

61 Using ICommand

This chapter describes how to use the ICommand command-line utility to perform operations on items in the Active Data Cache, such as exporting, importing, and renaming. It also describes how to run ICommand from a remote system and execute the commands on a server located remotely.

This chapter includes the following sections:

	
Section 61.1, "Introduction to ICommand"

	
Section 61.2, "Executing ICommand"

	
Section 61.3, "Specifying the Command and Option Syntax"

	
Section 61.4, "Using Command-line-only Parameters"

	
Section 61.5, "Running ICommand Remotely"

61.1 Introduction to ICommand

ICommand is a command-line utility (and web service) that provides a set of commands that perform various operations on items in the Active Data Cache. You can use ICommand to export, import, rename, clear, and delete items from Active Data Cache. The commands can be contained in an input XML file, or a single command can be entered on the command line. Informational and error messages may be output to either the command window or to an XML file.

For more information about using the ICommand web service, see Section 59.5, "Using the ICommand Web Service."

For information about individual commands and their parameters see Appendix G, "Oracle BAM ICommand Operations and File Formats."

61.2 Executing ICommand

ICommand can be executed using the ORACLE_HOME\bam\bin\icommand.bat file on the Microsoft Windows platform and ORACLE_HOME\bam\bin\icommand.sh shell script on UNIX platforms.

Just entering icommand on the command line provides the user with a summary of the ICommand operations and parameters.

Before attempting to execute ICommand, the JAVA_HOME environment variable must be set to point to the root directory of the supported version of Java Development Kit (see the Oracle BAM support matrix on Oracle Technology Network web site for supported JDK versions).

	
Note:

When Oracle BAM is installed, ICommand looks for the Oracle BAM Server on port 9001 by default. If the Oracle BAM Server port number is changed from the default during the setup and configuration of Oracle BAM, then the user must manually change the port number from 9001 to the new port number in the file BAMICommandConfig.xml.

The property to change is

<ServerPort>9001</ServerPort>

The BAMICommandConfig.xml file is located in WLS_HOME/user_projects/domains/base_domain/config/fmwconfig/servers/bam_server1/applications/oracle-bam_11.1.1/config/.

61.3 Specifying the Command and Option Syntax

The basic structure of the ICommand command line entry is as follows:

icommand -username user_name -cmd command_name -name value -type value [-parameter value]

All parameters given on the command line are in the following form:

-parameter value

The parameter portion is not case sensitive. If the value portion contains spaces or other special characters, it must be enclosed in double quotation marks. For example

icommand -cmd export -name "/Samples/Call Center" -type dataobject
 -file C:\CallCenter.xml

It is required to use quotation marks around report names and file names that contain spaces and other special characters.

For some parameters, the value may be omitted. See Section G.2, "Detailed Operation Descriptions," for information about individual parameter values.

61.3.1 How to Specify the Security Credentials

ICommand requires users to provide security credentials when running operations. If no security credentials have been specified in the configuration file, ICommand securely prompts for a user name and password.

To use default credentials, add the ICommand_Default_User_Name and ICommand_Default_Password properties to the WLS_HOME/user_projects/domains/base_domain/config/fmwconfig/servers/bam_server1/applications/oracle-bam_11.1.1/config/BAMICommandConfig.xml file. For example:

<ICommand_Default_User_Name>user_name</ICommand_Default_User_Name>
<ICommand_Default_Password>password</ICommand_Default_Password>

However, command line entries always override the properties specified in the configuration file.

The user name and password for running ICommand operations can come from the configuration file, command line prompts, or command line options as follows:

	
If the user name and password are only specified in the configuration file (that is, -username parameter is not used in the command line), then the ICommand_Default_User_Name and ICommand_Default_Password values in the configuration file are used.

	
If only the user name is specified in the configuration file and the password is not, then the user name value is used, and ICommand prompts the user for the password at the command line.

	
If user name is specified on the command line, then that value is used, and ICommand prompts the user for a password. The password prompt occurs regardless of any properties specified in the configuration file. For example:

icommand -cmd export -name TestDO -file C:\TestDO.xml -username user_name

61.3.2 How to Specify the Command

On the command line, commands are specified by the value of the cmd parameter. Options for the command are specified by additional parameters. For example

icommand -cmd export -name TestDO
 -type dataobject -file C:\TestDO.xml

In an XML command file, commands are specified by the XML tag. Options for the command are given as XML attribute values of the command tag, in the form parametername=value.

Command names and parameter values (except for Active Data Cache item names) are not case sensitive.

For information about individual commands and their parameters see Appendix G, "Oracle BAM ICommand Operations and File Formats."

61.3.3 How to Specify Object Names

Whenever an object name is specified in a command, the following rules apply.

General rules

When specified on a command line, if the name contains spaces or characters that have special meaning to DOS or UNIX, the name must be quoted according to the rules for command lines.

When specified in an XML command file, if the name contains characters that have special meaning within XML, the standard XML escaping must be used.

Data Objects

If the Data Object is not at the root, the full path name must be given, as in the following example:

/MyFolder/MySubfolder/MyDataObject

If the Data Object is at the root, the leading slash (/) is optional. The following two examples are equivalent:

/MyDataObject
MyDataObject

Data Object Folders

To specify a folder in Data Objects you must include the prefix /public/DataObject/ at the beginning of the path to the folder.

/public/DataObject/MyFolder/MySubfolder

Reports and Report Folders

The full path name plus the appropriate prefix must be specified as in the following examples.

For shared reports the /public/Report/ prefix must be included as shown here:

"/public/Report/Subfolder1/My Report"

For private reports the /private:user_name/Report/ prefix must be included:

"/private:jsmith/Report/Subfolder1/My Report"

The /private:user_name/ part of the prefix may be omitted if the user running ICommand is the user that owns the report.

"Report/Subfolder1/My Report"

The path information without the public or private prefix is saved in the export file.

Similarly, a report folder can be specified using the appropriate prefix.

/public/Report/Subfolder1

/private:jsmith/Report/Subfolder1

Alert Rules

Either the name of the Alert, or the full name of the Alert may be specified. The following two examples are equivalent for Alerts if the user running ICommand is the user that owns Alert1:

Alert1

/private:user_name/Rule/Alert1

If the user running ICommand is not the owner of Alert1, then only the second form may be used.

All other object types

Specify the full name of the object.

61.3.4 How to Specify Multiple Parameter Targets

Instead of creating a separate command line for each Active Data Cache object type, such as Dataobject, Folder, Report, and Rule, on which to execute a particular command, ICommand enables you to pass parameter values to several object types in the same command line.

For example:

icommand -cmd export -type all -report,rule,folder:owner 1
-dataobject,folder:permissions 1 -systemobjects 1 -file filename.xml

In this example, while exporting all of the objects in the system, the command passes owner = 1 to the report, rule, and folder Active Data Cache object types. The command also passes permissions = 1 to the dataobject and folder object types. The comma (,) separates the object types and the parameter is listed after a colon (:).

Supplying multiple values in the example single command line gives the same results as the following three commands:

icommand -cmd export -type report -owner 1 ...
icommand -cmd export -type rule -owner 1 ...
icommand -cmd export -type folder -owner 1 ...

61.4 Using Command-line-only Parameters

The following parameters can appear only on the command line:

	
Cmd

-cmd commandname

Optional parameter that specifies a single command to be executed. Any parameters needed for the command must also be on the command line.

The Cmdfile and cmd parameters are mutually exclusive. Exactly one of them must be present.

	
Cmdfile

-cmdfile file_name

Optional parameter that specifies the name of the file that contains commands to be processed. Because this is an XML file, it would usually have the XML extension, although that is not required.

The Cmdfile and cmd parameters are mutually exclusive. Exactly one of them must be present.

	
Debug

-debug flag

Optional parameter that indicates whether extra debugging information is to be output if there is an error. Any value other than 0 (zero), or the absence of any value, indicates that debugging information is to be output. If this parameter is not present, no debugging information is output.

	
Domain

-domain domain_name

Optional parameter that specifies the domain name to use to login to the Active Data Cache (the name of the computer on which the Active Data Cache server is running).

If this parameter is omitted, main is used, which means the server information is obtained from the ServerName property in the ICommand.exe.config file.

If the reserved value ADCInProcServer is used, then ICommand directly accesses the Active Data Cache database (which must be local on the same system on which ICommand is running) rather than contacting the Active Data Cache server. This option is necessary only when the Active Data Cache server is not running; otherwise corruption of the database could occur. The information about the location and structure of the Active Data Cache database is obtained from various keys in the ICommand.exe.config file.

	
Logfile

-logfile file_name

Optional parameter that specifies the name of the file to which results and errors are logged. If the file does not exist, it is created. If the file does exist, any contents are overwritten. Because this is an XML file, it would usually have the XML extension, although that is not required.

If this parameter is not present, results and errors are output to the console.

See Section G.4, "Format of Log File" for more information about the log file format.

	
Logmode

-logmode mode

Optional parameter that indicates whether an existing log file is to be overwritten or appended to. The possible values for this parameter are append or overwrite. In either case, if the log file does not exist it is created.

If this parameter is not present, overwrite is assumed.

Because it is XML that is being added to the log file, if the append option is used the XML produced may not be strictly legal, as there is no top level root tag in the XML produced by successive appends (ICommand appends the same tag each time it is run). It is left up to the user to handle this.

	
Username

-username user_name

Optional parameter that specifies the username that the command should run as. There is no password parameter.

ICommand requires users to specify security credentials when running commands. ICommand securely prompts for a user name and password. If the -username parameter is specified on the command line, ICommand prompts the user for the password only.

61.5 Running ICommand Remotely

You can run ICommand from a remote system (where Oracle BAM is installed) and execute the commands on a server located remotely. To run ICommand remotely, add the properties ServerName and ServerPort in WLS_HOME/user_projects/domains/base_domain/config/fmwconfig/servers/bam_server1/applications/oracle-bam_11.1.1/config/BAMICommandConfig.xml, as shown below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<BAMICommand>
 <ServerName>host_name</ServerName>
 <ServerPort>7001</ServerPort>
 <Communication_Protocol>t3</Communication_Protocol>
 <SensorFactory>oracle.bam.common.statistics.noop.SensorFactoryImpl</SensorFactor
y>
 <GenericSatelliteChannelName>invm:topic/oracle.bam.messaging.systemobjectnotific
ation</GenericSatelliteChannelName>
</BAMICommand>

The Oracle BAM version installed on the remote system should be same as the Oracle BAM Server version (that is, both servers should be from the same label).

C Deployment Descriptor Properties

This appendix describes how to define deployment descriptor configuration and partner link properties for BPEL process service components used at runtime by Oracle WebLogic Server, Oracle Enterprise Manager, or both.

This appendix includes the following sections:

	
Section C.1, "Introduction to Deployment Descriptor Properties"

	
Section C.2, "Deprecated 10.1.3 Properties"

	
Note:

You cannot specify deployment descriptor properties at runtime.

For more information about deployment descriptor properties, see Chapter "Oracle BPEL Process Manager Performance Tuning" of Oracle Fusion Middleware Performance and Tuning Guide.

C.1 Introduction to Deployment Descriptor Properties

Deployment descriptors are BPEL process service component properties used at runtime by Oracle WebLogic Server, Oracle Enterprise Manager, or both. There are two types of properties:

	
Configuration

	
Partner link binding

Table C-1 lists the configuration deployment descriptor properties.

When you define configuration properties, you must add a prefix of bpel.config to the property name. For example, the property inMemoryOptimization must be defined as bpel.config.inMemoryOptimization. For information on defining properties in the Property Inspector in Oracle JDeveloper, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector."

Table C-1 Properties for the configurations Deployment Descriptors

	Property Name	Description
	
completionPersistPolicy

	
This property configures how the instance data is saved. It can only be set at the BPEL service component level. The following values are available:

	
on (default): The completed instance is saved normally.

	
deferred: The completed instance is saved, but with a different thread and in another transaction.

	
faulted: Only The faulted instances are saved.

Note: When an unhandled fault occurs, regardless of these flags, audit information for instances is persisted within the cube_instance table.

	
off: No instances of this process are saved.

For more information, see Section "completionPersistPolicy" of Oracle Fusion Middleware Performance and Tuning Guide.

	
disableAsserts

	
This property, when set to true, disables assertions in BPEL 1.1 projects.

	
globalTxMaxRetry

	
If using outbound adapters in an asynchronous BPEL process, specify the maximum number of retries for a remote fault.

	
globalTxRetryInterval

	
If using outbound adapters in an asynchronous BPEL process, specify the time interval in milliseconds between retries for a remote fault.

	
inMemoryOptimization

	
Default value is false. This property can only be set to true if it does not have dehydration points. Activities like wait, receive, onMessage, and onAlarm create dehydration points in the process. If this property is set to true, in-memory optimization is attempted on the instances of this process on to-spec queries.

For more information, see Section "inMemoryOptimization" of Oracle Fusion Middleware Performance and Tuning Guide.

	
keepGlobalVariables

	
Specify whether the server can keep global variable values in the instance store when the instance completes:

	
false (default): Global variable values are deleted when the instance completes.

	
true: Global variable values are not deleted.

	
oneWayDeliveryPolicy

	
This property sets the persistence policy of the process in the delivery layer. The possible values are:

	
async.persist: Messages into the system are saved in the delivery store before being picked up by the engine.

	
async.cache: Messages into the system are saved in memory before being picked up by the engine.

	
sync: The instance-initiating message is not temporarily saved in the delivery layer. The engine uses the save thread to initiate the message.

For information about setting this property during BPEL process creation, see Section 4.1.1, "How to Add a BPEL Process Service Component."

For more information, see Section "OneWayDeliveryPolicy" of Oracle Fusion Middleware Performance and Tuning Guide.

	
reenableAggregationOnComplete

	
This property controls the number of instances to create and use to route messages. The possible values are:

	
true: Creates a new instance to handle the messages of the same correlation.

	
false: Creates only one instance for handling messages.

For more information, see Section 9.2, "Routing Messages to the Same Instance."

	
sensorActionLocation

	
The location of the sensor action XML file. The sensor action XML file configures the action rule for the events.

	
sensorLocation

	
The location of the sensor XML file. The sensor XML file defines the list of sensors into which events are logged.

	
transaction

	
This property configures the transaction behavior of the BPEL instance for initiating calls.

	
requiresNew: A new transaction is created for the execution, and the existing transaction (if there is one) is suspended. This behavior is true for both request/response (initiating) environments and one-way, initiating environments in which bpel.config.oneWayDeliveryPolicy is set to sync.

	
required: In request/response (initiating) environments, this setting joins a caller's transaction (if there is one) or creates a new transaction (if there is no transaction). In one-way, initiating environments in which bpel.config.oneWayDeliveryPolicy is set to sync, the invoke message is processed using the same thread in the same transaction.

Note: This property does not apply for midprocess receive activities. In those cases, another thread in another transaction is used to process the message. This is because a correlation is needed and it is always done asynchronously.

For information about setting this property during BPEL process creation, see Section 4.1.1, "How to Add a BPEL Process Service Component."

Table C-2 lists the partner link binding deployment descriptor properties.

When you define partner link binding properties, you must add a prefix of bpel.partnerLink.partner_link_name to the property name. For example, the property nonBlockingInvoke must be defined as bpel.partnerLink.partner_link_name.nonBlockingInvoke. For information on defining properties in the Property Inspector in Oracle JDeveloper, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector."

Table C-2 Properties for the partnerLinkBinding Deployment Descriptors

	Property Name	Description
	
idempotent

	
An idempotent activity is an activity that can be retried (for example, an assign activity or an invoke activity). The instance is saved after a nonidempotent activity. This property is applicable to both durable and transient processes.

	
true (default): If the server fails, it performs the activity again after restarting. This is because the server does not dehydrate immediately after the invoke and no record exists that the activity executed.

	
false: Activity is dehydrated immediately after execution and recorded in the dehydration store. When idempotent is set to false, it provides better failover protection, but may impact performance if the BPEL process accesses the dehydration store frequently.

For more information, see Section "idempotent" of Oracle Fusion Middleware Performance and Tuning Guide.

	
nonBlockingInvoke

	
Default value is false. When this is set to true, a separate thread is spawned to do the invocation so that the invoke activity does not block the instance.

For more information, see Section 10.1.1, "What You May Need to Know About the Execution of Parallel Flow Branches in a Single Thread" and Section "nonBlockingInvoke" of Oracle Fusion Middleware Performance and Tuning Guide.

	
validateXML

	
Enables message boundary validation. When set to true, the XML message is validated against the XML schema during a receive activity and an invoke activity for this partner link. If the XML message is invalid, then a bpelx:invalidVariables runtime fault is thrown. This overrides the domain level validateXML property. The following example enables validation for only the StarLoanService partner:

<partnerLinkBinding name="StarLoanService">
<property name="wsdlLocation">
http://<hostname>:9700/orabpel/default/StarLoan/Sta
rLoan?wsdl</property>
<property name="validateXML">true</property>
</partnerLinkBinding>

For more information, see Section "validateXML" of Oracle Fusion Middleware Performance and Tuning Guide.

C.1.1 How to Define Deployment Descriptor Properties in the Property Inspector

You define configuration and partner link binding deployment descriptor properties and values in the Property Inspector of Oracle JDeveloper. When complete, the properties are displayed in the BPEL process service component section of the composite.xml file.

	
In the SOA Composite Editor, select the BPEL process service component, as shown in Figure C-1.

Figure C-1 Selected BPEL Process Service Component

[image: Description of Figure C-1 follows]

Description of "Figure C-1 Selected BPEL Process Service Component"

	
Go to the Property Inspector in the lower right corner of Oracle JDeveloper. If the Property Inspector is not displayed, select Property Inspector from the View main menu.

	
In the Properties section, click the Add icon, as shown in Figure C-2.

For this example, the oneWayDeliveryPolicy property is already defined because the Delivery option was selected in the Create BPEL Process dialog during BPEL process creation. For more information about setting this property during BPEL process creation, see Section 4.1.1, "How to Add a BPEL Process Service Component."

Figure C-2 Property Inspector

[image: Description of Figure C-2 follows]

Description of "Figure C-2 Property Inspector"

The Create Property dialog is displayed.

	
In the Name field, enter the deployment descriptor property. For this example, the configuration deployment descriptor property inMemoryOptimization is defined. Therefore, a prefix of bpel.config is required. For more information about configuration deployment descriptor properties, see Table C-1.

If you instead add a partner link binding property, a prefix of bpel.partnerLink.partner_link_name is required, where partner_link_name is the name of the partner link (for example, LoanService). For more information about partner link binding deployment descriptor properties, see Table C-2.

	
In the Value field, enter an applicable value for this property (for example, true).

Figure C-3 shows the completed Create Property dialog.

Figure C-3 Create Property Dialog

[image: Description of Figure C-3 follows]

Description of "Figure C-3 Create Property Dialog"

	
Click OK.

The Property Inspector displays the added deployment descriptor property.

Figure C-4 Property Inspector with Deployment Descriptor Property

[image: Description of Figure C-4 follows]

Description of "Figure C-4 Property Inspector with Deployment Descriptor Property"

	
Click Source in the SOA Composite Editor.

The inMemoryOptimization configuration property with the bpel.config prefix is displayed in the composite.xml file, as shown in Example C-1.

Example C-1 Configuration Property Definition in composite.xml

<component name="LoanApproval" version="1.1">
 <implementation.bpel src="LoanApproval.bpel"/>
 <property name="bpel.config.oneWayDeliveryPolicy" type="xs:string"
 many="false">async.persist</property>
 <property name="bpel.config.inMemoryOptimization" type="xs:string"
 many="false" override="may">true</property>
 </component>

If you instead define a partner link binding deployment descriptor property in the Property Inspector (for example, the nonBlockingInvoke partner link binding property), it is displayed in the composite.xml file, as shown in Example C-2. Note the prefix of bpel.partnerLink.partner_link_name, which is required for this type of property.

Example C-2 Partner Link Binding Property Definition in composite.xml

...
 <component name="myBPELServiceComponent">

 <property name="bpel.partnerLink.partner_link_name.
 nonBlockingInvoke">false</property>
</component>

C.1.2 How to Get the Value of a Preference within a BPEL Process

The value of a property can be read by a BPEL process using the XPath extension function ora:getPreference(myPref). This gets the value of bpel.preference.myPref.

This function can be used as part of a simple assign statement, used in condition expressions, or used as part of a more complex XPath expression.

C.2 Deprecated 10.1.3 Properties

Table C-3 lists deprecated properties that can no longer be used.

Table C-3 Deprecated Properties

	Property	Deployment Descriptor Type	Deprecated for Release...
	
completionPersistLevel

	
configurations

	
11g Release 1

	
defaultInput

	
configurations

	
11g Release 1

	
initializeVariables

	
configurations

	
11g Release 1

	
loadSchema

	
configurations

	
11g Release 1

	
noAlterWSDL

	
configurations

	
11g Release 1

	
optimizeVariableCopy

	
configurations

	
11g Release 1

	
relaxTypeChecking

	
configurations

	
11g Release 1

	
relaxXPathQName

	
configurations

	
11g Release 1

	
transaction

	
configurations

	
10.1.3.4

	
SLACompletionTime

	
configurations

	
11g Release 1

	
xpathValidation

	
configurations

	
11g Release 1

	
user

	
configurations

	
11g Release 1

	
pw

	
configurations

	
11g Release 1

	
role

	
configurations

	
11g Release 1

	
correlation

	
partnerLinkBinding

	
11g Release 1

	
contentType

	
partnerLinkBinding

	
10.1.3

	
retryInterval

	
partnerLinkBinding

	
Deprecated by the fault policy feature in 10.1.3.3

	
retryMaxCount

	
partnerLinkBinding

	
Deprecated by the fault policy feature in 10.1.3.3

	
wsdlLocation

	
partnerLinkBinding

	
11g Release 1

	
wsdlRuntimeLocation

	
partnerLinkBinding

	
11g Release 1

	
wsseHeaders

	
partnerLinkBinding

	
11g Release 1

	
wsseUsername

	
partnerLinkBinding

	
11g Release 1

	
wssePassword

	
partnerLinkBinding

	
11g Release 1

	
preferredPort

	
partnerLinkBinding

	
11g Release 1

	
fullWSAddressing

	
partnerLinkBinding

	
11g Release 1

47 Working with Domain Value Maps

This chapter describes how to create and use domain value maps to map the terms used by different domains to describe the same entity, allowing you to map values used by one domain for specific fields to the values used by other domains for the same fields. This chapter also describes the XPath functions used for domain value lookups.

This chapter includes the following sections:

	
Section 47.1, "Introduction to Domain Value Maps"

	
Section 47.2, "Creating Domain Value Maps"

	
Section 47.3, "Editing a Domain Value Map"

	
Section 47.4, "Using Domain Value Map Functions"

	
Section 47.5, "Creating a Domain Value Map Use Case for a Hierarchical Lookup"

	
Section 47.6, "Creating a Domain Value Map Use Case For Multiple Values"

47.1 Introduction to Domain Value Maps

When information is transmitted between different domains, each domain might use different terminology or processing codes to describe the same entity. For example, one domain might use complete city names in its messages (Boston), while another domain uses a code to indicate the city (BO). Rather than requiring each domain to standardize their data to one set of terminology, you can use domain value maps to map the terms used in one domain to the terms used in other domains. Domain value maps operate on the actual data values in the messages that are transmitted through an application at runtime.

While each domain value map typically defines the mapping for only one field or category, a single SOA composite can require mappings for multiple categories. Thus, one SOA composite might contain several domain value maps. For example, you might have one domain value map that defines city name mapping, one that defines state name mapping, and one that defines country name mapping.

A direct mapping of values between two or more domains is known as point-to-point mapping. Table 47-1 shows a point-to-point mapping for cities between two domains:

Table 47-1 Point-to-Point Mapping

	CityCode	CityName
	
BELG_MN_STLouis

	
BelgradeStLouis

	
BELG_NC

	
BelgradeNorthCarolina

	
BO

	
Boston

	
NP

	
Northport

	
KN_USA

	
KensingtonUSA

	
KN_CAN

	
KensingtonCanada

Domain value map values are static. You specify the domain value map values at design time using Oracle JDeveloper, and then at runtime the application performs a lookup for the values in the domain value maps. For information about editing domain value maps at runtime with Oracle SOA Composer, see Chapter 48, "Using Oracle SOA Composer with Domain Value Maps."

	
Note:

To dynamically integrate values between applications, you can use the cross referencing feature of Oracle SOA Suite. For information about cross references, see Chapter 49, "Working with Cross References."

47.1.1 Domain Value Map Features

Oracle SOA Suite domain value maps let you further refine the performance and results of the domain value map lookups that are performed at runtime. For example, you can specify qualifying information that provides additional information to assist with mapping. Domain value maps also support one-to-many mappings.

47.1.1.1 Qualifier Domains

Qualifier domains contain information solely to clarify the mapping. A mapping might be ambiguous unless this additional information is defined. For example, a domain value map that defines a city name mapping could have multiple mappings from KN to Kensington because Kensington is a city in both Canada and the USA. Therefore, this mapping requires a qualifier (USA or Canada) to indicate which mapping to use. An example of this is shown in Table 47-2.

Table 47-2 Qualifier Support Example

	Country (Qualifier)	CityCode	CityName
	
USA

	
BO

	
Boston

	
USA

	
BELG_NC

	
Belgrade

	
USA

	
BELG_MN_Streams

	
Belgrade

	
USA

	
NP

	
Northport

	
USA

	
KN

	
Kensington

	
Canada

	
KN

	
Kensington

A domain value map can contain multiple qualifier domains. For example, as shown in Table 47-3, the mappings are also qualified with a state name.

Table 47-3 Multiple Qualifier Support Example

	Country (Qualifier)	State (Qualifier)	CityCode	CityName
	
USA

	
Massachusetts

	
BO

	
Boston

	
USA

	
North Carolina

	
BELG

	
Belgrade

	
USA

	
Minnesota

	
BELG

	
Belgrade

	
USA

	
Alabama

	
NP

	
Northport

	
USA

	
Kansas

	
KN

	
Kensington

	
Canada

	
Prince Edward Island

	
KN

	
Kensington

Qualifiers are used only to qualify the mappings. Therefore, the qualifier values cannot be looked up.

47.1.1.2 Qualifier Hierarchies

When there are multiple qualifier domains, you can specify a qualifier order to indicate how they are used during runtime lookups. The order of a qualifier varies from highest to lowest depending on the role of the qualifier in defining a more exact match. In Table 47-3, the state qualifier would probably be given a higher order than the country qualifier because a matching state indicates a more precise match.

Domain value maps support hierarchical lookup. If you specify a qualifier value during a lookup and no exact match is found, then the lookup mechanism tries to find a more generalized match by setting the higher order qualifiers to empty quotes (""). It proceeds until a match is found, or until a the lookup is exhausted and no match is found. Figure 47-1 describes the steps of a hierarchical lookup performed for the following lookup (based on the values in Table 47-3):

State=Arkansas, Country=Canada, CityCode=KN_USA

In this example, the State qualifier has a qualifier order of 1 and the Country qualifier has a qualifier order of 2. As shown in Figure 47-1, the lookup mechanism sets the higher order qualifier State to the exact lookup value Arkansas and uses Canada|"" for the lower order qualifier Country.

Figure 47-1 Hierarchical Lookup Example

[image: Description of Figure 47-1 follows]

Description of "Figure 47-1 Hierarchical Lookup Example"

If no match is found, the lookup mechanism sets the higher order qualifier State to a value of "" and sets the next higher qualifier Country to an exact value of Canada. If no match is found, the lookup mechanism sets the value of the previous higher order qualifier Country to a value of "". One matching row is found where CityCode is KN_USA and Kensington is returned as a value.

Table 47-4 provides a summary of these steps.

Table 47-4 Domain Value Map Lookup Result

	State	Country	Short Value	Lookup Result
	
Arkansas

	
CANADA|" "

	
KN_USA

	
No Match

	
" "

	
CANADA

	
KN_USA

	
No Match

	
" "

	
" "

	
KN_USA

	
Kensington

47.1.1.3 One-to-Many Mappings

One value can be mapped to multiple values in a domain value map. For example, a domain value map for payment terms can contain a mapping of payment terms to multiple values, such as discount percentage, discount period, and net credit period, as shown in Table 47-5.

Table 47-5 One-to-Many Mapping Support

	Payment Term	Discount Percentage	Discount Period	Net Credit Period
	
GoldCustomerPaymentTerm

	
10

	
20

	
30

	
SilverCustomerPaymentTerm

	
5

	
20

	
30

	
RegularPaymentTerm

	
2

	
20

	
30

47.2 Creating Domain Value Maps

You can create one or more domain value maps in a SOA composite application in Oracle JDeveloper, and then use the maps to look up the mapped values at runtime. Creating a domain value map creates a file with a .dvm extension in the application file structure.

47.2.1 How to Create Domain Value Maps

Create and configure domain value maps using the Create Domain Value Map(DVM) File dialog in Oracle JDeveloper. This dialog lets you define two domains, each with one value. Upon completion, the Domain Value Map Editor appears so you can define additional domains and corresponding values.

To create a domain value map:

	
In the Application Navigator, right-click the project in which you want to create a domain value map and select New.

The New Gallery dialog appears.

	
Expand the SOA Tier node, and then select the Transformations category.

	
In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog appears.

	
In the File Name field, enter a unique and descriptive name for the domain value map file. The file name must have an extension of .dvm.

	
In the Description field, enter a description for the domain value map. This field is optional.

	
In the Domain Name field, enter a name for each domain. These names are the column names for the domain value map, and each represents a fields in a different domain.

	
Note:

Each domain name must be unique in a domain value map. You can add more domains later.

	
In the Domain Value field, enter a value corresponding to each domain. For example, enter BO for a CityCode domain and Boston for a CityName domain, as shown in Figure 47-2.

Figure 47-2 Populated Create Domain Value Map File Dialog

[image: Description of Figure 47-2 follows]

Description of "Figure 47-2 Populated Create Domain Value Map File Dialog"

	
Click OK.

The Domain Value Map Editor appears with the new domain value map displayed.

47.2.2 What Happens When You Create a Domain Value Map

A file with the extension .dvm is created in the project file structure and appears in the Application Navigator, as shown in Figure 47-3.

Figure 47-3 A Domain Value Map File in Application Navigator

[image: Description of Figure 47-3 follows]

Description of "Figure 47-3 A Domain Value Map File in Application Navigator"

All .dvm files are based on the schema definition (XSD) file shown in Example 47-1.

Example 47-1 XSD File for Domain Value Map Files

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Copyright (c) 2006, Oracle. All rights reserved. -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/dvm"
 xmlns:tns="http://xmlns.oracle.com/dvm"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

<xsd:element name="dvm">
 <xsd:annotation>
 <xsd:documentation>The Top Level Element
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="description" minOccurs="0" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>The DVM Description. This is optional
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="columns">
 <xsd:annotation>
 <xsd:documentation>This element holds DVM's column List.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="column" minOccurs="2" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>This represents a DVM Column
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 <xsd:attribute name="qualifier" default="false" type="xsd:boolean"
 use="optional"/>
 <xsd:attribute name="order" use="optional" type="xsd:positiveInteger"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="rows" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>This represents all the DVM Rows.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="row" minOccurs="1" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>
 Each DVM row of values
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="cell" minOccurs="2" maxOccurs="unbounded"
 type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>This is the value for this row and for
 each column in the same order as defined in Columns.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:annotation>
 <xsd:documentation>This Schema is used to validate the DVM Document got for
 creation and
 update of a DVM.
 </xsd:documentation>
 </xsd:annotation>
</xsd:schema>

47.3 Editing a Domain Value Map

After you create the framework for a domain value map, you can add domains and corresponding domain values to the map using the Domain Value Map Editor.

47.3.1 How to Add Domains to a Domain Value Map

You can define additional domains to map, which are represented as columns in the domain value map. You can also specify whether each new domain contains values to be included in the lookups at runtime or if it is only used to qualify the mapping.

To add a domain to a domain value map:

	
If the map file is not open in the Domain Value Map Editor, double-click the DVM file in the Application Navigator.

	
In the Map Table, click Add and then select Add Domain.

The Create Domain dialog appears.

	
In the Name field, enter a column name.

	
In the Qualifier field, select True to set this column as a qualifier. Otherwise, select False.

	
Tip:

For more information about qualifier domains and qualifier order, see Section 47.1.1.1, "Qualifier Domains" and Section 47.1.1.2, "Qualifier Hierarchies.".

	
In the Qualifier Order field, enter a number indicating the priority of the qualifier domain.

This field is enabled only if you selected True in the Qualifier field.

Figure 47-4 Domain Value Map - Create Domain Dialog

[image: Description of Figure 47-4 follows]

Description of "Figure 47-4 Domain Value Map - Create Domain Dialog"

	
Click OK.

A new column appears in the Map Table.

47.3.2 How to Edit a Domain

Once you add a domain to a domain value map, you can change the name, change whether it is a qualifier domain, and change the qualifier order.

To edit a domain

	
In the Domain Value Map Editor, select the name of the domain you want to modify.

	
Click Edit Domain/Values.

The Edit Domain dialog appears.

Figure 47-5 Domain Value Map - Edit Domain Dialog

[image: Description of Figure 47-5 follows]

Description of "Figure 47-5 Domain Value Map - Edit Domain Dialog"

	
Change any of the fields on the dialog, and then click OK.

47.3.3 How to Add Domain Values to a Domain Value Map

Domain values are displayed in rows in the domain value map, with each row containing the values to be mapped for each domain. You can add as many domain values as required to fully define the mapping between domains.

To add domain values to a domain value map:

	
In the Domain Value Map Editor, click Add and then select Add Domain Values.

A new row appears beneath the existing rows in the Map Table.

	
Enter the values for each domain in the new row.

	
Repeat the above steps to create additional rows. When you are done making changes, click Save All on the Oracle JDeveloper toolbar.

47.3.4 How to Edit Domain Values

Once you add domain values to a domain value map, you can modify the values if needed.

To modify domain values

	
In the Domain Value Map Editor, select the row containing the values you want to modify.

	
Click Edit Domain/Values.

The Edit Domain Values dialog appears.

Figure 47-6 Domain Value Map - Edit Domain Values

[image: Description of Figure 47-6 follows]

Description of "Figure 47-6 Domain Value Map - Edit Domain Values"

	
Modify any of the fields on the dialog, and then click OK.

47.4 Using Domain Value Map Functions

After creating a domain value map, you can use the XPath functions of the domain value map to look up appropriate values and populate the targets for the applications at runtime.

47.4.1 Understanding Domain Value Map Functions

The dvm:lookupValue and dvm:lookupValue1M XPath functions look up a domain value map for a single value or multiple values at runtime.

47.4.1.1 dvm:lookupValue

The dvm:lookupValue function returns a string by looking up the value for the target column in a domain value map, where the source column contains the given source value.

	
Example 47-2 shows an example of dvm:lookupValue function syntax.

Example 47-2 dvm:lookupValue Function Syntax

dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string, TargetColumnName as string, DefaultValue as string) as
 string

Example 47-3 provides an example of dvm:lookupValue function use.

Example 47-3 dvm:lookupValue Function Use

dvm:lookupValue('cityMap.dvm','CityCodes','BO', 'CityNames',
'CouldNotBeFound')

	
Example 47-4 shows another example of dvm:lookupValue function syntax.

Example 47-4 dvm:lookupValue Function Syntax

dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,
SourceValue as string, TargetColumnName as string, DefaultValue as string,
(QualifierSourceColumn as string, QualifierSourceValue as string)*) as string

Example 47-5 provides another example of dvm:lookupValue function use.

Example 47-5 dvm:lookupValue Function Use

dvm:lookupValue ('cityMap.dvm','CityCodes','BO','CityNames',
 'CouldNotBeFound', 'State', 'Massachusetts')

Arguments

	
dvmMetadataURI - The domain value map URI.

	
SourceColumnName - The source column name.

	
SourceValue - The source value (an XPath expression bound to the source document of the XSLT transformation).

	
TargetColumnName - The target column name.

	
DefaultValue - If the value is not found, then the default value is returned.

	
QualifierSourceColumn: The name of the qualifier column.

	
QualifierSourceValue: The value of the qualifier.

47.4.1.2 dvm:lookupValue1M

The dvm:lookupValue1M function returns an XML document fragment containing values for multiple target columns of a domain value map, where the value for the source column is equal to the source value. Example 47-6 provides details.

Example 47-6 dvm:lookupValue1M Function Syntax

dvm:lookupValue1M(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string,(TargetColumnName as string)?)as nodeset

Arguments

	
dvmMetadataURI - The domain value map URI.

	
SourceColumnName - The source column name.

	
SourceValue - The source value (an XPath expression bound to the source document of the XSLT transformation).

	
TargetColumnName - The name of the target columns. At least one column name should be specified. The question mark symbol (?) indicates that you can specify multiple target column names.

Example 47-7 shows an example of dvm:lookupValue1M function use.

Example 47-7 dvm:lookupValue1M Function Use

dvm:lookupValue1M ('cityMap.dvm','CityCode','BO','CityName',
'CityNickName')

The result is shown in Example 47-8.

Example 47-8 dvm:lookupValue1M Function Result

<CityName>Boston</CityName>
<CityNickName>BeanTown</CityNickName>

47.4.2 How to Use Domain Value Map Functions in Transformations

The domain value map functions can be used for transformations with a BPEL process service component or a Mediator service component. Transformations are performed by using the XSLT Mapper, which appears when you create an XSL file to transform the data from one XML schema to another.

For information about the XSLT Mapper, see Chapter 40, "Creating Transformations with the XSLT Mapper."

To use the lookupValue1M function in a transformation:

	
In the Application Navigator, double-click an XSL file to open the XSLT Mapper.

	
In the XSLT Mapper, expand the trees in the Source and Target panes.

	
In the Component Palette, click the down arrow, and then select Advanced.

	
Select DVM Functions, as shown in Figure 47-7.

Figure 47-7 Domain Value Map Functions in the Component Palette

[image: Description of Figure 47-7 follows]

Description of "Figure 47-7 Domain Value Map Functions in the Component Palette"

	
Drag and drop lookupValue1M onto the line that connects the source to the target.

A dvm:lookupValue1M icon appears on the connecting line.

	
Double-click the lookupValue1M icon.

The Edit Function – lookupValue1M dialog appears, as shown in Figure 47-8.

Figure 47-8 Edit Function – lookupValue1M Dialog

[image: Description of Figure 47-8 follows]

Description of "Figure 47-8 Edit Function – lookupValue1M Dialog"

	
Specify values for the following fields in the Edit Function – lookupValue1M dialog:

	
In the dvmLocation field, enter the location URI of the domain value map file or click Browse to the right of the dvmLocation field to select a domain value map file. You can select an already deployed domain value map from the metadata service (MDS) and also from the shared location in MDS. This can be done by selecting the Resource Palette.

	
In the sourceColumnName field, enter the name of the domain value map column that is associated with the source element value, or click Browse to select a column name from the columns defined for the domain value map you previously selected.

	
In the sourceValue field, enter a value or press Ctrl-Space to use the XPath Building Assistant. Press the up and down arrow keys to locate an object in the list, and press Enter to select an item.

	
In the targetColumnName field, enter the name of the domain value map column that is associated with the target element value, or click Browse to select the name from the columns defined for the domain value map you previously selected.

	
Click Add to add another column as the target column and then enter the name of the column.

A populated Edit Function - lookupValue1M dialog is shown in Figure 47-9.

Figure 47-9 Populated Edit Function – lookupValue1M Dialog

[image: Description of Figure 47-9 follows]

Description of "Figure 47-9 Populated Edit Function – lookupValue1M Dialog"

	
Click OK.

The XSLT Mapper appears with the lookupValue1M function icon.

	
From the File menu, select Save All.

For more information about selecting deployed domain value maps, see Section 43.7.3, "Deploying and Using Shared Metadata Across SOA Composite Applications in Oracle JDeveloper."

47.4.3 How to Use Domain Value Map Functions in XPath Expressions

You can use the domain value map functions to create XPath expressions in the Expression Builder dialog. You can access the Expression Builder dialog through the Filter Expressions or the Assign Values functionality of an Oracle Mediator service component.

For information about the Assign Values functionality, see Section 20.3.2.10, "How to Assign Values."

To use the lookupValue function in the Expression Builder dialog:

	
In the Functions list, select DVM Functions.

	
Double-click the dvm:lookupValue function to add it to the expression field.

	
Specify the various arguments of the lookupValue function. For example:

dvm:lookupValue('citymap.dvm','CityCodes',$in.Customer/inp1:Customer/Address/Ci
ty,'CityNames','NotFound')

This expression, also shown in Figure 47-10, looks up a domain value map for the city name equivalent of a city code. The value of the city code depends on the value specified at runtime.

Figure 47-10 Domain Value Map Functions in the Expression Builder Dialog

[image: Description of Figure 47-10 follows]

Description of "Figure 47-10 Domain Value Map Functions in the Expression Builder Dialog"

47.4.4 What Happens at Runtime

At runtime, a BPEL process service component or a Mediator service component uses the domain value map to look up appropriate values.

47.5 Creating a Domain Value Map Use Case for a Hierarchical Lookup

This section provides a tutorial for using domain value maps in a SOA composite. This use case demonstrates the hierarchical lookup feature of domain value maps. The hierarchical lookup use case consists of the following steps:

	
Files are retrieved from a directory by an adapter service named ReadOrders.

	
The ReadOrders adapter service sends the file data to a Mediator named ProcessOrders.

	
The ProcessOrders Mediator then transforms the message to the structure required by the adapter reference. During transformation, Mediator looks up the UnitsOfMeasure domain value map for an equivalent value of the Common domain.

	
The ProcessOrders Mediator sends the message to an external reference named WriteOrders.

	
The WriteOrders reference writes the message to a specified output directory.

To download the sample files mentioned in this section, see the Oracle SOA Suite samples page.

47.5.1 How to Create the HierarchicalValue Use Case

This section provides the design-time tasks for creating, building, and deploying your SOA composite application. These tasks must be performed in the order in which they are presented.

47.5.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:

	
In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

	
In the New Gallery, expand the General node, and select the Applications category.

	
In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

	
In the Application Name field, enter Hierarchical and then click Next.

The Name your project page appears.

	
In the Project Name field, enter HierarchicalValue and click Next.

The Configure SOA settings page appears.

	
In the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is populated with the new application and the project, and the SOA Composite Editor contains a blank composite.

	
From the File menu, select Save All.

47.5.1.2 Task 2: How to Create a Domain Value Map

After creating an application and a project for the use case, create a domain value map.

To create a domain value map:

	
In the Application Navigator, right-click the HierarchicalValue project and select New.

	
In the New Gallery dialog, expand the SOA Tier node, and then select the Transformations category.

	
In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog appears.

	
In the File Name field, enter UnitsOfMeasure.dvm.

	
In the Domain Name fields, enter Siebel and Common.

	
In the Domain Value field corresponding to the Siebel domain, enter Ea.

	
In the Domain Value field corresponding to the Common domain, enter Each.

	
Click OK.

The Domain Value Map Editor appears.

	
Click Add and then select Add Column.

The Create DVM Column dialog appears.

	
In the Name field, enter TradingPartner.

	
In the Qualifier list, select true.

	
In the QualifierOrder field, enter 1 and click OK.

	
Repeat Step 9 through Step 12 to create another qualifier named StandardCode with a qualifier order value of 2.

	
Click Add and then select Add Domain Values.

Repeat this step to add two more rows.

	
Enter the information shown in Table 47-6 in the newly added rows of the domain value map table.

Table 47-6 Information for Rows of Domain Value Map Table

	Siebel	Common	TradingPartner	StandardCode
	
EC

	
Each

	
	
OAG

	
E-RN

	
Each

	
A.C.Networks

	
RN

	
EO

	
Each

	
ABC Inc

	
RN

The Domain Value Map Editor appears, as shown in Figure 47-11.

Figure 47-11 UnitsOfMeasure Domain Value Map

[image: Description of Figure 47-11 follows]

Description of "Figure 47-11 UnitsOfMeasure Domain Value Map"

	
From the File menu, select Save All and close the Domain Value Map Editor.

47.5.1.3 Task 3: How to Create a File Adapter Service

After creating the domain value map, create a file adapter service named ReadOrders to read the XML files from a directory.

	
Note:

Oracle Mediator may process the same file twice when run against Oracle Real Application Clusters (Oracle RAC) planned outages. This is because a file adapter is a non-XA compliant adapter. Therefore, when it participates in a global transaction, it may not follow the XA interface specification of processing each file only once.

To create a file adapter service:

	
From the Component Palette, select SOA.

	
Select File Adapter and drag it to the Exposed Services swimlane.

	
If the Adapter Configuration wizard Welcome page appears, click Next.

The Service Name page appears.

	
In the Service Name field, enter ReadOrders and then click Next.

The Operation page appears.

	
In the Operation Type field, select Read File and then click Next.

The File Directories page appears.

	
In the Directory for Incoming Files (physical path) field, enter the directory from which you want to read the files.

	
Click Next.

The File Filtering page appears.

	
In the Include Files with Name Pattern field, enter *.xml and then click Next.

The File Polling page appears.

	
Change the Polling Frequency field value to 10 seconds and then click Next.

The Messages page appears.

	
Click Search.

The Type Chooser dialog appears.

	
Click Import Schema File.

The Import Schema File dialog appears.

	
Click Search and select the Order.xsd file in the Samples folder.

	
Click OK.

	
Expand the navigation tree to Type Explorer > Imported Schemas > Order.xsd.

	
Select listOfOrder and click OK.

	
Click Next.

The Finish page appears.

	
Click Finish.

	
From the File menu, click Save All.

Figure 47-12 shows the ReadOrders service in the SOA Composite Editor.

Figure 47-12 ReadOrders Service in the SOA Composite Editor

[image: Description of Figure 47-12 follows]

Description of "Figure 47-12 ReadOrders Service in the SOA Composite Editor"

47.5.1.4 Task 4: How to Create ProcessOrders Mediator Component

To create a Mediator named ProcessOrders:

	
Drag and drop a Mediator icon from the Component Palette to the Components section of the SOA Composite Editor.

The Create Mediator dialog appears.

	
In the Name field, enter ProcessOrders.

	
From the Template list, select Define Interface Later.

	
Click OK.

A Mediator with name ProcessOrders is created.

	
In the SOA Composite Editor, connect the ReadOrders service to the ProcessOrders Oracle Mediator, as shown in Figure 47-13.

This specifies the file adapter service to invoke the ProcessOrders Mediator while reading a file from the input directory.

Figure 47-13 ReadOrders Service Connected to the ProcessOrders Mediator

[image: Description of Figure 47-13 follows]

Description of "Figure 47-13 ReadOrders Service Connected to the ProcessOrders Mediator"

	
From the File menu, select Save All.

47.5.1.5 Task 5: How to Create a File Adapter Reference

To create a file adapter reference:

	
From the Component Palette, select SOA.

	
Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page appears.

	
Click Next.

The Service Name page appears.

	
In the Service Name field, enter WriteCommonOrder.

	
Click Next.

The Operation page appears.

	
In the Operation Type field, select Write File.

	
Click Next.

The File Configuration page appears.

	
In the Directory for Outgoing Files (physical path) field, enter the name of the directory in which you want to write the files.

	
In the File Naming Convention field, enter common_order_%SEQ%.xml and click Next.

The Messages page appears.

	
Click Search.

The Type Chooser dialog appears.

	
Navigate to Type Explorer > Project Schema Files > Order.xsd, and then select listOfOrder.

	
Click OK.

	
Click Next.

The Finish page appears.

	
Click Finish.

Figure 47-14 shows the WriteCommonOrder reference in the SOA Composite Editor.

Figure 47-14 WriteCommonOrder Reference in the SOA Composite Editor

[image: Description of Figure 47-14 follows]

Description of "Figure 47-14 WriteCommonOrder Reference in the SOA Composite Editor"

	
From the File menu, select Save All.

47.5.1.6 Task 6: How to Specify Routing Rules

You must specify the path that messages take from the ReadOrders adapter service to the external reference.

To specify routing rules:

	
Connect the ProcessOrders Oracle Mediator to the WriteCommonOrder reference, as shown in Figure 47-15.

Figure 47-15 ProcessOrders Mediator Connected to the WriteCommonOrder Reference

[image: Description of Figure 47-15 follows]

Description of "Figure 47-15 ProcessOrders Mediator Connected to the WriteCommonOrder Reference"

	
Double-click the ProcessOrders Oracle Mediator.

	
To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog appears.

	
Select Create New Mapper File and click OK.

A listOfOrder_To_listOfOrder.xsl file appears in the XSLT Mapper.

	
Drag and drop the imp1:listOfOrder source element onto the imp1:listOfOrder target element.

The Auto Map Preferences dialog appears.

	
From the During Auto Map options, deselect Match Elements Considering their Ancestor Names.

	
Click OK.

The listOfOrder_To_listOfOrder.xsl file appears, as shown in Figure 47-16.

Figure 47-16 imp1:listOfOrder To imp1:listOfOrder Transformation

[image: Description of Figure 47-16 follows]

Description of "Figure 47-16 imp1:listOfOrder To imp1:listOfOrder Transformation"

	
In the Component Palette, select Advanced.

	
Click DVM Functions.

	
Drag and drop lookupValue on the line connecting the unitsOfMeasure elements, as shown in Figure 47-17.

Figure 47-17 Adding lookupValue Function to imp1:listOfOrder To imp1:listOfOrder.xsl

[image: Description of Figure 47-17 follows]

Description of "Figure 47-17 Adding lookupValue Function to imp1:listOfOrder To imp1:listOfOrder.xsl"

	
Double-click the lookupvalue icon.

The Edit Function-lookupValue dialog appears.

	
To the right of the dvmLocation field, click Search.

The SOA Resource Lookup dialog appears.

	
Select UnitsofMeasure.dvm and click OK.

	
To the right of the sourceColumnName field, click Search.

The Select DVM Column dialog appears.

	
Select Siebel and click OK.

	
In the sourceValue column, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:unitOfMeasure

	
To the right of the targetColumnName field, click Search.

The Select DVM Column dialog appears.

	
Select Common and click OK.

	
In the defaultValue field, enter "No_Value_Found".

	
Click Add.

A qualifierColumnName row is added.

	
In the qualifierColumnName field, enter "StandardCode".

	
Click Add.

A qualifierValue row is added.

	
In the qualifierValue field, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:standard.

	
Click Add to insert another qualifierColumnName row.

	
In the qualifierColumnName field, enter "TradingPartner".

	
Click Add to insert another qualifierValue row.

	
In the qualifierValue field, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:tp.

The Edit Function-lookupValue dialog appears, as shown in Figure 47-18.

Figure 47-18 Edit Function-lookupValue Function Dialog: Hierarchical Lookup Use Case

[image: Description of Figure 47-18 follows]

Description of "Figure 47-18 Edit Function-lookupValue Function Dialog: Hierarchical Lookup Use Case"

	
Click OK.

The transformation appears, as shown in Figure 47-19.

Figure 47-19 Complete imp1:listOfOrder To imp1:listOfOrder Transformation

[image: Description of Figure 47-19 follows]

Description of "Figure 47-19 Complete imp1:listOfOrder To imp1:listOfOrder Transformation"

	
From the File menu, select Save All and close the listOfOrder_To_listOfOrder.xsl file at the top.

47.5.1.7 Task 7: How to Configure an Application Server Connection

An application server connection is required for deploying your SOA composite application. For information on creating an application server connection, see Section 43.7.1.1.1, "Creating an Application Server Connection."

47.5.1.8 Task 8: How to Deploy the Composite Application

Deploying the HierarchicalValue composite application to an application server consists of the following steps:

	
Creating an application deployment profile.

	
Deploying the application to the application server.

For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."

47.5.2 How to Run and Monitor the HierarchicalValue Application

After deploying the HierarchicalValue application, you can run it by copying the input XML file sampleorder.xml to the input folder. This file is available in the samples folder. On successful completion, a file named common_order_1.xml is written to the specified output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion Middleware Control at the following URL:

http://hostname:port/em

where hostname is the host on which you installed the Oracle SOA Suite infrastructure.

For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."

47.6 Creating a Domain Value Map Use Case For Multiple Values

This section provides a tutorial demonstrating how to create a domain value map with multiple values to look up. This use case demonstrates the integration scenario for using a domain value map lookup between two endpoints to look up multiple values. For example, if the inbound value is State, then the outbound values are Shortname of State, Language, and Capital. The multivalue lookup use case consists of the following steps:

	
Files are retrieved from a directory by an adapter service named readFile.

	
The readFile adapter service sends the file data to an Oracle Mediator named LookupMultiplevaluesMediator.

	
The LookupMultiplevaluesMediator Oracle Mediator then transforms the message to the structure required by the adapter reference. During transformation, Oracle Mediator looks up the multivalue domain value map for an equivalent value of the Longname and Shortname domains.

	
The LookupMultiplevaluesMediator Oracle Mediator sends the message to an external reference named writeFile.

	
The writeFile reference writes the message to a specified output directory.

To download the sample files mentioned in this section, see Oracle SOA Suite samples page.

47.6.1 How to Create the Multivalue Use Case

This section provides the design-time tasks for creating, building, and deploying your SOA composite application. Perform these tasks in the order in which they are presented.

47.6.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project

To create an Oracle JDeveloper application and project:

	
In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

	
In the New Gallery, expand the General node, and select the Applications category.

	
In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

	
In the Application Name field, enter Multivalue and then click Next.

The Name your project page appears.

	
In the Project Name field, enter Multivalue and click Next.

The Configure SOA settings page appears.

	
From the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is populated with the new application and project, and the SOA Composite Editor contains a blank composite.

	
From the File menu, select Save All.

47.6.1.2 Task 2: How to Create a Domain Value Map

After creating an application and a project for the use case, create the domain value map.

To create a domain value map:

	
In the Application Navigator, right-click the Multivalue project and select New.

	
In the New Gallery dialog, expand the SOA Tier node, and then select the Transformations category.

	
In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog appears.

	
In the File Name field, enter multivalue.dvm.

	
In the Domain Name fields, enter Longname, Shortname, Language, and Capital.

	
In the Domain Value field corresponding to the Longname domain, enter Karnataka.

	
In the Domain Value field corresponding to the Shortname domain, enter KA.

	
In the Domain Value field corresponding to the Language domain, enter Kannada.

	
In the Domain Value field corresponding to the Capital domain, enter Bangalore.

	
Click OK.

The Domain Value Map Editor appears.

	
Click Add and then select Add Row.

Repeat this step to add two more rows.

	
Enter the information shown in Table 47-7 in the newly added rows of the domain value map table:

Table 47-7 Information for Rows of Domain Value Map Table

	Longname	Shortname	Language	Capital
	
Karnataka

	
KA

	
Kannada

	
Bangalore

	
Tamilnadu

	
TN

	
Tamil

	
Chennai

	
Andhrapradesh

	
AP

	
Telugu

	
Hyderbad

	
Kerala

	
KL

	
Malayalam

	
Trivandram

The Domain Value Map Editor appears, as shown in Figure 47-20.

Figure 47-20 Multivalue Domain Value Map

[image: Description of Figure 47-20 follows]

Description of "Figure 47-20 Multivalue Domain Value Map"

	
From the File menu, select Save All and close the Domain Value Map Editor.

47.6.1.3 Task 3: How to Create a File Adapter Service

After creating the domain value map, create a file adapter service named readFile to read the XML files from a directory.

	
Note:

Mediator may process the same file twice when run against Oracle RAC planned outages. This is because a file adapter is a non-XA compliant adapter. Therefore, when it participates in a global transaction, it may not follow the XA interface specification of processing each file only once.

To create a file adapter service:

	
From the Component Palette, select SOA.

	
Select File Adapter and drag it to the Exposed Services swimlane.

	
If the Adapter Configuration wizard Welcome page appears, click Next.

The Service Name page appears.

	
In the Service Name field, enter readFile and then click Next.

The Adapter Interface page appears.

	
Click Define from operation and schema (specified later) and then click Next.

The Operation page appears.

	
In the Operation Type field, select Read File and then click Next.

The File Directories page appears.

	
In the Directory for Incoming Files (physical path) field, enter the directory from which you want to read the files.

	
Click Next.

The File Filtering page appears.

	
In the Include Files with Name Pattern field, enter *.xml and then click Next.

The File Polling page appears.

	
Change the Polling Frequency field value to 1 second and then click Next.

The Messages page appears.

	
Click Search.

The Type Chooser dialog appears.

	
Click Import Schema File.

The Import Schema File dialog appears.

	
Click Search and select the input.xsd file in the Samples folder.

	
Click OK.

	
Expand the navigation tree to Type Explorer > Imported Schemas > input.xsd.

	
Select Root-Element and click OK.

	
Click Next.

The Finish page appears.

	
Click Finish.

	
From the File menu, select Save All.

Figure 47-21 shows the readFile service in the SOA Composite Editor.

Figure 47-21 readFile Service in the SOA Composite Editor

[image: Description of Figure 47-21 follows]

Description of "Figure 47-21 readFile Service in the SOA Composite Editor"

47.6.1.4 Task 4: How to Create the LookupMultiplevaluesMediator Mediator

To create the LookupMultiplevaluesMediator Mediator:

	
Drag and drop a Mediator icon from the Component Palette to the Components section of the SOA Composite Editor.

The Create Mediator dialog appears.

	
In the Name field, enter LookupMultiplevaluesMediator.

	
From the Template list, select Define Interface Later.

	
Click OK.

An Oracle Mediator with the name LookupMultiplevaluesMediator is created.

	
In the SOA Composite Editor, connect the readFile service to the LookupMultiplevaluesMediator Oracle Mediator, as shown in Figure 47-22.

This specifies the file adapter service to invoke the LookupMultiplevaluesMediator Oracle Mediator while reading a file from the input directory.

Figure 47-22 readFile Service Connected to the LookupMultiplevaluesMediator Mediator

[image: Description of Figure 47-22 follows]

Description of "Figure 47-22 readFile Service Connected to the LookupMultiplevaluesMediator Mediator"

	
From the File menu, select Save All.

47.6.1.5 Task 5: How to Create a File Adapter Reference

To create a file adapter reference:

	
From the Component Palette, select SOA.

	
Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page appears.

	
Click Next.

The Service Name page appears.

	
In the Service Name field, enter writeFile and then click Next.

The Adapter Interface page appears.

	
Click Define from operation and schema (specified later) and then click Next.

The Operation page appears.

	
Click Next.

The Operation page appears.

	
In the Operation Type field, select Write File.

	
Click Next.

The File Configuration page appears.

	
In the Directory for Outgoing Files (physical path) field, enter the name of the directory where you want to write the files.

	
In the File Naming Convention field, enter multivalue_%SEQ%.xml and click Next.

The Messages page appears.

	
Click Search.

The Type Chooser dialog appears.

	
Navigate to Type Explorer > Project Schema Files > output.xsd, and then select Root-Element.

	
Click OK.

	
Click Next.

The Finish page appears.

	
Click Finish.

Figure 47-23 shows the writeFile reference in the SOA Composite Editor.

Figure 47-23 writeFile Reference in SOA Composite Editor

[image: Description of Figure 47-23 follows]

Description of "Figure 47-23 writeFile Reference in SOA Composite Editor"

	
From the File menu, select Save All.

47.6.1.6 Task 6: How to Specify Routing Rules

You must specify the path that messages take from the readFile adapter service to the external reference.

To specify routing rules

	
Connect the LookupMultiplevaluesMediator Mediator to the writeFile reference, as shown in Figure 47-24.

Figure 47-24 LookupMultiplevaluesMediator Mediator Connected to the writeFile Reference

[image: Description of Figure 47-24 follows]

Description of "Figure 47-24 LookupMultiplevaluesMediator Mediator Connected to the writeFile Reference"

	
Double-click the LookupMultiplevaluesMediator Mediator.

	
To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog appears.

	
Select Create New Mapper File and click OK.

An Input_To_Output_with_multiple_values_lookup.xsl file appears in the XSLT Mapper.

	
Drag and drop the imp1:Root-Element source element to the ns2:Root-Element target element.

The Auto Map Preferences dialog appears.

	
From the During Auto Map options list, deselect Match Elements Considering their Ancestor Names.

	
Click OK.

The Input_To_Output_with_multiple_values_lookup.xsl file appears in the XSLT Mapper, as shown in Figure 47-25.

Figure 47-25 imp1:Root-Element To ns2:Root-Element Transformation

[image: Description of Figure 47-25 follows]

Description of "Figure 47-25 imp1:Root-Element To ns2:Root-Element Transformation"

	
In the Component Palette, select Advanced.

	
Click DVM Functions.

	
Drag and drop lookupValue1M in the center panel, as shown in Figure 47-26.

Figure 47-26 Adding lookupValue Function to imp1:Root-Element to ns2:Root-Element

[image: Description of Figure 47-26 follows]

Description of "Figure 47-26 Adding lookupValue Function to imp1:Root-Element to ns2:Root-Element"

	
Double-click the lookupvalue1M icon.

The Edit Function-lookupValue1M dialog appears.

	
To the right of the dvmLocation field, click Search.

The SOA Resource Lookup dialog appears.

	
Select multivalue.dvm and click OK.

	
To the right of the sourceColumnName field, click Search.

The Select DVM Column dialog appears.

	
Select Longname and click OK.

	
In the sourceValue column, enter the following:

/imp1:Root-Element/imp1:Details/imp1:Longname.

	
To the right of the targetColumnName field, click Search.

The Select DVM Column dialog appears.

	
Select Shortname and click OK.

	
Click Add.

A targetColumnName row is added.

	
In the targetColumnName field, enter "Language".

	
Click Add to insert another targetColumnName row.

	
In the targetColumnName field, enter "Capital".

The Edit Function-lookupValue dialog appears, as shown in Figure 47-27.

Figure 47-27 Edit Function-lookupValue Function Dialog: Multiple Value Lookup Use Case

[image: Description of Figure 47-27 follows]

Description of "Figure 47-27 Edit Function-lookupValue Function Dialog: Multiple Value Lookup Use Case"

	
Click OK.

The Transformation appears, as shown in Figure 47-28.

Figure 47-28 Complete imp1:Root-Element To ns2:Root-Element Transformation

[image: Description of Figure 47-28 follows]

Description of "Figure 47-28 Complete imp1:Root-Element To ns2:Root-Element Transformation"

	
From the File menu, select Save All and close the Input_To_Output_with_multiple_values_lookup.xsl file.

47.6.1.7 Task 7: How to Configure an Application Server Connection

An application server connection is required for deploying your SOA composite application. For information on creating an application server connection, see Section 43.7.1.1.1, "Creating an Application Server Connection."

47.6.1.8 Task 8: How to Deploy the Composite Application

Deploying the Multivalue composite application to an application server consists of the following steps:

	
Creating an application deployment profile.

	
Deploying the application to the application server.

For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."

47.6.2 How to Run and Monitor the Multivalue Application

After deploying the Multivalue application, you can run it by copying the input XML file sampleinput.xml to the input folder. This file is available in the samples folder. On successful completion, a file with name multivalue_1.xml is written to the specified output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion Middleware Control at the following URL:

http://hostname:port/em

where hostname is the host on which you installed the Oracle SOA Suite infrastructure.

In Oracle Enterprise Manager Fusion Middleware Control, you can click Multivalue to see the project dashboard.

To view the detailed execution trail, click the instance ID in the instance column. The Flow Trace page appears.

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y

A

	abs function
	
	description, B.1.3.1

	access points, 63.4.1, 64.5.1, 65.5.1
	access policies
	
	on task content, 29.9.1

	action types, 29.5.2.3
	actionable emails, 34.2.7
	
	not sent during runtime when digital signatures are enabled, 34.2.7

	activities
	
	Annotations tab, A.2.1.1
	assert, A.2.4
	Assertions tab, 12.14.2, A.2.1.2
	assign, A.2.3
	bind entity, A.2.5
	bypassing execution of, 11.5
	compensate, A.2.6
	compensateScope, A.2.7
	copying and pasting between BPEL projects, A.2.2
	copying and pasting in the same BPEL project, A.2.2
	Correlations tab, A.2.1.3
	create entity, A.2.8
	definition, 4.2
	dehydrate, A.2.9
	Documentation tab, A.2.1.4
	email, A.2.10
	empty, A.2.11
	exit, A.2.12
	flow, A.2.13
	flowN, A.2.14
	forEach, A.2.15
	Headers tab, A.2.1.5
	if, A.2.16
	IM, A.2.17
	invoke, A.2.18
	Java embedding, A.2.19
	overview, 4.2, A.2
	partner link, A.2.20
	phase, A.2.21
	pick, A.2.22
	Properties tab, A.2.1.6
	receive, A.2.23
	receive signal, A.2.24
	remove entity, A.2.25
	repeatUntil, A.2.26
	replay, A.2.27
	reply, A.2.28
	restrictions on copying and pasting activities, A.2.2
	rethrow, A.2.29
	scope, A.2.30
	sequence, A.2.31
	signal, A.2.32
	Skip Condition tab, 11.5.1, A.2.1.7
	SMS, A.2.33
	Sources tab, A.2.1.8
	switch, A.2.34
	synchronizing the execution of activities, 10.2.3
	Targets tab, A.2.1.8
	tasks common to many activities, A.2.1
	terminate, A.2.35
	throw, A.2.36
	Timeout tab, 15.3, A.2.1.9
	transform, A.2.37
	user notification, A.2.38
	validate, A.2.39
	voice, A.2.40
	wait, A.2.41
	while, A.2.42

	activity sensors
	
	definition, 18.1

	Adapter Configuration wizard
	
	starting, 4.5

	adapters
	
	binding component, 2.3.1, 2.4.1
	configuring, 4.5
	definition, 1.5.2, 4.5, 37.1.3, A.3
	in Oracle JDeveloper, 4.5
	Oracle BAM, 53.1
	overview, 1.5.2, 37.1.3, A.3
	service names, 4.5
	supported, 1.5.2, 37.1.3, A.3

	add-dayTimeDuration-to-dateTime function
	
	description, B.1.2.1

	adding a cross reference table column, 49.4.4
	adding columns to domain value maps, 47.3.1
	adding rows to domain value maps, 47.3.3
	addQuotes function
	
	description, B.2.1

	ADF bindings
	
	files for, 54.4.2
	using to invoke a composite from a JSP/Java class, 37.2.2

	ADF bindings filter, 35.1.4
	ADF Model layer, introduced, 54.1
	ADF task flow for human tasks, 30.3
	ADF, using Oracle BAM, 54.4
	ADF-BC services
	
	binding component, 2.3.1, 2.4.1
	definition, 37.1.7

	adfBindings bindings filter, 35.1.4
	adf-desktop-integration.jar, 35.1.4
	adfdiExcelDownload download filter, 35.1.4
	adfdiRemote servlet, 35.1.4
	ADFLibraryFilter filter, 35.1.4
	admin.server.host parameter, 3.5.7
	admin.server.port parameter, 3.5.7
	advanced formatting, message sources, 56.2.3
	aggregate functions in calculations, 55.2.4
	alerts
	
	history, 60.6
	Oracle BAM
	
	about, 60.1
	actions, F.3
	activating, 60.2.2
	activity, 60.6
	administrative role users, 60.1, 60.2.5
	conditions, F.2
	creating, 60.2
	dependencies, 60.5
	events, F.1
	frequency constraint, F.4
	history, 60.6
	messages, 60.4
	parameterized, F.3.4
	templates, 60.3
	web services, 60.7

	alidateFodConfigSettings ant script, 3.5.7
	Annotations tab
	
	in activities, A.2.1.1

	ant scripts
	
	activating all composites in a partition, 43.7.5.2.23
	activating an application, 43.7.5.2.13
	assigning the default version to a SOA composite application, 43.7.5.2.15
	compile-deploy-all, 3.5.7
	compiling a SOA composite application, 43.7.5.2.2
	creating a partition in the SOA Infrastructure, 43.7.5.2.19
	deleting a partition, 43.7.5.2.20
	deploying a SOA composite application, 43.7.5.2.4
	executing a test case, 43.7.5.2.1
	exporting a SOA composite application into a SAR file, 43.7.5.2.6
	exporting postdeployment changes of a composite into a JAR file, 43.7.5.2.7
	exporting shared data of a given pattern into a JAR file, 43.7.5.2.9
	importing postdeployment changes of a composite, 43.7.5.2.8
	listing all available partitions in the SOA Infrastructure, 43.7.5.2.17
	listing all composites in a partition, 43.7.5.2.18
	listing the deployed SOA composite applications, 43.7.5.2.16
	managing composites, 43.7.5.2
	packaging a SOA composite application into a composite SAR file, 43.7.5.2.3
	removing a top-level shared data folder, 43.7.5.2.10
	retiring all composites in a partition, 43.7.5.2.24
	retiring an application, 43.7.5.2.14
	seedBAMServerObjects, 3.5.7, 3.5.7
	seedDemoUsers, 3.5.7
	seedFodJmsResources, 3.5.7
	server-setup-seed-deploy-test, 3.5.7
	starting all composites in a partition, 43.7.5.2.21
	starting an application, 43.7.5.2.11, 43.7.5.2.12, 43.7.5.2.13, 43.7.5.2.14, 43.7.5.2.15, 43.7.5.2.16
	stopping all composites in a partition, 43.7.5.2.22
	stopping an application, 43.7.5.2.12
	undeploying a SOA composite application, 43.7.5.2.5
	validateFodConfigSettings, 3.5.7

	appendToList function
	
	description, B.2.3

	Application Navigator
	
	location of in Oracle JDeveloper, 4.1.1

	application roles
	
	definition, 27.2.1.1.3

	application template, 35.1.3
	AQ adapter
	
	definition, 37.1.3.1

	arrays
	
	in transformations, 40.3.6.3
	manipulating, 6.19
	maxOccurs attribute, 6.19
	SOAP-encoded arrays, 6.19.2
	statically indexing into, 6.19.1

	AspectJ classes
	
	configuring with the spring service component, 52.8

	assert activity
	
	capabilities, A.2.4

	assertion conditions
	
	creating, 12.14.2
	disabling, 12.14.3
	expressions not evaluating to an XML schema boolean type throw a fault, 12.14.1.6
	log events in the instance audit trail, 12.14.1.5
	multiple, 12.14.1.3
	throwing faults, 12.14
	use of built-in and custom XPath functions and $variable references, 12.14.1.4

	assertion tests
	
	overview, 44.1.4

	assertions
	
	creating value asserts, 44.4.5.1
	in composite test suites, 44.2.3

	Assertions tab
	
	creating assertion conditions, 12.14.2
	in activities, A.2.1.2

	assign activity
	
	adding to an asynchronous service, 8.2.1.4
	assigning a literal or XML fragment to a target node, A.2.3
	bpelx extensions in BPEL 1.1, 6.14
	bpelx extensions in BPEL 2.0, 6.14
	capabilities, A.2.3
	changing copy rules to bpelx extension types, A.2.3
	copying data, 6.5.1, A.2.3
	creating a bpelx:rename extension rule on a target node, A.2.3
	creating an XPath expression on a target node, A.2.3
	description, 6.1.2
	for data manipulation, 6.1.2, A.2.3
	formatting the email message body as HTML, 17.3.1.2
	in asynchronous services, 8.2.1.4
	recasting a target node, A.2.3
	renaming a target node, A.2.3
	selecting an extension type in BPEL 1.1, A.2.3
	selecting an extension type in BPEL 2.0, A.2.3
	selecting the ignoreMissingFromData attribute, A.2.3
	selecting the insertMissingToData attribute, A.2.3
	selecting the keepSrcElementName attribute, A.2.3
	using multiple bpelx:append settings, A.2.3
	using the Copy Rules tab, 6.14, A.2.3

	assign extension attributes
	
	ignoreMissingFromData, 6.14.7
	insertMissingToData, 6.14.7
	keepSrcElementName, 6.14.7
	using, 6.14.7

	assignment service
	
	configuration, 34.3
	deploying a custom assignment service, 34.3.2.3
	dynamic assignment functions, 34.3.1, 34.3.1.1, 34.3.1.2, 34.3.1.3
	dynamically assigning task participants, 34.3.2
	example of implementation, 34.3.2.2
	implementing, 34.3.2.1

	asynchronous interaction with a notification timer
	
	BPEL process as the client, 5.5
	BPEL process as the service, 5.5
	definition, 5.5

	asynchronous interaction with a timeout
	
	BPEL process as the client, 5.4
	BPEL process as the service, 5.4
	definition, 5.4

	asynchronous interactions
	
	BPEL process as the client, 5.3
	BPEL process as the service, 5.3
	definition, 5.3
	returning faults, 12.9.2

	asynchronous processes
	
	dehydration store, 8.2.2.7, 8.2.2.7

	asynchronous services
	
	assign activities, 8.2.1.4
	calling, 8.2
	correlation IDs, 8.2.2.5
	invoke activities, 8.2.1.2, 8.2.2.5
	parallel flows, 10.1
	partner links, 8.2.1.1, 8.2.2.2, 8.2.2.3
	receive activities, 8.2.1.3, 8.2.2.5
	WS-Addressing, 8.2.2.5

	attachments
	
	adding MTOM attachments to web services, 45.1.1.3
	attaching a URL file, 32.4.3
	in end-to-end streaming, 45.1.1.2
	in SOAP, 45.1.1.2.1
	MIME, 45.1.1.2.1
	optimization enabled, 45.1.1.2.1
	options for file and FTP adapters, 45.1.1.2.2
	Oracle B2B, 45.1.1.2.3
	performance overhead and pass through attachments, 45.1.1.2.1
	properties for streaming attachments, 45.1.1.2.1
	reading and encoding SOAP attachment content, 45.1.1.2.1
	sending streaming attachments, 45.1.1.2.1
	sending with the notification wizard, 17.3.1.1
	sharing attachments using synchronous flows, 45.1.1.2.1
	streaming, 45.1.1.2.1
	task attachments with email notifications, 34.2.8
	transforming attachments with the ora:doStreamingTranslate XPath function, 45.1.1.2.2
	using WordML style sheets, 29.6.1
	writing attachments using an outbound file adapter, 45.1.1.2.2

	attribute labels
	
	internationalization, 34.1.9.1

	attributes
	
	manipulating, 6.13

	audit level
	
	setting, 45.1.3.1

	authenticate function
	
	description, B.2.2

	auto mapping
	
	in transformations, 40.3.7
	with confirmation in transformations, 40.3.7.1

	automated testing
	
	of BPEL process service components, 44, 44.5
	of SOA composite applications, 2.8.2, 44

B

	B2BSee Oracle B2B
	B2BX12OrderGateway project, 3.3.1
	bam.server.host parameter, 3.5.7
	bam.server.password parameter, 3.5.7
	bam.server.port parameter, 3.5.7
	bam.username parameter, 3.5.7
	batching
	
	message batching limitations with Oracle Business Activity Monitoring, 53.7.2

	batchProcessActive function
	
	description, B.2.58.1

	batchProcessCompleted function
	
	description, B.2.58.2

	best practices
	
	creating and wiring BPEL and mediator service components in the SOA Composite Editor, 4.3
	for handling large documents, 45.1
	for handling large metadata, 45.2
	for handling large numbers of instances, 45.3
	tuning recommendations, 45.1.3

	bin project, 3.3.1
	bind activity
	
	only supported in BPEL 1.1 projects, A.2.5

	bind entity activity
	
	capabilities, A.2.5

	binding components
	
	adapters, 2.3.1, 2.4.1
	adding references, 2.4.1
	adding services, 2.3.1
	ADF-BC services, 2.3.1, 2.4.1, 37.1.7
	definition, 1.5.2, 1.6
	deleting references, 2.4.2
	deleting services, 2.3.5
	direct binding services, 2.3.1, 2.4.1, 37.1.9
	editing, 2.3.4
	EJB services, 2.3.1, 2.4.1, 37.1.8
	HTTP binding, 2.3.1, 2.4.1, 37.1.2
	integrating into a SOA composite application, 37.2
	introduction, 37.1
	JCA adapters, 37.1.3
	Oracle B2B, 2.3.1, 2.4.1, 37.1.6
	Oracle BAM, 37.1.5
	supported, 1.5.2, 2.3.1
	web services, 2.3.1, 2.4.1, 37.1.1
	WS-Atomic transactions, 37.1.1.1

	bindingFault
	
	definition, 12.3.2.1

	boolean values
	
	assigning, 6.11

	bottom-up design approach, 1.7
	bpel
	
	BPEL 2.0 namespace prefix, 6.1.2, B.2.57

	BPEL 1.1
	
	activities overview, A.2

	BPEL 2.0
	
	$variable syntax, 6.8.1
	activities overview, A.2
	assign activity, 6.1.2
	assigning a date or time, 6.12.1
	assigning boolean values, 6.11.1
	bpelx:append extension, 6.14.1.2
	bpelx:copyList extension, 6.14.6.2
	bpelx:insertAfter extension, 6.14.3.2
	bpelx:insertBefore extension, 6.14.2.2
	bpelx:remove extension, 6.14.4.2
	bpelx:rename extension, 6.14.5.2
	cannot create a single BPEL project that supports versions 1.1 and 2.0, 4.1.1
	compensateScope activity, 12.12.4, A.2.7
	conditional branching, 11.2.2
	creating a BPEL project, 4.1.1
	custid attribute, 6.13.1
	declaring extension namespaces, 6.23
	determining the BPEL project version number, 4.1.1
	element-based variables, 6.6.1
	exit activity, 12.13.2, A.2.12
	expression copy, 6.9.1
	forEach activity, 10.3.2, A.2.15
	fromParts element, 6.17
	if activity, 11.2.2, A.2.16
	importing process definitions, 6.18
	initializing variables inline, 6.5.2, 8.2.1.3
	limitations
	
	on inbound message activity support, 8.2.4

	mapping WSDL message parts, 6.17
	message type-based variable definition, 6.6.1
	namespace prefix, 6.1.2
	order of precedence for fault handling, 12.2.2.1
	repeatUntil activity, 11.4, A.2.26
	rethrow activity, 12.8, A.2.29
	setting correlations for an IMA using a fromParts element with multiple parts, 9.1.3
	simultaneous onMessage branches, 15.2.3
	SOAP-encoded arrays, 6.19.2.1
	standard faults, 12.2.2
	supported activities, A.2
	toParts element, 6.17
	using element variables in message exchange activities, 6.16
	waiting for message arrival with an onEvent branch, 15.5

	BPEL design environment
	
	overview, 4.1

	BPEL extension functions
	
	in BPEL 1.1, B.2.57
	in BPEL 2.0, B.2.57

	BPEL monitors
	
	definition, 4.6

	BPEL process testing
	
	assert activity execution, 44.5.3
	assertions on BPEL process activities, 44.5.1
	automating testing of, 44.5
	bypassing a wait activity, 44.5.6
	creating assertions, 44.5.5
	creating BPEL process service component tests, 44.5.4
	specifying fast forward actions on a wait activity, 44.5.2
	specifying the number of times to execute an activity, 44.5.7

	BPEL processes
	
	common interaction patterns, 5, 24
	creating, 3.5.1, 3.5.2, 4.1.1
	definition, 1.4
	naming conventions, 4.1.1
	service component, 2.2.1
	supported versions, 1.4
	transaction semantics, 13.1

	BPEL projects
	
	determining the BPEL project version number, 4.1.1
	naming conventions, 4.1.1

	BPEL sensor
	
	Oracle BAM, 53.7

	BPEL XPath extension functions, 6.1.2, B.2
	
	examples, 6.1.2

	bpelx extensions
	
	bpel:rename, A.2.3
	bpelx:append, 6.14.1.1, 6.14.1.2, 6.19.2, 6.19.4.2, 17.3.1.3, A.2.3
	bpelx:append extension, 6.14.1
	bpelx:conversationId, 8.2.5.1
	bpelx:copyList, 6.14.6.1, 6.14.6.2, A.2.3
	bpelx:dehydrate name, A.2.9
	bpelx:detailLabel, 16.1.1.1
	bpelx:eventName, 9.2.2
	bpelx:exec, 14.2.3, 14.5
	bpelx:flowN, 10.3.1.2
	bpelx:for, 15.3.1.1
	bpelx:fromProperties, H.4.2
	bpelx:headerVariable, 6.22
	bpelx:ignoreMissingFromData, 6.14.7.1
	bpelx:inputProperty, H.4.1
	bpelx:insertAfter, 6.14.3.1, 6.14.3.2, A.2.3
	bpelx:insertBefore, 6.14.2.1, 6.14.2.2, A.2.3
	bpelx:insertMissingToData, 6.14.7.2
	bpelx:invokeAsDetail, 16.1.1
	bpelx:outputProperty, H.4.1
	bpelx:postAssert, 12.14
	bpelx:preAssert, 12.14
	bpelx:receiveSignal, 16.1.1, 16.1.1
	bpelx:remove, 6.3.2, 6.14.4.1, 6.14.4.2, A.2.3
	bpelx:rename, 6.14.5.1, 6.14.5.2, A.2.3
	bpelx:rollback, 13.1.1.1
	bpelx:sdoCapable, 6.3.1
	bpelx:signal, 16.1.1
	bpelx:skipCondition, 11.5
	bpelx:target, 6.3.2, 6.14.5.1
	bpelx:timeout, 15.3.1.4
	bpelx:until, 15.3.1.2
	bpelx:validate, 6.15.1
	in assign activities, A.2.3
	in assign activities in BPEL 1.1, 6.14
	in assign activities in BPEL 2.0, 6.14
	XML data manipulation, 6.14

	bpelx:append extension
	
	appending data to a node list, B.2.3
	appending new items in a sequence, 6.19.4.2
	changing a copy rule to, A.2.3
	description, 6.14.1
	email activity message content, 17.3.1.3
	in SOAP-encoded arrays, 6.19.2
	not supported for SDO-based variables, 6.3.2
	using, 6.14.1.1, 6.14.1.2

	bpelx:assert extension
	
	expressions not evaluating to an XML schema boolean type throw a fault, 12.14.1.6
	multiple assertions, 12.14.1.3
	throwing faults based on a condition, 12.14
	use of built-in and custom XPath functions and $variable references, 12.14.1.4
	use of faultName and message attributes, 12.14.1.2

	bpelx:conversationId extension, 8.2.5.1
	bpelx:copyList extension
	
	changing a copy rule to, A.2.3
	copying a node list or a node, B.2.4
	description, 6.14.6
	using, 6.14.6.1, 6.14.6.2

	bpelx:dehydrate name extension
	
	description, A.2.9

	bpelx:detailLabel extension, 16.1.1.1
	bpelx:eventName extension
	
	routing events to the same instance, 9.2.2

	bpelx:exec extension, 14.2.3, 14.5
	
	built-in methods, 14.2.6
	embedding SDOs, 14.5

	bpelx:flowN extension, 10.3.1.2
	bpelx:for extension, 15.3.1.1
	bpelx:fromProperties extension, H.4.2
	bpelx:gnoreMissingFromData extension
	
	using, 6.14.7.1

	bpelx:headerVariable extension, 6.22
	
	description, 6.22

	bpelx:inputProperty extension, H.4.1
	bpelx:insertAfter extension
	
	changing a copy rule to, A.2.3
	description, 6.14.3
	using, 6.14.3.1, 6.14.3.2

	bpelx:insertBefore extension
	
	changing a copy rule to, A.2.3
	description, 6.14.2
	using, 6.14.2.1, 6.14.2.2

	bpelx:insertMissingToData extension
	
	using, 6.14.7.2

	bpelx:invokeAsDetail extension, 16.1.1
	bpelx:outputProperty extension, H.4.1
	bpelx:postAssert extension, 12.14
	bpelx:preAssert extension, 12.14
	bpelx:receiveSignal extension, 16.1.1, 16.1.1
	bpelx:remove extension
	
	creating, A.2.3
	description, 6.14.4
	using, 6.14.4.1, 6.14.4.2

	bpelx:rename extension
	
	adding, A.2.3
	description, 6.14.5
	using, 6.14.5.1, 6.14.5.2

	bpelx:rollback extension, 13.1.1.1
	bpelx:sdoCapable extension
	
	declaring SDO-based variables, 6.3.1

	bpelx:signal extension, 16.1.1
	bpelx:skipCondition extension
	
	bypassing activity execution, 11.5
	specifying to bypass activities, 11.5

	bpelx:target extension, 6.3.2, 6.14.5.1
	bpelx:timeout extension, 15.3.1.4
	
	fault thrown during an activity timeout, 15.3.1.4

	bpelx:until extension, 15.3.1.2
	bpelx:validate extension
	
	description, 6.15
	using in BPEL 1.1, 6.15.1

	bpws
	
	BPEL 1.1 namespace prefix, 6.1.2, B.2.57

	building expression with domain value map functions, 47.4.3
	build.properties file
	
	WebLogic Fusion Order Demo
	
	build.properties file, 3.5.7

	business events
	
	adding composite sensors to, 50.2
	creating, 41.2
	definition, 41.1
	differences with direct service invocations, 41.1
	Event Delivery Network, 41.1
	local and remote boundaries, 41.1.1
	publishing, 41.3.4
	specifying callback classes, 29.11.1.2
	subscribing to, 41.3.1, 41.4.1

	business faults
	
	definition, 12.3, 12.3.1

	business process instance
	
	stopping, 12.13

	business rules
	
	action types, 29.5.2.3
	declarative components and task flows, 26.1
	design environment overview, 25.3
	fact types, 29.5.2.2
	linked dictionary support, 29.5.2.5
	OrderBookingComposite, used in, 3.4
	routing policies, 29.5
	service component, 2.2.1, 25.4.2
	specifying advanced routing rules, 29.5.2
	use case for data validation and constraint checks, 25.1.1
	use case for dynamic processing, 25.1.1
	use case for externalizing decision points in the process, 25.1.1
	use case for human workflow, 25.1.1
	use cases, 25.1.1
	using the business rules dictionary editor declarative component, 26.3
	using the declarative component, 26.2

	Business Rules Designer
	
	introduction, 25.2
	layout, 25.2

C

	calculated fields, 55.2.4
	calculations
	
	aggregate functions, 55.2.4
	datetime functions, 55.2.4
	expressions, 55.2.4
	string functions, 55.2.4

	callback classes
	
	specifying business events, 29.11.1.2
	specifying on task status, 29.11.1

	callbacks
	
	class loading, 34.4
	task routing and customization in BPEL callbacks, 29.11.2
	using with spring, 52.2.2
	viewing, 28.4.5.1

	case sensitivity
	
	human workflow, 34.5.6
	in group names, 29.2.7.1

	catch branch
	
	creating, 12.10.6, A.2.30
	definition, 12.10.5
	fault handling, 12.10

	catchAll branch
	
	definition, 12.10.5

	channels
	
	email, 17.3.1
	IM, 17.3.2
	SMS, 17.3.3
	voice mail, 17.3.4

	character set encoding
	
	changing, 29.8.4

	chunking
	
	with the file and FTP adapters, 45.1.1.4.2

	class paths
	
	for clients using remote Enterprise JavaBeans, 33.5
	for clients using SOAP, 33.4

	clearing data objects, 55.10
	clearTaskAssignees function
	
	description, B.5.1

	compare function
	
	description, B.1.4.1

	compare-ignore-case function
	
	description, B.1.4.2

	compensate activity
	
	capabilities, A.2.6
	definition, 12.12
	fault handling, 12.12

	compensateScope activity
	
	capabilities, A.2.7
	only supported in BPEL 2.0 projects, A.2.7
	using, 12.12.4

	compilation
	
	increasing memory to recover from errors, 43.9.6.7

	compile-deploy-all ant script, 3.5.7
	completionPersistPolicy property
	
	description, C.1

	complex structures
	
	processing large XML documents, 45.1.1.5

	complex type
	
	variables, 6.6

	Component Palette
	
	introduction, 2.1.2
	location of in Oracle JDeveloper, 4.1.1

	componentType file
	
	definition, 2.1.2

	composite sensors
	
	adding, 50.2
	adding a property, 50.2.1.3
	adding a variable, 50.2.1.1
	adding an expression, 50.2.1.2
	adding to binding components, 50.2
	adding to service components that subscribe to business events, 50.2
	definition, 50.1
	monitoring during runtime, 50.3
	restrictions on use, 50.1.1

	composite test
	
	assertions overview, 44.1.4
	BPEL process testing, 44.5
	creating test suites, 44.3
	creating value asserts, 44.4.5.1
	definition, 44.1
	deploying test suites, 44.6
	emulating inbound messages, 44.4.1
	emulations overview, 44.1.3
	naming limitations on test suites and test cases, 44.3
	test case overview, 44.1.1
	test suite assertions, 44.2.3
	test suite components, 44.2
	test suite emulations, 44.2.2
	test suites overview, 44.1.2
	test suites process initiation, 44.2.1
	XML assert, 44.1.4

	composite.xml file
	
	definition, 2.1.2, 2.1.2
	deployment descriptors, C.1.1, C.1.1
	opening through a SOA-MDS connection, 43.5.7.1
	registering sensors and sensor actions, 18.2.6
	syntax, 2.5.2

	concat function
	
	description, 6.10

	conditional branching logic
	
	definition, 11
	use of XPath expressions, 11.1
	using switch activities, 11.2.1
	using while activities, 11.3

	conditional processing
	
	with xsl choose, 40.3.6.2
	with xsl if, 40.3.6.1

	configuration plans
	
	creating, 43.6.1.4
	creating with the WLST utility, 43.6.1.5
	definition, 43.6.1
	use cases, 43.6.1.3

	configuration properties
	
	deployment descriptors, C.1

	connections
	
	creating a SOA-MDS connection, 43.7.3.2.1
	creating an application server connection, 43.7.1.1.1
	opening the composite.xml through a SOA-MDS connection, 43.5.7.1
	Oracle BAM Server, 53.4, 54.3

	constant values
	
	in transformations, 40.3.3

	conversation ID
	
	adding, 8.2.5
	limitation on using the same conversation ID for different revisions of a composite, 9.1.2

	Copy Rules tab
	
	using in an assign activity, A.2.3

	copying security filters, 55.6.2
	copyList function
	
	description, B.2.4

	core XPath functions
	
	examples, 6.1.2

	correlation ID
	
	WS-Addressing, 8.2.2.5

	correlation sets
	
	aggregating messages, 9.2
	associating with receive activities, 9.1.1.5
	creating, 9.1.1.4
	creating property aliases, 9.1.1.6
	limitation on using the same conversation ID for different revisions of a composite, 9.1.2
	race conditions with messages, 9.2.3
	routing a message to a new or existing instance, 9.2.3
	using the same operation in entry and midprocess receive activities, 9.2.2

	correlations
	
	adding on an OnMessage branch of a pick activity, A.2.22
	setting for an IMA using a fromParts element with multiple parts, 9.1.3
	using in an asynchronous service, 9.1

	Correlations tab
	
	in activities, A.2.1.3
	using, 9.1.1.5.1, 9.1.1.5.1, 9.1.1.5.2, 9.1.1.5.2, 9.1.1.5.3, 9.1.1.5.3

	countNodes function
	
	description, B.2.5

	create domain value maps, 47.2
	create entity activity
	
	capabilities, A.2.8
	only supported in BPEL 1.1 projects, A.2.8

	create instance
	
	definition, 8.2.2.5
	in receive activities, 8.2.2.5

	create-delimited-string function
	
	description, B.1.4.3

	createInstance attribute, 8.2.2.6
	create-nodeset-from-delimited-string function
	
	description, B.4.1

	createWordMLDocument function
	
	description, B.5.2

	creating cross reference tables, 49.4.1
	creating folders for data objects, 55.5
	CreditCardAuthorization project, 3.3.1
	cross reference table look up, 49.6
	
	xref
	
	lookupXRef function, 49.6.1

	cross reference tables, 49.1
	
	adding a column, 49.4.4
	creating, 49.4
	deleting values, 49.7
	looking up, 49.6
	modifying, 49.4
	populating columns, 49.5
	xref
	
	lookupXRef function, 49.6.1
	markForDelete function, 49.7
	populateXRefRow1M function, 49.5.3

	cross references
	
	creating, 49.4
	introduction, 49.1
	modifying, 49.4
	overview, 49.1

	current-date function
	
	description, B.1.2.2

	current-dateTime function
	
	description, B.1.2.3

	current-time function
	
	description, B.1.2.4

	custom classes
	
	adding to a SOA composite application, 14.3

	custom escalation function
	
	using, 34.3.3

	custom sensors
	
	publish type, 18.1

	Custom Task Form Wizard
	
	creating a task display form, 30.4.3

	customization
	
	adding XSD or WSDL files, 46.2.3
	compiling and deploying a customized application, 46.2.8
	creating a customized SOA composite application, 46.2
	editing artifacts in a customized composite, 46.2.5
	linked business rule dictionary support, 29.5.2.5
	of SOA composite applications, 46.1
	resolving a sequence conflict, 46.2.7
	resolving validation errors in Oracle JDeveloper, 46.2.6
	searching for customized activities, 46.2.4
	the customer SOA composite application, 46.4
	the vertical SOA composite application, 46.3
	upgrading the SOA composite application, 46.5

D

	data control, Oracle BAM
	
	about, 54.1
	aggregates, 54.5.8
	calculated fields, 54.5.4
	creating, 54.4.1
	field selection, sorting, 54.5.5
	filters, 54.5.6
	flat query, 54.5.1
	group query, 54.5.1
	groups, 54.5.7
	parameters, 54.5.2
	query type, 54.5
	time groups, 54.5.7.1

	data controls
	
	creating, 54.4.1
	displayed on the Data Controls panel, 54.4.2.1

	Data Controls panel
	
	icons defined, 54.4.2.1
	using to create a user interface, 54.5

	data manipulation
	
	accessing fields with complex type variables, 6.6
	assigning boolean values, 6.11
	assigning date or time, 6.12
	assigning literal strings, 6.9
	assigning numeric values, 6.7
	concatenating strings, 6.10
	converting from a string to a structured XML object type, 6.20
	copying data between variables, 6.5
	dynamically indexing into a data sequence, 6.19.4
	generating array-equivalent functionality with the genEmptyElem function, 6.19.4.4
	initializing variables, 6.4
	manipulating arrays, 6.19
	manipulating attributes, 6.13
	mathematical calculations with XPath functions, 6.8
	statically indexing into a data sequence, 6.19.1
	with assign activities, 6.1.2, 6.5.1
	with XQuery and XSLT, 6.1.2

	data objects
	
	about, 55.1
	adding dimensions, 55.7
	calculated column, 55.2.4
	clearing contents, 55.10
	contents, 55.4.3
	creating folders, 55.5
	datetime column, 55.2.5
	defining, 55.2
	deleting, 55.11, 55.11
	dimensions, 55.7
	general information, 55.4.1
	indexes, 55.9
	layout, 55.4.2
	lookup column, 55.2.3
	moving, 55.8
	Oracle Data Integrator, 55.2.7
	organizing, 55.5
	permissions, 55.3
	
	folders, 55.5.3

	renaming, 55.8, 55.8
	security filters, 55.6
	system, 55.2.6
	viewing, 55.4

	data sequences
	
	determining the size, 6.19.3
	dynamically indexing into, 6.19.4

	database
	
	sensor publish type, 18.1

	database adapter
	
	definition, 37.1.3.2

	database views
	
	human workflow, 34.8

	DataObjectDefinition web service, 59.3
	DataObjectOperations web service, 59.2
	date time stamp field, 55.2.5
	dates
	
	assigning, 6.12

	datetime functions in calculations, 55.2.4
	day-from-dateTime function
	
	description, B.1.2.5

	db.adminUser parameter, 3.5.3
	db.demoUser.tablespace parameter, 3.5.3
	debatching
	
	debatching with the file and FTP adapters, 45.1.1.4.1

	declarative components
	
	definition, 26.1
	using, 26.2
	using the business rules dictionary editor declarative component, 26.3

	defining a fault handler, 12.5.1
	dehydrate activity
	
	capabilities, A.2.9

	dehydration store, 8.2.2.7
	
	definition, 8.2.2.7

	deleting cross reference table value, 49.7
	
	xref
	
	markForDelete function, 49.7

	deleting data objects, 55.11
	deleting folders, 55.5.6
	deployment
	
	anatomy of a composite, 43.4
	common configuration plan issues to check, 43.9.6.2
	common deployment issues to check, 43.9.6.1
	creating an application server connection, 43.7.1.1.1
	customizing your application for the target environment, 43.6
	in a partition, 43.7.1.1.3
	invoking other deployed composites, 2.7
	managing deployed composites, 2.8.1
	of a single composite, 43.7.1
	of a task flow, 43.7.1.1.3
	of an existing archive, 43.7.4
	of multiple composites, 43.7.2
	of shared metadata across composites, 43.7.3
	of SOA composite applications, 2.7, 2.8.1
	packaging of artifact files, 43.3
	postdeployment configuration, 43.8
	preparing the target environment, 43.5
	prerequisites, 43.2
	releasing locks to resolve ADF task form EAR file deployment errors, 43.9.6.6
	to a cluster, 43.7.7
	to a managed Oracle WebLogic Server, 43.9.6.3
	to a SAR, 43.7.1.1.3
	to a two-way, SSL-enabled Oracle WebLogic Server is not supported, 43.9.6.4
	to an application server, 43.7.1.1.3
	troubleshooting, 43.9.6
	with an unreachable proxy server, 43.9.6.5
	with the ant scripts, 43.7.5.2
	with the WLST utility, 43.7.5.1

	deployment descriptor file
	
	See web.xml file

	deployment descriptors
	
	composite.xml file, C.1.1, C.1.1
	configuration properties, C.1, C.1, C.1
	defining a configuration property in the Property Inspector, C.1.1
	deprecated, C.2
	overview of properties, K.1

	Designer window
	
	location of in Oracle JDeveloper, 4.1.1

	dictionaries
	
	in transformations, 40.3.10
	limitation on generating dictionaries that use functions, 40.3.11
	linked dictionary support, 29.5.2.5

	digital signatures, 34.1.10
	
	acting on tasks that require a signature, 32.4.4
	actionable emails not sent during runtime, 34.2.7
	specifying, 29.9.2

	dimensions
	
	adding to data objects, 55.7
	data object, 55.7
	time, 55.7.2

	direct binding invocation API, 39.2
	direct binding service
	
	asynchronous direct binding invocation, 39.2.2
	binding component, 2.3.1, 2.4.1
	definition, 1.5.2, 37.1.9
	direct binding invocation API, 39.2
	invoking an Oracle Service Bus flow, 37.1.9
	invoking Oracle Service Bus, 37.1.9, 39.3
	not recommended for processing large documents, 45.1.1.2.1
	overview, 39.2
	samples using the invocation API, 39.4
	SOA direct address syntax, 39.2.3
	SOA transaction propagation, 39.2.4
	synchronous direct binding invocation, 39.2.1

	disableAsserts property
	
	description, C.1

	doc function
	
	description, B.2.6

	Documentation tab
	
	in activities, A.2.1.4
	only available in BPEL 2.0 projects, A.2.1.4

	domain value maps
	
	add columns, 47.3.1
	add rows, 47.3.3
	committing changes at runtime with the SOA Composer, 48.5
	creation, 47.2
	dvm
	
	lookupValue function, 47.4.1.1
	lookupValue1M function, 47.4.1.2

	editing, 47.3
	editing at runtime with the SOA Composer, 48.1, 48.3
	features, 47.1.1, 47.1.1
	
	one-to-many mapping, 47.1.1.3
	qualifier order, 47.1.1.2
	qualifiers, 47.1.1.1

	one-to-many mapping, 47.1.1.3
	qualifier order, 47.1.1.2
	qualifiers, 47.1.1.1
	saving at runtime with the SOA Composer, 48.4
	using, 47.4
	using in a transformation, 47.4.2
	using lookupValue functions, 47.4.3
	viewing at runtime with the SOA Composer, 48.2

	domain value maps functions
	
	dvm
	
	lookupValue, 47.4.1.1
	lookupValue1M, 47.4.1.2

	domain value maps qualifiers, 47.1.1.1
	download filter, 35.1.4
	durable subscriptions
	
	not supported by the Event Delivery Network, 41.1

	dvm
	
	lookupValue function, 47.4.1.1
	lookupValue1M function, 47.4.1.2

	dynamic assignment functions
	
	configuring, 34.3.1.2
	configuring display names, 34.3.1.3
	definition, 34.3.1
	implementing, 34.3.1.1

	dynamic partner links
	
	using, 8.3

	dynamic routing decision table
	
	using with two-layer business process management, 51.3

E

	EclipseLink O/X Mapper (OXM)
	
	See OXM

	edit domain value maps
	
	add columns, 47.3.1
	add rows, 47.3.3

	EDN
	
	See Event Delivery Network

	EJB services
	
	binding component, 2.3.1, 2.4.1

	elements
	
	ignoring in XSLT documents, 40.3.15

	email
	
	dynamically setting addresses, 17.3.5
	making emails actionable, 34.2.7
	notifications support, 17.1, 17.3.1

	email activity
	
	capabilities, A.2.10
	notification support, 17.3.1

	email attachments
	
	notifications support, 17.3.1.1

	email messages
	
	HTML content for message body, 17.3.1.2
	using dynamic HTML for message content requires a CDATA function, 17.3.1.3

	empty activity
	
	capabilities, A.2.11
	definition, 12.10.8
	fault handling, 12.10.8

	emulation tests
	
	overview, 44.1.3

	emulations
	
	emulating inbound messages, 44.4.1
	in BPEL test suites, 44.2.2

	enable.bam.sensors parameter, 3.5.7
	ending
	
	tasks, 29.7

	endpoint locations
	
	multiple, 8.2.2.8

	endpointURI
	
	property, K.3

	ends-with function
	
	description, B.1.4.4

	Enterprise JavaBeans
	
	creating an Enterprise JavaBeans service, 1.5.2, 38.3
	integrating Java interfaces with SOA composite applications, 38.1.2
	interacting with SOA composite applications, 38.1, 38.1
	support in workflow services, 34.1.1
	supported versions, 38

	Enterprise JavaBeans (EJB) service
	
	creating an Enterprise JavaBeans service, 37.1.8

	enterprise message sources
	
	about, 56.1
	creating, 56.2
	datetime specification, 56.2.2
	defining, 56.2, 58.2
	handling errors in payloads, 56.2.4
	XML formatting, 56.2.3

	entity variable
	
	binding key, 6.2.1.4
	creating, 6.2.1
	definition, 6.2
	supported in BPEL 1.1 projects only, 6.2
	using, 6.2

	error assignee
	
	configuring, 29.5.4
	definition, 27.2.1.3

	errors
	
	EMS error handling configuration, 56.2.4
	invalid settings, A.6

	escalating
	
	tasks, 29.7

	escalation policy
	
	escalate after, 29.7.5
	overview, 29.7.1, 29.7.1
	specifying, 29.7.6

	evaluation time
	
	definition, 18.2.2

	Event Delivery Network
	
	business events published in, 41.1
	does not support durable subscriptions, 41.1
	EDN-DB, 41.1
	EDN-JMS, 41.1
	implementations, 41.1

	evidence store service, 34.1.10
	
	definition, 34.1.10
	Enterprise JavaBeans, SOAP, and Java support, 34.1.1
	WSDL file location, 34.1.1

	Excel workbook
	
	MIME mapping, 35.1.4

	exceptions, 12.3
	exit activity
	
	capabilities, A.2.12
	immediately ending a business process instance, 12.13.2
	replaces the terminate activity in BPEL 2.0, A.2

	EXM
	
	support in SOA composite applications, 52.7.1

	expiration policy
	
	expire after, 29.7.3
	never expire, 29.7.2
	overview, 29.7.1, 29.7.1
	renew after, 29.7.4

	export file sample
	
	ICommand, G.5

	expression builder dialog
	
	using domain value map functions, 47.4.3

	expression constants
	
	variable initialization, 6.4

	expressions in calculations, 55.2.4
	extended mapping (EXM)
	
	See EXM

	extension namespaces
	
	declaring in BPEL 2.0, 6.23

	external data source
	
	about, 58.1
	creating, 58.2
	Oracle Data Integrator, 58.2.2

	external routing
	
	routing policy, 29.5.3

	ExternalLegacyPartnerSupplier project, 3.3.1

F

	facets
	
	in the task display form, 30.4.3

	fact types, 29.5.2.2
	fault bindings, 22.1.2
	fault handling, 12.5.1
	
	creating, 12, 12.5.1
	definition, 12.1
	EMS payload error configuration, 56.2.4
	fault policy, 12.4
	importing RuntimeFault.wsdl, 12.5.1
	modifying the WSDL files, 12.5.1
	order of precedence in BPEL 2.0, 12.2.2.1
	returning external faults, 12.9, 12.9.2
	specifying an assertion condition, 12.14
	throwing internal faults, 12.7
	using catch branches, 12.10
	using compensate activities, 12.12
	using empty activities, 12.10.8
	using scope activities, 12.10
	using terminate activities, 12.13.1
	using the getFaultAsString function, 12.6
	using throw activities, 12.7

	fault management framework
	
	associating a fault policy with a fault policy binding, 12.4.1.3
	definition, 12.4
	designing, 12.4.1
	executing a fault policy, 12.4.2
	using a Java action fault policy, 12.4.3

	fault policy, 22.1.1
	
	actions, 22.1.1.2
	associating with a fault policy binding, 12.4.1.3
	component level, 22.1.2
	composite level, 22.1.2
	conditions, 22.1.1.1
	definition, 12.4
	designing, 12.4.1
	executing, 12.4.2
	sample file, 12.4.1.2
	using a Java action fault policy, 12.4.3

	fault policy bindings
	
	sample file, 12.4.1.4

	fault sensors
	
	definition, 18.1

	fault-bindings.xml, 22.4.2
	
	fault policy bindings file, 12.4

	fault-policies.xml, 22.4.1
	
	fault policy file, 12.4

	faults
	
	categories of faults in BPEL, 12.3
	Qname fault name, 12.3
	returning external faults, 12.9, 12.9.2
	standard faults, 12.2
	throwing internal faults, 12.7
	throwing with assertion conditions, 12.14

	fields
	
	calculated, 55.2.4
	lookup, 55.2.3
	timestamp, 55.2.5

	file adapter
	
	chunking, 45.1.1.4.2
	debatching, 45.1.1.4.1
	definition, 37.1.3.3
	streaming, 45.1.1.5.1

	filters
	
	adfBindings, 35.1.4
	adfdiExcelDownload, 35.1.4
	ADFLibraryFilter, 35.1.4
	bindings filter, 35.1.4
	copying, 55.6.2
	Oracle BAM security, 55.6

	fire and forget
	
	one-way message, 5.1

	flex fields
	
	See mapped attributes

	flow activity
	
	capabilities, A.2.13
	creating a parallel flow, 10.2
	link synchronization syntax differences between BPEL 1.1 and 2.0, 10.2.3
	synchronizing the execution of activities, 10.2.3

	flowN activity
	
	capabilities, A.2.14
	customizing the number of flow activities, 10.3.1
	definition, 10.3.1
	replaced by the forEach activity in BPEL 2.0, A.2

	fod.application.issoaenabled property, 3.5.4
	folder permissions, 55.5.3
	folders
	
	deleting, 55.5.6
	renaming, 55.5.5

	forEach activity
	
	capabilities, A.2.15
	processing multiple sets of activities, 10.3.2
	replaces the flowN activity in BPEL 2.0, A.2
	successfulBranchesOnly attribute is not supported, 10.3.2

	foreign.mds.type parameter, 3.5.7
	format function
	
	description, B.2.58.3

	formatDate function
	
	description, B.2.12

	format-dateTime function
	
	description, B.1.2.6

	format-string function
	
	description, B.1.4.5

	FTP adapter
	
	chunking, 45.1.1.4.2
	debatching, 45.1.1.4.1
	definition, 37.1.3.4
	streaming, 45.1.1.5.1

	functions
	
	abs, B.1.3.1
	add-dayTimeDuration-to-dateTime, B.1.2.1
	addQuotes, B.2.1
	advanced, B.4
	appendToList, B.2.3
	authenticate, B.2.2
	batchProcessActive, B.2.58.1
	batchProcessCompleted, B.2.58.2
	BPEL XPath extension, B.2
	chaining in transformations, 40.3.4.2
	clearTaskAssignees, B.5.1
	compare, B.1.4.1
	compare-ignore-case, B.1.4.2
	concat, 6.10
	copyList, B.2.4
	countNodes, B.2.5
	create-delimited-string, B.1.4.3
	create-nodeset-from-delimited-string, B.4.1
	createWordMLDocument, B.5.2
	creating user-defined XPath extension functions, B.7
	current-date, B.1.2.2
	current-dateTime, B.1.2.3
	current-time, B.1.2.4
	day-from-dateTime, B.1.2.5
	descriptions, 40.3.4
	doc, B.2.6
	dynamically setting email addresses and telephone numbers, 17.3.5
	editing in transformations, 40.3.4.1
	editing XPath expressions in transformations, 40.3.5
	ends-with, B.1.4.4
	examples, 6.1.2
	format, B.2.58.3
	formatDate, B.2.12
	format-dateTime, B.1.2.6
	format-string, B.1.4.5
	functions prefixed with xp20 or orcl, 40.3.4
	genEmptyElem, 6.19.4.4, B.2.58.4
	generateGUID, B.2.13
	generate-guid, B.4.2
	getChildElement, B.2.58.5
	getContentAsString, B.2.21
	get-content-as-string, B.1.4.6
	getConversationId, B.2.22
	getCreator, B.2.23
	getCurrentDate, 6.12, B.2.24
	getCurrentDateTime, 6.12, B.2.25
	getCurrentTime, 6.12, B.2.26
	getDefaultRealmName, B.5.13.1
	getDomain is deprecated, B.2
	getElement, B.2.28
	getFaultAsString, 12.6
	getGroupIdsFromGroupAlias, B.2.31
	getGroupProperty, B.5.13.2
	getInstanceId, B.2.32
	getLinkStatus, B.2.57.1
	get-localized-string, B.1.4.8
	getManager, B.5.13.3
	getMessage, B.2.58.6
	getNodes, B.2.34
	getNodeValue, B.2.33
	getNotificationProperty, B.5.3
	getNumberOfTaskApprovals, B.5.4
	getPreference, B.2.37
	getPreviousTaskApprover, B.5.5
	getProcessId, B.2.38
	getProcessOwnerId, B.2.39
	getProcessURL, B.2.40
	getProcessVersion, B.2.41
	getReportees, B.5.13.4
	getTaskAttachmentByIndex, B.5.6
	getTaskAttachmentByName, B.5.7
	getTaskAttachmentContents, B.5.8
	getTaskAttachmentsCount, B.5.9
	getTaskResourceBindingString, B.5.10
	getUserAliasId, B.2.42
	getUserProperty, 17.3.5, B.5.13.6
	getUserRoles, B.5.13.7
	getUsersInGroup, B.5.13.9
	getVariableData, 17.3.5, B.2.57.2
	getVariableProperty, B.2.57.3
	hours-from-dateTime, B.1.2.7
	implicit-timezone, B.1.2.8
	in transformations, 40.3.4
	index-within-string, B.1.4.9
	integer, B.2.46
	isUserInRole, B.5.13.10
	last-index-within-string, B.1.4.10
	left-trim, B.1.4.11
	listUsers, B.2.47
	location of function descriptions, 6.1.2
	lookupGroup, B.5.13.11
	lookup-table, B.1.1.1
	lookupUser, B.2.48, B.5.13.12
	lookup-xml, B.4.8
	lower-case, B.1.4.12
	matches, B.1.4.13
	max-value-among-nodeset, B.2.58.7
	mediator XPath extension, B.3
	minutes-from-dateTime, B.1.2.9
	min-value-among-nodeset, B.2.58.8
	month-from-dateTime, B.1.2.10
	parseEscapedXML, 6.20, B.2.49
	position, 6.19.1
	prefixed with xp20 or orcl, 40.3.4
	processXQuery, B.2.51
	processXSLT, 17.3.1.2, B.2.52
	processXSLTAttachment is deprecated, B.2
	processXSQL is deprecated, B.2
	query-database, B.1.1.2
	readBinaryFromFile, B.2.53, B.3.12
	readFile, B.2.54
	right-trim, B.1.4.14
	search, B.2.55
	seconds-from-dateTime, B.1.2.11
	selecting an data sequence element, 6.19.1
	sequence-next-val, B.1.1.3
	SOA XPath extension, B.1
	square-root, B.2.58.9
	subtract-dayTimeDuration-from-dateTime, B.1.2.12
	timezone-from-dateTime, B.1.2.13
	upper-case, B.1.4.15
	wfDynamicGroupAssign, B.5.11
	wfDynamicUserAssign, B.5.12
	workflow service, B.5
	writeBinaryToFile, B.2.56
	year-from-dateTime, B.1.2.14

	Fusion Order Demo
	
	deploying, 3.5
	deploying in a partition, 3.5.7
	installing schema, 3.5.3
	integration with spring, 52.6
	introduction, 3.1
	running, 3.6
	setting up, 3.2
	Store Front module, 3.1.1
	WebLogic Fusion Order Demo, 3.1.2
	
	introduction, 3.1.2

	Fusion Web Application (ADF) application template, 35.1.3
	FusionOrderDemo_R1PS5.zip, 3.2.2
	FYI assignee
	
	configuring, 29.4.6
	definition, 27.2.1.1.2, 29.4.6
	must first claim an FYI task before dismissing it, 30.4.4
	tasks are not actionable, 29.8.7
	workflow participant type, 27.2.1.1.2, 29.4.6

G

	genEmptyElem function
	
	description, 6.19.4.4, B.2.58.4

	generateGUID function
	
	description, B.2.13

	generate-guid function
	
	description, B.4.2

	getChildElement function
	
	description, B.2.58.5

	getContentAsString function
	
	description, B.2.21

	get-content-as-string function
	
	description, B.1.4.6

	getConversationId function
	
	description, B.2.22

	getCreator function
	
	description, B.2.23

	getCurrentDate function
	
	description, 6.12, B.2.24

	getCurrentDateTime function
	
	description, 6.12, B.2.25

	getCurrentTime function
	
	description, 6.12, B.2.26

	getDefaultRealmName function
	
	description, B.5.13.1

	getDomain function
	
	deprecated, B.2

	getElement function
	
	description, B.2.28

	getFaultAsString function
	
	description, 12.6

	getGroupIdsFromGroupAlias function
	
	description, B.2.31

	getGroupProperty function
	
	description, B.5.13.2

	getInstanceId function
	
	description, B.2.32

	getLinkStatus function
	
	description, B.2.57.1

	get-localized-string function
	
	description, B.1.4.8

	getManager function
	
	description, B.5.13.3

	getMessage function
	
	description, B.2.58.6

	getNodes function
	
	description, B.2.34

	getNodeValue function
	
	description, B.2.33

	getNotificationProperty function
	
	description, B.5.3

	getNumberOfTaskApprovals function
	
	description, B.5.4

	getPreference function
	
	description, B.2.37

	getPreviousTaskApprover function
	
	description, B.5.5

	getProcessId function
	
	description, B.2.38

	getProcessOwnerId function
	
	description, B.2.39

	getProcessURL function
	
	description, B.2.40

	getProcessVersion function
	
	description, B.2.41

	getReportees function
	
	description, B.5.13.4

	getTaskAttachmentByIndex function
	
	description, B.5.6

	getTaskAttachmentByName function
	
	description, B.5.7

	getTaskAttachmentContents function
	
	description, B.5.8

	getTaskAttachmentsCount function
	
	description, B.5.9

	getTaskResourceBindingString function
	
	description, B.5.10

	getUserAliasId function
	
	description, B.2.42

	getUserProperty function
	
	description, B.5.13.6
	example, 17.3.5

	getUserRoles function
	
	description, B.5.13.7

	getUsersInGroup function
	
	description, B.5.13.9

	getVariableData function
	
	description, 6.10, B.2.57.2
	example, 17.3.5
	throws selectionFailure if result node set size is greater than one, B.2.57.2.1
	using in mathematical calculations, 6.8

	getVariableProperty function
	
	description, B.2.57.3

	global task variable name
	
	specifying in human task activities, 28.4.4.1

	globalTxMaxRetry property
	
	description, C.1

	globalTxRetryInterval property
	
	description, C.1

	governance
	
	Oracle Enterprise Repository, A.5

	Groovy classes
	
	configuring with the spring service component, 52.8

	group names
	
	case sensitive by default, 29.2.7.1

	group vote
	
	configuring, 29.4.4
	consensus percentage, 29.4.4.1
	immediately triggering a voted outcome when a minimum percentage is met, 29.4.4.1
	specifying group voting details, 29.4.4.1
	waiting until all votes are in before triggering an outcome, 29.4.4.1

H

	headers
	
	normalized message header properties, H.1
	SOAP headers, 6.22

	Headers tab
	
	in activities, A.2.1.5

	heap size
	
	increasing, 40.4.2.1, 45.1.3.1

	History window
	
	location of in Oracle JDeveloper, 4.1.1

	hours-from-dateTime function
	
	description, B.1.2.7

	HTTP binding
	
	binding component, 2.3.1, 2.4.1
	configuring with the HTTP Binding Wizard, 37.1.2.2
	creating your own schema, 37.1.2.2
	enabling basic authentication, 37.1.2.3
	in SOA composite applications, 37.1.2
	limitations in SOA composite applications, 37.1.2
	support for HTTPS in inbound and outbound directions, 37.1.2.2
	supported inbound and outbound interactions, 37.1.2.1
	supported operation types, 37.1.2.2
	supported XSD types, 37.1.2.1
	unsupported HTTP headers, 37.1.2.1

	HTTP headers
	
	unsupported, 37.1.2.1

	human task
	
	service component, 2.2.1

	human task activity
	
	associating with a BPEL process, 28.4.1
	identification key, 28.4.4.3
	including the task history of other tasks, 28.4.4.6
	scope name and global task variable name, 28.4.4.1
	specifying a task initiator and task priority, 28.4.3.2
	specifying a task title, 28.4.3.1
	specifying task parameters, 28.4.3.3
	task owner, 28.4.4.2
	viewing BPEL callbacks, 28.4.5.1

	human task definition
	
	associating with a BPEL process, 28.1.2

	Human Task Editor
	
	abruptly completing a condition, 29.5.1.2
	accessing the sections of, 29.1.1
	actionable emails, 34.2.7
	allowing all participants to invite other participants, 29.5.1.1
	assigning task participants by name or expression, 29.4.3.1.1, 29.5.4
	bypassing task participants, 29.4.3.4, 29.4.4.5, 29.4.5.4
	changing character set encoding, 29.8.4
	configuring the error assignee, 29.5.4
	creating a human task, 28.2
	customizing notification headers, 29.8.10
	editing notification messages, 29.8.2
	escalate after policy, 29.7.5
	escalating, renewing, or ending a task, 29.7
	escalation and expiration policy overview, 29.7.1, 29.7.1
	escalation rules, 29.7.6
	expire after policy, 29.7.3
	FYI assignee task participant, 29.4.6, 29.4.6
	group voting details, 29.4.4.1
	inviting additional task participants, 29.4.3.3, 29.4.4.4, 29.4.5.3
	making email messages actionable, 29.8.7
	multilingual settings, 29.6.2, 34.2.6
	never expire policy, 29.7.2
	notification preferences, 29.8
	notifying recipients of changes to task status, 29.8.1
	parallel task participant, 29.4.4
	renew after policy, 29.7.4
	securing notifications, 29.8.5, 34.2.10
	sending email notifications to groups and application roles, 29.8.9
	sending task attachments with email notifications, 29.8.8
	serial task participant, 29.4.5, 29.4.5
	setting up reminders, 29.8.3
	sharing attachments and comments with task participants, 29.4.4.1
	showing the Oracle BPM Worklist URL in notifications, 29.8.6
	single approver task participant, 29.4.3
	specifying access policies, 29.9.1
	specifying business event callbacks, 29.11.1.2
	specifying callback classes, 29.11.1
	specifying digital signatures, 29.9.2
	task attachments with email notifications, 34.2.8
	task category, 29.2.6
	task outcome, 29.2.4
	task owner specification through the user directory, 29.2.7.1
	task owner specification through XPath expressions, 29.2.7.2
	task participants, 29.4
	task payload data structure, 29.3
	task priority, 29.2.5
	task routing and customization in BPEL callbacks, 29.11.2
	task title, 29.2.2
	time limits for acting on tasks, 29.4.3.2, 29.4.4.3, 29.4.5.2
	WordML style sheets in attachments, 29.6.1

	human tasks
	
	creating, 28.2
	designing a human task, 31.1

	human workflow
	
	access rules, 27.2.1.7.4
	application roles, 27.2.1.1.3
	case sensitivity, 34.5.6
	concepts, 27.2
	database views, 34.8
	definition, 27.1
	groups, 27.2.1.1.3
	integration with Oracle WebLogic Server, 34.6
	participant assignments, 27.2.1.1.3
	participant types, 27.2.1.1.2
	participants, 27.2.1.1.1
	routing policies, 29.5
	System MBean Browser properties, K.7.4
	task assignments, 27.2.1.2
	task deadlines, 27.2.1.4
	task stakeholders, 27.2.1.3
	use cases, 27.3.1
	users, 27.2.1.1.3

I

	ICommand
	
	clear, G.2.1
	command line, 61.4
	delete, G.2.2
	detailed command descriptions, G.2
	export, G.2.3
	
	sample, G.5

	general command and option syntax, 61.3
	import, G.2.4
	log, G.4
	operations, G.1
	regular expressions, G.6, G.6
	remote execution, 61.5
	rename, G.2.5
	running, 61.2
	sample export file, G.5
	summary of commands, G.1
	syntax, 61.3
	syntax, object names, 61.3.3
	XML file, G.3

	ICommand utility, 61
	ICommand web service, 59.5
	idempotent property
	
	description, C.1

	identification key
	
	specifying in human task activities, 28.4.4.3

	identity service
	
	definition, 27.4.1, 34.1.5
	determining a user's local language and time zone, 32.12, 32.12
	Enterprise JavaBeans, SOAP, and Java support, 34.1.1
	functions
	
	getDefaultRealmName, B.5.13.1
	getGroupProperty, B.5.13.2
	getManager, B.5.13.3
	getReportees, B.5.13.4
	getUserProperty, B.5.13.6
	getUserRoles, B.5.13.7
	getUsersInGroup, B.5.13.9
	isUserInRole, B.5.13.10
	lookupGroup, B.5.13.11
	lookupUser, B.5.13.12

	providers, 34.1.5.1, 34.1.5.1.1
	support for in workflows, 34.1.5
	supported task operations, 34.1.5
	use with JAZN, 34.1.5, 34.1.5.1
	use with LDAP, 34.1.5, 34.1.5.1
	WSDL file location, 34.1.1

	if activity
	
	capabilities, A.2.16
	defining conditional branching, 11.2.2
	replaces the switch activity in BPEL 2.0, A.2

	ignoreMissingFromData attribute
	
	selecting in an assign activity, A.2.3
	using, 6.14.7.1

	IM activity
	
	capabilities, A.2.17
	notifications support, 17.3.2

	implicit-timezone function
	
	description, B.1.2.8

	import
	
	source and target schemas into a transformation, 40.2.2

	indexes
	
	in data objects, 55.9

	indexing methods
	
	using XPath, 6.19.1

	index-within-string function
	
	description, B.1.4.9

	inline variables initialization
	
	in BPEL 2.0, 8.2.1.3

	inMemoryOptimization property
	
	description, C.1

	insertMissingToData attribute
	
	selecting in an assign activity, A.2.3
	using, 6.14.7.2

	instance names
	
	setting the name at design time, 43.5.4

	instances
	
	routing messages to the same instance, 9.2
	setting the composite instance name at design time, 43.5.4
	starting new, 8.2.2.6

	integer function
	
	description, B.2.46

	integration
	
	of Java and WSDL-based components in the same composite, 38.1, 52.2, 52.3.1

	interaction patterns
	
	asynchronous interaction with a notification timer, 5.5
	asynchronous interaction with a timeout, 5.4
	asynchronous interactions, 5.3
	common patterns between a BPEL process and another application, 5, 24
	multiple interactions, 5.10
	of interaction between a BPEL process and another application, 5, 24
	one request, a mandatory response, and an optional response, 5.8
	one request, multiple responses, 5.6
	one request, one of two possible responses, 5.7
	one-way message, 5.1
	partial processing, 5.9
	synchronous interactions, 5.2

	Invalid Settings error message, A.6
	invoke activity
	
	adding a conversation ID, 8.2.5
	adding to an asynchronous service, 8.2.1.2
	capabilities, A.2.18
	definition, 4.2, 7.1
	in asynchronous services, 8.2.1.2, 8.2.2.5
	in synchronous services, 7.1, 7.2.2.3
	throwing faults with assertion conditions, 12.14

	isUserInRole function
	
	description, B.5.13.10

J

	JAR
	
	See .JAR Files

	.JAR files
	
	adding custom classes and JAR files, 14.3
	adf-desktop-integration.jar, 35.1.4
	creating a JAR file for deployment, 43.7.1.1.3
	resourcebundle.jar file, 35.1.4
	wsclient.jar, 35.1.4

	Java
	
	support in workflow services, 34.1.1

	Java applications
	
	wrapped as SOAP services, 14.2.1

	Java Connector Architecture (JCA)
	
	definition, 1.4

	Java embedding
	
	bpelx:exec extension, 14.2.6
	example, 14.4
	import syntax in BPEL 1.1, 14.2.4
	import syntax in BPEL 2.0, 14.2.4
	in a BPEL process, 14
	Java code snippets in a BPEL 2.0 process, 14.2.4
	Java code snippets into a BPEL process with the bpelx:exec tag, 14.2.3
	using thread.sleep(), 14.4.2
	wrapping Java code as a SOAP service, 14.2.2

	Java embedding activity
	
	capabilities, A.2.19
	using Java embedding in a BPEL process, 14.4

	Java interfaces
	
	creating Java interface integration with SOA composite applications, 38.3.2
	integrating Enterprise JavaBeans and SOA composite applications, 38.1, 38.1.2
	integration of Java and WSDL-based components in the same SOA composite application, 52.2
	selecting when creating a partner link, 4.3
	using with spring service components, 52.2

	JAXB
	
	configuring the workflow client, 34.6.1.2.1
	support in SOA composite applications, 52.7

	JAZN
	
	storing a user's local language and time zone, 32.12
	use with identity service, 34.1.5, 34.1.5.1

	jdbc.port parameter, 3.5.3
	jdbc.sid parameter, 3.5.3
	jdbc.urlBase parameter, 3.5.3
	jdeveloper.home parameter, 3.5.3
	JMS
	
	definition, 1.4

	JMS adapter
	
	definition, 37.1.3.5
	sensor publish type, 18.1

	JMS queue
	
	sensor publish type, 18.1

	JMS topic
	
	sensor publish type, 18.1

	join conditions
	
	using in target activities, 10.2.6

K

	keepGlobalVariables property
	
	description, C.1

	keepSrcElementName attribute
	
	selecting in an assign activity, A.2.3
	using, 6.14.7.3

	knowledge module
	
	Oracle BAM, 57.2

L

	languages
	
	changing
	
	from jazn xml file, 32.12.4

	preferences, 32.12
	setting in JAZN, 32.12
	setting in LDAP, 32.12

	large documents
	
	best practices for handling, 45.1
	importing large data sets in Oracle B2B, 45.2.8
	large numbers of mediators in composites, 45.2.7
	limitations on concurrent processing, 45.1.2
	opaque schema for processing large payloads, 45.1.2.1
	processing in Oracle B2B, 45.1.3.7
	setting a default JTA timeout for large documents, 45.1.3.1
	setting audit levels, 45.1.3.2
	use cases for handling, 45.1.1
	using a flow with multiple sequences, 45.2.4
	using a flow with no sequence, 45.2.6
	using a flow with one sequence, 45.2.5
	using assign activities in BPEL and mediator, 45.1.3.3
	using large numbers of activities in BPEL processes (with FlowN), 45.2.3
	using large numbers of activities in BPEL processes (without FlowN), 45.2.2
	using XSLT transformations for repeating structures, 45.1.3.6
	using XSLT transformations on large payloads (for BPEL and mediator), 45.1.3.4, 45.1.3.5

	large XML documents
	
	processing with complex structures, 45.1.1.5
	processing with repeating constructs, 45.1.1.4

	last-index-within-string function
	
	description, B.1.4.10

	layouts, data object, 55.4.2
	LDAP
	
	storing a user's local language and time zone, 32.12
	used with identity service, 34.1.5, 34.1.5.1

	left-trim function
	
	description, B.1.4.11

	listUsers function
	
	description, B.2.47

	literal strings
	
	assigning, 6.9

	literal XML
	
	variable initialization, 6.4

	localization, worklist, 32.12
	Log window
	
	location of in Oracle JDeveloper, 4.1.1

	looking up cross reference tables, 49.6, 49.6
	
	xref
	
	lookupXRef function, 49.6.1

	lookup fields, 55.2.3
	lookupGroup function
	
	description, B.5.13.11

	lookup-table function
	
	description, B.1.1.1

	lookupUser function
	
	description, B.2.48, B.5.13.12

	lookupValue functions
	
	dvm
	
	lookupValue function, 47.4.1.1
	lookupValue1M function, 47.4.1.2

	lookup-xml function
	
	description, B.4.8

	lower-case function
	
	description, B.1.4.12

M

	managed.server parameter, 3.5.7
	managed.server.port parameter, 3.5.7
	management chains
	
	definition, 29.4.3.1
	participant lists, 29.4.3.1.2
	rule-based, 29.4.3.1

	ManualRuleFire web service, 59.4
	map parameters
	
	creating in transformations, 40.3.12

	map variables
	
	creating in transformations, 40.3.12

	mapped attributes, 32.10, 32.10.1
	
	using, 32.10
	values, 34.1.9

	master and detail processes
	
	creating, 16.2
	definition, 16.1
	receive signal activity, A.2.24
	signal activity, A.2.32

	matches function
	
	description, B.1.4.13

	maxOccurs attribute, 6.19, 6.19.1
	
	setting for transformations, 40.4.3

	max-value-among-nodeset function
	
	description, B.2.58.7

	mediator creation
	
	specifying operation or event subscription properties, 19.8

	mediator XPath extension functions, B.3
	message aggregation
	
	in a BPEL process, 9.2

	message filtering, 63.4.4, 64.5.4, 65.5.4
	message schemas
	
	updating, 2.3.3
	viewing, 2.3.3

	message source advanced formatting, 56.2.3
	message sources, 56.1
	message types
	
	support for simple types in a message part, 2.3.2

	MessageFilter, 63.4.4, 64.5.4, 65.5.4
	MessageFilterFactory, 63.4.4, 64.5.4, 65.5.4
	messages
	
	business event use, 9.2.2
	controlling the number of instances to create to route messages, 9.2.1
	race conditions, 9.2.3
	receiving, 63.4, 64.5, 65.5
	rejecting, 63.4.4, 64.5.4, 65.5.4
	routing a message to a new or existing instance when using correlation sets, 9.2.3
	routing to the same instance, 9.2
	using the same operation in entry and midprocess receive activities, 9.2.2

	MessagingClientFactory, 63.2.1
	MessagingClient.receive, 63.4.2, 64.5.2, 65.5.2
	MessagingClient.registerAccessPoint, 63.4.1, 64.5.1, 65.5.1
	MessagingClient.registerMessageFilter, 63.4.4, 64.5.4, 65.5.4
	metadata
	
	service components, 25.4.2

	Metadata Service (MDS)
	
	creating a SOA-MDS connections, 43.7.3.2.1
	definition, 1.6

	MIME
	
	creating composites that use MIME attachments, 45.1.1.2.1

	MIME mapping
	
	Excel workbook, 35.1.4

	MinBPELWait property, 15.4.1
	minimum wait time
	
	MinBPELWait property, 15.4.1

	minOccurs attribute
	
	setting for transformations, 40.4.3

	minutes-from-dateTime function
	
	description, B.1.2.9

	min-value-among-nodeset function
	
	description, B.2.58.8

	modes
	
	xref
	
	populateLookupXRefRow function, 49.5.2
	populateXRefRow function, 49.5.1
	populateXRefRow1M function, 49.5.3

	modifying a mediator, 19.9
	
	modifying event subscriptions, 19.9.2
	modifying operations, 19.9.1

	modifying cross reference tables
	
	adding a column, 49.4.4

	modifying mediator event subscriptions, 19.9.2
	modifying mediator operations, 19.9.1
	month-from-dateTime function
	
	description, B.1.2.10

	MQ adapter
	
	definition, 37.1.3.6

	MTOM
	
	adding MTOM attachments to web services, 45.1.1.3
	using SOAP, 45.1.1.1.2

	multilingual settings
	
	specifying in tasks, 29.6.2, 34.2.6

	multipart WSDLs
	
	adding to a composite, 2.3.2

	myRole attribute
	
	definition, 8.2.2.3

N

	named templates
	
	creating, 40.3.4.3
	in functions, 40.3.4.3

	names and expressions
	
	definition, 29.4.3.1
	participant list, 29.4.3.1.1
	rule-based, 29.4.3.1

	namespace prefix, B.2.57
	namespaces
	
	BPEL 1.1 prefix, 6.1.2, B.2.57
	BPEL 2.0 prefix, 6.1.2, B.2.57
	declaring extension namespaces in BPEL 2.0, 6.23
	ensuring the uniqueness of WSDL namespaces, 2.3.2

	naming conventions
	
	for BPEL projects, 4.1.1

	nonBlockingInvoke property
	
	description, C.1

	normalized message header properties
	
	Oracle BPEL Process Manager, H.2
	Oracle Web Services Addressing, H.3

	NOT operator, 55.2.4
	notification messages
	
	editing, 29.8.2

	notification services
	
	actionable emails, 34.2.7
	configuring the notification channel, 34.2.5
	custom notification headers, 34.2.14
	definition, 27.4.1
	error message support, 34.2.2
	multilingual settings, 34.2.6
	notification contents, 34.2.1
	reliability support, 34.2.3
	sending inbound and outbound attachments, 34.2.8
	sending inbound comments, 34.2.9
	sending reminders, 34.2.12
	sending secure notifications, 34.2.10
	setting automatic replies to unprocessed messages, 34.2.13
	specifying participant notification preferences, 29.8

	notifications
	
	allowing the end user to select the notification channels, 17.4
	configuring in Oracle JDeveloper, 17.3
	customizing notification headers, 29.8.10
	definition, 27.2.1.5
	dynamically setting email addresses and telephone numbers, 17.3.5
	email attachment support, 17.3.1.1
	email support, 17.1, 17.3.1
	formatting the email message body as HTML, 17.3.1.2
	IM support, 17.3.2
	making email messages actionable, 29.8.7
	securing to exclude details, 29.8.5
	selecting recipients by browsing the user directory, 17.3.6
	sending email notifications to groups and application roles, 29.8.9
	sending task attachments with email notifications, 29.8.8
	setting up, 17.2
	showing the Oracle BPM Worklist URL, 29.8.6
	SMS support, 17.3.3
	voice mail support, 17.3.4

	notifications and reminders
	
	in tasks, 34.2

	numeric values
	
	assigning, 6.7

O

	onAlarm branch
	
	of pick activities, 15.2, A.2.22
	of scope activities, 15.2, A.2.22

	one-to-many mapping, 47.1.1.3
	onEvent branch
	
	creating in a scope activity, 15.5.2
	specifying events to wait for message arrival, 15.5

	one-way invocations
	
	introduction, 13.2

	oneWayDeliveryPolicy property
	
	description, 4.1.1, C.1
	setting, 13.2
	setting during BPEL process creation, 4.1.1

	one.way.returns.fault
	
	property, K.3

	onMessage branch
	
	of pick activities, 15.2, A.2.22
	of scope activities, 15.2, A.2.22
	simultaneous onMessage branches in BPEL 2.0, 15.2.3

	operators
	
	AND operator, 55.2.4

	optimization
	
	streaming attachments, 45.1.1.2.1

	OR operator, 55.2.4
	Oracle Application Development Framework (ADF)
	
	binding component, 1.5.2

	Oracle Applications adapter
	
	definition, 37.1.4

	Oracle B2B
	
	attachments, 45.1.1.2.3
	binding component, 2.3.1, 2.4.1
	definition, 1.5.2, 37.1.6
	properties, K.5
	streaming, 45.1.1.5.2

	Oracle BAM, 53.7
	
	definition, 1.5.2, 37.1.5
	See Oracle Business Activity Monitoring
	Server connection, 54.3

	Oracle BAM Adapter, 53.1
	Oracle BAM knowledge modules, 57.2
	Oracle BAM Server
	
	creating a BPEL sensor, 53.7.1
	creating a BPEL sensor action, 53.7.2
	creating a connection to, 53.4.1

	Oracle BAM Server connection, 53.4
	Oracle BPEL Designer
	
	layout, 4.1.1

	Oracle BPEL Process Manager
	
	System MBean Browser properties, K.7.2

	Oracle BPM Worklist
	
	See worklist

	Oracle Business Activity Monitoring
	
	creating a BPEL sensor action for Oracle BAM Server, 53.7.2
	creating a BPEL sensor for Oracle BAM Server, 53.7.1
	creating a connection to Oracle BAM Server, 53.4.1
	definition
	integration with Oracle BPEL Process Manager sensors, 53.7
	message batching limitations, 53.7.2
	overview, 53.7

	Oracle Enterprise Manager Fusion Middleware Control
	
	improving the loading of pages, 45.3.2
	properties, K.6

	Oracle Enterprise Repository
	
	design-time governance, A.5

	Oracle Internet Directory
	
	storing a user's local language and time zone, 32.12

	Oracle JDeveloper
	
	adapters, 4.5
	configuring notifications, 17.3
	creating sensors, 18.2.1
	installing the Oracle SOA Suite extension, 2.1.1, J.2.2
	location of Application Navigator, 4.1.1
	location of Component Palette, 4.1.1
	location of Designer window, 4.1.1
	location of History window, 4.1.1
	location of Log window, 4.1.1
	location of Property Inspector, 4.1.1
	location of Source window, 4.1.1
	location of Structure window, 4.1.1
	overview of rules designer environment, 25.3.1
	transformations, 40.2

	Oracle JDeveloper project
	
	desktop integration, adding, 35.1.3

	Oracle Mediator
	
	define routing rules, 20.3
	definition, 19.1
	routing rules, 20.1
	service component, 2.2.1
	System MBean Browser properties, K.7.3
	wiring two Oracle Mediators can cause an infinite loop, 2.5.3

	Oracle Mediator Editor, 19.3
	
	environment
	
	Application Navigator, 19.3
	History Window, 19.3
	Log Window, 19.3
	Oracle Mediator Editor, 19.3
	Property Inspector, 19.3
	Source View, 19.3
	Structure Window, 19.3

	layout, 19.3

	Oracle Mediator error handling
	
	actions, 22.1.1.2
	conditions, 22.1.1.1
	fault bindings, 22.1.2
	fault policy, 22.1.1
	introduction, 22.1
	using, 22.2
	XML schema files, 22.4

	Oracle Service Bus
	
	invocation by the direct binding service, 39.3
	invoking through a direct binding service, 37.1.9

	Oracle Service Bus (OSB)
	
	invocation by the direct binding service, 37.1.9

	Oracle Service Registry
	
	changing endpoint locations in the registry control, A.4.4.1
	configuring a SOA project to invoke a service from the registry, A.4.3
	configuring the inquiry URL, UDDI service key, and endpoint address for runtime, A.4.4
	creating a connection to, A.4.2
	dynamically resolving the SOAP endpoint location, A.4.3.1
	dynamically resolving the WSDL endpoint location, A.4.3.2
	publishing a business service, A.4.1
	publishing and browsing, A.4
	publishing WSDLs from multiple SOA partitions, A.4.4.2
	publishing WSDLs to UDDI for multiple partitions, A.4.5
	System MBean Browser properties, K.7.5

	Oracle SOA Suite
	
	definition, 1.3

	Oracle User Messaging Service (UMS)
	
	configuring, 62
	definition, 17.1

	oracle.composite.faultBindingFile
	
	property, 12.4, K.3

	oracle.composite.faultPolicyFile
	
	property, 12.4, K.3

	oracle.home parameter, 3.5.7
	oracle.webservices.local.optimization
	
	property, K.3
	streaming attachments, 45.1.1.2.1

	OrderAppovalHumanTask project, 3.3.1
	OrderBookingComposite composite
	
	business rules, used in, 3.4

	OrderBookingComposite project, 3.3.1
	
	flow described, 3.4

	OrderProcessor BPEL process, 3.4
	OrderSDOComposite project, 3.3.1
	organizing data objects, 55.5
	org.quartz.scheduler.idleWaitTime
	
	properties, K.4

	overview, 18.1
	OXM
	
	support in SOA composite applications, 52.7

P

	packaging
	
	of artifact files for deployment, 43.3

	pages
	
	improving the loading of pages in Oracle Enterprise Manager Fusion Middleware Control, 45.3.2

	parallel
	
	definition, 29.4.4
	workflow participant type, 29.4.4

	parallel blocks
	
	definition, 29.4.1

	parallel branches
	
	customizing the number, 10.3

	parallel flows
	
	definition, 10

	parallel participant types
	
	specifying where to store the subtask payload, 29.5.4

	parseEscapedXML function
	
	description, 6.20, B.2.49

	partial processing
	
	BPEL process as the client, 5.9
	BPEL process as the service, 5.9
	definition, 5.9

	participant assignments
	
	definition, 27.2.1.1.3

	participant lists
	
	rulesets, 29.4.3.1.3
	value-based management chains, 29.4.3.1.2
	value-based names and expressions, 29.4.3.1.1

	participant types
	
	FYI assignee, 27.2.1.1.2, 27.2.1.1.2, 29.4.6
	parallel, 27.2.1.1.2, 29.4.4
	serial, 27.2.1.1.2, 29.4.5
	single approver, 27.2.1.1.2, 29.4.3

	partitions
	
	ant scripts, 43.7.5.2.17
	creating, 43.7.1.1.3
	default partition, 43.7.1.1.3
	deployment in, 43.7.1.1.3, 43.7.1.1.3
	in the Fusion Order Demo, 3.5.7
	issues with deploying the same composite with a human workflow into multiple partitions, 43.7.1.1.3, 43.7.5.2.4
	selecting a partition during deployment, 43.7.1.1.3

	partner link activity
	
	capabilities, A.2.20

	partner links
	
	adding to an asynchronous service, 8.2.1.1
	creating, 4.4
	definition, 4.3
	for an inbound adapter, 4.4.1.2
	for an outbound adapter, 4.4.1.1
	from an abstract WSDL to call a service, 4.4.1.3
	from an abstract WSDL to implement a service, 4.4.1.4
	from an existing human task, business rule, or Oracle Mediator, 4.4.1.6
	in asynchronous services, 8.2.1.1, 8.2.2.2, 8.2.2.3
	in synchronous services, 7.1
	Oracle BAM, 53.6.1
	overview, 4.3
	specifying a WSDL file, 4.3
	using a dynamic partner link at runtime, 8.3
	with human tasks or business rules, 4.4.1.5

	partnerLinkType
	
	definition, 8.2.2.2

	partnerRole attribute
	
	definition, 8.2.2.3

	PartnerSupplierComposite project, 3.3.1
	passThroughHeader
	
	property, K.3

	permissions
	
	copying, 55.3.3
	data objects, 55.3
	setting on folders, 55.5.3

	phase activity
	
	BPEL scope creation, 51.2.2
	business rule service component creation, 51.2.2
	capabilities, A.2.21
	mediator service component creation, 51.2.2
	using with two-layer business process management, 51.2

	pick activity
	
	adding correlations on an OnMessage branch, A.2.22
	capabilities, A.2.22
	code example, 15.2.2
	condition branches, 15.2
	creating, 15.2.1
	differences with a receive activity, 15.2
	for timeouts, 15.1
	onAlarm branch, 15.2, A.2.22
	onMessage branch, 15.2, A.2.22
	simultaneous onMessage branches in BPEL 2.0, 15.2.3
	throwing faults with assertion conditions, 12.14

	policies
	
	adding security policies, 2.6
	attaching, 42.2
	definition, 42.1
	overriding client property values, 42.2.2.1
	overriding policy configuration property values, 42.2.2
	overriding server property values, 42.2.2.2
	supported categories, 42.1

	populating cross reference tables, 49.5
	
	xref
	
	populateXRefRow1M function, 49.5.3

	portlets
	
	See task list portlets

	ports
	
	in synchronous services, 7.1

	portType
	
	definition, 8.2.2.1

	position function
	
	description, 6.19.1

	process definitions
	
	importing in BPEL 2.0, 6.18

	process initiation
	
	in BPEL test suites, 44.2.1

	processes
	
	naming conventions, 4.1.1

	processXQuery function
	
	description, B.2.51

	processXSLT function
	
	description, B.2.52
	example, 17.3.1.2

	processXSLTAttachment function
	
	deprecated, B.2

	processXSQL function
	
	deprecated, B.2

	projects
	
	naming conventions, 4.1.1
	ViewController, 35.1.3

	properties
	
	adapter rejected messages, K.4
	completionPersistPolicy, C.1, K.1
	composite.xml file properties, K.3
	cross references, K.6.5
	deployment descriptors overview, K.1
	disableAsserts, C.1, K.1
	endpointURI, K.3
	fault policy, K.4
	globalTxMaxRetry, C.1, K.1
	globalTxRetryInterval, C.1, K.1
	human workflow notifications, K.6.3
	human workflow System MBean Browser, K.7.4
	human workflow task service, K.6.3
	idempotent, C.1, K.1
	inMemoryOptimization, C.1, K.1
	JCA adapter normalized message header properties overview, K.2.1
	keepGlobalVariables, C.1, K.1
	nonBlockingInvoke, C.1, K.1
	normalized message header properties overview, K.2
	normalized message properties, H
	oneWayDeliveryPolicy, 4.1.1, 13.2, C.1, K.1
	one.way.returns.fault, K.3
	Oracle B2B, K.5, K.6.6
	Oracle B2B normalized message header properties overview, K.2.3
	Oracle BPEL Process Manager, K.6.2
	Oracle BPEL Process Manager normalized message header properties overview, K.2.2
	Oracle BPEL Process Manager System MBean Browser, K.7.2
	Oracle Enterprise Manager Fusion Middleware Control, K.6
	Oracle Mediator, K.6.4
	Oracle Mediator System MBean Browser, K.7.3
	Oracle Service Registry, K.7.5
	Oracle Web Services Addressing normalized message header properties overview, K.2.2
	oracle.composite.faultBindingFile, 12.4, K.3
	oracle.composite.faultPolicyFile, 12.4, K.3
	oracle.webservices, K.3
	org.quartz.scheduler.idleWaitTime, K.4
	passThroughHeader, K.3
	reenableAggregationOnComplete, 9.2.1, C.1, K.1
	retryCount, K.4
	retryInterval, K.4
	rolesAllowed, K.3
	sensorActionLocation, C.1, K.1
	sensorLocation, C.1, K.1
	service and reference binding components, K.6.7
	SOA Infrastructure, K.6.1
	SOA Infrastructure System MBean Browser, K.7.1
	streamIncomingAttachments, K.3
	streamOutgoingAttachments, K.3
	System MBean Browser, K.7
	Transaction, 4.1.1
	transaction, 13.1.1, 13.1.1.1, 13.1.1.2, C.1, K.1
	uddiCacheLifetime, K.7.5
	validateXML, C.1, K.1

	Properties tab
	
	in activities, A.2.1.6

	property aliases
	
	creating for correlation sets, 9.1.1.6

	Property Inspector
	
	defining a deployment descriptor property, C.1.1
	editing, 9.2.1
	location of in Oracle JDeveloper, 4.1.1

	public views
	
	sensors, D.1, D.2

	publish types
	
	creating a custom publisher, 18.2.5
	custom, 18.1
	database, 18.1
	definition, 18.1
	JMS Adapter, 18.1
	JMS queue, 18.1
	JMS topic, 18.1

	purge script
	
	deleting instances and rejected messages, 45.3.1

Q

	Qname
	
	fault name, 12.3

	qualifier, 47.1.1.1
	
	qualifier order, 47.1.1.2

	qualifier order, 47.1.1.2
	query-database function
	
	description, B.1.1.2

R

	race conditions
	
	with message aggregation, 9.2.3

	readBinaryFromFile function
	
	description, B.2.53, B.3.12

	readFile function
	
	description, B.2.54
	limitation on web server file access requiring authorization, B.2.54
	reading files from absolute directory paths, B.2.54

	receive activity
	
	adding to an asynchronous service, 8.2.1.3
	associating with correlation sets, 9.1.1.5
	capabilities, A.2.23
	create instance, 8.2.2.5
	creating new instances, 8.2.2.6
	differences with a pick activity, 15.2
	in asynchronous services, 8.2.1.3, 8.2.2.5
	setting timeouts for request-response operations, 15.3
	throwing faults with assertion conditions, 12.14

	receive signal activity
	
	capabilities, A.2.24
	in master and detail processes, 16.2.1

	receiving a message, 63.4, 64.5, 65.5
	reenableAggregationOnComplete property
	
	description, 9.2.1, C.1

	references
	
	adding, 2.4.1, 2.4.2
	definition, 1.5.2, 1.6, 2.3.2
	deleting, 2.4.2
	wiring, 2.5.2

	regular expressions
	
	ICommand, G.6

	rejecting messages, 63.4.4, 64.5.4, 65.5.4
	reminders
	
	for task notifications, 34.2.12

	remoteFault
	
	definition, 12.3.2.2

	remove entity activity
	
	capabilities, A.2.25

	renaming data objects, 55.8
	renaming folders, 55.5.5
	renewing
	
	tasks, 29.7

	repeating constructs
	
	processing large XML, 45.1.1.4

	repeating elements
	
	in transformations, 40.3.6.3

	repeatUntil activity
	
	capabilities, A.2.26
	defining conditional branching, 11.4

	replay activity
	
	capabilities, A.2.27
	creating, 12.11.1
	re-executing activities in a scope activity, 12.11

	replayFault
	
	definition, 12.3.2.3

	reply activity
	
	capabilities, A.2.28

	reporting schema
	
	for database publish type of sensors, D.2.1

	reports
	
	correcting memory errors when generating for transformations, 40.4.2.1
	customizing sample XML generation for transformations, 40.4.3
	generating for transformations, 40.4.2
	worklist, 32.11.1

	resequencing
	
	BestEffort resequencer, 23.2.3
	configuring, 23.3
	configuring the strategy, 23.3.2
	definition, 23.1
	determining the level, 23.3.1
	FIFO resequencer, 23.2.2
	groups and sequence IDs, 23.1.1
	identification of groups and sequence IDs, 23.1.2
	order types, 23.2
	standard resequencer, 23.2.1

	resource bundles, 34.5
	
	class loading, 34.4
	for displaying tasks in different languages, 29.6.2, 34.2.6
	specifying stage and participant names, 34.5.5

	Resource Palette
	
	introduction, 2.1.2
	using, 2.3.2

	resourcebundle.jar file, 35.1.4
	rethrow activity
	
	capabilities, A.2.29
	rethrowing faults, 12.8
	supported in BPEL 2.0 projects, A.2.29

	retryCount
	
	properties, K.4

	retryInterval
	
	properties, K.4

	revisions
	
	activating, 2.8.1
	invoking the default revision, 2.4.5
	retiring, 2.8.1
	setting the default revision, 2.8.1, 2.8.1
	turning off, 2.8.1
	turning on, 2.8.1
	undeploying, 2.8.1

	right-trim function
	
	description, B.1.4.14

	roles
	
	for partner links in asynchronous services, 8.2.2.2

	rolesAllowed
	
	property, K.3

	routing policies
	
	available types, 29.5
	business rules, 29.5
	completing parent subtasks of early completing subtasks, 29.5.1.4
	enabling early completion in parallel subtasks, 29.5.1.3
	external routing, 29.5, 29.5.3
	routing a task to all participants in the order specified, 29.5
	selecting, 29.5

	routing rules, 20.1
	
	define, 20.3
	defining, 20.3
	filter expression, 20.3.2.8
	introduction, 20.1

	routing slip
	
	definition, 29.4.3.2

	RPC styles
	
	differences with document-literal styles in WSDL files, 6, 6.21

	rulesets
	
	management chains, 29.4.3.1
	names and expressions, 29.4.3.1
	participant lists, 29.4.3.1.3

	runtime config service
	
	definition, 27.4.1
	Enterprise JavaBeans, SOAP, and Java support, 34.1.1
	supported task operations, 34.1.9
	WSDL file location, 34.1.1

	runtime exceptions, 12.3
	runtime faults
	
	definition, 12.3, 12.3.2
	example, 12.5.1

	RuntimeFault.wsdl file
	
	importing into a process, 12.5.1

S

	samples
	
	business events, 41
	business rules, 25.7
	domain value maps, 47.6
	dynamic assignment functions, 34.3.1.3
	email notifications, 30.7.1
	Hello World, 7
	human workflow, 29.5.2.4, 29.11.1.2, 31.13
	internationalization of attribute labels, 34.1.9.1
	iterative design, 29.5.2.4
	mediator asynchronous response, 20.4.2
	mediator routing messages, 20.4.1
	notifications, 17.3.1.1
	Oracle SOA Suite, 1.8
	transformations, 40.3.4.4
	two-layer business process management, 51.4
	workflow event callbacks, 29.11.1.2

	SAR file
	
	definition, 1.6.3, 43.3
	deploying, 43.7.1.1.2

	SCA See Service Component Architecture
	sca-build.properties file, 3.5.7
	schema files
	
	creating a transformation map file from imported schemas, 40.2.2
	replacing in the XSLT Mapper, 40.3.16

	schemas
	
	updating message schemas, 2.3.3
	viewing message schemas, 2.3.3

	scope activity
	
	adding descriptive notes and images, 12.10.2
	capabilities, A.2.30
	creating, 12.10.3
	creating an onEvent branch, 15.5.1
	fault handling, 12.10
	re-executing with a replay activity, 12.11
	using a fault handler in a scope activity, 12.10.5

	scope name
	
	specifying in human task activities, 28.4.4.1

	SDO
	
	See Service Data Objects (SDO)

	search function
	
	description, B.2.55

	seconds-from-dateTime function
	
	description, B.1.2.11

	security filters
	
	copying, 55.6.2
	on data objects, 55.6

	security model
	
	for workflow services, 34.1.2
	in SOAP web services, 34.1.2.1
	workflow context on behalf of a user, 34.1.2.2

	security policies
	
	See policies

	seed.bam.do parameter, 3.5.7
	seedBAMServerObjects ant script, 3.5.7, 3.5.7
	seedDemoUsers ant script, 3.5.7
	seedFodJmsResources ant script, 3.5.7
	sensor actions
	
	configuring, 18.2.3
	creating a BPEL sensor action for Oracle BAM Server monitoring, 53.7.2
	viewing metadata, 18.3
	XSD schema file, D.3

	sensor data
	
	persisting in a reporting schema, D.2.1

	sensorActionLocation property
	
	description, C.1

	sensorLocation property
	
	description, C.1

	sensors, 18.1, 53.7
	
	activity sensors, 18.1
	BPEL reporting schema, D.2.1
	configuring, 18.2.2
	creating a BPEL sensor for Oracle BAM Server to monitor, 53.7.1
	creating a connection to Oracle BAM Server, 53.4.1
	creating a custom publish type, 18.2.5
	creating in Oracle JDeveloper, 18.2.1
	definition, 18.1
	evaluation time, 18.2.2
	fault sensors, 18.1
	integration with Oracle Business Activity Monitoring, 53.7
	public views, D.1, D.2
	publish types, 18.1
	sensor actions XSD schema file, D.3
	variable sensors, 18.1
	viewing metadata, 18.3

	sequence activity
	
	capabilities, A.2.31

	sequence-next-val function
	
	description, B.1.1.3

	sequential blocks
	
	definition, 29.4.1

	sequential list of approvers
	
	configuring, 29.4.5

	serial
	
	definition, 29.4.5
	workflow participant type, 29.4.5

	server connection, Oracle BAM, 54.3
	server.password parameter, 3.5.7
	server-setup-seed-deploy-test ant script, 3.5.7
	server.targets parameter, 3.5.7
	server.user parameter, 3.5.7
	Service Component Architecture
	
	definition, 1.4
	described, 1.5

	service components
	
	adding, 2.2, 2.2.1, 2.2.2
	available types, 1.5.1
	BPEL process, 1.5.1, 2.2.1, 4.1
	business rules, 1.5.1, 2.2.1, 25.4.2
	definition, 1.5.1
	deleting, 2.2.2
	editing, 2.2.3
	human task, 1.5.1, 2.2.1, 28, 29
	introduction, 2.2.1, 2.3.1, 2.4.1
	mediator, 1.5.1
	metadata, 25.4.2
	Oracle Mediator, 2.2.1, 19.1
	spring, 1.5.1, 2.2.1
	types, 2.2.1
	web service, 25.4.2
	wiring, 2.5.1, 2.5.2

	Service Data Objects (SDO), 6.2
	
	creating Enterprise JavaBeans integration with SOA composite applications, 38.3.1
	definition, 1.4
	
	converting from XML to SDO, 6.3.2
	declaring SDO-based variables, 6.3.1

	embedding with bpelx:exec, 14.5
	entity variable support, 6.2.1
	passing parameters between Enterprise JavaBeans and SOA composite applications, 38.1, 38.1.1
	using in Enterprise JavaBeans Java interfaces
	
	using in an Enterprise JavaBeans application, 38.2

	using standalone SDO-based variables, 6.3

	service engines
	
	definition, 1.6
	described, 1.6.2
	human workflow, 27.4.3

	Service Infrastructure
	
	definition, 1.6

	service names
	
	in adapters, 4.5

	Service-Oriented Architecture (SOA)
	
	definition, 1.1

	services
	
	adding, 2.3.1, 2.3.5
	ADF-BC, 1.5.2, 37.1.7, A.3
	AQ adapter, A.3
	automatically exposing as a SOAP service, 2.3.1
	database adapter, A.3
	definition, 1.2, 1.5.2, 1.6, 2.3.2
	deleting, 2.3.5
	direct binding service, 37.1.9, 39, A.3
	editing, 2.3.4
	Enterprise JavaBeans (EJB) service, 37.1.8, A.3
	file adapter, A.3
	FTP adapter, A.3
	HTTP binding, 37.1.2, A.3
	JMS adapter, A.3
	MQ adapter, A.3
	Oracle Applications adapter, A.3
	Oracle B2B, A.3
	Oracle Business Activity Monitoring, A.3
	overview, A.3
	selecting a WSDL, 2.3.2
	socket adapter, A.3
	third party adapter, A.3
	web services, A.3
	wiring, 2.5.1

	servlet
	
	adfdiRemote, 35.1.4

	setDomainEnv.cmd file, 3.2.3
	setDomainEnv.sh file, 3.2.3
	setting folder permissions, 55.5.3
	setting up, 34.2.7
	signal activity
	
	capabilities, A.2.32
	in master and detail processes, 16.2.1

	simple types
	
	supported as message parts, 2.3.2

	single approver
	
	configuring, 29.4.3
	definition, 29.4.3
	workflow participant type, 29.4.3

	Skip Condition tab
	
	bypassing execution of activities, 11.5.1
	in activities, A.2.1.7

	SMS activity
	
	capabilities, A.2.33
	notifications support, 17.3.3

	SOA Composer
	
	accessing, 48.1.1
	committing changes at runtime, 48.5
	definition, 48.1
	detecting conflicts among concurrent users, 48.6
	editing domain value maps at runtime, 48.3
	saving domain value maps at runtime, 48.4
	SOADesigner role required to access metadata, 48.1.1
	viewing domain value maps at runtime, 48.2

	SOA composite applications
	
	activating, 2.8.1
	creating, 2.1
	customizing, 46.1
	deploying a single composite, 43.7.1
	deploying an existing archive, 43.7.4
	deploying multiple composites, 43.7.2
	deploying shared metadata across composites, 43.7.3
	deployment, 2.8.1
	interacting with Enterprise JavaBeans, 38.1, 38.1
	invoking other composites, 2.7.1
	invoking the default revision, 2.4.5
	restrictions on application names, 2.1.1
	retiring, 2.8.1
	setting as the default revision, 2.8.1
	shutting down, 2.8.1
	starting up, 2.8.1
	testing, 2.8
	undeploying, 2.8.1

	SOA Composite Editor
	
	layout, 2.1.2

	SOA Governance
	
	Oracle Enterprise Repository, A.5

	SOA Infrastructure
	
	properties, K.6.1
	System MBean Browser properties, K.7.1

	SOA XPath extension functions, B.1
	SOA-MDS connections
	
	opening the composite.xml file, 43.5.7.1

	soa.only.deployment parameter, 3.5.7
	SOAP
	
	definition, 1.4
	reading and encoding SOAP attachment content, 45.1.1.2.1
	security in SOAP web services, 34.1.2.1
	support in workflow services, 34.1.1
	with attachments, 45.1.1.2.1

	SOAP headers, 6.22
	
	receiving in BPEL, 6.22.1
	sending in BPEL, 6.22.2

	SOAP services
	
	performance issues, 14.2.1
	using Java code, 14.2.1

	SOAP-encoded arrays, 6.19.2
	
	in BPEL 2.0, 6.19.2.1
	using a wsdl
	
	arrayType attribute inside a schema, 6.19.2.2

	soa.server.oracle.home parameter, 3.5.7
	socket adapter
	
	definition, 37.1.3.7

	Source window
	
	location of in Oracle JDeveloper, 4.1.1

	sources
	
	message, 56.1

	Sources tab
	
	available only in BPEL 2.0 projects, 10.2.4, A.2.1.8
	in activities, A.2.1.8

	specifying operation or event subscription properties, 19.8
	spring
	
	configuring Aspectj classes, 52.8
	configuring Groovy classes, 52.8
	contents of componentType file, 52.3.1
	contents of spring context file, 52.3.1
	creating a spring service component in Oracle JDeveloper, 52.3
	EXM files, 52.7.1
	in Fusion Order Demo, 3.3.1, 52.6
	integration
	
	of Java and WSDL-based components in the same composite, 52.2

	introduction, 52.1
	JAXB and OXM support, 52.7
	service component, 2.2.1
	using callbacks, 52.2.2

	square-root function
	
	description, B.2.58.9

	SSL
	
	configuring when creating an application server connection, 43.7.1.1.1

	stages
	
	definition, 29.4

	standard faults
	
	BPEL 1.1, 12.2.1
	BPEL 2.0, 12.2.2
	definition, 12.2

	Store Front module
	
	deploying, 3.5.6
	fod.application.issoaenabled property, 3.5.4
	placing orders, 3.6
	StoreFrontService project, 3.1.1

	StoreFrontService project, 3.1.1
	StoreFrontUI project, 3.1.1, 3.1.1
	streamIncomingAttachments
	
	property, K.3

	streamIncomingAttachments property, 45.1.1.2.1
	streaming
	
	attachments, 45.1.1.2.1
	Oracle B2B, 45.1.1.5.2
	properties for streaming attachments, 45.1.1.2.1
	sending attachment streams, 45.1.1.2.1
	with the file and FTP adapters, 45.1.1.5.1

	streamOutgoingAttachments
	
	property, K.3

	streamOutgoingAttachments property, 45.1.1.2.1
	string functions in calculations, 55.2.4
	strings
	
	concatenating, 6.10
	converting to an XML element, 6.20

	Structure window
	
	location of in Oracle JDeveloper, 4.1.1

	subtract-dayTimeDuration-from-dateTime function
	
	description, B.1.2.12

	switch activity
	
	capabilities, A.2.34
	in conditional branching logic, 11.2.1
	replaced by the if activity in BPEL 2.0, 7.2.1, A.2

	synchronization
	
	of activity execution, 10.2.3

	synchronous callbacks, 7
	
	operational concepts, 7.2
	SyncMaxWaitTime property, 7.3

	synchronous interactions
	
	BPEL process as the client, 5.2
	BPEL process as the service, 5.2
	definition, 5.2
	returning faults, 12.9

	synchronous processes
	
	calling a one-way mediator, 7.4
	setting timeouts, 15.6

	synchronous receiving, 63.4.2, 64.5.2, 65.5.2
	synchronous requests
	
	not timing out, 7.3.2

	synchronous services
	
	callbacks with the partner link and invoke activity, 7.1
	calling, 7.2
	invoke activities, 7.2.2.3
	ports, 7.1

	SyncMaxWaitTime property
	
	in synchronous callbacks, 7.3
	synchronous requests not timing out, 7.3.2

	System MBean Browser
	
	properties, K.7

T

	Targets tab
	
	available only in BPEL 2.0 projects, 10.2.4, A.2.1.8
	in activities, A.2.1.8

	task action time limits
	
	specifying, 29.4.3.2, 29.4.4.3, 29.4.5.2

	task admin
	
	definition, 27.2.1.3

	task assignments
	
	dynamic, 27.2.1.2
	restricting, 29.10
	rule-based, 27.2.1.2
	static, 27.2.1.2

	task category
	
	specifying, 29.2.6

	task conditions
	
	abruptly completing a condition, 29.5.1.2

	task deadlines
	
	definition, 27.2.1.4

	task display form
	
	autogenerated, 30.4.1
	creating, 30.4, 30.4.5, 30.4.6
	creating a task form with the Custom Task Form Wizard, 30.4.3
	definition, 28.1.3, 30.1
	deploying, 30.8, 30.8.1
	displaying, 30.9
	generating content for facets, 30.4.3
	registering the library JAR file for custom page templates, 30.4.2

	.task file
	
	associating with a BPEL process, 28.1.2, 28.4.1
	definition, 28.1.1, 28.2.3

	task flow
	
	ADF
	
	task display form for human tasks, 30.3

	deploying, 43.7.1.1.3

	task history
	
	specifying in human task activities, 28.4.4.6

	task initiator
	
	definition, 27.2.1.3
	specifying, 28.4.3.2

	task instance attributes, 34.1.11
	task list portlets
	
	assignment filter constraints, 36.4.1
	configuring EJB identity propagation, 36.2.3.2
	configuring the identity store, 36.2.3.3
	connecting the task list producer to the remote SOA server, 36.2.3
	creating a portlet consumer application for embedding the task list portlet, 36.3
	defining the foreign JNDI provider, 36.2.3.1
	deploying the task list producer application on a portlet server, 36.2
	deployment prerequisites, 36.2.1
	example of file containing all column constraints, 36.4.2
	introduction, 36.1
	passing worklist portlet parameters, 36.4
	securing the task list portlet producer application, 36.2.4
	security policy attached for consumer and producer must be the same, 36.2.5
	specifying the inbound security policy, 36.2.5

	task metadata service
	
	definition, 27.4.1
	Enterprise JavaBeans, SOAP, and Java support, 34.1.1
	supported task operations, 34.1.6
	WSDL file location, 34.1.1

	task notification
	
	editing notification messages, 29.8.2
	making email actionable, 34.2.7
	notifying recipients of changes to task status, 29.8.1
	overview, 29.8
	reminders, 34.2.12
	securing notifications, 34.2.10
	setting up reminders, 29.8.3
	task attachments with email notifications, 34.2.8

	task outcome
	
	specifying, 29.2.4

	task outcomes
	
	restrictions on specifying custom names, 29.2.4

	task owner
	
	definition, 27.2.1.3
	specifying by browsing the user directory, 29.2.7.1
	specifying in human task activities, 28.4.4.2
	specifying through XPath expressions, 29.2.7.2

	task parameters
	
	specifying, 28.4.3.3

	task participants
	
	allowing all participants to invite other participants, 29.5.1.1
	assigning task participants by name or expression, 29.4.3.1.1, 29.5.4
	bypassing, 29.4.3.4, 29.4.4.5, 29.4.5.4
	dynamically assigning with the assignment service, 34.3.2
	inviting additional task participants, 29.4.3.3, 29.4.4.4, 29.4.5.3
	sharing attachments and comments, 29.4.4.1
	specifying, 29.4

	task payload data structure
	
	specifying, 29.3

	task priority
	
	specifying, 28.4.3.2, 29.2.5

	task query service
	
	definition, 27.4.1
	Enterprise JavaBeans, SOAP, and Java support, 34.1.1
	supported task operations, 34.1.4
	WSDL file location, 34.1.1

	task reminders
	
	setting up, 29.8.3

	task report service
	
	Enterprise JavaBeans, SOAP, and Java support, 34.1.1
	supported task operations, 34.1.8
	WSDL file location, 34.1.1

	task reviewer
	
	definition, 27.2.1.3

	task routing service
	
	definition, 27.4.1

	task service
	
	definition, 27.4.1
	Enterprise JavaBeans, SOAP, and Java support, 34.1.1
	supported task operations, 34.1.3
	WSDL file location, 34.1.1

	task stages
	
	definition, 27.2.1.7.3

	task title
	
	specifying, 28.4.3.1

	tasks
	
	escalating, renewing, or ending a task, 29.7
	notifications and reminders, 34.2

	TCP tunneling
	
	setting up a TCP listener for asynchronous services, 8.4.1.1.2
	setting up a TCP listener for synchronous services, 8.4.1.1.1

	terminate activity
	
	capabilities, A.2.35
	definition, 12.13.1
	fault handling, 12.13.1
	replaced by the exit activity in BPEL 2.0, A.2

	test suites
	
	components, 44.2
	creating, 44.3
	definition, 44.1.2
	limitations on multibyte character names, 44.3

	third party adapter
	
	definition, 37.1.3.8

	thread.sleep()
	
	using in a Java embedding activity, 14.4.2

	throw activity
	
	capabilities, A.2.36
	throwing internal faults, 12.7

	time
	
	assigning with a function, 6.12

	time dimensions, 55.7.2
	time duration format, 15.2
	time stamp field, 55.2.5
	time zones, changing, 32.12.7
	Timeout tab
	
	in activities, 15.3, A.2.1.9
	setting for request-response operations in receive activities, 15.3

	timeouts
	
	event added to the audit trail during a timeout, 15.3.1.5
	increasing the JTA transaction timeout value, 45.1.3.1
	of BPEL processes, 15.1
	recoverable timeout activities during a server restart, 15.3.1.6
	setting for request-response operations in receive activities, 15.3, 15.3.2
	setting relative from when the activity is invoked, 15.3.1.1
	settings as an absolute date time, 15.3.1.2
	settings computed dynamically with an XPath expression, 15.3.1.3
	SyncMaxWaitTime property, 7.3
	using pick activities, 15.1
	using the wait activity, 15.4

	timezone-from-dateTime function
	
	description, B.1.2.13

	title
	
	specifying in a human task, 29.2.2

	top-down design approach, 1.7
	trackable fields
	
	composite sensors, 50.1

	Transaction property
	
	description, 4.1.1
	setting during BPEL process creation, 4.1.1

	transaction property
	
	description, C.1
	setting, 13.1.1, 13.1.1.1, 13.1.1.2

	transaction semantics
	
	in BPEL processes, 13.1

	transaction timeout values
	
	specifying, 7.3

	transaction timeouts
	
	increasing the JTA transaction timeout value, 45.1.3.1

	transform activity
	
	capabilities, A.2.37
	creating, 40.2

	transformations
	
	adding XSLT constructs, 40.3.6
	auto mapping, 40.3.7
	auto mapping with confirmation, 40.3.7.1
	chaining functions, 40.3.4.2
	correcting memory errors, 40.4.2.1
	creating, 40.2
	creating a map file from imported schemas, 40.2.2
	creating a new map file, 40.2.1
	creating an XSL map from an XSL style sheet, 40.2
	customizing sample XML generation, 40.4.3
	dictionaries, 40.3.10
	editing functions, 40.3.4.1
	editing XPath expressions, 40.3.5
	error when mapping duplicate elements, 40.1.2
	functions, 40.3.4
	functions prefixed with xp20 or orcl, 40.3.4
	generating optional elements, 40.4.3
	generating reports, 40.4.2
	ignoring elements, 40.3.15
	linking source target nodes, 40.3.2
	map parameter and variable creation, 40.3.12
	named templates in functions, 40.3.4.3
	repeating elements, 40.3.6.3
	replacing schemas, 40.3.16
	rules, 40.1.2
	searching source and target nodes, 40.3.13
	setting constant values, 40.3.3
	setting the maximum depth, 40.4.3
	setting the number of repeating elements, 40.4.3
	testing the map file, 40.4
	using arrays, 40.3.6.3
	using the XSLT Mapper, 40.3
	using XQuery and XSLT, 6.1.2
	viewing unmapped target nodes, 40.3.9
	xsl choose conditional processing, 40.3.6.2
	xsl if conditional processing, 40.3.6.1

	troubleshooting
	
	deployment, 43.9.6

	tuning
	
	general recommendations, 45.1.3

	two-layer business process management
	
	definition, 51
	dynamic routing decision table, 51.3
	phase activity, 51.2
	use case, 51.4

U

	UDDI See Oracle Service Registry
	uddiCacheLifetime
	
	property, K.7.5

	undeployment
	
	SOA composite applications, 2.8.1

	Unicode support, 2.1.1
	upper-case function
	
	description, B.1.4.15

	user directory
	
	selecting notification recipients by browsing the directory, 17.3.6

	user metadata service
	
	definition, 27.4.1
	Enterprise JavaBeans, SOAP, and Java support, 34.1.1
	supported task operations, 34.1.7
	WSDL file location, 34.1.1

	user notification activity
	
	allowing the end user to select the notification channels, 17.4.1
	capabilities, A.2.38

	user notifications
	
	definition, 17.4

	using domain value maps, 47.4
	using domain value maps a transformation, 47.4.2
	using error handling, 22.2
	using lookupValue functions, 47.4.3
	using Oracle Mediator error handling, 22.2

V

	validate activity
	
	capabilities, A.2.39

	validate syntax (XSD) property
	
	specifying operation or event subscription properties, 19.8

	validateXML property
	
	description, C.1

	validation
	
	of XML data with bpelx:validate, 6.15
	when loading a process diagram, A.6

	variable sensors
	
	definition, 18.1

	variables
	
	complex type, 6.6
	copying data between, 6.5
	element variables in message exchange activities in BPEL 2.0, 6.16
	initializing variables inline in BPEL 2.0, 8.2.1.3
	initializing with an inline from-spec in BPEL 2.0 projects, 6.5.2
	initializing with expression constants, 6.4
	initializing with literal XML, 6.4

	ViewController project, 35.1.3
	voice activity
	
	capabilities, A.2.40
	notifications support, 17.3.4

	voice mail
	
	dynamically setting telephone numbers, 17.3.5
	notifications support, 17.3.4

W

	wait activity
	
	capabilities, A.2.41
	creating, 15.4.2
	definition, 15.4
	setting an expiration time, 15.4

	web services
	
	adding a WSDL file, 2.3.2
	binding component, 2.3.1, 2.4.1
	connecting with SOAP over HTTP, 1.5.2
	DataObjectDefinition, 59.3
	DataObjectOperations, 59.2
	definition, 37.1.1
	ICommand, 59.5
	ManualRuleFire, 59.4
	service component, 25.4.2
	WS-Atomic transactions support, 37.1.1.1
	WSDL files, 25.4.2

	WebLogic Fusion Order Demo application
	
	B2BX12OrderGateway project, 3.3.1
	bin project, 3.3.1
	composite.xml file, 3.3.2
	CreditCardAuthorization project, 3.3.1
	deploying, 3.5.7, 3.5.7
	ExternalLegacyPartnerSupplier project, 3.3.1
	OrderAppovalHumanTask project, 3.3.1
	OrderBookingComposite project, 3.3.1
	OrderSDOComposite project, 3.3.1
	overview, 3.3
	PartnerSupplierComposite project, 3.3.1
	processing described, 3.4
	projects in, 3.3.1
	setting up, 3.2
	viewing in Oracle JDeveloper, 3.3

	web.xml file, 35.1.4, 35.1.4
	wfDynamicGroupAssign function
	
	description, B.5.11

	wfDynamicUserAssign function
	
	description, B.5.12

	while activity
	
	capabilities, A.2.42
	in conditional branching logic, 11.3

	wires
	
	adding, 2.5, 2.5.3
	definition, 1.5.3
	deleting, 2.5.3
	using, 2.5.1
	wiring a service component and reference, 2.5.2
	wiring two Oracle Mediators can cause an infinite loop, 2.5.3

	WLST utility
	
	creating a configuration plan, 43.6.1.5
	deployment with, 43.7.5.1

	WordML style sheets
	
	using for attachments, 29.6.1

	workflow context
	
	creating on behalf of a user, 34.1.2.2

	workflow functions
	
	overview, 34.1

	workflow service clients, 33.3
	
	interface, 33.3.1

	workflow services
	
	abruptly completing a condition, 29.5.1.2
	actionable emails, 34.2.7
	allowing all participants to invite other participants, 29.5.1.1
	assigning task participants by name or expression, 29.4.3.1.1, 29.5.4
	assignment service configuration, 34.3
	associating the human task activity with a BPEL process, 28.4.1
	associating the human task definition with a BPEL process, 28.1.2
	bypassing task participants, 29.4.3.4, 29.4.4.5, 29.4.5.4
	changing character set encoding, 29.8.4
	customizing notification headers, 29.8.10
	editing notification messages, 29.8.2
	Enterprise JavaBeans support, 34.1.1
	escalate after policy, 29.7.5
	escalating, renewing, or ending a task, 29.7
	escalation and expiration policy overview, 29.7.1, 29.7.1
	escalation rules, 29.7.6
	expire after policy, 29.7.3
	functions, B.5
	
	clearTaskAssignees, B.5.1
	createWordMLDocument, B.5.2
	getNotificationProperty, B.5.3
	getNumberOfTaskApprovals, B.5.4
	getPreviousTaskApprover, B.5.5
	getTaskAttachmentByIndex, B.5.6
	getTaskAttachmentByName, B.5.7
	getTaskAttachmentContents, B.5.8
	getTaskAttachmentsCount, B.5.9
	getTaskResourceBindingString, B.5.10
	wfDynamicGroupAssign, B.5.11
	wfDynamicUserAssign, B.5.12

	FYI assignee task participant, 29.4.6, 29.4.6
	group voting details, 29.4.4.1
	identification key, 28.4.4.3
	identity service, 27.4.1
	including the task history of other tasks, 28.4.4.6
	inviting additional task participants, 29.4.3.3, 29.4.4.4, 29.4.5.3
	Java support, 34.1.1
	making email messages actionable, 29.8.7
	multilingual settings, 29.6.2, 34.2.6
	never expire policy, 29.7.2
	notification contents, 34.2.1
	notification preferences, 29.8
	notification service, 27.4.1, 34.2.5
	notifications, 34.2
	notifying recipients of changes to task status, 29.8.1
	overview, 34.1
	parallel task participant, 29.4.4
	renew after policy, 29.7.4
	routing slip
	
	definition, 29.4.3.2

	runtime config service, 27.4.1
	scope name and global task variable name, 28.4.4.1
	securing notifications, 29.8.5, 34.2.10
	security model, 34.1.2, 34.1.2.1
	sending email notifications to groups and application roles, 29.8.9
	sending task attachments with email notifications, 29.8.8
	serial task participant, 29.4.5, 29.4.5
	setting up reminders, 29.8.3
	sharing attachments and comments with task participants, 29.4.4.1
	showing the Oracle BPM Worklist URL in notifications, 29.8.6
	single approver task participant, 29.4.3
	SOAP support, 34.1.1
	specifying a task initiator and task priority, 28.4.3.2
	specifying a task title, 28.4.3.1
	specifying callback classes, 29.11.1
	specifying task parameters, 28.4.3.3
	support for identity service, 34.1.5
	task attachments with email notifications, 34.2.8
	task category, 29.2.6
	task display form, 28.1.3, 30.1
	.task file
	
	definition, 28.1.1, 28.2.3

	task metadata service, 27.4.1
	task notifications, 34.2
	task outcomes, 29.2.4
	task owner, 28.4.4.2
	task owner specification through the user directory, 29.2.7.1
	task owner specification through XPath expressions, 29.2.7.2
	task participants, 29.4
	task payload data structure, 29.3
	task priority, 29.2.5
	task query service, 27.4.1
	task routing and customization in BPEL callbacks, 29.11.2
	task routing service, 27.4.1
	task service, 27.4.1
	task title, 29.2.2
	time limits for acting on tasks, 29.4.3.2, 29.4.4.3, 29.4.5.2
	user metadata service, 27.4.1
	viewing BPEL callbacks, 28.4.5.1
	WordML style sheets in attachments, 29.6.1

	worklist
	
	acting on tasks, 32.4.3
	acting on tasks that require a digital signature, 32.4.4
	administration functions, 32.8
	approving tasks, 32.5
	assignment rules for tasks with multiple assignees, 32.7.3
	creating a subtask, 32.3.5
	creating a ToDo list, 32.3.4
	creating and customizing worklist views, 32.3.2
	creating group rules, 32.7.2
	creating user rules, 32.7.1
	customizing the task status chart, 32.3.3
	definition, 32.1
	filtering tasks, 32.3.1
	logging in, 32.2
	managing messaging channels, 32.9.3
	managing messaging filters, 32.9.4
	managing rules, 32.8.1
	mapping mapped attributes, 32.10.1
	messaging filter rules, 32.9.1
	reports, 32.11, 32.11.1
	rule actions, 32.9.2
	setting a vacation period, 32.6
	setting rules, 32.7
	specifying notification settings, 32.9
	system actions, 32.4.1
	Task Details page, acting on tasks, 32.4
	task history, 32.4.2
	Task Listing page contents, 32.2.2
	Task Listing page, customizing, 32.3
	using mapped attributes, 32.10

	worklist clients
	
	building for workflow services, 33.1
	class paths for clients using remote Enterprise JavaBeans, 33.5
	class paths for clients using SOAP, 33.4
	customizing, 33.1
	packages and classes for, 33.2

	writeBinaryToFile function
	
	description, B.2.56

	WS-Addressing
	
	sending correlation IDs, 8.2.2.5
	using in an asynchronous service, 8.4

	WS-Atomic transactions
	
	composite.xml file syntax, 37.1.1.1
	enabling participation of BPEL processes, 37.1.1.1.1
	not supported when optimization is enabled, 37.1.1.1.2
	support in SOA composite applications, 37.1.1.1

	wsclient.jar file, 35.1.4
	WSDL files
	
	adding for a web service, 2.3.2
	definition, 1.4
	differences between document-literal styles and RPC styles, 6, 6.21
	editing in Source View is not supported, 2.3.2
	integration of Java and WSDL-based components in the same SOA composite application, 52.2
	invoking the default revision, 2.4.5
	limitation on mixed message types in a WSDL file, 2.4.4
	location for evidence store service, 34.1.1
	location for identity service, 34.1.1
	location for runtime config service, 34.1.1
	location for task metadata service, 34.1.1
	location for task query service, 34.1.1
	location for task report service, 34.1.1
	location for task service, 34.1.1
	location for user metadata service, 34.1.1
	modifying to generate a fault, 12.5.1
	references, 2.4.3
	selecting, 2.3.2
	service component metadata, 25.4.2
	specifying when creating a partner link, 4.3
	updating message schemas, 2.3.3
	using an existing WSDL file, 2.3.2
	viewing message schemas, 2.3.3
	with multiple parts, 2.3.2
	WSDL namespaces must be unique, 2.3.2

X

	XML assert
	
	overview, 44.1.4

	XML data in BPEL, 6.1.1
	XML data manipulation
	
	bpelx:append extension, 6.14.1
	bpelx:copyList extension, 6.14.6
	bpelx:insertAfter extension, 6.14.3
	bpelx:insertBefore extension, 6.14.2
	bpelx:remove extension, 6.14.4
	bpelx:rename extension, 6.14.5
	bpelx:validate extension, 6.15

	XML documents
	
	manipulating, 6.1.2, 6.1.2
	overview, 6.1.2, 6.1.2

	XML facades
	
	definition, 14.2.5
	Java embedding, 14.2.5

	XML schema files
	
	error handling, 22.4
	fault-bindings.xml, 22.4.2
	fault-policies.xml, 22.4.1

	XML schemas
	
	message types and variable types, 6

	XPath Building Assistant
	
	using, B.6
	using in the XSLT Mapper, 40.3.5, B.6.4

	XPath expressions
	
	assigning numeric values, 6.7
	boolean expressions in switch activities, 11.2.1.1
	dynamically creating another XPath expression, 6.19.4
	dynamically setting email addresses and telephone numbers, 17.3.5
	editing in transformations, 40.3.5
	examples, 6.1.2
	fetching a data sequence element, 6.19.4
	in conditional branching logic, 11.1
	specifying a task owner, 29.2.7.2

	XPath extension functions
	
	creating user-defined functions, B.7
	dvm
	
	lookupValue function, 47.4.1.1
	lookupValue1M function, 47.4.1.2

	XPath functions
	
	in transformations, 40.3.4
	indexing methods, 6.19.1
	mathematical calculations, 6.8

	XPath queries
	
	copying data, 6.6
	examples, 6.1.2

	XQuery, 6.1.2, 6.1.2
	xref
	
	lookupXRef function, 49.6.1
	
	exception reasons, 49.6.1
	parameters, 49.6.1

	lookupXRef1M function
	
	exception reasons, 49.6.2, 49.6.3
	parameters, 49.6.2, 49.6.3

	markForDelete function, 49.7
	
	exception reasons, 49.7
	parameters, 49.7

	populateLookupXRefRow function
	
	modes, 49.5.2
	parameters, 49.5.2

	populateXRefRow function
	
	modes, 49.5.1
	parameters, 49.5.1

	populateXRefRow1M function, 49.5.3
	
	modes, 49.5.3
	parameters, 49.5.3

	xsl choose
	
	conditional processing, 40.3.6.2

	xsl if
	
	conditional processing, 40.3.6.1

	XSL map
	
	creating from an XSL style sheet, 40.2

	XSL style sheet
	
	creating an XSL map, 40.2

	XSL transformations
	
	definition, 1.4

	XSLT, 6.1.2, 6.1.2
	XSLT constructs
	
	adding in transformations, 40.3.6

	XSLT Mapper
	
	adding XSLT constructs, 40.3.6
	auto mapping, 40.3.7
	auto mapping with confirmation, 40.3.7.1
	chaining functions, 40.3.4.2
	correcting memory errors when generating reports, 40.4.2.1
	creating a map file, 40.1
	creating a map file from imported schemas, 40.2.2
	creating a new map file, 40.2.1
	creating a transform activity, 40.2
	creating an XSL map from an XSL style sheet, 40.2
	customizing sample XML generation for transformations, 40.4.3
	dictionaries, 40.3.10
	editing functions, 40.3.4.1
	editing XPath expressions, 40.3.5
	error when mapping duplicate elements, 40.1.2
	functions, 40.3.4
	functions prefixed with xp20 or orcl, 40.3.4
	generating optional elements, 40.4.3
	generating reports, 40.4.2
	ignoring elements, 40.3.15
	layout in Oracle JDeveloper, 40.1
	linking source and target nodes, 40.3.2
	map parameter and variable creation, 40.3.12
	named templates in functions, 40.3.4.3
	repeating elements, 40.3.6.3
	replacing schemas, 40.3.16
	rules, 40.1.2
	searching source and target nodes, 40.3.13
	setting constant values, 40.3.3
	setting the maximum depth, 40.4.3
	setting the number of repeating elements, 40.4.3
	testing the map file, 40.4
	using, 20.4.1.1, 40.3
	using arrays, 40.3.6.3
	viewing unmapped target nodes, 40.3.9
	xsl choose conditional processing, 40.3.6.2
	xsl if conditional processing, 40.3.6.1

Y

	year-from-dateTime function
	
	description, B.1.2.14

42 Enabling Security with Policies

This chapter describes how to attach policies to binding components and service components during design-time in SOA composite applications. It also describes how to how to override policy configuration property values.

This chapter includes the following sections:

	
Section 42.1, "Introduction to Policies"

	
Section 42.2, "Attaching Policies to Binding Components and Service Components"

42.1 Introduction to Policies

Oracle Fusion Middleware uses a policy-based model to manage and secure Web services across an organization. Policies apply security to the delivery of messages. Policies can be managed by both developers in a design-time environment and system administrators in a runtime environment.

Policies are comprised of one or more assertions. A policy assertion is the smallest unit of a policy that performs a specific action. Policy assertions are executed on the request message and the response message, and the same set of assertions is executed on both types of messages. The assertions are executed in the order in which they appear in the policy.

Table 42-1 describes the supported policy categories.

Table 42-1 Supported Policy Categories

	Category	Description
	
Message Transmission Optimization Mechanism (MTOM)

	
Ensures that attachments are in MTOM format. This format enables binary data to be sent to and from web services. This reduces the transmission size on the wire.

	
Reliability

	
Supports the WS-Reliable Messaging protocol. This guarantees the end-to-end delivery of messages.

	
Addressing

	
Verifies that simple object access protocol (SOAP) messages include WS-Addressing headers in conformance with the WS-Addressing specification. Transport-level data is included in the XML message rather than relying on the network-level transport to convey this information.

	
Security

	
Implements the WS-Security 1.0 and 1.1 standards. They enforce authentication and authorization of users. identity propagation, and message protection (message integrity and message confidentiality).

	
Management

	
Logs request, response, and fault messages to a message log. Management policies can also include custom policies.

Within each category there are one or more policy types that you can attach. For example, if you select the reliability category, the following types are available for selection:

	
oracle/wsrm10_policy

Supports version 1.0 of the Web Services Reliable Messaging protocol

	
oracle/wsrm11_policy

Supports version 1.1 of the Web Services Reliable Messaging protocol

	
oracle/no_wsrm_policy

Supports the disabling of a globally attached Web Services Reliable Messaging policy

For more information about available policies, details about which ones to use in your environment, and global policies, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

42.2 Attaching Policies to Binding Components and Service Components

You can attach or detach policies to and from service binding components, service components, and reference binding components in a SOA composite application. Use Oracle JDeveloper to attach policies for testing security in a design-time environment. When your application is ready for deployment to a production environment, you can attach or detach runtime policies in Oracle Enterprise Manager Fusion Middleware Control.

For more information about runtime management of policies, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

42.2.1 How to Attach Policies to Binding Components and Service Components

To attach a policy to a service or reference binding component:

	
In the SOA Composite Editor, right-click a service binding component or reference binding component.

	
Select Configure WS-Policies.

Depending upon the interface definition of your SOA composite application, you may be prompted with an additional menu of options.

	
If the selected service or reference is interfacing with a synchronous BPEL process or Oracle Mediator service component, a single policy is used for both request and response messages. The Configure SOA WS Policies dialog immediately appears. Go to Step 4.

	
If the service or reference is interfacing with an asynchronous BPEL process or Oracle Mediator service component, the policies must be configured separately for request and response messages. The policy at the callback is used for the response sent from service to client. An additional menu is displayed. Go to Step 3.

	
Select the type of binding to use:

	
For Request:

Select the request binding for the service component with which to bind. You can only select a single request binding. This action enables communication between the binding component and the service component.

When request binding is configured for a service in the Exposed Services swimlane, the service acts as the server. When request binding is configured for a reference in the External References swimlane, the reference acts as the client.

	
For Callback: (only for interactions with asynchronous processes)

Select the callback binding for the service component with which to bind. This action enables message communication between the binding component and the service component. You can only select a single callback binding.

When callback binding is configured for a service in the Exposed Services swimlane, the service acts as the client. When callback binding is configured for a reference in the External References swimlane, the reference acts as the server.

The Configure SOA WS Policies dialog shown in Figure 42-1 appears. For this example, the For Request option was selected for a service binding component. The same types of policy categories are also available if you select For Callback.

Figure 42-1 Configure SOA WS Policies Dialog

[image: Description of Figure 42-1 follows]

Description of "Figure 42-1 Configure SOA WS Policies Dialog"

	
Click the Add icon for the type of policy to attach:

	
MTOM

	
Reliability

	
Addressing

	
Security

	
Management

For this example, Security is selected. The dialog shown in Figure 42-2 is displayed.

Figure 42-2 Security Policies

[image: Description of Figure 42-2 follows]

Description of "Figure 42-2 Security Policies"

	
Place your cursor over a policy name to display a description of policy capabilities.

	
Select the type of policy to attach.

	
Click OK.

You are returned to the Configure SOA WS Policies dialog shown in Figure 42-3. The attached security policy displays in the Security section.

Figure 42-3 Attached Security Policy

[image: Description of Figure 42-3 follows]

Description of "Figure 42-3 Attached Security Policy"

	
If necessary, add additional policies.

You can temporarily disable a policy by deselecting the checkbox to the left of the name of the attached policy. This action does not detach the policy.

	
To detach a policy, click the Delete icon.

	
When complete, click OK in the Configure SOA WS Policies dialog.

You are returned to the SOA Composite Editor.

To attach a policy to a service component:

	
Right-click a service component.

	
Select Configure Component WS Policies.

The Configure SOA WS Policies dialog shown in Figure 42-4 appears.

Figure 42-4 Configure SOA WS Policies Dialog

[image: Description of Figure 42-4 follows]

Description of "Figure 42-4 Configure SOA WS Policies Dialog"

	
Click the Add icon for the type of policy to attach.

	
Security

	
Management

The dialog for your selection appears.

	
Select the type of policy to attach.

	
Click OK.

	
If necessary, add additional policies.

	
When complete, click OK in the Configure SOA WS Policies dialog.

For information about attaching policies during runtime in Oracle Enterprise Manager Fusion Middleware Control, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

42.2.2 How to Override Policy Configuration Property Values

Your environment may include multiple clients or servers with the same policies. However, each client or server may have their own specific policy requirements. You can override the policy property values based on your runtime requirements.

42.2.2.1 Overriding Client Configuration Property Values

You can override the default values of client policy configuration properties on a per client basis without creating new policies for each client. In this way, you can override client policies that define default configuration values and customize those values based on your runtime requirements.

	
Right-click one of the following binding components:

	
A service binding component in the Exposed Services swimlane, and select For Callback.

	
A reference binding component in the External References swimlane, and select For Request.

	
Go to the Security and Management sections. These instructions assume you previously attached policies in these sections.

The Edit icon is enabled for both sections. Figure 42-5 provides details.

Figure 42-5 Client Policy Selection

[image: Description of Figure 42-5 follows]

Description of "Figure 42-5 Client Policy Selection"

	
Click the Edit icon. Regardless of which policies you select, the property names, values, and overridden values display for all of your attached client policies.

	
In the Override Value column, enter a value to override the default value shown in the Value column. Figure 42-6 provides details.

Figure 42-6 Client Policy Override Value

[image: Description of Figure 42-6 follows]

Description of "Figure 42-6 Client Policy Override Value"

	
Click OK to exit the Config Override Properties dialog.

	
Click OK to exit the Configure SOA WS Policies dialog.

	
Click the Source button in the SOA Composite Editor.

The overriding value is reflected with the property name attribute in the composite.xml file, as shown in Example 42-1.

Example 42-1 Client Policy Override Value in composite.xml File

<binding.ws port="http://xmlns.oracle.com/Application26_
jws/Project1/BPELProcess1#wsdl.endpoint(bpelprocess1_client_
ep/BPELProcess1Callback_pt)">
 <wsp:PolicyReference URI="oracle/wss_http_token_client_policy"
 orawsp:category="security"
 orawsp:status="enabled"/>
 <wsp:PolicyReference URI="oracle/wss_http_token_over_ssl_client_policy"
 orawsp:category="security"
 orawsp:status="enabled"/>
 <wsp:PolicyReference URI="oracle/wss_oam_token_client_policy"
 orawsp:category="security"
 orawsp:status="enabled"/>
 <wsp:PolicyReference URI="oracle/wss_saml_token_bearer_over_ssl_client_
policy"
 orawsp:category="security"
 orawsp:status="enabled"/>
 <wsp:PolicyReference URI="oracle/wss_saml_token_over_ssl_client_policy"
 orawsp:category="security"
 orawsp:status="enabled"/>
 <wsp:PolicyReference URI="oracle/log_policy"
 orawsp:category="management"
 orawsp:status="enabled"/>
<property name="user.roles.include" type="xs:string" many="false">true</property>
 </binding.ws>

For more information about overriding policy settings, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

42.2.2.2 Overriding Server Configuration Property Values

You can override the default values of server policy configuration properties on a per server basis without creating new policies for each server. In this way, you can override server policies that define default configuration values and customize those values based on your runtime requirements.

	
Right-click one of the following binding components:

	
A service binding component in the Exposed Services swimlane, and select For Request.

	
A reference binding component in the External References swimlane, and select For Callback.

	
Go to the Security or Management section. These instructions assume you previously attached policies in these sections.

The Edit icon is not enabled by default for both sections. You must explicitly select a policy to enable this icon. This is because you can override fewer property values for the server. Figure 42-7 provides details.

Figure 42-7 Server Policy Selection

[image: Description of Figure 42-7 follows]

Description of "Figure 42-7 Server Policy Selection"

	
Select an attached policy that permits you to override its value, and click the Edit icon.

	
In the Override Value column, enter a value to override the default value shown in the Value column. Figure 42-8 provides details. If the policy store is unavailable, the words no property store found in the store display in red in the Value column.

Figure 42-8 Server Policy Override Value

[image: Description of Figure 42-8 follows]

Description of "Figure 42-8 Server Policy Override Value"

	
Click OK to exit the Config Override Properties dialog.

	
Click OK to exit the Configure SOA WS Policies dialog.

	
Click the Source button in the SOA Composite Editor.

The overriding value is reflected with the OverrideProperty attribute in the composite.xml file, as shown in Example 42-2.

Example 42-2 Server Policy Override Value in composite.xml File

<wsp:PolicyReference URI="oracle/binding_authorization_denyall_policy"
 orawsp:category="security" orawsp:status="enabled"/>
 <wsp:PolicyReference URI="oracle/binding_authorization_permitall_policy"
 orawsp:category="security" orawsp:status="enabled"/>
 <wsp:PolicyReference URI="oracle/binding_permission_authorization_policy"
 orawsp:category="security" orawsp:status="enabled">
 <orawsp:OverrideProperty orawsp:name="permission-class"
 orawsp:value="permission-different-class"/>
 </wsp:PolicyReference>

For more information about overriding policy settings, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

29 Configuring Human Tasks

This chapter describes how to configure the different properties of a human task. It covers basic properties, task payload data structure, participant assignment, routing policies, localization, escalation, notification preferences, access policies and task actions, restrictions and Java and business event callbacks.

This chapter includes the following sections:

	
Section 29.1, "Accessing the Sections of the Human Task Editor"

	
Section 29.2, "Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context"

	
Section 29.3, "Specifying the Task Payload Data Structure"

	
Section 29.4, "Assigning Task Participants"

	
Section 29.5, "Selecting a Routing Policy"

	
Section 29.6, "Specifying Multilingual Settings and Style Sheets"

	
Section 29.7, "Escalating, Renewing, or Ending the Task"

	
Section 29.8, "Specifying Participant Notification Preferences"

	
Section 29.9, "Specifying Access Policies and Task Actions on Task Content"

	
Section 29.10, "Specifying Restrictions on Task Assignments"

	
Section 29.11, "Specifying Java or Business Event Callbacks"

	
Section 29.12, "Storing Documents in Oracle Enterprise Content Management"

For information about troubleshooting human workflow issues, see section "Human Workflow Troubleshooting" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

29.1 Accessing the Sections of the Human Task Editor

This section describes how to access the sections of the Human Task Editor. Brief descriptions are provided of each section and references are provided to more specific information.

29.1.1 How to Access the Sections of the Human Task Editor

To access the sections of the Human Task Editor:

	
Double-click the Human Task icon in the SOA Composite Editor or double-click the Human Task icon in Oracle BPEL Designer and click the Edit icon in the upper right corner.

The Human Task Editor consists of the main sections shown on the left side in Figure 29-1. These sections enable you to design the metadata of a human task.

Figure 29-1 Human Task Editor

[image: Description of Figure 29-1 follows]

Description of "Figure 29-1 Human Task Editor"

Instructions for using these main sections of the Human Task Editor to create a workflow task are listed in Table 29-1.

Table 29-1 Human Task Editor

	Section	Description	See...
	
General

(title, description, outcomes, category, priority, owner, and application context)

	
Enables you to define task details such as title, task outcomes, owner, and other attributes.

	
Section 29.2, "Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context"

	
Data

	
Enables you to define the structure (message elements) of the task payload (the data in the task).

	
Section 29.3, "Specifying the Task Payload Data Structure"

	
Assignment

	
Enables you to assign participants to the task and create a policy for routing the task through the workflow.

	
Section 29.4, "Assigning Task Participants"

Section 29.5, "Selecting a Routing Policy"

	
Presentation

	
Enables you to specify the following settings:

	
Multilingual settings

	
WordML and custom style sheets for attachments

	
Section 29.6, "Specifying Multilingual Settings and Style Sheets"

	
Deadlines

	
Enables you to specify the expiration duration of a task, custom escalation Java classes, and due dates.

	
Section 29.7, "Escalating, Renewing, or Ending the Task"

	
Notification

	
Enables you to create and send notifications when a user is assigned a task or informed that the status of the task has changed.

	
Section 29.8, "Specifying Participant Notification Preferences"

	
Access

	
Enables you to specify access rules for task content and task actions, workflow signature policies, and assignment restrictions.

	
Section 29.9, "Specifying Access Policies and Task Actions on Task Content"

Section 29.9.2, "How to Specify a Workflow Digital Signature Policy"

Section 29.10, "Specifying Restrictions on Task Assignments"

	
Events

	
Enables you to specify callback classes and task and routing assignments in BPEL callbacks.

	
Section 29.11, "Specifying Java or Business Event Callbacks"

	
Documents

	
	
Section 29.12, "Storing Documents in Oracle Enterprise Content Management"

29.2 Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context

This section contains these topics:

	
Section 29.2.1, "How to Specify the Title, Description, Outcome, Priority, Category, Owner, and Application Context"

	
Section 29.2.2, "How to Specify a Task Title"

	
Section 29.2.3, "How to Specify a Task Description"

	
Section 29.2.4, "How to Specify a Task Outcome"

	
Section 29.2.5, "How to Specify a Task Priority"

	
Section 29.2.6, "How to Specify a Task Category"

	
Section 29.2.7, "How to Specify a Task Owner"

	
Section 29.2.8, "How To Specify an Application Context"

29.2.1 How to Specify the Title, Description, Outcome, Priority, Category, Owner, and Application Context

To specify the title, description, outcome, priority, category, owner, and application context:

	
Click the General tab.

Figure 29-2 shows the General section of the Human Task Editor.

This section enables you to specify details such as the task title, description, task outcomes, task category, task priority, and task owner.

Figure 29-2 Human Task Editor — General Section

[image: Description of Figure 29-2 follows]

Description of "Figure 29-2 Human Task Editor — General Section"

Instructions for configuring the following subsections of the General section are listed in Table 29-2:

Table 29-2 Human Task Editor — General Section

	For This Subsection...	See...
	
Title

	
Section 29.2.2, "How to Specify a Task Title"

	
Description

	
Section 29.2.3, "How to Specify a Task Description"

	
Outcomes

	
Section 29.2.4, "How to Specify a Task Outcome"

	
Priority

	
Section 29.2.5, "How to Specify a Task Priority"

	
Category

	
Section 29.2.6, "How to Specify a Task Category"

	
Owner

	
Section 29.2.7, "How to Specify a Task Owner"

	
Application Context

	
Section 29.2.8, "How To Specify an Application Context"

29.2.2 How to Specify a Task Title

To specify a task title:

Enter an optional task title. The title defaults to this value only if the initiated task does not have a title set in it. The title provides a visual identifier for the task. The task title displays in Oracle BPM Worklist. You can also search on titles in Oracle BPM Worklist.

	
In the Task Title field of the General section, select a method for specifying a task title:

	
Plain Text: Manually enter a name (for example, Vacation Request Approved).

	
Text and XPath: Enter a combination of manual text and a dynamic expression. After manually entering a portion of the title (for example, Approval Required for Order Id:), place the cursor one blank space to the right of the text and click the icon to the right of this field. This displays the Expression Builder for dynamically creating the remaining portion of the title. After completing the dynamic portion of the name, click OK to return to this field. The complete name is displayed. For example:

Approval Required for Order Id: <%/task:task/task:payload/task:orderId%>

The expression is resolved during runtime with the exact order ID value from the task payload.

If you enter a title in the Task Title field of the General tab of the Create Human Task dialog described in Section 28.4.3.1, "Specifying the Task Title," the title you enter here is overridden.

29.2.3 How to Specify a Task Description

You can optionally specify a description of the task in the Description field of the General section. The description enables you to provide additional details about a task. For example, if the task title is Computer Upgrade Request, you can provide additional details in this field, such as the model of the computer, amount of CPU, amount of RAM, and so on. The description does not display in Oracle BPM Worklist.

29.2.4 How to Specify a Task Outcome

Task outcomes capture the possible outcomes of a task. Oracle BPM Worklist displays the outcomes you specify here as the possible task actions to perform during runtime. Figure 29-3 provides details.

Figure 29-3 Outcomes in Oracle BPM Worklist

[image: Description of Figure 29-3 follows]

Description of "Figure 29-3 Outcomes in Oracle BPM Worklist"

You can specify the following types of task outcomes:

	
Select a seeded outcome

	
Enter a custom outcome

The task outcomes can also have runtime display values that are different from the actual outcome value specified here. This permits outcomes to be displayed in a different language in Oracle BPM Worklist. For more information about internationalization, see Section 29.6.2, "How to Specify Multilingual Settings."

To specify a task outcome:

	
To the right of the Outcomes field in the General section, click the Search icon.

The Outcomes dialog shown in Figure 29-4 displays the possible outcomes for tasks. APPROVE and REJECT are selected by default.

Figure 29-4 Outcomes Dialog

[image: Description of Figure 29-4 follows]

Description of "Figure 29-4 Outcomes Dialog"

	
Enter the information shown in Table 29-3.

Table 29-3 Outcomes Dialog

	Field	Description
	
Select one or more outcomes

	
Select additional task outcomes or deselect the default outcomes.

	
Add icon

	
Click to invoke a dialog for adding custom outcomes.

In the Name field of the dialog, enter a custom name, and click OK. Your outcome displays in the Outcomes field.

Notes: Be aware of the following naming restrictions:

	
Do not specify a custom name that matches a name listed in the Actions tab of the Access section of the Human Task Editor (for example, do not specify Delete). Specifying the same name can cause problems at runtime.

	
Do not specify a custom name with blank spaces (for example, On Hold). This causes an error when the custom outcome is accessed in Oracle BPM Worklist. If you must specify an outcome with spaces, use a resource bundle. For more information, see Chapter 34, "Introduction to Human Workflow Services."

	
A custom task outcome must begin with a letter of the alphabet, either upper or lower case. It should contain only letters of the alphabet and the numbers zero (0) through nine (9).

	
Outcomes Requiring Comment

	
Click to select an outcome to which an assignee adds comments in Oracle BPM Worklist at runtime. The assignee must add the comments and perform the action without saving the task at runtime.

	
Default Outcome

	
Select the default outcome for this outcome.

The seeded and custom outcomes selected here display for selection in the Majority Voted Outcome section of the parallel participant type.

	
For more information, see Section 29.4.4.1, "Specifying the Voting Outcome."

29.2.5 How to Specify a Task Priority

Specify the priority of the tasks. Priority can be 1 through 5, with 1 being the highest. By default, the priority of a task is 3. This priority value is overridden by any priority value you select in the General tab of the Create Human Task dialog. You can filter tasks based on priority and create views on priorities in Oracle BPM Worklist.

To specify a task priority:

	
From the Priority list in the General section, select a priority for the task.

For more information about specifying a priority value in the Create Human Task dialog, see Section 28.4.3.2, "Specifying the Task Initiator and Task Priority."

29.2.6 How to Specify a Task Category

You can optionally specify a task category in the Category field of the General section. This categorizes tasks created in a system. For example, in a help desk environment, you may categorize customer requests as either software-related or hardware-related. The category displays in Oracle BPM Worklist. You can filter tasks based on category and create views on categories in Oracle BPM Worklist.

To specify a task category:

	
Select a method for specifying a task category in the Category field of the General section:

	
By Name: Manually enter a name.

	
By Expression: Click the icon to the right of this field to display the Expression Builder for dynamically creating a category.

29.2.7 How to Specify a Task Owner

The task owner can view the tasks belonging to business processes they own and perform operations on behalf of any of the assigned task participant types. Additionally, the owner can also reassign, withdraw, or escalate tasks. The task owner can be considered the business administrator for a task. The task owner can also be specified in the Advanced tab of the Create Human Task dialog described in Section 28.4.4.2, "Specifying a Task Owner." The task owner specified in the Advanced tab overrides any task owner you enter here.

For more information about the task owner, see Section 27.2.1.3, "Task Stakeholders."

To specify a task owner:

	
Select a method for specifying the task owner:

	
Statically through the identity service user directory or the list of application roles

	
Dynamically through an XPath expression

For example:

	
If the task has a payload message attribute named po within which the owner is stored, you can specify an XPath expression such as: /task:task/task:payload/po:purchaseOrder/po:owner

	
ids:getManager('jstein', 'jazn.com')

The manager of jstein is the task owner.

For more information about users, groups, and application roles, see Section 27.2.1.1.3, "Participant Assignment."

29.2.7.1 Specifying a Task Owner Statically Through the User Directory or a List of Application Roles

Task owners can be selected by browsing the user directory (Oracle Internet Directory, Java AuthoriZatioN (JAZN)/XML, LDAP, and so on) or a list of application roles configured for use with Oracle SOA Suite.

To specify a task owner statically through the user directory or a list of application roles:

	
In the first list to the right of the Owner field in the General section, select User, Group, or Application Role as the type of task owner. Figure 29-5 provides details.

	
Note:

By default, group names in human tasks are case sensitive. Therefore, if you select Group and enter a name in upper case text (for example, LOANAGENTGROUP), no task is displayed under the Administrative Tasks tab in Oracle BPM Worklist. To enable group names to be case agnostic (case insensitive), you must set the caseSensitiveGroups property to false in the System MBeans Browser. For information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

Figure 29-5 Specify a Task Owner By Browsing the User Directory or Application Roles

[image: Description of Figure 29-5 follows]

Description of "Figure 29-5 Specify a Task Owner By Browsing the User Directory or Application Roles"

	
In the second list to the right of the Owner field in the General section, select Static.

	
See the step in Table 29-4 based on the type of owner you selected.

Table 29-4 Type of Owner

	If You Selected...	See Step...
	
User or Group

	
4

	
Application Role

	
5

	
If you selected User or Group, the Identity Lookup dialog shown in Figure 29-6 appears.

Figure 29-6 Identity Lookup Dialog

[image: Description of Figure 29-6 follows]

Description of "Figure 29-6 Identity Lookup Dialog"

To select a user or group, you must first create an application server connection by clicking the Add icon. Note the following restrictions:

	
Do not create an application server connection to an Oracle WebLogic Administration Server from which to retrieve the list of identity service realms. This is because there is no identity service running on the Administration Server. Therefore, no realm information displays and no users display when performing a search with a search pattern in the Identity Lookup dialog. Instead, create an application server connection to a managed Oracle WebLogic Server.

	
You must select an application server connection configured with the complete domain name (for example, myhost.us.oracle.com). If you select a connection configured only with the hostname (for example, myhost), the Realm list may not display the available realms. If the existing connection does not include the domain name, perform the following steps:

	
In the Resource Palette, right-click the application server connection.

	
Select Properties.

	
In the Configuration tab, add the appropriate domain to the hostname.

	
Return to the Identity Lookup dialog and reselect the connection.

	
Select or create an application server connection to display the realms for selection. A realm provides access to a policy store of users and roles (groups).

	
Search for the owner by entering a search string such as jcooper, j*, *, and so on. Clicking the Lookup icon to the right of the User Name field fetches all the users that match the search criteria. Figure 29-7 provides details. One or more users or groups can be highlighted and selected by clicking Select.

Figure 29-7 Identity Lookup with Realm Selected

[image: Description of Figure 29-7 follows]

Description of "Figure 29-7 Identity Lookup with Realm Selected"

	
View the hierarchy of a user by highlighting the user and clicking Hierarchy. Similarly, clicking Reportees displays the reportees of a selected user or group. Figure 29-8 provides details.

Figure 29-8 User Hierarchy in Identity Lookup Dialog

[image: Description of Figure 29-8 follows]

Description of "Figure 29-8 User Hierarchy in Identity Lookup Dialog"

	
View the details of a user or group by highlighting the user or group and clicking Detail. Figure 29-9 provides details.

Figure 29-9 User or Group Details

[image: Description of Figure 29-9 follows]

Description of "Figure 29-9 User or Group Details"

	
Click OK to return to the Identity Lookup dialog.

	
Click Select to add the user to the Selected User section.

	
Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

	
If you selected Application Role, the Select an Application Role dialog appears.

	
In the Application Server list, select the type of application server that contains the application role or click the Add icon to launch the Create Application Server Connection wizard to create a connection.

	
In the Application list, select the application that contains the application roles (for example, a custom application or soa-infra for the SOA Infrastructure application).

	
In the Available section, select appropriate application roles and click the > button. To select all, click the >> button. Figure 29-10 provides details.

Figure 29-10 Application Role

[image: Description of Figure 29-10 follows]

Description of "Figure 29-10 Application Role"

	
Click OK.

29.2.7.2 Specifying a Task Owner Dynamically Through an XPath Expression

Task owners can be selected dynamically in the Expression Builder dialog.

To specify a task owner dynamically:

	
In the first list to the right of the Owner field in the General section, select User, Group, or Application Role as the type of task owner. Figure 29-11 provides details.

Figure 29-11 Specify a Task Owner Dynamically

[image: Description of Figure 29-11 follows]

Description of "Figure 29-11 Specify a Task Owner Dynamically"

	
In the second list to the right of the Owner field in the General section, select XPath.

	
Click the icon to launch the Expression Builder.

This displays the Expression Builder dialog shown in Figure 29-12:

Figure 29-12 Expression Builder

[image: Description of Figure 29-12 follows]

Description of "Figure 29-12 Expression Builder"

	
Browse the available variable schemas and functions to create a task owner.

	
Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

For more information, see the following:

	
Click Help for instructions on using the Expression Builder dialog and XPath Building Assistant

	
Appendix B, "XPath Extension Functions" for information about workflow service dynamic assignment functions, identity service functions, and instructions on using the XPath Building Assistant

29.2.8 How To Specify an Application Context

You can specify the name of the application that contains the application roles used in the task. This indicates the context in which the application role operates. If you do not explicitly create a task, but end up having one, you can set up the context.

	
In the Application Context field of the General section, enter the name.

29.3 Specifying the Task Payload Data Structure

Figure 29-13 shows the Data section of the Human Task Editor.

This section enables you to specify the structure (message elements) of the task payload (the data in the task) defined in the XSD file. You create parameters to represent the elements in the XSD file. This makes the payload data available to the workflow task. For example:

	
You create a parameter for an order ID element for placing an order from a store front application.

	
You create parameters for the location, type, problem description, severity, status, and resolution elements for creating a help desk request.

Task payload data consists of one or more elements or types. Based on your selections, an XML schema definition is created for the task payload.

Figure 29-13 Human Task Editor — Parameters Section

[image: Description of Figure 29-13 follows]

Description of "Figure 29-13 Human Task Editor — Parameters Section"

29.3.1 How to Specify the Task Payload Data Structure

To specify the task payload data structure:

	
Click the Data tab.

	
Click the Add icon and select a payload type:

	
String

	
Integer

	
Boolean

	
Other

The Add Task Parameter dialog is displayed, as shown in Figure 29-14.

Figure 29-14 Add Task Parameter Dialog

[image: Description of Figure 29-14 follows]

Description of "Figure 29-14 Add Task Parameter Dialog"

	
Enter the details described in Table 29-5:

Table 29-5 Add Task Parameter Dialog Fields and Values

	Field	Description
	
Parameter Type

	
Select Type or Element and click the Search icon to display the Type Chooser dialog for selecting the task parameter.

	
Parameter Name

	
Accept the default name or enter a custom name. This field only displays if Type is the selected parameter type.

	
Editable via worklist

	
Select this checkbox to enable users to edit this part of the task payload in Oracle BPM Worklist. For example, for a loan approval task, the APR attribute may need to be updated by the user reviewing the task, but the SSN field may not be editable.

You can also specify access rules that determine the parts of a task that participants can view and update. For more information, see Section 29.9.1, "How to Specify Access Policies on Task Content."

	
Note:

You can only define payload mapped attributes (previously known as flex field mappings) in Oracle BPM Worklist for payload parameters that are simple XML types (string, integer, and so on) or complex types (for example, a purchase order, and so on). If you must search tasks using keywords or define views or delegation rules based on task content, then you must use payload parameters based on simple XML types. These simple types can be mapped to flex columns in Oracle BPM Worklist.

	
Select the type, as shown in Figure 29-15.

Figure 29-15 Parameter Type

[image: Description of Figure 29-15 follows]

Description of "Figure 29-15 Parameter Type"

	
Click OK to return to the Human Task Editor.

Your selection displays in the Data section.

	
To edit your selection, select it and click the Edit icon in the upper right part of the Data section.

29.4 Assigning Task Participants

Figure 29-16 shows the Assignment section of the Human Task Editor. This section enables you to select a participant type that meets your business requirements. While configuring the participant type, you build lists of users, groups, and application roles to act upon tasks.

Figure 29-16 Human Task Editor — Assignment Section

[image: Description of Figure 29-16 follows]

Description of "Figure 29-16 Human Task Editor — Assignment Section"

You can easily mix and match participant types to create simple or complex workflow routing policies. You can also extend the functionality of a previously configured human task to model more complex workflows.

A participant type is grouped in a block under a stage (for example, named Stage1 in Figure 29-16). A stage is a way of organizing the approval process for blocks of participant types. You can have one or more stages in sequence or in parallel. Within each stage, you can have one or more participant type blocks in sequence or in parallel. The up and down keys enable you to rearrange the order of your participant type blocks.

For example:

	
You can create all participant type blocks in a single stage (for example, a purchase order request in which the entire contents of the order are approved or rejected as a whole).

	
You can create more complex approval tasks that may include one or more stages. For example, you can place one group of participant type blocks in one stage and another block in a second stage. The list of approvers in the first stage handles line entry approvals and the list of approvers in the second stage handles header entry approvals.

Each of the participant types has an associated editor that you use for configuration tasks. The sequence in which the assignees are added indicates the execution sequence.

To specify a different stage name or have a business requirement that requires you to create additional stages, perform the following steps. Creating additional stages is an advanced requirement that may not be necessary for your environment.

This section contains these topics:

	
Section 29.4.1, "How to Specify a Stage Name and Add Parallel and Sequential Blocks"

	
Section 29.4.2, "How to Assign Task Participants"

	
Section 29.4.3, "How to Configure the Single Participant Type"

	
Section 29.4.4, "How to Configure the Parallel Participant Type"

	
Section 29.4.5, "How to Configure the Serial Participant Type"

	
Section 29.4.6, "How to Configure the FYI Participant Type"

For more information about participant types, see Section 27.2.1.1, "Task Assignment and Routing."

29.4.1 How to Specify a Stage Name and Add Parallel and Sequential Blocks

To specify a stage name and add parallel and sequential blocks:

The stage is named Stage1 by default. If you want, you can change the name.

	
Double-click the name.

The Edit dialog shown in Figure 29-17 appears.

Figure 29-17 Edit Dialog

[image: Description of Figure 29-17 follows]

Description of "Figure 29-17 Edit Dialog"

	
Enter a name, and click OK.

	
Select the stage and its participant type block, as shown in Figure 29-18.

	
Click the Add icon.

Figure 29-18 Add a Second Stage

[image: Description of Figure 29-18 follows]

Description of "Figure 29-18 Add a Second Stage"

	
Select an option from the list (for example, Parallel stage).

A second stage is added in parallel to the first stage, as shown in Figure 29-19.

Figure 29-19 Parallel Stage

[image: Description of Figure 29-19 follows]

Description of "Figure 29-19 Parallel Stage"

	
Select the second stage on the right, and click the Add icon. If you do not select the second stage (for this example, named Stage1 in Figure 29-20) and instead select only the participant type block (for example, named Edit Participant in Figure 29-20), all options under the Add icon are disabled.

	
Select Sequential stage.

A sequential stage is added below the selected block.

Figure 29-20 Sequential Stage

[image: Description of Figure 29-20 follows]

Description of "Figure 29-20 Sequential Stage"

You create participant types within these blocks.

29.4.2 How to Assign Task Participants

To assign task participants:

	
In the Assignment section, perform one of the following tasks:

	
Highlight the block below the stage box and click the Edit icon. The first time you create a task participant, the box is labeled <Edit Participant>.

or

	
Double-click the participant box below the stage box.

The Edit Participant Type dialog appears. This dialog enables you to select a specific participant type.

	
From the Type list, select a participant type shown in Figure 29-21.

Figure 29-21 Type List

[image: Description of Figure 29-21 follows]

Description of "Figure 29-21 Type List"

	
See the section shown in Table 29-6 based on your selection.

Table 29-6 Participant Types

	Participant Type	For a Description of this Participant Type, See...	For Instructions on Configuring this Participant Type, See...
	
	
Single

	
Parallel

	
Serial

	
FYI

	
Section 27.2.1.1.2, "Participant Type"

	
Section 29.4.3, "How to Configure the Single Participant Type"

Section 29.4.4, "How to Configure the Parallel Participant Type"

Section 29.4.5, "How to Configure the Serial Participant Type"

Section 29.4.6, "How to Configure the FYI Participant Type"

29.4.3 How to Configure the Single Participant Type

Figure 29-22 shows the Edit Participant Type dialog for the single participant type. Figure 29-23 shows the expanded Advanced section.

Figure 29-22 Edit Participant Type — Single Type

[image: Description of Figure 29-22 follows]

Description of "Figure 29-22 Edit Participant Type — Single Type"

Figure 29-23 Edit Participant Type — Single Type (Expanded Advanced Section)

[image: Description of Figure 29-23 follows]

Description of "Figure 29-23 Edit Participant Type — Single Type (Expanded Advanced Section)"

To be dynamically assigned to a task, a single participant can be selected from a group, an application role, or a participant list.

To configure the single participant type:

	
In the Label field, enter a recognizable label for this participant. This label must be unique among all the participants in the task definition (for example, Approval Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type dialog for the single participant type are listed in Table 29-7:

Table 29-7 Edit Participant Type — Single Type

	For This Subsection...	See...
	
Participant List

	
Section 29.4.3.1, "Creating a Single Task Participant List"

	
Limit allocated duration to (under the Advanced section)

	
Section 29.4.3.2, "Specifying a Time Limit for Acting on a Task"

	
Allow this participant to invite other participants (under the Advanced section)

	
Section 29.4.3.3, "Inviting Additional Participants to a Task"

	
Specify skip rule (under the Advanced section)

	
Section 29.4.3.4, "Bypassing a Task Participant"

29.4.3.1 Creating a Single Task Participant List

Users assigned to a participant list can act upon tasks. In a single-task participant list, only one user is required to act on the task. You can specify either a single user or a list of users, groups, or application roles for this pattern. If a list is specified, then all users on the list are assigned the task. You can specify either that one of them must manually claim and act upon the task, or that one user from the list is automatically selected by an assignment pattern. When one user acts on the task, the task is withdrawn from the task list of other assignees.

You can create several types of lists for the single user participant, and for the parallel, serial, and FYI user participants, for example:

	
Value-based name and expression lists

These lists enable you to statically or dynamically select users, groups, or application roles as task assignees.

	
Value-based management chain lists

Management chains are typically used for serial approvals through multiple users in a management chain hierarchy. Therefore, this list is most likely useful with the serial participant type. This is typically the case if you want all users in the hierarchy to act upon the task. Management chains can also be used with the single participant type. In this case, however, all users in the hierarchy get the task assigned at the same time. As soon as one user acts on the task, it is withdrawn from the other users.

For example, a purchase order is assigned to a manager. If the manager approves the order, it is assigned to their manager. If that manager approves it, it is assigned to their manager, and so on until three managers approve the order. If any managers reject the request or the request expires, the order is rejected if you specify an abrupt termination condition. Otherwise, the task flow continues to be routed.

	
Rule-based names and expression lists and management chain lists

Business rules enable you to create the list of task participants with complex expressions. For example, you create a business rule in which a purchase order request below $5000 is sent to a manager for approval. However, if the purchase order request exceeds $5000, the request is sent to the manager of the manager for approval. Two key features of business rules are facts and action types, which are described in Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."

When you select a participant type, a dialog box enables you to choose an option for building your list of task participant assignees (users, groups, or application roles), as shown in Figure 29-24. The three selections described above are available: Names and expressions, Management Chain, and Rule-based.

Figure 29-24 Build a List of Participants

[image: Description of Figure 29-24 follows]

Description of "Figure 29-24 Build a List of Participants"

After selecting an option, you dynamically assign task participant assignees (users, groups, or application roles) and a data type, as shown in Figure 29-25.

Figure 29-25 Assignment of Task Assignees

[image: Description of Figure 29-25 follows]

Description of "Figure 29-25 Assignment of Task Assignees"

This section describes how to create these lists of participants.

29.4.3.1.1 Creating Participant Lists Consisting of Value-Based Names and Expressions

Select a method for statically or dynamically assigning a user, group, or application role as a task participant.

For conceptual information, see the following:

	
Users, groups, or application roles, see Section 27.2.1.1.3, "Participant Assignment."

	
Statically and dynamically assigning task participants, see Section 27.2.1.2, "Static, Dynamic, and Rule-Based Task Assignment."

To create participant lists consisting of value-based names and expressions:

	
From the Build a list of participants using list, select Names and expressions.

	
Do either of the following:

	
Select Let participants manually claim the task. If you select this option, then the task is assigned to all participants in the list. An individual user from the task assignees can then manually claim the task to work on it.

	
Select Auto-assign to a single list, select User, Group, or Application Role, then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.

Figure 29-26 Selecting and Configuring an Assignment Pattern

[image: Description of Figure 29-26 follows]

Description of "Figure 29-26 Selecting and Configuring an Assignment Pattern"

When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.

A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.

	
From the Specify attributes using list, select Value-based.

The dialog refreshes to display the fields shown in Figure 29-27.

Figure 29-27 Value-Based Names and Expressions

[image: Description of Figure 29-27 follows]

Description of "Figure 29-27 Value-Based Names and Expressions"

	
Click the Add icon and select a user, group, or application role as a task participant.

The Identification Type column of the Participant Names table displays your selection of user, group, or application role.

	
To change your selection in the Identification Type column, click it to invoke a dropdown list.

	
In the Data Type column, click your selection to invoke a dropdown list to assign a value:

	
By Name: If your identification type is a user or group, click the Browse icon (the dots) on the right to display a dialog for selecting a user or group configured through the identity service. The identity service enables the lookup of user properties, roles, and group memberships. User information is obtained from an LDAP server such as Oracle Internet Directory. You can use wild cards (*) to search for IDs.

If your selection is an application role, click the Browse icon to display the Select an Application Role dialog for selecting an application role. To search for application roles, you must first create a connection to the application server. When searching, you must specify the application name to find the name of the role. The task definition can refer to only one application name. You cannot use application roles from different applications as assignees or task owners.

	
By Expression: For a user, group, or application role, click the Browse icon to dynamically select a task assignee in the Expression Builder dialog. Use the bpws:getVariableData(...) expression or the ids:getManager() XPath function.

The Value column displays the value you specified.

	
To manually enter a value, click the field in the Value column and specify a value.

29.4.3.1.2 Creating Participant Lists Consisting of Value-Based Management Chains

Select a method for statically or dynamically assigning management chain parameters as task participants.

For conceptual information about the following:

	
Users, groups, or application roles, see Section 27.2.1.1.3, "Participant Assignment."

	
Statically and dynamically assigning task participants, see Section 27.2.1.2, "Static, Dynamic, and Rule-Based Task Assignment."

	
Management chains, see Section 29.4.3.1, "Creating a Single Task Participant List."

To create participant lists based on value-based management chains:

	
From the Build a list of participants using list, select Management Chain.

	
Do either of the following:

	
Select Let participants manually claim the task. If you select this option, then the task is assigned to all participants in the list. An individual user from the task assignees can then manually claim the task to work on it.

	
Select Auto-assign to a single list, select User, then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.

When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.

A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.

	
From the Specify attributes using list, select Value-based.

The dialog refreshes to display the fields shown in Figure 29-28.

Figure 29-28 Value-Based Management Chains

[image: Description of Figure 29-28 follows]

Description of "Figure 29-28 Value-Based Management Chains"

	
See Step 4 through Step 7 of Section 29.4.3.1, "Creating a Single Task Participant List" for instructions on assigning a user, group, or application role to a list in the Starting Participant table.

	
In the Top Participant list, select a method for assigning the number of task participant levels:

	
By Title: Select the title of the last (highest) approver in the management chain.

	
XPath: Select to dynamically enter a top participant through the Expression Builder dialog.

	
In the Number of Levels list, select a method for assigning a top participant:

	
By Number: Enter a value for the number of levels in the management chain to include in this task. For example, if you enter 2 and the task is initially assigned to user jcooper, both the user jstein (manager of jcooper) and the user wfaulk (manager of jstein) are included in the list (apart from jcooper, the initial assignee).

	
XPath: Select to dynamically enter a value through the Expression Builder dialog.

29.4.3.1.3 Creating Participant Lists Consisting of Rulesets

A ruleset provides a unit of execution for rules and for decision tables. In addition, rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets can be executed in order. This is called rule flow. The ruleset stack determines the order. The order can be manipulated by rule actions that push and pop rulesets on the stack. In rulesets, the priority of rules applies to specify the order of firing of rules in the ruleset. Rulesets also provide an effective date specification that identifies that the ruleset is always active, or that the ruleset is restricted based on a time and date range, or a starting or ending time and date.

The method by which you create a ruleset is based on how you access it. This is described in the following section.

To specify participant lists based on rulesets:

Business rules can define the participant list. There are two options for using business rules:

	
Rules define parameters of a specific list builder (such as Names and Expressions or Management Chain). In this case, the task routing pattern is modeled to use a specific list builder. In the list builder, the parameters are listed as coming from rules. Rules return the list builder of the same type as the one modeled in Oracle JDeveloper.

	
From the Build a list of participants using list, select Names and expressions or Management Chain.

	
From the Specify attributes using list, select Rule-based.

	
In the List Ruleset field, enter a ruleset name.

Figure 29-29 provides details.

Figure 29-29 Rulesets

[image: Description of Figure 29-29 follows]

Description of "Figure 29-29 Rulesets"

	
Do either of the following:

	
Select Let participants manually claim the task. If you select this option, then the task is assigned to all participants in the list. An individual user from the task assignees can then manually claim the task to work on it.

	
Select Auto-assign to a single list, select User, Group, or Application Role, then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.

When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.

A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.

	
Click OK.

	
Rules define the list builder and the list builder parameters. In this case, the list itself is built using rules. The rules define the list builder and the parameters.

	
From the Build a list of participants using list, select Rule-based.

	
In the List Ruleset field, enter a ruleset name.

Figure 29-30 provides details.

Figure 29-30 Rulesets

[image: Description of Figure 29-30 follows]

Description of "Figure 29-30 Rulesets"

	
Do either of the following:

	
Select Let participants manually claim the task. If you select this option, then the task is assigned to all participants in the list. An individual user from the task assignees can then manually claim the task to work on it.

	
Select Auto-assign to a single list, select User, Group, or Application Role, then select an assignment pattern.

To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.

When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.

If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.

	
Click OK.

Both options create a rule dictionary, if one is not already created, and preseed several rule functions and facts for easy specifications of the participant list. In the rule dictionary, the following rule functions are seeded to create participant lists:

	
CreateResourceList

	
CreateManagementChainList

The Task fact is asserted by the task service for basing rule conditions.

After the rule dictionary is created, the Oracle Business Rules Designer is displayed.

	
Model your rule conditions. In the action part, call one of the above functions to complete building your lists. Figure 29-31 provides details.

Figure 29-31 Business Rules

[image: Description of Figure 29-31 follows]

Description of "Figure 29-31 Business Rules"

The parameters for the rule functions are similar to the ones in Oracle JDeveloper modeling. In addition to the configurations in Oracle JDeveloper, some additional options are available in the Oracle Business Rules Designer for the following attributes:

	
responseType: If the response type is REQUIRED, the assignee must act on the task. Otherwise, the assignment is converted to an FYI assignment.

	
ruleName: The rule name can create reasons for assignments.

	
lists: This object is a holder for the lists that are built. Clicking this option shows a pre-asserted fact Lists object to use as the parameter.

An example of rules specifying management chain-based participants is shown in Figure 29-32.

Figure 29-32 Business Rules

[image: Description of Figure 29-32 follows]

Description of "Figure 29-32 Business Rules"

If multiple rules are fired, the list builder created by the rule with the highest priority is selected.

29.4.3.2 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:

	
Expand the Advanced section of the Edit Participant Type dialog for the single type, as shown in Figure 29-33.

Figure 29-33 Advanced Section of Edit Participant Type — Single Type

[image: Description of Figure 29-33 follows]

Description of "Figure 29-33 Advanced Section of Edit Participant Type — Single Type "

	
Select Limit allocated duration to.

	
Specify the amount of time.

For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."

29.4.3.3 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

This is also known as ad hoc routing. If this option is selected, Adhoc Route is added to the Actions list in Oracle BPM Worklist at runtime.

To invite additional participants to a task:

	
Expand the Advanced section of the Edit Participant Type dialog for the single type, as shown in Figure 29-33.

	
Select Allow this participant to invite other participants.

29.4.3.4 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.

To bypass a task:

	
Expand the Advanced section of the Edit Participant Type dialog for the single type, as shown in Figure 29-33.

	
Select Specify skip rule.

This action displays an icon for accessing the Expression Builder dialog for building a condition.

The expression to bypass a task participant must evaluate to a boolean value. For example, /task:task/task:payload/order:orderAmount < 1000 is a valid XPath expression for skipping a participant.

For more information about creating dynamic rule conditions, see Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."

29.4.4 How to Configure the Parallel Participant Type

Figure 29-34 and Figure 29-35 display the upper and lower sections of the Parallel dialog.

This participant type is used when multiple users, working in parallel, must act simultaneously, such as in a hiring situation when multiple users vote to hire or reject an applicant. You specify the voting percentage that is needed for the outcome to take effect, such as a majority vote or a unanimous vote.

For example, a business process collects the feedback from all interviewers in the hiring process, consolidates it, and assigns a hire or reject request to each of the interviewers. At the end, the candidate is hired if the majority of interviewers vote for hiring instead of rejecting.

Figure 29-34 Edit Participant Type — Parallel Type (Upper Section of Dialog)

[image: Description of Figure 29-34 follows]

Description of "Figure 29-34 Edit Participant Type — Parallel Type (Upper Section of Dialog)"

Figure 29-35 Edit Participant Type — Parallel Type (Lower Section of Dialog)

[image: Description of Figure 29-35 follows]

Description of "Figure 29-35 Edit Participant Type — Parallel Type (Lower Section of Dialog)"

To assign participants to the parallel participant type:

	
In the Label field, enter a recognizable label for this participant. This label must be unique among all the participants in the task definition (for example, Approval Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type dialog for the parallel participant type are listed in Table 29-8:

Table 29-8 Edit Participant Type — Parallel Type

	For This Subsection...	See...
	
Vote Outcome

	
Section 29.4.4.1, "Specifying the Voting Outcome"

	
Participant List

	
Section 29.4.4.2, "Creating a Parallel Task Participant List"

	
Limit allocated duration to (under the Advanced section)

	
Section 29.4.4.3, "Specifying a Time Limit for Acting on a Task"

	
Allow this participant to invite other participants (under the Advanced section)

	
Section 29.4.4.4, "Inviting Additional Participants to a Task"

	
Specify skip rule (under the Advanced section)

	
Section 29.4.4.5, "Bypassing a Task Participant"

29.4.4.1 Specifying the Voting Outcome

You can specify a voted-upon outcome that overrides the default outcome selected in the Default Outcome list. This outcome takes effect if the required percentage is reached. Outcomes are evaluated in the order listed in the table.

To specify group voting details:

	
Go to the Vote Outcome section of the Edit Participant Type dialog for the parallel type.

	
From the list in the Voted Outcomes column, select an outcome for the task (for example, Any, ACCEPT, REJECT, or any other outcome specified in Section 29.2.4, "How to Specify a Task Outcome").

The Any outcome enables you to determine the outcome dynamically at runtime. For example, if you select Any and set the outcome percentage to 60, then at runtime, whichever outcome reaches 60% becomes the final voted outcome. If 60% of assignees vote to reject the outcome, then it is rejected.

	
From the list in the Outcome Type column, select a method for determining the outcome of the final task.

	
By Expression: Dynamically specify the details with an XPath expression.

	
By Percentage: Specify a percentage value that determines when the outcome of this task takes effect.

	
From the list in the Value column, specify a value based on your selection in Step 3.

	
If you selected By Expression, click the Browse icon to the right of the field to display the Expression Builder dialog for creating an expression.

	
If you selected By Percentage, enter a percentage value required for the outcome of this task to take effect (for example, a majority vote (51) or a unanimous vote (100)). For example, assume there are two possible outcomes (ACCEPT and REJECT) and five subtasks. If two subtasks are accepted and three are rejected, and the required acceptance percentage is 50%, the outcome of the task is rejected. Figure 29-36 provides details.

This functionality is nondeterministic. For example, selecting a percentage of 30% when there are two subtasks does not make sense.

Figure 29-36 Vote Outcomes Section

[image: Description of Figure 29-36 follows]

Description of "Figure 29-36 Vote Outcomes Section"

	
Click the Add icon to specify additional outcomes.

	
In the Default Outcome list, select the default outcome or enter an XPath expression for this task to take effect if the consensus percentage value is not satisfied. This happens if there is a tie or if all participants do not respond before the task expires. Seeded and custom outcomes that you entered in the Outcomes dialog in Section 29.2.4, "How to Specify a Task Outcome" display in this list.

	
Specify additional group voting details:

	
Immediately trigger voted outcome when minimum percentage is met

If selected, the outcome of the task can be computed early with the outcomes of the completed subtasks, enabling the pending subtasks to be withdrawn. For example, assume four users are assigned to act on a task, the default outcome is APPROVE, and the consensus percentage is set at 50. If the first two users approve the task, the third and fourth users do not need to act on the task, since the consensus percentage value has been satisfied.

	
Wait until all votes are in before triggering outcome

If selected, the workflow waits for all responses before an outcome is initiated.

	
To share comments and attachments with all group collaborators or workflow participants for a task, select Share attachments and comments. This information typically displays in the footer region of Oracle BPM Worklist.

29.4.4.2 Creating a Parallel Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several types of lists:

	
Value-based name and expression lists

	
Value-based management chain lists

	
Rule-based names and expression lists

	
Rule-based management chain lists

	
Rule-based links

For information about creating these lists of participants, see section Section 29.4.3.1, "Creating a Single Task Participant List."

29.4.4.3 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:

	
In the Advanced section of the Edit Participant Type dialog for the parallel type, click the Advanced icon to expand the section shown in Figure 29-35.

	
Select Limit allocated duration to.

	
Specify the amount of time.

For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."

29.4.4.4 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:

	
In the Advanced section of the Edit Participant Type dialog for the parallel type, click the Advanced icon to expand the section (if not expanded).

	
Select Allow this participant to invite other participants.

29.4.4.5 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.

To bypass a task participant:

	
In the Edit Participant Type dialog for the parallel type, select the Specify skip rule checkbox.

This action displays an icon for accessing the Expression Builder dialog for building a condition. The expression must evaluate to a boolean value.

For information about a valid XPath expression for skipping a participant, see Section 29.4.3.4, "Bypassing a Task Participant."

29.4.5 How to Configure the Serial Participant Type

Figure 29-37 displays the Serial dialog. Figure 29-38 shows the expanded Advanced section.

This participant type enables you to create a list of sequential participants for a workflow. For example, if you want a document to be reviewed by John, Mary, and Scott in sequence, use this participant type. For the serial participant type, they can be any list of users or groups.

Figure 29-37 Edit Participant Type — Serial Type

[image: Description of Figure 29-37 follows]

Description of "Figure 29-37 Edit Participant Type — Serial Type"

Figure 29-38 Edit Participant Type — Serial Type (Expanded Advanced Section)

[image: Description of Figure 29-38 follows]

Description of "Figure 29-38 Edit Participant Type — Serial Type (Expanded Advanced Section)"

To configure the serial participant type:

	
In the Label field, enter a recognizable label for this participant. This label must be unique among all the participants in the task definition (for example, Approval Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type dialog for the serial participant type are listed in Table 29-9.

Table 29-9 Edit Participant Type — Serial Type

	For This Subsection...	See...
	
Participant List

	
Section 29.4.5.1, "Creating a Serial Task Participant List"

	
Limit allocated duration to (under the Advanced section)

	
Section 29.4.5.2, "Specifying a Time Limit for Acting on a Task"

	
Allow this participant to invite other participants (under the Advanced section)

	
Section 29.4.5.3, "Inviting Additional Participants to a Task"

	
Specify skip rule (under the Advanced section)

	
Section 29.4.5.4, "Bypassing a Task Participant"

29.4.5.1 Creating a Serial Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several types of lists:

	
Value-based name and expression lists

	
Value-based management chain lists

	
Rule-based names and expression lists

	
Rule-based management chain lists

	
Rule-based lists

See section Section 29.4.3.1, "Creating a Single Task Participant List" for instructions on creating these lists of participants.

29.4.5.2 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:

	
In the Advanced section of the Edit Participant Type dialog for the serial type, click the Advanced icon to expand the section shown in Figure 29-37.

	
Click Limit allocated duration to.

	
Specify the amount of time.

For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."

29.4.5.3 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:

	
In the Advanced section of the Edit Participant Type dialog for the serial type, click the Advanced icon to expand the section (if not already expanded).

	
Select Allow this participant to invite other participants.

	
Note:

For the serial participant type, additional participants can be invited as follows:

	
Globally specifying that the ad hoc participants can be invited at anytime. In this case, even in a sequential workflow, approvers can invite other participants at any level in the sequential workflow.

	
Specifying that an ad hoc invitation of other participants can be done only in specific points in the workflow. In this case, other ad hoc participants are invited only when a serial in complete.

29.4.5.4 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.

To bypass a task participant:

	
In the Advanced section of the Edit Participant Type dialog for the serial type, select the Specify skip rule checkbox.

This action displays an icon for accessing the Expression Builder dialog for building a condition. The expression must evaluate to a boolean value.

For more information about a valid XPath expression for skipping a participant, see Section 29.4.3.4, "Bypassing a Task Participant."

29.4.6 How to Configure the FYI Participant Type

Figure 29-39 displays the Edit Participant Type dialog for the FYI type. This dialog also includes a Participants Exclusion List at the bottom that is not displayed in Figure 29-39.

This participant type is used when a task is sent to a user, but the business process does not wait for a user response; it just continues. FYIs cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.

For example, a magazine subscription is due for renewal. If the user does not cancel the current subscription before the expiration date, the subscription is renewed. This user is reminded weekly until the request expires or the user acts on it.

Figure 29-39 Edit Participant Type — FYI Type

[image: Description of Figure 29-39 follows]

Description of "Figure 29-39 Edit Participant Type — FYI Type"

To configure the FYI participant type:

	
In the Label field, enter a recognizable label for this participant. This label must be unique among all the participants in the task definition (for example, Approval Manager, Primary Reviewers, and so on).

29.4.6.1 Creating an FYI Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several types of lists:

	
Value-based name and expression lists

	
Value-based management chain lists

	
Rule-based names and expression lists

	
Rule-based management chain lists

	
Rule-based lists

See section Section 29.4.3.1, "Creating a Single Task Participant List" for instructions on creating these lists of participants.

29.5 Selecting a Routing Policy

After you configure a participant type and are returned to the Human Task Editor, click the Task will go from starting to final participant icon, as shown in Figure 29-40.

Figure 29-40 Human Task Editor — Assignment Section

[image: Description of Figure 29-40 follows]

Description of "Figure 29-40 Human Task Editor — Assignment Section"

This displays the Configure Assignment dialog shown in Figure 29-41 for specifying a method for routing your task through the workflow.

Figure 29-41 Configure Assignment

[image: Description of Figure 29-41 follows]

Description of "Figure 29-41 Configure Assignment"

Table 29-10 describes the routing policy methods provided.

Table 29-10 Routing Policy Method

	Routing Policy Selection	Use This Policy In Environments Where...	Section
	
Route task to all participants, in order specified

This selection enables you to specify the following suboptions:

	
A task must be routed to each of the participants in the order in which they appear. This is predetermined, default routing. For example, in a hiring process, if three users interview and provide review feedback, then the task is sent to the human resources department.

	
Section 29.5.1, "How to Route Tasks to All Participants in the Specified Order"

	
	
Allow all participants to invite other participants

	
A participant can select users or groups as the next assignee (ad hoc) when approving the task.

	
Section 29.5.1.1, "Allowing All Participants to Invite Other Participants"

	
	
Complete task when a participant chooses: <outcome>

	
A participant in a task can accept or reject it, thus ending the workflow without the task being sent to any other participant. For example, a manager rejects a purchase order, meaning that purchase order is not sent to their manager for review.

	
Section 29.5.1.2, "Stopping Routing of a Task to Further Participants"

	
	
Enable early completion in parallel subtasks

	
Note: This option is for environments in which you have multiple stages and participants working in parallel.

Participants perform subtasks in parallel, and one group's rejection or approval of a subtask does not cause the other group's subtask to also be rejected or approved.

	
Section 29.5.1.3, "Enabling Early Completion in Parallel Subtasks"

	
	
Complete parent tasks of early completing subtasks

	
Note: This option is for environments in which you have multiple stages and participants working in parallel.

Participants perform subtasks in parallel, and one group's rejection or approval of a subtask causes the other group's subtask to also be rejected or approved.

	
Section 29.5.1.4, "Completing Parent Subtasks of Early Completing Subtasks"

	
Use Advanced Rules

	
The participants to whom the task is routed are determined by the business rule logic that you model. For example, a loan application task is designed to go through a loan agent, their manager, and then the senior manager. If the loan agent approves the loan, but their manager rejects it, the task is returned to the loan agent.

	
Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules"

	
Use External Routing

	
The participants in a task are dynamically determined. For example, a company's rules may require the task participants to be determined and then retrieved from a back-end database during runtime.

	
Section 29.5.3, "How to Use External Routing"

	
Assignment tab

	
A participant is assigned a failed task for the purposes of recovery.

	
Section 29.5.4, "How to Configure the Error Assignee"

29.5.1 How to Route Tasks to All Participants in the Specified Order

You can select to have a task reviewed by all selected participants. This is known as default routing because the task is routed to each of the participants in the order in which they appear. This type of routing differs from state machine-based routing.

To route tasks to all participants in the specified order:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.

	
Select Route task to all participants, in order specified from the list shown in Figure 29-42.

Figure 29-42 Route a Task to All Participants

[image: Description of Figure 29-42 follows]

Description of "Figure 29-42 Route a Task to All Participants"

See the following tasks to define a routing policy:

	
Allowing all participants to invite other participants

	
Completing a task when a participant chooses

	
Enabling early completion in parallel subtasks

	
Completing parent subtasks of early completing subtasks

29.5.1.1 Allowing All Participants to Invite Other Participants

This checkbox is the equivalent of the ad hoc workflow pattern of pre-10.1.3 Oracle BPEL Process Manager releases. This applies when there is at least one participant. In this case, each user selects users or groups as the next assignee when approving the task.

To allow all participants to invite other participants:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.

	
Select Route task to all participants, in order specified.

	
Select the Allow all participants to invite other participants checkbox for this task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow.

29.5.1.2 Stopping Routing of a Task to Further Participants

You can specify conditions under which to complete a task early, regardless of the other participants in the workflow.

For example, assume an expense report goes to the manager, and then the director. If the first participant (manager) rejects it, you can end the workflow without sending it to the next participant (director).

To abruptly complete a condition:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.

	
Select Route task to all participants, in order specified from the list.

	
Select the Complete task when a participant chooses: <outcome> checkbox.

The Abrupt Completion Details dialog appears.

There are two methods for specifying the abrupt completion of a task:

	
Outcomes

	
XPath expression routing condition

If outcomes are specified, any time the selected task outcome occurs, the task completes. If both outcome and routing condition are specified, the workflow service performs a logical OR operation on the two.

	
Select appropriate outcomes and click the > button, as shown in Figure 29-43. To select all, click the >> button.

Figure 29-43 Abrupt Completion Details

[image: Description of Figure 29-43 follows]

Description of "Figure 29-43 Abrupt Completion Details"

	
To the right of the Routing Condition field, click the icon to display the Expression Builder dialog for dynamically creating a condition under which to complete this task early. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.

An early completion XPath expression is not evaluated until at least one user has acted upon the task.

	
To enable early completion, click Enable early completion in parallel with subtasks. For more information, see Section 29.5.1.3, "Enabling Early Completion in Parallel Subtasks."

	
To enable early completion of parent tasks, click Complete parent tasks of early completing subtasks. For more information, see Section 29.5.1.4, "Completing Parent Subtasks of Early Completing Subtasks."

	
Click OK to return to the Human Task Editor.

You can click the icon to the right of the Complete task when a participant chooses: <outcome> checkbox to edit this information.

29.5.1.3 Enabling Early Completion in Parallel Subtasks

You can use this option in the following environments:

	
Multiple stages and groups of participants perform subtasks in parallel.

	
A participant in one group approves or rejects a subtask, which causes the other participants in that same group to stop acting upon the task. However, this does not cause the other parallel group to stop acting upon subtasks. That group continues taking actions on tasks.

For example, assume there are two parallel subgroups, each in separate stages. One group acts upon lines of a purchase order. The other group acts upon headers of the same purchase order. If participant ApproveLines.Participant2 of the first group rejects a line, all other task participants in the first group stop acting upon tasks. However, the second parallel group continues to act upon headers in the purchase order. In this scenario, the entire task does not complete early. Figure 29-44 provides details.

Figure 29-44 Early Completion of Parallel Subtasks

[image: Description of Figure 29-44 follows]

Description of "Figure 29-44 Early Completion of Parallel Subtasks"

29.5.1.4 Completing Parent Subtasks of Early Completing Subtasks

You can use this option in the following environments:

	
Multiple stages and groups of participants perform subtasks in parallel.

	
A participant in one group approves or rejects a subtask, which causes the other participants in that same group to stop acting upon the task. This also causes the other parallel group to stop acting upon subtasks.

For example, assume there are two parallel subgroups, each in separate stages, as shown in Figure 29-44. One group acts upon lines of a purchase order. The other group acts upon headers of the same purchase order. If participant ApproveLines.Participant2 of the first group rejects a line, all other task participants in the first group stop acting upon tasks. In addition, the second parallel group stops acting upon headers in the purchase order. In this scenario, the entire task completes early.

29.5.2 How to Specify Advanced Task Routing Using Business Rules

Use advanced routing rules to create complex workflow routing scenarios. The participant types (single, parallel, serial, and FYI) are used to create a linear flow from one set of users to another with basic conditions such as abrupt termination, skipping assignees, and so on. However, there is often a need to perform more complex back and forth routing between multiple individuals in a workflow. One option is to use the BPEL process as the orchestrator of these tasks. Another option is to specify it declaratively using business rules. This section describes how you can model such complex interactions by using business rules with the Human Task Editor.

29.5.2.1 Introduction to Advanced Task Routing Using Business Rules

You can define state machine routing rules using Oracle Business Rules. This action enables you to create Oracle Business Rules that are evaluated:

	
After a routing slip task participant sets the outcome of the task

	
Before the task is assigned to the next routing slip participant

This action enables you to override the standard task routing slip method described in Section 29.5.1, "How to Route Tasks to All Participants in the Specified Order" and build complex routing behavior into tasks.

Using Oracle Business Rules, you define a set of rules (called a ruleset) that relies on business objects, called facts, to determine which action to take.

29.5.2.2 Facts

A fact is an object with certain business data. Each time a routing slip assignee sets the outcome of a task, instead of automatically routing the task to the next assignee, the task service performs the following steps:

	
Asserts facts into the decision service

	
Executes the advanced routing ruleset

Rules can test values in the asserted facts and specify the routing behavior by setting values in a TaskAction fact type.

Table 29-11 describes the fact types asserted by the task service.

Table 29-11 Fact Types Asserted By the Task Service

	Fact Type	Description
	
Task

	
This fact contains the current state of the workflow task instance. All task attributes can be tested against it. The task fact also contains the current task payload. This fact enables you to construct tests against payload values and task attribute values.

	
PreviousOutcome

	
This fact describes the previous task outcome and the assignee who set the outcome. The previous outcome fact contains the following attributes:

	
actualParticipant: The name of the participant who set the task outcome (for example, jstein)

	
logicalParticipant: The logical name (or label) for the routing slip participant responsible for setting the task outcome (for example, assignee1)

	
outcome: The outcome that was set (for example, approve or reject)

	
level: If the previous participant was part of a management chain, then this attribute records their level in the chain, where 1 is the first level in the chain. For other participant types, the value is -1.

	
totalNumberOfApprovals: The total number of users that have now set the outcome of the task.

	
TaskAction

	
This fact is not intended for writing rule tests against it. Instead, it is updated by the ruleset, and returned to the task service to indicate how the task should be routed. Rules should not directly update the TaskAction fact. Instead, they should call one of the RL functions described in Section 29.5.2.3, "Action Types." These functions handle updating the TaskAction fact with the appropriate values.

Some fact types can only be used in workflow routing rules, while others can only be used in workflow participant rules. Table 29-12 describes where you can use each type.

Table 29-12 Use of Fact Types

	Fact Type	Can Use in Routing Rules?	Can Use in Participant Rules?
	
Task

	
Yes

	
Yes

	
PreviousOutcome

	
Yes

	
No

	
TaskAction

	
Yes

	
No

	
Lists

	
No

	
Yes

	
RoutingSlipObjectFactory

	
No

	
Yes

	
ResourceListType

	
No

	
Yes

	
ManagementChainListType

	
No

	
Yes

	
ResourceType

	
No

	
Yes

	
ParameterType

	
No

	
Yes

	
AutoActionType

	
No

	
Yes

	
ResponseType

	
No

	
Yes

29.5.2.3 Action Types

To instruct the task service on how to route the task, rules can specify one of many task actions. This is done by updating the TaskAction fact asserted into the rule session. However, rules should not directly update the TaskAction fact. Instead, rules should call one of the action RL functions, passing the TaskAction fact as a parameter. These functions handle the actual updates to the fact. For example, to specify an action of go forward, you must add a call GO_FORWARD(TaskAction) to the action part of the rule.

Each time a state machine routing rule is evaluated, the rule takes one of the actions shown in Table 29-13:

Table 29-13 Business Rule Actions

	Action	Description	Parameters
	
GO_FORWARD

	
Goes to the next participant in the routing slip (default behavior).

	
None

	
PUSHBACK

	
Goes back to the previous participant in the routing slip (the participant before the one that just set the task outcome).

	
None

	
GOTO

	
Goes to a specific participant in the routing slip.

	
participant'

A string that identifies the label of the participant (for example, Approver1) to which to route the task.

	
COMPLETE

	
Finishes routing and completes the task. The task is marked as completed, and no further routing is required.

	
None

	
ESCALATE

	
Escalates and reassigns the task according to the task escalation policy (usually to the manager of the current assignee).

	
None

29.5.2.4 Sample Ruleset

This section describes how to use rules to implement custom routing behavior with a simple example. A human workflow task is created for managing approvals of expense requests. The outcomes for the task are approve and reject. The task definition includes an ExpenseRequest payload element. One of the fields of ExpenseRequest is the total amount of the expense request. The routing slip for the task consists of three single participants (assignee1, assignee2, and assignee3).

By default, the task gets routed to each of the assignees, with each assignee choosing to approve or reject the task.

Instead of this behavior, the necessary routing behavior is as follows:

	
If the total amount of the expense request is less than $100, approval is only required from one of the participants. Otherwise, it must be approved by all three.

	
If an expense request is rejected by any of the participants, it must be returned to the previous participant for re-evaluation. If it is rejected by the first participant, the expense request is rejected and marked as completed.

This behavior is implemented using the following rules. When a rule dictionary is generated for advanced routing rules, it is created with a template rule that implements the default GO_FORWARD behavior. You can edit this rule, and make copies of the template rule by right-clicking and selecting Copy Rule in the Oracle Business Rules Designer.

If the amount is greater than $100 and the previous assignee approved the task, it is not necessary to provide a rule for routing a task to each of the assignees in turn. This is the default behavior that is reverted to if none of the rules in the ruleset are triggered:

	
Early approval rule (Figure 29-45):

Figure 29-45 Early Approval Rule

[image: Description of Figure 29-45 follows]

Description of "Figure 29-45 Early Approval Rule"

	
Push back on the rejected rule (Figure 29-46):

Figure 29-46 Push Back On The Rejected Rule

[image: Description of Figure 29-46 follows]

Description of "Figure 29-46 Push Back On The Rejected Rule"

	
Complete the Assignee1 rejected rule (Figure 29-47):

Figure 29-47 Completion of the Assignee1 Rejected Rule

[image: Description of Figure 29-47 follows]

Description of "Figure 29-47 Completion of the Assignee1 Rejected Rule"

For information about iterative design, see the workflow-106-IterativeDesign sample available with the Oracle SOA Suite samples.

29.5.2.5 Linked Dictionary Support

For human workflow, business rule artifacts are now stored in two rules dictionaries. This is useful for scenarios in which you must customize your applications. For example, you create and ship version 1 of an application to a customer. The customer then customizes the rulesets in the application with Oracle SOA Composer. Those customizations are now stored in a different rules dictionary than the base rules dictionary. The rules dictionary that stores the customized rulesets links with the rules in the base dictionary. When you later ship version 2 of the application, the base rule dictionary may contain additional changes introduced in the product. The ruleset customization changes previously performed by the customer are preserved and available with the new changes in the base dictionary. When an existing application containing a task using rules is opened, if the rules are in the old format using one dictionary, they are automatically upgraded and divided into two rules dictionaries:

	
Base dictionary

	
Custom dictionary

For more information about customizations, see Chapter 46, "Customizing SOA Composite Applications."

29.5.2.6 Creating Advanced Routing Rules

To create advanced routing rules:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.

	
Select Use Advanced Rules from the list.

	
To the right of Rules Dictionary, click the Edit icon, as shown in Figure 29-48.

Figure 29-48 Creating a Rules Dictionary

[image: Description of Figure 29-48 follows]

Description of "Figure 29-48 Creating a Rules Dictionary"

This starts the Oracle Business Rules Designer with a preseeded repository containing all necessary fact definitions, as shown in Figure 29-49. A decision service component is created for the dictionary, and is associated with the task service component.

Figure 29-49 Human Task Rule Dictionary

[image: Description of Figure 29-49 follows]

Description of "Figure 29-49 Human Task Rule Dictionary"

	
Define state machine routing rules for your task using Oracle Business Rules.

This automatically creates a fully-wired decision service in the human task and the associated rule repository and data model.

For more information about business rules, see the following documentation:

	
Section 29.5.2.4, "Sample Ruleset" for an example human task ruleset

	
Oracle Fusion Middleware User's Guide for Oracle Business Rules

	
Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

29.5.3 How to Use External Routing

You configure an external routing service that dynamically determines the participants in the workflow. If this routing policy is specified, all other participant types are ignored. It is assumed that the external routing service provides a list of participant types (single approver, serial approver, parallel approver, and so on) at runtime to determine the routing of the task.

Use this option if you do not want to use any of the routing rules to determine task assignees. In this case, all the logic of task assignment is delegated to the external routing service.

	
Note:

If you select Use External Routing in the Configure Assignment dialog, specify a Java class, and click OK to exit, the next time you open this dialog, the other two selections (Route task to all participants, in order specified and Use Advanced Rules) no longer appear in the dropdown list. To access all three selections again, you must delete the entire assignment.

To use external routing

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.

	
Select Use External Routing from the list.

	
Click the Edit icon, as shown in Figure 29-50.

Figure 29-50 Selection of Use External Routing

[image: Description of Figure 29-50 follows]

Description of "Figure 29-50 Selection of Use External Routing"

The External Routing dialog appears, as shown in Figure 29-51.

Figure 29-51 Use External Routing Dialog

[image: Description of Figure 29-51 follows]

Description of "Figure 29-51 Use External Routing Dialog"

	
In the Class Name field, enter the fully qualified class file name (for example, the org.mycompany.tasks.RoutingService class name). This class must implement the following interface:

oracle.bpel.services.workflow.task.IAssignmentService

	
Add name and pair value parameters by name or XPath expression that can be passed to the external service, as shown in Table 29-14.

Table 29-14 External Routing

	Field	Description
	
By Name

	
Enter a name in the Name field and a value in the Value field.

	
By Expression

	
Enter a name and dynamically enter a value by clicking the icon to the right of the field to display the Expression Builder dialog.

	
Click the Add icon to add additional name and pair value parameters.

29.5.4 How to Configure the Error Assignee

Tasks can error for reasons such as incorrect assignments. When such errors occur, the task is assigned to the error assignee, who can perform corrective actions. Recoverable errors are as follows:

	
Invalid user and group for all participants

	
Invalid XPath expressions that are related to assignees and expiration duration

	
Escalation on expiration errors

	
Evaluating escalation policy

	
Evaluating renewal policy

	
Computing a management chain

	
Evaluating dynamic assignment rules. The task is not currently in error, but is still left as assigned to the current user and is therefore recoverable.

	
Dynamic assignment cyclic assignment (for example, user A > user B > user A). The task is not currently in error, but is still left as assigned to the last user in the chain and is therefore recoverable.

The following errors are not recoverable. In these cases, the task is moved to the terminating state ERRORED.

	
Invalid task metadata

	
Unable to read task metadata

	
Invalid GOTO participant from state machine rules

	
Assignment service not found

	
Any errors from assignment service

	
Evaluating custom escalate functions

	
Invalid XPath and values for parallel default outcome and percentage values

During modeling of workflow tasks, you can specify error assignees for the workflow. If error assignees are specified, they are evaluated and the task is assigned to them. If no error assignee is specified at runtime, an administration user is discovered and is assigned the alerted task. The error assignee can perform one of the following actions:

	
Ad hoc route

Route the task to the actual users assigned to the task. Ad hoc routing allows the task to be routed to users in sequence, parallel, and so on.

	
Reassign

Reassign the task to the actual users assigned to this task

	
Error task

Indicate that this task cannot be rectified.

If there are any errors in evaluating the error assignees, the task is marked as being in error.

This dialog enables you to specify the users or groups to whom the task is assigned if an error in assignment has occurred.

To configure the error assignee:

	
In the Assignment section, click the icon to the right of Task will go from starting to final participant.

	
Click the Assignment tab.

	
Click the Add icon to assign reviewers or error assignees, as shown in Figure 29-52.

Figure 29-52 Error Assignment Details

[image: Description of Figure 29-52 follows]

Description of "Figure 29-52 Error Assignment Details"

	
Click the Add icon and select a user, group, or application role to participate in this task.

The Identification Type column of the Starting Participant table displays your selection of user, group, or application role.

	
See Step 5 through 7 of Section 29.4.3.1, "Creating a Single Task Participant List" for instructions on selecting a user, group, or application role.

	
If you are using parallel participant types, you can specify where to store the subtask payload with the following options.

	
Use server settings

The SharePayloadAcrossAllParallelApprovers System MBean Browser boolean property in Oracle Enterprise Manager Fusion Middleware Control determines whether to share the payload of subtasks in the root task. By default, this property is set to true. If set to true, the All task participants share the same payload (better performance and less storage space) option is used. If this property is set to false, the Each parallel participant has a local copy of the payload option is used. To change this property, perform the following steps:

	
Right-click soa-infra and select Administration > System MBean Browser.

	
Expand Application Defined MBeans > oracle.as.soainfra.config > Server: server_name > WorkflowConfig > human-workflow.

	
Click SharePayloadAcrossAllParallelApprovers.

	
Change this property in the list, and click Apply.

	
All task participants share the same payload (better performance and less storage space)

The payload for the subtasks is stored in their root task. This situation means that the payload of the root task is shared across all its subtasks. Internally, this option provides better performance and storage space consumption. Less storage space is consumed because the payload of the root task is shared across all its subtasks.

	
Each parallel participant has a local copy of the payload

Each subtask has its own copy of the payload. Internally, this option provides lesser performance and storage space consumption because more storage space is consumed.

	
Click OK.

For more information about users, groups, or application roles, see Section 27.2.1.1.3, "Participant Assignment."

29.6 Specifying Multilingual Settings and Style Sheets

The Presentation section shown in Figure 29-53 enables you to specify resource bundles for displaying task details in different languages in Oracle BPM Worklist and WordML and custom style sheets for attachments.

Figure 29-53 Presentation Section

[image: Description of Figure 29-53 follows]

Description of "Figure 29-53 Presentation Section"

29.6.1 How to Specify WordML and Other Style Sheets for Attachments

To specify WordML style sheets for attachments:

	
In the Stylesheet for Attachments list of the Presentation section, select one of the following options:

	
Word ML: This option dynamically creates Microsoft Word documents for sending as email attachments using a WordML XSLT style sheet. The XSLT style sheet is applied on the task document.

	
Other: This option creates email attachments using an XSLT style sheet. The XSLT style sheet is applied on the task document.

	
Click the Search icon to select the style sheet as an attachment.

29.6.2 How to Specify Multilingual Settings

You can specify resource bundles for displaying task details in different languages in Oracle BPM Worklist. Resource bundles are supported for the following task details:

	
Displaying the value for task outcomes in plain text or with the message(key) format.

	
Making email notification messages available in different languages. At runtime, you specify the hwf:getTaskResourceBundleString(taskId, key, locale?) XPath extension function to obtain the internationalized string from the specified resource bundle. The locale of the notification recipient can be retrieved with the function hwf:getNotificationProperty(propertyName).

Resource bundles can also simply be property files. For example, a resource bundle that configures a display name for task outcomes can look as follows:

	
APPROVE=Approve

	
REJECT=Reject

To specify multilingual settings:

	
In the Presentation section, click the Add icon across from Resource Bundle.

The Resource Details dialog shown in Figure 29-54 appears.

Figure 29-54 Resource Details Dialog

[image: Description of Figure 29-54 follows]

Description of "Figure 29-54 Resource Details Dialog"

	
In the Resource Name field, enter the name of the resource used in the resource bundle. This should be a .properties-based resource bundle file.

	
In the Resource Location field, click the Search icon to select the JAR or ZIP resource bundle file to use. The resource bundle is part of your system archive (SAR) file.

If the resource bundle is outside of the composite project, you are prompted to place a local copy in SCA-INF/lib.

If the resource bundle file is not in the composite class loader (directly under SCA-INF/classes or in a JAR file in SCA-INF/lib), you must specify its location. For example, if the resource bundle is accessible from a location outside of the composite class loader (for example, an HTTP location such as http://host:port/bundleApp/taskBundles.jar), then this location must be specified in this field.

	
Click OK to return to the Human Task Editor.

For more information, see Section 34.2.6, "How to Configure Notification Messages in Different Languages."

29.7 Escalating, Renewing, or Ending the Task

Figure 29-55 shows the Deadlines section of the Human Task Editor.

You can specify the expiration duration of a task in this global policy section (also known as the routing slip level). If the expiration duration is specified at the routing slip level instead of at the participant type level, then this duration is the expiration duration of the task across all the participants. However, if you specify expiration duration at the participant type level (through the Limit allocated duration to checkbox), then those settings take precedence over settings specified in the Deadlines section (routing slip level).

You can also specify that a task be escalated to a user's manager after a specified time period. For more information, see Section 29.4.3.2, "Specifying a Time Limit for Acting on a Task."

Figure 29-55 Human Task Editor — Deadlines Section

[image: Description of Figure 29-55 follows]

Description of "Figure 29-55 Human Task Editor — Deadlines Section"

29.7.1 Introduction to Escalation and Expiration Policy

This section provides an overview of how specifying the expiration duration at this level makes this setting the expiration duration of the task across all the participants.

For example, participant LoanAgentGroup and participant Supervisor have three days to act on the task between them, as shown in Figure 29-56:

Figure 29-56 Expire After Policy

[image: Description of Figure 29-56 follows]

Description of "Figure 29-56 Expire After Policy"

If there is no expiration specified at either the participant level or this routing slip level, then that task has no expiration duration.

If expiration duration is specified at any level of the participants, then for that participant, the participant expiration duration is used. However, the global expiration duration is still used for the participants that do not have participant level expiration duration. The global expiration duration is always decremented by the time elapsed in the task.

The policy for interpreting the participant level expiration for the participants is described as follows:

	
Serial

Each assignment in the management chain gets the same expiration duration as the one specified in the serial. The duration is not for all the assignments resulting from this assignment. If the task expires at any of the assignments in the management chain, the escalation and renewal policy is applied.

	
Parallel:

	
In a parallel workflow, if the parallel participants are specified as a resource, a routing slip is created for each of the resources. The expiration duration of each created routing slip follows these rules:

	
The expiration duration equals the expiration duration of the parallel participant if it has an expiration duration specified.

	
The expiration duration that is left on the task if it was specified at the routing slip level.

	
Otherwise, there is no expiration duration.

	
If parallel participants are specified as routing slips, then the expiration duration for the parallel participants is determined by the routing slip.

	
Note:

When the parent task expires in a parallel task, the subtasks are withdrawn if those tasks have not expired or completed.

29.7.2 How to Specify a Policy to Never Expire

You can specify for a task to never expire.

To specify a policy to never expire:

	
In the dropdown list in the Deadlines section, as shown in Figure 29-55, select Never Expire.

29.7.3 How to Specify a Policy to Expire

You can specify for a task to expire. When the task expires, either the escalation policy or the renewal policy at the routing slip level is applied. If neither is specified, the task expires. The expiration policy at the routing slip level is common to all the participants.

To specify for a task to expire:

	
In the dropdown list of the Deadlines section, select Expire after, as shown in Figure 29-57.

	
Specify the maximum time period for the task to remain open.

The expiration policy for parallel participants is interpreted as follows:

	
If parallel participants are specified as resources in parallel elements, there is no expiration policy for each of those participants.

	
If parallel participants are specified as routing slips, then the expiration policy for the routing slip applies to the parallel participants.

Figure 29-57 indicates that the task expires in three days.

Figure 29-57 Expire After Policy

[image: Description of Figure 29-57 follows]

Description of "Figure 29-57 Expire After Policy"

29.7.4 How to Extend an Expiration Policy Period

You can extend the expiration period when the user does not respond within the allotted time. You do this by specifying the number of times the task can be renewed upon expiration (for example, renew it an additional three times) and the duration of each renewal (for example, three days for each renewal period).

To extend an expiration policy period:

	
In the dropdown list of the Deadlines section, select Renew after, as shown in Figure 29-58.

	
Specify the maximum number of times to continue renewing this task.

In Figure 29-58, when the task expires, it is renewed at most three times. It does not matter if the task expired at the LoanAgentGroup participant or the Supervisor participant.

Figure 29-58 Renew After Policy

[image: Description of Figure 29-58 follows]

Description of "Figure 29-58 Renew After Policy"

29.7.5 How to Escalate a Task Policy

You can escalate a task if a user does not respond within the allotted time. For example, if you are using the escalation hierarchy configured in your user directory, the task can be escalated to the user's manager. If you are using escalation callbacks, the task is escalated to whoever you have defined. When a task has been escalated the maximum number of times, it stops escalating. An escalated task can remain in a user inbox even after the task has expired.

To escalate a task policy:

	
In the dropdown list of the Deadlines section, select Escalate after, as shown in Figure 29-59.

	
Specify the following additional values. When both are set, the escalation policy is more restrictive.

	
Maximum Escalation Levels

Number of management levels to which to escalate the task. This field is required.

	
Highest Approver Title

The title of the highest approver (for example, self, manager, director, or CEO). These titles are compared against the title of the task assignee in the corresponding user repository. This field is optional.

The escalation policy specifies the number of times the task can be escalated on expiration and the renewal duration. In Figure 29-59, when the task expires, it is escalated at most three times. It does not matter if the task expired at the LoanAgentGroup participant or the Supervisor participant.

Figure 29-59 Escalate After Policy

[image: Description of Figure 29-59 follows]

Description of "Figure 29-59 Escalate After Policy"

29.7.6 How to Specify Escalation Rules

This option allows a custom escalation rule to be plugged in for a particular workflow. For example, to assign the task to a current user's department manager on task expiration, you can write a custom task escalation function, register it with the workflow service, and use that function in task definitions.

The default escalation rule is to assign a task to the manager of the current user. To add a new escalation rule, follow these steps.

To specify escalation rules:

	
Implement the following interface:

oracle.bpel.services.workflow.assignment.dynamic.IDynamicTaskEscalationFunction

This implementation must be available in the class path for the server.

	
Log in to Oracle Enterprise Manager Fusion Middleware Control.

	
Expand the SOA folder in the navigator.

	
Right-click soa-infra, and select SOA Administration > Workflow Config > Task tab.

The Workflow Task Service Properties page appears.

	
Add a new function. For example:

	
Function name: DepartmentSupervisor

	
Classpath: oracle.bpel.services.workflow.assignment.dynamic.patterns.DepartmentSupervisor

	
Function parameter name

	
Function parameter value

	
In the Custom Escalation Java Class field of the Deadlines section, enter the function name as defined in the Workflow Task Service Properties page for the escalation rule.

For more information, see Section 34.3.3, "Custom Escalation Function."

29.7.7 How to Specify a Due Date

A due date indicates the date by which the task should be completed. The due date is different from the expiration date. When a task expires it is either marked expired or automatically escalated or renewed based on the escalation policy. The due date is generally a date earlier than the expiration date and an indication to the user that the task is about to expire.

You can enter a due date for a task, as shown in Figure 29-55. A task is considered overdue after it is past the specified due date. This date is in addition to the expiration policy. A due date can be specified irrespective of whether an expiration policy has been specified. The due date enables Oracle BPM Worklist to display a due date, list overdue tasks, filter overdue tasks in the inbox, and so on. Overdue tasks can be queried using a predicate on the TaskQueryService.queryTask(...) API.

To specify a due date:

	
In the Deadlines section, select the Action Requested Before checkbox.

	
Select By Duration to enter a time duration or select By Expression to dynamically enter a value as an XPath expression.

Note the following details:

	
The due date can be set on both the task (using the Create ToDo Task dialog in Oracle BPM Worklist) and in the .task file (using the Human Task Editor). This is to allow to-do tasks without task definitions to set a due date during initiation of the task. A due date that is set in the task (a runtime object) overrides a due date that is set in the .task file.

	
In the task definition, the due date can only be specified at the global level, and not for each participant.

	
If the due date is set on the task, the due date in the .task file is ignored.

	
If the due date is not set on the task, the due date in the .task file is evaluated and set on the task.

	
If there is no due date on either the task or in the .task file, there is no due date on the task.

	
Note:

You cannot specify business rules for to-do tasks.

For more information, see Section 32.3.4, "How To Create a ToDo Task."

29.8 Specifying Participant Notification Preferences

Figure 29-60 shows the General tab of the Notification section of the Human Task Editor (when fully expanded).

Notifications indicate when a user or group is assigned a task or informed that the status of the task has changed. Notifications can be sent through email, voice message, instant message, or SMS. Notifications are sent to different types of participants for different actions. Notifications are configured by default with default messages. For example, a notification message is sent to indicate that a task has completed and closed. You can create your own or modify existing configurations.

	
Note:

Embedded LDAP does not support group email addresses. Therefore, when a task is assigned to a group ID, emails are sent to all of its members instead of to the group email address.

Figure 29-60 Human Task Editor — General Tab of Notification Section

[image: Description of Figure 29-60 follows]

Description of "Figure 29-60 Human Task Editor — General Tab of Notification Section"

To specify participant notification preferences:

	
Click the Notification tab (displays as shown in Figure 29-60).

Instructions for configuring the following subsections of the General tab of the Notification section are listed in Table 29-15.

Table 29-15 Human Task Editor — General Tab of Notification Section

	For This Subsection...	See...
	
Task Status

Recipient

	
Section 29.8.1, "How to Notify Recipients of Changes to Task Status"

	
Notification Header

	
Section 29.8.2, "How to Edit the Notification Message"

For information about the notification service, see Section 34.2, "Notifications from Human Workflow."

	
In the Notification section, click the Advanced tab. Figure 29-61 provides details.

Figure 29-61 Notification Section - Advanced Tab

[image: Description of Figure 29-61 follows]

Description of "Figure 29-61 Notification Section - Advanced Tab"

Instructions for configuring the following subsections of the Advanced tab of the Notification section are listed in Table 29-16.

Table 29-16 Human Task Editor — Advanced Tab of Notification Section

	For This Subsection...	See...
	
Reminders

	
Section 29.8.3, "How to Set Up Reminders"

	
Encoding

	
Section 29.8.4, "How to Change the Character Set Encoding"

	
Make notifications secure (exclude details)

	
Section 29.8.5, "How to Secure Notifications to Exclude Details"

	
Show worklist URL in notifications

	
Section 29.8.6, "How to Display the Oracle BPM Worklist URL in Notifications"

	
Make notifications actionable

	
Section 29.8.7, "How to Make Email Messages Actionable"

	
Send task attachments with email notifications

	
Section 29.8.8, "How to Send Task Attachments with Email Notifications"

	
Group notification configuration

	
Section 29.8.9, "How to Send Email Notifications to Groups and Application Roles"

	
Notification header attributes

	
Section 29.8.10, "How to Customize Notification Headers"

29.8.1 How to Notify Recipients of Changes to Task Status

Three default status types display in the Task Status column: Assign, Complete, and Error. You can select other status types for which to receive notification messages.

To notify recipients of changes to task status:

	
In the Notification section, click the General tab.

	
In the Task Status column, click a type to display the complete list of task types:

	
Alerted

When a task is in an alerted state, you can notify recipients. However, none of the notification recipients (assignees, approvers, owner, initiator, or reviewer) can move the task from an alerted state to an error state; they only receive an FYI notification of the alerted state. The owner can reassign, withdraw, delete, or purge the task, or ask the error assignee to move the task to an error state if the error cannot be resolved. Only the error assignee can move a task from an alerted state to an error state.

You configure the error assignee on the Assignment tab of the Configure Assignment dialog under the Task will go from starting to final participant icon in the Assignment section. For more information, see Section 29.5.4, "How to Configure the Error Assignee."

	
Assign

When the task is assigned to users or a group. This captures the following actions:

	
Task is assigned to a user

	
Task is assigned to a new user in a serial workflow

	
Task is renewed

	
Task is delegated

	
Task is reassigned

	
Task is escalated

	
Information for a task is submitted

	
Complete

	
Error

	
Expire

	
Request Info

	
Resume

	
Suspend

	
Update

	
Task payload is updated

	
Task is updated

	
Comments are added

	
Attachments are added and updated

	
Update Outcome

	
Withdraw

	
All Other Actions

	
Any action not covered in the above task types. This includes acquiring a task.

	
Select a task status type.

Notifications can be sent to users involved in the task in various capacities. This includes when the task is assigned to a group, each user in the group is sent a notification if there is no notification endpoint available for the group.

	
In the Recipient column, click an entry to display a list of possible recipients for the notification message:

	
Assignees

The users or groups to whom the task is currently assigned.

	
Initiator

The user who created the task.

	
Approvers

The users who have acted on the task up to this point. This applies in a serial participant type in which multiple users have approved the task and a notification must be sent to all of them.

	
Owner

The task owner

	
Reviewer

The user who can add comments and attachments to a task.

For more information, see Section 34.2.5, "How to Configure the Notification Channel Preferences."

29.8.2 How to Edit the Notification Message

A default notification message is available for delivery to the selected recipient. If you want, you can modify the default message text.

To edit the notification message:

	
In the Notification section, click the General tab.

	
In the Notification Header column, click the Edit icon to modify the default notification message.

The Edit Notification Message dialog shown in Figure 29-62 appears.

Figure 29-62 Edit Notification Message Dialog

[image: Description of Figure 29-62 follows]

Description of "Figure 29-62 Edit Notification Message Dialog"

This message applies to all the supported notification channels: email, voice, instant messaging, and SMS. Email messages can also include the worklist task detail defined in this message. The channel by which the message is delivered is based upon the notification preferences you specify.

	
Modify the message wording as necessary.

	
Click OK to return to the Human Task Editor.

For more information about notification preference details, see Section 34.2, "Notifications from Human Workflow."

29.8.3 How to Set Up Reminders

You can send task reminders, which can be based on the time the task was assigned to a user or the expiration time of a task. The number of reminders and the interval between the reminders can also be configured.

To set up reminders:

	
In the Notification section, click the Advanced tab.

	
From the list, select the number of reminders to send.

	
If you selected to remind the assignee one, two, or three times, select the interval between reminders, and whether to send the reminder before or after the assignment.

For more information, see Section 34.2.12, "How to Send Reminders."

29.8.4 How to Change the Character Set Encoding

Unicode is a universally-encoded character set that enables information from any language to be stored using a single character set. Unicode provides a unique code value for every character, regardless of the platform, program, or language. You can use the default setting of UTF-8 or you can specify a character set with a Java class.

To change the character set encoding

	
In the Notification section, click the Advanced tab.

	
From the Encoding list, select Specify by Java Class.

	
Enter the Java class to use.

29.8.5 How to Secure Notifications to Exclude Details

To secure notifications, make messages actionable, and send attachments:

	
	
In the Notification section, click the Advanced tab.

	
Select Make notifications secure (exclude details).

If selected, a default notification message is used. There are no HTML worklist task details, attachments, or actionable links in the email. Only the task number is in the message.

For more information, see Section 34.2.10, "How to Send Secure Notifications."

29.8.6 How to Display the Oracle BPM Worklist URL in Notifications

You can configure whether to display the Oracle BPM Worklist URL in email notification messages.

To display the Oracle BPM Worklist URL in notifications:

	
In the Notification section, click the Advanced tab.

	
Select the Show worklist URL in notifications checkbox to display the Oracle BPM Worklist URL in email notification messages. If this checkbox is not selected, the URL is not displayed.

29.8.7 How to Make Email Messages Actionable

To make email messages actionable:

	
In the Notification section, click the Advanced tab.

	
Select Make notification actionable. This action enables you to perform task actions through email.

	
Note:

FYI tasks are not actionable and cannot be acknowledged from email messages.

For more information about additional configuration details, see Section 34.2.7, "How to Send Actionable Messages."

For more information about configuring outbound and inbound emails, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

29.8.8 How to Send Task Attachments with Email Notifications

You can send task attachments with email notifications.

To send task attachments with email notifications:

	
In the Notification section, click the Advanced tab.

	
Select Send task attachments with email notifications.

29.8.9 How to Send Email Notifications to Groups and Application Roles

You can send email notifications to groups and application roles to which tasks are assigned.

To send email notifications to groups and application roles:

	
In the Notification section, click the Advanced tab.

	
From the Group notification configuration list, select one of the following options.

	
Send individual emails

Each user in the group or application role receives an individual email notification. This is the default selection.

In addition, the Use separate task forms based on locale checkbox is automatically selected.

	
When selected, this sends individual emails with a separate task form based on the language locale.

	
When not selected, this sends individual emails and reuses (shares) the task form.

	
Send one email containing all user addresses

A shared notification email is generated once for a user locale in a group or application role, thereby saving time in notification email content generation. The email is sent to all users in the group or application role.

	
Notes:

	
Since all (or a subset of) users receive the same email, the users in the group or application role are expected to have the same privilege. This ensures that the user does not see task details to which they are not entitled.

	
When sending one email to all users, the maximum number of characters allowed in the address field is 2000. If the limit is exceeded, email is sent to only those user addresses contained within the maximum limit.

29.8.10 How to Customize Notification Headers

Custom notification headers are used to specify name and value pairs to identify key fields within the notification. These entries can be used by users to define delivery preferences for their notifications. For example:You can set Name to ApprovalType and value to Expense or Name to Priority and value to High.Users can then specify delivery preferences in Oracle BPM Worklist. These preferences can be based on the contents of the notification.

The rule-based notification service is only used to identify the preferred notification channel to use. The address for the preferred channel is still obtained from the identity service.

To customize notification headers:

	
In the Notification section, click the Advanced tab.

	
Expand Notification Header Attributes.

	
Add name and pair value parameters by name or XPath expression.

For more information about preferences, see the following sections:

	
Section 34.2.8, "How to Send Inbound and Outbound Attachments"

	
Section 34.2.14, "How to Create Custom Notification Headers"

	
Part XI, "Using Oracle User Messaging Service"

29.9 Specifying Access Policies and Task Actions on Task Content

You can specify access rules on task content and actions to perform on that content.

29.9.1 How to Specify Access Policies on Task Content

You can specify access rules that determine the parts of a task that participants can view and update. Access rules are enforced by the workflow service by applying rules on the task object during the retrieval and update of the task.

	
Note:

Task content access rules and task actions access rules exist independently of one another.

29.9.1.1 Introduction to Access Rules

Access rules are computed based on the following details:

	
Any attribute configured with access rules declines any permissions for roles not configured against it. For example, assume you configure the payload to be read by assignees. This action enables only assignees and nobody else to have read permissions. No one, including assignees, has write permissions.

	
Any attribute not configured with access rules has all permissions.

	
If any payload message attribute is configured with access rules, any configurations for the payload itself are ignored due to potential conflicts. In this case, the returned map by the API does not contain any entry for the payload. Write permissions automatically provide read permissions.

	
If only a subset of message attributes is configured with access rules, all message attributes not involved have all permissions.

	
Only comments and attachments have add permissions.

	
Write permissions on certain attributes are meaningless. For example, write permissions on history do not grant or decline any privileges on history.

	
The following date attributes are configured as one in the Human Task Editor. The map returned by TaskMetadataService.getVisibilityRules() contains one key for each. Similarly, if the participant does not have read permissions on DATES, the task does not contain any of the following task attributes:

	
START_DATE

	
END_DATE

	
ASSIGNED_DATE

	
SYSTEM_END_DATE

	
CREATED_DATE

	
EXPIRATION_DATE

	
ALL_UPDATED_DATE

	
The following assignee attributes are configured as one in the Human Task Editor. The map returned by TaskMetadataService.getVisibilityRules() contains one key for each of the following. Similarly, if the participant does not have read permissions on ASSIGNEES, the task does not contain any of the following task attributes:

	
ASSIGNEES

	
ASSIGNEE_USERS

	
ASSIGNEE_GROUPS

	
ACQUIRED_BY

	
Mapped attributes do not have individual representation in the map returned by TaskMetadataService.getVisibilityRules().

	
All message attributes in the map returned by TaskMetadataService.getVisibilityRules() are prefixed by ITaskMetadataService.TASK_VISIBILITY_ATTRIBUTE_PAYLOAD_MESSAGE_ATTR_PREFIX (PAYLOAD).

An application can also create pages to display or not display task attributes based on the access rules. This can be achieved by retrieving a participant's access rules by calling the API on oracle.bpel.services.workflow.metadata.ITaskMetadataService. Example 29-1 provides details.

Example 29-1 API Call

public Map<String, IPrivilege> getTaskVisibilityRules(IWorkflowContext context,
 String taskId)
 throws TaskMetadataServiceException;

For more information about this method, see Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process Manager.

29.9.1.2 Specifying User Privileges for Acting on Task Content

You can specify the privileges that specific users (such as the task creator or owner) have for acting on specific task content (such as a payload).

To specify user privileges for acting on task content:

	
Click the Access tab.

	
Click the Content tab.

	
Select the task content for which to specify access privileges, as shown in Figure 29-63.

Figure 29-63 Configure Task Content Access

[image: Description of Figure 29-63 follows]

Description of "Figure 29-63 Configure Task Content Access"

	
Assign privileges (read, write, or no access) to users to act upon task content. A user cannot be assigned a privilege above their highest level. For example, an ADMIN user cannot be assigned write access on the PAYLOAD task content. Table 29-17 shows the maximum privilege each user has on task content.

Table 29-17 Highest Privilege Levels for Users of Task Content

	Task Content	Individual with Read Access	Individual with Write Access
	
Assignees

	
Admin, Approvers, Assignees, Creator, Owner, Reviewers

	
--

	
Attachments

	
Admin, Approvers

	
Assignees, Creator, Owner, Reviewers

	
Comments

	
Admin, Approvers

	
Assignees, Creator, Owner, Reviewers

	
Dates

	
Admin, Approvers, Assignees, Creator, Owner, Reviewers

	
--

	
Flexfields

	
Admin, Approvers, Reviewers

	
Assignees, Creator, Owner

	
History

	
Admin, Approvers, Assignees, Creator, Owner, Reviewers

	
--

	
Payload

	
Admin, Approvers, Reviewers

	
Assignees, Creator, Owner

	
Reviewers

	
Admin, Approvers, Assignees, Creator, Owner, Reviewers

	
--

	
Payload elements

	
Inherited from payload

	
Inherited from payload

For example, if you accept the default setting of ASSIGNEES, CREATOR, and OWNER with write access, ADMIN, APPROVERS, and REVIEWERS with read access, and PUBLIC with no access to the PAYLOAD task content, the dialog appears as shown in Figure 29-63.

	
Select the method for displaying task content in this dialog. Choosing the currently unselected option causes all settings to reset to their default values.

	
Coarse grained (default)

Displays the task content as a whole (for example, displays only one payload or reviewer).

	
Fine grained

Displays the content as individual elements (for example, displays all payloads (such as p1, p2, and p3) and all reviewers assigned to this task (such as jstein, wfaulk, and cdickens).

	
Note:

Access rules are always applied on top of what the system permits, depending on who is performing the action and the current state of the task.

29.9.1.3 Specifying Actions for Acting Upon Tasks

You can specify the actions (either access or no access) that specific users (such as the task creator or owner) have for acting on the task content (such as a payload) that you specified in the Configure Task Content Access dialog.

To specify actions for acting upon tasks:

	
Click the Access tab.

	
Click the Actions tab.

	
Select the task action for which to specify users, as shown in Figure 29-64.

Figure 29-64 Selection of Add Action Access Rule

[image: Description of Figure 29-64 follows]

Description of "Figure 29-64 Selection of Add Action Access Rule"

	
Select if participants can or cannot perform the selected actions.

	
Select the method for displaying task actions in this dialog. Choosing the currently unselected option causes all settings to reset to their default values.

	
Coarse grained (default)

Displays the task actions as a whole (for example, displays only one approval or rejection).

	
Fine grained

Displays the content actions as individual elements. (for example, displays all approvals or rejections).

29.9.2 How to Specify a Workflow Digital Signature Policy

Digital signatures provide a mechanism for the nonrepudiation of digitally-signed human tasks. This ability to mandate that a participant acting on a task signs the details and their action before the task is updated ensures that they cannot repudiate it later.

	
Note:

If digital signatures are enabled for a task, actionable emails are not sent during runtime. This is the case even if actionable emails are enabled during design time.

To specify a workflow digital signature policy:

	
Click the Access tab.

	
From the Signature Policy list, select Configure Policy, as shown in Figure 29-65.

Figure 29-65 Digital Signatures

[image: Description of Figure 29-65 follows]

Description of "Figure 29-65 Digital Signatures"

	
Specify the signature policy for task participants to use:

	
No signature required

Participants can send and act upon tasks without providing a signature. This is the default policy.

	
Password required

Participants specify a signature before sending tasks to the next participant. Participants must reenter their password while acting on a task. The password is used to generate the digital signature. A digital signature authenticates the identity of the message sender or document signer. This ensures that the original content of the sent message is unchanged.

	
Digital certificate required

Participants must possess a digital certificate for the nonrepudiation of digitally-signed human tasks. A digital certificate establishes the participant's credentials. It is issued by a certification authority (CA). It contains the following:

	
Your name

	
A serial number

	
Expiration dates

	
A copy of the certificate holder's public key (used for encrypting messages and digital signatures)

	
Digital signature of the certificate-issuing authority so that message authenticity can be established

The CA names and CA CRL and URLs of the issuing authorities must be configured separately.

	
Click OK.

For more information, see Section 34.1.10, "Evidence Store Service and Digital Signatures."

29.9.2.1 Specifying a Certificate Authority

To use digital signatures, you must specify CAs you consider trustworthy in the System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control. Only certificates issued from such CAs are considered valid by human workflow.

To specify a certificate authority:

	
From the SOA Infrastructure menu, select Administration > System MBean Browser.

	
Select Application Defined MBeans > oracle.as.soainfra.config > Server: server_name > WorkflowConfig > human.workflow.

	
Click the Operations tab.

	
Click AddTrustedCA.

	
In the Value fields for CaName and CaURL, specify appropriate values.

	
Click Invoke.

	
Click Return.

You must validate these values before using them.

29.10 Specifying Restrictions on Task Assignments

You can restrict the users to which a task can be reassigned or routed by using a callback class.

The user community seeded in a typical LDAP directory can represent the whole company or division. However, it may be necessary at times to limit the potential list of users to associate with a task based on the scope or importance of the task or associated data. For example, in a large company with thousands of users, only a few people have the ability to approve and create purchase orders. Specifically for such tasks, the users that can be chosen for ad hoc routing and reassignment should not be the whole company. Instead, only a few users who are relevant or have the right privilege should be chosen. This can be achieved by the restricted assignment functionality. This is implemented as a callback class that can implement the logic to choose the right set of users dynamically based on the task object that is passed containing the instance data.

29.10.1 How to Specify Restrictions on Task Assignments

To specify restrictions on task assignments:

	
In the Access section, click Configure Restricted Assignments.

The Configure Restricted Assignment dialog appears.

	
Enter the class name. The class must implement the oracle.bpel.services.workflow.task.IRestrictedAssignmentCallback interface.

	
Click the Add icon to add name and value pairs for the property map passed to invoke the callback.

	
Click OK.

29.11 Specifying Java or Business Event Callbacks

You can specify Java or business event callbacks.

29.11.1 How to Specify Callback Classes on Task Status

You can register callbacks for the workflow service to call when a particular stage is reached during the lifecycle of a task. Two types of callbacks are supported:

	
Java callbacks: The callback class must implement the interface oracle.bpel.services.workflow.task.IRoutingSlipCallback. Make the callback class available in the class path of the server.

	
Business event callbacks: You can have business events raised when the state of a human task changes. You do not need to develop and register a Java class. The caller implements the callback using an Oracle Mediator service component to subscribe to the applicable business event to be informed of the current state of an approval transaction.

To specify callback classes on task status:

	
Click the Events tab.

The following state change callbacks are available for selection:

	
OnAssigned

Select if the callback class must be called on any assignment change, including standard routing, reassignment, delegation, escalation, and so on. If a callback is required when a task has an outcome update (that is, one of the approvers in a chain approves or rejects the task), this option must be selected.

	
OnUpdated

Select if the callback class must be called on any update (including payload, comments, attachments, priority, and so on).

	
OnCompleted

Select if the callback class must finally be called when the task is completed and control is about to be passed to the initiator (such as the BPEL process initiating the task).

	
OnStageCompleted

Select if the callback class must be called to enable business event callbacks in a human workflow task. When the event is raised, it contains the name of the completed stage, the outcome for the completed stage, and a snapshot of the task when the callback is invoked.

	
OnSubtaskUpdated

Select if the callback class must be called on any update (including payload, comments, attachments, priority, and so on) on a subtask (one of the tasks in a parallel-and-parallel scenario).

If your Oracle JDeveloper installation is updated to include both the BPEL and BPM extensions, then the following content callbacks are also available for selection:

	
Comments Callback

Select if the callback class must be called to store the comments in a schema other than the WFCOMMENT column.

	
Attachment Call Back

Select if the callback class must be called to store the comments in a schema other than the WFATTACHMENT column.

	
Validation Callback

Select if the callback class must be called to validate either the task or payload before updating, approving, and so on.

	
See the following section based on the type of callback to perform.

	
Section 29.11.1.1, "Specifying Java Callbacks"

	
Section 29.11.1.2, "Specifying Business Event Callbacks"

29.11.1.1 Specifying Java Callbacks

To specify Java callbacks:

	
In the State column of the Events section, select a task state.

	
In the Java Class column, click the empty field to enter a value. This value is the complete class name of the Java class that implements oracle.bpel.services.workflow.task.IRoutingSlipCallback. Figure 29-66 provides details.

Figure 29-66 CallBack Details Dialog with Java Selected

[image: Description of Figure 29-66 follows]

Description of "Figure 29-66 CallBack Details Dialog with Java Selected"

	
Click OK.

29.11.1.2 Specifying Business Event Callbacks

To specify business event callbacks:

	
In the State column of the Events section, select a task state.

	
Leave the Java Class field empty.

	
Select the Trigger Workflow Event checkbox. This action disables the Java Class column, as shown in Figure 29-67. Each callback, such as OnAssigned, corresponds to a business event point. When a business event is fired, the event details contain the task object and a set of properties that are populated based on the context of the event being fired.

Figure 29-67 CallBack Details Dialog with Business Events Selected

[image: Description of Figure 29-67 follows]

Description of "Figure 29-67 CallBack Details Dialog with Business Events Selected"

A preseeded, static event definition language (EDL) file (JDev_Home\jdeveloper\integration\seed\soa\shared\workflow\HumanTaskEvent.edl) provides the list of available business events to which to subscribe. These business events correspond to the callbacks you select in the Callback Details dialog. You must now create an Oracle Mediator service component in which you reference the EDL file and subscribe to the appropriate business event.

	
Note:

A file-based MDS connection is required so that the EDL file can be located. The location for the file-based MDS is JDev_Home\jdeveloper\integration\seed.

	
Create an Oracle Mediator service component in the same or a different SOA composite application that can subscribe to the event.

	
In the Template list during Oracle Mediator creation, select Subscribe to Events.

	
Click the Add icon to subscribe to a new event.

	
To the right of the Event Definition field, click the Browse icon to select the EDL file.

The SOA Resource Browser dialog appears.

	
Select the previously created file-based MDS connection.

	
From the list at the top, select Resource Palette.

	
Select SOA > Shared > Workflow > HumanTaskEvent.edl.

	
Click OK.

The Event Chooser is now populated with EDL file business events available for selection.

	
In the Event field, select the event to which to subscribe. Figure 29-68 provides details.

Figure 29-68 Event Callbacks

[image: Description of Figure 29-68 follows]

Description of "Figure 29-68 Event Callbacks"

You can have multiple human tasks available for subscribing to the event. For example, assume you performed the following:

	
Configured a human task named TaskA to subscribe to the event (for example, OnAssigned)

	
Configured a human task named TaskB to subscribe to the same event

To distinguish between events for TaskA and TaskB and ensure that an event is processed only by the intended Oracle Mediator, you can add a static routing filter:

xpath20:compare(med:getComponentName(), 'TaskA')

This only invokes this routing when the sending component is TaskA.

	
If the EDL file was not selected from the file-based MDS connection, accept to import the dependent XSD files when prompted, and click OK. If the EDL file was selected from the file-based MDS connection, you are not prompted.

The Oracle Mediator service component is now populated with the business event to which to subscribe. You can also subscribe to other business events defined in the same EDL file now or at a later time.

See the following documentation for additional details about business events and callbacks:

	
Chapter 41, "Using Business Events and the Event Delivery Network" for specific details about business events

	
Sample workflow-116-WorkflowEventCallback, which is available with the Oracle SOA Suite samples.

29.11.2 How to Specify Task and Routing Customizations in BPEL Callbacks

In general, the BPEL process calls into the workflow component to assign tasks to users. When the workflow is complete, the human workflow service calls back into the BPEL process. However, if you want fine-grained callbacks (for example, onTaskUpdate or onTaskEscalated) to be sent to the BPEL process, you can use the Allow task and routing customization in BPEL callbacks option.

Make sure to manually refresh the BPEL diagram for this callback setting.

To specify task and routing customizations in BPEL callbacks:

	
In the Events section, select the Allow task and routing customization in BPEL callbacks checkbox.

	
Return to Oracle BPEL Designer.

	
Open the task activity dialog.

	
Click OK.

This creates the while, pick, and onMessage branch of a pick activity for BPEL callback customizations inside the task scope activity.

For more information about specifying task and routing customizations, see Section 28.4.5.1, "Invoking BPEL Callbacks."

29.11.3 How to Disable BPEL Callbacks

A user talk activity (in Oracle BPEL Designer) has an invoke activity followed by a receive or pick activity. Deselecting the Disable BPEL callbacks checkbox enables you to invoke the task service without waiting for a reply.

To disable BPEL callbacks:

	
In the Events section, deselect the Disable BPEL callbacks checkbox.

	
Click OK.

29.12 Storing Documents in Oracle Enterprise Content Management

Figure 29-69 shows the Documents section of the Human Task Editor.

Figure 29-69 Human Task Editor — Documents Section

[image: Description of Figure 29-69 follows]

Description of "Figure 29-69 Human Task Editor — Documents Section"

Contents

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in This Guide for Release 11.1.1.6.x

Part I Introduction to Oracle SOA Suite

1 Introduction to Building Applications with Oracle SOA Suite

	1.1 Introduction to Service-Oriented Architecture
	1.2 Introduction to Services
	1.3 Introduction to Oracle SOA Suite
	1.4 Standards Used by Oracle SOA Suite to Enable SOA
	1.5 Service Component Architecture within SOA Composite Applications
	1.5.1 Service Components
	1.5.2 Binding Components
	1.5.3 Wires

	1.6 Runtime Behavior of a SOA Composite Application
	1.6.1 Service Infrastructure
	1.6.2 Service Engines
	1.6.3 Deployed Service Archives

	1.7 Approaches for Designing SOA Composite Applications
	1.8 Learning Oracle SOA Suite

2 Developing SOA Composite Applications with Oracle SOA Suite

	2.1 Creating a SOA Application
	2.1.1 How to Create a SOA Application and Project
	2.1.2 What Happens When You Create a SOA Application and Project

	2.2 Adding Service Components
	2.2.1 How to Add a Service Component
	2.2.2 What You May Need to Know About Adding and Deleting a Service Component
	2.2.3 How to Edit a Service Component

	2.3 Adding Service Binding Components
	2.3.1 How to Add a Service Binding Component
	2.3.2 How to Define the Interface (WSDL) for a Web Service
	2.3.3 How to View Schemas
	2.3.4 How to Edit a Service Binding Component
	2.3.5 What You May Need to Know About Adding and Deleting Services
	2.3.6 What You May Need to Know About Using the Same Namespace in Different WSDL Files in the Same Composite
	2.3.7 What You May Need to Know About WSDL Browsing in the Resource Palette When the SOA Infrastructure Uses Both Internal and External Oracle HTTP Servers

	2.4 Adding Reference Binding Components
	2.4.1 How to Add a Reference Binding Component
	2.4.2 What You May Need to Know About Adding and Deleting References
	2.4.3 What You May Need to Know About WSDL References
	2.4.4 What You May Need to Know About Mixed Message Types in a WSDL File
	2.4.5 What You May Need to Know About Invoking the Default Revision of a Composite

	2.5 Adding Wires
	2.5.1 How to Wire a Service and a Service Component
	2.5.2 How to Wire a Service Component and a Reference
	2.5.3 What You May Need to Know About Adding and Deleting Wires

	2.6 Adding Security
	2.7 Deploying a SOA Composite Application
	2.7.1 How to Invoke Deployed Composites

	2.8 Managing and Testing a SOA Composite Application
	2.8.1 How to Manage Deployed Composites
	2.8.2 How to Test a Deployed Composite

3 Introduction to the SOA Sample Application

	3.1 Introduction to the Fusion Order Demo
	3.1.1 Store Front Module
	3.1.2 WebLogic Fusion Order Demo Application

	3.2 Setting Up the Fusion Order Demo Application
	3.2.1 Task 1: Install Oracle JDeveloper Studio
	3.2.2 Task 2: Install the Fusion Order Demo Application
	3.2.3 Task 3: Install Oracle SOA Suite

	3.3 Taking a Look at the WebLogic Fusion Order Demo Application
	3.3.1 Project Applications of the WebLogic Fusion Order Demo Application
	3.3.2 The composite.xml File

	3.4 Understanding the OrderBookingComposite Flow
	3.5 Deploying Fusion Order Demo
	3.5.1 Task 1: Create a Connection to an Oracle WebLogic Server
	3.5.2 (Optional) Task 2: Create a Connection to the Oracle BAM Server
	3.5.3 Task 3: Install the Schema for the Fusion Order Demo Application
	3.5.4 Task 4: Set the Configuration Property for the Store Front Module
	3.5.5 Task 5: Edit the Database Connection
	3.5.6 Task 6: Deploy the Store Front Module
	3.5.7 Task 7: Deploy the WebLogic Fusion Order Demo Application

	3.6 Running Fusion Order Demo
	3.7 Viewing Data Sent to Oracle BAM Server
	3.8 Undeploying the Composites for the WebLogic Fusion Order Demo Application

Part II Using the BPEL Process Service Component

4 Getting Started with Oracle BPEL Process Manager

	4.1 Introduction to the BPEL Process Service Component
	4.1.1 How to Add a BPEL Process Service Component

	4.2 Introduction to Activities
	4.3 Introduction to Partner Links
	4.4 Creating a Partner Link
	4.4.1 How to Create a Partner Link
	4.4.1.1 Partner Links for an Outbound Adapter
	4.4.1.2 Partner Links for an Inbound Adapter
	4.4.1.3 Partner Links from an Abstract WSDL to Call a Service
	4.4.1.4 Partner Links from an Abstract WSDL to Implement a Service
	4.4.1.5 Partner Links and Human Tasks or Business Rules
	4.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle Mediator

	4.5 Introduction to Adapters
	4.6 Introduction to BPEL Process Monitors

5 Introduction to Interaction Patterns in a BPEL Process

	5.1 Introduction to One-Way Messages
	5.2 Introduction to Synchronous Interactions
	5.3 Introduction to Asynchronous Interactions
	5.4 Introduction to Asynchronous Interactions with a Timeout
	5.5 Introduction to Asynchronous Interactions with a Notification Timer
	5.6 Introduction to One Request, Multiple Responses
	5.7 Introduction to One Request, One of Two Possible Responses
	5.8 Introduction to One Request, a Mandatory Response, and an Optional Response
	5.9 Introduction to Partial Processing
	5.10 Introduction to Multiple Application Interactions

6 Manipulating XML Data in a BPEL Process

	6.1 Introduction to Manipulating XML Data in BPEL Processes
	6.1.1 XML Data in BPEL
	6.1.2 Data Manipulation and XPath Standards

	6.2 Delegating XML Data Operations to Data Provider Services
	6.2.1 How to Create an Entity Variable
	6.2.1.1 Understanding How SDO Works in the Inbound Direction
	6.2.1.2 Understanding How SDO Works in the Outbound Direction
	6.2.1.3 Creating an Entity Variable and Choosing a Partner Link
	6.2.1.4 Creating a Binding Key

	6.3 Using Standalone SDO-based Variables
	6.3.1 How to Declare SDO-based Variables
	6.3.2 How to Convert from XML to SDO

	6.4 Initializing a Variable with Expression Constants or Literal XML
	6.4.1 How To Assign a Literal XML Element

	6.5 Copying Between Variables
	6.5.1 How to Copy Between Variables
	6.5.2 Initializing Variables with an Inline from-spec in BPEL 2.0

	6.6 Accessing Fields in Element and Message Type Variables
	6.6.1 How to Access Fields Within Element-Based and Message Type-Based Variables

	6.7 Assigning Numeric Values
	6.7.1 How to Assign Numeric Values

	6.8 Using Mathematical Calculations with XPath Standards
	6.8.1 How To Use Mathematical Calculations with XPath Standards

	6.9 Assigning String Literals
	6.9.1 How to Assign String Literals

	6.10 Concatenating Strings
	6.10.1 How to Concatenate Strings

	6.11 Assigning Boolean Values
	6.11.1 How to Assign Boolean Values

	6.12 Assigning a Date or Time
	6.12.1 How to Assign a Date or Time

	6.13 Manipulating Attributes
	6.13.1 How to Manipulate Attributes

	6.14 Manipulating XML Data with bpelx Extensions
	6.14.1 How to Use bpelx:append
	6.14.1.1 bpelx:append in BPEL 1.1
	6.14.1.2 bpelx:append in BPEL 2.0

	6.14.2 How to Use bpelx:insertBefore
	6.14.2.1 bpelx:insertBefore in BPEL 1.1
	6.14.2.2 bpelx:insertBefore in BPEL 2.0

	6.14.3 How to Use bpelx:insertAfter
	6.14.3.1 bpelx:insertAfter in BPEL 1.1
	6.14.3.2 bpelx:insertAfter in BPEL 2.0

	6.14.4 How to Use bpelx:remove
	6.14.4.1 bpelx:remove in BPEL 1.1
	6.14.4.2 bpelx:remove in BPEL 2.0

	6.14.5 How to Use bpelx:rename and XSD Type Casting
	6.14.5.1 bpelx:rename in BPEL 1.1
	6.14.5.2 bpelx:rename in BPEL 2.0

	6.14.6 How to Use bpelx:copyList
	6.14.6.1 bpelx:copyList in BPEL 1.1
	6.14.6.2 bpelx:copyList in BPEL 2.0

	6.14.7 How to Use Assign Extension Attributes
	6.14.7.1 ignoreMissingFromData Attribute
	6.14.7.2 insertMissingToData Attribute
	6.14.7.3 keepSrcElementName Attribute

	6.15 Validating XML Data
	6.15.1 How to Validate XML Data in BPEL 1.1
	6.15.2 How to Validate XML Data in BPEL 2.0

	6.16 Using Element Variables in Message Exchange Activities in BPEL 2.0
	6.17 Mapping WSDL Message Parts in BPEL 2.0
	6.17.1 How to Map WSDL Message Parts
	6.17.2 What Happens When You Map WSDL Message Parts

	6.18 Importing Process Definitions in BPEL 2.0
	6.19 Manipulating XML Data Sequences That Resemble Arrays
	6.19.1 How to Statically Index into an XML Data Sequence That Uses Arrays
	6.19.2 How to Use SOAP-Encoded Arrays
	6.19.2.1 SOAP-Encoded Arrays in BPEL 2.0
	6.19.2.2 Declaring a SOAP Array Using a wsdl:arrayType Attribute Inside a Schema

	6.19.3 How to Determine Sequence Size
	6.19.4 How to Dynamically Index by Applying a Trailing XPath to an Expression
	6.19.4.1 Applying a Trailing XPath to the Result of getVariableData
	6.19.4.2 Using the bpelx:append Extension to Append New Items to a Sequence
	6.19.4.3 Merging Data Sequences
	6.19.4.4 Generating Functionality Equivalent to an Array of an Empty Element

	6.19.5 What You May Need to Know About Using the Array Identifier

	6.20 Converting from a String to an XML Element
	6.20.1 How To Convert from a String to an XML Element

	6.21 Understanding Document-Style and RPC-Style WSDL Differences
	6.21.1 How To Use RPC-Style Files

	6.22 Manipulating SOAP Headers in BPEL
	6.22.1 How to Receive SOAP Headers in BPEL
	6.22.2 How to Send SOAP Headers in BPEL

	6.23 Declaring Extension Namespaces in BPEL 2.0
	6.23.1 How to Declare Extension Namespaces
	6.23.2 What Happens When You Create an Extension

7 Invoking a Synchronous Web Service from a BPEL Process

	7.1 Introduction to Invoking a Synchronous Web Service
	7.2 Invoking a Synchronous Web Service
	7.2.1 How to Invoke a Synchronous Web Service
	7.2.2 What Happens When You Invoke a Synchronous Web Service
	7.2.2.1 Partner Link in the BPEL Code
	7.2.2.2 Partner Link Type and Port Type in the BPEL Code
	7.2.2.3 Invoke Activity for Performing a Request
	7.2.2.4 Synchronous Invocation in BPEL Code

	7.3 Specifying Transaction Timeout Values in Synchronous Processes
	7.3.1 How To Specify Transaction Timeout Values
	7.3.2 What You May Need to Know About SyncMaxWaitTime and Synchronous Requests Not Timing Out

	7.4 Calling a One-Way Mediator with a Synchronous BPEL Process

8 Invoking an Asynchronous Web Service from a BPEL Process

	8.1 Introduction to Invoking an Asynchronous Web Service
	8.2 Invoking an Asynchronous Web Service
	8.2.1 How to Invoke an Asynchronous Web Service
	8.2.1.1 Adding a Partner Link for an Asynchronous Service
	8.2.1.2 Adding an Invoke Activity
	8.2.1.3 Adding a Receive Activity
	8.2.1.4 Performing Additional Activities

	8.2.2 What Happens When You Invoke an Asynchronous Web Service
	8.2.2.1 portType Section of the WSDL File
	8.2.2.2 partnerLinkType Section of the WSDL File
	8.2.2.3 Partner Links Section in the BPEL File
	8.2.2.4 Composite Application File
	8.2.2.5 Invoke and Receive Activities
	8.2.2.6 createInstance Attribute for Starting a New Instance
	8.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous Processes
	8.2.2.8 Multiple Runtime Endpoint Locations

	8.2.3 What You May Need to Know About Multiple Client Components Invoking a Composite
	8.2.4 What You May Need to Know About Limitations on BPEL 2.0 IMA Support
	8.2.5 What Happens When You Specify a Conversation ID
	8.2.5.1 bpelx:conversationId in BPEL 1.1
	8.2.5.2 bpelx:conversationId in BPEL 2.0

	8.3 Creating a Dynamic Partner Link at Design Time for Use at Runtime
	8.3.1 How To Create a Dynamic Partner Link at Design Time for Use at Runtime

	8.4 Using WS-Addressing in an Asynchronous Service
	8.4.1 How to Use WS-Addressing in an Asynchronous Service
	8.4.1.1 Using TCP Tunneling to See Messages Exchanged Between Programs

9 Using Correlation Sets and Message Aggregation

	9.1 Using Correlation Sets in an Asynchronous Service
	9.1.1 How to Use Correlation Sets in an Asynchronous Service
	9.1.1.1 Step 1: Creating a Project
	9.1.1.2 Step 2: Configuring Partner Links and File Adapter Services
	9.1.1.3 Step 3: Creating Three Receive Activities
	9.1.1.4 Step 4: Creating Correlation Sets
	9.1.1.5 Step 5: Associating Correlation Sets with Receive Activities
	9.1.1.6 Step 6: Creating Property Aliases
	9.1.1.7 Step 7: Reviewing WSDL File Content

	9.1.2 What You May Need to Know About Conversion IDs and Different Composite Revisions
	9.1.3 What You May Need to Know About Setting Correlations for an IMA Using a fromParts Element With Multiple Parts

	9.2 Routing Messages to the Same Instance
	9.2.1 How to Configure BPEL Process Instance Creation
	9.2.2 How to Use the Same Operation in Entry and Midprocess Receive Activities
	9.2.3 How to Route a Message to a New or Existing Instance when Using Correlation Sets

10 Using Parallel Flow in a BPEL Process

	10.1 Introduction to Parallel Flows in BPEL Processes
	10.1.1 What You May Need to Know About the Execution of Parallel Flow Branches in a Single Thread

	10.2 Creating a Parallel Flow
	10.2.1 How to Create a Parallel Flow
	10.2.2 What Happens When You Create a Parallel Flow
	10.2.3 Synchronizing the Execution of Activities in a Flow Activity
	10.2.4 How to Create Synchronization Between Activities Within a Flow Activity
	10.2.5 What Happens When You Create Synchronization Between Activities Within a Flow Activity
	10.2.6 What You May Need to Know About Join Conditions in Target Activities

	10.3 Customizing the Number of Parallel Branches
	10.3.1 Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1
	10.3.1.1 How to Create a flowN Activity
	10.3.1.2 What Happens When You Create a FlowN Activity

	10.3.2 Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0
	10.3.2.1 How to Create a forEach Activity
	10.3.2.2 What Happens When You Create a forEach Activity

11 Using Conditional Branching in a BPEL Process

	11.1 Introduction to Conditional Branching
	11.2 Defining Conditional Branching
	11.2.1 Defining Conditional Branching with the Switch Activity in BPEL 1.1
	11.2.1.1 How to Create a Switch Activity
	11.2.1.2 What Happens When You Create a Switch Activity

	11.2.2 Defining Conditional Branching with the If Activity in BPEL 2.0
	11.2.2.1 How to Create an If Activity
	11.2.2.2 What Happens When You Create an If Activity

	11.3 Creating a While Activity to Define Conditional Branching
	11.3.1 How To Create a While Activity
	11.3.2 What Happens When You Create a While Activity

	11.4 Creating a repeatUntil Activity to Define Conditional Branching
	11.4.1 How to Create a repeatUntil Activity
	11.4.2 What Happens When You Create a repeatUntil Activity

	11.5 Specifying XPath Expressions to Bypass Activity Execution
	11.5.1 How to Specify XPath Expressions to Bypass Activity Execution
	11.5.2 What Happens When You Specify XPath Expressions to Bypass Activity Execution

12 Using Fault Handling in a BPEL Process

	12.1 Introduction to a Fault Handler
	12.2 Introduction to BPEL Standard Faults
	12.2.1 BPEL 1.1 Standard Faults
	12.2.2 BPEL 2.0 Standard Faults
	12.2.2.1 Fault Handling Order of Precedence in BPEL 2.0

	12.3 Introduction to Categories of BPEL Faults
	12.3.1 Business Faults
	12.3.2 Runtime Faults
	12.3.2.1 bindingFault
	12.3.2.2 remoteFault
	12.3.2.3 replayFault

	12.4 Using the Fault Management Framework
	12.4.1 How to Design a Fault Policy
	12.4.1.1 Understanding How Fault Policy Binding Resolution Works
	12.4.1.2 Creating a Fault Policy File for Automated Fault Recovery
	12.4.1.3 Associating a Fault Policy with Fault Policy Binding
	12.4.1.4 Additional Fault Policy and Fault Policy Binding File Samples
	12.4.1.5 Designing a Fault Policy with Multiple Rejection Handlers

	12.4.2 How to Execute a Fault Policy
	12.4.3 How to Use a Java Action Fault Policy
	12.4.4 What You May Need to Know About Fault Management Behavior When the Number of Instance Retries is Exceeded
	12.4.5 What You May Need to Know Executing the Retry Action with Multiple Faults in the Same Flow
	12.4.6 What You May Need to Know About Binding Level Retry Execution Within Fault Policy Retries
	12.4.7 What You May Need to Know About Defining the ora-java Option

	12.5 Catching BPEL Runtime Faults
	12.5.1 How to Catch BPEL Runtime Faults

	12.6 Getting Fault Details with the getFaultAsString XPath Extension Function
	12.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function

	12.7 Throwing Internal Faults
	12.7.1 How to Create a Throw Activity
	12.7.2 What Happens When You Create a Throw Activity

	12.8 Rethrowing Faults with the Rethrow Activity
	12.8.1 How to Create a Rethrow Activity
	12.8.2 What Happens When You Rethrow Faults

	12.9 Returning External Faults
	12.9.1 How to Return a Fault in a Synchronous Interaction
	12.9.2 How to Return a Fault in an Asynchronous Interaction

	12.10 Using a Scope Activity to Manage a Group of Activities
	12.10.1 How to Create a Scope Activity
	12.10.2 How to Add Descriptive Notes and Images to a Scope Activity
	12.10.3 What Happens After You Create a Scope Activity
	12.10.4 What You May Need to Know About Scopes
	12.10.5 How to Use a Fault Handler Within a Scope
	12.10.6 How to Create a Catch Activity in a Scope
	12.10.7 What Happens When You Create a Catch Activity in a Scope
	12.10.8 How to Create an Empty Activity to Insert No-Op Instructions into a Business Process
	12.10.9 What Happens When You Create an Empty Activity

	12.11 Re-executing Activities in a Scope Activity with the Replay Activity
	12.11.1 How to Create a Replay Activity
	12.11.2 What Happens When You Create a Replay Activity

	12.12 Using Compensation After Undoing a Series of Operations
	12.12.1 Using a Compensate Activity
	12.12.2 How to Create a Compensate Activity
	12.12.3 What Happens When You Create a compensate Activity
	12.12.4 Using a compensateScope Activity in BPEL 2.0
	12.12.5 How to Create a compensateScope Activity
	12.12.6 What Happens When You Create a compensateScope Activity

	12.13 Stopping a Business Process Instance
	12.13.1 Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1
	12.13.1.1 How to Create a Terminate Activity
	12.13.1.2 What Happens When You Create a Terminate Activity

	12.13.2 Immediately Ending a Business Process Instance with the Exit Activity in BPEL 2.0
	12.13.2.1 How to Create an Exit Activity
	12.13.2.2 What Happens When You Create an Exit Activity

	12.14 Throwing Faults with Assertion Conditions
	12.14.1 Introducing Assertion Conditions
	12.14.1.1 bpelx:postAssert and bpelx:preAssert Extensions
	12.14.1.2 Use of faultName and message Attributes
	12.14.1.3 Multiple Assertions
	12.14.1.4 Use of Built-in and Custom XPath Functions and $variable References
	12.14.1.5 Assertion Condition Evaluation Logging of Events to the Instance Audit Trail
	12.14.1.6 Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault
	12.14.1.7 Assertion Conditions in a Standalone Assert Activity

	12.14.2 How to Create Assertion Conditions
	12.14.3 How to Disable Assertions
	12.14.4 What Happens When You Create Assertion Conditions

13 Transaction and Fault Propagation Semantics in BPEL Processes

	13.1 Introduction to Transaction Semantics
	13.1.1 Oracle BPEL Process Manager Transaction Semantics
	13.1.1.1 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to requiresNew
	13.1.1.2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to required

	13.2 Introduction to Execution of One-way Invocations

14 Incorporating Java and Java EE Code in a BPEL Process

	14.1 Introduction to Java and Java EE Code in BPEL Processes
	14.2 Incorporating Java and Java EE Code in BPEL Processes
	14.2.1 How to Wrap Java Code as a SOAP Service
	14.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service
	14.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag
	14.2.4 How to Embed Java Code Snippets in a BPEL 2.0 Process
	14.2.5 How to Use an XML Facade to Simplify DOM Manipulation
	14.2.6 How to Use bpelx:exec Built-in Methods
	14.2.7 How to Use Java Code Wrapped in a Service Interface

	14.3 Adding Custom Classes and JAR Files
	14.3.1 How to Add Custom Classes and JAR Files

	14.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper
	14.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper
	14.4.2 What You May Need to Know About Using thread.sleep() in a Java Embedding Activity

	14.5 Embedding Service Data Objects with bpelx:exec
	14.6 Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager
	14.6.1 How to Configure the BPEL Connection Manager Class to Take Precedence

15 Using Events and Timeouts in BPEL Processes

	15.1 Introduction to Event and Timeout Concepts
	15.2 Creating a Pick Activity to Select Between Continuing a Process or Waiting
	15.2.1 How To Create a Pick Activity
	15.2.2 What Happens When You Create a Pick Activity
	15.2.3 What You May Need to Know About Simultaneous onMessage Branches in BPEL 2.0

	15.3 Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities
	15.3.1 Introducing Timeouts for Request-Reply and In-Only Operations
	15.3.1.1 Timeout Settings Relative from When the Activity is Invoked
	15.3.1.2 Timeout Settings as an Absolute Date Time
	15.3.1.3 Timeout Settings Computed Dynamically with an XPath Expression
	15.3.1.4 bpelx:timeout Fault Thrown During an Activity Timeout
	15.3.1.5 Event Added to the BPEL Instance Audit Trail During an Activity Timeout
	15.3.1.6 Recoverable Timeout Activities During a Server Restart (Refresh Expiration Alarm Table)

	15.3.2 How to Set Timeouts in Receive Activities
	15.3.3 What Happens When You Set Timeouts in Receive Activities

	15.4 Creating a Wait Activity to Set an Expiration Time
	15.4.1 How To Specify the Minimum Wait Time
	15.4.2 How to Create a Wait Activity
	15.4.3 What Happens When You Create a Wait Activity

	15.5 Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0
	15.5.1 How to Create an onEvent Branch in a Scope Activity
	15.5.2 What Happens When You Create an OnEvent Branch

	15.6 Setting Timeouts for Synchronous Processes

16 Coordinating Master and Detail Processes

	16.1 Introduction to Master and Detail Process Coordinations
	16.1.1 BPEL File Definition for the Master Process
	16.1.1.1 Correlating a Master Process with Multiple Detail Processes

	16.1.2 BPEL File Definition for Detail Processes

	16.2 Defining Master and Detail Process Coordination in Oracle JDeveloper
	16.2.1 How to Create a Master Process
	16.2.2 How to Create a Detail Process
	16.2.3 How to Create an Invoke Activity

17 Using the Notification Service

	17.1 Introduction to the Notification Service
	17.2 Introduction to Notification Channel Setup
	17.3 Selecting Notification Channels During BPEL Process Design
	17.3.1 How To Configure the Email Notification Channel
	17.3.1.1 Setting Email Attachments
	17.3.1.2 Formatting the Body of an Email Message as HTML
	17.3.1.3 Using Dynamic HTML for Message Content Requires a CDATA Function

	17.3.2 How to Configure the IM Notification Channel
	17.3.3 How to Configure the SMS Notification Channel
	17.3.4 How to Configure the Voice Notification Channel
	17.3.5 How to Select Email Addresses and Telephone Numbers Dynamically
	17.3.6 How to Select Notification Recipients by Browsing the User Directory

	17.4 Allowing the End User to Select Notification Channels
	17.4.1 How to Allow the End User to Select Notification Channels
	17.4.1.1 How to Create and Send Headers for Notifications

18 Using Oracle BPEL Process Manager Sensors

	18.1 Introduction to Sensors
	18.2 Configuring Sensors and Sensor Actions in Oracle JDeveloper
	18.2.1 How to Access Sensors and Sensor Actions
	18.2.2 How to Configure Sensors
	18.2.3 How to Configure Sensor Actions
	18.2.4 How to Publish to Remote Topics and Queues
	18.2.5 How to Create a Custom Data Publisher
	18.2.6 How to Register the Sensors and Sensor Actions in composite.xml

	18.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control

Part III Using the Oracle Mediator Service Component

19 Getting Started with Oracle Mediator

	19.1 Introduction to Oracle Mediator
	19.2 Mediator Functionality
	19.2.1 Content-Based and Header-Based Routing
	19.2.2 Synchronous and Asynchronous Interactions
	19.2.3 Sequential and Parallel Routing of Messages
	19.2.4 Message Resequencing
	19.2.5 Data Transformation
	19.2.6 Payload Validation
	19.2.7 Java Callouts
	19.2.8 Event Handling
	19.2.9 Dynamic Routing
	19.2.10 Error Handling
	19.2.11 Sending Messages Back to the Caller (Echo)
	19.2.12 Multiple Part Messages

	19.3 Introduction to the Mediator Editor Environment
	19.4 Creating a Mediator
	19.4.1 How to Create a Mediator

	19.5 Configuring the Mediator Interface Definition
	19.5.1 How to Configure the Mediator Interface Definition
	19.5.2 What Happens When You Create a Mediator
	19.5.2.1 Without an Interface Definition
	19.5.2.2 With a WSDL-Based Interface
	19.5.2.3 With a One-Way Interface Definition
	19.5.2.4 With a Synchronous Interface Definition
	19.5.2.5 With an Asynchronous Interface Definition
	19.5.2.6 With an Event Subscription

	19.6 Defining an Interface for a Mediator
	19.6.1 How to Define an Interface for a Mediator

	19.7 Generating a WSDL File
	19.7.1 How to Generate a WSDL File

	19.8 Specifying Validation and Priority Properties
	19.9 Modifying a Mediator Service Component
	19.9.1 How To Modify Mediator Operations
	19.9.2 How To Modify Mediator Event Subscriptions

20 Creating Oracle Mediator Routing Rules

	20.1 Introduction to Routing Rules
	20.1.1 Static Routing Rules
	20.1.1.1 Types of Static Rules
	20.1.1.2 Static Routing Rule Components

	20.1.2 Dynamic Routing Rules
	20.1.3 Sequential and Parallel Execution
	20.1.3.1 Basic Principles of Sequential Routing Rules
	20.1.3.2 Basic Principles of Parallel Routing Rules

	20.2 Resequencing Rules
	20.3 Defining Routing Rules
	20.3.1 How To Access the Routing Rules Section
	20.3.2 How to Create Static Routing Rules
	20.3.2.1 How to Specify Mediator Services or Events
	20.3.2.2 What You May Need to Know About Echoing a Service
	20.3.2.3 How to Specify Sequential or Parallel Execution
	20.3.2.4 How to Configure Response Messages
	20.3.2.5 How to Handle Premature Callbacks
	20.3.2.6 How to Handle Multiple Callbacks
	20.3.2.7 How to Handle Faults
	20.3.2.8 How to Specify an Expression for Filtering Messages
	20.3.2.9 How to Create Transformations
	20.3.2.10 How to Assign Values
	20.3.2.11 What You May Need to Know About the Assign Activity
	20.3.2.12 How to Access Headers for Filters and Assignments
	20.3.2.13 How to Use Semantic Validation
	20.3.2.14 How to Override Pass Through Settings for Attachments
	20.3.2.15 How to Use Java Callouts

	20.3.3 How to Create Dynamic Routing Rules
	20.3.4 What You May Need to Know About Using Dynamic Routing Rules
	20.3.5 How to Define Default Routing Rules
	20.3.5.1 Default Rule Scenarios
	20.3.5.2 Default Rule Target
	20.3.5.3 Default Rule: Validation, Transformation, and Assign Functionality
	20.3.5.4 Default Rule: Java Callouts
	20.3.5.5 Default Rule: Mediator .mplan File

	20.4 Mediator Routing Use Cases
	20.4.1 Creating a Mediator for Routing Messages
	20.4.1.1 How to Create the CustomerRouter Use Case

	20.4.2 Creating an Asynchronous Request and Response Using Mediator
	20.4.2.1 How to Create the AsyncMediator Use Case

21 Working with Multiple Part Messages in Oracle Mediator

	21.1 Introduction to Mediator Multipart Message Support
	21.2 Working with Multipart Request Messages
	21.2.1 How to Specify Filter Expressions for Multipart Request Messages
	21.2.2 How to Add Validations for Multipart Request Messages
	21.2.3 How to Create Transformations for Multipart Request Messages
	21.2.4 How to Assign Values for Multipart Request Messages
	21.2.5 How to Work with Multipart Reply, Fault, and Callback Source Messages
	21.2.6 How to Work with Multipart Target Messages

22 Using Oracle Mediator Error Handling

	22.1 Introduction to Mediator Error Handling
	22.1.1 Fault Policies
	22.1.1.1 Conditions
	22.1.1.2 Actions

	22.1.2 Fault Bindings
	22.1.3 Error Groups in Mediator

	22.2 Using Error Handling with Mediator
	22.2.1 How to Use Error Handling for a Mediator Service Component
	22.2.2 What Happens at Runtime

	22.3 Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control
	22.4 Error Handling XML Schema Definition Files
	22.4.1 Schema Definition File for fault-policies.xml
	22.4.2 Schema Definition File for fault-bindings.xml

23 Resequencing in Oracle Mediator

	23.1 Introduction to the Resequencer
	23.1.1 Groups and Sequence IDs
	23.1.2 Identification of Groups and Sequence IDs

	23.2 Resequencing Order
	23.2.1 Standard Resequencer
	23.2.1.1 Overview of the Standard Resequencer
	23.2.1.2 Information Required for Standard Resequencing
	23.2.1.3 Example of the Standard Resequencer

	23.2.2 FIFO Resequencer
	23.2.2.1 Overview of the FIFO Resequencer
	23.2.2.2 Information Required for FIFO Resequencing
	23.2.2.3 Example of the FIFO Resequencer

	23.2.3 Best Effort Resequencer
	23.2.3.1 Overview of the Best Effort Resequencer
	23.2.3.2 Best Effort Resequencer Message Selection Strategies
	23.2.3.3 Best Effort Resequencer Message Delivery
	23.2.3.4 Information Required for Best Effort Resequencing
	23.2.3.5 Example of Best Effort Resequencing Based on Maximum Rows
	23.2.3.6 Example of Best Effort Resequencing Based on a Time Window

	23.3 Configuring the Resequencer
	23.3.1 How to Specify the Resequencing Level
	23.3.2 How to Configure the Resequencing Strategy

24 Understanding Message Exchange Patterns of an Oracle Mediator

	24.1 One-way Message Exchange Patterns
	24.1.1 The one.way.returns.fault Property

	24.2 Request-Reply Message Exchange Patterns
	24.3 Request-Reply-Fault Message Exchange Patterns
	24.4 Request-Callback Message Exchange Patterns
	24.5 Request-Reply-Callback Message Exchange Patterns
	24.6 Request-Reply-Fault-Callback Message Exchange Patterns

Part IV Using the Business Rules Service Component

25 Getting Started with Oracle Business Rules

	25.1 Introduction to the Business Rule Service Component
	25.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks

	25.2 Overview of Rules Designer Editor Environment
	25.2.1 Application Navigator
	25.2.2 Rules Designer Window
	25.2.3 Structure Window
	25.2.4 Business Rule Validation Log Window

	25.3 Introduction to Creating and Editing Business Rules
	25.3.1 How to Create Business Rules Components
	25.3.2 Introduction to Working with Business Rules in Rules Designer

	25.4 Adding Business Rules to a BPEL Process
	25.4.1 How to Add Business Rules to a BPEL Process
	25.4.2 What Happens When You Add Business Rules to a BPEL Process
	25.4.3 What Happens When You Create a Business Rules Dictionary
	25.4.4 What You May Need to Know About Invoking Business Rules in a BPEL Process
	25.4.5 What You May Need to Know About Decision Component Stateful Operation

	25.5 Adding Business Rules to a SOA Composite Application
	25.5.1 How to Add Business Rules to a SOA Composite Application
	25.5.2 How to Select and Modify a Decision Function in a Business Rule Component

	25.6 Running Business Rules in a Composite Application
	25.6.1 What You May Need to Know About Testing a Standalone Decision Service Component

	25.7 Using Business Rules with Oracle ADF Business Components Fact Types

26 Using Declarative Components and Task Flows

	26.1 Introduction to Declarative Components and Task Flows
	26.2 Using the Oracle Business Rules Editor Declarative Component
	26.2.1 Introduction to the Oracle Business Rules Editor Component
	26.2.2 How to Create and Run a Sample Application by Using the Rules Editor Component
	26.2.3 How to Deploy a Rules Editor Application to a Standalone Oracle WebLogic Server
	26.2.4 What You May Need to Know About the Custom Permissions for the Rules Editor Component
	26.2.5 What You May Need to Know About the Supported Tags of the Rules Editor Component

	26.3 Using the Oracle Business Rules Dictionary Editor Declarative Component
	26.3.1 Introduction to the Oracle Business Rules Dictionary Component
	26.3.2 How to Create and Run a Sample Application by Using the Rules Dictionary Editor Component
	26.3.3 How to Deploy a Rules Dictionary Application to a Standalone Oracle WebLogic Server
	26.3.4 What You May Need to Know About the Supported Attributes of the Rules Dictionary Editor Component

	26.4 Using the Oracle Business Rules Dictionary Editor Task Flow
	26.4.1 Introduction to the Oracle Business Rules Dictionary Task Flow
	26.4.2 How to Create and Run a Sample Application By Using the Rules Dictionary Editor Task Flow
	26.4.3 How to Deploy a Rules Dictionary Editor Task Flow Application to a Standalone Oracle WebLogic Server

	26.5 Localizing the ADF-Based Web Application

Part V Using the Human Workflow Service Component

27 Getting Started with Human Workflow

	27.1 Introduction to Human Workflow
	27.2 Introduction to Human Workflow Concepts
	27.2.1 Introduction to Design and Runtime Concepts
	27.2.1.1 Task Assignment and Routing
	27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment
	27.2.1.3 Task Stakeholders
	27.2.1.4 Task Deadlines
	27.2.1.5 Notifications
	27.2.1.6 Task Forms
	27.2.1.7 Advanced Concepts
	27.2.1.8 Reports and Audit Trails

	27.2.2 Introduction to the Stages of Human Workflow Design

	27.3 Introduction to Human Workflow Features
	27.3.1 Human Workflow Use Cases
	27.3.1.1 Task Assignment to a User or Role
	27.3.1.2 Use of the Various Participant Types
	27.3.1.3 Escalation, Expiration, and Delegation
	27.3.1.4 Automatic Assignment and Delegation
	27.3.1.5 Dynamic Assignment of Users Based on Task Content

	27.4 Introduction to Human Workflow Architecture
	27.4.1 Human Workflow Services
	27.4.2 Use of Human Task
	27.4.3 Service Engines

28 Creating Human Tasks

	28.1 Introduction to Human Tasks
	28.1.1 Introduction to Creating a Human Task Definition
	28.1.2 Introduction to Associating the Human Task Definition with a BPEL Process
	28.1.3 Introduction to Generating the Task Form

	28.2 Creating Human Tasks
	28.2.1 How to Create a Human Task Using the SOA Composite Editor
	28.2.2 How to Create a Human Task Using Oracle BPEL Designer
	28.2.3 What Happens When You Create a Human Task

	28.3 Exiting the Human Task Editor and Saving Your Changes
	28.4 Associating Human Tasks with BPEL Processes
	28.4.1 How to Associate a Human Task with a BPEL Process
	28.4.2 What You May Need to Know About Deleting a Wire Between a Human Task and a BPEL Process
	28.4.3 How to Define the Human Task Activity Title, Initiator, Priority, and Parameter Variables
	28.4.3.1 Specifying the Task Title
	28.4.3.2 Specifying the Task Initiator and Task Priority
	28.4.3.3 Specifying Task Parameters

	28.4.4 How to Define the Human Task Activity Advanced Features
	28.4.4.1 Specifying a Scope Name and a Global Task Variable Name
	28.4.4.2 Specifying a Task Owner
	28.4.4.3 Specifying an Identification Key
	28.4.4.4 Specifying an Identity Context
	28.4.4.5 Specifying an Application Context
	28.4.4.6 Including the Task History of Other Human Tasks

	28.4.5 How to View the Generated Human Task Activity
	28.4.5.1 Invoking BPEL Callbacks

	28.4.6 What You May Need to Know About Changing the Generated Human Task Activity
	28.4.7 What You May Need to Know About Deleting a Partner Link Generated by a Human Task
	28.4.8 How to Define Outcome-Based Modeling
	28.4.8.1 Specifying Payload Updates
	28.4.8.2 Using Case Statements for Other Task Conclusions

	28.4.9 What You May Need to Know About Encoding an Attachment

29 Configuring Human Tasks

	29.1 Accessing the Sections of the Human Task Editor
	29.1.1 How to Access the Sections of the Human Task Editor

	29.2 Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context
	29.2.1 How to Specify the Title, Description, Outcome, Priority, Category, Owner, and Application Context
	29.2.2 How to Specify a Task Title
	29.2.3 How to Specify a Task Description
	29.2.4 How to Specify a Task Outcome
	29.2.5 How to Specify a Task Priority
	29.2.6 How to Specify a Task Category
	29.2.7 How to Specify a Task Owner
	29.2.7.1 Specifying a Task Owner Statically Through the User Directory or a List of Application Roles
	29.2.7.2 Specifying a Task Owner Dynamically Through an XPath Expression

	29.2.8 How To Specify an Application Context

	29.3 Specifying the Task Payload Data Structure
	29.3.1 How to Specify the Task Payload Data Structure

	29.4 Assigning Task Participants
	29.4.1 How to Specify a Stage Name and Add Parallel and Sequential Blocks
	29.4.2 How to Assign Task Participants
	29.4.3 How to Configure the Single Participant Type
	29.4.3.1 Creating a Single Task Participant List
	29.4.3.2 Specifying a Time Limit for Acting on a Task
	29.4.3.3 Inviting Additional Participants to a Task
	29.4.3.4 Bypassing a Task Participant

	29.4.4 How to Configure the Parallel Participant Type
	29.4.4.1 Specifying the Voting Outcome
	29.4.4.2 Creating a Parallel Task Participant List
	29.4.4.3 Specifying a Time Limit for Acting on a Task
	29.4.4.4 Inviting Additional Participants to a Task
	29.4.4.5 Bypassing a Task Participant

	29.4.5 How to Configure the Serial Participant Type
	29.4.5.1 Creating a Serial Task Participant List
	29.4.5.2 Specifying a Time Limit for Acting on a Task
	29.4.5.3 Inviting Additional Participants to a Task
	29.4.5.4 Bypassing a Task Participant

	29.4.6 How to Configure the FYI Participant Type
	29.4.6.1 Creating an FYI Task Participant List

	29.5 Selecting a Routing Policy
	29.5.1 How to Route Tasks to All Participants in the Specified Order
	29.5.1.1 Allowing All Participants to Invite Other Participants
	29.5.1.2 Stopping Routing of a Task to Further Participants
	29.5.1.3 Enabling Early Completion in Parallel Subtasks
	29.5.1.4 Completing Parent Subtasks of Early Completing Subtasks

	29.5.2 How to Specify Advanced Task Routing Using Business Rules
	29.5.2.1 Introduction to Advanced Task Routing Using Business Rules
	29.5.2.2 Facts
	29.5.2.3 Action Types
	29.5.2.4 Sample Ruleset
	29.5.2.5 Linked Dictionary Support
	29.5.2.6 Creating Advanced Routing Rules

	29.5.3 How to Use External Routing
	29.5.4 How to Configure the Error Assignee

	29.6 Specifying Multilingual Settings and Style Sheets
	29.6.1 How to Specify WordML and Other Style Sheets for Attachments
	29.6.2 How to Specify Multilingual Settings

	29.7 Escalating, Renewing, or Ending the Task
	29.7.1 Introduction to Escalation and Expiration Policy
	29.7.2 How to Specify a Policy to Never Expire
	29.7.3 How to Specify a Policy to Expire
	29.7.4 How to Extend an Expiration Policy Period
	29.7.5 How to Escalate a Task Policy
	29.7.6 How to Specify Escalation Rules
	29.7.7 How to Specify a Due Date

	29.8 Specifying Participant Notification Preferences
	29.8.1 How to Notify Recipients of Changes to Task Status
	29.8.2 How to Edit the Notification Message
	29.8.3 How to Set Up Reminders
	29.8.4 How to Change the Character Set Encoding
	29.8.5 How to Secure Notifications to Exclude Details
	29.8.6 How to Display the Oracle BPM Worklist URL in Notifications
	29.8.7 How to Make Email Messages Actionable
	29.8.8 How to Send Task Attachments with Email Notifications
	29.8.9 How to Send Email Notifications to Groups and Application Roles
	29.8.10 How to Customize Notification Headers

	29.9 Specifying Access Policies and Task Actions on Task Content
	29.9.1 How to Specify Access Policies on Task Content
	29.9.1.1 Introduction to Access Rules
	29.9.1.2 Specifying User Privileges for Acting on Task Content
	29.9.1.3 Specifying Actions for Acting Upon Tasks

	29.9.2 How to Specify a Workflow Digital Signature Policy
	29.9.2.1 Specifying a Certificate Authority

	29.10 Specifying Restrictions on Task Assignments
	29.10.1 How to Specify Restrictions on Task Assignments

	29.11 Specifying Java or Business Event Callbacks
	29.11.1 How to Specify Callback Classes on Task Status
	29.11.1.1 Specifying Java Callbacks
	29.11.1.2 Specifying Business Event Callbacks

	29.11.2 How to Specify Task and Routing Customizations in BPEL Callbacks
	29.11.3 How to Disable BPEL Callbacks

	29.12 Storing Documents in Oracle Enterprise Content Management

30 Designing Task Forms for Human Tasks

	30.1 Introduction to the Task Form
	30.1.1 What You May Need to Know About Task Forms: Time Zone Conversion

	30.2 Associating the Task Flow with the Task Service
	30.3 Creating an ADF Task Flow Based on a Human Task
	30.3.1 How To Create an ADF Task Flow from the Human Task Editor
	30.3.2 How To Create an ADF Task Flow Based on a Human Task
	30.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task
	30.3.4 What You May Need to Know About Having Multiple ADF Task Flows That Contain the Same Element with Different Meta-attributes

	30.4 Creating a Task Form
	30.4.1 How To Create an Autogenerated Task Form
	30.4.2 How to Register the Library JAR File for Custom Page Templates
	30.4.3 How To Create a Task Form Using the Custom Task Form Wizard
	30.4.4 How To Create a Task Form Using the Complete Task with Payload Drop Handler
	30.4.5 How To Create Task Form Regions Using Individual Drop Handlers
	30.4.6 How To Add the Payload to the Task Form
	30.4.7 What Happens When You Create a Task Form

	30.5 Refreshing Data Controls When the Task XSD Changes
	30.6 Securing the Task Flow Application
	30.7 Creating an Email Notification
	30.7.1 How To Create an Email Notification
	30.7.1.1 Creating a Task Flow with a Router
	30.7.1.2 Creating an Email Notification Page

	30.7.2 What Happens When You Create an Email Notification Page
	30.7.3 What You May Need to Know About Creating an Email Notification Page

	30.8 Deploying a Composite Application with a Task Flow
	30.8.1 How To Deploy a Composite Application with a Task Flow
	30.8.2 How To Redeploy the Task Form
	30.8.3 How To Deploy a Task Flow as a Separate Application
	30.8.4 How To Deploy a Task Form to a non-SOA Oracle WebLogic Server
	30.8.4.1 Before Deploying the Task Form: Port Changes
	30.8.4.2 Configuring Unique Cookie Context Paths for the Session Tracking Cookies
	30.8.4.3 Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server
	30.8.4.4 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server
	30.8.4.5 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server
	30.8.4.6 Including a Grant for bpm-services.jar
	30.8.4.7 Deploying the Application

	30.8.5 What Happens When You Deploy the Task Form
	30.8.6 What You May Need to Know About Undeploying a Task Flow

	30.9 Displaying a Task Form in the Worklist
	30.9.1 How To Display the Task Form in the Worklist

	30.10 Displaying a Task in an Email Notification
	30.10.1 Changing the Text for the Worklist Application in Task Notifications
	30.10.2 Changing the URL of the Worklist Application in Task Notifications
	30.10.3 Showing or Hiding the URL of the Worklist Application in Task Notifications

	30.11 Reusing the Task Flow Application with Multiple Human Tasks
	30.11.1 How To Reuse the Task Flow Application with Multiple Human Tasks

31 Human Workflow Tutorial

	31.1 Introduction to the Human Workflow Tutorial
	31.2 Prerequisites
	31.3 Creating an Application and a Project with a BPEL Process
	31.4 Creating the Human Task Service Component
	31.5 Designing the Human Task
	31.6 Associating the Human Task and BPEL Process Service Components
	31.7 Creating an Application Server Connection
	31.8 Deploying the SOA Composite Application
	31.9 Initiating the Process Instance
	31.10 Creating a Task Form Project
	31.11 Acting on the Task in Oracle BPM Worklist
	31.12 Deploying the Task Form
	31.13 Additional Tutorials

32 Using Oracle BPM Worklist

	32.1 Introduction to Oracle BPM Worklist
	32.1.1 What You May Need To Know About Oracle BPM Worklist

	32.2 Logging In to Oracle BPM Worklist
	32.2.1 How To Log In to the Worklist
	32.2.1.1 Enabling the weblogic User for Logging in to the Worklist

	32.2.2 What Happens When You Log In to the Worklist
	32.2.3 What Happens When You Change a User's Privileges While They are Logged in to Oracle BPM Worklist

	32.3 Customizing the Task List Page
	32.3.1 How To Filter Tasks
	32.3.2 How To Create, Delete, and Customize Worklist Views
	32.3.3 How To Customize the Task Status Chart
	32.3.4 How To Create a ToDo Task
	32.3.5 How To Create a Subtask

	32.4 Acting on Tasks: The Task Details Page
	32.4.1 System Actions
	32.4.2 Task History
	32.4.3 How To Act on Tasks
	32.4.4 How To Act on Tasks That Require a Digital Signature

	32.5 Approving Tasks
	32.6 Setting a Vacation Period
	32.7 Setting Rules
	32.7.1 How To Create User Rules
	32.7.2 How To Create Group Rules
	32.7.3 Assignment Rules for Tasks with Multiple Assignees

	32.8 Using the Worklist Administration Functions
	32.8.1 How To Manage Other Users' or Groups' Rules (as an Administrator)
	32.8.2 How to Specify the Login Page Realm Label
	32.8.3 How to Specify the Resource Bundle
	32.8.4 How to Specify the Language Locale Information
	32.8.5 How to Specify a Branding Logo
	32.8.6 How to Specify the Branding Title
	32.8.7 How to Choose a Skin
	32.8.8 How to Enable Customized Applications and Links

	32.9 Specifying Notification Settings
	32.9.1 Messaging Filter Rules
	32.9.1.1 Data Types
	32.9.1.2 Attributes

	32.9.2 Rule Actions
	32.9.3 Managing Messaging Channels
	32.9.3.1 Viewing Your Messaging Channels
	32.9.3.2 Creating, Editing, and Deleting a Messaging Channel

	32.9.4 Managing Messaging Filters
	32.9.4.1 Viewing Messaging Filters
	32.9.4.2 Creating Messaging Filters
	32.9.4.3 Editing a Messaging Filter
	32.9.4.4 Deleting a Messaging Filter

	32.10 Using Mapped Attributes (Flex Fields)
	32.10.1 How To Map Attributes
	32.10.2 Custom Mapped Attributes

	32.11 Creating Worklist Reports
	32.11.1 How To Create Reports
	32.11.2 What Happens When You Create Reports
	32.11.2.1 Unattended Tasks Report
	32.11.2.2 Tasks Priority Report
	32.11.2.3 Tasks Cycle Time Report
	32.11.2.4 Tasks Productivity Report

	32.12 Accessing Oracle BPM Worklist in Local Languages and Time Zones
	32.12.1 Strings in Oracle BPM Worklist
	32.12.2 How to Change the Preferred Language, Display Names of Users, and Time Zone Settings if the Identity Store is LDAP-Based
	32.12.3 How to Change the Language in Which Tasks Are Displayed
	32.12.4 How To Change the Language Preferences from a JAZN XML File
	32.12.5 What You May Need to Know About Runtime Languages Not Displaying in the Worklist
	32.12.6 What You May Need to Know About Inconsistent Display Languages in Worklist and Embedded User's Notification Preference Interface
	32.12.7 How To Change the Time Zone Used in the Worklist

	32.13 Creating Reusable Worklist Regions
	32.13.1 How to Create an Application With an Embedded Reusable Worklist Region
	32.13.2 How to Set Up the Deployment Profile
	32.13.3 How to Prepare Federated Mode Task Flows For Deployment
	32.13.4 What You May Need to Know About Task List Task Flow
	32.13.5 What You May Need to Know About Certificates Task Flow
	32.13.6 What You May Need to Know About the Reports Task Flow
	32.13.7 What You May Need to Know About Application Preferences Task Flow
	32.13.8 What You May Need to Know About Mapped Attributes Task Flow
	32.13.9 What You May Need to Know About Rules Task Flow

	32.14 Java Code for Enabling Customized Applications in Worklist Application

33 Building a Custom Worklist Client

	33.1 Introduction to Building Clients for Workflow Services
	33.2 Packages and Classes for Building Clients
	33.3 Workflow Service Clients
	33.3.1 The IWorkflowServiceClient Interface

	33.4 Class Paths for Clients Using SOAP
	33.5 Class Paths for Clients Using Remote EJBs
	33.6 Initiating a Task
	33.6.1 Creating a Task
	33.6.2 Creating a Payload Element in a Task
	33.6.3 Initiating a Task Programmatically

	33.7 Changing Workflow Standard View Definitions
	33.8 Writing a Worklist Application Using the HelpDeskUI Sample

34 Introduction to Human Workflow Services

	34.1 Introduction to Human Workflow Services
	34.1.1 SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow Services
	34.1.1.1 Support for Foreign JNDI Names

	34.1.2 Security Model for Services
	34.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP Web Services
	34.1.2.2 Creating Human Workflow Context on Behalf of a User
	34.1.2.3 Obtaining the Workflow Context for a User Previously Authenticated by a JAAS Application

	34.1.3 Task Service
	34.1.4 Task Query Service
	34.1.5 Identity Service
	34.1.5.1 Identity Service Providers

	34.1.6 Task Metadata Service
	34.1.7 User Metadata Service
	34.1.8 Task Report Service
	34.1.9 Runtime Config Service
	34.1.9.1 Internationalization of Attribute Labels

	34.1.10 Evidence Store Service and Digital Signatures
	34.1.10.1 Prerequisites
	34.1.10.2 Interfaces and Methods

	34.1.11 Task Instance Attributes

	34.2 Notifications from Human Workflow
	34.2.1 Contents of Notification
	34.2.2 Error Message Support
	34.2.3 Reliability Support
	34.2.4 Management of Oracle Human Workflow Notification Service
	34.2.5 How to Configure the Notification Channel Preferences
	34.2.6 How to Configure Notification Messages in Different Languages
	34.2.7 How to Send Actionable Messages
	34.2.7.1 How to Send Actionable Emails for Human Tasks

	34.2.8 How to Send Inbound and Outbound Attachments
	34.2.9 How to Send Inbound Comments
	34.2.10 How to Send Secure Notifications
	34.2.11 How to Set Channels Used for Notifications
	34.2.12 How to Send Reminders
	34.2.13 How to Set Automatic Replies to Unprocessed Messages
	34.2.14 How to Create Custom Notification Headers

	34.3 Assignment Service Configuration
	34.3.1 Dynamic Assignment and Task Escalation Patterns
	34.3.1.1 How to Implement a Dynamic Assignment Pattern
	34.3.1.2 How to Configure Dynamic Assignment Patterns
	34.3.1.3 How to Configure Display Names for Dynamic Assignment Patterns
	34.3.1.4 How to Implement a Task Escalation Pattern

	34.3.2 Dynamically Assigning Task Participants with the Assignment Service
	34.3.2.1 How to Implement an Assignment Service
	34.3.2.2 Example of Assignment Service Implementation
	34.3.2.3 How to Deploy a Custom Assignment Service

	34.3.3 Custom Escalation Function

	34.4 Class Loading for Callbacks and Resource Bundles
	34.5 Resource Bundles in Workflow Services
	34.5.1 Task Resource Bundles
	34.5.2 Global Resource Bundle – WorkflowLabels.properties
	34.5.3 Worklist Client Resource Bundles
	34.5.4 Task Detail ADF Task Flow Resource Bundles
	34.5.5 Specifying Stage and Participant Names in Resource Bundles
	34.5.6 Case Sensitivity in Group and Application Role Names

	34.6 Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services
	34.6.1 Human Workflow Services Clients
	34.6.1.1 Task Query Service Client Code
	34.6.1.2 Configuration Option
	34.6.1.3 Client Logging
	34.6.1.4 Configuration Migration Utility

	34.6.2 Identity Propagation
	34.6.2.1 Enterprise JavaBeans Identity Propagation
	34.6.2.2 SAML Token Identity Propagation for SOAP Client
	34.6.2.3 Public Key Alias

	34.6.3 Client JAR Files

	34.7 Task States in a Human Task
	34.8 Database Views for Oracle Workflow
	34.8.1 Unattended Tasks Report View
	34.8.2 Task Cycle Time Report View
	34.8.3 Task Productivity Report View
	34.8.4 Task Priority Report View

35 Integrating Microsoft Excel with a Human Task

	35.1 Configuring Your Environment for Invoking a BPEL Process from an Excel Workbook
	35.1.1 How to Create an Oracle JDeveloper Project of the Type Web Service Data Control
	35.1.2 How to Create a Dummy JSF Page
	35.1.3 How to Add Desktop Integration to Your Oracle JDeveloper Project
	35.1.4 What Happens When You Add Desktop Integration to Your Oracle JDeveloper Project
	35.1.5 How to Deploy the Web Application You Created in Step 1
	35.1.6 How to Install Microsoft Excel
	35.1.7 How to Install the Oracle ADF-Desktop Integration Plug-in
	35.1.8 How to Specify the User Interface Controls and Create the Excel Workbook

	35.2 Attaching Excel Workbooks to Human Task Workflow Email Notifications
	35.2.1 Enabling Attachment of Excel Workbooks to Human Task Workflow Email Notifications
	35.2.2 What Happens During Runtime When You Enable Attachment of Excel Workbooks to Human Task Workflow Email Notifications
	35.2.3 Example: Attaching an Excel Workbook to Email Notifications
	35.2.3.1 Task 1: Enable the ADF Task Flow Project with Oracle ADF-DI Capabilities
	35.2.3.2 Task 2: Set up Authentication
	35.2.3.3 Task 3: Create a Valid Page Definition File to Be Used in the Excel Workbook
	35.2.3.4 Task 4: Prepare the Excel Workbook
	35.2.3.5 Task 5: Deploy the ADF Task Flow
	35.2.3.6 Task 6: Test the Deployed Application

36 Configuring Task List Portlets

	36.1 Introduction to Task List Portlets
	36.2 Deploying the Task List Portlet Producer Application to a Portlet Server
	36.2.1 Deployment Prerequisites
	36.2.2 How to Deploy the Task List Portlet Producer Application
	36.2.3 How to Connect the Task List Producer to the Remote SOA Server
	36.2.3.1 How to Define the Foreign JNDI on the Oracle WebCenter Portal Oracle WebLogic Server
	36.2.3.2 How to Configure EJB Identity Propagation
	36.2.3.3 How to Configure the Identity Store

	36.2.4 How to Secure the Task List Portlet Producer Application Using Web Services Security
	36.2.5 How to Specify the Inbound Security Policy

	36.3 Creating a Portlet Consumer Application for Embedding the Task List Portlet
	36.3.1 How To Create a Portlet Consumer Application for Embedding the Task List Portlet

	36.4 Passing Worklist Portlet Parameters
	36.4.1 Assignment Filter Constraints
	36.4.2 Example of File Containing All Column Constants

Part VI Using Binding Components

37 Getting Started with Binding Components

	37.1 Introduction to Binding Components
	37.1.1 Web Services
	37.1.1.1 WS-AtomicTransaction Support

	37.1.2 HTTP Binding Service
	37.1.2.1 Supported Interactions
	37.1.2.2 How to Configure the HTTP Binding Service
	37.1.2.3 How to Enable Basic Authentication

	37.1.3 JCA Adapters
	37.1.3.1 AQ Adapter
	37.1.3.2 Database Adapter
	37.1.3.3 File Adapter
	37.1.3.4 FTP Adapter
	37.1.3.5 JMS Adapter
	37.1.3.6 MQ Adapter
	37.1.3.7 Socket Adapter
	37.1.3.8 Third Party Adapter

	37.1.4 Oracle Applications Adapter
	37.1.5 Oracle BAM
	37.1.6 Oracle B2B
	37.1.7 ADF-BC Services
	37.1.8 EJB Services
	37.1.9 Direct Binding Services

	37.2 Introduction to Integrating a Binding Component in a SOA Composite Application
	37.2.1 How to Integrate a Binding Component in a SOA Composite Application
	37.2.2 How to Use ADF Binding to Invoke a Composite Application from a JSP/Java Class

38 Integrating Enterprise JavaBeans with SOA Composite Applications

	38.1 Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications
	38.1.1 Integration Through SDO-Based EJBs
	38.1.2 Integration Through Java Interfaces

	38.2 Designing an SDO-Based Enterprise JavaBeans Application
	38.2.1 How to Create SDO Objects Using the SDO Compiler
	38.2.2 How to Create a Session Bean and Import the SDO Objects
	38.2.3 How to Create a Profile and an EAR File
	38.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean
	38.2.5 How to Use Web Service Annotations
	38.2.6 How to Deploy the Enterprise JavaBeans EAR File

	38.3 Creating an Enterprise JavaBeans Service in Oracle JDeveloper
	38.3.1 How to Integrate SDO-based Enterprise JavaBeans with SOA Composite Applications
	38.3.2 How to Integrate Java Interface-based Enterprise JavaBeans with SOA Composite Applications

	38.4 Designing an SDO-Based Enterprise JavaBeans Client to Invoke Oracle SOA Suite
	38.5 Specifying Enterprise JavaBeans Roles
	38.6 Configuring JNDI Access
	38.6.1 How to Create a Foreign JNDI
	38.6.2 How to Create a Custom CSF Map for JNDI Lookup

39 Using the Direct Binding Invocation API

	39.1 Introduction to Direct Binding
	39.1.1 Direct Service Binding Component
	39.1.2 Direct Reference Binding Component

	39.2 Introduction to the Direct Binding Invocation API
	39.2.1 Synchronous Direct Binding Invocation
	39.2.2 Asynchronous Direct Binding Invocation
	39.2.3 SOA Direct Address Syntax
	39.2.4 SOA Transaction Propagation

	39.3 Invoking a SOA Composite Application with the Invocation API
	39.3.1 How to Create an Inbound Direct Binding Service
	39.3.2 How to Create an Outbound Direct Binding Reference
	39.3.3 How to Set an Identity for J2SE Clients Invoking Direct Binding
	39.3.4 What You May Need to Know About Invoking SOA Composites on Hosts with the Same Server and Domain Names

	39.4 Samples Using the Direct Binding Invocation API

Part VII Sharing Functionality Across Service Components

40 Creating Transformations with the XSLT Mapper

	40.1 Introduction to the XSLT Mapper
	40.1.1 Overview of XSLT Creation
	40.1.2 Guidelines for Using the XSLT Mapper

	40.2 Creating an XSL Map File
	40.2.1 How to Create an XSL Map File in Oracle BPEL Process Manager
	40.2.2 How to Create an XSL Map File from Imported Source and Target Schema Files in Oracle BPEL Process Manager
	40.2.3 How to Create an XSL Map File in Oracle Mediator
	40.2.4 What You May Need to Know About Creating an XSL Map File
	40.2.5 What You May Need to Know About Importing a Composite with an XSL File
	40.2.6 What Happens at Runtime If You Pass a Payload Through Oracle Mediator Without Creating an XSL Map File
	40.2.7 What Happens If You Receive an Empty Namespace Tag in an Output Message

	40.3 Designing Transformation Maps with the XSLT Mapper
	40.3.1 How to Add Additional Sources
	40.3.2 How to Perform a Simple Copy by Linking Nodes
	40.3.3 How to Set Constant Values
	40.3.4 How to Add Functions
	40.3.4.1 Editing Function Parameters
	40.3.4.2 Chaining Functions
	40.3.4.3 Using Named Templates
	40.3.4.4 Importing User-Defined Functions

	40.3.5 How to Edit XPath Expressions
	40.3.6 How to Add XSLT Constructs
	40.3.6.1 Using Conditional Processing with xsl:if
	40.3.6.2 Using Conditional Processing with xsl:choose
	40.3.6.3 Creating Loops with xsl:for-each
	40.3.6.4 Cloning xsl:for-each
	40.3.6.5 Applying xsl:sort to xsl:for-each
	40.3.6.6 Copying Nodes with xsl:copy-of
	40.3.6.7 Including External Templates with xsl:include

	40.3.7 How to Automatically Map Nodes
	40.3.7.1 Using Auto Mapping with Confirmation

	40.3.8 What You May Need to Know About Automatic Mapping
	40.3.9 How to View Unmapped Target Nodes
	40.3.10 How to Generate Dictionaries
	40.3.11 What You May Need to Know About Generating Dictionaries in Which Functions are Used
	40.3.12 How to Create Map Parameters and Variables
	40.3.12.1 Creating a Map Parameter
	40.3.12.2 Creating a Map Variable

	40.3.13 How to Search Source and Target Nodes
	40.3.14 How to Control the Generation of Unmapped Target Elements
	40.3.15 How to Ignore Elements in the XSLT Document
	40.3.16 How to Replace a Schema in the XSLT Mapper
	40.3.17 How to Substitute Elements and Types in the Source and Target Trees

	40.4 Testing the Map
	40.4.1 How to Test the Transformation Mapping Logic
	40.4.2 How to Generate Reports
	40.4.2.1 Correcting Memory Errors When Generating Reports

	40.4.3 How to Customize Sample XML Generation

	40.5 Demonstrating Features of the XSLT Mapper
	40.5.1 Opening the Application
	40.5.2 Creating a New XSLT Map in the BPEL Process
	40.5.3 Using Type Substitution to Map the Purchase Order Items
	40.5.4 Referencing Additional Source Elements
	40.5.5 Using Element Substitution to Map the Shipping Address
	40.5.6 Mapping the Remaining Fields
	40.5.7 Testing the Map

41 Using Business Events and the Event Delivery Network

	41.1 Introduction to Business Events
	41.1.1 Local and Remote Events Boundaries

	41.2 Creating Business Events in Oracle JDeveloper
	41.2.1 How to Create a Business Event

	41.3 Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component
	41.3.1 How to Subscribe to a Business Event
	41.3.2 What Happens When You Create and Subscribe to a Business Event
	41.3.3 What You May Need to Know About Subscribing to a Business Event
	41.3.4 How to Publish a Business Event
	41.3.5 How to Configure a Foreign JNDI Provider to Enable Administration Server Applications to Publish Events to the SOA Server
	41.3.6 How to Configure JMS-based EDN Implementations
	41.3.7 What Happens When You Publish a Business Event

	41.4 Subscribing to or Publishing a Business Event from a BPEL Process Service Component
	41.4.1 How to Subscribe to a Business Event
	41.4.2 How to Publish a Business Event
	41.4.3 What Happens When You Subscribe to and Publish a Business Event
	41.4.4 What You May Need to Know About Subscribing to a Business Event

	41.5 How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

Part VIII Completing Your Application

42 Enabling Security with Policies

	42.1 Introduction to Policies
	42.2 Attaching Policies to Binding Components and Service Components
	42.2.1 How to Attach Policies to Binding Components and Service Components
	42.2.2 How to Override Policy Configuration Property Values
	42.2.2.1 Overriding Client Configuration Property Values
	42.2.2.2 Overriding Server Configuration Property Values

43 Deploying SOA Composite Applications

	43.1 Introduction to Deployment
	43.2 Deployment Prerequisites
	43.2.1 Creating the Oracle SOA Suite Schema
	43.2.2 Creating a SOA Domain
	43.2.3 Configuring a SOA Cluster

	43.3 Understanding the Packaging Impact
	43.4 Anatomy of a Composite
	43.5 Preparing the Target Environment
	43.5.1 Creating Data Sources and Queues
	43.5.1.1 Script for Creation of JMS Resource and Redeployment of JMS Adapter
	43.5.1.2 Script for Creation of the Database Resource and Redeployment of the Database Adapter

	43.5.2 Creating Connection Factories and Connection Pooling
	43.5.3 Enabling Security
	43.5.4 Setting the Composite Instance Name at Design Time
	43.5.4.1 Setting the Composite Instance Name in Oracle Mediator
	43.5.4.2 Setting the Composite Instance Name in a BPEL Process

	43.5.5 Deploying Trading Partner Agreements and Task Flows
	43.5.6 Creating an Application Server Connection
	43.5.7 Creating a SOA-MDS Connection
	43.5.7.1 What You May Need to Know About Opening the composite.xml File Through a SOA-MDS Connection

	43.6 Customizing Your Application for the Target Environment Prior to Deployment
	43.6.1 Customizing SOA Composite Applications for the Target Environment
	43.6.1.1 Introduction to Configuration Plans
	43.6.1.2 Introduction to a Configuration Plan File
	43.6.1.3 Introduction to Use Cases for a Configuration Plan
	43.6.1.4 How to Create a Configuration Plan in Oracle JDeveloper
	43.6.1.5 How to Create a Configuration Plan with the WLST Utility
	43.6.1.6 How to Attach a Configuration Plan with ant Scripts

	43.7 Deploying SOA Composite Applications
	43.7.1 Deploying a Single SOA Composite in Oracle JDeveloper
	43.7.1.1 How to Deploy a Single SOA Composite
	43.7.1.2 What You May Need to Know About Deploying Human Task Composites with Task Flows to Partitions

	43.7.2 Deploying Multiple SOA Composite Applications in Oracle JDeveloper
	43.7.2.1 How to Deploy Multiple SOA Composite Applications

	43.7.3 Deploying and Using Shared Metadata Across SOA Composite Applications in Oracle JDeveloper
	43.7.3.1 How to Deploy Shared Metadata
	43.7.3.2 How to Use Shared Metadata

	43.7.4 Deploying an Existing SOA Archive in Oracle JDeveloper
	43.7.4.1 How to Deploy an Existing SOA Archive from Oracle JDeveloper

	43.7.5 Managing SOA Composite Applications with Scripts
	43.7.5.1 How to Manage SOA Composite Applications with the WLST Utility
	43.7.5.2 How to Manage SOA Composite Applications with ant Scripts

	43.7.6 Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion Middleware Control
	43.7.7 Deploying SOA Composite Applications to a Cluster

	43.8 Postdeployment Configuration
	43.8.1 Security
	43.8.2 Updating Connections
	43.8.3 Updating Data Sources and Queues
	43.8.4 Attaching Policies

	43.9 Testing and Troubleshooting
	43.9.1 Verifying Deployment
	43.9.2 Initiating an Instance of a Deployed Composite
	43.9.3 Automating the Testing of Deployed Composites
	43.9.4 Recompiling a Project After Receiving a Deployment Error
	43.9.5 Reducing Java Code Size to Resolve Java Compilation Errors
	43.9.6 Troubleshooting Common Deployment Errors
	43.9.6.1 Common Oracle JDeveloper Deployment Issues
	43.9.6.2 Common Configuration Plan Issues
	43.9.6.3 Deploying to a Managed Oracle WebLogic Server
	43.9.6.4 Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server
	43.9.6.5 Deploying with an Unreachable Proxy Server
	43.9.6.6 Releasing Locks to Resolve ADF Task Form EAR File Deployment Errors
	43.9.6.7 Increasing Memory to Recover from Compilation Errors
	43.9.6.8 Oracle JDeveloper Compilation Error When Property Alias Definition is Missing for a Receive Activity with a Correlation Set

44 Automating Testing of SOA Composite Applications

	44.1 Introduction to the Composite Test Framework
	44.1.1 Test Cases Overview
	44.1.2 Overview of Test Suites
	44.1.3 Overview of Emulations
	44.1.4 Overview of Assertions

	44.2 Introduction to the Components of a Test Suite
	44.2.1 Process Initiation
	44.2.2 Emulations
	44.2.3 Assertions
	44.2.4 Message Files

	44.3 Creating Test Suites and Test Cases
	44.3.1 How to Create Test Suites and Test Cases

	44.4 Creating the Contents of Test Cases
	44.4.1 How to Initiate Inbound Messages
	44.4.2 How to Emulate Outbound Messages
	44.4.3 How to Emulate Callback Messages
	44.4.4 How to Emulate Fault Messages
	44.4.5 How to Create Assertions
	44.4.5.1 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML Document
	44.4.5.2 Creating Assertions on a Leaf Element

	44.4.6 What You May Need to Know About Assertions

	44.5 Testing BPEL Process Service Components
	44.5.1 Overview of Assertions on BPEL Process Activities
	44.5.2 Overview of a Fast Forward Action on a Wait Activity
	44.5.3 Overview of Assert Activity Execution
	44.5.4 How to Create BPEL Process Service Component Tests
	44.5.5 How to Create Assertions
	44.5.6 How to Bypass a Wait Activity
	44.5.7 How to Specify the Number of Times to Execute an Activity

	44.6 Deploying and Running a Test Suite

Part IX Advanced Topics

45 Managing Large Documents and Large Numbers of Instances

	45.1 Best Practices for Handling Large Documents
	45.1.1 Use Cases for Handling Large Documents
	45.1.1.1 Passing Binary Objects as Base64-Encoded Text in XML Payloads
	45.1.1.2 End-to-End Streaming with Attachments
	45.1.1.3 Adding MTOM Attachments to Web Services
	45.1.1.4 Processing Large XML with Repeating Constructs
	45.1.1.5 Processing Large XML Documents with Complex Structures

	45.1.2 Limitations on Concurrent Processing of Large Documents
	45.1.2.1 Opaque Schema for Processing Large Payloads

	45.1.3 General Tuning Recommendations
	45.1.3.1 General Recommendations
	45.1.3.2 Setting Audit Levels from Oracle Enterprise Manager for Large Payload Processing
	45.1.3.3 Using the Assign Activity in Oracle BPEL Process Manager and Oracle Mediator
	45.1.3.4 Using XSLT Transformations on Large Payloads (For Oracle BPEL Process Manager)
	45.1.3.5 Using XSLT Transformations on Large Payloads (For Oracle Mediator)
	45.1.3.6 Using XSLT Transformations for Repeating Structures
	45.1.3.7 Processing Large Documents in Oracle B2B
	45.1.3.8 Setting a Size Restriction on Inbound Web Service Message Size
	45.1.3.9 Using XPath Functions to Write Large XSLT/XQuery Output to a File System

	45.2 Best Practices for Handling Large Metadata
	45.2.1 Boundary on the Processing of Large Numbers of Activities in a BPEL Process
	45.2.2 Using Large Numbers of Activities in BPEL Processes (Without FlowN)
	45.2.3 Using Large Numbers of Activities in BPEL Processes (With FlowN)
	45.2.4 Using a Flow With Multiple Sequences
	45.2.5 Using a Flow with One Sequence
	45.2.6 Using a Flow with No Sequence
	45.2.7 Large Numbers of Oracle Mediators in a Composite
	45.2.8 Importing Large Data Sets in Oracle B2B

	45.3 Best Practices for Handling Large Numbers of Instances
	45.3.1 Instance and Rejected Message Deletion with the Purge Script
	45.3.2 Improving the Loading of Pages in Oracle Enterprise Manager Fusion Middleware Control

46 Customizing SOA Composite Applications

	46.1 Introduction to Customizing SOA Composite Applications
	46.2 Creating the Customizable Composite
	46.2.1 How to Create the Customizable Composite
	46.2.2 How to Create Customization Classes
	46.2.3 How to Add XSD or WSDL Files
	46.2.4 How to Search for Customized Activities in a BPEL Process
	46.2.5 What You May Need to Know About Editing Artifacts in a Customized Composite
	46.2.6 What You May Need to Know About Resolving Validation Errors in Oracle JDeveloper
	46.2.7 What You May Need to Know About Resolving a Sequence Conflict
	46.2.8 What You May Need to Know About Compiling and Deploying a Customized Application

	46.3 Customizing the Vertical Application
	46.3.1 How to Customize the Vertical Application

	46.4 Customizing the Customer Version
	46.4.1 How to Customize the Customer Version

	46.5 Upgrading the Composite
	46.5.1 How to Upgrade the Core Application Team Composite
	46.5.2 How to Upgrade the Vertical Application Team Composite
	46.5.3 How to Upgrade the Customer Composite

47 Working with Domain Value Maps

	47.1 Introduction to Domain Value Maps
	47.1.1 Domain Value Map Features
	47.1.1.1 Qualifier Domains
	47.1.1.2 Qualifier Hierarchies
	47.1.1.3 One-to-Many Mappings

	47.2 Creating Domain Value Maps
	47.2.1 How to Create Domain Value Maps
	47.2.2 What Happens When You Create a Domain Value Map

	47.3 Editing a Domain Value Map
	47.3.1 How to Add Domains to a Domain Value Map
	47.3.2 How to Edit a Domain
	47.3.3 How to Add Domain Values to a Domain Value Map
	47.3.4 How to Edit Domain Values

	47.4 Using Domain Value Map Functions
	47.4.1 Understanding Domain Value Map Functions
	47.4.1.1 dvm:lookupValue
	47.4.1.2 dvm:lookupValue1M

	47.4.2 How to Use Domain Value Map Functions in Transformations
	47.4.3 How to Use Domain Value Map Functions in XPath Expressions
	47.4.4 What Happens at Runtime

	47.5 Creating a Domain Value Map Use Case for a Hierarchical Lookup
	47.5.1 How to Create the HierarchicalValue Use Case
	47.5.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project
	47.5.1.2 Task 2: How to Create a Domain Value Map
	47.5.1.3 Task 3: How to Create a File Adapter Service
	47.5.1.4 Task 4: How to Create ProcessOrders Mediator Component
	47.5.1.5 Task 5: How to Create a File Adapter Reference
	47.5.1.6 Task 6: How to Specify Routing Rules
	47.5.1.7 Task 7: How to Configure an Application Server Connection
	47.5.1.8 Task 8: How to Deploy the Composite Application

	47.5.2 How to Run and Monitor the HierarchicalValue Application

	47.6 Creating a Domain Value Map Use Case For Multiple Values
	47.6.1 How to Create the Multivalue Use Case
	47.6.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project
	47.6.1.2 Task 2: How to Create a Domain Value Map
	47.6.1.3 Task 3: How to Create a File Adapter Service
	47.6.1.4 Task 4: How to Create the LookupMultiplevaluesMediator Mediator
	47.6.1.5 Task 5: How to Create a File Adapter Reference
	47.6.1.6 Task 6: How to Specify Routing Rules
	47.6.1.7 Task 7: How to Configure an Application Server Connection
	47.6.1.8 Task 8: How to Deploy the Composite Application

	47.6.2 How to Run and Monitor the Multivalue Application

48 Using Oracle SOA Composer with Domain Value Maps

	48.1 Introduction to Oracle SOA Composer
	48.1.1 How to Log in to Oracle SOA Composer

	48.2 Viewing Domain Value Maps at Runtime
	48.2.1 How To View Domain Value Maps at Runtime

	48.3 Editing Domain Value Maps at Runtime
	48.3.1 How to Edit Domain Value Maps at Runtime
	48.3.1.1 Changing to Edit Mode
	48.3.1.2 Adding Rows
	48.3.1.3 Editing Rows
	48.3.1.4 Deleting Rows

	48.4 Saving Domain Value Maps at Runtime
	48.4.1 How to Save Domain Value Maps at Runtime

	48.5 Committing Changes at Runtime
	48.5.1 How to Commit Changes at Runtime

	48.6 Detecting Conflicts

49 Working with Cross References

	49.1 Introduction to Cross References
	49.2 Introduction to Cross Reference Tables
	49.3 Oracle Data Integrator Support for Cross Referencing
	49.4 Creating and Modifying Cross Reference Tables
	49.4.1 How to Create Cross Reference Metadata
	49.4.2 What Happens When You Create a Cross Reference
	49.4.3 How to Create Custom Database Tables
	49.4.4 How to Add an End System to a Cross Reference Table

	49.5 Populating Cross Reference Tables
	49.5.1 About the xref:populateXRefRow Function
	49.5.2 About the xref:populateLookupXRefRow Function
	49.5.3 About the xref:populateXRefRow1M Function
	49.5.4 How to Populate a Column of a Cross Reference Table

	49.6 Looking Up Cross Reference Tables
	49.6.1 About the xref:lookupXRef Function
	49.6.2 About the xref:lookupXRef1M Function
	49.6.3 About the xref:lookupPopulatedColumns Function
	49.6.4 How to Look Up a Cross Reference Table for a Value

	49.7 Deleting a Cross Reference Table Value
	49.7.1 How to Delete a Cross Reference Table Value

	49.8 Creating and Running the Cross Reference Use Case
	49.8.1 How to Create the Use Case
	49.8.1.1 Task 1: How to Configure the Oracle Database and Database Adapter
	49.8.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project
	49.8.1.3 Task 3: How to Create a Cross Reference
	49.8.1.4 Task 4: How to Create a Database Adapter Service
	49.8.1.5 Task 5: How to Create EBS and SBL External References
	49.8.1.6 Task 6: How to Create the Logger File Adapter External Reference
	49.8.1.7 Task 7: How to Create an Oracle Mediator Service Component
	49.8.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Service Component
	49.8.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator
	49.8.1.10 Task 10: How to Configure an Application Server Connection
	49.8.1.11 Task 11: How to Deploy the Composite Application

	49.8.2 How to Run and Monitor the XrefCustApp Application

	49.9 Creating and Running Cross Reference for 1M Functions
	49.9.1 How to Create the Use Case
	49.9.1.1 Task 1: How to Configure the Oracle Database and Database Adapter
	49.9.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project
	49.9.1.3 Task 3: How to Create a Cross Reference
	49.9.1.4 Task 4: How to Create a Database Adapter Service
	49.9.1.5 Task 5: How to Create an EBS External Reference
	49.9.1.6 Task 6: How to Create a Logger File Adapter External Reference
	49.9.1.7 Task 7: How to Create an Oracle Mediator Service Component
	49.9.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Component
	49.9.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator
	49.9.1.10 Task 10: How to Configure an Application Server Connection
	49.9.1.11 Task 11: How to Deploy the Composite Application

50 Defining Composite Sensors

	50.1 Introduction to Composite Sensors
	50.1.1 Restrictions on Use of Composite Sensors

	50.2 Adding Composite Sensors
	50.2.1 How to Add Composite Sensors
	50.2.1.1 How to Add a Variable
	50.2.1.2 How to Add an Expression
	50.2.1.3 How to Add a Property

	50.2.2 What You May Need to Know About Duplicate Composite Sensor Names

	50.3 Monitoring Composite Sensor Data During Runtime

51 Using Two-Layer Business Process Management (BPM)

	51.1 Introduction to Two-Layer Business Process Management
	51.2 Creating a Phase Activity
	51.2.1 How to Create a Phase Activity
	51.2.2 What Happens When You Create a Phase Activity
	51.2.3 What Happens at Runtime When You Create a Phase Activity
	51.2.4 What You May Need to Know About Creating a Phase Activity

	51.3 Creating the Dynamic Routing Decision Table
	51.3.1 How to Create the Dynamic Routing Decision Table
	51.3.2 What Happens When You Create the Dynamic Routing Decision Table

	51.4 Use Case: Two-Layer BPM
	51.4.1 Designing the SOA Composite
	51.4.2 Creating a Phase Activity
	51.4.3 Creating and Editing the Dynamic Routing Decision Table
	51.4.4 Adding Assign Activities to the BPEL Process Model
	51.4.5 Deploying and Testing the Sample

52 Integrating the Spring Framework in SOA Composite Applications

	52.1 Introduction to the Spring Service Component
	52.2 Integration of Java and WSDL-Based Components in the Same SOA Composite Application
	52.2.1 Java and WSDL-Based Integration Example
	52.2.2 Using Callbacks with the Spring Framework

	52.3 Creating a Spring Service Component in Oracle JDeveloper
	52.3.1 How to Create a Spring Service Component in Oracle JDeveloper
	52.3.2 What You May Need to Know About Java Class Errors During Java-to-WSDL Conversions

	52.4 Defining Custom Spring Beans Through a Global Spring Context
	52.4.1 How to Define Custom Spring Beans Through a Global Spring Context

	52.5 Using the Predefined Spring Beans
	52.5.1 IHeaderHelperBean.java Interface for headerHelperBean
	52.5.2 IInstanceHelperBean.java Interface for instancerHelperBean
	52.5.3 ILoggerBean.java Interface for loggerBean
	52.5.4 How to Reference Predefined Spring Beans in the Spring Context File

	52.6 Spring Service Component Integration in the Fusion Order Demo
	52.6.1 How to Use EJBs with Java Vector Type Parameters

	52.7 JAXB and OXM Support
	52.7.1 Extended Mapping Files

	52.8 Configuring Groovy and Aspectj Classes with the Spring Service Component

Part X Using Oracle Business Activity Monitoring

53 Integrating Oracle BAM with SOA Composite Applications

	53.1 Introduction to Integrating Oracle BAM with SOA Composite Applications
	53.2 Configuring Oracle BAM Adapter
	53.3 Using Oracle BAM Monitor Express With BPEL Processes
	53.3.1 How to Access BPEL Designer Monitor View
	53.3.2 How to Configure Activity Monitors
	53.3.3 How To Create BPEL Process Monitoring Objects
	53.3.4 How to Configure Counters
	53.3.5 How to Configure Intervals
	53.3.6 How to Configure Business Indicators
	53.3.7 How to Add Existing Monitoring Objects to Activities
	53.3.8 How To Configure BPEL Process Monitors for Deployment
	53.3.9 What You Need to Know About Using the Monitor Express Dashboard
	53.3.10 What You Need To Know About Monitor Express Data Objects
	53.3.10.1 Understanding the COMPONENT Data Object
	53.3.10.2 Understanding the COUNTER Data Object
	53.3.10.3 Understanding the INTERVAL Data Object
	53.3.10.4 Understanding Business Indicator Data Objects
	53.3.10.5 Troubleshooting

	53.4 Creating a Design Time Connection to an Oracle BAM Server
	53.4.1 How to Create a Connection to an Oracle BAM Server

	53.5 Using Oracle BAM Adapter in a SOA Composite Application
	53.5.1 How to Use Oracle BAM Adapter in a SOA Composite Application

	53.6 Using Oracle BAM Adapter in a BPEL Process
	53.6.1 How to Use Oracle BAM Adapter in a BPEL Process

	53.7 Integrating BPEL Sensors Using Oracle BAM Sensor Action
	53.7.1 How to Create a Sensor
	53.7.2 How to Create an Oracle BAM Sensor Action

	53.8 Integrating SOA Applications and Oracle BAM Using Enterprise Message Resources

54 Using Oracle BAM Data Control

	54.1 Introduction to Oracle BAM Data Control
	54.2 Creating Projects That Can Use Oracle BAM Data Controls
	54.3 Creating Oracle BAM Server Connections
	54.3.1 How to Modify Oracle BAM Data Control Connections to Oracle BAM Servers
	54.3.1.1 How to Associate a BAM Data Control with a New Oracle BAM Connection

	54.4 Exposing Oracle BAM with Oracle ADF Data Controls
	54.4.1 How to Create Oracle BAM Data Controls
	54.4.2 What Happens in Your Project When You Create an Oracle BAM Data Control
	54.4.2.1 How an Oracle BAM Data Control Appears in the Data Controls Panel

	54.5 Creating Oracle BAM Data Control Queries
	54.5.1 How to Choose a Query Type
	54.5.2 How to Create Parameters
	54.5.3 How to Pass Values to Parameters
	54.5.4 How to Create Calculated Fields
	54.5.4.1 Creating Groups in Calculated Fields

	54.5.5 How to Select, Organize, and Sort Fields
	54.5.6 How to Create Filters
	54.5.6.1 How to Create Filter Headers
	54.5.6.2 How to Create Filter Entries
	54.5.6.3 Entering Comparison Values
	54.5.6.4 Using Active Now

	54.5.7 How to Select and Organize Groups
	54.5.7.1 How to Configure Time Groups and Time Series

	54.5.8 How to Create Aggregates
	54.5.9 How to Modify the Query

	54.6 Using Oracle BAM Data Controls in ADF Pages
	54.6.1 How to Use an Oracle BAM Data Control in a JSF Page

	54.7 Deploying Applications With Oracle BAM Data Controls
	54.7.1 How to Deploy to Oracle WebLogic Server in Development Mode
	54.7.2 How to Deploy to a Production Mode Oracle WebLogic Server

55 Defining and Managing Oracle BAM Data Objects

	55.1 Introduction to Oracle BAM Data Objects
	55.2 Defining Data Objects
	55.2.1 How to Define a Data Object
	55.2.2 How to Add Columns to a Data Object
	55.2.3 How to Add Lookup Columns to a Data Object
	55.2.4 How to Add Calculated Columns to a Data Object
	55.2.5 How to Add Time Stamp Columns to a Data Object
	55.2.6 What You May Need to Know About System Data Objects
	55.2.7 What You May Need to Know About Oracle Data Integrator Data Objects

	55.3 Creating Permissions on Data Objects
	55.3.1 How to Create Permissions on a Data Object
	55.3.2 How to Add a Group of Users
	55.3.3 How to Copy Permissions from Other Data Objects

	55.4 Viewing Existing Data Objects
	55.4.1 How to View Data Object General Information
	55.4.2 How to View Data Object Layouts
	55.4.3 How to View Data Object Contents

	55.5 Using Data Object Folders
	55.5.1 How to Create Folders
	55.5.2 How to Open Folders
	55.5.3 How to Set Folder Permissions
	55.5.4 How to Move Folders
	55.5.5 How to Rename Folders
	55.5.6 How to Delete Folders

	55.6 Creating Security Filters
	55.6.1 How to Create a Security Filter
	55.6.2 How to Copy Security Filters from Other Data Objects

	55.7 Creating Dimensions
	55.7.1 How to Create a Dimension
	55.7.2 How to Create a Time Dimension

	55.8 Renaming and Moving Data Objects
	55.8.1 How to Rename a Data Object
	55.8.2 How to Move a Data Object

	55.9 Creating Indexes
	55.9.1 How to Create an Index

	55.10 Clearing Data Objects
	55.10.1 How to Clear a Data Object

	55.11 Deleting Data Objects
	55.11.1 How to Delete a Data Object

56 Creating Oracle BAM Enterprise Message Sources

	56.1 Introduction to Enterprise Message Sources
	56.2 Creating Enterprise Message Sources
	56.2.1 How to Create an Enterprise Message Source
	56.2.2 How to Configure DateTime Specification
	56.2.3 How to Use Advanced XML Formatting
	56.2.4 How to Configure EMS Error Handling

	56.3 Using Enterprise Message Sources
	56.3.1 How to Edit, Copy, and Delete Enterprise Message Sources
	56.3.2 How to Start and Stop Enterprise Message Sources
	56.3.3 How to Subscribe and Unsubscribe Enterprise Message Sources
	56.3.4 How to Test Enterprise Message Sources
	56.3.5 How to Refresh Enterprise Message Sources
	56.3.6 How to Monitor Enterprise Message Source Metrics

	56.4 Using Foreign JMS Providers
	56.5 Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider
	56.5.1 Creating a JMS Topic in AQ-JMS
	56.5.2 Creating a Data Source in Oracle WebLogic Server
	56.5.3 Creating a Foreign JMS Server
	56.5.4 Defining an EMS in Oracle BAM Architect
	56.5.5 Inserting and Updating Records in the SQL Table

57 Using Oracle Data Integrator With Oracle BAM

	57.1 Introduction to Using the Oracle Data Integrator With Oracle Business Activity Monitoring
	57.2 Installing the Oracle Data Integrator Integration Files
	57.2.1 How to Install Integration Files Using the Script
	57.2.2 How to Manually Install Integration Files
	57.2.3 Using the Logs

	57.3 Using Oracle BAM Knowledge Modules
	57.4 Creating the Oracle BAM Target
	57.4.1 How to Create the Oracle BAM Target

	57.5 Reverse Engineering the Oracle BAM Schema
	57.6 Updating the Oracle Data Integrator External Data Source Definition
	57.6.1 How to Update the Oracle Data Integrator External Data Source Definitions

	57.7 Launching Oracle Data Integrator Scenarios From Oracle BAM Alerts
	57.8 Running Oracle Data Integrator Agent as a Daemon or a Microsoft Windows Service With Oracle BAM Embedded

58 Creating External Data Sources

	58.1 Introduction to External Data Sources
	58.2 Creating External Data Sources
	58.2.1 How to Create an External Data Source
	58.2.2 What You May Need to Know About Oracle Data Integrator External Data Sources
	58.2.3 How to Edit an External Data Source
	58.2.4 How to Delete an External Data Source

	58.3 External Data Source Example
	58.4 Use Case: Creating an EDS Against Oracle Business Intelligence Enterprise Edition

59 Using Oracle BAM Web Services

	59.1 Introduction to Oracle BAM Web Services
	59.2 Using the DataObjectOperations Web Services
	59.2.1 How to Use the DataObjectOperations Web Services

	59.3 Using the DataObjectDefinition Web Service
	59.3.1 How to Use the DataObjectDefinition Web Service

	59.4 Using the ManualRuleFire Web Service
	59.4.1 How to Use the ManualRuleFire Web Service

	59.5 Using the ICommand Web Service
	59.5.1 How to Use the ICommand Web Service

60 Creating Oracle BAM Alerts

	60.1 Introduction to Creating Alerts
	60.2 Creating Alert Rules
	60.2.1 How to Create an Alert Rule
	60.2.2 How to Activate Alerts
	60.2.3 How to Modify Alert Rules
	60.2.4 How to Delete an Alert
	60.2.5 What You May Need to Know About Modifying Alerts

	60.3 Creating Alert Rules From Templates
	60.3.1 How to Create Alert Rules From Templates

	60.4 Creating Alert Rules With Messages
	60.4.1 How to Create an Alert Rule With a Message

	60.5 Creating Complex Alerts
	60.5.1 How to Create a Dependent Rule

	60.6 Using Alerts History
	60.6.1 How to View the Alerts History List
	60.6.2 How to Clear the Alerts History List

	60.7 Launching Alerts by Invoking Web Services
	60.8 Calling an External Action
	60.9 Sending Alerts to External E-mail Accounts

61 Using ICommand

	61.1 Introduction to ICommand
	61.2 Executing ICommand
	61.3 Specifying the Command and Option Syntax
	61.3.1 How to Specify the Security Credentials
	61.3.2 How to Specify the Command
	61.3.3 How to Specify Object Names
	61.3.4 How to Specify Multiple Parameter Targets

	61.4 Using Command-line-only Parameters
	61.5 Running ICommand Remotely

Part XI Using Oracle User Messaging Service

62 Oracle User Messaging Service

	62.1 Introduction to User Messaging Service
	62.1.1 Components
	62.1.2 Architecture

63 Sending and Receiving Messages using the User Messaging Service EJB API

	63.1 Introduction to the UMS Java API
	63.1.1 Creating a Java EE Application Module

	63.2 Creating a UMS Client Instance
	63.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative Approach
	63.2.2 API Reference for Class MessagingClientFactory

	63.3 Sending a Message
	63.3.1 Creating a Message
	63.3.1.1 Creating a Plaintext Message
	63.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	63.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

	63.3.2 API Reference for Class MessageFactory
	63.3.3 API Reference for Interface Message
	63.3.4 API Reference for Enum DeliveryType
	63.3.5 Addressing a Message
	63.3.5.1 Types of Addresses
	63.3.5.2 Creating Address Objects
	63.3.5.3 Creating a Recipient with a Failover Address
	63.3.5.4 API Reference for Class AddressFactory
	63.3.5.5 API Reference for Interface Address

	63.3.6 Retrieving Message Status
	63.3.6.1 Synchronous Retrieval of Message Status
	63.3.6.2 Asynchronous Notification of Message Status

	63.4 Receiving a Message
	63.4.1 Registering an Access Point
	63.4.2 Synchronous Receiving
	63.4.3 Asynchronous Receiving
	63.4.4 Message Filtering

	63.5 Using the UMS Enterprise JavaBeans Client API to Build a Client Application
	63.5.1 Overview of Development
	63.5.2 Configuring the Email Driver
	63.5.3 Using JDeveloper 11g to Build the Application
	63.5.3.1 Opening the Project

	63.5.4 Deploying the Application
	63.5.5 Testing the Application

	63.6 Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application
	63.6.1 Overview of Development
	63.6.2 Configuring the Email Driver
	63.6.3 Using JDeveloper 11g to Build the Application
	63.6.3.1 Opening the Project

	63.6.4 Deploying the Application
	63.6.5 Testing the Application

	63.7 Creating a New Application Server Connection

64 Sending and Receiving Messages using the User Messaging Service Java API

	64.1 Introduction to the UMS Java API
	64.2 Creating a UMS Client Instance and Specifying Runtime Parameters
	64.2.1 API Reference for Class MessagingClientFactory

	64.3 Sending a Message
	64.3.1 Creating a Message
	64.3.1.1 Creating a Plaintext Message
	64.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	64.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

	64.3.2 API Reference for Class MessagingFactory
	64.3.3 API Reference for Interface Message
	64.3.4 API Reference for Enum DeliveryType
	64.3.5 Addressing a Message
	64.3.5.1 Types of Addresses
	64.3.5.2 Creating Address Objects
	64.3.5.3 Creating a Recipient with a Failover Address
	64.3.5.4 API Reference for Class MessagingFactory
	64.3.5.5 API Reference for Interface Address

	64.3.6 User Preference Based Messaging

	64.4 Retrieving Message Status
	64.4.1 Synchronous Retrieval of Message Status
	64.4.2 Asynchronous Receiving of Message Status
	64.4.2.1 Creating a Listener Programmatically
	64.4.2.2 Default Status Listener
	64.4.2.3 Per Message Status Listener

	64.5 Receiving a Message
	64.5.1 Registering an Access Point
	64.5.2 Synchronous Receiving
	64.5.3 Asynchronous Receiving
	64.5.3.1 Creating a Listener Programmatically
	64.5.3.2 Default Message Listener
	64.5.3.3 Per Access Point Message Listener

	64.5.4 Message Filtering

	64.6 Configuring for a Cluster Environment
	64.7 Configuring Security
	64.8 Threading Model
	64.8.1 Listener Threading

	64.9 Using the UMS Client API to Build a Client Application
	64.9.1 Overview of Development
	64.9.2 Configuring the Email Driver
	64.9.3 Using JDeveloper 11g to Build the Application
	64.9.3.1 Opening the Project

	64.9.4 Deploying the Application
	64.9.5 Testing the Application

	64.10 Using the UMS Client API to Build a Client Echo Application
	64.10.1 Overview of Development
	64.10.2 Configuring the Email Driver
	64.10.3 Using JDeveloper 11g to Build the Application
	64.10.3.1 Opening the Project

	64.10.4 Deploying the Application
	64.10.5 Testing the Application

	64.11 Creating a New Application Server Connection

65 Sending and Receiving Messages using the User Messaging Service Web Service API

	65.1 Introduction to the UMS Web Service API
	65.2 Creating a UMS Client Instance and Specifying Runtime Parameters
	65.3 Sending a Message
	65.3.1 Creating a Message
	65.3.1.1 Creating a Plaintext Message
	65.3.1.2 Creating a Multipart/Mixed Message (with Text and Binary Parts)
	65.3.1.3 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	65.3.1.4 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

	65.3.2 API Reference for Interface Message
	65.3.3 API Reference for Enum DeliveryType
	65.3.4 Addressing a Message
	65.3.4.1 Types of Addresses
	65.3.4.2 Creating Address Objects
	65.3.4.3 Creating a Recipient with a Failover Address
	65.3.4.4 Recipient Types
	65.3.4.5 API Reference for Class MessagingFactory
	65.3.4.6 API Reference for Interface Address

	65.3.5 User Preference Based Messaging

	65.4 Retrieving Message Status
	65.4.1 Synchronous Retrieval of Message Status
	65.4.2 Asynchronous Receiving of Message Status
	65.4.2.1 Creating a Listener Programmatically
	65.4.2.2 Publish the Callback Service
	65.4.2.3 Stop a Dynamically Published Endpoint
	65.4.2.4 Registration

	65.5 Receiving a Message
	65.5.1 Registering an Access Point
	65.5.2 Synchronous Receiving
	65.5.3 Asynchronous Receiving
	65.5.3.1 Creating a Listener Programmatically
	65.5.3.2 Default Message Listener
	65.5.3.3 Per Access Point Message Listener

	65.5.4 Message Filtering

	65.6 Configuring for a Cluster Environment
	65.7 Configuring Security
	65.7.1 Client and Server Security
	65.7.2 Listener/Callback Security

	65.8 Threading Model
	65.9 Sample Chat Application with Web Services APIs
	65.9.1 Overview
	65.9.1.1 Provided Files

	65.9.2 Running the Pre-Built Sample
	65.9.3 Testing the Sample

	65.10 Creating a New Application Server Connection

66 Parlay X Web Services Multimedia Messaging API

	66.1 Introduction to Parlay X Messaging Operations
	66.2 Send Message Interface
	66.2.1 sendMessage Operation
	66.2.2 getMessageDeliveryStatus Operation

	66.3 Receive Message Interface
	66.3.1 getReceivedMessages Operation
	66.3.2 getMessage Operation
	66.3.3 getMessageURIs Operation

	66.4 Oracle Extension to Parlay X Messaging
	66.4.1 ReceiveMessageManager Interface
	66.4.1.1 startReceiveMessage Operation
	66.4.1.2 stopReceiveMessage Operation

	66.5 Parlay X Messaging Client API and Client Proxy Packages
	66.6 Sample Chat Application with Parlay X APIs
	66.6.1 Overview
	66.6.1.1 Provided Files

	66.6.2 Running the Pre-Built Sample
	66.6.3 Testing the Sample
	66.6.4 Creating a New Application Server Connection

67 User Messaging Preferences

	67.1 Introduction to User Messaging Preferences
	67.1.1 Terminology
	67.1.2 Configuration of Notification Delivery Preferences
	67.1.3 Delivery Preference Rules
	67.1.3.1 Data Types
	67.1.3.2 System Terms
	67.1.3.3 Business Terms

	67.1.4 Rule Actions

	67.2 How to Manage Messaging Channels
	67.2.1 Creating a Channel
	67.2.2 Editing a Channel
	67.2.3 Deleting a Channel
	67.2.4 Setting a Default Channel

	67.3 Creating Contact Rules using Filters
	67.3.1 Creating Filters
	67.3.2 Editing a Filter
	67.3.3 Deleting a Filter

	67.4 Configuring Settings

Part XII Appendices

A BPEL Process Activities and Services

	A.1 Introduction to Activities and Components
	A.2 Introduction to BPEL 1.1 and 2.0 Activities
	A.2.1 Tabs Common to Many Activities
	A.2.1.1 Annotations Tab
	A.2.1.2 Assertions Tab
	A.2.1.3 Correlations Tab
	A.2.1.4 Documentation Tab
	A.2.1.5 Headers Tab
	A.2.1.6 Properties Tab
	A.2.1.7 Skip Condition Tab
	A.2.1.8 Source and Targets Tabs
	A.2.1.9 Timeout Tab

	A.2.2 Copying and Pasting Activities in BPEL Projects
	A.2.3 Assign Activity
	A.2.4 Assert Activity
	A.2.5 Bind Entity Activity
	A.2.6 Compensate Activity
	A.2.7 CompensateScope Activity
	A.2.8 Create Entity Activity
	A.2.9 Dehydrate Activity
	A.2.10 Email Activity
	A.2.11 Empty Activity
	A.2.12 Exit Activity
	A.2.13 Flow Activity
	A.2.14 FlowN Activity
	A.2.15 forEach Activity
	A.2.16 If Activity
	A.2.17 IM Activity
	A.2.18 Invoke Activity
	A.2.19 Java Embedding Activity
	A.2.20 Partner Link Activity
	A.2.21 Phase Activity
	A.2.22 Pick Activity
	A.2.23 Receive Activity
	A.2.24 Receive Signal Activity
	A.2.25 Remove Entity Activity
	A.2.26 RepeatUntil Activity
	A.2.27 Replay Activity
	A.2.28 Reply Activity
	A.2.29 Rethrow Activity
	A.2.30 Scope Activity
	A.2.31 Sequence Activity
	A.2.32 Signal Activity
	A.2.33 SMS Activity
	A.2.34 Switch Activity
	A.2.35 Terminate Activity
	A.2.36 Throw Activity
	A.2.37 Transform Activity
	A.2.38 User Notification Activity
	A.2.39 Validate Activity
	A.2.40 Voice Activity
	A.2.41 Wait Activity
	A.2.42 While Activity

	A.3 Introduction to BPEL Services
	A.4 Publishing and Browsing the Oracle Service Registry
	A.4.1 How to Publish a Business Service
	A.4.2 How to Create a Connection to the Registry
	A.4.3 How to Configure a SOA Project to Invoke a Service from the Registry
	A.4.3.1 Dynamically Resolving the SOAP Endpoint Location
	A.4.3.2 Dynamically Resolving the WSDL Endpoint Location
	A.4.3.3 Resolving Endpoints

	A.4.4 How To Configure the Inquiry URL, UDDI Service Key, and Endpoint Address for Runtime
	A.4.4.1 Changing Endpoint Locations in the Registry Control
	A.4.4.2 Publishing WSDLs from Multiple SOA Partitions

	A.4.5 How to Publish WSDLs to UDDI for Multiple Partitions

	A.5 Providing Design-time Governance with the Oracle Enterprise Repository
	A.6 Validating When Loading a Process Diagram

B XPath Extension Functions

	B.1 SOA XPath Extension Functions
	B.1.1 Database Functions
	B.1.1.1 lookup-table
	B.1.1.2 query-database
	B.1.1.3 sequence-next-val

	B.1.2 Date Functions
	B.1.2.1 add-dayTimeDuration-to-dateTime
	B.1.2.2 current-date
	B.1.2.3 current-dateTime
	B.1.2.4 current-time
	B.1.2.5 day-from-dateTime
	B.1.2.6 format-dateTime
	B.1.2.7 hours-from-dateTime
	B.1.2.8 implicit-timezone
	B.1.2.9 minutes-from-dateTime
	B.1.2.10 month-from-dateTime
	B.1.2.11 seconds-from-dateTime
	B.1.2.12 subtract-dayTimeDuration-from-dateTime
	B.1.2.13 timezone-from-dateTime
	B.1.2.14 year-from-dateTime

	B.1.3 Mathematical Functions
	B.1.3.1 abs

	B.1.4 String Functions
	B.1.4.1 compare
	B.1.4.2 compare-ignore-case
	B.1.4.3 create-delimited-string
	B.1.4.4 ends-with
	B.1.4.5 format-string
	B.1.4.6 get-content-as-string
	B.1.4.7 get-content-from-file-function
	B.1.4.8 get-localized-string
	B.1.4.9 index-within-string
	B.1.4.10 last-index-within-string
	B.1.4.11 left-trim
	B.1.4.12 lower-case
	B.1.4.13 matches
	B.1.4.14 right-trim
	B.1.4.15 upper-case

	B.2 BPEL XPath Extension Functions
	B.2.1 addQuotes
	B.2.2 authenticate
	B.2.3 appendToList
	B.2.4 copyList
	B.2.5 countNodes
	B.2.6 doc
	B.2.7 doStreamingTranslate
	B.2.8 doTranslateFromNative
	B.2.9 doTranslateToNative
	B.2.10 doXSLTransform
	B.2.11 doXSLTransformForDoc
	B.2.12 formatDate
	B.2.13 generateGUID
	B.2.14 getApplicationName
	B.2.15 getAttachmentContent
	B.2.16 getComponentName
	B.2.17 getComponentInstanceID
	B.2.18 getCompositeName
	B.2.19 getComposit