Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions à

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX est une marque déposée de The Open Group.

Le logiciel et la documentation qui l’accompagne sont destinés à être utilisés dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d’autres propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. UNIX est une marque déposée de The Open Group.

Le logiciel et la documentation qui l’accompagne sont destinés à être utilisés dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce type d’applications.
Table of Contents

Chapter 1 Introduction to the pdscli
Install the CLI Client Software ... 15
Extract the pdscli Executable and Supplemental Files 16
Display CLI Help ... 16
Set Configuration Variables ... 17
 Set Configuration Variables with Command-Line Options 19
 Set Configuration Variables with Environment Variables 19
 Set Configuration Variables in a Configuration File 20
Run Commands .. 21
 Use Scripts to Run Commands .. 21
 Design CLI Scripts .. 22
 Write CLI Scripts .. 23
 Use Request Input Files to Run Commands 24
 Use the Command Prompt to Run Commands 26
 Use of Spaces in Commands .. 27
 Types of Commands .. 28
Technical Support .. 28
 Access to Pillar Axiom systems .. 28
 Contacts at Pillar Data Systems .. 29

Chapter 2 Manage Pillar Axiom Systems
Pillar Axiom Objects and Management Requests 31
Synchronous and Asynchronous Requests .. 47
Administrator Roles and Privileges .. 48
System Management Task Summary .. 49
 Monitor Objects .. 52
 Manage Objects .. 54
Ranges for Option Values .. 57
Chapter 3 CLI Commands
Command Reference Pages .. 64
convert .. 65
endsession ... 68
help .. 70
rawsend ... 72
request .. 75
startsession .. 79
submit ... 82
template .. 86
verify .. 88

Chapter 4 Management Requests
Request Reference Pages .. 90
CancelForceFileSystemRebalance 91
CreateAccount .. 92
CreateCIFSShare ... 95
CreateCloneFS ... 97
CreateExternalUPSDevice .. 99
CreateFileServer ... 100
CreateFileSystem .. 110
CreateFileSystemSnapshot ... 122
CreateFileSystemSnapshotSchedule 124
CreateJob ... 127
CreateLUN ... 135
CreateNFSExport .. 144
CreateNFSHostEntry .. 148
CreateNotificationConnection .. 151
CreateNotificationDefinition .. 152
CreateQuota ... 154
CreateRoute .. 157
CreateSchedule---------................................. 159
CreateSnapLUN .. 161
CreateVirtualInterface ... 164
CreateVolumeGroup .. 167
DeleteAccount ... 169
DeleteAdministratorAction ... 170
DeleteCIFSShare ... 171
DeleteCloneFS ... 172
DeleteExternalUPSDevice ... 174
DeleteFileServer .. 175
DeleteFileSystem .. 176
DeleteFileSystemSnapshot ... 177
DeleteFileSystemSnapshotSchedule .. 179
DeleteJob ... 181
DeleteLUN ... 182
DeleteNFSExport ... 183
DeleteNFSHostEntry .. 184
DeleteNotificationDefinition ... 185
DeleteQuota .. 186
DeleteRoute .. 188
DeleteSANHost ... 189
DeleteSchedule ... 190
DeleteSnapLUN .. 191
DeleteVirtualInterface ... 192
DeleteVolumeAndChildren ... 193
DeleteVolumeGroup ... 195
ForceFileSystemRebalanceOnRestart ... 196
GatherQuotaForFileSystem .. 197
GetAccountDetails .. 198
GetAdministratorActionDetails ... 199
GetAllAccounts .. 200
GetAllAdministratorActions .. 201
GetAllAvailableLUNNumbers ... 202
GetAllBackupRuns ... 203
GetAllBricks .. 204
GetAllCallHomeFileDetails ... 205
GetAllCIFSShares ... 206
GetAllCloneFSHierarchies ... 207
GetAllCloneFSs .. 208
GetAllEvents .. 210
GetAllExternalUPSDevices .. 212
GetAllFileServers ... 213
GetAllFileSystems ... 214
GetAllFileSystemSnapshots ... 216
GetAllFileSystemSnapshotSchedules 218
GetAllJobs ... 220
GetAllLUNs ... 221
GetAllNFSExports .. 222
GetAllNotificationDefinitions .. 223
GetAllQuotas .. 224
GetAllQuotaFiles .. 225
GetAllRoutes .. 226
GetAllSANHosts ... 227
GetAllSANProtocolStatistics ... 228
GetAllSchedules .. 229
GetAllSessions .. 230
GetAllSlammers ... 231
GetAllSnapLUNHierarchies .. 232
GetAllSnapLUNs .. 233
GetAllTapeRobots .. 234
GetAllTasks ... 235
GetAllUpdateComponents .. 236
GetAllUpdatePackages ... 237
GetAllVerifyOperations .. 238
GetAllVirtualInterfaces .. 239
GetAllVolumeGroups ... 240
GetBackupRunStatistics ... 241
GetBrickDetails ... 242
GetCallHomeMatrixDetails ... 243
GetCIFSShareDetails ... 244
GetCloneFSDetails .. 245
GetCurrentDateTimeDetails .. 247
GetCurrentTimeZoneDetails ... 248
GetDataConsistencyDetails ... 249
GetExternalUPSDeviceDetails ... 250
GetFCPortStatisticsDetails ... 251
GetFileServerDetails .. 253
GetSNMPConfigDetails .. 298
GetSpareDriveDetails ... 299
GetStorageConfig ... 300
GetStorageRedundancyDetails .. 301
GetSystemInformationFileDetails ... 302
GetSystemStatusDetails .. 303
GetTaskDetails ... 304
GetUpdatePackageDetails ... 305
GetVirtualInterfaceDetails ... 307
GetVolumeGroupDetails .. 308
Login .. 309
Logout .. 310
ModifyAccount ... 311
ModifyBrick .. 314
ModifyCIFSShare .. 315
ModifyCloneFS .. 317
ModifyExternalUPSDevice ... 319
ModifyFileServer ... 321
ModifyFileSystem ... 330
ModifyFileSystemSnapshot ... 340
ModifyHBAPort .. 342
ModifySCSIPortDetails ... 343
ModifyJob .. 345
ModifyLUN ... 351
ModifyManagementConfig ... 360
ModifyMyAccount ... 367
ModifyNASConfig ... 368
ModifyNDMPConfig ... 369
ModifyNFSHostEntry ... 371
ModifyNotificationDefinition .. 373
ModifyQuota .. 375
ModifySANHost ... 377
ModifySlammer .. 380
ModifySnapLUN ... 381
ModifySNMPConfig ... 384
ModifyTimeConfig .. 386
ModifyVolumeGroup .. 389
PerformAcceptAddBrick .. 391
PerformAcceptAddSlammer ... 392
PerformAcceptBrickDiskDrive ... 393
PerformAcceptForeignDiskDrive 395
PerformAssignCIFSLocalGroups 397
PerformAssociateInitiatorsToHost 398
PerformBackgroundFileSystemDuplication 400
PerformBackgroundLUNDuplication 402
PerformCancelTask .. 404
PerformClearLostData ... 405
PerformCollectInstantaneousStatistics 406
PerformCollectSystemInformation 407
PerformConfigureLUNMapping .. 412
PerformCopybackBrickLUNs ... 415
PerformDisableSMIStartup ... 417
PerformDownloadCallHomeFile .. 418
PerformDownloadQuotaFile ... 419
PerformDownloadSystemInformationFile 420
PerformEnableSMIStartup ... 421
PerformFailbackResources .. 422
PerformFileSystemCheck .. 423
PerformFileSystemDuplication ... 425
PerformIdentifyBrick ... 433
PerformIdentifyBrickFRU .. 435
PerformIdentifyPilot ... 437
PerformIdentifySlammer ... 438
PerformIdentifySlammerFRU ... 440
PerformIdentifySlammerIOPort ... 443
PerformJoinDomain ... 445
PerformLUNDuplication .. 447
PerformNISFileDownload ... 455
PerformNISFileUpload ... 456
PerformNLMLockRecovery ... 459
PerformPeriodicCallHome .. 460
PerformPrepareReplaceBrickFRU 461
PerformPrepareReplaceSlammerFRU .. 463
PerformPrepareSlammerMemoryUpgrade 465
PerformProtectedFileValidation .. 467
PerformPutFileSystemOffline .. 469
PerformPutFileSystemOnline .. 470
PerformRebuildBrickLUNs .. 472
PerformRebuildCloneFSRedundancy .. 473
PerformRebuildFileSystemRedundancy 474
PerformRebuildLUNRedundancy .. 475
PerformRebuildSnapLUNRedundancy .. 477
PerformRejectForeignDiskDrive .. 478
PerformRemoveBrickFromConfiguration 480
PerformRemoveSlammerFromConfiguration 481
PerformResetSystem .. 482
PerformResetTapeRobotDevice ... 483
PerformRestart ... 484
PerformRestoreFileSystemFromSnapshot 485
PerformResumeBrick .. 486
PerformResumeBrickFRU ... 487
PerformResumeSlammer ... 489
PerformResumeSlammerFRU .. 490
PerformSANiSCSIPing ... 492
PerformSendSystemInformationToCallHomeServer 494
PerformShutdown ... 495
PerformSlammerCommand .. 496
PerformSlammerControlUnitDiagnostic 503
PerformTapeRobotDiagnostic ... 504
PerformTestCallHome .. 505
PerformTestEmail ... 506
PerformUpdate ... 507
PerformUpdateDiskDrive ... 509
PerformUpdateDiskDriveValidation .. 510
PerformUpdatePackageStaging ... 511
PerformUpdateSystemSerialNumber 512
PerformUpdateValidation .. 513
PerformVerifyDataConsistency ... 515
List of Tables

Table 1 CLI configuration variables ... 17
Table 2 Design considerations for CLI scripts .. 22
Table 3 Implementation considerations for CLI scripts 22
Table 4 Contacts at Pillar Data Systems ... 29
Table 5 Requests categorized by object type .. 31
Table 6 Requests categorized by action type .. 39
Table 7 Administrator privileges by role ... 48
Table 8 Create command sequence ... 50
Table 9 Monitor command sequence ... 52
Table 10 Manage command sequence .. 54
Table 11 Quantity ranges .. 58
Table 12 Data type and length ranges .. 60
Table 13 Data access methods ... 113
Table 14 Optimum number of RAID groups for best performance 115
Table 15 Schedule recurrence values .. 125
Table 16 Updatable components ... 129
Table 17 Data access methods ... 139
Table 18 Optimum number of RAID groups for best performance 141
Table 19 Data access methods ... 334
Table 20 Optimum number of RAID groups for best performance 336
Table 21 Updatable components ... 347
Table 22 Data access methods ... 355
Table 23 Optimum number of RAID groups for best performance 357
Table 24 System information type .. 409
Table 25 Data access methods ... 428
Table 26 Optimum number of RAID groups for best performance .. 430
Table 27 Data access methods ... 450
Table 28 Optimum number of RAID groups for best performance .. 452
Table 29 SOCK and VSID environment variables 497
Table 30 Resolve connectivity trouble commands 498
Table 31 Updatable components ... 507
Table 32 Updatable components ... 513
Table 33 CLI return status codes .. 530
CHAPTER 1

Introduction to the pdscli

The Pillar Axiom command line interface (pdscli) is securely encrypted and uses an open, XML-based API to communicate with Oracle’s Pillar Axiom system over a TCP/IP network using TCP port 26004. The communication is encrypted for security of administrator accounts and system information. There is no access to user filesystems or block data over the CLI.

Using the pdscli CLI client software you can:

• Use Scripts to Run Commands (p. 21)
• Use Request Input Files to Run Commands (p. 24)
• Use the Command Prompt to Run Commands (p. 26)

Note: To perform these tasks, however, you must log in using a customer administrator account.

Important! Using the pillar support account, you cannot perform many of those tasks. If you log in using the support account, you can issue any view type request but you cannot:

• Create or modify any other accounts.
• Delete administrator actions.
• Create, modify, or delete any data oriented resources.

The CLI complements the browser-based graphical user interface (GUI), Pillar Axiom Storage Services Manager, which includes wizards, embedded instructional text, and context-sensitive online help to simplify configuration and management. Use the CLI to:

• Run the following requests that are available only from the CLI:
 • PerformTapeRobotDiscovery (p. 504)
 • PerformResetTapeRobotDevice on p. 483
• Perform repetitive tasks through scripts. For example:
 • Monitor the state of the Pillar Axiom system periodically and perform different actions based on the system state.
 • Collect data for reports. You can combine command sequences into scripts that collect data for different audiences or different reporting needs.

Install the CLI Client Software

Note: For a list of currently-supported platforms and recent patches, consult with your account representative, or refer to the Release Notes or the Pillar Axiom Support and Interoperability Guide.

Download the client software to the workstation from which you intend to manage the Pillar Axiom storage system.

1 Log in to the graphical user interface (GUI).
2 Click the Support icon in the top context pane.
3 Click the Command Line Interface link in the left navigation pane.
4 Choose one of the following options from the Actions drop-down list:
 • Download CLI for Linux x86
 • Download CLI for Linux IA64
 • Download CLI for Linux x86_64
 • Download CLI for HP-UX PA-RISC
 • Download CLI for HP-UX IA64
 • Download CLI for Solaris SPARC
 • Download CLI for Solaris 10 SPARC
 • Download CLI for Solaris 10 x86
 • Download CLI for AIX
 • Download CLI for FreeBSD x86
 • Download CLI for Windows
 • Download CLI for Max x86
 • Download CLI for Max PowerPC
Extract the pdscli Executable and Supplemental Files

After you download the CLI client, use a platform-specific extraction tool to expand the compressed file. For example:

- UNIX platforms (Linux, Solaris, HP-UX, AIX) and Mac: `tar xzf <archive-file>`
- Windows: expand with the built-in XP zip compression utility or a utility such as WinZip

In addition to the pdscli executable, supplemental CLI files are expanded into subdirectories under the extracted executable directory:

- The cliSampleInput subdirectories contain example request files (*.req). Use them to create data input files as you Write CLI Scripts (p. 23).
- The cliSampleOutput subdirectories contain example response files (*.txt) with standard output.

 Note: If you use the sample output files to create your own code, omit any extraneous colons. Colons should separate fields only.
- The XML subdirectories contain XML-formatted copies of the example request and response files.

Display CLI Help

Run the help (p. 70) command to display CLI information:

- `pdscli help` displays a list of supported commands (see CLI Commands on p. 64).
- `pdscli help environment` displays information about configuration variables for the CLI (see Set Configuration Variables on p. 17).
- `pdscli help list-requests` displays a list of management requests that you can use with the request (p. 75) and submit (p. 82) commands (see Management Requests on p. 90).
- `pdscli help list-errors` displays a list of system error messages.
Set Configuration Variables

You can set the configuration variables in the following ways and use the settings each time you run the CLI:

- **Set Configuration Variables with Command-Line Options (p. 19)**
- **Set Configuration Variables with Environment Variables (p. 19)**
- **Set Configuration Variables in a Configuration File (p. 20)**

If you set a configuration variable in more than one way:

- Environment-variable settings take precedence over configuration-file settings.
- Command-line options take precedence over both of the other configuration variable options.

Table 1. **CLI configuration variables**, lists the CLI configuration variables. The CLI shows a value of “<not set>” until you set explicit values.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Options</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDS_CONFIG</td>
<td>{-C <file></td>
<td>--config <file>}</td>
</tr>
<tr>
<td>PDS_TMPDIR</td>
<td>{-W</td>
<td>--tmpdir <directory>}</td>
</tr>
<tr>
<td>PDS_HOST</td>
<td>{-H <host></td>
<td>--host <host>}</td>
</tr>
<tr>
<td>PDS_TIMEOUT</td>
<td>{-T < time></td>
<td>--timeout <time>}</td>
</tr>
</tbody>
</table>
Chapter 1 Introduction to the pdscli

Set Configuration Variables 18

PDS_ASYNC {-A | --async} Identifies that the Pillar Axiom system should return asynchronous responses instead of waiting for the request to complete. When this variable is set, poll the status of long-running requests to determine when requests are complete.

PDS_USER {-u <user> | --user <user>} Identifies an administrator username.

PDS_PASSWORD {-p <passwd> | --password <passwd>} Identifies the password for the administrator user name. For security reasons, do not include the PDS_USER and PDS_PASSWORD configuration variables in environment variables. If you include them in a configuration file, ensure that the file is protected from unauthorized access.

PDS_SESSIONKEY {-s <key> | --session <key>} Identifies a session that is established upon a successful login using the startsession (p. 79) command. Use this session key (unique ID) in conjunction with the request (p. 75) command to avoid the overhead of establishing a new session for each individual request that is submitted with the submit (p. 82) command. Be sure to use the endsession (p. 68) command to close the session when you are finished. If endsession is not used, the session will time out after the last request or response. The time out is the session timeout value.

PDS_TRACEFILE {-L <file> | --logfile <file>} Identifies the name of a text file into which to write debug trace results. Instead of a file name, you can specify:
- {- | -1} for standard output (stdout)
- -2 for standard error (stderr)
If not set, both standard error and standard out are sent to your current shell session.

PDS_TRACEITEM {-I | <item> | --traceitem <item>} Identifies the type of CLI results to write to the debug trace file. Choose from:
- {1 | cmd} for command line entries
- {2 | option} for processed options
- {4 | xmit} for transmitted XML data
- {8 | recv} for received XML data
- {16 | vals} for the parsed value list
- 1 to 31 bitmasks, where 31 returns all of the above (or repeat for each item to write to the log)
Enter a dash (-) as a trace-item prefix to turn off that item.

Table 1 CLI configuration variables (continued)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Options</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDS_ASYNC</td>
<td>{-A</td>
<td>--async}</td>
</tr>
<tr>
<td>PDS_USER</td>
<td>{-u <user></td>
<td>--user <user>}</td>
</tr>
<tr>
<td>PDS_PASSWORD</td>
<td>{-p <passwd></td>
<td>--password <passwd>}</td>
</tr>
<tr>
<td>PDS_SESSIONKEY</td>
<td>{-s <key></td>
<td>--session <key>}</td>
</tr>
<tr>
<td>PDS_TRACEFILE</td>
<td>{-L <file></td>
<td>--logfile <file>}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• {-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• -2 for standard error (stderr)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If not set, both standard error and standard out are sent to your current shell session.</td>
</tr>
<tr>
<td>PDS_TRACEITEM</td>
<td>{-I</td>
<td><item></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• {1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• {2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• {4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• {8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• {16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1 to 31 bitmasks, where 31 returns all of the above (or repeat for each item to write to the log)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enter a dash (-) as a trace-item prefix to turn off that item.</td>
</tr>
</tbody>
</table>
Set Configuration Variables with Command-Line Options

To set CLI configuration variables with command-line options:

1. Run the following command to display a list of currently defined configuration variables:

   ```
pdscli help environment
   ```

2. Enter the long or short options from Table 1, CLI configuration variables, at the command line to set each configuration variable to an appropriate value. Note that:
 - The -C or --config option must appear first.
 - Values that you set in this way take precedence if the variable is already set.

 For example:

   ```
   ```

 Performs maximum debug tracing and sends "MyRequest" where using submit means you start a session, send the request, then send an endsession.

Set Configuration Variables with Environment Variables

The `pdscli` CLI utility can read the values of the environment variables to simplify the input of configuration information. To set CLI configuration variables with environment variables:

1. Run the following command to display a list of currently defined configuration variables:

   ```
pdscli help environment
   ```

2. Follow the instructions in your operating system documentation to set an environment variable. Each operating system (and shell or script environment) has its own method to set environment variables.
Set Configuration Variables in a Configuration File

This option is useful when you Write CLI Scripts (p. 23). To create a configuration file that contains values to set the CLI configuration variables:

1. Run the startsession (p. 79) command with your login information, and save the session ID that the Pillar Axiom system returns.

2. Run the following command to create a template for a plain-text configuration file:

   ```
   pdscli help environment > cli.cfg
   ```

 Note: You can name the file any name; cli.cfg is an example name only.

3. Open the cli.cfg file in an ASCII text editor.

4. To define values for the variables that you want to store in the configuration file, enter the name of the configuration file as the value for the PDS_CONFIG variable.

5. Remove or comment out entries for variables that should not be set.

6. Save the cli.cfg file.

7. To set the CLI to use the values in the configuration file, specify -C <file> or --config <file> as the first option after a command name. For example:

   ```
   pdscli request -C cli.cfg <management-request>
   ```

The following example shows how to create a configuration file and use it in the UNIX Bourne shell:

1. Run the following command to create a session, and save the value in the PDS_SESSIONKEY shell variable:

   ```
   # PDS_SESSIONKEY=`pdscli startsession -u administrator -p secret -H 10.0.0.1`
   ```

2. Run the following command to create a shell for a plain-text configuration file:

   ```
   # pdscli help environment > /data/cli.cfg
   ```

3. Edit cli.cfg and enter values for the variables that you want to store in the configuration file. For example:

   ```
   # cat /data/cli.cfg
   PDS_CONFIG= /data/cli.cfg
   PDS_HOST= 192.168.1.1
   PDS_USER= administrator
   PDS_PASSWORD= secret
   ```
echo PDS_SESSIONKEY=$PDS_SESSIONKEY >>
/data/cli.cfg

4 To use the cli.cfg file, either "source" the entire file or simply create a variable
that defines the path and name:

. /data/cli.cfg

or

PDS_CONFIG=/data/cli.cfg; export PDS_CONFIG

Run Commands

CLI scripts provide repeatable ways to configure, monitor, and manage a Pillar
Axiom system. See Use Scripts to Run Commands on p. 21.

If you do not need a repeatable script interface, you can use the command line
interface (CLI) to:

• Generate a template, enter values for the fields in the template, and run a
command to incorporate the template values into the configuration settings
(see Use Request Input Files to Run Commands on p. 24)

• Run commands one at a time from a command prompt (see Use the
Command Prompt to Run Commands on p. 26)

Use Scripts to Run Commands

Scripts allow you to manage a Pillar Axiom system. Be sure to:

• Design CLI Scripts (p. 22) first.

• Write CLI Scripts (p. 23) and test script functionality by running the verify
(p. 88) command on individual management requests.
Design CLI Scripts

Take time to design your CLI script implementation before you start to write scripts. Table 2, Design considerations for CLI scripts, lists a few design considerations. Add your environment-specific requirements to the list so that you have a complete view before implementation.

Table 2 Design considerations for CLI scripts

<table>
<thead>
<tr>
<th>Design question</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| Do you need cross-platform scripts? | Which script languages work on the platforms that you use? Consider:
- Perl
- Expect
- Python
- TCL
Be aware of other compatibility issues too, such as line-end characters. |
| Do you need to adhere to corporate coding standards in CLI scripts? | Follow corporate standards. Your standards may affect which script language you use and will affect your script implementation. |
| Will you perform all management tasks from the CLI or will CLI scripts coexist with GUI usage? | If you use both interfaces, decide which interface is better suited to which tasks.
- CLI usage may be appropriate for repetitive GetAll<Objects> and Get<Object>Details requests that are used to monitor a system.
- GUI usage may be appropriate for Create<Object> requests that consist of many name/value pairs. |

Table 3, Implementation considerations for CLI scripts lists a few implementation considerations. Add your environment-specific requirements to the list.

Table 3 Implementation considerations for CLI scripts

<table>
<thead>
<tr>
<th>Implementation question</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| Is user intervention permitted while scripts run? | Consider that:
- User intervention to enter a password can be inconvenient if you run scripts during off-peak hours.
- Login passwords are stored in clear text in templates, configuration files, and scripts. Clear-text passwords can be a security risk. |
Chapter 1 Introduction to the pdscli

Run Commands

The CLI issues requests that execute on the Pillar Axiom system during an authenticated session. The login process establishes a managed or encapsulated session based on the approach that you use.

- **Managed-session approach.** This approach provides explicit session management of extended sessions in which you perform a sequence of management requests.

 - Use the `startsession` (p. 79) command to log in and establish a managed session.

 - Use the `request` (p. 75) command to run a sequence of Management Requests (p. 90) within the managed session.

 - Use the `endsession` (p. 68) command to end the session.

- **Encapsulated-session approach.** This approach provides session control for single-instance commands. The session is valid only during the life of the single command. Use the `submit` (p. 82) command to run any one of the Management Requests (p. 90), such as a request to `GetSystemStatusDetails` (p. 303).

Write CLI Scripts

The CLI issues requests that execute on the Pillar Axiom system during an authenticated session. The login process establishes a managed or encapsulated session based on the approach that you use.

- **Managed-session approach.** This approach provides explicit session management of extended sessions in which you perform a sequence of management requests.

 - Use the `startsession` (p. 79) command to log in and establish a managed session.

 - Use the `request` (p. 75) command to run a sequence of Management Requests (p. 90) within the managed session.

 - Use the `endsession` (p. 68) command to end the session.

- **Encapsulated-session approach.** This approach provides session control for single-instance commands. The session is valid only during the life of the single command. Use the `submit` (p. 82) command to run any one of the Management Requests (p. 90), such as a request to `GetSystemStatusDetails` (p. 303).

Do you need script-specific administrator accounts?

- Yes
- No

<table>
<thead>
<tr>
<th>Implementation question</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| Do you need script-specific administrator accounts? | Review the administrator roles in relation to the CLI scripts that you need. Balance convenience and security:
| | • Do you need separate administrator accounts for each person?
| | You can create a total of 17 accounts and assign appropriate roles to them. The same accounts can access both the CLI and GUI.
| | • Do you need one administrator account for all script usage?
| | If so, you can create a special "script" account and assign the Type1 role to it.
| | Use caution when creating special scripts. It is possible for multiple administrators to run the same script and interfere with each other. |

Do you need script assistance from the Professional Services team at Pillar World Wide Customer Support Center?

- Yes
- No

<table>
<thead>
<tr>
<th>Implementation question</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| Do you need script assistance from the Professional Services team at Pillar World Wide Customer Support Center? | Contact information:
| | `support@pillardata.com`
| | USA: 877.4PILLAR (877.474.5527) and ask for Professional Services at the prompt
| | International: +1.408.518.4400
| | Web: http://support.pillardata.com/ |
Additional command modes are available:

- The `rawsend` (p. 72) command mode is useful when the Pillar Axiom system is integrated with XML-based applications. The command permits direct use of XML files as input and output and eliminates the need to reformat the XML data as name/value pairs.

- The `verify` (p. 88) command mode is useful when you develop and test scripts or request templates. The command validates the command input without submitting the command to the Pillar Axiom system.

During script development, look for responses similar to the following example:

Request Failed; Status is: Failed
Error List:
 Error (4019):
 Terminated the request
 Error (4022):
 Error reserving persisted object because it is already in use

If you receive such responses to requests that you perform with the `request` (p. 75) or `submit` (p. 82) commands, modify the script to wait one minute and retry the request. Set the maximum number of retries to 10. This wait-and-retry sequence typically permits the system to work around `Synchronous and Asynchronous Requests` (p. 47) that try to operate on the same object.

Use Request Input Files to Run Commands

Some `Management Requests` (p. 90) have many options that are entered as `<name>=<value>` pairs. You can create input files that contain sets of `<name>=<value>` pairs and use the input files to run the `request` (p. 75) command.

You can call multiple input files for each management request. This permits you to group request options in meaningful ways to use a set of input files in different contexts or to run multiple requests.

The Pillar Axiom system provides input files to use as a base from which to create customized input files for your environment (see `Extract the pdscli Executable and Supplemental Files` on p. 16.) Look for request files (*.req) in subdirectories under the `<CLI-install-dir>\cliSampleInput` directory.
The input files are commented to provide information about valid values for the \(<\text{name}>=\langle\text{value}\rangle\) pairs.

- Minimum and maximum values appear as shown in these lines from the ModifyFileSystemRequest.req input file for the ModifyFileSystem (p. 330) request:

  ```
  # minVal=1, maxVal=2147483647
  Capacity.CurrentCapacity = 1
  ```

 Ranges for Option Values (p. 57) provide additional information about quantities, data types, and data lengths.

- Enumerated lists appear as shown in these lines from the CreateNFSHostEntryRequest.req input file for the CreateNFSHostEntry (p. 148) request:

  ```
  # {AllHosts, SingleHost, Subnet, NISNetgroup}
  HostEntryType = AllHosts
  ```

 Note: The SYNTAX sections of the reference pages for CLI Commands (p. 64) and Management Requests (p. 90) show the enumerated list values in the following format:

  ```
  HostEntryType={AllHosts | SingleHost | Subnet | NISNetGroup}
  ```

- Repeatable \(<\text{name}>=\langle\text{value}\rangle\) pairs appear as shown in these lines from the GetAllEventsRequest.req input file for the GetAllEvents (p. 210) request:

  ```
  # [...between 1 and 10 elements of types]
  # {Critical, Error, Warning, Informational}
  ```

 You could add a second \(<\text{name}>=\langle\text{value}\rangle\) pair:

  ```
  ```

 Tip: To generate additional copies of commented input files, run the template (p. 86) -d <request-name> command.
To use a request input file to run commands:

1. Run the following command to generate a template:

   ```bash
   pdscli template <request-name> > input.req
   ```

 or (to generate a template with descriptive comments):

   ```bash
   pdscli template -d <request-name> > input.req
   ```

 - See Table 5, Requests categorized by object type, on p. 31, or Table 6, Requests categorized by action type, on p. 39, for lists of <request-names>.
 - You can name the file any name. **input.req** is an example name. The CLI requires a .req extension for the file name.

2. Open the **input.req** file in an ASCII text editor.

3. Define values for the `<name>=<value>` pairs in the template file.

4. Save the **input.req** file.

5. Run the **startsession (p. 79)** command, and note the session ID that the Pillar Axiom system returns.

 Define the session ID as an environment variable for this session (PDS_SESSIONKEY) or include the session ID as an option for each command in the managed session.

 At any time, run the **help (p. 70)** command for syntax guidance.

6. Run one or more **request (p. 75)** commands with the `{ -t | --template } input.req` option.

7. Run the **endsession (p. 68)** command.

Use the Command Prompt to Run Commands

To run commands at the command prompt, type the command syntax in a single line. The command-prompt syntax is:

```bash
pdscli <command> [options] <request-name> <name>=<value>...
```
You may find this option useful to run the submit (p. 82) command with requests that have no or few name/value pairs, such as requests that:

- Get all (p. 42).
- Get details (p. 43).

Spaces are not permitted between the <name>, = sign, and <value> at the command prompt. When you enter a <value> that contains embedded spaces, enclose the <value> in double quote marks (").

As an alternative to extensive typing at the command prompt, you can enter the <name>=<value> pairs for a request in one or more input files. Use Request Input Files to Run Commands (p. 24) to decrease the amount of command-prompt typing that is required.

The command-prompt syntax to call an input file is:

```
pdscli <command> [options] [<request-name>] @input-file-name...
```

Use of Spaces in Commands

Spaces between the <name> and = sign or between the = sign and <value> are sometimes permitted and usually ignored in an input file. However, spaces are not allowed for requests entered as a single command line without a request file. As a best practice, do not use spaces. In addition, if you are entering a variable that has spaces, be sure to include the variable in quotes. For example:

```
```
Types of Commands

To set variables and run submit requests:

1. Set CLI configuration variables (p. 17) for this session.

2. Run the submit (p. 82) command and specify a management request that performs the action that you need (see Table 5, Requests categorized by object type, on p. 31 or Table 6, Requests categorized by action type, on p. 39).

 At any time, run the help (p. 70) command for syntax guidance.

Technical Support

Access to Pillar Axiom systems

You manage a Pillar Axiom system by means of the standard user interfaces:

- The Pillar Axiom Storage Services Manager (GUI)
- The command line interface (CLI)

CAUTION Access by any other means is not supported and voids the warranty for your Pillar Axiom system. Remote access (ssh, telnet, ftp, and others) may also compromise data integrity.
Contacts at Pillar Data Systems

Table 4 Contacts at Pillar Data Systems

<table>
<thead>
<tr>
<th>For help with...</th>
<th>Contact...</th>
</tr>
</thead>
</table>
| Error messages, usage questions, and other support issues | US and Canada: 877-4PILLAR (877-474-5527)
Europe: +800 PILLAR FS (+800 74 55 27 37)
Asia Pacific: +1-408-518-4515
South Africa: +0 800 980 400
Have your system serial number ready.
Email: support@pillardata.com
Support Portal: support.pillardata.com |
| Sales and general contact Information | www.pillardata.com/company/contact/ |
| Documentation improvements and resources | docs@pillardata.com.
www.pillardata.com/techdocs/—log in with your username and password. |
You can manage the Pillar Axiom system through requests that operate on Pillar Axiom objects, which are entities that you create, modify, delete, and display. The system returns results for each request as a single response.

Note: You must create new Pillar Axiom objects in the correct sequence so that prerequisite objects are available when you create their dependent objects.

Most of the requests cannot be issued with the support account login. If you issue the request with the support user pillar, you will not be able to:

- Create or modify any other accounts.
- Delete administrator actions.
- Create, modify, or delete any data oriented resources.

You should check the status of a Create request to ensure it is complete and that all dependencies are satisfied before you run a dependent request. Look for a status of “Available,” and then run the dependent request. Do not run the dependent request as soon as the system acknowledges the initiation of an asynchronous request (see Synchronous and Asynchronous Requests on p. 47).

The following list identifies some requests with dependencies that must be satisfied. Verify that the:

- CreateFileServer (p. 100) request successfully completes before you run the CreateFileSystem (p. 110), CreateRoute (p. 157), or CreateVirtualInterface (p. 164) requests.

- CreateFileSystem (p. 110) request successfully completes before you run the CreateCIFSShare (p. 95) or CreateNFSExport (p. 144) requests.

- CreateNFSExport (p. 144) request successfully completes before you run the CreateNFSHostEntry (p. 148) request.
For details about recommended request sequences that observe dependencies, see System Management Task Summary (p. 49).

You can Monitor Objects (p. 52) and Manage Objects (p. 54) in any sequence after you implement the initial configuration.

Pillar Axiom Objects and Management Requests

Table 5 lists management requests categorized by types of Pillar Axiom objects.

Important! Modifying and otherwise managing objects requires an administrator login account. The support account login is limited to the following functions:

- Monitor data and administrative objects
- Modify Pillar Axiom software and firmware object
- Perform diagnostic and recovery functions

Table 5 Requests categorized by object type

<table>
<thead>
<tr>
<th>Object</th>
<th>Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filesystems</td>
<td>• CancelForceFileSystemRebalance (p. 91)</td>
</tr>
<tr>
<td></td>
<td>• CreateFileSystem (p. 110)</td>
</tr>
<tr>
<td></td>
<td>• DeleteFileSystem (p. 176)</td>
</tr>
<tr>
<td></td>
<td>• DeleteVolumeAndChildren (p. 193)</td>
</tr>
<tr>
<td></td>
<td>• ForceFileSystemRebalanceOnRestart (p. 196)</td>
</tr>
<tr>
<td></td>
<td>• GetAllFileSystems (p. 214)</td>
</tr>
<tr>
<td></td>
<td>• GetFileSystemDetails (p. 255)</td>
</tr>
<tr>
<td></td>
<td>• GetFileSystemStatistics (p. 260)</td>
</tr>
<tr>
<td></td>
<td>• GetHistoricalFileSystemStatistics (p. 263)</td>
</tr>
<tr>
<td></td>
<td>• ModifyFileSystem (p. 330)</td>
</tr>
<tr>
<td></td>
<td>• PerformFileSystemCheck (p. 423) (if “Filesystem corrupted” appears in a GetAllAdministratorActions (p. 201) response)</td>
</tr>
<tr>
<td></td>
<td>• RestoreFileSystemFromCloneFS (p. 526)</td>
</tr>
<tr>
<td>Modeler</td>
<td>• GetStorageConfig (p. 300)</td>
</tr>
<tr>
<td></td>
<td>• GetNASConfigDetails (p. 274)</td>
</tr>
<tr>
<td></td>
<td>• GetSANConfigDetails (p. 284)</td>
</tr>
<tr>
<td></td>
<td>• GetSystemStatusDetails (p. 303)</td>
</tr>
</tbody>
</table>
Table 5 Requests categorized by object type (continued)

<table>
<thead>
<tr>
<th>Object</th>
<th>Requests</th>
</tr>
</thead>
</table>
| NAS | • GetNASConfigDetails (p. 274)
| | • GetAllFileSystems (p. 214)
| | • GetFileSystemDetails (p. 255)
| | • GetStorageConfig (p. 300)
| | • ModifyManagementConfig (p. 360)
| SAN (see also Snap LUNs and LUN copies on p. 34) | • GetAllSANProtocolStatistics (p. 228)
| | • GetSANConfigDetails (p. 284)
| | • GetSANConfigDetails on p. 284
| | Hosts
| | • DeleteSANHost (p. 189)
| | • GetALLSANHosts (p. 227)
| | • GetHostMappingConfigDetails (p. 265)
| | • GetLUNMappingConfigDetails (p. 270)
| | • GetSANPortDetails (p. 286)
| | • GetSANSlammerPortDetails (p. 290)
| | • ModifySANHost (p. 377)
| | HBA ports:
| | • GetHBAPortConnections (p. 262)
| | LUNs:
| | • GetAllAvailableLUNNumbers (p. 202)
| NFS exports) | • CreateNFSExport (p. 144)
| | • GetNFSExportDetails (p. 276)
| | • GetALLNFSExports (p. 222)
| | • GetNFSExportDetails (p. 276)
| NFS host entry: | • CreateNFSHostEntry (p. 148)
| | • ModifyNFSHostEntry (p. 371)
| | • DeleteNFSHostEntry (p. 184)
| CIFS local groups | • PerformAssignCIFSLocalGroups (p. 397)
| CIFS shares) | • CreateCIFSShare (p. 95)
| | • ModifyCIFSShare (p. 315)
| | • DeleteCIFSShare (p. 171)
| | • GetAllCIFSShares (p. 206)
| | • GetCIFSShareDetails (p. 244)
| SNMP) | • ModifySNMPConfig (p. 384)
| | • GetSNMPConfigDetails (p. 298)

Chapter 2 Manage Pillar Axiom Systems
Table 5 Requests categorized by object type (continued)

<table>
<thead>
<tr>
<th>Object</th>
<th>Requests</th>
</tr>
</thead>
</table>
| NDMP | • ModifyNDMPConfig (p. 369)
| | • GetNDMPConfigDetails (p. 275) |
| Quotas | • CreateQuota (p. 154)
| | • ModifyQuota (p. 375)
| | • DeleteQuota (p. 186)
| | • GetAllQuotas (p. 224)
| | • GetQuotaDetails (p. 282) |
| File Servers | • CreateFileServer (p. 100) |
| | • ModifyFileServer (p. 321) |
| | • DeleteFileServer (p. 175) |
| | • GetAllFileServers (p. 213) |
| | • GetFileServerDetails (p. 253) |
| | • GetFileServerStatistics (p. 254) |
| | • PerformJoinDomain (p. 445) |
| Secondary network routes for a File Server (optional) | • CreateRoute (p. 157)
| | • DeleteRoute (p. 188)
| | • GetAllRoutes (p. 226)
| | • GetRouteDetails (p. 283) |
| Secondary virtual network interfaces for a File Server (optional) | • CreateVirtualInterface (p. 164) |
| | • DeleteVirtualInterface (p. 192) |
| | • GetAllVirtualInterfaces (p. 239) |
| | • GetVirtualInterfaceDetails (p. 307) |
| NIS-alternative files for a File Server (optional) | • GetNISUploadedFilesDetails (p. 277) |
| | • PerformNISFileUpload (p. 456) |
| | • PerformNISFileDownload (p. 455) |
| Volume groups | • CreateVolumeGroup (p. 167) |
| | • ModifyVolumeGroup (p. 389) |
| | • DeleteVolumeGroup (p. 195) |
| | • GetAllVolumeGroups (p. 240) |
| | • GetVolumeGroupDetails (p. 308) |
| Volume copies | See: |
| | • Snap FSs, filesystem copies, and CloneFSs (p. 34) |
| | • Snap LUNs and LUN copies (p. 34) |
Table 5 Requests categorized by object type (continued)

<table>
<thead>
<tr>
<th>Object</th>
<th>Requests</th>
</tr>
</thead>
</table>
| LUNs (see also Snap LUNs and LUN copies on p. 34) | • CreateLUN (p. 135)
• DeleteLUN (p. 182)
• DeleteVolumeAndChildren (p. 193)
• GetAllAvailableLUNNumbers (p. 202)
• GetAllLUNs (p. 221)
• GetLUNDetails (p. 269)
• GetLUNStatistics (p. 272)
• GetHostMappingConfigDetails (p. 265)
• GetLUNMappingConfigDetails (p. 270)
• ModifyLUN (p. 351)
• PerformConfigureLUNMapping (p. 412)
• PerformRebuildLUNRedundancy (p. 475)
• RestoreLUNFromCloneLUN (p. 527) |
| Snap LUNs and LUN copies | Snap LUN:
• CreateSnapLUN (p. 161)
• ModifySnapLUN (p. 381)
• DeleteSnapLUN (p. 191)
• DeleteVolumeAndChildren (p. 193)
• GetAllSnapLUNHierarchies (p. 232)
• GetAllSnapLUNs (p. 233)
• GetSnapLUNDetails (p. 297)
LUN duplicate:
• PerformLUNDuplication (p. 447)
• PerformBackgroundLUNDuplication (p. 402)
• PrepareSnapLUN (p. 518)
• SyncSnapLUN (p. 529) |
| Snap FSs, filesystem copies, and CloneFSs | Snap FS:
• CreateFileSystemSnapshotSchedule (p. 124)
• ModifyFileSystemSnapshot (p. 340)
• DeleteFileSystemSnapshot (p. 177)
• DeleteFileSystemSnapshotSchedule (p. 179)
• GetAllFileSystemSnapshots (p. 216)
• GetFileSystemSnapshotDetails (p. 256)
• GetAllFileSystemSnapshotSchedules (p. 218)
• GetFileSystemSnapshotScheduleDetails (p. 258)
• PerformRestoreFileSystemFromSnapshot (p. 485) |
<table>
<thead>
<tr>
<th>Object</th>
<th>Requests</th>
</tr>
</thead>
</table>
| Snap FSs and filesystem copies, continued | Filesystem duplicate:
- PerformFileSystemDuplication (p. 425)
- PerformBackgroundFileSystemDuplication (p. 400)
- PerformRebuildFileSystemRedundancy (p. 474)
- PerformRebuildCloneFSRedundancy (p. 473)
CloseFS:
- CreateCloneFS (p. 97)
- DeleteCloneFS (p. 172)
- Get CloneFSs (p. 208)
- GetCloneFSDetails (p. 245)
- ModifyCloneFS (p. 317) |
| Schedules (see also Snap FSs, filesystem copies, and CloneFSs on p. 34) |
- CreateSchedule (p. 159)
- DeleteSchedule (p. 190)
- GetAllSchedules (p. 229)
- GetScheduleDetails (p. 291)
Jobs:
- CreateJob (p. 127)
- ModifyJob (p. 345)
- DeleteJob (p. 181)
- GetAllJobs (p. 220)
- GetJobDetails (p. 268) |
| Time management |
- ModifyTimeConfig (p. 386)
- GetCurrentDateTimeDetails (p. 247)
- GetCurrentTimeZoneDetails (p. 248)
- GetNTPServerConfigDetails (p. 279) |
| Administrator accounts |
- CreateAccount (p. 92)
- ModifyAccount (p. 311)
- ModifyMyAccount (p. 367)
- DeleteAccount (p. 169)
- GetAllAccounts (p. 200)
- GetAccountDetails (p. 198)
- GetAllSessions (p. 230) |
| Authentication: |
- Login (p. 309)
- Logout (p. 310)
- Relogin (p. 524) |
Table 5 Requests categorized by object type (continued)

<table>
<thead>
<tr>
<th>Object</th>
<th>Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notifications and events</td>
<td>• CreateNotificationConnection (p. 151)</td>
</tr>
<tr>
<td></td>
<td>• CreateNotificationDefinition (p. 152)</td>
</tr>
<tr>
<td></td>
<td>• ModifyNotificationDefinition (p. 373)</td>
</tr>
<tr>
<td></td>
<td>• DeleteNotificationDefinition (p. 185)</td>
</tr>
<tr>
<td></td>
<td>• GetAllNotificationDefinitions (p. 223)</td>
</tr>
<tr>
<td></td>
<td>• GetNotificationDefinitionDetails (p. 278)</td>
</tr>
<tr>
<td></td>
<td>• GetAllEvents (p. 210)</td>
</tr>
<tr>
<td></td>
<td>• PerformTestCallHome (p. 505)</td>
</tr>
<tr>
<td></td>
<td>• PerformTestEmail (p. 506)</td>
</tr>
<tr>
<td>Hardware components</td>
<td>• GetProductDetails (p. 281)</td>
</tr>
<tr>
<td>(see also Guided Maintenance</td>
<td>Pilot:</td>
</tr>
<tr>
<td>on p. 46)</td>
<td>• ModifyManagementConfig (p. 360)</td>
</tr>
<tr>
<td></td>
<td>• GetPilotDetails (p. 280)</td>
</tr>
<tr>
<td></td>
<td>Slammers:</td>
</tr>
<tr>
<td></td>
<td>• ModifySlammer (p. 380)</td>
</tr>
<tr>
<td></td>
<td>• GetAllSlammers (p. 231)</td>
</tr>
<tr>
<td></td>
<td>• GetSlammerDetails (p. 295)</td>
</tr>
<tr>
<td></td>
<td>• GetSlammerStatistics (p. 296)</td>
</tr>
<tr>
<td></td>
<td>Bricks:</td>
</tr>
<tr>
<td></td>
<td>• ModifyBrick (p. 314))</td>
</tr>
<tr>
<td></td>
<td>• GetAllBricks (p. 204)</td>
</tr>
<tr>
<td></td>
<td>• GetBrickDetails (p. 242)</td>
</tr>
<tr>
<td></td>
<td>• GetSpareDriveDetails (p. 299)</td>
</tr>
<tr>
<td></td>
<td>UPS devices:</td>
</tr>
<tr>
<td></td>
<td>• CreateExternalUPSDevice (p. 99)</td>
</tr>
<tr>
<td></td>
<td>• ModifyExternalUPSDevice (p. 319)</td>
</tr>
<tr>
<td></td>
<td>• DeleteExternalUPSDevice (p. 174)</td>
</tr>
<tr>
<td></td>
<td>• GetAllExternalUPSDevices (p. 212)</td>
</tr>
<tr>
<td></td>
<td>• GetExternalUPSDeviceDetails (p. 250)</td>
</tr>
<tr>
<td></td>
<td>SAN:</td>
</tr>
<tr>
<td></td>
<td>• GetSANConfigDetails (p. 284)</td>
</tr>
<tr>
<td></td>
<td>• GetHostMappingConfigDetails (p. 265)</td>
</tr>
<tr>
<td></td>
<td>• GetAllSANHosts (p. 227)</td>
</tr>
<tr>
<td></td>
<td>• GetHBAPortConnections (p. 262)</td>
</tr>
<tr>
<td></td>
<td>• PerformAssociateInitiatorsToHost (p. 398)</td>
</tr>
<tr>
<td></td>
<td>• DeleteSANHost (p. 189)</td>
</tr>
<tr>
<td>Tasks</td>
<td>• GetAllTasks (p. 235)</td>
</tr>
<tr>
<td></td>
<td>• GetTaskDetails (p. 304)</td>
</tr>
<tr>
<td></td>
<td>• PerformCancelTask (p. 404)</td>
</tr>
</tbody>
</table>
Table 5 Requests categorized by object type (continued)

<table>
<thead>
<tr>
<th>Object</th>
<th>Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator actions</td>
<td>- DeleteAdministratorAction (p. 170)</td>
</tr>
<tr>
<td></td>
<td>- GetAllAdministratorActions (p. 201)</td>
</tr>
<tr>
<td></td>
<td>- GetAdministratorActionDetails (p. 199)</td>
</tr>
<tr>
<td></td>
<td>- PerformFileSystemCheck (p. 423)</td>
</tr>
<tr>
<td>Software updates</td>
<td>- GetAllUpdateComponents (p. 236)</td>
</tr>
<tr>
<td></td>
<td>- GetAllUpdatePackages (p. 237)</td>
</tr>
<tr>
<td></td>
<td>- GetUpdatePackageDetails (p. 305)</td>
</tr>
<tr>
<td></td>
<td>- PerformUpdate (p. 507)</td>
</tr>
<tr>
<td></td>
<td>- PerformUpdateDiskDrive (p. 509)</td>
</tr>
<tr>
<td></td>
<td>- PerformUpdateDiskDriveValidation (p. 510)</td>
</tr>
<tr>
<td></td>
<td>- PerformUpdatePackageStaging (p. 511)</td>
</tr>
<tr>
<td></td>
<td>- PerformUpdateValidation (p. 513)</td>
</tr>
<tr>
<td>Pillar Axiom storage system (system-wide configuration settings)</td>
<td>Monitor:</td>
</tr>
<tr>
<td></td>
<td>- GetProductDetails (p. 281)</td>
</tr>
<tr>
<td></td>
<td>- GetSystemStatusDetails (p. 303)</td>
</tr>
<tr>
<td></td>
<td>- GetCurrentTimeZoneDetails (p. 248)</td>
</tr>
<tr>
<td></td>
<td>- GetCurrentDateTimeDetails (p. 247)</td>
</tr>
<tr>
<td></td>
<td>- GetManagementConfigDetails (p. 273)</td>
</tr>
<tr>
<td></td>
<td>- GetNTPServerConfigDetails (p. 279)</td>
</tr>
<tr>
<td></td>
<td>- GetNDMPConfigDetails (p. 275)</td>
</tr>
<tr>
<td></td>
<td>- GetSNMPConfigDetails (p. 298)</td>
</tr>
<tr>
<td></td>
<td>Modify:</td>
</tr>
<tr>
<td></td>
<td>- ModifyNDMPConfig (p. 369)</td>
</tr>
<tr>
<td></td>
<td>- ModifySNMPConfig (p. 384)</td>
</tr>
<tr>
<td></td>
<td>- ModifyTimeConfig (p. 386)</td>
</tr>
<tr>
<td></td>
<td>Perform software and firmware updates:</td>
</tr>
<tr>
<td></td>
<td>- PerformUpdate (p. 507)</td>
</tr>
<tr>
<td></td>
<td>- PerformUpdateValidation (p. 513)</td>
</tr>
<tr>
<td>Sessions</td>
<td>- GetAllSessions (p. 230)</td>
</tr>
<tr>
<td>Shut down and restart</td>
<td>- PerformShutdown (p. 495)</td>
</tr>
<tr>
<td></td>
<td>- PerformRestart (p. 484)</td>
</tr>
</tbody>
</table>
Table 5 Requests categorized by object type (continued)

<table>
<thead>
<tr>
<th>Object</th>
<th>Requests</th>
</tr>
</thead>
</table>
| Statistics | • GetAllBackupRuns (p. 203)
• GetAllSANProtocolStatistics (p. 228)
• GetBackupRunStatistics (p. 241)
• GetFileServerStatistics (p. 254)
• GetFileSystemStatistics (p. 260)
• GetHistoricalFileSystemStatistics (p. 263)
• GetLUNStatistics (p. 272)
• GetProductDetails (p. 281)
• GetSANProtocolStatistics (p. 288)
• GetSlammerStatistics (p. 296)
• PerformCollectSystemInformation (p. 407) |
| System information (see also Statistics on p. 38) | • GetGUISSLConfigDetails (p. 261)
• GetManagementConfigDetails (p. 273)
• GetSystemInformationFileDetails (p. 302)
• GetSystemStatusDetails (p. 303)
• ModifyManagementConfig (p. 360)
• PerformCollectSystemInformation (p. 407)
• PerformDownloadSystemInformationFile (p. 420)
• PerformRestoreFileSystemFromSnapshot (p. 485)
System root | • PerformResetSystem (p. 482)
• PerformUpdateSystemSerialNumber (p. 512) |
| Tape robot | • GetAllTapeRobots (p. 234)
• PerformResetTapeRobotDevice (p. 483)
• PerformTapeRobotDiscovery (p. 504) |
| Tools | • GetAllVerifyOperations (p. 238)
• GetDataConsistencyDetails (p. 249)
• GetSpareDriveDetails (p. 299)
• GetStorageRedundancyDetails (p. 301)
• PerformFileSystemCheck (p. 423)
• PerformVerifyDataConsistency (p. 515)
• PerformVerifyStorageRedundancy (p. 516) |

Table 6 lists management requests categorized by the types of actions that you can perform on objects.
<table>
<thead>
<tr>
<th>Action</th>
<th>Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create</td>
<td>• CreateAccount (p. 92)</td>
</tr>
<tr>
<td></td>
<td>• CreateCIFSShare (p. 95)</td>
</tr>
<tr>
<td></td>
<td>• CreateCloneFS (p. 97)</td>
</tr>
<tr>
<td></td>
<td>• CreateExternalUPSDevice (p. 99)</td>
</tr>
<tr>
<td></td>
<td>• CreateFileSystem (p. 110)</td>
</tr>
<tr>
<td></td>
<td>• CreateFileSystemSnapshotSchedule (p. 124)</td>
</tr>
<tr>
<td></td>
<td>• CreateFileServer (p. 100)</td>
</tr>
<tr>
<td></td>
<td>• CreateJob (p. 127)</td>
</tr>
<tr>
<td></td>
<td>• CreateLUN (p. 135)</td>
</tr>
<tr>
<td></td>
<td>• CreateNFSExport (p. 144)</td>
</tr>
<tr>
<td></td>
<td>• CreateNFSHostEntry (p. 148)</td>
</tr>
<tr>
<td></td>
<td>• CreateNotificationConnection (p. 151)</td>
</tr>
<tr>
<td></td>
<td>• CreateNotificationDefinition (p. 152)</td>
</tr>
<tr>
<td></td>
<td>• CreateQuota (p. 154)</td>
</tr>
<tr>
<td></td>
<td>• CreateRoute (p. 157)</td>
</tr>
<tr>
<td></td>
<td>• CreateSchedule (p. 159)</td>
</tr>
<tr>
<td></td>
<td>• CreateSnapLUN (p. 161)</td>
</tr>
<tr>
<td></td>
<td>• CreateVirtualInterface (p. 164)</td>
</tr>
<tr>
<td></td>
<td>• CreateVolumeGroup (p. 167)</td>
</tr>
</tbody>
</table>
Table 6 Requests categorized by action type (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modify</td>
<td>• ModifyAccount (p. 311)</td>
</tr>
<tr>
<td></td>
<td>• ModifyBrick (p. 314)</td>
</tr>
<tr>
<td></td>
<td>• ModifyCIFSShare (p. 315)</td>
</tr>
<tr>
<td></td>
<td>• ModifyCloneFS (p. 317)</td>
</tr>
<tr>
<td></td>
<td>• ModifyExternalUPSDevice (p. 319)</td>
</tr>
<tr>
<td></td>
<td>• Modify NFS Host Entry (p. 321)</td>
</tr>
<tr>
<td></td>
<td>• Modify Fibre Channel (p. 330)</td>
</tr>
<tr>
<td></td>
<td>• Modify Fibre Channel Snapshot (p. 340)</td>
</tr>
<tr>
<td></td>
<td>• ModifyiSCSI Port Details (p. 343)</td>
</tr>
<tr>
<td></td>
<td>• PerformAssociateInitiatorsToHost (p. 398)</td>
</tr>
<tr>
<td></td>
<td>• Modify Job (p. 345)</td>
</tr>
<tr>
<td></td>
<td>• Modify LUN (p. 351)</td>
</tr>
<tr>
<td></td>
<td>• Modify Management Config (p. 360)</td>
</tr>
<tr>
<td></td>
<td>• Modify My Account (p. 367)</td>
</tr>
<tr>
<td></td>
<td>• Modify NAS Config (p. 368)</td>
</tr>
<tr>
<td></td>
<td>• Modify NDMP Config (p. 369)</td>
</tr>
<tr>
<td></td>
<td>• Modify NFS Host Entry (p. 371)</td>
</tr>
<tr>
<td></td>
<td>• Modify Notification Definition (p. 373)</td>
</tr>
<tr>
<td></td>
<td>• Modify Quota (p. 375)</td>
</tr>
<tr>
<td></td>
<td>• Modify SAN Host (p. 377)</td>
</tr>
<tr>
<td></td>
<td>• Modify Slammer (p. 380)</td>
</tr>
<tr>
<td></td>
<td>• Modify Snap LUN (p. 381)</td>
</tr>
<tr>
<td></td>
<td>• Modify SNMP Config (p. 384)</td>
</tr>
<tr>
<td></td>
<td>• Modify Time Config (p. 386)</td>
</tr>
<tr>
<td></td>
<td>• Modify Volume Group (p. 389)</td>
</tr>
</tbody>
</table>
Table 6 Requests categorized by action type (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>• DeleteAccount (p. 169)</td>
</tr>
<tr>
<td></td>
<td>• DeleteAdministratorAction (p. 170)</td>
</tr>
<tr>
<td></td>
<td>• DeleteCIFSShare (p. 171)</td>
</tr>
<tr>
<td></td>
<td>• DeleteCloneFS (p. 172)</td>
</tr>
<tr>
<td></td>
<td>• DeleteExternalUPSDevice (p. 174)</td>
</tr>
<tr>
<td></td>
<td>• DeleteFileServer (p. 175)</td>
</tr>
<tr>
<td></td>
<td>• DeleteFileSystem (p. 176)</td>
</tr>
<tr>
<td></td>
<td>• DeleteFileSystemSnapshot (p. 177)</td>
</tr>
<tr>
<td></td>
<td>• DeleteFileSystemSnapshotSchedule (p. 179)</td>
</tr>
<tr>
<td></td>
<td>• DeleteJob (p. 181)</td>
</tr>
<tr>
<td></td>
<td>• DeleteLUN (p. 182)</td>
</tr>
<tr>
<td></td>
<td>• DeleteNFSExport (p. 183)</td>
</tr>
<tr>
<td></td>
<td>• DeleteNFSHostEntry (p. 184)</td>
</tr>
<tr>
<td></td>
<td>• DeleteNotificationDefinition (p. 185)</td>
</tr>
<tr>
<td></td>
<td>• DeleteQuota (p. 186)</td>
</tr>
<tr>
<td></td>
<td>• DeleteRoute (p. 188)</td>
</tr>
<tr>
<td></td>
<td>• DeleteSANHost (p. 189)</td>
</tr>
<tr>
<td></td>
<td>• DeleteSchedule (p. 190)</td>
</tr>
<tr>
<td></td>
<td>• DeleteSnapLUN (p. 191)</td>
</tr>
<tr>
<td></td>
<td>• DeleteVirtualInterface (p. 192)</td>
</tr>
<tr>
<td></td>
<td>• DeleteVolumeAndChildren (p. 193)</td>
</tr>
<tr>
<td></td>
<td>• DeleteVolumeGroup (p. 195)</td>
</tr>
</tbody>
</table>
Table 6 Requests categorized by action type (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get all</td>
<td>- GetAllAccounts (p. 200)</td>
</tr>
<tr>
<td></td>
<td>- GetAllAdministratorActions (p. 201)</td>
</tr>
<tr>
<td></td>
<td>- GetAllAdministratorActions (p. 201)</td>
</tr>
<tr>
<td></td>
<td>- GetAllBackupRuns (p. 203)</td>
</tr>
<tr>
<td></td>
<td>- GetAllBricks (p. 204)</td>
</tr>
<tr>
<td></td>
<td>- GetAllCIFSShares (p. 206)</td>
</tr>
<tr>
<td></td>
<td>- GetAllCloneFSs (p. 208)</td>
</tr>
<tr>
<td></td>
<td>- GetAllEvents (p. 210)</td>
</tr>
<tr>
<td></td>
<td>- GetExternalUPSDeviceDetails (p. 250)</td>
</tr>
<tr>
<td></td>
<td>- GetAllFileServers (p. 213)</td>
</tr>
<tr>
<td></td>
<td>- GetAllFileSystems (p. 214)</td>
</tr>
<tr>
<td></td>
<td>- GetAllFileSystemSnapshots (p. 216)</td>
</tr>
<tr>
<td></td>
<td>- GetAllFileSystemSnapshotSchedules (p. 218)</td>
</tr>
<tr>
<td></td>
<td>- GetAllJobs (p. 220)</td>
</tr>
<tr>
<td></td>
<td>- GetAllLUNs (p. 221)</td>
</tr>
<tr>
<td></td>
<td>- GetAllNFSExports (p. 222)</td>
</tr>
<tr>
<td></td>
<td>- GetAllNotificationDefinitions (p. 223)</td>
</tr>
<tr>
<td></td>
<td>- GetAllQuotas (p. 224)</td>
</tr>
<tr>
<td></td>
<td>- GetAllQuotaFiles on p. 225</td>
</tr>
<tr>
<td></td>
<td>- GetAllRoutes (p. 226)</td>
</tr>
<tr>
<td></td>
<td>- GetAllSANHosts (p. 227)</td>
</tr>
<tr>
<td></td>
<td>- GetAllSANProtocolStatistics (p. 228)</td>
</tr>
<tr>
<td></td>
<td>- GetAllSchedules (p. 229)</td>
</tr>
<tr>
<td></td>
<td>- GetAllSessions (p. 230)</td>
</tr>
<tr>
<td></td>
<td>- GetAllSlammers (p. 231)</td>
</tr>
<tr>
<td></td>
<td>- GetAllSnapLUNHierarchies (p. 232)</td>
</tr>
<tr>
<td></td>
<td>- GetAllSnapLUNs (p. 233)</td>
</tr>
<tr>
<td></td>
<td>- GetAllTapeRobots (p. 234)</td>
</tr>
<tr>
<td></td>
<td>- GetAllTasks (p. 235)</td>
</tr>
<tr>
<td></td>
<td>- GetAllUpdateComponents (p. 236)</td>
</tr>
<tr>
<td></td>
<td>- GetAllUpdatePackages (p. 237)</td>
</tr>
<tr>
<td></td>
<td>- GetAllVerifyOperations (p. 238)</td>
</tr>
<tr>
<td></td>
<td>- GetAllVirtualInterfaces (p. 239)</td>
</tr>
<tr>
<td></td>
<td>- GetAllVolumeGroups (p. 240)</td>
</tr>
</tbody>
</table>
Table 6 Requests categorized by action type (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get details</td>
<td>• GetAccountDetails (p. 198)</td>
</tr>
<tr>
<td></td>
<td>• GetAdministratorActionDetails (p. 199)</td>
</tr>
<tr>
<td></td>
<td>• GetAllCallHomeFileDetails (p. 205)</td>
</tr>
<tr>
<td></td>
<td>• GetBrickDetails (p. 242)</td>
</tr>
<tr>
<td></td>
<td>• GetCIFSShareDetails (p. 244)</td>
</tr>
<tr>
<td></td>
<td>• GetCloneFSDetails (p. 245)</td>
</tr>
<tr>
<td></td>
<td>• GetCurrentDateTimeDetails (p. 247)</td>
</tr>
<tr>
<td></td>
<td>• GetCurrentTimeZoneDetails (p. 248)</td>
</tr>
<tr>
<td></td>
<td>• GetDataConsistencyDetails (p. 249)</td>
</tr>
<tr>
<td></td>
<td>• GetExternalUPSDeviceDetails (p. 250)</td>
</tr>
<tr>
<td></td>
<td>• GetFCPortStatisticsDetails (p. 251)</td>
</tr>
<tr>
<td></td>
<td>• GetFileSystemDetails (p. 253)</td>
</tr>
<tr>
<td></td>
<td>• GetFileSystemSnapshotDetails (p. 256)</td>
</tr>
<tr>
<td></td>
<td>• GetFileSystemSnapshotScheduleDetails (p. 258)</td>
</tr>
<tr>
<td></td>
<td>• GetGUISSLConfigDetails (p. 261)</td>
</tr>
<tr>
<td></td>
<td>• GetHostMappingConfigDetails (p. 265)</td>
</tr>
<tr>
<td></td>
<td>• GetSCSIPortStatisticsDetails (p. 266)</td>
</tr>
<tr>
<td></td>
<td>• GetJobDetails (p. 268)</td>
</tr>
<tr>
<td></td>
<td>• GetLUNDetails (p. 269)</td>
</tr>
<tr>
<td></td>
<td>• GetLUNMappingConfigDetails (p. 270)</td>
</tr>
<tr>
<td></td>
<td>• GetNASConfigDetails (p. 274)</td>
</tr>
<tr>
<td></td>
<td>• GetNDMPConfigDetails (p. 275)</td>
</tr>
<tr>
<td></td>
<td>• GetNFSExportDetails (p. 276)</td>
</tr>
<tr>
<td></td>
<td>• GetNISUploadedFilesDetails (p. 277)</td>
</tr>
<tr>
<td></td>
<td>• GetNotificationDefinitionDetails (p. 278)</td>
</tr>
<tr>
<td></td>
<td>• GetNTPServerConfigDetails (p. 279)</td>
</tr>
<tr>
<td></td>
<td>• GetPilotDetails (p. 280)</td>
</tr>
<tr>
<td></td>
<td>• GetProductDetails (p. 281)</td>
</tr>
<tr>
<td></td>
<td>• GetQuotaDetails (p. 282)</td>
</tr>
<tr>
<td></td>
<td>• GetRouteDetails (p. 283)</td>
</tr>
<tr>
<td></td>
<td>• GetSANConfigDetails (p. 284)</td>
</tr>
<tr>
<td></td>
<td>• GetSANHostDetails (p. 285)</td>
</tr>
<tr>
<td></td>
<td>• GetSANSlammerPortDetails (p. 290)</td>
</tr>
<tr>
<td></td>
<td>• GetScheduleDetails (p. 291)</td>
</tr>
<tr>
<td></td>
<td>• GetSlammerControlUnitDiagnosticDetails (p. 293)</td>
</tr>
<tr>
<td></td>
<td>• GetSlammerDetails (p. 295)</td>
</tr>
<tr>
<td></td>
<td>• GetSnapLUNDetails (p. 297)</td>
</tr>
<tr>
<td></td>
<td>• GetSNMPCfgDetails (p. 298)</td>
</tr>
<tr>
<td></td>
<td>• GetSpareDriveDetails (p. 299)</td>
</tr>
<tr>
<td></td>
<td>• GetStorageConfig (p. 300)</td>
</tr>
</tbody>
</table>
Table 6 Requests categorized by action type (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Requests</th>
</tr>
</thead>
</table>
| Get details, continued | • GetStorageRedundancyDetails (p. 301)
 • GetSystemInformationFileDetails (p. 302)
 • GetSystemStatusDetails (p. 303)
 • GetTaskDetails (p. 304)
 • GetUpdatePackageDetails (p. 305)
 • GetVirtualInterfaceDetails (p. 307)
 • GetVolumeGroupDetails (p. 308) |
| Get performance statistics | • GetBackupRunStatistics (p. 241)
 • GetFileServerStatistics (p. 254)
 • GetFileSystemStatistics (p. 260)
 • GetHistoricalFileSystemStatistics (p. 263)
 • GetLUNStatistics (p. 272)
 • GetSANProtocolStatistics (p. 288)
 • GetSlammerStatistics (p. 296) |
| Get hardware status | • GetPilotDetails (p. 280)
 • GetSlammerDetails (p. 295)
 • GetBrickDetails (p. 242)
 • GetSpareDriveDetails (p. 299)
 • GetSANConfigDetails (p. 284)
 • GetSANHostDetails (p. 285)
 • GetHBAPortConnections (p. 262)
 • GetSANHostDetails (p. 285)
 • GetSlammerCommandOutput (p. 292)
 • GetSlammerControlUnitDiagnosticDetails (p. 293) |
| Perform | • Login (p. 309)
 • Logout (p. 310)
 • PerformAcceptAddBrick (p. 391)
 • PerformAcceptAddSlammer (p. 392)
 • PerformAcceptBrickDiskDrive (p. 393)
 • PerformAcceptForeignDiskDrive (p. 395)
 • PerformAssociateInitiatorsToHost (p. 398)
 • PerformBackgroundFileSystemDuplication (p. 400) |
Table 6 Requests categorized by action type (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform, continued</td>
<td>• PerformBackgroundLUNDuplication (p. 402)</td>
</tr>
<tr>
<td></td>
<td>• PerformCancelTask (p. 404)</td>
</tr>
<tr>
<td></td>
<td>• PerformClearLostData (p. 405)</td>
</tr>
<tr>
<td></td>
<td>• PerformCollectInstantaneousStatistics (p. 406)</td>
</tr>
<tr>
<td></td>
<td>• PerformCollectSystemInformation (p. 407)</td>
</tr>
<tr>
<td></td>
<td>• PerformConfigureLUNMapping (p. 412)</td>
</tr>
<tr>
<td></td>
<td>• PerformCopybackBrickLUNs (p. 415)</td>
</tr>
<tr>
<td></td>
<td>• PerformDisableSMIStartup (p. 417)</td>
</tr>
<tr>
<td></td>
<td>• PerformDownloadCallHomeFile (p. 418)</td>
</tr>
<tr>
<td></td>
<td>• PerformDownloadQuotaFile on p. 419</td>
</tr>
<tr>
<td></td>
<td>• PerformDownloadSystemInformationFile (p. 420)</td>
</tr>
<tr>
<td></td>
<td>• PerformEnableSMIStartup (p. 421)</td>
</tr>
<tr>
<td></td>
<td>• PerformFileSizeCheck (p. 423)</td>
</tr>
<tr>
<td></td>
<td>• PerformFileSizeDuplication (p. 425)</td>
</tr>
<tr>
<td></td>
<td>• PerformIdentifyBrick (p. 433)</td>
</tr>
<tr>
<td></td>
<td>• PerformIdentifyBrickFRU (p. 435)</td>
</tr>
<tr>
<td></td>
<td>• PerformIdentifyPilot (p. 437)</td>
</tr>
<tr>
<td></td>
<td>• PerformIdentifySlammer (p. 438)</td>
</tr>
<tr>
<td></td>
<td>• PerformIdentifySlammerFRU (p. 440)</td>
</tr>
<tr>
<td></td>
<td>• PerformIdentifySlammerIOPort (p. 443)</td>
</tr>
<tr>
<td></td>
<td>• PerformJoinDomain (p. 445)</td>
</tr>
<tr>
<td></td>
<td>• PerformLUNDuplication (p. 447)</td>
</tr>
<tr>
<td></td>
<td>• PerformNISFileDownload (p. 455)</td>
</tr>
<tr>
<td></td>
<td>• PerformNISFileUpload (p. 456)</td>
</tr>
<tr>
<td></td>
<td>• PerformPeriodicCallHome (p. 460)</td>
</tr>
<tr>
<td></td>
<td>• PerformPrepareReplaceBrickFRU (p. 461)</td>
</tr>
<tr>
<td></td>
<td>• PerformPrepareReplaceSlammerFRU (p. 463)</td>
</tr>
<tr>
<td></td>
<td>• PerformPrepareSlammerMemoryUpgrade (p. 465)</td>
</tr>
<tr>
<td></td>
<td>• PerformRebuildBrickLUNs (p. 472)</td>
</tr>
<tr>
<td></td>
<td>• PerformRebuildCloneFSRedundancy (p. 473)</td>
</tr>
<tr>
<td></td>
<td>• PerformRebuildFileSystemRedundancy (p. 474)</td>
</tr>
<tr>
<td></td>
<td>• PerformRebuildLUNRedundancy (p. 475)</td>
</tr>
<tr>
<td></td>
<td>• PerformRejectForeignDiskDrive (p. 478)</td>
</tr>
<tr>
<td></td>
<td>• PerformRemoveBrickFromConfiguration (p. 480)</td>
</tr>
<tr>
<td></td>
<td>• PerformRemoveSlammerFromConfiguration (p. 481)</td>
</tr>
<tr>
<td></td>
<td>• PerformResetSystem (p. 482)</td>
</tr>
<tr>
<td></td>
<td>• PerformResetTapeRobotDevice (p. 483)</td>
</tr>
<tr>
<td></td>
<td>• PerformRestart (p. 484)</td>
</tr>
<tr>
<td></td>
<td>• PerformRestoreFileSystemFromSnapshot (p. 485)</td>
</tr>
</tbody>
</table>
Table 6 Requests categorized by action type (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform, continued</td>
<td>- PerformResumeBrick (p. 486)</td>
</tr>
<tr>
<td></td>
<td>- PerformResumeBrickFRU (p. 487)</td>
</tr>
<tr>
<td></td>
<td>- PerformResumeSlammer (p. 489)</td>
</tr>
<tr>
<td></td>
<td>- PerformResumeSlammerFRU (p. 490)</td>
</tr>
<tr>
<td></td>
<td>- PerformShutdown (p. 495)</td>
</tr>
<tr>
<td></td>
<td>- PerformSlammerCommand (p. 496)</td>
</tr>
<tr>
<td></td>
<td>- PerformSlammerControlUnitDiagnostic (p. 503)</td>
</tr>
<tr>
<td></td>
<td>- PerformTapeRobotDiscovery (p. 504)</td>
</tr>
<tr>
<td></td>
<td>- PerformTestCallHome (p. 505)</td>
</tr>
<tr>
<td></td>
<td>- PerformTestEmail (p. 506)</td>
</tr>
<tr>
<td></td>
<td>- PerformUpdate (p. 507)</td>
</tr>
<tr>
<td></td>
<td>- PerformUpdateDiskDrive (p. 509)</td>
</tr>
<tr>
<td></td>
<td>- PerformUpdateDiskDriveValidation (p. 510)</td>
</tr>
<tr>
<td></td>
<td>- PerformUpdatePackageStaging (p. 511)</td>
</tr>
<tr>
<td></td>
<td>- PerformUpdateSystemSerialNumber (p. 512)</td>
</tr>
<tr>
<td></td>
<td>- PerformUpdateValidation (p. 513)</td>
</tr>
<tr>
<td></td>
<td>- PerformVerifyDataConsistency (p. 515)</td>
</tr>
<tr>
<td></td>
<td>- PerformVerifyStorageRedundancy (p. 516)</td>
</tr>
<tr>
<td></td>
<td>- Relogin (p. 524)</td>
</tr>
<tr>
<td>Guided Maintenance</td>
<td>Step 1: Identify hardware component</td>
</tr>
<tr>
<td></td>
<td>- PerformIdentifyBrick (p. 433)</td>
</tr>
<tr>
<td></td>
<td>- PerformIdentifyBrickFRU (p. 435)</td>
</tr>
<tr>
<td></td>
<td>- PerformIdentifyPilot (p. 437)</td>
</tr>
<tr>
<td></td>
<td>- PerformIdentifySlammer (p. 438)</td>
</tr>
<tr>
<td></td>
<td>- PerformIdentifySlammerFRU (p. 440)</td>
</tr>
<tr>
<td></td>
<td>- PerformIdentifySlammerIOPort (p. 443)</td>
</tr>
<tr>
<td></td>
<td>- GetSlammerCommandOutput (p. 292)</td>
</tr>
<tr>
<td></td>
<td>- PerformSlammerControlUnitDiagnostic (p. 503)</td>
</tr>
<tr>
<td></td>
<td>- PerformSlammerControlUnitDiagnostic (p. 503)</td>
</tr>
<tr>
<td></td>
<td>- PerformSlammerCommand (p. 496)</td>
</tr>
<tr>
<td></td>
<td>Step 2: Prepare the system</td>
</tr>
<tr>
<td></td>
<td>- PerformRemoveBrickFromConfiguration (p. 480)</td>
</tr>
<tr>
<td></td>
<td>- PerformPrepareReplaceBrickFRU (p. 461)</td>
</tr>
<tr>
<td></td>
<td>- PerformRemoveSlammerFromConfiguration (p. 481)</td>
</tr>
<tr>
<td></td>
<td>- PerformPrepareSlammerMemoryUpgrade (p. 465)</td>
</tr>
</tbody>
</table>
Synchronous and Asynchronous Requests

The CLI supports synchronous and asynchronous requests. Requests that execute quickly (less than 15 seconds) and do not change the system state are generally synchronous requests. These include Get all (p. 42), Get details (p. 43), and some Perform (p. 44) requests. The system simply returns a response, indicating that the request is complete.

Requests that take longer to complete (more than 15 seconds) or change the system state are generally asynchronous requests. These include Create (p. 39), Modify (p. 40), Delete (p. 41), and some Perform (p. 44) requests. With asynchronous requests, the system first checks to see if the request is valid and if the necessary system resources are available. If so, it returns a response with a TaskID and executes the request. You can monitor progress and determine whether the task succeeded or failed using the GetTaskDetails (p. 304) request.

By default, the CLI sends requests synchronously. In addition, there are two request modes:

- Normal mode
- Force-synchronous mode

Table 6 Requests categorized by action type (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guided Maintenance, continued</td>
<td>Step 3: Replace hardware component (physical actions to remove old and add new components; no CLI requests) Step 4: Resume system operations</td>
</tr>
<tr>
<td></td>
<td>• PerformResumeBrick (p. 486)</td>
</tr>
<tr>
<td></td>
<td>• PerformResumeBrickFRU (p. 487)</td>
</tr>
<tr>
<td></td>
<td>• PerformResumeSlammer (p. 489)</td>
</tr>
<tr>
<td></td>
<td>• PerformResumeSlammerFRU (p. 490)</td>
</tr>
<tr>
<td></td>
<td>Step 5: Verify new hardware component</td>
</tr>
<tr>
<td></td>
<td>• PerformAcceptAddBrick (p. 391)</td>
</tr>
<tr>
<td></td>
<td>• PerformAcceptAddSlammer (p. 392)</td>
</tr>
<tr>
<td></td>
<td>• PerformAcceptForeignDiskDrive (p. 395) or PerformRejectForeignDiskDrive (p. 478)</td>
</tr>
<tr>
<td></td>
<td>Step 6: Rebuild (optional)</td>
</tr>
<tr>
<td></td>
<td>• PerformRebuildFileSystemRedundancy (p. 474)</td>
</tr>
<tr>
<td></td>
<td>• PerformRebuildLUNRedundancy (p. 475)</td>
</tr>
</tbody>
</table>
For request modes in combination with synchronous and asynchronous requests:

- Synchronous requests behave the same way, regardless of which request mode you use.

- Asynchronous requests behave differently, based on request mode:
 - Normal mode tells the Pillar Axiom storage system to return a response when the request is initiated—not when the request has successfully completed.
 - Force-synchronous mode tells the Pillar Axiom storage system to wait until the management request is complete to return a response.

The force-synchronous mode is the CLI default. Use the PDS_ASYNC (p. 18) configuration variable to send the request in normal mode.

Administrator Roles and Privileges

To administer a Pillar Axiom storage system, you must log in from an administrator account. Every account is assigned a specific role that defines system privileges.

<table>
<thead>
<tr>
<th>Administrator role</th>
<th>Privileges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary system administrator</td>
<td>Perform all configuration, management, and monitoring tasks. This account cannot be deleted or disabled.</td>
</tr>
<tr>
<td>Administrator 1</td>
<td>Perform all configuration, management, and monitoring tasks.</td>
</tr>
<tr>
<td>Administrator 2</td>
<td>Perform all tasks except:</td>
</tr>
<tr>
<td></td>
<td>• Create and manage File Servers and administrator accounts.</td>
</tr>
<tr>
<td></td>
<td>• Modify global, SNMP, and NDMP settings.</td>
</tr>
<tr>
<td></td>
<td>• Modify software or hardware configurations.</td>
</tr>
<tr>
<td></td>
<td>• Shut down the system.</td>
</tr>
<tr>
<td>Monitor</td>
<td>Display system information only; cannot modify the configuration. Can modify own administrator account attributes.</td>
</tr>
</tbody>
</table>
In order to manage the Pillar Axiom storage system with the CLI, you must have either Primary system administrator or Administrator 1 privileges.

Note: The session timeout may terminate your CLI session during a long-running asynchronous command. The default session timeout is 20 min, which may be too short for some long-running commands. You can extend the session timeout in the GUI using the SessionTimeout parameter of the ModifyManagementConfig request.

System Management Task Summary

Many of the tasks to create Pillar Axiom objects are one-time tasks that you perform as soon as the Pillar Axiom system is installed at your site. Table 8 lists command and request (p. 75) names that you can use to create objects. Follow the checklist sequence to satisfy dependencies among asynchronous commands (see Synchronous and Asynchronous Requests on p. 47).

Consider the Ranges for Option Values (p. 57) as you create objects in the Pillar Axiom system.

- Table 10, Manage command sequence (p. 54), explains how many of each object you can create (minimum to maximum range).
- Table 12, Data type and length ranges (p. 60), explains valid values for the attributes that you define for objects.
Table 8 Create command sequence

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Required?</th>
<th>Create commands and management requests</th>
</tr>
</thead>
</table>
| ☐ | Required | Log in to the Pillar Axiom storage system:
• `startsession` (p. 79) if using a managed session. Save the session key to use for subsequent commands, which are typically one or more `request` (p. 75) commands.
(For more information, see managed sessions on p. 23 and `PDS_SESSIONKEY` on p. 18.)
• `submit` if using a set of encapsulated sessions to log in and perform individual requests.
(For more information, see encapsulated sessions on p. 23.) |
| ☐ | Required (some optional substeps) | Configure global system settings and system time:
• `ModifyManagementConfig` (p. 360) enable VLAN Tagging if you want to create more than one File Server
• `GetNTPServerConfigDetails` (p. 279)
• `GetCurrentDateTimeDetails` (p. 247)
• `GetCurrentTimeZoneDetails` (p. 248) |
| ☐ | Optional | Create volume groups (organizational objects):
• `GetAllVolumeGroups` (p. 240)
• `CreateVolumeGroup` (p. 167) |
| ☐ | Required (some optional substeps) | Create at least one File Server, or more if you want to segregate network traffic with VLAN Tagging:
• `CreateFileServer` (p. 100)
• `GetAllFileServers` (p. 213) (wait until the status is Available)
 • (optional) `CreateRoute` (p. 157) if you need multiple network routes
 • (optional) `CreateVirtualInterface` (p. 164) if you need multiple virtual network interfaces
 • `PerformJoinDomain` (p. 445) to join a CIFS domain |
| ☐ | Required (some optional substeps) | Create and configure filesystems:
• `CreateFileSystem` (p. 110)
• `GetAllFileSystems` (p. 214) (wait until the filesystem status is Available)
• `CreateQuota` (p. 154) if you need quota tracking and optional enforcement
• Enable and configure filesystem protocols:
 • `CreateCIFSShare` (p. 95)
 • `CreateNFSExport` (p. 144)
 • `GetAllNFSExports` (p. 222) (wait until the status is Available)
 • `CreateNFSHostEntry` (p. 148) |
Table 8 Create command sequence (continued)

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Required?</th>
<th>Create commands and management requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>Optional</td>
<td>Create alerts and notifications:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CreateNotificationConnection (p. 151)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CreateNotificationDefinition (p. 152)</td>
</tr>
<tr>
<td>☐</td>
<td>Optional</td>
<td>Enable and configure SNMP:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetSNMPConfigDetails (p. 298)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ModifySNMPConfig (p. 384)</td>
</tr>
<tr>
<td>☐</td>
<td>Optional</td>
<td>Enable and configure NDMP:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetNDMPConfigDetails (p. 275)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ModifyNDMPConfig (p. 369)</td>
</tr>
<tr>
<td>☐</td>
<td>Optional</td>
<td>Schedule data replication:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CreateSchedule (p. 159)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetAllSchedules (p. 229) to retrieve the schedule’s unique identifier for the next step</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CreateJob</td>
</tr>
<tr>
<td>☐</td>
<td>Optional</td>
<td>Create additional administrator accounts:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetAllAccounts (p. 200)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CreateAccount (p. 92)</td>
</tr>
<tr>
<td>☐</td>
<td>Optional</td>
<td>Rename hardware components to meaningful names:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ModifyBrick (p. 314)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ModifySlammer (p. 380)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ModifyExternalUPSDevice (p. 319)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PerformAssociateInitiatorsToHost (p. 398)</td>
</tr>
<tr>
<td>☐</td>
<td>Optional</td>
<td>Log out if necessary to end a managed session: endsession (p. 68)</td>
</tr>
</tbody>
</table>
Monitor Objects

All administrator roles can monitor the system status and display configuration details about Pillar Axiom objects. Table 9 is a checklist of command and request (p. 75) names that you can use as a starting point to monitor the Pillar Axiom storage system.

Table 9 Monitor command sequence

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Required?</th>
<th>Monitor commands and management requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>Required</td>
<td>Log in to the CLI:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>startsession</code> (p. 79) if using a managed session. Save the session key to use for subsequent commands, which are typically one or more <code>request</code> (p. 75) commands.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For more information, see managed sessions on p. 23 and <code>PDS_SESSIONKEY</code> on p. 18.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>submit</code> (p. 82) if using a set of encapsulated sessions to log in and perform individual requests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(For more information, see encapsulated sessions on p. 23.)</td>
</tr>
<tr>
<td>☐</td>
<td>Optional</td>
<td>Monitor the system status and health:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetSystemStatusDetails</code> (p. 303)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetAllTasks</code> (p. 235)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetAllNotificationDefinitions</code> (p. 223)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetAllEvents</code> (p. 210)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetAllAdministratorActions</code> (p. 201)</td>
</tr>
<tr>
<td>☐</td>
<td>Optional</td>
<td>Monitor volume groups:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetAllVolumeGroups</code> (p. 240)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetVolumeGroupDetails</code> (p. 308)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetAllLUNs</code> (p. 221)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetLUNDetails</code> (p. 269)</td>
</tr>
<tr>
<td>☐</td>
<td>Optional</td>
<td>Monitor File Servers:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetAllFileServers</code> (p. 213)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetFileServerDetails</code> (p. 253)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetFileServerStatistics</code> (p. 254)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetAllRoutes</code> (p. 226)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetRouteDetails</code> (p. 283)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetAllVirtualInterfaces</code> (p. 239)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>GetVirtualInterfaceDetails</code> (p. 307)</td>
</tr>
</tbody>
</table>
Table 9 Monitor command sequence (continued)

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Required?</th>
<th>Monitor commands and management requests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Optional</td>
<td>Monitor filesystems:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- GetAllFileSystems (p. 214)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- GetFileSystemDetails (p. 255)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- GetFileSystemStatistics (p. 260)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- GetHistoricalFileSystemStatistics (p. 263)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- GetAllCIFSShares (p. 206)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- GetCIFSShareDetails (p. 244)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- GetAllNFSExports (p. 222)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- GetNFSExportDetails (p. 276)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- GetAllQuotas (p. 224)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- GetQuotaDetails (p. 282)</td>
</tr>
</tbody>
</table>

	Optional	Monitor SNMP and NDMP configurations:
		- [GetSNMPConfigDetails](#) (p. 298)
		- [GetNDMPConfigDetails](#) (p. 275)

	Optional	Monitor data replicas and replication schedules:
		- [GetAllFileSystemSnapshots](#) (p. 216) and [GetFileSystemSnapshotDetails](#) (p. 256)
		- [GetAllFileSystemSnapshotSchedules](#) (p. 218) and [GetFileSystemSnapshotScheduleDetails](#) (p. 258)
		- [GetAllSnapLUNs](#), [GetAllSnapLUNHierarchies](#) (p. 232), and [GetAllSnapLUNs](#) (p. 233)

	Optional	Monitor administrator accounts:
		- [GetAllAccounts](#) (p. 200)
		- [GetAccountDetails](#) (p. 198)
		- [GetAllSessions](#) (p. 230)
		- [GetAdministratorActionDetails](#) (p. 199)

	Optional	Monitor software versions and installed features:
		- [GetAllUpdateComponents](#) (p. 236)
		- [GetAllUpdatePackages](#) (p. 237)
		- [GetUpdatePackageDetails](#) (p. 305)
Table 9 Monitor command sequence (continued)

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Required?</th>
<th>Monitor commands and management requests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Optional</td>
<td>Monitor hardware components:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetAllBricks (p. 204)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetBrickDetails (p. 242)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetSpareDriveDetails (p. 299)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetPilotDetails (p. 280)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetAllSlammers (p. 231)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetSlammerDetails (p. 295)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetSlammerStatistics (p. 296)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetUpdatePackageDetails (p. 305)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetSANConfigDetails (p. 284)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetHostMappingConfigDetails (p. 265)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetAllSANHosts (p. 227)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GetHBAPortConnections (p. 262)</td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td>Log out if necessary to end a managed session: endsession (p. 68)</td>
</tr>
</tbody>
</table>

Manage Objects

Table 10, Manage command sequence, is a checklist of command and request (p. 75) names that you can use to modify or delete Pillar Axiom objects.

Note: You must delete child objects that are lower in a hierarchical structure before you can delete the parent objects. For example, you cannot delete a volume group if filesystems are associated with the volume group.

Table 10 Manage command sequence

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Required?</th>
<th>Manage commands and management requests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required</td>
<td>Log in to the CLI:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• startsession (p. 79) if using a managed session. Save the session key to use for subsequent commands, which are typically one or more request (p. 75) commands. (For more information, see managed sessions on p. 23 and PDS_SESSIONKEY on p. 18.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• submit (p. 82) if using a set of encapsulated sessions to log in and perform individual requests. (For more information, see encapsulated sessions on p. 23.)</td>
</tr>
</tbody>
</table>

Note: You must delete child objects that are lower in a hierarchical structure before you can delete the parent objects. For example, you cannot delete a volume group if filesystems are associated with the volume group.
Table 10 Manage command sequence (continued)

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Required?</th>
<th>Manage commands and management requests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Optional</td>
<td>Modify or delete filesystems:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ModifyFileSystem (p. 330)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ModifyCIFSShare (p. 315)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DeleteCIFSShare (p. 171)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ModifyNFSHostEntry (p. 371)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DeleteNFSHostEntry (p. 184)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DeleteNFSExport (p. 183)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ModifyQuota (p. 375)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DeleteQuota (p. 186)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DeleteFileSystem (p. 176)</td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td>Modify or delete File Servers:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ModifyFileServer (p. 321)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DeleteRoute (p. 188)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DeleteVirtualInterface (p. 192)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DeleteFileServer (p. 175)</td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td>Modify or delete volume groups:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ModifyVolumeGroup (p. 389)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DeleteVolumeGroup (p. 195)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ModifyLUN (p. 351)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DeleteLUN (p. 182)</td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td>Modify or delete notifications (alerts):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ModifyNotificationDefinition (p. 373)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DeleteNotificationDefinition (p. 185)</td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td>Delete data replication schedules as needed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CreateFileSystemSnapshotSchedule (p. 124)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: You cannot modify a replication schedule through the CLI. You must create a new schedule and delete the old one. (See CreateFileSystemSnapshotSchedule on p. 124 and DeleteFileSystemSnapshotSchedule on p. 179)</td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td>Create data replicas as needed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- PerformLUNDuplication (p. 447)</td>
</tr>
<tr>
<td></td>
<td>Optional</td>
<td>Modify or delete administrator accounts:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ModifyAccount (p. 311)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ModifyMyAccount (p. 367)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DeleteAccount (p. 169)</td>
</tr>
</tbody>
</table>
Optional Modify hardware component names:
- ModifyManagementConfig (p. 360)
- ModifyBrick (p. 314)
- ModifySlammer (p. 380)
- ModifyExternalUPSDevice (p. 319)
- PerformAssociateInitiatorsToHost (p. 398)

Optional Perform software upgrades:
- GetAllUpdatePackages (p. 237)
- GetAllUpdateComponents (p. 236)
- GetUpdatePackageDetails (p. 305)
- PerformUpdatePackageStaging (p. 511)
- PerformUpdate (p. 507)
- PerformUpdateValidation (p. 513)
- PerformUpdateDiskDrive (p. 509)
- PerformUpdateDiskDriveValidation (p. 510)

Optional Perform support functions as needed:
- DeleteExternalUPSDevice (p. 174)
- PerformFileSystemCheck (p. 423)
- PerformRestoreFileSystemFromSnapshot (p. 485)
- PerformRebuildFileSystemRedundancy (p. 474)
- PerformRebuildLUNRedundancy (p. 475)
- PerformVerifyDataConsistency (p. 515) and GetDataConsistencyDetails (p. 249)
- GetSpareDriveDetails (p. 299)
- PerformVerifyStorageRedundancy (p. 516) and GetStorageRedundancyDetails (p. 301)
- GetSystemInformationFileDetails (p. 302)
- PerformShutdown (p. 495) and PerformRestart (p. 484)

With an encrypted file from Pillar World Wide Customer Support Center (because user data and configuration information are deleted):
- PerformResetSystem (p. 482)
- PerformUpdateSystemSerialNumber (p. 512)
Ranges for Option Values

Remember the following ranges as you create, modify, and delete Pillar Axiom objects to manage a Pillar Axiom system.

- Table 11, [Quantity ranges](#), defines quantity ranges.
- Table 12, [Data type and length ranges](#), defines additional ranges.
Table 11 Quantity ranges

<table>
<thead>
<tr>
<th>Object</th>
<th>Quantity range</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Servers</td>
<td>Maximum = 8 for each NAS Slammer. Note: In multi-Slammer systems, virtual interfaces (VIFs) that are associated with a File Server can be configured on multiple Slammers. The presence of VIFs is what counts against the limit. Such a File Server is considered to be present on each Slammer on which it has VIFs. Note: Virtual local area network (VLAN) tagging does not need to be enabled for more than one File Server. If VLAN tagging is enabled, File Servers do not require a unique VLAN tag.</td>
</tr>
<tr>
<td>VLANs</td>
<td>• Minimum = 0</td>
</tr>
<tr>
<td></td>
<td>• Maximum = 32</td>
</tr>
<tr>
<td>Virtual interfaces for each File Server</td>
<td>• Minimum = 1 (primary interface)</td>
</tr>
<tr>
<td></td>
<td>• Maximum = 16 for each port, 32 total (primary plus up to 31 secondary)</td>
</tr>
<tr>
<td>Network routes for each File Server</td>
<td>• Minimum = 0</td>
</tr>
<tr>
<td></td>
<td>• Maximum (default) = 8</td>
</tr>
<tr>
<td></td>
<td>• Maximum (static) = 16</td>
</tr>
<tr>
<td>Configuration files (NIS alternative files)</td>
<td>Maximum = 50 MB</td>
</tr>
<tr>
<td></td>
<td>Note: Size limit for each NIS file (/etc/passwd, /etc/group, and /etc/netgroup) that is uploaded to the Pilot.</td>
</tr>
<tr>
<td>Upload file size</td>
<td>Maximum = 650 MB for a software update package.</td>
</tr>
<tr>
<td>Volume groups</td>
<td>• Minimum = 1 (root /Volumes)</td>
</tr>
<tr>
<td></td>
<td>• Maximum = 5000</td>
</tr>
<tr>
<td></td>
<td>• 100 nested volume groups within each group</td>
</tr>
<tr>
<td></td>
<td>• 4 levels of nested volume groups</td>
</tr>
<tr>
<td>Filesystems</td>
<td>• Minimum = 1</td>
</tr>
<tr>
<td></td>
<td>• Maximum = 1024</td>
</tr>
<tr>
<td>Filesystem size</td>
<td>• Minimum = 1 to 2 GB. The exact value depends on these factors:</td>
</tr>
<tr>
<td></td>
<td>• Brick type (Fibre Channel or SATA)</td>
</tr>
<tr>
<td></td>
<td>• RAID geometry (RAID 5 or Distributed RAID)</td>
</tr>
<tr>
<td></td>
<td>• Strip size (1 MB or normal)</td>
</tr>
<tr>
<td></td>
<td>• Maximum = system capacity</td>
</tr>
<tr>
<td></td>
<td>Note: All capacity values must be in increments of 1 GB.</td>
</tr>
</tbody>
</table>
SecureWORMfs Retention Period
- Default = 0 days - 1000 years and must be greater than or equal to the minimum and less than or equal to the maximum retention value.
- Minimum = 0 days.
- Maximum = 0 days - 1000 years and must be greater than or equal to the minimum retention value.

NFS exports
Maximum = 1000 for each File Server

NFS host entries
Maximum = 4000 for each File Server

CIFS shares
Maximum = 128 for each File Server

CIFS client connections
Maximum for each NAS Slammer (specified memory is the total combined memory of both control units):
- 1200 for 12 GB total memory
- 6000 for 24 GB total memory
- 12,000 for 48 GB total memory

CIFS security groups
Maximum = 1024 for each user

Snap FS
Maximum = 250 Snap FSs for each filesystem; 16,000 Snap FSs total for each Pillar Axiom system

SAN LUNs
Maximum =
- 4096 visible for each Pillar Axiom system (1024 if all LUNs have nonzero clone repository)
- 255 visible for each host
- 4096 visible for each SAN Slammer
Note: A visible (active) SAN LUN requires one virtual LUN (VLUN). A clone of a SAN LUN requires a VLUN for the metadata and another for the data repository. If that clone is active, a third VLUN is required, making a total of four VLUNs for the SAN LUN and its clone.

SAN LUN size
Minimum: 1 to 2 GB. The exact value depends on these factors
- Brick type (Fibre Channel or SATA)
- RAID geometry (RAID 5 or Distributed RAID)
- Strip size (1 MB or normal)
- Maximum: System capacity
Note: All capacity values must be in increments of 1 GB.

Pillar Axiom Path Manager (SAN host software)
Maximum Pillar Axiom systems = 8 for each SAN host

Pillar Axiom Path Manager data paths
Maximum = 32 to each LUN
Chapter 2 Manage Pillar Axiom Systems

Ranges for Option Values 60

Table 11 Quantity ranges (continued)

<table>
<thead>
<tr>
<th>Object</th>
<th>Quantity range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pillar Axiom Path Manager FC HBA ports</td>
<td>Maximum = 32 for each SAN host</td>
</tr>
<tr>
<td>Clone LUNs</td>
<td>Maximum =</td>
</tr>
<tr>
<td></td>
<td>• Number of available LUNs</td>
</tr>
<tr>
<td></td>
<td>• 13 active at a time (of a single source)</td>
</tr>
<tr>
<td>iSCSI</td>
<td>Maximum =</td>
</tr>
<tr>
<td></td>
<td>• 256 TCP connections for each iSCSI port</td>
</tr>
<tr>
<td></td>
<td>• 256 iSCSI initiators for each iSCSI port</td>
</tr>
<tr>
<td></td>
<td>• 32 persistent reservation registration keys for each LUN</td>
</tr>
<tr>
<td></td>
<td>• 512 simultaneous commands for each iSCSI port</td>
</tr>
<tr>
<td>Administrator accounts</td>
<td>• Minimum = 2 (for the Primary system administrator and Support Administrator)</td>
</tr>
<tr>
<td></td>
<td>• Maximum = 23</td>
</tr>
<tr>
<td>Administrator sessions</td>
<td>Maximum = 10 total at any given time (2 reserved for Primary system administrator and Support Administrator)</td>
</tr>
<tr>
<td>NDMP sessions</td>
<td>Maximum concurrent backup and restore sessions for each system = 10</td>
</tr>
</tbody>
</table>

Table 12 Data type and length ranges

<table>
<thead>
<tr>
<th>Field</th>
<th>Length / Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Names for:</td>
<td>1 through 16 8-bit Unicode Transformation Format (UTF-8) printable characters. UTF-8 is described in RFC 2279, which you can find online with any internet search engine</td>
<td>Embedded spaces are permitted. Invalid characters:</td>
</tr>
<tr>
<td>• Alerts</td>
<td></td>
<td>• Nonprintable characters, including ASCII 0 through 31</td>
</tr>
<tr>
<td>• Brick storage enclosures</td>
<td></td>
<td>• / (slash) and \ (backslash)</td>
</tr>
<tr>
<td>• File Servers</td>
<td></td>
<td>• . and .. (dot and dot-dot alone)</td>
</tr>
<tr>
<td>• Filesystems</td>
<td></td>
<td>• Embedded tabs</td>
</tr>
<tr>
<td>• Pillar Axiom system</td>
<td></td>
<td>Pillar Axiom processing:</td>
</tr>
<tr>
<td>• Schedules</td>
<td></td>
<td>• Leading and trailing white space is stripped</td>
</tr>
<tr>
<td>• Slammer storage controllers</td>
<td></td>
<td>• Comparison is case sensitive</td>
</tr>
<tr>
<td>• Volume groups</td>
<td></td>
<td>Tip: Names of filesystems that you export to NFS users should contain only US-ASCII characters. Note: You can have filesystems with the same name if the filesystems are not in the same volume group or File Server.</td>
</tr>
</tbody>
</table>
Table 12 Data type and length ranges (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Length / Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUN names</td>
<td>1 through 82 UTF-8 printable characters</td>
<td>Invalid characters:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nonprintable characters, including ASCII 0 through 31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- / (slash) and \ (backslash)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- . and .. (dot and dot-dot alone)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Embedded tabs</td>
</tr>
<tr>
<td>Host names</td>
<td>1 through 63 UTF-8 printable characters</td>
<td></td>
</tr>
<tr>
<td>Names for:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- DNS domains</td>
<td>1 through 256 printable characters</td>
<td></td>
</tr>
<tr>
<td>- NIS domains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snap FS name</td>
<td>1 through 26 UTF-8 printable characters</td>
<td>Invalid characters:</td>
</tr>
<tr>
<td>Snap FS base (mount) name</td>
<td>8 through 33 UTF-8 printable characters</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- / (slash) and \ (backslash)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- . and .. (dot and dot-dot alone)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Embedded tabs</td>
</tr>
<tr>
<td>Administrator user name</td>
<td>1 through 16 UTF-8 printable characters</td>
<td>Case-sensitive value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Embedded spaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- / (slash)</td>
</tr>
<tr>
<td>Administrator password</td>
<td>6 through 16 UTF-8 printable characters</td>
<td>Case-sensitive value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Embedded spaces</td>
</tr>
<tr>
<td>Administrator login attempts</td>
<td>1 through 20 (integer)</td>
<td></td>
</tr>
<tr>
<td>Optional entries for administrator full names</td>
<td>0 through 40 UTF-8 printable characters</td>
<td>Embedded spaces are permitted.</td>
</tr>
<tr>
<td>Optional entries for telephone numbers</td>
<td>0 through 80 UTF-8 printable characters</td>
<td>Embedded spaces are permitted.</td>
</tr>
<tr>
<td>Alert descriptions</td>
<td>0 through 80 UTF-8 printable characters</td>
<td>Embedded spaces are permitted.</td>
</tr>
</tbody>
</table>
Table 12 Data type and length ranges (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Length / Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email address (emailuser@host)</td>
<td>1 through 64 characters for email user</td>
<td>a-z A-Z 0-9 ! # $ % & ’ * + - / = ? ^ _ ` {</td>
</tr>
<tr>
<td></td>
<td>1 through 255 characters for host</td>
<td>a-z A-Z 0-9 . are permitted, except that:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0-9 . cannot be the first character.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• . - cannot be the last character. An IP address cannot be the host part of the email address.</td>
</tr>
<tr>
<td>NDMP account user name</td>
<td>1 through 16 UTF-8 printable characters</td>
<td>Case-sensitive value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invalid characters:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Embedded spaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• / (slash)</td>
</tr>
<tr>
<td>NDMP account password</td>
<td>6 through 8 ASCII printable characters</td>
<td>Case-sensitive value</td>
</tr>
<tr>
<td>Names for CIFS:</td>
<td>1 through 15 ASCII printable characters 33 through 126</td>
<td></td>
</tr>
<tr>
<td>• Servers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Domains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments for CIFS servers</td>
<td>1 through 44 ASCII printable characters 32 through 126</td>
<td>Embedded spaces are permitted.</td>
</tr>
<tr>
<td>Names for CIFS shares</td>
<td>1 through 80 ASCII printable characters 32 through 126</td>
<td>Embedded spaces are permitted.</td>
</tr>
<tr>
<td>Comments for CIFS shares</td>
<td>0 through 256 ASCII printable characters 32 through 126</td>
<td>Embedded spaces are permitted.</td>
</tr>
<tr>
<td>CIFS administrator (for Domain Controller):</td>
<td>0 through 256 UTF-8 characters</td>
<td>Case-sensitive value</td>
</tr>
<tr>
<td>• User name</td>
<td></td>
<td>Invalid characters:</td>
</tr>
<tr>
<td>• Password</td>
<td></td>
<td>• Embedded spaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• / (slash)</td>
</tr>
<tr>
<td>Directory paths for CIFS shares</td>
<td>1024 bytes and start with a \ (backslash)</td>
<td>Path includes the filesystem name of up to 40 printable characters, plus a NULL terminator.</td>
</tr>
</tbody>
</table>
Chapter 2 Manage Pillar Axiom Systems

Table 12 Data type and length ranges (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Length / Type</th>
<th>Notes</th>
</tr>
</thead>
</table>
| CIFS security group names | 0 through 322 ASCII printable characters 32 through 126 | Invalid characters:
• Embedded tabs, carriage returns, and newlines
• ?, *, <, >, +, =, comma(,), | | |
| Directory paths for NFS exports | UTF–8 characters up to 1024 bytes in length; start with a / (slash) | Path includes a filesystem name, which can consist of up to 40 UTF–8 printable characters, plus a NULL terminator. |
| NFS host name | UTF–8 characters up to 255 bytes in length | Host format:
• IP address in dotted-decimal format
• Subnet address with both the subnet and mask in dotted-decimal format
• Host name
• Asterisk (*), to export to all NFS clients (everyone) |
| IP addresses | 0 through 255, in all four parts | IP version 4 (IPv4) dotted-decimal notation (xxx.xxx.xxx.xxx) |
| Virtual LAN (VLAN) ID (tag) | 0 through 4094 (integer) | 1 through 4094 denote that VLAN Tagging is enabled.
0 denotes that VLAN Tagging is disabled. |
| SNMP community string | 0 through 255 ASCII printable characters 33 through 126 | Invalid characters:
• Embedded spaces
• Control characters |
| Chap Secrets | 100 UTF-8 characters | Non-character (for example, integer) CHAP secret values are not supported.
CHAP secrets should be more than 12 bytes if IPsec is not used on insecure network segments. |
CHAPTER 3

CLI Commands

This chapter describes the CLI command set. (See Chapter 4 on p. 90 for command requests.) Please note:

- The command SYNTAX and OPTIONS sections show both long and short option names. EXAMPLES show the more descriptive long names.

- You can shorten a command name to a three-letter abbreviation. For example, you can shorten the request (p. 75) command name to req.

- OPTIONS are not order-dependent; however, if you use the {-c | --config} option, it must appear first in the command string.

Command Reference Pages

The CLI commands are listed in alphabetic order.
NAME convert

DESCRIPTION Converts the specified input to a different output format. This command is intended for Pillar Customer Service and advanced users.

SYNTAX pdscli convert

[-C | --config] <file>

[-W | --tmpdir] <directory>

[-f | --force]

[-x | --extract] <extract-field>

[-o | --outputform] {form | msg | pretty | raw | cli | none}

{<request-name> |}

{[-m | --msg] <xml-msg-file> |}

{-b | --body} <xml-body-file> |}

{-t | --template} <template-file>

[{<name>=<val> | @ <file}>...]

OPTIONS

[-C | --config] <ConfigFile>

You may enter the name of a configuration file that contains a set of command options. If you use this option, it must appear first in the command string.

[-W | --tmpdir] <directory>

Optionally enter the directory where the CLI should write any temporary files it needs to use while processing this request.

[-f | --force]

Optionally specify {-f | --force} to send the message even if the message is invalid.

[-x | --extract] <extract-field>

Optionally enter a slash-separated path through the XML document to an extract field. The command interpreter parses the XML document until it finds an extract field that matches the pattern and displays the field on the standard output device (stdout).

The CLI tracing option is very useful for displaying the XML output for extract field.

[-o | --outputform] {form | msg | pretty | raw | cli | none}

Optionally enter a value that identifies how to display the output that the Pillar Axiom storage system generates when you run a command or request option. Choose from:

• form so that the response is parsed and displayed as a list of Name: <value> lines.
Chapter 3 CLI Commands

- `msg` so that the response is parsed and displayed as a continuous string of XML tags for all of the fields in the response. Note: Although the output is in XML format, it is not formatted to send directly to the server.
- `pretty` so that the response is parsed and displayed as a series of hierarchically indented lines, with each XML tag on a separate line.
- `raw` so that the response is displayed exactly as received. The response is not parsed.
- `cli` so that the response is parsed and displayed as an input template. Use this option with the `convert` command.
- `none` so that the output format is neither parsed nor displayed.

If you do not specify this value, the Pillar Axiom storage system uses the default `form` value.

`<request-name>`
Enter a case-sensitive request name. A request is composed of one or more field/value pairs. Generate a template so that you have a complete set of field/value pairs for a request.

To display a list of valid request names, enter the following command:

```
pdcli help list-requests
```

{-m | --msg} `<xml-msg-file>`
Enter the name of an input file that contains a complete and valid XML message, normally MCCRequest. MCC stands for Management and Control Console. MCCRequest and the corresponding MCCResponse are available in the CLI’s supplemental xml subdirectory (see “Extract the `pdcli` Executable and Supplemental Files” on page 16 for more information).

{-b | --body} `<xml-body-file>`
Enter the name of an input file that contains a complete and valid XML request body. The `pdcli` inserts the request body into the appropriate XML document type to send to the Pillar Axiom storage system.

{-t | --template} `<template-file>`
Enter the name of an input file that contains a CLI request template. The first line of the file must be:

```
Request=<RequestName>
```

The `Request=<RequestName>` line is followed by a series of `<name>=<value>` lines that supply the request options. Enter `<values>` that are appropriate for your storage environment.

```
[<name=val>]
```

If the `{<request-name>}` includes options, you may enter a case-sensitive `<name>=<value>` pair and repeat as necessary.
[@<file>]...

If the \{<request-name>\} includes options, you may specify an input file that contains case-sensitive \<name>=\<value> pairs. You may repeat this argument as necessary.

EXAMPLES

You have started to investigate using XML for data exchange and would like to convert a PerformDownloadSystemInformationFile template to XML format:

```
pdscli convert --outputform msg
  --template PerformDownloadSystemInformationFile.txt
```

SEE ALSO

- CLI configuration variables on p. 17
- submit on p. 82
- template on p. 86
- verify on p. 88
- Ranges for Option Values on p. 57
NAME endsession

DESCRIPTION Terminates a command line interface (CLI) session. Use this command in combination with the `startsession` and `request` commands, for example, to optimize system performance while running scripts.

SYNTAX

```
pdscli endsession

[{-C | --config} <file>]
[{-W | --tmpdir} <directory>]
[{-H | --host} <host-name>]
[{-T | --timeout} <timeout-sec>]
[{-A | --async}]
[{-s | --session} <sessionID>]
[{-x | --extract} <extract-field>]
[{-o | --outputform} {form | msg | pretty | raw | cli | none}]
```

OPTIONS

```
[{-C | --config} <ConfigFile>]

You may enter the name of a configuration file that contains a set of command options. If you use this option, it must appear first in the command string.

[{-W | --tmpdir} <directory>]

Optionally enter the directory where the CLI should write any temporary files it needs to use while processing this request.

[{-H | --host} <host-name>]

Enter the name or management IP address of the Pilot in the Pillar Axiom storage system.

Note: If you specify a value, it will override values you may have saved in configuration files or environment variables.

[{-T | --timeout} <timeout-sec>]

Enter an integer that specifies an inactivity time limit, in seconds, after which the connection is terminated.

[{-A | --async}]

Set this variable if you want the system to return asynchronous responses instead of waiting for the request to complete.

[{-s | --session} <sessionID>]

Enter the unique identifier of the administrative session to end. The system returns this value when you sent the `startsession` command

Note: If you specify a value, it will override values you may have saved in configuration files or environment variables.

[{-x | --extract} <extract-field>]

```
Optionally enter a slash-separated path through the XML document to an extract field. The command interpreter parses the XML document until it finds an extract field that matches the pattern and displays the field on the standard output device (stdout).

The CLI tracing option is very useful for displaying the XML output for extract field.


```
[-o | --outputform] {form | msg | pretty | raw | cli | none}
```

Optionally enter a value that identifies how to display the output that the Pillar Axiom storage system generates when you run a command or request option. Choose from:

- **form** so that the response is parsed and displayed as a list of `<Name>: <value>` lines.
- **msg** so that the response is parsed and displayed as a continuous string of XML tags for all of the fields in the response. Note: Although the output is in XML format, it is not formatted to send directly to the server.
- **pretty** so that the response is parsed and displayed as a series of hierarchically indented lines, with each XML tag on a separate line.
- **raw** so that the response is displayed exactly as received. The response is not parsed.
- **cli** so that the response is parsed and displayed as an input template. Use this option with the `convert` command.
- **none** so that the output format is neither parsed nor displayed.

If you do not specify this value, the Pillar Axiom storage system uses the default `form` value.

EXAMPLES

Run the following command to end the current administrative session.

```
pdsclicli endsession
   -s aeea1234abc5678efab1234abcd1234
```

where the long string is the session ID with the `startsession` request.

SEE ALSO

- CLI configuration variables on p. 17
- `startsession` on p. 79
- Ranges for Option Values on p. 57
NAME help

DESCRIPTION Displays help text about the command line interface (CLI) or the specified <item>.

SYNTAX

pdscli help
pdscli help <command>
pdscli help options
pdscli help environment
pdscli help list-requests
pdscli help template -d <request>
pdscli help list-errors

OPTIONS
<command>
Displays help text for the specified <command>:
• convert
• endsession
• rawsend
• request
• startsession
• submit
• template
• verify

options
Displays a list of frequently used command options. (See also “CLI configuration variables” on page 17.)

environment
Displays a list of environment variable values. (See also “Set Configuration Variables with Environment Variables” on page 19.)

list-requests
Displays a list of <request-names> that you can specify as a <request-name> for the request, submit, template, and verify commands. (See also “Pillar Axiom Objects and Management Requests” on page 31.)

template [-d] <request>
Displays individual request information.

list-errors
Displays a list of error messages that you might encounter as you work from the CLI.

EXAMPLES Run the following command to retrieve a list of valid configuration requests.
pdscli help list-requests > CLI-requests.txt
help list-requests | sort [sort options] > requests.txt will generate an alphabetic sorted list of requests as defined by the sort utility of your operating system.

The system writes the entire list of requests to a text file. You can refer to the file as you plan how to implement and manage your Pillar Axiom storage system. (The file contents are not included here to conserve space.)

SEE ALSO

- **convert on p. 65**
- **endsession on p. 68**
- **rawsend on p. 72**
- **request on p. 75**
- **startsession on p. 79**
- **submit on p. 82**
- **template on p. 86**
- **verify on p. 88**
NAME rawsend

DESCRIPTION Adds a required header to the message. This command is intended for Pillar Customer Service and advanced users.

SYNTAX
```
pdscli rawsend
    [{-C | --config} <file>]
    [{-W | --tmpdir} <directory>]
    [{-H | --host} <host-name>]
    [{-T | --timeout} <timeout-sec>]
    [{-A | --async}]
    [{-m | --msg} <xml-msg-file> | 
    {-b | --body} <xml-body-file> | 
    {-t | --template} <template-file>}] 
    [{-f | --force}]
    [{-x | --extract} <extract-field>]
    [{-o | --outputform} <{form | msg | pretty
    | raw | cli | none}>]
    {<XML-file>}
```

OPTIONS
```
[-C | --config] <ConfigFile>
```
You may enter the name of a configuration file that contains a set of command options. If you use this option, it must appear first in the command string.

```
[-W | --tmpdir] <directory>
```
Optionally enter the directory where the CLI should write any temporary files it needs to use while processing this request.

```
[-H | --host] <host-name>
```
Enter the name or management IP address of the Pilot in the Pillar Axiom storage system.
Note: If you specify a value, it will override values you may have saved in configuration files or environment variables.

```
[-T | --timeout] <timeout-sec>
```
Enter an integer that specifies an inactivity time limit, in seconds, after which the connection is terminated.

```
[-A | --async]
```
Set this variable if you want the system to return asynchronous responses instead of waiting for the request to complete.

```
[-m | --msg] <xml-msg-file>
```
Enter the name of an input file that contains a complete and valid XML message, normally MCCRequest. MCC stands for Management and Control Console. MCCRequest and the corresponding MCCResponse are available in the CLI's supplemental xml subdirectory (see “Extract the pdscli Executable and Supplemental Files” on page 16 for more information).

```
[{-b | --body} <xml-body-file>]
```

Enter the name of an input file that contains a complete and valid XML request body. The pdscli inserts the request body into the appropriate XML document type to send to the Pillar Axiom storage system.

```
[{-t | --template} <template-file>]
```

Enter the name of an input file that contains a CLI request template. The first line of the file must be:

```
Request=<RequestName>
```

The Request=<RequestName> line is followed by a series of <name>=<value> lines that supply the request options. Enter <values> that are appropriate for your storage environment.

```
[{-f | --force}]
```

Optionally specify {-f | --force} to send the message even if the message is invalid.

```
[{-x | --extract} <extract-field>]
```

Optionally enter a slash-separated path through the XML document to an extract field. The command interpreter parses the XML document until it finds an extract field that matches the pattern and displays the field on the standard output device (stdout).

The CLI tracing option is very useful for displaying the XML output for extract field.

```
[{-o | --outputform} <{form | msg | pretty | raw | cli | none}>]
```

Optionally enter a value that identifies how to display the output that the Pillar Axiom storage system generates when you run a command or request option. Choose from:

- **form** so that the response is parsed and displayed as a list of Name: <value> lines.
- **msg** so that the response is parsed and displayed as a continuous string of XML tags for all of the fields in the response. Note: Although the output is in XML format, it is not formatted to send directly to the server.
- **pretty** so that the response is parsed and displayed as a series of hierarchically indented lines, with each XML tag on a separate line.
- **raw** so that the response is displayed exactly as received. The response is not parsed.
- **cli** so that the response is parsed and displayed as an input template. Use this option with the **convert** command.
• none so that the output format is neither parsed nor displayed. If you do not specify this value, the Pillar Axiom storage system uses the default form value.

{<XML-file>}

Enter the name of a file that contains the XML message to send. The Pillar Axiom storage system does not validate the file contents.

EXAMPLES

You have started to investigate using XML for data exchange. Use the rawsend command to experiment in your XML investigations.

SEE ALSO

CLI configuration variables on p. 17
starts on p. 79
help on p. 70
ends on p. 68

Synchronous and Asynchronous Requests on p. 47
Ranges for Option Values on p. 57
NAME request

DESCRIPTION Sends a command that performs the specified <request-name> within a managed session. Use this command in combination with the startsession and endsession commands, for example, to optimize system performance while running scripts.

SYNTAX pdscli request

 [{-C | --config} <file>]
 [{-W | --tmpdir} <directory>]
 [{-H | --host} <host-name>]
 [{-T | --timeout} <timeout-sec>]
 [{-A | --async}]
 [{-s | --session} <sessionID>]
 [{-f | --force}]
 [{-x | --extract} <extract-field>]
 [{-o | --outputform} <{form | msg | pretty | raw | cli | none}>]
 {<request-name> |}
 {--msg} <xml-msg-file> |
 {--body} <xml-body-file> |
 {--template} <template-file>}

OPTIONS

[{{-C | --config} <ConfigFile>]
 You may enter the name of a configuration file that contains a set of command options. If you use this option, it must appear first in the command string.

[{{-W | --tmpdir} <directory>]
 Optionally enter the directory where the CLI should write any temporary files it needs to use while processing this request.

[{{-H | --host} <host-name>]
 Enter the name or management IP address of the Pilot in the Pillar Axiom storage system.
 Note: If you specify a value, it will override values you may have saved in configuration files or environment variables.

[{{-T | --timeout} <timeout-sec>]
 Enter an integer that specifies an inactivity time limit, in seconds, after which the connection is terminated.

[{{-A | --async}]
 Set this variable if you want the system to return asynchronous responses instead of waiting for the request to complete.
[{-s | --session} <sessionID>]
Enter the unique session ID, which is a 32-character value that consists of any ASCII-printable characters except a space. Use the *startsession* command to get the unique session ID.
Example session ID:
4J616d44604D537973206278976F642E

[{-f | --force}]
Optionally specify {-f | --force} to send the message even if the message is invalid.

[{-x | --extract} <extract-field>]
Optionally enter a slash-separated path through the XML document to an extract field. The command interpreter parses the XML document until it finds an extract field that matches the pattern and displays the field on the standard output device (stdout).
The CLI tracing option is very useful for displaying the XML output for extract field.

[{-o | --outputform} <{form | msg | pretty | raw | cli | none}>]
Optionally enter a value that identifies how to display the output that the Pillar Axiom storage system generates when you run a command or request option. Choose from:
- **form** so that the response is parsed and displayed as a list of Name: <value> lines.
- **msg** so that the response is parsed and displayed as a continuous string of XML tags for all of the fields in the response.
 Note: Although the output is in XML format, it is not formatted to send directly to the server.
- **pretty** so that the response is parsed and displayed as a series of hierarchically indented lines, with each XML tag on a separate line.
- **raw** so that the response is displayed exactly as received. The response is not parsed.
- **cli** so that the response is parsed and displayed as an input template.
 Use this option with the *convert* command.
- **none** so that the output format is neither parsed nor displayed.
If you do not specify this value, the Pillar Axiom storage system uses the default **form** value.

<request-name>
Enter a case-sensitive request name. A request is composed of one or more field/value pairs. Generate a template so that you have a complete set of field/value pairs for a request.
To display a list of valid request names, enter the following command:
```
pdscli help list-requests
```
\{-m | --msg\} <xml-msg-file>

Enter the name of an input file that contains a complete and valid XML message, normally MCCRequest. MCC stands for Management and Control Console. MCCRequest and the corresponding MCCResponse are available in the CLI's supplemental xml subdirectory (see “Extract the pdscli Executable and Supplemental Files” on page 16 for more information).

\{-b | --body\} <xml-body-file>

Enter the name of an input file that contains a complete and valid XML request body. The pdscli inserts the request body into the appropriate XML document type to send to the Pillar Axiom storage system.

\{-t | --template\} <template-file>

Enter the name of an input file that contains a CLI request template. The first line of the file must be:

```
Request=<RequestName>
```

The `Request=<RequestName>` line is followed by a series of `<name>=<value>` lines that supply the request options. Enter `<values>` that are appropriate for your storage environment.

```
[<name=val>]
```

If the `{<request-name>}` includes options, you may enter a case-sensitive `<name>=<value>` pair and repeat as necessary.

```
[@<file>]
```

If the `{<request-name>}` includes options, you may specify an input file that contains case-sensitive `<name>=<value>` pairs. You may repeat this argument as necessary.

EXAMPLES

You run the following command to start an administrative session.

```
pdscli startsession --host storage.xyz.corp
```

You are prompted to enter your user name and password because you did not specify those options. When the Pillar Axiom storage system returns a session ID, you copy the value from the command prompt.

You open your previously defined `pdscli .cfg` configuration file and update the value of the PDS_SESSIONKEY environment variable with the session ID that you copied from the command prompt.

You run the following command to retrieve system status details.

```
pdscli request --host 172.18.64.107 --session 4J616d44604D537973206278976F642E GetSystemStatusDetails
```

SEE ALSO

CLI configuration variables on p. 17

Management Requests on p. 90

startsession on p. 79
endsession on p. 68
submit on p. 82
template on p. 86
verify on p. 88
Synchronous and Asynchronous Requests on p. 47
PDS_SESSIONKEY on p. 18
Ranges for Option Values on p. 57
NAME startsession

DESCRIPTION Starts a command line interface (CLI) session as an alternative to the submit command. The submit command automatically starts a session, sends a request, and ends a session for each request; the startsession command, however, allows you send multiple requests without closing the session each time. Use this command in combination with the request and endsession commands, for example, to optimize system performance while running scripts.

Tip: You can use the Unix shell of your choice or a Windows Command Line to store the SessionID as an environment variable; however, this is not as reliable as storing the SessionID in a temp file.

The session timeout may terminate your CLI session during a long-running asynchronous command. The default session timeout is 20 minutes, which may be too short for some long-running commands. You can extend the session timeout in the GUI using the SessionTimeout parameter of the ModifyManagementConfig request.

SYNTAX pdscli startsession
 [{-C | --config} <file>]
 [{-W | --tmpdir} <directory>]
 [{-H | --host} <host-name>]
 [{-T | --timeout} <timeout-sec>]
 [{-A | --async}]
 [{-u | --user} <user-name>]
 [{-p | --password} <password>]
 [{-x | --extract} <extract-field>]
 [{-o | --outputform} <{form | msg | pretty | raw | cli | none}>]

OPTIONS
 [{-C | --config} <ConfigFile>]
 Enter the name of a configuration file that contains a set of command options. If used, this option must be first in the command string.

 [{-W | --tmpdir} <directory>]
 Optionally enter the directory where the CLI should write any temporary files it needs to use while processing this request.

 [{-H | --host} <host-name>]
 Enter the name or management IP address of the Pilot in the Pillar Axiom storage system.
 Note: If you specify a value, it will override values you may have saved in configuration files or environment variables.
[{-T | --timeout} <timeout-sec>]
Enter an integer that specifies an inactivity time limit, in seconds, after which
the connection is terminated.

[{-A | --async}]
Set this variable if you want the system to return asynchronous responses
instead of waiting for the request to complete.

[{-u | --user} <user-name>]
Enter a valid user name that is defined for a Pillar Axiom administrator
account.
Note: If you specify a value, it will override values you may have saved in
configuration files or environment variables.

[{-p | --password} <password>]
Enter a valid password that is defined for the specified user name.
Note: If you specify a value, it will override values you may have saved in
configuration files or environment variables.

[{-x | --extract} <extract-field>]
Optionally enter a slash-separated path through the XML document to an
extract field. The command interpreter parses the XML document until it
finds an extract field that matches the pattern and displays the field on the
standard output device (stdout).
The CLI tracing option is very useful for displaying the XML output for
extract field.

[{-o | --outputform} <{form | msg | pretty | raw | cli | none}>]
Optionally enter a value that identifies how to display the output that the
Pillar Axiom storage system generates when you run a command or request
option. Choose from:
• form so that the response is parsed and displayed as a list of Name:
 <value> lines.
• msg so that the response is parsed and displayed as a continuous
 string of XML tags for all of the fields in the response.
 Note: Although the output is in XML format, it is not formatted to send
directly to the server.
• pretty so that the response is parsed and displayed as a series of
 hierarchically indented lines, with each XML tag on a separate line.
• raw so that the response is displayed exactly as received. The
 response is not parsed.
• cli so that the response is parsed and displayed as an input template.
 Use this option with the convert command.
• none so that the output format is neither parsed nor displayed.
If you do not specify this value, the Pillar Axiom storage system uses the
default form value.
EXAMPLES

Run the following command to start an administrative session at the command prompt.

pdscli startsession --host storage.xyz.corp

You are prompted to enter your user name and password because you did not specify those options. Save the sessionID value that the system returns; you will need this for the request and endsession commands.

SEE ALSO

CLI configuration variables on p. 17
request on p. 75
endsession on p. 68
help on p. 70

Synchronous and Asynchronous Requests on p. 47
Ranges for Option Values on p. 57
NAME submit

DESCRIPTION Logs in to the CLI, sends the specified <request-name> in the requested format, displays the response in the requested output format, and logs out.

SYNTAX pdscli submit

 [{-C | --config} <file>]
 [{-W | --tmpdir} <directory>]
 [{-H | --host} <host-name>]
 [{-T | --timeout} <timeout-sec>]
 [{-A | --async}]
 [{-u | --user} <user-name>]
 [{-p | --password} <password>]
 [{-f | --force}]
 [{-x | --extract} <extract-field>]
 [{-o | --outputform} <{form | msg | pretty | raw | cli | none}>]
 <request-name>

 {{{-m | --msg} <xml-msg-file> |}
 {-b | --body} <xml-body-file> |}
 {-t | --template} <template-file>}

OPTIONS

 [{-C | --config} <ConfigFile>]
 Enter the name of a configuration file that contains a set of command options. If used, this option must be first in the command string.

 [{-W | --tmpdir} <directory>]
 Optionally enter the directory where the CLI should write any temporary files it needs to use while processing this request.

 [{-H | --host} <host-name>]
 Enter the name or management IP address of the Pilot in the Pillar Axiom storage system.

 Note: If you specify a value, it will override values you may have saved in configuration files or environment variables.

 [{-T | --timeout} <timeout-sec>]
 Enter an integer that specifies an inactivity time limit, in seconds, after which the connection is terminated.
[{-A | --async}]
Set this variable if you want the system to return asynchronous responses instead of waiting for the request to complete.

[{-u| --user} <user-name>]
Enter a valid user name that is defined for a Pillar Axiom administrator account.
Note: If you specify a value, it will override values you may have saved in configuration files or environment variables.

[{-p| --password} <password>]
Enter a valid password that is defined for the specified user name.
Note: If you specify a value, it will override values you may have saved in configuration files or environment variables.

[{-f | --force}]
Optionally specify {-f | --force} to send the message even if the message is invalid.

[{-x | --extract} <extract-field>]
Optionally enter a slash-separated path through the XML document to an extract field. The command interpreter parses the XML document until it finds an extract field that matches the pattern and displays the field on the standard output device (stdout).
The CLI tracing option is very useful for displaying the XML output for extract field.

[{-o | --outputform} <{form | msg | pretty | raw | cli | none}>]
Optionally enter a value that identifies how to display the output that the Pillar Axiom storage system generates when you run a command or request option. Choose from:

- **form** so that the response is parsed and displayed as a list of **Name**: `<value>` lines.
- **msg** so that the response is parsed and displayed as a continuous string of XML tags for all of the fields in the response.
 Note: Although the output is in XML format, it is not formatted to send directly to the server.
- **pretty** so that the response is parsed and displayed as a series of hierarchically indented lines, with each XML tag on a separate line.
- **raw** so that the response is displayed exactly as received. The response is not parsed.
- **cli** so that the response is parsed and displayed as an input template. Use this option with the `convert` command.
- **none** so that the output format is neither parsed nor displayed.

If you do not specify this value, the Pillar Axiom storage system uses the default `form` value.
<request-name>
Enter a case-sensitive request name. A request is composed of one or more field/value pairs. Generate a template so that you have a complete set of field/value pairs for a request.
To display a list of valid request names, enter the following command:
 pdscli help list-requests

{-m | --msg} <xml-msg-file>
Enter the name of an input file that contains a complete and valid XML message, normally MCCRequest. MCC stands for Management and Control Console. MCCRequest and the corresponding MCCResponse are available in the CLI’s supplemental xml subdirectory (see “Extract the pdscli Executable and Supplemental Files” on page 16 for more information).

{-b | --body} <xml-body-file>
Enter the name of an input file that contains a complete and valid XML request body. The pdscli inserts the request body into the appropriate XML document type to send to the Pillar Axiom storage system.

{-t | --template} <template-file>
Enter the name of an input file that contains a CLI request template. The first line of the file must be:
 Request=<RequestName>
The Request=<RequestName> line is followed by a series of <name>=<value> lines that supply the request options. Enter <values> that are appropriate for your storage environment.

EXAMPLES
Run the following command to check the status of your Pillar Axiom storage system without starting and stopping a session to run several commands.
 pdscli submit -H 172.18.64.107 -u Xavier -p s7Z12W79 GetSystemStatusDetails

The system returns the following command results (edited to conserve space).
MCCResponse:
 ...
 GetSystemStatusDetailsResponse:
 SystemName: XYZ-data
 SystemStatus: Normal
 ...

SEE ALSO
 CLI configuration variables on p. 17
 Management Requests on p. 90
 request on p. 75
 template on p. 86
verify on p. 88

Synchronous and Asynchronous Requests on p. 47

Ranges for Option Values on p. 57
NAME template

DESCRIPTION Creates a template for a <request-name>, which is an action to perform on an object.

SYNTAX pdscli template
 [{-C | --config} <file>]
 [{-W | --tmpdir} <directory>]
 [{-d | --description}]
 {<request-name>}

OPTIONS [{-C | --config} <ConfigFile>]
 Enter the name of a configuration file that contains a set of command options. If used, this option must be first in the command string.

 [{-W | --tmpdir} <directory>]
 Optionally enter the directory where the CLI should write any temporary files it needs to use while processing this request.

 [{-d | --description}]
 Displays descriptive text about request options, if descriptive text is defined.

 {<request-name>}
 Enter a case-sensitive request name. A request is composed of one or more field/value pairs. Generate a template so that you have a complete set of field/value pairs for a request.

 To display a list of valid request names, enter the following command:
 pdscli help list-requests

EXAMPLES Run the following command to create a template for the CreateAccount request. This streamlined template does not contain the descriptions that are included in the provided CreateAccountRequest.req file.

 pdscli template CreateAccount >
 CreateAccount.template

 The CreateAccount.template is as follows.
 Request=CreateAccount
 Username =
 Fullname =
 Password =
 RetypePassword =
 EmailAddress =
 PhoneNumber =
 Status =
 Role =
Enter the following values in the template to create an administrator account for Jim Smith.

Request=CreateAccount
Username = jsmith
Fullname = Jim Smith
Password = ChangeMe1st
RetypePassword = ChangeMe1st
EmailAddress = jimsmith@xyz.com
PhoneNumber = 223.555.1235
Status = Enabled
Role = Type1

SEE ALSO

CLI configuration variables on p. 17
Management Requests on p. 90
request on p. 75
submit on p. 82
verify on p. 88
Ranges for Option Values on p. 57
NAME verify

DESCRIPTION Verifies command input for validity. The command interpreter runs this command on your client workstation and does not submit anything to the Pillar Axiom storage system. You can optionally submit the request after you verify its contents with this command.

SYNTAX pdscli verify
 [{-W | --tmpdir} <directory>]
 {<request-name> |
 {-m | --msg} <xml-msg-file> |
 {-b | --body} <xml-body-file> |
 {-t | --template} <template-file>}
 [<name>=<val> | @ <file>]...

OPTIONS [{-W | --tmpdir} <directory>]
 Optionally enter the directory where the CLI should write any temporary files it needs to use while processing this request.

 {<request-name>}
 Enter a case-sensitive request name. A request is composed of one or more field/value pairs. Generate a template so that you have a complete set of field/value pairs for a request.
 To display a list of valid request names, enter the following command:
 pdscli help list-requests

 {-m | --msg} <xml-msg-file>
 Enter the name of an input file that contains a complete and valid XML message, normally MCCRequest. MCC stands for Management and Control Console. MCCRequest and the corresponding MCCResponse are available in the CLI's supplemental xml subdirectory (see “Extract the pdscli Executable and Supplemental Files” on page 16 for more information).

 {-b | --body} <xml-body-file>
 Enter the name of an input file that contains a complete and valid XML request body. The pdscli inserts the request body into the appropriate XML document type to send to the Pillar Axiom storage system.

 {-t | --template} <template-file>
 Enter the name of an input file that contains a CLI request template. The first line of the file must be:
 Request=<RequestName>
 The Request=<RequestName> line is followed by a series of <name>=<value> lines that supply the request options. Enter <values> that are appropriate for your storage environment.

 [<name=val>]...
If the \{\texttt{\{request-name\}}\} includes options, you may enter a case-sensitive \texttt{\{name\}=\{value\}} pair and repeat as necessary.

\[@\texttt{\{file\}}\]...

If the \{\texttt{\{request-name\}}\} includes options, you may specify an input file that contains case-sensitive \texttt{\{name\}=\{value\}} pairs. You may repeat this argument as necessary.

EXAMPLES

Run the following command to verify that the \texttt{CreateAccount.template} file is a complete and valid CLI template to be used as an input file.

```
pdscli verify CreateAccount
   -t CreateAccount.template
```

You have installed Slammer field replaceable units (FRUs), and you want to ensure that the Slammer1 and Slammer2 are still valid names for the \texttt{GetSlammerDetails (p. 295)} request before you \texttt{Use Scripts to Run Commands (p. 21)}:

```
pdscli verify GetSlammerDetails
   Slammer=/Company-XZY-data/Slammer1
   Slammer=/Company-XZY-data/Slammer2
```

SEE ALSO

- CLI configuration variables on p. 17
- Management Requests on p. 90
- request on p. 75
- submit on p. 82
- template on p. 86
- Ranges for Option Values on p. 57
Management Requests

Use management requests to administer the Pillar Axiom storage system. Run either of the following commands to transmit management requests from the CLI client software on your administrative workstation to the Pilot management controller:

```
pdscli request (p. 75) <request-name>
or
pdscli submit (p. 82) <login-options> <request-name>
```

The management requests are documented in the same format as the commands in CLI Commands (p. 64). The reference pages also point to the output files that show example response data. (See Extract the pdscli Executable and Supplemental Files on p. 16 for more information.)

Note: If you use the sample output files to create your own code, omit any extraneous colons. Colons should separate fields only.

Request Reference Pages

Management requests are listed in alphabetic order.
NAME CancelForceFileSystemRebalance

DESCRIPTION Removes the flag that the ForceFileSystemRebalanceOnRestart request sets.

SYNTAX pdscsi {request | submit} CancelForceFileSystemRebalance

OPTIONS None

EXAMPLES Run the following command to force the reassignment of filesystems across all NAS Slammer CUs.

pdscsi request CancelForceFileSystemRebalance

See the CancelForceFileSystemRebalance.txt file for example response data.

SEE ALSO ForceFileSystemRebalanceOnRestart on p. 196
NAME
CreateAccount

DESCRIPTION
Creates a new administrator account. The role that you assign to the account determines the administrator’s privileges in a Pillar Axiom storage system. Only Type 1 and Primary Administrator accounts can create new administrator accounts.

SYNTAX
```
pdscli {request | submit} CreateAccount
   Username=login-name
   Fullname="First Last"
   Password=password
   RetypePassword=password
   EmailAddress=name@domain.com
   PhoneNumber=telephone-number
   Status={Enabled | Disabled}
   Role={Type1 | Type2 | Type3}
   SSHState={Enabled | Disabled}
```

OPTIONS
Username
Identifies the administrator’s login (user) name.

Fullname [optional]
Identifies the administrator’s full name ("first" and "last").

Password
Identifies the login password. Passwords are case sensitive, and blank passwords are not permitted.

RetypePassword
Enter the password again.

EmailAddress [optional]
Identifies the recipient’s email address. The email server to which the Pillar Axiom system sends alerts must be able to send messages to this email address.

PhoneNumber [optional]
Identifies the recipient’s telephone number. The Pillar Axiom system does not verify the validity of this entry.

Note: Enclose telephone numbers with spaces in quotes.

Status
Identifies whether the administrator account is enabled.

- **Enabled accounts** are active. Administrators whose accounts are enabled can log in to the Pillar Axiom storage system.
- **Disabled accounts** are inactive. Administrators whose accounts are disabled cannot log in.
Role

Identifies the administrator’s role. A role defines the administrator’s privileges. Choose from:

- Type1, if the person can perform all configuration and administration tasks.
- Type2, if the person can perform all tasks except create, modify, and delete administrator accounts and File Servers; modify global, SNMP, and NDMP settings; modify software or hardware configurations; or shut down the system.
- Type3, if the person can display information only, and cannot modify the configuration.

You cannot assign administrators to the following predefined roles:

- PrimarySystem, which identifies the Primary system administrator. This role has the same privileges as the Type1 role.
- PrimarySupport, which identifies the Primary Support Administrator. This role can perform support-related activities.

You cannot delete the PrimarySystem and PrimarySupport accounts.

SSHState [optional]

Identifies whether the support personnel can SSH to the Pilot controller.

- Enabled permits Pillar support personnel to run an SSH session.
- Disabled prohibits running an SSH session.

This flag does not allow the administrator to SSH to the Pilot.

Only Administrator Type 1 accounts can enable or disable the SSHState flag.

CAUTION

To avoid system corruption, use extreme caution when running an SSH session. It is recommended that you use the ModifyAccount request whenever possible and keep SSH disabled.

EXAMPLES

Run the following command to create a Pillar Axiom account for Yvette Smith.

```
pdscli request CreateAccount @input
```

where input.req contains the following name/value pairs:

- Request=CreateAccount
- Username=Yvette
- Fullname=Yvette Smith
- Password=ChangeMe3
- RetypePassword=ChangeMe3
- EmailAddress=yvette@xyz.com
- PhoneNumber=800-555-1235
- Status=Enabled
Role=Type1
SSHState=Disabled

See the CreateAccountResponse.txt file for example response data.

SEE ALSO

ModifyAccount on p. 311
ModifyMyAccount on p. 367
DeleteAccount on p. 169
GetAccountDetails on p. 198
GetAllAccounts on p. 200
Ranges for Option Values on p. 57
NAME CreateCIFSShare

DESCRIPTION Creates a Common Internet File System (CIFS) share for a filesystem. A CIFS share is a filesystem mount point for CIFS clients (users).

SYNTAX pdscli {request | submit} CreateCIFSShare
 Name=share-name
 Comment=CIFS Share Comment
 FileSystem=GUID-or-FQN-of-filesystem
 Enabled={true | false}
 Path=path-to-directory

OPTIONS Name
 Identifies the name of a CIFS share. A filesystem must be shared before users can create or access data files. Share names must be unique within a File Server.

Comment [optional]
 Describes the CIFS share.

FileSystem
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID: ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 FQN Format: /Fully/Qualified/ObjectName
 Enter the FQN of the filesystem with which this share is associated. If there is more than one file server, use the FQN that includes the file server and filesystem.

Tip: To create an administrative share for a file system, create the filesystem$ share. For example, for a file system named foo, create the foo$ share.

Tip: You can use the GetAllFileSystems request to determine the GUID.

Enabled
 Identifies whether the CIFS share is enabled.
 • Enabled shares are active. Users can access an enabled share point.
 • Disabled shares are inactive. Users cannot access a disabled share point.
Path
Enter the full path to the CIFS share.

EXAMPLES
Run the following command to create a share for your engineering organization’s filesystem.

```
pdscli request CreateCIFSShare @input
```

where input.req contains the following name/value pairs:
- Request=CreateCIFSShare
- Name=EngShare
- Comment=Share for Engineering
- FileSystem=/Company-XYZ-FS1/EngAtl
- Enabled=true
- Path=/src

See the CreateCIFSShareResponse.txt file for example response data.

SEE ALSO
- ModifyCIFSShare on p. 315
- DeleteCIFSShare on p. 171
- GetAllFileSystems on p. 214
- GetAllCIFSShares on p. 206
- GetCIFSShareDetails on p. 244
- Ranges for Option Values on p. 57
NAME CreateCloneFS

DESCRIPTION A Clone FS is a point-in-time, writeable snapshot of a filesystem, which can be used later to revert the filesystem. This snapshot retains the same QoS parameters as the source filesystem. It consumes storage capacity from the Clone FS storage space created for the source filesystem. A Clone FS can be scheduled to occur at any time. This provides a convenient method to branch from the source data without the need to do a full block-level copy.

SYNTAX pdscli \{request | submit\} CreateCloneFS
SourceFileSystemFQN=FQN-of-source-filesystem
FileServerFQN=FQN-of-file-server
FileSystemName=name-of-filesystem
Active={true | false}
EnforceVolumeRetention{true | false}

OPTIONS SourceFileSystemFQN
Identifies a specific Pillar Axiom object.
• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name.

 FQN Format:
 /Fully/Qualified/ObjectName

 Enter the FQN of the filesystem with which this share is associated. If there is more than one file server, use the FQN that includes the file server and filesystem.

FileServerFQN
Enter the FQN of a File Server from which the new filesystem gets protocol-access options.

FileSystemName
Identifies the name that is assigned to a filesystem. Each filesystem name must be unique within its associated File Server and volume group. You must specify the File Server and the filesystem name, which results in a Fully Qualified File System name of /fileserver/filesystemname.

Active [optional]
Identifies whether the CloneFS is available (active) or is not seen (inactive) when it is created. Inactive CloneFSs can be changed to active; however, once the Clone FS is set to active, you cannot change it to inactive. Default is active.

RetentionPolicy.EnforceVolumeRetention
Enforces the retention policy settings for a filesystem.
Files written over CIFS connections are protected immediately, not allowing any further modifications.

Files written over NFS connections must be protected explicitly by setting the Immutable field for the file in its corresponding attribute file.

For instructions on how to edit the attribute file, refer to the *Pillar Axiom Administrator's Guide*.

EXAMPLES

Run the following command to create an active Clone FS named Company-XYZ-CFS1. This example assumes that one File Server exists.

```
pdscli request CreateCloneFS @input
```

where input.req contains the following name/value pairs:

- `Request=CreateCloneFS`
- `FileServerFQN=/Company-XYZ-CFS1`
- `FileSystemName=EngAtl`
- `Active=true`

See the CreateCloneFSResponse.txt file for example response data.

SEE ALSO

- [GetCloneFSDetails on p. 245](#)
- [GetAllSnapLUNs on p. 233](#)
- [DeleteCloneFS on p. 172](#)
- [GetAllCloneFSHierarchies on p. 207](#)
- [GetAllCloneFSs on p. 208](#)
NAME
CreateExternalUPSDevice

DESCRIPTION
Identifies a new uninterruptable power supply (UPS) device for the system to monitor. You may connect several UPS devices to the system. The system retrieves information from each device using SNMP over the Pilot ethernet connection to monitor and report status.

SYNTAX
pdscli {request | submit} CreateExternalUPSDevice
 IPAddress=IP-address
 SNMPCommunityString=string

OPTIONS
IPAddress
Identifies the IP address that is assigned to the External UPS Device.

SNMPCommunityString
Identifies a community for which a specific trap host should receive traps that the Pillar Axiom system generates. You can specify different community strings for each trap host so that multiple administrators can receive specific types of SNMP traps.
Default: public (note the lower-case spelling)

EXAMPLES
Run the following command to create an external UPS device.
pdscli request CreateExternalUPSDevice @input
where input.req contains the following name/value pairs:
Request=CreateExternalUPSDevice
IPAddress=172.18.65.128
SNMPCommunityString=public

See the CreateExternalUPSDeviceResponse.txt file for example response data.

SEE ALSO
DeleteExternalUPSDevice on p. 174
GetAllExternalUPSDevices on p. 212
GetExternalUPSDeviceDetails on p. 250
ModifyExternalUPSDevice on p. 319
SNAME CreateFileServer

DESCRIPTION Creates a File Server in a Pillar Axiom storage system. A File Server is defined as:

A NAS-only object that is assigned security, network, and protocol access attributes. The attributes apply to all filesystems that are associated with that specific File Server. A Pillar Axiom NAS system requires at least one File Server.

SYNTAX

```
pdscli {request | submit} CreateFileServer
   Name=File-Server-name
   Comment=File-Server-Comment
   PrimaryVirtualInterface.IPAddress=IP-address
   PrimaryVirtualInterface.IPNetmask=IP-netmask
   PrimaryVirtualInterface.VLANTag={integer-1-through-4095}
   PrimaryVirtualInterface.FrameSize=integer
   PrimaryVirtualInterface.
     NetworkInterfaceIOPort.Slammer=GUID-or-FQN-of-Slammer
   PrimaryVirtualInterface.
     NetworkInterfaceIOPort.ControlUnitNumber={0 | 1}
   PrimaryVirtualInterface.
     NetworkInterfaceIOPort.EthernetPortName={PORT0 | PORT1}
   DefaultRoute.GatewayIPAddress=IP-address
   DNSConfig.DomainName=string
   DNSConfig.Server[1-3]IPAddress=IP-address
   NISConfig.DomainName=string
   NISConfig.ServerIPAddress=IP-address
   NSSSearchOrder.HostLookupService[1-2]=
     {NIS | DNS | None}
   NSSSearchOrder.PasswordLookupService[1-2]=
     {NIS | Files | None}
   AccountMapping.MapIdenticalNames=
     {true | false}
   AccountMapping.UseAllDomains=
     {true | false}
   AccountMapping.DomainName=string
   CIFSServer.ServerName=CIFS-server-name
   CIFSServer.Comment=CIFS-server-comment
   CIFSServer.CharacterSet={Standard-ASCII | IBM-437 | IBM-850}
```
CIFSServer.OpportunisticLockingEnabled=
 {true | false}
CIFSServer.WINSServer[1-3]IPAddress=
 IP-address
CIFSServer.DomainName=string
CIFSServer.UseAnonymousPDCAccess=
 {true | false}
CIFSServer.PDCAccessAccount.DomainName=
 string
CIFSServer.PDCAccessAccount.Username=
 string
CIFSServer.PDCAccessAccount.Password=
 string
NFSServer.PortNumber=integer
NFSServer.CharacterSet={Standard-ASCII |
 UTF8 | ISO8859-1}
NFSServer.AnonymousUID=integer-negative-OK
NFSServer.AnonymousGID=integer-negative-OK
NFSServer.MountReservePortOnly=
 {true | false}
NFSServer.AllowNonRootChown={true | false}
NFSServer.TCPSupported={true | false}
NFSServer.TCPConnectionsLimit=integer
NFSServer.MountReservePortOnly=
 {true | false}
NFSServer.AllowNonRootChown={true | false}
NFSServer.TCPSupported={true | false}
NFSServer.TCPConnectionsLimit=integer

OPTIONS

Name
Identifies the name that is assigned to a File Server. File Server names must be unique on the Pillar Axiom storage system.

Comment
Describes the File Server.

PrimaryVirtualInterface.IPAddress
Identifies the IP address that is assigned to the primary virtual network interface.

PrimaryVirtualInterface.IPNetmask
Identifies the subnet mask that is assigned to the File Server’s virtual network interface.

PrimaryVirtualInterface.VLANTag
Identifies the virtual LAN (VLAN) ID that is assigned to the File Server’s virtual network interface.
- Assign a value of 1 through 4094, inclusive, if you have connected a VLAN-capable switch to the Pillar Axiom system.
- Leave the field blank to disable VLAN tagging.
PrimaryVirtualInterface.FrameSize

Identifies the packet frame size. This value defines the maximum transmission unit (MTU).

The frame size (MTU) does not include the Ethernet header portion of the packet. If your network switch has trouble with this, you can set the switch to a larger value or lower the MTU size to correct the problem.

- If your network supports extended Ethernet (jumbo) frames, enter an integer greater than 1500 and less than 16362. Make sure that this Pillar Axiom MTU size matches the network MTU size. If the MTU sizes are mismatched, users may experience I/O “hangs” when the client machines try to process too-large packets.
- If your network does not support jumbo frames, enter the default frame size of 1500.

PrimaryVirtualInterface.NetworkInterfaceIOPort.Slammer

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Slammer that is the File Server’s primary virtual interface; for example, /Slammer1.

PrimaryVirtualInterface.NetworkInterfaceIOPort.ControlUnitNumber

Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs.

PrimaryVirtualInterface.NetworkInterfaceIOPort.EthernetPortName

Identifies the port on the Slammer that is assigned to the File Server’s virtual network interface. Select a gigabit Ethernet network port on one of the data-path Slammers control unit (CU).

- If Link Aggregation is enabled, select port 0 (zero). You cannot create virtual interfaces on alternate port 1 when Link Aggregation is enabled.
- If Link Aggregation is disabled, select either port.

DefaultRoute.GatewayIPAddress

Identifies the IP address that is assigned to the gateway host. The gateway IP address is used to route messages from this network to other networks.

DNSConfig.DomainName [optional]
Identifies a Domain Name Service (DNS) domain, which specifies the domain to be searched.

DNSConfig.Server[1-3]IPAddress [optional]

Identifies the IP address of the Domain Name Service (DNS) server in your network that translates host names to IP addresses.

NISConfig.DomainName [optional]

Identifies a Network Information Service (NIS) domain, which is a group of computers that share the same configuration information.

NISConfig.ServerIPAddress [optional]

Identifies the IP address of a Network Information Service (NIS) server that holds a database of user accounts (among other NIS-related entries). When a user attempts to access the Pillar Axiom system, the user is authenticated against the database.

Identifies the search order that the Pillar Axiom system uses to resolve hosts and passwords. Choose from:

- NIS (if you use Network Information Services), DNS (if you use Domain Name System), or None to resolve hosts.
- NIS (if you use Network Information Services), Files (if you use /etc/passwd, /etc/group, and /etc/netgroup files), or None to resolve passwords.

If you want the system to search only one source for host resolution, password resolution, or both, enter None for the second search target.

AccountMapping.MapIdenticalNames

Identifies whether support for mapping CIFS-to-NFS user accounts is enabled.

- Enable CIFS-to-NFS mapping if you have a single authority to assign users with both an NFS account and CIFS account using the same name. Users can use NFS only, CIFS only, or both NFS and CIFS.
- Disable CIFS-to-NFS mapping if you don't have a single authority to assign NFS and CIFS accounts.

You should disable account mapping when:

- Users do not have both NFS and CIFS accounts.
- NFS and CIFS users account names are different.
- The authority to assign account names can be done by different groups.

Note that the user’s NFS account is the owner of files and directories that the user creates.

AccountMapping.UseAllDomains
Identifies whether CIFS-to-NFS account mapping is enabled for all CIFS domains.

- Enable this option to use CIFS-to-NFS account mapping for all CIFS domains.
- Enable this option to use CIFS-to-NFS account mapping for a single CIFS domain that you specify.

AccountMapping.DomainName
Identifies the CIFS domain name. Enter the NetBIOS name of the CIFS domain that contains definitions for authentication and account mapping. Enter a CIFS domain name when you enable MapIdenticalNames and disable UseAllDomains.

CIFSServer.ServerName [optional]
Identifies the name by which users refer to the CIFS server. The CIFS server advertises its services by this name through the NetBIOS Naming Service, so this value is sometimes called the NetBIOS name.

CIFSServer.Comment [optional]
Describes the CIFS server. Clients who browse or list shares may view these comments.

CIFSServer.CharacterSet [optional]
Identifies which character set is valid. Choose from:
- Standard-ASCII, which is a 7-bit character set that includes 128 printable and control character values (0-127).
- IBM-437, which is an 8-bit character set that includes the Standard-ASCII values plus values from OEM code page 437. Used on most PCs that are sold in the USA.
- IBM-850, which is an 8-bit character set that includes the Standard-ASCII values plus values from OEM code page 850. Used on most PCs that are sold in Western European countries.

CIFSServer.OpportunisticLockingEnabled [optional]
Identifies whether opportunistic locks (oplocks) are enabled to cache client data.
- Read caching permits data that is stored on the server to be copied to the client. When a client application requests the data, the read request is satisfied by reading the client’s copy of the data. Read caching can last forever. If the data that is stored on the server changes, the client is informed and the read cache is invalidated.
- Write caching permits data changes to be buffered in the client for up to two minutes. When a client application changes the data, the write request is satisfied by changing the client’s copy of the data. Client-server connection problems that occur during the two-minute window can result in lost changes. If the client is still running, a popup message alerts the client to the lost changes.
Disable oplocks to require that all client requests must access a data file instead of cache.

CIFSServer.WINSServer[1-3]IPAddress [optional]
Identifies a Windows Internet Naming Service (WINS) server in your network. The WINS server is the central repository for Windows server names. Broadcasts of NetBIOS names do not cross subnets, so the WINS server can resolve names across multiple subnets.

Note: If you enable Active Directory for authentication, you do not need to enter a WINS server address.

CIFSServer.DomainName [optional]
Identifies the CIFS domain name. Enter the NetBIOS name of the CIFS domain that contains definitions for authentication and account mapping.

CIFSServer.UseAnonymousPDCAccess [optional]
Identifies whether the File Server communicates with the CIFS Domain Controller as an anonymous user to authenticate users and to perform username-to-SID mappings (SID = security identifier).

- Enable this option if your Domain Controller is installed on a pre-Windows 2000 server or a Windows 2000 server that is a member of a pre-Windows 2000 domain. These configurations permit access by anonymous users.
- Disable this option if your Domain Controller is installed on a Windows Server 2003 machine. That configuration denies access by anonymous users.

CIFSServer.PDCAccessAccount.PDCName [optional]
Identifies the name of a Windows Domain Controller that maintains a database of user, group, and machine accounts. Enter the Domain Controller’s name. Ensure that the Domain Controller is registered with the WINS or DNS servers that you specify. The Pillar Axiom system uses WINS or DNS, in that order, to resolve the name and locate the Domain Controller.

In this release, you must log in to a Windows 2000 native-mode domain controller as an administrator, run the following command, and reboot the domain controller:

```plaintext
net localgroup "Pre-Windows 2000 Compatible Access" everyone /add
```
This command relaxes a security restriction in Windows 2000 servers to disallow anonymous access to user lists and groups.

If you use a Windows 2000 mixed-mode domain controller for CIFS authentication, you do not have to run the command and reboot.

CIFSServer.PDCAccessAccount.Username [optional]
Identifies the administrator user name for the Domain Controller that is associated with the Pillar Axiom storage system.

CIFSServer.PDCAccessAccount.Password [optional]
Identifies the administrator password for the CIFS Domain Controller.

NFSServer.PortNumber [optional]
Identifies which port is reserved for NFS requests. If you allow NFS requests only from a secure port, enter a port number that is less than or equal to 1024.
Default: port 2049

NFSServer.CharacterSet [optional]
Identifies which character set is valid. Choose from:
- Standard-ASCII, which is a 7-bit character set that includes 128 printable and control character values (0-127).
- UTF8, which is a Unicode-coded character set that uses an 8-bit transformation format. Defined in RFC 2279.
- ISO8859-1, which is an 8-bit, single-byte character set that is an extension of Standard-ASCII.

NFSServer.AnonymousUID [optional]
Identifies the user ID (UID) for anonymous users.
- Set the UID to zero (0) if you want anonymous-user access to be identified as the root user. Be aware, however, that this is a very insecure setting.
- Set the UID to the "nobody" value (often -2, but not always) if you want anonymous-user access to be identified as the user "nobody." In most instances, this is the recommended setting.
- Set the UID to any other user ID that you want to be identified as anonymous-user access.

NFSServer.AnonymousGID [optional]
Identifies the group ID (GID) of a file where the group owner is not an NFS group for example, a CIFS group.

NFSServer.MountReservePortOnly [optional]
Identifies whether all NFS mount requests must be received on a secure port that is reserved for NFS requests only.
- Enable the option if NFS mount requests must be received on a secure port that is reserved for NFS requests (including mount requests). The port number must be less than 1024.
- Disable the option if NFS mount requests can be received on any open port.

NFSServer.AllowNonRootChown [optional]
Identifies whether users who do not have root privileges can change the owner of files that are stored in the Pillar Axiom system.
- Enable the option if non-root users can change ownership on only files that they own.
• Disable the option if only root users can change file ownership.

Note: When quotas are enabled, you may set this flag to automatically transfer files to other users if an individual user exceeds a quota limit.

NFSServer.TCPSupported [optional]

Identifies whether Transmission Control Protocol (TCP) connections are allowed.

• Enable TCP if users can mount filesystems using the Transmission Control Protocol (TCP).
• Disable TCP if users can mount filesystems using only the User Datagram Protocol (UDP).

NFSServer.TCPConnectionsLimit [optional]

Identifies how many concurrent protocol-specific connections are allowed. Enter a value that is large enough to meet your anticipated work load.

• A lower number allows fewer users to access data simultaneously. Once the limit is reached, access to additional users is denied. Set this value to a lower number only if there is a specific reason to restrict the number of NFS TCP connections.
• A higher number allows more users to access data simultaneously. There is no performance penalty associated with setting this value to the maximum (65,000).

NFSCharacterSet [optional]

Identifies which character set is valid. Choose from:

• Standard-ASCII, which is a 7-bit character set that includes 128 printable and control character values (0-127).
• UTF8, which is a Unicode-coded character set that uses an 8-bit transformation format. Defined in RFC 2279.
• ISO8859-1, which is an 8-bit, single-byte character set that is an extension of Standard-ASCII.

EXAMPLES

Run the following command to create a File Server named Company-XYZ-FS1.

```
pdscli request CreateFileServer @input
```

where input.req contains the following name/value pairs:

```
Request=CreateFileServer
Name=Company-XYZ-FS1
Comment=Engineering File Server
PrimaryVirtualInterface.IPAddress=172.18.65.128
PrimaryVirtualInterface.IPNetmask=255.255.255.0
PrimaryVirtualInterface.VLANTag=1
PrimaryVirtualInterface.FrameSize=1500
```
PrimaryVirtualInterface.
 NetworkInterfaceIOPort.Slammer=Slammer1
PrimaryVirtualInterface.
 NetworkInterfaceIOPort.ControlUnitNumber=1
PrimaryVirtualInterface.
 NetworkInterfaceIOPort.EthernetPortName=PORT0
DefaultRoute.GatewayIPAddress=172.18.65.1
DNSConfig.DomainName=xyz.eng.corp
DNSConfig.Server1IPAddress=172.18.65.10
DNSConfig.Server2IPAddress=172.18.65.11
DNSConfig.Server3IPAddress=172.18.65.12
NISConfig.DomainName=cms01.xyz.corp
NISConfig.ServerIPAddress=172.18.35.130
NSSSearchOrder.HostLookupService1=NIS
NSSSearchOrder.HostLookupService2=DNS
NSSSearchOrder.PasswordLookupService1=NIS
NSSSearchOrder.PasswordLookupService2=None
AccountMapping.MapIdenticalNames=true
AccountMapping.UseAllDomains=true
CIFSServer.ServerName=CIFS-server
CIFSServer.Comment=CIFS_server
CIFSServer.CharacterSet=Standard-ASCII
CIFSServer.OpportunisticLockingEnabled=true
CIFSServer.WINSServer1IPAddress=72.18.40.130
CIFSServer.DomainName=XYZ-XYZ
CIFSServer.UseAnonymousPDCAccess=true
CIFSServer.PDCAccessAccount.DomainName=
 XYZ_CIFS
CIFSServer.PDCAccessAccount.Username=admin
CIFSServer.PDCAccessAccount.Password=passWord
NFSServer.PortNumber=2049
NFSServer.CharacterSet=UTF8
NFSServer.AnonymousUID=-2
NFSServer.AnonymousGID=-2
NFSServer.MountReservePortOnly=true
NFSServer.AllowNonRootChown=false
NFSServer.TCPSupported=true
NFSServer.TCPConnectionsLimit=100
NFSServer.TCPConnectionsLimit=100
NFSServer.TCPConnectionsLimit=100
NFSServer.TCPConnectionsLimit=100
See the CreateFileServerResponse.txt file for example response data.

SEE ALSO

CreateRoute on p. 157
CreateVirtualInterface on p. 164
ModifyFileServer on p. 321
Chapter 4 Management Requests

DeleteFileServer on p. 175
GetAllFileServers on p. 213
GetFileServerDetails on p. 253
GetFileServerStatistics on p. 254
Ranges for Option Values on p. 57
NAME CreateFileSystem

DESCRIPTION Creates a NAS filesystem in a Pillar Axiom storage system. A filesystem is defined as:

A logical volume that organizes and catalogs files and assigns resources to a given collection of directories and files in a network attached storage (NAS) system. Administrators can assign different Quality of Service (QoS) attributes to each filesystem. A filesystem must be associated with a File Server.

SYNTAX

pdscli {request | submit} CreateFileSystem

 FileServer=GUID-or-FQN-of-File-Server
 VolumeGroup=GUID-or-FQN-of-volume-group
 Name=filesystem-name
 Profile={OracleASM | Normal | HighThroughput}
 size=integer-0-through-2147483647
 max=integer-1-through-2147483647
 RelativePriority=
 {Premium | High | Medium | Low | Archive}
 FileSizeBias={None | Large | Medium | Small}
 AccessBias={Sequential | Random | Mixed | None}
 IOBias={Read | Write | Mixed | None}
 StorageClass={MultiLevelCellSolidStateDrives | SingleLevelCellSolidStateDrives | FibreChannelHardDiskDrives | SataHardDiskDrives}
 Redundancy={Standard | Double}
 CreateDefaultFileSystemSnapshotSchedule=
 {true | false}
 CreateRootDirectoryQuota.EnforceAllLimitsForDirectory=
 {true | false}
 CreateRootDirectoryQuota.SoftLimitInMB=
 {0-for-unlimited | integer}
 CreateRootDirectoryQuota.HardLimitInMB=
 {0-for-unlimited | integer}
 CreateRootDirectoryQuota.MBGracePeriodInDays=
 {0-for-unlimited | integer}
 CreateDefaultFileSystemSnapshotSchedule={true | false}
 EnforceFileRetention={true | false}
 RetentionPolicy.EnforceVolumeRetention={true | false}
 RetentionPolicy.MinimumRetentionPeriod.Units=
 {years | months | days}
 RetentionPolicy.MinimumRetentionPeriod.Amount=
 {0-for-unlimited | integer}
 RetentionPolicy.MaximumRetentionPeriod.Units=
 {years | months | days}
 RetentionPolicy.MaximumRetentionPeriod.Amount=
Chapter 4 Management Requests

```plaintext
{0-for-unlimited | integer}
RetentionPolicy.DefaultRetentionPeriod.Units=
{years | months | days}
RetentionPolicy.DefaultRetentionPeriod.Amount=
{0-for-unlimited | integer}
RetentionPolicy.DataIntegrityScanSchedule.StartTime=
{YYYY-MM-DD-THH:mm:SS.xx+-HH:mm}
CloneFSCapacity={0-for-unlimited | integer}
Slammer=GUID-or-FQN-of-Slammer
ControlUnitNumber={0-for-automatic-assignment | integer}
BackgroundCopyPriority=
{MaximizeSpeed | MinimizeImpact | SystemChooses}
```

OPTIONS

FileSync

Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.

 Example GUID:

 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.

 FQN Format:

 /Fully/Qualified/ObjectName

Enter the GUID or FQN of a File Server from which the filesystem gets protocol-access options.

VolumeGroup

Enter the GUID or FQN of the volume group with which the filesystem is associated.

You are not required to enter a volume group; however, If you do not enter a volume group, the filesystem will be created in the default volume group named “volumes.”

Name

Identifies the name that is assigned to a filesystem. Each filesystem name must be unique within its associated File Server and volume group.

You must specify the File Server and the filesystem name, which results in a Fully Qualified File System name of /fileserver/filesystemname.

Profile [optional]

Identifies a performance profile. Choose from:
• Normal, which defines specific performance and redundancy settings for each logical volume. This value is highly recommended and should be used in almost all cases.

• OracleASM, which uses a wide stripe RAID geometry consisting of 1 MB strips to improve the overall performance of logical volumes in an Oracle ASM environment.

• HighThroughput, which stripes the filesystem or LUN across all RAID arrays. SATA Bricks have two RAID groups per Brick, and FC Bricks have one RAID group per Brick. You do not need to set double redundancy to get full array striping.

Important! Use of the HighThroughput profile is for special purposes only. Do not use this profile for ordinary filesystems or LUNs. Please contact the Pillar Customer Services Advanced Solutions Group before using this profile option, which should only be used for special testing where the system configuration is cleared after the test.

size
Identifies the initial capacity, in MB, that is assigned to the object. This value is a soft limit, which means that data can be stored in a logical volume until the maximum capacity is reached.

max
Identifies the maximum capacity, in MB, to which a given object can grow.

RelativePriority
The Relative Priority determines how much of the system resources are devoted to that volume, including the allocation of Slammer CPU cycles and the allocation of specific portions of the disk platters. The higher the Priority, the greater the allocation of CPU time and the faster the media access time. The Relative Priority option prioritizes the layout of data that is stored in the Pillar Axiom system based on one of the following settings:

• Premium priority is the highest possible performance. This priority uses the outer 20% of the drive platters.

Note: I/O is typically faster when data resides on the outer edge of the drive platters.

• High priority logical volumes are allocated space in the outer 20%-40% of the drive platters.

Tip: If sufficient Bricks are present, performance of high priority volumes is enhanced by placing those volumes on a greater number of Bricks.

• Medium priority logical volumes are allocated space in the outer 40% to 60% of the drive platters.

• Low priority logical volumes are allocated space in the band that is 60% to 80% from the outer diameter of drive platters.
• Archive (lowest-priority) logical volumes are allocated space in the inner areas of the drive platters.

Figure 1 Example of HDD priority bands

If needed, the Pillar Axiom system allocates space in a higher or lower priority band (within the same Storage Class) than the one that you choose.

FileSizeBias
Identifies the typical size of files that are stored in the specified logical volume. Choose from:
• Small if files are smaller than 20 kilobytes (KB).
• Medium if files are larger than 20KB and smaller than 4 megabytes (MB).
• Large if files are larger than 4MB.

AccessBias
Identifies the typical data access method. Choose from:

Table 13 Data access methods

<table>
<thead>
<tr>
<th>Access bias</th>
<th>I/O bias</th>
<th>Read ahead in the Slammer</th>
<th>RAID configuration in the Brick</th>
</tr>
</thead>
</table>
| Sequential | Read | Aggressive | RAID 5
Reads large extents of the data into memory. |
| | Write | Conservative | RAID 5
• Allocates capacity in large, full-stripe (640 K) extents.
• Writes data to physical storage more quickly and in full-stripe extents. |
Table 13 Data access methods (continued)

<table>
<thead>
<tr>
<th>Access bias</th>
<th>I/O bias</th>
<th>Read ahead in the Slammer</th>
<th>RAID configuration in the Brick</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed and random</td>
<td>Read</td>
<td>None</td>
<td>RAID 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Reads small extents into memory.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Allocates capacity in small chunks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Writes data to physical storage more slowly to combine (or eliminate) write operations.</td>
</tr>
<tr>
<td>Random</td>
<td>Write</td>
<td>None</td>
<td>RAID 10</td>
</tr>
</tbody>
</table>

Note: This is an optimization bias, not a requirement that all data or data operations conform to the value.

I/O Bias

Identifies the typical read-write ratio. Choose from:

- **Read** if users or applications read data more often than they write to the data source.
- **Write** if users or applications write data more often than they read it.

Important! If you choose Random as the access method and Write as the I/O Bias, the system creates the volume with a Distributed RAID geometry. This geometry provides enhanced write performance but uses twice the capacity.

- **Mixed** if the read-write ratio varies.

Note: This is an optimization bias, not a requirement that all data or data operations conform to the value.

The system stores all writes of user data and system metadata in mirrored copies of the journal. Although the filesystem or LUN is journaled, for some of the profiles, write caching is disabled because it tends to have very low hit rates.

One copy is maintained in non-volatile memory on one control unit (CU) of a Slammer. The mirror copy is maintained in one of:

- **Battery-backed memory** of the partner CU on the Slammer (preferred location). Writes to this copy are equivalent to write-back cache.
- An area reserved on disk for the logical volume if the partner CU is unavailable for the write. Writes to this copy are equivalent to write-through cache.

Writes from the journal to permanent disk storage are equivalent to write-through cache. The system flushes user data and the corresponding metadata as a unit to disk.

StorageClass
Identifies the category of physical storage on which the logical volume resides:

- Fibre Channel drives
- SATA drives
- SATA single-level cell solid state drives
- SATA multi-level cell solid state drives

Redundancy

Identifies how many mirror copies of the original data are stored online.

Important! Pillar highly recommends that you consult with a Pillar customer support professional for assistance with sizing your system and creating your volumes (filesystems and LUNs).

Redundancy options include:

- Standard, to store original data only. Data striping over multiple RAID groups maintains full redundancy, even without mirror copies.
- Double, to store original data and one mirror copy, with data striping over multiple RAID groups.

Note: Double Redundancy can only provide true redundancy if your system has enough Bricks to allocate the filesystem or LUN such that no two mirror copies share a RAID group.

SATA Bricks have two RAID groups per Brick, FC Bricks have one RAID group per brick.

If the storage pool is becoming depleted, or a large filesystem or LUN is created, it might be necessary to place the filesystem or LUN on more RAID group fragments.

Depending on the system’s ability to allocate sufficient contiguous storage blocks for the size of the logical volume, use the following number of RAID groups to configure your volumes for best performance:

<table>
<thead>
<tr>
<th>Priority</th>
<th>SATA standard Redundancy</th>
<th>SATA double Redundancy</th>
<th>FS standard Redundancy</th>
<th>FS double Redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archive</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Low</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Medium</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>High</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Premium</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
For *performance testing purposes only*, create a filesystem or LUN using standard redundancy and the High Throughput Profile. This is NOT recommended for most applications. Reset your system after you have created a High Throughput LUN or filesystem before you configure normal filesystems or LUNs for applications.

CreateRootDirectoryQuota.EnforceAllLimitsFor Directory [optional]
Identifies whether the quota limits are enforced as well as tracked. All quotas have automatic usage tracking. Enforcement is optional and must be enabled explicitly and separately for each quota.

- Enable this option so that the Pillar Axiom system enforces the capacity limits.
- Disable this option so that the system does not enforce the capacity limits.

CreateRootDirectoryQuota.SoftLimitInMB [optional]
Identifies a soft capacity limit, which means that once the system reaches this value, it sends an administrator alert. If space is available, the system stores data until it reaches the grace period or the hard limit.

Be aware that:

- If a parent directory’s quota limit is smaller than a child directory’s, the system enforces the parent’s limit.
- Users sometimes delete directories from a filesystem's directory structure. If Directory, Directory & User, or Directory & Group quotas are assigned to the deleted directory, the quotas are also deleted.

To define an unlimited value, enter 0 (zero).

CreateRootDirectoryQuota.HardLimitInMB [optional]
Identifies a hard capacity limit, which means that once the system reaches this value, it rejects write requests and does not store data.
To define an unlimited value, enter 0 (zero).

CreateRootDirectoryQuota.MBGracePeriodInDays [optional]
Identifies the number of days that the system can exceed a soft limit. When the time expires, the soft limit becomes a hard limit.
To define an unlimited value, enter 0 (zero).

CreateDefaultFileSystemSnapshotSchedule [optional]
A snapshot schedule is automatically created unless you disable it. Allows you to schedule the default filesystem Snap FS. A Snap FS is defined as:

A point-in-time, read-only copy of a filesystem that you intend to snap (split) from the source filesystem for immediate access. A Snap FS retains the QoS parameters from the source filesystem and consumes part of the source filesystem’s storage capacity.
Creating filesystem snapshots is recommended. You can use them to recover accidentally deleted files and for quick file system recovery.

CreateDefaultFileSystemSnapshotSchedule

Creates a replication schedule that creates a Snap FS of a filesystem at regular intervals.

EnforceFileRetention

Forces the retention policy settings, which protect files on a filesystem. Files written over CIFS connections are protected immediately, not allowing any further modifications. Files written over NFS connections must be protected explicitly by setting the Immutable field for the file in its corresponding attribute file. For instructions on how to edit the attribute file, refer to the *Pillar Axiom Administrator’s Guide*.

RetentionPolicy.EnforceVolumeRetention

Forces the retention policy settings for a logical volume on a filesystem.

RetentionPolicy.MinimumRetentionPeriod.

Units

Identifies the minimum retention period. Valid values are years, months, days.

RetentionPolicy.MinimumRetentionPeriod.

Amount

Identifies the minimum retention period. Valid values are 0 to 2147483647. To define an unlimited value, enter 0 (zero).

RetentionPolicy.MaximumRetentionPeriod.

Units

Identifies the maximum retention period. Valid values are years, months, and days.

RetentionPolicy.MaximumRetentionPeriod.

Amount

Identifies the minimum retention period. Valid values are 0 to 2147483647 and must be greater than or equal to the minimum retention value. To define an unlimited value, enter 0 (zero).

RetentionPolicy.DefaultRetentionPeriod.

Units

Identifies the maximum retention period. Valid values are years, months, and days.

RetentionPolicy.DefaultRetentionPeriod.

Amount

Identifies the minimum retention period. Valid values are 0 to 2147483647 and must be greater than or equal to the minimum retention value.
Chapter 4 Management Requests

To define an unlimited value, enter 0 (zero).

RetentionPolicy.DataIntegrityScanSchedule.StartTime

Sets the start time for the data integrity scan, which checks all protected files on the filesystem and validates their data integrity.

CloneFSCapacity

Specifies the maximum amount of repository space to be reserved for Clone FSs from the total system capacity.

We strongly recommend that you allocate sufficient repository capacity to minimize the chances of running out of this space (which could lead to data inconsistency or loss). To set sufficient capacity, use a value equal to the source volume capacity times the number of replicas times the maximum rate of change. For example, for a 100 GB volume that is projected to have 20 active replicas at a time and no more than a 20% rate of change, use a value of 400 GB for the clone repository.

Maximum capacity for Clone FSs is 2147483647.

Slammer [optional]

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.

 Example GUID: ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.

 FQN Format: /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Slammer with which the filesystem is associated.

Note: If you do not enter a value, the system will automatically designate a Slammer. If AutomaticallyAssignSlammer is false, the specified value changes the Slammer assignment.

ControlUnitNumber [optional]

Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs. The CUs are identified by 0 (the top CU) and 1 (the bottom CU).
Note: If you do not enter a value, the system will automatically designate a CU. If AutomaticallyAssignSlammer is false, the specified value changes the CU assignment.

BackgroundCopyPriority

Identifies the strategy the system should use to control the impact on performance when background tasks need to copy or move data from one location in the storage pool to another:

- **MinimizeImpact.** Restricts the amount of work performed on a loaded system. This option is intended to have a minimal impact on client I/O throughput at the expense of longer copy times.
- **SystemChooses.** Balances the background copy with the incoming client I/O. This option is the default.
- **MaximizeSpeed.** Prioritizes the background copy at the expense of client I/O throughput.

Note: When the system is idle or lightly loaded, the above background task maximizes the amount of work done regardless of the option selected.

The following types of operations are affected by the strategy you select:

- Copy
- Restore
- Quality of Service (QoS) Priority changes
- Storage Class changes

Data transfer operations invoked by the Pillar Axiom MaxRep Replication for NAS utility are not affected by the BackgroundCopyPriority setting.

EXAMPLES

Run the following command to create a filesystem for your engineering organization.

```
pdsc1i request CreateFileSystem @input
```

where input.req contains the following name/value pairs:

```
Request=CreateFileSystem
  FileServer=/Company-XYZ-FS1
  VolumeGroup=/Eng
  Name=EngAtl
  Profile=Normal
  size=350
  grow=50
  max=500
  RelativePriority=High
  FileSizeBias=Small
  AccessBias=Sequential
  IOBias=Write
  StorageClass=FibreChannelHardDiskDrives
  Redundancy=Double
```
CreateRootDirectoryQuota.EnforceAllLimits = true
CreateRootDirectoryQuota.SoftLimitInMB = 2390
CreateRootDirectoryQuota.HardLimitInMB = 3415
CreateRootDirectoryQuota.MBGracePeriodInDays = 32
CreateDefaultFileSystemSnapshotSchedule = false
RetentionPolicy.EnforceFileRetention = true
RetentionPolicy.EnforceVolumeRetention = true
RetentionPolicy.MinimumRetentionPeriod.Amount = 0
RetentionPolicy.MinimumRetentionPeriod.Units = Days
RetentionPolicy.MaximumRetentionPeriod.Amount = 0
RetentionPolicy.MaximumRetentionPeriod.Units = Days
RetentionPolicy.DefaultRetentionPeriod.Amount = 0
RetentionPolicy.DefaultRetentionPeriod.Units = Days

See the CreateFileSystemResponse.txt file for example response data.

SEE ALSO
ModifyFileSystem on p. 330
DeleteFileSystem on p. 176
GetAllFileSystems on p. 214
GetFileSystemDetails on p. 255
GetFileSystemStatistics on p. 260
GetHistoricalFileSystemStatistics on p. 263
PerformFileSystemCheck on p. 423
CreateFileSystemSnapshotSchedule on p. 124
GetAllFileSystemSnapshots on p. 216
GetAllFileSystemSnapshotSchedules on p. 218
GetFileSystemSnapshotDetails on p. 256
GetFileSystemSnapshotScheduleDetails on p. 258
PerformBackgroundFileSystemDuplication on p. 400
PerformFileSystemDuplication on p. 425
PerformRebuildFileSystemRedundancy on p. 474
PerformRestoreFileSystemFromSnapshot on p. 485
Ranges for Option Values on p. 57
Chapter 4 Management Requests

NAME CreateFileSystemSnapshot

DESCRIPTION Creates a Snap FS of the specified filesystem. A Snap FS is defined as:

A point-in-time, read-only copy of a filesystem that you intend to snap (split) from the source filesystem for immediate access. A Snap FS retains the QoS parameters from the source filesystem and consumes part of the source filesystem’s storage capacity.

Creating filesystem snapshots is recommended. You can use them to recover accidentally deleted files and for quick file system recovery.

Use this request for frequent, nondisruptive backup and restore operations.

SYNTAX pdscli {request | submit} CreateFileSystemSnapshot
Name=snap-FS-name
FS=GUID-or-FQN-of-filesystem

OPTIONS Name
Identifies the name that the Pillar Axiom system assigns to a Snap FS.

FS
Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens. Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the filesystem from which the Snap FS is created.

EXAMPLES Run the following command to create an immediate (not scheduled) Snap FS of the engineering filesystem that is named EngAtl.
pdscli request CreateFileSystemSnapshot @input

where input.req contains the following name/value pairs:
Request=CreateFileSystemSnapshot
Name=EngAtl-snap
FS=/Company-XYZ-FS1/EngAtl

See the CreateFileSystemSnapshotResponse.txt file for example response data.

SEE ALSO CreateJob on p. 127
Chapter 4 Management Requests

CreateFileSystemSnapshotSchedule on p. 124
DeleteFileSystemSnapshot on p. 177
DeleteFileSystemSnapshotSchedule on p. 179
GetAllFileSystemSnapshots on p. 216
GetAllFileSystemSnapshotSchedules on p. 218
GetFileSystemSnapshotDetails on p. 256
GetFileSystemSnapshotScheduleDetails on p. 258
ModifyFileSystemSnapshot on p. 340
PerformFileSystemDuplication on p. 425
NAME CreateFileSystemSnapshotSchedule

DESCRIPTION Allows you to automatically create a Snap FS at designated times. A Snap FS is defined as:

A point-in-time, read-only copy of a filesystem that you intend to snap (split) from the source filesystem for immediate access. A Snap FS retains the QoS parameters from the source filesystem and consumes part of the source filesystem’s storage capacity.

Creating filesystem snapshots is recommended. You can use them to recover accidentally deleted files and for quick file system recovery.

SYNTAX pdsci {request | submit}
CreateFileSystemSnapshotSchedule
 Name=base-of-schedule-name
 FS=GUID-or-FQN-of-filesystem
 Freq={Once | Daily | Hourly | Weekly}
 Period=integer
 NumSnaps=integer
 StartTime=YYYY-MM-DDTHH:mm:SS.xx+-HH:mm

OPTIONS Name

Identifies the base name that the Pillar Axiom system assigns to a Snap FS that is created by this schedule. The system appends the schedule type (frequency), and an iteration identifier to the base name of each scheduled Snap FS.

For example, if you define a base name of “Eng” for a schedule that creates hourly Snap FSs of the Engineering filesystem, the first Snap FS name is Eng.hourly.00. When the second iteration of the schedule runs, the Eng.hourly.00 Snap FS is renamed to Eng.hourly.01 and the second iteration becomes Eng.hourly.00. The older Snap FS names continue to increment with each iteration of the schedule and the newest Snap FS is always <base>.<type>.00.

FS

Identifies a specific Pillar Axiom object. Choose from:

• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
FQN Format:
/Fully/Qualified/ObjectName

Enter the GUID or FQN of the filesystem from which the scheduled Snap FSs are created.

Freq
Identifies the frequency at which the Pillar Axiom system creates a Snap FS of the specified filesystem. Choose from:
• once
• daily
• hourly
• weekly

Period
Identifies how often the Pillar Axiom system should perform the scheduled operation. Valid values vary based on the schedule’s recurrence interval or frequency. Choose from:

Table 15 Schedule recurrence values

<table>
<thead>
<tr>
<th>Recurrence interval</th>
<th>Valid values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hourly</td>
<td>1 through 24, inclusive</td>
</tr>
<tr>
<td>Daily</td>
<td>1 through 7, inclusive</td>
</tr>
<tr>
<td>Weekly</td>
<td>1 through 4, inclusive</td>
</tr>
</tbody>
</table>

NumSnaps
Identifies the maximum number of scheduled snapshots to create. Valid values are based on the schedule’s recurrence interval or frequency.

StartTime
Identifies the date and time at which the Pillar Axiom system starts a scheduled operation. Use the following format for the entry:
YYYY-MM-DDTHH:mm:SS.xx+-HH:mm

where:
• YYYY-MM-DD designates a four-digit year, two-digit month, and two-digit day for the date.
• T is a separator that designates the start of the time portion of the string.
• HH:mm:SS designates hours, minutes, and seconds in values for a 24-hour clock.
• xx designates a fraction of a second, to two decimal places.
• +HH:mm designates the time zone as an offset from Coordinated Universal Time (UTC) in hours and minutes. Include the + or - prefix as appropriate for your time zone in relation to UTC.

EXAMPLES

Run the following command to create a schedule that makes an hourly Snap FS of the engineering filesystem.

```bash
pdscli request CreateFileSystemSnapshotSchedule
@input
```

where input.req contains the following name/value pairs:

| Request=CreateFileSystemSnapshotSchedule |
| Name=EngAtl-Hourly |
| FS=/Company-XYZ-FS1/EngAtl |
| Freq=Hourly |
| Period=24 |
| NumSnaps=24 |
| StartTime=2004-01-01T12:10:00-08:00 |

See the CreateFileSystemSnapshotSchedule Response.txt file for example response data.

SEE ALSO

- DeleteFileSystemSnapshot on p. 177
- DeleteFileSystemSnapshotSchedule on p. 179
- GetAllFileSystemSnapshots on p. 216
- GetAllFileSystemSnapshotSchedules on p. 218
- GetFileSystemSnapshotDetails on p. 256
- GetFileSystemSnapshotScheduleDetails on p. 258
- ModifyFileSystemSnapshot on p. 340
- PerformFileSystemDuplication on p. 425
- PerformBackgroundFileSystemDuplication on p. 400
- PerformRestoreFileSystemFromSnapshot on p. 485
- PerformRebuildFileSystemRedundancy on p. 474
- Ranges for Option Values on p. 57
NAME
CreateJob

DESCRIPTION
Creates a Pillar Axiom job. A job is a request that you schedule to run at a later time. Based on the type of scheduled operation that the job is associated with, you must complete different sets of name/value pairs.

SYNTAX
pdscli {request | submit} CreateJob
 Name=string
 Schedule=GUID-or-FQN-of-schedule
 Enabled={true | false}
 CreateFileSystemSnapshot.Name=string
 CreateFileSystemSnapshot.FS=GUID-or-FQN-of-filesystem
 PerformShutdown
 PerformUpdate.UpdatePackage=.tar.gz-file-name
 PerformUpdate.UpdateComponentName[1-8]=
 {"Pilot Software" | "Pilot OS" | "Slammer Software" | "Slammer PROM" | "Slammer Software AX600" | "Slammer PROM AX600" | "Brick Firmware" | Brick FC Firmware}
 PerformUpdateDiskDrive.UpdatePackage=GUID-or-FQN-of-Brick
 PerformUpdateDiskDrive.
 UpdateComponentName=Name-of-updatable-component
 CreateQuota.AllowFileSystemOffline={true | false}
 CreateQuota.FileSystem=GUID-or-FQN-of-filesystem
 CreateQuota.Path=path-to-directory
 CreateQuota.RestrictUsers={AllAggregate | SingleUser | Group}
 CreateQuota.EnforceAllLimitsForDirectory={true-if-AllAggregate | false-otherwise}
 CreateQuota.Username=string-if-select-SingleUser
 CreateQuota.Groupname=string-if-select-Group
 CreateQuota.SoftLimitInMB={0-for-unlimited | integer}
 CreateQuota.HardLimitInMB={0-for-unlimited | integer}
 CreateQuota.MBGracePeriodInDays={0-for-unlimited | integer}
 DeleteQuota.ID=GUID-or-FQN-of-filesystem
Chapter 4 Management Requests

DeleteQuota.AllowFileSystemOffline=
 {true | false}
PerformUpdateDiskDrive.UpdatePackage=
 GUID-or-FQN-of-filesystem
PerformUpdate.PerformUpgradeDisruptively=
 {true | false}
PerformVerifyDataConsistency.Brick=
 GUID-or-FQN-of-Brick
PerformVerifyDataConsistency.Priority=
 {High | Low}
PerformVerifyStorageRedundancy.FileSystem=
 GUID-or-FQN-of-filesystem
PerformVerifySpareDrive.Brick=
 GUID-or-FQN-of-Brick
PerformVerifySystemConfiguration

OPTIONS

Name
Identifies the name of the scheduled job.

Schedule
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the schedule with which this job is associated. A null indicates that the job is not scheduled.

Enabled [optional]
Identifies whether the scheduled job is enabled.
- Enable this option to perform the job at the scheduled time.
- Disable this option to hold the scheduled job until you enable it at a later time.

CreateFileSystemSnapshot.Name [optional]
Identifies the name that is assigned to an administrator-managed Snap FS.

CreateFileSystemSnapshot.FS [optional]
Enter the GUID or FQN of the filesystem from which the data replica is created.
PerformShutdown [optional]
Schedules a system shutdown.

PerformUpdate.UpdatePackage [optional]
Identifies the name of an update file.
- The staging process uploads the file to the Pilot and expands the compressed .tar.gz file.
- The validation process checks the compatibility of the firmware and software in the update file against previously installed firmware and software.
- The update process installs the uncompressed package on the Pillar Axiom storage system.
Select a single update file for the given operation.

PerformUpdate.UpdateComponentName[1-5] [optional]
Identifies the name of an updatable component. Choose between one and six of the following options.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Pilot Software”</td>
<td>Software that runs on the Pilot, such as the GUI interface and web server, online help, SNMP, and NDMP</td>
</tr>
<tr>
<td>“Pilot OS”</td>
<td>Operating system for the Pilot</td>
</tr>
<tr>
<td>“Slammer Software”</td>
<td>NAS or SAN software that runs on Pillar Axiom 300 and 500 Slammers</td>
</tr>
<tr>
<td>“Slammer Software AX600”</td>
<td>NAS or SAN software that runs on Pillar Axiom 600 Slammers</td>
</tr>
<tr>
<td>“Slammer PROM”</td>
<td>Programmable ROM (PROM), that includes BIOS and netboot code, for Pillar Axiom 300 and 500 NAS or SAN Slammers</td>
</tr>
<tr>
<td>“Slammer PROM AX600”</td>
<td>Programmable ROM (PROM), that includes BIOS and netboot code, for Pillar Axiom 600 Slammers</td>
</tr>
<tr>
<td>“Brick Firmware”</td>
<td>RAID firmware for SATA Bricks</td>
</tr>
<tr>
<td>“Brick FC Firmware”</td>
<td>FC firmware for Bricks</td>
</tr>
<tr>
<td>“Brick SATA2 Firmware”</td>
<td>RAID firmware for version 2 SATA Bricks</td>
</tr>
</tbody>
</table>
PerformUpdateDiskDrive.UpdatePackage [optional]
Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID: ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.
 FQN Format: /Fully/Qualified/ObjectName
Enter the GUID or FQN of the Brick to update.

PerformUpdateDiskDrive.
UpdateComponentName [optional]
Identifies the name of the updatable Brick.

CreateQuota.AllowFileSystemOffline [optional]
Identifies whether the Pillar Axiom system can take the filesystem offline to perform quota operations.
 • Enable this option if the Pillar Axiom system can take the filesystem offline to create or remove a directory-level quota when the specified directory contains files and subdirectories.
 • Disable this option if the system cannot take the filesystem offline to perform the quota operation when the specified directory contains files and subdirectories. The filesystem remains online, and the directory-level quota is not created or removed.

Whichever setting you choose, the filesystem remains online and the quota operation is performed when the specified directory is empty.

CreateQuota.FileSystem [optional]
Enter the GUID or FQN of the filesystem for which the quota is to be created.

CreateQuota.Path [optional]
Enter a full path, which starts with a forward slash (/), to the directory that is covered by this quota.

CreateQuota.RestrictUsers [optional]
Chapter 4 Management Requests

Identifies who the quota covers. Choose from:

- **AllAggregate** if the quota covers all users who store data in the specified directory. Leave the Username and Groupname fields blank.
- **SingleUser** if the quota covers one user. Identify which user the quota covers in the Username field.
- **Group** if the quota covers a group of users. Identify which group the quota covers in the Groupname field.

CreateQuota.EnforceAllLimitsForDirectory [optional]

Identifies whether the system enforces and tracks quota limits. All quotas have automatic usage tracking. You can optionally enable enforcement for each quota.

- If RestrictUsers=AllAggregate, enable this option so that the Pillar Axiom system enforces all quota limits in the specified directory.
- If RestrictUsers=SingleUser or Group, disable this option. The system tracks and enforces the user’s or group’s quota limits in the filesystem.

CreateQuota.Username [optional]

Identifies a user that the quota covers. Enter a user name, user ID (UID), CIFS account name, or NFS account name. Field types support UTFString.

CreateQuota.Groupname [optional]

Identifies a group of users that the quota covers. Enter a group name or group ID (GID).

CreateQuota.SoftLimitInMB [optional]

Identifies a soft capacity limit, which means that once the system reaches this value, it sends an administrator alert. If space is available, the system stores data until it reaches the grace period or the hard limit.

Be aware that:

- If a parent directory’s quota limit is smaller than a child directory’s, the system enforces the parent’s limit.
- Users sometimes delete directories from a filesystem’s directory structure. If Directory, Directory & User, or Directory & Group quotas are assigned to the deleted directory, the quotas are also deleted.

To define an unlimited value, enter 0 (zero).

CreateQuota.HardLimitInMB [optional]

Identifies a hard capacity limit, which means that once the system reaches this value, it rejects write requests and does not store data.

To define an unlimited value, enter 0 (zero).

CreateQuota.MBGracePeriodInDays [optional]

Identifies the number of days that the system can exceed a soft limit. When the time expires, the soft limit becomes a hard limit.

To define an unlimited value, enter 0 (zero).
DeleteQuota.ID [optional]
Enter the GUID or FQN of the filesystem from which the quota is to be removed.

DeleteQuota.AllowFileSystemOffline [optional]
Identifies whether the Pillar Axiom system can take the filesystem offline to perform quota operations.
- Enable this option if the Pillar Axiom system can take the filesystem offline to create or remove a directory-level quota when the specified directory contains files and subdirectories.
- Disable this option if the system cannot take the filesystem offline to perform the quota operation when the specified directory contains files and subdirectories. The filesystem remains online, and the directory-level quota is not created or removed.

Whichever setting you choose, the filesystem remains online and the quota operation is performed when the specified directory is empty.

PerformUpdateDiskDrive.UpdatePackage
Identifies the name of the update package for the disk drive.

PerformUpdate.PerformUpgradeDisruptively
Upgrades are typically performed non-disruptively. Enable this option only when advised by Pillar customer services, unless it is necessary to set it for an upgrade that defines itself as disruptive.

PerformVerifyDataConsistency.Brick
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID: ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.
 FQN Format: /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Brick to verify.

PerformVerifyDataConsistency.Priority [optional]
Identifies the priority to assign to the verification check. Choose from:
- High to permit the verification check to affect performance by up to 30%.
- Low to permit the verification check to affect performance by up to 10%.
Chapter 4 Management Requests

PerformVerifyStorageRedundancy.FileSystem [optional]
Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the filesystem to verify.

PerformVerifySpareDrive.Brick [optional]
Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Brick that contains the spare disk drive to verify.

PerformVerifySystemConfiguration [optional]
Verifies the system configuration.

EXAMPLES
Run the following command to schedule an update of the Slammer software.

```
pdscli request CreateJob @input
```

where input.req contains the following name/value pairs:

```
Request=CreateJob
Name=upgrade-software
Schedule=IDA0479DC2-38EF-9828-8902-E0FC03743270
Enabled=true
PerformUpdate.StagedPackage=
  mgmt_upgrade0003.tar.gz
PerformUpdate.UpdateComponentName[1]=
```
"Slammer Software"
PerformUpdate.PerformUpgradeDisruptively=false
PerformVerifySystemConfiguration

See the CreateJobResponse.txt file for example response data.

SEE ALSO
CreateQuota on p. 154
DeleteQuota on p. 186
GetAllUpdatePackages on p. 237
GetUpdatePackageDetails on p. 305
PerformUpdate on p. 507
PerformUpdate on p. 507
PerformUpdate on p. 507
PerformUpdate on p. 507
PerformUpdateValidation on p. 513
PerformVerifyDataConsistency on p. 515
PerformVerifyStorageRedundancy on p. 516
ModifyJob on p. 345
DeleteJob on p. 181
Ranges for Option Values on p. 57
NAME CreateLUN

DESCRIPTION Creates a LUN in a Pillar Axiom storage system to efficiently partition (stripe) storage across multiple Bricks based on storage or performance priorities. This is the LUN that is exposed to the client as a SAN LUN (SLUN)

A LUN is defined as:

A logical volume within a storage area network (SAN). Administrators assign storage resources and Quality of Service (QoS) attributes to each logical unit (LUN).

SYNTAX pdscli {request | submit} CreateLUN

 EnableiSCSIAccess={true | false}
 EnableFibreChannelAccess={true | false}
 VolumeGroup=GUID-or-FQN-of-volume-group
 Name=LUN-name
 Slammer=GUID-or-FQN-of-Slammer
 ControlUnitNumber={0 | 1}
 LUNNumber=integer-0-through-255
 Mapped={true | false}
 Profile={OracleASM | Normal | HighThroughput}
 Capacity=integer-0-through-2147483647
 Max=integer-1-through-2147483647
 RelativePriority={Archive | Low | Medium | High | Premium}
 AccessBias={None | Mixed | Random | Sequential}
 IOBias={Mixed | Write | Read | Write | None}
 StorageClass={MultiLevelCellSolidStateDrives |
 SingleLevelCellSolidStateDrives | FibreChannelHardDiskDrives |
 SataHardDiskDrives}
 Redundancy={Standard | Double}
 SuppressConservativeMode{true | false}
 SnapLUNStorage.MaximumCapacity=integer-0-through-2147483647
 CloneStorage.MaximumCapacity=integer-0-through-2147483647
 BackgroundCopyPriority=
 {MaximizeSpeed | MinimizeImpact | SystemChooses}

OPTIONS EnableiSCSIAccess

Identifies that the iSCSI protocol specification is used when accessing the newly created SAN LUN.

Note: You must specify iSCSI, Fibre Channel, or both protocols. If you do not specify a protocol, the creation task will fail.

EnableFibreChannelAccess

Identifies that the Fibre Channel (FC) protocol specification is used when accessing the newly created SAN LUN.
Note: You must specify iSCSI, Fibre Channel, or both protocols. If you do not specify a protocol, the creation task will fail.

VolumeGroup
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the volume group with which the LUN is associated.

Name
Identifies the name that is assigned to a LUN for administrative purposes. LUN names must be unique across the Pillar Axiom system, not just within its associated volume group.

Name is a required parameter only if you want to change the FQN LUN's user-visible name.

Slammer [optional]
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Slammer with which the LUN is associated.

Note: If you do not enter a value, the system will automatically designate a Slammer.

ControlUnitNumber [optional]
Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs. The CUs are identified by 0 (the top CU) and 1 (the bottom CU).
Note: If you do not enter a value, the system will automatically designate a CU.

LUNNumber [optional]

Identifies the unique number that is assigned to a LUN and can be accessed by all SAN hosts if the LUN is not mapped. If the LUN is mapped, the LUN number must be unique to the mapped SAN host.

Note: If you intend to map this LUN to a specified host, do not include the LUNNumber option.

Mapped [optional]

Identifies whether all hosts or only selected hosts may access this LUN.
- Mapped allows only designated hosts to access this LUN.
- Unmapped allows all hosts to access this LUN using the LUN Number.

Note: If you choose Mapped, do not assign a LUNNumber.

Profile [optional]

Identifies a performance profile. Choose from:
- Normal, which defines specific performance and redundancy settings for each logical volume. This value is highly recommended and should be used in almost all cases.
- OracleASM, which uses a wide stripe RAID geometry consisting of 1 MB strips to improve the overall performance of logical volumes in an Oracle ASM environment.
- HighThroughput, which stripes the filesystem or LUN across all RAID arrays. SATA Bricks have two RAID groups per Brick, and FC Bricks have one RAID group per Brick. You do not need to set double redundancy to get full array striping.

Important! Use of the HighThroughput profile is for special purposes only. Do not use this profile for ordinary filesystems or LUNs. Please contact the Pillar Customer Services Advanced Solutions Group before using this profile option, which should only be used for special testing where the system configuration is cleared after the test.

Capacity

Identifies the capacity that is assigned to this LUN.

Max [optional]

Identifies the maximum capacity limit that is assigned to the object.

RelativePriority

The Relative Priority determines how much of the system resources are devoted to that volume, including the allocation of Slammer CPU cycles and the allocation of specific portions of the disk platters. The higher the Priority, the greater the allocation of CPU time and the faster the media access time.
The Relative Priority option prioritizes the layout of data that is stored in the Pillar Axiom system based on one of the following settings:

- **Premium priority** is the highest possible performance. This priority uses the outer 20% of the drive platters.

Note: I/O is typically faster when data resides on the outer edge of the drive platters.

- **High priority logical volumes** are allocated space in the outer 20%-40% of the drive platters.

Tip: If sufficient Bricks are present, performance of high priority volumes is enhanced by placing those volumes on a greater number of Bricks.

- **Medium priority logical volumes** are allocated space in the outer 40% to 60% of the drive platters.

- **Low priority logical volumes** are allocated space in the band that is 60% to 80% from the outer diameter of drive platters.

- **Archive (lowest-priority) logical volumes** are allocated space in the inner areas of the drive platters.

Figure 2 Example of HDD priority bands

If needed, the Pillar Axiom system allocates space in a higher or lower priority band (within the same Storage Class) than the one that you choose.

AccessBias

Identifies the typical data access method. Choose from:
Table 17 Data access methods

<table>
<thead>
<tr>
<th>Access bias</th>
<th>I/O bias</th>
<th>Read ahead in the Slammer</th>
<th>RAID configuration in the Brick</th>
</tr>
</thead>
</table>
| Sequential | Read | Aggressive | RAID 5
| | Write | Conservative | **RAID 5**
| | | | • Allocates capacity in large, full-stripe (640 K) extents. |
| | | | • Writes data to physical storage more quickly and in full-stripe extents. |
| Mixed and random | Read | None | **RAID 5**
| | | | • Reads small extents into memory. |
| | | | • Allocates capacity in small chunks. |
| | | | • Writes data to physical storage more slowly to combine (or eliminate) write operations. |
| Random | Write | None | **RAID 10** |

Note: This is an optimization bias, not a requirement that all data or data operations conform to the value.

IOBias

Identifies the typical read-write ratio. Choose from:

- Read if users or applications read data more often than they write to the data source.
- Write if users or applications write data more often than they read it.

Important! If you choose Random as the access method and Write as the I/O Bias, the system creates the volume with a Distributed RAID geometry. This geometry provides enhanced write performance but uses twice the capacity.

- Mixed if the read-write ratio varies.

Note: This is an optimization bias, not a requirement that all data or data operations conform to the value.

The system stores all writes of user data and system metadata in mirrored copies of the journal. Although the filesystem or LUN is journaled, for some of the profiles, write caching is disabled because it tends to have very low hit rates.

One copy is maintained in non-volatile memory on one control unit (CU) of a Slammer. The mirror copy is maintained in one of:
• Battery-backed memory of the partner CU on the Slammer (preferred location). Writes to this copy are equivalent to write-back cache.
• An area reserved on disk for the logical volume if the partner CU is unavailable for the write. Writes to this copy are equivalent to write-through cache.

Writes from the journal to permanent disk storage are equivalent to write-through cache. The system flushes user data and the corresponding metadata as a unit to disk.

StorageClass

Identifies the category of physical storage on which the logical volume resides:

• Fibre Channel drives
• SATA drives
• SATA single-level cell solid state drives
• SATA multi-level cell solid state drives

Redundancy

Identifies how many mirror copies of the original data are stored online.

Important! Pillar highly recommends that you consult with a Pillar customer support professional for assistance with sizing your system and creating your volumes (filesystems and LUNs).

Redundancy options include:

• Standard, to store original data only. Data striping over multiple RAID groups maintains full redundancy, even without mirror copies.
• Double, to store original data and one mirror copy, with data striping over multiple RAID groups.

Note: Double Redundancy can only provide true redundancy if your system has enough Bricks to allocate the filesystem or LUN such that no two mirror copies share a RAID group.

SATA Bricks have two RAID groups per Brick, FC Bricks have one RAID group per brick.

If the storage pool is becoming depleted, or a large filesystem or LUN is created, it might be necessary to place the filesystem or LUN on more RAID group fragments.

Depending on the system’s ability to allocate sufficient contiguous storage blocks for the size of the logical volume, use the following number of RAID groups to configure your volumes for best performance:
For performance testing purposes only, create a filesystem or LUN using standard redundancy and the High Throughput Profile. This is NOT recommended for most applications. Reset your system after you have created a High Throughput LUN or filesystem before you configure normal filesystems or LUNs for applications.

SuppressConservativeMode

Identifies that the LUN continues to use write-back cache even if the control unit (CU) is in a degraded mode.

Important! Before setting SuppressConservativeMode to TRUE, consult with the Pillar World Wide Customer Support Center to discuss the implications of this mode. When operating in this mode, data loss will occur when operating with a failed control unit when a power failure occurs.

SnapLUNStorage.MaximumCapacity

Identifies additional capacity used for snapshot storage that is assigned to this LUN. As a guideline, create Clone LUN space equal to or greater than the original LUN (100 to 150%). The Clone LUN does not consume space from the original LUN.

Important! If the Clone LUN reaches the maximum capacity limit, the system will notify you and automatically delete any Clone LUN that has exceeded the limit.

CloneStorage.MaximumCapacity

Identifies additional capacity used for snapshot storage that is assigned to this LUN. As a guideline, create Clone LUN space equal to or greater than the original LUN (100 to 150%). The Clone LUN does not consume space from the original LUN.

Important! If the Clone LUN reaches the maximum capacity limit, the system will notify you and automatically delete any Clone LUN that has exceeded the limit.

Table 18 Optimum number of RAID groups for best performance

<table>
<thead>
<tr>
<th>Priority</th>
<th>SATA standard Redundancy</th>
<th>SATA double redundancy</th>
<th>FS standard redundancy</th>
<th>FS double redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archive</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Low</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Medium</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>High</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Premium</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

BackgroundCopyPriority

Identifies the strategy the system should use to control the impact on performance when background tasks need to copy or move data from one location in the storage pool to another:

- **MinimizeImpact.** Restricts the amount of work performed on a loaded system. This option is intended to have a minimal impact on client I/O throughput at the expense of longer copy times.
- **SystemChooses.** Balances the background copy with the incoming client I/O. This option is the default.
- **MaximizeSpeed.** Prioritizes the background copy at the expense of client I/O throughput.

Note: When the system is idle or lightly loaded, the above background task maximizes the amount of work done regardless of the option selected.

The following types of operations are affected by the strategy you select:

- Copy
- Restore
- Quality of Service (QoS) Priority changes
- Storage Class changes

Data transfer operations invoked by the Pillar Axiom MaxRep Replication for NAS utility are not affected by the BackgroundCopyPriority setting.

EXAMPLES

Run the following command to create a LUN for the Engineering organization.

```bash
dslcli request CreateLUN @input
```

where `input.req` contains the following name/value pairs:

- Request=CreateLUN
- EnableiSCSIAccess=true
- EnableFCAccess=false
- VolumeGroup=/Eng
- Name=EngLUN
- LUNNumber=0
- Mapped=false
- Profile=Normal
- Capacity=500
- RelativePriority=Archive
- AccessBias=Random
- IOBias=Write
- StorageClass=FibreChannelHardDiskDrives
- BackgroundCopyPriority=MinimizeImpact
- Redundancy=Standard
See the CreateLUNResponse.txt file for example response data.

SEE ALSO

ModifyLUN on p. 351
DeleteLUN on p. 182
GetAllAvailableLUNNumbers on p. 202
GetAllLUNs on p. 221
GetLUNDetails on p. 269
GetLUNStatistics on p. 272
GetHostMappingConfigDetails on p. 265
GetLUNMappingConfigDetails on p. 270
PerformConfigureLUNMapping on p. 412
PerformRebuildLUNRedundancy on p. 475
ModifySnapLUN on p. 381
DeleteSnapLUN on p. 191
GetAllSnapLUNHierarchies on p. 232
GetAllSnapLUNs on p. 233
GetSnapLUNDetails on p. 297
PerformLUNDuplication on p. 447
PerformBackgroundLUNDuplication on p. 402
NAME CreateNFSExport

DESCRIPTION Creates a Network File system (NFS) export for a filesystem. An export is a filesystem mount point for NFS clients (users).

SYNTAX pdscli {request | submit} CreateNFSExport
 FileSystem=GUID-or-FQN-of-filesystem
 RootMapping=integer
 path=/path/to/directory
 CreateNFSHostEntry[1-65535].
 HostEntryType= {AllHosts | SingleHost | Subnet | NISNetGroup}
 CreateNFSHostEntry[1-65535].
 HostSpecification=host-definition
 CreateNFSHostEntry[1-65535].
 AllowRootAccess={true | false}
 CreateNFSHostEntry[1-65535].
 WriteSupported={true | false}
 CreateNFSHostEntry[1-65535].
 AuthenticationMode= {System | None}
 CreateNFSHostEntry[1-65535].
 OrderNumber=integer

OPTIONS FileSystem
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name.
 FQN Format:
 /Fully/Qualified/ObjectName
 Enter the GUID or FQN of the filesystem with which the NFS export is associated. For example, to create an export for the filesystem test on the File Server vault, use /vault/test as the FQN.

RootMapping
 Identifies the user ID (UID) for anonymous users.
 • Set the UID to zero (0) if you want anonymous-user access to be identified as the root user. This is a very insecure setting. Setting anonymous to root allows all users full control.
• Set the UID to the “nobody” value (often -2, but not always) if you want anonymous-user access to be identified as the user “nobody.” In most instances, this is the recommended setting.

• Set the UID to any other user ID that you want to be identified as anonymous-user access.

path

Enter a full path to the NFS export. To create an export for the filesystem, the path must start with a forward slash (/). Each entry must export a different path name. To assign different permissions to different hosts on a specific export, create multiple host entries for the same export.

For example, if you want to create an export for the directory users in the filesystem test, you must first export the filesystem test to a client with root privileges. This export will use a forward slash (/) to export the entire directory.

From the client with root privileges, do the following:

1. Mount the filesystem test to a suitable mount point on the client (for example, /mnt).
2. Create the directory users from this client as /mnt/users and set the permission on users from the client.
3. Export the directory users to other clients, as required.

This export will be for /users, not /test/users.

CreateNFSHostEntry[1-65535].

HostEntryType

Identifies whether an NFS host specification represents only one, or more than one, NFS clients, or hosts. Choose from:

• AllHosts
• SingleHost
• Subnet
• NISNetgroup

CreateNFSHostEntry[1-65535].

HostSpecification

Identifies the NFS hosts, or clients, that can mount the NFS export. Valid values are based on your host type specification. Choose from:

• Asterisk (*), to export to all NFS hosts (everyone).
• Single IP address in dotted-decimal format.
• Host name. The Pillar Axiom system resolves the host name through the DNS or NIS servers in the order that you specify for NSS Search Settings.
• NIS netgroup name with an @ prefix, if you define NIS in the NSS Search Settings for Hosts and specify an NIS server that contains the netgroup.
• Subnet address with both the subnet and the mask in dotted-decimal format. For example, to define subnet 172.20.129.0/24, enter:

\[172.20.129.0/255.255.255.0\]

CreateNFSHostEntry[1-65535].AllowRootAccess

Identifies whether users who are logged in to a client workstation as root are root users on the export.

• Enable this option so that root users on clients are root users. This is comparable to no_root_squash in Linux root-squashing options.

• Disable this option so that root users on clients are identified as the user nobody. This is comparable to the root_squash option.

CreateNFSHostEntry[1-65535].WriteSupported

Identifies whether the export is made available to users in read-only or read-write mode.

• Enable this option so that the export operates in read-only mode.

• Disable this option so that the export operates in read-write mode.

CreateNFSHostEntry[1-65535].AuthenticationMode

Identifies how users are authenticated.

• System (AUTH_SYS) means that user IDs (UIDs), group IDs (GIDs), and supplemental group IDs are passed with each NFS request. These are authenticated by the server against uploaded group and password NIS-compatible files or from a configured NIS server. The server trusts the client system for authenticating and setting the correct UID and GID.

• None (AUTH_NONE) means that users are mapped to the anonymous user “nobody.” UIDs and GIDs are not passed with the NFS requests. As a result, all files are directories are owned by one user and group.

We recommend that you set this option to System.

CreateNFSHostEntry[1-65535].OrderNumber

Identifies the authentication order for this host relative to other hosts on the export. For this zero-based index, 0 identifies the first host that is authenticated.

We recommend that you set this option to 2.

EXAMPLES

Run the following command to create an export with a host entry of “AllHosts” for the engineering organization’s filesystem.

```
pdscli request CreateNFSExport @input
```

where input.req contains the following name/value pairs:

```
Request=CreateNFSExport
FileSystem=/Company-XYZ-FS1/EngAtl
RootMapping=-2
```
path=/src
CreateNFSHostEntry[1].HostEntryType=AllHosts
CreateNFSHostEntry[1].HostSpecification=*
CreateNFSHostEntry[1].AllowRootAccess=false
CreateNFSHostEntry[1].WriteSupported=true
CreateNFSHostEntry[1].AuthenticationMode=
 System
CreateNFSHostEntry[1].OrderNumber=0

See the CreateNFSExportResponse.txt file for example response data.

SEE ALSO
CreateNFSHostEntry on p. 148
DeleteNFSExport on p. 183
DeleteNFSHostEntry on p. 184
GetAllNFSExports on p. 222
GetNFSExportDetails on p. 276
ModifyNFSHostEntry on p. 371
Ranges for Option Values on p. 57
NAME CreateNFSHostEntry

DESCRIPTION Creates a host entry for an NFS export. A host entry specifies a host or set of
hosts that are permitted to mount the export. You can configure each export
with multiple host entries.

SYNTAX pdscli {request | submit} CreateNFSHostEntry
 NFSExport=GUID-or-FQN-of-NFS-export
 HostEntryType={AllHosts | SingleHost | Subnet | NISNetGroup}
 HostSpecification=host-definition
 AllowRootAccess={true | false}
 WriteSupported={true | false}
 AuthenticationMode={System | None | KerberosV5 | Unknown}
 OrderNumber=integer

OPTIONS NFSExport
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.

 Enter the GUID or FQN of the NFS export with which the host entry is
 associated.

HostEntryType [optional]
 Identifies whether an NFS host specification represents only one, or more
 than one, NFS clients, or hosts. Choose from:
 • AllHosts
 • SingleHost
 • Subnet
 • NISNetgroup

HostSpecification
 Identifies the NFS hosts, or clients, that can mount the NFS export. Valid
 values are based on your host type specification. Choose from:
 • Asterisk (*), to export to all NFS hosts (everyone).
 • Single IP address in dotted-decimal format.
 • Host name. The Pillar Axiom system resolves the host name through
 the DNS or NIS servers in the order that you specify for NSS Search
 Settings.
• NIS netgroup name with an @ prefix, if you define NIS in the NSS Search Settings for Hosts and specify an NIS server that contains the netgroup.

• Subnet address with both the subnet and the mask in dotted-decimal format. For example, to define subnet 172.20.129.0/24, enter:
 172.20.129.0/255.255.255.0

AllowRootAccess

Identifies whether users who are logged in to a client workstation as root are root users on the export.

• Enable this option so that root users on clients are root users. This is comparable to no_root_squash in Linux root-squashing options.

• Disable this option so that root users on clients are identified as the user nobody. This is comparable to the root_squash option.

WriteSupported

Identifies whether the export is made available to users in read-only or read-write mode.

• Enable this option so that the export operates in read-only mode.

• Disable this option so that the export operates in read-write mode.

AuthenticationMode

Identifies how users are authenticated.

• System (AUTH_SYS) means that user IDs (UIDs), group IDs (GIDs), and supplemental group IDs are passed with each NFS request, without being authenticated by the File Server.

• None (AUTH_NONE) means that users are mapped to the anonymous user “nobody.” UIDs and GIDs are not passed with the NFS requests.

We recommend that you set this option to System.

OrderNumber

Identifies the authentication order for this host relative to other hosts on the export. For this zero-based index, 0 identifies the first host that is authenticated.

We recommend that you set this option to 2.

EXAMPLES

Run the following command to create a host specification for an NFS export:

```
pdscli request CreateNFSHostEntry @input
```

where input.req contains the following name/value pairs:

- `Request=CreateNFSHostEntry`
- `NFSExport=IDA0479DC2-38EF-9828-8902-E0FC03743270`
- `HostEntryType=AllHosts`
- `HostSpecification=*`
- `AllowRootAccess=false`
WriteSupported=true
AuthenticationMode=System
OrderNumber=0

See the CreateNFSHostEntryResponse.txt file for example response data.

SEE ALSO
ModifyNFSHostEntry on p. 371
DeleteNFSHostEntry on p. 184
Ranges for Option Values on p. 57
NAME CreateNotificationConnection

DESCRIPTION Creates a new connection by which client messages are distributed. The Pillar Axiom storage system sends notifications when an event is generated.

SYNTAX pdscli {request | submit}

Client={SNMP | Email}

OPTIONS Client

Identifies the notification client. Choose from:
- SNMP, if the client is a Simple Network Management Protocol (SNMP) application.
- Email, if the client is an electronic mail (email) server that sends the notifications to designated email addresses.

EXAMPLES Run the following command to create an SNMP notification connection.

pdscli request CreateNotificationConnection @input

where input.req contains the following name/value pairs:
Request=CreateNotificationConnection
Client=SNMP

See the CreateNotificationConnectionResponse.txt file for example response data.

SEE ALSO CreateNotificationDefinition on p. 152
ModifyNotificationDefinition on p. 373
Ranges for Option Values on p. 57
NAME CreateNotificationDefinition

DESCRIPTION Creates a new client message. The Pillar Axiom storage system sends notifications to the specified client when an event of the specified type is generated.

SYNTAX pdscli {request | submit}
 CreateNotificationDefinition
 Name=notification-name
 Description=string
 Client={SNMP | Email}
 EchoDefinitionInNotification={true | false}
 SeverityFilter.Severity[1-10]={Critical | Error | Warning | Informational}
 EmailAddress[1-4]=username@domain.ext

OPTIONS Name

Identifies the name of a notification that the Pillar Axiom system generates when an event or alert is triggered.

Description [optional]

Describes the notification in a way that is meaningful to the recipients.

Client

Identifies the notification client. Choose from:

- SNMP, if the client is a Simple Network Management Protocol (SNMP) application.
- Email, if the client is an electronic mail (email) server that sends the notifications to designated email addresses.

EchoDefinitionInNotification

Identifies whether the notification definition is included with the event details in the message that the Pillar Axiom system sends to designated recipients.

SeverityFilter.Severity[1-10]

Identifies a category of event severities. Choose from:

- Critical, which means that access to data is compromised (for example, two disks in a RAID array have failed) or data loss has occurred.
- Error, which means that administrator action is required to prevent a “hard” error (for example, a single disk in a RAID array has failed) from becoming a critical event.
- Warning, which means that administrator action is required to prevent a “soft” error from becoming an error or critical event.
- Informational, which means that a configuration change has been detected or another non-error event has occurred.
EmailAddress[1-4]

Identifies the recipient’s email address. The email server to which the Pillar Axiom system sends alerts must be able to send messages to this email address.

If you specify Client=Email, enter up to four email addresses. Email addresses are not required if the Client=SNMP.

EXAMPLES

Run the following command to create an email notification for critical events.
```
pdscli request CreateNotificationDefinition @input
```

where input.req contains the following name/value pairs:

```
Request=CreateNotificationDefinition
Name=Critical
Description=Notification for critical events
Client=Email
EchoDefinitionInNotification=false
EmailAddress1=xavier@xyz.com
EmailAddress2=yvette@xyz.com
```

See the CreateNotificationDefinitionResponse.txt file for example response data.

SEE ALSO

- ModifyNotificationDefinition on p. 373
- DeleteNotificationDefinition on p. 185
- GetAllNotificationDefinitions on p. 223
- GetNotificationDefinitionDetails on p. 278
- Ranges for Option Values on p. 57
NAME CreateQuota

DESCRIPTION Creates a quota on the specified filesystem. Quotas are capacity limits that the Pillar Axiom storage system tracks. Quota enforcement is optional.

SYNTAX pdscli {request | submit} CreateQuota
 AllowFileSystemOffline={true | false}
 FileSystem=GUID-or-FQN-of-filesystem
 Path=/path/to/directory
 RestrictUsers={AllAggregate | SingleUser | Group}
 EnforceAllLimitsForDirectory=
 {true-if-AllAggregate | false-otherwise}
 Username=string-if-select-SingleUser
 Groupname=string-if-select-Group
 SoftLimitInMB={0-for-unlimited | integer}
 HardLimitInMB={0-for-unlimited | integer}
 MBGracePeriodInDays={0-for-unlimited | integer}

OPTIONS AllowFileSystemOffline
Identifies whether the Pillar Axiom system can take the filesystem offline to perform quota operations.
• Enable this option if the Pillar Axiom system can take the filesystem offline to create or remove a directory-level quota when the specified directory contains files and subdirectories.
• Disable this option if the system cannot take the filesystem offline to perform the quota operation when the specified directory contains files and subdirectories. The filesystem remains online, and the directory-level quota is not created or removed.

Whichever setting you choose, the filesystem remains online and the quota operation is performed when the specified directory is empty.

FileSystem
Identifies a specific Pillar Axiom object. Choose from:
• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 FQN Format:
 /Fully/Qualified/ObjectName
Enter the GUID or FQN of the filesystem with which the quota is associated.

Path
Enter a full path, which starts with a forward slash (/), to the directory that is covered by this quota.

RestrictUsers
Identifies who the quota covers. Choose from:
- **AllAggregate** if the quota covers all users who store data in the specified directory. Leave the Username and Groupname fields blank.
- **SingleUser** if the quota covers one user. Identify which user the quota covers in the Username field.
- **Group** if the quota covers a group of users. Identify which group the quota covers in the Groupname field.

EnforceAllLimitsForDirectory [optional]
Identifies whether the system enforces and tracks quota limits. All quotas have automatic usage tracking. You can optionally enable enforcement for each quota.
- If RestrictUsers=AllAggregate, enable this option so that the Pillar Axiom system enforces all quota limits in the specified directory.
- If RestrictUsers=SingleUser or Group, disable this option. The system tracks and enforces the user’s or group’s quota limits in the filesystem.

Username [optional]
Identifies a user that the quota covers. Enter a user name, user ID (UID), CIFS account name, or NFS account name.
- If RestrictUsers=SingleUser, you must enter a username.

Groupname [optional]
Identifies a group of users that the quota covers. Enter a group name or group ID (GID).
- If RestrictUsers=Group, you must enter a group name.

SoftLimitInMB
Identifies a soft capacity limit, which means that once the system reaches this value, it sends an administrator alert. If space is available, the system stores data until it reaches the grace period or the hard limit.

Be aware that:
- If a parent directory’s quota limit is smaller than a child directory’s, the system enforces the parent’s limit.
- Users sometimes delete directories from a filesystem's directory structure. If Directory, Directory & User, or Directory & Group quotas are assigned to the deleted directory, the quotas are also deleted.

To define an unlimited value, enter 0 (zero).

HardLimitInMB
Identifies a hard capacity limit, which means that once the system reaches this value, it rejects write requests and does not store data. To define an unlimited value, enter 0 (zero).

MBGracePeriodInDays
Identifies the number of days that the system can exceed a soft limit. When the time expires, the soft limit becomes a hard limit. To define an unlimited value, enter 0 (zero).

EXAMPLES
Runs the following command to create a quota on the engineering organization’s filesystem.

```
pdscli request CreateQuota @input
```
where `input.req` contains the following name/value pairs:

- `Request=CreateQuota`
- `AllowFileSystemOffline=false`
- `FileSystem=/Company-XYZ-FS1/EngAtl`
- `Path=/src`
- `RestrictUsers=AllAggregate`
- `EnforceAllLimitsForDirectory=true`
- `SoftLimitInMB=55`
- `HardLimitInMB=75`
- `MBGracePeriodInDays=5`

See the `CreateQuotaResponse.txt` file for example response data.

SEE ALSO
- [ModifyFileSystem on p. 330](#)
- [ModifyQuota on p. 375](#)
- [DeleteQuota on p. 186](#)
- [GetAllQuotas on p. 224](#)
- [GetQuotaDetails on p. 282](#)
- [CreateJob on p. 127](#)
- [ModifyJob on p. 345](#)
- [CreateSchedule on p. 159](#)
- [PerformCancelTask on p. 404](#)
- [Ranges for Option Values on p. 57](#)
NAME

CreateRoute

DESCRIPTION

Creates a secondary network route for the specified File Server. A route is defined as:

The sequence of hosts, routers, gateways, and other devices that network traffic can take. Pillar Axiom administrators identify at least one gateway for a File Server to use to route messages to other networks.

The settings for the primary route are attributes of the File Server, which you define when you run the `CreateFileServer` command.

SYNTAX

```
pdscli {request | submit} CreateRoute
   FileServer=GUID-or-FQN-of-File-Server
   DestinationIPAddress=IP-address
   IPNetmask=IP-netmask
   GatewayIPAddress=IP-address
```

OPTIONS

FileServer

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the File Server with which the network route is associated.

DestinationIPAddress

Identifies a destination subnet for this network route. All computers in the subnet are reached through the specified gateway.

IPNetmask

Identifies a subnet mask for the range of IP addresses at the route’s destination.

GatewayIPAddress

Identifies the IP address that is assigned to the gateway host. The gateway IP address is used to route messages from this network to other networks.

EXAMPLES

Run the following command to add a network route to the `Company-XYZ-FS1` File Server.

```
pdscli request CreateRoute @input
```

where `input.req` contains the following name/value pairs:

```
Request=CreateRoute
FileServer=/Company-XYZ-FS1
```
Request Reference Pages

 DestinationIPAddress=172.20.67.0
 IPNetmask=255.255.255.0
 GatewayIPAddress=172.18.65.110

 See the CreateRouteResponse.txt file for example response data.

 SEE ALSO

 CreateFileServer on p. 100
 DeleteRoute on p. 188
 GetAllRoutes on p. 226
 GetRouteDetails on p. 283
 Ranges for Option Values on p. 57
NAME CreateSchedule

DESCRIPTION Creates a schedule for recurrent or one-time-only tasks. Assign one or more jobs to the schedule to define which tasks the schedule performs.

SYNTAX `pdscli {request | submit} CreateSchedule
 Name=string
 StartTime=YYYY-MM-DDTHH:mm:SS.xx+-HH:mm
 LatestStartTime=
 YYYY-MM-DDTHH:mm:SS.xx+-HH:mm
 RepeatInterval=-PxYxMxDTxHxM.xxxS

OPTIONS Name
 Identifies the name of a scheduled operation, which is an action to be performed at the specified time or at regular intervals.

StartTime AND LatestStartTime [optional]
 Identifies the date and time at which the Pillar Axiom system starts a scheduled operation. Use the following format for the entry:
 `YYYY-MM-DDTHH:mm:SS.xx+-HH:mm`
 where:
 • `YYYY-MM-DD` designates a four-digit year, two-digit month, and two-digit day for the date.
 • `T` is a separator that designates the start of the time portion of the string.
 • `HH:mm:SS` designates hours, minutes, and seconds in values for a 24-hour clock.
 • `xx` designates a fraction of a second, to two decimal places.
 • `+-HH:mm` designates the time zone as an offset from Coordinated Universal Time (UTC) in hours and minutes. Include the + or - prefix as appropriate for your time zone in relation to UTC.

RepeatInterval [optional]
 Identifies the recurrence interval for a scheduled operation. Use the following format for the entry:
 `-PxYxMxDTxHxM.xxxS`
 where:
 • `P` is a period separator. The - prefix is optional to designate an interval before the date and time literal constants.
 • `x` represents any literal constant, and the value precedes its date and time separators.
 • `Y, M, and D` are Year, Month, and Day separators.
 • `T` is a separator that designates the start of the time portion of the string.
• H, M, and S are Hour, Minute, and fractional Second separators (seconds to three decimal places). Enter literal constants for a 24-hour clock.

Omit separators and their associated literals if they do not apply to the interval that you want to specify.

EXAMPLES

Run the following command to create a schedule that runs a set of jobs on the first of every month for two years.

```bash
pdscli request CreateSchedule @input
```

where `input.req` contains the following name/value pairs:

- `Request=CreateSchedule`
- `Name=FirstOfMonth`
- `StartTime=2004-01-01T12:00:00.-08:00`
- `LatestStartTime=2004-01-01T12:15:00.-08:00`
- `RepeatInterval=P2Y`

See the `CreateScheduleResponse.txt` file for example response data.

SEE ALSO

- [CreateJob](#)
- [DeleteSchedule](#)
- [GetAllJobs](#)
- [GetJobDetails](#)
- [Ranges for Option Values](#)
NAME | CreateSnapLUN

DESCRIPTION | Creates a Snap LUN, which is defined as:
A point-in-time, read-write copy of a LUN that you can immediately use. Snap LUNs requires no cache and minimal disk storage space. Snap LUNs point to the original data, and have the same QoS parameters as the source LUN.

Note: Formerly called a Snap LUN, the GUI now refers to this term as Clone LUN, whereas Snap LUN is still used in the command line.

Use this request for frequent, non-disruptive backup and restore operations.

SYNTAX
```bash
pdscli {request | submit} CreateSnapLUN
   Source=GUID-or-FQN-of-source-LUN
   EnableiSCSIAccess={true | false}
   EnableFibreChannelAccess={true | false}
   Name=string
   LUNNumber=integer-0-through-255
   Active={true | false}
   Mapped={true | false}
   EnableiSCSIAccess={true | false}
   EnableFibreChannelAccess={true | false}
```

OPTIONS

Source
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the source LUN to copy.

Name
Identifies the name that is assigned to a LUN for administrative purposes. LUN names must be unique across the Pillar Axiom system, not just within its associated volume group.

Name is a required parameter only if you want to change the FQN LUN’s user-visible name.
LUNNumber

Identifies the unique number that is assigned to a LUN and can be accessed by all SAN hosts if the LUN is not mapped. If the LUN is mapped, the LUN number must be unique to the mapped SAN host.

Note: If you intend to map this LUN to a specified host, do not include the LUNNumber option.

Active [optional]

Identifies whether the Clone LUN is available to the host (active) or is not seen by the host (inactive) when it is created. Inactive Clone LUNs can be changed to active; however, once the Clone LUN is set to active, you cannot change it to inactive. Default is active.

Mapped [optional]

Identifies whether all hosts or only selected hosts may access this LUN.

- Mapped allows only designated hosts to access this LUN.
- Unmapped allows all hosts to access this LUN using the LUN Number.

Note: If you choose Mapped, do not assign a LUNNumber.

EnableiSCSIAccess

Identifies the protocol specification used when creating a SAN LUN. Options include iSCSI, Fibre Channel (FC), or both.

EnableFibreChannelAccess

Identifies the protocol specification used when creating a SAN LUN. Options include iSCSI, Fibre Channel (FC), or both.

EXAMPLES

Run the following command to create an active clone of EngLUN.

```
pdscli request CreateSnapLUN @input
```

where input.req contains the following name/value pairs:

```
Request=CreateSnapLUN
SourceLUN=/EngLUN
EnableiSCSIAccess=false
EnableFibreChannelAccess=true
Name=EngLUN
LUNNumber= 0
Active=true
Mapped=false
```

See the CreateSnapLUNResponse.txt file for example response data.

SEE ALSO

[DeleteSnapLUN on p. 191](#)

[GetAllSnapLUNs on p. 233](#)
GetAllSnapLUNHierarchies on p. 232
GetSnapLUNDetails on p. 297
ModifySnapLUN on p. 381
PerformBackgroundLUNDuplication on p. 402
PerformLUNDuplication on p. 447
Chapter 4 Management Requests

NAME CreateVirtualInterface

DESCRIPTION Creates a secondary virtual network interface for the specified File Server. A virtual interface is defined as:

A logical interface for regulating network I/O across different processes that access the same physical interface. A virtual network interface:

• Has an IP address that is unique for the File Server.
• Has a VLAN tag ID that is unique for the File Server and is non-zero if tagging is enabled.
• Identifies a particular network port on a particular control unit (CU) of a Slammer.

The Pillar Axiom system creates CIFS and NFS servers on both CUs of the associated Slammer.

The settings for the primary virtual interface are attributes of the File Server, which you define when you run the CreateFileServer command.

SYNTAX pdscli {request | submit} CreateVirtualInterface
FileServer=GUID-or-FQN-of-File-Server
IPAddress=IP-address
IPNetmask=IP-netmask
VLANTag={0 | integer-1-through-4095}
FrameSize=integer
NetworkInterfaceIOPort.Slammer=
GUID-or-FQN-of-Slammer
NetworkInterfaceIOPort.ControlUnitNumber={0 | 1}
NetworkInterfaceIOPort.EthernetPortNamer={PORT0 | PORT1}

OPTIONS FileServer
Identifies a specific Pillar Axiom object. Choose from:

• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the File Server with which the virtual interface is associated.

IPAddress
Identifies the IP address that is assigned to the File Server’s virtual network interface.

IPNetmask
Identifies the subnet mask that is assigned to the File Server’s virtual network interface.

VLANTag [optional]

Identifies the virtual LAN (VLAN) ID that is assigned to the File Server’s virtual network interface.

- Assign a value of 1 through 4094, inclusive, if you have connected a VLAN-capable switch to the Pillar Axiom system.
- Leave the field blank to disable VLAN tagging.

FrameSize [optional]

Identifies the packet frame size. This value defines the maximum transmission unit (MTU).

The frame size (MTU) does not include the Ethernet header portion of the packet. If your network switch has trouble with this, you can set the switch to a larger value or lower the MTU size to correct the problem.

- If your network supports extended Ethernet (jumbo) frames, enter an integer greater than 1500 and less than 16362. Make sure that this Pillar Axiom MTU size matches the network MTU size. If the MTU sizes are mismatched, users may experience I/O “hangs” when the client machines try to process too-large packets.
- If your network does not support jumbo frames, enter the default frame size of 1500.

NetworkInterfaceIOPort.Slammer

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the Slammer that provides the File Server’s virtual network interface.

NetworkInterfaceIOPort.ControlUnitNumber

Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs.

NetworkInterfaceIOPort.EthernetPortName

Identifies the port on the Slammer that is assigned to the File Server's virtual network interface. Select a gigabit Ethernet network port on one of the data-path Slammers control unit (CU).

- If Link Aggregation is enabled, select port 0 (zero). You cannot create virtual interfaces on alternate port 1 when Link Aggregation is enabled.
- If Link Aggregation is disabled, select either port.
EXAMPLES

Run the following command to create a secondary virtual network interface for the Company-XYZ-FS1 File Server.

```bash
pdscli request CreateVirtualInterface @input
```

where input.req contains the following name/value pairs:

- `Request=CreateVirtualInterface`
- `FileServer=/Company-XYZ-FS1`
- `IPAddress=172.18.75.142`
- `IPNetmask=255.255.255.0`
- `VLANTag=42`
- `FrameSize=1500`
- `NetworkInterfaceIOPort.Slammer=Slammer2`
- `NetworkInterfaceIOPort.ControlUnitNumber=1`
- `NetworkInterfaceIOPort.EthernetPortName=PORT0`

See the `CreateVirtualInterfaceResponse.txt` file for example response data.

SEE ALSO

- [CreateFileServer on p. 100](#)
- [DeleteVirtualInterface on p. 192](#)
- [GetAllVirtualInterfaces on p. 239](#)
- [GetVirtualInterfaceDetails on p. 307](#)
- [Ranges for Option Values on p. 57](#)
NAME CreateVolumeGroup
DESCRIPTION Creates a new volume group to organize logical volumes (filesystems and LUNs).
SYNTAX pdscli {request | submit} CreateVolumeGroup
 Name=volume-group-name
 ParentVolumeGroup=GUID-or-FQN-of-parent-volume-group
 MaximumCapacity=integer
OPTIONS Name
 Identifies the name that is assigned to a volume group. Each volume group name must be unique within its parent volume group.
ParentVolumeGroup
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 Enter the GUID or FQN of the next-highest volume group in the hierarchy. If volume groups are not nested, or if the next-highest level is the System itself, specify the System.
MaximumCapacity [optional]
 Identifies the maximum capacity for the volume group. The maximum capacity of the filesystems and nested volume groups that are associated with the volume group cannot exceed this value.
 A value of 0 (zero) identifies that the volume group is configured with unlimited capacity. You can increase the maximum capacity of associated filesystems and nested volume groups without constraints.
EXAMPLES Run the following command to create a volume group for your engineering organization’s logical volumes.
 pdscli request CreateVolumeGroup @input
 where input.req contains the following name/value pairs:
 Request=CreateVolumeGroup
 Name=/Eng
 ParentVolumeGroup=/
 MaximumCapacity=0

 See the CreateVolumeGroupResponse.txt file for example response data.
SEE ALSO

ModifyVolumeGroup on p. 389
DeleteVolumeGroup on p. 195
Ranges for Option Values on p. 57
NAME DeleteAccount

DESCRIPTION Deletes the specified administrator account.

SYNTAX

`pdscli {request | submit} DeleteAccount
Account=GUID-or-FQN-of-account`

OPTIONS Account

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the account to delete.

EXAMPLES

Run the following command to delete Yvette Smith’s account after she quits her job.

`pdscli request DeleteAccount @input`

where input.req contains the following name/value pairs:

Request=DeleteAccount
Account=IDf1234567-89ab-cde0-0123-456789eeeee0

See the DeleteAccountResponse.txt file for example response data.

SEE ALSO

GetAllAccounts on p. 200
GetAccountDetails on p. 198
Ranges for Option Values on p. 57
NAME DeleteAdministratorAction

DESCRIPTION Deletes the specified administrator action. Run this command after you perform the corrective action that is suggested in the administrator action.

SYNTAX pdscli {request | submit} DeleteAdministratorAction
 AdministratorAction=GUID-or-FQN-of-action

OPTIONS AdministratorAction
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

 Enter the GUID or FQN of the administrator action to delete.

EXAMPLES You would like to delete the action that notified you about filesystem inconsistency. Delete the administrator action after you run the filesystem check (FSCK) utility. Run the following command.
 pdscli request DeleteAdministratorAction @input

 where input.req contains the following name/value pairs:
 Request=DeleteAdministratorAction
 AdministratorAction=IDf1234567-89ab-cde0-0123-456789eeee0

 See the DeleteAdministratorActionResponse.txt file for example response data.

SEE ALSO GetAllAdministratorActions on p. 201

GetAdministratorActionDetails on p. 199

Ranges for Option Values on p. 57
NAME DeleteCIFSShare

DESCRIPTION Deletes the specified Common Internet File System (CIFS) share.

SYNTAX pdscli {request | submit} DeleteCIFSShare
 CIFSShare=GUID-or-FQN-of-CIFS-share

OPTIONS CIFSShare
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.
 Enter the GUID or FQN of the CIFS share to delete.

EXAMPLES Run the following command to delete an unused share that was created for the
EngAti filesystem.
 pdscli request DeleteCIFSShare @input

 where input.req contains the following name/value pairs:
 Request=DeleteCIFSShare
 CIFSShare=IDA0479DC2-38EF-9828-8902-E0FC03743270

 See the DeleteCIFSShareResponse.txt file for example response data.

SEE ALSO GetAllCIFSShares on p. 206
 GetCIFSShareDetails on p. 244
 Ranges for Option Values on p. 57
NAME DeleteCloneFS

DESCRIPTION Deletes the specified Clone FS of a filesystem.

A Clone FS is a point-in-time, writeable snapshot of a filesystem, which can be used later to revert the filesystem. This snapshot retains the same QoS parameters as the source filesystem. It consumes storage capacity from the Clone FS storage space created for the source filesystem. A Clone FS can be scheduled to occur at any time. This provides a convenient method to branch from the source data without the need to do a full block-level copy.

SYNTAX pdscli {request | submit} DeleteCloneFS
 CloneFSFQN=FQN-of-Clone-FS
 ForceFileRetentionDelete={true | false}

OPTIONS CloneFSFQN

Identifies a specific Pillar Axiom object.

• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

FQN Format:
/Fully/Qualified/ObjectName

Enter the FQN of the filesystem with which this share is associated. If there is more than one file server, use the FQN that includes the file server and filesystem.

Enter the GUID or FQN of the Clone FS to delete.

ForceFileRetentionDelete

Forces the deletion of all file retention data for the specified Clone FS of a filesystem.

EXAMPLES Run the following command to delete a Clone FS that was created from the EngAtl filesystem.

pdscli request DeleteCloneFS @input

where input.req contains the following name/value pairs:

Request=DeleteCloneFS
 CloneFSFQN=/Company-XYZ-FS1/EngAtl
 ForceFileRetentionDelete=true

See the DeleteCloneFS.txt file for example response data.

SEE ALSO CreateCloneFS on p. 97

GetCloneFSDetails on p. 245
Chapter 4 Management Requests

GetAllSnapLUNs on p. 233
GetAllCloneFSHierarchies on p. 207
GetAllCloneFSs on p. 208
NAME DeleteExternalUPSDevice

DESCRIPTION Deletes the specified uninterruptable power supply.

SYNTAX `pdscli {request | submit} DeleteExternalUPSDevice
 ups=GUID-or-FQN-of-UPS-Device`

OPTIONS `ups`
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.
 FQN Format:
 /Fully/Qualified/ObjectName
 Enter the GUID or FQN of the UPS device to modify.

EXAMPLES Run the following command to delete a UPS device.
 `pdscli request DeleteExternalUPSDevice @input`
 where input.req contains the following name/value pairs:
 Request=DeleteExternalUPSDevice
 ups=UPS1

 See the DeleteExternalUPSDeviceResponse.txt file for example response
 data.

SEE ALSO `GetAllExternal UPSDevices on p. 212`
 `Ranges for Option Values on p. 57`
NAME DeleteFileServer

DESCRIPTION Deletes the specified File Server.

SYNTAX pdscli {request | submit} DeleteFileServer
 FileServer=GUID-or-FQN-of-File-Server

OPTIONS FileServer
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.
 Enter the GUID or FQN of the File Server to delete.

EXAMPLES Run the following command to delete a File Server that is no longer required.
 pdscli request DeleteFileServer @input
 where input.req contains the following name/value pairs:
 Request=DeleteFileServer
 FileServer=/Company-XYZ-FS3
 See the DeleteFileServerResponse.txt file for example response data.

SEE ALSO GetAllFileServers on p. 213
 GetFileServerDetails on p. 253
 GetFileServerStatistics on p. 254
 Ranges for Option Values on p. 57
NAME DeleteFileSystem

DESCRIPTION Deletes the specified filesystem.

SYNTAX

```
pdsc1 {request | submit} DeleteFileSystem
  ID=GUID-or-FQN-of-filesystem
```

OPTIONS ID

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the filesystem to delete.

EXAMPLES Run the following command to delete the OpsLA filesystem.

```
pdsc1i request DeleteFileSystem @input
```

where input.req contains the following name/value pairs:

```
Request=DeleteFileSystem
ID=/Company-XYZ-FS1/OpsLA
```

See the DeleteFileSystemResponse.txt file for example response data.

SEE ALSO

- GetAllFileSystems on p. 214
- GetFileSystemDetails on p. 255
- GetFileSystemStatistics on p. 260
- Ranges for Option Values on p. 57
<table>
<thead>
<tr>
<th>SNAME</th>
<th>DeleteFileSystemSnapshot</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Deletes the specified Snap FS of a filesystem.</td>
</tr>
</tbody>
</table>
| SYNTAX | `pdscli {request | submit} DeleteFileSystemSnapshot`
 | `ID=GUID-or-FQN-of-Snap-FS` |
| OPTIONS | ID |
| | Identifies a specific Pillar Axiom object. Choose from: |
| | - Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens. |
| | - Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. |
| | Enter the GUID or FQN of the Snap FS to delete. |
| EXAMPLES | Run the following command to delete a Snap FS that was created from the EngAtl filesystem. |
| | `pdscli request DeleteFileSystemSnapshot @input`
 | where input.req contains the following name/value pairs: |
| | Request=DeleteFileSystemSnapshot
 | ID=IDA0479DC2-38EF-9828-8902-E0FC03743270 |
| | See the DeleteFileSystemSnapshotResponse.txt file for example response data. |
| SEE ALSO | [CreateFileSystemSnapshotSchedule on p. 124](#)
 | [DeleteFileSystemSnapshotSchedule on p. 179](#)
 | [GetAllFileSystemSnapshots on p. 216](#)
 | [GetAllFileSystemSnapshotSchedules on p. 218](#)
 | [GetFileSystemSnapshotDetails on p. 256](#)
 | [GetFileSystemSnapshotScheduleDetails on p. 258](#)
 | [ModifyFileSystemSnapshot on p. 340](#)
 | [PerformFileSystemDuplication on p. 425](#)
 | [PerformBackgroundFileSystemDuplication on p. 400](#)
 | [PerformRestoreFileSystemFromSnapshot on p. 485](#)
 | [PerformRebuildFileSystemRedundancy on p. 474](#) |
Ranges for Option Values on p. 57
NAME DeleteFileSystemSnapshotSchedule

DESCRIPTION Deletes the specified schedule that creates Snap FSs of a filesystem at designated intervals.

SYNTAX

```
pdscli {request | submit}
    DeleteFileSystemSnapshotSchedule
        ID=GUID-or-FQN-of-Snap-FS-schedule
```

OPTIONS ID

Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the schedule to delete.

EXAMPLES Run the following command to delete a schedule that creates Snap FSs of the EngAtl filesystem.

```
pdscli request DeleteFileSystemSnapshotSchedule
    @input
```

where input.req contains the following name/value pairs:

```
Request=DeleteFileSystemSnapshotSchedule
ID=IDA0479DC2-38EF-9828-8902-E0FC03743270
```

See the DeleteFileSystemSnapshotSchedule Response.txt file for example response data.

SEE ALSO

CreateFileSystemSnapshotSchedule on p. 124
DeleteFileSystemSnapshot on p. 177
GetAllFileSystemSnapshots on p. 216
GetAllFileSystemSnapshotSchedules on p. 218
GetFileSystemSnapshotDetails on p. 256
GetFileSystemSnapshotScheduleDetails on p. 258
ModifyFileSystemSnapshot on p. 340
PerformFileSystemDuplication on p. 425
PerformBackgroundFileSystemDuplication on p. 400
PerformRestoreFileSystemFromSnapshot on p. 485
PerformRebuildFileSystemRedundancy on p. 474
Ranges for Option Values on p. 57
NAME DeleteJob

DESCRIPTION Deletes the specified job. A job is a management task that can be scheduled in a Pillar Axiom storage system. Not all management tasks can be scheduled; jobs are a subset of all possible management tasks.

SYNTAX pdscli {request | submit} DeleteJob
 Job=GUID-or-FQN-of-scheduled-operation

OPTIONS Job
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 Enter the GUID or FQN of the job to delete.

EXAMPLES Run the following command to delete a job that would have created a Snap FS of the EngAtl filesystem.
 pdscli request DeleteJob @input

 where input.req contains the following name/value pairs:
 Request=DeleteJob
 Job=IDA0479DC2-38EF-9828-8902-E0FC03743270

 See the DeleteJobResponse.txt file for example response data.

SEE ALSO
 GetAllJobs on p. 220
 GetJobDetails on p. 268
 Ranges for Option Values on p. 57
Chapter 4 Management Requests

NAME DeleteLUN

DESCRIPTION Deletes the specified LUN.

SYNTAX

```
pdscli {request | submit} DeleteLUN
   ID=GUID-or-FQN-of-LUN
```

OPTIONS ID

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name.

Enter the GUID or FQN of the LUN to delete.

EXAMPLES

Run the following command to delete a LUN that is not in active use.

```
pdscli request DeleteLUN @input
```

where input.req contains the following name/value pairs:

- Request=DeleteLUN
- ID=/XYZ-FS1/EngLUN

See the DeleteLUNResponse.txt file for example response data.

SEE ALSO

- CreateLUN on p. 135
- ModifyLUN on p. 351
- GetAllAvailableLUNNumbers on p. 202
- GetAllLUNs on p. 221
- GetLUNDetails on p. 269
- GetLUNStatistics on p. 272
- GetHostMappingConfigDetails on p. 265
- GetLUNMappingConfigDetails on p. 270
- PerformConfigureLUNMapping on p. 412
- PerformRebuildLUNRedundancy on p. 475
- Ranges for Option Values on p. 57
NAME DeleteNFSExport

DESCRIPTION Deletes the specified Network File System (NFS) export and any host entries that are associated with the export.

SYNTAX pdscli {request | submit} DeleteNFSExport
 NFSExport=GUID-or-FQN-of-NFS-export

OPTIONS NFSExport
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 Enter the GUID or FQN of the NFS export to delete.

EXAMPLES Run the following command to delete an unused export that was created for the EngAtl filesystem.
 pdscli request DeleteNFSExport @input

 where input.req contains the following name/value pairs:
 Request=DeleteNFSExport
 NFSExport=IDA0479DC2-38EF-9828-8902-E0FC03743270

 See the DeleteNFSExportResponse.txt file for example response data.

SEE ALSO GetAllNFSExports on p. 222
 GetNFSExportDetails on p. 276
 Ranges for Option Values on p. 57
NAME DeleteNFSHostEntry

DESCRIPTION Deletes the specified Network File System (NFS) host entry, which removes the ability of that NFS client (user) to mount the export.

SYNTAX pdscli {request | submit} DeleteNFSHostEntry
 NFSHostEntry=GUID-or-FQN-of-NFS-host-entry

OPTIONS NFSHostEntry
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 Enter the GUID or FQN of the NFS host entry to delete.

EXAMPLES Run the following command to delete a host entry from an NFS export.
 pdscli request DeleteNFSHostEntry @input

 where input.req contains the following name/value pairs:
 Request=DeleteNFSHostEntry
 NFSHostEntry=IDA0479DC2-38EF-9828-8902-E0FC03743270

 See the DeleteNFSHostEntryResponse.txt file for example response data.

SEE ALSO
 GetAllNFSExports on p. 222
 Ranges for Option Values on p. 57
NAME DeleteNotificationDefinition

DESCRIPTION Deletes the specified notification.

SYNTAX pdscli {request | submit}
 DeleteNotificationDefinition
 NotificationDefinition=GUID-or-FQN-of-notification

OPTIONS NotificationDefinition
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.

 Enter the GUID or FQN of the notification to delete.

EXAMPLES Run the following command to delete a notification.
 pdscli request DeleteNotificationDefinition @input

 where input.req contains the following name/value pairs:
 Request=DeleteNotificationDefinition
 NotificationDefinition=IDA0479DC2-38EF-9828-8902-E0FC03743270

 See the DeleteNotificationDefinitionResponse.txt file for example response
 data.

SEE ALSO GetAllNotificationDefinitions on p. 223

 GetNotificationDefinitionDetails on p. 278

 Ranges for Option Values on p. 57
NAME DeleteQuota

DESCRIPTION Deletes the specified filesystem quota.

SYNTAX

pdscli {request | submit} DeleteQuota
 ID=GUID-or-FQN-of-quota
 AllowFileSystemOffline={true | false}

OPTIONS

ID

Identifies a specific Pillar Axiom object. Choose from:

• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the quota to delete.

AllowFileSystemOffline

Identifies whether the Pillar Axiom system can take the filesystem offline to perform quota operations.

• Enable this option if the Pillar Axiom system can take the filesystem offline to create or remove a directory-level quota when the specified directory contains files and subdirectories.
• Disable this option if the system cannot take the filesystem offline to perform the quota operation when the specified directory contains files and subdirectories. The filesystem remains online, and the directory-level quota is not created or removed.

Whichever setting you choose, the filesystem remains online and the quota operation is performed when the specified directory is empty.

EXAMPLES

Run the following command to delete a quota from the OpsLA filesystem. You know that usage of that filesystem is light, so set the flag to permit the system to take the non-empty filesystem offline.

pdscli request DeleteQuota @input

where input.req contains the following name/value pairs:

Request=DeleteQuota
ID=/Company-XYZ-FS1/OpsLA:/mfg
AllowFileSystemOffline=true

See the DeleteQuotaResponse.txt file for example response data.

SEE ALSO

GetAllQuotas on p. 224

GetQuotaDetails on p. 282
Chapter 4 Management Requests

- GetAllTasks on p. 235
- PerformCancelTask on p. 404
- Ranges for Option Values on p. 57
NAME DeleteRoute

DESCRIPTION Deletes the specified secondary network route. File Servers have a primary network route and optional secondary routes. The primary network route is an attribute of the File Server; it is not a separate object that you can delete.

SYNTAX pdscli {request | submit} DeleteRoute
 Route=GUID-or-FQN-of-route

OPTIONS Route
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 Enter the GUID or FQN of the route to delete.

EXAMPLES Run the following command to delete a secondary network route from the Company-XYZ-FS1 File Server.
 pdscli request DeleteRoute @input
 where input.req contains the following name/value pairs:
 Request=DeleteRoute
 Route=IDA0479DC2-38EF-9828-8902-E0FC03743270
 See the DeleteRouteResponse.txt file for example response data.

SEE ALSO GetAllRoutes on p. 226
 GetRouteDetails on p. 283
 Ranges for Option Values on p. 57
<table>
<thead>
<tr>
<th>NAME</th>
<th>DeleteSANHost</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Deletes a specified SAN host from your SAN configuration.</td>
</tr>
</tbody>
</table>
| SYNTAX | pdscli {request | submit} DeleteSANHost
| | SANHostName=Host-name |
| OPTIONS | SANHostName |
| | Identifies the name assigned to a specific SAN host. |
| EXAMPLES | Run the following command to delete the SANTest_03 host.
| | pdscli request DeleteSANHost@input
| | where input.req contains the following name/value pairs:
| | Request=DeleteSANHost
| | SANHostName=SANTest_03
| | See the DeleteSANHostResponse.txt file for example response data. |
| SEE ALSO | GetSANConfigDetails on p. 284
| | GetHostMappingConfigDetails on p. 265
| | GetAllSANHosts on p. 227
| | ModifySANHost on p. 377
| | GetHBAPortConnections on p. 262
| | PerformAssociateInitiatorsToHost on p. 398
| | Ranges for Option Values on p. 57 |
NAME DeleteSchedule

DESCRIPTION Deletes the specified schedule. A schedule defines when the Pillar Axiom storage system performs the jobs that are associated with the schedule.

SYNTAX

pdscli {request | submit} DeleteSchedule
 Schedule=GUID-or-FQN-of-schedule

OPTIONS Schedule

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the schedule to delete.

EXAMPLES Run the following command to delete a schedule that has no jobs associated with it.

pdscli request DeleteSchedule @input

where input.req contains the following name/value pairs:

Request=DeleteSchedule
Schedule=IDA0479DC2-38EF-9828-8902-E0FC03743270

See the DeleteScheduleResponse.txt file for example response data.

SEE ALSO

GetAllSchedules on p. 229
GetScheduleDetails on p. 291
Ranges for Option Values on p. 57
NAME
DeleteSnapLUN

DESCRIPTION
Deletes a specified Snap LUN.

SYNTAX
```
pdscli {request | submit} DeleteSnapLUN
   ID=GUID-or-FQN-of-Snap-LUN
```

OPTIONS
ID
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens. Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Snap LUN to delete.

EXAMPLES
Run the following command to delete SLUN_01.
```
pdscli request DeleteSnapLUN@input
```
where input.req contains the following name/value pairs:
- Request=DeleteSnapLUN
- ID=/SLUN_01

See the DeleteSnapLUNResponse.txt file for example response data.

SEE ALSO
- GetAllTapeRobots on p. 234
- GetAllSnapLUNHierarchies on p. 232
- GetSnapLUNDetails on p. 297
- ModifySnapLUN on p. 381
- PerformLUNDuplication on p. 447
- PerformBackgroundLUNDuplication on p. 402
- Ranges for Option Values on p. 57
NAME DeleteVirtualInterface

DESCRIPTION Deletes the specified secondary virtual interface. File Servers have a primary virtual interface and optional secondary virtual interfaces. The primary virtual interface is an attribute of the File Server; it is not a separate object that you can delete.

SYNTAX pdscli {request | submit} DeleteVirtualInterface

VirtualInterface=GUID-or-FQN-of-interface

OPTIONS VirtualInterface

Identifies a specific Pillar Axiom object. Choose from:

• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the virtual network interface to delete.

EXAMPLES Run the following command to delete a secondary virtual interface from the Company-XYZ-FS1 File Server.
pdscli request DeleteVirtualInterface @input

where input.req contains the following name/value pairs:
Request=DeleteVirtualInterface
VirtualInterface=IDA0479DC2-38EF-9828-8902-E0FC03743270

See the DeleteVirtualInterfaceResponse.txt file for example response data.

SEE ALSO GetAllVirtualInterfaces on p. 239
GetVirtualInterfaceDetails on p. 307
Ranges for Option Values on p. 57
NAME DeleteVolumeAndChildren

DESCRIPTION Deletes the specified volume and all of its clones, provided that the following conditions are met:

- This task can be run on any type of volume or clone, active or inactive, unless there are incomplete background copies of a clone in progress somewhere in the clone tree, or an upstream volume is being restored from a clone.
- If a restore is in progress, the request to delete the volume and its children is allowed only if the volume is the topmost volume. That is, unless the volume being deleted is also the one being restored, the request is rejected.
- Data migrations do not count as background copies in this case. If a data migration is in progress on a volume being deleted, the deletion proceeds to clean up the migration data.

SYNTAX

pdscli {request | submit} DeleteVolumeAndChildren

CloneFSID=GUID-of-CloneFS | CloneFSFQN=/FQN-of-CloneFS |
LUNID=GUID-of-LUN | LUNFQN=/FQN-of-LUN |
CloneLUNID=GUID-of-CloneLUN | CloneLUNFQN=/FQN-of-CloneLUN
[ForceFileRetentionDelete={ true | false }]

OPTIONS

Volume ID or Volume FQN

Volume identifies an object of a specific type. Choose one of:
- CloneFS
- CloneLUN
- FileSystem
- LUN

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the volume tree to delete.
ForceFileRetentionDelete

Identifies whether deletion of a non-compliant SecureWORMfs is allowed, even if it contains immutable files.

EXAMPLES

Run the following command to delete a volume tree.

```
pdscli request DeleteVolumeAndChildren @input
```

where `input.req` contains the following name-value pairs:

- `Request=DeleteVolumeAndChildren`
- `CloneFSID=IDA0479DC2-38EF-9828-8902-E0FC03743270`

See the `DeleteVolumeAndChildrenResponse.txt` file for example response data.

SEE ALSO

- [DeleteFileSystem on p. 176](#)
- [DeleteLUN on p. 182](#)
NAME DeleteVolumeGroup

DESCRIPTION Deletes the specified volume group.

SYNTAX

pdscli {request | submit} DeleteVolumeGroup
 VolumeGroup=GUID-or-FQN-of-volume-group

OPTIONS VolumeGroup

 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.

 Enter the GUID or FQN of the volume group to delete.

EXAMPLES

Run the following command to delete a volume group.

pdscli request DeleteVolumeGroup @input

where input.req contains the following name/value pairs:

 Request=DeleteVolumeGroup
 VolumeGroup=IDA0479DC2-38EF-9828-8902-E0FC03743270

See the DeleteVolumeGroupResponse.txt file for example response data.

SEE ALSO

GetAllVolumeGroups on p. 240
GetVolumeGroupDetails on p. 308
Ranges for Option Values on p. 57
Chapter 4 Management Requests

NAME ForceFileSystemRebalanceOnRestart

DESCRIPTION Sets a flag that instructs the restart process to reassign all auto-assigned filesystems across all the NAS Slammer control units (CUs) present in the system. The restart process does not remove this flag. The flag can be removed only by the CancelForceFilesystemRebalance request.

If another restart should happen while this flag is still set, filesystem CU ownership is reassigned again.

SYNTAX pdscli {request | submit} ForceFileSystemRebalanceOnRestart

OPTIONS None

EXAMPLES Run the following command to force the reassignment of filesystems across all NAS Slammer CUs.

pdscli request ForceFileSystemRebalanceOnRestart

See the ForceFileSystemRebalanceOnRestart.txt file for example response data.

SEE ALSO CancelForceFilesystemRebalance on p. 91
NAME GatherQuotaForFileSystem

DESCRIPTION Generates a quota report for filesystems and Clone FSs. You must run this request before running the GetAllQuotas request. Doing so provides information that can be returned by the latter.

SYNTAX pdscli {request | submit} GatherQuotaForFileSystem
 FileSystem=GUID-or-FQN

OPTIONS FileSystem

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.
 FQN Format: /Fully/Qualified/ObjectName

Enter the GUID or FQN of the filesystem or Clone FS for which you want to generate a quota report.

EXAMPLES Run the following command to collect quota information for a specific filesystem and to place that information into a file. The contents of this file can be retrieved at a later time by issuing a GetAllQuotas request.

pdscli request GatherQuotaForFileSystem @input

where input.req contains the following name/value pairs:

Request=GatherQuotaForFileSystem
FileSystem=IDA0479DC2-38EF-9828-8902-E0FC03743270

See the GatherQuotaForFileSystemResponse.txt file for example response data.

SEE ALSO CreateQuota on p. 154
DeleteQuota on p. 186
GetAllQuotas on p. 224
GetAllQuotaFiles on p. 225
GetQuotaDetails on p. 282
ModifyQuota on p. 375
NAME GetAccountDetails

DESCRIPTION Displays information about the specified administrator accounts.

SYNTAX pdscli {request | submit} GetAccountDetails
Account=GUID-or-FQN-of-account

OPTIONS Account
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of all accounts for which you want to display information.

EXAMPLES Run the following command to display information about Yvette Smith’s account.
pdscli request GetAccountDetails @input

where input.req contains the following name/value pairs:
Request=GetAccountDetails
Account=IDf1234567-89ab-cde0-0123-456789eeeee0

See the GetAccountDetailsResponse.txt file for example response data.

SEE ALSO GetAllAccounts on p. 200
Ranges for Option Values on p. 57
NAME GetAdministratorActionDetails

DESCRIPTION Displays information about the specified administrator action that has not yet been resolved.

SYNTAX

pdscli {request | submit}
 GetAdministratorActionDetails
 AdministratorAction=GUID-or-FQN-of-action

OPTIONS AdministratorAction

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of all administrator actions for which you want to display information.

EXAMPLES Run the following command to display information about an unresolved administrator action.

pdscli request GetAdministratorActionDetails @input

where input.req contains the following name/value pairs:

Request=GetAdministratorActionDetails
AdministratorAction=IDf1234567-89ab-cde0-0123-456789eeeee0

See the GetAdministratorActionDetailsResponse.txt file for example response data.

SEE ALSO GetAllAdministratorActions on p. 201

Ranges for Option Values on p. 57
<table>
<thead>
<tr>
<th>NAME</th>
<th>GetAllAccounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Displays a list of administrator accounts.</td>
</tr>
<tr>
<td>SYNTAX</td>
<td>`pdscli {request</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>None.</td>
</tr>
</tbody>
</table>
| EXAMPLES | Run the following command to display the currently defined administrator accounts.
`pdscli request GetAllAccounts`
See the `GetAllAccountsResponse.txt` file for example response data. |
| SEE ALSO |
`GetAccountDetails on p. 198`
`Ranges for Option Values on p. 57` |
NAME
GetAllAdministratorActions

DESCRIPTION
Displays a list of unresolved administrator actions in the Pillar Axiom storage system.

SYNTAX
```
pdscli \{request | submit\}
    GetAllAdministratorActions
```

OPTIONS
None.

EXAMPLES
Run the following command to find out if he needs to fix any unresolved administrator actions.
```
pdscli request GetAllAdministratorActions
```
See the GetAllAdministratorActionsResponse.txt file for example response data.

SEE ALSO
- GetAdministratorActionDetails on p. 199
- DeleteAdministratorAction on p. 170
- Ranges for Option Values on p. 57
NAME
GetAllAvailableLUNNumbers

DESCRIPTION
Displays a list of all available LUN numbers for a specified SAN host.

SYNTAX
```
pdsc1i {request | submit} GetAllAvailableLUNNumbers
   SANHostName=Host-name
```

OPTIONS
SANHostName
Identifies the name assigned to a specific SAN host.

EXAMPLES
Run the following command to display a list of available LUN numbers for the SANTest_02 host.
```
pdsc1i request GetAllAvailableLUNNumbers @input
```
where input.req contains the following name/value pairs:
- Request=GetAllAvailableLUNNumbers
- SANHostName=SANTest_02

See the GetAllAvailableLUNNumbersForHostResponse.txt file for example response data.

SEE ALSO
- [GetAllSANHosts on p. 227](#)
- [Ranges for Option Values on p. 57](#)
NAME GetAllBackupRuns

DESCRIPTION Displays a list of system backups that occurred during the specified time period.

SYNTAX pdscli {request | submit} GetAllBackupRuns
 TimeFilter.AfterTimestamp=
 YYYY-MM-DDTHH:mm:SS.xx+-HH:mm
 TimeFilter.BeforeTimestamp=
 YYYY-MM-DDTHH:mm:SS.xx+-HH:mm

OPTIONS TimeFilter.AfterTimestamp AND TimeFilter.BeforeTimestamp

Identifies the time period for data collection. Use the following format for the entry:
YYYY-MM-DDTHH:mm:SS.xx+-HH:mm
where:
• YYYY-MM-DD designates a four-digit year, two-digit month, and two-digit day for the date.
• T is a separator that designates the start of the time portion of the string.
• HH:mm:SS designates hours, minutes, and seconds in values for a 24-hour clock.
• xx designates a fraction of a second, to two decimal places.
• +HH:mm designates the time zone as an offset from Coordinated Universal Time (UTC) in hours and minutes. Include the + or - prefix as appropriate for your time zone in relation to UTC.

EXAMPLES Run the following command to display a list of backup runs that were performed in June 2004.
pdscli request GetAllBackupRuns @input

where input.req contains the following name/value pairs:
Request=GetAllBackupRuns
TimeFilter.AfterTimestamp=
 2004-06-01T00:01:00.00-08:00
TimeFilter.BeforeTimestamp=
 2004-06-30T00:59:59.59-08:00

See the GetAllBackupRunsResponse.txt file for example response data.

SEE ALSO GetBackupRunStatistics on p. 241

Ranges for Option Values on p. 57
NAME
GetAllBricks

DESCRIPTION
Displays a list of Bricks that are configured on the Pillar Axiom storage system.

SYNTAX
pdscli {request | submit} GetAllBricks

OPTIONS
None.

EXAMPLES
Run the following command to display a list of the Bricks in the Pillar Axiom storage system.

pdscli request GetAllBricks

See the GetAllBricksResponse.txt file for example response data.

SEE ALSO
- [GetBrickDetails (p. 242)]
- Ranges for Option Values on p. 57
NAME GetAllCallHomeFileDetails

DESCRIPTION Displays results from the most recent Call-Home messages that have been sent to the Pillar World Wide Customer Support Center.

The Call-Home feature is defined as:

A Pillar Axiom feature that, when enabled, allows the system to notify the Pillar World Wide Customer Support Center of critical issues specific to the Pillar Axiom storage system system. No customer data is transmitted. The Call-Home feature transfers files over the Internet using one of the following user-selected methods:

• SCP: Uses secure copy (SCP) with 1024-bit encryption and secure keys.
• HTTPS: Sends files either directly to Pillar World Wide Customer Support Center or through a proxy server for security purposes. Can also be used when the Pillar Axiom storage system does not have direct access to the Internet.

SYNTAX pdscli {request | submit} GetAllCallHomeFileDetails

OPTIONS None.

EXAMPLES Run the following command to display results of the latest system configuration verification.
pdscli request GetAllCallHomeFileDetails

See the GetAllCallHomeFileDetailsResponse.txt file for example response data.

SEE ALSO

GetSystemInformationFileDetails on p. 302
PerformCollectSystemInformation on p. 407
PerformDownloadCallHomeFile on p. 418
PerformDownloadSystemInformationFile on p. 420
PerformPeriodicCallHome on p. 460
PerformTestCallHome on p. 505
NAME GetAllCIFSShares

DESCRIPTION Displays a list of Common Internet File System (CIFS) shares that are defined for the specified filesystem.

SYNTAX pdscli {request | submit} GetAllCIFSShares
 FileSystem=GUID-or-FQN-of-filesystem

OPTIONS FileSystem
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 Enter the GUID or FQN of the filesystem for which you want to display a list of CIFS shares.

EXAMPLES Run the following command to display a list of CIFS shares for the engineering organization’s filesystem.
 pdscli request GetAllCIFSShares @input

 where input.req contains the following name/value pairs:
 Request=GetAllCIFSShares
 FileSystem=/Company-XYZ-FS1/EngAtl

 See the GetAllCIFSSharesResponse.txt file for example response data.

SEE ALSO GetCIFSShareDetails on p. 244
 Ranges for Option Values on p. 57
NAME GetAllCloneFSHierarchies

DESCRIPTION Displays a list of all snapshot hierarchies on a Pillar Axiom system. A storage hierarchy is a range of memory and storage devices within the Pillar Axiom system which uses all storage media to store and retrieve data. The Clone FS Hierarchy is that of all snapshots on the system.

A Clone FS is a point-in-time, writeable snapshot of a filesystem, which can be used later to revert the filesystem. This snapshot retains the same QoS parameters as the source filesystem. It consumes storage capacity from the Clone FS storage space created for the source filesystem. A Clone FS can be scheduled to occur at any time. This provides a convenient method to branch from the source data without the need to do a full block-level copy.

SYNTAX pdsc1i {request | submit} GetAllCloneFSHierarchies

OPTIONS None

EXAMPLES Run the following command to display a list of all Clone FS hierarchies.
pdsc1i request GetAllCloneFSHierarchies @input

See the GetAllCloneFSHierarchiesResponse.txt file for example response data

SEE ALSO CreateCloneFS on p. 97
GetCloneFSDetails on p. 245
GetAllSnapLUNs on p. 233
GetAllCloneFSs on p. 208
GetAllCloneFSHierarchies on p. 207
GetAllSnapLUNHierarchies on p. 232
NAME GetAllCloneFSs

DESCRIPTION Displays a list of Clone FSs that have been created from the specified Pillar Axiom object.

A Clone FS is a point-in-time, writeable snapshot of a filesystem, which can be used later to revert the filesystem. This snapshot retains the same QoS parameters as the source filesystem. It consumes storage capacity from the Clone FS storage space created for the source filesystem. A Clone FS can be scheduled to occur at any time. This provides a convenient method to branch from the source data without the need to do a full block-level copy.

SYNTAX pdscli {request | submit} GetAllCloneFSs
 FileServerFQN=FQN-of-File-Server
 FileSystemFQN=FQN-of-filesystem
 VolumeGroupFQN=FQN-of-volume-group
 FileRetentionFilter=FileRetentionOnly

OPTIONS FileServerFQN, FileSystemFQN, VolumeGroupFQN

Identifies a specific Pillar Axiom object.

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name.

 FQN Format: /Fully/Qualified/ObjectName

Enter the FQN of the filesystem with which this share is associated. If there is more than one file server, use the FQN that includes the file server and filesystem.

FileRetentionFilter

Specifies a list of Clone FSs that are used for file retention only.

EXAMPLES Run the following command to list the Clone FSs that have been created from the EngAt1 filesystem.

pdscli request GetAllCloneFSs @input

where input.req contains the following name/value pairs:

Request=GetAllCloneFSs
 FileServerFQN=/Company-XYZ-FS1/EngAt1
 FileSystemFQN=/Company-XYZ-FSys1/EngAt1
 VolumeGroupFQN=/Company-XYZ-VG1/EngAt1

See the GetAllCloneFSs.txt file for example response data.

SEE ALSO CreateCloneFS on p. 97
Chapter 4 Management Requests

GetCloneFSDetails on p. 245
GetAllSnapLUNs on p. 233
GetAllCloneFSs on p. 208
GetAllCloneFSHierarchies on p. 207
NAME GetAllEvents

DESCRIPTION Displays a list of system events that match the specified selection criteria.

SYNTAX pdsc| {request | submit} GetAllEvents
 TimeFilter.AfterTimestamp=
 YYYY-MM-DDTHH:mm:SS.xx+-HH:mm
 TimeFilter.BeforeTimestamp=
 YYYY-MM-DDTHH:mm:SS.xx+-HH:mm
 SeverityFilter.Severity={Critical | Error
 | Warning | Informational}
 IncludeEventTypeFilter.EventType=string
 ExcludeEventTypeFilter.EventType=string
 FirstReturnedEventNumber=integer
 NumberOfReturnedEvents=integer

OPTIONS TimeFilter.AfterTimestamp AND TimeFilter.BeforeTimestamp [optional]
 Identifies the time period for data collection. Use the following format for the entry:
 YYYY-MM-DDTHH:mm:SS.xx+-HH:mm
 where:
 • YYYY-MM-DD designates a four-digit year, two-digit month, and two-digit day for the date.
 • T is a separator that designates the start of the time portion of the string.
 • HH:mm:SS designates hours, minutes, and seconds in values for a 24-hour clock.
 • xx designates a fraction of a second, to two decimal places.
 • +-HH:mm designates the time zone as an offset from Coordinated Universal Time (UTC) in hours and minutes. Include the + or - prefix as appropriate for your time zone in relation to UTC.

SeverityFilter.Severity [optional]
 Identifies a category of event severities. Choose from:
 • Critical, which means that access to data is compromised (for example, two disks in a RAID array have failed) or data loss has occurred.
 • Error, which means that administrator action is required to prevent a "hard" error (for example, a single disk in a RAID array has failed) from becoming a critical event.
 • Warning, which means that administrator action is required to prevent a "soft" error from becoming an error or critical event.
 • Informational, which means that a configuration change has been detected or another non-error event has occurred.
IncludeEventTypeFilter.EventType AND ExcludeEventTypeFilter.EventType[optional]

Identifies the types of events to include or exclude in the response. See the GetEventsRequest.req for a list of valid values. This request is available in the CLI’s supplemental cliSampleInput subdirectory (see “Extract the pdscli Executable and Supplemental Files” on page 16 for more information).

FirstReturnedEventNumber

Identifies which event in the sequence should be the first one that the Pillar Axiom storage system displays. Event number 1 is the most recent event in the event log.

NumberOfReturnedEvents

Identifies how many events that meet the specified filter criteria should be displayed.

• The FirstReturnedEventNumber value of 1 is the most recent event.
• The NumberOfReturnedEvents will return the events starting with the most recent event. Setting this value to 0 returns all stored events.

EXAMPLES

Run the following command to display a list of critical system events.

pdscli request GetEvents @input

where input.req contains the following name/value pairs:

Request=GetAllEvents
SeverityFilter.Severity=Critical
FirstReturnedEventNumber=1
NumberOfReturnedEvents=2500

See the GetEventsResponse.txt file for example response data.

SEE ALSO

GetAllNotificationDefinitions on p. 223
GetNotificationDefinitionDetails on p. 278
GetSNMPConfigDetails on p. 298
Ranges for Option Values on p. 57
NAME

GetAllExternalUPSDevices

DESCRIPTION

Displays a list of all uninterruptable power supplies.

SYNTAX

```sh
pdscli {request | submit} GetAllExternalUPSDevices
```

OPTIONS

None.

EXAMPLES

Run the following command to display a list of external UPS devices.

```sh
pdscli request GetAllExternalUPSDevices @input
```

where input.req contains the following name/value pairs:

```
Request = GetAllExternalUPSDevices
```

See the `GetAllExternalUPSDevicesResponse.txt` file for example response data.

SEE ALSO

- [GetAllExternalUPSDevices on p. 212](#)
- [Ranges for Option Values on p. 57](#)
NAME GetAllFileServers

DESCRIPTION Displays a list of File Servers that are configured on the Pillar Axiom storage system.

SYNTAX pdscli \{request | submit\} GetAllFileServers

OPTIONS None.

EXAMPLES Run the following command to display a list of File Servers that are configured on your system.

pdscli request GetAllFileServers

See the GetAllFileServersResponse.txt file for example response data.

SEE ALSO

GetFileServerDetails on p. 253

Ranges for Option Values on p. 57
NAME

GetAllFileSystems

DESCRIPTION

Displays a list of NAS filesystems that are configured on the Pillar Axiom storage system.

SYNTAX

```
pdscli {request | submit} GetAllFileSystems
    FileServer=GUID-or-FQN-of-File-Server
    VolumeGroup=GUID-or-FQN-of-volume-group
    FileRetentionFilter={AllRetention | VolumeRetentionOnly | FileRetentionOnly}
```

OPTIONS

FileServer

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.

 Example GUID:

 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.

 FQN Format:

 /Fully/Qualified/ObjectName

 Enter the GUID or FQN of the File Server for which you want to display a list of filesystems.

VolumeGroup

Enter the GUID or FQN of the volume group with which the filesystem is associated.

FileRetentionFilter

Displays specific, retained filesystem information.

- The FileRetentionOnly filter displays a list of all filesystems that have FileRetentionOnly enabled.
- The VolumeRetentionOnly filter displays a list of all filesystems that have VolumeRetentionOnly enabled.
- The AllRetention filter displays the combination of FileRetentionOnly and VolumeRetentionOnly.

EXAMPLES

Run the following command to list the filesystems that are associated with the File Server that is named **Company-XYZ-FS1**.

```
pdscli request GetAllFileSystems @input
```

where input.req contains the following name/value pairs:
Chapter 4 Management Requests

Request=GetAllFileSystems
 FileServer=/Company-XYZ-FS1
 VolumeGroup=/Eng

See the GetAllFileSystemsResponse.txt file for example response data.

SEE ALSO

GetFileSystemDetails on p. 255
Ranges for Option Values on p. 57
NAME GetAllFileSystemSnapshots

DESCRIPTION Displays a list of Snap FSs that have been created from the specified filesystem.

SYNTAX pdscli {request | submit} GetAllFileSystemSnapshots
 FS=GUID-or-FQN-of-filesystem

OPTIONS FS
Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
Enter the GUID or FQN of the filesystem for which you want to display a list of Snap FSs.

EXAMPLES Run the following command to list the Snap FSs that have been created from the EngAtl filesystem.
pdscli request GetAllFileSystemSnapshots @input

where input.req contains the following name/value pairs:
Request=GetAllFileSystemSnapshots
FS=IDA0479DC2-38EF-9828-8902-E0FC03743270

See the GetAllFileSystemSnapshotsResponse.txt file for example response data.

SEE ALSO
CreateFileSystemSnapshotSchedule on p. 124
DeleteFileSystemSnapshot on p. 177
DeleteFileSystemSnapshotSchedule on p. 179
GetAllFileSystemSnapshotSchedules on p. 218
GetFileSystemSnapshotDetails on p. 256
GetFileSystemSnapshotScheduleDetails on p. 258
ModifyFileSystemSnapshot on p. 340
PerformFileSystemDuplication on p. 425
PerformBackgroundFileSystemDuplication on p. 400
PerformRestoreFileSystemFromSnapshot on p. 485
Chapter 4 Management Requests

PerformRebuildFileSystemRedundancy on p. 474

Ranges for Option Values on p. 57
NAME GetAllFileSystemSnapshotSchedules

DESCRIPTION Displays a list of schedules that create Snap FSs of the specified filesystem.

SYNTAX pdscli {request | submit}
 GetAllFileSystemSnapshotSchedules
 FS=GUID-or-FQN-of-filesystem

OPTIONS FS

 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

 Enter the GUID or FQN of the filesystem for which you want to display a list of Snap FS schedules.

EXAMPLES Run the following command to list the Snap FS schedules that are defined for the EngAtl filesystem.

 pdscli request GetAllFileSystemSnapshotSchedules
 @input

 where input.req contains the following name/value pairs:
 Request=GetAllFileSystemSnapshotSchedules
 FS=IDA0479DC2-38EF-9828-8902-E0FC03743270

 See the GetAllFileSystemSnapshotSchedules Response.txt file for example response data.

SEE ALSO

 CreateFileSystemSnapshotSchedule on p. 124
 DeleteFileSystemSnapshot on p. 177
 DeleteFileSystemSnapshotSchedule on p. 179
 GetAllFileSystemSnapshots on p. 216
 GetFileSystemSnapshotDetails on p. 256
 GetFileSystemSnapshotScheduleDetails on p. 258
 ModifyFileSystemSnapshot on p. 340
 PerformFileSystemDuplication on p. 425
 PerformBackgroundFileSystemDuplication on p. 400
PerformRestoreFileSystemFromSnapshot on p. 485
PerformRebuildFileSystemRedundancy on p. 474
Ranges for Option Values on p. 57
NAME GetAllJobs

DESCRIPTION Displays a list of jobs that are associated with the specified schedule and will be performed in the future.

SYNTAX pdscli {request | submit} GetAllJobs
 Schedule=GUID-or-FQN-of-schedule

OPTIONS Schedule
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 Enter the GUID or FQN of the schedule for which you want to display a list of jobs.

EXAMPLES Run the following command to display a list of the future jobs for a schedule that creates a Snap FS of the EngAtl filesystem every day.

pdscli request GetAllJobs @input

where input.req contains the following name/value pairs:
Request=GetAllJobs
Schedule=IDA0479DC2-38EF-9828-8902-E0FC03743270

See the GetAllJobsResponse.txt file for example response data.

SEE ALSO

GetAllTasks on p. 235
GetJobDetails on p. 268
Ranges for Option Values on p. 57
NAME GetAllLUNs

DESCRIPTION Displays a list of all LUNs associated with a specified volume group.

SYNTAX pdscli {request | submit} GetAllLUNs

VolumeGroup=GUID-or-FQN-of-volume-group

OPTIONS VolumeGroup [optional]

Identifies a specific Pillar Axiom object. Choose from:

• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.

• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the volume group for which you want to display LUNs. If you do not include the volume group, the system lists all LUNs in all volume groups.

EXAMPLES Run the following command to list the LUNs that are associated with the volume group named Eng.

pdscli request GetAllLUNs @input

where input.req contains the following name/value pairs:

Request=GetAllLUNs
VolumeGroup=/Eng

See the GetAllLUNsResponse.txt file for example response data.

SEE ALSO CreateLUN on p. 135
PerformLUNDuplication on p. 447
PerformBackgroundLUNDuplication on p. 402
Ranges for Option Values on p. 57
NAME GetAllNFSExports

DESCRIPTION Displays a list of Network File System (NFS) exports that are defined for the specified filesystem.

SYNTAX pdscli {request | submit} GetAllNFSExports
 FileSystem=GUID-or-FQN-of-filesystem

OPTIONS FileSystem

Identifies a specific Pillar Axiom object. Choose from:

• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.

• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the filesystem for which you want to display a list of NFS exports.

EXAMPLES Run the following command to display a list of NFS exports for the EngAtl filesystem.
 pdscli request GetAllNFSExports @input

 where input.req contains the following name/value pairs:
 Request=GetAllNFSExports
 FileSystem=/Company-XYZ-FS1/EngAtl

 See the GetAllNFSExportsResponse.txt file for example response data.

SEE ALSO GetNFSExportDetails on p. 276
 Ranges for Option Values on p. 57
NAME GetAllNotificationDefinitions

DESCRIPTION Displays a list of notifications that are defined for the specified client.

SYNTAX pdsccli {request | submit}
 GetAllNotificationDefinitions
 Client={SNMP | Email}

OPTIONS Client
 Identifies the notification client. Choose from:
 • SNMP, if the client is a Simple Network Management Protocol (SNMP) application.
 • Email, if the client is an electronic mail (email) server that sends the notifications to designated email addresses.
 Enter the GUID or FQN of the client for which you want to display a list of notifications.

EXAMPLES Run the following command to display a list of notifications for an email client.

 pdsccli request GetAllNotificationDefinitions @input

 where input.req contains the following name/value pairs:
 Request=GetAllNotificationDefinitions
 Client=Email

 See the GetAllNotificationDefinitionsResponse.txt file for example response data.

SEE ALSO GetNotificationDefinitionDetails on p. 278

Ranges for Option Values on p. 57
NAME GetAllQuotas

DESCRIPTION Displays a list of quotas, or capacity limits, that are defined for a specified filesystem.

Important! Attempting to retrieve definitions for more than 500 quotas for a specified filesystem is not recommended because of the potential negative impact to the Pilot’s performance.

Tip: To obtain the latest quota log, run the GatherQuotaForFilesystem request before running GetAllQuotas.

SYNTAX

```
pdscli {request | submit} GetAllQuotas
   ID=GUID-or-FQN-of-FileSystem
```

OPTIONS

ID

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.

 Example GUID:

 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.

 FQN Format:

 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the filesystem for which you want to display a list of quotas.

EXAMPLES

Run the following command to display a list of quotas for the EngAtl filesystem.

```
pdscli request GetAllQuotas @input
```

where `input.req` contains the following name/value pairs:

```
Request=GetAllQuotas
ID=/Company-XYZ-FS1/EngAtl
```

See the `GetAllQuotasResponse.txt` file for example response data.

SEE ALSO

- [GetQuotaDetails on p. 282](#)
- [Ranges for Option Values on p. 57](#)
- [GatherQuotaForFileSystem on p. 197](#)
NAME GetAllQuotaFiles

DESCRIPTION Returns a list of available quota report file names, which can be compressed into a quota report and downloaded to the user's client.

SYNTAX pdscli {request | submit} GetAllQuotaFiles
 ID=GUID-or-FQN-of-quota

OPTIONS ID
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name.
 FQN Format:
 /Fully/Qualified/ObjectName
 Enter the GUID or FQN of the filesystem for which you want to generate a quota report.

EXAMPLES Run the following command to display information about a quota that is defined for the engineering organization’s filesystem, EngAtl.
 pdscli request GetAllQuotaFiles @input

where input.req contains the following name/value pairs:
Request=GetAllQuotaFiles
ID=IDA0479DC2-38EF-9828-8902-E0FC03743270

See the GetAllQuotaFilesResponse.txt file for example response data.
NAME GetAllRoutes

DESCRIPTION Displays a list of network routes that are defined for the specified File Server.

SYNTAX

```
pdscli {request | submit} GetAllRoutes  
FileServer=GUID-or-FQN-of-File-Server
```

OPTIONS

FileServer

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the File Server for which you want to display a list of routes.

EXAMPLES

Run the following command to display a list of routes that are defined for the Company-XYZ-FS1 File Server.

```
pdscli request GetAllRoutes @input
```

where input.req contains the following name/value pairs:

```
Request=GetAllRoutes  
FileServer=/Company-XYZ-FS1
```

See the GetAllRoutesResponse.txt file for example response data.

SEE ALSO

GetAllFileServers on p. 213

GetRouteDetails on p. 283

Ranges for Option Values on p. 57
NAME GetAllSANHosts

DESCRIPTION Lists all SAN hosts. The Pillar Axiom storage system detects HBA ports and assigns hosts to those that you do not assign. Use this request to identify all SAN hosts, both user-defined and system-defined.

SYNTAX pdscli {request | submit} GetAllSANHosts

OPTIONS None.

EXAMPLES Run the following command to display a list of SAN hosts.

pdscli request GetAllSANHosts @input

where input.req contains the following name/value pairs:

Request=GetAllSANHosts

See the GetAllSANHostsResponse.txt file for example response data.

SEE ALSO GetSANConfigDetails on p. 284
GetHostMappingConfigDetails on p. 265
GetAllSANHosts on p. 227
ModifySANHost on p. 377
GetHBAPortConnections on p. 262
PerformAssociateInitiatorsToHost on p. 398
DeleteSANHost on p. 189
Ranges for Option Values on p. 57
NAME GetAllSANProtocolStatistics

DESCRIPTION Displays the SAN statistics for all the SAN network interfaces in the Pillar Axiom system.

SYNTAX pdscli {request | submit} GetAllSANProtocolStatistics

OPTIONS None.

EXAMPLES Run the following command to display SAN protocol statistics for all SAN interfaces.

pdscli request GetAllSANProtocolStatistics @input

where input.req contains the following name/value pair:
Request = GetAllSANProtocolStatistics

See the GetAllSANProtocolStatistics Response.txt file for example response data.

SEE ALSO
GetAllSlammers (p. 231)
GetHBAPortConnections (p. 262)
GetiSCSIPortStatisticsDetails (p. 266)
GetSANPortDetails (p. 286)
GetSANProtocolStatistics (p. 288)
GetSANSlammerPortDetails (p. 290)
GetSlammerStatistics (p. 296)
ModifyHBAPort (p. 342)
ModifyiSCSIPortDetails (p. 343)
NAME GetAllSchedules

DESCRIPTION Displays a list of schedules that perform jobs at the scheduled time.

SYNTAX pdscli {request | submit} GetAllSchedules

OPTIONS None.

EXAMPLES Run the following command to display a list of scheduled operations that are defined on your system.
 pdscli request GetAllSchedules

 See the GetAllSchedulesResponse.txt file for example response data.

SEE ALSO GetScheduleDetails on p. 291
 GetAllJobs on p. 220
 Ranges for Option Values on p. 57
NAME
GetAllSessions

DESCRIPTION
Displays a list of administrator sessions. Every administrator that is logged in has an active session.

SYNTAX
pdscli {request | submit} GetAllSessions

OPTIONS
None.

EXAMPLES
Run the following command to list the active administrator sessions.

pdscli request GetAllSessions

See the GetAllSessionsResponse.txt file for example response data.

SEE ALSO
- GetAllAccounts on p. 200
- GetAccountDetails on p. 198
- Ranges for Option Values on p. 57
NAME GetAllSlammers

DESCRIPTION Displays a list of Slammers that are configured on the Pillar Axiom storage system.

SYNTAX pdscli {request | submit} GetAllSlammers
 ServiceType={NAS | SAN}

OPTIONS ServiceType
Identifies whether a Slammer provides NAS or SAN services. Choose from:
• NAS, which specifies that the Slammer is configured with NAS network interface modules and provides NAS services.
• SAN, which specifies that the Slammer is configured with SAN network interface modules and provides SAN services.

EXAMPLES Run the following command to display a list of NAS Slammers on your system.
 pdscli request GetAllSlammers @input
 where input.req contains the following name/value pairs:
 Request=GetAllSlammers
 ServiceType=NAS

 See the GetAllSlammersResponse.txt file for example response data.

SEE ALSO GetSlammerDetails on p. 295
Ranges for Option Values on p. 57
NAME GetAllSnapLUNHierarchies

DESCRIPTION Displays a list of all Snap LUN hierarchies.

SYNTAX pdsc1i {request | submit} GetAllSnapLUNHierarchies

OPTIONS None

EXAMPLES Run the following command to display a list of all snap LUN hierarchies.
pdsc1i request GetAllSnapLUNHierarchies @input

See the GetAllSnapLUNHierarchiesResponse.txt file for example response data.

SEE ALSO DeleteSnapLUN on p. 191
GetAllSnapLUNs on p. 233
GetSnapLUNDetails on p. 297
ModifySnapLUN on p. 381
PerformLUNDuplication on p. 447
PerformBackgroundLUNDuplication on p. 402
Ranges for Option Values on p. 57
NAME GetAllSnapLUNs

DESCRIPTION Displays a list of all Snap LUNs associated with a specified volume group.

SYNTAX pdscli {request | submit} GetAllSnapLUNs
Source=GUID-or-FQN-of-Snap LUN

OPTIONS Source [optional]
Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Snap LUN for which you want to display LUNs.

EXAMPLES Run the following command to list the Snap LUNs that are associated with EngLUN.

pdscli request GetAllSnapLUNs @input

where input.req contains the following name/value pairs:
Request=GetAllSnapLUNs
Source=/EngLUN

See the GetAllSnapLUNsResponse.txt file for example response data.

SEE ALSO
DeleteSnapLUN on p. 191
GetAllSnapLUNHierarchies on p. 232
GetSnapLUNDetails on p. 297
ModifySnapLUN on p. 381
PerformLUNDuplication on p. 447
PerformBackgroundLUNDuplication on p. 402
Ranges for Option Values on p. 57
NAME
GetAllTapeRobots

DESCRIPTION
Displays a list of tape devices that the Pillar Axiom storage system has discovered.

SYNTAX
`pdscli {request | submit} GetAllTapeRobots`

OPTIONS
None.

EXAMPLES
Run the following command to display a list of tape devices that are attached to your system to back up data that is stored on the system.

```
pdscli request GetAllTapeRobots
```

See the `GetAllTapeRobotsResponse.txt` file for example response data.

SEE ALSO
- [PerformTapeRobotDiscovery on p. 504](#)
- [Ranges for Option Values on p. 57](#)
NAME | GetAllTasks
DESCRIPTION | Displays a list of tasks and the status of each.
SYNTAX | `pdscli {request | submit} GetAllTasks`
OPTIONS | None.
EXAMPLES | You want to know if any tasks show a status of “InProgress.” Run the following command to display a list of tasks.
| `pdscli request GetAllTasks`
See the `GetAllTasksResponse.txt` file for example response data.
SEE ALSO |
| [GetTaskDetails on p. 304](#)
| [GetAllJobs on p. 220](#)
| [Ranges for Option Values on p. 57](#)
<table>
<thead>
<tr>
<th>NAME</th>
<th>GetAllUpdateComponents</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Displays a list of firmware and software modules that are</td>
</tr>
<tr>
<td></td>
<td>installed in the system that can receive software updates.</td>
</tr>
<tr>
<td>SYNTAX</td>
<td>`pdscli {request</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>None.</td>
</tr>
<tr>
<td>EXAMPLES</td>
<td>Run the following command to display a list of installed</td>
</tr>
<tr>
<td></td>
<td>components in your Pillar Axiom storage system that can be</td>
</tr>
<tr>
<td></td>
<td>updated.</td>
</tr>
<tr>
<td></td>
<td><code>pdscli request GetAllUpdateComponents</code></td>
</tr>
<tr>
<td></td>
<td>See the <code>GetAllUpdateComponentsResponse.txt</code> file for</td>
</tr>
<tr>
<td></td>
<td>example response data.</td>
</tr>
<tr>
<td>SEE ALSO</td>
<td><code>GetUpdatePackageDetails on p. 305</code></td>
</tr>
<tr>
<td></td>
<td><code>Ranges for Option Values on p. 57</code></td>
</tr>
</tbody>
</table>
NAME

GetAllUpdatePackages

DESCRIPTION

Displays a list of update packages that have been staged on the Pillar Axiom storage system.

SYNTAX

```
 pdscli {request | submit} GetAllUpdatePackages
```

OPTIONS

None.

EXAMPLES

Run the following command to display a list of update packages that are staged on your system.

```
pdscli request GetAllUpdatePackages
```

See the `GetAllUpdatePackagesResponse.txt` file for example response data.

SEE ALSO

- [GetUpdatePackageDetails on p. 305](#)
- [Ranges for Option Values on p. 57](#)
NAME GetAllVerifyOperations

DESCRIPTION The system automatically generates system verifications. This command displays a list of the system verifications.

SYNTAX pdscli {request | submit}GetAllVerifyOperations

OPTIONS None.

EXAMPLES Run the following command to display a list of system verifications.

pdscli request GetAllVerifyOperations @input

See the GetAllVerifyOperationsResponse.txt file for example response data.

SEE ALSO GetAllTasks on p. 235
GetTaskDetails on p. 304
PerformCancelTask on p. 404
Ranges for Option Values on p. 57
NAME GetAllVirtualInterfaces

DESCRIPTION Displays a list of virtual network interfaces that are defined for the specified File Server.

SYNTAX

pdscli {request | submit} GetAllVirtualInterfaces
 FileServer=GUID-or-FQN-of-File-Server

OPTIONS FileServer

 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

 Enter the GUID or FQN of the File Server for which you want to display a list of virtual network interfaces.

EXAMPLES Run the following command to display a list of virtual interfaces that are defined for the Company-XYZ-FS1 File Server.

pdscli request GetAllVirtualInterfaces @input

where input.req contains the following name/value pairs:
Request=GetAllVirtualInterfaces
FileServer=/Company-XYZ-FS1

See the GetAllVirtualInterfacesResponse.txt file for example response data.

SEE ALSO GetAllFileServers on p. 213

GetVirtualInterfaceDetails on p. 307

Ranges for Option Values on p. 57
NAME GetAllVolumeGroups

DESCRIPTION Displays a list of the volume groups that are used to organize logical volumes (filesystems and LUNs).

SYNTAX pdscli {request | submit} GetAllVolumeGroups
 VolumeGroup=GUID-or-FQN-of-parent-volume-group

OPTIONS VolumeGroup
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

 Enter the GUID or FQN of the next-highest volume group in the hierarchy. If volume groups are not nested, or if the next-highest level is the System itself, enter the GUID or FQN of the System.

EXAMPLES Run the following command to display a list of volume groups that are defined on your system. To do so, enter the FQN of the System.
 pdscli request GetAllVolumeGroups

 where input.req contains the following name/value pairs:
 Request=GetAllVolumeGroups
 VolumeGroup=/Company-XYZ-data

 See the GetAllVolumeGroupsResponse.txt file for example response data.

SEE ALSO GetVolumeGroupDetails on p. 308
 Ranges for Option Values on p. 57
Chapter 4 Management Requests

NAME GetBackupRunStatistics

DESCRIPTION Displays performance statistics for the specified backups.

SYNTAX pdscli {request | submit} GetBackupRunStatistics
 BackupRun=GUID-or-FQN-of-backup

OPTIONS BackupRun
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.
 Enter the GUID or FQN of all backups for which you want to display
 performance statistics.

EXAMPLES Run the following command to display performance statistics for the last
 backup that was performed on the engineering filesystems.
 pdscli request GetBackupRunStatistics @input
 where input.req contains the following name/value pairs:
 Request=GetBackupRunStatistics
 BackupRun=IDA0479DC2-38EF-9828-8902-
 E0FC03743270
 See the GetBackupRunStatisticsResponse.txt file for example response data.

SEE ALSO GetAllBackupRuns on p. 203

Ranges for Option Values on p. 57
NAME GetBrickDetails

DESCRIPTION Displays information about the specified Bricks.

SYNTAX pdscli {request | submit} GetBrickDetails
 Brick=GUID-or-FQN-of-Brick

OPTIONS Brick
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.

 Enter the GUID or FQN of all Bricks for which you want to display
 information.

EXAMPLES Run the following command to display information about the three Bricks that
 are configured on your Pillar Axiom storage system.
 pdscli request GetBrickDetails @input

 where input.req contains the following name/value pairs:
 Request=GetBrickDetails
 Brick=/Company-XYZ-data/Brick1
 Brick=/Company-XYZ-data/Brick2
 Brick=/Company-XYZ-data/Brick3

 See the GetBrickDetailsResponse.txt file for example response data.

SEE ALSO GetAllBricks on p. 204

Ranges for Option Values on p. 57
NAME

GetCallHomeMatrixDetails

DESCRIPTION

Displays Call-Home Matrix details that have been sent to the Pillar World Wide Customer Support Center.

The Call-Home feature is defined as:

A Pillar Axiom feature that, when enabled, allows the system to notify the Pillar World Wide Customer Support Center of critical issues specific to the Pillar Axiom storage system. No customer data is transmitted. The Call-Home feature transfers files over the Internet using one of the following user-selected methods:

- SCP: Uses secure copy (SCP) with 1024-bit encryption and secure keys.
- HTTPS: Sends files either directly to the Pillar World Wide Customer Support Center or through a proxy server for security purposes. Can also be used when the Pillar Axiom storage system does not have direct access to the Internet.

SYNTAX

```
pdscli {request | submit} GetCallHomeMatrixDetails
```

OPTIONS

None.

EXAMPLES

Run the following command to display results of the latest details.

```
pdscli
```

See the GetCallHomeMatrixDetailsResponse.txt file for example response data.
NAME GetCIFSShareDetails

DESCRIPTION Displays information about the specified Common Internet File System (CIFS) shares.

SYNTAX pdsc1i {request | submit} GetCIFSShareDetails
CIFSShare=GUID-or-FQN-of-CIFS-share

OPTIONS CIFSShare
Identifies a specific Pillar Axiom object. Choose from:
• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of all CIFS shares for which you want to display information.

EXAMPLES Run the following command to display information about a CIFS share that is associated with the EngAtl filesystem.
pdsc1i request GetCIFSShareDetails @input

where input.req contains the following name/value pairs:
Request=GetCIFSShareDetails
CIFSShare=/Company-XYZ-FS1/EngAtl/src

See the GetCIFSShareDetailsResponse.txt file for example response data.

SEE ALSO GetAllCIFSShares on p. 206
Ranges for Option Values on p. 57
NAME GetCloneFSDetails

DESCRIPTION Displays all details of a specified Clone FS.

A Clone FS is a point-in-time, writeable snapshot of a filesystem, which can be used later to revert the filesystem. This snapshot retains the same QoS parameters as the source filesystem. It consumes storage capacity from the Clone FS storage space created for the source filesystem. A Clone FS can be scheduled to occur at any time. This provides a convenient method to branch from the source data without the need to do a full block-level copy.

SYNTAX pdscli {request | submit}
 GetCloneFSDetails
 CloneFSFQN=FQN-of-clonefs

OPTIONS

CloneFSFQN
Identifies a specific Pillar Axiom object.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name.

FQN Format:
/Fully/Qualified/ObjectName

Enter the FQN of the filesystem with which this share is associated. If there is more than one file server, use the FQN that includes the file server and filesystem.

EXAMPLES Run the following command to view details for a Clone FS named Company-XYZ-FS1.

pdscli request GetCloneFSDetails @input

where input.req contains the following name/value pairs:
Request=etCloneFSDetails
CloneFSFQN=/Company-XYZ-FS1

See the GetCloneFSDetailsResponse.txt file for example response data.

SEE ALSO
CreateCloneFS on p. 97
DeleteCloneFS on p. 172
GetAllCloneFSHierarchies on p. 207
GetAllCloneFSs on p. 208
GetAllSnapLUNs on p. 233
ModifyCloneFS on p. 317
NAME
GetCurrentDateTimeDetails

DESCRIPTION
Displays information about the current date and time on the Pillar Axiom storage system.

SYNTAX
```bash
pdscli {request | submit} GetCurrentDateTimeDetails
```

OPTIONS
None.

EXAMPLES
Runs the following command to display information about the time on your system.
```
pdscli request GetCurrentDateTimeDetails
```
See the GetCurrentDateTimeDetailsResponse.txt file for example response data.

SEE ALSO
- ModifyTimeConfig on p. 386
- Ranges for Option Values on p. 57
NAME GetCurrentTimeZoneDetails

DESCRIPTION Displays information about the current time zone that is defined for the Pillar Axiom storage system.

SYNTAX pdscli \{request | submit\} GetCurrentTimeZoneDetails

OPTIONS None.

EXAMPLES Run the following command to display information about the time zone that is defined for your system.

pdscli request GetCurrentTimeZoneDetails

See the GetCurrentTimeZoneDetailsResponse.txt file for example response data.

SEE ALSO GetCurrentDateTimeDetails on p. 247
Ranges for Option Values on p. 57
NAME GetDataConsistencyDetails

DESCRIPTION Displays results from the most recent run of the PerformVerifyDataConsistency request.

SYNTAX pdsc1i {request | submit} GetDataConsistencyDetails

OPTIONS None.

EXAMPLES Run the following command to display results of the latest data consistency verification.
 pdsc1i request GetDataConsistencyDetails

 See the GetDataConsistencyDetailsResponse.txt file for example response data.

SEE ALSO PerformVerifyDataConsistency on p. 515
 Ranges for Option Values on p. 57
NAME GetExternalUPSDeviceDetails

DESCRIPTION Displays information about a specific external uninterruptable power supply device.

SYNTAX pdscli {request | submit} GetExternalUPSDeviceDetails
 ups=GUID-or-FQN-of-UPS-device

OPTIONS ups

Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the UPS device to modify.

EXAMPLES Run the following command to display information about the UPS1 device.
pdscli request GetExternalUPSDeviceDetails @input

where input.req contains the following name/value pairs:
Request=GetExternalUPSDeviceDetails
ups=UPS1

See the GetExternalUPSDeviceDetailsResponse.txt file for example response data.

SEE ALSO GetAllExternalUPSDevices on p. 212

Ranges for Option Values on p. 57
NAME GetFCPortStatistics Details

DESCRIPTION Displays Fibre Channel (FC) port statistics.

SYNTAX

pdscli {request | submit} GetFCPortStatisticsDetails
NetworkInterfaceIOPort.Slammer=
 GUID-or-FQN-of-NAS Slammer
NetworkInterfaceIOPort.ControlUnitNumber=
 {0 | 1}
NetworkInterfaceIOPort.EthernetPortName=
 {Port0 | Port1}

OPTIONS

NetworkInterfaceIOPort.Slammer

Identifies a specific Pillar Axiom object. Choose from:
• Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
• Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Slammer.

NetworkInterfacePort.ControlUnitNumber

Identifies a specific control unit (CU) in a Slammer. Each Slammer contains
two CUs.

NetworkInterfacePort.EthernetPortName

Identifies the port on the Slammer that is assigned to the File Server’s
virtual network interface. Select a gigabit Ethernet network port on on one of
the data-path Slammers control unit (CU).
• If Link Aggregation is enabled, select port 0 (zero). You cannot create
 virtual interfaces on alternate port 1 when Link Aggregation is enabled.
• If Link Aggregation is disabled, select either port.

EXAMPLES

Run the following command to display FCPort statistics for Slammer1.

pdscli request GetFCPortStatisticsDetails @input

where input.req contains the following name/value pairs:

Request = GetFCPortStatisticsDetails
NetworkInterfaceIOPort.Slammer = Slammer1
NetworkInterfaceIOPort.ControlUnitNumber = 1
NetworkInterfaceIOPort.EthernetPortName = PORT0
See the GetFCPortStatisticsDetailsResponse.txt file for example response data.

SEE ALSO

GetFileServerStatistics (p. 254)
GetFileSystemStatistics (p. 260)
GetiSCSIPortStatisticsDetails (p. 266)
GetLUNStatistics (p. 272)
NAME GetFileServerDetails

DESCRIPTION Displays information about the specified File Servers.

SYNTAX

```bash
pdscli {request | submit} GetFileServerDetails
  FileServer=GUID-or-FQN-of-File-Server
```

OPTIONS FileServerID

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name.

Enter the GUID or FQN of all File Servers for which you want to display information.

EXAMPLES Run the following command to display information about the Company-XYZ-FS1 File Server.

```bash
pdscli request GetFileServerDetails @input

where input.req contains the following name/value pairs:
Request=GetFileServerDetails
FileServer=/Company-XYZ-FS1
```

See the GetFileServerDetailsResponse.txt file for example response data.

SEE ALSO GetAllFileServers on p. 213

GetFileServerStatistics on p. 254

Ranges for Option Values on p. 57
<table>
<thead>
<tr>
<th>NAME</th>
<th>GetFileServerStatistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Displays performance statistics for the specified File Servers.</td>
</tr>
</tbody>
</table>
| SYNTAX | pdsccli \{request | submit\} GetFileServerStatistics
 | \ ID=GUID-or-FQN-of-File-Server |
| OPTIONS | ID
 | Identifies a specific Pillar Axiom object. Choose from:
 | \ - Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 | \ - Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name.
 | Enter the GUID or FQN of all File Servers for which you want to display performance statistics. |
| EXAMPLES | Run the following command to display performance statistics for the Company-XYZ-FS1 File Server.
 | pdsccli request GetFileServerStatistics @input
 | where input.req contains the following name/value pairs:
 | Request=GetFileServerStatistics
 | ID=/Company-XYZ-FS1
 | See the GetFileServerStatisticsResponse.txt file for example response data. |
| SEE ALSO | GetAllFileServers on p. 213
 | GetFileServerDetails on p. 253
 | Ranges for Option Values on p. 57 |
NAME GetFileSystemDetails

DESCRIPTION Displays information about the specified filesystems.

SYNTAX pdscli {request | submit} GetFileSystemDetails
 ID=GUID-or-FQN-of-filesystem

OPTIONS ID

Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of all filesystems for which you want to display information.

EXAMPLES Run the following command to display information about the EngAtI filesystem.
 pdscli request GetFileSystemDetails @input

 where input.req contains the following name/value pairs:
 Request=GetFileSystemDetails
 ID=/Company-XYZ-FS1/EngAtI

 See the GetFileSystemDetailsResponse.txt file for example response data.

SEE ALSO GetAllFileSystems on p. 214
GetFileSystemStatistics on p. 260
Ranges for Option Values on p. 57
NAME GetFileSystemSnapshotDetails

DESCRIPTION Displays information about the specified Snap FSs.

SYNTAX pdscli {request | submit}
 GetFileSystemSnapshotDetails
 ID=GUID-or-FQN-of-Snap-FS

OPTIONS ID

Identifies a specific Pillar Axiom object. Choose from:

• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.

• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of all Snap FSs for which you want to display information.

EXAMPLES Run the following command to display information about a Snap FS that was created from the EngAtl filesystem.

pdscli request GetFileSystemSnapshotDetails @input

where input.req contains the following name/value pairs:

Request=GetFileSystemSnapshotDetails
ID=IDA0479DC2-38EF-9828-8902-E0FC03743270

See the GetFileSystemSnapshotDetailsResponse.txt file for example response data.

SEE ALSO

CreateFileSystemSnapshotSchedule on p. 124
DeleteFileSystemSnapshot on p. 177
DeleteFileSystemSnapshotSchedule on p. 179
GetAllFileSystemSnapshots on p. 216
GetAllFileSystemSnapshotSchedules on p. 218
GetFileSystemSnapshotScheduleDetails on p. 258
ModifyFileSystemSnapshot on p. 340
PerformFileSystemDuplication on p. 425
PerformBackgroundFileSystemDuplication on p. 400
PerformRestoreFileSystemFromSnapshot on p. 485
Chapter 4 Management Requests

PerformRebuildFileSystemRedundancy on p. 474

Ranges for Option Values on p. 57
NAME GetFileSystemSnapshotScheduleDetails

DESCRIPTION Displays information about the specified Snap FS schedules.

SYNTAX pdsccli {request | submit}
 GetFileSystemSnapshotScheduleDetails
 ID=GUID-or-FQN-of-Snap-FS-schedule

OPTIONS ID
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.

 Enter the GUID or FQN of all Snap FS schedules for which you want to
 display information.

EXAMPLES Run the following command to display information about a schedule that
 creates Snap FSs of the EngAtl filesystem.
 pdsccli request GetFileSystemSnapshotScheduleDetails
 @input

 where input.req contains the following name/value pairs:
 Request=GetFileSystemSnapshotScheduleDetails
 ID=IDA0479DC2-38EF-9828-8902-E0FC03743270

 See the GetFileSystemSnapshotScheduleDetails Response.txt file for
 example response data.

SEE ALSO CreateFileSystemSnapshotSchedule on p. 124
DeleteFileSystemSnapshot on p. 177
DeleteFileSystemSnapshotSchedule on p. 179
GetAllFileSystemSnapshots on p. 216
GetAllFileSystemSnapshotSchedules on p. 218
GetFileSystemSnapshotDetails on p. 256
ModifyFileSystemSnapshot on p. 340
PerformFileSystemDuplication on p. 425
PerformBackgroundFileSystemDuplication on p. 400
Chapter 4 Management Requests

PerformRestoreFileSystemFromSnapshot on p. 485
PerformRebuildFileSystemRedundancy on p. 474
Ranges for Option Values on p. 57
NAME GetFileSystemStatistics

DESCRIPTION Displays performance statistics for the specified filesystems.

SYNTAX pdscli {request | submit} GetFileSystemStatistics
ID=GUID-or-FQN-of-filesystem

OPTIONS ID

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of all filesystems for which you want to display performance statistics.

EXAMPLES Run the following command to display performance statistics for the EngAtl filesystem.

pdscli request GetFileSystemStatistics @input

where input.req contains the following name/value pairs:

Request=GetFileSystemStatistics
ID=/Company-XYZ-FS1/EngAtl

See the GetFileSystemStatisticsResponse.txt file for example response data.

SEE ALSO GetAllFileSystems on p. 214
GetFileSystemDetails on p. 255
Ranges for Option Values on p. 57
NAME GetGUISSLConfigDetails

DESCRIPTION Displays information about whether the Pillar Axiom Storage Services Manager graphical user interface (GUI) is configured to use secure sockets layer (SSL) certificates. If SSL certificates are used, certificate information is displayed.

SYNTAX pdscli {request | submit} GetGUISSLConfigDetails

OPTIONS None.

EXAMPLES Run the following command to display information about the SSL certificate that is configured on your system.

pdscli request GetGUISSLConfigDetails

See the GetGUISSLConfigDetailsResponse.txt file for example response data.

SEE ALSO Ranges for Option Values on p. 57
NAME GetHBAPortConnections

DESCRIPTION Lists information for a specified HBA port.

SYNTAX pdscli {request | submit} GetHBAPortConnections
 HBAPortWWN=World-wide-number

OPTIONS HBAPortWWN
 Identifies the address, or world wide name (WWN), of the specified host bus
 adapter (HBA).

EXAMPLES Run the following command to list information for an HBA port.
 pdscli request GetHBAPortConnections @input

 where input.req contains the following name/value pairs:
 Request=GetHBAPortConnections
 HBAPortWWN=21:00:00:e0:8b:11:b5:4a

 See the GetHBAPortConnectionsResponse.txt file for example response data.

SEE ALSO GetSANConfigDetails on p. 284
 GetHostMappingConfigDetails on p. 265
 GetAllSANHosts on p. 227
 ModifySANHost on p. 377
 PerformAssociateInitiatorsToHost on p. 398
 DeleteSANHost on p. 189
 Ranges for Option Values on p. 57
NAME GetHistoricalFileSystemStatistics

DESCRIPTION Displays performance statistics over the specified interval for the specified filesystems.

SYNTAX pdscli {request | submit}
 GetHistoricalFileSystemStatistics
 FileSystem=GUID-or-FQN-of-filesystem
 Interval={Always | Hourly | EightHourly | Daily | Weekly | Monthly | Quarterly | HalfYearly | Yearly}
 TimeFilter.AfterTimestamp=YYYY-MM-DDTHH:mm:SS.xx+-HH:mm
 TimeFilter.BeforeTimestamp=YYYY-MM-DDTHH:mm:SS.xx+-HH:mm

OPTIONS FileSystem
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.
 Enter the GUID or FQN of all filesystems for which you want to display
 historical performance statistics.

Interval
 Identifies the intervals at which the Pillar Axiom system calculates historical
 statistics. Choose from:
 • Always
 • Hourly
 • EightHourly
 • Daily
 • Weekly
 • Monthly
 • Quarterly
 • HalfYearly
 • Yearly

TimeFilter.AfterTimestamp AND TimeFilter.BeforeTimestamp
 Identifies the time period for data collection. Use the following format for the
 entry:
 YYYY-MM-DDTHH:mm:SS.xx+-HH:mm
where:

- YYYY-MM-DD designates a four-digit year, two-digit month, and two-digit day for the date.
- T is a separator that designates the start of the time portion of the string.
- HH:mm:SS designates hours, minutes, and seconds in values for a 24-hour clock.
- xx designates a fraction of a second, to two decimal places.
- +HH:mm designates the time zone as an offset from Coordinated Universal Time (UTC) in hours and minutes. Include the + or - prefix as appropriate for your time zone in relation to UTC.

EXAMPLES

Run the following command to display daily performance statistics for the EngAtl filesystem in the month of June.

```
pdscli request GetHistoricalFileSystemStatistics
  @input
```

where input.req contains the following name/value pairs:

- Request=GetHistoricalFileSystemStatistics
- FileSystem=/Company-XYZ-FS1/EngAtl
- Interval=Daily
- TimeFilter.AfterTimestamp=2004-06-01T00:01:00.00-08:00
- TimeFilter.BeforeTimestamp=2004-06-30T00:59:59.59-08:00

See the GetHistoricalFileSystemStatisticsResponse.txt file for example response data.

SEE ALSO

- GetFileSystemStatistics on p. 260
- GetFileSystemDetails on p. 255
- Ranges for Option Values on p. 57
NAME GetHostMappingConfigDetails

DESCRIPTION Displays storage assignment and configuration information for the LUNs that are mapped to a specific SAN host.

SYNTAX pdsccli {request | submit} GetHostMappingConfigDetails
 SANHostName=Host-name

OPTIONS SANHostName
 Identifies the name assigned to a specific SAN host.

EXAMPLES Run the following command to display information about the SANTest_02 host.
 pdsccli request GetHostMappingConfigDetails@input

 where input.req contains the following name/value pairs:
 Request=GetHostMappingConfigDetails
 SANHostName=SANTest_02

 See the GetHostMappingConfigDetailsResponse.txt file for example response data.

SEE ALSO GetSANConfigDetails on p. 284
 GetAllSANHosts on p. 227
 ModifySANHost on p. 377
 GetHBAPortConnections on p. 262
 PerformAssociateInitiatorsToHost on p. 398
 DeleteSANHost on p. 189
 Ranges for Option Values on p. 57
NAME GetiSCSIPortStatisticsDetails

DESCRIPTION Displays iSCSI port statistics.

SYNTAX pdscli {request | submit} GetiSCSIPortStatistics
 NetworkInterfaceIOPort.Slammer=
 GUID-or-FQN-of-SAN Slammer
 NetworkInterfaceIOPort.ControlUnitNumber=
 {0 | 1}
 NetworkInterfaceIOPort.EthernetPortName=
 {Port0 | Port1}

OPTIONS NetworkInterfaceIOPort.Slammer
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.
 FQN Format:
 /Fully/Qualified/ObjectName
 Enter the GUID or FQN of the SAN Slammer.

NetworkInterfaceIOPort.ControlUnitNumber
 Identifies a specific control unit (CU) in a Slammer. Each Slammer contains
 two CUs.

NetworkInterfaceIOPort.EthernetPortName
 Identifies the port on the Slammer that is assigned to the File Server’s
 virtual network interface. Select a gigabit Ethernet network port on one of
 the data-path Slammers control unit (CU).
 • If Link Aggregation is enabled, select port 0 (zero). You cannot create
 virtual interfaces on alternate port 1 when Link Aggregation is enabled.
 • If Link Aggregation is disabled, select either port.

EXAMPLES Run the following command to display iSCSI port statistics for Slammer1.
 pdscli request GetiSCSIPortStatisticsDetails @input

 where input.req contains the following name/value pairs:
 Request = GetiSCSIPortStatisticsDetails
 NetworkInterfaceIOPort.Slammer = Slammer1
 NetworkInterfaceIOPort.ControlUnitNumber = 1
 NetworkInterfaceIOPort.EthernetPortName = PORT0
See the GetiSCSIPortStatisticsDetailsResponse.txt file for example response data.

SEE ALSO

GetFCPortStatistics Details (p. 251)
GetSANPortDetails (p. 286)
GetSANProtocolStatistics (p. 288)
GetSlammerDetails (p. 295)
ModifyiSCSIPortDetails (p. 343)
NAME GetJobDetails

DESCRIPTION Displays information about the specified jobs. Jobs are scheduled tasks.

SYNTAX pdsc1i {request | submit} GetJobDetails
 Job=GUID-or-FQN-of-job

OPTIONS Job
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.
 FQN Format:
 /Fully/Qualified/ObjectName
 Enter the GUID or FQN of all jobs for which you want to display information.

EXAMPLES Run the following command to display information about the Snap FSs for the
 EngAtl filesystem.
 pdscli request GetJobDetails @input

 where input.req contains the following name/value pairs:
 Request=GetJobDetails
 Job[6]=IDA0479DC2-38EF-9828-8902-E0FC03743270
 Job[7]=IDf1234567-89ab-cde0-0123-456789eeee0

 See the GetJobDetailsResponse.txt file for example response data.

SEE ALSO GetAllJobs on p. 220

GetAllSchedules on p. 229

GetAllTasks on p. 235

Ranges for Option Values on p. 57
NAME GetLUNDetails

DESCRIPTION Displays information about a specified LUN. A LUN is defined as:

A logical volume within a storage area network (SAN). Administrators
assign storage resources and Quality of Service (QoS) attributes to each
logical unit (LUN).

SYNTAX
pdscli \{request | submit\} GetLUNDetails

ID=GUID-or-FQN-of-LUN

OPTIONS ID

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.

Enter the GUID or FQN of all LUNs for which you want to display
information.

EXAMPLES Run the following command to display information about EngLUN.

pdscli request GetLUNDetails @input

where input.req contains the following name/value pairs:

Request=GetLUNDetails
ID=/EngLUN

See the GetLUNDetailsResponse.txt file for example response data.

SEE ALSO CreateLUN on p. 135
DeleteLUN on p. 182
GetAllLUNs on p. 221
GetHostMappingConfigDetails on p. 265
GetLUNMappingConfigDetails on p. 270
ModifyLUN on p. 351
PerformConfigureLUNMapping on p. 412
PerformRebuildLUNRedundancy on p. 475
Ranges for Option Values on p. 57
Chapter 4 Management Requests

NAME GetLUNMappingConfigDetails

DESCRIPTION Displays storage assignment and configuration information for a specified LUN(s) or SnapLUN(s) that are mapped.

SYNTAX pdscli {request | submit} GetLUNMappingConfigDetails
 MappedLUNID=GUID-of-LUN
 MappedLUNFQN=FQN-of-LUN

OPTIONS MappedLUN

 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Mapped LUN or SnapLUN for which you want to display information.

EXAMPLES Run the following command to display information about EngLUN.

 pdscli request GetLUNMappingConfigDetails @input

 where input.req contains the following name/value pairs:
 Request=GetLUNMappingConfigDetails
 LUN=/EngLUN

 See the GetLUNMappingConfigDetailsResponse.txt file for example response data.

SEE ALSO CreateLUN on p. 135
DeleteLUN on p. 182
GetAllLUNs on p. 221
GetHostMappingConfigDetails on p. 265
GetLUNDetails on p. 269
ModifyLUN on p. 351
PerformConfigureLUNMapping on p. 412
PerformRebuildLUNRedundancy on p. 475

Ranges for Option Values on p. 57
NAME
GetLUNStatistics

DESCRIPTION
Display statistics for a specified LUN.

SYNTAX
```
pdscli {request | submit} GetLUNStatistics
   ID=GUID-or-FQN-of-LUN
```

OPTIONS
ID
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.

 Example GUID:

 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

 FQN Format:

 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the LUN for which you want to display information.

EXAMPLES
Run the following command to display information about EngLUN.
```
pdscli request GetLUNStatistics @input
where input.req contains the following name/value pairs:
Request=GetLUNStatistics
ID=/EngLUN
```

See the GetLUNStatisticsResponse.txt file for example response data.

SEE ALSO
- GetFileSystemStatistics on p. 260
- Ranges for Option Values on p. 57
<table>
<thead>
<tr>
<th>NAME</th>
<th>GetManagementConfigDetails</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Displays information about the global settings that are defined for the Pillar Axiom storage system.</td>
</tr>
<tr>
<td>SYNTAX</td>
<td>`pdscli {request</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>None.</td>
</tr>
</tbody>
</table>
| EXAMPLES | Run the following command to display information about the global settings in your system.
`pdscli request GetManagementConfigDetails`
See the `GetManagementConfigDetailsResponse.txt` file for example response data. |
| SEE ALSO |
GetGUISSLConfigDetails (p. 261)
GetHostMappingConfigDetails (p. 265)
GetLUNMappingConfigDetails (p. 270)
GetNASConfigDetails (p. 274)
GetNDMPConfigDetails (p. 275)
GetNTPServerConfigDetails (p. 279)
GetSANConfigDetails (p. 284)
GetSANPortDetails (p. 286)
GetSANSlammerPortDetails (p. 290)
GetSNMPConfigDetails (p. 298) |
Chapter 4 Management Requests

NAME GetNASConfigDetails

DESCRIPTION Displays information about the NAS storage configuration in the Pillar Axiom storage system. Details include the number of filesystems, capacity usage, and capacity that is reserved for overcommitted filesystems.

SYNTAX

```
pdscli {request | submit} GetNASConfigDetails
```

OPTIONS None.

EXAMPLES

Run the following command to display information about the NAS configuration in your system.

```
pdscli request GetNASConfigDetails
```

See the GetNASConfigDetailsResponse.txt file for example response data.

SEE ALSO

- [GetStorageConfig on p. 300](#)
- [GetAllFileSystems on p. 214](#)
- [GetFileSystemDetails on p. 255](#)
- [Ranges for Option Values on p. 57](#)
NAME
GetNDMPConfigDetails

DESCRIPTION
Displays information about the Network Data Management Protocol (NDMP) configuration settings.

SYNTAX
pdscli {request | submit} GetNDMPConfigDetails

OPTIONS
None.

EXAMPLES
Run the following command to display information about the NDMP configuration in your system.

```
pdscli request GetNDMPConfigDetails
```

See the GetNDMPConfigDetailsResponse.txt file for example response data.

SEE ALSO
- GetProductDetails on p. 281
- Ranges for Option Values on p. 57
NAME
GetNFSExportDetails

DESCRIPTION
Displays information about the specified Network File System (NFS) exports.

SYNTAX
pdscli {request | submit} GetNFSExportDetails
 NFSExport=GUID-or-FQN-of-NFS-export

OPTIONS
NFSExport
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name.

Enter the GUID or FQN of all NFS exports for which you want to display information.

EXAMPLES
Run the following command to display information about an export for the EngAtl filesystem.

```
pdscli request GetNFSExportDetails @input
```

where `input.req` contains the following name/value pairs:

```
Request=GetNFSExportDetails
NFSExport=IDA0479DC2-38EF-9828-8902-E0FC03743270
```

See the GetNFSExportDetailsResponse.txt file for example response data.

SEE ALSO
- [GetAllNFSExports on p. 222](#)
- [Ranges for Option Values on p. 57](#)
NAME GetNISUploadedFilesDetails

DESCRIPTION Displays information about the password, group, and netgroup files that are defined as Network Information Service (NIS) alternatives for the specified File Server.

SYNTAX

pdscli {request | submit}
 GetNISUploadedFilesDetails
 FileServer=GUID-or-FQN-of-File-Server

OPTIONS

FileServer
Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of all File Servers for which you want to display information.

EXAMPLES

Run the following command to display details about the NIS-alternative files that are associated with the Company-XYZ-FS1 File Server.

pdscli request GetNISUploadedFilesDetails @input

where input.req contains the following name/value pairs:
Request=GetNISUploadedFilesDetails
FileServer=/Company-XYZ-FS1

See the GetNISUploadedFilesDetailsResponse.txt file for example response data.

SEE ALSO

PerformNISFileUpload on p. 456

Ranges for Option Values on p. 57
NAME GetNotificationDefinitionDetails

DESCRIPTION Displays information about the specified notifications.

SYNTAX pdscli {request | submit}
 GetNotificationDefinitionDetails
 NotificationDefinition=GUID-or-FQN-of-notification-definition

OPTIONS NotificationDefinition

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of all notifications for which you want to display information.

EXAMPLES Run the following command to display information about the alert that is emailed to designated recipients when critical events occur in your system.

pdscli request GetNotificationDefinitionDetails
 @input

where input.req contains the following name/value pairs:

Request=GetNotificationDefinitionDetails
NotificationDefinition=IDA0479DC2-38EF-9828-8902-E0FC03743270

See the GetNotificationDefinitionDetailsResponse.txt file for example response data.

SEE ALSO GetAllNotificationDefinitions on p. 223

Ranges for Option Values on p. 57
NAME
GetNTPServerConfigDetails

DESCRIPTION
Displays information about the Network Time Protocol (NTP) configuration settings.

SYNTAX
pdscli {request | submit} GetNTPServerConfigDetails

OPTIONS
None.

EXAMPLES
Run the following command to display information about the NTP servers with which the clocks in your system are synchronized.

```
pdscli request GetNTPServerConfigDetails
```

See the GetNTPServerConfigDetailsResponse.txt file for example response data.

SEE ALSO
[Ranges for Option Values on p. 57](#)
NAME GetPilotDetails

DESCRIPTION Displays information about the Pillar Axiom Pilot.

SYNTAX pdscli {request | submit} GetPilotDetails

OPTIONS None.

EXAMPLES Run the following command to display information about the Pilot hardware component in your system.
 pdscli request GetPilotDetails

 See the GetPilotDetailsResponse.txt file for example response data.

SEE ALSO Ranges for Option Values on p. 57
NAME GetProductDetails

DESCRIPTION Displays information about the Pillar Axiom storage system. This request was designed for NDMP clients (DMAs) that back up and restore data on the system. The request results can be useful in other scenarios, too.

SYNTAX pdscli {request | submit} GetProductDetails

OPTIONS None.

EXAMPLES Run the following command to display information about your system.
 pdscli request GetProductDetails

 See the GetProductDetailsResponse.txt file for example response data.

SEE ALSO GetNDMPCfgDetails on p. 275
 Ranges for Option Values on p. 57
NAME GetQuotaDetails

DESCRIPTION Displays information about the specified quotas that are defined for NAS filesystems.

SYNTAX pdscli {request | submit} GetQuotaDetails
 ID=GUID-or-FQN-of-quota

OPTIONS ID
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 Enter the GUID or FQN of all filesystem quotas for which you want to display information.

EXAMPLES Run the following command to display information about a quota that is defined for the engineering organization’s filesystem, EngAtl.
 pdscli request GetQuotaDetails @input
 where input.req contains the following name/value pairs:
 Request=GetQuotaDetails
 ID=IDA0479DC2-38EF-9828-8902-E0FC03743270
 See the GetQuotaDetailsResponse.txt file for example response data.

SEE ALSO GetAllQuotas on p. 224

Ranges for Option Values on p. 57
NAME GetRouteDetails

DESCRIPTION Displays information about the specified secondary routes that are defined for a File Server. The primary route is an attribute of the File Server itself.

SYNTAX pdscli {request | submit} GetRouteDetails
 Route=GUID-or-FQN-of-network-route

OPTIONS Route
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 Enter the GUID or FQN of all routes for which you want to display information.

EXAMPLES Run the following command to display information about a route that you defined for Company-XYZ-FS1 File Server.
 pdscli request GetRouteDetails @input

 where input.req contains the following name/value pairs:
 Request=GetRouteDetails
 Route=IDA0479DC2-38EF-9828-8902-E0FC03743270

 See the GetRouteDetailsResponse.txt file for example response data.

SEE ALSO GetAllRoutes on p. 226
 GetAllFileServers on p. 213
 Ranges for Option Values on p. 57
NAME GetSANConfigDetails
DESCRIPTION Displays information about the system-wide SAN objects that are configured on the Pillar Axiom storage system.
SYNTAX pdsc1i {request | submit} GetSANConfigDetails
OPTIONS None.
EXAMPLES Run the following command to display information about the SAN objects that are configured on your system.
 pdsc1i request GetSANConfigDetails

 See the GetSANConfigDetailsResponse.txt file for example response data.
SEE ALSO GetHostMappingConfigDetails on p. 265
 GetAllSANHosts on p. 227
 ModifySANHost on p. 377
 GetHBAPortConnections on p. 262
 PerformAssociateInitiatorsToHost on p. 398
 DeleteSANHost on p. 189
 Ranges for Option Values on p. 57
<table>
<thead>
<tr>
<th>NAME</th>
<th>GetSANHostDetails</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Displays information for a specific SAN host.</td>
</tr>
<tr>
<td>SYNTAX</td>
<td>\texttt{pdscli {request</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>SANHostName</td>
</tr>
<tr>
<td></td>
<td>Identifies the name assigned to a specific SAN host.</td>
</tr>
</tbody>
</table>
| EXAMPLES | Run the following command to display information about the SANTest_02 host. \texttt{pdscli request GetSANHostDetails @input}
| | where input.req contains the following name/value pairs:
| | Request=GetSANHostDetails
| | SANHostName=SANTest_02
| | See the GetSANHostDetailsResponse.txt file for example response data. |
| SEE ALSO | GetHostMappingConfigDetails on p. 265
| | Ranges for Option Values on p. 57 |
NAME GetSANPortDetails

DESCRIPTION Displays detailed information about the SAN port.

SYNTAX

pdscli {request | submit} GetSANPortDetails
SANPortIdentifier.Slammer=GUID-or-FQN
SANPortIdentifier.ControlUnitNumber=
{0 | 1}
SANPortIdentifier.PortType=
{FibreChannel | iSCSI}
SANPortIdentifier.PortName=
{Port1 | Port0}

OPTIONS

SANPortIdentifier.Slammer
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID: ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 FQN Format: /Fully/Qualified/ObjectName

SANPortIdentifier.ControlUnitNumber
Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs.

SANPortIdentifier.PortType
Identifies the SAN Slammer port type: iSCSI or Fibre Channel.

SANPortIdentifier.PortName
Identifies the Slammer port name: Port0 or Port1.

EXAMPLES

Run the following command to display information about both Slammers that are configured on your system.
pdscli request GetSANPortDetails @input

where input.req contains the following name/value pairs:
Request=GetSANPortDetails
SANPortIdentifier.Slammer=/Company-XZY-data/Slammer1
SANPortIdentifier.ControlUnitNumber=1
SANPortIdentifier.PortType=FibreChannel
SANPortIdentifier.PortName=Port1
See the GetSANPortDetailsResponse.txt file for example response data.

See Also

- [GetAllSlammers on p. 231](#)
- [GetFCPortStatistics Details on p. 251](#)
- [GetiSCSIPortStatisticsDetails on p. 266](#)
- [GetSANConfigDetails on p. 284](#)
- [GetSANSlammerPortDetails on p. 290](#)
- [GetSlammerDetails on p. 295](#)
NAME GetSANProtocolStatistics

DESCRIPTION Displays the SAN statistics for a particular SAN network interface in the Pillar Axiom system.

SYNTAX pdscli {request | submit} GetSANProtocolStatistics
 NetworkInterfaceIOPort.Slammer=
 GUID-or-FQN-of-NAS Slammer
 NetworkInterfaceIOPort.ControlUnitNumber=
 {0 | 1}
 NetworkInterfaceIOPort.EthernetPortName=
 {Port0 | Port1}

OPTIONS

NetworkInterfaceIOPort.Slammer
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (0 through 9 and a
 through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name. Field types support
 UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName
Enter the GUID or FQN of the Slammer.

NetworkInterfacePort.ControlUnitNumber
Identifies a specific control unit (CU) in a Slammer. Each Slammer contains
two CUs. The CUs are identified by 0 (the top CU) and 1 (the bottom CU).

NetworkInterfacePort.EthernetPortName
Identifies the port on the Slammer that is assigned to the File Server's
virtual network interface. Select a gigabit Ethernet network port on on one of
the data-path Slammers control unit (CU).
- If Link Aggregation is enabled, select port 0 (zero). You cannot create
 virtual interfaces on alternate port 1 when Link Aggregation is enabled.
- If Link Aggregation is disabled, select either port.

EXAMPLES Run the following command to display SAN protocol statistics port 0 of control
 unit 1 on Slammer1.
 pdscli request GetSANProtocolStatistics @input
 where input.req contains the following name/value pairs:
 Request = GetSANProtocolStatistics
NetworkInterfaceIOPort.Slammer = Slammer1
NetworkInterfaceIOPort.ControlUnitNumber = 1
NetworkInterfaceIOPort.EthernetPortName = PORT0

See the GetSANProtocolStatistics Response.txt file for example response data.

SEE ALSO

GetSANConfigDetails on p. 284
Ranges for Option Values on p. 57
NAME GetSANSlammerPortDetails

DESCRIPTION Displays detailed information about the SAN Slammer port.

SYNTAX pdscli {request | submit} GetSANSlammerPortDetails
 SlammerID=GUID-of-Slammer
 SlammerFQN=FQN-of-Slammer

OPTIONS

SlammerID
Enter the globally unique ID (GUID), which is a 38-character string that
starts with "ID" and ends with 36 lower-case hex characters (a-f and 0-9)
and hyphens.

SlammerFQN
Enter the fully qualified name (FQN), which starts with a leading slash (/),
contains a parent object's name if needed to establish uniqueness of the
object, and ends with the object's name.
 FQN format;
 /Fully/Qualified/ObjectName

EXAMPLES Run the following command to display information about both Slammers that
are configured on your system.
pdscli request GetSANSlammerPortDetails @input

where input.req contains the following name/value pairs:
 Request=GetSANSlammerPortDetails
 SlammerID=IDA0479DC2-38EF-9828-8902-E0FC03743270

See the GetSANSlammerPortDetailsResponse.txt file for example response
data.

See Also
GetiSCSIPortStatisticsDetails on p. 266
GetSANConfigDetails on p. 284
GetSANPortDetails on p. 286
GetSANSlammerPortDetails on p. 290
GetSlammerDetails on p. 295
NAME
GetScheduleDetails

DESCRIPTION
Displays information about the specified schedule.

SYNTAX
```
pdsc1i {request | submit} GetScheduleDetails
    Schedule=GUID-or-FQN-of-schedule
```

OPTIONS
Schedule
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of all schedules for which you want to display information.

EXAMPLES
Run the following command to display information about a schedule that creates a Snap FS of the EngAtl filesystem.
```
pdsc1i request GetScheduleDetails @input
```
where input.req contains the following name/value pairs:
```
Request=GetScheduleDetails
Schedule=IDA0479DC2-38EF-9828-8902-E0FC03743270
```

See the GetScheduleDetailsResponse.txt file for example response data.

SEE ALSO
- [GetAllSchedules on p. 229](#)
- [GetAllFileSystemSnapshotSchedules on p. 218](#)
- [Ranges for Option Values on p. 57](#)
NAME GetSlammerCommandOutput

DESCRIPTION Displays Slammer command output from a previously run PerformSlammerCommand request. The output allows you to view results of commands related to networking, primarily to help troubleshoot networking problems.

SYNTAX pdscli \{request | submit\} GetSlammerCommandOutput
 CommandID=

OPTIONS CommandID
 Identifies the Slammer command output you wish to view.

EXAMPLES Run the following command to display Slammer command output.
 pdscli request GetSlammerCommandOutput @input

 where input.req contains the following name/value pairs:
 Request=GetSlammerCommandOutput
 CommandID =IDA0479DC2-38EF-9828-8902-E0FC03743270

 See the GetSlammerCommandOutputResponse.txt file for example response data.

SEE ALSO GetAllSlammers on p. 231
GetSlammerDetails on p. 295
GetSlammerStatistics on p. 296
ModifySlammer on p. 380
PerformSlammerCommand (p. 496)
Ranges for Option Values on p. 57
Chapter 4 Management Requests

NAME GetSlammerControlUnitDiagnosticDetails

DESCRIPTION Displays Slammer control unit diagnostic details. Use this command to troubleshoot Slammer hardware or view results of a power-on self test (POST). This request requires the installation of test devices and should never be initiated without the participation of the Pillar World Wide Customer Support Center.

Important! The system will shut down the control unit when you issue this command.

SYNTAX pdscli {request | submit} GetSlammerControlUnitDiagnosticDetails
 Slammer=GUID-or-FQN-of-UPS-device
 ControlUnitNumber={0 | 1}

OPTIONS Slammer

Identifies a specific Pillar Axiom object. Choose from:

• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0

• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

ControlUnitNumber

Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs. The CUs are identified by 0 (the top CU) and 1 (the bottom CU).

EXAMPLES Run the following command to display Slammer command output.

pdscli request GetSlammerControlUnitDiagnosticDetails @input

where input.req contains the following name/value pairs:

Request=GetSlammerControlUnitDiagnosticDetails
 Slammer=/Company-XZY-data/Slammer1
 ControlUnitNumber=1

See the GetSlammerControlUnitDiagnosticDetails Response.txt file for example response data.

SEE ALSO GetAllSlammers on p. 231
Chapter 4 Management Requests

GetSlammerDetails on p. 295
GetSlammerStatistics on p. 296
ModifySlammer on p. 380
Ranges for Option Values on p. 57
NAME GetSlammerDetails

DESCRIPTION Displays information about the specified Slammers.

SYNTAX

```pdscli {request | submit} GetSlammerDetails
Slammer=GUID-or-FQN-of-Slammer```

OPTIONS Slammer

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of all Slammers for which you want to display information.

EXAMPLES

Run the following command to display information about both Slammers that are configured on your system.

```pdscli request GetSlammerDetails @input```

where input.req contains the following name/value pairs:

<table>
<thead>
<tr>
<th>Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetSlammerDetails</td>
</tr>
<tr>
<td>Slammer=/Company-XZY-data/Slammer1</td>
</tr>
<tr>
<td>Slammer=/Company-XZY-data/Slammer2</td>
</tr>
</tbody>
</table>

See the GetSlammerDetailsResponse.txt file for example response data.

SEE ALSO

- [GetAllSlammers](#) on p. 231
- [GetSlammerStatistics](#) on p. 296
- [Ranges for Option Values](#) on p. 57
NAME GetSlammerStatistics

DESCRIPTION Displays performance statistics for the specified Slammers.

SYNTAX pdscli {request | submit} GetSlammerStatistics
 ID=GUID-or-FQN-of-Slammer

OPTIONS ID

 Identifies a specific Pillar Axiom object. Choose from:
 - Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 - Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

 Enter the GUID or FQN of all Slammers for which you want to display performance statistics.

EXAMPLES Run the following command to display performance statistics for both Slammers that are configured on your system.

 pdscli request GetSlammerStatistics @input

 where input.req contains the following name/value pairs:
 Request=GetSlammerStatistics
 ID=/Company-XZY-data/Slammer1
 ID=/Company-XZY-data/Slammer2

 See the GetSlammerStatisticsResponse.txt file for example response data.

SEE ALSO GetAllSlammers on p. 231

 GetSlammerDetails on p. 295

 Ranges for Option Values on p. 57
NAME GetSnapLUNDetails

DESCRIPTION Displays information for a specified Snap LUN.

SYNTAX

```
pdscli {request | submit} GetSnapLUNDetails
    Source=GUID-or-FQN-of-schedule
```

OPTIONS

Source

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (0 through 9 and a
 through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name. Field types support
 UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the LUN for which you want to display
information.

EXAMPLES

Run the following command to display information for the SLUN_01 Snap LUN

```
pdscli request GetSnapLUNDetails @input
```

where input.req contains the following name/value pairs:

Request=GetSnapLUNDetails
Source=/SLUN_01

See the GetSnapLUNDetailsResponse.txt file for example response data.

SEE ALSO

DeleteSnapLUN on p. 191
GetAllSnapLUNs on p. 233
GetAllSnapLUNDHierarchies on p. 232
ModifySnapLUN on p. 381
PerformLUNDuplication on p. 447
PerformBackgroundLUNDuplication on p. 402
Ranges for Option Values on p. 57
NAME GetSNMPCfgDetails

DESCRIPTION Displays information about the Simple Network Management Protocol (SNMP) configuration settings.

SYNTAX pdscl {request | submit} GetSNMPCfgDetails

OPTIONS None.

EXAMPLES Run the following command to display information about the SNMP configuration on your system.
 pdscl request GetSNMPCfgDetails

 See the GetSNMPCfgDetailsResponse.txt file for example response data.

SEE ALSO Ranges for Option Values on p. 57
NAME
GetSpareDriveDetails

DESCRIPTION
Displays information about the spare disk drives in the Bricks that are configured on the system.

SYNTAX
pdscli {request | submit} GetSpareDriveDetails

OPTIONS
None.

EXAMPLES
Run the following command to display information about the spare disk drives in the Bricks that are configured on your system.

```
pdscli request GetSpareDriveDetails
```

See the GetSpareDriveDetailsResponse.txt file for example response data.

SEE ALSO
Ranges for Option Values on p. 57
NAME GetStorageConfig

DESCRIPTION Displays information about the storage configuration on the Pillar Axiom storage system.

SYNTAX pdscli {request | submit} GetStorageConfig

OPTIONS None.

EXAMPLES Run the following command to display information about your storage configuration.
 pdscli request GetStorageConfig

 See the GetStorageConfigResponse.txt file for example response data.

SEE ALSO GetNASConfigDetails on p. 274
 GetSystemStatusDetails on p. 303
 Ranges for Option Values (p. 57)
NAME
GetStorageRedundancyDetails

DESCRIPTION
Displays results from the most recent run of the PerformVerifyStorageRedundancy request.

SYNTAX
```
pdscli {request | submit} GetStorageRedundancyDetails
```

OPTIONS
None.

EXAMPLES
Run the following command to display results of the latest storage redundancy verification.
```
pdscli request GetStorageRedundancyDetails
```
See the GetStorageRedundancyDetailsResponse.txt file for example response data.

SEE ALSO
- [PerformVerifyStorageRedundancy on p. 516](#)
- [Ranges for Option Values on p. 57](#)
NAME GetSystemInformationFileDetails

DESCRIPTION Displays results from the most recent run of the
 PerformVerifySystemConfiguration request.

SYNTAX pdscli {request | submit}
 GetSystemInformationFileDetails

OPTIONS None.

EXAMPLES Run the following command to display results of the latest system
 configuration verification.
 pdscli request GetSystemInformationFileDetails

 See the GetSystemInformationFileDetailsResponse.txt file for example
 response data.

SEE ALSO PerformCollectSystemInformation on p. 407
 GetFileSystemStatistics on p. 260
 Ranges for Option Values on p. 57
NAME
GetSystemStatusDetails

DESCRIPTION
Displays summary status information for the Pillar Axiom storage system.

SYNTAX
pdscli {request | submit} GetSystemStatusDetails
RequestForEC={true | false}

OPTIONS
RequestForEC

EXAMPLES
Run the following command to display status information for your system.
pdscli request GetSystemStatusDetails
RequestForEC=True

See the GetSystemStatusResponse.txt file for example response data.

SEE ALSO
GetAllTasks on p. 235
GetAllSessions on p. 230
PerformCollectSystemInformation on p. 407
Ranges for Option Values on p. 57
NAME GetTaskDetails

DESCRIPTION Displays information about the specified tasks. A *task* is a fundamental unit of work within a Pillar Axiom storage system. The system converts every configuration request into one or more tasks, queues the tasks so that dependencies are satisfied, and performs the tasks.

SYNTAX

```
pdscli {request | submit} GetTaskDetails
    Task=GUID-or-FQN-of-task
```

OPTIONS Task

Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of all tasks for which you want to display information.

EXAMPLES

Run the following command to display information about two configuration tasks.
```
pdscli request GetTaskDetails @input
```

where `input.req` contains the following name/value pairs:
```
Request=GetTaskDetails
Task[6]=IDA0479DC2-38EF-9828-8902-E0FC03743270
Task[7]=IDf1234567-89ab-cde0-0123-456789eeeee0
```

See the GetTaskDetailsResponse.txt file for example response data.

SEE ALSO

GetAllTasks on p. 235

Ranges for Option Values on p. 57
Chapter 4 Management Requests

NAME GetUpdatePackageDetails

DESCRIPTION Displays information about the specified update packages that are staged on the Pillar Axiom storage system.

SYNTAX `pdscli {request | submit} GetUpdatePackageDetails`
 `UpdatePackage=GUID-or-FQN-of-upgrade-package`

OPTIONS UpdatePackage
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID: ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 FQN Format: /Fully/Qualified/ObjectName

 Enter the GUID or FQN of all update packages for which you want to display information.

 For simplicity, use a meaningful name such as /Current, /Previous, or /Staged. For example, if you have just uploaded an update package, you can display the details and components of that recently-staged package with:
 `GetUpdatePackageDetails UpdatePackage=/Staged`.

EXAMPLES Run the following command to display information about an update package that has been staged, but not yet installed, on your system.

`pdscli request GetUpdatePackageDetails @input`

where `input.req` contains the following name/value pairs:

Request=GetUpdatePackageDetails
UpdatePackage=/Staged

See the GetUpdatePackageDetailsResponse.txt file for example response data.

SEE ALSO
- `GetAllUpdateComponents on p. 236`
- `GetPilotDetails on p. 280`
- `GetSlammerDetails on p. 295`
- `GetBrickDetails on p. 242`
Ranges for Option Values (p. 57)
NAME GetVirtualInterfaceDetails

DESCRIPTION Displays information about the specified secondary virtual interfaces that are defined for a File Server. The primary virtual interface is an attribute of the File Server itself.

SYNTAX pdscli {request | submit} GetVirtualInterfaceDetails VirtualInterface=GUID-or-FQN-of-interface

OPTIONS VirtualInterface
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 Enter the GUID or FQN of all virtual interfaces for which you want to display information.

EXAMPLES Run the following command to display information about a secondary virtual interface that you defined for the Company-XYZ-FS1 File Server.
pdscli request GetVirtualInterfaceDetails @input

where input.req contains the following name/value pairs:
Request=GetVirtualInterfaceDetails
VirtualInterface=IDA0479DC2-38EF-9828-8902-E0FC03743270

See the GetVirtualInterfaceDetailsResponse.txt file for example response data.

SEE ALSO GetAllVirtualInterfaces on p. 239
Ranges for Option Values on p. 57
NAME GetVolumeGroupDetails

DESCRIPTION Displays information about the specified volume groups.

SYNTAX pdscli {request | submit} GetVolumeGroupDetails
 VolumeGroup=GUID-or-FQN-of-volume-group

OPTIONS VolumeGroup
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.

 Enter the GUID or FQN of all volume groups for which you want to display
 information.

EXAMPLES Run the following command to display information about the Eng volume
 group.
 pdscli request GetVolumeGroupDetails @input

 where input.req contains the following name/value pairs:
 Request=GetVolumeGroupDetails
 VolumeGroup=/Eng

 See the GetVolumeGroupDetailsResponse.txt file for example response data.

SEE ALSO GetAllVolumeGroups on p. 240
 Ranges for Option Values on p. 57
NAME Login

DESCRIPTION Starts a command line interface (CLI) session for the specified Pillar Axiom administrator or NDMP account.

SYNTAX pdscli {request | submit} Login
 Username=string
 Password=string

OPTIONS Username
 Enter a valid user name that is defined for a Pillar Axiom administrator account.
 Note: If you specify a value, it will override values you may have saved in configuration files or environment variables.

 Password
 Enter a valid password that is defined for the specified user name.
 Note: If you specify a value, it will override values you may have saved in configuration files or environment variables.

EXAMPLES Run the following command to log in to manage your Pillar Axiom storage system.
 pdscli request Login @input

 where input.req contains the following name/value pairs:
 Request=Login
 Username=xavier
 Password=s7Zl2W79

 See the LoginResponse.txt file for example response data.

SEE ALSO Logout on p. 310

 Relogin on p. 524

 Ranges for Option Values on p. 57
NAME

Logout

DESCRIPTION

Terminates a command line interface (CLI) session.

SYNTAX

```bash
pdscli {request | submit} Logout
```

OPTIONS

None.

EXAMPLES

Run the following command to log out from your administrative session.

```bash
pdscli request Logout
```

See the LogoutResponse.txt file for example response data.

SEE ALSO

- [Login on p. 309](#)
- [Relogin on p. 524](#)
- [Ranges for Option Values on p. 57](#)
NAME
ModifyAccount

DESCRIPTION
Modifies the specified administrator account.

SYNTAX
pdscsi {request | submit} ModifyAccount
 Account=GUID-or-FQN-of-account
 Username=login-name
 Fullname=First Last
 Password=new-password
 RetypePassword=new-password
 EmailAddress=name@domain.com
 PhoneNumber=telephone-number
 Status={Enabled | Disabled}
 Role={Type1 | Type2 | Type3}
 SSHState={Enabled | Disabled}

OPTIONS
Account
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the account to modify.

Username [optional]
Identifies the administrator's login (user) name.

Fullname [optional]
Identifies the administrator’s full name (“first” and “last”).

Password [optional]
Identifies the login password. Passwords are case sensitive, and blank passwords are not permitted.

RetypePassword [optional]
Enter the password again.

EmailAddress [optional]
Identifies the recipient’s email address. The email server to which the Pillar Axiom system sends alerts must be able to send messages to this email address.
PhoneNumber [optional]
Identifies the recipient’s telephone number. The Pillar Axiom system does not verify the validity of this entry.

Note: Enclose telephone numbers with spaces in quotes.

Status [optional]
Identifies whether the administrator account is enabled.
- Enabled accounts are active. Administrators whose accounts are enabled can log in to the Pillar Axiom storage system.
- Disabled accounts are inactive. Administrators whose accounts are disabled cannot log in.

Role [optional]
Identifies the administrator’s role. A role defines the administrator’s privileges. Choose from:
- Type1, if the person can perform all configuration and administration tasks.
- Type2, if the person can perform all tasks except create, modify, and delete administrator accounts and File Servers; modify global, SNMP, and NDMP settings; modify software or hardware configurations; or shut down the system.
- Type3, if the person can display information only, and cannot modify the configuration.

You cannot assign administrators to the following predefined roles:
- PrimarySystem, which identifies the Primary system administrator. This role has the same privileges as the Type1 role.
- PrimarySupport, which identifies the Primary Support Administrator. This role can perform support-related activities.

You cannot delete the PrimarySystem and PrimarySupport accounts.

SSHState [optional]
Controls whether or not the account will allow the Support account to enable SSH with a support request.
- Enabled allows the Support account to enable SSH. The Admin1 cannot enable SSH under any circumstances.
- Disabled prohibits the Support account to SSH.

EXAMPLES
Run the following command to disable Yvette Smith’s account when she starts a three-month leave of absence.
```
pdscli request ModifyAccount @input
```
where input.req contains the following name/value pairs:
```
Request=ModifyAccount
Account=IDf1234567-89ab-cde0-0123-456789eeeee0
```
Username=Yvette
Status=Disabled
SSHState=Enabled

See the ModifyAccountResponse.txt file for example response data.

SEE ALSO

CreateAccount on p. 92
DeleteAccount on p. 169
ModifyMyAccount on p. 367
Ranges for Option Values on p. 57
Chapter 4 Management Requests

NAME ModifyBrick

DESCRIPTION Modifies the specified Brick component.

SYNTAX

pdscli {request | submit} ModifyBrick

 Brick=GUID-or-FQN-of-Brick
 Name=string

OPTIONS

Brick

Identifies a specific Pillar Axiom object. Choose from:

• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.

• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name.

Enter the GUID or FQN of the Brick to modify.

Name

Identifies the name that is assigned to a hardware component. Assign unique, meaningful component names to help you more easily locate specific components. The Pillar Axiom system maps the assigned name to the component’s serial number and updates the map if you modify the component name.

EXAMPLES

Run the following command to assign a new name to a Brick in your system.

pdscli request ModifyBrick @input

where input.req contains the following name/value pairs:

 Request=ModifyBrick
 Brick=SE1
 Name=Brick1

See the ModifyBrickResponse.txt file for example response data.

SEE ALSO

GetAllBricks on p. 204

GetBrickDetails on p. 242

Ranges for Option Values on p. 57
Chapter 4 Management Requests

NAME ModifyCIFSShare

DESCRIPTION Modifies the specified Common Internet File System (CIFS) share.

SYNTAX pdscli {request | submit} ModifyCIFSShare
 CIFSShare=GUID-or-FQN-of-CIFS-share
 Name=share-name
 Comment=share-comment
 Enabled={true | false}
 Path=/path/to/directory/with/UNIX/slashes

OPTIONS CIFSShare
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.
 Enter the GUID or FQN of the CIFS share to modify.

Name [optional]
 Identifies the name of a CIFS share. A filesystem must be shared before
 users can create or access data files. Share names must be unique within a
 File Server.

Comment [optional]
 Describes the CIFS share.

Enabled [optional]
 Identifies whether the CIFS share is enabled.
 • Enabled shares are active. Users can access an enabled share point.
 • Disabled shares are inactive. Users cannot access a disabled share
 point.

Path [optional]
 Enter the full path to the CIFS share.

EXAMPLES Run the following command to temporarily disable a specific CIFS share on
 the EngAtl filesystem.
 pdscli request ModifyCIFSShare @input
 where input.req contains the following name/value pairs:
 Request=ModifyCIFSShare
 CIFSShare=IDA0479DC2-38EF-9828-8902-E0FC03743270
 Enabled=false
See the ModifyCIFSShareResponse.txt file for example response data.

SEE ALSO

CreateCIFSShare on p. 95
DeleteCIFSShare on p. 171
Ranges for Option Values on p. 57
NAME ModifyCloneFS
DESCRIPTION Modifies a Clone FS on a Pillar Axiom system.

A Clone FS is a point-in-time, writeable snapshot of a filesystem, which can be used later to revert the filesystem. This snapshot retains the same QoS parameters as the source filesystem. It consumes storage capacity from the Clone FS storage space created for the source filesystem. A Clone FS can be scheduled to occur at any time. This provides a convenient method to branch from the source data without the need to do a full block-level copy.

An immediate Clone FS consumes part of the filesystem's capacity.

SYNTAX pdsc1i {request | submit} ModifyCloneFS
 CloneFSFQN=FQN-of-clonefs
 CloneFSName=clonefs-name
 RequestedCapacity=integer

OPTIONS CloneFSFQN
 Identifies a specific Pillar Axiom object.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

 FQN Format:
 /Fully/Qualified/ObjectName

 Enter the FQN of the filesystem with which this Clone FS is associated. If there is more than one file server, use the FQN that includes the file server and filesystem.

 Enter the GUID or FQN of the Clone FS you wish to modify.

CloneFSName [optional]
Identifies the name that is assigned to a Clone FS for administrative purposes. Clone FS names must be unique across the Pillar Axiom system.

RequestedCapacity
Identifies the requested capacity that is assigned to the object. This value is a soft limit, which means that data can be stored in a logical volume until the maximum capacity is reached.

EXAMPLES Run the following command to modify the Clone FS for Company-XYZ.
 pdsc1i request ModifyCloneFS @input

 where input.req contains the following name/value pairs:
 Request=ModifyCloneFS
 CloneFSFQN=/Company-XYZ-FS1
 CloneFSName=EngAtl
RequestedCapacity=500

See the ModifyCloneFSResponse.txt file for example response data.

SEE ALSO
- CreateCloneFS on p. 97
- DeleteCloneFS on p. 172
- GetAllSnapLUNs on p. 233
- GetAllCloneFSs on p. 208
- GetAllCloneFSHierarchies on p. 207
NAME

ModifyExternalUPSDevice

DESCRIPTION

Modifies the specified external UPS device.

SYNTAX

```
pdscli {request | submit} ModifyExternalUPSDevice
   ups=GUID-or-FQN-of-Slammer
   IPAddress=string
   SNMPCommunityString=
```

OPTIONS

ups

Identifies a specific Pillar Axiom object. Choose from:

- **Globally unique ID (GUID),** which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.

 Example GUID:

 `ID12345678-9abc-def0-1234-56789abcdef0`

- **Fully qualified name (FQN),** which starts with a leading slash (`/`), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

 FQN Format:

 `/Fully/Qualified/ObjectName`

Enter the GUID or FQN of the UPS device to modify.

IPAddress [optional]

Identifies the IP address that is assigned to the External UPS Device.

SNMPCommunityString [optional]

Identifies a community for which a specific trap host should receive traps that the Pillar Axiom system generates. You can specify different community strings for each trap host so that multiple administrators can receive specific types of SNMP traps.

Default: public (note the lower-case spelling)

EXAMPLES

Run the following command to modify the external UPS device.

```
pdscli request ModifyExternalUPSDevice @input
```

where `input.req` contains the following name/value pairs:

- `Request=ModifyExternalUPSDevice`
- `ups=UPS1`
- `IPAddress=172.18.65.128`
- `SNMPCommunityString=public`

See the `ModifyExternalUPSDeviceResponse.txt` file for example response data.

SEE ALSO

- [GetExternalUPSDeviceDetails on p. 250](#)
Chapter 4 Management Requests

DeleteExternalUPSDevice on p. 174
Ranges for Option Values on p. 57
Chapter 4 Management Requests

NAME ModifyFileServer

DESCRIPTION Modifies the specified File Server.

SYNTAX

```
pdsclick {request | submit} ModifyFileServer
   FileServer=GUID-or-FQN-of-File-Server
   Name=File-Server-name
   Comment=File-Server-comment
   PrimaryVirtualInterface.IPAddress=IP-address
   PrimaryVirtualInterface.IPNetmask=IP-netmask
   PrimaryVirtualInterface.VLANTag={0 | integer-1-through-4095}
   PrimaryVirtualInterface.FrameSize=integer
   PrimaryVirtualInterface.
      NetworkInterfaceIOPort.
         Slammer=GUID-or-FQN-of-Slammer
   PrimaryVirtualInterface.
      NetworkInterfaceIOPort.
         ControlUnitNumber={0 | 1}
   PrimaryVirtualInterface.
      NetworkInterfaceIOPort.
         EthernetPortName={PORT0 | PORT1}
   DefaultRoute.GatewayIPAddress=IP-address
   DNSConfig.DomainName=string
   DNSConfig.Server[1-3]IPAddress=IP-address
   NISConfig.DomainName=string
   NISConfig.ServerIPAddress=
      IP-address
   NSSSearchOrder.HostLookupService[1-2]=
      {NIS | DNS | None}
   NSSSearchOrder.PasswordLookupService[1-2]=
      {NIS | Files | None}
   AccountMapping.MapIdenticalNames=
      {true | false}
   AccountMapping.UseAllDomains=
      {true | false}
   AccountMapping.DomainName=string
   CIFSServer.ServerName=CIFS-server-name
   CIFSServer.Comment=CIFS-server-comment
   CIFSServer(CharacterSet={STANDARD-ASCII | IBM-437 | IBM-850}
   CIFSServer.OpportunisticLockingEnabled=
      {true | false}
   CIFSServer.WINSServer[1-3]IPAddress=
```
Chapter 4 Management Requests

OPTIONS

FileServer

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.

 Example GUID:

 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.

 FQN Format:

 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the File Server to modify.

Name [optional]

Identifies the name that is assigned to a File Server. File Server names must be unique on the Pillar Axiom storage system.

Comment [optional]

Describes the File Server.
PrimaryVirtualInterface.IPAddress [optional]
Identifies the IP address that is assigned to the primary virtual network interface.

PrimaryVirtualInterface.IPNetmask [optional]
Identifies the subnet mask that is assigned to the File Server’s virtual network interface.

PrimaryVirtualInterface.VLANTag [optional]
Identifies the virtual LAN (VLAN) ID that is assigned to the File Server’s virtual network interface.
- Assign a value of 1 through 4094, inclusive, if you have connected a VLAN-capable switch to the Pillar Axiom system.
- Leave the field blank to disable VLAN tagging.

PrimaryVirtualInterface.FrameSize [optional]
Identifies the packet frame size. This value defines the maximum transmission unit (MTU).
The frame size (MTU) does not include the Ethernet header portion of the packet. If your network switch has trouble with this, you can set the switch to a larger value or lower the MTU size to correct the problem.
- If your network supports extended Ethernet (jumbo) frames, enter an integer greater than 1500 and less than 16362. Make sure that this Pillar Axiom MTU size matches the network MTU size. If the MTU sizes are mismatched, users may experience I/O “hangs” when the client machines try to process too-large packets.
- If your network does not support jumbo frames, enter the default frame size of 1500.

PrimaryVirtualInterface.NetworkInterfaceIOPort. Slammer [optional]
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID: ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format: /Fully/Qualified/ObjectName
Enter the GUID or FQN of the Slammer that is the File Server's primary virtual interface.
PrimaryVirtualInterface.NetworkInterfaceIOPort. ControlUnitNumber [optional]
Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs. The CUs are identified by 0 (the top CU) and 1 (the bottom CU).

PrimaryVirtualInterface.NetworkInterfaceIOPort. EthernetPortName [optional]
Identifies the port on the Slammer that is assigned to the File Server’s virtual network interface. Select a gigabit Ethernet network port on one of the data-path Slammers control unit (CU).
- If Link Aggregation is enabled, select port 0 (zero). You cannot create virtual interfaces on alternate port 1 when Link Aggregation is enabled.
- If Link Aggregation is disabled, select either port.

DefaultRoute.GatewayIPAddress [optional]
Identifies the IP address that is assigned to the gateway host. The gateway IP address is used to route messages from this network to other networks.

DNSConfig.DomainName [optional]
Identifies a Domain Name Service (DNS) domain, which specifies the domain to be searched.

DNSConfig.Server[1-3]IPAddress [optional]
Identifies the IP address of the Domain Name Service (DNS) server in your network that translates host names to IP addresses.

NISConfig.DomainName [optional]
Identifies a Network Information Service (NIS) domain, which is a group of computers that share the same configuration information.

NISConfig.ServerIPAddress [optional]
Identifies the IP address of a Network Information Service (NIS) server that holds a database of user accounts (among other NIS-related entries). When a user attempts to access the Pillar Axiom system, the user is authenticated against the database.

NSSSearchOrder.HostLookupService[1-2] AND
NSSSearchOrder.PasswordLookupService[1-2] [optional]
Identifies the search order that the Pillar Axiom system uses to resolve hosts and passwords. Choose from:
- NIS (if you use Network Information Services), DNS (if you use Domain Name System), or None to resolve hosts.
- NIS (if you use Network Information Services), Files (if you use /etc/passwd, /etc/group, and /etc/netgroup files), or None to resolve passwords.

If you want the system to search only one source for host resolution, password resolution, or both, enter None for the second search target.
AccountMapping.MapIdenticalNames [optional]
Identifies whether support for mapping CIFS-to-NFS user accounts is enabled.

- Enable CIFS-to-NFS mapping if you have a single authority to assign users with both an NFS account and CIFS account using the same name. Users can use NFS only, CIFS only, or both NFS and CIFS.
- Disable CIFS-to-NFS mapping if you don't have a single authority to assign NFS and CIFS accounts.

You should disable account mapping when:

- Users do not have both NFS and CIFS accounts.
- NFS and CIFS users account names are different.
- The authority to assign account names can be done by different groups.

Note that the user’s NFS account is the owner of files and directories that the user creates.

AccountMapping.UseAllDomains [optional]
Identifies whether CIFS-to-NFS account mapping is enabled for all CIFS domains.

- Enable this option to use CIFS-to-NFS account mapping for all CIFS domains.
- Enable this option to use CIFS-to-NFS account mapping for a single CIFS domain that you specify.

AccountMapping.DomainName [optional]
Identifies the CIFS domain name. Enter the NetBIOS name of the CIFS domain that contains definitions for authentication and account mapping. Enter a CIFS domain name when you enable MapIdenticalNames and disable UseAllDomains.

CIFSServer.ServerName [optional]
Identifies the name by which users refer to the CIFS server. The CIFS server advertises its services by this name through the NetBIOS Naming Service, so this value is sometimes called the NetBIOS name.

CIFSServer.Comment [optional]
Describes the CIFS server. Clients who browse or list shares may view these comments.

CIFSServer.CharacterSet [optional]
Identifies which character set is valid. Choose from:

- Standard-ASCII, which is a 7-bit character set that includes 128 printable and control character values (0-127).
- IBM-437, which is an 8-bit character set that includes the Standard-ASCII values plus values from OEM code page 437. Used on most PCs that are sold in the USA.
IBM-850, which is an 8-bit character set that includes the Standard-ASCII values plus values from OEM code page 850. Used on most PCs that are sold in Western European countries.

CIFSServer.OpportunisticLockingEnabled [optional]

Identifies whether opportunistic locks (oplocks) are enabled to cache client data.

- Read caching permits data that is stored on the server to be copied to the client. When a client application requests the data, the read request is satisfied by reading the client’s copy of the data. Read caching can last forever. If the data that is stored on the server changes, the client is informed and the read cache is invalidated.

- Write caching permits data changes to be buffered in the client for up to two minutes. When a client application changes the data, the write request is satisfied by changing the client’s copy of the data. Client-server connection problems that occur during the two-minute window can result in lost changes. If the client is still running, a popup message alerts the client to the lost changes.

Disable oplocks to require that all client requests must access a data file instead of cache.

CIFSServer.WINSServer[1-3]IPAddress [optional]

Identifies a Windows Internet Naming Service (WINS) server in your network. The WINS server is the central repository for Windows server names. Broadcasts of NetBIOS names do not cross subnets, so the WINS server can resolve names across multiple subnets.

Note: If you enable Active Directory for authentication, you do not need to enter a WINS server address.

CIFSServer.UseAnonymousPDCAccess [optional]

Identifies whether the File Server communicates with the CIFS Domain Controller as an anonymous user to authenticate users and to perform user-name-to-SID mappings (SID = security identifier).

- Enable this option if your Domain Controller is installed on a pre-Windows 2000 server or a Windows 2000 server that is a member of a pre-Windows 2000 domain. These configurations permit access by anonymous users.

- Disable this option if your Domain Controller is installed on a Windows Server 2003 machine. That configuration denies access by anonymous users.

CIFSServer.PDCAccessAccount.DomainName [optional]
Identifies the name of a Windows Domain Controller that maintains a database of user, group, and machine accounts. Enter the Domain Controller’s name. Ensure that the Domain Controller is registered with the WINS or DNS servers that you specify. The Pillar Axiom system uses WINS or DNS, in that order, to resolve the name and locate the Domain Controller.

In this release, you must log in to a Windows 2000 native-mode domain controller as an administrator, run the following command, and reboot the domain controller:

```
net localgroup "Pre-Windows 2000 Compatible Access" everyone /add
```

This command relaxes a security restriction in Windows 2000 servers to disallow anonymous access to user lists and groups.

If you use a Windows 2000 mixed-mode domain controller for CIFS authentication, you do not have to run the command and reboot.

CIFSServer.PDCAccessAccount.Username [optional]

Identifies the administrator user name for the Domain Controller that is associated with the Pillar Axiom storage system.

CIFSServer.PDCAccessAccount.Password [optional]

Identifies the administrator password for the CIFS Domain Controller.

NFSServer.PortNumber [optional]

Identifies which port is reserved for NFS requests. If you allow NFS requests only from a secure port, enter a port number that is less than or equal to 1024.

Default: port 2049

NFSServer.CharacterSet [optional]

Identifies which character set is valid. Choose from:
- Standard-ASCII, which is a 7-bit character set that includes 128 printable and control character values (0-127).
- UTF8, which is a Unicode-coded character set that uses an 8-bit transformation format. Defined in RFC 2279.
- ISO8859-1, which is an 8-bit, single-byte character set that is an extension of Standard-ASCII.

NFSServer.AnonymousUID [optional]

Identifies the user ID (UID) for anonymous users.
- Set the UID to zero (0) if you want anonymous-user access to be identified as the root user. This is a very insecure setting. Setting anonymous to root allows all users full control.
- Set the UID to the “nobody” value (often -2, but not always) if you want anonymous-user access to be identified as the user “nobody.” In most instances, this is the recommended setting.
- Set the UID to any other user ID that you want to be identified as anonymous-user access.
NFSServer.AnonymousGID [optional]

Identifies the group ID (GID) of a file where the group owner is not an NFS group for example, a CIFS group.

NFSServer.MountReservePortOnly [optional]

Identifies whether all NFS mount requests must be received on a secure port that is reserved for NFS requests only.

- Enable the option if NFS mount requests must be received on a secure port that is reserved for NFS requests (including mount requests). The port number must be less than 1024.
- Disable the option if NFS mount requests can be received on any open port.

NFSServer.AllowNonRootChown [optional]

Identifies whether users who do not have root privileges can change the owner of files that are stored in the Pillar Axiom system.

- Enable the option if non-root users can change ownership on only files that they own.
- Disable the option if only root users can change file ownership.

Note: When quotas are enabled, you may set this flag to automatically transfer files to other users if an individual user exceeds a quota limit.

NFSServer.TCPSupported [optional]

Identifies whether Transmission Control Protocol (TCP) connections are allowed.

- Enable TCP if users can mount filesystems using the Transmission Control Protocol (TCP).
- Disable TCP if users can mount filesystems using only the User Datagram Protocol (UDP).

NFSServer.TCPConnectionsLimit [optional]

Identifies how many concurrent protocol-specific connections are allowed. Enter a value that is large enough to meet your anticipated work load.

- A lower number allows fewer users to access data simultaneously. Once the limit is reached, access to additional users is denied. Set this value to a lower number only if there is a specific reason to restrict the number of NFS TCP connections.
- A higher number allows more users to access data simultaneously. There is no performance penalty associated with setting this value to the maximum (65,000).

CIFSRemove [optional]
Identifies whether to remove all CIFS configurations and associated shares that currently exist on this File Server.

- Enable this option to remove the CIFS configurations and all CIFS configuration details.
- Disable this option to keep the CIFS configurations and the CIFS configuration details.

NFSRemove [optional]

Identifies whether to remove all NFS configurations and associated exports that currently exist on this File Server. After the NFS configurations are removed, NFS users no longer have access to the File Server.

- Enable this option to remove the NFS configurations and all NFS configuration details.
- Disable this option to keep the NFS configurations and the NFS configuration details.

NFSCharacterSet [optional]

Identifies which character set is valid. Choose from:

- Standard-ASCII, which is a 7-bit character set that includes 128 printable and control character values (0-127).
- UTF8, which is a Unicode-coded character set that uses an 8-bit transformation format. Defined in RFC 2279.
- ISO8859-1, which is an 8-bit, single-byte character set that is an extension of Standard-ASCII.

EXAMPLES

Run the following command to increase the TCP connection limit for NFS users.

```
pdscli request ModifyFileServer @input
```

where `input.req` contains the following name/value pairs:

```
Request=ModifyFileServer
FileServer=/Company-XYZ-FS1
NFSServer.TCPConnectionsLimit=1250
```

See the `ModifyFileServerResponse.txt` file for example response data.

SEE ALSO

- [CreateFileServer on p. 100](#)
- [DeleteFileServer on p. 175](#)
- [Ranges for Option Values on p. 57](#)
NAME ModifyFileSystem

DESCRIPTION Modifies the specified filesystem.

SYNTAX

```
pdscli {request | submit} ModifyFileSystem
  FileSystem=GUID-or-FQN-of filesystem
  VolumeGroup=GUID-or-FQN-of-volume-group
  Capacity.CurrentCapacity=integer-0-through-2147483647
  Capacity.MaximumCapacity=integer-1-through-2147483647
  RetentionPolicy.MinimumRetentionPeriod.Units=
    {Years | Months | Days}
  RetentionPolicy.MinimumRetentionPeriod.Amount=integer
  RetentionPolicy.MaximumRetentionPeriod.Units=
    {Years | Months | Days}
  RetentionPolicy.MaximumRetentionPeriod.Amount=integer
  RetentionPolicy.DefaultRetentionPeriod.Units=
    {Years | Months | Days}
  RetentionPolicy.DefaultRetentionPeriod.Amount=integer
  RetentionPolicy.AllowExpiredFileDeletion={true | false}
  RetentionPolicy.EnforceVolumeRetention={true | false}
  Profile={OracleASM | HighThroughput | Normal}
  RelativePriority={Premium | High | Medium | Low | Archive}
  FileSizeBias={None | Large | Medium | Small}
  AccessBias={Sequential | Random | Mixed | None}
  IOBias={Read | Write | Mixed | None}
  TemporaryPriority={Premium | High | Medium | Low | Archive}
  StorageClass={MultiLevelCellSolidStateDrives | SingleLevelCellSolidStateDrives | FibreChannelHardDiskDrives | SataHardDiskDrives}
  Redundancy={Standard | Double}
  CloneFSCapacity=integer
  AuditingMode={true | false}
  AutomaticallyAssignSlammer={true | false}
  Slammer=GUID-or-FQN-of-Slammer
  ControlUnitNumber={0-for-automatic-assignment | integer}
  Name=New-Filesystem-Name
  BackgroundCopyPriority=
    {MaximizeSpeed | MinimizeImpact | SystemChooses}
```
OPTIONS

FileSystem
Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the filesystem to modify.

VolumeGroup [optional]
Enter the GUID or FQN of the volume group with which the filesystem is associated.

Capacity.CurrentCapacity [optional]
Identifies the initial capacity, in MB, that is assigned to the object. This value is a soft limit, which means that data can be stored in a logical volume until the maximum capacity is reached.

Capacity.MaximumCapacity [optional]
Identifies the maximum capacity, in MB, to which a given object can grow.

RetentionPolicy.MinimumRetentionPeriod.Units
The Retention Policy settings specify the period for which files on the SecureWORMFs must be retained. The MinimumRetentionPeriod (Units) specifies the minimum retention period. Valid values are Years, Months, or Days.

RetentionPolicy.MinimumRetentionPeriod.Amount
Specifies the minimum retention period. Valid values are 0 to 2147483647. To define an unlimited value, enter 0 (zero).

RetentionPolicy.MaximumRetentionPeriod.Units
Specifies the maximum retention period. Valid values are Years, Months, or Days.

RetentionPolicy.MaximumRetentionPeriod.Amount
Specifies the minimum retention period. Valid values are 0 to 2147483647 and must be greater than or equal to the minimum retention value. To define an unlimited value, enter 0 (zero).
RetentionPolicy.DefaultRetentionPeriod.Units
Specifications the maximum retention period for the SecureWORMfs. Valid values are Years, Months, or Days.

RetentionPolicy.DefaultRetentionPeriod.Amount
Specifications the minimum retention period. Valid values are 0 to 2147483647 and must be greater than or equal to the minimum and less than or equal to the maximum retention value.
To define an unlimited value, enter 0 (zero).

RetentionPolicy.AllowExpiredFileDeletion
Allows you to delete the SecureWORMfs if it has reached the specified retention policy setting expiration and is therefore no longer protected.

RetentionPolicy.EnforceVolumeRetention
Forces the retention policy settings for a SecureWORMfs.
Files written over CIFS connections are protected immediately, not allowing any further modifications.
Files written over NFS connections must be protected explicitly by setting the Immutable field for the file in its corresponding attribute file.
For instructions on how to edit the attribute file, refer to the Pillar Axiom Administrator’s Guide.

Profile [optional]
Identifies a performance profile. Choose from:
• Normal, which defines specific performance and redundancy settings for each logical volume. This value is highly recommended and should be used in almost all cases.
• OracleASM, which uses a wide stripe RAID geometry consisting of 1 MB strips to improve the overall performance of logical volumes in an Oracle ASM environment.
• HighThroughput, which stripes the filesystem or LUN across all RAID arrays. SATA Bricks have two RAID groups per Brick, and FC Bricks have one RAID group per Brick. You do not need to set double redundancy to get full array striping.

Important! Use of the HighThroughput profile is for special purposes only. Do not use this profile for ordinary filesystems or LUNs. Please contact the Pillar Customer Services Advanced Solutions Group before using this profile option, which should only be used for special testing where the system configuration is cleared after the test.

RelativePriority
The Relative Priority determines how much of the system resources are devoted to that volume, including the allocation of Slammer CPU cycles and the allocation of specific portions of the disk platters. The higher the Priority, the greater the allocation of CPU time and the faster the media access time.

The Relative Priority option prioritizes the layout of data that is stored in the Pillar Axiom system based on one of the following settings:

- Premium priority is the highest possible performance. This priority uses the outer 20% of the drive platters.

Note: I/O is typically faster when data resides on the outer edge of the drive platters.

- High priority logical volumes are allocated space in the outer 20%-40% of the drive platters.

Tip: If sufficient Bricks are present, performance of high priority volumes is enhanced by placing those volumes on a greater number of Bricks.

- Medium priority logical volumes are allocated space in the outer 40% to 60% of the drive platters.

- Low priority logical volumes are allocated space in the band that is 60% to 80% from the outer diameter of drive platters.

- Archive (lowest-priority) logical volumes are allocated space in the inner areas of the drive platters.

Figure 3 Example of HDD priority bands

If needed, the Pillar Axiom system allocates space in a higher or lower priority band (within the same Storage Class) than the one that you choose.

FileSizeBias

Identifies the typical size of files that are stored in the specified logical volume. Choose from:

- Small if files are smaller than 20 kilobytes (KB).
- Medium if files are larger than 20KB and smaller than 4 megabytes (MB).
- Large if files are larger than 4MB.
AccessBias

Identifies the typical data access method. Choose from:

Table 19 Data access methods

<table>
<thead>
<tr>
<th>Access bias</th>
<th>I/O bias</th>
<th>Read ahead in the Slammer</th>
<th>RAID configuration in the Brick</th>
</tr>
</thead>
</table>
| Sequential | Read | Aggressive | RAID 5
Reads large extents of the data into memory. |
| Write | Conservative | | RAID 5
• Allocates capacity in large, full-stripe (640 K) extents.
• Writes data to physical storage more quickly and in full-stripe extents. |
| Mixed and random | Read | None | RAID 5
• Reads small extents into memory.
• Allocates capacity in small chunks.
• Writes data to physical storage more slowly to combine (or eliminate) write operations. |
| Random | Write | None | RAID 10 |

Note: This is an optimization bias, not a requirement that all data or data operations conform to the value.

I/OBias

Identifies the typical read-write ratio. Choose from:

- Read if users or applications read data more often than they write to the data source.
- Write if users or applications write data more often than they read it.

Important! If you choose Random as the access method and Write as the I/O Bias, the system creates the volume with a Distributed RAID geometry. This geometry provides enhanced write performance but uses twice the capacity.

- Mixed if the read-write ratio varies.

Note: This is an optimization bias, not a requirement that all data or data operations conform to the value.

The system stores all writes of user data and system metadata in mirrored copies of the journal. Although the filesystem or LUN is journaled, for some of the profiles, write caching is disabled because it tends to have very low hit rates.
One copy is maintained in non-volatile memory on one control unit (CU) of a Slammer. The mirror copy is maintained in one of:

- Battery-backed memory of the partner CU on the Slammer (preferred location). Writes to this copy are equivalent to write-back cache.
- An area reserved on disk for the logical volume if the partner CU is unavailable for the write. Writes to this copy are equivalent to write-through cache.

Writes from the journal to permanent disk storage are equivalent to write-through cache. The system flushes user data and the corresponding metadata as a unit to disk.

Temporary Priority

Temporarily changes the Priority level of the filesystem without changing the physical location of the volume. When you want to change the Priority back to the original level, modify the Quality of Service (QoS) of the volume.

One use for temporarily changing the priority level is to allow for a restore operation or data load operation where the original QoS would have been set to optimize for Write Archive or Random Read or Write, respectively.

Important! If the temporary QoS change is not changed back to the original QoS, it can have adverse effects on other system resources. If the change is to be made permanent, the QoS should be changed and the data migrated.

Storage Class

Identifies the category of physical storage on which the logical volume resides:

- Fibre Channel drives
- SATA drives
- SATA single-level cell solid state drives
- SATA multi-level cell solid state drives

Redundancy

Identifies how many mirror copies of the original data are stored online.

Important! Pillar highly recommends that you consult with a Pillar customer support professional for assistance with sizing your system and creating your volumes (filesystems and LUNs).

Redundancy options include:

- Standard, to store original data only. Data striping over multiple RAID groups maintains full redundancy, even without mirror copies.
- Double, to store original data and one mirror copy, with data striping over multiple RAID groups.
Note: Double Redundancy can only provide true redundancy if your system has enough Bricks to allocate the filesystem or LUN such that no two mirror copies share a RAID group.

SATA Bricks have two RAID groups per Brick, FC Bricks have one RAID group per brick.

If the storage pool is becoming depleted, or a large filesystem or LUN is created, it might be necessary to place the filesystem or LUN on more RAID group fragments.

Depending on the system’s ability to allocate sufficient contiguous storage blocks for the size of the logical volume, use the following number of RAID groups to configure your volumes for best performance:

<table>
<thead>
<tr>
<th>Priority</th>
<th>SATA standard Redundancy</th>
<th>SATA double redundancy</th>
<th>FS standard redundancy</th>
<th>FS double redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archive</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Low</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Medium</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>High</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Premium</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

For performance testing purposes only, create a filesystem or LUN using standard redundancy and the High Throughput Profile. This is NOT recommended for most applications. Reset your system after you have created a High Throughput LUN or filesystem before you configure normal filesystems or LUNs for applications.

CloneFSCapacity

Specifies the maximum amount of repository space to be reserved for Clone FSs from the total system capacity.

> **CAUTION**
>
> We strongly recommend that you allocate sufficient repository capacity to minimize the chances of running out of this space (which could lead to data inconsistency or loss). To set sufficient capacity, use a value equal to the source volume capacity times the number of replicas times the maximum rate of change. For example, for a 100 GB volume that is projected to have 20 active replicas at a time and no more than a 20% rate of change, use a value of 400 GB for the clone repository.

Maximum capacity for Clone FSs is 2147483647.
AuditingMode

Enables the logging of compliance activities, including:

- The full path to a protected file and the mechanism used to protect the file (manual or automatic).
- Changes to the expiration time of a file. If expiration time is derived from the default retention period, the value of default retention period is also logged in addition to the new and old expiration times and the full path to the file.
- Deletion of an expired file. The log for this event contains the current system time, expiration time of the file, and the full path to the file.
- Detection of data inconsistency in a file. The actual and expected data hash values are logged.

All records in the audit log are in UTF-8 format and have a timestamp and date.

Slammer [optional]

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Slammer with which the filesystem is associated.

Note: If you do not enter a value, the system will automatically designate a Slammer. If AutomaticallyAssignSlammer is false, the specified value changes the Slammer assignment.

ControlUnitNumber [optional]

Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs. The CUs are identified by 0 (the top CU) and 1 (the bottom CU).

Note: If you do not enter 0 or 1, the system automatically designates a CU. If AutomaticallyAssignSlammer is false, the specified value changes the CU assignment.

Name

Identifies the new name that is assigned to a filesystem. Each filesystem name must be unique within its associated File Server and volume group.
BackgroundCopyPriority

Identifies the strategy the system should use to control the impact on performance when background tasks need to copy or move data from one location in the storage pool to another:

- **MinimizeImpact.** Restricts the amount of work performed on a loaded system. This option is intended to have a minimal impact on client I/O throughput at the expense of longer copy times.
- **SystemChooses.** Balances the background copy with the incoming client I/O. This option is the default.
- **MaximizeSpeed.** Prioritizes the background copy at the expense of client I/O throughput.

Note: When the system is idle or lightly loaded, the above background task maximizes the amount of work done regardless of the option selected.

The following types of operations are affected by the strategy you select:

- Copy
- Restore
- Quality of Service (QoS) Priority changes
- Storage Class changes

Data transfer operations invoked by the Pillar Axiom MaxRep Replication for NAS utility are not affected by the BackgroundCopyPriority setting.

EXAMPLES

Run the following command to increase the capacity that is assigned to the EngAtI filesystem.

```bash
pdscli request ModifyFileSystem @input
```

where input.req contains the following name/value pairs:

- `Request=ModifyFileSystem`
- `FileSystem=/Company-XYZ-FS1/EngAtI`
- `VolumeGroup=/Eng`
- `Capacity.CurrentCapacity=500`
- `Capacity.MaximumCapacity=1000`
- `RetentionPolicy.EnforceVolumeRetention=true`
- `RetentionPolicy.MinimumRetentionPeriod.Amount=0`
- `RetentionPolicy.MaximumRetentionPeriod.Profile=Normal`
- `RelativePriority=High`
- `FileSizeBias=Small`
- `AccessBias=Sequential`
- `IOBias=Write`
- `StorageClass=FibreChannelHardDiskDrives`
- `Redundancy=Double`

See the ModifyFileSystemResponse.txt file for example response data.
SEE ALSO

CreateFileSystem on p. 110
DeleteFileSystem on p. 176
Ranges for Option Values on p. 57
NAME
ModifyFileSystemSnapshot

DESCRIPTION
Modifies the specified Snap FS of a filesystem. When you change the name of a Snap FS, its type is implicitly changed from system managed to administrator managed. If the Snap FS was created by a recurring schedule, the Snap FS is no longer considered in the schedule’s rotation of older snapshots.

SYNTAX
pdscli {request | submit} ModifyFileSystemSnapshot
 ID=GUID-or-FQN-of-Snap-FS
 Name=string

OPTIONS
ID
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the Snap FS to modify.

Name
Identifies the name that is assigned to an administrator-managed Snap FS.

EXAMPLES
Run the following command to rename a scheduled Snap FS that was created from the EngAtl filesystem.

pdscli request ModifyFileSystemSnapshot @input

where input.req contains the following name/value pairs:

Request=ModifyFileSystemSnapshot
ID=IDA0479DC2-38EF-9828-8902-E0FC03743270
Name=EngAtl-snapshot-save

See the ModifyFileSystemSnapshotResponse.txt file for example response data.

SEE ALSO
ModifyJob on p. 345
CreateFileSystemSnapshotSchedule on p. 124
DeleteFileSystemSnapshot on p. 177
DeleteFileSystemSnapshotSchedule on p. 179
GetAllFileSystemSnapshots on p. 216
GetAllFileSystemSnapshotSchedules on p. 218
Chapter 4 Management Requests

GetFileSystemSnapshotDetails on p. 256
GetFileSystemSnapshotScheduleDetails on p. 258
PerformFileSystemDuplication on p. 425
PerformBackgroundFileSystemDuplication on p. 400
PerformRestoreFileSystemFromSnapshot on p. 485
PerformRebuildFileSystemRedundancy on p. 474
Ranges for Option Values on p. 57
NAME ModifyHBAPort

DESCRIPTION Modifies the specified HBA port.

SYNTAX pdscli {request | submit} ModifyHBAPort
 HBAPortWWN=World-wide-name
 HBAPortName=HBA-port-name
 SANHostName=Host-name

OPTIONS HBAPortWWN
 Identifies the address, or world wide name (WWN), of the specified host bus
 adapter (HBA).

HBAPortName [optional]
 Identifies the name given to the gigabit interface converter (GBIC), or port.

SANHostName [optional]
 Identifies the name assigned to a specific SAN host.

EXAMPLES Run the following command to modify an HBA port.
 pdscli request ModifyHBAPort @input
 where input.req contains the following name/value pairs:
 HBAPortWWN=21:00:00:e0:8b:11:b5:4a
 HBAPortName=HBA 3 Port 0
 SANHostName=SANTest_02

 See the ModifyHBAPortResponse.txt file for example response data.

SEE ALSO GetSANConfigDetails on p. 284
 GetHostMappingConfigDetails on p. 265
 GetAllSANHosts on p. 227
 GetSANHostDetails on p. 285
 ModifySANHost on p. 377
 GetHBAPortConnections on p. 262
 DeleteSANHost on p. 189
NAME ModifyiSCSIPortDetails
DESCRIPTION Modifies the specified iSCSI port settings.
SYNTAX pdscli {request | submit} ModifyiSCSIPortDetails
 Slammer=GUID-or-FQN-of-UPS-device
 ControlUnitNumber={0 | 1}
 iSCSIPortName={PORT0 | PORT1}
 iSCSITCPPort={0 | integer}
 MTUBytes={0 | integer}
 IPAssignment={Manual | DHCP}
 IPAddress=IP-address
 IPNetmask=IP-netmask
 GatewayIPAddress=IP-address

OPTIONS Slammer
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object's name.
 FQN Format:
 /Fully/Qualified/ObjectName

ControlUnitNumber
 Identifies a specific control unit (CU) in a Slammer. Each Slammer contains
 two CUs.

iSCSIPortName
 Identifies the name (0 or 1) of the iSCSI port device.

iSCSITCPPort [Optional]
 Identifies the iSCSI port number.

MTUBytes [Optional]
 Identifies the number of bytes of the MTU (the maximum transmission unit).
 The MTU is the largest physical packet size that a network can transmit.
 Any messages larger than the MTU (default is 1500) are divided into
 smaller packets before being sent.
IPAssignment [Optional]

DHCP (Dynamic Host Configuration Protocol) is a set of rules used to ensure that all IP addresses are unique. You can also assign IP addresses manually.

IPAddress [Optional]

Identifies the IP address that is assigned to the iSCSI port device.

IPNetmask [Optional]

Identifies a subnet mask for the range of IP addresses at the iSCSI port’s destination.

GatewayIPAddress [Optional]

Identifies the IP address that is assigned to the gateway host. The gateway IP address is used to route messages from this network to other networks.

EXAMPLES

Run the following command to display Slammer command output.

```
pdscli request ModifyiSCSIPortDetails @input
```

where input.req contains the following name/value pairs:

```
Request=GetSlammerControlUnitDiagnostic
   Details
Slammer=/Company-XZY-data/Slammer1
ControlUnitNumber=1
iSCSIPortName=Port0
iSCSITCPPort=
MTUBytes=65600
IPAssignment=DHCP
IPAddress=172.20.67.0
IPNetmask=255.255.255.0
GatewayIPAddress=172.18.65.110
```

See the ModifyiSCSIPortDetails Response.txt file for example response data.

See Also

- GetAllSlammers on p. 231
- GetFCPortStatistics Details on p. 251
- GetFileServerDetails on p. 253
- GetFileSystemDetails on p. 255
- GetiSCSIPortStatisticsDetails on p. 266
- GetSANConfigDetails on p. 284
- GetSANSlammerPortDetails on p. 290
- GetSlammerDetails on p. 295
NAME ModifyJob

DESCRIPTION Modifies the specified Pillar Axiom job.

SYNTAX

```
pdscli {request | submit} ModifyJob
   Job=GUID-or-FQN-of-job
   Name=string
   Schedule=GUID-or-FQN-of-schedule
   Enabled={true | false}
   CreateFileSystemSnapshot.Name=string
   CreateFileSystemSnapshot.FS=GUID-or-FQN-of-filesystem
   PerformUpdate.UpdatePackage=
      .tar.gz-file-name
   PerformUpdate.UpdateComponentName[1-8]=
      {"Pilot Software" | "Pilot OS" | "Slammer Software" | "Slammer PROM" |
       "Slammer Software AX600" | "Slammer PROM AX600" |
       "Brick Firmware" | Brick FC Firmware}
   PerformUpdateDiskDrive.UpdatePackage=
      GUID-or-FQN-of-Brick
   PerformUpdateDiskDrive.UpdateComponentName
      =Name-of-updatable-component
   CreateQuota.AllowFileSystemOffline=
      {true | false}
   CreateQuota.FileSystem=GUID-or-FQN-of-filesystem
   CreateQuota.Path=/path/to/directory
   CreateQuota.RestrictUsers={AllAggregate | SingleUser | Group}
   CreateQuota.EnforceAllLimitsForDirectory=
      {true-if-AllAggregate | false-otherwise}
   CreateQuota.Username=string-if-select-
      SingleUser
   CreateQuota.Groupname=string-if-select-
      Group
   CreateQuota.SoftLimitInMB={0-for-unlimited |
      integer}
   CreateQuota.HardLimitInMB={0-for-unlimited |
      integer}
   CreateQuota.MBGracePeriodInDays=
      {0-for-unlimited | integer}
   DeleteQuota.ID=GUID-or-FQN-of-quota
   DeleteQuota.AllowFileSystemOffline=
      {true | false}
```
OPTIONS Job
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName
Enter the GUID or FQN of the job to modify.

Name
Identifies the name of the scheduled job.

Schedule
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName
Enter the GUID or FQN of the schedule with which this job is associated.

Enabled [optional]
Identifies whether the scheduled job is enabled.
- Enable this option to perform the job at the scheduled time.
- Disable this option to hold the scheduled job until you enable it at a later time.

CreateFileSystemSnapshot.Name [optional]
Identifies the name that the Pillar Axiom storage system assigns to a scheduled data replica.

CreateFileSystemSnapshot.FS [optional]
Enter the GUID or FQN of the filesystem from which the data replica is created.
PerformUpdate.UpdatePackage [optional]
Identifies the name of an update file.
- The staging process uploads the file to the Pilot and expands the compressed .tar.gz file.
- The validation process checks the compatibility of the firmware and software in the update file against previously installed firmware and software.
- The update process installs the uncompressed package on the Pillar Axiom storage system.
Select a single update file for the given operation.

PerformUpdate.UpdateComponentName[1-5] [optional]
Identifies the name of an updatable component. Choose between one and six of the following options.

Table 21 Updatable components

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Pilot Software”</td>
<td>Software that runs on the Pilot, such as the GUI interface and web server, online help, SNMP, and NDMP</td>
</tr>
<tr>
<td>“Pilot OS”</td>
<td>Operating system for the Pilot</td>
</tr>
<tr>
<td>“Slammer Software”</td>
<td>NAS or SAN software that runs on Pillar Axiom 300 and 500 Slammers</td>
</tr>
<tr>
<td>“Slammer Software AX600”</td>
<td>NAS or SAN software that runs on Pillar Axiom 600 Slammers</td>
</tr>
<tr>
<td>“Slammer PROM”</td>
<td>Programmable ROM (PROM), that includes BIOS and netboot code, for Pillar Axiom 300 and 500 NAS or SAN Slammers</td>
</tr>
<tr>
<td>“Slammer PROM AX600”</td>
<td>Programmable ROM (PROM), that includes BIOS and netboot code, for Pillar Axiom 600 Slammers</td>
</tr>
<tr>
<td>“Brick Firmware”</td>
<td>RAID firmware for SATA Bricks</td>
</tr>
<tr>
<td>“Brick FC Firmware”</td>
<td>FC firmware for Bricks</td>
</tr>
<tr>
<td>“Brick SATA2 Firmware”</td>
<td>RAID firmware for version 2 SATA Bricks</td>
</tr>
</tbody>
</table>
PerformUpdateDiskDrive.UpdatePackage [optional]

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.

 Example GUID:

 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.

 FQN Format:

 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Brick to update.

PerformUpdateDiskDrive.

UpdateComponentName [optional]

Identifies the name of the updatable Brick.

CreateQuota.AllowFileSystemOffline [optional]

Identifies whether the Pillar Axiom system can take the filesystem offline to perform quota operations.

- Enable this option if the Pillar Axiom system can take the filesystem offline to create or remove a directory-level quota when the specified directory contains files and subdirectories.

- Disable this option if the system cannot take the filesystem offline to perform the quota operation when the specified directory contains files and subdirectories. The filesystem remains online, and the directory-level quota is not created or removed.

Whichever setting you choose, the filesystem remains online and the quota operation is performed when the specified directory is empty.

CreateQuota.FileSystem [optional]

Enter the GUID or FQN of the filesystem for which the quota is to be created.

CreateQuota.Path [optional]

Enter a full path, which starts with a forward slash (/), to the directory that is covered by this quota.

CreateQuota.RestrictUsers [optional]
Identifies who the quota covers. Choose from:

- AllAggregate if the quota covers all users who store data in the specified directory. Leave the Username and Groupname fields blank.
- SingleUser if the quota covers one user. Identify which user the quota covers in the Username field.
- Group if the quota covers a group of users. Identify which group the quota covers in the Groupname field.

CreateQuota.EnforceAllLimitsForDirectory [optional]

Identifies whether the system enforces and tracks quota limits. All quotas have automatic usage tracking. You can optionally enable enforcement for each quota.

- If RestrictUsers=AllAggregate, enable this option so that the Pillar Axiom system enforces all quota limits in the specified directory.
- If RestrictUsers=SingleUser or Group, disable this option. The system tracks and enforces the user’s or group’s quota limits in the filesystem.

CreateQuota.Username [optional]

Identifies a user that the quota covers. Enter a user name, user ID (UID), CIFS account name, or NFS account name. Field types support UTFString.

CreateQuota.Groupname [optional]

Identifies a group of users that the quota covers. Enter a group name or group ID (GID).

CreateQuota.SoftLimitInMB [optional]

Identifies a soft capacity limit, which means that once the system reaches this value, it sends an administrator alert. If space is available, the system stores data until it reaches the grace period or the hard limit.

Be aware that:

- If a parent directory’s quota limit is smaller than a child directory’s, the system enforces the parent’s limit.
- Users sometimes delete directories from a filesystem’s directory structure. If Directory, Directory & User, or Directory & Group quotas are assigned to the deleted directory, the quotas are also deleted.

To define an unlimited value, enter 0 (zero).

CreateQuota.HardLimitInMB [optional]

Identifies a hard capacity limit, which means that once the system reaches this value, it rejects write requests and does not store data.

To define an unlimited value, enter 0 (zero).

CreateQuota.MBGracePeriodInDays [optional]

Identifies the number of days that the system can exceed a soft limit. When the time expires, the soft limit becomes a hard limit.

To define an unlimited value, enter 0 (zero).
DeleteQuota.ID [optional]

Enter the GUID or FQN of the quota to remove.

DeleteQuota.AllowFileSystemOffline [optional]

Identifies whether the Pillar Axiom system can take the filesystem offline to perform quota operations.

- Enable this option if the Pillar Axiom system can take the filesystem offline to create or remove a directory-level quota when the specified directory contains files and subdirectories.
- Disable this option if the system cannot take the filesystem offline to perform the quota operation when the specified directory contains files and subdirectories. The filesystem remains online, and the directory-level quota is not created or removed.

Whichever setting you choose, the filesystem remains online and the quota operation is performed when the specified directory is empty.

EXAMPLES

Run the following command to modify a scheduled job that removes quota tracking and enforcement from the /src directory in the EngAtl filesystem.

```
pdscli request ModifyJob @input
```

where input.req contains the following name/value pairs:

```
Request=ModifyJob
Job=IDA0479DC2-38EF-9828-8902-E0FC03743270
Name=Delete-quota
Schedule=IDf1234567-89ab-cde0-0123-456789eeeee0
Enabled=true
DeleteQuota.ID=/Company-XYZ-FS1/EngAtl:/src
DeleteQuota.AllowFileSystemOffline=true
```

See the ModifyJobResponse.txt file for example response data.

SEE ALSO

- [CreateJob on p. 127](#)
- [DeleteJob on p. 181](#)
- [Ranges for Option Values on p. 57](#)
NAME ModifyLUN

DESCRIPTION Modifies a LUN in a Pillar Axiom storage system and allows you to efficiently partition (stripe) storage across multiple Bricks based on storage or performance priorities. A LUN is defined as:

A logical volume within a storage area network (SAN). Administrators assign storage resources and Quality of Service (QoS) attributes to each logical unit (LUN).

Although you can modify the capacity of an existing LUN, the ability to use the added capacity depends entirely on the operating system and filesystem type of the SAN host that is accessing the LUN. For example, whereas some operating systems have the ability to dynamically resize a LUN, some do not allow LUN resizing. Some filesystems can scale to use the added capacity, and some cannot.

Never attempt to reduce the capacity of a LUN.

SYNTAX

```bash
dscsi {request | submit} ModifyLUN
    LUN=LUN-name
    VolumeGroup=GUID-or-FQN-of-volume-group
    Name=LUN-name
    AutomaticallyAssignSlammer={true | false}
    Slammer=GUID-or-FQN-of-Slammer
    ControlUnitNumber={0 | 1}
    LUNNumber=integer-0-through-255
    Mapped={true | false}
    EnableiSCSIAccess={true | false}
    EnableFibreChannelAccess={true | false}
    Capacity=integer-0-through-2147483647
    Max=integer-1-through-2147483647
    Profile={OracleASM | Normal | HighThroughput}
    RelativePriority={Low | Medium | High | Archive | Premium}
    AccessBias={None | Sequential | Random | Mixed}
    IOBias={Mixed | Read | Write | None}
    TemporaryPriority={Low | Medium | High | Archive | Premium}
    StorageClass={MultiLevelCellSolidStateDrives | SingleLevelCellSolidStateDrives | FibreChannelHardDiskDrives | SataHardDiskDrives}
    Redundancy={Standard | Double}
    SuppressConservativeMode={true | false}
    SnapLUNStorage.MaximumCapacity=integer-0-through-2147483647
    CloneLUNStorage.MaximumCapacity=integer-0-through-2147483647
    ForceSlammerAssignment={true | false}
    BackgroundCopyPriority=
        {MaximizeSpeed | MaximizeImpact | SystemChooses}
```
OPTIONS

LUN
Identifies fully qualified name (FQN) of the LUN to be modified. This parameter is required.

VolumeGroup
Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID: ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format: /Fully/Qualified/ObjectName

Enter the GUID or FQN of the volume group with which the LUN is associated.

Name
Identifies the name that is assigned to a LUN for administrative purposes. LUN names must be unique across the Pillar Axiom system, not just within its associated volume group.

Name is a required parameter only if you want to change the FQN LUN’s user-visible name.

Slammer [optional]
Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID: ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format: /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Slammer with which the LUN is associated.

Note: If you do not enter a value, the system will automatically designate a Slammer. If AutoAssignSlammer is false, the specified value changes the Slammer assignment.

ControlUnitNumber [optional]
Chapter 4 Management Requests

Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs. The CUs are identified by 0 (the top CU) and 1 (the bottom CU).

Note: If you do not enter 0 or 1, the system automatically designates a CU. If AutomaticallyAssignSlammer is false, the specified value changes the CU assignment.

LUNNumber [optional]

Identifies the unique number that is assigned to a LUN and can be accessed by all SAN hosts if the LUN is not mapped. If the LUN is mapped, the LUN number must be unique to the mapped SAN host.

Note: If you intend to map this LUN to a specified host, do not include the LUNNumber option.

Mapped [optional]

Identifies whether all hosts or only selected hosts may access this LUN.

• Mapped allows only designated hosts to access this LUN.
• Unmapped allows all hosts to access this LUN using the LUN Number.

Note: If you choose Mapped, do not assign a LUNNumber.

EnableiSCSIAccess

Identifies that the iSCSI protocol specification is used when accessing the newly created SAN LUN.

Note: You must specify iSCSI, Fibre Channel, or both protocols.

EnableFibreChannelAccess

Identifies that the Fibre Channel (FC) protocol specification is used when accessing the newly created SAN LUN.

Note: You must specify iSCSI, Fibre Channel, or both protocols.

Capacity

Identifies the capacity that is assigned to this LUN.

Max [optional]

Identifies the maximum capacity limit that is assigned to the object.

Profile [optional]

Identifies a performance profile. Choose from:

• Normal, which defines specific performance and redundancy settings for each logical volume. This value is highly recommended and should be used in almost all cases.
• OracleASM, which uses a wide stripe RAID geometry consisting of 1 MB strips to improve the overall performance of logical volumes in an Oracle ASM environment.
• HighThroughput, which stripes the filesystem or LUN across all RAID arrays. SATA Bricks have two RAID groups per Brick, and FC Bricks have one RAID group per Brick. You do not need to set double redundancy to get full array striping.

Important! Use of the HighThroughput profile is for special purposes only. Do not use this profile for ordinary filesystems or LUNs. Please contact the Pillar Customer Services Advanced Solutions Group before using this profile option, which should only be used for special testing where the system configuration is cleared after the test.

RelativePriority

The Relative Priority determines how much of the system resources are devoted to that volume, including the allocation of Slammer CPU cycles and the allocation of specific portions of the disk platters. The higher the Priority, the greater the allocation of CPU time and the faster the media access time.

The Relative Priority option prioritizes the layout of data that is stored in the Pillar Axiom system based on one of the following settings:

• **Premium priority** is the highest possible performance. This priority uses the outer 20% of the drive platters.

Note: I/O is typically faster when data resides on the outer edge of the drive platters.

• **High priority logical volumes** are allocated space in the outer 20%-40% of the drive platters.

Tip: If sufficient Bricks are present, performance of high priority volumes is enhanced by placing those volumes on a greater number of Bricks.

• **Medium priority logical volumes** are allocated space in the outer 40% to 60% of the drive platters.

• **Low priority logical volumes** are allocated space in the band that is 60% to 80% from the outer diameter of drive platters.

• **Archive (lowest-priority) logical volumes** are allocated space in the inner areas of the drive platters.
If needed, the Pillar Axiom system allocates space in a higher or lower priority band (within the same Storage Class) than the one that you choose.

AccessBias

Identifies the typical data access method. Choose from:

<table>
<thead>
<tr>
<th>Access bias</th>
<th>I/O bias</th>
<th>Read ahead in the Slammer</th>
<th>RAID configuration in the Brick</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential</td>
<td>Read</td>
<td>Aggressive</td>
<td>RAID 5: Reads large extents of the data into memory.</td>
</tr>
<tr>
<td></td>
<td>Write</td>
<td>Conservative</td>
<td>RAID 5: Allocates capacity in large, full-stripe (640 K) extents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed and random</td>
<td>Read</td>
<td>None</td>
<td>RAID 5: Reads small extents into memory.</td>
</tr>
<tr>
<td></td>
<td>Write</td>
<td>None</td>
<td>RAID 5: Allocates capacity in small chunks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td>Write</td>
<td>None</td>
<td>RAID 10</td>
</tr>
</tbody>
</table>

Note: This is an optimization bias, not a requirement that all data or data operations conform to the value.
IOBias

Identifies the typical read-write ratio. Choose from:
- Read if users or applications read data more often than they write to the data source.
- Write if users or applications write data more often than they read it.

Important! If you choose Random as the access method and Write as the I/O Bias, the system creates the volume with a Distributed RAID geometry. This geometry provides enhanced write performance but uses twice the capacity.
- Mixed if the read-write ratio varies.

Note: This is an optimization bias, not a requirement that all data or data operations conform to the value.

The system stores all writes of user data and system metadata in mirrored copies of the journal. Although the filesystem or LUN is journaled, for some of the profiles, write caching is disabled because it tends to have very low hit rates.

One copy is maintained in non-volatile memory on one control unit (CU) of a Slammer. The mirror copy is maintained in one of:
- Battery-backed memory of the partner CU on the Slammer (preferred location). Writes to this copy are equivalent to write-back cache.
- An area reserved on disk for the logical volume if the partner CU is unavailable for the write. Writes to this copy are equivalent to write-through cache.

Writes from the journal to permanent disk storage are equivalent to write-through cache. The system flushes user data and the corresponding metadata as a unit to disk.

TemporaryPriority

Temporarily changes the priority level of the LUN without changing the physical location of the volume. When you want to change the priority back to the original level, modify the QoS of the volume.

One use for temporarily changing the priority level is to allow for a restore operation or data load operation where the original QoS would have been set to optimize for Write Archive or Random Read or Write, respectively.

Important! If the temporary QoS change is not changed back to the original QoS, it can have adverse effects on other system resources. If the change is to be made permanent, the QoS should be changed and the data migrated.

StorageClass

Identifies the category of physical storage on which the logical volume resides:
- Fibre Channel drives
- SATA drives
• SATA single-level cell solid state drives
• SATA multi-level cell solid state drives

Redundancy
Identifies how many mirror copies of the original data are stored online.

Important! Pillar highly recommends that you consult with a Pillar customer support professional for assistance with sizing your system and creating your volumes (filesystems and LUNs).

Redundancy options include:
• Standard, to store original data only. Data striping over multiple RAID groups maintains full redundancy, even without mirror copies.
• Double, to store original data and one mirror copy, with data striping over multiple RAID groups.

Note: Double Redundancy can only provide true redundancy if your system has enough Bricks to allocate the filesystem or LUN such that no two mirror copies share a RAID group.

SATA Bricks have two RAID groups per Brick, FC Bricks have one RAID group per brick.

If the storage pool is becoming depleted, or a large filesystem or LUN is created, it might be necessary to place the filesystem or LUN on more RAID group fragments.

Depending on the system’s ability to allocate sufficient contiguous storage blocks for the size of the logical volume, use the following number of RAID groups to configure your volumes for best performance:

<table>
<thead>
<tr>
<th>Priority</th>
<th>SATA standard Redundancy</th>
<th>SATA double redundancy</th>
<th>FS standard redundancy</th>
<th>FS double redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archive</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Low</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Medium</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>High</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Premium</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

For *performance testing purposes only*, create a filesystem or LUN using standard redundancy and the High Throughput Profile. This is NOT recommended for most applications. Reset your system after you have created a High Throughput LUN or filesystem before you configure normal filesystems or LUNs for applications.
SuppressConservativeMode

Identifies that the LUN continues to use write-back cache even if the control unit (CU) is in a degraded mode.

Important! Before setting SuppressConservativeMode to TRUE, consult with the Pillar World Wide Customer Support Center to discuss the implications of this mode. When operating in this mode, data loss will occur when operating with a failed control unit when a power failure occurs.

SnapLUNStorage.MaximumCapacity

Identifies additional capacity used for snapshot storage that is assigned to this LUN. As a guideline, create Clone LUN space equal to or greater than the original LUN (100 to 150%). The Clone LUN does not consume space from the original LUN.

Important! If the Clone LUN reaches the maximum capacity limit, the system will notify you and automatically delete any Clone LUN that has exceeded the limit.

CloneLUNStorage.MaximumCapacity

Identifies additional capacity used for snapshot storage that is assigned to this LUN. As a guideline, create Clone LUN space equal to or greater than the original LUN (100 to 150%). The Clone LUN does not consume space from the original LUN.

Important! If the Clone LUN reaches the maximum capacity limit, the system will notify you and automatically delete any Clone LUN that has exceeded the limit.

BackgroundCopyPriority

Identifies the strategy the system should use to control the impact on performance when background tasks need to copy or move data from one location in the storage pool to another:

- MinimizeImpact. Restricts the amount of work performed on a loaded system. This option is intended to have a minimal impact on client I/O throughput at the expense of longer copy times.
- SystemChooses. Balances the background copy with the incoming client I/O. This option is the default.
- MaximizeSpeed. Prioritizes the background copy at the expense of client I/O throughput.
Chapter 4 Management Requests

Note: When the system is idle or lightly loaded, the above background task maximizes the amount of work done regardless of the option selected.

The following types of operations are affected by the strategy you select:

- Copy
- Restore
- Quality of Service (QoS) Priority changes
- Storage Class changes

Data transfer operations invoked by the Pillar Axiom MaxRep Replication for NAS utility are not affected by the BackgroundCopyPriority setting.

EXAMPLES

Run the following command to create a LUN for the Engineering organization.

```
pdscli request ModifyLUN @input
```

where `input.req` contains the following name/value pairs:

- Request=ModifyLUN
- EnableiSCSIAccess=true
- EnableFCAccess=false
- VolumeGroup=/Eng
- LUN=/EngLUN
- Name=EngLUN
- LUNNumber=0
- Mapped=false
- Profile=Normal
- Capacity=500
- RelativePriority=Archive
- AccessBias=Random
- IOBias=Write
- StorageClass=FibreChannelHardDiskDrives
- Redundancy=Standard
- BackgroundCopyPriority=MaximizeSpeed

See the ModifyLUNResponse.txt file for example response data.

SEE ALSO

CreateLUN on p. 135

DeleteLUN on p. 182

GetAllLUNs on p. 221

GetLUNDetails on p. 269

GetLUNMappingConfigDetails on p. 270

PerformConfigureLUNMapping on p. 412

PerformRebuildLUNRedundancy on p. 475

Ranges for Option Values on p. 57
NAME ModifyManagementConfig

DESCRIPTION Modifies the global settings that apply to the entire Pillar Axiom storage system.

SYNTAX
pdscli {request | submit} ModifyManagementConfig
Name=string
IPAddress=IP-address
Pilot[1-2]IPAddress=IP-address
IPNetMask=IP-mask
GatewayIPAddress=IP-address
DHCPEnabled={true | false}
TransmitSetting={FULL_1000 | HALF_1000 | FULL_100 | HALF_100 | FULL_10 | HALF_10 | AUTO}
ServerIPAddress=IP-address
EmailNotificationEnabled={true | false}
CallHomeEnabled={true | false}
PrimaryDNSServer=IP-address
SecondaryDNSServer=IP-address
DisallowLargeFiles={true | false}
TransferMethod={HTTPS | SCP}
ServerLocation={minLen | maxLen}
ScpIPAddress={minLen | maxLen}
Username=login-name
Path=/path/to/directory
ScpPassword={minLen | maxLen}
ExternalHostTransfer={true | false}
UseProxy={true | false}
ProxyIP=Proxy-IP-address
ProxyPort=integer
ProxyType={SOCKS5 | SOCKS4 | HTTP}
MaximumFailedLogins=integer
SessionTimeout=duration-value
RemoteReplicationConfig.RemoteFile
 ReplicationConfig.ManagementIPAddress=
 Remote-File-IP-address
RemoteReplicationConfig.RemoteVolume
 ReplicationConfig.ManagementIPAddress=
 Remote-Volume-IP-Address
iSCSIGlobalConfig.iSCSIAlias
 {Per-initiator | All Initiators}
iSCSIGlobalConfig.Authentication=
 {Per-initiator | All Initiators}
iSCSIGlobalConfig.EnableAccessControl=
 {true | false}
iSCSIGlobalConfig.EnableBiDirectionalCHAP=
Options

Name [optional]
Identifies the name that is assigned to the Pillar Axiom storage system.

IPAddress [optional]
Identifies the IP address that is permanently assigned to the Pillar Axiom system if DHCP is disabled.

PilotIP[1-2]Address [optional]
Identifies the primary and secondary Pilot control unit.

IPNetmask [optional]
Identifies the subnet mask for the Pillar Axiom IP address if DHCP is disabled.

GatewayIPAddress [optional]
Identifies the IP address that is assigned to the gateway server if DHCP is disabled.

DHCPEnabled [optional]
Identifies whether Dynamic Host Configuration Protocol (DHCP) is enabled.

• Enable DHCP if you have a DHCP server that automatically assigns IP addresses to network clients. This setting makes the Pillar Axiom system known to the DHCP software.
• Disable DHCP if you do not use it in your network.

TransmitSetting [optional]
Identifies the port speed and duplex setting for the management interface on the Pillar Axiom System.

Important! Use care when setting the transmit speed and duplex mode. A management interface setting that is not supported by the external network could result in loss of access to the Pilot. If access is lost, contact the Pillar World Wide Customer Support Center for assistance.
Note: Auto negotiate is the default transmit setting. We recommend the default setting for all but special circumstances.

ServerIPAddress [optional]
Identifies an electronic mail (email) server that receives alerts. Enter the IP address of an email server in which the recipients have email accounts.

EmailNotificationEnabled [optional]
Identifies whether email is enabled.
- Enable email if you intend to define alerts to send email notifications.
- Disable email if you do not want to send email notifications from the Pillar Axiom system.

CallHomeEnabled [optional]
Identifies whether Call-Home is enabled.
- Enable Call-Home support so that the Pillar Axiom system sends status messages to the Pillar World Wide Customer Support Center. You can create alerts to send notifications to recipients within your organization.
- Disable Call-Home support so that the Pillar Axiom system does not send the status messages.

PrimaryDNSServer AND SecondaryDNSServer [optional]
Identifies the Domain Name Sever (DNS) that is used to resolve IP addresses. This includes an email server that sends Call-Home messages from the Pillar Axiom storage system to the Pillar World Wide Customer Support Center. It can also include the Call-Home server, callhome.support.pillardata.com, that receives Call-Home messages by means of SCP or HTTPS. Call-Home messages contain information about system issues and failures.

DisallowLargeFiles [optional]
Identifies whether trace logs and performance statistics are included in Call-Home notifications.
- Disallow large files so that the Pillar Axiom system excludes trace logs and performance statistics from the Call-Home messages that are sent to the Pillar World Wide Customer Support Center. You can collect, download, and transmit the trace logs separately if they are needed.
- Allow large files so that trace logs and performance statistics are automatically included in the messages that are sent to the Pillar World Wide Customer Support Center.

TransferMethod [optional]
Specifies the method of Call-Home file transfers over the internet using:
- SCP: Uses the secure copy (SCP) method with 1024-bit encryption and secure keys.
• HTTPS: Uses the Hypertext Transfer Protocol Secure method by sending files directly to Pillar or through a proxy server for security purposes. This method can also be used when the Pillar Axiom system does not have direct access to the Internet.

ServerLocation [optional]
Specifies the name or IP address of the server to where requests are sent.

ScpIPAddress [optional]
Specifies the IP address of the server when using SCP transfers.

UserName [optional]
Identifies the administrator’s login (user) name.

Path [optional]
The path on the server to which the files are transferred.

ScpPassword [optional]
Identifies the administrator’s password for SCP transfers.

ExternalHostTransfer [optional]
Allows Call-Home file transfers to be sent outside of the customer network.

UseProxy [optional]
Enables or disables the use of the proxy.

ProxyIP [optional]
Specifies the IP address of the proxy.

ProxyPort [optional]
A port setting that defines which port the proxy will use to send and receive information.

ProxyType [optional]
Specifies the proxy type that is used to access the Internet: SOCKS (SOCKS4 and SOCKS5 should be used behind a firewall), or HTTP.

MaximumFailedLogins [optional]
Identifies the number of times that an administrator can attempt, but fail, to log in to the Pillar Axiom system.

SessionTimeout [optional]
Identifies an inactivity time limit, after which an administrator’s session is terminated. In-progress sessions are not affected by changes that you make to the value; current sessions use the old value. Sessions that start after you change the value use the modified session timeout.

The default for the session timeout is 20 minutes. Values for the session timeout parameter must be between 1 and 999 minutes.
If the time period contains any values lower than a day, you must include the “T” separator. For example, 2 hours = PT2H; 2 hours and 30 minutes = PT2H30M, where P = period of time; T = time; H = hours, and M = minutes. Other session timeout elements include Y = years and D = days.

RemoteReplicationInterface.ManagementIPAddress [optional]

Identifies the IP address of a remote storage device.

iSCSIGlobalConfig.iSCSIAlias [optional]

Specifies the iSCSI Alias by which SAN hosts can identify the Pillar Axiom using iSCSI. The argument for this parameter (if present) should be a UTF string of up to 255 characters.

iSCSIGlobalConfig.Authentication [optional]

Indicates whether or not the Pillar Axiom will perform CHAP authentication with SAN host iSCSI initiators (“All initiators”) during login, or only for specific iSCSI initiators (“Per-initiator”). If set to “All initiators,” then the CHAP Name and CHAP Secret for all SAN host iSCSI initiators must be specified to the Pillar Axiom, using the ModifySANHost request. If you set the authentication to “Per-initiator,” it is only necessary to specify CHAP Names and CHAP Secrets for those initiators for which authentication has been enabled.

iSCSIGlobalConfig.EnableAccessControl [optional]

If enabled, the Pillar Axiom software rejects iSCSI login attempts from SAN host iSCSI initiators that have not explicitly been granted permission by the user through the Pillar Axiom user interface.

iSCSIGlobalConfig.EnableBiDirectionalCHAP [optional]

If enabled, the Pillar Axiom will require CHAP authentication from SAN host iSCSI initiators during login. Those initiators will need to be configured on the host with the Pillar Axiom’s CHAP Name and CHAP Secret. If BiDirectionalCHAP support is disabled on the Pillar Axiom, BiDirectionalCHAP must be disabled for initiators on the SAN host machine or initiator login will fail.

iSCSIGlobalConfig.CHAPPASSWORD1 [optional]

This parameter specifies the CHAP Secret that must be provided by SAN host iSCSI initiators for CHAP authentication during login when BiDirectionalCHAP is enabled.

iSCSIGlobalConfig.CHAPPASSWORD2 [optional]

This parameter, identical to CHAPPASSWORD1, specifies the expected CHAP Secret. The string typed for this parameter must be the same as that typed for CHAPPASSWORD1.
iSCSIGlobalConfig.EnableHeaderDigest [optional]
An optional component in the iSCSI structure that checks all the iSCSI header information. If enabled, the Pillar Axiom negotiates for iSCSI header digests during session login for all initiators.

iSCSIGlobalConfig.EnableDataDigest [optional]
An optional component in the iSCSI structure that provides additional error checking for the data portion of the iSCSI packet. If enabled, the Pillar Axiom storage system negotiates for iSCSI data digests during session login for all initiators.

iNSSGlobalConfig.iSNSEnabled [optional]
Specifies iSNS-based access control in which only those initiators that are members of Discovery Domains of which the Pillar Axiom storage system is a member will be allowed to login to the Pillar Axiom storage system.

iNSSGlobalConfig.iSNSDHCPDiscoveryEnabled [optional]
This option allows Pillar Axiom iSCSI targets to be registered in the iSNS server using DHCP for the discovery of iSNS server IP address. This option requires that you use a Microsoft DHCP server that has been configured by the Microsoft iSNS Server installer to return the server IP address using DHCP option 43 (vendor-specific) or DHCP option 83 (iSNS).

Note: Microsoft does not support DHCP option 83 until the Windows Server 2008 release.

iNSSGlobalConfig.iSNSServerIPAddress [optional]
Specifies the iSNS server IP address in which to use for static addressing for the discovery of iSNS server IP address.

iNSSGlobalConfig.iSNSServerTCP Port [optional]
Specifies the iSNS server TCP port in which to use for static addressing for the discovery of iSNS server IP address.

EXAMPLES
Run the following command to modify the global settings in your system.
```
pdscli request ModifyManagementConfig @input
```
where input.req contains the following name/value pairs:
```
Request=ModifyManagementConfig
Name=Company-XYZ-data
DHCPEnabled=true
ServerIPAddress=172.18.65.12
EmailNotificationEnabled=true
CallHomeEnabled=true
PrimaryDNSServer=192.168.1.55
DisallowLargeFiles=true
TransferMethod=scp source-filename target-filename
UserName=Nancy
```
ExternalHostTransfer=true
UseProxy=true
ProxyPort=0
ProxyType=HTTP
MaximumFailedLogins=3
SessionTimeout=PT2H20M
iSCSIGlobalConfig.Authentication=per-initiator
iSCSIGlobalConfig.EnableAccessControl=false
iSCSIGlobalConfig.EnableBiDirectionalCHAP=true
iSCSIGlobalConfig.CHAPPassword1=H39pe8m2
iSCSIGlobalConfig.EnableHeaderDigest=true
iSCSIGlobalConfig.EnableDataDigest=false

See the ModifyManagementConfigResponse.txt file for example response data.

SEE ALSO
ModifyTimeConfig on p. 386
Ranges for Option Values on p. 57
NAME ModifyMyAccount

DESCRIPTION Modifies the current, logged-in administrator’s account.

SYNTAX

```
hibit {request | submit} ModifyMyAccount
    Fullname="First Last"
    Password=string
    RetypePassword=string
    EmailAddress=name@domain.ext
    PhoneNumber=telephone-number
```

OPTIONS

Fullname [optional]
Identifies the administrator's full name (first and last).

Password
Identifies the login password. Passwords are case sensitive, and blank passwords are not permitted.

RetypePassword
Enter the password again.

EmailAddress [optional]
Identifies the recipient’s email address. The email server to which the Pillar Axiom system sends alerts must be able to send messages to this email address.

PhoneNumber [optional]
Identifies the recipient’s telephone number. The Pillar Axiom system does not verify the validity of this entry.

EXAMPLES Run the following command to modify your login password.
```
pdscli request ModifyMyAccount @input
```
where input.req contains the following name/value pairs:
```
    Request=ModifyMyAccount
    Password=H39pe8mZ
    RetypePassword=H39pe8mZ
```
See the ModifyMyAccountResponse.txt file for example response data.

SEE ALSO

CreateAccount on p. 92
DeleteAccount on p. 169
ModifyAccount on p. 311
Ranges for Option Values on p. 57
NAME ModifyNASConfig

DESCRIPTION Modifies the system’s NAS configuration.

SYNTAX

\[
pdsc\text{li} \ \{\text{request} \mid \text{submit}\} \ \text{ModifyNASConfig} \\
\quad \text{LinkAggregation=}{\{\text{true} \mid \text{false}\}} \\
\quad \text{EnableAutomaticControlUnitRecovery=}{\{\text{true} \mid \text{false}\}}
\]

OPTIONS

LinkAggregation
Identifies whether link aggregation is enabled. Pillar Axiom systems support the IEEE 802.3ad standard.

- Enable link aggregation to treat multiple physical links as one logical link. Configure virtual network interfaces on port 0.
- Disable link aggregation if you do not need to use link aggregation. Configure virtual network interfaces on both ports.

EnableAutomaticControlUnitRecovery
Identifies whether the Pillar Axiom storage system should perform an automatic recovery operation when a previously unavailable Slammer control unit (CU) becomes available.

- Enable this option if interruptions of up to 30 seconds in data-path connections are permitted while the automatic recovery takes place.
- Disable this option if you want to be prompted to perform the operation manually when the Slammer CU is ready for recovery.

EXAMPLES
Run the following command to modify the NAS configuration.

\[
pdsc\text{li} \ \text{request} \ \text{ModifyNASConfig} \ @\text{input}
\]

where input.req contains the following name/value pairs:

- Request=ModifyNASConfig
- LinkAggregation=true
- EnableAutomaticControlUnitRecovery=true

See the ModifyNASConfigResponse.txt file for example response data.

SEE ALSO

GetNASConfigDetails on p. 274
ModifyManagementConfig on p. 360
Ranges for Option Values on p. 57
NAME ModifyNDMPConfig

DESCRIPTION Modifies the Network Data Management Protocol (NDMP) configuration settings.

SYNTAX

```plaintext
pdscli {request | submit} ModifyNDMPConfig
   Enabled={true | false}
   PortNumber=integer
   Username=string
   FileServer=GUID-or-FQN-of-File-Server
   Password=string
   RetypePassword=string
```

OPTIONS

Enabled [optional]

Identifies whether Network Data Management Protocol (NDMP) support is enabled.
- Enable NDMP to use NDMP-compliant backup applications to back up Pillar Axiom data.
- Disable NDMP to inactivate support for NDMP-compliant backup applications.

PortNumber [optional]

Identifies a TCP port that is assigned as the listen port for the NDMP daemon. The default NDMP port number is 10000.

Username [optional]

Identifies the NDMP user’s login name.

FileServer [optional]

Identifies the File Server with which the NDMP attributes are associated. Although you enable or disable the NDMP feature system-wide, all NDMP backup and restore operations must go through this one File Server.

Enter the GUID or FQN of the associated File Server.

Password [optional]

Identifies the NDMP user’s password.

RetypePassword [optional]

Enter the password again.

EXAMPLES

Run the following command to modify the NDMP configuration in your system.

```plaintext
pdscli request ModifyNDMPConfig @input
```

where `input.req` contains the following name/value pairs:

- Request=ModifyNDMPConfig
- Enabled=true
- PortNumber=10000
- Username=NDMP4pillar
FileServer=/Company-XYZ-data/Company-XYZ-FS1
Password=N2p8
RetypePassword=N2p8

See the ModifyNDMPConfigResponse.txt file for example response data.

SEE ALSO Ranges for Option Values on p. 57
NAME ModifyNFSHostEntry

DESCRIPTION Modifies the specified Network File system (NFS) host.

SYNTAX pdscli {request | submit} ModifyNFSHostEntry
 NFSHostEntry=GUID-or-FQN-of-host-entry
 AllowRootAccess={true | false}
 WriteSupported={true | false}
 AuthenticationMode={System | None}
 OrderNumber=integer

OPTIONS NFSHostEntry
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.
 Enter the GUID or FQN of the NFS host entry to modify.

AllowRootAccess [optional]
 Identifies whether users who are logged in to a client workstation as root are
 root users on the export.
 • Enable this option so that root users on clients are root users. This is
 comparable to no_root_squash in Linux root-squashing options.
 • Disable this option so that root users on clients are identified as the user
 nobody. This is comparable to the root_squash option.

WriteSupported [optional]
 Identifies whether the export is made available to users in read-only or read-
 write mode.
 • Enable this option so that the export operates in read-only mode.
 • Disable this option so that the export operates in read-write mode.

AuthenticationMode [optional]
 Identifies how users are authenticated.
 • System (AUTH_SYS) means that user IDs (UIDs), group IDs (GIDs),
 and supplemental group IDs are passed with each NFS request, without
 being authenticated by the File Server.
 • None (AUTH_NONE) means that users are mapped to the anonymous
 user “nobody.” UIDs and GIDs are not passed with the NFS requests.
 We recommend that you set this option to System.

OrderNumber [optional]
Chapter 4 Management Requests

Identifies the authentication order for this host relative to other hosts on the export. For this zero-based index, 0 identifies the first host that is authenticated.

We recommend that you set this option to 2.

EXAMPLES

Run the following command to change the order in which a specific host entry is authenticated.

```
pdscli request ModifyNFSHostEntry @input
```

where input.req contains the following name/value pairs:

```
Request=ModifyNFSHostEntry
NFSHostEntry=IDA5479DC2-38EF-9828-8902-E0FC03743270
AuthenticationMode=System
OrderNumber=2
```

See the ModifyNFSHostEntryResponse.txt file for example response data.

SEE ALSO

CreateNFSHostEntry on p. 148
DeleteNFSHostEntry on p. 184
Ranges for Option Values on p. 57
NAME ModifyNotificationDefinition

DESCRIPTION Modifies the specified notification.

SYNTAX pdscli {request | submit}
 ModifyNotificationDefinition
 NotificationDefinition=GUID-or-FQN-of-notification
 Name=notification-name
 Description=notification-description
 Client={SNMP | Email}
 EchoDefinitionInNotification=
 {true | false}
 SeverityFilter.Severity[1-10]={Critical | Error | Warning | Informational}
 EmailAddress[1-4]=username@domain.ext

OPTIONS NotificationDefinition
Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the notification to modify.

Name [optional]
Identifies the name of a notification that the Pillar Axiom system generates when an event or alert is triggered.

Description [optional]
Describes the notification in a way that is meaningful to the recipients.

Client [optional]
Identifies the notification client. Choose from:
 • SNMP, if the client is a Simple Network Management Protocol (SNMP) application.
 • Email, if the client is an electronic mail (email) server that sends the notifications to designated email addresses.

EchoDefinitionInNotification [optional]
Identifies whether the notification definition is included with the event details in the message that the Pillar Axiom system sends to designated recipients.

SeverityFilter.Severity[1-10] [optional]
Identifies a category of event severities. Choose from:
• Critical, which means that access to data is compromised (for example, two disks in a RAID array have failed) or data loss has occurred.
• Error, which means that administrator action is required to prevent a “hard” error (for example, a single disk in a RAID array has failed) from becoming a critical event.
• Warning, which means that administrator action is required to prevent a “soft” error from becoming an error or critical event.
• Informational, which means that a configuration change has been detected or another non-error event has occurred.

EmailAddress[1-4] [optional]
Identifies the recipient’s email address. The email server to which the Pillar Axiom system sends alerts must be able to send messages to this email address.

EXAMPLES
Run the following command to modify a notification so that email messages are sent only to Xavier. Previously, the email messages were sent to Xavier and to Yvette Smith.
pdscli request ModifyNotificationDefinition @input

where input.req contains the following name/value pairs:
Request=ModifyNotificationDefinition
NotificationDefinition=IDA0479DC2-38EF-9828-8902-E0FC03743270
Name=Critical
EmailAddress[1]=xavier@xyz.com

See the ModifyNotificationDefinitionResponse.txt file for example response data.

SEE ALSO
CreateNotificationDefinition on p. 152
DeleteNotificationDefinition on p. 185
Ranges for Option Values on p. 57
NAME ModifyQuota

DESCRIPTION Modifies the specified filesystem quota.

SYNTAX
pdsccli {request | submit} ModifyQuota
 ID=GUID-or-FQN-of-quota
 EnforceAllLimitsForDirectory=
 {true | false}
 SoftLimitInMB={0-for-unlimited | integer}
 HardLimitInMB={0-for-unlimited | integer}
 MBGracePeriodInDays={0-for-unlimited | integer}

OPTIONS ID

 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

 Enter the GUID or FQN of the quota to modify.

 EnforceAllLimitsForDirectory [optional]

 Identifies whether the quota limits are enforced as well as tracked. All quotas have automatic usage tracking. Enforcement is optional and must be enabled explicitly and separately for each quota.
 • Enable this option so that the Pillar Axiom system enforces the capacity limits.
 • Disable this option so that the system does not enforce the capacity limits.

 SoftLimitInMB [optional]

 Identifies a soft capacity limit, which means that once the system reaches this value, it sends an administrator alert. If space is available, the system stores data until it reaches the grace period or the hard limit.

 Be aware that:
 • If a parent directory’s quota limit is smaller than a child directory’s, the system enforces the parent’s limit.
 • Users sometimes delete directories from a filesystem's directory structure. If Directory, Directory & User, or Directory & Group quotas are assigned to the deleted directory, the quotas are also deleted.

 To define an unlimited value, enter 0 (zero).

 HardLimitInMB [optional]
Identifies a hard capacity limit, which means that once the system reaches this value, it rejects write requests and does not store data.
To define an unlimited value, enter 0 (zero).

MBGracePeriodInDays [optional]
Identifies the number of days that the system can exceed a soft limit. When the time expires, the soft limit becomes a hard limit.
To define an unlimited value, enter 0 (zero).

EXAMPLES
Run the following command to increase the quota on the engineering organization's filesystem.
```
pdscli request ModifyQuota @input
```
where input.req contains the following name/value pairs:
```
Request=ModifyQuota
ID=IDA0479DC2-38EF-9828-8902-E0FC03743270
EnforceAllLimitsForDirectory=true
SoftLimitInMB=75
HardLimitInMB=90
MBGracePeriodInDays=5
```
See the ModifyQuotaResponse.txt file for example response data.

SEE ALSO
- CreateQuota on p. 154
- DeleteQuota on p. 186
- Ranges for Option Values on p. 57
NAME ModifySANHost

DESCRIPTION Modifies the specified SAN host.

SYNTAX pdscli {request | submit} ModifySANHost
 SANHostName=Host-name
 HP-UXAddressing={true | false}
 LUNSettings.LUN=GUID-or-FQN-of-LUN
 LUNSettings.LoadBalancingType={Static | Round Robin}
 iSCSIConfig.EnableAccessControl={true | false}
 iSCSIConfig.EnableAuthentication={true | false}
 iSCSIConfig.CHAPName=CHAP-name
 iSCSIConfig.CHAPPassword1=string
 iSCSIConfig.CHAPPassword2=string

OPTIONS SANHostName
 Identifies the name assigned to a specific SAN host.

HPUXAddressing
 Use this option when the SAN hosts that access the LUNs have HP-UX initiator ports and HP HBAs.
 • If set to true, LUN numbers are determined using the HP/UX addressing scheme, allowing up to 255 LUNs.
 • If set to false, the default numbering scheme is used, allowing 256 LUNs.

 You can verify the current host mappings using the LUN Connections tab. The host cannot be configured with the HP-UX LUN addressing option until its mapping for LUN 0 is either deleted or converted to a mapped LUN with no access by the host.

LUNSettings.LUN
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

 Enter the GUID or FQN of the LUN.
LUNSettings.LoadBalancingType
Identifies the type of load balancing that the SAN hosts should perform to access LUNs that are configured on the Pillar Axiom storage system. Choose from:
- Static load balancing across multiple paths to the configured LUNs.
- Round-robin load balancing across multiple paths to the configured LUNs.

iSCSIConfig.EnableAccessControl
If Access Control has been enabled (set to true) using the ModifyManagementConfig request, this parameter specifies that the Pillar Axiom will allow access from all initiators in the SAN host.

iSCSIConfig.EnableAuthentication
If the Pillar Axiom’s management configuration has been set for authentication on a “Per-Initiator” basis, this parameter specifies whether or not the Pillar Axiom will attempt CHAP authentication to all initiators in the SAN host during login. If, however, the Pillar Axiom has been configured to require authentication from “All Initiators” this parameter is ignored and CHAP authentication is always attempted.

Note: If the initiator on the SAN host has been configured to require CHAP authentication, then login will fail unless either the Pillar Axiom’s management configuration has been set to authenticate to “All Initiators” or it has been set to “Per-Initiator” and EnableAuthentication is set to true. In either case, you must specify the CHAPName and CHAPSecret for the initiator.

iSCSIConfig.CHAPName
Specifies the Challenge Handshake Authentication Protocol (CHAP) name that the Pillar Axiom will use for authentication to the SAN host iSCSI initiator during login. This must be the same CHAPName with which the initiator was configured on the SAN host.

iSCSIConfig.CHAPPassword1
Specifies the CHAP Secret that the Pillar Axiom will use for authentication to the SAN host iSCSI initiator during login. This must be the same CHAP Secret with which the initiator was configured on the SAN host.

iSCSIConfig.CHAPPassword2
The second password used for CHAP authentication, identical to CHAPPassword1. The string typed for this parameter must be the same as that typed for CHAPPassword1.

EXAMPLES
Run the following command to modify the SANTest_02 host.
```
pdscli request ModifySANHost @input
```
where input.req contains the following name/value pairs:
```
Request=ModifySANHost
```
SANHostName=SANTest_02
HPUXAddressing=false
LUNSettings.LUN=/EngLUN
LUNSettings.LoadBalancingType=Static
iSCSIConfig.EnableAccessControl=
 false
iSCSIConfig.EnableAuthentication=
 true
iSCSIConfig.CHAPName=Company-XYZ-data
iSCSIConfig.CHAPPassword1=H39pe8m2
iSCSIConfig.CHAPPassword2=H39pe8m2

See the ModifySANHostResponse.txt file for example response data.

SEE ALSO

GetSANConfigDetails on p. 284
GetHostMappingConfigDetails on p. 265
GetAllSANHosts on p. 227
GetHBAPortConnections on p. 262
PerformAssociateInitiatorsToHost on p. 398
DeleteSANHost on p. 189
GetSANHostDetails on p. 285
Ranges for Option Values on p. 57
NAME ModifySlammer

DESCRIPTION Modifies the specified Slammer.

SYNTAX

 pdscli {request | submit} ModifySlammer
 Slammer=GUID-or-FQN-of-Slammer
 Name=string

OPTIONS

 Slammer

 By default, Slammers are assigned names such as /Slammer1 or /
 Slammer2, based on their internal WUNAME. You can use this option to
 modify the Slammer name into something more meaningful; for example, /
 NAS1 or /SAN-Slammer. Use the GetAllSlammers request to obtain the
 existing FQN and GUID.

 Name

 Identifies the name that is assigned to a hardware component. Assign
 unique, meaningful component names to help you more easily locate
 specific components. The Pillar Axiom system maps the assigned name to
 the component’s serial number and updates the map if you modify the
 component name.

 By default, the Bricks are assigned names such as /Brick001, based on a
 simple sort of the component’s internal Fibre Channel WUNAME. This is the
 logical Brick name and is not necessarily the same as the physical Brick
 location. You can assign any name to a Brick.

EXAMPLES Run the following command to assign a new name to a Slammer in your

 system.

 pdscli request ModifySlammer @input

 where input.req contains the following name/value pairs:

 Request=ModifySlammer
 Slammer=SC1
 Name=Slammer1

 See the ModifySlammerResponse.txt file for example response data.

SEE ALSO

 GetAllSlammers on p. 231
 GetSlammerDetails on p. 295
 Ranges for Option Values on p. 57
NAME ModifySnapLUN

DESCRIPTION Modifies a Snap LUN, which is defined as:

A point-in-time, read-write copy of a LUN that you can immediately use. Snap LUNs requires no cache and minimal disk storage space. Snap LUNs point to the original data, and have the same QoS parameters as the source LUN.

Note: Formerly called a Snap LUN, the GUI now refers to this term as Clone LUN, whereas Snap LUN is still used in the command line.

SYNTAX pdscli {request | submit} ModifySnapLUN
SnapLUN=GUID-or-FQN-of-LUN
Name=LUN-name
LUNNumber=integer-0-through-255
Active={true | false}
Mapped={true | false}
EnableiSCSIAccess={true | false}
EnableFibreChannelAccess={true | false}

OPTIONS SnapLUN

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID: ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format: /Fully/Qualified/ObjectName

Enter the GUID or FQN of the LUN you wish to modify.

Name [optional]

Identifies the name that is assigned to a LUN for administrative purposes. LUN names must be unique across the Pillar Axiom system, not just within its associated volume group.

Name is a required parameter only if you want to change the FQN LUN’s user-visible name.

LUNNumber [optional]

Identifies the unique number that is assigned to a LUN and can be accessed by all SAN hosts if the LUN is not mapped. If the LUN is mapped, the LUN number must be unique to the mapped SAN host.
Active [optional]
Identifies whether the Clone LUN is available to the host (active) or is not seen by the host (inactive) when it is created. Inactive Clone LUNs can be changed to active; however, once the Clone LUN is set to active, you cannot change it to inactive. Default is active.

Mapped [optional]
Identifies whether all hosts or only selected hosts may access this LUN.
- Mapped allows only designated hosts to access this LUN.
- Unmapped allows all hosts to access this LUN using the LUN Number.

Note: If you choose Mapped, do not assign a LUNNumber.

EnableiSCSIAccess
Identifies that the iSCSI protocol specification is used when accessing the newly created SAN LUN.

Note: You must specify iSCSI, Fibre Channel, or both protocols.

EnableFibreChannelAccess
Identifies that the Fibre Channel (FC) protocol specification is used when accessing the newly created SAN LUN.

Note: You must specify iSCSI, Fibre Channel, or both protocols.

EXAMPLES
Run the following command to modify the name and LUN number of SLUN_01 for the Engineering organization.
pdsccli request ModifySnapLUN @input
where input.req contains the following name/value pairs:
Request=ModifySnapLUN
SnapLUN=/SLUN_01
Name=EngLUN
LUNNumber=0

See the ModifySnapLUNResponse.txt file for example response data.

SEE ALSO
DeleteSnapLUN on p. 191
GetAllSnapLUNs on p. 233
GetAllSnapLUNHierarchies on p. 232
GetSnapLUNDetails on p. 297
PerformLUNDuplication on p. 447
PerformBackgroundLUNDuplication on p. 402
Ranges for Option Values on p. 57
Chapter 4 Management Requests

NAME ModifySNMPConfig

DESCRIPTION Modifies the Simple Network Management Protocol (SNMP) configuration settings.

SYNTAX
```bash
pdscli {request | submit} ModifySNMPConfig
   SNMPHost[1-65535].SNMPHostUsed=
      {true | false}
   SNMPHost[1-65535].SNMPHostIP=IP-address
   SNMPHost[1-65535].SNMPHostPort=integer
   SNMPHost[1-65535].SNMPCommunityString=string
```

OPTIONS

SNMPHost[1-65535].SNMPHostUsed
Identifies whether the SNMP trap host is enabled.
- Enable a trap host so that it is sent SNMP traps that the Pillar Axiom system generates.
- Disable a trap host so that it is not sent traps.

SNMPHost[1-65535].SNMPHostIP
Identifies the IP address of a workstation with an SNMP-based management application installed. This workstation receives the SNMP traps that the Pillar Axiom system generates.

SNMPHost[1-65535].SNMPHostPort
Identifies the port on which an SNMP trap host listens for the SNMP traps that the Pillar Axiom storage system generates.

SNMPHost[1-65535].SNMPCommunityString
Identifies a community for which a specific trap host should receive traps that the Pillar Axiom system generates. You can specify different community strings for each trap host so that multiple administrators can receive specific types of SNMP traps.
Default: public (note the lower-case spelling)

EXAMPLES
Run the following command to configure another SNMP trap host.
```bash
pdscli request ModifySNMPConfig @input
```
where input.req contains the following name/value pairs:
- Request=ModifySNMPConfig
- SNMPHost[1].SNMPHostUsed=true
- SNMPHost[1].SNMPHostIP=192.168.1.59
- SNMPHost[1].SNMPHostPort=162
- SNMPHost[1].SNMPCommunityString=public

See the ModifySNMPConfigResponse.txt file for example response data.
SEE ALSO Ranges for Option Values on p. 57
NAME ModifyTimeConfig

DESCRIPTION Modifies the manual time settings that are configured on the Pillar Axiom storage system. Run this configuration request if you do not synchronize with Network Time Protocol (NTP) servers and you want to change the factory-configured system time settings.

Note: If you are running the CIFS protocol in a Windows 2000 Active Domain, NTP is mandatory. NTP is strongly advised for NFS and may be required by some applications that use NFS.

SYNTAX pdbscli {request | submit} ModifyTimeConfig
 NTPServiceEnabled={true | false}
 PreferredNTPServerIPAddress=IP-address
 AlternateNTPServer[1-2]IPAddress=IP-address
 TimeZoneName=Time-Zone-Name
 DateTime=YYYY-MM-DDTHH:mm:ss.xx+-HH:mm

OPTIONS NTPServiceEnabled [optional]
 Enables NTP service.
 • If NTPServiceEnabled=true, you must enter the preferred NTP server IP address.

PreferredNTPServerIPAddress [optional]
 Identifies the preferred NTP server.

AlternateNTPServer[1-2]IPAddress [optional]
 Identifies alternate NTP servers.

TimeZoneName [optional]
 Identifies the time zone of the site at which the Pillar Axiom system is installed. Choose from:
 • Abu Dhabi, Muscat
 • Alaska (US)
 • Amsterdam, Belgrade, Berlin, Bern, Brussels, Paris, Rome, Stockholm, Vienna
 • Astana, Dhaka
 • Atlantic Time (Canada), Caracas
 • Auckland, Wellington, Fiji
 • Azores
 • Bangkok, Hanoi, Jakarta
 • Beijing, Hong Kong, Perth, Singapore, Taipei
 • Brisbane, Guam, Melbourne, Sydney
 • Bucharest, Cairo, Helsinki, Instanbul
• Central Time (US, Canada), Mexico City, Saskatchewan
• Eastern Time (US, Canada), Bogota, Lima
• Greenland
• Greenwich Mean Time: Casablanca, Dublin, Edinburgh, Lisbon, London
• Hawaii (US)
• International Date Line West
• Islamabad, Karachi
• Magadan, Solomon Islands, New Caledonia
• Mid-Atlantic
• Midway Island, Samoa
• Moscow
• Mountain Time (US, Canada)
• Pacific Time (US, Canada), Tijuana
• Tokyo, Seoul

DateTime=YYYY-MM-DDTHH:mm:SS.xx+-HH:mm [optional]
Identifies the date and clock time for manual time settings in the Pillar Axiom
system. Use the following format for the entry:
YYYY-MM-DDTHH:mm:SS.xx+-HH:mm
where:
• YYYY-MM-DD designates a four-digit year, two-digit month, and two-
digit day for the date.
• T is a separator that designates the start of the time portion of the string.
• HH:mm:SS designates hours, minutes, and seconds in values for a 24-
hour clock.
• xx designates a fraction of a second, to two decimal places.
• +-HH:mm designates the time zone as an offset from Coordinated
Universal Time (UTC) in hours and minutes. Include the + or - prefix as
appropriate for your time zone in relation to UTC.

EXAMPLES
Run the following command to set the time on your system.
pdcli request ModifyTimeConfig @input

where input.req contains the following name/value pairs:
Request=ModifyTimeConfig
NTPServiceEnabled=true
PreferredNTPServerIPAddress=172.20.20.2
AlternateNTPServer1IPAddress=172.20.20.3
TimeZoneName=US/Pacific
DateTime=2004-03-19T13:59:44-08:00

See the ModifyTimeConfigResponse.txt file for example response data.
SEE ALSO

- `GetCurrentDateTimeDetails on p. 247`
- `GetCurrentTimeZoneDetails on p. 248`
- `Ranges for Option Values on p. 57`
NAME ModifyVolumeGroup

DESCRIPTION Modifies the specified volume group.

SYNTAX

 pdscli {request | submit} ModifyVolumeGroup
 VolumeGroup=GUID-or-FQN-of-volume-group
 Name=string
 ParentVolumeGroup=GUID-or-FQN-of-parent-volume-group
 MaximumCapacity=integer

OPTIONS
 VolumeGroup
 Identifies a specific Pillar Axiom object. Choose from:

 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.

 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

 Enter the GUID or FQN of the volume group to modify.

 Name [optional]
 Identifies the name that is assigned to a volume group. Each volume group name must be unique within its parent volume group.

 ParentVolumeGroup [optional]
 Enter the GUID or FQN of the next-highest volume group in the nested chain. If volume groups are not nested, or if the next-highest level is the System itself, enter the GUID or FQN of the System.

 MaximumCapacity [optional]
 Identifies the maximum capacity for the volume group. The maximum capacity of the filesystems and nested volume groups that are associated with the volume group cannot exceed this value.

 A value of 0 (zero) identifies that the volume group is configured with unlimited capacity. You can increase the maximum capacity of associated filesystems and nested volume groups without constraints.

EXAMPLES
 Run the following command to assign a new name to a volume group.

 pdscli request ModifyVolumeGroup @input

 where input.req contains the following name/value pairs:

 Request=ModifyVolumeGroup
 VolumeGroup=/Eng
 Name=Engineering
 MaximumCapacity=0
See the ModifyVolumeGroupResponse.txt file for example response data.

SEE ALSO

CreateVolumeGroup on p. 167
DeleteVolumeGroup on p. 195
Ranges for Option Values on p. 57
NAME PerformAcceptAddBrick

DESCRIPTION Accepts a newly added Brick.

SYNTAX pdscli {request | submit} PerformAcceptAddBrick
 Brick=GUID-or-FQN-of-Brick

OPTIONS Brick
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.

 Enter the GUID or FQN of the new Brick.

EXAMPLES Run the following command to accept a replacement Brick that was installed
 on your system.
 pdscli request PerformAcceptAddBrick @input

 where input.req contains the following name/value pairs:
 Request=PerformAcceptAddBrick
 Brick=/Company-XYZ-data/Brick3

 See the PerformAcceptAddBrickResponse.txt file for example response data.

SEE ALSO PerformIdentifyBrick on p. 433

 PerformResumeBrick on p. 486

 Ranges for Option Values on p. 57

 Service Guide
NAME PerformAcceptAddSlammer

DESCRIPTION Accepts a newly added Slammer.

SYNTAX pdscli {request | submit} PerformAcceptAddSlammer
 Slammer=GUID-or-FQN-of-Slammer

OPTIONS Slammer

Identifies a specific Pillar Axiom object. Choose from:

• Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0

• Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the new Slammer.

EXAMPLES Run the following command to accept a replacement Slammer that was
 installed on your system.
 pdscli request PerformAcceptAddSlammer @input

 where input.req contains the following name/value pairs:
 Request=PerformAcceptAddSlammer
 Slammer=/Company-XYZ-data/Slammer3

 See the PerformAcceptAddSlammerResponse.txt file for example response
 data.

SEE ALSO PerformIdentifySlammer on p. 438
 PerformResumeSlammer on p. 489
 Ranges for Option Values on p. 57

 Service Guide
NAME PerformAcceptBrickDiskDrive

DESCRIPTION Accepts a disk drive that is installed on a Brick. A new disk drive is accepted on a Brick when the system:

- Discovers the new disk drive.
- Initializes the disk drive (which destroys all configuration and user data on the disk drive).
- Stores the disk drive’s serial number permanently.

SYNTAX

```
pdscli PerformAcceptBrickDiskDrive
   BrickWWN=Brick
   DiskDriveNumber=integer
```

OPTIONS

Brick

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Brick on which the new disk drive was installed.

DiskDriveNumber

Identifies a disk drive that is installed on a Brick.

EXAMPLES

Run the following command to accept a replacement disk drive that was installed on Brick1.

```
pdscli request PerformAcceptBrickDiskDrive @input
```

where input.req contains the following name/value pairs:

- Request=PerformAcceptBrickDiskDrive
- Brick=/Company-XYZ-data/Brick1
- DiskDriveNumber=5

See the PerformAcceptBrickDiskDriveResponse.txt file for example response data.

SEE ALSO

- GetAllBricks on p. 204
- PerformAcceptAddBrick on p. 391
Chapter 4 Management Requests

PerformCopybackBrickLUNs on p. 415
PerformPrepareReplaceBrickFRU on p. 461
NAME PerformAcceptForeignDiskDrive

DESCRIPTION Accepts a disk drive that is installed on a Brick. A disk drive is foreign when the Pillar Axiom storage system does not recognize the disk drive's serial number. Any new disk drive is considered to be foreign until the system:

- Discovers the new disk drive.
- Initializes the disk drive (which destroys all configuration and user data on the disk drive).
- Stores the Pillar Axiom system’s serial number on the new Brick.

SYNTAX pdsclicli PerformAcceptForeignDiskDrive
 Brick=GUID-or-FQN-of-Brick
 DiskDriveNumber=integer

OPTIONS Brick
 Identifies a specific Pillar Axiom object. Choose from:
 - Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 - Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName
 Enter the GUID or FQN of the Brick on which the new disk drive was installed.

DiskDriveNumber
 Identifies a disk drive that is installed on a Brick.

EXAMPLES Run the following command to accept a replacement disk drive that was installed on Brick1.
 pdsclicli request PerformAcceptForeignDiskDrive @input
 where input.req contains the following name/value pairs:
 Request=PerformAcceptForeignDiskDrive
 Brick=/Company-XYZ-data/Brick1
 DiskDriveNumber=5

 See the PerformAcceptForeignDiskDriveResponse.txt file for example response data.
SEE ALSO

PerformIdentifyBrickFRU on p. 435
PerformPrepareReplaceBrickFRU on p. 461
PerformResumeBrickFRU on p. 487
Ranges for Option Values on p. 57

Service Guide
NAME PerformAssignCIFSLocalGroups

DESCRIPTION Assigns the Common Internet File System (CIFS) protocol to a local security group.

SYNTAX pdscli {request | submit} PerformAssignCIFSLocalGroups
 FileServer=GUID-or-FQN-of-File-Server
 LocalAdministrationGroupName=GroupNameString
 LocalBackupGroupName=GroupNameString

OPTIONS The

FileServer Identifies the File Server.

LocalAdministrationGroupName Identifies the local administration group to be used for CIFS protocol for a Pillar Axiom storage system.

LocalBackupGroupName Identifies the backup group to be used for CIFS.

EXAMPLES Run the following command to associate CIFS with a local group.
 pdscli request PerformAssignCIFSLocalGroups@input

 where input.req contains the following name-value pairs:
 Request=PerformAssignCIFSLocalGroups
 FileServer=ID12345678-9abc-def0-1234-56789abcdef0
 LocalAdministrationGroupName=EngrCIFSAdmin
 LocalBackupGroupName=EngrCIFS-BU

 See the PerformAssignCIFSLocalGroups.txt file for example response data.

SEE ALSO CreateCIFSShare on p. 95
 DeleteCIFSShare on p. 171
 GetAllCIFSShares on p. 206
 GetCIFSShareDetails on p. 244
 ModifyCIFSShare on p. 315
NAME
PerformAssociateInitiatorsToHost

DESCRIPTION
Associates the FC ports or iSCSI initiator names to the host.

SYNTAX
pdscli {request | submit} PerformAssociateInitiatorsToHost
 HBAPortWWN=World-wide-number
 InitiatorName
 HBAPortName=HBA-port-name
 SANHostName=Host-name

OPTIONS
The HBAPortWWN and the InitiatorName parameters are both optional; however, only one or the other of these two can be selected. An Invalid Parameter error is returned if both are provided.

HBAPortWWN
Identifies the address, or world wide name (WWN), of the specified host bus adapter (HBA).

InitiatorName [optional]
Identifies the iSCSI initiator to the host.

HBAPortName [optional]
Identifies the name given to the gigabit interface converter (GBIC) or port.

SANHostName [optional]
Identifies the name assigned to a specific SAN host.

EXAMPLES
Run the following command to associate an HBA with a SAN host.

pdscli request PerformAssociateInitiatorsToHost@input

where input.req contains the following name/value pairs:
 Request=PerformAssociateInitiatorsToHost
 HBAPortWWN=21:00:00:e0:8b:11:b5:4a
 HBAPortName=HBA 3 Port 0
 SANHostName=SANTest_02

See the PerformAssociateInitiatorsToHostResponse.txt file for example response data.

SEE ALSO
GetSANConfigDetails on p. 284
GetHostMappingConfigDetails on p. 265
GetAllSANHosts on p. 227
GetSANHostDetails on p. 285
ModifySANHost on p. 377
GetHBAPortConnections on p. 262
DeleteSANHost on p. 189
NAME PerformBackgroundFileSystemDuplication

DESCRIPTION Creates a duplicate of a filesystem in the background. A filesystem duplicate is defined as:

A block-level, duplicate copy (image copy) of a filesystem. Use this data redundancy feature (called Copy Filesystem in the Pillar Axiom Storage Services Manager) to create a bit-for-bit secondary duplicate of a source filesystem for immediate use as a read-write copy. Note that the Quality of Service (QoS) may differ from the original.

A duplicate copy requires greater system and storage resources than a Snap FS. To create an archival copy, create an inactive clone.

Use this request, for example, to replicate a data set for testing or to set up a new environment. User data, NFS exports, and CIFS shares are duplicated. You can change the capacity and performance settings of the duplicate filesystem.

Note: Background copies may impact storage performance and resources available to the user community during peak operating hours.

SYNTAX pdscli {request | submit} PerformBackgroundFileSystemDuplication FileSystem=GUID-or-FQN-of-filesystem

OPTIONS FileSystem

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.

 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the filesystem to duplicate.

EXAMPLES Run the following command to duplicate the EngAtl filesystem and run as a background process.

pdscli request PerformBackgroundFileSystemDuplication @input

where input.req contains the following name/value pairs:
Request=PerformBackgroundFileSystemDuplication
FileSystem=/Company-XYZ-FS1/EngAtl
See the PerformBackgroundFileSystemDuplicationResponse.txt file for example response data.

SEE ALSO

PerformFileSystemDuplication on p. 425
CreateFileSystemSnapshotSchedule on p. 124
DeleteFileSystemSnapshot on p. 177
DeleteFileSystemSnapshotSchedule on p. 179
GetAllFileSystemSnapshots on p. 216
GetAllFileSystemSnapshotSchedules on p. 218
GetFileSystemSnapshotDetails on p. 256
GetFileSystemSnapshotScheduleDetails on p. 258
ModifyFileSystemSnapshot on p. 340
PerformRestoreFileSystemFromSnapshot on p. 485
PerformRebuildFileSystemRedundancy on p. 474
Ranges for Option Values on p. 47
NAME PerformBackgroundLUNDuplication

DESCRIPTION Copies data from the source LUN to the duplicate. A LUN duplicate is defined as:

A block-level, image copy of a source LUN used for immediate read-write access. A LUN duplicate (called Copy LUN in the Pillar Axiom Storage Services Manager) creates a reliable, bit-for-bit secondary copy of the entire allocated storage space of the source LUN.

This feature requires greater system and storage resources than the Snap LUN feature. To create an archival copy, create an inactive clone.

Use this request, for example, to replicate a data set for testing or to set up a new environment. You can change the capacity and performance settings of the duplicate LUN.

Note: Background copies may impact storage performance and resources available to the user community during peak operating hours.

SYNTAX pdcli {request | submit}
PerformBackgroundLUNDuplication
 LUN=GUID-or-FQN-of-LUN
 EnableiSCSIAccess={true | false}
 EnableFibreChannelAccess={true | false}

OPTIONS LUN

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID: ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the LUN to duplicate.

EnableiSCSIAccess

Identifies that the iSCSI protocol specification is used when accessing the newly created SAN LUN.

Note: You must specify iSCSI, Fibre Channel, or both protocols.
EnableFibreChannelAccess

Identifies that the Fibre Channel (FC) protocol specification is used when accessing the newly created SAN LUN.

Note: You must specify iSCSI, Fibre Channel, or both protocols.

EXAMPLES

Run the following command to duplicate EngLUN and run as a background process.

```
pdscli request PerformBackgroundLUNDuplication
    @input
```

where `input.req` contains the following name/value pairs:

- `Request=PerformBackgroundLUNDuplication`
- `LUN=/EngLUN`
- `EnableiSCSIAccess=false`
- `EnableFibreChannelAccess=true`

See the `PerformBackgroundLUNDuplicationResponse.txt` file for example response data.

SEE ALSO

- PerformLUNDuplication on p. 447
- DeleteSnapLUN on p. 191
- GetAllSnapLUNs on p. 233
- GetAllSnapLUNHierarchies on p. 232
- GetSnapLUNDetails on p. 297
- ModifySnapLUN on p. 381
- Ranges for Option Values on p. 57
NAME PerformCancelTask

DESCRIPTION Sends a cancellation request to stop the specified task. The Pillar Axiom storage system stops its processing when it receives the cancellation request, but does not roll back parts of the task that have already been completed.

SYNTAX pdscli {request | submit} PerformCancelTask
 Task=GUID-or-FQN-of-task

OPTIONS Task

Identifies a specific Pillar Axiom object. Choose from:

• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.

• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the task to cancel.

EXAMPLES Run the following command to cancel a task.
 pdscli request PerformCancelTask @input

 where input.req contains the following name/value pairs:
 Request=PerformCancelTask
 Task=IDA0479DC2-38EF-9828-8902-E0FC03743270

 See the PerformCancelTaskResponse.txt file for example response data.

SEE ALSO GetAllTasks on p. 235

 Synchronous and Asynchronous Requests on p. 47 (some asynchronous requests cannot be cancelled)

 Ranges for Option Values on p. 57
NAME PerformClearLostData

DESCRIPTION Indicates that permanent data loss likely occurred on the volume. Replacing the damaged hardware clears the flag and sets the volume back online to be recovered from a backup source. On NAS systems, an FSCK is run after the PerformClearLostData flag is cleared.

SYNTAX pdscli {request | submit}
PerformClearLostData
 AdministratorAction=GUID-or-FQN-of-action
 OwnerID=GUID-of-volume

OPTIONS AdministratorAction
Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 FQN Format:
 /Fully/Qualified/ObjectName
 Enter the GUID or FQN of all administrator actions for which you want to display information.

OwnerID [Optional]
Identifies the owning volume. For NAS volumes, this is the filesystem ID. For SAN volumes, this is the LUN ID.

EXAMPLES Run the following command to display information about an unresolved administrator action.
pdscli request PerformClearLostData @input

where input.req contains the following name/value pairs:
Request= PerformClearLostData
AdministratorActionID=IDf1234567-89ab-cde0-0123-456789eeeee0

See the PerformClearLostDataResponse.txt file for example response data.
NAME PerformCollectInstantaneousStatistics

DESCRIPTION Collects real-time information about the Pillar Axiom system.

SYNTAX pdscli {request | submit} PerformCollectInstantaneousStatistics

OPTIONS None.

EXAMPLES Run the following command to collect instantaneous data on the Pillar Axiom system.

pdscli request PerformCollectInstantaneousStatistics @input

where input.req contains the following name/value pairs:

PerformCollectInstantaneousStatistics

See the PerformCollectInstantaneousStatistics.txt file for example response data.

SEE ALSO

GetBackupRunStatistics on p. 241
GetFileServerStatistics on p. 254
GetFileSystemStatistics on p. 260
GetHistoricalFileSystemStatistics on p. 263
GetSlammerStatistics on p. 296
GetSystemStatusDetails on p. 303
PerformCollectSystemInformation on p. 407
Ranges for Option Values on p. 57
NAME PerformCollectSystemInformation

DESCRIPTION Collects information about the Pillar Axiom system and creates a tar file of trace logs. Pillar World Wide Customer Support Center may request that you perform this request to diagnose issues in your Pillar Axiom storage system.

SYNTAX

pdscli \{request | submit\} PerformCollectSystemInformation

CollectTraceLogParameters.
 IncludeOnlyLatestLogs={true | false}
CollectTraceLogParameters.
 IncludeInMemoryLogs={true | false}
CollectTraceLogParameters.
 IncludeBackupLogs={true | false}
CollectTraceLogParameters.
 IncludeAllHardwareComponents={true | false}
CollectTraceLogParameters.
 IncludePilot={true | false}
CollectTraceLogParameters.
 IncludeSANHostLogs={true | false}
CollectTraceLogParameters.SlammerList.
 SlammerEntry.SlammerID=GUID-of-Slammer
CollectTraceLogParameters.SlammerList.
 SlammerEntry.SlammerFQN=FQN-of-Slammer
CollectTraceLogParameters.SlammerList.
 SlammerEntry.Name=string
CollectTraceLogParameters.BrickList.
 BrickEntry.BrickID=GUID-of-Brick
CollectTraceLogParameters.BrickList.
 BrickEntry.BrickFQN=FQN-of-Brick
CollectTraceLogParameters.BrickList.
 BrickEntry.Name=string
CollectTraceLogParameters.Days
 ZeroPlusIntDays=integer
SendOff={true | false}
SystemInformationType={DebugLogs | Statistics | RecentEvents | HardwareInventory | SoftwareInventory | NTP | ManagementConfiguration | SystemTopology | FileServers | VolumeGroups | SANInventory | Persistence | PDSFS}

OPTIONS CollectTraceLogParameters.IncludeOnlyLatestLogs

Identifies whether or not to collect only the most recent logs or all logs.
 • Choose true to collect one Pilot log and one Slammer log (if the Slammer has generated any events).
Chapter 4 Management Requests

• Choose false to collect all trace logs.

Important! You must enter DebugLogs for SystemInformationType Chapter 4; otherwise, this option is invalid.

CollectTraceLogParameters.
IncludeInMemoryLogs
Identifies whether or not to write details from the utility’s active memory to another trace log and include this log with the component-specific trace logs that you specify.

CollectTraceLogParameters.
IncludeBackupLogs
Identifies whether or not to write details from a backup copy of the utility’s active memory to another trace log and include this log with the component-specific trace logs that you specify. The Pillar Axiom system periodically creates the backup copy, which may contain useful details to compare to the active-memory trace.

CollectTraceLogParameters.
IncludeAllHardwareComponents
Identifies whether or not to include trace logs from all hardware components. If you set this value to false, identify specific hardware components from which to gather trace logs. If you omit this value or set it to true, then all trace logs are collected.

CollectTraceLogParameters.IncludePilot
Identifies whether or not to include trace logs from the Pillar Axiom Pilot.

CollectTraceLogParameters.IncludeSANHostLogs
Identifies whether to include SAN host logs from the Pillar Axiom Pilot.

CollectTraceLogParameters.SlammerList.
SlammerEntry.SlammerID
Enter the globally unique ID (GUID), which is a 38-character string that starts with “ID” and ends with 36 lower-case hex characters (a-f and 0-9) and hyphens.

Example GUID:
ID12345678-9abc-def0-1234-56789abcdef0

CollectTraceLogParameters.SlammerList.
SlammerEntry.SlammerFQN
Enter the fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

FQN format:
/Fully/Qualified/ObjectName
Chapter 4 Management Requests

CollectTraceLogParameters.SlammerList. SlammerEntry.Name
Identifies the name that is assigned to a Slammer.

CollectTraceLogParameters.BrickList. BrickEntry.BrickID
Enter the globally unique ID (GUID), which is a 38-character string that starts with “ID” and ends with 36 lower-case hex characters (a-f and 0-9) and hyphens.
Example GUID:

ID12345678-9abc-def0-1234-56789abcdef0

CollectTraceLogParameters.BrickList. BrickEntry.BrickFQN=
Enter the fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
FQN format:

/Fully/Qualified/ObjectName

CollectTraceLogParameters.BrickList. BrickEntry.Name
Identifies the name that is assigned to a Brick.

CollectTraceLogParameters.Days (optional)
Specifies the number of days, from today, in which to collect the logs.

SendOff
Allows you to select whether you want the logs to be sent to the Call-Home server as soon as the collection operation completes.

SystemInformationType
Identifies the specific type of system information to collect. Choose from:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“DebugLogs”</td>
<td>Software errors or hardware failures that may help diagnose system problems</td>
</tr>
<tr>
<td>“Statistics”</td>
<td>Performance statistics for filesystem backups, logical volumes, and NAS and SAN protocols</td>
</tr>
<tr>
<td>“RecentEvents”</td>
<td>High-level events that have occurred on the system. By default, this option returns either the last 30,000 events or events from the last two weeks, whichever is greater.</td>
</tr>
</tbody>
</table>
Table 24 System information type (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Hardware Inventory”</td>
<td>List of all hardware components, including serial numbers, in the Pillar Axiom storage system</td>
</tr>
<tr>
<td>“Software Inventory”</td>
<td>List of all software components in the Pillar Axiom storage system</td>
</tr>
<tr>
<td>NTP</td>
<td>Information about the Network Time Protocol (NTP) configured on the system</td>
</tr>
<tr>
<td>Management Configuration</td>
<td>Information about the global settings that are defined for the Pillar Axiom storage system</td>
</tr>
<tr>
<td>SystemTopology</td>
<td>List of all hardware components and internal typology on the Fibre Channel subset</td>
</tr>
<tr>
<td></td>
<td>Note: This option does not return SCSI information, which you can access from the GUI.</td>
</tr>
<tr>
<td>FileServers</td>
<td>Information about the current File Server configuration, including defined routes, virtual interfaces, DNS settings, and NIS settings</td>
</tr>
<tr>
<td>VolumeGroups</td>
<td>Information about the current volume group configuration</td>
</tr>
<tr>
<td>SANInventory</td>
<td>List of the SAN components in the Pillar Axiom storage system, including every LUN, HBA port, SAN host, and SAN host LUN mapping.</td>
</tr>
<tr>
<td>Persistence</td>
<td>System configuration Information about system management and data resources as well as COD.</td>
</tr>
<tr>
<td>PDSFS</td>
<td>Information about the current filesystem configuration</td>
</tr>
</tbody>
</table>

EXAMPLES

Run the following command to create a trace log that contains details about your Pillar Axiom storage system.

```bash
pdscli request PerformCollectSystemInformation @input
```

where `input.req` contains the following name/value pairs:

```bash
PerformCollectSystemInformation
CollectTraceLogParameters.
  IncludeOnlyLatestLogs=true
CollectTraceLogParameters.
  IncludeInMemoryLogs=true
CollectTraceLogParameters.
  IncludeBackupLogs=true
CollectTraceLogParameters.
  IncludePilot=true
CollectTraceLogParameters.
```
IncludeSANHostLogs=true
CollectTraceLogParameters.SlammerList.
 SlammerEntry.SlammerID=IDA0479DC2-38EF-9828-8902-E0FC03743270
CollectTraceLogParameters.BrickList.
 BrickEntry.BrickID=IDA0479DC2-38EF-9828-
CollectTraceLogParameters.Days
 ZeroPlusIntDays=1
SendOff=true
SystemInformationType=DebugLogs

See the PerformCollectSystemInformation.txt file for example response data.

SEE ALSO
GetAllCallHomeFileDetails on p. 205
GetBackupRunStatistics on p. 241
GetFileServerStatistics on p. 254
GetFileSystemStatistics on p. 260
GetHistoricalFileSystemStatistics on p. 263
GetSlammerStatistics on p. 296
GetSystemStatusDetails on p. 303
PerformCollectInstantaneousStatistics on p. 406
PerformDownloadCallHomeFile on p. 418
PerformDownloadSystemInformationFile on p. 420
PerformPeriodicCallHome on p. 460
PerformTestCallHome on p. 505
Ranges for Option Values on p. 57
NAME PerformConfigureLUNMapping

DESCRIPTION Maps a LUN to a specified SAN host.

SYNTAX pdscli {request | submit} PerformConfigureLUNMapping
 MappedLUN=GUID-or-FQN-of-mapped-LUN
 HostMapping.SANHostName=Host-name
 HostMapping.MappingInformation.LUNNumber=
 integer-0-through-255
 HostMapping.MappingInformation.
 ExcludePortList.SlammerIOPort.
 ControlUnitNumber=
 HostMapping.MappingInformation.
 ExcludePortList.SlammerIOPort.
 FibreChannelPortName=PORT-name

OPTIONS MappedLUN

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID of the LUN to map.

HostMapping.SANHostName

Identifies the name assigned to a specific SAN host.

HostMapping.MappingInformation.LUNNumber

Identifies the unique number that is assigned to a LUN and can be accessed by all SAN hosts if the LUN is not mapped. If the LUN is mapped, the LUN number must be unique to the mapped SAN host.
Hostmapping.MappingInformation.ExcludePortList.SlammerIOPort.ControlUnitNumber

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the control unit.

Hostmapping.MappingInformation.ExcludePortList.SlammerIOPort.FibreChannelPortName

Identifies a fibre channel port name.

Note: This value is case-sensitive; you must use capitalized letters for PORT, FC0, or FS0.

EXAMPLES

Run the following command to map EngLUN to the SANTest_02 host.

```bash
pdscli request PerformConfigureLUNMapping @input
```

where input.req contains the following name/value pairs:

```bash
Request=PerformConfigureLUNMapping
MappedLUN=IDA0479DC2-38EF-9828-8902-E0FC03743270
HostMapping.SANHostName=SANTest_02
HostMapping.MappingInformation.LUNNumber=0
HostMapping.MappingInformation.
  ExcludePortList.SlammerIOPort.
    ControlUnitNumber=0
HostMapping.MappingInformation.
  ExcludePortList.SlammerIOPort.
    FibreChannelPortName=PORT1
```

See the PerformConfigureLUNMappingResponse.txt file for example response data.

SEE ALSO

CreateLUN on p. 135
DeleteLUN on p. 182
GetAllLUNs on p. 221
Chapter 4 Management Requests

GetHostMappingConfigDetails on p. 265
GetLUNDetails on p. 269
GetLUNMappingConfigDetails on p. 270
ModifyLUN on p. 351
PerformRebuildLUNRedundancy on p. 475
Ranges for Option Values on p. 57
NAME
PerformCopybackBrickLUNs

DESCRIPTION
Initiates a copyback to a Brick LUN.

SYNTAX
pdscsi {request | submit} PerformRebuildBrickLUNs
 BrickWWN=world-wide-name
 TargetDriveNumber={0 | integer}
 SourceDriveNumber={0 | integer}
 LUNID=GUID-or-FQN-of-LUN

OPTIONS
BrickWWN
Identifies the unique identifier, or world wide name (WWN), of the specified Brick.

TargetDriveNumber
Identifies the target disk drive that is installed on the Brick.

SourceDriveNumber
Identifies the source disk drive that is installed on the Brick.

LUNID
Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.

 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name.

 FQN Format:
 /Fully/Qualified/ObjectName

 Enter the GUID or FQN of the Brick LUN to rebuild.

EXAMPLES
Run the following command to rebuild a LUN on a Brick.

```
pdscsi request PerformCopybackBrickLUNs @input
```

where input.req contains the following name/value pairs:

- Request=PerformCopybackBrickLUNs
- LUNID=/EngLUN
- TargetDriveNumber=
- SourceDriveNumber=
- BrickWWN=21:00:00:e0:8:11:b5:4a

See the PerformCopybackBrickLUNsResponse.txt file for example response data.
SEE ALSO

- GetAllBricks (p. 204)
- GetBrickDetails (p. 242)
- PerformRebuildBrickLUNs (p. 472)
<table>
<thead>
<tr>
<th>NAME</th>
<th>PerformDisableSMIStartup</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Disables Storage Management Initiative - Specification (SMI-S), which has been manually enabled on a Pilot. SMI-S is a messaging-based interface designed to support the specific requirements of managing devices in a SAN. By default, all 512 MB-based Pilots have SMI-S disabled on startup. Once enabled, SMI-S will remain on the Pilot through power cycles until it is manually disabled.</td>
</tr>
<tr>
<td>SYNTAX</td>
<td>`pdscli {request</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>None.</td>
</tr>
</tbody>
</table>
| EXAMPLES | Run the following command to manually disable SMI-S.
`pdscli request PerformDisableSMIStartup @input`
where `input.req` contains the following name/value pairs:
Request=PerformDisableSMIStartup
See the `PerformDisableSMIStartupResponse.txt` file for example response data. |
| SEE ALSO | [PerformEnableSMIStartup on p. 421](#) |
NAME PerformDownloadCallHomeFile

DESCRIPTION Downloads a tar file with Call Home information, including the system configuration, status, and events, from the Pillar Axiom storage system to your administrative workstation. Transmit the file as requested by World Wide Customer Support Center.

You can also use this request to download an event-generated Call Home file, if Call Home is not configured or something is preventing Call Home from transferring the file automatically.

SYNTAX pdscli {request | submit} PerformDownloadCallHomeFile FileNameOnly={true | false}

OPTIONS FileNameOnly
Identifies whether to include the name of the tar file in the command response. You must set this option to false.

EXAMPLES Run the following command to download system information.
pdscli request PerformDownloadCallHomeFile @input

where input.req contains the following name/value pairs:
PerformDownloadCallHomeFile FileNameOnly=false

See the PerformDownloadCallHomeFileResponse.txt file for example response data.

SEE ALSO GetAllCallHomeFileDetails on p. 205
GetSystemInformationFileDetails on p. 302
GetSystemStatusDetails on p. 303
PerformPeriodicCallHome on p. 460
PerformTestCallHome on p. 505
NAME PerformDownloadQuotaFile

DESCRIPTION Downloads the requested quota report file to the user’s client. Obtain the list of available quota reports using the GetAllQuotaFiles request.

SYNTAX

```
pdscli {request | submit} PerformDownloadQuotaFile
ID=GUID-or-FQN-of-quota
```

OPTIONS ID

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the filesystem for which you want to generate a quota report.

EXAMPLES

Run the following command to display information about a quota that is defined for the engineering organization’s filesystem, EngAtl.

```
pdscli request PerformDownloadQuotaFile @input
```

where input.req contains the following name/value pairs:

```
Request=PerformDownloadQuotaFile
ID=IDA0479DC2-38EF-9828-8902-E0FC03743270
```

See the PerformDownloadQuotaFileResponse.txt file for example response data.

SEE ALSO

CreateQuota on p. 154
DeleteQuota on p. 186
GatherQuotaForFileSystem on p. 197
GetAllQuotas on p. 224
GetAllQuotaFiles on p. 225
GetQuotaDetails on p. 282
ModifyQuota on p. 375
NAME
PerformDownloadSystemInformationFile

DESCRIPTION
Downloads a tar file with statistics from the Pillar Axiom storage system to your administrative workstation. Transmit the file as requested by World Wide Customer Support Center.

SYNTAX
pdscli {request | submit}
PerformDownloadSystemInformationFile
SystemInformationFile=name-of-system-information-file

OPTIONS
SystemInformationFile [optional]
Identifies the name of the file that you want to download.

EXAMPLES
Run the following command to download system information.
pdscli request PerformDownloadSystemInformationFile @input
where input.req contains the following name of the request:
PerformDownloadSystemInformationFile
See the PerformDownloadSystemInformationFileResponse.txt file for example response data.

SEE ALSO
GetBackupRunStatistics on p. 241
GetFileServerStatistics on p. 254
GetFileSystemStatistics on p. 260
GetHistoricalFileSystemStatistics on p. 263
GetSlammerStatistics on p. 296
GetSystemStatusDetails on p. 303
PerformCollectInstantaneousStatistics on p. 406
PerformCollectSystemInformation on p. 407
Ranges for Option Values on p. 57
<table>
<thead>
<tr>
<th>NAME</th>
<th>PerformEnableSMIStartup</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Enables Storage Management Initiative - Specification (SMI-S) on a Pilot. SMI-S is a messaging-based interface designed to support the specific requirements of managing devices in a SAN.</td>
</tr>
</tbody>
</table>

Important! By default, all 512 MB-based Pilots have SMI-S, VDS, and VSS disabled on startup. Because of limited memory, you should not enable SMI on these Pilots. For anything other than testing purposes, contact your Pillar Account Representative for a memory upgrade to your Pilot.

Note: You do not need to run this command on 2 GB-based Pilots.

Once the PerformEnableSMIStartup command has been executed, contact Pillar World Wide Customer Service to complete the process.

When the system comes back online, the smProvider service should be enabled. Once enabled, the service will remain on through power cycles until you manually disable it with PerformDisableSMIStartup.

SYNTAX

```
pdscli {request | submit} PerformEnableSMIStartup
```

OPTIONS

None.

EXAMPLES

Run the following command to manually enable SMI-S.

```
pdscli request PerformEnableSMIStartup @input
```

where input.req contains the following name/value pairs:

```
Request=PerformEnableSMIStartup
```

See the PerformEnableSMIStartupResponse.txt file for example response data.

SEE ALSO

PerformDisableSMIStartup on p. 417
NAME **PerformFailbackResources**

DESCRIPTION Initiates a failback of a Slammer CU that is in FailedOver status. This option can also be used to recover from a Slammer CU Failover on a NAS Slammer, if auto failback is disabled in the server configuration.

SYNTAX `pdscli {request | submit} PerformFailbackResources
 Slammer=GUID-or-FQN-of-Slammer
 ControlUnitNumber={0 | 1}`

OPTIONS **Slammer**

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.

 Example GUID:

 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

 FQN Format:

 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Slammer.

ControlUnitNumber

Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs.

EXAMPLES Run the following command to fail back CU1 on Slammer1 if CU1 is currently in FailedOver status and automatic failback is not enabled.

```
pdscli request PerformFailbackResources @input
```

where `input.req` contains the following name/value pairs:

```
Request=PerformFailbackResources
Slammer=/Company-XZY-data/Slammer1
ControlUnitNumber=1
```

See the `PerformFailbackResourcesResponse.txt` file for example response data.
NAME PerformFileSystemCheck

DESCRIPTION Checks the consistency of the specified filesystem.

SYNTAX pdsccli {request | submit} PerformFileSystemCheck
 FileSystem=GUID-or-FQN-of-filesystem
 FileSystemSnapshot=snap-FS-name
 StopOnFirstCorruption={true | false}

OPTIONS FileSystem
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name.
 FQN Format:
 /Fully/Qualified/ObjectName
 Enter the GUID or FQN of the filesystem to check.

 FileSystemSnapshot
 Identifies the name that the Pillar Axiom system assigns to a Snap FS.

 StopOnFirstCorruption
 Halts the filesystem check if a “filesystem corrupted” response is detected.
 This option can be used to end the fsck to begin a recovery from a
 snapshot, file system copy, NDMP backup, or data replication repository.
 Note: You can check the GetAllAdministratorActionsResponse.txt file for
 “filesystem corrupted” responses.

EXAMPLES Run the following command to check the consistency of the OpsLA filesystem
 after you received an AdministratorAction.
 pdsccli request PerformFileSystemCheck @input

 where input.req contains the following name/value pairs:
 Request=PerformFileSystemCheck
 FileSystem=/Company-XYZ-FS1/OpsLA
 Name=EngAt1-snap
 StopOnFirstCorruption=true

 See the PerformFileSystemCheckResponse.txt file for example response
 data.
See the GetAllAdministratorActionsResponse.txt file for “filesystem corrupted” responses.

SEE ALSO

PerformRestoreFileSystemFromSnapshot on p. 485
Ranges for Option Values on p. 57
NAME PerformFileSystemDuplication

DESCRIPTION Creates a filesystem duplicate, which is defined as:

A block-level, duplicate copy (image copy) of a filesystem. Use this data redundancy feature (called Copy Filesystem in the Pillar Axiom Storage Services Manager) to create a bit-for-bit secondary duplicate of a source filesystem for immediate use as a read-write copy. Note that the Quality of Service (QoS) may differ from the original.

A duplicate copy requires greater system and storage resources than a Snap FS. To create an archival copy, create an inactive clone.

Use this request, for example, to replicate a data set for testing or to set up a new environment. User data, NFS exports, and CIFS shares are duplicated. You can change the capacity and performance settings of the duplicate filesystem.

Note: This request does not automatically start a background copy. To start a background copy, see the PerformBackgroundFileSystemDuplication request.

SYNTAX pdscli {request | submit} PerformFileSystemDuplication
SourceFileSystem=GUID-or-FQN-of-filesystem
FileServer=GUID-or-FQN-of-File-Server
VolumeGroup=GUID-or-FQN-of-volume-group
Name=string
Profile={Normal | HighThroughput}
MaximumCapacity=integer
RelativePriority={Archive | Low | Medium | High | Premium}
FileSizeBias={Small | Medium | Large | None}
AccessBias={None | Mixed | Random | Sequential}
IOBias={Mixed | Write | Read | None}
StorageClass={MultiLevelCellSolidStateDrives | SingleLevelCellSolidStateDrives | FibreChannelHardDiskDrives | SataHardDiskDrives}
Redundancy={Standard | Double}
AccessMode=ReadWrite
CloneFSCapacity=integer
EnforceVolumeRetention={true | false}
BackgroundCopyPriority=
 {MaximizeSpeed | MinimizeImpact | SystemChooses}
OPTIONS

SourceFileSystem
Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the source filesystem to duplicate.

FileServer
Enter the GUID or FQN of a File Server from which the new filesystem gets protocol-access options.

VolumeGroup
Enter the GUID or FQN of the volume group with which the new filesystem is associated.

Name
Identifies the name that is assigned to a duplicated filesystem. The new filesystem’s name must be unique within the File Server and volume group to which the duplicated filesystem is assigned.

Profile [optional]
Identifies a performance profile. Choose from:

- Normal, which defines specific performance and redundancy settings for each logical volume. This value is highly recommended and should be used in almost all cases.
- OracleASM, which uses a wide stripe RAID geometry consisting of 1 MB strips to improve the overall performance of logical volumes in an Oracle ASM environment.
- HighThroughput, which stripes the filesystem or LUN across all RAID arrays. SATA Bricks have two RAID groups per Brick, and FC Bricks have one RAID group per Brick. You do not need to set double redundancy to get full array striping.

Important! Use of the HighThroughput profile is for special purposes only. Do not use this profile for ordinary filesystems or LUNs. Please contact the Pillar Customer Services Advanced Solutions Group before using this profile option, which should only be used for special testing where the system configuration is cleared after the test.
MaximumCapacity

Identifies the maximum capacity, in MB, to which a given object can grow.

RelativePriority

The Relative Priority determines how much of the system resources are devoted to that volume, including the allocation of Slammer CPU cycles and the allocation of specific portions of the disk platters. The higher the Priority, the greater the allocation of CPU time and the faster the media access time.

The Relative Priority option prioritizes the layout of data that is stored in the Pillar Axiom system based on one of the following settings:

- **Premium priority** is the highest possible performance. This priority uses the outer 20% of the drive platters.

 Note: I/O is typically faster when data resides on the outer edge of the drive platters.

- **High priority** logical volumes are allocated space in the outer 20%-40% of the drive platters.

 Tip: If sufficient Bricks are present, performance of high priority volumes is enhanced by placing those volumes on a greater number of Bricks.

- **Medium priority** logical volumes are allocated space in the outer 40% to 60% of the drive platters.

- **Low priority** logical volumes are allocated space in the band that is 60% to 80% from the outer diameter of drive platters.

- **Archive (lowest-priority)** logical volumes are allocated space in the inner areas of the drive platters.

Figure 5 Example of HDD priority bands

If needed, the Pillar Axiom system allocates space in a higher or lower priority band (within the same Storage Class) than the one that you choose.

FileSizeBias
Identifies the typical size of files that are stored in the specified logical volume. Choose from:

- Small if files are smaller than 20 kilobytes (KB).
- Medium if files are larger than 20KB and smaller than 4 megabytes (MB).
- Large if files are larger than 4MB.

AccessBias

Identifies the typical data access method. Choose from:

Table 25 Data access methods

<table>
<thead>
<tr>
<th>Access bias</th>
<th>I/O bias</th>
<th>Read ahead in the Slammer</th>
<th>RAID configuration in the Brick</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential</td>
<td>Read</td>
<td>Aggressive</td>
<td>RAID 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reads large extents of the data into memory.</td>
</tr>
<tr>
<td></td>
<td>Write</td>
<td>Conservative</td>
<td>RAID 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Allocates capacity in large, full-stripe (640 K) extents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Writes data to physical storage more quickly and in full-stripe extents.</td>
</tr>
<tr>
<td>Mixed and random</td>
<td>Read</td>
<td>None</td>
<td>RAID 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Reads small extents into memory.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Allocates capacity in small chunks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Writes data to physical storage more slowly to combine (or eliminate) write operations.</td>
</tr>
<tr>
<td>Random</td>
<td>Write</td>
<td>None</td>
<td>RAID 10</td>
</tr>
</tbody>
</table>

Note: This is an optimization bias, not a requirement that all data or data operations conform to the value.

IOBias

Identifies the typical read-write ratio. Choose from:

- Read if users or applications read data more often than they write to the data source.
- Write if users or applications write data more often than they read it.

Important! If you choose Random as the access method and Write as the I/O Bias, the system creates the volume with a Distributed RAID geometry. This geometry provides enhanced write performance but uses twice the capacity.

- Mixed if the read-write ratio varies.
Note: This is an optimization bias, not a requirement that all data or data operations conform to the value.

The system stores all writes of user data and system metadata in mirrored copies of the journal. Although the filesystem or LUN is journaled, for some of the profiles, write caching is disabled because it tends to have very low hit rates.

One copy is maintained in non-volatile memory on one control unit (CU) of a Slammer. The mirror copy is maintained in one of:

- Battery-backed memory of the partner CU on the Slammer (preferred location). Writes to this copy are equivalent to write-back cache.
- An area reserved on disk for the logical volume if the partner CU is unavailable for the write. Writes to this copy are equivalent to write-through cache.

Writes from the journal to permanent disk storage are equivalent to write-through cache. The system flushes user data and the corresponding metadata as a unit to disk.

StorageClass

Identifies the category of physical storage on which the logical volume resides:

- Fibre Channel drives
- SATA drives
- SATA single-level cell solid state drives
- SATA multi-level cell solid state drives

Redundancy

Identifies how many mirror copies of the original data are stored online.

Important! Pillar highly recommends that you consult with a Pillar customer support professional for assistance with sizing your system and creating your volumes (filesystems and LUNs).

Redundancy options include:

- Standard, to store original data only. Data striping over multiple RAID groups maintains full redundancy, even without mirror copies.
- Double, to store original data and one mirror copy, with data striping over multiple RAID groups.

Note: Double Redundancy can only provide true redundancy if your system has enough Bricks to allocate the filesystem or LUN such that no two mirror copies share a RAID group.

SATA Bricks have two RAID groups per Brick, FC Bricks have one RAID group per brick.
If the storage pool is becoming depleted, or a large filesystem or LUN is created, it might be necessary to place the filesystem or LUN on more RAID group fragments.

Depending on the system’s ability to allocate sufficient contiguous storage blocks for the size of the logical volume, use the following number of RAID groups to configure your volumes for best performance:

Table 26 Op timum number of RAID groups for best performance

<table>
<thead>
<tr>
<th>Priority</th>
<th>SATA standard Redundancy</th>
<th>SATA double redundancy</th>
<th>FS standard redundancy</th>
<th>FS double redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archive</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Low</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Medium</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>High</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Premium</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

For performance testing purposes only, create a filesystem or LUN using standard redundancy and the High Throughput Profile. This is NOT recommended for most applications. Reset your system after you have created a High Throughput LUN or filesystem before you configure normal filesystems or LUNs for applications.

AccessMode

Identifies whether the filesystem is made available to users in read-write mode. Read-write mode means that users can read data from the filesystem and write new data to it.

Note: Read-only AccessMode is no longer supported.

CloneFSCapacity

Specifies the maximum amount of repository space to be reserved for Clone FSs from the total system capacity.

We strongly recommend that you allocate sufficient repository capacity to minimize the chances of running out of this space (which could lead to data inconsistency or loss). To set sufficient capacity, use a value equal to the source volume capacity times the number of replicas times the maximum rate of change. For example, for a 100 GB volume that is projected to have 20 active replicas at a time and no more than a 20% rate of change, use a value of 400 GB for the clone repository.
Maximum capacity for Clone FSs is 2147483647.

EnforceVolumeRetention
Forces the retention policy settings, which protect files on a filesystem.

BackgroundCopyPriority
Identifies the strategy the system should use to control the impact on performance when background tasks need to copy or move data from one location in the storage pool to another:
- MinimizeImpact. Restricts the amount of work performed on a loaded system. This option is intended to have a minimal impact on client I/O throughput at the expense of longer copy times.
- SystemChooses. Balances the background copy with the incoming client I/O. This option is the default.
- MaximizeSpeed. Prioritizes the background copy at the expense of client I/O throughput.

Note: When the system is idle or lightly loaded, the above background task maximizes the amount of work done regardless of the option selected.

The following types of operations are affected by the strategy you select:
- Copy
- Restore
- Quality of Service (QoS) Priority changes
- Storage Class changes

Data transfer operations invoked by the Pillar Axiom MaxRep Replication for NAS utility are not affected by the BackgroundCopyPriority setting.

EXAMPLES
Run the following command to duplicate the EngAtl filesystem, plus its NFS exports and CIFS shares.
```
pdscli request PerformFileSystemDuplication @input
```
where input.req contains the following name/value pairs:
```
Request=PerformFileSystemDuplication
SourceFileSystem=/Company-XYZ-FS1/EngAtl
FileServer=/Company-XYZ-FS1
VolumeGroup=/Eng
Name=EngAtlNew
Profile=Normal
MaximumCapacity=500
RelativePriority=Archive
FileSizeBias=Small
AccessBias=Sequential
IOBias=Write
StorageClass=FibreChannelHardDiskDrives
```
Redundancy=Standard
AccessMode=ReadWrite
BackgroundCopyPriority=MaximizeSpeed

See the PerformFileSystemDuplicationResponse.txt file for example response data.

SEE ALSO

PerformBackgroundFileSystemDuplication on p. 400
CreateTimeSystemSnapshotSchedule on p. 124
DeleteFileSystemSnapshot on p. 177
DeleteFileSystemSnapshotSchedule on p. 179
GetAllFileSystemSnapshots on p. 216
GetAllFileSystemSnapshotSchedules on p. 218
GetFileSystemSnapshotDetails on p. 256
GetFileSystemSnapshotScheduleDetails on p. 258
ModifyFileSystemSnapshot on p. 340
PerformRestoreFileSystemFromSnapshot on p. 485
PerformRebuildFileSystemRedundancy on p. 474
Ranges for Option Values on p. 57
NAME PerformIdentifyBrick

DESCRIPTION To determine that maintenance activity is being performed on the correct Brick, identifies the Brick by blinking the front panel LEDs. A reverse action can identify all Bricks except for the one that needs servicing.

SYNTAX pdscli {request | submit} PerformIdentifyBrick
 Brick=GUID-or-FQN-of-Brick
 IdentifyCommand={Beacon | Inverse | Cancel}

OPTIONS Brick
Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 FQN Format:
 /Fully/Qualified/ObjectName
Enter the GUID or FQN of the Brick to be serviced.

IdentifyCommand
Identifies how to blink LEDs to identify a hardware component, or a field replaceable unit (FRU) in a component for Guided Maintenance. Choose from:

- Beacon, which tells the Pillar Axiom storage system to blink the LEDs on the Brick bezel.
- Inverse, which tells the Pillar Axiom storage system to blink all other Bricks instead of the one that needs to be serviced. This option blinks Bricks only; it does not blink Slammers.
- Cancel, which tells the system to stop blinking the LEDs. Choose this option after you have located the hardware component or FRU.

EXAMPLES Run the following command to flash the LEDs on all Bricks except the one that needs to be serviced.
 pdscli request PerformIdentifyBrick @input
 where input.req contains the following name/value pairs:
 Request=PerformIdentifyBrick
 Brick=/Company-XZY-data/Brick3
 IdentifyCommand=Inverse
 See the PerformIdentifyBrickResponse.txt file for example response data.
SEE ALSO

PerformAcceptAddBrick on p. 391
PerformResumeBrick on p. 486
Ranges for Option Values on p. 57

Service Guide
NAME PerformIdentifyBrickFRU

DESCRIPTION Identifies a Brick with a field replaceable unit (FRU) that needs to be serviced. Pillar Axiom storage systems blink LEDs to identify Brick FRUs that need to be serviced. The LEDs for the drives are on the front of the Brick, behind the bezel. The LEDs for the SATA spare are in the back of the Brick, as are those for the power supply, the ES module, and the RAID controller. For the FC Brick, the spare is floating and the LED is on the front.

SYNTAX

pdscli {request | submit} PerformIdentifyBrickFRU
 Brick=GUID-or-FQN-of-Brick
 FRUName={PowerSupplyFanModule | ESModule |
 DiskDrive | SpareDiskDrive | RAIDController |
 Chassis}
 FRUNumber=integer
 IdentifyCommand={Beacon | Inverse | Cancel}

OPTIONS Brick

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Brick on which a FRU is to be serviced.

FRUName

Identifies a field replaceable unit (FRU) on a Brick. Choose from:

- PowerSupplyFanModule, which specifies either of the two power supply/fan modules that are installed on a Brick.
- ESMODULE, which specifies the enclosure services (ES) module that is installed on a Brick.
- DiskDrive, which specifies any of the six disk drives that are installed on each Brick control unit (CU).
- SpareDiskDrive, which specifies the spare disk drive that is shared by the two Brick CUs.
- RAIDController, which specifies either of the two RAID controllers that are installed on a Brick.
- Chassis, which specifies an entire Brick CU.
FRUNumber
Identifies a field replaceable unit (FRU) on a hardware component that is installed on the Pillar Axiom system.

IdentifyCommand
Identifies how to blink LEDs to identify a hardware component, or a field replaceable unit (FRU) in a component for Guided Maintenance. Choose from:

• Beacon, which tells the Pillar Axiom storage system to blink the LEDs on the Brick bezel.
• Inverse, which tells the Pillar Axiom storage system to blink all other Bricks instead of the one that needs to be serviced. This option blinks Bricks only; it does not blink Slammers.
• Cancel, which tells the system to stop blinking the LEDs. Choose this option after you have located the hardware component or FRU.

EXAMPLES
Run the following command to flash the LEDs on all Bricks except the one that contains a FRU that needs to be serviced.

```
pdscli request PerformIdentifyBrickFRU @input
```

where input.req contains the following name/value pairs:

Request=PerformIdentifyBrickFRU
Brick=/Company-XZY-data/Brick3
FRUName=DiskDrive
FRUNumber=42
IdentifyCommand=Inverse

See the PerformIdentifyBrickFRUResponse.txt file for example response data.

SEE ALSO
PerformPrepareReplaceBrickFRU on p. 461
PerformResumeBrickFRU on p. 487
Ranges for Option Values on p. 57
Service Guide
NAME PerformIdentifyPilot

DESCRIPTION Identifies a Pilot control unit (CU) that needs to be serviced. Pillar Axiom storage systems blink LEDs to identify Pilot control units that need to be serviced. The beacon for the Pilot blinks the red hard drive LED behind the bezel; there is no blinking of anything on the bezel itself.

The LED that is blinked is the red disk drive activity LED. It is very difficult to see the difference between the blinking of an identify Pilot and normal Pilot-to-Pilot CU synchronization activities. Because of this difficulty, contact a Pillar Support Center representative, who is skilled at detecting the difference.

SYNTAX

pdscli {request | submit} PerformIdentifyPilot
 PilotUnitName={pilot1 | pilot2}
 IdentifyCommand={Beacon | Inverse | Cancel}

OPTIONS

PilotUnitName
Identifies a specific control unit (CU) in a Pilot. Each Pilot contains two CUs.

IdentifyCommand
Identifies how to blink LEDs to identify a hardware component, or a field replaceable unit (FRU) in a component for Guided Maintenance. Choose from:

- Beacon, which tells the Pillar Axiom storage system to blink the LEDs on the Brick bezel.
- Inverse, which tells the Pillar Axiom storage system to blink all other Bricks instead of the one that needs to be serviced. This option blinks Bricks only; it does not blink Slammers.
- Cancel, which tells the system to stop blinking the LEDs. Choose this option after you have located the hardware component or FRU.

EXAMPLES

Run the following command to flash the LEDs on a Pilot control unit that needs to be serviced.

pdscli request PerformIdentifyPilot @input

where input.req contains the following name/value pairs:

Request=PerformIdentifyPilot
PilotUnitName=pilot1
IdentifyCommand=Beacon

See the PerformIdentifyPilotResponse.txt file for example response data.

SEE ALSO

ModifyManagementConfig on p. 360
Ranges for Option Values on p. 57

Service Guide
NAME PerformIdentifySlammer

DESCRIPTION Identifies a Slammer that needs to be serviced. Pillar Axiom storage systems blink LEDs to identify Slammers that need to be serviced. The LEDs for the Slammer are on the bezel, on the rear, upper left corner of the FCIM/PIM.

SYNTAX pdscli {request | submit} PerformIdentifySlammer
 Slammer=GUID-or-FQN-of-Slammer
 ControlUnitNumber={0 | 1}
 IdentifyCommand={Beacon | Inverse | Cancel}

OPTIONS Slammer
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID: ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.
 FQN Format: /Fully/Qualified/ObjectName

 Enter the GUID or FQN of the Slammer to be serviced.

ControlUnitNumber [optional]
 Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs. The CUs are identified by 0 (the top CU) and 1 (the bottom CU).

IdentifyCommand
 Identifies how to blink LEDs to identify a hardware component, or a field replaceable unit (FRU) in a component for Guided Maintenance. Choose from:
 • Beacon, which tells the Pillar Axiom storage system to blink the LEDs on the Brick bezel.
 • Inverse, which tells the Pillar Axiom storage system to blink all other Bricks instead of the one that needs to be serviced. This option blinks Bricks only; it does not blink Slammers.
 • Cancel, which tells the system to stop blinking the LEDs. Choose this option after you have located the hardware component or FRU.

EXAMPLES Run the following command to flash the LEDs on all Slammers except the one that needs to be serviced.
pdscli request PerformIdentifySlammer @input
where input.req contains the following name/value pairs:
request=PerformIdentifySlammer
Slammer=/Company-XZY-data/Slammer1
ControlUnitNumber=1
IdentifyCommand=Inverse

See the PerformIdentifySlammerResponse.txt file for example response data.

SEE ALSO

PerformAcceptAddSlammer on p. 392
PerformResumeSlammer on p. 489
Ranges for Option Values on p. 57

Service Guide
NAME PerformIdentifySlammerFRU

DESCRIPTION Identifies a Slammer with a field replaceable unit (FRU) that needs to be serviced. Pillar Axiom storage systems blink LEDs to identify Slammer FRUs that need to be serviced.

SYNTAX
```
pdsc1i {request | submit} PerformIdentifySlammerFRU
    Slammer=GUID-or-FQN-of-Slammer
    ControlUnitNumber={0 | 1}
    FRUName={PowerSupply | FanModule | Battery | Memory | Motherboard | NASNetworkInterfaceModule | SANNetworkInterfaceModule | PrivateInterconnectModule | SASController | Chassis}
    FRUNumber=integer
    IdentifyCommand={Beacon | Inverse | Cancel}
```

OPTIONS Slammer
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 `ID12345678-9abc-def0-1234-56789abcdef0`
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name.
 FQN Format:
 `/Fully/Qualified/ObjectName`

Enter the GUID or FQN of the Slammer on which a FRU is to be serviced.

ControlUnitNumber [optional]
Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs.

FRUName
Identifies a field replaceable unit (FRU) on a Slammer. Choose from:
- PowerSupply, which specifies either of the two power supplies that are installed on each Slammer control unit (CU). Each Slammer contains four power supplies.
- FanModule, which specifies either of the two fan assemblies that are installed on each Slammer CU. Each fan assembly contains two fans (which are not individual FRUs). The fan module LED is in the front of the Slammer, behind the bezel.
• Battery, which specifies either of the two batteries that are installed on each Slammer CU. The battery is located in the front of the Slammer, behind the bezel. There is only one battery per CU.

• Memory, which specifies memory modules that reside on the motherboard that is installed on each Slammer CU. There are no memory LEDs.

• Motherboard, which specifies the motherboard that is installed on each Slammer CU.

• NASNetworkInterfaceModule, which specifies either of the two network interface modules that are installed on a NAS Slammer. Both Slammer control units (CUs) must contain NAS or SAN network interface modules. The NAS module is located in the rear of the Slammer.

• SANNetworkInterfaceModule, which specifies either of the two network interface modules that are installed on a SAN Slammer. The SAN module is located in the rear of the Slammer.

• PrivateInterconnectModule (PIM), which specifies either of the two private interconnect modules that are installed on a Slammer. The PIM is located in the rear of the Slammer.

• SCSIController, which specifies the PCI card that resides in the network interface module that is installed on each Slammer CU. The SCSIController is in the rear, inside the SAN or NAS module.

• Chassis, which specifies an entire Slammer CU.

FRUNumber [optional]

Identifies a field replaceable unit (FRU) on a hardware component that is installed on the Pillar Axiom system.

IdentifyCommand

Identifies how to blink LEDs to identify a hardware component, or a field replaceable unit (FRU) in a component for Guided Maintenance. Choose from:

• Beacon, which tells the Pillar Axiom storage system to blink the LEDs on the Brick bezel.

• Inverse, which tells the Pillar Axiom storage system to blink all other Bricks instead of the one that needs to be serviced. This option blinks Bricks only; it does not blink Slammers.

• Cancel, which tells the system to stop blinking the LEDs. Choose this option after you have located the hardware component or FRU.

EXAMPLES

Run the following command to flash the LEDs on all Slammers except the one that contains a FRU that needs to be serviced.

```
pdscli request PerformIdentifySlammerFRU @input
```

where input.req contains the following name/value pairs:

- Request=PerformIdentifySlammerFRU
- Slammer=/Company-XZY-data/Slammer1
ControlUnitNumber=1
FRUName=NASNetworkInterfaceModule
FRUNumber=42
IdentifyCommand=Inverse

See the PerformIdentifySlammerFRUResponse.txt file for example response data.

SEE ALSO
- PerformPrepareReplaceSlammerFRU on p. 463
- PerformResumeSlammerFRU on p. 490
- Ranges for Option Values on p. 57

Service Guide
NAME PerformIdentifySlammerIOPort

DESCRIPTION Identifies the physical network port that is associated with a File Server's virtual network interface.

SYNTAX

pdscli {request | submit}
PerformIdentifySlammerIOPort
Slammer=GUID-or-FQN-of-Slammer
EthernetPortName={PORT0 | PORT1}
IOPortNumber={0 | 1}
IdentifyCommand={Beacon | Inverse | Cancel}

OPTIONS Slammer

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the Slammer that contains the physical network port that is associated with a particular virtual network interface.

ControlUnitNumber

Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs.

EthernetPortName

Identifies the physical network port in a network interface module to use for the identification operation.

IdentifyCommand

Identifies how to blink LEDs to identify a hardware component, or a field replaceable unit (FRU) in a component for Guided Maintenance. Choose from:

- Beacon, which tells the Pillar Axiom storage system to blink an LED on the hardware component that needs to be serviced.
- Inverse, which tells the system to blink LEDs on all components except the hardware component that needs to be serviced.
- Cancel, which tells the system to stop blinking the LEDs. Choose this option after you have located the hardware component or FRU.

EXAMPLES Run the following command to identify a virtual network interface on the Slammer that is named Slammer1.

pdscli request PerformIdentifySlammerIOPort
@input
where input.req contains the following name/value pairs:

- Request=PerformIdentifySlammerIOPort
- Slammer=/Company-XZY-data/Slammer1
- ControlUnitNumber=0
- EthernetPortName= PORT0
- IdentifyCommand=Beacon

See the PerformIdentifySlammerIOPortResponse.txt file for example response data.

SEE ALSO

- GetAllSlammers on p. 231
- GetAllVirtualInterfaces on p. 239
- Ranges for Option Values on p. 57

Service Guide
NAME PerformJoinDomain

DESCRIPTION Joins the specified File Server to the CIFS domain with which that File Server is associated.

SYNTAX pdscli {request | submit} PerformJoinDomain
 FileServer=GUID-or-FQN-of-File-Server
 DomainAdminUsername=string
 DomainAdminPassword=string

OPTIONS FileServer
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

 Enter the GUID or FQN of the File Server to join to a CIFS domain.

DomainAdminUsername
 Identifies a user name for the File Server to access the Domain Controller when anonymous access is not permitted. This account should be:
 • Similar to the Guest account, with the same type of low-security privileges.
 • Different from the Administrator account for the Domain Controller.

DomainAdminPassword
 Identifies the user password for the Pillar Axiom File Server to access the CIFS Domain Controller if anonymous access is not permitted.

EXAMPLES Run the following command to have the Company-XYZ-FS1 File Server join the CIFS domain that is associated with the File Server.
 pdscli request PerformJoinDomain @input
 where input.req contains the following name/value pairs:
 Request=PerformJoinDomain
 FileServer=/Company-XYZ-FS1
 DomainAdminUsername=admin
 DomainAdminPassword=password

 See the PerformJoinDomainResponse.txt file for example response data.

SEE ALSO CreateFileServer on p. 100

ModifyFileServer on p. 321
Ranges for Option Values on p. 57
NAME PerformLUNDuplication

DESCRIPTION Creates a LUN duplicate, which is defined as:

 A block-level, image copy of a source LUN used for immediate read-write access. A LUN duplicate (called Copy LUN in the Pillar Axiom Storage Services Manager) creates a reliable, bit-for-bit secondary copy of the entire allocated storage space of the source LUN.

 This feature requires greater system and storage resources than the Snap LUN feature. To create an archival copy, create an inactive clone.

Use this request, for example, to replicate a data set for testing or to set up a new environment. You can change the capacity and performance settings of the duplicate LUN.

Note: The PerformLUNDuplication request automatically copies and duplicates the LUN in one operation.

SYNTAX
pdscli {request | submit} PerformLUNDuplication
 SourceLUN=GUID-or-FQN-of-source-LUN
 Name=string
 VolumeGroup=GUID-or-FQN-of-volume-group
 LUNNumber=integer-0-through-255
 Mapped={true | false}
 EnableiSCSIAccess={true | false}
 EnableFibreChannelAccess={true | false}
 Profile={Normal | HighThroughput}
 Capacity=integer
 Max=integer
 RelativePriority={High | Medium | Low | Archive}
 AccessBias={Sequential | Random | Mixed}
 IOBias={Read | Write | Mixed}
 StorageClass={MultiLevelCellSolidStateDrives | SingleLevelCellSolidStateDrives | FibreChannelHardDiskDrives | SataHardDiskDrives}
 Redundancy={Standard | Double |}
 SnapLUNStorage.MaximumCapacity=integer
 BackgroundCopyPriority=
 {MaximizeSpeed | MinimizeImpact | SystemChooses}
OPTIONS

SourceLUN
Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the source LUN to duplicate.

Name
Identifies the name that is assigned to a LUN for administrative purposes. LUN names must be unique across the Pillar Axiom system, not just within its associated volume group.

Name is a required parameter only if you want to change the FQN LUN’s user-visible name.

VolumeGroup
Enter the GUID or FQN of the volume group with which the new LUN is associated.

LUNNumber [optional]
Identifies the unique number that is assigned to a LUN and can be accessed by all SAN hosts if the LUN is not mapped. If the LUN is mapped, the LUN number must be unique to the mapped SAN host.

Note: If this LUN is mapped to a specified host, do not include the LUNNumber option.

Mapped [optional]
Identifies whether all hosts or only selected hosts may access this LUN.
- Mapped allows only designated hosts to access this LUN.
- Unmapped allows all hosts to access this LUN using the LUN Number.

Note: If you choose Mapped, do not assign a LUNNumber.

EnableiSCSIAccess
Identifies the protocol specification used when creating a SAN LUN. Options include iSCSI, Fibre Channel (FC), or both.

EnableFibreChannelAccess
Identifies the protocol specification used when creating a SAN LUN. Options include iSCSI, Fibre Channel (FC), or both.
Profile [optional]

Identifies a performance profile. Choose from:

- Normal, which defines specific performance and redundancy settings for each logical volume. This value is highly recommended and should be used in almost all cases.

- OracleASM, which uses a wide stripe RAID geometry consisting of 1 MB strips to improve the overall performance of logical volumes in an Oracle ASM environment.

- HighThroughput, which stripes the filesystem or LUN across all RAID arrays. SATA Bricks have two RAID groups per Brick, and FC Bricks have one RAID group per Brick. You do not need to set double redundancy to get full array striping.

Important! Use of the HighThroughput profile is for special purposes only. Do not use this profile for ordinary filesystems or LUNs. Please contact the Pillar Customer Services Advanced Solutions Group before using this profile option, which should only be used for special testing where the system configuration is cleared after the test.

Capacity

Identifies the capacity that is assigned to this LUN.

Note: Once submitted, you cannot modify this value.

RelativePriority

The Relative Priority determines how much of the system resources are devoted to that volume, including the allocation of Slammer CPU cycles and the allocation of specific portions of the disk platters. The higher the Priority, the greater the allocation of CPU time and the faster the media access time.

The Relative Priority option prioritizes the layout of data that is stored in the Pillar Axiom system based on one of the following settings:

- Premium priority is the highest possible performance. This priority uses the outer 20% of the drive platters.

Note: I/O is typically faster when data resides on the outer edge of the drive platters.

- High priority logical volumes are allocated space in the outer 20%-40% of the drive platters.

Tip: If sufficient Bricks are present, performance of high priority volumes is enhanced by placing those volumes on a greater number of Bricks.

- Medium priority logical volumes are allocated space in the outer 40% to 60% of the drive platters.

- Low priority logical volumes are allocated space in the band that is 60% to 80% from the outer diameter of drive platters.
• Archive (lowest-priority) logical volumes are allocated space in the inner areas of the drive platters.

Figure 6 Example of HDD priority bands

If needed, the Pillar Axiom system allocates space in a higher or lower priority band (within the same Storage Class) than the one that you choose. **AccessBias** identifies the typical data access method. Choose from:

Table 27 Data access methods

<table>
<thead>
<tr>
<th>Access bias</th>
<th>I/O bias</th>
<th>Read ahead in the Slammer</th>
<th>RAID configuration in the Brick</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential</td>
<td>Read</td>
<td>Aggressive</td>
<td>RAID 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reads large extents of the data into memory.</td>
</tr>
<tr>
<td></td>
<td>Write</td>
<td>Conservative</td>
<td>RAID 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Allocates capacity in large, full-stripe (640 K) extents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Writes data to physical storage more quickly and in full-stripe extents.</td>
</tr>
<tr>
<td>Mixed and random</td>
<td>Read</td>
<td>None</td>
<td>RAID 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Reads small extents into memory.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Allocates capacity in small chunks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Writes data to physical storage more slowly to combine (or eliminate) write operations.</td>
</tr>
<tr>
<td>Random</td>
<td>Write</td>
<td>None</td>
<td>RAID 10</td>
</tr>
</tbody>
</table>
Note: This is an optimization bias, not a requirement that all data or data operations conform to the value.

IOBias

Identifies the typical read-write ratio. Choose from:

- Read if users or applications read data more often than they write to the data source.
- Write if users or applications write data more often than they read it.

Important! If you choose Random as the access method and Write as the IO Bias, the system creates the volume with a Distributed RAID geometry. This geometry provides enhanced write performance but uses twice the capacity.

- Mixed if the read-write ratio varies.

Note: This is an optimization bias, not a requirement that all data or data operations conform to the value.

The system stores all writes of user data and system metadata in mirrored copies of the journal. Although the filesystem or LUN is journaled, for some of the profiles, write caching is disabled because it tends to have very low hit rates.

One copy is maintained in non-volatile memory on one control unit (CU) of a Slammer. The mirror copy is maintained in one of:

- Battery-backed memory of the partner CU on the Slammer (preferred location). Writes to this copy are equivalent to write-back cache.
- An area reserved on disk for the logical volume if the partner CU is unavailable for the write. Writes to this copy are equivalent to write-through cache.

 Writes from the journal to permanent disk storage are equivalent to write-through cache. The system flushes user data and the corresponding metadata as a unit to disk.

StorageClass

Identifies the category of physical storage on which the logical volume resides:

- Fibre Channel drives
- SATA drives
- SATA single-level cell solid state drives
- SATA multi-level cell solid state drives

Redundancy

Identifies how many mirror copies of the original data are stored online.

Important! Pillar highly recommends that you consult with a Pillar customer support professional for assistance with sizing your system and creating your volumes (filesystems and LUNs).
Redundancy options include:
- Standard, to store original data only. Data striping over multiple RAID groups maintains full redundancy, even without mirror copies.
- Double, to store original data and one mirror copy, with data striping over multiple RAID groups.

Note: Double Redundancy can only provide true redundancy if your system has enough Bricks to allocate the filesystem or LUN such that no two mirror copies share a RAID group.

SATA Bricks have two RAID groups per Brick, FC Bricks have one RAID group per brick.

If the storage pool is becoming depleted, or a large filesystem or LUN is created, it might be necessary to place the filesystem or LUN on more RAID group fragments.

Depending on the system’s ability to allocate sufficient contiguous storage blocks for the size of the logical volume, use the following number of RAID groups to configure your volumes for best performance:

<table>
<thead>
<tr>
<th>Priority</th>
<th>SATA standard Redundancy</th>
<th>SATA double redundancy</th>
<th>FS standard Redundancy</th>
<th>FS double redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archive</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Low</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Medium</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>High</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Premium</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

For *performance testing purposes only*, create a filesystem or LUN using standard redundancy and the High Throughput Profile. This is NOT recommended for most applications. Reset your system after you have created a High Throughput LUN or filesystem before you configure normal filesystems or LUNs for applications.

SnapLUNStorage.MaximumCapacity
Identifies the maximum capacity, in MB, to which a given object can grow.

BackgroundCopyPriority
Identifies the strategy the system should use to control the impact on performance when background tasks need to copy or move data from one location in the storage pool to another:
Chapter 4 Management Requests

- MinimizeImpact. Restricts the amount of work performed on a loaded system. This option is intended to have a minimal impact on client I/O throughput at the expense of longer copy times.
- SystemChooses. Balances the background copy with the incoming client I/O. This option is the default.
- MaximizeSpeed. Prioritizes the background copy at the expense of client I/O throughput.

Note: When the system is idle or lightly loaded, the above background task maximizes the amount of work done regardless of the option selected.

The following types of operations are affected by the strategy you select:
- Copy
- Restore
- Quality of Service (QoS) Priority changes
- Storage Class changes

Data transfer operations invoked by the Pillar Axiom MaxRep Replication for NAS utility are not affected by the BackgroundCopyPriority setting.

EXAMPLES

Run the following command to create EngLUNnew as a duplicate of EngLUN.

```
pdscli request PerformLUNDuplication @input
```

where input.req contains the following name/value pairs:

```
Request=PerformLUNDuplication
SourceLUN=/EngLUN
Name=EngLUNnew
VolumeGroup=/Eng
Profile=Normal
Capacity=1
RelativePriority=Archive
AccessBias=Sequential
IOBias=Write
StorageClass=FibreChannelHardDiskDrives
Redundancy=Standard
SnapLUNStorage.MaximumCapacity=0
EnableiSCSIAccess=false
EnableFibreChannelAccess=true
BackgroundCopyPriority=MaximizeSpeed
```

See the PerformLUNDuplicationResponse.txt file for example response data.

SEE ALSO

PerformBackgroundLUNDuplication on p. 402
DeleteSnapLUN on p. 191
GetAllSnapLUNs on p. 233
Chapter 4 Management Requests

- GetAllSnapLUNHierarchies on p. 232
- GetSnapLUNDetails on p. 297
- ModifySnapLUN on p. 381
- Ranges for Option Values on p. 57
NAME PerformNISFileDownload

DESCRIPTION Downloads a tar file that contains a set of previously uploaded NIS-alternative files from the Pillar Axiom storage system to your administrative workstation.

SYNTAX pdscli {request | submit} PerformNISFileDownload
 FileServer=GUID-or-FQN-of-File-Server
 FileNameOnly={true | false}

OPTIONS FileServer
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 Enter the GUID or FQN of the File Server with which the NIS-alternative files are associated.

 FileNameOnly [optional]
 Identifies whether to include the name of the tar file in the command response.
 • Enable this option so that you know the name of the tar file.
 • Disable this option if you do not need the name of the tar file. Choose this option if you plan to use the CLI to download the file.

EXAMPLES Run the following command to download the files that are used to authenticate NFS users.
 pdscli request PerformNISFileDownload @input

 where input.req contains the following name/value pairs:
 Request=PerformNISFileDownload
 FileServer=/Company-XYZ-FS1
 FileNameOnly=false

 See the PerformNISFileDownloadResponse.txt file for example response data.

SEE ALSO GetNISUploadedFilesDetails on p. 277
 PerformNISFileUpload on p. 456
 Ranges for Option Values on p. 57
NAME PerformNISFileUpload

DESCRIPTION Encodes and loads the specified /etc/passwd, /etc/group, and /etc/netgroup files from a network machine onto the Pillar Axiom Pilot. The File Server consults the uploaded files to authenticate NFS users if you do not use Network Information Service (NIS) for NFS authentication.

SYNTAX pdscli {request | submit} PerformNISFileUpload
 FileServer=GUID-or-FQN-of-File-Server
 PasswordFile.UserFilename=filename-string
 PasswordFile.InternalFilename=string
 PasswordFile.FileContents="&@filename;"
 GroupFile.UserFilename=filename-string
 GroupFile.InternalFilename=string
 GroupFile.FileContents="&@filename;"
 NetgroupFile.UserFilename=filename-string
 NetgroupFile.InternalFilename=string
 NetgroupFile.FileContents="&@filename;"
 HostsFile.UserFilename=filename-string
 HostsFile.InternalFilename=string
 HostsFile.FileContents="&@filename;"

OPTIONS FileServer

 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

 Enter the GUID or FQN of the File Server with which the NIS-alternative files are associated.

PasswordFile.UserFilename

 Identifies the name of the /etc/passwd file to Base64 encode and upload to the Pillar Axiom storage system.

PasswordFile.InternalFilename

 Identifies a name for the uploaded NIS-alternative file. If you have multiple File Servers and you plan to use NIS-alternative files for each, this identifier uniquely identifies a specific File Server’s files.

PasswordFile.FileContents

 Identifies that the Pillar Axiom system should Base64 encode the contents of the specified file and upload the encoded file. The &, @ and ; characters that surround the file name tell the CLI to encode and upload the file.
GroupFile.UserFilename
Identifies the name of the /etc/group file to Base64 encode and upload to the Pillar Axiom storage system.

GroupFile.InternalFilename
Identifies a name for the uploaded NIS-alternative file. If you have multiple File Servers and you plan to use NIS-alternative files for each, this identifier uniquely identifies a specific File Server’s files.

GroupFile.FileContents
Identifies that the Pillar Axiom system should Base64 encode the contents of the specified file and upload the encoded file. The &, @ and ; characters that surround the file name tell the CLI to encode and upload the file.

NNetgroupFile.UserFilename
Identifies the name of the /etc/netgroup file to Base64 encode and upload to the Pillar Axiom storage system.

NetgroupFile.InternalFilename
Identifies a name for the uploaded NIS-alternative file. If you have multiple File Servers and you plan to use NIS-alternative files for each, this identifier uniquely identifies a specific File Server’s files.

NetgroupFile.FileContents
Identifies that the Pillar Axiom system should Base64 encode the contents of the specified file and upload the encoded file. The &, @ and ; characters that surround the file name tell the CLI to encode and upload the file.

HostsFile.UserFilename
Identifies the name of the /etc/netgroup file to Base64 encode and upload to the Pillar Axiom storage system.

HostsFile.InternalFilename
Identifies a name for the uploaded NIS-alternative file. If you have multiple File Servers and you plan to use NIS-alternative files for each, this identifier uniquely identifies a specific File Server’s files.

HostsFile.FileContents
Identifies that the Pillar Axiom system should Base64 encode the contents of the specified file and upload the encoded file. The &, @ and ; characters that surround the file name tell the CLI to encode and upload the file.

EXAMPLES
Run the following command to upload NIS-alternative files to the Pilot in your system.

```
pdscli request PerformNISFileUpload @input
```

where input.req contains the following name/value pairs:

Request=PerformNISFileUpload
FileServer=/Company-XYZ-FS1
PasswordFile.UserFilename=passwd
PasswordFile.InternalFilename=FS1-passwd
PasswordFile.FileContents="&@passwd;"
GroupFile.UserFilename=group
GroupFile.InternalFilename=FS1-group
GroupFile.FileContents="&@group;"
NetgroupFile.UserFilename=netgroup
NetgroupFile.InternalFilename=FS1-netgroup
NetgroupFile.FileContents="&@netgroup;"
HostsFile.UserFilename=hosts
HostsFile.InternalFilename=FS1-hosts
HostsFile.FileContents="&@nhosts;"

See the PerformNISFileUploadResponse.txt file for example response data.

SEE ALSO
- GetNISUploadedFilesDetails on p. 277
- PerformNISFileDownload on p. 455
- Ranges for Option Values on p. 57
NAME PerformNLMLockRecovery

DESCRIPTION Performs a Network Lock Manager Recovery. The NLM works in cooperation with the Network File System (NFS) to provide a System V style of advisory file and record locking over the network. The network lock manager and the network status monitor are network-service daemons. Both daemons are essential to the kernel's ability to provide fundamental network services.

SYNTAX
pdscli {request | submit} PerformNLMLockRecovery
 FileServerFQN=FQN-of-File-Server

OPTIONS FileServerFQN

EXAMPLES Run the following command to display status information for your system.
pdscli request PerformNLMLockRecovery
 FileServerFQN=/Company-XYZ-FS1

See the PerformNLMLockRecovery.txt file for example response data.

SEE ALSO Ranges for Option Values on p. 57
NAME PerformPeriodicCallHome

DESCRIPTION The Call-Home feature is defined as:

A Pillar Axiom feature that, when enabled, allows the system to notify the Pillar World Wide Customer Support Center of critical issues specific to Pillar Axiom system. No customer data is transmitted. The Call-Home feature transfers files over the Internet using one of the following user-selected methods:

- SCP: Uses secure copy (SCP) with 1024-bit encryption and secure keys.
- HTTPS: Sends files either directly to the Pillar World Wide Customer Support Center or through a proxy server for security purposes. Can also be used when the Pillar Axiom system does not have direct access to the Internet.

SYNTAX pdsc1i {request | submit}

PerformPeriodicCallHome

OPTIONS None.

EXAMPLES Run the following command to create a Call-Home file to send to the Pillar World Wide Customer Support Center for analysis.

pdsc1i request PerformPeriodicCallHome

See the PerformPeriodicCallHomeResponse.txt file for example response data.

SEE ALSO PerformTestCallHome on p. 505

Contacts at Pillar Data Systems on p. 29
NAME PerformPrepareReplaceBrickFRU

DESCRIPTION Prepares the Pillar Axiom storage system for:

- Removal of a field replaceable unit (FRU) in a Brick hardware component.
- Addition of a new FRU to replace the old one.

SYNTAX

```
pdsc1 {request | submit} 
PerformPrepareReplaceBrickFRU 
   Brick=GUID-or-FQN-of-Brick 
   FRUName={PowerSupplyFanModule | ESMODULE 
         | DiskDrive | SpareDiskDrive | 
         RAIDController | Chassis} 
   FRUNumber=integer
```

OPTIONS Brick

- Identifies a specific Pillar Axiom object. Choose from:
 - Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 - Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the Brick on which a FRU will be replaced when the system is ready.

FRUName

- Identifies a field replaceable unit (FRU) on a Brick. Choose from:
 - PowerSupplyFanModule, which specifies either of the two power supply/fan modules that are installed on a Brick.
 - ESMODULE, which specifies the enclosure services (ES) module that is installed on a Brick.
 - DiskDrive, which specifies any of the six disk drives that are installed on each Brick control unit (CU).
 - SpareDiskDrive, which specifies the spare disk drive that is shared by the two Brick CUs.
 - RAIDController, which specifies either of the two RAID controllers that are installed on a Brick.
 - Chassis, which specifies an entire Brick CU.

FRU Number [optional]

- Identifies a field replaceable unit (FRU) on a hardware component that is installed on the Pillar Axiom system.

EXAMPLES Run the following command to prepare your system for replacement of one of the array disk drives on a Brick.
pdscli request PerformPrepareReplaceBrickFRU @input

where input.req contains the following name/value pairs:
Request=PerformPrepareReplaceBrickFRU
Brick=/Company-XYZ-data/Brick3
FRUName=DiskDrive
FRUNumber=42

See the PerformPrepareReplaceBrickFRUResponse.txt file for example response data.

SEE ALSO
PerformIdentifyBrickFRU on p. 435
PerformResumeBrickFRU on p. 487
PerformAcceptForeignDiskDrive on p. 395
Ranges for Option Values on p. 57

Service Guide
NAME PerformPrepareReplaceSlammerFRU

DESCRIPTION Prepares the Pillar Axiom storage system for:

- Removal of a field replaceable unit (FRU) in a Slammer hardware component.
- Addition of a new FRU to replace the old one.

SYNTAX

```
pdcli {request | submit}
PerformPrepareReplaceSlammerFRU
   Slammer=GUID-or-FQN-of-Slammer
   ControlUnitNumber={0 | 1}
   FRUName={PowerSupply | FanModule | Battery | Memory | Motherboard | NASNetworkInterfaceModule | SANNetworkInterfaceModule | PrivateInterconnectModule | SCSIController | Chassis}
   FRUNumber=integer
```

OPTIONS

Slammer

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the Slammer on which a FRU will be replaced when the system is ready.

ControlUnitNumber

Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs.

FRUName

Identifies a field replaceable unit (FRU) on a Slammer. Choose from:

- PowerSupply, which specifies either of the two power supplies that are installed on each Slammer control unit (CU). Each Slammer contains four power supplies.
- FanModule, which specifies either of the two fan assemblies that are installed on each Slammer CU. Each fan assembly contains two fans (which are not individual FRUs).
- Battery, which specifies either of the two batteries that are installed on each Slammer CU.
• Memory, which specifies memory modules that reside on the motherboard that is installed on each Slammer CU.
• Motherboard, which specifies the motherboard that is installed on each Slammer CU.
• NASNetworkInterfaceModule, which specifies either of the two network interface modules that are installed on a NAS Slammer. Both Slammer control units (CUs) must contain NAS or SAN network interface modules.
• SANNetworkInterfaceModule, which specifies either of the two network interface modules that are installed on a SAN Slammer.
• PrivateInterconnectModule, which specifies either of the two private interconnect modules that are installed on a Slammer.
• SCCSIController, which specifies the PCI card that resides in the network interface module that is installed on each Slammer CU.
• Chassis, which specifies an entire Slammer CU.

FRUNumber [optional]

Identifies a field replaceable unit (FRU) on a hardware component that is installed on the Pillar Axiom system.

EXAMPLES

Run the following command to prepare your system for replacement of a network interface module on a Slammer.

```
pdscli request PerformPrepareReplaceSlammerFRU
   @input
```

where `input.req` contains the following name/value pairs:

- `Request=PerformPrepareReplaceSlammerFRU`
- `Slammer=/Company-XZY-data/Slammer1`
- `ControlUnitNumber=1`
- `FRUName=NASNetworkInterfaceModule`
- `FRUNumber=42`

See the `PerformPrepareReplaceSlammerFRU Response.txt` file for example response data.

SEE ALSO

- [PerformIdentifySlammerFRU on p. 440](#)
- [PerformResumeSlammerFRU on p. 490](#)
- [Ranges for Option Values on p. 57](#)

Service Guide
NAME PerformPrepareSlammerMemoryUpgrade

DESCRIPTION Prepares the Pillar Axiom storage system for a memory replacement or
 upgrade on a Slammer storage controller.

SYNTAX pdscli {request | submit}
 PerformPrepareSlammerMemoryUpgrade
 Slammer=GUID-or-FQN-of-Slammer
 MemorySize={3 | 6 | 12}

OPTIONS Slammer
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (a through f and 0
 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object's name.

 Enter the GUID or FQN of the Slammer on which the memory will be
 upgraded when the system is ready.

Memory
 Identifies the amount of Slammer memory in gigabytes. Choose from:
 • 3
 • 6
 • 12

 Both control units (CUs) in a Slammer must be configured with the same
 amount of memory.

EXAMPLES Run the following command to prepare your system for a memory upgrade on
 a Slammer.
 pdscli request PerformPrepareSlammerMemoryUpgrade
 @input

 where input.req contains the following name/value pairs:
 Request=PerformPrepareSlammerMemoryUpgrade
 Slammer=/Company-XZY-data/Slammer1
 MemorySize=12

 See the PerformPrepareSlammerMemoryUpgrade Response.txt file for
 example response data.

SEE ALSO PerformIdentifySlammerFRU on p. 440
 PerformResumeSlammerFRU on p. 490
Ranges for Option Values on p. 57

Service Guide
NAME PerformProtectedFileValidation

DESCRIPTION This scan checks all protected files on the filesystem and validates their
data integrity and occurs on demand.
 See the event log for scan results.

SYNTAX pdscli {request | submit}
 PerformProtectedFileValidation
 ID=GUID-or-FQN-of-filesystem

OPTIONS ID

Identifies a specific Pillar Axiom object. Choose from:

 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (0 through 9 and a
 through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0

 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object's name. Field types support
 UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the filesystem to put online and return it to
service.

EXAMPLES Run the following command to return the engineering organization’s filesystem
to service.
 pdscli request PerformProtectedFileValidation @input

where input.req contains the following name/value pairs:

Request=PerformProtectedFileValidation
ID=IDA0479DC2-38EF-9828-8902-E0FC03743270

See the PerformProtectedFileValidationResponse.txt file for example
response data.

SEE ALSO Ranges for Option Values on p. 57
 GetAllAdministratorActions on p. 201
 GetAdministratorActionDetails on p. 199
 PerformFileSystemCheck on p. 423
 ReenableAllRAIDControllers on p. 521
ReenableAllSlammers on p. 522
ReenableCUBoot on p. 523
NAME PerformPutFileSystemOffline

DESCRIPTION Puts the specified filesystem offline so that users cannot access the filesystem data. You may have to perform this request before you check filesystem consistency.

SYNTAX pdscli {request | submit}
 PerformPutFileSystemOffline
 ID=GUID-or-FQN-of-filesystem

OPTIONS ID
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName
 Enter the GUID or FQN of the filesystem to put online and return it to service.

EXAMPLES Run the following command to return the engineering organization’s filesystem to service.
 pdscli request PerformPutFileSystemOffline @input
 where input.req contains the following name/value pairs:
 Request=PerformPutFileSystemOffline
 ID=IDA0479DC2-38EF-9828-8902-E0FC03743270
 See the PerformPutFileSystemOfflineResponse.txt file for example response data.

SEE ALSO
 Ranges for Option Values (p. 57)
 GetAllAdministratorActions (p. 201)
 GetAdministratorActionDetails (p. 199)
 PerformFileSystemCheck (p. 423)
 PerformPutFileSystemOnline (p. 470)
 ReenableAllRAIDControllers (p. 521)
NAME PerformPutFileSystemOnline

DESCRIPTION Puts the specified filesystem online so that users can access the filesystem data again. You may have to perform this request after you respond to an action-required notification to check filesystem consistency.

SYNTAX pdscli {request | submit}
 PerformPutFileSystemOnline
 ID=GUID-or-FQN-of-filesystem

OPTIONS ID

 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName
 Enter the GUID or FQN of the filesystem to put online and return it to service.

EXAMPLES Run the following command to return the engineering organization’s filesystem to service.

pdscli request PerformPutFileSystemOnline @input

where input.req contains the following name/value pairs:
Request=PerformPutFileSystemOnline
ID=IDA0479DC2-38EF-9828-8902-E0FC03743270

See the PerformPutFileSystemOnlineResponse.txt file for example response data.

SEE ALSO Ranges for Option Values (p. 57)

 GetAllAdministratorActions (p. 201)
 GetAdministratorActionDetails (p. 199)
 PerformFileSystemCheck (p. 423)
 ReenableAllRAIDControllers (p. 521)
 ReenableAllSlammers (p. 522)
ReenableCUBoot (p. 523)
NAME PerformRebuildBrickLUNs

DESCRIPTION Rebuilds a Brick LUN.

SYNTAX pdscli {request | submit} PerformRebuildBrickLUNs
 BrickWWN=world-wide-name
 TargetDriveNumber={0 | integer}
 LUNID=GUID-or-FQN-of-LUN

OPTIONS BrickWWN
 Identifies the unique identifier, or world wide name (WWN), of the specified Brick.

TargetDriveNumber
 Identifies the target disk drive that is installed on the Brick.

LUNID
 Identifies a specific Pillar Axiom object. Choose from:
 - Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 - Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name.
 FQN Format:
 /Fully/Qualified/ObjectName
 Enter the GUID or FQN of the Brick LUN to rebuild.

EXAMPLES Run the following command to rebuild a LUN on a Brick.
 pdscli request PerformRebuildBrickLUNs @input

 where input.req contains the following name/value pairs:
 Request=PerformRebuildBrickLUNs
 LUNID=/EngLUN
 TargetDriveNumber=0
 BrickWWN=21:00:00:e0:8:11:b5:4a

 See the PerformRebuildBrickLUNsResponse.txt file for example response data.

SEE ALSO
 GetAllBricks (p. 204)
 GetBrickDetails (p. 242)
 PerformCopybackBrickLUNs (p. 415)
NAME PerformRebuildCloneFSRedundancy

DESCRIPTION Rebuilds a doubly-redundant Clone FS that has degraded because a number of disk drives have failed, compromising the redundancy.

SYNTAX pdscli {request | submit}
 PerformRebuildCloneFSRedundancy
 ID=GUID-or-FQN-of-CloneFS

OPTIONS ID

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Clone FS to duplicate.

EXAMPLES Run the following command to display information for the FSClone_01 Clone FS.

pdscli request PerformRebuildCloneFSRedundancy @input

where input.req contains the following name/value pairs:
Request=PerformRebuildCloneFSRedundancy
Source=/FSClone_01

See the PerformRebuildCloneFSRedundancyResponse.txt file for example response data.

SEE ALSO CreateCloneFS (p. 97)
DeleteCloneFS (p. 172)
GetAllCloneFSs (p. 208)
GetCloneFSDetails (p. 245)
ModifyCloneFS (p. 317)
NAME PerformRebuildFileSystemRedundancy

DESCRIPTION Rebuilds a copy of a filesystem in the event that you lose one or more copies of data.

SYNTAX

pdscli {request | submit}
 PerformRebuildFileSystemRedundancy
 ID=GUID-or-FQN-of-filesystem

OPTIONS ID

Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the filesystem to rebuild.

EXAMPLES Run the following command to rebuild the EngAtl filesystem.

pdscli request PerformRebuildFileSystemRedundancy
 @input

where input.req contains the following name/value pairs:
Request=PerformRebuildFileSystemRedundancy
FileSystem=/Company-XYZ-FS1/EngAtl

See the PerformRebuildFileSystemRedundancyResponse.txt file for example response data.

SEE ALSO Ranges for Option Values on p. 57
NAME PerformRebuildLUNRedundancy

DESCRIPTION Rebuilds a LUN.

SYNTAX

pdscli \{request | submit\}
 PerformRebuildLUNRedundancy
 ID=GUID-or-FQN-of-LUN

OPTIONS ID

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the LUN to duplicate.

EXAMPLES

Run the following command to rebuild EngLUN.

pdscli request PerformRebuildLUNRedundancy
 @input

where input.req contains the following name/value pairs:

Request=PerformRebuildLUNRedundancy
LUN=/EngLUN

See the PerformRebuildLUNRedundancyResponse.txt file for example response data.

SEE ALSO

CreateLUN on p. 135
DeleteLUN on p. 182
GetAllLUNs on p. 221
GetHostMappingConfigDetails on p. 265
GetLUNDetails on p. 269
GetLUNMappingConfigDetails on p. 270
ModifySnapLUN on p. 381
PerformConfigureLUNMapping on p. 412
Ranges for Option Values on p. 57
NAME | PerformRebuildSnapLUNRedundancy

DESCRIPTION | Rebuilds a doubly-redundant Snap LUN that has degraded because a number of disk drives have failed, compromising the redundancy.

SYNTAX | `pdscli {request | submit}
 PerformRebuildSnapLUNRedundancy
 ID=GUID-or-FQN-of-Snap-LUN`

OPTIONS | ID

 Identifies a specific Pillar Axiom object. Choose from:

 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.

 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0

 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.

 FQN Format:
 /Fully/Qualified/ObjectName

 Enter the GUID or FQN of the Snap LUN to duplicate.

EXAMPLES | Run the following command to display information for the SLUN_01 Snap LUN

 `pdscli request PerformRebuildSnapLUNRedundancy @input`

 where input.req contains the following name/value pairs:

 Request=PerformRebuildSnapLUNRedundancy
 Source=/SLUN_01

 See the PerformRebuildSnapLUNRedundancyResponse.txt file for example response data.

SEE ALSO | Ranges for Option Values on p. 57
NAME PerformRejectForeignDiskDrive

DESCRIPTION Rejects a new disk drive that was installed on a Brick. After a disk drive has been rejected, it can no longer be used in a Pillar Axiom system without first contacting the Pillar Worldwide Customer Support Center.

SYNTAX
```
pdscli {request | submit}
    PerformRejectForeignDiskDrive
    Brick=GUID-or-FQN-of-Brick
    DiskDriveNumber=integer
```

OPTIONS
Brick
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Brick that contains the disk drive to reject.

DiskDriveNumber
Identifies a disk drive on a Brick that is installed on the Pillar Axiom system.

EXAMPLES
Run the following command to reject a new disk drive when you receive a Foreign Drive Administrator Action.
```
pdscli request PerformRejectForeignDiskDrive @input
```

where input.req contains the following name/value pairs:
```
Request=PerformRejectForeignDiskDrive
Brick=/Company-XYZ-data/Brick3
DiskDriveNumber=42
```

See the PerformRejectForeignDiskDriveResponse.txt file for example response data.

SEE ALSO
[PerformIdentifyBrickFRU on p. 435](#)
[PerformPrepareReplaceBrickFRU on p. 461](#)
[PerformResumeBrickFRU on p. 487](#)
Ranges for Option Values on p. 57

Service Guide
NAME PerformRemoveBrickFromConfiguration

DESCRIPTION Removes a Brick from your configuration when the Brick status is Missing.

Important! Before running this request, make sure to

- Remove all user data and persistence resources from the Brick.
- Power down the Brick.
- Wait until GetAllBricks or the GUI shows that the Brick status is Missing.

SYNTAX

```
pdsc1i {request | submit} PerformRemoveBrickFromConfiguration
Brick=GUID-or-FQN-of-Brick
```

OPTIONS Brick

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.

 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name. Field types support UTFString.

 FQN Format:
 /Fully/Qualified/ObjectName

 Enter the GUID or FQN of the Brick to remove.

EXAMPLES

Run the following command to remove Brick3 from the configuration.

```
pdsc1i request PerformRemoveBrickFromConfiguration@input
```

where input.req contains the following name/value pairs:

Request=PerformRemoveBrickFromConfiguration
Brick=/Company-XYZ-data/Brick3

See the PerformRemoveBrickFromConfigurationResponse.txt file for example response data.

SEE ALSO

- PerformPrepareReplaceBrickFRU on p. 461
- Ranges for Option Values on p. 57
NAME

PerformRemoveSlammerFromConfiguration

DESCRIPTION

Removes a Slammer from your configuration when the Slammer status is Missing. You cannot run this request to replace a Slammer that has any data resources configured on the Slammer.

Before running this request, remove all volumes (filesystems or LUNs) from the Slammer, then power down the Slammer. Optionally, you can re-cable the private interface module (PIM) and the private management interface (PMI). Finally, wait for the Slammer status to show Missing.

Note: This request cannot be used on a Pillar Axiom 300 Slammer or single Slammer systems.

SYNTAX

pdscli {request | submit} PerformRemoveSlammerFromConfiguration
Slammer=GUID-or-FQN-of-Slammer

OPTIONS

Slammer

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.

 Example GUID:

 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.

 FQN Format:

 /Fully/Qualified/ObjectName

 Enter the GUID or FQN of the Slammer to remove.

EXAMPLES

Run the following command to remove Slammer1 from the configuration.

pdscli request PerformRemoveSlammerFromConfiguration@input

where input.req contains the following name/value pairs:

Request=PerformRemoveSlammerFromConfiguration
Slammer=/Company-XYZ-data/Slammer1

See the PerformRemoveSlammerFromConfigurationResponse.txt file for example response data.

SEE ALSO

PerformPrepareReplaceSlammerFRU on p. 463

Ranges for Option Values on p. 57
NAME PerformResetSystem

DESCRIPTION Deletes all user data and configuration details on the Pillar Axiom storage system. To perform this request, you must contact the Pillar World Wide Customer Support Center to obtain an encrypted file with the system serial number (SSN).

Note: You must provide the request to reset the system in writing.

SYNTAX pdscli {request | submit} PerformResetSystem
 SystemSerialNumberFileName=Name-of-file
 SystemSerialNumberFileContents="&@filename;"
 EncryptedSystemSerialNumber=string

OPTIONS
 SystemSerialNumberFileName
 Identifies the name of file that you receive from Technical Support, which contains the encrypted system serial number.

 SystemSerialNumberFileContents [optional]
 Identifies that the Pillar Axiom system should Base64 encode the contents of the specified file and upload the encoded file. The &, @ and ; characters that surround the file name tell the CLI to encode and upload the file.

 EncryptedSystemSerialNumber [optional]
 Identifies the encrypted system serial number (SSN) that is assigned to the Pillar Axiom storage system.

EXAMPLES Run the following command to delete all of the test data and configuration details on your system before moving the system into production.
 pdscli request PerformResetSystem @input

 where input.req contains the following name/value pairs:
 Request=PerformResetSystem
 SystemSerialNumberFileName=Company-XYZ-ssn
 SystemSerialNumberFileContents="&@XYZ-ssn;"
 EncryptedSystemSerialNumber=A000001BCD

 See the PerformResetSystemResponse.txt file for example response data.

SEE ALSO Ranges for Option Values on p. 57
NAME
PerformResetTapeRobotDevice

DESCRIPTION
Resets the specified tape device or robot.

SYNTAX
```
pdscli {request | submit}
   PerformResetTapeRobotDevice
       TapeRobotFQN=GUID-or-FQN-of-tape-device
```

OPTIONS
TapeRobotFQN
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the tape device or robot that is to be reset.

EXAMPLES
Run the following command to reset a tape device that is attached to your system.
```
pdscli request PerformResetTapeRobotDevice @input
```
where input.req contains the following name/value pairs:
```
Request=PerformResetTapeRobotDevice
TapeRobotFQN=IDf1234567-89ab-cde0-0123-456789eeee0
```

See the PerformResetTapeRobotDeviceResponse.txt file for example response data.

SEE ALSO
- [GetAllTapeRobots on p. 234](#)
- [Ranges for Option Values on p. 57](#)
NAME PerformRestart

DESCRIPTION Restarts the Pillar Axiom storage system after repairs or updates.

Note: For an immediate shutdown and restart, it is unnecessary to send the PerformShutdown request before the PerformRestart request; however, we recommend issuing a PerformShutdown followed by a GetCoreState to make sure the Pillar Axiom system has shutdown before issuing PerformRestart.

Tip: For a restart after an extended period of time, remember to reinstall the batteries before you restart the system.

SYNTAX pdscli {request | submit} PerformRestart

OPTIONS None.

EXAMPLES Run the following command to restart you system after you increased Slammer memory from 3 GB to 12 GB.

pdscli request PerformRestart

See the PerformRestartResponse.txt file for example response data.

SEE ALSO PerformShutdown on p. 495
Ranges for Option Values on p. 57
NAME PerformRestoreFileSystemFromSnapshot

DESCRIPTION Restores the configuration and content (data files) of a filesystem from the specified Snap FS.

SYNTAX pdsc1i \{request | submit\}
PerformRestoreFileSystemFromSnapshot
ID=GUID-or-FQN-of-Snap-FS

OPTIONS ID

Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the Snap FS from which to restore the filesystem data.

EXAMPLES Run the following command to restore the EngAtl filesystem from a Snap FS.
pdsc1i request PerformRestoreFileSystemFromSnapshot
 @input

where input.req contains the following name/value pairs:
Request=PerformRestoreFileSystemFromSnapshot
ID=IDA0479DC2-38EF-9828-8902-E0FC03743270

See the PerformRestoreFileSystemFromSnapshot Response.txt file for example response data.

SEE ALSO Ranges for Option Values on p. 57
NAME PerformResumeBrick

DESCRIPTION Resumes operations in the Pillar Axiom storage system after the:
 • Removal of a Brick chassis.
 • Addition of a new Brick to replace the old one.

SYNTAX
pdscli {request | submit} PerformResumeBrick
 Brick=GUID-or-FQN-of-Brick

OPTIONS Brick
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 Enter the GUID or FQN of the Brick that was serviced.

EXAMPLES Run the following command to resume operations in your system after you replaced the Brick3 Brick.

 pdscli request PerformResumeBrick @input

 where input.req contains the following name/value pairs:
 Request=PerformResumeBrick
 Brick=/Company-XYZ-data/Brick3

 See the PerformResumeBrickResponse.txt file for example response data.

SEE ALSO PerformIdentifyBrick on p. 433
 PerformAcceptAddBrick on p. 391
 Ranges for Option Values on p. 57
 Service Guide
NAME PerformResumeBrickFRU

DESCRIPTION Resumes operations in the Pillar Axiom storage system after the:

- Removal of a field replaceable unit (FRU) in a Brick hardware component.
- Addition of a new FRU to replace the old one.

SYNTAX pdscli \{request | submit\} PerformResumeBrickFRU
 Brick=GUID-or-FQN-of-Brick
 FRUName=\{PowerSupplyFanModule | ESMODULE | DiskDrive | SpareDiskDrive | RAIDController Chassis\}
 FRUNumber=integer

OPTIONS Brick

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the Brick that was serviced.

FRUName

Identifies a field replaceable unit (FRU) on a Brick. Choose from:

- PowerSupplyFanModule, which specifies either of the two power supply/fan modules that are installed on a Brick.
- ESMODULE, which specifies the enclosure services (ES) module that is installed on a Brick.
- DiskDrive, which specifies any of the six disk drives that are installed on each Brick control unit (CU).
- SpareDiskDrive, which specifies the spare disk drive that is shared by the two Brick CUs.
- RAIDController, which specifies either of the two RAID controllers that are installed on a Brick.
- Chassis, which specifies an entire Brick CU.

FRUNumber [optional]

Identifies a field replaceable unit (FRU) on a hardware component that is installed on the Pillar Axiom system.

EXAMPLES Run the following command to resume operations in your system after you replaced one of the array disk drives on a Brick.

pdscli request PerformResumeBrickFRU @input
where input.req contains the following name/value pairs:

Request=PerformResumeBrickFRU
Brick=/Company-XYZ-data/Brick3
FRUName=DiskDrive
FRUNumber=42

See the PerformResumeBrickFRUResponse.txt file for example response data.

SEE ALSO

PerformIdentifyBrickFRU on p. 435
PerformPrepareReplaceBrickFRU on p. 461
Ranges for Option Values on p. 57

Service Guide
NAME PerformResumeSlammer

DESCRIPTION Resumes operations in the Pillar Axiom storage system after the:

• Removal of a Slammer chassis.
• Addition of a new Slammer to replace the old one.

SYNTAX
pdscli {request | submit} PerformResumeSlammer
 Slammer=GUID-or-FQN-of-Slammer
 ControlUnitNumber={0 | 1}

OPTIONS Slammer

Identifies a specific Pillar Axiom object. Choose from:

• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the Slammer that was serviced.

ControlUnitNumber [optional]

Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs.

EXAMPLES Run the following command to resume operations in your system after you replaced control unit (CU) 1 on the Slammer1 Slammer.

pdscli request PerformResumeSlammer @input

where input.req contains the following name/value pairs:

Request=PerformResumeSlammer
Slammer=/Company-XZY-data/Slammer1
ControlUnitNumber=1

See the PerformResumeSlammerResponse.txt file for example response data.

SEE ALSO PerformIdentifySlammer on p. 438
PerformAcceptAddSlammer on p. 392
Ranges for Option Values on p. 57
Service Guide
NAME PerformResumeSlammerFRU

DESCRIPTION Resumes operations in the Pillar Axiom storage system after the:

- Removal of a field replaceable unit (FRU) in a Slammer hardware component.
- Addition of a new FRU to replace the old one.

SYNTAX

```bash
pdscli {request | submit} PerformResumeSlammerFRU
    Slammer=GUID-or-FQN-of-Slammer
    ControlUnitNumber={0 | 1}
    FRUName={PowerSupply | FanModule | Battery | Memory | Motherboard | NASNetworkInterfaceModule | SANNetworkInterfaceModule | PrivateInterconnectModule | SCSIController | Chassis}
    FRUNumber=integer
```

OPTIONS Slammer

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the Slammer that was serviced.

ControlUnitNumber

Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs.

FRUName

Identifies a field replaceable unit (FRU) on a Slammer. Choose from:

- PowerSupply, which specifies either of the two power supplies that are installed on each Slammer control unit (CU). Each Slammer contains four power supplies.
- FanModule, which specifies either of the two fan assemblies that are installed on each Slammer CU. Each fan assembly contains two fans (which are not individual FRUs).
- Battery, which specifies either of the two batteries that are installed on each Slammer CU.
- Memory, which specifies memory modules that reside on the motherboard that is installed on each Slammer CU.
• Motherboard, which specifies the motherboard that is installed on each Slammer CU.
• NASNetworkInterfaceModule, which specifies either of the two network interface modules that are installed on a NAS Slammer. Both Slammer control units (CUs) must contain NAS or SAN network interface modules.
• SANNetworkInterfaceModule, which specifies either of the two network interface modules that are installed on a SAN Slammer.
• PrivateInterconnectModule, which specifies either of the two private interconnect modules that are installed on a Slammer.
• SCSIController, which specifies the PCI card that resides in the network interface module that is installed on each Slammer CU.
• Chassis, which specifies an entire Slammer CU.

FRUNumber [optional]

Identifies a field replaceable unit (FRU) on a hardware component that is installed on the Pillar Axiom system.

EXAMPLES

Run the following to resume operations in your system after you replaced the network interface module on the Slammer1 Slammer.

```
pdscli request PerformResumeSlammerFRU @input
```

where input.req contains the following name/value pairs:

```
Request=PerformResumeSlammerFRU
Slammer=/Company-XZY-data/Slammer1
ControlUnitNumber=1
FRUName=NASNetworkInterfaceModule
FRUNumber=42
```

See the PerformResumeSlammerFRUResponse.txt file for example response data.

SEE ALSO

PerformIdentifySlammerFRU on p. 440

PerformPrepareReplaceSlammerFRU on p. 463

Ranges for Option Values on p. 57

Service Guide
NAME PerformSANiSCSIPing
DESCRIPTION Sends an echco request to iSCSI data storage devices through the TCP/IP network, including iSCSI initiators (such as File Servers) and iSCSI targets (such as disk arrays and tape subsystems).

SYNTAX pdscli {request | submit} PerformSANiSCSIPing
Slammer=GUID-or-FQN-of-Slammer
ControlUnitNumber={0 | 1}
iSCSIPortName {PORT1, PORT0}
IPAddress [1-255].[0-255].[0-255].[0-255]

OPTIONS Slammer
Identifies a specific Pillar Axiom object. Choose from:
• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 FQN Format:
 /Fully/Qualified/ObjectName

 Enter the GUID or FQN of the Slammer that was serviced.

iControlUnitNumber [optional]
Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs.

iSCSIPortName
Identifies the name (0 or 1) of the iSCSI port device.

IPAddress
Identifies the IP address that is assigned to the iSCSI port device.

EXAMPLES Run the following command to ping iSCSI devices.
pdscli request PerformSANiSCSIPing @input

 where input.req contains the following name/value pairs:
 Request=PerformSANiSCSIPing
 Slammer=/Company-XZY-data/Slammer1
 ControlUnitNumber=1
 iSCSIPortName=Port0
 IPAddress=172.20.67.0

 See the PerformSANiSCSIPingResponse.txt file for example response data.
SEE ALSO

- ModifyiSCSIPortDetails on p. 343
- Ranges for Option Values on p. 57
NAME PerformSendSystemInformationToCallHomeServer

DESCRIPTION Sends system information using the Call-Home connection between a Pillar Axiom storage system and the Pillar World Wide Customer Support Center.

Call-Home is a Pillar Axiom feature that, when enabled, allows the system to notify the Pillar World Wide Customer Support Center of critical issues specific to a Pillar Axiom system. No customer data is transmitted. Call-Home transfers files over the Internet using one of the following user-selected methods:

- SCP: Uses secure copy (SCP) with 1024-bit encryption and secure keys.
- HTTPS: Sends files either directly to the Pillar World Wide Customer Support Center or through a proxy server for security purposes. Can also be used when the Pillar Axiom system does not have direct access to the Internet.

When a component operates in degraded mode or fails, the system automatically performs failover actions. Although a component failure does not cause downtime, manual intervention is sometimes required to repair or replace the failed component. The system sends a Call-Home message to initiate the repair or replacement process.

SYNTAX

pdscli {request | submit}
PerformSendSystemInformationToCallHomeServer
SystemInformationFile=name-of-system-information-file

OPTIONS None.

EXAMPLES Run the following command to send system information to the Pillar World Wide Customer Support Center using the Call-Home connection.
pdscli request PerformSendSystemInformationToCallHomeServer

See the PerformSendSystemInformationToCallHomeServerResponse.txt file for example response data.

SEE ALSO Ranges for Option Values on p. 57
NAME PerformShutdown

DESCRIPTION Places the Pillar Axiom storage system into a shutdown state. This option does not power off the system. Use this option in preparation for a power-off or power cycle, or for maintenance or recovery.

Important! If you need to power off the system for more than 48 hours, remove the Slammer batteries.

SYNTAX pdscli {request | submit} PerformShutdown

OPTIONS None.

EXAMPLES Run the following command to shut down your system.

pdscli request PerformShutdown

See the PerformShutdownResponse.txt file for example response data.

SEE ALSO PerformRestart on p. 484

Ranges for Option Values on p. 57
NAME PerformSlammerCommand

DESCRIPTION Sends specified command to the Slammer control unit. You may use this request to transport a “pass-through” command to a Slammer node.

SYNTAX pdscli {request | submit} PerformSlammerCommand
 Slammer=GUID-or-FQN-of-Slammer
 ControlUnitNumber={0 | 1}
 TimeoutSeconds=integer
 EnvironmentVariableList.
 EnvironmentVariable.Name=string
 EnvironmentVariableList.
 EnvironmentVariable.Value=integer
 Command=Command-name-and-arguments

OPTIONS Slammer

Identifies a specific Pillar Axiom object. Choose from:

• Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0

• Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the Slammer.

ControlUnitNumber

Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs. The CUs are identified by 0 (the top CU) and 1 (the bottom CU).

TimeoutSeconds

Enter an integer that specifies an inactivity time limit, in seconds, after which the connection is terminated.

EnvironmentVariableList.EnvironmentVariable.Name [optional]

Identifies the name that is assigned to an environmental variable.

EnvironmentVariableList.EnvironmentVariable.Value [optional]

Identifies the value assigned to the environmental variable.

Command
Identifies a command to perform in order to resolve a connectivity issue between the specified Pillar Axiom Slammer and the customer network. Enter the command and command-line arguments:

- required arguments
- [optional arguments]

A File Server configuration contains virtual interfaces (VIFs). The name of a File Server is internally mapped to a socket identifier (SOCK) and a virtual server identifier (VSID). The environment variables SOCK and VSID provide values to various Slammer commands which then use those values to identify the target File Server.

The syntax of the SOCK and VSID environment variables is defined as follows:

Table 29 SOCK and VSID environment variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCK=\text{/vserverN}</td>
<td>Provides a prefix that the system uses to address an internal structure associated with a particular File Server. When this variable is not set, the system addresses a more generic structure within the internal network that interconnects the Pilot and the Slammers (this network is called the private management interface, or PMI). Most commonly, this variable is set to a particular value in order to run a command against the data interface.</td>
</tr>
<tr>
<td>VSID=virtualServerID</td>
<td>Identifies by number (\text{virtualServerID}) a particular File Server.</td>
</tr>
</tbody>
</table>

Note: For a given File Server, the value for N and the value for \text{virtualServerID} are the same value.

Tip: If you have one (and have had only one) File Server, the value of SOCK would be \text{/vserver0} and the value for VSID would be 0. Otherwise, you can execute \text{ifconfig} repetitively using various settings for SOCK and checking each returned IP address against the address configured for the control unit to determine the correct value for SOCK. Although the maximum number of supported File Servers is eight at any given time, the maximum value for SOCK is \text{/vserver255} and that for VSID is 255.
Table 30 Resolve connectivity trouble commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ping</td>
<td><code>-c count ipaddr</code></td>
<td>Sends an echo request to a specified host. Default sends the echo request from the Private Management Interface (PMI) unless the SOCK environment variable is set. If used, this variable must be set to the virtual interface from where you want the echo request to be sent. Example: The following command requests an echo from the host whose IP is 198.168.1.2 by sending five packets to that address. <code>ping -c 5 198.168.1.2</code></td>
</tr>
</tbody>
</table>

Environment variables (optional):`SOCK=node_ID`

| route | `route show` | Displays the route table. Default displays the route table of the PMI unless the SOCK environment variable is set. If used, this variable must be set to the virtual interface of the route table that you want to display. The Pilot and the Slammer communicate to one another over the PMI. Example: The following command displays the route table associated with virtual server 0. `route show SOCK=/vserver0` |

Environment variables (optional):`SOCK=node_ID`

| traceroute | `[-s ipaddr] [-r] [-v] host` | Traces the route that an IP packet takes to reach a specified host. Default sends the probe packet from the PMI interface unless the SOCK environment variable is set. If used, this variable must be set to the virtual interface from where you want the traceroute probe to come. Example: The following command displays all route information between the PMI and the host whose IP address is 10.20.5.29. `traceroute -v 10.20.5.29` |

Environment variables (optional):`SOCK=node_ID`
Table 30 Resolve connectivity trouble commands (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp</td>
<td>-a</td>
<td>Displays the IP-to-physical address translation tables used by the Address Resolution Protocol (ARP). Default displays the ARP table of the PMI interface, unless the SOCK environment variable is set. Example: The following command displays the ARP table located in the Pilot. <code>arp -a</code></td>
</tr>
<tr>
<td></td>
<td>-a = Display current ARP entries. Environment variables (optional): SOCK=(\text{node_ID})</td>
<td></td>
</tr>
<tr>
<td>ifconfig</td>
<td>Environment variables (optional): SOCK=(\text{node_ID})</td>
<td>Displays interfaces and related information. Default displays interface information for the PMI, unless the SOCK environment variable is set. Example: <code>ifconfig</code></td>
</tr>
<tr>
<td>wbinfo</td>
<td>[-t] [-m] [-I ipaddr] [-N name]</td>
<td>Queries information from the CIFS windbind daemon. By default, this command displays the help information. Note: Only the parameters listed in the Syntax column are supported for this command. Example: The following command requests the CIFS server to confirm that the status of the joined domain is Yes. <code>wbinfo -t VSID=0 SOCK=/vserver0</code></td>
</tr>
<tr>
<td></td>
<td>-t = Verifies that the workstation trust account that was created when the CIFS server was added to the Windows domain is working and that the shared secret is good. -m = Lists trusted domains. -ipaddr = Converts an IP address to a NetBIOS name (WINS). -N name = Converts a NetBIOS name to an IP (WINS). Environment variables (required): SOCK=(\text{VSID})</td>
<td></td>
</tr>
</tbody>
</table>
Table 30 Resolve connectivity trouble commands (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nmblookup</td>
<td>([-U \text{ server}] [-R] \text{ hostName})</td>
<td>Looks up NetBIOS names on a WINS server and maps them to IP addresses.</td>
</tr>
<tr>
<td></td>
<td>• (-U \text{ server}) = Specifies IP address or name of the WINS server.</td>
<td>This command requires that both the SOCK and VSID environment variables be set.</td>
</tr>
<tr>
<td></td>
<td>• (-R) = Causes the WINS server to return all names stored on the server.</td>
<td>Example 1:</td>
</tr>
<tr>
<td></td>
<td>• \text{ hostName}) = Name of a NetBIOS host.</td>
<td>The following command requests the WINS server at 172.10.1.20 to resolve the cifs01 CIFS server to an IP address.</td>
</tr>
<tr>
<td></td>
<td>Environment variables (required):</td>
<td>nmblookup -U 172.10.1.20 -R cifs01 VSID=0 SOCK=/vserver0</td>
</tr>
<tr>
<td></td>
<td>• SOCK=/vserverN</td>
<td>Example 2:</td>
</tr>
<tr>
<td></td>
<td>• VSID=serverID</td>
<td>The following command requests the WINS server at 172.10.1.20 to provide the IP addresses of the domain controllers serving the domain01 NTLM domain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nmblookup -U 172.10.1.20 -R domain01#1c VSID=0 SOCK=/vserver0</td>
</tr>
<tr>
<td></td>
<td>Note: The two hexadecimal digits (1c) following the # character specify the NetBIOS name type as Domain Controllers, which conforms to the NetBIOS suffix convention.</td>
<td></td>
</tr>
<tr>
<td>nslookup</td>
<td>\text{ hostName} [\text{ serverName}]</td>
<td>Queries domain name server (DNS).</td>
</tr>
<tr>
<td></td>
<td>• \text{ hostName}) = Display information about the specified host.</td>
<td>Default sends the domain name request over the PMI interface unless the SOCK environment variable is set. If used, this variable must be set to the virtual interface from where you want the query to be sent.</td>
</tr>
<tr>
<td></td>
<td>• \text{ serverName}) = Specifies the name of the DNS server.</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Environment variables (optional):</td>
<td>The following command looks up the IP address of ca-lab. eng using the DNS at 10.20.0.10. In this example, the request is sent from the NAS Slammer port that is associated with virtual server 0.</td>
</tr>
<tr>
<td></td>
<td>• SOCK=node_ID</td>
<td>nslookup ca-lab.eng 10.20.0.10</td>
</tr>
</tbody>
</table>
Table 30 Resolve connectivity trouble commands (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
</table>
| perf | [-c][-l numThreads]
| | -c = Rests the counters after returning statistics.
| | -l numThreads = Displays the statistics for the specified number of threads that consume the most CPU cycles. | Checks CPU utilization of the Slammer. This command returns the CPU statistics for the idle process, the kernel time, and all process IDs that are running. When you use the -c option, the next invocation of perf will contain data accumulated from that point.
| | Example:
| | The following command displays the utilization statistics for all threads running on the selected Slammer and then clears the counters for that Slammer.
| | perf -c | |
| netstat | [-s] [-r] [-pip] [-pudp] [-ptcp]
| | -s = Request statistics instead of connections.
| | -r = Displays the routing table.
| | -pip = Displays IP level statistics. Good for finding issues with fragments for NFS over UDP.
| | -pudp = Displays UDP level statistics.
| | -ptcp = Displays TCP level statistics. | Shows networking statistics for a NAS Slammer control unit. If no options are specified, netstat returns information about the listening sockets and established connections.
| | Environment variables (required):
| | SOCK=node_ID |
| | Example:
| | The following command requests the IP packet statistics that are associated with virtual server 0.
| | netstat -pip
| | SOCK=/vserver0 | |

EXAMPLES

Run the following Slammer command.

```
pdscli request PerformSlammerCommand @input
```

where input.req contains the following name/value pairs:

- Request=PerformSlammerCommand
- Slammer=/XZY-data/Slammer1
- ControlUnitNumber=1
- TimeoutSeconds=145
- Command=ifconfig
See the PerformSlammerCommandResponse.txt file for example response data.

SEE ALSO

- GetSlammerCommandOutput on p. 292
- Ranges for Option Values on p. 57
NAME | PerformSlammerControlUnitDiagnostic
DESCRIPTION | Runs diagnostics for a specified Slammer control unit.
| Important! Contact the Pillar World Wide Support Center before running this request.
SYNTAX | pdscli {request | submit} PerformSlammerControlUnitDiagnostic
Slammer=GUID-or-FQN-of-Slammer
ControlUnitNumber={0 | 1}
OPTIONS Slammer | Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
Example GUID: ID12345678-9abc-def0-1234-56789abcdef0
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
FQN Format: /Fully/Qualified/ObjectName
Enter the GUID or FQN of the Slammer on which a FRU will be replaced when the system is ready.
ControlUnitNumber | Identifies a specific control unit (CU) in a Slammer. Each Slammer contains two CUs. The CUs are identified by 0 (the top CU) and 1 (the bottom CU).
EXAMPLES | Run the following command to perform diagnostics on control unit (CU) 1 on Slammer1.
pdscli request PerformSlammerControlUnitDiagnostic @input
where input.req contains the following name/value pairs:
Request=PerformSlammerControlUnitDiagnostic
Slammer=/Company-XZY-data/Slammer1
ControlUnitNumber=1
See the PerformSlammerControlUnitDiagnosticResponse.txt file for example response data.
SEE ALSO | GetSlammerStatistics on p. 296
Ranges for Option Values on p. 57
NAME PerformTapeRobotDiscovery

DESCRIPTION Discovers tape devices that are attached to the Pillar Axiom storage system so that administrators can back up data that is stored on the system.

SYNTAX pdscli {request | submit} PerformTapeRobotDiscovery

OPTIONS None.

EXAMPLES Run the following command to make a tape device known to your system.
 pdscli request PerformTapeRobotDiscovery

 See the PerformTapeRobotDiscoveryResponse.txt file for example response data.

SEE ALSO GetAllTapeRobots on p. 234

Ranges for Option Values on p. 57
<table>
<thead>
<tr>
<th>NAME</th>
<th>PerformTestCallHome</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Tests the Call-Home connection between a Pillar Axiom storage system and the Pillar World Wide Customer Support Center.</td>
</tr>
<tr>
<td>SYNTAX</td>
<td>pdscli {request</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>None.</td>
</tr>
<tr>
<td>EXAMPLES</td>
<td>Run the following command to test your Call-Home connection. pdscli request PerformTestCallHome See the PerformTestCallHomeResponse.txt file for example response data.</td>
</tr>
<tr>
<td>SEE ALSO</td>
<td>PerformPeriodicCallHome on p. 460 Ranges for Option Values on p. 57</td>
</tr>
</tbody>
</table>
NAME PerformTestEmail

DESCRIPTION Tests the connection between a Pillar Axiom storage system and the email server that is defined in the system’s Global Settings.

SYNTAX pdsccli {request | submit} PerformTestEmail
 EmailAddress[1-4]=username@domain.ext

OPTIONS EmailAddress[1-4]
 Identifies the recipient’s email address. The email server to which the Pillar Axiom system sends alerts must be able to send messages to this email address.

EXAMPLES Run the following command to test whether your system can communicate with the email server that you specified in Global Settings.
 pdsccli request PerformTestEmail @input

 where input.req contains the following name/value pairs:
 Request=PerformTestEmail
 EmailAddress1=xavier@xyz.com

 See the PerformTestEmailResponse.txt file for example response data.

SEE ALSO CreateNotificationConnection on p. 151
 CreateNotificationDefinition on p. 152
 Ranges for Option Values on p. 57
NAME PerformUpdate

DESCRIPTION Installs the specified firmware or software module.

SYNTAX pdscli {request | submit} PerformUpdate
 UpdatePackage=/FQN-of-package
 UpdateComponentName=
 {"Pilot Software" | "Pilot OS" |
 "Slammer Software" | "Slammer PROM" |
 "Slammer Software AX600" | "Slammer PROM AX600" |
 "Brick Firmware" | Brick FC Firmware}
 PerformUpgradeDisruptively={true | false}

OPTIONS UpdatePackage
Enter the fully qualified name (FQN), which starts with a leading slash (/),
contains a parent object’s name if needed to establish uniqueness of the
object, and ends with the object’s name.
FQN format:
/Fully/Qualified/ObjectName

UpdateComponentName
Identifies the name of an updatable component. Choose between one and
six of the following options.

Table 31 Updatable components

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Pilot Software”</td>
<td>Software that runs on the Pilot, such as the GUI interface and web server, online help, SNMP, and NDMP</td>
</tr>
<tr>
<td>“Pilot OS”</td>
<td>Operating system for the Pilot</td>
</tr>
<tr>
<td>“Slammer Software”</td>
<td>NAS or SAN software that runs on Pillar Axiom 300 and 500 Slammers</td>
</tr>
<tr>
<td>“Slammer Software AX600”</td>
<td>NAS or SAN software that runs on Pillar Axiom 600 Slammers</td>
</tr>
<tr>
<td>“Slammer PROM”</td>
<td>Programmable ROM (PROM), that includes BIOS and netboot code, for Pillar Axiom 300 and 500 NAS or SAN Slammers</td>
</tr>
<tr>
<td>“Slammer PROM AX600”</td>
<td>Programmable ROM (PROM), that includes BIOS and netboot code, for Pillar Axiom 600 Slammers</td>
</tr>
<tr>
<td>“Brick Firmware”</td>
<td>RAID firmware for SATA Bricks</td>
</tr>
<tr>
<td>“Brick FC Firmware”</td>
<td>FC firmware for Bricks</td>
</tr>
</tbody>
</table>
Chapter 4 Management Requests

PerformUpgradeDisruptively

If enabled, all protocol services are shut down at the time of the software update and are not restored until the update is complete. During the software update, the system shuts down and restarts. Depending on the size of the configuration, this disruption could exceed thirty minutes. The normal and recommended use of this option is to leave it disabled.

EXAMPLES

Run the following command to update the Pilot software in your system.

```bash
pdscli request PerformUpdate @input
```

where input.req contains the following name/value pairs:

- `Request=PerformUpdate`
- `UpdatePackage=/Staged`
- `UpdateComponentName="Pilot Software"
- `PerformUpgradeDisruptively=false`

See the PerformUpdateResponse.txt file for example response data.

SEE ALSO

- CreateJob on p. 127
- PerformUpdatePackageStaging on p. 511
- PerformUpdateValidation on p. 513
- Ranges for Option Values on p. 57

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Brick SATA2 Firmware"</td>
<td>RAID firmware for version 2 SATA Bricks</td>
</tr>
</tbody>
</table>
NAME PerformUpdateDiskDrive

DESCRIPTION Updates firmware on the Brick disk drives.

SYNTAX pdscli {request | submit} PerformUpdateDiskDrive
 UpdatePackage=/FQN-of-package
 UpdateComponentName=Name-of-updatable-component

OPTIONS

UpdatePackage
Enter the fully qualified name (FQN), which starts with a leading slash (/),
contains a parent object’s name if needed to establish uniqueness of the
object, and ends with the object’s name.
FQN format:
 /Fully/Qualified/ObjectName

UpdateComponentName
Identifies the name of an updatable component.

EXAMPLES Run the following command to update the disk drives in your system.
pdscli request PerformUpdateDiskDrive @input
where input.req contains the following name/value pairs:
Request=PerformUpdateDiskDrive
UpdatePackage=/Staged
UpdateComponentName="Brick Disk Drive Firmware 2052-00003"

See the PerformUpdateDiskDriveResponse.txt file for example response data.

SEE ALSO PerformUpdateDiskDriveValidation on p. 510
PerformUpdate on p. 507
PerformUpdatePackageStaging on p. 511
PerformUpdateValidation on p. 513
Ranges for Option Values on p. 57
NAME PerformUpdateDiskDriveValidation

DESCRIPTION Validates the firmware update file for Brick disk drives.

SYNTAX

```
pdscli {request | submit} PerformUpdateDiskDriveValidation
   UpdatePackage=/FQN-of-package
   UpdateComponentName=Name-of-updatable-component
```

OPTIONS

- **UpdatePackage**

Enter the fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object's name.

 FQN format:

 `/Fully/Qualified/ObjectName`

- **UpdateComponentName**

 Identifies the name of an updatable component.

EXAMPLES

Run the following command to verify that new firmware is compatible with other software packages.

```
pdscli request PerformUpdateDiskDriveValidation @input
```

where input.req contains the following name/value pairs:

- Request=PerformUpdateDiskDriveValidation
- UpdatePackage=/Staged
- UpdateComponentName="Brick Disk Drive Firmware 2052-00003"

See the PerformUpdateDiskDriveValidationResponse.txt file for example response data.

SEE ALSO

- PerformUpdateDiskDrive on p. 509
- PerformUpdate on p. 507
- PerformUpdatePackageStaging on p. 511
- PerformUpdateValidation on p. 513
- Ranges for Option Values on p. 57
NAME

PerformUpdatePackageStaging

DESCRIPTION

Uploads and expands the specified update file in preparation for a software or firmware update.

SYNTAX

```
pdscli {request | submit} PerformUpdatePackageStaging
   UpdatePackageFilename=.tar.gz-file-name
   FileContents="&@filename;"
```

Tip: You can use “ignoreme” as the package file name, and then specify the path to the package. The quotes, the ampersand (&), the @ sign, and the ending semicolon are mandatory characters.

OPTIONS

UpdatePackageFilename [optional]

Identifies the name of an update file.
- The staging process uploads the file to the Pilot and expands the compressed .tar.gz file.
- The validation process checks the compatibility of the firmware and software in the update file against previously installed firmware and software.
- The update process installs the uncompressed package on the Pillar Axiom storage system.

Select a single update file for the given operation.

FileContents [optional]

Identifies that the Pillar Axiom system should Base64 encode the contents of the specified file and upload the encoded file. The &, @ and ; characters that surround the file name tell the CLI to encode and upload the file.

EXAMPLES

Run the following command to stage an update file for a software update.

```
pdscli request PerformUpdatePackageStaging @input
```

where input.req contains the following name/value pairs:

<table>
<thead>
<tr>
<th>Request</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request=PerformUpdateFileStaging</td>
<td></td>
</tr>
<tr>
<td>UpdatePackageFilename="ignoreme"</td>
<td></td>
</tr>
<tr>
<td>FileContents="&@/myupdate/packages/axiom_package_1U.tar.gz.020304-000040;"</td>
<td></td>
</tr>
</tbody>
</table>

See the PerformUpdatePackageStagingResponse.txt file for example response data.

SEE ALSO

- [PerformUpdate on p. 507](#)
- [PerformUpdateValidation on p. 513](#)
- [Ranges for Option Values on p. 57](#)
NAME PerformUpdateSystemSerialNumber

DESCRIPTION Deletes all user data and configuration details on the Pillar Axiom storage system. To perform this request, you must get an encrypted file with a new system serial number (SSN) from the Pillar World Wide Customer Support Center.

Note: This request clears the system configuration, including all groups and LUNs. It performs a system reset.

SYNTAX pdscli {request | submit}
 PerformUpdateSystemSerialNumber
 SystemSerialNumberFileName=string
 SystemSerialNumberFileContents="&@filename;"
 EncryptedSystemSerialNumber=string

OPTIONS SystemSerialNumberFileName
 Identifies the name of file that you receive from Technical Support, which contains the encrypted system serial number.

SystemSerialNumberFileContents
 Identifies that the Pillar Axiom system should Base64 encode the contents of the specified file and upload the encoded file. The &, @ and ; characters that surround the file name tell the CLI to encode and upload the file.

EncryptedSystemSerialNumber
 Identifies the encrypted system serial number (SSN) that is assigned to the Pillar Axiom storage system.

EXAMPLES Run the following command to delete all of the data and configuration details on your system and reset the system serial number (SSN).

pdscli request PerformUpdateSystemSerialNumber
 @input

where input.req contains the following name/value pairs:

Request=PerformUpdateSystemSerialNumber
SystemSerialNumberFileName=Company-XYZ-ssn
SystemSerialNumberFileContents="&@XYZ-ssn;"
EncryptedSystemSerialNumber=A000001BCD

See the PerformUpdateSystemSerialNumber Response.txt file for example response data.

SEE ALSO Ranges for Option Values on p. 57
NAME
PerformUpdateValidation

DESCRIPTION
Validates the specified update file for compatibility with installed software and firmware packages.

SYNTAX
pdscli {request | submit} PerformUpdateValidation
 UpdatePackage=.tar.gz-file-name
 UpdateComponentName=
 {"Pilot Software" | "Pilot OS" |
 "Slammer Software" | "Slammer PROM" |
 "Slammer Software AX600" | "Slammer PROM AX600" |
 "Brick Firmware" | Brick FC Firmware}
 PerformUpgradeDisruptively={true | false}

OPTIONS
UpdatePackage
Identifies the name of an update file.
 • The staging process uploads the file to the Pilot and expands the compressed .tar.gz file.
 • The validation process checks the compatibility of the firmware and software in the update file against previously installed firmware and software.
 • The update process installs the uncompressed package on the Pillar Axiom storage system.

Select a single update file for the given operation.

UpdateComponentName
Identifies the name of an updatable component. Choose between one and six of the following options.

Table 32 Updatable components

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Pilot Software”</td>
<td>Software that runs on the Pilot, such as the GUI interface and web server, online help, SNMP, and NDMP</td>
</tr>
<tr>
<td>“Pilot OS”</td>
<td>Operating system for the Pilot</td>
</tr>
<tr>
<td>“Slammer Software”</td>
<td>NAS or SAN software that runs on Pillar Axiom 300 and 500 Slammers</td>
</tr>
<tr>
<td>“Slammer Software AX600”</td>
<td>NAS or SAN software that runs on Pillar Axiom 600 Slammers</td>
</tr>
<tr>
<td>“Slammer PROM”</td>
<td>Programmable ROM (PROM), that includes BIOS and netboot code, for Pillar Axiom 300 and 500 NAS or SAN Slammers</td>
</tr>
</tbody>
</table>
This flag is used to allow the administrator to specify whether an update for validation is to be done disruptively or non-disruptively.

EXAMPLES

Run the following command to verify that new Pilot software is compatible with other software packages.

```
pdscli request PerformUpdateValidation @input
```

where input.req contains the following name/value pairs:

```
Request=PerformUpdateValidation
UpdatePackage=mgmt_upgrade0003.tar.gz
UpdateComponentName="Pilot Software"
PerformUpgradeDisruptively=false
```

See the PerformUpdateValidationResponse.txt file for example response data.

SEE ALSO

- PerformUpdate on p. 507
- Ranges for Option Values on p. 57
NAME PerformVerifyDataConsistency

DESCRIPTION Verifies the integrity of user data that is stored on the specified Brick.

SYNTAX

```
pdscli {request | submit} PerformVerifyDataConsistency
     Brick=GUID-or-FQN-of-Brick
     Priority={High | Low}
```

OPTIONS

Brick
Identifies a specific Pillar Axiom object. Choose from:
- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.

Enter the GUID or FQN of the Brick to verify.

Priority
Identifies the priority to assign to the verification check. Choose from:
- High to permit the verification check to affect performance by up to 30%.
- Low to permit the verification check to affect performance by up to 10%.

EXAMPLES

Run the following command to verify data consistency on Brick1 that is configured on your system.
```
pdscli request PerformVerifyDataConsistency @input
```
where input.req contains the following name/value pairs:
```
Request=PerformVerifyDataConsistency
Brick=/Brick1
Priority=Low
```

See the PerformVerifyDataConsistencyResponse.txt file for example response data.

SEE ALSO

- GetDataConsistencyDetails on p. 249
- Ranges for Option Values on p. 57
NAME PerformVerifyStorageRedundancy

DESCRIPTION Verifies the redundancy settings on the specified volume. All of the options are mutually exclusive. Use the option of the volume type for which you are verifying.

SYNTAX pdscli {request | submit} PerformVerifyStorageRedundancy
 FileSystem=GUID-or-FQN-of-filesystem
 CloneFS=GUID-or-FQN-of-cloneFS
 LUN=GUID-or-FQN-of-LUN
 SnapLUN=GUID-or-FQN-of-cloneLUN

OPTIONS FileSystem [Optional]
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (0 through 9 and a through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name. Field types support UTFString.
 FQN Format:
 / Fully/Qualified/ObjectName
 Enter the GUID or FQN of the filesystem to verify.

CloneFS [Optional]
 Identifies the name that the Pillar Axiom system assigns to a Clone FS.

LUN [Optional]
 Identifies the name that is assigned to a LUN for administrative purposes. LUN names must be unique across the Pillar Axiom system, not just within its associated volume group.

SnapLUN [Optional]
 Identifies the name that the Pillar Axiom system assigns to a Clone LUN (formally referred to as Snap LUN).

EXAMPLES Run the following command to verify the redundancy on the engineering organization’s filesystem.
 pdscli request PerformVerifyStorageRedundancy
 @input
where input.req contains the following name/value pairs:
Request=PerformVerifyStorageRedundancy
FileSystem=/Company-XYZ-FS1/EngAtl

See the PerformVerifyStorageRedundancyResponse.txt file for example response data.

SEE ALSO
GetStorageRedundancyDetails on p. 301
Ranges for Option Values on p. 57
NAME PrepareSnapLUN

DESCRIPTION Prepares a Snap LUN, which is defined as:
A point-in-time, read-write copy of a LUN that you can immediately use.
Snap LUNs requires no cache and minimal disk storage space.
Snap LUNs point to the original data, and have the same QoS parameters
as the source LUN.

Note: Formerly called a Snap LUN, the GUI now refers to this term as
Clone LUN, whereas Snap LUN is still used in the command line.

After the Snap LUN is prepared, it can be synched using the SyncSnapLUN
command.

SYNTAX
pdsccli {request | submit} PrepareSnapLUN
 Source=GUID-or-FQN-of-SnapLUN
 SnapLUNName=LUN-name
 LUNNumber=integer-0-through-255
 Mapped={true | false}
 Active={true | false}
 EnableiSCSIAccess={true | false}
 EnableFibreChannelAccess={true | false}

OPTIONS SnapLUN
Identifies a specific Pillar Axiom object. Choose from:

• Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (0 through 9 and a
 through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0

• Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name. Field types support
 UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the LUN you wish to modify.

SnapLUNName [optional]

Identifies the name that is assigned to a LUN for administrative purposes.
LUN names must be unique across the Pillar Axiom system, not just within
its associated volume group.

Name is a required parameter only if you want to change the FQN LUN’s
user-visible name.

LUNNumber [optional]
Identifies the unique number that is assigned to a LUN and can be accessed by all SAN hosts if the LUN is not mapped. If the LUN is mapped, the LUN number must be unique to the mapped SAN host.

Mapped [optional]

Identifies whether all hosts or only selected hosts may access this LUN.
- Mapped allows only designated hosts to access this LUN.
- Unmapped allows all hosts to access this LUN using the LUN Number.

Note: If you choose Mapped, do not assign a LUNNumber.

Active [optional]

Identifies whether the Clone LUN is available to the host (active) or is not seen by the host (inactive) when it is created. Inactive Clone LUNs can be changed to active; however, once the Clone LUN is set to active, you cannot change it to inactive.

EnableiSCSIAccess

Identifies that the iSCSI protocol specification is used when accessing the newly created SAN LUN.

Note: You must specify iSCSI, Fibre Channel, or both protocols.

EnableFibreChannelAccess

Identifies that the Fibre Channel (FC) protocol specification is used when accessing the newly created SAN LUN.

Note: You must specify iSCSI, Fibre Channel, or both protocols.

EXAMPLES

Run the following command to prepare SLUN_01 for the Engineering organization.

```
pdscli request PrepareSnapLUN @input
```

where input.req contains the following name/value pairs:

- Request=PrepareSnapLUN
- Source=/SLUN_01
- SnapLUNName=EngLUN
- LUNNumber=0
- Mapped=false
- Active=false
- EnableiSCSIAccess=true
- EnableFibreChannelAccess=false

See the PrepareSnapLUNResponse.txt file for example response data.

SEE ALSO

- [DeleteSnapLUN on p. 191](#)
- [GetAllSnapLUNs on p. 233](#)
Chapter 4 Management Requests

- GetAllSnapLUNHierarchies on p. 232
- GetSnapLUNDetails on p. 297
- SyncSnapLUN (p. 529)
- Ranges for Option Values on p. 57
ReenableAllRAIDControllers

NAME ReenableAllRAIDControllers

DESCRIPTION Important! Reenables RAID controllers.

SYNTAX

\[\text{pdscli} \ {\text{request} \mid \text{submit}} \ \text{ReenableAllRAIDControllers} \]

OPTIONS None.

EXAMPLES

Run the following request:

\[\text{pdscli request ReenableAllRAIDControllers @input} \]

where input.req contains the following name/value pairs:

Request = ReenableAllRAIDControllers

See the ReenableAllRAIDControllersResponse.txt file for example response data.

SEE ALSO

- [ReenableAllSlammers on p. 522](#)
- [ReenableCUBoot on p. 523](#)
NAME ReenableAllSlammers

DESCRIPTION Re-enables all Slammers instead of just one.

SYNTAX pdsc1i {request | submit} ReenableAllSlammers

OPTIONS None.

EXAMPLES Run the following command to re-enable all Slammers.

pdscli request ReenableAllSlammers @input

where input.req contains the following name/value pairs:

Request = ReenableAllSlammers

See the ReenableAllSlammersResponse.txt file for example response data.

SEE ALSO ReenableAllRAIDControllers on p. 521

ReenableCUBoot on p. 523
NAME ReenableCUBoot

DESCRIPTION This request only allows the control unit (CU) to boot. It does not send any
 signals to the Slammer CU. Typically, use the request only to recover a specific
 Slammer CU when there are multiple disabled CUs and you don’t want to
 recover all of them using the ReenableAllSlammers request.

SYNTAX pdscli {request | submit} ReenableCUBoot
 Slammer=GUID-or-FQN-of-Slammer
 ControlUnitNumber={0-for-automatic-assignment | integer}

OPTIONS Slammer
 Identifies a specific Pillar Axiom object. Choose from:
 • Globally unique ID (GUID), which is a 38-character string that starts with
 ID and ends with 36 lower-case hex characters (0 through 9 and a
 through f) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0
 • Fully qualified name (FQN), which starts with a leading slash (/),
 contains a parent object’s name if needed to establish uniqueness of
 the object, and ends with the object’s name. Field types support
 UTFString.
 FQN Format:
 /Fully/Qualified/ObjectName

 ControlUnitNumber [optional]
 Specifies a specific control unit (CU) on the Slammer.

EXAMPLES Run the following request:
pdscli request ReenableCUBoot @input

 where input.req contains the following name/value pairs:
 Request = ReenableCUBoot
 Slammer=Slammer1

 See the RenableCUBootResponse.txt file for example response data.

SEE ALSO ReenableAllSlammers on p. 522
 ReenableAllRAIDControllers on p. 521
NAME
Relogin

DESCRIPTION
Restarts a command line interface (CLI) session for the specified Pillar Axiom administrator or NDMP account. You may have to perform this request after the initial session times out. You can avoid the system timing out by increasing the session timeout value.

SYNTAX
pdscli {request | submit} Relogin
 Username=string
 Password=string

OPTIONS
Username
 Enter a valid user name that is defined for a Pillar Axiom administrator account.
 Note: If you specify a value, it will override values you may have saved in configuration files or environment variables.

Password
 Enter a valid password that is defined for the specified user name.
 Note: If you specify a value, it will override values you may have saved in configuration files or environment variables.

EXAMPLES
Run the following command to restart a management session that timed out.
pdscli request Relogin @input

where input.req contains the following name/value pairs:
Request=Relogin
Username=xavier
Password=s7Z12W79

See the ReloginResponse.txt file for example response data.

SEE ALSO
Login on p. 309
Logout on p. 310
Ranges for Option Values on p. 57
<table>
<thead>
<tr>
<th>NAME</th>
<th>ResetCallHomeToDefaultSettings</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Restores Call-Home feature functionality to the default settings. The Call-Home feature:</td>
</tr>
<tr>
<td></td>
<td>Notifies the Pillar World Wide Customer Support Center about issues in the Pillar Axiom system. When a component operates in degraded mode or fails, the system automatically performs failover actions. Although a component failure does not cause downtime, manual intervention is sometimes required to repair or replace the failed component. The system sends a Call-Home message to initiate the repair or replacement process.</td>
</tr>
<tr>
<td>SYNTAX</td>
<td>pdscli {request</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>None</td>
</tr>
<tr>
<td>EXAMPLES</td>
<td>Run the following command to reset the Call-Home functionality to the default settings.</td>
</tr>
<tr>
<td></td>
<td>pdscli request ResetCallHomeToDefaultSettings @input</td>
</tr>
<tr>
<td></td>
<td>See the ResetCallhomeToDefaultSettingsResponse.txt file for example response data.</td>
</tr>
<tr>
<td>SEE ALSO</td>
<td>Ranges for Option Values on p. 57</td>
</tr>
</tbody>
</table>
NAME RestoreFileSystemFromCloneFS

DESCRIPTION Restores a filesystem using the content from a Clone FS, if the capacity of the Clone FS is less than or equal to that of the filesystem. If the clone capacity is greater than that of the filesystem, the system rejects the request.

As a result of the restore process:

- The snapshot schedule for the restored volume is erased. A new snapshot schedule for the restored filesystem will need to be re-created.
- The creation data for a SecureWORMfs is reset to the time of the restore.
- The filesystem size remains the same as before the restore.
- Quotas from the Clone FS are restored to the filesystem.
- The exports and shares belong to the source filesystem and will be unchanged by the restore from the Clone FS.

SYNTAX pdscli {request | submit} RestoreFileSystemFromCloneFS

OPTIONS None

EXAMPLES Run the following command to restore a filesystem from a Clone FS.

pdscli request RestoreFileSystemFromCloneFS @input

See the RestoreFileSystemFromCloneFSResponse.txt file for example response data.

SEE ALSO CreateCloneFS (p. 97)
CreateFileSystem (p. 110)
DeleteCloneFS (p. 172)
DeleteFileSystem (p. 176)
GetAllCloneFSHierarchies (p. 207)
GetAllCloneFSs (p. 208)
GetAllFileSystems (p. 214)
GetCloneFSDetails (p. 245)
GetFileSystemDetails (p. 255)
ModifyCloneFS (p. 317)
ModifyFileSystem (p. 330)
NAME RestoreLUNFromCloneLUN

DESCRIPTION Restores a LUN using the content from a Clone LUN, if the capacity of the
Clone LUN is less than or equal to that of the LUN. If the clone capacity is
greater than that of the LUN, the system rejects the request.

LUN parameters remain unchanged by the LUN restore process, including:
- LUN size
- LUN mappings
- Masking
- LUN numbering
- Enabled protocols
- QoS

SYNTAX pdscli {request | submit} RestoreLUNFromCloneLUN

OPTIONS None

EXAMPLES Run the following command to restore a filesystem from a Clone FS.
pdscli request RestoreLUNFromCloneLUN @input

See the RestoreLUNFromCloneLUNResponse.txt file for example response

data.

SEE ALSO CreateLUN (p. 135)
CreateSnapLUN (p. 161)
DeleteLUN (p. 182)
DeleteSnapLUN (p. 191)
GetAllLUNs (p. 221)
GetAllSnapLUNHierarchies (p. 232)
GetAllSnapLUNs (p. 233)
GetLUNDetails (p. 269)
GetSnapLUNDetails (p. 297)
ModifyLUN (p. 351)
ModifySnapLUN (p. 381)
NAME SNMPGetAllQuotas

DESCRIPTION Displays a list of quotas, or capacity limits, that are defined for a specified filesystem.

Important! Attempting to retrieve definitions for more than 500 quotas for a specified filesystem is not recommended because of the potential negative impact to the Pilot’s performance.

SYNTAX pdscli {request | submit} GetAllQuotas
 ID=GUID-or-FQN-of-FileSystem

OPTIONS ID

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID: ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object’s name if needed to establish uniqueness of the object, and ends with the object’s name.
 FQN Format: /Fully/Qualified/ObjectName

Enter the GUID or FQN of the filesystem for which you want to display a list of quotas.

EXAMPLES Run the following command to display a list of quotas for the EngAtl filesystem.

pdscli request GetAllQuotas @input

where input.req contains the following name/value pairs:

Request=GetAllQuotas
ID=/Company-XYZ-FS1/EngAtl

See the GetAllQuotasResponse.txt file for example response data.
NAME SyncSnapLUN

DESCRIPTION Synchronizes a Snap LUN, which is defined as:

- A point-in-time, read-write copy of a LUN that you can immediately use.
- Snap LUNs requires no cache and minimal disk storage space.
- Snap LUNs point to the original data, and have the same QoS parameters as the source LUN.

SYNTAX pdscli {request | submit} SyncSnapLUN

OPTIONS SnapLUNID

Identifies a specific Pillar Axiom object. Choose from:

- Globally unique ID (GUID), which is a 38-character string that starts with ID and ends with 36 lower-case hex characters (a through f and 0 through 9) and hyphens.
 Example GUID:
 ID12345678-9abc-def0-1234-56789abcdef0

- Fully qualified name (FQN), which starts with a leading slash (/), contains a parent object's name if needed to establish uniqueness of the object, and ends with the object's name.
 FQN Format:
 /Fully/Qualified/ObjectName

Enter the GUID or FQN of the LUN you wish to synchronize.

EXAMPLES Run the following command to respond to an AdministratorAction and delete pinned data from the EngAtl filesystem.

pdscli request SyncSnapLUN @input

where input.req contains the following name/value pairs:

Request=SyncSnapLUN
SnapLUNID=/Company-XYZ-FS1/EngAtl

See the SyncSnapLUNResponse.txt file for example response data.

See Also

DeleteSnapLUN on p. 191
GetAllSnapLUNs on p. 233
GetSnapLUNDetails on p. 297
ModifySnapLUN on p. 381
PrepareSnapLUN on p. 518
APPENDIX A

CLI Return Status Codes

Introduction to Return Status Codes

As you use the `pdscli`, you may see the status codes that are documented in this section. Use appropriate utilities for your environment. For example:

- In Bash, get return status codes with:

 "$?"

- In Windows batch files, get return status codes with the ERRORLEVEL operator.

Return Status Codes

The CLI return status codes are shown in Table 33.

Note: A CLI request might return an error. To learn more about an error message, use the `pdscli help list-errors` command.

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Success</td>
</tr>
<tr>
<td>1</td>
<td>• Syntax errors on command line</td>
</tr>
<tr>
<td></td>
<td>• Missing user name or password</td>
</tr>
<tr>
<td>2</td>
<td>Trace file errors</td>
</tr>
</tbody>
</table>
Table 33 CLI return status codes (continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| 3 | Input errors:
| | • File not found
| | • Syntax error
| | • Unknown field
| | • Unknown request |
| 4 | Connection errors:
| | • Unknown or missing host
| | • Invalid port
| | • Invalid timeout period |
| 5 | Host communication errors or timeout exceeded |
| 6 | Parse errors (Reply) |
| 7 | RequestStatus in the ReplyHeader is something other than SUCCEEDED |
Index

A
access the system
 supported methods 28
 unsupported methods 28
administrator accounts
 create 51
 manage 55
 management requests 35
 monitor 53
 names
 data-entry limits 61
 passwords
 data-entry limits 61
 quantities (min/max) 60
administrator actions
 management requests 37
administrator sessions
 quantities (max) 60
alerts
 create 51
 data-entry limits 60
 modify 55
archive. See copies.
B
backup. See copies.
Brick names
 data-entry limits 60
C
cautions
 system access using unsupported methods 28
CIFS administrator accounts
 domains names
 data-entry limits 62
 names
 data-entry limits 62
 passwords
 data-entry limits 62
CIFS connections
 quantities (max) 59
CIFS local group names
 data-entry limits 63
CIFS servers
 names
 data-entry limits 62
CIFS shares
 create 50
 directory paths
 data-entry limits 62
 management requests 32
 names
 data-entry limits 62
 quantities (max) 59
CLI. See command line interface.
cliSampleInput files 16
cliSampleOutput files 16
command line interface (CLI)
 command prompt 26
 configuration variables 17
 defined 14
 display errors 16
 display requests 16
 display supported commands 16
 display supported environment variables 16
 environment variables 19, 20
 executable files 16
 help 16
 how to
 access the system 28
 rawsend command mode 24
 requests
 categorized by action type 38
 categorized by object type 31
 return status codes 530
 run commands 21
 scripts 21
 set configuration variables 19
 short command names 19
 supplemental files 16
 templates 24
 types of sessions 23
 verify command mode 24
command-prompt syntax, use of spaces 27
commands
 see also request command
 convert 65
 display environment variables 16
 display errors 16
 display requests 16
 display supported 16
 endsession 68
 help 70
 rawsend 72
 request 75
 run 21
 startsession 79
 submit 82
 template 86
use command prompt 26
verify 88
configuration variables 17
PDS_CONFIG 17
PDS_HOST 17
PDS_TIMEOUT 17
PDS_TMPDIR 17
set
 in configuration file 20
 with command line options 19
 with environment variables 19
configure
 global system settings 50
 management requests 37
 NDMP 51
 set time 50
 SNMP 51
contacts (Pillar Data Systems) 29
convert command 65
copies
 block-level (image)
 filesystems
 LUNs
 filesystem duplicate
 immediate access
 LUNs 518
 point-in-time
 LUNs 518
 Snap LUN
Copy Filesystem, see filesystem duplicate
Copy LUN. See LUN duplicate or LUN copy.
create
 administrator accounts 51
 alerts and notifications 51
 CIFS shares 50
 data replicas 55
 File Servers 50
 filesystems 50
 NFS exports 50
 objects 49
 quotas 50
 volume groups 50
D
data redundancy
 filesystem duplicate
 LUN duplicate
 Snap LUN 518
data-entry limits 63
 administrator names 61
 administrator passwords 61
 alerts 60
 Brick names 60
 CIFS administrator names 62
 CIFS directory paths 62
 CIFS domain names 62
 CIFS passwords 62
 CIFS server names 62
 CIFS share names 62
 DNS domain names 61
 email 62
 File Server names 60
 filesystem names 60
 IP addresses 63
 NDMP account names 62
 NDMP passwords 62
 NFS directory paths 63
 NFS host names 63
 NIS domain names 61
 Pillar Axiom system names 60
 schedule names 60
 Slammer names 60
 Snap FS names 61
 VLAN IDs 63
 volume group names 60
definitions
 command line interface (CLI) 14
 encapsulated sessions 23
 filesystem duplicate
 graphical user interface (GUI)
 LUN duplicate
 managed sessions 23
 objects 30
 Pillar Axiom Storage Services Manager
 Snap LUN
dependencies among requests 30
design scripts 22
directory paths
 CIFS shares
 data-entry limits 62
 NFS exports
 data-entry limits 63
display
 environment variables 16
 errors 16
 help 16
 management requests 16
 supported commands 16
DNS domain names
 data-entry limits 61
duplicate LUN, see LUN duplicate
E
e-mail address
 data-entry limits 62
enable
 NDMP 51
 SNMP 51
encapsulated CLI sessions 23
endsession command 68
errors
 display list 16
 error 4022, how to handle 24
events
 see also notifications and events
executable files
 extract in Linux 16
 extract in Windows 16
F
File Servers
 create 50
 definition 100
 manage 55
 management requests 33
 modify 55
 monitor 52
 names
 data-entry limits 60
 quantities (min/max) 58
file size
 filesystems (min/max) 58
 upload (max) 58
files
 Linux executables 16
 sample 16
 supplemental 16
 input 16
 output 16
 xml 16
 temporary 17
 Windows executables 16
filesystem copies
 management requests 34
filesystem duplicate
 defined
 management requests 34
filesystem size (min/max) 58
filesystems
 create 50
 definition 110
 duplicate
 manage 55
 management requests 31, 32
 modify 55
 monitor 53
 names
 data-entry limits 60
 quantities (min/max) 58
G
global system settings
 configure 50
graphical user interface (GUI)
 See Pillar Axiom Storage Services Manager
Guided Maintenance
 perform 57
 requests 46
 Step 1, Identify
 PerformIdentifyBrick 433
 PerformIdentifyBrickFRU 435
 PerformIdentifyPilot 437
 PerformIdentifySlammer 438
 PerformIdentifySlammerFRU 440
 PerformIdentifySlammerIOPort 443
 Step 2, Prepare
 PerformPrepareReplaceBrickFRU 461
 PerformPrepareReplaceSlammerFRU 463
 PerformPrepareSlammerMemoryUpgrade 465
 Step 3, Replace 47
 Step 4, Resume
 PerformResumeBrick 486
 PerformResumeBrickFRU 487
 PerformResumeSlammer 489, 492
 PerformResumeSlammerFRU 490
 Step 5, Verify
 PerformAcceptAddBrick 391
 PerformAcceptAddSlammer 392
 PerformAcceptForeignDiskDrive 393, 395
 PerformRejectForeignDiskDrive 478
H
hardware
 modify 56
 rename 51
hardware components, management requests 36
help
 command 70
 display environment variables 16
 display supported commands 16
 list errors 16
 list requests 16
 online 29
host configuration variable 17
I
IDs. See names.
input files
 command prompt usage 27
 comments show valid values 25
 recommended usage 16
 script usage 24
input supplemental files 16
IP addresses
 data-entry limits 63
L
Linux executable files 16
local administrator group names (CIFS) 63
Login
process 50
login
 startsession command 79
 submit command 82
logout
 endsession command 68
LUN copies
 management requests 34
LUN duplicate
 defined
 management requests 34
LUNs
 definition 135, 351
 duplicate
 management requests 34
 quantities (max) 59

M
maintenance
 perform Guided Maintenance 57
manage
 administrator accounts 55
 filesystems 55
 volume groups 55
manage File Servers 55
manage objects 54
managed CLI sessions 23
Management and Control Console (MCC), in MCCRequest and MCCResponse XML 66, 73, 77, 84, 88
management requests actions
 create 39
 delete 41
 get all 42
 get details 43
 get hardware status 44
 get performance statistics 44
 Guided Maintenance 46
 modify 40
 perform 44
administrator accounts 35
administrator actions 37
CIFS shares 32
configuration 37
File Servers 33
filesystem copies 34
filesystem duplicates 34
filesystems 31, 32
hardware components 36
LUN copies 34
LUN duplicates 34
LUNs 34
modeler 31
}

NDMP
 management requests 33
NFS exports 32
NIS-alternative files 33
notifications and events 36
quotas 33
routes 33
SAN 32
schedules 35
sessions 37
shut down and restart 37
Snap FSs 34
Snap LUNs 34
SNMP 32
software updates 37
statistics 38
system information 38
tape robot 38
tasks 36
time management 35
tools 38
virtual interfaces 33
volume copies 33
volume groups 33
mirror images. See copies.
mirror images. See copies.

modeler
 management requests 31
modify
 alerts and notifications 55
 File Servers 55
 filesystems 55
 hardware 56
monitor
 administrator accounts 53
 File Servers 52
 filesystems 53
 objects 52
 volume groups 52

N
names
 data-entry limits 61
 administrators 61
 alerts 60
 Bricks 60
 CIFS administrators 62
 CIFS domains 62
 CIFS servers 62
 CIFS shares 62
 DNS domains 61
 File Servers 60
 filesystems 60
 NDMP account users 62
 NFS hosts 63
NIS domains 61
Pillar Axiom systems 60
schedules 60
Slammers 60
Snap FS 61
VLANs 63
volume groups 60
NDMP
configure 51
NDMP accounts
names
data-entry limits 62
passwords
data-entry limits 62
NDMP sessions
quantities (max) 60
NFS exports
create 50
directory paths
data-entry limits 63
management requests 32
quantities (max) 59
NFS host
entires quantities (max) 59
NFS hosts
data-entry names limits 63
NIS domain names
data-entry limits 61
NIS files
quantities (max) 58
NIS-alternative files
management requests 33
notifications
create 51
modify 55
notifications and events
management requests 36

O
object types
command line interface (CLI) requests 31

objects
create 49
defined 30
manage 54
monitor 52
online help 29
options
commands
convert 65
endsession 68
help 70
rawsend 72
request 75
startsession 79

submit 82
template 86
verify 88
create requests
CreateAccount 92
CreateCIFSShare 95
CreateExternalUPSDevice 99
CreateFileServer 97, 101
CreateFileSystem 111
CreateFileSystemSnapshot 122
CreateFileSystemSnapshotSchedule 124
CreateLUN 135
CreateNFSExport 144
CreateNFSHostEntry 148
CreateNotificationConnection 151
CreateNotificationDefinition 152
CreateQuota 154
CreateRoute 157
CreateSchedule 159
CreateSnapLUN 161
CreateVirtualInterface 164
CreateVolumeGroup 167
delete requests
DeleteAccount 169
DeleteAdministratorAction 170
DeleteCIFSShare 171
DeleteFileServer 175
DeleteFileSystem 176
DeleteFileSystemSnapshot 172, 177
DeleteFileSystemSnapshotSchedule 179
DeleteJob 181
DeleteLUN 182
DeleteNFSExport 183
DeleteNFSHostEntry 184
DeleteNotificationDefinition 185
DeleteQuota 186
DeleteRoute 188
DeleteSANHost 189, 417, 421
DeleteSchedule 190
DeleteSnapLUN 191
DeleteVirtualInterface 192
DeleteVolumeAndChildren 193
DeleteVolumeGroup 91, 195, 196
get requests
GetAccountDetails 198
GetAdministratorActionDetails 199, 405
GetAllAvailableLUNNumbers 202
GetAllBackupRuns 203
GetAllCIFSShares 206
GetAllEvents 210
GetAllFileSystems 214
GetAllFileSystemSnapshots 208, 216
GetAllFileSystemSnapshotSchedules 218
GetAllJobs 220
GetAllLUNs 221
GetAllNFSExports 222
GetAllNotificationDefinitions 223
GetAllQuotas 224, 528
GetAllRoutes 226
GetAllSANProtocolStatistics 228
GetAllSlammers 231
GetAllSnapLUNHierarchies 207, 232, 525
GetAllSnapLUNs 233
GetAllVirtualInterfaces 239
GetAllVolumeGroups 240
GetBackupRunStatistics 241
GetBrickDetails 242
GetCIFSShareDetails 244
GetExternalUPSDeviceDetails 250
GetFCProtocolStatistics 251, 266
GetFileServerDetails 253
GetFileServerStatistics 254
GetFileSystemDetails 255
GetFileSystemSnapshotDetails 256
GetFileSystemSnapshotScheduleDetails 258
GetFileSystemStatistics 260
GetHBAPortConnections 262
GetHistoricalFileSystemStatistics 263
GetHostMappingConfigDetails 265
GetJobDetails 268
GetLUNDetails 269
GetLUNMappingConfigDetails 270
GetLUNStatistics 272
GetNFSExportDetails 276
GetNISUploadedFilesDetails 277
GetNotificationDefinitionDetails 278
GetQuotaDetails 197, 225, 282, 419
GetRouteDetails 283
GetSANHostDetails 285
GetSANPortDetails 286
GetSANProtocolStatistics 288
GetSANSlammerPortDetails 290
GetScheduleDetails 291
GetSlammerCommandOutput 292
GetSlammerControlUnitDiagnosticDetails 293
GetSlammerDetails 295
GetSlammerStatistics 296
GetSnapLUNDetails 297
GetTaskDetails 304
GetUpdatePackageDetails 305
GetVirtualInterfaceDetails 307
GetVolumeGroupDetails 308
Guided Maintenance requests
PerformAcceptAddBrick 391
PerformAcceptAddSlammer 392
PerformAcceptForeignDiskDrive 393, 395
PerformIdentifyBrick 433
PerformIdentifyBrickFRU 435
PerformIdentifyPilot 437
PerformIdentifySlammer 438
PerformIdentifySlammerFRU 440
PerformIdentifySlammerIOPort 443
PerformPrepareReplaceBrickFRU 461
PerformPrepareReplaceSlammerFRU 463
PerformPrepareSlammerMemoryUpgrade 465
PerformRejectForeignDiskDrive 478
PerformResumeBrick 486
PerformResumeBrickFRU 487
PerformResumeSlammer 489, 492
PerformResumeSlammerFRU 490
modify requests
ModifyAccount 311
ModifyBrick 314
ModifyCIFSShare 315
ModifyExternalUPSDevice 319
ModifyFileServer 322
ModifyFileSystem 331
ModifyFileSystemSnapshot 340
ModifyHBAPort 342
ModifySCSIPortDetails 343
ModifyJob 346
ModifyLUN 352
ModifyManagementConfig 361
ModifyMyAccount 367
ModifyNASConfig 368
ModifyNDMPConfig 369
ModifyNFSHostEntry 371
ModifyNotificationDefinition 373
ModifyQuota 375
ModifySANHost 377
ModifySlammer 380
ModifySnapLUN 317, 381, 518, 529
ModifySNMPConfig 384
ModifyTimeConfig 386
ModifyVolumeGroup 389
perform requests
Login 309
PerformAssociateInitiatorsToHost 397, 398
PerformBackgroundFileSystemDuplication 400
PerformBackgroundLUNDuplication 402
PerformCancelTask 404
PerformCollectInstantaneousStatistics 406
PerformCollectSystemInformation 407
PerformConfigureLUNMapping 412
PerformCopybackBrickLUNs 415
PerformDownloadCallHomeFile 418
PerformDownloadManualCallHome 420
PerformFileSystemCheck 423
PerformFileSystemDuplication 426
PerformJoinDomain 445
PerformLUNDuplication 448
PerformNISFileDownload 455
PerformNISFileUpload 456
PerformProtectedFileValidation 467
PerformPutFileSystemOffline 469
PerformPutFileSystemOnline 470
PerformRebuildBrickLUNs 472
PerformRebuildCloneFSRedundancy 473
PerformRebuildFileSystemRedundancy 474
PerformRebuildLUNRedundancy 475
PerformRebuildSnapLUNRedundancy 477
PerformResetSystem 482
PerformResetTapeRobotDevice 483
CreateNotificationDefinition 152
CreateQuota 154
CreateRoute 157
CreateSchedule 159
CreateSnapLUN 161
CreateVirtualInterface 164
CreateVolumeGroup 167
delete 191
delete requests
DeleteAccount 169
DeleteAdministratorAction 170
DeleteExternalUPSDevice 174
DeleteFileServer 175
DeleteFileSystem 176
DeleteFileSystemSnapshot 172, 177
DeleteFileSystemSnapshotSchedule 179
DeleteJob 181
DeleteLUN 182
DeleteNFSExport 183
DeleteNFSHostEntry 184
DeleteNotificationDefinition 185
DeleteQuota 186
DeleteRoute 188
DeleteSchedule 190
DeleteVirtualInterface 192
DeleteVolumeAndChildren 193
DeleteVolumeGroup 195
ForceFileSystemRebalanceOnRestart 196
GatherQuotaForFileSystem 197
get 207, 232, 233, 251, 266, 297, 525
requests
GetAllSANProtocolStatistics 228
get request
GetAllQuotaFiles 225
get requests
GetAccountDetails 198
GetAdministratorActionDetails 199
GetAllAccounts 200
GetAllAdministratorActions 201
GetAllAvailableLUNNumbers 202
GetAllBackupRuns 203
GetAllBricks 204
GetAllCallHomeFileDetails 205, 243, 245
GetAllCIFSShares 206
GetAllEvents 210
GetAllExternalUPSDevices 212
GetAllFileServers 213
GetAllFileSystems 214
GetAllFileSystemSnapshots 208, 216
GetAllFileSystemSnapshotSchedules 218
GetAllJobs 220
GetAllLUNs 221
GetAllNFSExports 222
GetAllNotificationDefinitions 223
GetAllQuotas 224, 528
GetAllRoutes 226
GetAllSANHosts 227
GetAllSchedules 229
GetAllSessions 230
GetAllSlammers 231
GetAllTapeRobots 234
GetAllTasks 235
GetAllUpdateComponents 236
GetAllUpdatePackages 237
GetAllVerifyOperations 238
GetAllVirtualInterfaces 239
GetAllVolumeGroups 240
GetBackupRunStatistics 241
GetBrickDetails 242
GetCIFSShareDetails 244
GetCurrentDateTimeDetails 247
GetCurrentTimeZoneDetails 248
GetDataConsistencyDetails 249
GetExternalUPSDeviceDetails 250
GetFileServerDetails 253
GetFileServerStatistics 254
GetFileSystemDetails 255
GetFileSystemSnapshotDetails 256
GetFileSystemSnapshotScheduleDetails 258
GetFileSystemStatistics 260
GetGUISSLConfigDetails 261
GetHBAPortConnections 262
GetHistoricalFileSystemStatistics 263
GetHostMappingConfigDetails 265
GetJobDetails 268
GetLUNDetails 269
GetLUNMappingConfigDetails 270
GetLUNStatistics 272
GetManagementConfigDetails 273
GetNASConfigDetails 274
GetNDMPConfigDetails 275
GetNFSExportDetails 276
GetNISUploadedFilesDetails 277
GetNotificationDefinitionDetails 278
GetNTPServerConfigDetails 279
GetPilotDetails 280
GetProductionDetails 281
GetQuotaDetails 282
GetRouteDetails 283
GetSANConfigDetails 284
GetSANHostDetails 285
GetSANPortDetails 286
GetSANProtocolStatistics 288
GetSANSlammerPortDetails 290
GetScheduleDetails 291
GetSlammerCommandOutput 292
GetSlammerControlUnitDiagnosticDetails 293
GetSlammerDetails 295
GetSlammerStatistics 296
GetSNMPConfigDetails 298
GetSpareDriveDetails 299
GetStorageConfigDetails 300
GetStorageRedundancyDetails 301
GetSystemInformationFileDetails 302
GetSystemStatusDetails 303, 459
GetTaskDetails 304
GetUpdatePackageDetails 305
GetVirtualInterfaceDetails 307
GetVolumeGroupDetails 308

Guided Maintenance requests
PerformAcceptAddBrick 391
PerformAcceptAddSlammer 392
PerformAcceptForeignDiskDrive 393, 395
PerformIdentifyBrick 433
PerformIdentifyBrickFRU 435
PerformIdentifyPilot 437
PerformIdentifySlammer 438
PerformIdentifySlammerFRU 440
PerformIdentifySlammerIOPort 443
PerformPrepareReplaceBrickFRU 461
PerformPrepareReplaceSlammerFRU 463
PerformPrepareSlammerMemoryUpgrade 465
PerformRejectForeignDiskDrive 478
PerformResumeBrick 486
PerformResumeBrickFRU 487
PerformResumeSlammer 489, 492
PerformResumeSlammerFRU 490

modify 317, 381, 518, 529
modify requests
ModifyAccount 311
ModifyBrick 314
ModifyCIFSShare 315
ModifyExternalUPSDevice 319
ModifyFileServer 321
ModifyFileSystem 330
ModifyFileSystemSnapshot 340
ModifyHBAPort 342
ModifyJob 345
ModifyLUN 351
ModifyManagementConfig 360
ModifyMyAccount 367
ModifyNASConfig 368
ModifyNDMPConfig 369
ModifyNFSHostEntry 371
ModifyNotificationDefinition 373
ModifyQuota 375
ModifySANHost 377
ModifySlammer 380
ModifySNMPConfig 384
ModifyTimeConfig 386
ModifyVolumeGroup 389

perform request
PerformDownloadQuotaFile 419

perform requests
Login 309
Logout 310
PerformAssignCIFSLocalGroups 397
PerformAssociateInitiatorsToHost 398
PerformBackgroundFileSystemDuplication 400
PerformBackgroundLUNDuplication 402
PerformCancelTask 404
PerformCollectInstantaneousStatistics 406
PerformCollectSystemInformation 407
PerformConfigureLUNMapping 412
PerformCopybackBrickLUNs 415
PerformDisableSMIStartup 417
PerformEnableSMIStartup 421
PerformFailbackResources 422
PerformFileSystemCheck 423
PerformFileSystemDuplication 425
PerformJoinDomain 445
PerformLUNDuplication 447
PerformNISFileDownload 455
PerformNISFileUpload 456
PerformProtectedFileValidation 467
PerformPutFileSystemOffline 469
PerformPutFileSystemOnline 470
PerformRebuildBrickLUNs 472
PerformRemoveBrickFromConfiguration 480
PerformRemoveSlammerFromConfiguration 481
PerformResetSystem 482
PerformResetTapeRobotDevice 483
PerformRestart 484
PerformRestoreFileSystemFromSnapshot 485
PerformShutdown 495
PerformSlammerCommand 496
PerformSlammerControlUnitDiagnostic 503
PerformTapeRobotDiscovery 504
PerformTestCallHome 494, 505
PerformTestEmail 506
PerformUpdate 507
PerformUpdateDiskDrive 509
PerformUpdateDiskDriveValidation 510
PerformUpdateSystemSerialNumber 512
PerformUpdateValidation 513
PerformVerifyDataConsistency 515
PerformVerifyStorageRedundancy 516
Relogin 524
ReenableAllRAIDControllers 521
ReenableAllSlammers 522
ReenableCUBoot 523
restore requests
RestoreFileSystemFromCloneFS 526
RestoreLUNFromCloneLUN 527

request commands
see also commands
categorized by object type
administrator accounts 35
File Servers 33
filesystems 31, 32
hardware 36
NFS exports 31
quotas 33
schedules 35
time management 35
volume groups 33

requests
see also commands
see also request command
categorized by action type 38
create 39
delete 41
get all 42
get details 43
get hardware status 44
get performance statistics 44
Guided Maintenance 46
modify 40
perform 44
categorized by object type 31
administrator actions 37
CIFS shares 32
configuration 37
filesystem copies 34
filesystem duplicates 34
LUN copies 34
LUN duplicates 34
LUNs 34
modeler 31
NDMP 33
NIS-alternative files 33
routes 33
SAN 32
sessions 37
shut down and restart 37
Snap FSs 34
Snap LUNs 34
SNMP 32
software updates 37
statistics 38
system information 38
tape robot 38
tasks 36
tools 38
virtual interfaces 33
volume copies 33
DeleteSnapLUN 191
dependencies 30
display list 16
GetAllSnapLUNHierarchies 207, 232, 525
GetAllSnapLUNs 233
GetFCProtocolStatistics 251, 266
GetSnapLUNDetails 297
ModifySnapLUN 317, 381, 518, 529
prerequisites 30
requests categorized by object type
notifications and events
responses
output files 90
return status codes 530
routes
management requests 33
quantities (min/max) 58
run commands 21
S
sales
contact information 29
sample input and output files 16
SAN
management requests 32
SAN host data paths
quantities (max) 59
SAN host FC HBA ports
quantities (max) 60
SAN host software
quantities (max) 59
schedule
data replication 51
schedules
management requests 35
names
data-entry limits 60
scripts 21
design 22
wait and retry requests 24
write 23
service
perform Guided Maintenance 57
sessions
encapsulated 23
managed 23
management requests 37
maximum administrator 60
maximum NDMP 60
sessions, managed or encapsulated 23
set configuration variables
in a configuration file 20
with command line options 19
with environment variables 19
shut down and restart
management requests 37
size
filesystems (min/max) 58
maximum upload file 58
Slammer
batteries 495
Slammers
names
data-entry limits 60
Snap FS
management requests 34
names
data-entry limits 61
Snap LUN
defined
management requests 34
snapshots
data-entry limits 61
SNMP
configure 51
management requests 32
software
upgrade 56
software updates
management requests 37
spaces, recommended use of 27
startsession command 79
statistics
management requests 38
requests 44
submit command 82
supplemental files 16
input files 16
output files 16
xml files 16
support
perform requests 56
syntax
commands
convert 65
endsession 68
help 70
rawsend 72
request 75
startsession 79
submit 82
template 86
verify 88
create requests
CreateAccount 92
CreateCIFSShare 95
CreateExternalUPSDevice 99
CreateFileServer 97, 100
CreateFileSystem 110
CreateFileSystemSnapshot 122
CreateFileSystemSnapshotSchedule 124
CreateJob 127
CreateLUN 135
CreateNFSExport 144
CreateNFSHostEntry 148
CreateNotificationConnection 151
CreateNotificationDefinition 152
CreateQuota 154
CreateRoute 157
CreateSchedule 159
CreateSnapLUN 161
CreateVirtualInterface 164
CreateVolumeGroup 167
delete requests
DeleteAccount 169
DeleteAdministratorAction 170
DeleteCIFSShare 171
DeleteExternalUPSDevice 174
DeleteFileServer 175
DeleteFileSystem 176
DeleteFileSystemSnapshot 172, 177
DeleteFileSystemSnapshotSchedule 179
DeleteJob 181
DeleteLUN 182
DeleteNFSExport 183
DeleteNFSHostEntry 184
DeleteNotificationDefinition 185
DeleteQuota 186
DeleteRoute 188
DeleteSANHost 189, 417, 421
DeleteSchedule 190
DeleteSnapLUN 191
DeleteVirtualInterface 192
DeleteVolumeAndChildren 193
DeleteVolumeGroup 91, 195, 196
get requests
GetAccountDetails 198
GetAdministratorActionDetails 199, 405
GetAllAccounts 200
GetAllAdministratorActions 201
GetAllAvailableLUNNumbers 202
GetAllBackupRuns 203
GetAllBricks 204
GetAllCallHomeFileDetails 205, 243, 245
GetAllCIFSShares 206
GetAllEvents 210
GetAllExternalUPSDevices 212
GetAllFileServers 213
GetAllFileSystems 214
GetAllFileSystemSnapshots 208, 216
GetAllFileSystemSnapshotSchedules 218
GetAllJobs 220
GetAllLUNs 221
GetAllNFSExports 222
GetAllNotificationDefinitions 223
GetAllQuotas 224, 528
GetAllRoutes 226
GetAllSANHosts 227
GetAllSANProtocolStatistics 228
GetAllSchedules 229
GetAllSessions 230
GetAllSlammers 231
GetAllSnapLUNHierarchies 207, 232, 525
GetAllSnapLUNs 233
GetAllTapeRobots 234
GetAllTasks 235
GetAllUpdateComponents 236
GetAllUpdatePackages 237
GetAllVerifyOperations 238
GetAllVirtualInterfaces 239
GetAllVolumeGroups 240
GetBackupRunStatistics 241
GetBrickDetails 242
GetCIFSShareDetails 244
GetCurrentDateTimeDetails 247
GetCurrentTimeZoneDetails 248
GetDataConsistencyDetails 249
Guided Maintenance requests
PerformAcceptAddBrick 391
PerformAcceptAddSlammer 392
PerformAcceptForeignDiskDrive 393, 395
PerformIdentifyBrick 433
PerformIdentifyBrickFRU 435
PerformIdentifyPilot 437
PerformIdentifySlammer 438
PerformIdentifySlammerFRU 440
PerformIdentifySlammerIOPort 443
PerformPrepareReplaceBrickFRU 461
PerformPrepareReplaceSlammerFRU 463
PerformPrepareSlammerMemoryUpgrade 465
PerformRejectForeignDiskDrive 478
PerformResumeBrick 486
PerformResumeBrickFRU 487
PerformResumeSlammer 489, 492
PerformResumeSlammerFRU 490
ReenableAllSlammers 522
modify requests
ModifyAccount 311
ModifyBrick 314
ModifyCIFSShare 315
ModifyExternalUPSDevice 319
ModifyFileServer 321
ModifyFileSystem 330
ModifyFileSystemSnapshot 340
ModifyHBAPort 342
ModifyJob 345
ModifyLUN 351
ModifyManagementConfig 360
ModifyMyAccount 367
ModifyNASConfig 368
ModifyNDMPConfig 369
ModifyNFSPeerEntry 371
ModifyNotificationDefinition 373
ModifyQuota 375
ModifySANHost 377
ModifySlammer 380
ModifySnapLUN 317, 381, 518, 529
ModifySNMPConfig 384
ModifyTimeConfig 386
ModifyVolumeGroup 389
modify requests
ModifyiSCSIPortDetails 343
perform requests
Login 309
Logout 310
PerformAssociateInitiatorsToHost 397, 398
PerformBackgroundFileSystemDuplication 400
PerformBackgroundLUNDuplication 402
PerformCancelTask 404
PerformCollectInstantaneousStatistics 406
PerformCollectSystemInformation 407
PerformConfigureLUNMapping 412
PerformCopybackBrickLUN 317, 381, 518, 529
PerformDownloadCallHomeFile 418
PerformDownloadManualCallHome 420
PerformFailbackResources 422
PerformFileSystemCheck 423
PerformFileSystemDuplication 425
PerformJoinDomain 445
PerformLUNDuplication 447
PerformNISFileDownload 455
PerformNISFileUpload 456
PerformPeriodicCallHome 460
PerformPutFileSystemOffline 469
PerformPutFileSystemOnline 470
PerformRebuildBrickLUNs 472
PerformRebuildCloneFSRedundancy 473
PerformRebuildFileSystemRedundancy 474
PerformRebuildLUNRedundancy 475
PerformRebuildSnapLUNRedundancy 477
PerformResetSystem 482
PerformResetTapeRobotDevice 483
PerformRestart 480, 481, 484, 503
PerformRestoreFileSystemFromSnapshot 485
PerformShutdown 495
PerformSlammerCommand 496
PerformTapeRobotDiscovery 504
PerformTestCallHome 494, 505
PerformTestEmail 506
PerformUpdate 507, 509, 510
PerformUpdatePackageStaging 511
PerformUpdateSystemSerialNumber 512
PerformUpdateValidation 513
PerformVerifyDataConsistency 515
PerformVerifyStorageRedundancy 516
Relogin 524
restore requests
 RestoreFileSystemFromCloneFS 526
 RestoreLUNFromCloneLUN 527
system configuration
 management requests 37
system information
 management requests 38
T
tape robot
 management requests 38
tasks
 management requests 36
technical support 29
template command 86
template files, with descriptive comments 26
temporary configuration variable 17
temporary write files 17
time
 configure 50
time management
 management requests 35
timeout configuration variable 17
tools
 management requests 38
troubleshoot
 display environment variables 16
display supported commands 16
 list errors 16
 list requests 16
U
upgrade
 software 56
upload file size (max) 58
user password
 data-entry limits
 administrators 61
 CIFS administrators 62
 NDMP accounts 62
usernames
 data-entry limits
 administrators 61
 CIFS administrators 62
V
verify command 88
verify command mode
 commands
 verify 24
virtual interfaces
 quantities (min/max) 58
virtual network interfaces
 management requests 33
VLANs
 data-entry limits 63
 quantities 58
volume copies
 management requests 33
volume groups
 create 50
 manage 55
 management requests 33
 monitor 52
 names
 data-entry limits 60
 quantities (min/max) 58
W
warranty information 28
Windows executable files 16
write scripts 23
X
xml supplemental files 16