





61 Using ICommand

This chapter describes how to use the ICommand command-line utility to perform operations on items in the Active Data Cache, such as exporting, importing, and renaming. It also describes how to run ICommand from a remote system and execute the commands on a server located remotely.

This chapter includes the following sections:

	
Section 61.1, "Introduction to ICommand"


	
Section 61.2, "Executing ICommand"


	
Section 61.3, "Specifying the Command and Option Syntax"


	
Section 61.4, "Using Command-line-only Parameters"


	
Section 61.5, "Running ICommand Remotely"






61.1 Introduction to ICommand

ICommand is a command-line utility (and web service) that provides a set of commands that perform various operations on items in the Active Data Cache. You can use ICommand to export, import, rename, clear, and delete items from Active Data Cache. The commands can be contained in an input XML file, or a single command can be entered on the command line. Informational and error messages may be output to either the command window or to an XML file.

For more information about using the ICommand web service, see Section 59.5, "Using the ICommand Web Service."

For information about individual commands and their parameters see Appendix G, "Oracle BAM ICommand Operations and File Formats."






61.2 Executing ICommand

ICommand can be executed using the ORACLE_HOME\bam\bin\icommand.bat file on the Microsoft Windows platform and ORACLE_HOME\bam\bin\icommand.sh shell script on UNIX platforms.

Just entering icommand on the command line provides the user with a summary of the ICommand operations and parameters.

Before attempting to execute ICommand, the JAVA_HOME environment variable must be set to point to the root directory of the supported version of Java Development Kit (see the Oracle BAM support matrix on Oracle Technology Network web site for supported JDK versions).




	
Note:

When Oracle BAM is installed, ICommand looks for the Oracle BAM Server on port 9001 by default. If the Oracle BAM Server port number is changed from the default during the setup and configuration of Oracle BAM, then the user must manually change the port number from 9001 to the new port number in the file BAMICommandConfig.xml.

The property to change is

<ServerPort>9001</ServerPort>

The BAMICommandConfig.xml file is located in WLS_HOME/user_projects/domains/base_domain/config/fmwconfig/servers/bam_server1/applications/oracle-bam_11.1.1/config/.














61.3 Specifying the Command and Option Syntax

The basic structure of the ICommand command line entry is as follows:


icommand -username user_name -cmd command_name -name value -type value [-parameter value]


All parameters given on the command line are in the following form:


-parameter value


The parameter portion is not case sensitive. If the value portion contains spaces or other special characters, it must be enclosed in double quotation marks. For example


icommand -cmd export -name "/Samples/Call Center" -type dataobject 
 -file C:\CallCenter.xml


It is required to use quotation marks around report names and file names that contain spaces and other special characters.

For some parameters, the value may be omitted. See Section G.2, "Detailed Operation Descriptions," for information about individual parameter values.



61.3.1 How to Specify the Security Credentials

ICommand requires users to provide security credentials when running operations. If no security credentials have been specified in the configuration file, ICommand securely prompts for a user name and password.

To use default credentials, add the ICommand_Default_User_Name and ICommand_Default_Password properties to the WLS_HOME/user_projects/domains/base_domain/config/fmwconfig/servers/bam_server1/applications/oracle-bam_11.1.1/config/BAMICommandConfig.xml file. For example:


<ICommand_Default_User_Name>user_name</ICommand_Default_User_Name>
<ICommand_Default_Password>password</ICommand_Default_Password>


However, command line entries always override the properties specified in the configuration file.

The user name and password for running ICommand operations can come from the configuration file, command line prompts, or command line options as follows:

	
If the user name and password are only specified in the configuration file (that is, -username parameter is not used in the command line), then the ICommand_Default_User_Name and ICommand_Default_Password values in the configuration file are used.


	
If only the user name is specified in the configuration file and the password is not, then the user name value is used, and ICommand prompts the user for the password at the command line.


	
If user name is specified on the command line, then that value is used, and ICommand prompts the user for a password. The password prompt occurs regardless of any properties specified in the configuration file. For example:


icommand -cmd export -name TestDO -file C:\TestDO.xml -username user_name









61.3.2 How to Specify the Command

On the command line, commands are specified by the value of the cmd parameter. Options for the command are specified by additional parameters. For example


icommand -cmd export -name TestDO 
 -type dataobject -file C:\TestDO.xml


In an XML command file, commands are specified by the XML tag. Options for the command are given as XML attribute values of the command tag, in the form parametername=value.

Command names and parameter values (except for Active Data Cache item names) are not case sensitive.

For information about individual commands and their parameters see Appendix G, "Oracle BAM ICommand Operations and File Formats."






61.3.3 How to Specify Object Names

Whenever an object name is specified in a command, the following rules apply.


General rules

When specified on a command line, if the name contains spaces or characters that have special meaning to DOS or UNIX, the name must be quoted according to the rules for command lines.

When specified in an XML command file, if the name contains characters that have special meaning within XML, the standard XML escaping must be used.


Data Objects

If the Data Object is not at the root, the full path name must be given, as in the following example:


/MyFolder/MySubfolder/MyDataObject 


If the Data Object is at the root, the leading slash (/) is optional. The following two examples are equivalent:


/MyDataObject
MyDataObject



Data Object Folders

To specify a folder in Data Objects you must include the prefix /public/DataObject/ at the beginning of the path to the folder.


/public/DataObject/MyFolder/MySubfolder



Reports and Report Folders

The full path name plus the appropriate prefix must be specified as in the following examples.

For shared reports the /public/Report/ prefix must be included as shown here:


"/public/Report/Subfolder1/My Report"


For private reports the /private:user_name/Report/ prefix must be included:


"/private:jsmith/Report/Subfolder1/My Report"


The /private:user_name/ part of the prefix may be omitted if the user running ICommand is the user that owns the report.


"Report/Subfolder1/My Report"


The path information without the public or private prefix is saved in the export file.

Similarly, a report folder can be specified using the appropriate prefix.


/public/Report/Subfolder1

/private:jsmith/Report/Subfolder1



Alert Rules

Either the name of the Alert, or the full name of the Alert may be specified. The following two examples are equivalent for Alerts if the user running ICommand is the user that owns Alert1:


Alert1



/private:user_name/Rule/Alert1


If the user running ICommand is not the owner of Alert1, then only the second form may be used.


All other object types

Specify the full name of the object.






61.3.4 How to Specify Multiple Parameter Targets

Instead of creating a separate command line for each Active Data Cache object type, such as Dataobject, Folder, Report, and Rule, on which to execute a particular command, ICommand enables you to pass parameter values to several object types in the same command line.

For example:


icommand -cmd export -type all -report,rule,folder:owner 1
-dataobject,folder:permissions 1 -systemobjects 1 -file filename.xml


In this example, while exporting all of the objects in the system, the command passes owner = 1 to the report, rule, and folder Active Data Cache object types. The command also passes permissions = 1 to the dataobject and folder object types. The comma (,) separates the object types and the parameter is listed after a colon (:).

Supplying multiple values in the example single command line gives the same results as the following three commands:


icommand -cmd export -type report -owner 1 ...
icommand -cmd export -type rule -owner 1 ...
icommand -cmd export -type folder -owner 1 ...








61.4 Using Command-line-only Parameters

The following parameters can appear only on the command line:

	
Cmd


-cmd commandname


Optional parameter that specifies a single command to be executed. Any parameters needed for the command must also be on the command line.

The Cmdfile and cmd parameters are mutually exclusive. Exactly one of them must be present.


	
Cmdfile


-cmdfile file_name


Optional parameter that specifies the name of the file that contains commands to be processed. Because this is an XML file, it would usually have the XML extension, although that is not required.

The Cmdfile and cmd parameters are mutually exclusive. Exactly one of them must be present.


	
Debug


-debug flag


Optional parameter that indicates whether extra debugging information is to be output if there is an error. Any value other than 0 (zero), or the absence of any value, indicates that debugging information is to be output. If this parameter is not present, no debugging information is output.


	
Domain


-domain domain_name


Optional parameter that specifies the domain name to use to login to the Active Data Cache (the name of the computer on which the Active Data Cache server is running).

If this parameter is omitted, main is used, which means the server information is obtained from the ServerName property in the ICommand.exe.config file.

If the reserved value ADCInProcServer is used, then ICommand directly accesses the Active Data Cache database (which must be local on the same system on which ICommand is running) rather than contacting the Active Data Cache server. This option is necessary only when the Active Data Cache server is not running; otherwise corruption of the database could occur. The information about the location and structure of the Active Data Cache database is obtained from various keys in the ICommand.exe.config file.


	
Logfile


-logfile file_name


Optional parameter that specifies the name of the file to which results and errors are logged. If the file does not exist, it is created. If the file does exist, any contents are overwritten. Because this is an XML file, it would usually have the XML extension, although that is not required.

If this parameter is not present, results and errors are output to the console.

See Section G.4, "Format of Log File" for more information about the log file format.


	
Logmode


-logmode mode


Optional parameter that indicates whether an existing log file is to be overwritten or appended to. The possible values for this parameter are append or overwrite. In either case, if the log file does not exist it is created.

If this parameter is not present, overwrite is assumed.

Because it is XML that is being added to the log file, if the append option is used the XML produced may not be strictly legal, as there is no top level root tag in the XML produced by successive appends (ICommand appends the same tag each time it is run). It is left up to the user to handle this.


	
Username


-username user_name


Optional parameter that specifies the username that the command should run as. There is no password parameter.

ICommand requires users to specify security credentials when running commands. ICommand securely prompts for a user name and password. If the -username parameter is specified on the command line, ICommand prompts the user for the password only.









61.5 Running ICommand Remotely

You can run ICommand from a remote system (where Oracle BAM is installed) and execute the commands on a server located remotely. To run ICommand remotely, add the properties ServerName and ServerPort in WLS_HOME/user_projects/domains/base_domain/config/fmwconfig/servers/bam_server1/applications/oracle-bam_11.1.1/config/BAMICommandConfig.xml, as shown below.


<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<BAMICommand>
  <ServerName>host_name</ServerName>
  <ServerPort>7001</ServerPort>
  <Communication_Protocol>t3</Communication_Protocol>
  <SensorFactory>oracle.bam.common.statistics.noop.SensorFactoryImpl</SensorFactor
y>
  <GenericSatelliteChannelName>invm:topic/oracle.bam.messaging.systemobjectnotific
ation</GenericSatelliteChannelName>
</BAMICommand>


The Oracle BAM version installed on the remote system should be same as the Oracle BAM Server version (that is, both servers should be from the same label).









C Deployment Descriptor Properties

This appendix describes how to define deployment descriptor configuration and partner link properties for BPEL process service components used at runtime by Oracle WebLogic Server, Oracle Enterprise Manager, or both.

This appendix includes the following sections:

	
Section C.1, "Introduction to Deployment Descriptor Properties"


	
Section C.2, "Deprecated 10.1.3 Properties"




	
Note:

You cannot specify deployment descriptor properties at runtime.












For more information about deployment descriptor properties, see Chapter "Oracle BPEL Process Manager Performance Tuning" of Oracle Fusion Middleware Performance and Tuning Guide.



C.1 Introduction to Deployment Descriptor Properties

Deployment descriptors are BPEL process service component properties used at runtime by Oracle WebLogic Server, Oracle Enterprise Manager, or both. There are two types of properties:

	
Configuration


	
Partner link binding

Table C-1 lists the configuration deployment descriptor properties.

When you define configuration properties, you must add a prefix of bpel.config to the property name. For example, the property inMemoryOptimization must be defined as bpel.config.inMemoryOptimization. For information on defining properties in the Property Inspector in Oracle JDeveloper, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector."


Table C-1 Properties for the configurations Deployment Descriptors

	Property Name	Description
	
completionPersistPolicy

	
This property configures how the instance data is saved. It can only be set at the BPEL service component level. The following values are available:

	
on (default): The completed instance is saved normally.


	
deferred: The completed instance is saved, but with a different thread and in another transaction.


	
faulted: Only The faulted instances are saved.

Note: When an unhandled fault occurs, regardless of these flags, audit information for instances is persisted within the cube_instance table.


	
off: No instances of this process are saved.




For more information, see Section "completionPersistPolicy" of Oracle Fusion Middleware Performance and Tuning Guide.


	
disableAsserts

	
This property, when set to true, disables assertions in BPEL 1.1 projects.


	
globalTxMaxRetry

	
If using outbound adapters in an asynchronous BPEL process, specify the maximum number of retries for a remote fault.


	
globalTxRetryInterval

	
If using outbound adapters in an asynchronous BPEL process, specify the time interval in milliseconds between retries for a remote fault.


	
inMemoryOptimization

	
Default value is false. This property can only be set to true if it does not have dehydration points. Activities like wait, receive, onMessage, and onAlarm create dehydration points in the process. If this property is set to true, in-memory optimization is attempted on the instances of this process on to-spec queries.

For more information, see Section "inMemoryOptimization" of Oracle Fusion Middleware Performance and Tuning Guide.


	
keepGlobalVariables

	
Specify whether the server can keep global variable values in the instance store when the instance completes:

	
false (default): Global variable values are deleted when the instance completes.


	
true: Global variable values are not deleted.





	
oneWayDeliveryPolicy

	
This property sets the persistence policy of the process in the delivery layer. The possible values are:

	
async.persist: Messages into the system are saved in the delivery store before being picked up by the engine.


	
async.cache: Messages into the system are saved in memory before being picked up by the engine.


	
sync: The instance-initiating message is not temporarily saved in the delivery layer. The engine uses the save thread to initiate the message.




For information about setting this property during BPEL process creation, see Section 4.1.1, "How to Add a BPEL Process Service Component."

For more information, see Section "OneWayDeliveryPolicy" of Oracle Fusion Middleware Performance and Tuning Guide.


	
reenableAggregationOnComplete

	
This property controls the number of instances to create and use to route messages. The possible values are:

	
true: Creates a new instance to handle the messages of the same correlation.


	
false: Creates only one instance for handling messages.




For more information, see Section 9.2, "Routing Messages to the Same Instance."


	
sensorActionLocation

	
The location of the sensor action XML file. The sensor action XML file configures the action rule for the events.


	
sensorLocation

	
The location of the sensor XML file. The sensor XML file defines the list of sensors into which events are logged.


	
transaction

	
This property configures the transaction behavior of the BPEL instance for initiating calls.

	
requiresNew: A new transaction is created for the execution, and the existing transaction (if there is one) is suspended. This behavior is true for both request/response (initiating) environments and one-way, initiating environments in which bpel.config.oneWayDeliveryPolicy is set to sync.


	
required: In request/response (initiating) environments, this setting joins a caller's transaction (if there is one) or creates a new transaction (if there is no transaction). In one-way, initiating environments in which bpel.config.oneWayDeliveryPolicy is set to sync, the invoke message is processed using the same thread in the same transaction.




Note: This property does not apply for midprocess receive activities. In those cases, another thread in another transaction is used to process the message. This is because a correlation is needed and it is always done asynchronously.

For information about setting this property during BPEL process creation, see Section 4.1.1, "How to Add a BPEL Process Service Component."








Table C-2 lists the partner link binding deployment descriptor properties.

When you define partner link binding properties, you must add a prefix of bpel.partnerLink.partner_link_name to the property name. For example, the property nonBlockingInvoke must be defined as bpel.partnerLink.partner_link_name.nonBlockingInvoke. For information on defining properties in the Property Inspector in Oracle JDeveloper, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector."


Table C-2 Properties for the partnerLinkBinding Deployment Descriptors

	Property Name	Description
	
idempotent

	
An idempotent activity is an activity that can be retried (for example, an assign activity or an invoke activity). The instance is saved after a nonidempotent activity. This property is applicable to both durable and transient processes.

	
true (default): If the server fails, it performs the activity again after restarting. This is because the server does not dehydrate immediately after the invoke and no record exists that the activity executed.


	
false: Activity is dehydrated immediately after execution and recorded in the dehydration store. When idempotent is set to false, it provides better failover protection, but may impact performance if the BPEL process accesses the dehydration store frequently.




For more information, see Section "idempotent" of Oracle Fusion Middleware Performance and Tuning Guide.


	
nonBlockingInvoke

	
Default value is false. When this is set to true, a separate thread is spawned to do the invocation so that the invoke activity does not block the instance.

For more information, see Section 10.1.1, "What You May Need to Know About the Execution of Parallel Flow Branches in a Single Thread" and Section "nonBlockingInvoke" of Oracle Fusion Middleware Performance and Tuning Guide.


	
validateXML

	
Enables message boundary validation. When set to true, the XML message is validated against the XML schema during a receive activity and an invoke activity for this partner link. If the XML message is invalid, then a bpelx:invalidVariables runtime fault is thrown. This overrides the domain level validateXML property. The following example enables validation for only the StarLoanService partner:


<partnerLinkBinding name="StarLoanService"> 
<property name="wsdlLocation">
http://<hostname>:9700/orabpel/default/StarLoan/Sta
rLoan?wsdl</property> 
<property name="validateXML">true</property> 
</partnerLinkBinding>


For more information, see Section "validateXML" of Oracle Fusion Middleware Performance and Tuning Guide.












C.1.1 How to Define Deployment Descriptor Properties in the Property Inspector

You define configuration and partner link binding deployment descriptor properties and values in the Property Inspector of Oracle JDeveloper. When complete, the properties are displayed in the BPEL process service component section of the composite.xml file. 

	
In the SOA Composite Editor, select the BPEL process service component, as shown in Figure C-1.


Figure C-1 Selected BPEL Process Service Component

[image: Description of Figure C-1 follows]

Description of "Figure C-1 Selected BPEL Process Service Component"





	
Go to the Property Inspector in the lower right corner of Oracle JDeveloper. If the Property Inspector is not displayed, select Property Inspector from the View main menu.


	
In the Properties section, click the Add icon, as shown in Figure C-2.

For this example, the oneWayDeliveryPolicy property is already defined because the Delivery option was selected in the Create BPEL Process dialog during BPEL process creation. For more information about setting this property during BPEL process creation, see Section 4.1.1, "How to Add a BPEL Process Service Component."


Figure C-2 Property Inspector

[image: Description of Figure C-2 follows]

Description of "Figure C-2 Property Inspector"





The Create Property dialog is displayed.


	
In the Name field, enter the deployment descriptor property. For this example, the configuration deployment descriptor property inMemoryOptimization is defined. Therefore, a prefix of bpel.config is required. For more information about configuration deployment descriptor properties, see Table C-1.

If you instead add a partner link binding property, a prefix of bpel.partnerLink.partner_link_name is required, where partner_link_name is the name of the partner link (for example, LoanService). For more information about partner link binding deployment descriptor properties, see Table C-2.


	
In the Value field, enter an applicable value for this property (for example, true).

Figure C-3 shows the completed Create Property dialog.


Figure C-3 Create Property Dialog

[image: Description of Figure C-3 follows]

Description of "Figure C-3 Create Property Dialog"





	
Click OK.

The Property Inspector displays the added deployment descriptor property.


Figure C-4 Property Inspector with Deployment Descriptor Property

[image: Description of Figure C-4 follows]

Description of "Figure C-4 Property Inspector with Deployment Descriptor Property"





	
Click Source in the SOA Composite Editor.

The inMemoryOptimization configuration property with the bpel.config prefix is displayed in the composite.xml file, as shown in Example C-1.





Example C-1 Configuration Property Definition in composite.xml


<component name="LoanApproval" version="1.1">
    <implementation.bpel src="LoanApproval.bpel"/>
    <property name="bpel.config.oneWayDeliveryPolicy" type="xs:string"
              many="false">async.persist</property>
    <property name="bpel.config.inMemoryOptimization" type="xs:string"
              many="false" override="may">true</property>
  </component>




If you instead define a partner link binding deployment descriptor property in the Property Inspector (for example, the nonBlockingInvoke partner link binding property), it is displayed in the composite.xml file, as shown in Example C-2. Note the prefix of bpel.partnerLink.partner_link_name, which is required for this type of property. 


Example C-2 Partner Link Binding Property Definition in composite.xml


...
  <component name="myBPELServiceComponent">
 ....
  <property name="bpel.partnerLink.partner_link_name.
   nonBlockingInvoke">false</property>
</component>








C.1.2 How to Get the Value of a Preference within a BPEL Process

The value of a property can be read by a BPEL process using the XPath extension function ora:getPreference(myPref). This gets the value of bpel.preference.myPref.

This function can be used as part of a simple assign statement, used in condition expressions, or used as part of a more complex XPath expression.








C.2 Deprecated 10.1.3 Properties

Table C-3 lists deprecated properties that can no longer be used.


Table C-3 Deprecated Properties

	Property	Deployment Descriptor Type	Deprecated for Release...
	
completionPersistLevel

	
configurations

	
11g Release 1


	
defaultInput

	
configurations

	
11g Release 1


	
initializeVariables

	
configurations

	
11g Release 1


	
loadSchema

	
configurations

	
11g Release 1


	
noAlterWSDL

	
configurations

	
11g Release 1


	
optimizeVariableCopy

	
configurations

	
11g Release 1


	
relaxTypeChecking

	
configurations

	
11g Release 1


	
relaxXPathQName

	
configurations

	
11g Release 1


	
transaction

	
configurations

	
10.1.3.4


	
SLACompletionTime

	
configurations

	
11g Release 1


	
xpathValidation

	
configurations

	
11g Release 1


	
user

	
configurations

	
11g Release 1


	
pw

	
configurations

	
11g Release 1


	
role

	
configurations

	
11g Release 1


	
correlation

	
partnerLinkBinding

	
11g Release 1


	
contentType

	
partnerLinkBinding

	
10.1.3


	
retryInterval

	
partnerLinkBinding

	
Deprecated by the fault policy feature in 10.1.3.3


	
retryMaxCount

	
partnerLinkBinding

	
Deprecated by the fault policy feature in 10.1.3.3


	
wsdlLocation

	
partnerLinkBinding

	
11g Release 1


	
wsdlRuntimeLocation

	
partnerLinkBinding

	
11g Release 1


	
wsseHeaders

	
partnerLinkBinding

	
11g Release 1


	
wsseUsername

	
partnerLinkBinding

	
11g Release 1


	
wssePassword

	
partnerLinkBinding

	
11g Release 1


	
preferredPort

	
partnerLinkBinding

	
11g Release 1


	
fullWSAddressing

	
partnerLinkBinding

	
11g Release 1















47 Working with Domain Value Maps

This chapter describes how to create and use domain value maps to map the terms used by different domains to describe the same entity, allowing you to map values used by one domain for specific fields to the values used by other domains for the same fields. This chapter also describes the XPath functions used for domain value lookups.

This chapter includes the following sections:

	
Section 47.1, "Introduction to Domain Value Maps"


	
Section 47.2, "Creating Domain Value Maps"


	
Section 47.3, "Editing a Domain Value Map"


	
Section 47.4, "Using Domain Value Map Functions"


	
Section 47.5, "Creating a Domain Value Map Use Case for a Hierarchical Lookup"


	
Section 47.6, "Creating a Domain Value Map Use Case For Multiple Values"






47.1 Introduction to Domain Value Maps

When information is transmitted between different domains, each domain might use different terminology or processing codes to describe the same entity. For example, one domain might use complete city names in its messages (Boston), while another domain uses a code to indicate the city (BO). Rather than requiring each domain to standardize their data to one set of terminology, you can use domain value maps to map the terms used in one domain to the terms used in other domains. Domain value maps operate on the actual data values in the messages that are transmitted through an application at runtime.

While each domain value map typically defines the mapping for only one field or category, a single SOA composite can require mappings for multiple categories. Thus, one SOA composite might contain several domain value maps. For example, you might have one domain value map that defines city name mapping, one that defines state name mapping, and one that defines country name mapping.

A direct mapping of values between two or more domains is known as point-to-point mapping. Table 47-1 shows a point-to-point mapping for cities between two domains:


Table 47-1 Point-to-Point Mapping

	CityCode	CityName
	
BELG_MN_STLouis

	
BelgradeStLouis


	
BELG_NC

	
BelgradeNorthCarolina


	
BO

	
Boston


	
NP

	
Northport


	
KN_USA

	
KensingtonUSA


	
KN_CAN

	
KensingtonCanada








Domain value map values are static. You specify the domain value map values at design time using Oracle JDeveloper, and then at runtime the application performs a lookup for the values in the domain value maps. For information about editing domain value maps at runtime with Oracle SOA Composer, see Chapter 48, "Using Oracle SOA Composer with Domain Value Maps."




	
Note:

To dynamically integrate values between applications, you can use the cross referencing feature of Oracle SOA Suite. For information about cross references, see Chapter 49, "Working with Cross References."











47.1.1 Domain Value Map Features

Oracle SOA Suite domain value maps let you further refine the performance and results of the domain value map lookups that are performed at runtime. For example, you can specify qualifying information that provides additional information to assist with mapping. Domain value maps also support one-to-many mappings.



47.1.1.1  Qualifier Domains

Qualifier domains contain information solely to clarify the mapping. A mapping might be ambiguous unless this additional information is defined. For example, a domain value map that defines a city name mapping could have multiple mappings from KN to Kensington because Kensington is a city in both Canada and the USA. Therefore, this mapping requires a qualifier (USA or Canada) to indicate which mapping to use. An example of this is shown in Table 47-2.


Table 47-2 Qualifier Support Example

	Country (Qualifier)	CityCode	CityName
	
USA

	
BO

	
Boston


	
USA

	
BELG_NC

	
Belgrade


	
USA

	
BELG_MN_Streams

	
Belgrade


	
USA

	
NP

	
Northport


	
USA

	
KN

	
Kensington


	
Canada

	
KN

	
Kensington








A domain value map can contain multiple qualifier domains. For example, as shown in Table 47-3, the mappings are also qualified with a state name.


Table 47-3 Multiple Qualifier Support Example

	Country (Qualifier)	State (Qualifier)	CityCode	CityName
	
USA

	
Massachusetts

	
BO

	
Boston


	
USA

	
North Carolina

	
BELG

	
Belgrade


	
USA

	
Minnesota

	
BELG

	
Belgrade


	
USA

	
Alabama

	
NP

	
Northport


	
USA

	
Kansas

	
KN

	
Kensington


	
Canada

	
Prince Edward Island

	
KN

	
Kensington








Qualifiers are used only to qualify the mappings. Therefore, the qualifier values cannot be looked up.






47.1.1.2 Qualifier Hierarchies

When there are multiple qualifier domains, you can specify a qualifier order to indicate how they are used during runtime lookups. The order of a qualifier varies from highest to lowest depending on the role of the qualifier in defining a more exact match. In Table 47-3, the state qualifier would probably be given a higher order than the country qualifier because a matching state indicates a more precise match.

Domain value maps support hierarchical lookup. If you specify a qualifier value during a lookup and no exact match is found, then the lookup mechanism tries to find a more generalized match by setting the higher order qualifiers to empty quotes (""). It proceeds until a match is found, or until a the lookup is exhausted and no match is found. Figure 47-1 describes the steps of a hierarchical lookup performed for the following lookup (based on the values in Table 47-3):


State=Arkansas, Country=Canada, CityCode=KN_USA


In this example, the State qualifier has a qualifier order of 1 and the Country qualifier has a qualifier order of 2. As shown in Figure 47-1, the lookup mechanism sets the higher order qualifier State to the exact lookup value Arkansas and uses Canada|"" for the lower order qualifier Country.


Figure 47-1 Hierarchical Lookup Example

[image: Description of Figure 47-1 follows]

Description of "Figure 47-1 Hierarchical Lookup Example"





If no match is found, the lookup mechanism sets the higher order qualifier State to a value of "" and sets the next higher qualifier Country to an exact value of Canada. If no match is found, the lookup mechanism sets the value of the previous higher order qualifier Country to a value of "". One matching row is found where CityCode is KN_USA and Kensington is returned as a value.

Table 47-4 provides a summary of these steps.


Table 47-4 Domain Value Map Lookup Result

	State	Country	Short Value	Lookup Result
	
Arkansas

	
CANADA|" "

	
KN_USA

	
No Match


	
" "

	
CANADA

	
KN_USA

	
No Match


	
" "

	
" "

	
KN_USA

	
Kensington












47.1.1.3 One-to-Many Mappings

One value can be mapped to multiple values in a domain value map. For example, a domain value map for payment terms can contain a mapping of payment terms to multiple values, such as discount percentage, discount period, and net credit period, as shown in Table 47-5.


Table 47-5 One-to-Many Mapping Support

	Payment Term	Discount Percentage	Discount Period	Net Credit Period
	
GoldCustomerPaymentTerm

	
10

	
20

	
30


	
SilverCustomerPaymentTerm

	
5

	
20

	
30


	
RegularPaymentTerm

	
2

	
20

	
30
















47.2 Creating Domain Value Maps

You can create one or more domain value maps in a SOA composite application in Oracle JDeveloper, and then use the maps to look up the mapped values at runtime. Creating a domain value map creates a file with a .dvm extension in the application file structure.



47.2.1 How to Create Domain Value Maps

Create and configure domain value maps using the Create Domain Value Map(DVM) File dialog in Oracle JDeveloper. This dialog lets you define two domains, each with one value. Upon completion, the Domain Value Map Editor appears so you can define additional domains and corresponding values.


To create a domain value map:

	
In the Application Navigator, right-click the project in which you want to create a domain value map and select New.

The New Gallery dialog appears.


	
Expand the SOA Tier node, and then select the Transformations category.


	
In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog appears.


	
In the File Name field, enter a unique and descriptive name for the domain value map file. The file name must have an extension of .dvm.


	
In the Description field, enter a description for the domain value map. This field is optional.


	
In the Domain Name field, enter a name for each domain. These names are the column names for the domain value map, and each represents a fields in a different domain.




	
Note:

Each domain name must be unique in a domain value map. You can add more domains later.










	
In the Domain Value field, enter a value corresponding to each domain. For example, enter BO for a CityCode domain and Boston for a CityName domain, as shown in Figure 47-2.


Figure 47-2 Populated Create Domain Value Map File Dialog

[image: Description of Figure 47-2 follows]

Description of "Figure 47-2 Populated Create Domain Value Map File Dialog"





	
Click OK.

The Domain Value Map Editor appears with the new domain value map displayed.









47.2.2 What Happens When You Create a Domain Value Map

A file with the extension .dvm is created in the project file structure and appears in the Application Navigator, as shown in Figure 47-3.


Figure 47-3 A Domain Value Map File in Application Navigator

[image: Description of Figure 47-3 follows]

Description of "Figure 47-3 A Domain Value Map File in Application Navigator"





All .dvm files are based on the schema definition (XSD) file shown in Example 47-1.


Example 47-1 XSD File for Domain Value Map Files


<?xml version="1.0" encoding="UTF-8" ?>
<!-- Copyright (c) 2006, Oracle. All rights reserved.  -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
                  targetNamespace="http://xmlns.oracle.com/dvm"
                  xmlns:tns="http://xmlns.oracle.com/dvm"
                  elementFormDefault="qualified"
                  attributeFormDefault="unqualified">

<xsd:element name="dvm">
    <xsd:annotation>
      <xsd:documentation>The Top Level Element
      </xsd:documentation>
    </xsd:annotation>
    <xsd:complexType>
      <xsd:sequence>
        <xsd:element name="description" minOccurs="0" type="xsd:string">
          <xsd:annotation>
            <xsd:documentation>The DVM Description.  This is optional
            </xsd:documentation>
          </xsd:annotation>
        </xsd:element>
        <xsd:element name="columns">
          <xsd:annotation>
            <xsd:documentation>This element holds DVM's column List.
            </xsd:documentation>
          </xsd:annotation>
          <xsd:complexType>
            <xsd:sequence>
              <xsd:element name="column" minOccurs="2" maxOccurs="unbounded">
                <xsd:annotation>
                  <xsd:documentation>This represents a DVM Column
                  </xsd:documentation>
                </xsd:annotation>
                <xsd:complexType>
                  <xsd:attribute name="name" use="required" type="xsd:string"/>
                  <xsd:attribute name="qualifier" default="false" type="xsd:boolean"
 use="optional"/>
                  <xsd:attribute name="order" use="optional" type="xsd:positiveInteger"/>
                </xsd:complexType>
              </xsd:element>
            </xsd:sequence>
          </xsd:complexType>
        </xsd:element>
        <xsd:element name="rows" minOccurs="0">
          <xsd:annotation>
            <xsd:documentation>This represents all the DVM Rows.
            </xsd:documentation>
          </xsd:annotation>
          <xsd:complexType>
            <xsd:sequence>
              <xsd:element name="row" minOccurs="1" maxOccurs="unbounded">
                <xsd:annotation>
                  <xsd:documentation>
                    Each DVM row of values
                  </xsd:documentation>
                </xsd:annotation>
                <xsd:complexType>
                  <xsd:sequence>
                    <xsd:element name="cell" minOccurs="2" maxOccurs="unbounded" 
                       type="xsd:string">
                      <xsd:annotation>
                        <xsd:documentation>This is the value for this row and for
 each column in the same order as defined in Columns.
                        </xsd:documentation>
                      </xsd:annotation>
                    </xsd:element>
                  </xsd:sequence>
                </xsd:complexType>
              </xsd:element>
            </xsd:sequence>
          </xsd:complexType>
        </xsd:element>
      </xsd:sequence>
      <xsd:attribute name="name" use="required" type="xsd:string"/>
    </xsd:complexType>
  </xsd:element>
  <xsd:annotation>
    <xsd:documentation>This Schema is used to validate the DVM Document got for
 creation and
 update of a DVM.
    </xsd:documentation>
  </xsd:annotation>
</xsd:schema>










47.3 Editing a Domain Value Map

After you create the framework for a domain value map, you can add domains and corresponding domain values to the map using the Domain Value Map Editor.



47.3.1 How to Add Domains to a Domain Value Map

You can define additional domains to map, which are represented as columns in the domain value map. You can also specify whether each new domain contains values to be included in the lookups at runtime or if it is only used to qualify the mapping.


To add a domain to a domain value map:

	
If the map file is not open in the Domain Value Map Editor, double-click the DVM file in the Application Navigator.


	
In the Map Table, click Add and then select Add Domain.

The Create Domain dialog appears.


	
In the Name field, enter a column name.


	
In the Qualifier field, select True to set this column as a qualifier. Otherwise, select False.




	
Tip:

For more information about qualifier domains and qualifier order, see Section 47.1.1.1, "Qualifier Domains" and Section 47.1.1.2, "Qualifier Hierarchies.".










	
In the Qualifier Order field, enter a number indicating the priority of the qualifier domain.

This field is enabled only if you selected True in the Qualifier field.


Figure 47-4 Domain Value Map - Create Domain Dialog

[image: Description of Figure 47-4 follows]

Description of "Figure 47-4 Domain Value Map - Create Domain Dialog"





	
Click OK.

A new column appears in the Map Table.








47.3.2 How to Edit a Domain

Once you add a domain to a domain value map, you can change the name, change whether it is a qualifier domain, and change the qualifier order.


To edit a domain

	
In the Domain Value Map Editor, select the name of the domain you want to modify.


	
Click Edit Domain/Values.

The Edit Domain dialog appears.


Figure 47-5 Domain Value Map - Edit Domain Dialog

[image: Description of Figure 47-5 follows]

Description of "Figure 47-5 Domain Value Map - Edit Domain Dialog"





	
Change any of the fields on the dialog, and then click OK.









47.3.3 How to Add Domain Values to a Domain Value Map

Domain values are displayed in rows in the domain value map, with each row containing the values to be mapped for each domain. You can add as many domain values as required to fully define the mapping between domains.


To add domain values to a domain value map:

	
In the Domain Value Map Editor, click Add and then select Add Domain Values.

A new row appears beneath the existing rows in the Map Table.


	
Enter the values for each domain in the new row.


	
Repeat the above steps to create additional rows. When you are done making changes, click Save All on the Oracle JDeveloper toolbar.








47.3.4 How to Edit Domain Values

Once you add domain values to a domain value map, you can modify the values if needed.


To modify domain values

	
In the Domain Value Map Editor, select the row containing the values you want to modify.


	
Click Edit Domain/Values.

The Edit Domain Values dialog appears.


Figure 47-6 Domain Value Map - Edit Domain Values

[image: Description of Figure 47-6 follows]

Description of "Figure 47-6 Domain Value Map - Edit Domain Values"





	
Modify any of the fields on the dialog, and then click OK.











47.4 Using Domain Value Map Functions

After creating a domain value map, you can use the XPath functions of the domain value map to look up appropriate values and populate the targets for the applications at runtime.



47.4.1 Understanding Domain Value Map Functions

The dvm:lookupValue and dvm:lookupValue1M XPath functions look up a domain value map for a single value or multiple values at runtime.



47.4.1.1 dvm:lookupValue

The dvm:lookupValue function returns a string by looking up the value for the target column in a domain value map, where the source column contains the given source value.

	
Example 47-2 shows an example of dvm:lookupValue function syntax.


Example 47-2 dvm:lookupValue Function Syntax


dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string, TargetColumnName as string, DefaultValue as string) as
 string




Example 47-3 provides an example of dvm:lookupValue function use.


Example 47-3 dvm:lookupValue Function Use


dvm:lookupValue('cityMap.dvm','CityCodes','BO', 'CityNames',
'CouldNotBeFound')




	
Example 47-4 shows another example of dvm:lookupValue function syntax.


Example 47-4 dvm:lookupValue Function Syntax


dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,
SourceValue as string, TargetColumnName as string, DefaultValue as string,
(QualifierSourceColumn as string, QualifierSourceValue as string)*) as string




Example 47-5 provides another example of dvm:lookupValue function use.


Example 47-5 dvm:lookupValue Function Use


dvm:lookupValue ('cityMap.dvm','CityCodes','BO','CityNames',
 'CouldNotBeFound', 'State', 'Massachusetts')







Arguments 

	
dvmMetadataURI - The domain value map URI.


	
SourceColumnName - The source column name.


	
SourceValue - The source value (an XPath expression bound to the source document of the XSLT transformation).


	
TargetColumnName - The target column name.


	
DefaultValue - If the value is not found, then the default value is returned.


	
QualifierSourceColumn: The name of the qualifier column.


	
QualifierSourceValue: The value of the qualifier.









47.4.1.2 dvm:lookupValue1M

The dvm:lookupValue1M function returns an XML document fragment containing values for multiple target columns of a domain value map, where the value for the source column is equal to the source value. Example 47-6 provides details.


Example 47-6 dvm:lookupValue1M Function Syntax


dvm:lookupValue1M(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string,(TargetColumnName as string)?)as nodeset 





Arguments 

	
dvmMetadataURI - The domain value map URI.


	
SourceColumnName - The source column name.


	
SourceValue - The source value (an XPath expression bound to the source document of the XSLT transformation).


	
TargetColumnName - The name of the target columns. At least one column name should be specified. The question mark symbol (?) indicates that you can specify multiple target column names.




Example 47-7 shows an example of dvm:lookupValue1M function use.


Example 47-7 dvm:lookupValue1M Function Use


dvm:lookupValue1M ('cityMap.dvm','CityCode','BO','CityName',
'CityNickName')




The result is shown in Example 47-8.


Example 47-8 dvm:lookupValue1M Function Result


<CityName>Boston</CityName>
<CityNickName>BeanTown</CityNickName>










47.4.2 How to Use Domain Value Map Functions in Transformations

The domain value map functions can be used for transformations with a BPEL process service component or a Mediator service component. Transformations are performed by using the XSLT Mapper, which appears when you create an XSL file to transform the data from one XML schema to another.

For information about the XSLT Mapper, see Chapter 40, "Creating Transformations with the XSLT Mapper."


To use the lookupValue1M function in a transformation:

	
In the Application Navigator, double-click an XSL file to open the XSLT Mapper.


	
In the XSLT Mapper, expand the trees in the Source and Target panes.


	
In the Component Palette, click the down arrow, and then select Advanced.


	
Select DVM Functions, as shown in Figure 47-7.


Figure 47-7 Domain Value Map Functions in the Component Palette

[image: Description of Figure 47-7 follows]

Description of "Figure 47-7 Domain Value Map Functions in the Component Palette"





	
Drag and drop lookupValue1M onto the line that connects the source to the target.

A dvm:lookupValue1M icon appears on the connecting line.


	
Double-click the lookupValue1M icon.

The Edit Function – lookupValue1M dialog appears, as shown in Figure 47-8.


Figure 47-8 Edit Function – lookupValue1M Dialog

[image: Description of Figure 47-8 follows]

Description of "Figure 47-8 Edit Function – lookupValue1M Dialog"





	
Specify values for the following fields in the Edit Function – lookupValue1M dialog:

	
In the dvmLocation field, enter the location URI of the domain value map file or click Browse to the right of the dvmLocation field to select a domain value map file. You can select an already deployed domain value map from the metadata service (MDS) and also from the shared location in MDS. This can be done by selecting the Resource Palette.


	
In the sourceColumnName field, enter the name of the domain value map column that is associated with the source element value, or click Browse to select a column name from the columns defined for the domain value map you previously selected.


	
In the sourceValue field, enter a value or press Ctrl-Space to use the XPath Building Assistant. Press the up and down arrow keys to locate an object in the list, and press Enter to select an item.


	
In the targetColumnName field, enter the name of the domain value map column that is associated with the target element value, or click Browse to select the name from the columns defined for the domain value map you previously selected.


	
Click Add to add another column as the target column and then enter the name of the column.




A populated Edit Function - lookupValue1M dialog is shown in Figure 47-9.


Figure 47-9 Populated Edit Function – lookupValue1M Dialog

[image: Description of Figure 47-9 follows]

Description of "Figure 47-9 Populated Edit Function – lookupValue1M Dialog"





	
Click OK.

The XSLT Mapper appears with the lookupValue1M function icon.


	
From the File menu, select Save All.




For more information about selecting deployed domain value maps, see Section 43.7.3, "Deploying and Using Shared Metadata Across SOA Composite Applications in Oracle JDeveloper."






47.4.3 How to Use Domain Value Map Functions in XPath Expressions

You can use the domain value map functions to create XPath expressions in the Expression Builder dialog. You can access the Expression Builder dialog through the Filter Expressions or the Assign Values functionality of an Oracle Mediator service component.

For information about the Assign Values functionality, see Section 20.3.2.10, "How to Assign Values."


To use the lookupValue function in the Expression Builder dialog:

	
In the Functions list, select DVM Functions.


	
Double-click the dvm:lookupValue function to add it to the expression field.


	
Specify the various arguments of the lookupValue function. For example:


dvm:lookupValue('citymap.dvm','CityCodes',$in.Customer/inp1:Customer/Address/Ci
ty,'CityNames','NotFound')


This expression, also shown in Figure 47-10, looks up a domain value map for the city name equivalent of a city code. The value of the city code depends on the value specified at runtime.





Figure 47-10 Domain Value Map Functions in the Expression Builder Dialog

[image: Description of Figure 47-10 follows]

Description of "Figure 47-10 Domain Value Map Functions in the Expression Builder Dialog"









47.4.4 What Happens at Runtime

At runtime, a BPEL process service component or a Mediator service component uses the domain value map to look up appropriate values.








47.5 Creating a Domain Value Map Use Case for a Hierarchical Lookup

This section provides a tutorial for using domain value maps in a SOA composite. This use case demonstrates the hierarchical lookup feature of domain value maps. The hierarchical lookup use case consists of the following steps:

	
Files are retrieved from a directory by an adapter service named ReadOrders.


	
The ReadOrders adapter service sends the file data to a Mediator named ProcessOrders.


	
The ProcessOrders Mediator then transforms the message to the structure required by the adapter reference. During transformation, Mediator looks up the UnitsOfMeasure domain value map for an equivalent value of the Common domain.


	
The ProcessOrders Mediator sends the message to an external reference named WriteOrders.


	
The WriteOrders reference writes the message to a specified output directory.




To download the sample files mentioned in this section, see the Oracle SOA Suite samples page.



47.5.1 How to Create the HierarchicalValue Use Case

This section provides the design-time tasks for creating, building, and deploying your SOA composite application. These tasks must be performed in the order in which they are presented.



47.5.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project


To create an Oracle JDeveloper application and a project:

	
In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.


	
In the New Gallery, expand the General node, and select the Applications category.


	
In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.


	
In the Application Name field, enter Hierarchical and then click Next.

The Name your project page appears.


	
In the Project Name field, enter HierarchicalValue and click Next.

The Configure SOA settings page appears.


	
In the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is populated with the new application and the project, and the SOA Composite Editor contains a blank composite.


	
From the File menu, select Save All.









47.5.1.2 Task 2: How to Create a Domain Value Map

After creating an application and a project for the use case, create a domain value map.


To create a domain value map: 

	
In the Application Navigator, right-click the HierarchicalValue project and select New.


	
In the New Gallery dialog, expand the SOA Tier node, and then select the Transformations category.


	
In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog appears.


	
In the File Name field, enter UnitsOfMeasure.dvm.


	
In the Domain Name fields, enter Siebel and Common.


	
In the Domain Value field corresponding to the Siebel domain, enter Ea.


	
In the Domain Value field corresponding to the Common domain, enter Each.


	
Click OK.

The Domain Value Map Editor appears.


	
Click Add and then select Add Column.

The Create DVM Column dialog appears.


	
In the Name field, enter TradingPartner.


	
In the Qualifier list, select true.


	
In the QualifierOrder field, enter 1 and click OK.


	
Repeat Step 9 through Step 12 to create another qualifier named StandardCode with a qualifier order value of 2.


	
Click Add and then select Add Domain Values.

Repeat this step to add two more rows.


	
Enter the information shown in Table 47-6 in the newly added rows of the domain value map table.


Table 47-6 Information for Rows of Domain Value Map Table

	Siebel	Common	TradingPartner	StandardCode
	
EC

	
Each

	
	
OAG


	
E-RN

	
Each

	
A.C.Networks

	
RN


	
EO

	
Each

	
ABC Inc

	
RN








The Domain Value Map Editor appears, as shown in Figure 47-11.


Figure 47-11 UnitsOfMeasure Domain Value Map

[image: Description of Figure 47-11 follows]

Description of "Figure 47-11 UnitsOfMeasure Domain Value Map"





	
From the File menu, select Save All and close the Domain Value Map Editor.









47.5.1.3 Task 3: How to Create a File Adapter Service

After creating the domain value map, create a file adapter service named ReadOrders to read the XML files from a directory.




	
Note:

Oracle Mediator may process the same file twice when run against Oracle Real Application Clusters (Oracle RAC) planned outages. This is because a file adapter is a non-XA compliant adapter. Therefore, when it participates in a global transaction, it may not follow the XA interface specification of processing each file only once.










To create a file adapter service: 

	
From the Component Palette, select SOA.


	
Select File Adapter and drag it to the Exposed Services swimlane.


	
If the Adapter Configuration wizard Welcome page appears, click Next.

The Service Name page appears.


	
In the Service Name field, enter ReadOrders and then click Next.

The Operation page appears.


	
In the Operation Type field, select Read File and then click Next.

The File Directories page appears.


	
In the Directory for Incoming Files (physical path) field, enter the directory from which you want to read the files.


	
Click Next.

The File Filtering page appears.


	
In the Include Files with Name Pattern field, enter *.xml and then click Next.

The File Polling page appears.


	
Change the Polling Frequency field value to 10 seconds and then click Next.

The Messages page appears.


	
Click Search.

The Type Chooser dialog appears.


	
Click Import Schema File.

The Import Schema File dialog appears.


	
Click Search and select the Order.xsd file in the Samples folder.


	
Click OK.


	
Expand the navigation tree to Type Explorer > Imported Schemas > Order.xsd.


	
Select listOfOrder and click OK.


	
Click Next.

The Finish page appears.


	
Click Finish.


	
From the File menu, click Save All.

Figure 47-12 shows the ReadOrders service in the SOA Composite Editor.


Figure 47-12 ReadOrders Service in the SOA Composite Editor

[image: Description of Figure 47-12 follows]

Description of "Figure 47-12 ReadOrders Service in the SOA Composite Editor"












47.5.1.4 Task 4: How to Create ProcessOrders Mediator Component


To create a Mediator named ProcessOrders: 

	
Drag and drop a Mediator icon from the Component Palette to the Components section of the SOA Composite Editor.

The Create Mediator dialog appears.


	
In the Name field, enter ProcessOrders.


	
From the Template list, select Define Interface Later.


	
Click OK.

A Mediator with name ProcessOrders is created.


	
In the SOA Composite Editor, connect the ReadOrders service to the ProcessOrders Oracle Mediator, as shown in Figure 47-13.

This specifies the file adapter service to invoke the ProcessOrders Mediator while reading a file from the input directory.


Figure 47-13 ReadOrders Service Connected to the ProcessOrders Mediator

[image: Description of Figure 47-13 follows]

Description of "Figure 47-13 ReadOrders Service Connected to the ProcessOrders Mediator"





	
From the File menu, select Save All.









47.5.1.5 Task 5: How to Create a File Adapter Reference


To create a file adapter reference: 

	
From the Component Palette, select SOA.


	
Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page appears.


	
Click Next.

The Service Name page appears.


	
In the Service Name field, enter WriteCommonOrder.


	
Click Next.

The Operation page appears.


	
In the Operation Type field, select Write File.


	
Click Next.

The File Configuration page appears.


	
In the Directory for Outgoing Files (physical path) field, enter the name of the directory in which you want to write the files.


	
In the File Naming Convention field, enter common_order_%SEQ%.xml and click Next.

The Messages page appears.


	
Click Search.

The Type Chooser dialog appears.


	
Navigate to Type Explorer > Project Schema Files > Order.xsd, and then select listOfOrder.


	
Click OK.


	
Click Next.

The Finish page appears.


	
Click Finish.

Figure 47-14 shows the WriteCommonOrder reference in the SOA Composite Editor.


Figure 47-14 WriteCommonOrder Reference in the SOA Composite Editor

[image: Description of Figure 47-14 follows]

Description of "Figure 47-14 WriteCommonOrder Reference in the SOA Composite Editor"





	
From the File menu, select Save All.









47.5.1.6 Task 6: How to Specify Routing Rules

You must specify the path that messages take from the ReadOrders adapter service to the external reference.


To specify routing rules: 

	
Connect the ProcessOrders Oracle Mediator to the WriteCommonOrder reference, as shown in Figure 47-15.


Figure 47-15 ProcessOrders Mediator Connected to the WriteCommonOrder Reference

[image: Description of Figure 47-15 follows]

Description of "Figure 47-15 ProcessOrders Mediator Connected to the WriteCommonOrder Reference"





	
Double-click the ProcessOrders Oracle Mediator.


	
To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog appears.


	
Select Create New Mapper File and click OK.

A listOfOrder_To_listOfOrder.xsl file appears in the XSLT Mapper.


	
Drag and drop the imp1:listOfOrder source element onto the imp1:listOfOrder target element.

The Auto Map Preferences dialog appears.


	
From the During Auto Map options, deselect Match Elements Considering their Ancestor Names.


	
Click OK.

The listOfOrder_To_listOfOrder.xsl file appears, as shown in Figure 47-16.


Figure 47-16 imp1:listOfOrder To imp1:listOfOrder Transformation

[image: Description of Figure 47-16 follows]

Description of "Figure 47-16 imp1:listOfOrder To imp1:listOfOrder Transformation"





	
In the Component Palette, select Advanced.


	
Click DVM Functions.


	
Drag and drop lookupValue on the line connecting the unitsOfMeasure elements, as shown in Figure 47-17.


Figure 47-17 Adding lookupValue Function to imp1:listOfOrder To imp1:listOfOrder.xsl

[image: Description of Figure 47-17 follows]

Description of "Figure 47-17 Adding lookupValue Function to imp1:listOfOrder To imp1:listOfOrder.xsl"





	
Double-click the lookupvalue icon.

The Edit Function-lookupValue dialog appears.


	
To the right of the dvmLocation field, click Search.

The SOA Resource Lookup dialog appears.


	
Select UnitsofMeasure.dvm and click OK.


	
To the right of the sourceColumnName field, click Search.

The Select DVM Column dialog appears.


	
Select Siebel and click OK.


	
In the sourceValue column, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:unitOfMeasure


	
To the right of the targetColumnName field, click Search.

The Select DVM Column dialog appears.


	
Select Common and click OK.


	
In the defaultValue field, enter "No_Value_Found".


	
Click Add.

A qualifierColumnName row is added.


	
In the qualifierColumnName field, enter "StandardCode".


	
Click Add.

A qualifierValue row is added.


	
In the qualifierValue field, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:standard.


	
Click Add to insert another qualifierColumnName row.


	
In the qualifierColumnName field, enter "TradingPartner".


	
Click Add to insert another qualifierValue row.


	
In the qualifierValue field, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:tp.

The Edit Function-lookupValue dialog appears, as shown in Figure 47-18.


Figure 47-18 Edit Function-lookupValue Function Dialog: Hierarchical Lookup Use Case

[image: Description of Figure 47-18 follows]

Description of "Figure 47-18 Edit Function-lookupValue Function Dialog: Hierarchical Lookup Use Case"





	
Click OK.

The transformation appears, as shown in Figure 47-19.


Figure 47-19 Complete imp1:listOfOrder To imp1:listOfOrder Transformation

[image: Description of Figure 47-19 follows]

Description of "Figure 47-19 Complete imp1:listOfOrder To imp1:listOfOrder Transformation"





	
From the File menu, select Save All and close the listOfOrder_To_listOfOrder.xsl file at the top.









47.5.1.7 Task 7: How to Configure an Application Server Connection

An application server connection is required for deploying your SOA composite application. For information on creating an application server connection, see Section 43.7.1.1.1, "Creating an Application Server Connection."






47.5.1.8 Task 8: How to Deploy the Composite Application

Deploying the HierarchicalValue composite application to an application server consists of the following steps:

	
Creating an application deployment profile.


	
Deploying the application to the application server.




For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."








47.5.2 How to Run and Monitor the HierarchicalValue Application

After deploying the HierarchicalValue application, you can run it by copying the input XML file sampleorder.xml to the input folder. This file is available in the samples folder. On successful completion, a file named common_order_1.xml is written to the specified output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion Middleware Control at the following URL:


http://hostname:port/em


where hostname is the host on which you installed the Oracle SOA Suite infrastructure.

For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."








47.6 Creating a Domain Value Map Use Case For Multiple Values

This section provides a tutorial demonstrating how to create a domain value map with multiple values to look up. This use case demonstrates the integration scenario for using a domain value map lookup between two endpoints to look up multiple values. For example, if the inbound value is State, then the outbound values are Shortname of State, Language, and Capital. The multivalue lookup use case consists of the following steps:

	
Files are retrieved from a directory by an adapter service named readFile.


	
The readFile adapter service sends the file data to an Oracle Mediator named LookupMultiplevaluesMediator.


	
The LookupMultiplevaluesMediator Oracle Mediator then transforms the message to the structure required by the adapter reference. During transformation, Oracle Mediator looks up the multivalue domain value map for an equivalent value of the Longname and Shortname domains.


	
The LookupMultiplevaluesMediator Oracle Mediator sends the message to an external reference named writeFile.


	
The writeFile reference writes the message to a specified output directory.




To download the sample files mentioned in this section, see Oracle SOA Suite samples page.



47.6.1 How to Create the Multivalue Use Case

This section provides the design-time tasks for creating, building, and deploying your SOA composite application. Perform these tasks in the order in which they are presented.



47.6.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project


To create an Oracle JDeveloper application and project: 

	
In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.


	
In the New Gallery, expand the General node, and select the Applications category.


	
In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.


	
In the Application Name field, enter Multivalue and then click Next.

The Name your project page appears.


	
In the Project Name field, enter Multivalue and click Next.

The Configure SOA settings page appears.


	
From the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is populated with the new application and project, and the SOA Composite Editor contains a blank composite.


	
From the File menu, select Save All.









47.6.1.2 Task 2: How to Create a Domain Value Map

After creating an application and a project for the use case, create the domain value map.


To create a domain value map: 

	
In the Application Navigator, right-click the Multivalue project and select New.


	
In the New Gallery dialog, expand the SOA Tier node, and then select the Transformations category.


	
In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog appears.


	
In the File Name field, enter multivalue.dvm.


	
In the Domain Name fields, enter Longname, Shortname, Language, and Capital.


	
In the Domain Value field corresponding to the Longname domain, enter Karnataka.


	
In the Domain Value field corresponding to the Shortname domain, enter KA.


	
In the Domain Value field corresponding to the Language domain, enter Kannada.


	
In the Domain Value field corresponding to the Capital domain, enter Bangalore.


	
Click OK.

The Domain Value Map Editor appears.


	
Click Add and then select Add Row.

Repeat this step to add two more rows.


	
Enter the information shown in Table 47-7 in the newly added rows of the domain value map table:


Table 47-7 Information for Rows of Domain Value Map Table

	Longname	Shortname	Language	Capital
	
Karnataka

	
KA

	
Kannada

	
Bangalore


	
Tamilnadu

	
TN

	
Tamil

	
Chennai


	
Andhrapradesh

	
AP

	
Telugu

	
Hyderbad


	
Kerala

	
KL

	
Malayalam

	
Trivandram








The Domain Value Map Editor appears, as shown in Figure 47-20.


Figure 47-20 Multivalue Domain Value Map

[image: Description of Figure 47-20 follows]

Description of "Figure 47-20 Multivalue Domain Value Map"





	
From the File menu, select Save All and close the Domain Value Map Editor.









47.6.1.3 Task 3: How to Create a File Adapter Service

After creating the domain value map, create a file adapter service named readFile to read the XML files from a directory.




	
Note:

Mediator may process the same file twice when run against Oracle RAC planned outages. This is because a file adapter is a non-XA compliant adapter. Therefore, when it participates in a global transaction, it may not follow the XA interface specification of processing each file only once.










To create a file adapter service: 

	
From the Component Palette, select SOA.


	
Select File Adapter and drag it to the Exposed Services swimlane.


	
If the Adapter Configuration wizard Welcome page appears, click Next.

The Service Name page appears.


	
In the Service Name field, enter readFile and then click Next.

The Adapter Interface page appears.


	
Click Define from operation and schema (specified later) and then click Next.

The Operation page appears.


	
In the Operation Type field, select Read File and then click Next.

The File Directories page appears.


	
In the Directory for Incoming Files (physical path) field, enter the directory from which you want to read the files.


	
Click Next.

The File Filtering page appears.


	
In the Include Files with Name Pattern field, enter *.xml and then click Next.

The File Polling page appears.


	
Change the Polling Frequency field value to 1 second and then click Next.

The Messages page appears.


	
Click Search.

The Type Chooser dialog appears.


	
Click Import Schema File.

The Import Schema File dialog appears.


	
Click Search and select the input.xsd file in the Samples folder.


	
Click OK.


	
Expand the navigation tree to Type Explorer > Imported Schemas > input.xsd.


	
Select Root-Element and click OK.


	
Click Next.

The Finish page appears.


	
Click Finish.


	
From the File menu, select Save All.

Figure 47-21 shows the readFile service in the SOA Composite Editor.


Figure 47-21 readFile Service in the SOA Composite Editor

[image: Description of Figure 47-21 follows]

Description of "Figure 47-21 readFile Service in the SOA Composite Editor"












47.6.1.4 Task 4: How to Create the LookupMultiplevaluesMediator Mediator


To create the LookupMultiplevaluesMediator Mediator: 

	
Drag and drop a Mediator icon from the Component Palette to the Components section of the SOA Composite Editor.

The Create Mediator dialog appears.


	
In the Name field, enter LookupMultiplevaluesMediator.


	
From the Template list, select Define Interface Later.


	
Click OK.

An Oracle Mediator with the name LookupMultiplevaluesMediator is created.


	
In the SOA Composite Editor, connect the readFile service to the LookupMultiplevaluesMediator Oracle Mediator, as shown in Figure 47-22.

This specifies the file adapter service to invoke the LookupMultiplevaluesMediator Oracle Mediator while reading a file from the input directory.


Figure 47-22 readFile Service Connected to the LookupMultiplevaluesMediator Mediator

[image: Description of Figure 47-22 follows]

Description of "Figure 47-22 readFile Service Connected to the LookupMultiplevaluesMediator Mediator"





	
From the File menu, select Save All.









47.6.1.5 Task 5: How to Create a File Adapter Reference


To create a file adapter reference: 

	
From the Component Palette, select SOA.


	
Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page appears.


	
Click Next.

The Service Name page appears.


	
In the Service Name field, enter writeFile and then click Next.

The Adapter Interface page appears.


	
Click Define from operation and schema (specified later) and then click Next.

The Operation page appears.


	
Click Next.

The Operation page appears.


	
In the Operation Type field, select Write File.


	
Click Next.

The File Configuration page appears.


	
In the Directory for Outgoing Files (physical path) field, enter the name of the directory where you want to write the files.


	
In the File Naming Convention field, enter multivalue_%SEQ%.xml and click Next.

The Messages page appears.


	
Click Search.

The Type Chooser dialog appears.


	
Navigate to Type Explorer > Project Schema Files > output.xsd, and then select Root-Element.


	
Click OK.


	
Click Next.

The Finish page appears.


	
Click Finish.

Figure 47-23 shows the writeFile reference in the SOA Composite Editor.


Figure 47-23 writeFile Reference in SOA Composite Editor

[image: Description of Figure 47-23 follows]

Description of "Figure 47-23 writeFile Reference in SOA Composite Editor"





	
From the File menu, select Save All.









47.6.1.6 Task 6: How to Specify Routing Rules

You must specify the path that messages take from the readFile adapter service to the external reference.


To specify routing rules 

	
Connect the LookupMultiplevaluesMediator Mediator to the writeFile reference, as shown in Figure 47-24.


Figure 47-24 LookupMultiplevaluesMediator Mediator Connected to the writeFile Reference

[image: Description of Figure 47-24 follows]

Description of "Figure 47-24 LookupMultiplevaluesMediator Mediator Connected to the writeFile Reference"





	
Double-click the LookupMultiplevaluesMediator Mediator.


	
To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog appears.


	
Select Create New Mapper File and click OK.

An Input_To_Output_with_multiple_values_lookup.xsl file appears in the XSLT Mapper.


	
Drag and drop the imp1:Root-Element source element to the ns2:Root-Element target element.

The Auto Map Preferences dialog appears.


	
From the During Auto Map options list, deselect Match Elements Considering their Ancestor Names.


	
Click OK.

The Input_To_Output_with_multiple_values_lookup.xsl file appears in the XSLT Mapper, as shown in Figure 47-25.


Figure 47-25 imp1:Root-Element To ns2:Root-Element Transformation

[image: Description of Figure 47-25 follows]

Description of "Figure 47-25 imp1:Root-Element To ns2:Root-Element Transformation"





	
In the Component Palette, select Advanced.


	
Click DVM Functions.


	
Drag and drop lookupValue1M in the center panel, as shown in Figure 47-26.


Figure 47-26 Adding lookupValue Function to imp1:Root-Element to ns2:Root-Element

[image: Description of Figure 47-26 follows]

Description of "Figure 47-26 Adding lookupValue Function to imp1:Root-Element to ns2:Root-Element"





	
Double-click the lookupvalue1M icon.

The Edit Function-lookupValue1M dialog appears.


	
To the right of the dvmLocation field, click Search.

The SOA Resource Lookup dialog appears.


	
Select multivalue.dvm and click OK.


	
To the right of the sourceColumnName field, click Search.

The Select DVM Column dialog appears.


	
Select Longname and click OK.


	
In the sourceValue column, enter the following:

/imp1:Root-Element/imp1:Details/imp1:Longname.


	
To the right of the targetColumnName field, click Search.

The Select DVM Column dialog appears.


	
Select Shortname and click OK.


	
Click Add.

A targetColumnName row is added.


	
In the targetColumnName field, enter "Language".


	
Click Add to insert another targetColumnName row.


	
In the targetColumnName field, enter "Capital".

The Edit Function-lookupValue dialog appears, as shown in Figure 47-27.


Figure 47-27 Edit Function-lookupValue Function Dialog: Multiple Value Lookup Use Case

[image: Description of Figure 47-27 follows]

Description of "Figure 47-27 Edit Function-lookupValue Function Dialog: Multiple Value Lookup Use Case"





	
Click OK.

The Transformation appears, as shown in Figure 47-28.


Figure 47-28 Complete imp1:Root-Element To ns2:Root-Element Transformation

[image: Description of Figure 47-28 follows]

Description of "Figure 47-28 Complete imp1:Root-Element To ns2:Root-Element Transformation"





	
From the File menu, select Save All and close the Input_To_Output_with_multiple_values_lookup.xsl file.









47.6.1.7 Task 7: How to Configure an Application Server Connection

An application server connection is required for deploying your SOA composite application. For information on creating an application server connection, see Section 43.7.1.1.1, "Creating an Application Server Connection."






47.6.1.8 Task 8: How to Deploy the Composite Application

Deploying the Multivalue composite application to an application server consists of the following steps:

	
Creating an application deployment profile.


	
Deploying the application to the application server.




For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."








47.6.2 How to Run and Monitor the Multivalue Application

After deploying the Multivalue application, you can run it by copying the input XML file sampleinput.xml to the input folder. This file is available in the samples folder. On successful completion, a file with name multivalue_1.xml is written to the specified output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion Middleware Control at the following URL:


http://hostname:port/em


where hostname is the host on which you installed the Oracle SOA Suite infrastructure.

In Oracle Enterprise Manager Fusion Middleware Control, you can click Multivalue to see the project dashboard.

To view the detailed execution trail, click the instance ID in the instance column. The Flow Trace page appears.
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42 Enabling Security with Policies

This chapter describes how to attach policies to binding components and service components during design-time in SOA composite applications. It also describes how to how to override policy configuration property values.

This chapter includes the following sections:

	
Section 42.1, "Introduction to Policies"


	
Section 42.2, "Attaching Policies to Binding Components and Service Components"






42.1 Introduction to Policies

Oracle Fusion Middleware uses a policy-based model to manage and secure Web services across an organization. Policies apply security to the delivery of messages. Policies can be managed by both developers in a design-time environment and system administrators in a runtime environment.

Policies are comprised of one or more assertions. A policy assertion is the smallest unit of a policy that performs a specific action. Policy assertions are executed on the request message and the response message, and the same set of assertions is executed on both types of messages. The assertions are executed in the order in which they appear in the policy.

Table 42-1 describes the supported policy categories. 


Table 42-1 Supported Policy Categories

	Category	Description
	
Message Transmission Optimization Mechanism (MTOM)

	
Ensures that attachments are in MTOM format. This format enables binary data to be sent to and from web services. This reduces the transmission size on the wire.


	
Reliability

	
Supports the WS-Reliable Messaging protocol. This guarantees the end-to-end delivery of messages.


	
Addressing

	
Verifies that simple object access protocol (SOAP) messages include WS-Addressing headers in conformance with the WS-Addressing specification. Transport-level data is included in the XML message rather than relying on the network-level transport to convey this information.


	
Security

	
Implements the WS-Security 1.0 and 1.1 standards. They enforce authentication and authorization of users. identity propagation, and message protection (message integrity and message confidentiality).


	
Management

	
Logs request, response, and fault messages to a message log. Management policies can also include custom policies.








Within each category there are one or more policy types that you can attach. For example, if you select the reliability category, the following types are available for selection:

	
oracle/wsrm10_policy

Supports version 1.0 of the Web Services Reliable Messaging protocol


	
oracle/wsrm11_policy

Supports version 1.1 of the Web Services Reliable Messaging protocol


	
oracle/no_wsrm_policy

Supports the disabling of a globally attached Web Services Reliable Messaging policy




For more information about available policies, details about which ones to use in your environment, and global policies, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.






42.2 Attaching Policies to Binding Components and Service Components

You can attach or detach policies to and from service binding components, service components, and reference binding components in a SOA composite application. Use Oracle JDeveloper to attach policies for testing security in a design-time environment. When your application is ready for deployment to a production environment, you can attach or detach runtime policies in Oracle Enterprise Manager Fusion Middleware Control.

For more information about runtime management of policies, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.



42.2.1 How to Attach Policies to Binding Components and Service Components


To attach a policy to a service or reference binding component:

	
In the SOA Composite Editor, right-click a service binding component or reference binding component.


	
Select Configure WS-Policies.

Depending upon the interface definition of your SOA composite application, you may be prompted with an additional menu of options.

	
If the selected service or reference is interfacing with a synchronous BPEL process or Oracle Mediator service component, a single policy is used for both request and response messages. The Configure SOA WS Policies dialog immediately appears. Go to Step 4.


	
If the service or reference is interfacing with an asynchronous BPEL process or Oracle Mediator service component, the policies must be configured separately for request and response messages. The policy at the callback is used for the response sent from service to client. An additional menu is displayed. Go to Step 3.





	
Select the type of binding to use:

	
For Request:

Select the request binding for the service component with which to bind. You can only select a single request binding. This action enables communication between the binding component and the service component.

When request binding is configured for a service in the Exposed Services swimlane, the service acts as the server. When request binding is configured for a reference in the External References swimlane, the reference acts as the client.


	
For Callback: (only for interactions with asynchronous processes)

Select the callback binding for the service component with which to bind. This action enables message communication between the binding component and the service component. You can only select a single callback binding.

When callback binding is configured for a service in the Exposed Services swimlane, the service acts as the client. When callback binding is configured for a reference in the External References swimlane, the reference acts as the server.




The Configure SOA WS Policies dialog shown in Figure 42-1 appears. For this example, the For Request option was selected for a service binding component. The same types of policy categories are also available if you select For Callback.


Figure 42-1 Configure SOA WS Policies Dialog

[image: Description of Figure 42-1 follows]

Description of "Figure 42-1 Configure SOA WS Policies Dialog"





	
Click the Add icon for the type of policy to attach:

	
MTOM


	
Reliability


	
Addressing


	
Security


	
Management




For this example, Security is selected. The dialog shown in Figure 42-2 is displayed.


Figure 42-2 Security Policies

[image: Description of Figure 42-2 follows]

Description of "Figure 42-2 Security Policies"





	
Place your cursor over a policy name to display a description of policy capabilities.


	
Select the type of policy to attach.


	
Click OK.

You are returned to the Configure SOA WS Policies dialog shown in Figure 42-3. The attached security policy displays in the Security section.


Figure 42-3 Attached Security Policy

[image: Description of Figure 42-3 follows]

Description of "Figure 42-3 Attached Security Policy"





	
If necessary, add additional policies.

You can temporarily disable a policy by deselecting the checkbox to the left of the name of the attached policy. This action does not detach the policy.


	
To detach a policy, click the Delete icon.


	
When complete, click OK in the Configure SOA WS Policies dialog.

You are returned to the SOA Composite Editor.





To attach a policy to a service component:

	
Right-click a service component.


	
Select Configure Component WS Policies.

The Configure SOA WS Policies dialog shown in Figure 42-4 appears.


Figure 42-4 Configure SOA WS Policies Dialog

[image: Description of Figure 42-4 follows]

Description of "Figure 42-4 Configure SOA WS Policies Dialog"





	
Click the Add icon for the type of policy to attach.

	
Security


	
Management




The dialog for your selection appears.


	
Select the type of policy to attach.


	
Click OK.


	
If necessary, add additional policies.


	
When complete, click OK in the Configure SOA WS Policies dialog.




For information about attaching policies during runtime in Oracle Enterprise Manager Fusion Middleware Control, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.






42.2.2 How to Override Policy Configuration Property Values

Your environment may include multiple clients or servers with the same policies. However, each client or server may have their own specific policy requirements. You can override the policy property values based on your runtime requirements.



42.2.2.1 Overriding Client Configuration Property Values

You can override the default values of client policy configuration properties on a per client basis without creating new policies for each client. In this way, you can override client policies that define default configuration values and customize those values based on your runtime requirements.

	
Right-click one of the following binding components:

	
A service binding component in the Exposed Services swimlane, and select For Callback.


	
A reference binding component in the External References swimlane, and select For Request.





	
Go to the Security and Management sections. These instructions assume you previously attached policies in these sections.

The Edit icon is enabled for both sections. Figure 42-5 provides details.


Figure 42-5 Client Policy Selection

[image: Description of Figure 42-5 follows]

Description of "Figure 42-5 Client Policy Selection"





	
Click the Edit icon. Regardless of which policies you select, the property names, values, and overridden values display for all of your attached client policies.


	
In the Override Value column, enter a value to override the default value shown in the Value column. Figure 42-6 provides details.


Figure 42-6 Client Policy Override Value

[image: Description of Figure 42-6 follows]

Description of "Figure 42-6 Client Policy Override Value"





	
Click OK to exit the Config Override Properties dialog.


	
Click OK to exit the Configure SOA WS Policies dialog.


	
Click the Source button in the SOA Composite Editor.

The overriding value is reflected with the property name attribute in the composite.xml file, as shown in Example 42-1.


Example 42-1 Client Policy Override Value in composite.xml File


<binding.ws port="http://xmlns.oracle.com/Application26_
jws/Project1/BPELProcess1#wsdl.endpoint(bpelprocess1_client_
ep/BPELProcess1Callback_pt)">
        <wsp:PolicyReference URI="oracle/wss_http_token_client_policy"
                             orawsp:category="security"
                             orawsp:status="enabled"/>
        <wsp:PolicyReference URI="oracle/wss_http_token_over_ssl_client_policy"
                             orawsp:category="security"
                             orawsp:status="enabled"/>
        <wsp:PolicyReference URI="oracle/wss_oam_token_client_policy"
                             orawsp:category="security"
                             orawsp:status="enabled"/>
        <wsp:PolicyReference URI="oracle/wss_saml_token_bearer_over_ssl_client_
policy"
                             orawsp:category="security"
                             orawsp:status="enabled"/>
        <wsp:PolicyReference URI="oracle/wss_saml_token_over_ssl_client_policy"
                             orawsp:category="security"
                             orawsp:status="enabled"/>
        <wsp:PolicyReference URI="oracle/log_policy"
                             orawsp:category="management"
                             orawsp:status="enabled"/>
<property name="user.roles.include" type="xs:string" many="false">true</property>
      </binding.ws>






For more information about overriding policy settings, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.






42.2.2.2 Overriding Server Configuration Property Values

You can override the default values of server policy configuration properties on a per server basis without creating new policies for each server. In this way, you can override server policies that define default configuration values and customize those values based on your runtime requirements.

	
Right-click one of the following binding components:

	
A service binding component in the Exposed Services swimlane, and select For Request.


	
A reference binding component in the External References swimlane, and select For Callback.





	
Go to the Security or Management section. These instructions assume you previously attached policies in these sections.

The Edit icon is not enabled by default for both sections. You must explicitly select a policy to enable this icon. This is because you can override fewer property values for the server. Figure 42-7 provides details.


Figure 42-7 Server Policy Selection

[image: Description of Figure 42-7 follows]

Description of "Figure 42-7 Server Policy Selection"





	
Select an attached policy that permits you to override its value, and click the Edit icon.


	
In the Override Value column, enter a value to override the default value shown in the Value column. Figure 42-8 provides details. If the policy store is unavailable, the words no property store found in the store display in red in the Value column.


Figure 42-8 Server Policy Override Value

[image: Description of Figure 42-8 follows]

Description of "Figure 42-8 Server Policy Override Value"





	
Click OK to exit the Config Override Properties dialog.


	
Click OK to exit the Configure SOA WS Policies dialog.


	
Click the Source button in the SOA Composite Editor.

The overriding value is reflected with the OverrideProperty attribute in the composite.xml file, as shown in Example 42-2.


Example 42-2 Server Policy Override Value in composite.xml File


<wsp:PolicyReference URI="oracle/binding_authorization_denyall_policy"
                           orawsp:category="security" orawsp:status="enabled"/>
      <wsp:PolicyReference URI="oracle/binding_authorization_permitall_policy"
                           orawsp:category="security" orawsp:status="enabled"/>
      <wsp:PolicyReference URI="oracle/binding_permission_authorization_policy"
                           orawsp:category="security" orawsp:status="enabled">
        <orawsp:OverrideProperty orawsp:name="permission-class"
                                 orawsp:value="permission-different-class"/>
      </wsp:PolicyReference>




For more information about overriding policy settings, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
















29 Configuring Human Tasks


This chapter describes how to configure the different properties of a human task. It covers basic properties, task payload data structure, participant assignment, routing policies, localization, escalation, notification preferences, access policies and task actions, restrictions and Java and business event callbacks.

This chapter includes the following sections:

	
Section 29.1, "Accessing the Sections of the Human Task Editor"


	
Section 29.2, "Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context"


	
Section 29.3, "Specifying the Task Payload Data Structure"


	
Section 29.4, "Assigning Task Participants"


	
Section 29.5, "Selecting a Routing Policy"


	
Section 29.6, "Specifying Multilingual Settings and Style Sheets"


	
Section 29.7, "Escalating, Renewing, or Ending the Task"


	
Section 29.8, "Specifying Participant Notification Preferences"


	
Section 29.9, "Specifying Access Policies and Task Actions on Task Content"


	
Section 29.10, "Specifying Restrictions on Task Assignments"


	
Section 29.11, "Specifying Java or Business Event Callbacks"


	
Section 29.12, "Storing Documents in Oracle Enterprise Content Management"




For information about troubleshooting human workflow issues, see section "Human Workflow Troubleshooting" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.



29.1 Accessing the Sections of the Human Task Editor

This section describes how to access the sections of the Human Task Editor. Brief descriptions are provided of each section and references are provided to more specific information.



29.1.1 How to Access the Sections of the Human Task Editor


To access the sections of the Human Task Editor:

	
Double-click the Human Task icon in the SOA Composite Editor or double-click the Human Task icon in Oracle BPEL Designer and click the Edit icon in the upper right corner.

The Human Task Editor consists of the main sections shown on the left side in Figure 29-1. These sections enable you to design the metadata of a human task.


Figure 29-1 Human Task Editor

[image: Description of Figure 29-1 follows]

Description of "Figure 29-1 Human Task Editor"





Instructions for using these main sections of the Human Task Editor to create a workflow task are listed in Table 29-1.


Table 29-1 Human Task Editor

	Section	Description	See...
	
General

(title, description, outcomes, category, priority, owner, and application context)

	
Enables you to define task details such as title, task outcomes, owner, and other attributes.

	
Section 29.2, "Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context"



	
Data

	
Enables you to define the structure (message elements) of the task payload (the data in the task).

	
Section 29.3, "Specifying the Task Payload Data Structure"



	
Assignment

	
Enables you to assign participants to the task and create a policy for routing the task through the workflow.

	
Section 29.4, "Assigning Task Participants"

Section 29.5, "Selecting a Routing Policy"



	
Presentation

	
Enables you to specify the following settings:

	
Multilingual settings


	
WordML and custom style sheets for attachments




	
Section 29.6, "Specifying Multilingual Settings and Style Sheets"



	
Deadlines

	
Enables you to specify the expiration duration of a task, custom escalation Java classes, and due dates.

	
Section 29.7, "Escalating, Renewing, or Ending the Task"



	
Notification

	
Enables you to create and send notifications when a user is assigned a task or informed that the status of the task has changed.

	
Section 29.8, "Specifying Participant Notification Preferences"



	
Access

	
Enables you to specify access rules for task content and task actions, workflow signature policies, and assignment restrictions.

	
Section 29.9, "Specifying Access Policies and Task Actions on Task Content"

Section 29.9.2, "How to Specify a Workflow Digital Signature Policy"

Section 29.10, "Specifying Restrictions on Task Assignments"



	
Events

	
Enables you to specify callback classes and task and routing assignments in BPEL callbacks.

	
Section 29.11, "Specifying Java or Business Event Callbacks"



	
Documents

	
	
Section 29.12, "Storing Documents in Oracle Enterprise Content Management"


















29.2 Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

This section contains these topics:

	
Section 29.2.1, "How to Specify the Title, Description, Outcome, Priority, Category, Owner, and Application Context"


	
Section 29.2.2, "How to Specify a Task Title"


	
Section 29.2.3, "How to Specify a Task Description"


	
Section 29.2.4, "How to Specify a Task Outcome"


	
Section 29.2.5, "How to Specify a Task Priority"


	
Section 29.2.6, "How to Specify a Task Category"


	
Section 29.2.7, "How to Specify a Task Owner"


	
Section 29.2.8, "How To Specify an Application Context"






29.2.1 How to Specify the Title, Description, Outcome, Priority, Category, Owner, and Application Context


To specify the title, description, outcome, priority, category, owner, and application context:

	
Click the General tab.

Figure 29-2 shows the General section of the Human Task Editor.

This section enables you to specify details such as the task title, description, task outcomes, task category, task priority, and task owner.


Figure 29-2 Human Task Editor — General Section

[image: Description of Figure 29-2 follows]

Description of "Figure 29-2 Human Task Editor — General Section"





Instructions for configuring the following subsections of the General section are listed in Table 29-2:


Table 29-2 Human Task Editor — General Section

	For This Subsection...	See...
	
Title

	
Section 29.2.2, "How to Specify a Task Title"



	
Description

	
Section 29.2.3, "How to Specify a Task Description"



	
Outcomes

	
Section 29.2.4, "How to Specify a Task Outcome"



	
Priority

	
Section 29.2.5, "How to Specify a Task Priority"



	
Category

	
Section 29.2.6, "How to Specify a Task Category"



	
Owner

	
Section 29.2.7, "How to Specify a Task Owner"



	
Application Context

	
Section 29.2.8, "How To Specify an Application Context"
















29.2.2 How to Specify a Task Title


To specify a task title:

Enter an optional task title. The title defaults to this value only if the initiated task does not have a title set in it. The title provides a visual identifier for the task. The task title displays in Oracle BPM Worklist. You can also search on titles in Oracle BPM Worklist.

	
In the Task Title field of the General section, select a method for specifying a task title:

	
Plain Text: Manually enter a name (for example, Vacation Request Approved).


	
Text and XPath: Enter a combination of manual text and a dynamic expression. After manually entering a portion of the title (for example, Approval Required for Order Id:), place the cursor one blank space to the right of the text and click the icon to the right of this field. This displays the Expression Builder for dynamically creating the remaining portion of the title. After completing the dynamic portion of the name, click OK to return to this field. The complete name is displayed. For example:


Approval Required for Order Id: <%/task:task/task:payload/task:orderId%>


The expression is resolved during runtime with the exact order ID value from the task payload.




If you enter a title in the Task Title field of the General tab of the Create Human Task dialog described in Section 28.4.3.1, "Specifying the Task Title," the title you enter here is overridden.









29.2.3 How to Specify a Task Description

You can optionally specify a description of the task in the Description field of the General section. The description enables you to provide additional details about a task. For example, if the task title is Computer Upgrade Request, you can provide additional details in this field, such as the model of the computer, amount of CPU, amount of RAM, and so on. The description does not display in Oracle BPM Worklist.






29.2.4 How to Specify a Task Outcome

Task outcomes capture the possible outcomes of a task. Oracle BPM Worklist displays the outcomes you specify here as the possible task actions to perform during runtime. Figure 29-3 provides details.


Figure 29-3 Outcomes in Oracle BPM Worklist

[image: Description of Figure 29-3 follows]

Description of "Figure 29-3 Outcomes in Oracle BPM Worklist"





You can specify the following types of task outcomes:

	
Select a seeded outcome


	
Enter a custom outcome




The task outcomes can also have runtime display values that are different from the actual outcome value specified here. This permits outcomes to be displayed in a different language in Oracle BPM Worklist. For more information about internationalization, see Section 29.6.2, "How to Specify Multilingual Settings."


To specify a task outcome:

	
To the right of the Outcomes field in the General section, click the Search icon.

The Outcomes dialog shown in Figure 29-4 displays the possible outcomes for tasks. APPROVE and REJECT are selected by default.


Figure 29-4 Outcomes Dialog

[image: Description of Figure 29-4 follows]

Description of "Figure 29-4 Outcomes Dialog"





	
Enter the information shown in Table 29-3.


Table 29-3 Outcomes Dialog

	Field	Description
	
Select one or more outcomes

	
Select additional task outcomes or deselect the default outcomes.


	
Add icon

	
Click to invoke a dialog for adding custom outcomes.

In the Name field of the dialog, enter a custom name, and click OK. Your outcome displays in the Outcomes field.

Notes: Be aware of the following naming restrictions:

	
Do not specify a custom name that matches a name listed in the Actions tab of the Access section of the Human Task Editor (for example, do not specify Delete). Specifying the same name can cause problems at runtime.


	
Do not specify a custom name with blank spaces (for example, On Hold). This causes an error when the custom outcome is accessed in Oracle BPM Worklist. If you must specify an outcome with spaces, use a resource bundle. For more information, see Chapter 34, "Introduction to Human Workflow Services."


	
A custom task outcome must begin with a letter of the alphabet, either upper or lower case. It should contain only letters of the alphabet and the numbers zero (0) through nine (9).





	
Outcomes Requiring Comment

	
Click to select an outcome to which an assignee adds comments in Oracle BPM Worklist at runtime. The assignee must add the comments and perform the action without saving the task at runtime.


	
Default Outcome

	
Select the default outcome for this outcome.








The seeded and custom outcomes selected here display for selection in the Majority Voted Outcome section of the parallel participant type.


	
For more information, see Section 29.4.4.1, "Specifying the Voting Outcome."









29.2.5 How to Specify a Task Priority

Specify the priority of the tasks. Priority can be 1 through 5, with 1 being the highest. By default, the priority of a task is 3. This priority value is overridden by any priority value you select in the General tab of the Create Human Task dialog. You can filter tasks based on priority and create views on priorities in Oracle BPM Worklist.


To specify a task priority:

	
From the Priority list in the General section, select a priority for the task.




For more information about specifying a priority value in the Create Human Task dialog, see Section 28.4.3.2, "Specifying the Task Initiator and Task Priority."






29.2.6 How to Specify a Task Category

You can optionally specify a task category in the Category field of the General section. This categorizes tasks created in a system. For example, in a help desk environment, you may categorize customer requests as either software-related or hardware-related. The category displays in Oracle BPM Worklist. You can filter tasks based on category and create views on categories in Oracle BPM Worklist.


To specify a task category:

	
Select a method for specifying a task category in the Category field of the General section:

	
By Name: Manually enter a name.


	
By Expression: Click the icon to the right of this field to display the Expression Builder for dynamically creating a category.












29.2.7 How to Specify a Task Owner

The task owner can view the tasks belonging to business processes they own and perform operations on behalf of any of the assigned task participant types. Additionally, the owner can also reassign, withdraw, or escalate tasks. The task owner can be considered the business administrator for a task. The task owner can also be specified in the Advanced tab of the Create Human Task dialog described in Section 28.4.4.2, "Specifying a Task Owner." The task owner specified in the Advanced tab overrides any task owner you enter here.

For more information about the task owner, see Section 27.2.1.3, "Task Stakeholders."


To specify a task owner:

	
Select a method for specifying the task owner:

	
Statically through the identity service user directory or the list of application roles


	
Dynamically through an XPath expression

For example:

	
If the task has a payload message attribute named po within which the owner is stored, you can specify an XPath expression such as: /task:task/task:payload/po:purchaseOrder/po:owner


	
ids:getManager('jstein', 'jazn.com')

The manager of jstein is the task owner.










For more information about users, groups, and application roles, see Section 27.2.1.1.3, "Participant Assignment."



29.2.7.1 Specifying a Task Owner Statically Through the User Directory or a List of Application Roles

Task owners can be selected by browsing the user directory (Oracle Internet Directory, Java AuthoriZatioN (JAZN)/XML, LDAP, and so on) or a list of application roles configured for use with Oracle SOA Suite.


To specify a task owner statically through the user directory or a list of application roles:

	
In the first list to the right of the Owner field in the General section, select User, Group, or Application Role as the type of task owner. Figure 29-5 provides details.




	
Note:

By default, group names in human tasks are case sensitive. Therefore, if you select Group and enter a name in upper case text (for example, LOANAGENTGROUP), no task is displayed under the Administrative Tasks tab in Oracle BPM Worklist. To enable group names to be case agnostic (case insensitive), you must set the caseSensitiveGroups property to false in the System MBeans Browser. For information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.










Figure 29-5 Specify a Task Owner By Browsing the User Directory or Application Roles

[image: Description of Figure 29-5 follows]

Description of "Figure 29-5 Specify a Task Owner By Browsing the User Directory or Application Roles"





	
In the second list to the right of the Owner field in the General section, select Static.


	
See the step in Table 29-4 based on the type of owner you selected.


Table 29-4 Type of Owner

	If You Selected...	See Step...
	
User or Group

	
4



	
Application Role

	
5









	
If you selected User or Group, the Identity Lookup dialog shown in Figure 29-6 appears.


Figure 29-6 Identity Lookup Dialog

[image: Description of Figure 29-6 follows]

Description of "Figure 29-6 Identity Lookup Dialog"





To select a user or group, you must first create an application server connection by clicking the Add icon. Note the following restrictions:

	
Do not create an application server connection to an Oracle WebLogic Administration Server from which to retrieve the list of identity service realms. This is because there is no identity service running on the Administration Server. Therefore, no realm information displays and no users display when performing a search with a search pattern in the Identity Lookup dialog. Instead, create an application server connection to a managed Oracle WebLogic Server.


	
You must select an application server connection configured with the complete domain name (for example, myhost.us.oracle.com). If you select a connection configured only with the hostname (for example, myhost), the Realm list may not display the available realms. If the existing connection does not include the domain name, perform the following steps:

	
In the Resource Palette, right-click the application server connection.


	
Select Properties.


	
In the Configuration tab, add the appropriate domain to the hostname.


	
Return to the Identity Lookup dialog and reselect the connection.







	
Select or create an application server connection to display the realms for selection. A realm provides access to a policy store of users and roles (groups).


	
Search for the owner by entering a search string such as jcooper, j*, *, and so on. Clicking the Lookup icon to the right of the User Name field fetches all the users that match the search criteria. Figure 29-7 provides details. One or more users or groups can be highlighted and selected by clicking Select.


Figure 29-7 Identity Lookup with Realm Selected

[image: Description of Figure 29-7 follows]

Description of "Figure 29-7 Identity Lookup with Realm Selected"





	
View the hierarchy of a user by highlighting the user and clicking Hierarchy. Similarly, clicking Reportees displays the reportees of a selected user or group. Figure 29-8 provides details.


Figure 29-8 User Hierarchy in Identity Lookup Dialog

[image: Description of Figure 29-8 follows]

Description of "Figure 29-8 User Hierarchy in Identity Lookup Dialog"





	
View the details of a user or group by highlighting the user or group and clicking Detail. Figure 29-9 provides details.


Figure 29-9 User or Group Details

[image: Description of Figure 29-9 follows]

Description of "Figure 29-9 User or Group Details"





	
Click OK to return to the Identity Lookup dialog.


	
Click Select to add the user to the Selected User section.


	
Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.





	
If you selected Application Role, the Select an Application Role dialog appears.

	
In the Application Server list, select the type of application server that contains the application role or click the Add icon to launch the Create Application Server Connection wizard to create a connection.


	
In the Application list, select the application that contains the application roles (for example, a custom application or soa-infra for the SOA Infrastructure application).


	
In the Available section, select appropriate application roles and click the > button. To select all, click the >> button. Figure 29-10 provides details.


Figure 29-10 Application Role

[image: Description of Figure 29-10 follows]

Description of "Figure 29-10 Application Role"





	
Click OK.












29.2.7.2 Specifying a Task Owner Dynamically Through an XPath Expression

Task owners can be selected dynamically in the Expression Builder dialog.


To specify a task owner dynamically:

	
In the first list to the right of the Owner field in the General section, select User, Group, or Application Role as the type of task owner. Figure 29-11 provides details.


Figure 29-11 Specify a Task Owner Dynamically

[image: Description of Figure 29-11 follows]

Description of "Figure 29-11 Specify a Task Owner Dynamically"





	
In the second list to the right of the Owner field in the General section, select XPath.


	
Click the icon to launch the Expression Builder.

This displays the Expression Builder dialog shown in Figure 29-12:


Figure 29-12 Expression Builder

[image: Description of Figure 29-12 follows]

Description of "Figure 29-12 Expression Builder"





	
Browse the available variable schemas and functions to create a task owner.


	
Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

For more information, see the following:

	
Click Help for instructions on using the Expression Builder dialog and XPath Building Assistant


	
Appendix B, "XPath Extension Functions" for information about workflow service dynamic assignment functions, identity service functions, and instructions on using the XPath Building Assistant














29.2.8 How To Specify an Application Context

You can specify the name of the application that contains the application roles used in the task. This indicates the context in which the application role operates. If you do not explicitly create a task, but end up having one, you can set up the context.

	
In the Application Context field of the General section, enter the name.











29.3 Specifying the Task Payload Data Structure

Figure 29-13 shows the Data section of the Human Task Editor.

This section enables you to specify the structure (message elements) of the task payload (the data in the task) defined in the XSD file. You create parameters to represent the elements in the XSD file. This makes the payload data available to the workflow task. For example:

	
You create a parameter for an order ID element for placing an order from a store front application.


	
You create parameters for the location, type, problem description, severity, status, and resolution elements for creating a help desk request.




Task payload data consists of one or more elements or types. Based on your selections, an XML schema definition is created for the task payload.


Figure 29-13 Human Task Editor — Parameters Section

[image: Description of Figure 29-13 follows]

Description of "Figure 29-13 Human Task Editor — Parameters Section"







29.3.1 How to Specify the Task Payload Data Structure


To specify the task payload data structure:

	
Click the Data tab.


	
Click the Add icon and select a payload type:

	
String


	
Integer


	
Boolean


	
Other




The Add Task Parameter dialog is displayed, as shown in Figure 29-14.


Figure 29-14 Add Task Parameter Dialog

[image: Description of Figure 29-14 follows]

Description of "Figure 29-14 Add Task Parameter Dialog"





	
Enter the details described in Table 29-5:


Table 29-5 Add Task Parameter Dialog Fields and Values

	Field	Description
	
Parameter Type

	
Select Type or Element and click the Search icon to display the Type Chooser dialog for selecting the task parameter.


	
Parameter Name

	
Accept the default name or enter a custom name. This field only displays if Type is the selected parameter type.


	
Editable via worklist

	
Select this checkbox to enable users to edit this part of the task payload in Oracle BPM Worklist. For example, for a loan approval task, the APR attribute may need to be updated by the user reviewing the task, but the SSN field may not be editable.

You can also specify access rules that determine the parts of a task that participants can view and update. For more information, see Section 29.9.1, "How to Specify Access Policies on Task Content."











	
Note:

You can only define payload mapped attributes (previously known as flex field mappings) in Oracle BPM Worklist for payload parameters that are simple XML types (string, integer, and so on) or complex types (for example, a purchase order, and so on). If you must search tasks using keywords or define views or delegation rules based on task content, then you must use payload parameters based on simple XML types. These simple types can be mapped to flex columns in Oracle BPM Worklist.










	
Select the type, as shown in Figure 29-15.


Figure 29-15 Parameter Type

[image: Description of Figure 29-15 follows]

Description of "Figure 29-15 Parameter Type"





	
Click OK to return to the Human Task Editor.

Your selection displays in the Data section.


	
To edit your selection, select it and click the Edit icon in the upper right part of the Data section.











29.4 Assigning Task Participants

Figure 29-16 shows the Assignment section of the Human Task Editor. This section enables you to select a participant type that meets your business requirements. While configuring the participant type, you build lists of users, groups, and application roles to act upon tasks.


Figure 29-16 Human Task Editor — Assignment Section

[image: Description of Figure 29-16 follows]

Description of "Figure 29-16 Human Task Editor — Assignment Section"





You can easily mix and match participant types to create simple or complex workflow routing policies. You can also extend the functionality of a previously configured human task to model more complex workflows.

A participant type is grouped in a block under a stage (for example, named Stage1 in Figure 29-16). A stage is a way of organizing the approval process for blocks of participant types. You can have one or more stages in sequence or in parallel. Within each stage, you can have one or more participant type blocks in sequence or in parallel. The up and down keys enable you to rearrange the order of your participant type blocks.

For example:

	
You can create all participant type blocks in a single stage (for example, a purchase order request in which the entire contents of the order are approved or rejected as a whole).


	
You can create more complex approval tasks that may include one or more stages. For example, you can place one group of participant type blocks in one stage and another block in a second stage. The list of approvers in the first stage handles line entry approvals and the list of approvers in the second stage handles header entry approvals.




Each of the participant types has an associated editor that you use for configuration tasks. The sequence in which the assignees are added indicates the execution sequence.

To specify a different stage name or have a business requirement that requires you to create additional stages, perform the following steps. Creating additional stages is an advanced requirement that may not be necessary for your environment.

This section contains these topics:

	
Section 29.4.1, "How to Specify a Stage Name and Add Parallel and Sequential Blocks"


	
Section 29.4.2, "How to Assign Task Participants"


	
Section 29.4.3, "How to Configure the Single Participant Type"


	
Section 29.4.4, "How to Configure the Parallel Participant Type"


	
Section 29.4.5, "How to Configure the Serial Participant Type"


	
Section 29.4.6, "How to Configure the FYI Participant Type"




For more information about participant types, see Section 27.2.1.1, "Task Assignment and Routing."



29.4.1 How to Specify a Stage Name and Add Parallel and Sequential Blocks


To specify a stage name and add parallel and sequential blocks:

The stage is named Stage1 by default. If you want, you can change the name.

	
Double-click the name.

The Edit dialog shown in Figure 29-17 appears.


Figure 29-17 Edit Dialog

[image: Description of Figure 29-17 follows]

Description of "Figure 29-17 Edit Dialog"





	
Enter a name, and click OK.


	
Select the stage and its participant type block, as shown in Figure 29-18.


	
Click the Add icon.


Figure 29-18 Add a Second Stage

[image: Description of Figure 29-18 follows]

Description of "Figure 29-18 Add a Second Stage"





	
Select an option from the list (for example, Parallel stage).

A second stage is added in parallel to the first stage, as shown in Figure 29-19.


Figure 29-19 Parallel Stage

[image: Description of Figure 29-19 follows]

Description of "Figure 29-19 Parallel Stage"





	
Select the second stage on the right, and click the Add icon. If you do not select the second stage (for this example, named Stage1 in Figure 29-20) and instead select only the participant type block (for example, named Edit Participant in Figure 29-20), all options under the Add icon are disabled.


	
Select Sequential stage.

A sequential stage is added below the selected block.


Figure 29-20 Sequential Stage

[image: Description of Figure 29-20 follows]

Description of "Figure 29-20 Sequential Stage"





You create participant types within these blocks.









29.4.2 How to Assign Task Participants


To assign task participants:

	
In the Assignment section, perform one of the following tasks:

	
Highlight the block below the stage box and click the Edit icon. The first time you create a task participant, the box is labeled <Edit Participant>.

or


	
Double-click the participant box below the stage box.




The Edit Participant Type dialog appears. This dialog enables you to select a specific participant type.


	
From the Type list, select a participant type shown in Figure 29-21.


Figure 29-21 Type List

[image: Description of Figure 29-21 follows]

Description of "Figure 29-21 Type List"





	
See the section shown in Table 29-6 based on your selection.


Table 29-6 Participant Types

	Participant Type	For a Description of this Participant Type, See...	For Instructions on Configuring this Participant Type, See...
	
	
Single


	
Parallel


	
Serial


	
FYI




	
Section 27.2.1.1.2, "Participant Type"


	
Section 29.4.3, "How to Configure the Single Participant Type"

Section 29.4.4, "How to Configure the Parallel Participant Type"

Section 29.4.5, "How to Configure the Serial Participant Type"

Section 29.4.6, "How to Configure the FYI Participant Type"
















29.4.3 How to Configure the Single Participant Type

Figure 29-22 shows the Edit Participant Type dialog for the single participant type. Figure 29-23 shows the expanded Advanced section.


Figure 29-22 Edit Participant Type — Single Type

[image: Description of Figure 29-22 follows]

Description of "Figure 29-22 Edit Participant Type — Single Type"






Figure 29-23 Edit Participant Type — Single Type (Expanded Advanced Section)

[image: Description of Figure 29-23 follows]

Description of "Figure 29-23 Edit Participant Type — Single Type (Expanded Advanced Section)"





To be dynamically assigned to a task, a single participant can be selected from a group, an application role, or a participant list.


To configure the single participant type:

	
In the Label field, enter a recognizable label for this participant. This label must be unique among all the participants in the task definition (for example, Approval Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type dialog for the single participant type are listed in Table 29-7:


Table 29-7 Edit Participant Type — Single Type

	For This Subsection...	See...
	
Participant List

	
Section 29.4.3.1, "Creating a Single Task Participant List"



	
Limit allocated duration to (under the Advanced section)

	
Section 29.4.3.2, "Specifying a Time Limit for Acting on a Task"



	
Allow this participant to invite other participants (under the Advanced section)

	
Section 29.4.3.3, "Inviting Additional Participants to a Task"



	
Specify skip rule (under the Advanced section)

	
Section 29.4.3.4, "Bypassing a Task Participant"













29.4.3.1 Creating a Single Task Participant List

Users assigned to a participant list can act upon tasks. In a single-task participant list, only one user is required to act on the task. You can specify either a single user or a list of users, groups, or application roles for this pattern. If a list is specified, then all users on the list are assigned the task. You can specify either that one of them must manually claim and act upon the task, or that one user from the list is automatically selected by an assignment pattern. When one user acts on the task, the task is withdrawn from the task list of other assignees.

You can create several types of lists for the single user participant, and for the parallel, serial, and FYI user participants, for example:

	
Value-based name and expression lists

These lists enable you to statically or dynamically select users, groups, or application roles as task assignees.


	
Value-based management chain lists

Management chains are typically used for serial approvals through multiple users in a management chain hierarchy. Therefore, this list is most likely useful with the serial participant type. This is typically the case if you want all users in the hierarchy to act upon the task. Management chains can also be used with the single participant type. In this case, however, all users in the hierarchy get the task assigned at the same time. As soon as one user acts on the task, it is withdrawn from the other users.

For example, a purchase order is assigned to a manager. If the manager approves the order, it is assigned to their manager. If that manager approves it, it is assigned to their manager, and so on until three managers approve the order. If any managers reject the request or the request expires, the order is rejected if you specify an abrupt termination condition. Otherwise, the task flow continues to be routed.


	
Rule-based names and expression lists and management chain lists

Business rules enable you to create the list of task participants with complex expressions. For example, you create a business rule in which a purchase order request below $5000 is sent to a manager for approval. However, if the purchase order request exceeds $5000, the request is sent to the manager of the manager for approval. Two key features of business rules are facts and action types, which are described in Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."




When you select a participant type, a dialog box enables you to choose an option for building your list of task participant assignees (users, groups, or application roles), as shown in Figure 29-24. The three selections described above are available: Names and expressions, Management Chain, and Rule-based.


Figure 29-24 Build a List of Participants

[image: Description of Figure 29-24 follows]

Description of "Figure 29-24 Build a List of Participants"





After selecting an option, you dynamically assign task participant assignees (users, groups, or application roles) and a data type, as shown in Figure 29-25.


Figure 29-25 Assignment of Task Assignees

[image: Description of Figure 29-25 follows]

Description of "Figure 29-25 Assignment of Task Assignees"





This section describes how to create these lists of participants.



29.4.3.1.1 Creating Participant Lists Consisting of Value-Based Names and Expressions

Select a method for statically or dynamically assigning a user, group, or application role as a task participant.

For conceptual information, see the following:

	
Users, groups, or application roles, see Section 27.2.1.1.3, "Participant Assignment."


	
Statically and dynamically assigning task participants, see Section 27.2.1.2, "Static, Dynamic, and Rule-Based Task Assignment."





To create participant lists consisting of value-based names and expressions:

	
From the Build a list of participants using list, select Names and expressions.


	
Do either of the following:

	
Select Let participants manually claim the task. If you select this option, then the task is assigned to all participants in the list. An individual user from the task assignees can then manually claim the task to work on it.


	
Select Auto-assign to a single list, select User, Group, or Application Role, then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.


Figure 29-26 Selecting and Configuring an Assignment Pattern

[image: Description of Figure 29-26 follows]

Description of "Figure 29-26 Selecting and Configuring an Assignment Pattern"





When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.

A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.





	
From the Specify attributes using list, select Value-based.

The dialog refreshes to display the fields shown in Figure 29-27.


Figure 29-27 Value-Based Names and Expressions

[image: Description of Figure 29-27 follows]

Description of "Figure 29-27 Value-Based Names and Expressions"





	
Click the Add icon and select a user, group, or application role as a task participant.

The Identification Type column of the Participant Names table displays your selection of user, group, or application role.


	
To change your selection in the Identification Type column, click it to invoke a dropdown list.


	
In the Data Type column, click your selection to invoke a dropdown list to assign a value:

	
By Name: If your identification type is a user or group, click the Browse icon (the dots) on the right to display a dialog for selecting a user or group configured through the identity service. The identity service enables the lookup of user properties, roles, and group memberships. User information is obtained from an LDAP server such as Oracle Internet Directory. You can use wild cards (*) to search for IDs.

If your selection is an application role, click the Browse icon to display the Select an Application Role dialog for selecting an application role. To search for application roles, you must first create a connection to the application server. When searching, you must specify the application name to find the name of the role. The task definition can refer to only one application name. You cannot use application roles from different applications as assignees or task owners.


	
By Expression: For a user, group, or application role, click the Browse icon to dynamically select a task assignee in the Expression Builder dialog. Use the bpws:getVariableData(...) expression or the ids:getManager() XPath function.




The Value column displays the value you specified.


	
To manually enter a value, click the field in the Value column and specify a value.









29.4.3.1.2 Creating Participant Lists Consisting of Value-Based Management Chains



Select a method for statically or dynamically assigning management chain parameters as task participants.

For conceptual information about the following:

	
Users, groups, or application roles, see Section 27.2.1.1.3, "Participant Assignment."


	
Statically and dynamically assigning task participants, see Section 27.2.1.2, "Static, Dynamic, and Rule-Based Task Assignment."


	
Management chains, see Section 29.4.3.1, "Creating a Single Task Participant List."





To create participant lists based on value-based management chains:

	
From the Build a list of participants using list, select Management Chain.


	
Do either of the following:

	
Select Let participants manually claim the task. If you select this option, then the task is assigned to all participants in the list. An individual user from the task assignees can then manually claim the task to work on it.


	
Select Auto-assign to a single list, select User, then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.

When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.

A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.





	
From the Specify attributes using list, select Value-based.

The dialog refreshes to display the fields shown in Figure 29-28.


Figure 29-28 Value-Based Management Chains

[image: Description of Figure 29-28 follows]

Description of "Figure 29-28 Value-Based Management Chains"





	
See Step 4 through Step 7 of Section 29.4.3.1, "Creating a Single Task Participant List" for instructions on assigning a user, group, or application role to a list in the Starting Participant table.


	
In the Top Participant list, select a method for assigning the number of task participant levels:

	
By Title: Select the title of the last (highest) approver in the management chain.


	
XPath: Select to dynamically enter a top participant through the Expression Builder dialog.





	
In the Number of Levels list, select a method for assigning a top participant:

	
By Number: Enter a value for the number of levels in the management chain to include in this task. For example, if you enter 2 and the task is initially assigned to user jcooper, both the user jstein (manager of jcooper) and the user wfaulk (manager of jstein) are included in the list (apart from jcooper, the initial assignee).


	
XPath: Select to dynamically enter a value through the Expression Builder dialog.












29.4.3.1.3 Creating Participant Lists Consisting of Rulesets



A ruleset provides a unit of execution for rules and for decision tables. In addition, rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets can be executed in order. This is called rule flow. The ruleset stack determines the order. The order can be manipulated by rule actions that push and pop rulesets on the stack. In rulesets, the priority of rules applies to specify the order of firing of rules in the ruleset. Rulesets also provide an effective date specification that identifies that the ruleset is always active, or that the ruleset is restricted based on a time and date range, or a starting or ending time and date.

The method by which you create a ruleset is based on how you access it. This is described in the following section.


To specify participant lists based on rulesets:

Business rules can define the participant list. There are two options for using business rules:

	
Rules define parameters of a specific list builder (such as Names and Expressions or Management Chain). In this case, the task routing pattern is modeled to use a specific list builder. In the list builder, the parameters are listed as coming from rules. Rules return the list builder of the same type as the one modeled in Oracle JDeveloper.

	
From the Build a list of participants using list, select Names and expressions or Management Chain.


	
From the Specify attributes using list, select Rule-based.


	
In the List Ruleset field, enter a ruleset name.

Figure 29-29 provides details.


Figure 29-29 Rulesets

[image: Description of Figure 29-29 follows]

Description of "Figure 29-29 Rulesets"





	
Do either of the following:

	
Select Let participants manually claim the task. If you select this option, then the task is assigned to all participants in the list. An individual user from the task assignees can then manually claim the task to work on it.


	
Select Auto-assign to a single list, select User, Group, or Application Role, then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.

When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.

A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.





	
Click OK.





	
Rules define the list builder and the list builder parameters. In this case, the list itself is built using rules. The rules define the list builder and the parameters.

	
From the Build a list of participants using list, select Rule-based.


	
In the List Ruleset field, enter a ruleset name.

Figure 29-30 provides details.


Figure 29-30 Rulesets
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Do either of the following:

	
Select Let participants manually claim the task. If you select this option, then the task is assigned to all participants in the list. An individual user from the task assignees can then manually claim the task to work on it.


	
Select Auto-assign to a single list, select User, Group, or Application Role, then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.

When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.





	
Click OK.







Both options create a rule dictionary, if one is not already created, and preseed several rule functions and facts for easy specifications of the participant list. In the rule dictionary, the following rule functions are seeded to create participant lists:

	
CreateResourceList


	
CreateManagementChainList




The Task fact is asserted by the task service for basing rule conditions.

After the rule dictionary is created, the Oracle Business Rules Designer is displayed.

	
Model your rule conditions. In the action part, call one of the above functions to complete building your lists. Figure 29-31 provides details.


Figure 29-31 Business Rules
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The parameters for the rule functions are similar to the ones in Oracle JDeveloper modeling. In addition to the configurations in Oracle JDeveloper, some additional options are available in the Oracle Business Rules Designer for the following attributes:

	
responseType: If the response type is REQUIRED, the assignee must act on the task. Otherwise, the assignment is converted to an FYI assignment.


	
ruleName: The rule name can create reasons for assignments.


	
lists: This object is a holder for the lists that are built. Clicking this option shows a pre-asserted fact Lists object to use as the parameter.




An example of rules specifying management chain-based participants is shown in Figure 29-32.


Figure 29-32 Business Rules
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Description of "Figure 29-32 Business Rules"





If multiple rules are fired, the list builder created by the rule with the highest priority is selected.











29.4.3.2 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.


To specify a time limit for acting on a task:

	
Expand the Advanced section of the Edit Participant Type dialog for the single type, as shown in Figure 29-33.


Figure 29-33 Advanced Section of Edit Participant Type — Single Type
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Select Limit allocated duration to.


	
Specify the amount of time.

For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."









29.4.3.3 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

This is also known as ad hoc routing. If this option is selected, Adhoc Route is added to the Actions list in Oracle BPM Worklist at runtime.


To invite additional participants to a task:

	
Expand the Advanced section of the Edit Participant Type dialog for the single type, as shown in Figure 29-33.


	
Select Allow this participant to invite other participants.









29.4.3.4 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.


To bypass a task:

	
Expand the Advanced section of the Edit Participant Type dialog for the single type, as shown in Figure 29-33. 


	
Select Specify skip rule.

This action displays an icon for accessing the Expression Builder dialog for building a condition.

The expression to bypass a task participant must evaluate to a boolean value. For example, /task:task/task:payload/order:orderAmount < 1000 is a valid XPath expression for skipping a participant.

For more information about creating dynamic rule conditions, see Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."











29.4.4 How to Configure the Parallel Participant Type

Figure 29-34 and Figure 29-35 display the upper and lower sections of the Parallel dialog.

This participant type is used when multiple users, working in parallel, must act simultaneously, such as in a hiring situation when multiple users vote to hire or reject an applicant. You specify the voting percentage that is needed for the outcome to take effect, such as a majority vote or a unanimous vote.

For example, a business process collects the feedback from all interviewers in the hiring process, consolidates it, and assigns a hire or reject request to each of the interviewers. At the end, the candidate is hired if the majority of interviewers vote for hiring instead of rejecting.


Figure 29-34 Edit Participant Type — Parallel Type (Upper Section of Dialog)

[image: Description of Figure 29-34 follows]
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Figure 29-35 Edit Participant Type — Parallel Type (Lower Section of Dialog)

[image: Description of Figure 29-35 follows]

Description of "Figure 29-35 Edit Participant Type — Parallel Type (Lower Section of Dialog)"






To assign participants to the parallel participant type:

	
In the Label field, enter a recognizable label for this participant. This label must be unique among all the participants in the task definition (for example, Approval Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type dialog for the parallel participant type are listed in Table 29-8:


Table 29-8 Edit Participant Type — Parallel Type

	For This Subsection...	See...
	
Vote Outcome

	
Section 29.4.4.1, "Specifying the Voting Outcome"



	
Participant List

	
Section 29.4.4.2, "Creating a Parallel Task Participant List"



	
Limit allocated duration to (under the Advanced section)

	
Section 29.4.4.3, "Specifying a Time Limit for Acting on a Task"



	
Allow this participant to invite other participants (under the Advanced section)

	
Section 29.4.4.4, "Inviting Additional Participants to a Task"



	
Specify skip rule (under the Advanced section)

	
Section 29.4.4.5, "Bypassing a Task Participant"













29.4.4.1 Specifying the Voting Outcome

You can specify a voted-upon outcome that overrides the default outcome selected in the Default Outcome list. This outcome takes effect if the required percentage is reached. Outcomes are evaluated in the order listed in the table.


To specify group voting details:

	
Go to the Vote Outcome section of the Edit Participant Type dialog for the parallel type.


	
From the list in the Voted Outcomes column, select an outcome for the task (for example, Any, ACCEPT, REJECT, or any other outcome specified in Section 29.2.4, "How to Specify a Task Outcome").

The Any outcome enables you to determine the outcome dynamically at runtime. For example, if you select Any and set the outcome percentage to 60, then at runtime, whichever outcome reaches 60% becomes the final voted outcome. If 60% of assignees vote to reject the outcome, then it is rejected.


	
From the list in the Outcome Type column, select a method for determining the outcome of the final task.

	
By Expression: Dynamically specify the details with an XPath expression.


	
By Percentage: Specify a percentage value that determines when the outcome of this task takes effect.





	
From the list in the Value column, specify a value based on your selection in Step 3.

	
If you selected By Expression, click the Browse icon to the right of the field to display the Expression Builder dialog for creating an expression.


	
If you selected By Percentage, enter a percentage value required for the outcome of this task to take effect (for example, a majority vote (51) or a unanimous vote (100)). For example, assume there are two possible outcomes (ACCEPT and REJECT) and five subtasks. If two subtasks are accepted and three are rejected, and the required acceptance percentage is 50%, the outcome of the task is rejected. Figure 29-36 provides details.

This functionality is nondeterministic. For example, selecting a percentage of 30% when there are two subtasks does not make sense.


Figure 29-36 Vote Outcomes Section
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Click the Add icon to specify additional outcomes.


	
In the Default Outcome list, select the default outcome or enter an XPath expression for this task to take effect if the consensus percentage value is not satisfied. This happens if there is a tie or if all participants do not respond before the task expires. Seeded and custom outcomes that you entered in the Outcomes dialog in Section 29.2.4, "How to Specify a Task Outcome" display in this list.


	
Specify additional group voting details:

	
Immediately trigger voted outcome when minimum percentage is met

If selected, the outcome of the task can be computed early with the outcomes of the completed subtasks, enabling the pending subtasks to be withdrawn. For example, assume four users are assigned to act on a task, the default outcome is APPROVE, and the consensus percentage is set at 50. If the first two users approve the task, the third and fourth users do not need to act on the task, since the consensus percentage value has been satisfied.


	
Wait until all votes are in before triggering outcome

If selected, the workflow waits for all responses before an outcome is initiated.





	
To share comments and attachments with all group collaborators or workflow participants for a task, select Share attachments and comments. This information typically displays in the footer region of Oracle BPM Worklist.









29.4.4.2 Creating a Parallel Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several types of lists:

	
Value-based name and expression lists


	
Value-based management chain lists


	
Rule-based names and expression lists


	
Rule-based management chain lists


	
Rule-based links




For information about creating these lists of participants, see section Section 29.4.3.1, "Creating a Single Task Participant List."






29.4.4.3 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.


To specify a time limit for acting on a task:

	
In the Advanced section of the Edit Participant Type dialog for the parallel type, click the Advanced icon to expand the section shown in Figure 29-35.


	
Select Limit allocated duration to.


	
Specify the amount of time.




For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."






29.4.4.4 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.


To invite additional participants to a task:

	
In the Advanced section of the Edit Participant Type dialog for the parallel type, click the Advanced icon to expand the section (if not expanded).


	
Select Allow this participant to invite other participants.









29.4.4.5 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.


To bypass a task participant:

	
In the Edit Participant Type dialog for the parallel type, select the Specify skip rule checkbox.

This action displays an icon for accessing the Expression Builder dialog for building a condition. The expression must evaluate to a boolean value.

For information about a valid XPath expression for skipping a participant, see Section 29.4.3.4, "Bypassing a Task Participant."











29.4.5 How to Configure the Serial Participant Type

Figure 29-37 displays the Serial dialog. Figure 29-38 shows the expanded Advanced section.

This participant type enables you to create a list of sequential participants for a workflow. For example, if you want a document to be reviewed by John, Mary, and Scott in sequence, use this participant type. For the serial participant type, they can be any list of users or groups.


Figure 29-37 Edit Participant Type — Serial Type
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Description of "Figure 29-37 Edit Participant Type — Serial Type"






Figure 29-38 Edit Participant Type — Serial Type (Expanded Advanced Section)
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Description of "Figure 29-38 Edit Participant Type — Serial Type (Expanded Advanced Section)"






To configure the serial participant type:

	
In the Label field, enter a recognizable label for this participant. This label must be unique among all the participants in the task definition (for example, Approval Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type dialog for the serial participant type are listed in Table 29-9.


Table 29-9 Edit Participant Type — Serial Type

	For This Subsection...	See...
	
Participant List

	
Section 29.4.5.1, "Creating a Serial Task Participant List"



	
Limit allocated duration to (under the Advanced section)

	
Section 29.4.5.2, "Specifying a Time Limit for Acting on a Task"



	
Allow this participant to invite other participants (under the Advanced section)

	
Section 29.4.5.3, "Inviting Additional Participants to a Task"



	
Specify skip rule (under the Advanced section)

	
Section 29.4.5.4, "Bypassing a Task Participant"













29.4.5.1 Creating a Serial Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several types of lists:

	
Value-based name and expression lists


	
Value-based management chain lists


	
Rule-based names and expression lists


	
Rule-based management chain lists


	
Rule-based lists




See section Section 29.4.3.1, "Creating a Single Task Participant List" for instructions on creating these lists of participants.






29.4.5.2 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.


To specify a time limit for acting on a task:

	
In the Advanced section of the Edit Participant Type dialog for the serial type, click the Advanced icon to expand the section shown in Figure 29-37.


	
Click Limit allocated duration to.


	
Specify the amount of time.

For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."









29.4.5.3 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.


To invite additional participants to a task:

	
In the Advanced section of the Edit Participant Type dialog for the serial type, click the Advanced icon to expand the section (if not already expanded).


	
Select Allow this participant to invite other participants.




	
Note:

For the serial participant type, additional participants can be invited as follows:

	
Globally specifying that the ad hoc participants can be invited at anytime. In this case, even in a sequential workflow, approvers can invite other participants at any level in the sequential workflow.


	
Specifying that an ad hoc invitation of other participants can be done only in specific points in the workflow. In this case, other ad hoc participants are invited only when a serial in complete.




















29.4.5.4 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.


To bypass a task participant:

	
In the Advanced section of the Edit Participant Type dialog for the serial type, select the Specify skip rule checkbox.

This action displays an icon for accessing the Expression Builder dialog for building a condition. The expression must evaluate to a boolean value.

For more information about a valid XPath expression for skipping a participant, see Section 29.4.3.4, "Bypassing a Task Participant."











29.4.6 How to Configure the FYI Participant Type

Figure 29-39 displays the Edit Participant Type dialog for the FYI type. This dialog also includes a Participants Exclusion List at the bottom that is not displayed in Figure 29-39.

This participant type is used when a task is sent to a user, but the business process does not wait for a user response; it just continues. FYIs cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.

For example, a magazine subscription is due for renewal. If the user does not cancel the current subscription before the expiration date, the subscription is renewed. This user is reminded weekly until the request expires or the user acts on it.


Figure 29-39 Edit Participant Type — FYI Type
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To configure the FYI participant type:

	
In the Label field, enter a recognizable label for this participant. This label must be unique among all the participants in the task definition (for example, Approval Manager, Primary Reviewers, and so on).






29.4.6.1 Creating an FYI Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several types of lists:

	
Value-based name and expression lists


	
Value-based management chain lists


	
Rule-based names and expression lists


	
Rule-based management chain lists


	
Rule-based lists




See section Section 29.4.3.1, "Creating a Single Task Participant List" for instructions on creating these lists of participants.










29.5 Selecting a Routing Policy

After you configure a participant type and are returned to the Human Task Editor, click the Task will go from starting to final participant icon, as shown in Figure 29-40.


Figure 29-40 Human Task Editor — Assignment Section
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This displays the Configure Assignment dialog shown in Figure 29-41 for specifying a method for routing your task through the workflow.


Figure 29-41 Configure Assignment
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Table 29-10 describes the routing policy methods provided.


Table 29-10 Routing Policy Method

	Routing Policy Selection	Use This Policy In Environments Where...	Section
	
Route task to all participants, in order specified

This selection enables you to specify the following suboptions:

	
A task must be routed to each of the participants in the order in which they appear. This is predetermined, default routing. For example, in a hiring process, if three users interview and provide review feedback, then the task is sent to the human resources department.

	
Section 29.5.1, "How to Route Tasks to All Participants in the Specified Order"



	
	
Allow all participants to invite other participants




	
A participant can select users or groups as the next assignee (ad hoc) when approving the task.

	
Section 29.5.1.1, "Allowing All Participants to Invite Other Participants"



	
	
Complete task when a participant chooses: <outcome>




	
A participant in a task can accept or reject it, thus ending the workflow without the task being sent to any other participant. For example, a manager rejects a purchase order, meaning that purchase order is not sent to their manager for review.

	
Section 29.5.1.2, "Stopping Routing of a Task to Further Participants"



	
	
Enable early completion in parallel subtasks




	
Note: This option is for environments in which you have multiple stages and participants working in parallel.

Participants perform subtasks in parallel, and one group's rejection or approval of a subtask does not cause the other group's subtask to also be rejected or approved.

	
Section 29.5.1.3, "Enabling Early Completion in Parallel Subtasks"



	
	
Complete parent tasks of early completing subtasks




	
Note: This option is for environments in which you have multiple stages and participants working in parallel.

Participants perform subtasks in parallel, and one group's rejection or approval of a subtask causes the other group's subtask to also be rejected or approved.

	
Section 29.5.1.4, "Completing Parent Subtasks of Early Completing Subtasks"



	
Use Advanced Rules

	
The participants to whom the task is routed are determined by the business rule logic that you model. For example, a loan application task is designed to go through a loan agent, their manager, and then the senior manager. If the loan agent approves the loan, but their manager rejects it, the task is returned to the loan agent.

	
Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules"



	
Use External Routing

	
The participants in a task are dynamically determined. For example, a company's rules may require the task participants to be determined and then retrieved from a back-end database during runtime.

	
Section 29.5.3, "How to Use External Routing"



	
Assignment tab

	
A participant is assigned a failed task for the purposes of recovery.

	
Section 29.5.4, "How to Configure the Error Assignee"











29.5.1 How to Route Tasks to All Participants in the Specified Order

You can select to have a task reviewed by all selected participants. This is known as default routing because the task is routed to each of the participants in the order in which they appear. This type of routing differs from state machine-based routing.


To route tasks to all participants in the specified order:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.


	
Select Route task to all participants, in order specified from the list shown in Figure 29-42.


Figure 29-42 Route a Task to All Participants
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See the following tasks to define a routing policy:

	
Allowing all participants to invite other participants


	
Completing a task when a participant chooses


	
Enabling early completion in parallel subtasks


	
Completing parent subtasks of early completing subtasks









29.5.1.1 Allowing All Participants to Invite Other Participants

This checkbox is the equivalent of the ad hoc workflow pattern of pre-10.1.3 Oracle BPEL Process Manager releases. This applies when there is at least one participant. In this case, each user selects users or groups as the next assignee when approving the task.


To allow all participants to invite other participants:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.


	
Select Route task to all participants, in order specified.


	
Select the Allow all participants to invite other participants checkbox for this task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow.









29.5.1.2 Stopping Routing of a Task to Further Participants

You can specify conditions under which to complete a task early, regardless of the other participants in the workflow.

For example, assume an expense report goes to the manager, and then the director. If the first participant (manager) rejects it, you can end the workflow without sending it to the next participant (director).


To abruptly complete a condition:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.


	
Select Route task to all participants, in order specified from the list.


	
Select the Complete task when a participant chooses: <outcome> checkbox.

The Abrupt Completion Details dialog appears.

There are two methods for specifying the abrupt completion of a task:

	
Outcomes


	
XPath expression routing condition




If outcomes are specified, any time the selected task outcome occurs, the task completes. If both outcome and routing condition are specified, the workflow service performs a logical OR operation on the two.


	
Select appropriate outcomes and click the > button, as shown in Figure 29-43. To select all, click the >> button.


Figure 29-43 Abrupt Completion Details
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To the right of the Routing Condition field, click the icon to display the Expression Builder dialog for dynamically creating a condition under which to complete this task early. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.

An early completion XPath expression is not evaluated until at least one user has acted upon the task.


	
To enable early completion, click Enable early completion in parallel with subtasks. For more information, see Section 29.5.1.3, "Enabling Early Completion in Parallel Subtasks."


	
To enable early completion of parent tasks, click Complete parent tasks of early completing subtasks. For more information, see Section 29.5.1.4, "Completing Parent Subtasks of Early Completing Subtasks."


	
Click OK to return to the Human Task Editor.

You can click the icon to the right of the Complete task when a participant chooses: <outcome> checkbox to edit this information.









29.5.1.3 Enabling Early Completion in Parallel Subtasks

You can use this option in the following environments:

	
Multiple stages and groups of participants perform subtasks in parallel.


	
A participant in one group approves or rejects a subtask, which causes the other participants in that same group to stop acting upon the task. However, this does not cause the other parallel group to stop acting upon subtasks. That group continues taking actions on tasks.




For example, assume there are two parallel subgroups, each in separate stages. One group acts upon lines of a purchase order. The other group acts upon headers of the same purchase order. If participant ApproveLines.Participant2 of the first group rejects a line, all other task participants in the first group stop acting upon tasks. However, the second parallel group continues to act upon headers in the purchase order. In this scenario, the entire task does not complete early. Figure 29-44 provides details.


Figure 29-44 Early Completion of Parallel Subtasks
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29.5.1.4 Completing Parent Subtasks of Early Completing Subtasks

You can use this option in the following environments:

	
Multiple stages and groups of participants perform subtasks in parallel.


	
A participant in one group approves or rejects a subtask, which causes the other participants in that same group to stop acting upon the task. This also causes the other parallel group to stop acting upon subtasks.




For example, assume there are two parallel subgroups, each in separate stages, as shown in Figure 29-44. One group acts upon lines of a purchase order. The other group acts upon headers of the same purchase order. If participant ApproveLines.Participant2 of the first group rejects a line, all other task participants in the first group stop acting upon tasks. In addition, the second parallel group stops acting upon headers in the purchase order. In this scenario, the entire task completes early.








29.5.2 How to Specify Advanced Task Routing Using Business Rules

Use advanced routing rules to create complex workflow routing scenarios. The participant types (single, parallel, serial, and FYI) are used to create a linear flow from one set of users to another with basic conditions such as abrupt termination, skipping assignees, and so on. However, there is often a need to perform more complex back and forth routing between multiple individuals in a workflow. One option is to use the BPEL process as the orchestrator of these tasks. Another option is to specify it declaratively using business rules. This section describes how you can model such complex interactions by using business rules with the Human Task Editor.



29.5.2.1 Introduction to Advanced Task Routing Using Business Rules

You can define state machine routing rules using Oracle Business Rules. This action enables you to create Oracle Business Rules that are evaluated:

	
After a routing slip task participant sets the outcome of the task


	
Before the task is assigned to the next routing slip participant




This action enables you to override the standard task routing slip method described in Section 29.5.1, "How to Route Tasks to All Participants in the Specified Order" and build complex routing behavior into tasks.

Using Oracle Business Rules, you define a set of rules (called a ruleset) that relies on business objects, called facts, to determine which action to take.






29.5.2.2 Facts

A fact is an object with certain business data. Each time a routing slip assignee sets the outcome of a task, instead of automatically routing the task to the next assignee, the task service performs the following steps:

	
Asserts facts into the decision service


	
Executes the advanced routing ruleset




Rules can test values in the asserted facts and specify the routing behavior by setting values in a TaskAction fact type.

Table 29-11 describes the fact types asserted by the task service.


Table 29-11 Fact Types Asserted By the Task Service

	Fact Type	Description
	
Task

	
This fact contains the current state of the workflow task instance. All task attributes can be tested against it. The task fact also contains the current task payload. This fact enables you to construct tests against payload values and task attribute values.


	
PreviousOutcome

	
This fact describes the previous task outcome and the assignee who set the outcome. The previous outcome fact contains the following attributes:

	
actualParticipant: The name of the participant who set the task outcome (for example, jstein)


	
logicalParticipant: The logical name (or label) for the routing slip participant responsible for setting the task outcome (for example, assignee1)


	
outcome: The outcome that was set (for example, approve or reject)


	
level: If the previous participant was part of a management chain, then this attribute records their level in the chain, where 1 is the first level in the chain. For other participant types, the value is -1.


	
totalNumberOfApprovals: The total number of users that have now set the outcome of the task.





	
TaskAction

	
This fact is not intended for writing rule tests against it. Instead, it is updated by the ruleset, and returned to the task service to indicate how the task should be routed. Rules should not directly update the TaskAction fact. Instead, they should call one of the RL functions described in Section 29.5.2.3, "Action Types." These functions handle updating the TaskAction fact with the appropriate values.








Some fact types can only be used in workflow routing rules, while others can only be used in workflow participant rules. Table 29-12 describes where you can use each type.


Table 29-12 Use of Fact Types

	Fact Type	Can Use in Routing Rules?	Can Use in Participant Rules?
	
Task

	
Yes

	
Yes


	
PreviousOutcome

	
Yes

	
No


	
TaskAction

	
Yes

	
No


	
Lists

	
No

	
Yes


	
RoutingSlipObjectFactory

	
No

	
Yes


	
ResourceListType

	
No

	
Yes


	
ManagementChainListType

	
No

	
Yes


	
ResourceType

	
No

	
Yes


	
ParameterType

	
No

	
Yes


	
AutoActionType

	
No

	
Yes


	
ResponseType

	
No

	
Yes












29.5.2.3 Action Types

To instruct the task service on how to route the task, rules can specify one of many task actions. This is done by updating the TaskAction fact asserted into the rule session. However, rules should not directly update the TaskAction fact. Instead, rules should call one of the action RL functions, passing the TaskAction fact as a parameter. These functions handle the actual updates to the fact. For example, to specify an action of go forward, you must add a call GO_FORWARD(TaskAction) to the action part of the rule.

Each time a state machine routing rule is evaluated, the rule takes one of the actions shown in Table 29-13:


Table 29-13 Business Rule Actions

	Action	Description	Parameters
	
GO_FORWARD

	
Goes to the next participant in the routing slip (default behavior).

	
None


	
PUSHBACK

	
Goes back to the previous participant in the routing slip (the participant before the one that just set the task outcome).

	
None


	
GOTO

	
Goes to a specific participant in the routing slip.

	
participant'

A string that identifies the label of the participant (for example, Approver1) to which to route the task.


	
COMPLETE

	
Finishes routing and completes the task. The task is marked as completed, and no further routing is required.

	
None


	
ESCALATE

	
Escalates and reassigns the task according to the task escalation policy (usually to the manager of the current assignee).

	
None












29.5.2.4 Sample Ruleset

This section describes how to use rules to implement custom routing behavior with a simple example. A human workflow task is created for managing approvals of expense requests. The outcomes for the task are approve and reject. The task definition includes an ExpenseRequest payload element. One of the fields of ExpenseRequest is the total amount of the expense request. The routing slip for the task consists of three single participants (assignee1, assignee2, and assignee3).

By default, the task gets routed to each of the assignees, with each assignee choosing to approve or reject the task.

Instead of this behavior, the necessary routing behavior is as follows:

	
If the total amount of the expense request is less than $100, approval is only required from one of the participants. Otherwise, it must be approved by all three.


	
If an expense request is rejected by any of the participants, it must be returned to the previous participant for re-evaluation. If it is rejected by the first participant, the expense request is rejected and marked as completed.




This behavior is implemented using the following rules. When a rule dictionary is generated for advanced routing rules, it is created with a template rule that implements the default GO_FORWARD behavior. You can edit this rule, and make copies of the template rule by right-clicking and selecting Copy Rule in the Oracle Business Rules Designer.

If the amount is greater than $100 and the previous assignee approved the task, it is not necessary to provide a rule for routing a task to each of the assignees in turn. This is the default behavior that is reverted to if none of the rules in the ruleset are triggered:

	
Early approval rule (Figure 29-45):


Figure 29-45 Early Approval Rule

[image: Description of Figure 29-45 follows]

Description of "Figure 29-45 Early Approval Rule"





	
Push back on the rejected rule (Figure 29-46):


Figure 29-46 Push Back On The Rejected Rule

[image: Description of Figure 29-46 follows]

Description of "Figure 29-46 Push Back On The Rejected Rule"





	
Complete the Assignee1 rejected rule (Figure 29-47):


Figure 29-47 Completion of the Assignee1 Rejected Rule

[image: Description of Figure 29-47 follows]

Description of "Figure 29-47 Completion of the Assignee1 Rejected Rule"







For information about iterative design, see the workflow-106-IterativeDesign sample available with the Oracle SOA Suite samples. 






29.5.2.5 Linked Dictionary Support

For human workflow, business rule artifacts are now stored in two rules dictionaries. This is useful for scenarios in which you must customize your applications. For example, you create and ship version 1 of an application to a customer. The customer then customizes the rulesets in the application with Oracle SOA Composer. Those customizations are now stored in a different rules dictionary than the base rules dictionary. The rules dictionary that stores the customized rulesets links with the rules in the base dictionary. When you later ship version 2 of the application, the base rule dictionary may contain additional changes introduced in the product. The ruleset customization changes previously performed by the customer are preserved and available with the new changes in the base dictionary. When an existing application containing a task using rules is opened, if the rules are in the old format using one dictionary, they are automatically upgraded and divided into two rules dictionaries:

	
Base dictionary


	
Custom dictionary




For more information about customizations, see Chapter 46, "Customizing SOA Composite Applications."






29.5.2.6 Creating Advanced Routing Rules


To create advanced routing rules:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.


	
Select Use Advanced Rules from the list.


	
To the right of Rules Dictionary, click the Edit icon, as shown in Figure 29-48.


Figure 29-48 Creating a Rules Dictionary

[image: Description of Figure 29-48 follows]

Description of "Figure 29-48 Creating a Rules Dictionary"





This starts the Oracle Business Rules Designer with a preseeded repository containing all necessary fact definitions, as shown in Figure 29-49. A decision service component is created for the dictionary, and is associated with the task service component.


Figure 29-49 Human Task Rule Dictionary

[image: Description of Figure 29-49 follows]

Description of "Figure 29-49 Human Task Rule Dictionary"





	
Define state machine routing rules for your task using Oracle Business Rules.

This automatically creates a fully-wired decision service in the human task and the associated rule repository and data model.

For more information about business rules, see the following documentation:

	
Section 29.5.2.4, "Sample Ruleset" for an example human task ruleset


	
Oracle Fusion Middleware User's Guide for Oracle Business Rules


	
Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules














29.5.3 How to Use External Routing

You configure an external routing service that dynamically determines the participants in the workflow. If this routing policy is specified, all other participant types are ignored. It is assumed that the external routing service provides a list of participant types (single approver, serial approver, parallel approver, and so on) at runtime to determine the routing of the task.

Use this option if you do not want to use any of the routing rules to determine task assignees. In this case, all the logic of task assignment is delegated to the external routing service.




	
Note:

If you select Use External Routing in the Configure Assignment dialog, specify a Java class, and click OK to exit, the next time you open this dialog, the other two selections (Route task to all participants, in order specified and Use Advanced Rules) no longer appear in the dropdown list. To access all three selections again, you must delete the entire assignment.










To use external routing

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.


	
Select Use External Routing from the list.


	
Click the Edit icon, as shown in Figure 29-50.


Figure 29-50 Selection of Use External Routing

[image: Description of Figure 29-50 follows]

Description of "Figure 29-50 Selection of Use External Routing"





The External Routing dialog appears, as shown in Figure 29-51.


Figure 29-51 Use External Routing Dialog

[image: Description of Figure 29-51 follows]

Description of "Figure 29-51 Use External Routing Dialog"





	
In the Class Name field, enter the fully qualified class file name (for example, the org.mycompany.tasks.RoutingService class name). This class must implement the following interface:


oracle.bpel.services.workflow.task.IAssignmentService


	
Add name and pair value parameters by name or XPath expression that can be passed to the external service, as shown in Table 29-14.


Table 29-14 External Routing

	Field	Description
	
By Name

	
Enter a name in the Name field and a value in the Value field.


	
By Expression

	
Enter a name and dynamically enter a value by clicking the icon to the right of the field to display the Expression Builder dialog.








	
Click the Add icon to add additional name and pair value parameters.









29.5.4 How to Configure the Error Assignee

Tasks can error for reasons such as incorrect assignments. When such errors occur, the task is assigned to the error assignee, who can perform corrective actions. Recoverable errors are as follows:

	
Invalid user and group for all participants


	
Invalid XPath expressions that are related to assignees and expiration duration


	
Escalation on expiration errors


	
Evaluating escalation policy


	
Evaluating renewal policy


	
Computing a management chain


	
Evaluating dynamic assignment rules. The task is not currently in error, but is still left as assigned to the current user and is therefore recoverable.


	
Dynamic assignment cyclic assignment (for example, user A > user B > user A). The task is not currently in error, but is still left as assigned to the last user in the chain and is therefore recoverable.




The following errors are not recoverable. In these cases, the task is moved to the terminating state ERRORED.

	
Invalid task metadata


	
Unable to read task metadata


	
Invalid GOTO participant from state machine rules


	
Assignment service not found


	
Any errors from assignment service


	
Evaluating custom escalate functions


	
Invalid XPath and values for parallel default outcome and percentage values




During modeling of workflow tasks, you can specify error assignees for the workflow. If error assignees are specified, they are evaluated and the task is assigned to them. If no error assignee is specified at runtime, an administration user is discovered and is assigned the alerted task. The error assignee can perform one of the following actions:

	
Ad hoc route

Route the task to the actual users assigned to the task. Ad hoc routing allows the task to be routed to users in sequence, parallel, and so on.


	
Reassign

Reassign the task to the actual users assigned to this task


	
Error task

Indicate that this task cannot be rectified.




If there are any errors in evaluating the error assignees, the task is marked as being in error.

This dialog enables you to specify the users or groups to whom the task is assigned if an error in assignment has occurred.


To configure the error assignee:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.


	
Click the Assignment tab.


	
Click the Add icon to assign reviewers or error assignees, as shown in Figure 29-52.


Figure 29-52 Error Assignment Details

[image: Description of Figure 29-52 follows]

Description of "Figure 29-52 Error Assignment Details"





	
Click the Add icon and select a user, group, or application role to participate in this task.

The Identification Type column of the Starting Participant table displays your selection of user, group, or application role.


	
See Step 5 through 7 of Section 29.4.3.1, "Creating a Single Task Participant List" for instructions on selecting a user, group, or application role.


	
If you are using parallel participant types, you can specify where to store the subtask payload with the following options.

	
Use server settings

The SharePayloadAcrossAllParallelApprovers System MBean Browser boolean property in Oracle Enterprise Manager Fusion Middleware Control determines whether to share the payload of subtasks in the root task. By default, this property is set to true. If set to true, the All task participants share the same payload (better performance and less storage space) option is used. If this property is set to false, the Each parallel participant has a local copy of the payload option is used. To change this property, perform the following steps:

	
Right-click soa-infra and select Administration > System MBean Browser.


	
Expand Application Defined MBeans > oracle.as.soainfra.config > Server: server_name > WorkflowConfig > human-workflow.


	
Click SharePayloadAcrossAllParallelApprovers.


	
Change this property in the list, and click Apply.





	
All task participants share the same payload (better performance and less storage space)

The payload for the subtasks is stored in their root task. This situation means that the payload of the root task is shared across all its subtasks. Internally, this option provides better performance and storage space consumption. Less storage space is consumed because the payload of the root task is shared across all its subtasks.


	
Each parallel participant has a local copy of the payload

Each subtask has its own copy of the payload. Internally, this option provides lesser performance and storage space consumption because more storage space is consumed.





	
Click OK.




For more information about users, groups, or application roles, see Section 27.2.1.1.3, "Participant Assignment."








29.6 Specifying Multilingual Settings and Style Sheets

The Presentation section shown in Figure 29-53 enables you to specify resource bundles for displaying task details in different languages in Oracle BPM Worklist and WordML and custom style sheets for attachments.


Figure 29-53 Presentation Section

[image: Description of Figure 29-53 follows]

Description of "Figure 29-53 Presentation Section"







29.6.1 How to Specify WordML and Other Style Sheets for Attachments


To specify WordML style sheets for attachments:

	
In the Stylesheet for Attachments list of the Presentation section, select one of the following options:

	
Word ML: This option dynamically creates Microsoft Word documents for sending as email attachments using a WordML XSLT style sheet. The XSLT style sheet is applied on the task document.


	
Other: This option creates email attachments using an XSLT style sheet. The XSLT style sheet is applied on the task document.





	
Click the Search icon to select the style sheet as an attachment.









29.6.2 How to Specify Multilingual Settings

You can specify resource bundles for displaying task details in different languages in Oracle BPM Worklist. Resource bundles are supported for the following task details:

	
Displaying the value for task outcomes in plain text or with the message(key) format.


	
Making email notification messages available in different languages. At runtime, you specify the hwf:getTaskResourceBundleString(taskId, key, locale?) XPath extension function to obtain the internationalized string from the specified resource bundle. The locale of the notification recipient can be retrieved with the function hwf:getNotificationProperty(propertyName).




Resource bundles can also simply be property files. For example, a resource bundle that configures a display name for task outcomes can look as follows:

	
APPROVE=Approve


	
REJECT=Reject





To specify multilingual settings:

	
In the Presentation section, click the Add icon across from Resource Bundle.

The Resource Details dialog shown in Figure 29-54 appears.


Figure 29-54 Resource Details Dialog

[image: Description of Figure 29-54 follows]

Description of "Figure 29-54 Resource Details Dialog"





	
In the Resource Name field, enter the name of the resource used in the resource bundle. This should be a .properties-based resource bundle file.


	
In the Resource Location field, click the Search icon to select the JAR or ZIP resource bundle file to use. The resource bundle is part of your system archive (SAR) file.

If the resource bundle is outside of the composite project, you are prompted to place a local copy in SCA-INF/lib.

If the resource bundle file is not in the composite class loader (directly under SCA-INF/classes or in a JAR file in SCA-INF/lib), you must specify its location. For example, if the resource bundle is accessible from a location outside of the composite class loader (for example, an HTTP location such as http://host:port/bundleApp/taskBundles.jar), then this location must be specified in this field.


	
Click OK to return to the Human Task Editor.

For more information, see Section 34.2.6, "How to Configure Notification Messages in Different Languages."











29.7 Escalating, Renewing, or Ending the Task

Figure 29-55 shows the Deadlines section of the Human Task Editor.

You can specify the expiration duration of a task in this global policy section (also known as the routing slip level). If the expiration duration is specified at the routing slip level instead of at the participant type level, then this duration is the expiration duration of the task across all the participants. However, if you specify expiration duration at the participant type level (through the Limit allocated duration to checkbox), then those settings take precedence over settings specified in the Deadlines section (routing slip level).

You can also specify that a task be escalated to a user's manager after a specified time period. For more information, see Section 29.4.3.2, "Specifying a Time Limit for Acting on a Task."


Figure 29-55 Human Task Editor — Deadlines Section

[image: Description of Figure 29-55 follows]

Description of "Figure 29-55 Human Task Editor — Deadlines Section"







29.7.1 Introduction to Escalation and Expiration Policy

This section provides an overview of how specifying the expiration duration at this level makes this setting the expiration duration of the task across all the participants.

For example, participant LoanAgentGroup and participant Supervisor have three days to act on the task between them, as shown in Figure 29-56:


Figure 29-56 Expire After Policy

[image: Description of Figure 29-56 follows]

Description of "Figure 29-56 Expire After Policy"





If there is no expiration specified at either the participant level or this routing slip level, then that task has no expiration duration.

If expiration duration is specified at any level of the participants, then for that participant, the participant expiration duration is used. However, the global expiration duration is still used for the participants that do not have participant level expiration duration. The global expiration duration is always decremented by the time elapsed in the task.

The policy for interpreting the participant level expiration for the participants is described as follows:

	
Serial

Each assignment in the management chain gets the same expiration duration as the one specified in the serial. The duration is not for all the assignments resulting from this assignment. If the task expires at any of the assignments in the management chain, the escalation and renewal policy is applied.


	
Parallel:

	
In a parallel workflow, if the parallel participants are specified as a resource, a routing slip is created for each of the resources. The expiration duration of each created routing slip follows these rules:

	
The expiration duration equals the expiration duration of the parallel participant if it has an expiration duration specified.


	
The expiration duration that is left on the task if it was specified at the routing slip level.


	
Otherwise, there is no expiration duration.





	
If parallel participants are specified as routing slips, then the expiration duration for the parallel participants is determined by the routing slip.










	
Note:

When the parent task expires in a parallel task, the subtasks are withdrawn if those tasks have not expired or completed.














29.7.2 How to Specify a Policy to Never Expire

You can specify for a task to never expire.


To specify a policy to never expire:

	
In the dropdown list in the Deadlines section, as shown in Figure 29-55, select Never Expire.









29.7.3 How to Specify a Policy to Expire

You can specify for a task to expire. When the task expires, either the escalation policy or the renewal policy at the routing slip level is applied. If neither is specified, the task expires. The expiration policy at the routing slip level is common to all the participants.


To specify for a task to expire:

	
In the dropdown list of the Deadlines section, select Expire after, as shown in Figure 29-57.


	
Specify the maximum time period for the task to remain open.

The expiration policy for parallel participants is interpreted as follows:

	
If parallel participants are specified as resources in parallel elements, there is no expiration policy for each of those participants.


	
If parallel participants are specified as routing slips, then the expiration policy for the routing slip applies to the parallel participants.




Figure 29-57 indicates that the task expires in three days.


Figure 29-57 Expire After Policy

[image: Description of Figure 29-57 follows]
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29.7.4 How to Extend an Expiration Policy Period

You can extend the expiration period when the user does not respond within the allotted time. You do this by specifying the number of times the task can be renewed upon expiration (for example, renew it an additional three times) and the duration of each renewal (for example, three days for each renewal period).


To extend an expiration policy period:

	
In the dropdown list of the Deadlines section, select Renew after, as shown in Figure 29-58.


	
Specify the maximum number of times to continue renewing this task.

In Figure 29-58, when the task expires, it is renewed at most three times. It does not matter if the task expired at the LoanAgentGroup participant or the Supervisor participant.


Figure 29-58 Renew After Policy

[image: Description of Figure 29-58 follows]

Description of "Figure 29-58 Renew After Policy"












29.7.5 How to Escalate a Task Policy

You can escalate a task if a user does not respond within the allotted time. For example, if you are using the escalation hierarchy configured in your user directory, the task can be escalated to the user's manager. If you are using escalation callbacks, the task is escalated to whoever you have defined. When a task has been escalated the maximum number of times, it stops escalating. An escalated task can remain in a user inbox even after the task has expired.


To escalate a task policy:

	
In the dropdown list of the Deadlines section, select Escalate after, as shown in Figure 29-59.


	
Specify the following additional values. When both are set, the escalation policy is more restrictive.

	
Maximum Escalation Levels

Number of management levels to which to escalate the task. This field is required.


	
Highest Approver Title

The title of the highest approver (for example, self, manager, director, or CEO). These titles are compared against the title of the task assignee in the corresponding user repository. This field is optional.




The escalation policy specifies the number of times the task can be escalated on expiration and the renewal duration. In Figure 29-59, when the task expires, it is escalated at most three times. It does not matter if the task expired at the LoanAgentGroup participant or the Supervisor participant.


Figure 29-59 Escalate After Policy

[image: Description of Figure 29-59 follows]

Description of "Figure 29-59 Escalate After Policy"












29.7.6 How to Specify Escalation Rules

This option allows a custom escalation rule to be plugged in for a particular workflow. For example, to assign the task to a current user's department manager on task expiration, you can write a custom task escalation function, register it with the workflow service, and use that function in task definitions.

The default escalation rule is to assign a task to the manager of the current user. To add a new escalation rule, follow these steps.


To specify escalation rules:

	
Implement the following interface:


oracle.bpel.services.workflow.assignment.dynamic.IDynamicTaskEscalationFunction


This implementation must be available in the class path for the server.


	
Log in to Oracle Enterprise Manager Fusion Middleware Control.


	
Expand the SOA folder in the navigator.


	
Right-click soa-infra, and select SOA Administration > Workflow Config > Task tab.

The Workflow Task Service Properties page appears.


	
Add a new function. For example:

	
Function name: DepartmentSupervisor


	
Classpath: oracle.bpel.services.workflow.assignment.dynamic.patterns.DepartmentSupervisor


	
Function parameter name


	
Function parameter value





	
In the Custom Escalation Java Class field of the Deadlines section, enter the function name as defined in the Workflow Task Service Properties page for the escalation rule.

For more information, see Section 34.3.3, "Custom Escalation Function."









29.7.7 How to Specify a Due Date

A due date indicates the date by which the task should be completed. The due date is different from the expiration date. When a task expires it is either marked expired or automatically escalated or renewed based on the escalation policy. The due date is generally a date earlier than the expiration date and an indication to the user that the task is about to expire.

You can enter a due date for a task, as shown in Figure 29-55. A task is considered overdue after it is past the specified due date. This date is in addition to the expiration policy. A due date can be specified irrespective of whether an expiration policy has been specified. The due date enables Oracle BPM Worklist to display a due date, list overdue tasks, filter overdue tasks in the inbox, and so on. Overdue tasks can be queried using a predicate on the TaskQueryService.queryTask(...) API.


To specify a due date:

	
In the Deadlines section, select the Action Requested Before checkbox.


	
Select By Duration to enter a time duration or select By Expression to dynamically enter a value as an XPath expression.

Note the following details:

	
The due date can be set on both the task (using the Create ToDo Task dialog in Oracle BPM Worklist) and in the .task file (using the Human Task Editor). This is to allow to-do tasks without task definitions to set a due date during initiation of the task. A due date that is set in the task (a runtime object) overrides a due date that is set in the .task file.


	
In the task definition, the due date can only be specified at the global level, and not for each participant.


	
If the due date is set on the task, the due date in the .task file is ignored.


	
If the due date is not set on the task, the due date in the .task file is evaluated and set on the task.


	
If there is no due date on either the task or in the .task file, there is no due date on the task.










	
Note:

You cannot specify business rules for to-do tasks.









For more information, see Section 32.3.4, "How To Create a ToDo Task."








29.8 Specifying Participant Notification Preferences

Figure 29-60 shows the General tab of the Notification section of the Human Task Editor (when fully expanded).

Notifications indicate when a user or group is assigned a task or informed that the status of the task has changed. Notifications can be sent through email, voice message, instant message, or SMS. Notifications are sent to different types of participants for different actions. Notifications are configured by default with default messages. For example, a notification message is sent to indicate that a task has completed and closed. You can create your own or modify existing configurations.




	
Note:

Embedded LDAP does not support group email addresses. Therefore, when a task is assigned to a group ID, emails are sent to all of its members instead of to the group email address.










Figure 29-60 Human Task Editor — General Tab of Notification Section

[image: Description of Figure 29-60 follows]

Description of "Figure 29-60 Human Task Editor — General Tab of Notification Section"






To specify participant notification preferences:

	
Click the Notification tab (displays as shown in Figure 29-60).

Instructions for configuring the following subsections of the General tab of the Notification section are listed in Table 29-15.


Table 29-15 Human Task Editor — General Tab of Notification Section

	For This Subsection...	See...
	
Task Status

Recipient

	
Section 29.8.1, "How to Notify Recipients of Changes to Task Status"



	
Notification Header

	
Section 29.8.2, "How to Edit the Notification Message"









For information about the notification service, see Section 34.2, "Notifications from Human Workflow."


	
In the Notification section, click the Advanced tab. Figure 29-61 provides details.


Figure 29-61 Notification Section - Advanced Tab

[image: Description of Figure 29-61 follows]
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Instructions for configuring the following subsections of the Advanced tab of the Notification section are listed in Table 29-16.


Table 29-16 Human Task Editor — Advanced Tab of Notification Section

	For This Subsection...	See...
	
Reminders

	
Section 29.8.3, "How to Set Up Reminders"



	
Encoding

	
Section 29.8.4, "How to Change the Character Set Encoding"



	
Make notifications secure (exclude details)

	
Section 29.8.5, "How to Secure Notifications to Exclude Details"



	
Show worklist URL in notifications

	
Section 29.8.6, "How to Display the Oracle BPM Worklist URL in Notifications"



	
Make notifications actionable

	
Section 29.8.7, "How to Make Email Messages Actionable"



	
Send task attachments with email notifications

	
Section 29.8.8, "How to Send Task Attachments with Email Notifications"



	
Group notification configuration

	
Section 29.8.9, "How to Send Email Notifications to Groups and Application Roles"



	
Notification header attributes

	
Section 29.8.10, "How to Customize Notification Headers"













29.8.1 How to Notify Recipients of Changes to Task Status

Three default status types display in the Task Status column: Assign, Complete, and Error. You can select other status types for which to receive notification messages.


To notify recipients of changes to task status:

	
In the Notification section, click the General tab.


	
In the Task Status column, click a type to display the complete list of task types:

	
Alerted

When a task is in an alerted state, you can notify recipients. However, none of the notification recipients (assignees, approvers, owner, initiator, or reviewer) can move the task from an alerted state to an error state; they only receive an FYI notification of the alerted state. The owner can reassign, withdraw, delete, or purge the task, or ask the error assignee to move the task to an error state if the error cannot be resolved. Only the error assignee can move a task from an alerted state to an error state.

You configure the error assignee on the Assignment tab of the Configure Assignment dialog under the Task will go from starting to final participant icon in the Assignment section. For more information, see Section 29.5.4, "How to Configure the Error Assignee."


	
Assign

When the task is assigned to users or a group. This captures the following actions:

	
Task is assigned to a user


	
Task is assigned to a new user in a serial workflow


	
Task is renewed


	
Task is delegated


	
Task is reassigned


	
Task is escalated


	
Information for a task is submitted





	
Complete


	
Error


	
Expire


	
Request Info


	
Resume


	
Suspend


	
Update

	
Task payload is updated


	
Task is updated


	
Comments are added


	
Attachments are added and updated





	
Update Outcome


	
Withdraw


	
All Other Actions

	
Any action not covered in the above task types. This includes acquiring a task.








	
Select a task status type.

Notifications can be sent to users involved in the task in various capacities. This includes when the task is assigned to a group, each user in the group is sent a notification if there is no notification endpoint available for the group.


	
In the Recipient column, click an entry to display a list of possible recipients for the notification message:

	
Assignees

The users or groups to whom the task is currently assigned.


	
Initiator

The user who created the task.


	
Approvers

The users who have acted on the task up to this point. This applies in a serial participant type in which multiple users have approved the task and a notification must be sent to all of them.


	
Owner

The task owner


	
Reviewer

The user who can add comments and attachments to a task.




For more information, see Section 34.2.5, "How to Configure the Notification Channel Preferences."









29.8.2 How to Edit the Notification Message

A default notification message is available for delivery to the selected recipient. If you want, you can modify the default message text.


To edit the notification message:

	
In the Notification section, click the General tab.


	
In the Notification Header column, click the Edit icon to modify the default notification message.

The Edit Notification Message dialog shown in Figure 29-62 appears.


Figure 29-62 Edit Notification Message Dialog

[image: Description of Figure 29-62 follows]

Description of "Figure 29-62 Edit Notification Message Dialog"





This message applies to all the supported notification channels: email, voice, instant messaging, and SMS. Email messages can also include the worklist task detail defined in this message. The channel by which the message is delivered is based upon the notification preferences you specify.


	
Modify the message wording as necessary.


	
Click OK to return to the Human Task Editor.




For more information about notification preference details, see Section 34.2, "Notifications from Human Workflow."






29.8.3 How to Set Up Reminders

You can send task reminders, which can be based on the time the task was assigned to a user or the expiration time of a task. The number of reminders and the interval between the reminders can also be configured.


To set up reminders:

	
In the Notification section, click the Advanced tab.


	
From the list, select the number of reminders to send.


	
If you selected to remind the assignee one, two, or three times, select the interval between reminders, and whether to send the reminder before or after the assignment.




For more information, see Section 34.2.12, "How to Send Reminders."






29.8.4 How to Change the Character Set Encoding

Unicode is a universally-encoded character set that enables information from any language to be stored using a single character set. Unicode provides a unique code value for every character, regardless of the platform, program, or language. You can use the default setting of UTF-8 or you can specify a character set with a Java class.


To change the character set encoding

	
In the Notification section, click the Advanced tab.


	
From the Encoding list, select Specify by Java Class.


	
Enter the Java class to use.









29.8.5 How to Secure Notifications to Exclude Details


To secure notifications, make messages actionable, and send attachments:

	
	
In the Notification section, click the Advanced tab.


	
Select Make notifications secure (exclude details).

If selected, a default notification message is used. There are no HTML worklist task details, attachments, or actionable links in the email. Only the task number is in the message.

For more information, see Section 34.2.10, "How to Send Secure Notifications."












29.8.6 How to Display the Oracle BPM Worklist URL in Notifications

You can configure whether to display the Oracle BPM Worklist URL in email notification messages.


To display the Oracle BPM Worklist URL in notifications:

	
In the Notification section, click the Advanced tab.


	
Select the Show worklist URL in notifications checkbox to display the Oracle BPM Worklist URL in email notification messages. If this checkbox is not selected, the URL is not displayed.









29.8.7 How to Make Email Messages Actionable


To make email messages actionable:

	
In the Notification section, click the Advanced tab.


	
Select Make notification actionable. This action enables you to perform task actions through email.




	
Note:

FYI tasks are not actionable and cannot be acknowledged from email messages.









For more information about additional configuration details, see Section 34.2.7, "How to Send Actionable Messages."

For more information about configuring outbound and inbound emails, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.









29.8.8 How to Send Task Attachments with Email Notifications

You can send task attachments with email notifications.


To send task attachments with email notifications:

	
In the Notification section, click the Advanced tab.


	
Select Send task attachments with email notifications.









29.8.9 How to Send Email Notifications to Groups and Application Roles 

You can send email notifications to groups and application roles to which tasks are assigned.


To send email notifications to groups and application roles:

	
In the Notification section, click the Advanced tab.


	
From the Group notification configuration list, select one of the following options.

	
Send individual emails

Each user in the group or application role receives an individual email notification. This is the default selection.

In addition, the Use separate task forms based on locale checkbox is automatically selected.

	
When selected, this sends individual emails with a separate task form based on the language locale.


	
When not selected, this sends individual emails and reuses (shares) the task form.





	
Send one email containing all user addresses

A shared notification email is generated once for a user locale in a group or application role, thereby saving time in notification email content generation. The email is sent to all users in the group or application role.




	
Notes:

	
Since all (or a subset of) users receive the same email, the users in the group or application role are expected to have the same privilege. This ensures that the user does not see task details to which they are not entitled.


	
When sending one email to all users, the maximum number of characters allowed in the address field is 2000. If the limit is exceeded, email is sent to only those user addresses contained within the maximum limit.























29.8.10 How to Customize Notification Headers

Custom notification headers are used to specify name and value pairs to identify key fields within the notification. These entries can be used by users to define delivery preferences for their notifications. For example:You can set Name to ApprovalType and value to Expense or Name to Priority and value to High.Users can then specify delivery preferences in Oracle BPM Worklist. These preferences can be based on the contents of the notification.

The rule-based notification service is only used to identify the preferred notification channel to use. The address for the preferred channel is still obtained from the identity service.


To customize notification headers:

	
In the Notification section, click the Advanced tab.


	
Expand Notification Header Attributes.


	
Add name and pair value parameters by name or XPath expression.

For more information about preferences, see the following sections:

	
Section 34.2.8, "How to Send Inbound and Outbound Attachments"


	
Section 34.2.14, "How to Create Custom Notification Headers"


	
Part XI, "Using Oracle User Messaging Service"














29.9 Specifying Access Policies and Task Actions on Task Content

You can specify access rules on task content and actions to perform on that content.



29.9.1 How to Specify Access Policies on Task Content

You can specify access rules that determine the parts of a task that participants can view and update. Access rules are enforced by the workflow service by applying rules on the task object during the retrieval and update of the task.




	
Note:

Task content access rules and task actions access rules exist independently of one another.











29.9.1.1 Introduction to Access Rules

Access rules are computed based on the following details:

	
Any attribute configured with access rules declines any permissions for roles not configured against it. For example, assume you configure the payload to be read by assignees. This action enables only assignees and nobody else to have read permissions. No one, including assignees, has write permissions.


	
Any attribute not configured with access rules has all permissions.


	
If any payload message attribute is configured with access rules, any configurations for the payload itself are ignored due to potential conflicts. In this case, the returned map by the API does not contain any entry for the payload. Write permissions automatically provide read permissions.


	
If only a subset of message attributes is configured with access rules, all message attributes not involved have all permissions.


	
Only comments and attachments have add permissions.


	
Write permissions on certain attributes are meaningless. For example, write permissions on history do not grant or decline any privileges on history.


	
The following date attributes are configured as one in the Human Task Editor. The map returned by TaskMetadataService.getVisibilityRules() contains one key for each. Similarly, if the participant does not have read permissions on DATES, the task does not contain any of the following task attributes:

	
START_DATE


	
END_DATE


	
ASSIGNED_DATE


	
SYSTEM_END_DATE


	
CREATED_DATE


	
EXPIRATION_DATE


	
ALL_UPDATED_DATE





	
The following assignee attributes are configured as one in the Human Task Editor. The map returned by TaskMetadataService.getVisibilityRules() contains one key for each of the following. Similarly, if the participant does not have read permissions on ASSIGNEES, the task does not contain any of the following task attributes:

	
ASSIGNEES


	
ASSIGNEE_USERS


	
ASSIGNEE_GROUPS


	
ACQUIRED_BY





	
Mapped attributes do not have individual representation in the map returned by TaskMetadataService.getVisibilityRules().


	
All message attributes in the map returned by TaskMetadataService.getVisibilityRules() are prefixed by ITaskMetadataService.TASK_VISIBILITY_ATTRIBUTE_PAYLOAD_MESSAGE_ATTR_PREFIX (PAYLOAD).




An application can also create pages to display or not display task attributes based on the access rules. This can be achieved by retrieving a participant's access rules by calling the API on oracle.bpel.services.workflow.metadata.ITaskMetadataService. Example 29-1 provides details.


Example 29-1 API Call


public Map<String, IPrivilege> getTaskVisibilityRules(IWorkflowContext context,
                                      String taskId)
   throws TaskMetadataServiceException;




For more information about this method, see Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process Manager.






29.9.1.2 Specifying User Privileges for Acting on Task Content

You can specify the privileges that specific users (such as the task creator or owner) have for acting on specific task content (such as a payload).


To specify user privileges for acting on task content:

	
Click the Access tab.


	
Click the Content tab.


	
Select the task content for which to specify access privileges, as shown in Figure 29-63.


Figure 29-63 Configure Task Content Access

[image: Description of Figure 29-63 follows]

Description of "Figure 29-63 Configure Task Content Access"





	
Assign privileges (read, write, or no access) to users to act upon task content. A user cannot be assigned a privilege above their highest level. For example, an ADMIN user cannot be assigned write access on the PAYLOAD task content. Table 29-17 shows the maximum privilege each user has on task content.


Table 29-17 Highest Privilege Levels for Users of Task Content

	Task Content	Individual with Read Access	Individual with Write Access
	
Assignees

	
Admin, Approvers, Assignees, Creator, Owner, Reviewers

	
--


	
Attachments

	
Admin, Approvers

	
Assignees, Creator, Owner, Reviewers


	
Comments

	
Admin, Approvers

	
Assignees, Creator, Owner, Reviewers


	
Dates

	
Admin, Approvers, Assignees, Creator, Owner, Reviewers

	
--


	
Flexfields

	
Admin, Approvers, Reviewers

	
Assignees, Creator, Owner


	
History

	
Admin, Approvers, Assignees, Creator, Owner, Reviewers

	
--


	
Payload

	
Admin, Approvers, Reviewers

	
Assignees, Creator, Owner


	
Reviewers

	
Admin, Approvers, Assignees, Creator, Owner, Reviewers

	
--


	
Payload elements

	
Inherited from payload

	
Inherited from payload








For example, if you accept the default setting of ASSIGNEES, CREATOR, and OWNER with write access, ADMIN, APPROVERS, and REVIEWERS with read access, and PUBLIC with no access to the PAYLOAD task content, the dialog appears as shown in Figure 29-63.


	
Select the method for displaying task content in this dialog. Choosing the currently unselected option causes all settings to reset to their default values.

	
Coarse grained (default)

Displays the task content as a whole (for example, displays only one payload or reviewer).


	
Fine grained

Displays the content as individual elements (for example, displays all payloads (such as p1, p2, and p3) and all reviewers assigned to this task (such as jstein, wfaulk, and cdickens).










	
Note:

Access rules are always applied on top of what the system permits, depending on who is performing the action and the current state of the task.














29.9.1.3 Specifying Actions for Acting Upon Tasks

You can specify the actions (either access or no access) that specific users (such as the task creator or owner) have for acting on the task content (such as a payload) that you specified in the Configure Task Content Access dialog.


To specify actions for acting upon tasks:

	
Click the Access tab.


	
Click the Actions tab.


	
Select the task action for which to specify users, as shown in Figure 29-64.


Figure 29-64 Selection of Add Action Access Rule

[image: Description of Figure 29-64 follows]
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Select if participants can or cannot perform the selected actions.


	
Select the method for displaying task actions in this dialog. Choosing the currently unselected option causes all settings to reset to their default values.

	
Coarse grained (default)

Displays the task actions as a whole (for example, displays only one approval or rejection).


	
Fine grained

Displays the content actions as individual elements. (for example, displays all approvals or rejections).














29.9.2 How to Specify a Workflow Digital Signature Policy

Digital signatures provide a mechanism for the nonrepudiation of digitally-signed human tasks. This ability to mandate that a participant acting on a task signs the details and their action before the task is updated ensures that they cannot repudiate it later.




	
Note:

If digital signatures are enabled for a task, actionable emails are not sent during runtime. This is the case even if actionable emails are enabled during design time.










To specify a workflow digital signature policy:

	
Click the Access tab.


	
From the Signature Policy list, select Configure Policy, as shown in Figure 29-65.


Figure 29-65 Digital Signatures

[image: Description of Figure 29-65 follows]
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Specify the signature policy for task participants to use:

	
No signature required

Participants can send and act upon tasks without providing a signature. This is the default policy.


	
Password required

Participants specify a signature before sending tasks to the next participant. Participants must reenter their password while acting on a task. The password is used to generate the digital signature. A digital signature authenticates the identity of the message sender or document signer. This ensures that the original content of the sent message is unchanged.


	
Digital certificate required

Participants must possess a digital certificate for the nonrepudiation of digitally-signed human tasks. A digital certificate establishes the participant's credentials. It is issued by a certification authority (CA). It contains the following:

	
Your name


	
A serial number


	
Expiration dates


	
A copy of the certificate holder's public key (used for encrypting messages and digital signatures)


	
Digital signature of the certificate-issuing authority so that message authenticity can be established




The CA names and CA CRL and URLs of the issuing authorities must be configured separately.





	
Click OK.




For more information, see Section 34.1.10, "Evidence Store Service and Digital Signatures."



29.9.2.1 Specifying a Certificate Authority

To use digital signatures, you must specify CAs you consider trustworthy in the System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control. Only certificates issued from such CAs are considered valid by human workflow.


To specify a certificate authority:

	
From the SOA Infrastructure menu, select Administration > System MBean Browser.


	
Select Application Defined MBeans > oracle.as.soainfra.config > Server: server_name > WorkflowConfig > human.workflow.


	
Click the Operations tab.


	
Click AddTrustedCA.


	
In the Value fields for CaName and CaURL, specify appropriate values.


	
Click Invoke.


	
Click Return.

You must validate these values before using them.













29.10 Specifying Restrictions on Task Assignments

You can restrict the users to which a task can be reassigned or routed by using a callback class.

The user community seeded in a typical LDAP directory can represent the whole company or division. However, it may be necessary at times to limit the potential list of users to associate with a task based on the scope or importance of the task or associated data. For example, in a large company with thousands of users, only a few people have the ability to approve and create purchase orders. Specifically for such tasks, the users that can be chosen for ad hoc routing and reassignment should not be the whole company. Instead, only a few users who are relevant or have the right privilege should be chosen. This can be achieved by the restricted assignment functionality. This is implemented as a callback class that can implement the logic to choose the right set of users dynamically based on the task object that is passed containing the instance data.



29.10.1 How to Specify Restrictions on Task Assignments


To specify restrictions on task assignments:

	
In the Access section, click Configure Restricted Assignments.

The Configure Restricted Assignment dialog appears.


	
Enter the class name. The class must implement the oracle.bpel.services.workflow.task.IRestrictedAssignmentCallback interface.


	
Click the Add icon to add name and value pairs for the property map passed to invoke the callback.


	
Click OK.











29.11 Specifying Java or Business Event Callbacks

You can specify Java or business event callbacks.



29.11.1 How to Specify Callback Classes on Task Status

You can register callbacks for the workflow service to call when a particular stage is reached during the lifecycle of a task. Two types of callbacks are supported:

	
Java callbacks: The callback class must implement the interface oracle.bpel.services.workflow.task.IRoutingSlipCallback. Make the callback class available in the class path of the server.


	
Business event callbacks: You can have business events raised when the state of a human task changes. You do not need to develop and register a Java class. The caller implements the callback using an Oracle Mediator service component to subscribe to the applicable business event to be informed of the current state of an approval transaction.





To specify callback classes on task status:

	
Click the Events tab.

The following state change callbacks are available for selection:

	
OnAssigned

Select if the callback class must be called on any assignment change, including standard routing, reassignment, delegation, escalation, and so on. If a callback is required when a task has an outcome update (that is, one of the approvers in a chain approves or rejects the task), this option must be selected.


	
OnUpdated

Select if the callback class must be called on any update (including payload, comments, attachments, priority, and so on).


	
OnCompleted

Select if the callback class must finally be called when the task is completed and control is about to be passed to the initiator (such as the BPEL process initiating the task).


	
OnStageCompleted

Select if the callback class must be called to enable business event callbacks in a human workflow task. When the event is raised, it contains the name of the completed stage, the outcome for the completed stage, and a snapshot of the task when the callback is invoked.


	
OnSubtaskUpdated

Select if the callback class must be called on any update (including payload, comments, attachments, priority, and so on) on a subtask (one of the tasks in a parallel-and-parallel scenario).




If your Oracle JDeveloper installation is updated to include both the BPEL and BPM extensions, then the following content callbacks are also available for selection:

	
Comments Callback

Select if the callback class must be called to store the comments in a schema other than the WFCOMMENT column.


	
Attachment Call Back

Select if the callback class must be called to store the comments in a schema other than the WFATTACHMENT column.


	
Validation Callback

Select if the callback class must be called to validate either the task or payload before updating, approving, and so on.





	
See the following section based on the type of callback to perform.

	
Section 29.11.1.1, "Specifying Java Callbacks"


	
Section 29.11.1.2, "Specifying Business Event Callbacks"









29.11.1.1 Specifying Java Callbacks


To specify Java callbacks:

	
In the State column of the Events section, select a task state.


	
In the Java Class column, click the empty field to enter a value. This value is the complete class name of the Java class that implements oracle.bpel.services.workflow.task.IRoutingSlipCallback. Figure 29-66 provides details.


Figure 29-66 CallBack Details Dialog with Java Selected

[image: Description of Figure 29-66 follows]

Description of "Figure 29-66 CallBack Details Dialog with Java Selected"





	
Click OK.









29.11.1.2 Specifying Business Event Callbacks


To specify business event callbacks:

	
In the State column of the Events section, select a task state.


	
Leave the Java Class field empty.


	
Select the Trigger Workflow Event checkbox. This action disables the Java Class column, as shown in Figure 29-67. Each callback, such as OnAssigned, corresponds to a business event point. When a business event is fired, the event details contain the task object and a set of properties that are populated based on the context of the event being fired.


Figure 29-67 CallBack Details Dialog with Business Events Selected

[image: Description of Figure 29-67 follows]

Description of "Figure 29-67 CallBack Details Dialog with Business Events Selected"





A preseeded, static event definition language (EDL) file (JDev_Home\jdeveloper\integration\seed\soa\shared\workflow\HumanTaskEvent.edl) provides the list of available business events to which to subscribe. These business events correspond to the callbacks you select in the Callback Details dialog. You must now create an Oracle Mediator service component in which you reference the EDL file and subscribe to the appropriate business event.




	
Note:

A file-based MDS connection is required so that the EDL file can be located. The location for the file-based MDS is JDev_Home\jdeveloper\integration\seed.










	
Create an Oracle Mediator service component in the same or a different SOA composite application that can subscribe to the event.


	
In the Template list during Oracle Mediator creation, select Subscribe to Events.


	
Click the Add icon to subscribe to a new event.


	
To the right of the Event Definition field, click the Browse icon to select the EDL file.

The SOA Resource Browser dialog appears.


	
Select the previously created file-based MDS connection.


	
From the list at the top, select Resource Palette.


	
Select SOA > Shared > Workflow > HumanTaskEvent.edl.


	
Click OK.

The Event Chooser is now populated with EDL file business events available for selection.


	
In the Event field, select the event to which to subscribe. Figure 29-68 provides details.


Figure 29-68 Event Callbacks

[image: Description of Figure 29-68 follows]
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You can have multiple human tasks available for subscribing to the event. For example, assume you performed the following:

	
Configured a human task named TaskA to subscribe to the event (for example, OnAssigned)


	
Configured a human task named TaskB to subscribe to the same event




To distinguish between events for TaskA and TaskB and ensure that an event is processed only by the intended Oracle Mediator, you can add a static routing filter:


xpath20:compare(med:getComponentName(), 'TaskA')


This only invokes this routing when the sending component is TaskA.


	
If the EDL file was not selected from the file-based MDS connection, accept to import the dependent XSD files when prompted, and click OK. If the EDL file was selected from the file-based MDS connection, you are not prompted.

The Oracle Mediator service component is now populated with the business event to which to subscribe. You can also subscribe to other business events defined in the same EDL file now or at a later time.




See the following documentation for additional details about business events and callbacks:

	
Chapter 41, "Using Business Events and the Event Delivery Network" for specific details about business events


	
Sample workflow-116-WorkflowEventCallback, which is available with the Oracle SOA Suite samples. 











29.11.2 How to Specify Task and Routing Customizations in BPEL Callbacks

In general, the BPEL process calls into the workflow component to assign tasks to users. When the workflow is complete, the human workflow service calls back into the BPEL process. However, if you want fine-grained callbacks (for example, onTaskUpdate or onTaskEscalated) to be sent to the BPEL process, you can use the Allow task and routing customization in BPEL callbacks option.

Make sure to manually refresh the BPEL diagram for this callback setting.


To specify task and routing customizations in BPEL callbacks:

	
In the Events section, select the Allow task and routing customization in BPEL callbacks checkbox.


	
Return to Oracle BPEL Designer.


	
Open the task activity dialog.


	
Click OK.




This creates the while, pick, and onMessage branch of a pick activity for BPEL callback customizations inside the task scope activity.

For more information about specifying task and routing customizations, see Section 28.4.5.1, "Invoking BPEL Callbacks."






29.11.3 How to Disable BPEL Callbacks

A user talk activity (in Oracle BPEL Designer) has an invoke activity followed by a receive or pick activity. Deselecting the Disable BPEL callbacks checkbox enables you to invoke the task service without waiting for a reply.


To disable BPEL callbacks:

	
In the Events section, deselect the Disable BPEL callbacks checkbox.


	
Click OK.











29.12 Storing Documents in Oracle Enterprise Content Management

Figure 29-69 shows the Documents section of the Human Task Editor.


Figure 29-69 Human Task Editor — Documents Section

[image: Description of Figure 29-69 follows]
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