Sun ZFS Storage 7x20 Appliance Customer Service Manual
Copyright © 2009, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software and hardware documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le déssambler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est concédé sous licence au Gouvernement des États-Unis, ou à toute entité qui délivre la licence de ce logiciel ou l'utilise pour le compte du Gouvernement des États-Unis, la notice suivante s'applique :

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de reondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour ce type d'applications.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires qu'Oracle.

AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. UNIX est une marque déposée concédée sous licence par X/Open Company, Ltd.
Contents

Preface ...7

1 **Introduction** ...9
 Overview ..9
 Introduction ..9
 Hardware ..12
 Hardware View ...13
 BUI ..13
 CLI ..19
 Tasks ...21

2 **Hardware Maintenance** ..23
 Maintenance ..23
 Introduction ..23
 7120 ...24
 7120 Hardware Overview ..24
 Chassis Overview ..25
 Electrical Specifications ..27
 Internal Components ..27
 Standalone Controller Configurations ..32
 Attached Storage ..34
 7320 ...34
 7320 Hardware Overview ..34
 Chassis Overview ..34
 7320 Replaceable Components ..40
 7320 Single and Cluster Controller Configurations ..41
 7420 ...43
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updates</td>
<td>108</td>
</tr>
<tr>
<td>System Updates</td>
<td>108</td>
</tr>
<tr>
<td>Passthrough x</td>
<td>125</td>
</tr>
<tr>
<td>Passthrough-x Deferred Update</td>
<td>125</td>
</tr>
<tr>
<td>User Quotas</td>
<td>125</td>
</tr>
<tr>
<td>User Quotas Deferred Update</td>
<td>125</td>
</tr>
<tr>
<td>COMSTAR</td>
<td>126</td>
</tr>
<tr>
<td>COMSTAR Deferred Update</td>
<td>126</td>
</tr>
<tr>
<td>Triple Parity RAID</td>
<td>126</td>
</tr>
<tr>
<td>Triple-Parity RAID Deferred Update</td>
<td>126</td>
</tr>
<tr>
<td>Dedup</td>
<td>127</td>
</tr>
<tr>
<td>Data Deduplication Deferred Update</td>
<td>127</td>
</tr>
<tr>
<td>Replication</td>
<td>127</td>
</tr>
<tr>
<td>Replication Deferred Update</td>
<td>127</td>
</tr>
<tr>
<td>Received Properties</td>
<td>127</td>
</tr>
<tr>
<td>Received Properties Deferred Update</td>
<td>127</td>
</tr>
<tr>
<td>Slim ZIL</td>
<td>128</td>
</tr>
<tr>
<td>Introduction</td>
<td>128</td>
</tr>
<tr>
<td>Snapshot Deletion</td>
<td>128</td>
</tr>
<tr>
<td>Snapshot Deletion Deferred Update</td>
<td>128</td>
</tr>
<tr>
<td>Recursive Snapshots</td>
<td>128</td>
</tr>
<tr>
<td>Recursive Snapshots Deferred Update</td>
<td>128</td>
</tr>
<tr>
<td>Multi Replace</td>
<td>129</td>
</tr>
<tr>
<td>Multi Replace Deferred Update</td>
<td>129</td>
</tr>
<tr>
<td>RAIDZ Mirror</td>
<td>129</td>
</tr>
<tr>
<td>RAIDZ/Mirror Deferred Update</td>
<td>129</td>
</tr>
<tr>
<td>Optional Child Dir</td>
<td>129</td>
</tr>
<tr>
<td>Introduction</td>
<td>129</td>
</tr>
<tr>
<td>ConfigurationBackup</td>
<td>130</td>
</tr>
<tr>
<td>Configuration Backup</td>
<td>130</td>
</tr>
<tr>
<td>Problems</td>
<td>135</td>
</tr>
<tr>
<td>Problems</td>
<td>135</td>
</tr>
<tr>
<td>Active problems display</td>
<td>135</td>
</tr>
<tr>
<td>Repairing problems</td>
<td>136</td>
</tr>
<tr>
<td>Related features</td>
<td>136</td>
</tr>
<tr>
<td>Logs</td>
<td>136</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>136</td>
</tr>
<tr>
<td>BUI</td>
<td>138</td>
</tr>
<tr>
<td>CLI</td>
<td>138</td>
</tr>
<tr>
<td>Glossary</td>
<td>141</td>
</tr>
<tr>
<td>Index</td>
<td>145</td>
</tr>
</tbody>
</table>
Preface

The Sun ZFS Storage 7x20 Appliance Customer Service Manual contains hardware overviews and maintenance procedures for Oracle’s Sun ZFS Storage 7x20 series of NAS appliances.

This documentation is also available while using the Browser User Interface, accessible via the Help button. The appliance documentation may be updated using the System Upgrade procedure documented in the System Maintenance chapter of this book.

Who Should Use This Book

These notes are for users and system administrators who service and use the Sun ZFS Storage 7x20 Appliances.

Related Documentation

Refer to the following documentation for installation instructions, hardware overviews, service procedures and software update notes.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
Introduction

Overview

Introduction

The Sun ZFS Storage 7000 family of products provide efficient file and block data services to clients over a network, and a rich set of data services that can be applied to the data stored on the system.

Platforms

- 7120
- 7320
- 7420

Legacy platforms are documented in the 7110, 7210, 7310, 7410, J4400/J4500 sections of the Sun Storage 7000 Unified Storage System Service Manual.

Expansion Storage

- Sun Disk Shelf
Protocols
Sun ZFS Storage appliances include support for a variety of industry-standard client protocols, including:

- SMB
- NFS
- HTTP and HTTPS
- WebDAV
- iSCSI
- FC
- SRP
- iSER
- FTP
- SFTP

Key Features
Sun ZFS Storage systems also include new technologies to deliver the best storage price/performance and unprecedented observability of your workloads in production, including:

- Analytics, a system for dynamically observing the behavior of your system in real-time and viewing data graphically
- The ZFS Hybrid Storage Pool, composed of optional Flash-memory devices for acceleration of reads and writes, low-power, high-capacity disks, and DRAM memory, all managed transparently as a single data hierarchy

Data Services
To manage the data that you export using these protocols, you can configure your Sun ZFS Storage system using the built-in collection of advanced data services, including:

LICENSE NOTICE: Remote Replication and Cloning may be evaluated free of charge, but each feature requires that an independent license be purchased separately for use in production. After the evaluation period, these features must either be licensed or deactivated. Oracle reserves the right to audit for licensing compliance at any time. For details, refer to the "Oracle Software License Agreement ("SLA") and Entitlement for Hardware Systems with Integrated Software Options."

- RAID-Z (RAID-5 and RAID-6), mirrored, and striped disk configurations
- Unlimited read-only and read-write snapshots, with snapshot schedules
- Data deduplication
- Built-in data compression
- Remote replication of data for disaster recovery
- Active-active clustering for high availability (7310, 7320, 7410, and 7420)
- Thin provisioning of iSCSI LUNs
- Virus scanning and quarantine
- NDMP backup and restore

Availability

To maximize the availability of your data in production, Sun ZFS Storage appliances include a complete end-to-end architecture for data integrity, including redundancies at every level of the stack. Key features include:

- Predictive self-healing and diagnosis of all system hardware failures: CPUs, DRAM, I/O cards, disks, fans, power supplies
- ZFS end-to-end data checksums of all data and metadata, protecting data throughout the stack
- RAID-6 (double- and triple-parity) and optional RAID-6 across disk shelves
- Active-active clustering for high availability (7310, 7320, 7410, and 7420)
- Link aggregations and IP multipathing for network failure protection
- I/O Multipathing between the controller and disk shelves
- Integrated software restart of all system software services
- Phone-Home of telemetry for all software and hardware issues
- Lights-out Management of each system for remote power control and console access

Browser User Interface (BUI)

The browser user interface

The BUI is the graphical tool for administration of the appliance. The BUI provides an intuitive environment for administration tasks, visualizing concepts, and analyzing performance data.
The management software is designed to be fully featured and functional on a variety of web browsers.

Direct your browser to the system using either the IP address or host name you assigned to the NET-0 port during initial configuration as follows: https://ipaddress:215 or https://hostname:215. The login screen appears.

The online help linked in the top right of the BUI is context-sensitive. For every top-level and second-level screen in the BUI, the associated help page appears when you click the Help button.

Command Line Interface (CLI)

The CLI is designed to mirror the capabilities of the BUI, while also providing a powerful scripting environment for performing repetitive tasks. The following sections describe details of the CLI. When navigating through the CLI, there are two principles to be aware of:

- **Tab completion is used extensively:** if you are not sure what to type in any given context, pressing the Tab key will provide you with possible options. Throughout the documentation, pressing Tab is presented as the word "tab" in bold italics.

- **Help is always available:** the help command provides context-specific help. Help on a particular topic is available by specifying the topic as an argument to help, for example `help commands`. Available topics are displayed by tab-completing the help command, or by typing help topics.

You can combine these two principles, as follows:

```
dory:~ help tab
builtins commands general help properties script
```
Locating a disk

Hardware View

The Maintenance > Hardware screen (also known as the "hardware view") provides component status of the appliance and attached disk shelves. This information is available from both the BUI and the CLI.

BUI

The BUI hardware view provides interactive illustrations that enable you to browse through the appliance and attached disk shelf components. The screenshot at the top of this page shows a disk highlighted in a Sun Storage 7110, showing both its physical location and details.

The buttons in the hardware view are:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🌡️</td>
<td>Show a more detailed view of this component</td>
</tr>
<tr>
<td>✨</td>
<td>Toggle blinking of the locator LED for this component</td>
</tr>
<tr>
<td>🔄</td>
<td>Leave this detailed view</td>
</tr>
<tr>
<td>🔄</td>
<td>Reboot the appliance</td>
</tr>
</tbody>
</table>
Hardware

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>📏</td>
<td>Click for more details</td>
<td>⚪️</td>
<td>Power off the appliance</td>
</tr>
<tr>
<td>🌶️</td>
<td>Hardware component is ok (green)</td>
<td>⚪️</td>
<td>Offline disk</td>
</tr>
<tr>
<td>🌶️</td>
<td>Hardware component is not present (grey)</td>
<td>🌶️</td>
<td>Port active</td>
</tr>
<tr>
<td>🌶️</td>
<td>Hardware component is faulted (amber)</td>
<td>🌶️</td>
<td>Port inactive</td>
</tr>
</tbody>
</table>

System Overview

The main hardware page lists the system chassis, a summary of its contents, and any attached disk shelves (on supported systems). This provides an overview of the hardware present on the system, as well as controls to reset or power off the system.

System Chassis

The primary system chassis is shown on the top half of the view. At the top left, click the 🌶️ to get more detail about the chassis. The indicator notes if there are any faulted components within the chassis, and the name of the chassis. The chassis name is initially set to the appliance name during installation. To change the chassis name, use the entry field on the Configuration > Services > System Identity screen.

At the top right of the system chassis is the ⭐️ control to light the locate LED, ⚡️ reboot the appliance, and ⚤️ power off the chassis.

A thumbnail of the controller is presented at left. Clicking on the thumbnail or the “Show Details” link takes you to a detailed view of the chassis, and is identical to clicking on the right pointing arrow at the top left of the view.

The following information is presented in a summary view:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Manufacturer of the system</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Model</td>
<td>System model name</td>
</tr>
<tr>
<td>Serial</td>
<td>System chassis hardware serial number</td>
</tr>
<tr>
<td>Processors</td>
<td>Count and description of processors in the system</td>
</tr>
<tr>
<td>Memory</td>
<td>Total memory in the system</td>
</tr>
<tr>
<td>System</td>
<td>Size and number of system disks used for the system image</td>
</tr>
<tr>
<td>Data</td>
<td>Size and number of data disks in the system chassis. This is only valid for standalone systems. If there are no data disks present, "." will be displayed.</td>
</tr>
<tr>
<td>Cache</td>
<td>Size and number of cache disks in the system chassis. This is only valid for expandable systems that support additional disk shelves. If there are no cache disks present, "." will be displayed.</td>
</tr>
<tr>
<td>Log</td>
<td>Size and number of log disks in the system chassis. This is only valid for standalone systems. If there are no log devices present, "." will be displayed.</td>
</tr>
<tr>
<td>Total</td>
<td>Total size and count of all disks in the system.</td>
</tr>
</tbody>
</table>

Disk Shelves

A list of disk shelves, if supported, is displayed at the bottom of the view. The thumbnail to the left represents the front of the currently selected disk shelf. Clicking on the right pointing arrow or double-clicking on a row within the list will provide complete details about the disk shelf. The state indicator will be orange if the chassis contains any faulted components. The following fields are displayed in the list:
Property Description

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the disk shelf, used in faults and alerts. This is initially set to the serial number of the disk shelf, but can be changed by clicking on the name within the list.</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Disk Shelf Manufacturer</td>
</tr>
<tr>
<td>Model</td>
<td>Disk Shelf Model</td>
</tr>
<tr>
<td>Data</td>
<td>Total size of all data disks within the disk shelf.</td>
</tr>
<tr>
<td>Cache</td>
<td>Total size of all read-optimized cache devices ("Readzillas") within the drive shelf. There are currently no supported disk shelves with read cache devices, but this may not always be the case. If there are no cache devices within the shelf, then ".-" is displayed.</td>
</tr>
<tr>
<td>Log</td>
<td>Total size of all write-optimized cache devices ("Logzillas") within the drive shelf. If there are no log devices within the shelf, then ".-" is displayed.</td>
</tr>
<tr>
<td>Paths</td>
<td>Total number of I/O paths to the disk shelf. The only supported configurations are those with multiple paths to all disks, so this should read "2" under normal operating circumstances. Clicking the icon will bring up a dialog with information about each path. This includes which HBAs are connected to the disk shelf, and the state of any paths. If the disks within the disk shelf are not currently configured as part of a storage pool, complete path information will not be available, though it displays two paths to the chassis.</td>
</tr>
<tr>
<td>Locate</td>
<td>Toggle the locate LED for this disk shelf. If the LED is currently on, then this indicator will be flashing.</td>
</tr>
</tbody>
</table>

Chassis Detail

To view the chassis details, click on the icon (or one of the alternative forms described above). This view includes some of the same controls in the upper left (state, name, locate, reset, poweroff), as well as listings of all the components in the chassis.

At the left is a set of images describing the chassis. If there are multiple views, then you can switch between them by clicking on the name of the view above the image.

For each view, faulted components will be highlighted in red. In addition, the currently selected component will be highlighted in the image. Clicking on a component within the image will select the corresponding component in the list to the right.

A tab is present for each component type in the following list. Each component type has a state icon which will be orange if there is a faulted component of the given type.

- Disk
- Slot
- CPU (controller only)
- Memory (controller only)
- Fan
- Power supply (PSU)
- Service processor (SP) (controller only)

Clicking on a component type will display a list of all physical locations within the chassis where components may be present. Clicking on a component within the list will highlight it within the appropriate chassis image. Clicking on the 🛠 icon while over a row or double-clicking a row will bring up a dialog with detailed information about the component. The information displayed in the list depends on the component type, but is a subset of the information available in the component detail. Disks and service processors support additional operations described below. Each component can report any or all of the following properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Human-readable identifier for this component within the chassis. This is typically, but not necessarily, equivalent to the label printed on the physical chassis.</td>
</tr>
<tr>
<td>FMRI</td>
<td>Fault managed resource identifier (FMRI) for the component. This is an internal identifier used to identify the component within faults and is intended for service personnel.</td>
</tr>
<tr>
<td>Active Problems</td>
<td>For a faulted component, links to active problems affecting the component.</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Component manufacturer.</td>
</tr>
<tr>
<td>Model</td>
<td>Component model.</td>
</tr>
<tr>
<td>Build</td>
<td>Manufacturing build identifier. This is used to identify a particular location or batch where the component was manufactured.</td>
</tr>
<tr>
<td>Part</td>
<td>Component part number, or core factory part number. The orderable part number may differ, depending on whether a component is for replacement or expansion, and whether it’s part of a larger assembly. Your service provider should be able to refer you to the appropriate orderable part. For components without part numbers, the model number should be used instead.</td>
</tr>
<tr>
<td>Serial</td>
<td>Component serial number.</td>
</tr>
<tr>
<td>Revision</td>
<td>Firmware or hardware revision of the component.</td>
</tr>
<tr>
<td>Size</td>
<td>Total memory or storage, in bytes.</td>
</tr>
<tr>
<td>Type</td>
<td>Disk type. Can be one of 'system', 'data', 'log', 'cache', or 'spare'. When a spare is active, it will be displayed as 'spare'.</td>
</tr>
<tr>
<td>Speed</td>
<td>Processor speed, in gigahertz.</td>
</tr>
<tr>
<td>Cores</td>
<td>Number of CPU cores.</td>
</tr>
<tr>
<td>GUID</td>
<td>Hardware global unique identifier.</td>
</tr>
</tbody>
</table>
Disks

Disks support the additional options:

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locate</td>
<td>Toggle the locate indicator for the disk. If the LED is currently turned on, this icon will be blinking.</td>
</tr>
<tr>
<td>Offline</td>
<td>Offline the disk. This option is only available for disks that are part of a configured storage pool (including the system pool). Offline a disk prevents the system from reading or writing to it. Faulted devices are already avoided, so this option should only be required if a disk is exhibiting performance problems that do not result in pathological failure. It is not possible to offline a disk that would prevent access to data (i.e., offline both halves of a mirror). If the device is an active hot spare, this will also give the option of detaching the hot spare completely. Once a hot spare is detached, it cannot be activated except through another fault or hotplug event.</td>
</tr>
<tr>
<td>Online</td>
<td>Online the disk. Reverses the above operation.</td>
</tr>
</tbody>
</table>

Infiniband Host Controller Adapters

Infiniband Host Controller Adapters (HCA) report additional properties for the list of available ports:

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>When "active", the active port icon is displayed. Other valid port states ("down", "init", and "arm") are denoted by the inactive port icon. Mousing over the port icon will display the current port state in the tip pop-up.</td>
</tr>
<tr>
<td>GUID</td>
<td>The hardware assigned port GUID.</td>
</tr>
<tr>
<td>Speed</td>
<td>The current port speed enabled: Single Data Rate (SDR), Dual Data Rate (DDR) or Quad Data Rate (QDR)</td>
</tr>
</tbody>
</table>

Service Processor

The service processor behaves differently from other component nodes. Instead of providing a list of components, it presents a set of network properties that can be configured from the storage appliance. The following properties control the behavior of the service processor network management port.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>Hardware MAC address. This is read-only</td>
</tr>
</tbody>
</table>
Hardware

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPAddress Source</td>
<td>Either 'DHCP' or 'Static'. Controls whether DHCP should be used on the interface.</td>
</tr>
<tr>
<td>IPAddress IPv4 Address</td>
<td>When using static IP configuration. IPv6 is not supported.</td>
</tr>
<tr>
<td>Subnet</td>
<td>Dotted decimal subnet when using static IP configuration.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>IPv4 default gateway address.</td>
</tr>
</tbody>
</table>

Changing multiple values in conflicting ways (such as changing static IP assignments while in DHCP mode) has undefined behavior.

CLI

Hardware status details are available in the CLI under the `maintenance hardware` section. Use the `show` command to list the status of all components. The `list` command will list available chassis, which can be selected and then viewed using `show`.

```
tarpon:~> maintenance hardware show
Chassis:

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATE</th>
<th>MANUFACTURER</th>
<th>MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>chassis-000 08390CJ81A</td>
<td>ok</td>
<td>Sun Microsystems, Inc.</td>
<td>Sun Storage 7410</td>
</tr>
<tr>
<td>cpu-000 CPU 0</td>
<td>ok</td>
<td>AMD</td>
<td>Quad-Core AMD Op</td>
</tr>
<tr>
<td>cpu-001 CPU 1</td>
<td>ok</td>
<td>AMD</td>
<td>Quad-Core AMD Op</td>
</tr>
<tr>
<td>cpu-002 CPU 2</td>
<td>ok</td>
<td>AMD</td>
<td>Quad-Core AMD Op</td>
</tr>
<tr>
<td>cpu-003 CPU 3</td>
<td>ok</td>
<td>AMD</td>
<td>Quad-Core AMD Op</td>
</tr>
<tr>
<td>disk-000 HDD 0</td>
<td>ok</td>
<td>STEC</td>
<td>MACH8 IOPS</td>
</tr>
<tr>
<td>disk-001 HDD 1</td>
<td>ok</td>
<td>STEC</td>
<td>MACH8 IOPS</td>
</tr>
<tr>
<td>disk-002 HDD 2</td>
<td>absent</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>disk-003 HDD 3</td>
<td>absent</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>disk-004 HDD 4</td>
<td>absent</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>disk-005 HDD 5</td>
<td>absent</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>disk-006 HDD 6</td>
<td>ok</td>
<td>HITACHI</td>
<td>HTE5450SASUNS500G</td>
</tr>
<tr>
<td>disk-007 HDD 7</td>
<td>ok</td>
<td>HITACHI</td>
<td>HTE5450SASUNS500G</td>
</tr>
<tr>
<td>fan-000 FT 0</td>
<td>ok</td>
<td>unknown</td>
<td>ASY,FAN,BOARD,H2</td>
</tr>
<tr>
<td>fan-001 FT 0 FM 0</td>
<td>ok</td>
<td>Sun Microsystems, Inc.</td>
<td>541-2068</td>
</tr>
<tr>
<td>fan-002 FT 0 FM 1</td>
<td>ok</td>
<td>Sun Microsystems, Inc.</td>
<td>541-2068</td>
</tr>
<tr>
<td>fan-003 FT 0 FM 2</td>
<td>ok</td>
<td>Sun Microsystems, Inc.</td>
<td>541-2068</td>
</tr>
<tr>
<td>fan-004 FT 1</td>
<td>ok</td>
<td>unknown</td>
<td>ASY,FAN,BOARD,H2</td>
</tr>
<tr>
<td>fan-005 FT 1 FM 0</td>
<td>ok</td>
<td>Sun Microsystems, Inc.</td>
<td>541-2068</td>
</tr>
<tr>
<td>fan-006 FT 1 FM 1</td>
<td>ok</td>
<td>Sun Microsystems, Inc.</td>
<td>541-2068</td>
</tr>
<tr>
<td>fan-007 FT 1 FM 2</td>
<td>ok</td>
<td>Sun Microsystems, Inc.</td>
<td>541-2068</td>
</tr>
<tr>
<td>memory-000 DIMM 0/0</td>
<td>ok</td>
<td>HYNIX</td>
<td>4096MB DDR-II 66</td>
</tr>
<tr>
<td>memory-001 DIMM 0/1</td>
<td>ok</td>
<td>HYNIX</td>
<td>4096MB DDR-II 66</td>
</tr>
</tbody>
</table>

A 5th column for serial number ("SERIAL") has been truncated in the above example, as has the length of this list.
Component Properties

If a particular component is selected, detailed information about its properties are reported. The following properties are supported, with the corresponding BUI property name. For a description of a particular property, see the description above.

<table>
<thead>
<tr>
<th>CLI Property</th>
<th>BUI Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>build</td>
<td>Build</td>
</tr>
<tr>
<td>cores</td>
<td>Cores</td>
</tr>
<tr>
<td>device</td>
<td>N/A</td>
</tr>
<tr>
<td>faulted</td>
<td>(status indicator)</td>
</tr>
<tr>
<td>label</td>
<td>Label</td>
</tr>
<tr>
<td>locate (writable)</td>
<td>(status indicator)</td>
</tr>
<tr>
<td>manufacturer</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>model</td>
<td>Model</td>
</tr>
<tr>
<td>offline</td>
<td>(status indicator)</td>
</tr>
<tr>
<td>(writeable)</td>
<td></td>
</tr>
<tr>
<td>part</td>
<td>Part</td>
</tr>
<tr>
<td>present</td>
<td>(status indicator)</td>
</tr>
<tr>
<td>revision</td>
<td>Revision</td>
</tr>
<tr>
<td>serial</td>
<td>Serial</td>
</tr>
<tr>
<td>size</td>
<td>Size</td>
</tr>
<tr>
<td>speed</td>
<td>Speed</td>
</tr>
<tr>
<td>type</td>
<td>(combined with use)</td>
</tr>
<tr>
<td>use</td>
<td>Type</td>
</tr>
</tbody>
</table>

When viewing a disk that is active as a hot spare, the detach command is also available.

Viewing CPU details

For example, the following shows details for component "CPU 0":

tarpon:maintenance hardware> select chassis-000
.tarpon:maintenance chassis-000> select cpu
tarpon:maintenance chassis-000 cpu> select cpu-000
tarpon:maintenance chassis-000 cpu-000> show
Properties:

- label = CPU 0
- present = true
- faulted = false
- manufacturer = AMD
  - model = Quad-Core AMD Opteron(tm) Processor 8356
  - part = 1002
  - revision = 03
  - cores = 4
  - speed = 2.14G

Tasks

BUI

▼ Locating a failed component

1. Go to the Maintenance > Hardware screen.
2. Click the icon on the Storage System or Disk Shelf which has the fault icon.
3. Locate the fault icon in the lists of hardware components, and click it. The image should be updated to show where that component is physically located.
4. Optionally, click the icon for that component, if the component has it. The LED on the component will begin to flash.

CLI

To turn on the locate LED using the CLI, run the following commands.

Go to the maintenance hardware context:

hostname:> maintenance hardware

List the appliance components:

hostname:maintenance hardware> list

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATE</th>
<th>MODEL</th>
<th>SERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>chassis-000</td>
<td>hostname</td>
<td>ok</td>
<td>Sun Storage 7410</td>
</tr>
<tr>
<td>chassis-001</td>
<td>000000000C</td>
<td>faulted</td>
<td>J4400</td>
</tr>
</tbody>
</table>

Select the chassis and list its components:

hostname:maintenance hardware> select chassis-001
hostname:maintenance chassis-001> list
disk
fan
psu
slot

Select the component type and show all available disks:

hostname:maintenance chassis-001> select disk
hostname:maintenance chassis-001 disk> show

Disks:

<table>
<thead>
<tr>
<th>LABEL</th>
<th>STATE</th>
<th>MANUFACTURER</th>
<th>MODEL</th>
<th>SERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk-00</td>
<td>HDD 0</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-001</td>
<td>HDD 1</td>
<td>faulted</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-002</td>
<td>HDD 2</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-003</td>
<td>HDD 3</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-004</td>
<td>HDD 4</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-005</td>
<td>HDD 5</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-006</td>
<td>HDD 6</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-007</td>
<td>HDD 7</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-008</td>
<td>HDD 8</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-009</td>
<td>HDD 9</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-010</td>
<td>HDD 10</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-011</td>
<td>HDD 11</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-012</td>
<td>HDD 12</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-013</td>
<td>HDD 13</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-014</td>
<td>HDD 14</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-015</td>
<td>HDD 15</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-016</td>
<td>HDD 16</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-017</td>
<td>HDD 17</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-018</td>
<td>HDD 18</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-019</td>
<td>HDD 19</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-020</td>
<td>HDD 20</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-021</td>
<td>HDD 21</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-022</td>
<td>HDD 22</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
<tr>
<td>disk-023</td>
<td>HDD 23</td>
<td>ok</td>
<td>ST3500630NS</td>
<td>ST3500630NS</td>
</tr>
</tbody>
</table>

Select the faulted disk and turn on the locate LED:

hostname:maintenance chassis-001 disk> select disk-001
hostname:maintenance chassis-001 disk-001> set locate=true
locate = true (uncommitted)
hostname:maintenance chassis-001 disk-001> commit
Introduction

This section describes concepts and procedural instructions for performing hardware and software maintenance tasks. The graphic above illustrates locating a spare disk within the chassis by highlighting its name in the BUI Hardware Maintenance list. The Maintenance > Hardware screen of the BUI provides visual representations of the physical system components, allowing you to visually identify and locate hardware components and verify their status.

Software Updates can be applied in the System section of the interface, as well as viewing Logs and current Problems.

- **Hardware** - identify hardware components and verify their status
- **7120 Overview** - view component diagrams and specifications
7120 Hardware Overview

Use the information in this section as a preparation reference for servicing replaceable components of the 7120 system.

Refer to the following for procedural instructions:

- **Controller Tasks** - replace system controller components
- **Disk Shelf Tasks** - replace disk shelf components
Chassis Overview

The Sun ZFS Storage 7120 is an enterprise-class two-socket rackmount x64 system powered by the Intel Xeon processor. It packs high performance and room for growth with four PCIe slots and 18 DIMM slots into a compact 2U footprint. Refer to the http://www.oracle.com/us/products/servers-storage/storage/unified-storage/index.html for the most recent component specification.

Refer to the Implementing Fibre Channel SAN Boot with Oracle's Sun ZFS Storage Appliance whitepaper at http://www.oracle.com/technetwork/articles/servers-storage-admin/fbsanboot-365291.html for details on FC SAN boot solutions using the Sun ZFS Storage 7120 Appliance.

The 7120 is a standalone controller that consists of an internal SAS-2 HBA providing disk shelf expansion, write flash acceleration, and 11 x 300GB 15K, 600GB 15K, 1TB 7.2K, 2TB 7.2K, or 3TB 7.2K hard drive storage. The SAS-2 storage fabric supports greater number of targets, greater bandwidth, higher reliability and bigger scale.

The 2U chassis form factor dimensions are as follows:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
<th>Dimension</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>87.6 mm/3.45 in</td>
<td>Depth</td>
<td>765.25 mm/30.13 in</td>
</tr>
<tr>
<td>Width</td>
<td>436.8 mm/17.2 in</td>
<td>Weight</td>
<td>29.54 kg/65 lb</td>
</tr>
</tbody>
</table>

Front Panel

The following figure shows the front panel and the table describes the drive locations. The Logzilla 3.5” SSD belongs in slot 3 and is not supported in controllers configured with the internal Sun Aura flash HBA Logzilla.
The following figure shows the rear panel. Note that optional Sun Dual Port 40Gb/sec 4x Infiniband QDR HCA adapter PCIe cards (375-3606-01) may be located in slots 1, 2, or 3. Note that 375-3606-01 HCA expansion cards are not supported in the 10G network configurations.

The serial management connector (SER MGT) is an RJ-45 port and provides a terminal connection to the SP console.
The network management connector (NET MGT) is an RJ-45 port and provides an alternate terminal interface to the SP console.

There are four RJ-45 Gigabit Ethernet ports (NET0, NET1, NET2, NET3) located on the motherboard that operate at 10/100/1000 Mbit/sec. These network interfaces must be configured before use.

**Electrical Specifications**

The following list shows the electrical specifications for the 7120. Note that the power dissipation numbers listed are the maximum rated power numbers for the power supply. The numbers are not a rating of the actual power consumption of the appliance.

**Connectors**
- Two C13 connectors which work on 110-220v outlets

**Input**
- Nominal frequencies: 50/60Hz
- Nominal voltage range: 100-120/200-240 VAC
- Maximum current AC RMS: 13.8A @ 100 VAC
- AC operating range: 90-264 VAC

**Output**
- 3.3 VDC STBY: 3.0A
- +12 VDC: 86.7A

**Power dissipation**
- Max power consumption: 1235.3 W
- Max heat output: 4212 BTU/hr
- Volt-Ampere rating: 1261 VA @ 240 VAC, 0.98P.F.

**Internal Components**

The chassis has the following boards installed. Field-replaceable units (FRU) should only be replaced by trained Oracle service technicians.

- **PCIe Risers** - Each riser supports two PCIe cards that are customer-replaceable. There are two risers per system, each attached to the rear of the motherboard.
Motherboard - The motherboard is a FRU and includes CPU modules, slots for 18 DIMMs, memory control subsystems, and the service processor (SP) subsystem. The SP subsystem controls the host power and monitors host system events (power and environmental). The SP controller draws power from the host's 3.3V standby supply rail, which is available whenever the system is receiving AC input power, even when the system is turned off.

Power Distribution Board - The power distribution board is a FRU and distributes main 12V power from the power supplies to the rest of the storage controller. It is directly connected to the Connector Break Out Board, and to the motherboard through a bus bar and ribbon cable. It also supports a top cover interlock 'kill' switch. The power supplies connect directly to the power distribution board.

Connector Break Out Board - The Connector Break Out Board is FRU and serves as the interconnect between the power distribution board and the fan power boards, storage drive backplane, and I/O board. It also contains the top-cover interlock "kill" switch.

Fan Power Boards - The two fan power boards are FRUs and carry power to the system fan modules. In addition, they contain fan module status LEDs and transfer I2C data for the fan modules.

Storage Drive Backplane - The storage drive backplane is a FRU and includes the connectors for the storage drives, as well as the interconnect for the I/O board, Power and Locator buttons, and system/component status LEDs. The system has a 12-disk backplane. Each drive has an LED indicator for Power/Activity, Fault, and Locate.
I/O Components

The I/O components of the 7120 system are shown in the following figure and described in the table.

<table>
<thead>
<tr>
<th>Figure Legend</th>
<th>1 Top Cover</th>
<th>2 Right Control Panel Light Pipe Assembly</th>
<th>3 Hard Disk Drives</th>
<th>4 Left Control Panel Light Pipe Assembly</th>
</tr>
</thead>
</table>
Cables

The storage controller’s internal cables are shown in the following figure and table. Note that the rear boot drives are not depicted in this illustration.

<table>
<thead>
<tr>
<th>Cable</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Storage Drive Data Cable</td>
<td>Connection between the HBA PCI-Express Card and the storage drive backplane.</td>
</tr>
</tbody>
</table>
Cable Connection
---
2 Ribbon cable | Connection is between the power distribution board and the motherboard.

**CPU and Memory**

The 7120 motherboard has 18 slots in two groups that hold industry-standard DDR3 DIMMs. The 7120 CPU and memory should only be replaced by field service professionals. All sockets must be occupied by either a filler or a DDR3 DIMM. All DDR3 DIMMs must be identical. DIMMs are pre-installed in P0 slots D1, D2, D4, D5, D7, and D8.

**Power Distribution, Fan Module and Disk Components**

The fan modules and LEDs are shown in the following illustration.
The power distribution and associated components are shown in the following illustration and described in the table.

Figure Legend

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fan Board</td>
</tr>
<tr>
<td>2</td>
<td>SAS Expander Board</td>
</tr>
<tr>
<td>3</td>
<td>Disk Backplane</td>
</tr>
<tr>
<td>4</td>
<td>Front Control Panel Light Pipe Assembly</td>
</tr>
<tr>
<td>5</td>
<td>Power Distribution Board</td>
</tr>
<tr>
<td>6</td>
<td>Connector Board</td>
</tr>
<tr>
<td>7</td>
<td>Power Supply Backplane</td>
</tr>
</tbody>
</table>

**Standalone Controller Configurations**

The following table shows the configuration options for a 7120 controller. All PCIe cards are low-profile, and must be fitted with low-profile mounting brackets.

This table describes base configurations for the 7120 with Aura Logzilla.

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
<th>Mfg Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA7120-12TB</td>
<td>S7120, 1xCPU, 24GB, 12TB</td>
<td>597-0754-01</td>
</tr>
<tr>
<td>TA7120-24TB</td>
<td>S7120, 1xCPU, 24GB, 24TB</td>
<td>597-0755-01</td>
</tr>
</tbody>
</table>

This table describes base configurations for the 7120 with Logzilla 3.5” SSD.
### NIC/HBA Options

This table describes NIC/HBA options for the 7120.

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
<th>Mfg Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG-XPCIESAS-GEN2-Z</td>
<td>2-port External Sun Thebe SAS (x4) HBA, PCIe</td>
<td>594-5889-01</td>
</tr>
<tr>
<td>SG-XPCIE2FC-QF8-Z</td>
<td>2-port FC HBA, 8Gb, PCIe</td>
<td>594-5684-01</td>
</tr>
<tr>
<td>X4446A-Z</td>
<td>4-port PCI-E Quad GigE UTP</td>
<td>594-4024-01</td>
</tr>
<tr>
<td>X4237A-N</td>
<td>2-port 4X1B HCA PCIe</td>
<td>594-5862-02</td>
</tr>
<tr>
<td>X1109A-Z</td>
<td>2-port 10Gig SFP+ NIC, PCIe</td>
<td>594-6039-01</td>
</tr>
</tbody>
</table>

### PCIe Options

This table describes the supported PCIe configuration option summary for the 7120.

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Sun Part Number</th>
<th>Vendor Part Number</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PCIe</td>
<td>540-7975-03</td>
<td>Sun Aura Internal Flash</td>
<td>Base Configuration (OBSOLETE)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>Intel EXPI9404PT QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>Intel Niantic DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>QLogic 8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3606-01</td>
<td>Mellanox MHJH29-XTC InfiniBand HCA</td>
<td>Optional Recommended Front-end</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>Intel Niantic DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3606-01</td>
<td>Mellanox MHJH29-XTC InfiniBand HCA</td>
<td>Optional Recommended Front-end</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>Intel EXPI9404PT QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>QLogic 8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PCIe</td>
<td>375-3665-01</td>
<td>Sun Thebe (INT) Internal SAS HBA</td>
<td>Base Configuration</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>Intel EXPI9404PT QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>QLogic 8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCIe</td>
<td>375-3609-03</td>
<td>Sun Thebe (EXT) 8P 6Gb/s SAS HBA</td>
<td>Additional Optional Back-end</td>
<td></td>
</tr>
</tbody>
</table>
Attached Storage

The 7120 standalone configurations allow a single chain of 1 or 2 Sun Disk Shelves. Write-optimized (Logzilla) SSDs are not supported in the expansion storage for the 7120. The disk shelves must be fully populated with 24 HDDs. Half-populated shelf configurations are not supported.

7320 Hardware Overview

Use the information in this section as a preparation and reference for servicing replaceable components of the 7320 system. Refer to the following for procedural instructions:

- Controller Tasks - replace storage controller components
- Disk Shelf Tasks - replace disk shelf components

Chassis Overview

The Sun ZFS Storage 7320 System consists of either a single storage controller, or two storage controllers in a high availability cluster configuration, and one to four Sun Disk Shelves.

The 7320 controller base configuration includes two CPUs, built-in 4 x 1Gb/s front-end GigE ports, redundant power supplies, NIC options for expanded front-end support, tape backup, Infiniband, and dual port SAS HBA for storage expansion.

The CPUs are Intel Xeon 5600 series, 2.40GHz, 80W, 4 core processors. Standard memory configuration is 24GB, 3 x 4GB DDR3-1333 DR DIMMs and may be upgraded to 48GB using 6x4GB DDR3-1333 DR DIMMs per CPU or to 72GB using 9x4GB DDR3 DR DIMMs per CPU. The clustered configuration simply uses two servers and a cluster card in each server for a heartbeat connection between them.

All user-accessible storage is provided by one to four Sun Disk shelves external to the server(s). The RAID function is done by the software. Solid State 18GB SAS-1 drives (7320 SAS-2) which are used for high-performance write cache known as LogZilla or ZFS intent log (ZIL) devices, are in place of one to four of the 24 drives in the Disk Shelf, the remaining 20 drives are available for storage.

The 7320 is a next-generation SAS-2 (Serial Attached SCSI 2.0) device that consists of a new HBA, new disk shelf, and new disks (1TB and 2TB SAS-2). The SAS-2 storage fabric supports greater number of targets, greater bandwidth, higher reliability and bigger scale.

**Boards**

The storage controller chassis has the following boards installed. Field-replaceable units (FRUs) should only be replaced by trained Oracle service technicians.

- **PCIe Risers** - The storage controller contains three PCIe risers that are customer-replaceable units (CRUs) and are attached to the rear of the motherboard. Each riser supports one PCIe card.
- **Motherboard** - The motherboard is a FRU and includes CPU modules, slots for 18 DIMMs, memory control subsystems, and the service processor (SP) subsystem. The SP subsystem controls the host power and monitors host system events (power and environmental). The SP controller draws power from the host’s 3.3V standby supply rail, which is available whenever the system is receiving AC input power, even when the system is turned off.
- **Power Distribution Board** - The power distribution board is a FRU and distributes main 12V power from the power supplies to the rest of the storage controller. It is directly connected to the paddle board, and to the mother board through a bus bar and ribbon cable. It also supports a top cover interlock kill switch.
- **Paddle board** - The paddle board is a FRU and serves as the interconnect between the power distribution board and the fan power boards, hard drive backplane, and I/O board.
- **Fan Board** - This board is FRUs and carries power to the storage controller fan modules. In addition, they contain fan module status LEDs and transfer I2C data for the fan modules.
- **Disk Backplane** - The hard drive backplane is a FRU and includes the connectors for the hard disk drives, as well as the interconnect for the I/O board, Power and Locator buttons, and system/component status LEDs. The storage controller has an eight-disk backplane. Each drive has an LED indicator for Power/Activity, Fault, and OK-to-remove (not supported).

Following is the complete set of replaceable system boards for the 7320 storage controller.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>FRU/CRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F541-2883-01</td>
<td>X8 PCIe Riser Card 1U</td>
<td>CRU</td>
</tr>
<tr>
<td>F541-2885-01</td>
<td>X16 PCIe Riser Card 1U</td>
<td>CRU</td>
</tr>
<tr>
<td>F541-4081-01</td>
<td>RoHS Motherboard and Tray</td>
<td>FRU</td>
</tr>
<tr>
<td>F511-1489-01</td>
<td>DB, Power Distribution Board</td>
<td>FRU</td>
</tr>
<tr>
<td>F511-1548-01</td>
<td>PCB, 8 Disk 1U Backplane</td>
<td>FRU</td>
</tr>
<tr>
<td>F541-4275-02</td>
<td>PCBA, Connector Board, 1U</td>
<td>FRU</td>
</tr>
</tbody>
</table>
Cables

Following is the complete set of replaceable cables for the 7320 storage controller.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>FRU/CRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F530-4228-01</td>
<td>Cable, Mini SAS</td>
<td>FRU (internal)</td>
</tr>
<tr>
<td>F530-3927-01</td>
<td>FRU,CBL,PDB,MB,1U+2U,RIBBON</td>
<td>FRU (internal)</td>
</tr>
<tr>
<td>F530-4431-01</td>
<td>Cable, Fan data</td>
<td>FRU (internal)</td>
</tr>
<tr>
<td>F530-4417-01</td>
<td>FRU Cable, Fan paddle</td>
<td>FRU (internal)</td>
</tr>
<tr>
<td>F530-3880-01</td>
<td>Cable, Assembly, Ethernet, Shielded, RJ45-RJ45, 6m</td>
<td>CRU (external)</td>
</tr>
<tr>
<td>F530-3883-01</td>
<td>FRU,2M,4X Mini SAS Cable</td>
<td>CRU (external)</td>
</tr>
</tbody>
</table>

7320 I/O Components

The I/O components of the storage controller are shown in the following figure and identified in the table.
**Figure Legend**

1. Top cover  
2. Left Control Panel Light Pipe Assembly  
3. Drive Cage  
4. Solid State Drives  
5. blank/USB Module  
6. Right Control Panel Light Pipe Assembly

### 7320 CPU and Memory Components

Following are the replaceable CPU and memory components of the 7320 system.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>FRU/CRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F371-4898-01</td>
<td>DIMM, 4GB, DDR3, 2RX4, 13</td>
<td>FRU</td>
</tr>
<tr>
<td>F371-4885-01</td>
<td>Intel E5620, 2.40G</td>
<td>FRU</td>
</tr>
</tbody>
</table>

The storage controller motherboard has 18 slots in two groups that hold industry-standard DDR3 DIMM memory cards. All sockets must be occupied by either a filler or a DDR3 DIMM.

### 7320 Power Distribution and Fan Module Components

The Power Distribution/Fan Module components of the storage controller are shown in the following figure and identified in the table.
Electrical Specifications

The following list shows the electrical specifications for the 7320. Note that the power dissipation numbers listed are the maximum rated power numbers for the power supply. The numbers are not a rating of the actual power consumption of the appliance.

Connectors
- Two C13 connectors which work on 110-220v outlets

Input
- Nominal frequencies: 50/60Hz
- Nominal voltage range: 100-120/200-240 VAC
- Maximum current AC RMS: 9.0 amps Max
- AC operating range: 90-264 VAC

Output
- 3.3 VDC STBY: 3.6A
- +12 VDC: 62.3A
Power dissipation

- Max power consumption: 873 W
- Max heat output: 2977 BTU/hr
- Volt-Ampere rating: 891 VA @ 240 VAC, 0.98 PF.

7320 Front Panel

The following graphic illustrates the front panel LEDs.

![Front Panel Diagram]

The table describes the LEDs.

<table>
<thead>
<tr>
<th>Figure Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Locate Button/LED</td>
</tr>
<tr>
<td>2 Service Required LED (amber)</td>
</tr>
<tr>
<td>3 Power/OK LED (green)</td>
</tr>
<tr>
<td>4 Power Button</td>
</tr>
<tr>
<td>5 Rear Power Supply</td>
</tr>
<tr>
<td>6 System Overtemperature LED</td>
</tr>
<tr>
<td>7 Top Fan</td>
</tr>
</tbody>
</table>

The following graphic illustrates the 7320 front panel with drive locations described in the table. Two mirrored hard disk drives (HDDs) that store the operating system reside in slots 0 and 1. Up to four solid state drives (ReadZilla SSDs) that store the read cache fill slots 2 through 5, in order. Slots 6 and 7 are empty and must contain drive fillers.
Following is the complete list of replaceable power distribution, disk, and fan module components of the 7320 system. Note that power supplies, disks, and fan modules are hot-pluggable on the storage controller.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>FRU/CRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F300-2233-02</td>
<td>RoHS 760W Power Supply</td>
<td>CRU</td>
</tr>
<tr>
<td>F541-2075-04</td>
<td>Buss Bar Power, 1U</td>
<td>FRU</td>
</tr>
<tr>
<td>F542-0184-01</td>
<td>DR, 3Gb SATA</td>
<td>CRU</td>
</tr>
<tr>
<td>F542-0330-01</td>
<td>2.5&quot; 512GB ReadZilla SSD</td>
<td>CRU</td>
</tr>
<tr>
<td>F541-276-01</td>
<td>ASSY, FAN Module</td>
<td>CRU</td>
</tr>
<tr>
<td>F541-4274-02</td>
<td>Fan Board (1U)</td>
<td>FRU</td>
</tr>
</tbody>
</table>

Following is the complete list of replaceable PCIe cards for the 7320 system.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>FRU/CRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F371-4325-01</td>
<td>8Gb FC HBA (PCIe)</td>
<td>CRU</td>
</tr>
<tr>
<td>F375-3609-02</td>
<td>PCA, SAS 6GBS 8 Port (PCIe)</td>
<td>CRU</td>
</tr>
<tr>
<td>F375-3606-03</td>
<td>Dual Port (x4) IB HCA (PCIe)</td>
<td>CRU</td>
</tr>
<tr>
<td>F375-3696-01</td>
<td>Dual Port CX2-4XQDR (PCIe)</td>
<td>CRU</td>
</tr>
<tr>
<td>F375-3617-01</td>
<td>2X10GbE SFP+, X8 (PCIe)</td>
<td>CRU</td>
</tr>
<tr>
<td>F375-3481-01</td>
<td>NIC Card Quad Port 1GigE Cu (PCIe)</td>
<td>CRU</td>
</tr>
<tr>
<td>F511-1496-04</td>
<td>Sun Fishworks Cluster Controller 200 (PCIe)</td>
<td>FRU</td>
</tr>
</tbody>
</table>
7320 Rear Panel

Following is an illustration of the 7320 storage controller rear panel. The Sun 375-3609 belongs in slot 2, cannot be installed in any other slots, and a second is not offered as an option.

![7320 Rear Panel Illustration]

**Figure Legend**

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power supplies</td>
</tr>
<tr>
<td>2</td>
<td>SC summary status LEDs</td>
</tr>
<tr>
<td>3</td>
<td>Serial management port</td>
</tr>
<tr>
<td>4</td>
<td>Network management port</td>
</tr>
<tr>
<td>5</td>
<td>Ethernet ports</td>
</tr>
<tr>
<td>6</td>
<td>PCIe slots</td>
</tr>
</tbody>
</table>

7320 Single and Cluster Controller Configurations

The single controller base configuration is 24GB RAM, 2x2.4GHz Quad-Core processors, one external SAS HBA, and four 10/100/1000 Ethernet ports.

This table describes base configurations for the 7320.

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
<th>Mfg Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA7320-24A</td>
<td>S7320, 2xCPU, 24GB, Single</td>
<td>597-1060-01</td>
</tr>
<tr>
<td>TA7320-24A-HA</td>
<td>S7320, 2xCPU, 24GB, Cluster</td>
<td>597-1061-01</td>
</tr>
</tbody>
</table>

Following are the PCIe configuration options for a single controller. All PCIe cards are low-profile, and must be fitted with low-profile mounting brackets.

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Part Number</th>
<th>Vendor Part</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>Intel Niantic</td>
<td>DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3696-01</td>
<td>Mellanox</td>
<td>InfiniBand HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3606-03</td>
<td>MHJH29-XTC</td>
<td>InfiniBand HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>0</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>Intel EXPI9404PT</td>
<td>QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
</tbody>
</table>
### 7320 Cluster Configurations

The 7320 cluster base configuration is 24GB RAM, 2x2.4GHz Quad-Core processors, one external SAS HBA, and four 10/100/1000 Ethernet ports, and a Cluster card. The Sun Storage 7420C Cluster Upgrade Kit (XOPT 594-4680-01) contains two cluster cards with cables for converting two 7320 or two 7420 controllers to a cluster.

The following options are available for clustered storage controllers. Note that both storage controllers in a cluster must be configured identically with regard to card configurations and all optional NIC/HBA card configurations chosen for clustered storage controllers must be identical in both chassis.

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Part Number</th>
<th>Vendor Part</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>QLogic</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>QLogic</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>Intel Niantic</td>
<td>DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3696-01</td>
<td>Mellanox</td>
<td>InfiniBand HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3606-03</td>
<td>MHJH29-XTC</td>
<td>InfiniBand HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>Intel EXPI9404PT</td>
<td>QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>QLogic</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
<tr>
<td>2</td>
<td>PCIe</td>
<td>375-3609-03</td>
<td>Sun Thebe</td>
<td>External SAS HBA</td>
<td>Base Configuration</td>
</tr>
</tbody>
</table>

### 7320 Connector Pinouts

The serial management connector (SERIAL MGT) is an RJ-45 connector and a terminal connection to the SP console.
The network management connector (NET MGT) is an RJ-45 connector on the motherboard and provides an alternate terminal interface to the SP console.

There are four RJ-45 Gigabit Ethernet connectors (NET0, NET1, NET2, NET3) located on the motherboard that operate at 10/100/1000 Mbit/sec. These network interfaces must be configured before use.

**7320 Storage Disk Shelf**

The 7320 single and cluster controller configurations allow a single chain of 1 to 4 Sun Disk Shelves. Any combination of disk-only and Logzilla-capable shelves may be combined within the chain in any order. The cabling configurations are unchanged. Half-populated shelf configurations are not supported.

**See Also**

- Disk Shelf Overview
- Disk Shelf Details
- Controller Details

**7420 Hardware Overview**

Use the information on this page as a preparation reference for servicing replaceable components of 7420 controllers. Refer to the following for procedural instructions:

- Controller Tasks - replace system controller components
- Disk Shelf Tasks - replace disk shelf components
Chassis Overview

The Sun ZFS Storage 7420 Appliance consists of either a single storage controller, or two storage controllers in a high availability cluster configuration, and one to 24 Sun Disk shelves. Refer to the [http://www.oracle.com/us/products/servers-storage/storage/unified-storage/index.html](http://www.oracle.com/us/products/servers-storage/storage/unified-storage/index.html) for the most recent component specification.

The 3U chassis form factor dimensions are as follows:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Measurement</th>
<th>Dimension</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>13.3 cm/5.25 in</td>
<td>Depth</td>
<td>70.6 cm/27.8 in</td>
</tr>
<tr>
<td>Width</td>
<td>43.7 cm/17.19 in</td>
<td>Weight</td>
<td>16.36 kg/96 lbs</td>
</tr>
</tbody>
</table>

Front Panel

![Front Panel Diagram]

**Figure Legend**

1. Locator LED and button (white)
2. Service Required LED (amber)
3. Power/OK LED (green)
4. Power button
5. Service Processor (SP) OK LED (green)
6. Fan/CPU/Memory Service Required LED
7. Power Supply (PS) Service Required LED
8. Over Temperature Warning LED
9. USB 2.0 Connectors
10. DB-15 video connector
11. SATA DVD drive (optional)
12. Boot drive 0
13. Boot drive 1 (required)
14. Solid state drive 2 (optional)
15. Solid state drive 3 (optional)
16. Solid state drive 4 (optional)
17. Solid state drive 5 (optional)
The 500GB boot drives (HDDs) reside in slots 0 and 1 as a mirrored set, and Sun Storage Readzilla 512GB solid state drives (SSDs), may optionally fill, in order, slots 2 through 5. Each storage controller may have 0, 2, 3, or 4 Readzilla devices.

### Rear Panel

The following graphic shows the 7420 rear panel. Base configuration HBAs are not depicted in this illustration.
Internal Boards

The 7420 storage controller chassis has the following boards installed. Field-replaceable units (FRUs) should only be replaced by trained Oracle service technicians.

- **Motherboard** - The motherboard is a FRU and includes CPU modules, slots for eight DIMM risers, memory control subsystems, and the service processor (SP) subsystem. The SP subsystem controls the host power and monitors host system events (power and environmental). The SP controller draws power from the host’s 3.3V standby supply rail, which is available whenever the system is receiving AC input power, even when the system is turned off.

- **Power Distribution Board** - The power distribution board is a FRU and distributes main 12V power from the power supplies to the rest of the system. It is directly connected to the Vertical PDB card, and to the motherboard through a bus bar and ribbon cable. It also supports a top cover interlock (“kill”) switch. In the storage controller, the power supplies connect to the power supply backplane which connects to the power distribution board.

- **Vertical PDB Card** - The vertical power distribution board, or Paddle Card is a FRU and serves as the interconnect between the power distribution board and the fan power boards, hard drive backplane, and I/O board.

- **Power Supply Backplane Card** - This board connects the power distribution board to power supplies 0 and 1.

- **Fan Power Boards** - The two fan power boards are FRUs and carry power to the storage controller fan modules. In addition, they contain fan module status LEDs and transfer I2C data for the fan modules.

- **Drive Backplane** - The six-drive backplane is a FRU and includes the connectors for the drives, as well as the interconnect for the I/O board, Power and Locator buttons, and system/component status LEDs. Each drive has an LED indicator for Power/Activity, Fault, and Locate.

Components

The components of the storage controller are shown in the following figure and identified in the table.
**CPU and Memory**

The 7420 appliance supports two or four CPUs, with two memory risers required by each CPU. Four or eight 4GB or 8GB DDR3 DIMMs are installed on each riser, accommodating up to 256GB of memory for two CPUs, or up to 512GB for four CPUs. Empty CPU sockets must have memory riser fillers installed for proper cooling.

The new 7420 controller has different CPU options and memory risers, but is visually identical to the existing 7420 controller (with 1.86GHz or 2.00GHz CPUs). The new 7420 controller supports the following configurations:
- Two, four, or eight 8GB DDR3 DIMMs installed on each riser, accommodating 128GB, 256GB, or 512GB of memory for 2.0GHz CPUs.
- Four or eight 8GB DDR3 DIMMs installed on each riser, accommodating 256GB or 512GB of memory for 2.0GHz and 2.4GHz CPUs.
- Four or eight 16GB DDR3 DIMMs installed on each riser, accommodating 512GB or 1TB of memory for 2.4GHz CPUs.

Refer to the service label on the cover for DIMM placement information. On every memory riser, slots D0, D2, D4, and D6 must be populated; optionally, slots D1, D3, D5, and D7 may be populated as a group on all installed memory risers. All DIMMs in the system must be identical.
DIMM names in appliance logs and the Maintenance > Hardware view are displayed with the full name, such as /SYS/MB/P0/D7.

**Fan Modules**

The Fan Modules and Fan Module LEDs of the storage controller are shown in the following figure. The following LEDs are lit when a fan module fault is detected:

- Front and rear Service Action Required LEDs
- Fan Module Service Action Required (TOP) LED on the front of the server
- Fan Fault LED on or adjacent to the faulty fan module

The system Overtemp LED might light if a fan fault causes an increase in system operating temperature.
**PCle Cards**

The Sun Fishworks Cluster Controller 200 belongs in the Cluster slot (C) only. SAS HBAs must all be of the same type, installed in slots 1 and 8, with an optional third SAS HBA in slot 2, and an optional fourth SAS HBA in slot 7. PCle slots should be populated in the following order: 9 (if used), 0 (if used), 7, 2, 6, 3, 5, 4.

**Connectors**

The serial management connector (SER MGT) is an RJ-45 connector and provides a terminal connection to the SP console.

The network management connector (NET MGT) is an RJ-45 connector and provides a LAN interface to the SP console.

There are four RJ-45 Gigabit Ethernet connectors (NET0, NET1, NET2, NET3) located on the motherboard that operate at 10/100/1000 Mbit/sec. These network interfaces must be configured before use.

---

**7420 Standalone and Cluster Controller Configurations**

The following tables show the configuration options for a single standalone 7420 controller or two clustered 7420 controllers. All PCle cards are low-profile, and must be fitted with low-profile mounting brackets.

**Standalone Base Options**

This table describes 7420 standalone base configurations. Note: both 7100566 and 7100568 include a cluster card and can be configured as a single standalone or two clustered configuration.

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
<th>Mfg Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA7420-26A</td>
<td>S7420, no DIMMs, 2x1.86GHz-6C</td>
<td>597-0789-01</td>
</tr>
<tr>
<td>TA7420-28A</td>
<td>S7420, no DIMMs, 2x2.00GHz-8C</td>
<td>597-0790-01</td>
</tr>
<tr>
<td>7100566</td>
<td>S7420, no DIMMs, 4x2GHz-8C</td>
<td>7014572</td>
</tr>
<tr>
<td>7100568</td>
<td>S7420, no DIMMs, 4x2.40GHz-10C</td>
<td>7014573</td>
</tr>
</tbody>
</table>
Cluster Base Options

This table describes 7420 cluster base configurations.

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
<th>Mfg Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA7420-26AR00HA</td>
<td>S7420, no DIMMs, 2x1.86GHz-6C, Cluster</td>
<td>597-0795-01</td>
</tr>
<tr>
<td>TC7420-28AR00HA</td>
<td>S7420, no DIMMs, 2x2.00GHz-8C, Cluster</td>
<td>597-0792-01</td>
</tr>
<tr>
<td>7100566</td>
<td>S7420, no DIMMs, 4x2GHz-8C, Cluster</td>
<td>7014572</td>
</tr>
<tr>
<td>7100568</td>
<td>S7420, no DIMMs, 4x2.40GHz-10C, Cluster</td>
<td>7014573</td>
</tr>
</tbody>
</table>

NIC/HBA Options

This table describes NIC/HBA options for 7420 single and cluster configurations.

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
<th>Mfg Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG-XPCIESAS-GEN2-Z</td>
<td>2-port External Sun Thebe SAS (x4) HBA, PCIe</td>
<td>F375-3609-03</td>
</tr>
<tr>
<td>SG-XPCIE2FC-QF8-Z</td>
<td>2-port FC HBA, 8Gb, PCIe</td>
<td>594-5684-01</td>
</tr>
<tr>
<td>X4446A-Z</td>
<td>4-port PCIe Quad GigE UTP</td>
<td>594-4024-01</td>
</tr>
<tr>
<td>X4237A</td>
<td>2-port 4X1B HCA PCIe</td>
<td>594-5862-02</td>
</tr>
<tr>
<td>X1109A-Z</td>
<td>2-port 10Gig SFP+ NIC, PCIe</td>
<td>594-6039-01</td>
</tr>
<tr>
<td>X2129A</td>
<td>XCVRm 850NM, 1/10GPS, Short Reach, SFP</td>
<td>594-6508-01</td>
</tr>
</tbody>
</table>

PCIe Options

This table describes the supported single and clustered PCIe configuration option summary for 7420.

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>Sun Part Number</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
<tr>
<td>1</td>
<td>PCIe</td>
<td>375-3609-02</td>
<td>DP SAS-2 HBA</td>
<td>Base Configuration</td>
</tr>
<tr>
<td>2</td>
<td>PCIe</td>
<td>375-3609-02</td>
<td>DP SAS-2 HBA</td>
<td>Additional Optional Back-end</td>
</tr>
<tr>
<td>2</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>2</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
<tr>
<td>2</td>
<td>PCIe</td>
<td>375-3606-01</td>
<td>Infiniband HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>Slot</td>
<td>Type</td>
<td>Sun Part Number</td>
<td>Description</td>
<td>Note</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-----------------</td>
<td>--------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>2</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>3</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>3</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
<tr>
<td>3</td>
<td>PCIe</td>
<td>375-3606-01</td>
<td>Infiniband HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>3</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>4</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>4</td>
<td>PCIe</td>
<td>375-3606-01</td>
<td>Infiniband HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>4</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>C</td>
<td>PCIe</td>
<td>511-1496-04</td>
<td>Cluster Controller 200</td>
<td>Cluster Base Configuration ONLY</td>
</tr>
<tr>
<td>5</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>5</td>
<td>PCIe</td>
<td>375-3606-01</td>
<td>Infiniband HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>5</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>6</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>6</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
<tr>
<td>6</td>
<td>PCIe</td>
<td>375-3606-01</td>
<td>Infiniband HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>6</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>7</td>
<td>PCIe</td>
<td>375-3609-02</td>
<td>DP SAS-2 HBA</td>
<td>Additional Optional Back-end</td>
</tr>
<tr>
<td>7</td>
<td>PCIe</td>
<td>375-3481-01</td>
<td>QP Copper NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>7</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
<tr>
<td>7</td>
<td>PCIe</td>
<td>375-3606-01</td>
<td>Infiniband HCA</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>7</td>
<td>PCIe</td>
<td>375-3617-01</td>
<td>DP Optical 10GE NIC</td>
<td>Optional Recommended Front-end</td>
</tr>
<tr>
<td>8</td>
<td>PCIe</td>
<td>375-3609-02</td>
<td>DP SAS-2 HBA</td>
<td>Base Configuration</td>
</tr>
<tr>
<td>9</td>
<td>PCIe</td>
<td>371-4325-01</td>
<td>8Gb DP FC HBA</td>
<td>Optional FC Target or Initiator (Backup)</td>
</tr>
</tbody>
</table>

**Attached Storage**

The 7420 does not contain primary storage within its chassis, and therefore connects to external storage shelves and cages.
**Disk Shelf**

The 7420 single and cluster controller configurations allow one to four chains of 1 to 6 Sun Disk Shelves. Any combination of disk-only and Logzilla-capable shelves may be combined within the chain in any order. The cabling configurations are unchanged. Half-populated shelf configurations are not supported.

See Disk Shelf Overview for component specifications and diagrams.

---

**7x20 CRU Maintenance Procedures**

This section provides instructions on how to replace customer replaceable components (CRUs) in Oracle’s Sun ZFS Storage 7120, 7320, and 7420 controllers.

Refer to Disk Shelf Details for replacing expansion storage shelf components.

**Prerequisites**

Read the information in the overview section for your model to become familiar with the replaceable parts of the system:

- 7120 Overview
- 7320 Overview
- 7420 Overview

**Caution:** Read and follow the instructions in the Safety Information and Required Tools and Information sections.

**Safety Information**

This section contains safety information that you must follow when servicing the storage system. For your protection, observe the following safety precautions when setting up your equipment:

- Do not remove the side panels, or run the storage system with the side panels removed. Hazardous voltage is present that could cause injury. The covers and panels must be in place for proper air flow to prevent equipment damage.
- Follow all cautions, warnings, and instructions marked on the equipment and described in Important Safety Information for Sun Hardware Systems.
■ Ensure that the voltage and frequency of your power source match the voltage inscribed on the electrical rating label.

■ Follow the electrostatic discharge safety practices. Electrostatic discharge (ESD) sensitive devices, such as PCI cards, HDDs, SSDs, and memory cards, require special handling. Circuit boards and HDDs contain electronic components that are extremely sensitive to static electricity. Ordinary amounts of static electricity from clothing or the work environment can destroy the components located on these boards. Do not touch the components without using antistatic precautions, especially along the connector edges.

Required Tools and Information

The following tools are needed to service the CRUs:

■ Antistatic wrist strap - Wear an antistatic wrist strap and use an antistatic mat when handling components such as HDDs, LCCs, or PCI cards. When servicing or removing storage controller components, attach an antistatic strap to your wrist and then to a metal area on the chassis. Following this practice equalizes the electrical potentials between you and the storage controller.

■ Antistatic mat - Place static-sensitive components on an antistatic mat.

■ No. 2 Phillips screwdriver

■ Nonconducting, No.1 flat-blade screwdriver or equivalent

■ Nonconducting stylus or pencil (to power on the storage controller)

Chassis Serial Number

To obtain support for your storage controller or to order new parts, you need your chassis serial number. You can find a chassis serial number label on the storage controller front panel on the left side. Another label is on the top of the storage controller. Alternatively, click the Sun logo in the BUI masthead to obtain the serial number or issue the following command:

hostname: *maintenance hardware show*

Controller Replacement Tasks

7x20 Controller Replacement Tasks

HDD or SSD

1. Identify the failed HDD or SSD by going to the Maintenance > Hardware section of the BUI and clicking the drive details icon . If you are physically at the system, the amber Service Required indicator on the HDD or SSD should be illuminated.
2. If you are not physically at the system, turn on the locator indicator by clicking the locator icon.
3. Push the release button on the HDD or SSD to open the latch.
4. Grasp the latch (2), and pull the drive out of the drive slot.

5. After 15 seconds, navigate to the Hardware > Maintenance screen, and click the details icon on the system controller to verify that the software has detected that the drive is not present.
6. Slide the replacement drive into the slot until it is fully seated.

7. Close the latch to lock the drive in place.

The Sun ZFS Storage system software automatically detects and configures the new drive. The device appears in the BUI Maintenance > Hardware screen when you view details for the controller, drive shelf or cage.

Fan Module

Fan modules are hot-swappable and can be removed and installed while the storage controller is running without affecting other hardware capabilities.

Caution: Operating a controller for an extended period of time with fans removed reduces the effectiveness of the cooling system. For this reason, the replacement fan should be unpacked in advance and ready to insert into the controller chassis as soon as the faulted fan is removed.
**7120 or 7320**: The fan modules and status indicators are hidden under a fan door in the 7120 and 7320 storage controllers. Components may differ slightly between the 7120 and 7320, however service procedures for each are identical. The illustration shows the 7320.

Leaving the door open for more than 60 seconds while the storage controller is running might cause it to overheat and shut down.

**7420**: The following illustration shows the fan modules in the 7420 storage controller.

1. To locate the chassis you want to service, click the associated locate icon on the Maintenance > Hardware screen of the BUI or issue the `set /SYS/LOCATE status=on` command at the service processor (SP) prompt. The locate LED will flash on the controller chassis.
2. Verify that no cables will be damaged or will interfere when the storage controller is extended from the rack.
3. From the front of the storage controller, release the two slide release latches.
4. While squeezing the slide release latches, slowly pull the storage controller forward until the slide rails latch.
5. **7120 or 7320**: To replace the fan module:
   - Open the fan module door while unlatching the release tabs on the door.
Identify the faulted fan module by locating the corresponding Service Required status indicator or by clicking the locate icon on Maintenance > Hardware screen of the BUI for the fan you want to replace.

Using thumb and forefinger, pull the fan module up and out.

Install the replacement fan module into the storage controller fan slot. Note: The fan must be replaced within one minute to avoid controller shutdown.

Apply firm pressure to fully seat the fan module.
Verify that the Fan OK status indicator is lit, and that the fault status indicator on the replaced fan module is dim.
Close the top cover door immediately after replacing the fan to maintain airflow in the storage controller.

6. **7420** To replace the fan module:
   Identify the faulted fan module by locating the corresponding Service Required status indicator or by clicking the locate icon on Maintenance > Hardware screen of the BUI for the fan you want to replace.
   Lift the latch at the top of the fan module to unlock the fan module.
Pull the fan module out.

Unlock and insert the 7420 fan module.
Apply firm pressure to fully seat the fan module.
Verify that the Fan OK status indicator is lit and that the fault status indicator on the replaced fan module is dim.
7. Verify that the Top Fan status indicator, the Service Required status indicators, and the Locator status indicator/Locator button are dim.
8. Push the release tabs on the side of each rail and slowly slide the storage controller into the rack.

Power Supply

Storage controllers are equipped with redundant hot-swappable power supplies. If a power supply fails and you do not have a replacement, leave the failed power supply installed to ensure proper air flow. A faulted power supply is indicated by an amber colored status LED.
1. Gain access to the rear of the storage controller where the faulted power supply is located.
2. If a cable management arm (CMA) is installed, press and hold the CMA release tab and rotate the arm out of the way.
3. Disconnect the power cord from the faulted power supply.
4. Remove the power supply.
   **7120 or 7320**: Release the latch, then remove the power supply. Components may differ slightly between the 7120 and 7320, however service procedures for each are identical. The illustration shows the 7320.
   **7420**: Grasp the power supply handle and press the release latch to remove the power supply.
5. Align the replacement power supply with the empty power supply chassis bay.
6. Slide the power supply into the bay until it is fully seated. The following figure shows the 7420 power supply.

7. Connect the power cord to the power supply.
8. Verify that the green AC Present status indicator is lit.
9. Close the CMA, inserting the CMA into the rear left rail bracket.
10. Go to the Maintenance > Hardware screen of the BUI. Click the details icon for the controller and then click power supply to verify that the status icon is green for the newly installed power supply.

Memory

To identify a specific memory module that has faulted, you must open the storage controller and use the amber status LEDs on the motherboard. To identify a general memory fault, go to the Maintenance > Hardware screen of the BUI, and click on the details icon on the controller. Then click DIMMs to locate the faulted component, indicated by the warning icon.

Caution: This procedure requires that you handle components that are sensitive to static discharge, which can cause the component to fail. To avoid damage, wear an antistatic wrist strap and use an antistatic mat when handling components.

You must shut down the appliance before beginning this task. Note that there will be a loss of access to the storage unless the system is in a clustered configuration. Shut down the appliance using one of the following methods:

- Log in to the BUI and click the power icon on the left side of the masthead.
- SSH into the appliance and issue the `maintenance system poweroff` command.
- SSH or serial console into the service processor (SP) and issue the `stop /SYS` command.
- Use a pen or nonconducting pointed object to press and release the Power button on the front panel.
- To initiate emergency shutdown during which all applications and files will be closed abruptly without saving, press and hold the power button for at least four seconds until the Power/OK status indicator on the front panel flashes, indicating that the storage controller is in standby power mode.
1. Disconnect the AC power cords from the rear panel of the storage controller.
2. Verify that no cables will be damaged or will interfere when the storage controller is extended from the rack.
3. From the front of the storage controller, release the two slide release latches.
4. While squeezing the slide release latches, slowly pull the storage controller forward until the slide rails latch.
5. **7120 or 7320**: Components may differ slightly between the 7120 and 7320, however service procedures for each are identical. The illustration shows the 7320. To remove the top cover:
   - Unlatch the fan module door, pull the two release tabs back, rotate the fan door to the open position and hold it there.
   - Press the top cover release button and slide the top cover to the rear about a half-inch (1.3 cm).
   - Lift up and remove the top cover.
   - Also remove the air baffle by pressing the air baffle connectors outward and lifting the air baffle up and out of the server.
6. **7420**: To remove the top cover:
Simultaneously lift both cover latches in an upward motion.

Lift up and remove the top cover.

7. To locate the DIMM you want to service, press the Fault Remind Button on the storage controller.

The following illustration shows the Fault remind button on the 7120.
The following illustration shows the Fault remind button on the 7420.

8. **7420**: Identify the memory riser that hosts the faulted DIMM by the Service Required status indicator. Lift the memory riser straight up to remove it from the motherboard, and place it on an antistatic mat.

9. Rotate both DIMM slot ejectors outward as far as they will go and carefully lift the faulted DIMM straight up to remove it from the socket.
10. Line up the replacement DIMM with the connector, aligning the notch with the key to ensure that the component is oriented correctly.

11. Push the DIMM into the connector until the ejector tabs lock the component in place.

12. **7120 or 7320**: Components may differ slightly between the 7120 and 7320, however service procedures for each are identical. The illustration shows the 7320. To replace the cover:

   - Place the top cover on the chassis so that it hangs over the rear of the storage controller by about an inch (2.5 cm).
   - Slide the top cover forward until it seats.
   - Close the fan cover and engage the fan cover latches. The cover must be completely closed for the storage controller to power on.

13. **7420**: To replace the cover:
Push the memory riser module into the associated CPU memory riser slot until the riser module locks in place.

Place the top cover on the chassis so that it is forward of the rear of the storage controller by about an inch (2.5 cm).

Slide the top cover toward the rear of the chassis until it seats and press down on the cover with both hands until both latches engage.
14. Push the release tabs on the side of each rail and slowly push the storage controller into the rack.

The following image shows the 7420 chassis.

15. Connect the power cords to the power supplies.
16. Verify that standby power is on, indicated by the Power/OK status indicator flashing on the front panel about two minutes after the power cords are plugged in.
17. Use a pen or other pointed object to press and release the recessed Power button on the storage controller front panel.

The Power/OK status indicator next to the Power button lights and remains lit. The Maintenance > Hardware screen of the BUI provides status of the replacement on the Details page for DIMMs.
**PCle Cards and Risers**

Go to the Maintenance > Hardware screen of the BUI and click the details icon 🏗️ on the controller, and then click Slots to locate the faulted component.

**Caution:** This procedure requires that you handle components that are sensitive to static discharge, which can cause the component to fail. To avoid damage, wear an antistatic wrist strap and use an antistatic mat when handling components.

Note that the 7120 Sun Flash Accelerator F20 card is a FRU and must be replaced by an Oracle service representative.

All HBAs must be of the same type. Ensure that you upgrade your system software before installing a newly-released HBA.

You must shut down the controller before beginning this task. Note that there will be a loss of access to the storage unless the system is in a clustered configuration. Shut down the appliance using one of the following methods:

- Log in to the BUI, and click the power icon ⚡ on the left side of the masthead.
- SSH into the storage system and issue the `maintenance system poweroff` command.
- SSH or serial console into the service processor (SP) and issue the `stop /SYS` command.
- Use a pen or non-conducting pointed object to press and release the Power button on the front panel.
- To initiate emergency shutdown, wherein all applications and files will be closed abruptly without saving, press and hold the power button for at least four seconds until the Power/OK status indicator on the front panel flashes, indicating that the storage controller is in standby power mode.

1. Disconnect the AC power cords from the rear panel of the storage controller.
2. Verify that no cables will be damaged or will interfere when the storage controller is extended from the rack.
3. From the front of the storage controller, release the two slide release latches.
4. While squeezing the slide release latches, slowly pull the storage controller forward until the slide rails latch.
5. **7120 or 7320**: To remove the top cover:
   - Unlatch the fan module door, pull the two release tabs back, rotate the fan door to the open position and hold it there.
   - Press the top cover release button and slide the top cover to the rear about a half-inch (1.3 cm).
   - Lift up and remove the top cover.
6. **7420**: To remove the top cover:

---

7x20
Simultaneously lift both cover latches in an upward motion.

Lift up and remove the top cover.

7. Locate the PCIe card position in the storage controller, see Single and Cluster Controller Configurations for the 7320, the 7120 Overview, or 7420 Overview.

8. **7120 or 7320**: To replace the PCIe card:
   - Disconnect any data cables connected to the cards on the PCIe riser you want to replace.
   - Label the cables for proper connection later.
   - Loosen the two captive Phillips screws on the end of the rear panel crossbar and lift the crossbar up and back to remove it.
   - Loosen the captive retaining screw holding the front end of the riser and the Phillips screw on the end of the riser.
Lift the riser up to remove it from the storage controller.

Carefully remove the PCIe card from the riser board connector and clean the slot with filtered, compressed air if necessary.

Seat the replacement PCIe card in the slot of the riser and connect the cables.

Align the riser, together with any attached PCIe cards, with the intended location on the motherboard, and carefully insert it into its slot.

Slide the back of the riser into the motherboard rear panel stiffener. Tighten the screw that secures the riser to the motherboard.
Replace the rear panel PCI crossbar by sliding it down over the PCIe risers, ensuring the crossbar is secured with two captive Phillips screws.

9. **7420**: To replace the PCIe card:

Disengage the PCIe card slot crossbar from its locked position and rotate the crossbar into an upright position.

Remove the retaining screw that holds the PCIe card to the chassis.

Carefully remove the PCIe card from the connector and clean the slot with filtered, compressed air if necessary.

Install the replacement PCIe card into the PCIe card slot.

Install the retaining screw to hold the PCIe card to the chassis.

Return the crossbar to its closed and locked position.
10. **7120 or 7320**: Components may differ slightly between the 7120 and 7320, however service procedures for each are identical. The illustration shows the 7320. To install the top cover:
   Place the top cover on the chassis so that it hangs over the rear of the storage controller by about an inch (2.5 cm), then slide the top cover forward until it seats.
   Close the fan cover and engage the fan cover latches. The cover must be completely closed for the storage controller to power on.

11. **7420**: To install the top cover:
   Place the top cover on the chassis (1) so that it is forward of the rear of the storage controller by about an inch (2.5 cm).
   Slide the top cover toward the rear of the chassis (2) until it seats.
   Press down on the cover with both hands until both latches engage.

12. Push the release tabs on the side of each rail and slowly push the storage controller into the rack, making sure no cables obstruct the path of the controller.
13. Connect the power cords to the power supplies.

14. Verify that standby power is on, indicated by the Power/OK status indicator flashing on the front panel about two minutes after the power cords are plugged in.

15. Use a pen or other pointed object to press and release the recessed Power button on the storage controller front panel. The Power/OK status indicator next to the Power button lights and remains lit.

16. Connect data cables to the PCIe card, routing them through the cable management arm.

17. Go to the Maintenance > Hardware screen of the BUI, and click the details icon  on the controller. Then, click Slots to verify the status of the new component. The status indicator should appear green.

18. Install the disk shelf and connect the expansion storage.

Battery

You might need to replace the battery if the storage controller fails to maintain the proper time when powered off and disconnected from the network. You will need a small (No.1 flat-blade) non-metallic screwdriver or equivalent.

You must shut down the appliance before beginning this task. Note that there will be a loss of access to the storage unless the system is in a clustered configuration. Shut down the appliance using one of the following methods:

- Login to the BUI and click the power icon  on the left side of the masthead.
- SSH into the storage system and issue the maintenance system poweroff command.
- SSH or serial console into the service processor and issue the stop /SYS command.
- Use a pen or non-conducting pointed object to press and release the Power button on the front panel.
- To initiate emergency shutdown, wherein all applications and files will be closed abruptly without saving, press and hold the power button for at least four seconds until the Power/OK status indicator on the front panel flashes, indicating that the storage controller is in standby power mode.

1. Disconnect the AC power cords from the rear panel of the storage controller.

2. Verify that no cables will be damaged or will interfere when the storage controller is extended from the rack.

3. From the front of the storage controller, release the two slide release latches.

4. While squeezing the slide release latches, slowly pull the storage controller forward until the slide rails latch.

5. 7120 or 7320: To remove the top cover:
   Unlatch the fan module door, pull the two release tabs back, rotate the fan door to the open position and hold it there.
Press the top cover release button and slide the top cover to the rear about a half-inch (1.3 cm).

Lift up and remove the top cover.

6. **7420**: To remove the top cover:

   Simultaneously lift both cover latches in an upward motion.

7. Lift up and remove the top cover.

8. Using a small, non-metallic screwdriver, press the latch and remove the battery from the motherboard. The 7420 battery is shown here.
The following figure shows the 7120 battery.

9. Press the replacement battery into the motherboard with the positive side (+) facing upward.

10. **7120 or 7320**: Components may differ slightly between the 7120 and 7320, however service procedures for each are identical. The illustration shows the 7320. To install the top cover:

   Place the top cover on the chassis so that it hangs over the rear of the storage controller by about an inch (2.5 cm), then slide the top cover forward until it seats.

   Close the fan cover and engage the fan cover latches. The cover must be completely closed for the storage controller to power on.

11. **7420**: To install the top cover:

   Place the top cover on the chassis (1) so that it is forward of the rear of the storage controller by about an inch (2.5 cm).

   Slide the top cover toward the rear of the chassis (2) until it seats.
Press down on the cover with both hands until both latches engage.

12. Push the release tabs on the side of each rail and slowly push the storage controller into the rack, making sure no cables obstruct the path of the controller.

13. Connect the power cords to the power supplies.

14. Verify that standby power is on, indicated by the Power/OK status indicator flashing on the front panel about two minutes after the power cords are plugged in.

15. Use a pen, or other pointed object, to press and release the recessed Power button on the storage controller front panel. The Power/OK status indicator next to the Power button lights and remains lit.

16. Connect data cables to the PCIe card, routing them through the cable management arm.

17. When the system has finished booting, log in and set the time using the steps in the BUI Clock task.

**HDD or SSD**

The installation for an hard disk drive (HDD) or a solid state drive (SSD) is the same.

**Note:** SSDs are restricted to slots 30 and 31 in each of the 12 drive cages. Slot 30 must be populated before slot 31.

1. Identify the failed HDD or SSD by going to the Maintenance > Hardware section of the BUI, and clicking the drive details icon . If you are physically at the system, the amber Service Required indicator on the HDD or SSD should be illuminated.
2. If you are not physically at the system, turn on the locator indicator by clicking the locator icon.
3. Push the release button on the HDD or SSD to open the latch.
4. Grasp the latch (2), and pull the drive out of the drive slot.
5. After 15 seconds, navigate to the Hardware > Maintenance screen, and click the details icon on the system controller to verify that the software has detected that the drive is not present.
6. Slide the replacement drive into the slot until it is fully seated.
7. Close the latch to lock the drive in place.

The Sun ZFS Storage system software automatically detects and configures the new drive. The device appears in the BU1 Maintenance > Hardware screen when you view details for the controller, drive shelf or cage.

**Fan Tray**

Fan trays are hot-swappable and can be removed and installed while the storage controller is running without affecting other hardware capabilities. An amber colored status indicator indicates a faulted fan module.

**Caution:** Fan trays must not be removed from the cabinet for more than one minute. Removal of a fan tray for more than one minute will result in the cabinet overheating and automatically shutting down. You must unpack and prepare the replacement fan tray in advance so that you can insert it into the cabinet as soon as the faulted fan tray is removed.

1. Identify the faulted fan module by locating the corresponding Service Required status indicator or by clicking the icon on the Maintenance > Hardware screen of the BUI for the fan you want to replace.
2. Squeeze the plastic handle, and pull the fan tray out of the system.
3. Unpack the new fan tray, and ensure that the metal locking handle is in the out position.
4. Align the fan tray with the slot, and push the fan tray into the slot, ensuring that the fan tray is fully seated.
5. Squeeze the plastic handle, and rotate the handle into the locked position.
6. Verify that the Fan OK status indicator is lit, and that the Fan Fault status indicator on the replaced fan module is dim.
7. Verify that the Top Fan status indicator, Service Required status indicators, and the Locator status indicator/Locator button are dim.

**Power Supply**

Storage controllers are equipped with redundant hot-swappable power supplies. If a power supply fails and you do not have a replacement, leave the failed power supply installed to ensure proper air flow. A faulted power supply is indicated by an amber colored status LED.

The power supplies are at the front of the cabinet as shown in the following illustration.

1. Release the latch, then pull out the handle.
2. Align the replacement power supply with the empty power supply chassis bay.
3. Slide the power supply into the bay.
4. Close the handle to fully seat the power supply.

5. Verify that the green AC Present status indicator is lit.
6. Go to the Maintenance > Hardware screen of the BUI. Click details icon for the controller and then click power supply to verify that the status icon is green for the newly installed power supply.

**System Indicator Boards**

The system-level indicator boards are located on the front and rear panels under the top disk cage. Both indicator boards can be hot-swapped while the system is running.

Both boards contain the following system-level LEDs:

- Locator (white), which helps you locate the storage system within the data center
- Fault (amber), which indicates a system-level fault
- OK (green), which indicates that the storage system is operating normally

The front-panel indicator board also contains LEDs for components located on the rear panel.
In addition to system-level indicators, the rear panel indicator board also includes LEDs for components on the front panel.

### Front Panel LED Indicators

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>System-level locator</td>
</tr>
<tr>
<td>2</td>
<td>System-level fault</td>
</tr>
<tr>
<td>3</td>
<td>System-level OK</td>
</tr>
<tr>
<td>4</td>
<td>Rear panel fan tray fault</td>
</tr>
<tr>
<td>5</td>
<td>Rear panel drive set fault</td>
</tr>
<tr>
<td>6</td>
<td>Rear panel RCC fault</td>
</tr>
</tbody>
</table>

### Rear Panel LED Indicators

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>System-level locator</td>
</tr>
<tr>
<td>2</td>
<td>System-level fault</td>
</tr>
<tr>
<td>3</td>
<td>System-level OK</td>
</tr>
<tr>
<td>4</td>
<td>Front panel drive set fault</td>
</tr>
<tr>
<td>5</td>
<td>Front panel power supply fault</td>
</tr>
</tbody>
</table>
1. Place a #1 Phillips-head screwdriver in the slot at each end of the indicator board.

2. Rotate the screw drivers out until the plastic locks clear the locking mechanism, and pull the indicator board slightly out of the cabinet to expose the interface connector.

3. Disconnect the interface connector, and remove the indicator board from the cabinet.

4. Remove the replacement board from the packaging.

5. Align the board with the slot, and connect the interface connector.

6. Push the board into the slot, and ensure that the board is fully seated in the slot.

7. Verify that the procedure was successful by logging in to the Sun ZFS Storage appliance software, checking the system status, and clicking the associated locator icon in the Cabinets section of the Maintenance > Hardware BUI page.

**Sun Disk Shelf Overview**

The Sun Disk Shelf SAS-2 is a high-availability serial attached SCSI (SAS) device in a 4U, 24-disk chassis.

Refer to Disk Shelf Tasks for procedural information about replacing disk shelf components.
The main components are hot-swappable, including the SAS Interface Module (SIM) boards and drives, and the dual load-sharing power supplies and fans. This provides a fault-tolerant environment with no single point of failure. System faults are indicated by an amber colored light on the front panel.

Following is the list of replaceable components of the Sun Disk Shelf SAS-2. The SAS-2 (Serial Attached SCSI 2.0) storage fabric supports greater number of targets, greater bandwidth, higher reliability and bigger scale. The scale and reliability improvements are achieved with 2 TB SAS disks you can daisy-chain to a total of 12 shelves (288 total disks). In addition, the new, high-performance SAS-2 HBA is designed for the Sun Storage 7000 series with a standard chip set to support a high-density of target devices, capable of attachment to 1024 targets.

With this new fabric, you are encouraged to apply entire shelves to pools, so you can get the benefits of No Single Point of Failure (NSPF) configurations and striping across the maximum possible number of devices.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>FRU/CRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F542-0194-01</td>
<td>SAS Interface Module (SIM) Assembly</td>
<td>CRU</td>
</tr>
<tr>
<td>F300-2276-01</td>
<td>764W AC Input Power Supply and Fan Assembly</td>
<td>CRU</td>
</tr>
<tr>
<td>F540-7980-01</td>
<td>Z-box with Backplane (J4410 4U chassis)</td>
<td>FRU</td>
</tr>
<tr>
<td>F542-0274-01</td>
<td>2TB - 7.2K SAS HDD Assembly</td>
<td>CRU</td>
</tr>
<tr>
<td>F542-0286-01</td>
<td>SAS 100GB SSD Logzilla</td>
<td>CRU</td>
</tr>
</tbody>
</table>

**SAS2 Sun Disk Shelf Overview**

**Power Supply Exterior**

Power supplies and fans, SIMs, and disks are hot-pluggable on the storage shelf. The following figure shows the exterior of the power supply. Power supply 0 is on the left and power supply 1 is on the right.
Figure Legend

1 Cooling fan status indicator  
2 AC power status indicator  
3 DC power status indicator  
4 Power supply status indicator  
5 Power on/off switch  
6 Power cord tie wrap  
7 Universal power input connector  
8 Right ejection arm and captive screw latch

Drive Locations

The following table shows the shelf drive locations.

<table>
<thead>
<tr>
<th>Drive Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSD20  SSD21  SSD22  SSD23</td>
</tr>
<tr>
<td>HDD16  HDD17  HDD18  HDD19</td>
</tr>
<tr>
<td>HDD12  HDD13  HDD14  HDD15</td>
</tr>
<tr>
<td>HDD8   HDD9   HDD10  HDD11</td>
</tr>
</tbody>
</table>
Drive Locations

<table>
<thead>
<tr>
<th>HDD4</th>
<th>HDD5</th>
<th>HDD6</th>
<th>HDD7</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDD0</td>
<td>HDD1</td>
<td>HDD2</td>
<td>HDD3</td>
</tr>
</tbody>
</table>

The following figure shows the Sun Disk Shelf front panel.

<table>
<thead>
<tr>
<th>Figure Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Locate button and indicator</td>
</tr>
<tr>
<td>2 System fault indicator</td>
</tr>
<tr>
<td>3 System power indicator</td>
</tr>
</tbody>
</table>

Sun Disk Shelf Logzilla SSD Locations

Up to four Logzilla SSDs are supported per disk shelf.

Logzilla SSDs should be populated in order of slots 20, 21, 22, and 23.

Drive Assembly Exterior

The following figure shows the drive assembly exterior for the Sun Disk Shelf.
The following figures show the SIM board exterior of the Sun Disk Shelf SAS-2 and is described in the Legend. SIMs are hot-pluggable on the shelf.

The following figure shows the SIM board and Power Supply exterior indicator LEDs. SIM 0 is on the left, and SIM 1 is on the right.
Figure Legend

1 AC power indicator  6 Power switch
2 DC power indicator  7 Port fault indicator
3 Fan fault indicator  8 Port OK indicator
4 Power supply fault indicator  9 SIM board OK indicator
5 Universal power connector  10 SIM locator indicator

Disk Shelf Configurations

The following tables describe and provide part numbers for the supported expansion storage shelves.

Sun Disk Shelf

<table>
<thead>
<tr>
<th>Mktg Part Number</th>
<th>Description</th>
<th>Mfg Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS2-0BASE</td>
<td>Sun Disk Shelf 24x3.5&quot; SAS-2</td>
<td>597-0764-02</td>
</tr>
<tr>
<td>DS2-HD1T</td>
<td>Sun Disk Shelf 1TB 7.2Krpm, SAS-2, 3.5&quot;</td>
<td>597-0823-01</td>
</tr>
<tr>
<td>DS2-HD2T</td>
<td>Sun Disk Shelf 2TB 7.2Krpm, SAS-2, 3.5&quot;</td>
<td>597-0625-01</td>
</tr>
<tr>
<td>DS2-LOGZ</td>
<td>Sun Disk Shelf 18GB Logzilla SSD</td>
<td>597-0626-01</td>
</tr>
<tr>
<td>DS2-LOGFILLER</td>
<td>Sun Disk Shelf 24x3.5&quot;, Filler for Logzilla SSD</td>
<td>597-0835-01</td>
</tr>
<tr>
<td>DS2-4URK-19U</td>
<td>Sun Disk Shelf Rail Kit</td>
<td>597-1083-01</td>
</tr>
</tbody>
</table>
Disk Shelf Maintenance Procedures

This section provides procedural details for customer replaceable units (CRUs) of any disk shelf in the Sun ZFS Storage 7000 family of products. Refer to Disk Shelf Overview for component specifications and diagrams.

Prerequisites

- Read the information in the overview section for your controller and become familiar with the replaceable parts of the system:
  - 7120 Overview
  - 7420 Overview
  - Follow the instructions in the Electrostatic Discharge Precautions section.

Legacy platform overviews are provided in the following sections:

- 7110
- 7210
- 7310
- 7410
- J4400/J4500 Disk Shelf

Safety Information

Electrostatic Discharge Precautions

- Remove all plastic, vinyl, and foam material from the work area.
- Wear an antistatic wrist strap at all times when handling any CRU.
- Before handling any CRU, discharge any static electricity by touching a grounded surface.
- Do not remove a CRU from its antistatic protective bag until you are ready to install it.
- After removing a CRU from the chassis, immediately place it in an antistatic bag or antistatic packaging.
- Handle any card that is part of a CRU by its edges only and avoid touching the components or circuitry.
- Do not slide a CRU over any surface.
- Limit body movement (which builds up static electricity) during the removal and replacement of a CRU.

Tasks

Shelf Tasks

Replacing a Drive

The shelf drives are hot-swappable and may be replaced without removing power from the shelf. The replacement drive must be of the same capacity and type as the drive to be replaced. To avoid possible data loss when removing non-faulted drives, label each drive with the number of the slot from which it was removed and reinstall each drive into the same slot.

Faulted drives are indicated by an amber LED. Go to the Maintenance > Hardware section of the BUI and double click the shelf thumbnail to view Details for HDDs or to turn on the locator LED.

1. Locate the failed disk drive at the front of the chassis.

2. Press the release button in and to the right to release the ejection lever.
3 Pull the ejection lever fully open to unlock and partially eject the drive from the chassis.

4 Grasp the middle of the drive body and pull it toward you to remove it from the chassis.

5 Ensure the new drive ejection lever is in the fully extended position.

6 Align the new drive with the open slot and slide the drive into the disk chassis.
Push the drive into the chassis slot until the ejection lever engages the chassis connectors and begins to swing closed.

Press the ejection lever closed until it locks in place to seat the drive and lock it into the chassis. The Activity LED with be steady green to indicate a ready state.

Go to the Maintenance > Hardware screen of the BUI. Click 🔄 for the controller and then click HDD to verify that the 🟢 icon is green for the newly installed disk.

### Replacing a Power Supply

The power supplies are hot-swappable and can be replaced without removing power from the system. The power supplies can produce high energy hazard and should only be replaced by instructed individuals with authorized access to the equipment. Failed power supplies are indicated by an amber LED on the rear panel, see the Shelf Rear Panel illustration. Go to the Maintenance > Hardware screen of the BUI. Double click the shelf and then click PSU to view details or ⚫ to turn on the locator LED.

1. **Locate the chassis and failed power supply.**

2. **Ensure the power supply on/off switch is in the "O" off position.**

3. **Disconnect the power cord tie strap from the power cord and unplug the power cord from the power supply.**

4. **Using your thumb and forefinger, unscrew both ejection arm captive screws until loose and swing the ejection arms out until they are fully open.**
5. Pull the power supply out of the chassis, being careful not to damage the circuit board connector extending from the back of the power supply.

6. With the ejection arms fully open, slide the new power supply into the chassis slot until it contacts the chassis backplane and the ejection arms begin to swing closed.
7 Push the ejection arms closed fully and secure both captive screws to seat and secure the power supply in the chassis.

8 Ensure the power supply on/off switch is in the "O" off position.

9 Plug the power cord into the new power supply and attach the power cord tie strap to the power cord.

10 Place the power supply on/off switch to the "I" on position. The Power status LED should be steady green and the Power status LED and Fan LED should be off.

11 Go to the Maintenance > Hardware screen of the BUI. Click 📜 for the controller and then click PSU to verify that the 📜 icon is green for the newly installed power supply.

▼ Replacing a SIM Board

The SIM boards are hot-swappable so you can replace them without removing power to the system. The SIM boards are multi-pathed, so you can remove one of the SIM boards at any time, regardless of the state of the blue SIM OK indicator. A faulted SIM board is indicated by an amber LED.

1 Locate the failed SIM at the back of the disk tray.

2 Label and disconnect the tray interface cables.

3 Use two hands to disconnect the SAS cable. Grasp the metal body of the connector with one hand and firmly grasp and pull the tab gently toward the connector body with the other, then pull the connector body outward to extract it from the bulkhead. Do not twist or pull the tab in any direction other than parallel with the connector body or it may break. If the tab breaks, use a small sharp object (such as a fine-tipped screwdriver) to lift the metal spring at the top of the connector shell to unlatch it.

4 Loosen the two extraction arm captive screws using your thumb and forefinger. If the captive screws are too tight to loosen by hand, use a No.2 Phillips screwdriver to loosen each screw.
5 Pull each ejector tab outward and push to the sides to release and partially eject the SIM from the chassis.

6 Grasp the middle of the SIM board and slide it out of the slot.
With the ejector arms in the full open position, align the new SIM board with the open slot and slide it into the tray until the ejector arms contact the tray connectors and begin to swing closed.

8 Swing both ejector arms in until they are flush with the SIM board panel to seat the board.

9 Tighten both captive screws to secure the board.

10 Reconnect the SAS interface cables to their original locations.

11 Wait approximately 60 seconds for the SIM board to complete its boot process, at which time the Power LED should be solid green and the SIM locate LED should be off.

Faults

Hardware Faults

This section describes connecting to the controller Service Processor (SP) and configuration considerations for maximum serviceability. In rare cases, faults associated with uncorrectable CPU errors are not diagnosable or displayed in the controller. These faults will be preserved by and observable on the ILOM. The following sections describe how to connect to and manage faults for these cases.
**Connect to ILOM**

Connect to the server ILOM (Service Processor) on the server platform to diagnose hardware faults that do not appear in the BUI.

In a cluster environment, an ILOM connection should be made to each controller.

The server ILOM provides options for (i) network and (ii) serial port connectivity. Network connection is the preferred choice, as the ILOM serial port does not always allow adequate means of platform data collection.

**WARNING**: Failure to configure ILOM connectivity may lead to longer than necessary hardware fault diagnosis and resolution times.

**Management Port Configuration**

All standalone controllers should have at least one NIC port configured as a management interface. Select the Allow Admin option in the BUI to enable BUI connections on port 215 and CLI connections on ssh port 22.

All cluster installations should have at least one NIC port on each controller configured as a management interface as described above. In addition, the NIC instance number must be unique on each controller. For example, nodeA uses nge0 and nodeB uses nge1, so that neither may be used as a cluster data interface. In addition, these interfaces must be locked to the controller using the Configuration -> Cluster option in the BUI. In some cases, this may require installation of an additional network interface card on each controller in a cluster configuration.

If access to the appliance data interfaces is impossible for any reason, the management network interface will maintain BUI and CLI access. During a cluster takeover, interfaces are taken down on the failed controller. So, locked interface configuration is required to gather diagnostic information from a failed controller.

**WARNING**: Failure to configure locked management interfaces on a cluster may lead to longer than necessary fault diagnosis and resolution times.

**Observing and Clearing CPU faults from ILOM**

Log in to the server as root using the ILOM CLI. To view server faults, type the following command to list all known faults on the system:

```
-> show /SP/faultmgmt
```

The server lists all known faults, for example:

```
SP/faultmgmt
 Targets:
 0 (/SYS/MB/P0)
 Properties:
```

---

This is a sample text extracted from a document. The text is structured as paragraphs, each starting with a new line and terminated with a line break. The document appears to be a manual or guide, possibly for technical support or maintenance purposes. The content is presented in a clear and logical manner, with headlines and subheadings indicating different sections of the document. The text is primarily instructional, guiding the reader through various procedures and configurations, likely aimed at troubleshooting or maintenance tasks.
To clear the CPU fault, type the following command:

```
-> set /SYS/MB/Pn clear_fault_action=true
```

For example, to clear a fault on CP0:

```
-> set /SYS/MB/P0 clear_fault_action=true
Are you sure you want to clear /SYS/MB/P0 (y/n)? y
```

**See Also**
Cluster Configuration

### HBA Expansion pt.1

#### Expanding from 2 to 3 HBAs

The figures below show steps to migrate a cluster from two to three HBAs.

**NOTE:** Diagrams below are not representative of proper slot location for HBAs.

**Cabling Diagrams**

![Cabling Diagrams](image)

**fig. 1** Cluster with two HBAs and chains of disk shelves
**fig. 2** Power down and remove all cabling from the first controller. Add and cable together the new chain of disk shelves, then power on shelves.
**fig. 3** Install new HBA according to the instructions on installing PCI cards, and connect the controller to the second and third chain as shown.

**fig. 4** Reconnect the two original HBAs as before to the first two chains. Power on the controller and wait for it to regain control of connected storage.
Fig. 5 Power down and remove all cabling from the second controller.

Fig. 6 Install new HBA according to the instructions on installing PCI cards, and connect the controller to the second and third chain as shown.
fig. 7 Reconnect the two original HBAs as before to the first two chains. Power on the controller and wait for it to regain control of connected storage.

fig. 8 Cluster with three HBAs
HBA Expansion pt.2

Expanding from 3 to 4 HBAs

The figures below show steps to migrate a cluster from three to four HBAs.

**NOTE:** Diagrams below are *not representative* of proper slot location for HBAs.

Cabling Diagrams

*fig. 1* Cluster with three HBAs and chains of disk shelves
fig. 2 Power down and remove all cabling from the first controller. Add and cable together the new chain of disk shelves, then power on shelves.

fig. 3 Install new HBA according to the instructions on installing PCI cards, and connect the controller to the third and fourth chain as shown.
**fig. 4** Reconnect the three original HBAs as before to the first three chains. Power on the controller and wait for it to regain control of connected storage.

**fig. 5** Power down and remove all cabling from the second controller.
**fig. 6** Install new HBA according to the instructions on installing PCI cards, and connect the controller to the third and fourth chain as shown.

**fig. 7** Reconnect the three original HBAs as before to the first three chains. Power on the controller and wait for it to regain control of connected storage.
fig. 8 Cluster with four HBAs
Introduction

The Maintenance > System screen provides several system-level features. The screen allows the administrator to:

- View the status of the system disks
- Manage software updates and update the system software
- Create and restore appliance configuration backups
- Create and upload a support bundle
- Repeat the initial setup with existing settings
- Reset the system to the factory defaults
- View pending disk firmware updates

System Disks

The system disks section shows the status of the system disks, and their current usage. The BUI displays this with a pie-chart, and the CLI as a text list. For example:

tarpon:> maintenance system disks show
Properties:

    profile    = mirror
         root    = 1.14G
         var      = 52.4M
         update  = 2.52M
        stash    = 14.8M
          dump   = 16.0G
        cores    = 18K
    unknown   = 39.0G
         free    = 401G
Disks:

<table>
<thead>
<tr>
<th>DISK</th>
<th>LABEL</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk-000</td>
<td>HDD 7</td>
<td>healthy</td>
</tr>
<tr>
<td>disk-001</td>
<td>HDD 6</td>
<td>healthy</td>
</tr>
</tbody>
</table>

**Note:** The "disk" column is not required by the GUI.

## Support Bundles

The appliance can generate support bundles containing system configuration information and core files for use by remote support in debugging system failures. Support bundles are generated automatically in response to faults if the Phone Home service is enabled. Administrators can manually generate and upload a support bundle from this section of the Maintenance > System screen.

Once generated, support bundles are automatically uploaded to Oracle's Support files Service at [http://support.oracle.com](http://support.oracle.com). To facilitate this, the appliance must be connected to the Internet, either directly or through the web proxy configured on the Phone Home service screen. If the upload fails, the system will make another attempt.

After a support bundle has been successfully uploaded, the support bundle and core files are automatically deleted from the system.

### Managing Support Bundles Using the BUI

To generate a support bundle, click the icon next to **Support Bundles** on the Maintenance > System screen. You are presented with the randomly generated filename for the support bundle. Provide this filename to support personnel so that they can retrieve your support bundle.

For each support bundle currently being generated or uploaded or which has failed to upload, the following options may be available:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>✖</td>
<td>Cancel the current operation. If the bundle is being generated, it will be deleted. If the bundle is being uploaded, the upload will be cancelled and the appliance will not retry it later.</td>
</tr>
<tr>
<td>✉</td>
<td>Download the support bundle.</td>
</tr>
<tr>
<td>✉</td>
<td>Try again to upload the bundle to support.</td>
</tr>
<tr>
<td>🗑</td>
<td>Cancel any pending operation and delete the support bundle.</td>
</tr>
</tbody>
</table>
Managing Support Bundles Using the CLI

To generate and upload a new support bundle, use the `sendbundle` command:

```
loader:> maintenance system
loader:maintenance system> sendbundle
A support bundle is being created and sent to Oracle. You will receive an alert when the bundle has finished uploading. Please save the following filename, as Oracle support personnel will need it in order to access the bundle:
/core/ak.9a4c3d7b-50c5-6eb9-c2a6-ec9808ae1cd8.tar.gz
```

As the message indicates, you must provide this filename to support personnel in order for them to retrieve your bundle.

Manage bundles from the `maintenance system bundles` context in the CLI, as follows:

```
loader:maintenance system> bundles
loader:maintenance system bundles> list
BUNDLE STATUS PROGRESS
/core/ak.9a4c3d7b-50c5-6eb9-c2a6-ec9808ae1cd8.tar.gz Uploading 7%
```

Bundles are identified by the filename, omitting the `ak.` prefix and the file type suffix. To delete a support bundle, use the `destroy` command. To view details, use the `select` and `list` commands:

```
loader:maintenance system bundles> select 9a4c3d7b-50c5-6eb9-c2a6-ec9808ae1cd8
Properties:
 filename = /core/ak.9a4c3d7b-50c5-6eb9-c2a6-ec9808ae1cd8.tar.gz
 status = uploading
 step_progress = 14.709744730821669
```

These read-only properties indicate that the appliance is 14% of the way through uploading the file. To retry a failed upload or cancel a pending operation, enter the `retry` and `cancel` commands respectively.

Initial Setup

Initial setup will step through the tasks performed as part of the initial configuration. This will not change any of the current settings unless explicitly requested. User data on the storage pool (including projects and shares) will not be affected.

To perform an initial setup:

- **BUI**: click the "INITIAL SETUP" button on the Maintenance > System screen.
- **CLI**: enter the `maintenance system context`, then enter the `setup` command.
Factory Reset

Factory reset will reset the appliance configuration back to factory settings of the current software version, and reboot the appliance. All configuration changes will be lost, and the appliance will need to go through initial configuration again, as when it was first installed. User data on the storage pool (including projects and shares) will not be affected - however the pool will need to be imported as part of the initial setup process.

To perform a factory reset:

■ **BUI**: click the "FACTORY RESET" button on the Maintenance > System screen.
■ **CLI**: enter the maintenance system context, then issue the factoryreset command.
■ **GRUB**: Add -c to the GRUB menu on the line beginning with kernel.

**Note**: Factory reset of a single controller while configured into a cluster is not supported. The controller must be unclustered first.

Updates

System Updates

The system update feature provides customers, developers, and field personnel with the ability to update a system’s software after the system is installed.

Software updates are delivered as opaque binary downloads that contain some or all of:

- Management and system software.
- Firmware for internal components such as HBAs and network devices.
- Firmware for disks and flash devices.
- Firmware for external storage enclosure components.

In general, the update release notes describe what is in the update, and the update process automates all of the steps of activating the delivered components.

Procedure

The procedure for updating the system is as follows:

- First, the software update media is downloaded from an Oracle support website or retrieved from another official source. The media is represented by a single compressed file named after the version number, such as: ak-nas-2010-02-09-1-0.pkg.gz. The file can be renamed if needed, as the true version number is recorded internally within the image. The compressed media packages will vary in size, but typically will be on the order of several hundred megabytes.
Second, the software media is *uploaded* to the appliance. This can be done via either the BUI or the CLI; see below for details of this operation.

After the media is uploaded, it will be *unpacked* and *verified*. If all verification checks pass, it will appear in the list of update images as eligible for installation. Any number of images can be maintained on the appliance, subject to a system disk space quota, without actually applying them. If an update has not yet been applied (i.e. is not running and is not a rollback target), it can be deleted via either the BUI or the CLI. You might want to delete images in order to free up needed space to download new images.

Administrators should verify that the system is in a healthy state prior to applying the update. The details are described below in the preconditions section.

After the media is unpacked and verified, the update can be applied. You may be asked to set update options and confirm. For more information on these questions, see the section on deferred updates. If the update is no longer appropriate for the system (because you have skipped past its version number), an error message may be provided. During the update, messages and a progress meter will appear to indicate that the update is proceeding. The installation portion of the update will take about half an hour to complete; however, the full upgrade process may not be complete at that point. See below regarding additional firmware upgrades that may take place following the reboot.

While the upgrade is in progress, up until the reboot and following the reboot during any firmware upgrades, it is **non-disruptive**: the controller continues to provide data services to clients. If the system software fails during the upgrade, it will reboot and continue running the software from before the upgrade. **Important**: Do not perform a cluster takeover operation or a reboot while an upgrade is in progress.

Following the post-upgrade reboot, component firmware will be updated (see firmware updates below) which will take additional time that depends on the size of the system configuration and the amount of firmware that has changed since the previously-installed version was delivered; very large Sun Storage 7410 configurations may take several hours to complete all firmware upgrades once the update itself has been applied.

**Preconditions**

Best practices include verifying several preconditions prior to applying an update. Whenever possible, administrators should ensure that these preconditions are satisfied immediately prior to applying an update on the storage controller. In a clustered environment, these should be verified on both storage controllers before applying the update to either one.

- Ensure that any resilvering operations have completed. This can be observed in Configuration/Storage or the equivalent CLI context.
- Ensure that there are no *active problems*.
- Verify that firmware updates are not in progress.
Check the most recent product release notes for additional preconditions that should be observed for the software release to which you are upgrading.

**Deferred Updates**

Each update may come with new firmware or updates to external resources. In general, these updates are backwards-compatible and applied automatically without user intervention. There are exceptions, however, for non-reversible updates. These updates involve updating a resource external to the system software in a way that is incompatible with older software releases. Once the update is applied, rolling back to previous versions will result in undefined behavior. For these updates, you will always be given an explicit option of applying them automatically during upgrade or applying them after the fact. They are therefore referred to as “deferred updates”.

When applying an update to a version with incompatible version changes, you will be given an option to apply these version changes as part of the upgrade. For each version change, the benefits of applying the change will be presented to you. The default is to not apply them, requiring you to return to the updates view and apply them once the system has rebooted after the upgrade is applied. This allows you to verify that the rest of the software is functional and a rollback is not required before applying the update.

If you elect to not apply deferred updates during an upgrade, you can return to the updates view at any point to apply the update. If deferred updates are available for the current software version, they will appear as a list below the current set of available updates, with an ‘Apply’ button to apply the updates. Deferred updates in a cluster take effect on both storage controllers simultaneously, and can only be applied while both controllers are operational. Because deferred updates are listed only for resources present on the local storage controller, in a cluster it may be the case that deferred updates are available only for resources active on the peer controller. In a cluster, it is therefore necessary to check both storage controllers to determine the availability of deferred updates.

**Note:** Replication does not work across deferred updates. After deferred updates are applied that increment the stream format version, it is no longer possible to replicate to an older system. See Incompatible target Replication Failure for a description.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Version introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;passthrough-x&quot; aclinherit property</td>
<td>2009.Q2.0.0</td>
</tr>
<tr>
<td>User quotas</td>
<td>2009.Q3.0.0</td>
</tr>
<tr>
<td>COMSTAR</td>
<td>2009.Q3.0.0</td>
</tr>
<tr>
<td>Triple-Parity RAID</td>
<td>2009.Q3.0.0</td>
</tr>
<tr>
<td>Dedup</td>
<td>2010.Q1.0.0</td>
</tr>
<tr>
<td>Replication</td>
<td>2010.Q1.0.0</td>
</tr>
</tbody>
</table>
### Hardware Firmware Updates

Following the application of a software upgrade, any hardware for which the upgrade includes newer versions of firmware will be upgraded. There are several types of devices for which firmware upgrades may be made available; each has distinct characteristics.

Disks, storage enclosures, and certain internal SAS devices will be upgraded in the background. When this is occurring, the firmware upgrade progress will be displayed in the left panel of the Maintenance/System BUI view, or in the maintenance system updates CLI context. These firmware updates are almost always hardware related, though it may briefly show some number of outstanding updates when applying certain deferred updates to components other than hardware.

As of 2010Q3.4, when there are outstanding updates, an informational or warning icon will appear next to the number of updates remaining. Clicking the icon brings up the Firmware Updates dialog, which lists the current remaining updates. For each update we also show the current version of the component, the time of the last attempted update, as well as the reason why the last attempt didn’t succeed.

We consider any outstanding updates to be in one of 3 states: Pending, In Progress and Failed. An update begins in the Pending state, and is periodically retried, at which time it moves into the In Progress state. If we fail to upgrade, due to a transient condition, the upgrade is moved back to the Pending state, and otherwise to the Failed state.

In general, it is only an indication of a problem if:

- There are updates in the Failed state.
- Updates remain in the Pending state (or in limbo between the Pending and In Progress states) for an extended period of time (more than half an hour), without the number of remaining updates decreasing.

The following conditions don’t indicate a problem:

---

<table>
<thead>
<tr>
<th>Feature</th>
<th>Version introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received Properties</td>
<td>2010.Q1.0.0</td>
</tr>
<tr>
<td>Slim ZIL</td>
<td>2010.Q3.1.0</td>
</tr>
<tr>
<td>Snapshot Deletion</td>
<td>2010.Q3.1.0</td>
</tr>
<tr>
<td>Recursive Snapshots</td>
<td>2010.Q3.1.0</td>
</tr>
<tr>
<td>Multi Replace</td>
<td>2010.Q3.1.0</td>
</tr>
<tr>
<td>RAIDZ Mirror</td>
<td>2011.1.0.0</td>
</tr>
<tr>
<td>Optional Child Directory</td>
<td>2011.1.0.0</td>
</tr>
</tbody>
</table>
Disks firmware updates are shown as pending for extended periods of time, with a status message indicating that they are not part of any pool. This is expected, given that we only update disk firmware, for disks that are part of a pool. In order to update these disks, add them to a pool.

There are multiple chassis being updated, we are making progress (the number of remaining updates decreases), and some of the chassis transiently appear pending with a status indicating that some disk has only one path. This is also expected, since when we update a chassis, we may reset one of its expanders. Resetting an expander causes some disks to temporarily have only one path, and as a result, upgrades to other chassis will be held back until it is safe to do so again non-disruptively.

Note that currently the Firmware Updates dialog doesn’t automatically refresh, so you would have to close it and re-open it to get an updated view.

Applying hardware updates is always done in a completely safe manner. This means that the system may be in a state where hardware updates cannot be applied. This is particularly important in the context of clustered configurations. During takeover and failback operations, any in-progress firmware upgrade will be completed; pending firmware upgrades will be suspended until the takeover or failback has completed, at which time the restrictions described below will be reevaluated in the context of the new cluster state and, if possible, firmware upgrades will resume. **Important**: Unless absolutely necessary, takeover and failback operations should not be performed while firmware upgrades are in progress. The rolling upgrade procedure documented below meets all of these best practices and addresses the per-device-class restrictions described below. It should always be followed when performing upgrades in a clustered environment. In both clustered and standalone environments, these criteria will also be reevaluated upon any reboot or diagnostic system software restart, which may cause previously suspended or incomplete firmware upgrades to resume.

Components internal to the storage controller (such as HBAs and network devices) other than disks and certain SAS devices will generally be upgraded automatically during boot; these upgrades are not visible and will have completed by the time the management interfaces become available.

Upgrading disk or flash device firmware requires that the device be taken offline during the process. If there is insufficient redundancy in the containing storage pool to allow this operation, the firmware upgrade will not complete and may appear “stalled.” Disks and flash devices that are part of a storage pool which is currently in use by the cluster peer, if any, will not be upgraded. Finally, disks and flash devices that are not part of any storage pool will not be upgraded.

Upgrading the firmware in a disk shelf requires that both back-end storage paths be active to all disks within all enclosures, and for storage to be configured on all shelves to be upgraded. For clusters with at least one active pool on each controller, these restrictions mean that disk shelf firmware upgrade can be performed only a controller that is in the “owner” state.
During the firmware upgrade process, hardware may appear to be removed and inserted, or
offlined and onlined. While alerts attributed to these actions are suppressed, if you are viewing
the Maintenance/Hardware screen or the Configuration/Storage screen, you may see the effects
of these upgrades in the UI in the form of missing or offline devices. This is not a cause for
concern; however, if a device remains offline or missing for an extended period of time (several
minutes or more) even after refreshing the hardware view, this may be an indication of a
problem with the device. Check the Maintenance/Problems view for any relevant faults that
may have been identified. Additionally, in some cases, the controllers in the disk shelves may
remain offline during firmware upgrade. If this occurs, no other controllers will be updated
until this condition is fixed. If an enclosure is listed as only having a single path for an extended
period of time, check the physical enclosure to determine whether the green link lights on the
back of the SIM are active. If not, remove and re-insert the SIM to re-establish the connection.
Verify that all enclosures are reachable by two paths.

Reboot After an Update

Following the completion of the update process, the system will reboot automatically. If you
have the serial console open, you will notice during this reboot that multiple GRUB menu
entries are available, ordered from the newest software (at the top) to the oldest software (at the
bottom). The default menu entry will be the top -- the new software to which you just updated.
If you do nothing this entry will boot by default, completing the update. The previous entries
are rollback targets that can be used to initiate a rollback to previous versions of the system
software. Rollback is discussed below.

As the system boots up using the new system software, you will see some special messages on
the first boot indicating that an update is completing and noting the previous and new versions
of the system software:

SunOS Release 5.11 Version ak/generic@2010.02.09,1-0 64-bit
Copyright 1983-2010 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
System update in progress.
Updating from: ak/nas@2009.09.01,1-18
Updating to: ak/nas@2010.02.09,1-0

Updating system datasets ........ done.
Configuring network devices ... done.
Configuring devices.
Rollback

The rollback procedure reverts all of the system software and all of the metadata settings of the system back to their state just prior to applying an update. This feature is implemented by taking a snapshot of various aspects of the system before the new update is applied, and rolling back this snapshot to implement the rollback. The implications of rollback are as follows:

- Any appliance configuration changes are reverted and lost. For example, assume you are running version V, and then you update to V+1, and then you change your DNS server. If you execute a rollback, then your DNS server setting modification is effectively undone and removed from the system permanently.

- Conversely, any changes made to user data are not reverted: if you update from V to V+1, and clients then create directories or modify shares in any way, those changes still exist after the rollback (as you would expect).

- If the appliance is running version V, and has previous rollback targets V-1 and V-2, and you revert all the way to version V-2 (thereby ”skipping” V-1), then you not only are removing the system software settings and system software for V, but also for V-1. That is, after a rollback to V-2, it is as if updates V-1 and V never happened. However, the software upload images for V-1 and V will still be saved on the system and you can apply them again after the rollback if you wish by re-executing the update.

If after applying an update, the system is back up and running, you can use either the BUI or the CLI to initiate a rollback to one of two previously applied updates. If the system is not able to run at all after an update, then use the fail-safe rollback procedure.

Fail-safe Rollback

Administrators can execute a fail-safe rollback of the system software from the serial console by selecting one of the other boot menu entries, if present. Although rollback can also be requested from the BUI or CLI, rollback is offered from the boot menu because it is possible that rollback will be needed in scenarios where the new system software has completely failed, i.e. has failed to even boot. To rollback from the console, access the serial console as usual, and during boot, before the ten second timeout, use the arrow key to move the menu selection down to one of the earlier entries:

```
GNU GRUB version 0.95 (613K lower / 3537536K upper memory)
+--+
```

monk console login:
Cluster Upgrade

In a clustered system, a rolling upgrade can be performed, eliminating downtime while the upgrade is performed. This section assumes familiarity with the Sun Storage clustering model: if you are not familiar with the clustering concepts and terminology, please read about clustering concepts in the System Administration Guide first. To describe the rolling upgrade procedure, this document will refer to the two clustered storage controllers as A and B, where A is the controller that will be updated first, and B is the controller that will be updated second. A key best practice in rolling upgrades is that each controller should be upgraded at a time when it is not providing service to clients. The procedure described here meets this requirement. In addition, all general upgrade best practices described above also apply to rolling upgrades.

Important: Do not perform a takeover operation while an upgrade is in progress.

1. Using either the CLI or the BUI, upload the update software image to both storage controllers.

2. If the cluster has a single storage pool, the controller to which that pool is assigned will be designated B; the one without a storage pool is designated A. If the cluster has two or more storage pools and each controller is assigned at least one of them, then decide at this time which controller will be designated A and which will be designated B. The choice is arbitrary, but A’s storage pool(s) will be taken over first, so clients using those resource will experience a standard takeover-induced availability delay first.
3. Log in to controller B, go to Configuration/Cluster or the CLI equivalent, and perform a takeover, which will cause controller A to reboot. The software will not prevent you from beginning the upgrade without taking over. However, if you do not perform the takeover, during the upgrade you will be unable to make any changes to the appliance’s configuration even though that appliance will continue to provide service, and you will be performing an upgrade on a controller while it is providing service.

4. Using the serial console, or the CLI or BUI if you have dedicated private network interfaces assigned, log in to controller A. Go to Maintenance/System or the CLI equivalent, select the software update, and apply it. At the end of the upgrade procedure, controller A will reboot again, this time running the new system software.

5. Log into controller A and perform a takeover as above. This will cause controller B to reboot and controller A to take control of all resources and provide service to clients.

6. Validate the behavior of the new software and ensure that firmware upgrades complete. Since controller A is now providing service using the new software while B remains on the previous version, this provides an opportunity to ensure that all services are working correctly as seen on client systems. If a serious problem is encountered, roll back the software on controller A, which will cause it to reboot; controller B (still running previous software) will take over, and when controller A recovers it will be running the previous version as well. **Important:** Controller firmware updates will not proceed while the two controllers are running different versions of the system software. It is recommended to wait for all other firmware upgrades to complete before continuing.

7. Log in to controller B. Go to Maintenance/System or the CLI equivalent, select the desired update, and apply it. At the end of the procedure, storage controller B will reboot again. Controller B will boot up and be running the new system software.

8. The upgrade procedure is now complete. To restore normal operation, log in to storage controller A, go to Configuration/Cluster, and execute a failback operation, returning the resources to their respective assigned controllers.

The following table describes the state of the cluster at the end of each of the steps above, during an update from version V to version V+1.

<table>
<thead>
<tr>
<th>Step</th>
<th>Controller A State</th>
<th>Controller A Version</th>
<th>Controller B State</th>
<th>Controller B Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>CLUSTERED</td>
<td>V</td>
<td>CLUSTERED</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>STRIPPED</td>
<td>V</td>
<td>OWNER</td>
<td>V</td>
</tr>
<tr>
<td>4</td>
<td>STRIPPED</td>
<td>V+1</td>
<td>OWNER</td>
<td>V</td>
</tr>
<tr>
<td>5,6</td>
<td>OWNER</td>
<td>V+1</td>
<td>STRIPPED</td>
<td>V</td>
</tr>
<tr>
<td>7</td>
<td>OWNER</td>
<td>V+1</td>
<td>STRIPPED</td>
<td>V+1</td>
</tr>
<tr>
<td>8</td>
<td>CLUSTERED</td>
<td>V+1</td>
<td>CLUSTERED</td>
<td>V+1</td>
</tr>
</tbody>
</table>
It is not advisable to make configuration changes to either storage controller while an upgrade is in progress. Most notably, while controllers are running different software versions, configuration changes made to one controller will not be propagated to its peer controller. For instance, suppose a change is made to controller A at step 4 above. That change will not be propagated to controller B until step 7, when both controllers are again running the same software version. Alternatively, if validation of controller A during step 6 uncovered a problem that necessitated controller A be rolled back to version V, then the changes made at step 4 would be also be undone as part of the rollback.

Accordingly, accessing the BUI or logging into the CLI while controllers are running different software versions will display a warning that configuration changes will not be propagated. Similarly, the appliance can be configured to generate alerts when a cluster is comprised of controllers running different software versions (events “Cluster rejoin mismatch” and “Cluster rejoin mismatch on peer”).

If you upgrade, change the root password, and then rollback in a cluster, the nodes will not be able to re-join after the rollback.

Update Health Checks

The ZFS Storage Appliance update subsystem provides integrated system level health checks to help ensure that there are no pathologies that will interfere with the system software update and firmware upgrade processes. If a problem is found, the update process will be aborted and you will be directed to the Alert Log for any problems encountered. System software updates will not be permitted until the problems have been corrected. The system software Release Notes for the target update media contain a list of all update problems and the procedures used to correct them.

Ahead of any planned update, the same health checks may be run by applying the update check from the BUI or CLI. This allows you to check the state of the system prior to scheduling an update maintenance window and correct any problems that would interfere with the update process. As with the integrated health checks, you will be presented with a link to the Alert Log when problems are found. Otherwise, the System Ready state transitions to Yes to indicate that the system is in an acceptably healthy state for software updates. The Release Notes for the target media contain detailed instructions on how to correct problems associated with any health check failures. Update health checks do not replace the required preconditions. Precondition checks must also be executed and problems resolved prior to updating the system software. The same problem report will be issued as is issued by the automatic health checks integrated in the update process.

BUI

After you select and start an update, update health checks may be issued from the software update dialog box in the BUI.
The system will remain in the Unchecked state until the Check button is clicked. During the health check operation, an indicator will show its progress.
Once complete, the System Ready state will change to Yes or No with a link to the Alert Log.
CLI

To execute the update health checks via the CLI, execute the `upgrade` command in the `maintenance system updates` after selecting the update media:

```
gill:maintenance system updates> select ak-nas@2011.04.24,1-0
 gill:maintenance system updates ak-nas@2011.04.24,1-0> check
```

You have requested to run checks associated with waiting upgrade media. This will execute the same set of checks as will be performed as part of any upgrade attempt to this media, and will highlight conditions that would prevent successful upgrade. No actual upgrade will be attempted, and the checks performed are of static system state and non-invasive. Do you wish to continue?

```
Are you sure? (Y/N)
Healthcheck running ... /
```

Healthcheck completed. There are no issues at this time which would cause an upgrade to this media to be aborted.

Updating via the BUI

Click the add icon next to Available Updates and specify the pathname on your desktop or local client of the update media. During the upload, a progress bar is displayed indicating the progress of the upload:
Note that on some older browsers, the progress bar may not be updated continuously during the upload; if you see a "watch" cursor just wait a minute -- in the worst case the upload will proceed all the way to completion and you may not see the progress bar.

**Unpacking and verifying media**

This step will happen automatically after the media is done uploading:

![Available Updates](image)

**Beginning an upgrade**

After the update is uploaded, unpacked and verified, it will appear as an update:

![Available Updates](image)

Click the information icon to view the Release Notes for the software update.

To begin the upgrade, click on the apply icon. As the upgrade progresses, you will see the most recent message in the status field of the update. To cancel the update at any time (and without ill effect), click on the cancel icon.
Rolling back

To roll back, locate a previous image and click on the rollback icon. You will be asked to confirm that you wish to execute a rollback, and then the system will reboot and execute the rollback. Unlike fail-safe rollback, you will not be asked for further confirmation when the system reboots.

Removing update media

To remove update media, highlight the corresponding row and click on the trash icon.

Applying deferred updates

Any deferred updates will be displayed below the list of available updates. If no deferred updates are available, no list will be displayed. The deferred updates will describe what effects they will have on the system. Clicking the 'Apply' button will apply all available deferred updates. Deferred updates will apply to both nodes in a cluster, and the cluster peer must be up and available to apply any deferred updates.

Updating via the CLI

Because you log into the appliance to use the CLI, the upload as described above is actually a download. To download the media onto the appliance via the CLI, execute the download command in maintenance system updates:

```
dory:maintenance system updates> download
```

```dory:maintenance system updates download (uncommitted)> get
url = (unset)
user = (unset)
password = (unset)
dory:maintenance system updates download (uncommitted)> set url=ftp://foo/update.pkg.gz
url = ftp://foo/update.pkg.gz
dory:maintenance system updates download (uncommitted)> set user=bmc
user = bmc
dory:maintenance system updates download (uncommitted)> set password
Enter password:
password = ********
dory:maintenance system updates download (uncommitted)> commit
Transferred 157M of 484M (32.3%) ...
```
Unpacking and verifying media

After the file has been transferred, it will be automatically unpacked and verified:

```
dory:maintenance system updates download (uncommitted)> commit
Transferred 484M of 484M (100%) ... done
Unpacking ... done
```

```
dory:maintenance system updates> list
UPDATE DATE STATUS
ak-nas@2009.10.14,1-0-nd 2009-10-14 08:45 AKUP_WAITING
```

Beginning an upgrade

To begin an upgrade, select the update that constitutes the upgrade. From this context, you can set any properties specific to the update, including applying deferred updates. For more information on the set of properties available for the particular update, run the `help` properties command. User-controllable properties will begin with the `update_` prefix:

```
clownfish:maintenance system updates ak-nas@2009.04.03,1-0> help properties
Properties that are valid in this context:
 version => Update media version
 date => Update release date
 status => Update media status
 update_zfs_upgrade => Apply incompatible storage pool update
```

After you set any properties, execute the `upgrade` command. You are prompted for confirmation and (assuming an affirmative) the upgrade begins:

```
dory:maintenance system updates> select ak-nas@2009.10.14,1-0-nd
dory:maintenance system updates ak-nas@2009.10.14,1-0-nd> upgrade
The selected software update requires a system reboot in order to take effect. The system will automatically reboot at the end of the update process. The update will take several minutes. At any time during this process, you can cancel the update with [Control-C].
Are you sure? (Y/N) y
```

```
Updating from ... ak/nas@2009.10.11,1-0
Backing up smf(5) ... done.
Loading media metadata ... done.
Selecting alternate product ... SUNW,iwashi
```
Installing Sun Storage 7110 2009.10.14,1-0
pkg://sun.com/ak/SUNW,iwashi@2009.10.14,1-0:20091014T084500Z
...

As the upgrade proceeds, the latest message will be printed. You can cancel the upgrade at any time by pressing ^C, at which point you will be prompted for confirmation:

Updating from ... ak/nas@2009.10.11,1-0
Backing up smf(5) ... done.
Loading media metadata ... ^C
This will cancel the current update. Are you sure? (Y/N) y
error: interrupted by user

dory:maintenance system updates ak-nas@2009.10.14,1-0-nd>

Rolling back
To roll back to an earlier version, select the update that corresponds to that version and execute the rollback command. You will be asked to confirm that you wish to execute a rollback, and then the system will reboot and execute the rollback. Unlike fail-safe rollback, you will not be asked for further confirmation when the system reboots.

Removing update media
To remove update media, use the destroy command, specifying the update to be removed:

dory:maintenance system updates> destroy ak-nas@2009.10.14,1-0-nd
This will destroy the update "ak-nas@2009.10.14,1-0-nd". Are you sure? (Y/N) y

dory:maintenance system updates>

Applying Deferred updates
To see if there are any available deferred updates, run the show command. If deferred updates are available, you can use the apply command:

clownfish:maintenance system updates> show
Updates:

<table>
<thead>
<tr>
<th>UPDATE</th>
<th>DATE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ak-nas@2009.11.20.2.1.1-1.9</td>
<td>2009-4-1 04:18:48</td>
<td>AKUP_PREVIOUS</td>
</tr>
<tr>
<td>ak-nas@2009.04.03.1-0</td>
<td>2009-4-3 08:45:01</td>
<td>AKUP_CURRENT</td>
</tr>
</tbody>
</table>

Deferred updates:
The following incompatible updates are available. Applying these updates will enable new software features as described below, but will prevent older versions of the software from accessing the underlying resources. You should apply deferred updates once you have verified that the current software update is functioning and a rollback is not required. Applying deferred updates in a cluster will also update any resources on the cluster peer.
1. Support for the "passthrough-x" aclinherit property for shares.

    clownfish:maintenance system updates> apply

    Applying deferred updates will prevent rolling back to previous versions of software.

    Are you sure? (Y/N)

    clownfish:maintenance system updates> apply

---

**Passthrough x**

**Passthrough-x Deferred Update**

For filesystems, ACLs are inherited according to the "aclinherit" property on the filesystem (or inherited from the project). Previous versions of software allowed four options for this setting: "discard", "noallow", "restricted", and "passthrough". The 2009.Q2.0.0 release introduces a new option, "passthrough-x", with slightly different semantics as described in the product documentation:

*Same as 'passthrough', except that the owner, group, and everyone ACL entries inherit the execute permission only if the file creation mode also requests the execute bit.*

The "passthrough" mode is typically used to cause all "data" files to be created with an identical mode in a directory tree. An administrator sets up ACL inheritance so that all files are created with a mode, such as 0664 or 0666. This all works as expected for data files, but you might want to optionally include the execute bit from the file creation mode into the inherited ACL. One example is an output file that is generated from tools, such as "cc" or "gcc". If the inherited ACL doesn't include the execute bit, then the output executable from the compiler won't be executable until you use chmod(1) to change the file's permissions.

In order to use this new mode, the storage pool must be upgraded. If you choose not to upgrade the pool and attempt to use this new property, you will get an error indicating that the storage pool needs to be upgraded first. There is no other implication of applying this update, and it can be ignored if there is no need to use this new setting. Applying this update is equivalent to upgrading the on-disk ZFS pool to [http://www.opensolaris.org/os/community/zfs/version/14/](http://www.opensolaris.org/os/community/zfs/version/14/).

---

**User Quotas**

**User Quotas Deferred Update**

With the 2009.Q3 software release, the system now supports user and group quotas on a per-share basis. In order to make use of this feature, a deferred update must be applied to
upgrade all shares in the system to support this feature. Applying this deferred update also allows the current usage (user or group) to be queried on a per-filesystem or per-project basis. To quote the product documentation:

*Quotas can be set on a user or group at the filesystem level. These enforce physical data usage based on the POSIX or Windows identity of the owner or group of the file or directory. There are some significant differences between user and group quotas and filesystem and project data quotas.*

Be sure to read the complete documentation under Space Management before attempting to use user or group quotas.

This update is applied in the background, and takes time proportional to the number of shares and amount of data on the system. Until this deferred update is finished, attempt to apply user quotas will produce an error indicating that the update is still in progress.

**COMSTAR**

**COMSTAR Deferred Update**

The COMSTAR framework relies on a ZFS pool upgrade for complete support of persistent group reservations (PGRs). Before this upgrade has been applied, the number of reservations stored with each LUN is severely limited, and may even be zero.

Applying this update is equivalent to upgrading the on-disk ZFS pool to version 16.

**Triple Parity RAID**

**Triple-Parity RAID Deferred Update**

This update provides the ability to use the triple-parity RAID storage profile, RAID-Z with three parity sectors per stripe. Triple-parity offers increased protection against drive failures and additional overall availability.

In order to use this new mode, the storage pool must be upgraded. If you choose not to upgrade the pool and attempt to use this new property, you will get an error indicating that the storage pool needs to be upgraded first. There is no other implication of applying this update, and it can be ignored if there is no need to use this new setting. Applying this update is equivalent to upgrading the on-disk ZFS pool to version 17.
Dedup

Data Deduplication Deferred Update

This update provides the ability to use data deduplication.

In order to use this new mode, the storage pool must be upgraded. If you choose not to upgrade the pool and attempt to use this new property, you will get an error indicating that the storage pool needs to be upgraded first. There is no other implication of applying this update, and it can be ignored if there is no need to use this new setting. Applying this update is equivalent to upgrading the on-disk ZFS pool to version 21.

Replication

Replication Deferred Update

The 2010.Q1 release stores replication configuration differently than 2009.Q3 and earlier releases. This update migrates existing target, action, and replica configuration created under an earlier release to the new form used by 2010.Q1 and later.

After upgrading to 2010.Q1 but before this update is applied, incoming replication updates for existing replicas will fail. Replicas received under earlier releases will not be manageable via the BUI or CLI, though they will occupy space in the storage pool. Additionally, the system will not send replication updates for actions configured on earlier releases.

After applying this update, incoming replication updates for replicas originally received on earlier releases will continue normally and without a full resync. The system will also send incremental replication updates for actions configured under earlier releases.

Received Properties

Received Properties Deferred Update

The 2010.Q1 feature that enables administrators to customize properties on replicated shares relies on a ZFS pool upgrade. This upgrade provides support of persistent local changes to received properties. Before this upgrade has been applied, the system will not allow administrators to change properties on replicated shares.

Applying this update is equivalent to upgrading the on-disk ZFS pool to version 22.
Introduction

This deferred update changes the layout of ZFS intent log blocks to improve synchronous write performance. These improvements rely on a ZFS pool upgrade provided by this update. Before this update has been applied, log records will continue to be written in the old format and performance may be reduced.

Applying this update is equivalent to upgrading the on-disk ZFS pool to version 23.

Snapshot Deletion

Snapshot Deletion Deferred Update

This deferred update increases snapshot deletion parallelism and reduces the size of transaction groups associated with snapshot deletion to improve systemic responsiveness. These improvements rely on a ZFS pool upgrade provided by this update. Before this update has been applied, new snapshot data will be stored in the old format and deleted using the old algorithm. Note that any snapshots created before this update is applied will also be deleted using the old algorithm.

Applying this update is equivalent to upgrading the on-disk ZFS pool version 26.

Recursive Snapshots

Recursive Snapshots Deferred Update

This deferred update allows recursive snapshots to be taken without suspending the ZFS intent log, which greatly improves snapshot creation performance especially on heavily loaded controllers. These improvements rely on a ZFS pool upgrade provided by this update. Before this update has been applied, the system will be able to create snapshots but will do so using the old, much slower, algorithm.

Applying this update is equivalent to upgrading the on-disk ZFS pool to version 27.
Multi Replace

Multi Replace Deferred Update

This deferred update allows importing a pool with a missing log device and corrects the behavior of the system when a device that is being resilvered is itself removed or replaced. These fixes rely on a ZFS pool upgrade provided by this update. Before this update has been applied, the system will be unable to import pools with missing log devices and will not correctly handle replacement of resilvering devices (see CR 6782540).

Applying this update is equivalent to upgrading the on-disk ZFS pool to version 28.

RAIDZ Mirror

RAIDZ/Mirror Deferred Update

This deferred update improves both latency and throughput on several important workloads. These improvements rely on a ZFS pool upgrade provided by this update. Applying this update is equivalent to upgrading the on-disk ZFS pool to version 29.

Optional Child Dir

Introduction

This deferred update improves list retrieval performance and replication deletion performance by improving dataset rename speed. These improvements rely on a ZFS pool upgrade provided by this update. Before this update has been applied, the system will be able to retrieve lists and delete replications, but will do so using the old, much slower, recursive rename code. Applying this update is equivalent to upgrading the on-disk ZFS pool to version 31.
Configuration Backup

Configuration Backup

The configuration backup function enables the administrator to:

- **Backup** the appliance configuration, consisting of system metadata only (such as the network configuration, local users and roles, service settings, and other appliance metadata).
- **Restore** a previously saved configuration from a backup.
- **Export** a saved configuration, as a plain file, so that it may be stored on an external server, or included in a backup of a share on the appliance itself.
- **Import** a saved configuration that was previously exported from this system or another system, making it available for a restore operation.

Backup Contents

A configuration backup **does** include:

- Metadata associated with the system as a whole, such as settings for NTP, NIS, LDAP, and other services.
- Network device, datalink, and interface configuration.
- User accounts, roles and privileges, preferences, and encrypted passwords for local users (not directory users).
- Alerts and thresholds and their associated rules.

A configuration backup **does not** include:

- User data (shares and LUNs). Your user data must be backed up separately, using NDMP backup software, snapshots, and/or remote replication.
- User passwords for directory users. These remain stored solely in your separate network directory service, such as LDAP or Active Directory, and will not be stored in the backup or restored.
- Metadata directly associated with user data, such as snapshot schedules, user quotas, compression settings, and other attributes of shares and LUNs.
- Analytics and logs. Events can be redirected to external SNMP trap receivers or e-mail destinations using Alerts rules.
- System software. The system software is automatically backed up as part of the System Update capability.
**Restore Impact**

The restore operation takes a selected configuration backup, and modifies all of the corresponding system settings to reflect those in the backup, including removing aspects of the configuration that were not present at the time of the backup. Administrators should adhere to the following guidelines when planning a restore:

- **Scheduled downtime** - The restore process takes several minutes to complete and will impact service to clients, as the active networking configuration and data protocols are reconfigured. Therefore, a configuration restore should only be used on a development system, or during a scheduled downtime.

- **Service interruption** - Clients accessing data on the system through a data protocol such as NFS will see service interrupted, as the network is reconfigured and the NFS service restarted. If the selected backup copy was taken when a service was disabled by the administrator, that setting will be restored, and therefore client sessions will be terminated for that protocol.

- **Session interruption** - If restore is initiated from a web browser, that web browser session will also be disconnected during the restore process as the network is reconfigured. If the restored configuration does not include the same routing and network address settings used by the current browser connection, or if the browser is connected to a network address managed by DHCP, the browser session will be interrupted during the restore. The restore process will complete in the background, but you will need to reload or point the browser at a new, restored network address to continue. For this reason, it may be desirable to initiate a complex configuration restore from the service processor serial console using the CLI.

- **Un-cluster, restore, and re-cluster** - Configuration backups may be initiated for appliances that are joined in a cluster, but a configuration restore may not be used while systems are actively clustered. The clustering process means that settings are being synchronized between cluster peers, and each peer appliance also is maintaining private settings. For this reason, you must first use the Unconfiguring Clustering procedure to un-cluster the two systems. Then, restore the configuration backup on a selected head, and then re-cluster the two systems, at which point the other system will automatically synchronize itself with the restored configuration.

- **Root privileges required** - Configuration backups include all system metadata, and therefore require all possible privileges and authorizations to create or apply. Therefore, unlike other delegated administrative options, only the root user is authorized to perform a configuration backup or restore.

- **Verify setting for new features** - It is permitted to restore a configuration that was saved before applying a system update to a new version of the appliance software. In some cases, services and properties that were present at the time of the backup may have different effects, and new services and properties may exist in the newer software that did not exist at the time of the backup. Similar to the system update process, the configuration restore process will make every effort to transfer applicable settings, and apply reasonable defaults.
to those properties that did not exist at the time of the backup. When restoring across software versions, administrators should manually verify settings for new features following the restore.

- **Password maintenance** - The root password is not changed or reverted to the password at the time of the backup if it was different. The current root password is maintained on the system across the restore. For more details about passwords, refer to the summary of Security Considerations.

### Security Considerations

A configuration backup contains information that is normally only accessible to the root administrative user on the appliance. Therefore, any configuration backup that is exported to another system or into a filesystem share must apply security restrictions to the backup file to ensure that unauthorized users cannot read the backup file.

Local user passwords are stored in the backup file in encrypted (hashed) format, not as clear text. However, on the system, access to these password hashes is restricted, as they could be used as input to dictionary attacks. Therefore, administrators must carefully protect configuration backups that are exported, either by restricting file access to the backup, or by applying an additional layer of encryption to the entire backup file, or both.

Directory user passwords are not stored in the appliance, and therefore are not stored in the configuration backup. If you have deployed a directory service such as LDAP or AD for administrative user access, there are no copies of directory service password hashes for directory users stored in the configuration backup. Only the user name, user ID, preferences, and authorization settings for directory users are stored in the backup and then restored.

Following a configuration restore, the local root administrative user password is not modified to the root password at the time of the backup. The root password is left as-is, unmodified, by the restore process, to ensure that the password used by the administrator who is executing the restore process (and thus has logged in, using that password) is retained. If the administrator's intent was to also change the root password at the time of configuration restore, that step must be executed manually following the restore, using the normal administrative password change procedure.

### Managing Configuration Backups Using the BUI

The following section outlines how various Configuration Backup tasks can be accomplished using the Configuration Backup area near the bottom of the Maintenance > System screen in the BUI.

#### Create a Configuration Backup

To create a backup, simply click the "Backup" button above the list of saved configurations and follow the instructions. You will be prompted to enter a descriptive comment for the backup.
Restore from a Saved Configuration

Click the.rollback icon on any saved configuration to begin the process of reverting the system to that saved configuration. Review the Restore Impact guidance above, and confirm that it is ok to proceed.

Delete a Saved Configuration

To delete a Saved Configuration simply click the.trash can icon to delete the configuration that is no longer required.

Export a Saved Configuration

To export a Saved Configuration, mouse over the configuration list entry you wish to export and click the.download icon. Your browser will prompt you to save the file locally. The file is a compressed archive whose contents are versioned and may vary over time. You should.not attempt to unpack or modify the content of the archive, and doing so will render it unable to be imported back to the appliance successfully.

Import a Saved Configuration

To import a previously exported Saved Configuration, click the.add icon at the top of the saved configurations list and then use your web browser’s file selection dialog to locate the previously exported configuration. You should upload the single, compressed archive file previously saved using the export function.

Managing Configuration Backups Using the CLI

The following section outlines how various Configuration Backup tasks can be accomplished using the CLI in the maintenance system configs context.

Listing Configurations

```
host:maintenance system configs> list
CONFIG DATE SYSTEM VERSION
bfa614d7-1db5-655b-cba5-bd0bb0a1efc4 2009-8-5 17:14:28 host 2009.08.04,1-0
cb2f005f-cf2b-608f-90db-fc7a0503db2a 2009-8-24 17:56:53 host 2009.08.18,1-0
```

Create a Configuration Backup

The backup command saves a configuration backup. You will be prompted to enter a descriptive comment for the backup, and then enter done to execute the backup operation.

```
host:maintenance system configs> backup
Backup Configuration. Enter a descriptive comment for this configuration, and click Commit to backup current appliance settings:
```
Restore from a Saved Configuration

The restore command reverts the system to a saved configuration. You will be prompted to enter the universal unique identifier for the backup (see the output of list, above), and then enter done to execute the restore. Review the Restore Impact guidance above, and confirm that it is ok to proceed.

```
host:maintenance system configs> restore
Restore. Select the configuration to restore:
host:maintenance system configs conf_restore step0>
 set uuid=36756f96-b204-4911-8ed5-fefaf89cad6a
 uuid = 36756f96-b204-4911-8ed5-fefaf89cad6a
host:maintenance system configs conf_restore step0> done
```

**Note:** Storage pools are not automatically unconfigured when you execute the restore command.

Delete a Saved Configuration

Then the destroy command deletes a saved configuration:

```
host:maintenance system configs> destroy ch2f005f-cf2b-608f-90db-fc7a0503db2a
Are you sure you want to delete the saved configuration "new"? y
host:maintenance system configs>
```

Export a Saved Configuration

The export command exports a saved configuration, by means of executing an HTTP or FTP PUT operation against a remote HTTP or FTP server. You can also use the export function to export the file to a share on the appliance itself, that has the HTTP or FTP protocol enabled for writing. You can enter a username and password for authentication to the remote server if one is required.

Import a Saved Configuration

The import command imports a saved configuration, by means of executing an HTTP or FTP GET operation against a remote HTTP or FTP server. You can also use the import function to import a configuration stored in a share on the appliance itself, that has the HTTP or FTP protocol enabled for reading. You can enter a username and password for authentication to the remote server if one is required.
Problems

To aid serviceability, the appliance detects persistent hardware failures (*faults*) and software failures (*defects*, often included under faults) and reports them as active problems on this screen. If the phone home service is enabled, active problems are automatically reported to Oracle Support, where a support case may be opened depending on the service contract and the nature of the fault.

**Active problems display**

For each problem, the appliance reports what happened, when the problem was detected, the severity and type of the problem, and whether it has been phoned home. Below are some example faults as they would be displayed in the BUI:

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>Type</th>
<th>Phoned Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-09-16</td>
<td>SMART health-monitoring firmware reported that a disk failure is imminent.</td>
<td>Major Fault</td>
<td>Never</td>
</tr>
<tr>
<td>2009-09-05</td>
<td>A disk of a different type (cache, log, or data) was inserted into a slot.</td>
<td>Minor Fault</td>
<td>Never</td>
</tr>
<tr>
<td>2009-08-21</td>
<td>The ZFS pool has experienced currently unrecoverable I/O failures.</td>
<td>Major Error</td>
<td>Never</td>
</tr>
<tr>
<td>2009-07-16</td>
<td>A memory module is experiencing excessive correctable errors affecting large numbers of pages.</td>
<td>Major Fault</td>
<td>Never</td>
</tr>
</tbody>
</table>

This information can also be viewed in the CLI:

```
gefilte:> maintenance problems show
Problems:
COMPONENT DIAGNOSED TYPE DESCRIPTION
problem-000 2010-7-27 00:02:49 Major Fault SMART health-monitoring firmware reported that a failure is imminent on disk ‘HDD 17’.
```

Selecting any fault shows more information about the fault including the impact to the system, affected components, the system’s automated response (if any), and the recommended action for the administrator (if any). In the CLI, only the "uuid", "diagnosed", "severity", "type", and "status" fields are considered stable. Other property values may change from release to release.
For hardware faults, you may be able to select the affected hardware component to locate it on the Hardware screen.

**Repairing problems**

Problems can be repaired by performing the steps described in the suggested action section. This typically involves replacing the physical component (for hardware faults) or reconfiguring and restarting the affected service (for software defects). Repaired problems no longer appear on this screen.

While the system typically detects repairs automatically, in some cases manual intervention may be required. If a problem persists after the affected components have been repaired, contact support. You may be instructed to mark the problem repaired. This should only be done under the direction of service personnel or as part of a documented Oracle repair procedure.

**Related features**

- A persistent log of all faults and defects is available under Logs as the **Fault log**.
- Faults and defects are subcategories of Alerts. Filter rules can be configured to cause the appliance to email administrators or perform other actions when faults are detected.

**Logs**

**Introduction**

**Alerts**

This is the appliance alert log, recording key events of interest during appliance operation. The following are example alert log entries as they would appear in the BUI:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event ID</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-9-16</td>
<td>f18bbad1-8084-4cab-c950-82e5f5b8228ea</td>
<td>An I/O path from slot 'PCIe 0' to chassis 'JBOD #1' has been removed.</td>
<td>Major alert</td>
</tr>
<tr>
<td>2009-9-16</td>
<td>8f8b8688c-08f2-c994-a6a5-ac6e755e53bb</td>
<td>A disk has been inserted into slot 'HDD 4' of chassis 'JBOD #1'.</td>
<td>Minor alert</td>
</tr>
</tbody>
</table>
An info icon 🔄 next to the Event ID means that extended information is available. Click the icon and this information will be displayed below the list of alerts.

The appliance can also be configured to send email, raise an SNMP trap, or perform other actions when particular alerts occur. This is configured in the Alerts section. All alerts appear in this log, regardless of whether they have actions configured for them.

### Faults

The fault log records hardware and software faults. This is a useful reference when troubleshooting hardware failure, as timestamps are available for these hardware fault events.

The following are example fault log entries as they would appear in the BUI:

<table>
<thead>
<tr>
<th>Date</th>
<th>Event ID</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-9-5</td>
<td>9e46fc0b-b1a4-4e69-f10f-c7dbe80794fe</td>
<td>The device 'HDD 6' has failed or could not be opened.</td>
<td>Major Fault</td>
</tr>
<tr>
<td>2009-9-3</td>
<td>d37cb5cd-88a8-6408-e82d-c05576c52279</td>
<td>External sensors indicate that a fan is no longer operating correctly.</td>
<td>Minor Fault</td>
</tr>
<tr>
<td>2009-8-21</td>
<td>c91c7b32-83ce-6da8-e51e-a553964bbdb</td>
<td>The ZFS pool has experienced currently unrecoverable I/O failures.</td>
<td>Major Error</td>
</tr>
</tbody>
</table>

These faults will generate alert log entries, and so will use the alert reporting settings (such as sending email), if configured. Faults that require administrator attention will appear in Problems.

### System

This is the operating system log, available to read via the appliance interfaces. This may be useful when troubleshooting complex issues, but should only be checked after first examining the alert and fault logs.

The following are example system log entries as they would appear in the BUI:

<table>
<thead>
<tr>
<th>Time</th>
<th>Module</th>
<th>Priority</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-10-11</td>
<td>ntpdate</td>
<td>error</td>
<td>no server suitable for synchronization found</td>
</tr>
</tbody>
</table>
Audit

The audit log records user activity events, including login and logout to the BUI and CLI, and administrative actions. If session annotations are used (see Users), each audit entry should be noted with a reason.

The following are example audit log entries as they would appear in the BUI:

<table>
<thead>
<tr>
<th>Time</th>
<th>User</th>
<th>Host</th>
<th>Summary</th>
<th>Session Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-10-12 05:20:24</td>
<td>root</td>
<td>deimos</td>
<td>Disabled ftp service</td>
<td></td>
</tr>
<tr>
<td>2009-10-12 03:17:05</td>
<td>root</td>
<td>deimos</td>
<td>User logged in</td>
<td></td>
</tr>
<tr>
<td>2009-10-11 22:38:56</td>
<td>root</td>
<td>deimos</td>
<td>Browser session timed out</td>
<td></td>
</tr>
</tbody>
</table>

Phone Home

If Phone Home is used, this log will show communication events with Oracle support.

The following are example phone home entry as it would appear in the BUI:

<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-10-12 05:24:09</td>
<td>Uploaded file 'cores/ak.45e5ddd1-ce92-c16e-b5eb-9cb2a8091f1c.tar.gz' to Oracle support</td>
<td>OK</td>
</tr>
</tbody>
</table>

BUI

Use the Maintenance > Logs screen to navigate logs using list controls, and switch between logs using the local navigation buttons.

CLI

Logs can be viewed under the maintenance logs section of the CLI.
Listing logs

Use the `show` command to list available logs, and the timestamp of the last log entry:

```plaintext
caji: maintenance logs
caji: maintenance logs> show
Logs:

<table>
<thead>
<tr>
<th>LOG</th>
<th>ENTRIES</th>
<th>LAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>alert</td>
<td>2</td>
<td>2009-10-16 02:44:04</td>
</tr>
<tr>
<td>audit</td>
<td>42</td>
<td>2009-10-16 18:19:53</td>
</tr>
<tr>
<td>ffllog</td>
<td>2</td>
<td>2009-10-16 02:44:04</td>
</tr>
<tr>
<td>scrk</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>system</td>
<td>100</td>
<td>2009-10-16 03:51:01</td>
</tr>
</tbody>
</table>
```

Up to 100 recent entries for each log are visible using the CLI.

Viewing a log

Logs may be selected for viewing with the `show` command:

```plaintext
caji: maintenance logs> select audit show
Entries:

<table>
<thead>
<tr>
<th>ENTRY</th>
<th>TIME</th>
<th>SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>entry-000</td>
<td>2009-10-15 00:59:37</td>
<td>root, <console>, Enabled datalink:nge0 service</td>
</tr>
<tr>
<td>entry-001</td>
<td>2009-10-15 00:59:39</td>
<td>root, <console>, Enabled interface:nge0 service</td>
</tr>
<tr>
<td>entry-002</td>
<td>2009-10-15 01:00:39</td>
<td>root, <console>, User logged in</td>
</tr>
<tr>
<td>entry-003</td>
<td>2009-10-15 01:41:44</td>
<td>root, <console>, Enabled nis service</td>
</tr>
<tr>
<td>entry-004</td>
<td>2009-10-15 01:42:01</td>
<td>root, <console>, Imported storage pool "pool-0"</td>
</tr>
<tr>
<td>entry-005</td>
<td>2009-10-15 17:56:53</td>
<td>root, <console>, User logged in</td>
</tr>
<tr>
<td>entry-006</td>
<td>2009-10-15 17:57:03</td>
<td>root, deimos.sf.fishworks.com, User logged in via CLI</td>
</tr>
<tr>
<td>entry-007</td>
<td>2009-10-15 18:00:21</td>
<td>root, deimos.sf.fishworks.com, User logged out of CLI</td>
</tr>
<tr>
<td>entry-008</td>
<td>2009-10-15 18:14:47</td>
<td>root, <console>, Browser session timed out</td>
</tr>
<tr>
<td>entry-010</td>
<td>2009-10-15 21:51:46</td>
<td>root, <console>, Rebooted appliance</td>
</tr>
<tr>
<td>entry-011</td>
<td>2009-10-15 21:51:46</td>
<td>root, <console>, User logged out</td>
</tr>
</tbody>
</table>

...
```

Most recent entries are displayed at the bottom of the list.

Entry details

All log entry details are available when selecting that entry and running `show`:

```plaintext
caji: maintenance logs> select audit
caji: maintenance logs audit> select entry-000 show
Properties:

- timestamp = 2009-10-15 00:59:37
- user = root
```
The "annotation" is the *session annotation*, which can be enabled when configuring users.
## Glossary

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7110</td>
<td>Sun Storage 7110 Unified Storage System</td>
</tr>
<tr>
<td>7120</td>
<td>Sun ZFS Storage 7120</td>
</tr>
<tr>
<td>7210</td>
<td>Sun Storage 7210 Unified Storage System</td>
</tr>
<tr>
<td>7310</td>
<td>Sun Storage 7310 Unified Storage System</td>
</tr>
<tr>
<td>7320</td>
<td>Sun ZFS Storage 7320</td>
</tr>
<tr>
<td>7410</td>
<td>Sun Storage 7410 Unified Storage System</td>
</tr>
<tr>
<td>7420</td>
<td>Sun ZFS Storage 7420</td>
</tr>
<tr>
<td>Active Directory</td>
<td>Microsoft Active Directory server</td>
</tr>
<tr>
<td>Alerts</td>
<td>Configurable log, email or SNMP trap events</td>
</tr>
<tr>
<td>Analytics</td>
<td>Appliance feature for graphing real-time and historic performance statistics</td>
</tr>
<tr>
<td>ARC</td>
<td>Adaptive Replacement Cache</td>
</tr>
<tr>
<td>BUI</td>
<td>Browser User Interface</td>
</tr>
<tr>
<td>CLI</td>
<td>Command Line Interface</td>
</tr>
<tr>
<td>Cluster</td>
<td>Multiple heads connected to shared storage</td>
</tr>
<tr>
<td>Controller</td>
<td>See &quot;Storage Controller&quot;</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CRU</td>
<td>Customer Replaceable Component</td>
</tr>
<tr>
<td>Dashboard</td>
<td>Appliance summary display of system health and activity</td>
</tr>
<tr>
<td>Dataset</td>
<td>The in-memory and on-disk data for a statistic from Analytics</td>
</tr>
<tr>
<td>DIMM</td>
<td>Dual in-line memory module</td>
</tr>
<tr>
<td>Disk Shelf</td>
<td>The expansion storage shelf that is connected to the head node or storage controller</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name Service</td>
</tr>
</tbody>
</table>
DTrace  
a comprehensive dynamic tracing framework for troubleshooting kernel and application problems on production systems in real-time

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>Fibre Channel</td>
</tr>
<tr>
<td>FRU</td>
<td>Field Replaceable Component</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>GigE</td>
<td>Gigabit Ethernet</td>
</tr>
<tr>
<td>HBA</td>
<td>Host Bus Adapter</td>
</tr>
<tr>
<td>HCA</td>
<td>Host Channel Adapter</td>
</tr>
<tr>
<td>HDD</td>
<td>Hard Disk Drive</td>
</tr>
<tr>
<td>HTTP</td>
<td>HyperText Transfer Protocol</td>
</tr>
<tr>
<td>Hybrid Storage Pool</td>
<td>combines disk, flash, and DRAM into a single coherent and seamless data store.</td>
</tr>
<tr>
<td>Icons</td>
<td>icons visible in the BUI</td>
</tr>
<tr>
<td>iSCSI</td>
<td>Internet Small Computer System Interface</td>
</tr>
<tr>
<td>Kiosk</td>
<td>a restricted BUI mode where a user may only view one specific screen</td>
</tr>
<tr>
<td>L2ARC</td>
<td>Level 2 Adaptive Replacement Cache</td>
</tr>
<tr>
<td>LDAP</td>
<td>Lightweight Directory Access Protocol</td>
</tr>
<tr>
<td>LED</td>
<td>light-emitting diode</td>
</tr>
<tr>
<td>Logzilla</td>
<td>write IOPS accelerator</td>
</tr>
<tr>
<td>LUN</td>
<td>Logical Unit</td>
</tr>
<tr>
<td>Masthead</td>
<td>top section of BUI screen</td>
</tr>
<tr>
<td>Modal Dialog</td>
<td>a new screen element for a specific function</td>
</tr>
<tr>
<td>NFS</td>
<td>Network File System</td>
</tr>
<tr>
<td>NIC</td>
<td>Network Interface Card</td>
</tr>
<tr>
<td>NIS</td>
<td>Network Information Service</td>
</tr>
<tr>
<td>PCIe</td>
<td>Peripheral Component Interconnect Express</td>
</tr>
<tr>
<td>Pool</td>
<td>provide storage space that is shared across all filesystems and LUNs</td>
</tr>
<tr>
<td>Project</td>
<td>a collection of shares</td>
</tr>
<tr>
<td>PSU</td>
<td>Power Supply Unit</td>
</tr>
</tbody>
</table>
QDR  quad data rate
Readzilla  read-optimized flash SSD for the L2ARC
Remote Replication  replicating shares to another appliance
Rollback  reverts all of the system software and all of the metadata settings of the system back to their state just prior to applying an update
SAS  Serial Attached SCSI
SAS-2  Serial Attached SCSI 2.0
SATA  Serial ATA
Schema  configurable properties for shares
Scripting  automating CLI tasks
Service  appliance service software
Share  ZFS filesystem shared using data protocols
SIM  SAS Interface Module
Snapshot  an image of a share
SSD  Solid State Drive
SSH  Secure Shell
Statistic  a metric visible from Analytics
Storage Controller  the head node of the appliance
Support Bundle  auto-generated files containing system configuration information and core files for use by remote support in debugging system failures
Title Bar  local navigation and function section of BUI screen
Updates  software or firmware updates
WebDAV  Web based Distributed Authoring and Versioning
ZFS  on-disk data storage subsystem

ZFS
Index

Numbers and Symbols
7120, 24, 25, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 53, 67
7320, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 53

D
DIMM, 47, 48, 49
Disk Shelf, 80, 81, 83, 84

F
FRU, 35

H
Hardware, Locating a failed component, 21

L
Logzilla, 25, 32

S
Shelf
  Replacing a Drive, 87–89
  Replacing a Power Supply, 89–91
  Replacing a SIM Board, 91–93
SIM, 81, 84, 91

SSD, 75

U
Updates, 111, 112