port world wide name (WWN) in the `Ap_Id` field associated with c0 represent a fabric device. Use the `cfgadm configure` and `unconfigure` commands to manage those devices and make them available to systems using the Oracle Solaris OS. The `Ap_Id` devices with port WWNs under `c1` represent private-loop devices that are configured through the `c1` host port.

---

### Configuring Device Nodes Without Multipathing Enabled

This section describes fabric device configuration tasks on a system that does not have multipathing enabled.

The procedures in this section show how to detect fabric devices that are visible on a system and to configure and make them available to a system running the Oracle Solaris OS. The procedures in this section use specific devices as examples to illustrate how to use the `cfgadm` command to detect and configure fabric devices.

The device information that you supply and that is displayed by the `cfgadm` command depends on your system configuration.

#### ▼ How to Manually Configure an FC Device Without Multipathing

This sample procedure describes how to configure a fabric device that is attached to the fabric-connected host port c0.

1 **Become superuser.**

2 **Identify the device to be configured.**

```
cfgadm -al
Ap_Id Type Receptacle Occupant Condition
--- ------- --------- ---------- ---------
```
3 Configure the fabric device.

```
cfgadm -c configure c0::50020f2300006077
```

4 Verify that the selected fabric device is configured.

```
cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>fc-fabric</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f2300006077</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f23000063a9</td>
<td>disk</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f2300005f24</td>
<td>disk</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f2300006107</td>
<td>disk</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>fc-private</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::22020370b69c32b</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::22020370ba7d832</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::22020370b8d45f2</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::22020370b2b0b2</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Notice that the Occupant column for both c0 and c0::50020f2300006077 displays as configured, indicating that the c0 port has a configured occupant and that the c0::50020f2300006077 device is configured.

5 Display FCP SCSI LUN information for multi-LUN SCSI devices.

The following code example shows that the physical devices connected through Ap_Id c0::50020f2300006077 have four LUNs configured.

```
cfgadm -al -o show_SCSI_LUN c0
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>fc-fabric</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f2300006077</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f23000063a9</td>
<td>disk</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f2300005f24</td>
<td>disk</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f2300006107</td>
<td>disk</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>fc-private</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::22020370b69c32b</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::22020370ba7d832</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::22020370b8d45f2</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::22020370b2b0b2</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

The device is now available on the system running the Oracle Solaris OS. The paths represent each SCSI LUN in the physical device represented by c0::50020f2300006077.
How to Configure Multiple FC Devices Without Multipathing

Make sure you first identify the devices visible to the system with the procedure “Ensuring That LUN Level Information Is Visible” on page 101. This procedure describes how to configure all unconfigured fabric devices that are attached to a fabric-connected host port. The port used as an example is c0.

1 Become superuser.

2 Identify the devices to be configured.
   
   ```bash
 # cfgadm -al
 Ap_Id Type Receptacle Occupant Condition
 c0 fc-fabric connected unconfigured unknown
 c0::50020f2300006077 disk connected unconfigured unknown
 c0::50020f23000063a9 disk connected unconfigured unknown
 c0::50020f2300005f24 disk connected unconfigured unknown
 c0::50020f2300006107 disk connected unconfigured unknown
 c1 fc-private connected configured unknown
 c1::22020370b69c32b disk connected configured unknown
 c1::22020370b7d832 disk connected configured unknown
 c1::22020370bd45f2 disk connected configured unknown
 c1::22020370b920b2 disk connected configured unknown
   ```

3 Configure all of the unconfigured devices on the selected port.
   
   ```bash
 # cfgadm -c configure c0
   ```

   **Note** – This operation repeats the `configure` operation of an individual device for all the devices on `c0`. This can be time consuming if the number of devices on `c0` is large.

4 Verify that all devices on `c0` are configured.
   
   ```bash
 # cfgadm -al
 Ap_Id Type Receptacle Occupant Condition
 c0 fc-fabric connected configured unknown
 c0::50020f2300006077 disk connected configured unknown
 c0::50020f23000063a9 disk connected configured unknown
 c0::50020f2300005f24 disk connected configured unknown
 c0::50020f2300006107 disk connected configured unknown
 c1 fc-private connected configured unknown
 c1::22020370b69c32b disk connected configured unknown
 c1::22020370b7d832 disk connected configured unknown
 c1::22020370bd45f2 disk connected configured unknown
 c1::22020370b920b2 disk connected configured unknown
   ```
5 Display FCP SCSI LUN information for multi-LUN SCSI devices.

The following code example shows that the physical devices represented by c0::5002f230006077 and c0::5002f230006107 each have four LUNs configured. The physical devices represented by c0::5002f2300063a9 and c0::5002f230005f24 each have two LUNs configured.

```bash
cfgadm -al -o show_SCSI_LUN c0
```

```
Ap_Id Type Receptacle Occupant Condition
------- ------ -------------- --------- --------
c0 fc-fabric connected configured unknown
c0::5002f230006077,0 disk connected configured unknown
c0::5002f230006077,1 disk connected configured unknown
c0::5002f230006077,2 disk connected configured unknown
c0::5002f230006077,3 disk connected configured unknown
c0::5002f2300063a9,0 disk connected configured unknown
c0::5002f2300063a9,1 disk connected configured unknown
c0::5002f2300065f24,0 disk connected configured unknown
c0::5002f2300065f24,1 disk connected configured unknown
c0::5002f230006107,0 disk connected configured unknown
c0::5002f230006107,1 disk connected configured unknown
c0::5002f230006107,2 disk connected configured unknown
c0::5002f230006107,3 disk connected configured unknown
```

### Configuring Device Nodes With Solaris Multipathing Enabled

This section describes how to perform fabric device configuration steps on a system that has the multipathing features enabled.

The devices attached to the fabric-connected host port are not configured by default and so are not available to the system. Use the `cfgadm configure` and `cfgadm unconfigure` commands to manage device node creation for fabric devices. For more information, see `cfgadm_fp(1M)`. The procedures in this section illustrate steps to detect fabric devices that are visible on a system and to configure them as multipathing devices to make them available to the system.

The device information that you supply, and that is displayed by the `cfgadm` command, depends on your system configuration.

### How to Configure Individual Multipathed FC Devices

This sample procedure uses fabric-connected host ports c0 and c2 to configure fabric devices as multipathed devices on a system that has the multipathing software enabled.

The `cfgadm -c configure` command for fabric devices is the same regardless of whether multipathing is enabled.

1. Become superuser.
2 Identify the port WWN of the device to be configured as a multipathed device.

Look for devices on a fabric-connected host port marked as fc-fabric. These devices are the devices you can configure with the `cfgadm -c configure` command.

```
cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>fc-fabric</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f2300006077</td>
<td>disk</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f23000063a9</td>
<td>disk</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>fc-private</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::220203708b69c32b</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::220203708a7d832</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::220203708b8d45f2</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::220203708bb20b2</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2</td>
<td>fc-fabric</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2::50020f23000062f4</td>
<td>disk</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2::50020f2300006107</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

In the above example, the `c0::50020f2300006077` and `c2::50020f2300006107` Ap_Ids represent the same storage device with different port WWNs for the storage device controllers. The c0 and c2 host ports are enabled for multipathing.

3 Configure the fabric device and make the devices available to the system.

```
cfgadm -c configure c0::50020f2300006077 c2::50020f2300006107
```

4 Verify that the selected devices are configured.

```
cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>fc-fabric</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f2300006077</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f23000063a9</td>
<td>disk</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>fc-private</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::220203708b69c32b</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::220203708a7d832</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::220203708b8d45f2</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::220203708bb20b2</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2</td>
<td>fc-fabric</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2::50020f23000062f4</td>
<td>disk</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2::50020f2300006107</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Notice that the Occupant column of c0 and c0::50020f2300006077 specifies configured, which indicates that the c0 port has at least one configured occupant and that the c0::50020f2300006077 device is configured. The same change has been made in c2 and c2::50020f2300006107.

When the configure operation has been completed without an error, multipathed devices are created on the system. If the physical device represented by c0::50020f2300006077 and c2::50020f2300006107 has multiple SCSI LUNs configured, each LUN is configured as a
multipathed device. The example below shows that two LUNs are configured through c0::50020f2300006077 and c2::50020f2300006107. Each Ap_Id is associated with a path to multipathed devices.

```
cfgadm -al -o show_SCSI_LUN c0::50020f2300006077, c2::50020f2300006107
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0::50020f2300006077,0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f2300006077,1</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2::50020f2300006107,0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2::50020f2300006107,1</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

The example above shows that the following two multipathed devices are created for the device represented by c0::50020f2300006077 and c2::50020f2300006107:

▼ How to Configure Multiple Multipathed FC Devices

Before you configure or remove device nodes, be sure to first identify the fabric devices by using the procedure "Ensuring That LUN Level Information Is Visible" on page 101.

In this example, an Ap_Id on a fabric-connected host port is a path to a multipathed device. For example, all devices with a path through c2 are to be configured, but none through c0 are to be configured. c2 is an attachment point from the system to the fabric, whereas c2::50020f2300006107 is an attachment point from the storage to the fabric. A system detects all the storage devices in a fabric for which it is configured.

Configuring an Ap_Id on the device that has already been configured through another Ap_Id results in an additional path to the previously configured device. A new device node is not created in this case. The device node is created only the first time an Ap_Id to the corresponding device is configured.

1 Become superuser.

2 Identify the fabric-connected host port to be configured.

```
cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>fc-fabric</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f2300006077</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f23000063a9</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1</td>
<td>fc-private</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::22020370b69c32b</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::22020370ba7d832</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::22020370b8d45f2</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::22020370b9b20b2</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2</td>
<td>fc-fabric</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2::50020f2300006f24</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2::50020f2300006107</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Devices represented by Ap_Id s c0::50020f2300006077 and c2::50020f2300006107 are two paths to the same physical device, with c0::50020f2300006077 already configured. Configure
the unconfigured devices on the selected port. This operation repeats the configure command of an individual device for all the devices on c2. This can be time-consuming if the number of devices on c2 is large.

```
cfgadm -c configure c2
```

3 Verify that all devices on c2 are configured.

```
cfgadm -al

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0:50020f2300006077</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0:50020f23000063a9</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1:220203700b69c32b</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1:220203700ba7d832</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1:220203700bdc45f2</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1:220203700b20b2b</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2:50020f2300005f24</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2:50020f2300006107</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Notice that the Occupant column of c2 and all of the devices under c2 is marked as configured.

The show_SCSI_LUN command displays FCP SCSI LUN information for multiple LUN SCSI devices. The following code example shows that the physical devices connected through by c2:50020f2300006107 and c2:50020f2300005f24 each have two LUNs configured.

```
# cfgadm -al -o show_SCSI_LUN c2
```

```
<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c2:50020f2300005f24,0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2:50020f2300005f24,1</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2:50020f2300006107,0</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2:50020f2300006107,1</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>
```

Unconfiguring Fabric Devices

This section provides information about unconfiguring the multipathing features for fabric devices.

Unconfiguring a Fabric Device

Before you unconfigure a fabric device, stop all activity to the device and unmount any file systems on the fabric device. See the Oracle Solaris administration documentation for unmounting instructions. If the device is under any volume manager’s control, see your volume manager documentation before unconfiguring the device.
How to Manually Unconfigure a FC Device

This procedure describes how to unconfigure a fabric device that is attached to the fabric-connected host port c0.

1 Become superuser.

2 Identify the device to be unconfigured.

Only devices on a fabric-connected host port can be unconfigured.

```
# cfgadm -a l
Ap_Id Type Receptacle Occupant Condition
  c0:fc-fabric connected configured unknown
  c0::5002f3200060f77 disk connected configured unknown
  c0::5002f3200060f39 disk connected configured unknown
  c1:fc-private connected configured unknown
  c1::220237b069c32b disk connected configured unknown
  c1::220237b0ba7d832 disk connected configured unknown
```

3 Unconfigure the fabric device.

```
# cfgadm -c unconfigure c0::5002f3200060f77
```

4 Verify that the selected fabric device is unconfigured.

```
# cfgadm -a l
Ap_Id Type Receptacle Occupant Condition
  c0:fc-fabric connected configured unknown
  c0::5002f3200060f77 disk connected unconfigured unknown
  c0::5002f3200060f39 disk connected configured unknown
  c1:fc-private connected configured unknown
  c1::220237b069c32b disk connected configured unknown
  c1::220237b0ba7d832 disk connected configured unknown
```

How to Unconfigure All FC Devices on a FC Host Port

This procedure describes how to unconfigure all configured fabric devices that are attached to a fabric-connected host port.

1 Become superuser.

2 Identify the fabric devices to be unconfigured.

Only devices on a fabric-connected host port can be unconfigured.

```
# cfgadm -a l
Ap_Id Type Receptacle Occupant Condition
  c0:fc-fabric connected configured unknown
  c0::5002f3200060f77 disk connected configured unknown
  c0::5002f3200060f39 disk connected configured unknown
  c1:fc-private connected configured unknown
  c1::220237b069c32b disk connected configured unknown
  c1::220237b0ba7d832 disk connected configured unknown
```
3 Stop all activity to each fabric device on the selected port and unmount any file systems on each fabric device.

If the device is under any volume manager's control, see your volume manager documentation before unconfiguring the device.

```
# cfgadm -c unconfigure c0
```

4 Unconfigure all of the configured fabric devices on a selected port.

Note – This operation repeats the `unconfigure` operation of an individual device for all the devices on `c0`. This process can be time-consuming if the number of devices on `c0` is large.

5 Verify that all the devices on `c0` are unconfigured.

```
# cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>fc-fabric</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f2300006077 disk</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>c0::50020f23000063a9 disk</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>c1</td>
<td>fc-private</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::22020370b69c32b disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>c1::22020370b7d832 disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
<td></td>
</tr>
</tbody>
</table>

Notice that the `Occupant` column of `c0` and all the fabric devices attached to it are displayed as unconfigured.

How to Unconfigure a Multipathed FC Device

This procedure shows fabric-connected host ports `c0` and `c2` to illustrate how to unconfigure fabric devices associated with multipathed devices.

1 Become superuser.

2 Identify the port WWN of the fabric device to be unconfigured.

```
# cfgadm -al
```

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>fc-fabric</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f2300006077 disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>c0::50020f23000063a9 disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>c1</td>
<td>fc-private</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c1::22020370b69c32b disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>c1::22020370b7d832 disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>c2::50020f2300005f24 disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>c2::50020f2300006107 disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
<td></td>
</tr>
</tbody>
</table>

In this example, the `c0::50020f2300006077` and `c2::50020f2300006107` Ap_Ids represent different port WWNs for the same device associated with a multipathed device. The `c0` and `c2` host ports are enabled for use.
3 Stop all device activity to each fabric device on the selected port and unmount any file systems on each fabric device.

If the device is under any volume manager’s control, see your volume manager documentation for maintaining the fabric device.

4 Unconfigure fabric devices associated with the device.

Only devices on a fabric-connected host port can be unconfigured through the `cfgadm -c unconfigure` command.

```
# cfgadm -c unconfigure c0::50020f2300006077 c2::50020f2300006107
```

Note – You can remove a device from up to eight paths individually, as in the example command `cfgadm -c unconfigure c0::1111, c1::2222, c3::3333, and so on. As an alternative, you can remove an entire set of paths from the host, as in the example `cfgadm -c unconfigure c0`.

5 Verify that the selected devices are unconfigured.

```
# cfgadm -al

<table>
<thead>
<tr>
<th>Ap_Id</th>
<th>Type</th>
<th>Receptacle</th>
<th>Occupant</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c0</td>
<td>fc-fabric</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f2300006077</td>
<td>disk</td>
<td>connected</td>
<td>unconfigured</td>
<td>unknown</td>
</tr>
<tr>
<td>c0::50020f23000063a9</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2</td>
<td>fc-fabric</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
<tr>
<td>c2::50020f2300006107</td>
<td>disk</td>
<td>connected</td>
<td>configured</td>
<td>unknown</td>
</tr>
</tbody>
</table>
| Note that the Ap_Ids c0::50020f2300006077 and c2::50020f2300006107 are unconfigured. The Occupant column of c0 and c2 still displays those ports as configured because they have other configured occupants.

Multipathed devices associated with the Ap_Ids c0::50020f2300006077 and c2::50020f2300006107 are no longer available to the system. The following two devices are removed from the system:

```
/dev/rdsk/c6t60020F20000061073AC8B52D000B74A3d0s2
/dev/rdsk/c6t60020F20000061073AC8B4C50004ED3Ad0s2
```

How to Unconfigure One Path to a Multipathed FC Device

In contrast to the procedure in the preceding section, this procedure shows how to unconfigure one device associated with c2::50020f2300006107 and leave the other device, 50020f2300006077, configured. Only devices on a fabric-connected host port can be unconfigured through the `cfgadm unconfigure` command.

1  Become superuser.
2 Identify the Ap_Id of the multipathed device to be unconfigured.

```
cfgadm -al
Ap_Id Type Receptacle Occupant Condition
--- ---- --------- -------- --------
c0 fc-fabric connected configured unknown
```

In this example, c0::50020f2300006077 and c2::50020f2300006107 Ap_Ids represent different port WWNs for the same device.

3 Unconfigure the Ap_Id associated with the device.

**Note** – If the Ap_Id represents the last configured path to the device, stop all activity to the path and unmount any file systems on it. If the multipathing device is under any volume manager's control, see your volume manager documentation for maintaining the fabric device.

```
In the example that follows, the path represented as c2::50020f2300006107 is unconfigured, and c0::50020f2300006077 remains configured to show how you can unconfigure just one of multiple paths for a multipathing device.
```

```
cfgadm -c unconfigure c2::50020f2300006107
```

4 Verify that the selected path c2::50020f2300006107 is unconfigured.

```
cfgadm -al
Ap_Id Type Receptacle Occupant Condition
--- ---- --------- -------- --------
c0 fc-fabric connected configured unknown
```

The devices associated with that Ap_Id are still available to a system through the other path, represented by c0::50020f2300006077. A device can be connected to multiple Ap_Ids and an Ap_Id can be connected to multiple devices.

```
/dev/rdsk/c6t60020F20000061073AC8B52D000B74A3d0s2
and
/dev/rdsk/c6t60020F20000061073AC8B4C5004ED3Ad0s2
```
How to Unconfigure All Multipathed FC Devices

An Ap_Id on a fabric-connected host port is a path to a multipathed device.

When a multipathed device has multiple Ap_Ids connected to it, the device is still available to the system after you unconfigure an Ap_Id. After you unconfigure the last Ap_Id, no additional paths remain and the device is unavailable to the system. Only devices on a fabric-connected host port can be unconfigured.

1 **Become superuser.**

2 **Identify the devices to be unconfigured.**

   ```
 # cfgadm -al
 Ap_Id Type Receptacle Occupant Condition
 c0 fc-fabric connected configured unknown
 c0::50020f23000006077 disk connected configured unknown
 c0::50020f230000063a9 disk connected configured unknown
 c1 fc-private connected configured unknown
 c1::220203708b69c32b disk connected configured unknown
 c1::220203708b20b202 disk connected configured unknown
 c2 fc-fabric connected configured unknown
 c2::50020f23000005f24 disk connected configured unknown
 ``

3 **Unconfigure all of the configured devices on the selected port.**

   ```
   # cfgadm -c unconfigure c2
   ``

   **Note** – This operation repeats the unconfigure command of an individual device for all devices on c2. This process can be time-consuming if the number of devices on c2 is large.

4 **Verify that all devices on c2 are unconfigured.**

   ```
 # cfgadm -al
 Ap_Id Type Receptacle Occupant Condition
 c0 fc-fabric connected configured unknown
 c0::50020f23000006077 disk connected configured unknown
 c1 fc-private connected configured unknown
 c1::220203708b69c32b disk connected configured unknown
 c1::220203708ba7d832 disk connected configured unknown
 c2 fc-fabric connected configured unknown
 c2::50020f23000005f24 disk connected configured unknown
 c2::50020f23000006107 disk connected configured unknown
 ``

 Notice that the Occupant column lists c2 and all the devices attached to c2 as unconfigured.
This appendix contains the list of supported FC-HBA Interfaces. For further information regarding the API, refer to “Overview of Solaris I/O Multipathing” on page 11.

Supported Fibre Channel HBA API

Solaris I/O multipathing supports the following FC-HBA interfaces:

- HBA_GetVersion
- HBA_LoadLibrary
- HBA_FreeLibrary
- HBA_GetNumberOfAdapters
- HBA_GetAdapterName
- HBA_OpenAdapter
- HBA_CloseAdapter
- HBA_GetAdapterAttributes
- HBA_GetAdapterPortAttributes
- HBA_GetDiscoveredPortAttributes
- HBA_GetPortAttributesByWWN
- HBA_SendCTPassThru
- HBA_SendCTPassThruV2
- HBA_RefreshInformation
- HBA_GetFcpTargetMapping
- HBA_SendScsiInquiry
- HBA_SendReportLuns
- HBA_SendReadCapacity
- HBA_SetRNIDMgmtInfo
- HBA_GetRNIDMgmtInfo
- HBA_SendRNID
- HBA_SendRNIDV2
- HBA_ScsiInquiryV2
Supported Fibre Channel HBA API

- HBA_ScsiReportLUNsV2
- HBA_ScsiReadCapacityV2
- HBA_OpenAdapterByWWN
- HBA_RefreshAdapterConfiguration
- HBA_GetVendorLibraryAttributes
- HBA_GetFcpTargetMappingV2
- HBA_SendRLS
- HBA_RegisterForAdapterEvents
- HBA_RegisterForAdapterAddEvents
- HBA_RegisterForAdapterPortEvents
- HBA_RegisterForTargetEvents
- HBA_RegisterForAdapterTargetEvents
This appendix provides solutions to potential problems that might occur while running the multipathing features.

The following topics are covered:

- "System Fails to Boot During stmsboot" on page 117
- "System Crashes During stmsboot" on page 118

System Fails to Boot During stmsboot

Perform the following steps to recover in single-user mode if the system fails to boot after a stmsboot enable (-e), disable (-d), or update (-u) operation.

How to Recover Boot Failure in Single User Mode

1. Type the root password and enter single user mode.

2. Restart the mpxio-upgrade service.

   ```
   # svcadm restart svc:/system/device/mpxio-upgrade:default
   ```

 If this command is not successful, follow the instructions in the next section to recover your original configuration.
System Crashes During stmsboot

Perform the following steps to recover your original multipathed configuration if your system hangs, panics, or fails to boot after a stmsboot enable (-e), disable (-d), or update (-u) operation.

How to Recover from a System Crash

1. **Boot the system from another bootable disk, installation DVD, or over the network.**
 - Select one of the following to boot from a SPARC system or an x86 system:
 - **SPARC:** Select one of the following to boot from a UFS root file system or a ZFS root file system:
 - For a ZFS root file system, boot in failsafe mode.
         ```
         ok boot -F failsafe
         ```
 - Mount the ZFS BE on /a when prompted.
 - ROOT/zfsBE was found on rpool.
 Do you wish to have it mounted read-write on /a? [y,n,?] y
 mounting rpool on /a
 - Starting shell.
 - For a UFS root file system, select one of the following to boot from media or from the network:
         ```
         ok boot net -s
         ok boot cdrom -s
         ```
 - Mount your original root file system’s device.
       ```
       # mount your-root-device /mnt
       ```
 - **x86:** Select one of the following to boot from a UFS root file system or a ZFS root file system:
 - For a UFS root file system:
 - Instruct the BIOS to boot from media or from the network.
 - If your system uses a specific keystroke sequence to boot from media or from the network, type the keystrokes when the BIOS screen is displayed.
 - If you need to manually modify the BIOS settings to boot from media or from the network, type the keystroke sequence to access the BIOS setup utility. Then, modify the boot priority to boot from media or from the network. When the GRUB menu is displayed, select the option that you want to install.
For a ZFS root file system, boot in fail safe mode by selecting failsafe mode from the GRUB menu.

Mount the ZFS BE on /a when prompted.

```
ROOT/zfsBE was found on rpool.
Do you wish to have it mounted read-write on /a? [y,n,?] y
mounting rpool on /a
Starting shell.
```

2 For a UFS file system, check the file system consistency.
Run the `fsck` command where `/dev/rdsk/devicename` is your original root device.

```
# fsck /dev/rdsk/devicename
```

3 Mount your original UFS root file system.

```
# mount /dev/dsk/devicename /a
```

4 Restore your original `fp.conf` file (for FC multipathing) or `mpt.conf` (for SAS multipathing) as follows.

- If you ran the `stmsboot -e` command or `stmsboot -d` command:
 - For SAS multipathing:
    ```
    # cp /a/etc/mpxio/mpt.conf /a/kernel/drv/mpt.conf
    ```
 - For FC multipathing:
    ```
    # cp /a/etc/mpxio/fp.conf /a/kernel/drv/fp.conf
    ```

- If you ran the `stmsboot -u` command, and you modified either the `fp.conf` file or the `mpt.conf` undo the changes you made to this file by editing either the `/a/kernel/drv/fp.conf` or the `/a/kernel/drv/mpt.conf` files.

5 Undo any other changes you made to the multipathing configuration prior to running the `stmsboot` command.
For example, if you modified the `scsi_vhci.conf` file, undo the changes you made to this file by editing the `/a/kernel/drv/scsi_vhci.conf` file.

If you modified the device settings of your storage arrays, restore their original settings.

6 Restore your original `/etc/vfstab` file:

```
# cp /a/etc/mpxio/vfstab /a/etc/vfstab
```

The `/a/etc/mpxio/vfstab` file is a copy your original `/etc/vfstab` file that the `stmsboot` command saved prior to updating your `vfstab` file. A `/a/etc/mpxio/vfstab` file will not exist if the `stmsboot` command has not modified your `vfstab` file.
If the system is running on the Oracle Solaris OS on an x86 based system, perform the following steps:

a. Restore your original `/boot/solaris/bootenv.rc` file.

   ```bash
   # cp /a/etc/mpxio/bootenv.rc /a/boot/solaris/bootenv.rc
   ```

The `/a/etc/mpxio/bootenv.rc` file is a copy your original `/boot/solaris/bootenv.rc` file that the `stmsboot` command saved prior to updating your `bootenv.rc` file. A `/a/etc/mpxio/bootenv.rc` file will not exist if the `stmsboot` command has not modified your `bootenv.rc` file.

b. Update the boot archive.

   ```bash
   # bootadm update-archive -R /a
   ```

8 Disable the `mpxio-upgrade` service:

   ```bash
   # /usr/sbin/svccfg -f /a/etc/mpxio/svccfg_recover
   ```

9 Unmount the UFS root file system.

   ```bash
   # umount /a
   ```

10 Reboot the system.
Index

Numbers and Symbols
24-bit FC addressing devices, 100

A
accessing, iSCSI disks (how to), 55
ANSI standard Multipath Management API, 30
Ap_Id, 101
automatic failback, configuration, 29–30

B
boot disk, 47
booting, 12
broadcasting, 81

C
cfgadm
-c, 103
-l, 101, 102
cfgadm -al -o show_SCSI_LUN, 101
cfgadm -c unconfigure, 111
cfgadm(1M), 101
cfgadm configure, 102
cfgadm_fp(1M), 105
configuration
device, 101
dump, 20
fabric devices, 102
configuration (Continued)
manual, 99–100
multipathing, 19–20
SAS devices, 80
tasks, 15
configure
automatic failback, 29–30
fabric-connected devices, 45–47
FC devices, 45–47
multipathing feature, 19, 45–47
SAS devices, 80
third-party devices, 26
configuring, unidirectional or bidirectional CHAP
authentication for iSCSI (how to), 59
considerations
device name changes, 20
device specific, 20
fabric boot devices, 47
IPFC, 81–84
multipathing, 19–20
per-port configuration, 24–25
SAN devices, 45–46
SAS devices, 79
stmsboot command, 16
StorageTek Traffic Manager, 16–17
third-party device configuration, 26

device
asymmetrical, 14
device (Continued)
 configuration, 102
 storage, 14
device management, 15
devices, persistent naming, tape, 12
disabling, multipathing, 20–23
discovery
dynamic, 79
SAS devices, 79

E
enabling, multipathing, 20–23
error messages, iSCSI, 74

F
fabric-connected host ports, 101, 105
fabric device configuration, 102
fc-fabric, 106
FCAL, 12
Fibre Channel
 arbitrated loop, 12
 booting x86 based systems, 87
 configuring IPFC SAN devices, 81–85
 determining adapter port instances, 82–84
 enabling and disabling multipathing, 20–23
 HBA, 12
 IPFC considerations, 81–84
 listing LUN level information, 101–102
 multipathing configuration, 19–20
 supported HBA interfaces, 115–116

I
initiator ports, displaying properties, 31
Internet Protocol over Fibre Channel, See IPFC
IPFC, considerations, 81–84
iSCSI
 (overview), 49
 accessing iSCSI disks (how to), 55
iSCSI (Continued)
 configuring unidirectional or bidirectional CHAP
 authentication for (how to), 59
 general iSCSI error messages, 74
 modifying iSCSI initiator and target parameters
 (how to), 69
 monitoring your iSCSI configuration (how to), 66
 removing discovered iSCSI targets (how to), 56
 software and hardware requirements, 50
 static and dynamic target discovery, 53
 troubleshooting iSCSI configuration problems (how
to), 71
iscsiadm list, displaying iSCSI configuration
 information (example of), 66
iscsiadm modify command
 enabling CHAP (example of), 59
 enabling or disabling static or dynamic targets
 (example of), 57
iscsiadm remove command, removing static or
dynamic targets (example of), 57

L
LUN
 masking, 45
 recognition, 46
 SCSI devices, 108
luxadm(1M), 29

M
modifying, iSCSI initiator and target parameters (how
to), 69
modinfo, 101
monitoring, your iSCSI configuration (how to), 66
mpathadm commands, 30
 automatic failback, configuring, 37
 configure automatic failback, 37
 disable a path, 42–44
 enable a path, 41–42
 initiator ports
 properties, 31
 logical unit with a particular name, 35
mpathadm commands (Continued)
 logical units
 associated with target port, 33
 fail over, 38–40
 properties and associated path, 31
 mpt driver, 79
Multipath Management API plug-in
 library, 30
 properties, 30
multipathing
 boot considerations, 47
 configuring automatic failback, 29–30
 configuring device nodes, 105–108
 configuring third-party storage devices, 26
 disabled, device node configuration, 102
 disabled, multiple device configuration, 104–105
 enabling and disabling, 20–23
 enabling and disabling on a per-port basis, 23–25
 fabric device node configuration, 100
 features, 13
 manual configuration, 99–100
 mpathadm command, 30
S
 SAS devices
 configuration, 80
 dynamic discovery, 79
 multipathing considerations, 79
 sd driver, 79
Serial Attached SCSI, See SAS
show_SCSI_LUN, 103, 108
snoop(1M), 81
ssd driver, 101
st driver, 101
stmsboot command, 20
 boot considerations, 47
 considerations, 16
 determining device paths, 20
 enabling and disabling multipathing, 15
 FC device considerations, 46
 system crashes, 118
storage device, 29

T
 T10 standard, 30
 T11 standard, 12
 tape device persistent binding, 95
 troubleshooting
 iSCSI configuration problems (how to), 71
 multipathing, 117–120

X
 x86 based system OS booting procedure, Fibre Channel, 87

P
 per-port configuration
 considerations, 24–25
 enabling and disabling multipathing, 24–25
 persistent binding of tape devices, 95
 physical device, 103
 Promiscuous mode, 81

R
 removing, discovered iSCSI targets (how to), 56
REPORT LUNS command, 26