

16.2 Registering Oracle Reports Components

Before you begin, you must have a sufficient level of privileges in Oracle Portal to access the portlets and complete the tasks required for setting access controls. In order to manage reports in Oracle Portal, you must belong to both the PORTAL_ADMINISTRATORS and RW_ADMINISTRATOR groups. If you only belong to RW_ADMINISTRATOR, you will encounter errors when you attempt to create report objects.

For more information on joining privilege groups in Oracle Portal, refer to the Oracle Portal Administrator's Guide.

This section outlines the necessary steps to go about:

	
Registering a Reports Server

	
Registering a Report

	
Registering a Printer

	
Creating an Availability Calendar

To perform actions on existing Oracle Portal portlets, refer to:

	
The Manage Portlet

16.2.1 Registering a Reports Server

Before you can define access controls for a Reports Server, you must register your server within Oracle Portal. Registration provides Oracle Portal with the information it needs to identify and locate all available Reports Servers. This becomes particularly important when you register individual reports; during this process you are required to choose from a list of Reports Servers, and servers must be registered to appear on this list.

Table 16-1 Sample Values

	Property	Sample Value
	
Name (internal name)

	
myrep_server

	
Display Name

	
My Reports Server

	
Portal DB Provider

	
PORTAL_APP

	
Reports Server Name

	
rep_machine_name, for example, rep_myserver1

	
Oracle Reports Web Gateway URL for JSP reports

	
http://myias.mycomp.com:7778/

	
Oracle Reports Web Gateway URL for RDF reports

	
http://myias.mycomp.com:7778/reports/rwservlet

	
Availability Calendar

	
COMCAL

To register a Reports Server:

	
Log in as an administrator to Oracle Portal.

	
Navigate to the Builder page.

	
Click the Administer tab.

	
Click the Oracle Reports Security Settings link in the Oracle Reports Security portlet. The Oracle Reports Security portlet enables you to use the security features in Oracle Portal at the time of defining access to the server, printer, calendar, and reports definition file.

	
Click the Create Reports Server Access link in the Reports Server Access portlet.

	
On the resulting page, the Name (internal name) and the Portal DB Provider fields contain default values. To include custom values:

	
Enter a unique name in the Name field that will identify the Reports Server internally in Oracle Portal, for example, MY_REPORTS_SERVER. This name must follow the Oracle Portal rules for a valid component name; that is:

	
It must be no more than 30 characters

	
It must contain only alphanumeric characters (no spaces or special characters allowed).

	
The first character must be a letter (not a number).

	
Enter the name you want to display for this server in the Display Name field. The Display Name is the name that is exposed to your users through Oracle Portal.

	
Note:

The Display Name, unlike the internal Name, can have spaces in it.

	
Select the Portal DB Provider that will own the Reports Server from the Portal DB Provider list of values. The Portal DB Providers displayed are those in which you have privileges to build components.

	
Note:

All the components you add to or create in Oracle Portal must belong to a Portal DB Provider. Refer to the Oracle Portal online Help, for more information on how to create a Portal DB Provider.

	
Click Next.

	
On the Server Definition page:

	
Enter the name of the Reports Server in the Reports Server Name field. This is the unique name assigned to the server at the time of server creation through OPMN.

	
(Optional) Enter a description for the Reports Server in the Description field.

	
Enter the URL location of your JSP files in the Oracle Reports Web Gateway URL for JSP reports field. The URL should be in the following format:

http://your_web_server.domain:port/

For example:

http://myias.mycomp.com:7779/

	
Enter the URL location of Oracle Reports Servlet (rwservlet) in the Oracle Reports Web Gateway URL for RDF reports field. The URL should be in the following format:

http://your_web_server.domain:port/virtual_path_to_rwservlet/rwservlet

	
See Also:

Chapter 8, "Configuring Oracle Reports Services" for more information on specifying the virtual path.

For example:

http://myias.mycomp.com:7778/reports/rwservlet

	
(Optional) Select the Run Only Registered Report Definition Files check box. This ensures that only the report definition files registered with Oracle Portal can be executed on this Reports Server.

Leave this box unchecked if you want this Reports Server to accept any report definition file, including those not registered in Oracle Portal, as long as the user who submits the report request has access privileges to this Reports Server.

	
Select the printer(s) that you want to make available to this Reports Server from the Printers list. Use control-click (Windows) or click (UNIX) to select multiple printers.

	
Click Next.

	
(Optional) Enter a Custom Destination Type, if you have defined a custom destination type.

	
See Also:

Chapter 13, "Configuring Destinations for Oracle Reports Services" for more information on custom destination types.

	
Click Next.

	
(Optional) Enter the Availability Calendar name or click the list button to select the Availability Calendar that determines the days and times this Reports Server is and is not available to accept report requests.

	
See Also:

Section 16.2.4, "Creating an Availability Calendar"

	
Click Finish.

The resulting page summarizes your settings for this Reports Server. On this page, you can edit your settings, get detailed registration information about the Reports Server, or delete it altogether.

	
See Also:

Section 16.2.5, "The Manage Portlet" for more information on the fields and descriptions listed in the Manage portlet (that is, Develop, Manage, and Access tabs).

	
Click Close to close this page and return to the Oracle Reports Security page.

You have registered a Reports Server. Now you can register a report.

16.2.2 Registering a Report

Registering a report is a required step that enables you to define who can run a report, when a report is available to run, which server(s) can be used to process report requests, how a report is delivered, and the printer(s) to which a report can be sent.

In addition to using registration to designate which users have access to a report, you can also specify, through a Oracle Portal parameter form, how users are to interact with the report.

User parameters are created in Oracle Reports Builder at the time of designing the report. You can assign values to these parameters when you run the report in Oracle Portal.

	
Note:

You can use the parameter settings available through Oracle Portal to duplicate or create a subset of the parameters defined in Oracle Reports Builder at design time. At runtime, the Reports Server disregards any parameters that you set in Oracle Portal not defined in Oracle Reports Builder at design time.

Registering a report within Oracle Portal creates an Oracle Portal component that can be deployed as a portlet through Portal. We recommend that you register only one instance of a report file in Oracle Portal. If you define multiple Oracle Portal report objects for one report, all are given security checks at runtime. If any of them fail the security check, then all fail, and the job will not run.

Table 16-2 Sample Values

	Property	Sample Values
	
Name (internal name)

	
Employee_Report

	
Display Name

	
Employee Report

	
Portal DB Provider

	
PORTAL_APP

	
Oracle Reports File Name

	
employee_report.jsp

	
Execute

	
as JSP

	
Name (Optional Parameters)

	
userid

	
Display Name (Optional Parameters)

	
User Identification

To register a report:

	
Log in as an administrator to Oracle Portal.

	
Navigate to the Builder page.

	
Click the Administer tab.

	
Click the Oracle Reports Security Settings link in the Oracle Reports Security portlet.

	
Click the Create Reports Definition File Access link in the Reports Definition File Access portlet.

	
On the resulting page, the Name (internal name) and the Portal DB Provider fields contain default values. To include custom values:

	
Enter a unique name in the Name field that will identify the report internally in Oracle Portal, for example, MY_REPORT. This name must follow the Oracle Portal rules for a valid component name; that is:

	
It must be no more than 30 characters

	
It must contain only alphanumeric characters (no spaces or special characters allowed).

	
The first character must be a letter (not a number).

	
Enter the name that you want to display for this report in the Display Name field. The Display Name is the name that is exposed to your users through Oracle Portal.

	
Note:

The Display Name, unlike the internal Name, can have spaces in it.

	
Select the Portal DB Provider that will own the Reports Server from the Portal DB Provider list of values. The Portal DB Providers displayed are those in which you have privileges to build components.

	
Note:

All the components you add to or create in Oracle Portal must belong to a Portal DB Provider. Refer to the Oracle Portal online Help, for more information on how to create a Portal DB Provider.

	
Click Next.

	
Enter or select information as follows:

	
Select the Reports Server(s) to be available to run this report from the Reports Servers list of values. Use control-click (Windows) or click (UNIX) to select multiple servers.

	
Enter the report file name, including its extension in the Oracle Reports File Name field.

The report definition file can be an .rdf, .jsp, or .xml file. If the path to this file is included in your REPORTS_PATH environment variable, do not enter it here. If the path is not included in REPORTS_PATH, include it here along with the filename. Do this for all report definition files except those you will run as standalone JSPs. For JSPs, you must define the name as virtual_path/reportname.jsp.

	
See Also:

	
Appendix B, "Environment Variables" for more information on Oracle Reports-related environment variables.

	
Chapter 8, "Configuring Oracle Reports Services" for more information on specifying the virtual path.

	
(Optional) Enter a description for this report in the Description field.

	
In the Execute field, select either through servlet or as JSP. The selection you make here will affect the choices that are available on the next wizard page.

	
through servlet: If you plan to run the report through Oracle Reports Servlet (rwservlet).

	
as JSP: If you will run a deployed JSP report.

	
Click Next.

	
Select the Destination settings on the Required Parameters page.These settings are only applicable if you run your report through Oracle Reports Servlet (rwservlet). At runtime, anywhere you have indicated multiple selections using control-click, a list of values will be offered to your users from which they can set their own runtime information:

	
Types specifies the destination types acceptable for this report. Select the destination types from among Cache, File, Mail, OraclePortal, OracleWireless, Printer, FTP, WebDAV, or custom destination types. If the server you associate with this report supports custom destination types, which you indicated when you registered the Reports Server in Oracle Portal, the types you indicated will display on this list.

	
Formats defines the acceptable output format(s) for this report. Choose from HTML, HTMLCSS, PDF, XML, RTF, Delimited, Spreadsheet, PostScript, and Character.

	
Printers specifies the registered printer(s) to which this report can be sent. The printers that appear on this list are determined by those you chose when you set up access to the Reports Server(s) you are associating with this report. When users choose a Reports Server on the runtime parameter form, only those printers that are associated with the selected Reports Server and that are accessible to those users are listed.

	
Select the Parameter Form Template and click Preview Template to see what the selected template looks like:

	
Parameter Form Template specifies the template that will define the look and feel of the Portal parameter form from which you will run the report. This value is used only when the report is exposed through the Portal. Choose a template from the list of values.

	
Note:

For information about adding your own templates to this list, see the Oracle Portal online Help.

	
Click Next.

	
Define the limits for the report's existing parameters on the Optional Parameters page:

	
Enter the name or user parameter to restrict the values available to users in the Name field. For example, SALES_REGION or COPIES.

	
Enter the display name of the system or user parameter. This name will be used to identify the parameter on the runtime parameter form.

	
Enter the name of the list of values, or select the values from a predefined list of values. The list must already exist. For information on creating a list of values, see the Oracle Portal online Help.

	
Enter the lowest value that you wish to set for a range of values in the Low Value field.

	
Enter the highest value that you wish to set for a range of values in the High Value field.

	
Click More Parameters if you wish to add more rows for additional parameters and values.

	
Click Next.

	
(Optional) Enter the Availability Calendar name or click the list button to select an existing Availability Calendar.

Use the availability calendar to limit the days and times this report can be run.

	
See Also:

Section 16.2.4, "Creating an Availability Calendar"

	
Click Next.

	
(Optional) Enter a validation trigger to create a programmatic restriction.

Use validation triggers to create conditional restrictions that cannot be defined on either the Required Parameters page or the Optional Parameters page. Validation triggers are PL/SQL functions.

The function that you specify as a validation trigger must return a boolean value (TRUE or FALSE). If the function returns TRUE, the job is run. If the function returns FALSE, an error message is displayed and the job is not run.

	
Click Finish to close the wizard and complete report registration.

The resulting page summarizes your registration information and provides the opportunity to perform additional actions on your report.

	
See Also:

Section 16.3, "Publishing Your Report as a Portlet" for more information on how to run your report from Oracle Portal.

	
Click the Access tab and select the Publish as Portlet box. This adds the report to the Portlet Repository, allowing you to add it to a page and publish your report as a portlet.

	
Click Customize to view the report's Runtime Parameter Form.

Table 16-3 summarizes the options available on this page.

Table 16-3 Options on the Runtime Parameter Form

	Option	Description
	
Run Report

	
Click to run this report with the specified parameter values.

	
Save Parameters

	
Click to save the parameter value selections.

	
Server

	
Select the Oracle Reports Server that you want to receive this report request. Only the servers that you chose at the time of registering the Report are displayed in this list box.

	
Printer

	
Select the printer that you want to print your report output. Only the printers that you chose at the time of registering the report are displayed in this list box.

	
Destype

	
Select the destination type. Only the destination types that you chose at the time of registering the report are displayed in this list box.

	
Desformat

	
Select the destination format. Only the destination format that you chose at the time of registering the report are displayed in this list box.

	
Desname

	
Enter the name of the output file when DESTYPE=FILE, or enter the e-mail addresses when the DESTYPE=MAIL. Separate multiple addresses with commas. The destination name is required when you choose FILE or MAIL as the DESTYPE.

	
SSOCONN

	
Enter one or more Single Sign-On connection strings. Separate multiple strings with a comma (but no spaces). For more information on SSOCONN, refer to Section 17.3.3.1, "SSOCONN".

	
Visible to user

	
Check each parameter that you want to make available in the runtime parameter form when users run this report request. If the box in not checked, then the parameter is not displayed to users.

	
Servlet Command Key

	
Optionally, enter the key from the cgicmd.dat key map file (for more information, see Section 18.13, "Using a Key Map File") that identifies the command line to run for this report.

	
Portlet Width

	
Use this field to control the width of the portlet. You can enter the value as a percentage of the page (for example, 90%) or in pixels (e.g, 700).

If no value is specified, Oracle Reports Services uses its default value (640 pixels wide).

	
Portlet Height

	
Use this field to control the height of the portlet. You can enter the value as a percentage of the page (for example, 50%) or in pixels (e.g, 400).

If no value is specified, Oracle Reports Services uses its default value (320 pixels high).

	
Additional User Parameters

	
Use this field to enter additional user parameters. For example, you can use this field to enter the path and name of the distribution XML file that defines how this report should be distributed.

Use the same syntax you would use to specify these values in a command line request or within the cgicmd.dat key map file file (for more information, see Section 18.13, "Using a Key Map File"). If you wish to enter multiple additional parameters, simply separate each entry with a space.

For more information on the distribution XML file, see Chapter 20, "Creating Advanced Distributions".

16.2.3 Registering a Printer

It is not required that you register a printer within the security framework of Oracle Portal. You can run a report on any printer as long as it is available to the Reports Server. However, you might want to confine Oracle Portal users to a subset of those printers, constrain the use of a printer for certain periods of time, or identify a particular printer to be used for printing output of certain reports.

Printer registration with Oracle Portal is meaningful for reports that you run through Oracle Portal as well as those you run through a standalone URL.

Once printers are registered within Oracle Portal, you can associate them with a Reports Server. Many printers can be registered. However, only printers associated with particular Reports Servers are available to print when you register a report with Oracle Portal and choose those Reports Servers.

You can choose to restrict even further the registered subset of printers that a registered report can be sent to. For example, an Reports Server might be connected to the printer in the office of the CEO, but its selection should not be available to employees running the general ledger report, unless it is the CEO who is running the report. A subset of printers can be listed to the Oracle Portal user running a report request to select where output should be sent.

Table 16-4 Sample Values

	Property	Sample Value
	
Name (internal name)

	
myrep_printer

	
Display Name

	
My Reports Printer

	
Portal DB Provider

	
PORTAL_APP

	
OS Printer Name

	
\\mydomain\printer1

	
Availability Calendar

	
COMCAL

To register a printer:

	
Log in as an administrator to Oracle Portal.

	
Navigate to the Builder page.

	
Click the Administer tab.

	
Click the Oracle Reports Security Settings link in the Oracle Reports Security portlet. The Oracle Reports Security portlet enables you to use the security features in Oracle Portal at the time of defining access to the server, printer, calendar, and reports definition file.

	
Click the Create Reports Printer Access link in the Reports Printer Access portlet.

	
On the resulting page, the Name (internal name) and Portal DB Provider fields contain default values. To include custom values:

	
Enter a unique name in the Name field that will identify the printer internally in Oracle Portal, for example, MY_PRINTER. This name must follow the Oracle Portal rules for a valid component name; that is:

	
It must be no more than 30 characters

	
It must contain only alphanumeric characters (no spaces or special characters allowed).

	
The first character must be a letter (not a number).

	
Enter the name that you want to display for this printer in the Display Name field. The Display Name is the name that is exposed to your users through Oracle Portal.

	
Note:

The Display Name, unlike the internal Name, can have spaces in it.

	
Select the Portal DB Provider that will own the printer from the Portal DB Provider list of values. The Portal DB Providers displayed are those in which you have privileges to build components.

	
Note:

All components you add to or create in Oracle Portal must belong to a Portal DB Provider. Refer to the Oracle Portal online Help, for more information on how to create a Portal DB Provider.

	
Click Next.

	
On the resulting page, fill in desired values:

	
In the OS Printer Name field, enter the operating system printer name, for example:

UNIX: printer_name

Windows: \\printer_server\printer_name (for a remote printer)
printer_name (for a local printer)

This printer must be available to the Reports Server.

	
Note:

Printer availability is set through the operating system on the Report Server's host machine.

	
(Optional) Enter a description of the Printer in the Description field.

	
Click Next.

	
(Optional) Select an Availability calendar to restrict the days and times the printer can be used.

	
See Also:

Section 16.2.4, "Creating an Availability Calendar"

	
Click Finish.

The resulting page summarizes your settings for this printer. On this page, you can edit your settings, get detailed registration information about the printer, or delete it altogether.

	
See Also:

Section 16.2.5, "The Manage Portlet" for more information on the fields and descriptions listed in the Manage portlet (that is, Develop, Manage, and Access tabs).

	
Click Close to close this page and return to Oracle Portal's Oracle Reports Security page.

You have completed registering a printer with Oracle Portal. This registration is meaningful for reports that are run through Oracle Portal as well as those run outside of Oracle Portal.

16.2.4 Creating an Availability Calendar

Defining availability calendars is an optional step that enables you to further restrict access to reports, servers, and printers by specifying when they can and cannot be accessed. Availability calendars are not necessary if the reports, the Reports Servers, and printers are always available for processing.

This section provides information on:

	
Creating a Simple Availability Calendar

	
Creating a Combined Availability Calendar

You can associate only one availability calendar with a report, a Reports Server, or a printer. If your production environment requires more than one availability rule, then you can combine availability calendars.

16.2.4.1 Creating a Simple Availability Calendar

A simple availability calendar defines a single availability rule (for example, Sunday through Saturday from 12:00 a.m. to 10:00 p.m.).

To create a simple availability calendar:

	
Log in as an administrator to Oracle Portal.

	
Navigate to the Builder page.

	
Click the Administer tab.

	
Click the Oracle Reports Security Settings link in the Oracle Reports Security portlet.

	
Click the Create Reports Simple Calendar Access link in the Reports Calendar Access portlet on the Oracle Reports Security page.

	
On the resulting page, the Name (internal name) and Portal DB Provider fields contain default values. To include custom values:

	
Enter a unique name in the Name field that will identify the availability calendar internally in Oracle Portal, for example, MY_CALENDAR. This name must follow the Oracle Portal rules for a valid component name; that is:

	
It must be no more than 30 characters

	
It must contain only alphanumeric characters (no spaces or special characters allowed).

	
The first character must be a letter (not a number).

	
In the Display Name field, enter the name you want to display for this availability calendar when it is exposed through Oracle Portal. Unlike the internal name, the display name can have spaces in it.

	
Select a Portal DB Provider from the provider list of values. All components added to or created in Oracle Portal must belong to a Portal DB Provider. This list contains the names of only those providers with which you have privileges to build components.

	
Note:

For information on creating a Portal DB Provider, see the Oracle Portal online Help.

	
Click Next.

	
Optionally, enter a description of the calendar under Description.

	
Click Next.

	
On the Date/Time Availability page, define the parameters for the calendar:

Under Duration, specify the length of time that comprises a unit of duration (or duration period). For example, if you plan to set this calendar up to allow report access from 9:00 AM to 5:00 PM on a given day, then both Start and End would be the same month, day, and year, but the hour and minute setting for Start would be 9:00 AM and for End would be 5:00 PM. In this example, the duration of availability of a report on a given day is from 9:00 AM to 5:00 PM.

Under Repeat, specify how frequently the duration period is repeated:

	
Occurs only once indicates that the duration period does not repeat, and associated components are no longer available when the period expires. For example, if you select Occurs only once and set a duration period of one year, then the associated components cease to be available after one year.

	
Yearly indicates that the duration period restarts each year. If you select Yearly and have the same start and end date in your Duration setting, but your Start hour is set to 9:00 AM and your End hour is set to 5:00 PM, then the Reports components associated with this availability calendar will be available one day a year between 9:00 and 5:00.

	
Monthly indicates that the duration period restarts each month between the Start and End dates specified under Duration. If you select Monthly and have the same date and year in both Start and End—July 25, 2001—but set the Start hour for 9:00 AM and the End hour for 5 PM, then the associated components will be available between 9:00 AM and 5:00 PM on the 25th of each month.

	
The by Date/Day setting applies only to Monthly. With by Date/Day, you specify whether the duration period is set by the particular date (for example, always on the 25th through the 29th of the month) or by the particular day(s) (for example, always on Monday through Friday—which happen this month to fall on the 25th through the 29th).

	
Weekly indicates that the duration period restarts on a weekly basis between the days specified under Duration.

	
Daily indicates that the duration period restarts each day between the hours specified under Duration.

	
Frequency fills in the missing value for the phrase: Repeat every n (years, months, weeks, days—depending on what you selected under Repeat). For example, if you set the duration period to repeat weekly, then set Frequency to 2, the duration period restarts every two weeks, or every other week.

	
Optionally, check Repeat Until and assign a termination date/time for the calendar. Availability for all associated Reports components ends on the Repeat Until date/time.

	
Note:

No validation is run on your calendar. If the duration period exceeds the repetition setting, no error message will be generated. For example, if you set the duration period for 10 days and the repetition for weekly, the periods will overlap, but you will not be notified of the overlap.

	
Click Next.

	
On the Summary page, click the Show Calendar button to preview your availability calendar. If you wish to change some settings, click the Previous button and make your changes.

	
On the Summary page, click Finish to complete the availability calendar.

The resulting page summarizes your settings for this calendar. On this page, you can edit your settings, get detailed information about the calendar, or delete it.

	
Click Close to close this page and return to Oracle Portal's Oracle Reports Security page.

You can combine this calendar with other calendars or apply it "as is" to registered Oracle Reports Services components.

16.2.4.2 Creating a Combined Availability Calendar

A combined availability calendar combines two or more availability calendars into a single availability calendar. This is useful when you want to set up an availability period, then exclude specific days, such as holidays, from that period.

When you combine calendars, you can indicate that all the days on one of them be excluded from all the days on the other. For example, one calendar could describe availability Monday through Friday; another could describe availability only on Wednesday. You could combine these, excluding the Wednesday calendar, so that the combined calendar describes availability Monday, Tuesday, Thursday, Friday.

Conceivably, you could create a simple calendar that covers the weekdays of an entire year, then multiple additional simple calendars, where one excludes New Years, another excludes a second holiday, another excludes a third, and so on. You could combine all these calendars, excluding all the holiday calendars, so that components were available only on the days your company is open for business, between certain times of day, throughout the year.

To combine availability calendars:

	
Log in as an administrator to Oracle Portal.

	
Navigate to the Builder page.

	
Click the Administer tab.

	
Click the Oracle Reports Security Settings link in the Oracle Reports Security portlet.

	
Click the Create Reports Combined Calendar Access link in the Reports Calendar Access portlet.

	
Specify an internal name, display name, and Portal DB Provider for the calendar:

	
Enter a unique name in the Name field that will identify the combined availability calendar internally in Oracle Portal, for example, MY_COMBINED_CALENDAR. This name must follow the Oracle Portal rules for a valid component name; that is:

	
It must be no more than 30 characters

	
It must contain only alphanumeric characters (no spaces or special characters allowed).

	
The first character must be a letter (not a number).

	
Enter the name you want to display for this combined availability calendar in the Display Name field. The Display Name is the name that is exposed to your users through Oracle Portal.

	
Note:

The Display Name, unlike the internal Name, can have spaces in it.

	
Select a Portal DB Provider from the provider list of values. All components that you add to or create in Portal must belong to a Portal DB Provider. This list contains the names of only those providers with which you have privileges to build components.

	
Note:

For information on creating a Portal DB Provider, see the Oracle Portal online Help.

	
Click Next.

	
(Optional) Enter a description of the Availability Calendar in the Description field.

	
Click Next.

	
On the Selection page, highlight the calendars on the Availability Calendars list that you want to combine. The calendars are listed by their internal names, not their display names. Use control-click (Windows) or click (UNIX) to select multiple calendars.

This page lists the availability calendars that have been defined for the same Portal DB Provider under which you are creating this combined availability calendar.

	
Click the right arrow to move the selected calendars to the Selected Availability Calendars list.

	
Click Next.

	
On the Exclude page, highlight the calendar(s) on the Availability Calendars list whose dates you want to exclude. Use control-click (Windows) or click (UNIX) to select multiple calendars.

These are the calendars with dates on which you wish to withdraw availability.

	
Click the right arrow to move the selected calendars to the Excluded Availability Calendars list.

	
Click Next.

	
On the Summary page, click the Show Calendar button to preview your calendar.

If your exclusion isn't showing up, select a different view. For example, instead of the monthly view, select the weekly.

If you want to change the combination, close the calendar and click the Previous button one or more times to return to the desired page.

	
Click Finish to complete creation of the combined calendar.

The resulting page summarizes your settings for this calendar. On this page, you can edit your settings, get detailed information about the calendar, or delete it.

	
See Also:

Section 16.2.5, "The Manage Portlet" for more information on the fields and descriptions listed in the Manage portlet (that is, Develop, Manage, and Access tabs).

	
Click Close to close this page and return to Oracle Portal's Oracle Reports Security page.

You can combine this calendar with other calendars or apply it "as is" to registered Oracle Reports Services components.

16.2.5 The Manage Portlet

Use the Manage portlet page to perform actions on existing Oracle Portal portlets; for example, executing, editing, copying, dropping, or viewing information about the portlet.

The actions you can perform on the portlet depend on your privileges. Also, not all actions listed here are available for all portlets. The name of the portlet on which you can perform these actions appears in the upper left corner of the page.

Table 16-5 details the fields and descriptions listed in the Develop tab.

Table 16-5 The Develop Tab

	Field	Description
	
(portlet Type and Name)

	
Displays the portlet's type and name; for example:

Form (table) my_formfor a form

based on a table called my_form.

	
Provider

	
Displays the name of the provider in which the portlet was created.

	
Version(s) Status (Not applicable to all portlets)

	
Displays all the versions of the portlet and the current status of each version. Click a status to edit the portlet version.

Note: If there are no hyperlinks, you do not have privileges to edit the portlet.

	
Last Changed

	
Displays the name of the user who created or last edited the portlet, and the date and time when the portlet was created or last edited.

	
Run Link (Not applicable to all portlets)

	
Displays the URL for the procedure or procedures that, when executed, display the portlet. You can copy and paste this URL into another Web page to create a link to the portlet.

Note: A procedure that executes the portlet without parameters has the suffix .show. A procedure that executes the portlet with parameters has the suffix .show_parms.

	
PL/SQL source (Not applicable to all portlets)

	
The portlet builder wizards create a PL/SQL package to represent each portlet:

Package Spec: Displays the portlet's PL/SQL specification.

Package Body: Displays the portlet's PL/SQL body.

	
Call Interface (Not applicable to all portlets)

	
Click Show to display the arguments that a portlet can accept that the end user can change at runtime. Also shown are examples of calling the portlet from a PL/SQL Stored Procedure and through a URL. When you run the package containing the portlet in PL/SQL or by calling it from a URL, you can edit the call interface to accept different arguments.

Note: To view portlet source code, you must have Customize or Execute privileges on the portlet or the provider that owns it.

	
Edit Data Link (Not applicable to all portlets)

	
Click to connect to the URL containing the data, and to see and edit that data.

	
Edit

	
Click to edit the most recent version of the portlet. For example, you can reselect any table columns on which the portlet is based, change any fields or text that appear in the portlet, or choose a new look and feel.

	
Edit as New

	
Click to create and then edit a new version of this portlet. The existing portlet version does not change.

	
Edit Data (Not applicable to all portlets)

	
Click to see the spreadsheet and be able to edit the data within it.

	
Run

	
Click to run the current PRODUCTION version of the portlet.

Note: If a valid package for the portlet doesn't exist, the portlet will not run.

	
Run As Portlet

	
Displays how the portlet will look as a portlet in a portal window (may look different than a full page display).

	
Customize

	
Click to display the customization form for the portlet. The customization form enables you to specify values that will be used to display the portlet.

Note: If the current portlet is a form, Browse appears instead of Customize on this page.

	
Add to Favorites

	
Click to add the portlet to the Favorites list on your Oracle Portal Home page.

	
About

	
Displays stored attributes for the portlet.

	
Delete

	
Click to drop the portlet from the database.

Table 16-6 details the fields and descriptions listed in the Manage tab.

Table 16-6 The Manage Tab

	Field	Description
	
Show/Hide SQL Query Info (Not applicable to all portlets)

	
Select to display or hide the SQL Query when running the portlet, for debugging purposes.

	
Show Locks on this portlet (Not applicable to all portlets)

	
Displays any locks currently active on the portlet (for example, if somebody else is editing it).

	
Export

	
Click to export the portlet from the database.

	
Copy

	
Click to copy the portlet from the database.

	
Rename

	
Click to rename the portlet (within the same provider).

	
Generate

	
Click to compile the PL/SQL package.

	
Monitor

	
Click to view a chart of all requests for the portlet and the users who made the request.

Table 16-7, Table 16-8, Table 16-9, Table 16-10, Table 16-11, Table 16-12, and Table 16-13 details the fields and descriptions listed in the Access tab.

Table 16-7 Portal Access

	Field	Description
	
Publish as Portlet (Not applicable to all portlets)

	
Click to make the portlet available as a portlet.

Note: To publish the portlet as a portlet, you must have the Publish Portlet privilege and you must make the provider that owns the portlet available through Expose as Provider on the Access provider page (Manage tab).

Table 16-8 Privilege Mode

	Field	Description
	
Inherit Privileges from Provider

	
Select to allow the provider access privileges to override the portlet access privileges.

Clear the check box and click Apply to allow the portlet access privileges to override the provider access privileges. In the Grant Access section, you can selectively grant or remove portlet access privileges for different users or groups (for example, Manage, Edit, View, Customize, or Execute).

Note: To grant portlet access privileges to a user or group, you must have Manage access privileges on the portlet or provider that owns the portlet.

Table 16-9 Grant Access

	Field	Description
	
Grantee

	
Enter the user or group to whom you want to grant the provider access privilege.

	
Execute

	
Choose the privilege you want to grant.

	
Add

	
Click to grant the provider access privilege.

Table 16-10 Change Access

	Field	Description
	
Grantee

	
Displays the Oracle Portal user or group to whom the privilege is assigned. Click Error! Unknown switch argument.next to a grantee to delete all privileges.If you want to grant privileges to all Oracle Portal users, choose Public as the Grantee.

	
Type

	
Displays whether the grantee is an Oracle Portal user or group.

	
Privilege

	
Displays the privilege currently granted. To change a privilege, choose a new one and click Apply.

Table 16-11 Cell Privilege Mode

	Field	Description
	
Inherit Privileges from portlet

(Not applicable to all portlets)

	
Select to allow the portlet access privileges to override cell access privileges.

Clear the checkbox and click Apply to allow cell access privileges to override the portlet access privileges. In the Alter Access section, you can selectively change cell access privileges for different users or groups (for example, Manage, Edit, View, Customize, or Execute).

Note: To alter cell access privileges for a grantee, you must have Manage access privileges on the portlet or provider that owns the portlet.

Table 16-12 Alter Access

	Field	Description
	
Grantee (Not applicable to all portlets)

	
Enter the user or group to whom you want to grant the cell access privilege.

	
Alter (Not applicable to all portlets)

	
Click to alter cell access privileges.

Table 16-13 Cache Invalidation

	Field	Description
	
Clear Cache

	
Clears the cached version of the data, so that the next data request will be filled from the database.

6.8 Verifying that the Reports Servlet and Server are Running

To verify that the Reports Servlet is running, navigate to the following URL:

http://your_machine_name.domain_name:your_port_number/reports/rwservlet/help

Note that the URL is case sensitive. If this URL executes successfully, you should get a help page describing the rwservlet command line arguments.

To verify that Reports Server is running, navigate to the following URL:

http://your_machine_name.domain_name:your_port_number/reports/rwservlet/getserverinfo?server=server_name

The server=server_name argument is not required if you are using the default Reports Server name (rep_machine_name) or the Reports Server specified in the servlet configuration file, rwservlet.properties ($DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration). If this URL executes successfully, you should see a listing of the job queue for the specified Reports Server.

	
Note:

You'll find more information about the servlet configuration file in Section 8.3, "Oracle Reports Servlet Configuration File".

8.14 Enabling HTTPS for Oracle Reports

For enabling HTTPS for Oracle Reports, the WebLogic Plug-In Enabled option in the WebLogic Administration Console should be selected for the WLS_REPORTS server by performing the following steps:

	
Log in to the WebLogic Administration Console.

	
If you have not already done so, in the Change Center pane, click Lock & Edit.

	
In the Domain Structure pane, expand the Environment node, and select Servers.

A list of servers configured in the domain is displayed.

	
Click the WLS_REPORTS server.

	
Expand the Advanced link near the bottom of the page.

	
Select the WebLogic Plug-In Enabled option.

	
Click Save.

11.4 Generating a Bidirectional (BiDi) PDF File

This section outlines the steps involved in generating a PDF file for bidirectional (BiDi) languages. Before using the font features covered in this section, refer to Table 11-4 to determine which feature best suits your application needs.

Oracle Reports provides two environment variables that resolve font re-shaping and numeric options with bidirectional (BiDi) languages, such as Hebrew and Arabic. They are:

	
REPORTS_BIDI_ALGORITHM

This environment variable switches the layout algorithm for bidirectional (BiDi) languages (for example, Arabic or Hebrew). The valid values for this environment variable are ORACLE, ENHANCED or UNICODE.

	
See Also:

Section B.1.31, "REPORTS_BIDI_ALGORITHM"

	
REPORTS_ARABIC_NUMERAL

This environment variable specifies the numeric format for Arabic PDF output.

	
See Also:

Section B.1.29, "REPORTS_ARABIC_NUMERAL"

11.4.1 Font Subsetting

The following example assumes you are using Arabic environment. The steps involved in generating a PDF file for bidirectional (BiDi) languages using the font subsetting feature are as follows:

	
Set NLS_LANG=ARABIC_EGYPT.AR8MSWIN1256 (or AR8ISO8859P6 on UNIX).

	
Set REPORTS_PATH to the font directory in which the TrueType font exists. For example, C:\WINNT\fonts.

	
Open the uifont.ali file and edit the [PDF:Subset] section to specify the TrueType font name.

	
Note:

The uifont.ali file is located in the following directory on Windows and UNIX:

	
ORACLE_INSTANCE\config\FRComponent\

frcommon\guicommon\tk\admin

Example

[PDF:Subset]
"Andale Duospace WT J" = "Aduoj.ttf"
"Albany WT J"="AlbanWTJ.ttf"

	
Create a report having Arabic data and set it to the font specified in the example.

	
Run a report with DESTYPE=FILE DESFORMAT=PDF.

20.3 Introduction to Distribution XML Files

This section discusses the use of XML files related to distribution:

	
The distribution.dtd File

	
Using Variables Within Attributes

20.3.1 The distribution.dtd File

When you create a distribution XML file, you follow the syntax defined in the distribution.dtd file located in the following directory on both Windows and UNIX:

ORACLE_HOME\reports\dtd

As you look through the following sections, it may be useful to you to print the distribution.dtd file and refer to it as you review the descriptions of the elements and attributes.

	
Note:

Information provided in the distribution XML file is case-sensitive. You must preserve case of various elements and attributes as specified in the distribution.dtd file.

The distribution.dtd file lists all elements that are valid within a distribution XML file. Each of these elements have attributes. Attributes that come with default values need not be specified, unless you wish to override the default.

You can create a dynamic distribution by introducing variable values into many different attributes. Variable values reference columns that are present in the report that is using the distribution XML file.

20.3.2 Using Variables Within Attributes

You can use variables within attributes by entering &column_name or &<column_name> in the place of a static value.

	
Note:

The ampersand (&) and less-than symbol (<) have specific meanings in XML, but they are also required symbols for certain Oracle Reports command line options (for example, lexical parameters require the ampersand symbol). To avoid conflict with the XML meanings of these symbols when you set up variables, specify the encoded version of the ampersand (&) and less-than and greater-than symbols (< and >). For example:

Here is what the variable looks like improperly coded in an XML file:

<mail id="a1" to="&<manager>@mycompany.com" …

Here is what the variable looks like properly coded in an XML file:

<mail id="a1" to="&<manager>@mycompany.com" …>

There is no special requirement for the greater-than symbol (>) used with variables, but for consistency, we recommend that you use the encoded version (>).

The variable syntax you use depends on whether the value is expressed by itself or in combination with other values or strings. For example, a value for a to attribute in a mail element might be expressed as either:

<mail id="a2" to="&email" …>

or

<mail id="a3" to="&<first_name>.&<last_name>@myco.com …>

In the first example (id="a2"), the variable's referenced column (email) contains a full e-mail address and does not require additional information. The second example (id="a3") uses a combination of variable values (first_name and last_name) and static text to construct an e-mail address (static text is the period after first_name and @myco.com). In both cases, you will get dynamic e-mail addressing. The example you use will depend on whether the variable contains all the information you need or requires additional information in order to be complete.

For more complex layouts, you can also reference report columns you created with PL/SQL formulas. For example, in your report you may define the PL/SQL column:

PL/SQL formula CF_MAILID: return(:first_name||'.'||:last_name)

You'd reference this column in the distribution XML file as:

to="&<CF_MAILID>@mycompany.com"

7.15 Managing and Monitoring a Reports High Availability (HA) Solution

Oracle Fusion Middleware consists of many components that can be deployed in distributed topologies. The underlying paradigm used to enable high availability for Oracle Fusion Middleware is clustering, which unites various Oracle Fusion Middleware components in certain permutations to offer scalable and unified functionality, and redundancy should any of the individual components fail. For more information, see Section 2.5, "Setting Up a High Availability Environment".

7.15.1 Configuring Reports Server for High Availability

Refer to Section 2.5.3, "Configuring Reports Server for High Availability".

7.15.2 Displaying a Consolidated Job Queue

Refer to Section 7.7.2, "Displaying a Consolidated Job Queue".

7.15.3 Specifying a Shared Cache Directory

To specify a shared cache directory for high availability (HA):

	
Log in to Oracle Enterprise Manager.

	
Navigate to the Reports Application Home page (see Section 7.3, "Viewing the Component Topology").

	
From the Reports menu, select Administration > Advanced Configuration.

The Reports Application Advanced Configuration page displays.

	
In the High Availability Parameters section, in the Cluster Cache Directory field, enter the path to the shared cache directory for HA, then click Apply.

To see the changes, reload the WLS node.

19.4 Using RWWebServiceUtil to Test RWWebService

Oracle Reports installation provides a sample RWWebServiceUtil webservice testing utility class. This is available in ORACLE_HOME /reports/jlib/rwrun.jar. RWWebServiceUtil can be used to test various operations supported by RWWebService.

The following procedure outlines the necessary steps involved in using this utility:

	
Include rwrun.jar in the classpath.

	
Run RWWebServiceUtil as a normal java program as following:

$ORACLE_HOME\jdk\bin\java oracle.reports.rwclient.RWWebServiceUtil

	
It displays the following usage:

-endpoint url of the webservice
-method web service operation to invoke

runJob,getJobInfo,getServerInfo,killJob,getAPIVersion

 Input Parameters for runJob
 -cmdline command line to be used while submitting the job
 -sync boolean value to specify if job should be submitted
 in synchronous manner or asynchronous manner

 Input Parameters for getJobInfo
 -server server to be used for processing the request
 -jobid jobid in numeric format
 -authid user/password for authentication, if server is secure

 Input Parameters for getServerInfo
 -server server to be used for processing the request
 -authid authid for authentication, if server is secure

 Input Parameters for killJob
 -server server to be used for processing the request
 -jobid jobid in numeric format
 -authid authid for authentication, if server is secure

	
You can use this utility to submit jobs to reports server using the following command:

$ORACLE_HOME\jdk\bin\java
oracle.reports.rwclient.RWWebServiceUtil -endpoint
http://yourmachine:port/reports/rwwebservice -method runjob -cmdline
"report=test.rdf desformat=pdf destype=file desname=/tmp/output.pdf
server=ReportsServer" -sync true

	
This submits the request to the server and returns a soap response in the following format:

<?xml version = '1.0' encoding = 'UTF-8' standalone = 'yes'?>
 <serverQueues>
 <job id="2" queueType="past">
 <name>/home/vnanda/test.rdf</name>
 <type>report</type>
 <status code="4">Report finished successfully.</status>
 <owner>RWUser</owner>
 <server>reportsserver</server>
 <destination>
 <desType>file</desType>
 <desName>/tmp/output.pdf</desName>
 <desFormat>pdf</desFormat>
 <file>output1.pdf</file>
 </destination>
 <timingInfo>
 <queued>Feb 17, 2009 9:41:36 AM</queued>
 <started>Feb 17, 2009 9:41:36 AM</started>
 <finished>Feb 17, 2009 9:41:38 AM</finished>
 </timingInfo>
 </job>
 </serverQueues>

	
Similarly, you can invoke other operations on RWWebService using the RWWebServiceUtil.

16.1 Creating Reports Users and Named Groups

If you use the security features in Oracle Portal to control access to your reports, you must register all of your Reports users in Oracle Internet Directory and assign security privileges to all of them through Oracle Portal.

	
Note:

If you have a large user population already entered into an LDAP-compatible directory, you can use Oracle Internet Directory features to synchronize the directories and save yourself the effort of entering your users individually. You'll find information about Oracle Internet Directory's Directory Integration Server in the Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory.

In Oracle Portal, security privileges can be granted to individual users and to named groups of users. Named groups are useful for streamlining the process of granting access privileges. You can assign a set of access privileges to a named group, and grant the entire set of privileges to an individual simply by adding that person to the group.

	
Note:

When you use features like Oracle Portal Security, Portal Destination, and Job Status Repository, the JDBC database connections made by Oracle Reports Services may override the initial NLS_LANG setting. This change may in turn affect the behavior of the running report, such as bidirectional output in PDF. On UNIX platforms, you can work around this issue by using the environment switching functionality to dynamically set the environment for reports. Refer to Section 8.2.2, "Dynamic Environment Switching" for more information.

The next sections provide overview information on how to create users and groups in Oracle Portal. They include:

	
Default Reports-Related Groups

	
Creating Users and Groups

16.1.1 Default Reports-Related Groups

When you install Oracle Portal, Reports-related groups are created for you automatically. These include the following groups:

	
RW_BASIC_USER

	
RW_POWER_USER

	
RW_DEVELOPER

	
RW_ADMINISTRATOR

You must assign appropriate privileges to these groups to enable group members to perform specific functions on reports through Oracle Portal. For example, for each report object that you want members of a group (for example, RW_BASIC_USER) to be able to run, you have to grant the Execute privilege to that group from the Access tab of the report object. Similarly, if you want members of a group (for example, RW_ADMINISTRATOR) to be able manage Reports Servers, printers, and reports, you have to grant the Manage privilege to that group from the Access tab of those objects.

While you can assign object privileges to individual users, we recommend that every person who will access your reports belong to one of these groups or a group that you create yourself. If users try to run reports without being a member of one of these groups, by default, they are assigned the privileges of a basic user.

	
Note:

The RW_ groups are created automatically by configuring Oracle Portal, or you can create them manually. You can also run Web commands if they are in the IASADMINS group.

The following commands can be run by members of any group:

	
getfile

	
showmyjobs

	
killmyjobs

	
getjobid

	
showjobid

	
help

Only members of the RW_DEVELOPER group can run the following commands:

	
showmap

	
showenv

	
showjobs

	
parsequery

Members of the RW_ADMINISTRATOR group can run any command.

16.1.1.1 RW_BASIC_USER

Should the security check fail, members of the RW_BASIC_USER group see less detailed error messages than the users in other Oracle Reports groups, such as:

Security Check Error

Typically, you will want to assign this group minimal privileges. For example, you probably will want to give RW_BASIC_USER the privilege to execute reports and no more.

16.1.1.2 RW_POWER_USER

In addition to the privileges of the RW_BASIC_USER group, the RW_POWER_USER group sees error messages that are more detailed than those displayed to basic users. For example, if members of this group are not permitted to run to HTML, but they try anyway, they might get the message:

Cannot run report to HTML

This is more detailed than the message an RW_BASIC_USER would receive for the same error.

16.1.1.3 RW_DEVELOPER

In addition to the privileges of the RW_POWER_USER group, the RW_DEVELOPER group can run the following Web commands that show the system environment:

	
showmap

	
showenv

	
showjobs

	
parsequery

Typically, you would assign privileges to this group needed by a developer who is testing reports. Depending upon your installation, you might even assign them limited administrative privileges.

16.1.1.4 RW_ADMINISTRATOR

In addition to the privileges of the RW_DEVELOPER group, the RW_ADMINISTRATOR group has access to the administrator's functionality in the Oracle Reports Queue Manager, which means members of this group can manage the server queue, including rescheduling, deleting, reordering jobs in the server, and shutting down a server. Members of the RW_ADMINISTRATOR group can run any command. The RW_ADMINISTRATOR group also has the privilege to run Web commands through rwservlet.

Typically, you will want to assign to this group some (but probably not all) of the same privileges assigned to the PORTAL_ADMINISTRATORS group.

	
Note:

Initially, only members of the PORTAL_ADMINISTRATORS group have MANAGE privileges for Oracle Reports objects. They can CREATE, UPDATE, and DELETE the registered report definition files, servers, and printer objects in Oracle Portal. In addition to all the links activated for the developer user, administrators can navigate to the Access tab on the Component Management Page, accessible in Oracle Portal. This is where the administrator can specify who will have access to this report. People with administrator privileges can assign security privileges for other people and receive full error messages from Oracle Reports Services.

16.1.2 Creating Users and Groups

Oracle Portal uses the Delegated Administration Service (DAS) interface to Oracle Internet Directory to register users for access to Portal. You can enter the DAS interface through Portal to create new users. The creation of new users and groups is discussed in the Oracle Portal Administrator's Guide available on the Oracle Fusion Middleware documentation CD.

When you create groups, you must assign appropriate privileges to them to enable group members to perform any desired functions on reports through Oracle Portal. For example, for each report object that you want members of a group (for example, RW_BASIC_USER) to be able to run, you have to grant the Execute privilege to that group from the Access tab of the report object. Similarly, if you want members of a group (for example, RW_ADMINISTRATOR) to be able manage Reports Servers, printers, calendars, and reports, you have to grant the Manage privilege to that group from the Access tab of those objects.

Ideally, you should provide a user with the necessary privileges on objects by assigning them to a group that has appropriate privileges for their role. For example, if you are creating a user who needs to be able to run but not manage reports, you could assign her to RW_BASIC_USER. If need be, you may assign object privileges to individual users (for example, JSMITH) rather than groups, but this approach is more difficult and time consuming to manage.

16.1.3 Portal Password in Credential Store

Oracle Reports 11g Release 1 (11.1.1) uses credential store to store Portal password as a key. You can also use the credential store to configure database connection information for jobstatusrepository and jobRepository elements.

Portal password is stored in the reports credential map with key in the following syntax:

"portalpasswd_DomainName_InstanceName"

	
Note:

If you modify the Portal password, you must update the value of the key in the Reports credential store.

21 Using Event-Driven Publishing

Modern business processes often require the blending of automation into the work environment through behind-the-scenes functions and procedures. Behind-the-scenes tasks can include the automatic production of output such as an invoice that prints automatically when an order is processed, a Web site that is automatically updated with current data, or an automatic e-mail with fresh report output when a transaction is completed.

Automatic output in response to events used to be a fairly complicated effort, particularly if you wished to produce the same results possible through interactive, RAD development tools, such as Oracle Reports Developer.

To address the requirement of automatic output, Oracle Reports Services includes a scheduling mechanism that enables the invocation of reports on a scheduled basis without requiring additional user interaction. But this leaves one requirement unresolved: the ability to automatically run a report in response to an event in the database, such as the insertion of a record or the change of a value.

With the Oracle Reports Services Event-Driven Publishing API, you can automatically run a report in response to an event in the database, such as the insertion of a record or the change of a value. The Event-Driven Publishing API is a PL/SQL API that allows for the automatic submission of jobs to Oracle Reports Services from within the database.

This chapter provides an overview of the Event-Driven Publishing API and includes examples of its use. It includes the following sections:

	
The Event-Driven Publishing API

	
Debugging Applications that Use the Event-Driven Publishing API

	
Invoking a Report from a Database Event

	
Integrating with Oracle Advanced Queuing

8.8 Configuring Reports Server with the Oracle Process Manager and Notification Server and Oracle Enterprise Manager

The best way to start, shut down, monitor, and manage Reports Server is through the Oracle Process Manager and Notification Server (OPMN) and Oracle Enterprise Manager.

OPMN provides a centralized mechanism for initializing, maintaining, and shutting down your Oracle Fusion Middleware components, including Reports Server. Out-of-the-box, Oracle Reports components are managed with OPMN for death detection and recovery, providing an enhanced health check mechanism in Oracle Reports 11g Release 1 (11.1.1).

You can conveniently monitor your Reports Servers through Oracle Enterprise Manager and, if the process fails for any reason, OPMN restarts Reports Server for you automatically.

During installation of Oracle Fusion Middleware, Reports Servers are automatically configured in OPMN and registered with Oracle Enterprise Manager.

8.8.1 opmn.xml

Components are configured with OPMN in the opmn.xml file located in INSTANCE_HOME/config/OPMN/opmn/opmn.xml This section describes how to configure the following components through OPMN:

	
Module Specification

	
Standalone Reports Server Specification

	
Oracle Reports Bridge Specification

	
COS Naming Service Specification

	
See Also:

For a detailed description of OPMNconfiguration and the contents of opmn.xml:

	
Oracle Fusion Middleware Administrator's Guide

8.8.1.1 Module Specification

The module tag is included by default in opmn.xml and tells OPMN to load a particular module. In the case of Reports Server, the OracleAS Reports Services module must be loaded. This module is loaded with the following information, by default, in opmn.xml:

<module path="/private/oraclehome/opmn/lib/libopmnreports"><module-id id="ReportsServices"/></module>

8.8.1.2 Standalone Reports Server Specification

In the case of the standalone Reports Server, the Reports Server is running in its own component. Therefore, you must specify a separate component for Reports Server to control the server through OPMN. For example:

<ias-component id="<ServerName>">
 <process-type id="ReportsServerComponent" module-id="ReportsServices">
 <process-set id="<ServerName>" restart-on-death="true" numprocs="1">
 <environment>
 <variable id="PATH" value="<PATH environment variable> "/>
 </environment>
 <module-data>
 <category id="general-parameters">
 <data id="batch" value="yes"/>
 </category>
 <category id="restart-parameters">
 <data id="reverseping-timeout" value="120"/>
 </category>
 </module-data>
 <start timeout="75" retry="2"/>
 <stop timeout="120"/>
 <restart timeout="75"/>
 <ping timeout="30" interval="30"/>
 </process-set>
 </process-type>
</ias-component>

	
Note:

The timeout values in the preceding example are all in number of seconds.

The key segments of this specification for Oracle Reports are described below.

<ias-component id="<RSName>" ...>

This tag specifies the name of Reports Server. It must match the Reports Server internal name from targets.xml

	
See Also:

Chapter 19, "Managing and Monitoring OracleAS Reports Services" for more information on targets.xml.

<process-type id="ReportsServer" module-id="ReportsServices">

This tag defines the process for the named Reports Server and associates it with the OracleAS Reports Services process module.

<process-set id="<RSName>" restart-on-death="true" numprocs="1">

This tag defines the process characteristics for the named Reports Server. It indicates whether Reports Server should be restarted when it fails. It also specifies the number of Reports Servers started for this process set, which has to be 1 because the process-set id identifies a single Reports Server name.

<variable id="PATH" value="your_shell_path"/>

The first tag specifies the value for the PATH environment variable for the process. This variable must be set for the start script to find uname. This environment element is not needed on the Microsoft Windows platform.

<category id="general-parameters"><data id="batch" value="yes"/></category>

This group of tags gathers together all of the data (parameters) common to the process. In this particular example, it provides a way to specify that the BATCH parameter be sent to Reports Server. batch=yes|no is an option to the start and stop commands of Reports Server. If it is not configured, this option is not passed in to Reports Server.

<category id="restart-parameters"><data id="reverseping-timeout" value="120"/></category>

This group of tags indicates the restart parameters category, which defines parameters to be used in detecting whether the process has failed and needs to be restarted. If a notification is not received within the specified reverseping-timeout period, then the process is considered failed and will be restarted.

	
See Also:

For more information on opmn.xml and its contents:

	
Oracle Application Server Administrator's Guide

8.8.1.3 Oracle Reports Bridge Specification

The Oracle Reports bridge runs within its own component. Therefore, you must specify a separate ias-component tag for the Oracle Reports bridge to control the bridge through OPMN.For troubleshooting scenarios and diagnosis, see Section D.8, "Diagnosing Oracle Reports Bridge Problems"

The following are examples for a minimum bridge configuration as well as a full bridge configuration.

Example 8-1 Minimum Configuration for Oracle Reports Bridge

<ias-component id="your_bridge_name" status="enabled" id-matching="false"
xmlns="http://www.oracle.com/ias-instance">
 <process-type id="ReportsBridge" module-id="ReportsBridgeServices">
 <process-set id="your_bridge_name" restart-on-death="true" numprocs="1">
 <environment>
 <variable id="PATH" value="your_oracle_home_directory/jdk/jre/bin" append="true"/>
 <variable id="PATH" value="your_shell_path" append="true"/>
 <variable id="CLASSPATH" value="your_oracle_home_directory/jlib/zrclient.jar" append="true"/>
 <variable id="CLASSPATH" value="your_oracle_home_directory/reports/jlib/rwrun.jar" append="true"/>
 </environment>
 </process-set>
 </process-type>
</ias-component>

Example 8-2 Full Configuration for Oracle Reports Bridge

<ias-component id="your_bridge_name" status="enabled" id-matching="false">
 <process-type id="ReportsBridge"module-id="ReportsBridgeServices">
 <process-set id="your_bridge_name" restart-on-death="true" numprocs="1">
 <environment>
 <variable id="PATH" value="your_shell_path" append="true"/>
 <variable id="CLASSPATH" value="your_oracle_home_directory/jlib/zrclient.jar" append="true"/>
 <variable id="CLASSPATH" value="your_oracle_home_directory/reports/jlib/rwrun.jar" append="true"/>
 </environment>
 <module-data>
 <category id="restart-parameters">
 <data id="reverseping-timeout" value="120"/>
 </category>
 <category id="start-parameters">>
 <data id="jvm-options" value="="-Xms128mb -Xmx256mb"/>
 <data id="bridge-options" value="start_options_if_any"/>
 </category>
 <category id="stop-parameters">
 <data id="jvm-options" value="-Xms128mb -Xmx256mb"/>
 <data id="bridge-options" value="stop_options_if_any"/>
 </category>
 </module-data>
 <start timeout="120" retry="3"/>
 <stop timeout="120"/>
 <restart timeout="120" retry="0"/>
 </process-set>
 </process-type>
</ias-component>

8.8.1.4 COS Naming Service Specification

By default, Oracle Reports uses the built-in broadcast mechanism for Reports Server discovery. Alternatively, Oracle Reports clients can use the Common Object Service (COS) naming service for Reports Server discovery to submit report requests when the built-in broadcast mechanism is not suitable for your environment, as in the following scenarios:

	
Oracle Reports is installed on a machine that is connected to a network using VPN.

	
You want to avoid broadcast traffic on your network.

For more information, see Section 2.3.4.2, "Server Discovery Using the COS Naming Service".To control the COS naming service through OPMN, the opmn.xml file must include a custom ias-component tag, as follows:

<ias-component id="namingservice">
<process-type id="namingservice" module-id="CUSTOM">
 <environment>
 <variable id="PATH" value="ORACLE_HOME\jdk\bin"/>
 </environment>
 <process-set id="namingservice" numprocs="1">
 <module-data>
 <category id="start-parameters">
 <data id="start-executable" value="ORACLE_HOME\jdk\bin\orbd"/>
 <data id="start-args" value="-ORBInitialPort port"/>>
 </category>
 </module-data>
 </process-set>
 </process-type>
</ias-component>

Where,

ORACLE_HOME is your Oracle Home directory.

port is the port on which you want to start the COS naming service. This port must be specified in your rwnetwork.conf file as specified in Section 8.5.1.3, "namingService".

Additionally, to make sure that OPMN starts the COS naming service before it attempts to start Reports Server, opmn.xml must include the following dependency:

<ias-component id="<reports_server_name>" status="enabled" id-matching="false">
<process-type id="ReportsServer" module-id="ReportsServices">
...
<managed-process ias-component="namingservice" process-type="namingservice"
process-set="namingservice" autostart="true"/>
...
</process-type>
</ias-component>

To use OPMN to control the COS naming service, perform the following steps:

	
Stop Reports Server and WLS_REPORTS.

	
Edit the opmn.xml file and add an ias-component tag. For example:

...
<ias-component id="namingservice">
<process-type id="namingservice" module-id="CUSTOM">
 <environment>
 <variable id="PATH" value="G:\FRHome_2\jdk\bin"/>
 </environment>
 <process-set id="namingservice" numprocs="1">
 <module-data>
 <category id="start-parameters">
 <data id="start-executable" value="G:\FRHome_2\jdk\bin\orbd"/>
 <data id="start-args" value="-ORBInitialPort 8988"/>
 </category>
 </module-data>
 </process-set>
 </process-type>
</ias-component>
...

	
Add a dependency to the Reports Server ias-component tag. For example:

<category id="general-parameters">
 <data id="batch" value="yes"/>
</category>
<category id="restart-parameters">
 <data id="reverseping-timeout" value="120"/>
</category>
 </module-data>
 <dependencies>
 <managed-process ias-component="namingservice"
 process-type="namingservice" process-set="namingservice"
 autostart="true"/>
 </dependencies>
<stop timeout="120"/>
<restart timeout="600"/>
<ping timeout="30" interval="30"/>
</process-set>
</process-type>
</ias-component>
...

	
Note:

In Reports 11g Release 1 (11.1.1), you cannot add a dependency on WLS_REPORTS because the in-process server and WLS_REPORTS are not managed by OPMN.

	
Navigate to your ORACLE_INSTANCE/opmn/bin directory.

	
Run one of the following commands:

	
If OPMN is up and running, to reload the changes made to the opmn.xml file: opmnctl reload

	
If OPMN is not running: opmnctl start

	
Start the COS naming service using either of the following commands:

opmnctl startproc ias-component=namingservice

or

opmnctl startproc process-type=namingservice

	
Modify the rwnetwork.conf file to use the COS naming service instead of the default broadcast mechanism, as described in Section 8.5.1.3, "namingService".

	
Start WLS_REPORTS and Reports Servers.

To stop the COS naming service, use the following command:

opmnctl stopproc ias-component=namingservice

To restart the COS naming service, use the following command:

opmnctl restartproc ias-component=namingservice

Troubleshooting: If a COMM_FAILURE error displays when Reports Server is started, either the naming service is not started properly or the port is not specified properly. To resolve this error, check whether the naming service process orbd is running. If not, start it. If the orbd process is running, check the port specified for namingService in the rwnetwork.conf file. It should be same as the port on which orbd is started.

When you execute the command opmnctl stopall, Reports Server may not stop gracefully, and may be killed by OPMN. This is because OPMN does not check the dependency while stopping the process. If OPMN stops the COS naming service before stopping Reports Server, Reports Server will not shut down gracefully. This is harmless, and can be ignored.

8.8.2 Creating a New Reports Server

You can use the following OPMN commands to create new Reports Server.

ORACLE_INSTANCE/bin/opmnctl createcomponent
 -adminUsername weblogic
 -adminHost ${ADMIN_HOST}
 -adminPort ${ADMIN_PORT}
 -oracleHome ${ORACLE_HOME}
 -oracleInstance ${ORACLE_INSTANCE}
 -instanceName $INSTANCE_NAME
 -componentName <servername>
 -componentType ReportsServerComponent

For example, to create a new Server named test_server, run the following commands on the commandline:

ORACLE_INSTANCE/bin/opmnctl createcomponent
 -adminUsername weblogic
 -adminHost host.domain.com
 -adminPort 7001
 -oracleHome /path/oracle_home
 -oracleInstance /path/instance_home
 -instanceName myinst
 -componentName test_server
 -componentType ReportsServerComponent

After creating the Reports Server, restart the WLS_REPORTS managed server by stopping it and and start it again. This is necessary for completing registration of the new Reports Server configuration MBeans.

8.8.3 Creating a New Bridge Component Type

You can use the following OPMN commands to create new Bridge Component Type.

ORACLE_INSTANCE/bin/opmnctl createcomponent
 -adminUsername weblogic
 -adminHost ${ADMIN_HOST}
 -adminPort ${ADMIN_PORT}
 -oracleHome ${ORACLE_HOME}
 -oracleInstance ${ORACLE_INSTANCE}
 -instanceName $INSTANCE_NAME
 -componentName <Bridgename>
 -componentType ReportsBridgeComponent

For example, to create a new Bridge Component Type named test_bridge, run the following commands on the commandline:

ORACLE_INSTANCE/bin/opmnctl createcomponent
 -adminUsername weblogic
 -adminHost host.domain.com
 -adminPort 7001
 -oracleHome /path/oracle_home
 -oracleInstance /path/instance_home
 -instanceName myinst -componentName test_bridge
 -componentType ReportsBridgeComponent

	
Note:

After running the command the new server / bridge will be automatically registered with OPMN.

6.5 Starting, Stopping, and Restarting Oracle Reports Components Using Oracle Enterprise Manager

All start and stop operations on Oracle Reports components can be performed using Oracle Enterprise Manager. Refer to Section 7.4, "Starting, Stopping, and Restarting Oracle Reports Components".

8.3 Oracle Reports Servlet Configuration File

The configuration settings for the Oracle Reports Servlet (rwservlet) component of Oracle Reports Services are stored in the XML file rwservlet.properties, located in the directory specified in Table 8-1.

For Windows, note that rwservlet.properties uses double backslashes (\\) instead of single backslashes to specify a directory path. The first slash "escapes" the second, which would otherwise have another meaning in this file. For example, in a Windows-based rwservlet.properties file, the path:

d:\InstanceHome\config\ReportsServerComponent\ServerName\filename.ext

becomes:

d:\\InstanceHome\\config\\ReportsServerComponent\\ServerName\\filename.ext

For UNIX, use that platform's standard for specifying directory paths, for example:

InstanceHome/config/ReportsServerComponent/ServerName/filename.ext

8.3.1 Oracle Reports Servlet Configuration Elements

The rwservlet.xsd file provides the following data type definitions for configuring rwservlet.properties elements:

	
rwservlet

	
server

	
singlesignon

	
inprocess

	
reports_servermap

	
cookie

	
defaultcharset

	
webcommandaccess

	
allowhtmltags

	
helpurl

	
imageurl

	
reloadkeymap

	
dbauth

	
sysauth

	
errortemplate

	
diagtags

	
cluster

	
oidconnection

	
allowauthid

	
enabledbproxy

These elements along with their related attributes and sub-elements are discussed in the following subsections.

Note that these are XML elements, and XML is case-sensitive. Additionally, when you add any of these elements to the rwservlet.properties configuration file, you must follow the order of elements as described in rwservlet.xsd.

8.3.1.1 rwservlet

The rwservlet element is defined in rwservlet.xsd as follows:

<xs:element name="rwservlet">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="server" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="singlesignon" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="inprocess" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="reports_servermap" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="cookie" minOccurs="0" maxOccurs="1"/>
 <xs:element name="defaultcharset" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="webcommandaccess" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="allowhtmltags" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="helpurl" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="imageurl" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="reloadkeymap" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="dbauth" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="sysauth" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="errortemplate" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="diagtags" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="cluster" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="oidconnection" minOccurs="0" maxOccurs="1"/>
 <xs:element name="allowauthid" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="enabledbproxy" type="xs:string" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Example

In rwservlet.properties, the rwservlet element may be specified as shown in this example:

<rwservlet>
 one or more element specifications
</rwservlet>

Required/Optional

Required. You can have a maximum of one rwservlet element in a given configuration file.

Description

The rwservlet element opens and closes the content area of the Oracle Reports Servlet (rwservlet) configuration file. In terms of the file's hierarchy, all the other elements are subordinate to the rwservlet element.

The rwservlet element includes the following sub-elements in its definition:

	
server

	
singlesignon

	
inprocess

	
reports_servermap

	
cookie

	
defaultcharset

	
webcommandaccess

	
allowhtmltags

	
helpurl

	
imageurl

	
reloadkeymap

	
dbauth

	
sysauth

	
errortemplate

	
diagtags

	
cluster

	
oidconnection

	
enabledbproxy

8.3.1.1.1 server

The server sub-element of rwservlet is defined in rwservlet.xsd as follows:

<xs:element name="server" type="xs:string" minOccurs="0" maxOccurs="1"/>

Example

In rwservlet.properties, the server element may be specified as shown in this example:

<server>myserver</server>

Description

The server element specifies the name of the in-process server. If a Reports Server name is not specified, for example, in the runtime URL, rwservlet starts the in-process server (if not started already) with the name specified by the server element, and submits the job to it.

If the server element is not specified, the default in-process server name is: rep_hostname.

When the inprocess element specifies no, rwservlet tries to bind to an external server with the name specified by the server element.

8.3.1.1.2 singlesignon

The singlesignon sub-element of rwservlet is defined in rwservlet.xsd as follows:

<xs:element name="singlesignon" type="xs:string" minOccurs="0" maxOccurs="1"/>

Example

In rwservlet.properties, the singlesignon element may be specified as shown in this example:

<singlesignon>yes</singlesignon>

Description

The singlesignon element specifies whether or not OracleAS Single Sign-On is enabled:

	
yes (default): OracleAS Single Sign-On is enabled.

	
no: OracleAS Single Sign-On is not enabled.

For more information about OracleAS Single Sign-On, refer to Chapter 17, "Configuring and Administering OracleAS Single Sign-On".

8.3.1.1.3 inprocess

The inprocess sub-element of rwservlet is defined in rwservlet.xsd as follows:

<xs:element name="inprocess" type="xs:string" minOccurs="0" maxOccurs="1"/>

Example

In rwservlet.properties, the inprocess element may be specified as shown in this example:

<inprocess>yes</inprocess>

Description

The inprocess element specifies whether or not to run Reports Server within the same process as Oracle Reports Servlet (rwservlet):

	
yes (default): Reports Server run within the same process as Oracle Reports Servlet (rwservlet).

	
no: Reports Server does not within the same process as Oracle Reports Servlet (rwservlet).

	
Note:

The pros and cons of running an in-process server are explored in Chapter 2, "Understanding the Oracle Reports Services Architecture".

For troubleshooting printing and font issues when using the in-process server, see Section D.1.10, "Printing and Font Errors When Using In-process Reports Server".

8.3.1.1.4 reports_servermap

The reports_servermap sub-element of rwservlet is defined in rwservlet.xsd as follows:

<xs:element name="reports_servermap" type="xs:string" minOccurs="0"
 maxOccurs="1"/>

Example

In rwservlet.properties, the reports_servermap element may be specified as shown in this example:

<reports_servermap>
 dev_cluster:dev_server;prd_cluster:prd_server;qa_cluster:qa_server
</reports_servermap>

Description

In Oracle Reports 10g Release 2 (10.1.2), Reports Server clustering was deprecated. An Oracle Forms Services application from prior releases that includes a Reports Server cluster name will fail to bind to the Reports Server cluster it references.

To resolve this issue, the reports_servermap element maps a cluster name to a Reports Server name. This avoids the necessity to change the cluster name in all Oracle Forms Services applications.

An Oracle Forms Services application can call Oracle Reports in the following ways:

	
Using RUN_REPORT_OBJECT. If the call specifies a Reports Server cluster name instead of a Reports Server name, the REPORTS_SERVERMAP environment variable must be set in the Oracle Forms Services default.env file.

If your Oracle Forms Services application uses multiple Reports Server cluster names, you can map each of those cluster names to a different Reports Server using REPORTS_SERVERMAP, as follows:

REPORTS_SERVERMAP=cluster1:repserver1;cluster2:repserver2;cluster3:repserver3

For example, if your Oracle Forms Services application includes 3 clusters with names dev_cluster, prd_cluster, and qa_cluster in 10g Release 1 (9.0.4), you can map these cluster names to respective server names in later releases, as follows:

REPORTS_SERVERMAP=dev_cluster:dev_server;prd_cluster:prd_server;qa_cluster:qa_server

For more information, see the Oracle Fusion Middleware Forms Services Deployment Guide.

	
Using WEB.SHOW_DOCUMENT. In this case, the request is submitted to rwservlet. If the call specifies a Reports Server cluster name instead of a Reports Server name, the reports_servermap element must be set in the rwservlet.properties file. For example:

<reports_servermap>
 cluster:repserver
</reports_servermap>

where

cluster is the Reports Server cluster name that was present in prior releases (Oracle Reports 9i and 10g Release 1 (9.0.4)).

repserver is the Reports Server name in later releases.

When reports_servermap is set in rwservlet.properties, any request to cluster in the Oracle Forms Services application is redirected to repserver.

8.3.1.1.5 cookie

The cookie element is defined in rwservlet.xsd as follows:

<xs:element name="cookie">
 <xs:complexType>
 <xs:attribute name="cookieexpire" use="required" type="xs:integer"/>
 <xs:attribute name="encryptionkey" use="required" type="xs:string"/>
 </xs:complexType>
</xs:element>

Example

In rwservlet.properties, the cookie element may be specified as shown in this example:

<cookie cookieexpire="30" encryptionkey="reports"/>

Required/Optional

Optional.

Description

The cookie element specifies an expiration time and encryption key for cookies, which save encrypted user names and passwords on the client-side when users first authenticate themselves. When the server receives a cookie from the client, the server compares the time saved in the cookie with the current system time. If the time difference is longer than the number of minutes defined in cookieexpire, the server rejects the cookie and returns to the client the authentication form along with an error message. Users must re-authenticate to run the report.

The cookie element attributes are described in Table 8-26.

Table 8-26 Attributes of the cookie Element

	Attribute	Valid Values	Description
	
cookieexpire

	
Integer

	
Default: 30

The lifetime (in minutes) of the database and system authentication cookie.

	
encryptionkey

	
any character string

	
The encryption key to be used to encrypt the user name and password of the database and system authentication cookies.

8.3.1.1.6 defaultcharset

The defaultcharset sub-element of rwservlet is defined in rwservlet.xsd as follows:

<xs:element name="defaultcharset" type="xs:string" minOccurs="0" maxOccurs="1"/>

Example

In rwservlet.properties, the defaultcharset property may be specified as shown in this example:

<defaultcharset>JA16EUC</defaultcharset>

Description

The defaultcharset element specifies the character encoding for decoding non-ASCII escaped characters in the request URL or non-ASCII characters in the Parameter Form input. This ensures that rwservlet uses the required encoding when decoding the parameter name and value.

You can set the defaultcharset element to either:

	
The database's NLS_CHARACTERSET (for example, JA16EUC).

	
The IANA-defined character set (for example, EUC-JP).

	
Note:

To use non-ASCII characters in user parameter names and values when using the Event-Driven Publishing API, you must ensure that the defaultcharset element in the rwservlet.properties file matches the value of the DEFAULTCHARSET parameter in your parameter list. For more information, see Section 21.1.3, "Including non-ASCII Characters in Parameter Names and Values".

8.3.1.1.7 webcommandaccess

The webcommandaccess element is defined in rwservlet.xsd as follows:

<xs:element name="webcommandaccess">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="L0"/>
 <xs:enumeration value="L1"/>
 <xs:enumeration value="L2"/>
 <xs:enumeration value="NO"/>
 <xs:enumeration value="YES"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Example

In rwservlet.properties, the webcommandaccess property may be specified as shown in this example:

<webcommandaccess>L1</webcommandaccess>

Description

The webcommandaccess element specifies access permission for rwservlet keywords (Web commands) for a non-secure server.

	
Note:

For secure Reports Server, Reports Server verifies the user's privileges based on the entries in Oracle Internet Directory.

Valid settings are:

	
L0: no Web commands allowed.

	
L1: only end user Web commands allowed (GETJOBID, KILLJOBID, SHOWAUTH, SHOWJOBID).

	
L2: administrator Web commands (DELAUTH, GETSERVERINFO, KILLENGINE, PARSEQUERY, SHOWENV, SHOWJOBS, SHOWMAP, SHOWMYJOBS) are also allowed. AUTHID is required to run administrator commands.

	
NO: for backward compatibility with DIAGNOSTIC=NO in 10g (rwservlet.properties).

	
YES: for backward compatibility with DIAGNOSTIC=YES in 10g (rwservlet.properties).

For L2 Web command access, you do not need to pass the authid. The authid parameter is required only for the STOPSERVER command irrespective of the webcommandaccess value.

8.3.1.1.8 allowhtmltags

The allowhtmltags sub-element of rwservlet is defined in rwservlet.xsd as follows:

<xs:element name="allowhtmltags" type="xs:string" minOccurs="0" maxOccurs="1"/>

Example

In rwservlet.properties, the allowhtmltags element may be specified as shown in this example:

<allowhtmltags>yes</allowhtmltags>

Description

The allowhtmltags element specifies whether or not to allow HTML code to be entered in the URL when running a report:

	
no (default): HTML code in the URL is disallowed.

	
yes: HTML code in the URL is allowed.

	
Note:

Any HTML code included as part of a report request URL might lead to a security compromise as it causes certain browsers to execute any script or code in the URL.

8.3.1.1.9 helpurl

The helpurl sub-element of rwservlet is defined in rwservlet.xsd as follows:

<xs:element name="helpurl" type="xs:string" minOccurs="0" maxOccurs="1"/>

Example

In rwservlet.properties, the helpurl element may be specified as shown in this example:

<helpurl>http://myserver/help_file/help_topic.htm</helpurl>

Description

The helpurl element specifies the name of a help file to be used instead of the default (ORACLE_HOME\reports\templates\help.htm).

The rwservlet HELP keyword (Web command) displays either the default help file, or the help file specified by the helpurl element.

	
Note:

For more about the HELP keyword, see Section A.6.12, "HELP".

8.3.1.1.10 imageurl

The imageurl sub-element of rwservlet is defined in rwservlet.xsd as follows:

<xs:element name="imageurl" type="xs:string" minOccurs="0" maxOccurs="1"/>

Example

In rwservlet.properties, the imageurl property may be specified as shown in this example:

<imageurl>http://machine_name:port/reports/rwservlet</imageurl>

Description

The imageurl element specifies the location of reports' dynamically generated images.

This element applies to JSPs that do not run through Oracle Reports Servlet (rwservlet). It ensures that dynamically generated images, such as charts, will be viewable only by the person who runs the report. JSPs, and other report types, that run through rwservlet automatically have this protection.

8.3.1.1.11 reloadkeymap

The reloadkeymap sub-element of rwservlet is defined in rwservlet.xsd as follows:

<xs:element name="reloadkeymap" type="xs:string" minOccurs="0" maxOccurs="1"/>

Example

In rwservlet.properties, the reloadkeymap element may be specified as shown in this example:

<reloadkeymap>yes</reloadkeymap>

Description

The reloadkeymap element specifies whether the key map file (cgicmd.dat) should be reloaded each time rwservlet receives a request:

	
no (default): Key map file is not reloaded when rwservlet receives a request.

	
yes: Key map file is reloaded when rwservlet receives a request.

This is useful if you frequently make changes to the map file and want the process of loading your changes to be automatic. Runtime performance will be affected according to how long it takes to reload the file.

Typically, this element specifies no in a production environment and yes in a testing environment.

8.3.1.1.12 dbauth

dbauth is the html template used to enter the database information. If the user does not enter the database information while giving reports request, the reports servlet challenges the user to enter the db info in the HTML template.

The dbauth sub-element of rwservlet is defined in rwservlet.xsd as follows:

<xs:element name="dbauth" type="xs:string" minOccurs="0" maxOccurs="1"/>

Example

In rwservlet.properties, the dbauth element may be specified as shown in this example:

<dbauth>rwdbauth.htm</dbauth>

It is not necessary to enter the path to a template when it is stored in the default template directory:

ORACLE_HOME\reports\templates

Description

The dbauth element specifies the location and filename of the HTML templates, if you wish to customize the login dialog boxes with your company logo, linked buttons, or any other HTML you care to use. By default, the file name is rwdbauth.htm.

8.3.1.1.13 sysauth

sysauth is the HTML template used to enter the authentication information.

The sysauth sub-element of rwservlet is defined in rwservlet.xsd as follows:

<xs:element name="sysauth" type="xs:string" minOccurs="0" maxOccurs="1"/>

Example

In rwservlet.properties, the sysauth element may be specified as shown in this example:

<sysauth>rwsysauth.htm</sysauth>

It is not necessary to enter the path to a template when it is stored in the default template directory:

ORACLE_HOME\reports\templates

Description

The sysauth element specifies the location and filename of the HTML templates, if you wish to customize login dialog boxes for a secure report with your company logo, linked buttons, or any other HTML you care to use. By default, the file name is rwsysauth.htm.

8.3.1.1.14 errortemplate

The errortemplate sub-element of rwservlet is defined in rwservlet.xsd as follows:

<xs:element name="errortemplate" type="xs:string" minOccurs="0" maxOccurs="1"/>

Example

In rwservlet.properties, the errortemplate element may be specified as shown in this example:

<errortemplate>rwerror.htm</errortemplate>

It is not necessary to enter the path to the error message template when it is stored in the default template directory:

ORACLE_HOME\reports\templates

Description

The errortemplate element specifies the name and location of your error message template. By default, the file name is rwerror.htm.

The error message template provides the visual setting within which the error message is displayed. You may wish to customize the appearance of error messages, for example with your company logo, or with an icon you plan to associate with errors. You may wish to add buttons that link your users to a help system, your company home page, or back to the last browser window. You can do this by using the errortemplate element to specify your own HTML framework for automatically generated error messages.

The character set of the default error message template (rwerror.htm) is iso-8859-1 to ensure consistency across all platforms.

8.3.1.1.15 diagtags

The diagtags element is defined in rwservlet.xsd as follows:

<xs:element name="diagtags">
 <xs:complexType>
 <xs:attribute name="diagbodytags" use="required" type="xs:string"/>
 <xs:attribute name="diagheadtags" use="required" type="xs:string"/>
 </xs:complexType>
</xs:element>

Required/Optional

Optional.

Description

The diagtags element specifies additional HTML encoding in the <body> and <head> tags in the output files associated with diagnostic and debugging output. You can use these to include formatting options to make diagnostic and debugging output easier to read.

The diagtags element attributes are described in Table 8-27.

Table 8-27 Attributes of the diagtags Element

	Attribute	Valid Values	Description
	
diagbodytags

	
HTML code for <body> tag

	
HTML code to add between the <body> and </body> tags.

	
diagheadtags

	
HTML code for <head> tag

	
HTML code to add between the <head> and </head> tags.

8.3.1.1.16 cluster

	
Note:

For information about Oracle Fusion Middleware-level techniques for high availability, refer to Section 2.5, "Setting Up a High Availability Environment".

8.3.1.1.17 oidconnection

The oidconnection element is defined in rwservlet.xsd as follows:

<xs:element name="oidconnection">
 <xs:complexType>
 <xs:attribute name="oidcon_appentity" use="required" type="xs:string"/>
 <xs:attribute name="oidcon_passwdkey" use="required" type="xs:string"/>
 <xs:attribute name="oidcon_url" use="required" type="xs:string"/>
 <xs:attribute name="oidcon_init" type="xs:integer"/>
 <xs:attribute name="oidcon_increment" type="xs:integer"/>
 <xs:attribute name="oidcon_timeout">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
</xs:element>

Example

In rwservlet.properties, the oidconnection element may be specified as shown in this example:

<oidconnection>
 oid_appentity="reportsapp.idc.oracle.com>
 oidcon_init="10"
 oidcon_increment="10"
 oidcon_timeout="1">
</oidconnection>

Description

The oidconnection element specifies Oracle Internet Directory for rwservlet.

For Reports Server, you can specify Oracle Internet Directory connection pooling parameters using the oidconnection element in the server configuration file, as described in Section 8.2.1.16, "oidconnection".

The oidconnection element attributes are described in Table 8-28.

Table 8-28 Attributes of the oidconnection Element

	Attribute	Valid Values	Description
	
oidcon_appentity

	
N/A

	
Default: Set at install time

Oracle Internet Directory App entity created at install time for internal use of Reports.

	
oidcon_passwdkey

	
N/A

	
Default: Set at install time

Random password key created to connect to Oracle Internet Directory for internal use of Reports.

	
oidcon_url

	
N/A

	
Default: Set at install time

Oracle Internet Directory Url to connect to oid

	
oidcon_init

	
number

	
Default: 10

Initial number of Oracle Internet Directory connections to be created when rwservlet is initialized.

	
oidcon_increment

	
number

	
Default: 10

Number of connections to be incremented when all connections are used up.

	
oidcon_timeout

	
number

	
Default: 0 (no timeout)

Time in seconds for which a connection can be idle.

8.3.1.1.18 allowauthid

The allowauthid sub-element of rwservlet is defined in rwservlet.xsd as follows:

 <xs:element name="allowauthid" type="xs:string" minOccurs="0" maxOccurs="1"/>

Description

allowauthid is the element to be added in rwservlet.properties either to enable or disable passing of the authid through an URL.

Example

In rwservlet.properties, the allowauthid element may be specified as shown in this example:

 <allowauthid> yes </allowauthid>

Required/Optional

Optional.

Default

By default the allowauthid is set to Yes. If the authid is set to No, authorization through an URL is disabled and Single Sign-On should be used to enter the username and password.

8.3.1.1.19 enabledbproxy

The enabledbproxy sub-element of rwservlet is defined in rwservlet.xsd as follows:

<xs:element name="enabledbproxy" type="xs:string" minOccurs="0" maxOccurs="1"/>

Description

enabledbproxy is the element to be added in the rwservlet.properties file to make the dbproxy feature work through the rwservlet.

Example

In rwservlet.properties, the enabledbproxy element may be specified as shown in this example:

 <enabledbproxy> yes </enabledbproxy>

Required/Optional

Optional.

Default

By default, the enabledbproxy is set to Yes.

8.3.2 Specifying an Alternate Oracle Reports Servlet Configuration File

Perform the following steps to specify an alternate Oracle Reports Servlet Configuration File:

	
Log in to the WebLogic Server Administration Console.

	
Under Domain Structure in the left pane, click Environment. The Summary of Environment page is displayed.

	
In this page, click Servers. The Summary of Servers page is displayed.

	
From the list of servers, click WLS_REPORTS. The Settings for WLS_ REPORTS page is displayed.

	
Click the Server Start tab.

	
Add the following entry in the Arguments field:

-DServletPropFile=your_servlet_properties_file

	
Click Save.

	
Restart WLS_REPORTS.

By default, Oracle Reports Servlet (rwservlet) uses the rwservlet.properties file as the configuration file. If you are running multiple Oracle WebLogic Server instances with reports installed on the same Oracle Fusion Middleware and wish to use different configuration files, you can do so by adding the following parameter in the WLS_REPORTS startup parameter section in the WebLogic Server Administration Console:

-DServletPropFile=your_servlet_properties_file

6.2 Starting and Stopping Oracle Reports Bridge

The Oracle Reports bridge is used to connect two subnets. It acts as a gateway between Oracle Reports components running in different subnets.

	
Note:

In Oracle Reports 11g Release 1 (11.1.1), the Oracle Reports bridge is integrated with Oracle Enterprise Manager 11g. Therefore, you can see the Oracle Reports bridge status or start and stop it from the Oracle Enterprise Manager.

For troubleshooting scenarios and diagnosis, see Appendix D, "Diagnosing Oracle Reports Bridge Problems".

6.2.1 Starting, Stopping, and Restarting the Oracle Reports Bridge from the Oracle Process Manager and Notification Server

Before you can start the Oracle Reports bridge with Oracle Process Manager and Notification (OPMN), you must add the bridge to OPMN, as shown in the following example:

ORACLE_INSTANCE/bin/opmnctl createcomponent -adminUsername weblogic -adminHost <host_name> -adminPort <port> -oracleHome <oracle_home -oracleInstance <instance_home> -instanceName <instancename> -componentName <bridge_name> -componentType ReportsBridgeComponent

To start the Oracle Reports bridge if it was configured through the Oracle Process Manager and Notification (OPMN) Server, use either of the following commands:

ORACLE_INSTANCE/bin/opmnctl startproc ias-component=bridgename
ORACLE_INSTANCE/bin/opmnctl startproc process-type=ReportsBridgeComponent

To stop the Oracle Reports bridge, use the following command:

ORACLE_INSTANCE/bin/opmnctl stopproc ias-component=bridgename

To restart the Oracle Reports bridge, use the following command:

ORACLE_INSTANCE/bin/opmnctl restartproc ias-component=bridgename

The Oracle Reports bridge name must match the name in the ias-component id in the opmn.xml file.

You can also query the status of the Oracle Process Manager and Notification bridge, using the following command:

ORACLE_INSTANCE/bin/opmnctl status

For more information on configuring the Oracle Reports bridge through the Oracle Process Manager and Notification Server, see Section 8.8.1.3, "Oracle Reports Bridge Specification"

6.2.2 Starting and Stopping the Oracle Reports Bridge from the Command Line

It is recommended that you use Enterprise Manager or OPMN to start and stop Oracle Reports components.

You must set the following environment variable before you start or stop the Reports Bridge component:

COMPONENT_CONFIG_PATH=ORACLE_INSTANCE/config/ReportsBridgeComponent/<reports_bridge_name>

To start the Oracle Reports bridge from the command line, use the following commands:

On Windows:

rwbridge.bat name=bridgename

On UNIX:

rwbridge.sh name=bridgename

For example, to start an Oracle Reports bridge named foo on Windows, use the following command:

rwbridge.bat name=foo

For more information about the rwbridge executable, see Section A.2.7, "rwbridge"

Oracle Reports creates a configuration file, rwbridge.conf when the Oracle Reports bridge is started for the first time. This file is generated based on the settings in the rwbridge.template file and is located in the ORACLE_INSTANCE\config\ReportsBridgeComponent\bridge_name directory. Edit the rwbridge.conf file to specify remote Oracle Reports bridges to connect to other subnets.

	
Note:

You must restart the Oracle Reports bridge for any configuration changes to take effect.

To stop an Oracle Reports bridge, use the following command:

On Windows:

rwbridge.bat name=bridgename shutdown=normal authid=username/password

On UNIX:

rwbridge.sh name=bridgename shutdown=normal authid=username/password

For example, to stop an Oracle Reports bridge named foo on UNIX, use the following command:

rwbridge.sh name=foo shutdown= normal authid=scott/tiger

In the configuration file, repbrg_bridgename.conf, modify the identifier element to specify the username/password and set the encrypted attribute to no. This is to indicate that the password is not encrypted. This password will be encrypted once the Oracle Reports bridge is started.

For example:

<identifier encrypted="no">scott/tiger</identifier>

Usage Notes

	
If the identifier element is commented, then it is possible to stop the Oracle Reports bridge without specifying authid

	
It is not possible to stop the Oracle Reports bridge remotely.

For more information see, Section 8.2.1.19, "identifier"

[image: Oracle Corporation]

A Command-Line Keywords

This appendix contains descriptions and examples of command-line keywords that can be used with the Oracle Reports components.

	
Note:

For examples of using command line keywords in your runtime URL, see Chapter 18, "Running Report Requests".

This appendix contains the following topics:

	
Using the Command Line

	
Overview of Oracle Reports Components

	
Keyword Usage Summary

	
Command-Line Keywords

The information in this appendix is also documented in the Oracle Reports online Help, which is available in Reports Builder or hosted on the Oracle Technology Network (OTN), as described in the Preface under "Related Documentation".

20.5 Distribution XML File Examples

This section provides examples, from simple to complex, of distribution XML elements. They are organized according to the main distribution.dtd elements:

	
foreach Examples

	
mail Examples

	
file Examples

	
printer Examples

	
destype Examples

20.5.1 foreach Examples

The examples in this section include:

	
Single E-Mail with Report Groups as Separate Attachments

	
Separate E-Mail for Each Group Instance

	
Separate E-Mails with Separate Sections as Attachments

	
Separate File for Each Section

	
Separate Print Run for Each Report

20.5.1.1 Single E-Mail with Report Groups as Separate Attachments

In this example, each attachment contains the corresponding instance from the header, main, and trailer sections. That is, if the report is grouped on department_id, and the first department is department 10, the first attachment will be a report with header, main, and trailer sections all containing department 10 information. This example is valid only if the header, main, and trailer sections repeat on the same group instance, in this case department_id.

<mail id="a1" to="managers@mycompany.com" subject="New Hires">
 <foreach>
 <attach format="html" srcType="report" instance="this">
 <include src="report"/>
 </attach>
 </foreach>
</mail>

First of all, assume in this example that managers@mycompany.com goes to a mailing list that distributes to each department manager. If there are four departments: 10, 20, 30, and 40, the first attachment will contain header, main, and trailer sections corresponding to department 10; the second to 20; and so on. This example will yield one e-mail per recipient, each with four attachments.

20.5.1.2 Separate E-Mail for Each Group Instance

In this example, each recipient will receive a separate e-mail for each grouped report. For example, if the report is grouped on department_id, and there are four departments, one recipient will receive four e-mails, each with a separate department's report attached.

<foreach>
 <mail id="weeklies" to="managers@mycompany.com">
 <attach format="htmlcss" srcType="report" instance="this">
 <include src="mainSection"/>
 </attach>
 </mail>
</foreach>

20.5.1.3 Separate E-Mails with Separate Sections as Attachments

In this example, different sections repeat on different groups. The distribution is set up so that each recipient will receive a separate e-mail with attachment for each grouped main section and for each grouped trailer section.

<foreach>
<mail id="a6" to="managers@mycompany.com" subject="Personnel Reports">
 <attach format="pdf" name="attach.pdf" srcType="report" instance="this">
 <include src="mainSection"/>
 </attach>
 <attach format="rtf" name="attach.rtf" srcType="report" instance="this">
 <include src="trailerSection"/>
 </attach>
 </mail>
</foreach>

20.5.1.4 Separate File for Each Section

In this example, a separate file is generated for each group instance. Groups repeat on department_id. Each file is named with the relevant department ID.

<foreach>
 <file id="a10" name="department_&<department_id>.pdf" instance="this">
 <include src="mainSection"/>
 </file>
</foreach>

Assuming that there are four departments, 10 through 40, this example will result in the creation of four files, named in turn department_10.pdf, department_20.pdf, and so on.

The format attribute is not included in the file element because it is not required when the srcType is file or text. It is required when the srcType is report.

	
Note:

If you do not specify unique filenames through the use of variable values (see Section 20.3.2), in this example, each successively created file will overwrite the previously created file. That is, the department.pdf file for department 20 will overwrite the department.pdf file for department 10, and so on, until there is only one file left, department.pdf, with information from the last department report created (for example, department 40).

Oracle Reports 11g Release 1 (11.1.1) supports PDF encryption in distribution and bursting of Reports. With this feature, you can secure your Reports output through PDF Security in the following way.

<foreach>
 <file id="a10" name="department_&<department_id>.pdf" instance="this">
 <property name="pdfuser" value="&<department_id>"/>
 <include src="mainSection"/>
 </file>
</foreach>

To open the generated PDF output, you must provide the password as departmentid.

20.5.1.5 Separate Print Run for Each Report

The way you specify a printer name differs between Windows and UNIX. The first example is for Windows. The second is for UNIX.

20.5.1.5.1 Windows

In this example, assuming that the report is grouped on department_id, a report will be printed for each department.

<foreach>
 <printer id="a7" name="\\server_name\printer_name" instance="this">
 <include src="report"/>
 </printer>
</foreach>

20.5.1.5.2 UNIX

In this example, assuming that the report is grouped on department_id, a report will be printed for each department.

<foreach>
 <printer id="a7" name="printer_alias" instance="this">
 <include src="report"/>
 </printer>
</foreach>

20.5.2 mail Examples

The examples in this section include:

	
E-Mail with a Whole Report as the Body

	
E-Mail with a Section of a Report as the Body

	
E-Mail with Two Report Sections as the Body

	
E-Mail with External File as Body and Report as Attachment

	
E-Mail with Whole Report and Grouped Sections Attached

	
E-Mail to Relevant Manager and Department

20.5.2.1 E-Mail with a Whole Report as the Body

The report will comprise the content of this e-mail. That is, when recipients open this e-mail, they will see the report.

<mail id="a5" to="managers@mycompany.com" subject="Quarterly Report">
 <body srcType="report" format="html">
 <include src="report"/>
 </body>
</mail>

20.5.2.2 E-Mail with a Section of a Report as the Body

A section of a report will comprise the content of this e-mail. That is, when recipients open this e-mail, they will see a section of the report.

<mail id="a6" to="employees@mycompany.com">
 <body srcType="report" format="html">
 <include src="mainSection"/>
 </body>
</mail>

The subject attribute is not included in this mail element, so the default subject will be used: Mail Sent From &Report. At runtime, the variable &Report will be replaced with the name of the report.

20.5.2.3 E-Mail with Two Report Sections as the Body

Two sections of a report will comprise the body of this e-mail. That is, when recipients open this e-mail, they'll see two sections, headerSection and mainSection, joined together in one report.

<mail id="emp_addresses" to="employees@mycompany.com" subject="Employee Address List">
 <body srcType="report" format="html">
 <include src="headerSection"/>
 <include src="mainSection"/>
 </body>
</mail>

20.5.2.4 E-Mail with External File as Body and Report as Attachment

The contents of the body for this email will be an external file, and the report will go along as an attachment. The path to the file is expressed differently for Windows and UNIX.

20.5.2.4.1 Windows

<mail id="XQRSN" to="accounting@mycompany.com" subject="Salaries">
 <body srcType="file">
 <include src="c:\mail\body.html"/>
 </body>
 <attach format="pdf" name="salaries.pdf" srcType="report">
 <include src="report"/>
 </attach>
</mail>

20.5.2.4.2 UNIX

<mail id="XQRSN" to="accounting@mycompany.com" subject="Salaries">
 <body srcType="file">
 <include src="/mail/body.html"/>
 </body>
 <attach format="pdf" name="salaries.pdf" srcType="report">
 <include src="report"/>
 </attach>
</mail>

20.5.2.5 E-Mail with Whole Report and Grouped Sections Attached

In this example, recipients receive one e-mail with multiple attachments: one attachment for each group instance and an additional attachment that contains the entire report. If the report is grouped on department_id and there are four departments, recipients will receive five attachments: one for each department and one whole report.

<mail id="grx90" to="sales@mycompany.com">
 <body srcType="text">Attached you will find the summary report and breakdown by department of weekly totals.
 </body>
 <attach format="rtf" name="myAttach.rtf" srcType="report">
 <include src="report"/>
 </attach>
 <foreach>
 <attach format="pdf" name="myattach.pdf" srcType="report" instance="this">
 <include src="mainSection"/>
 </attach>
 </foreach>
</mail>

20.5.2.6 E-Mail to Relevant Manager and Department

In this example, the manager for department 10 gets department 10's report; the manager for department 20 gets department 20's report; and so on. For this tag set to be valid, the variable must refer to a column that is included in the "repeat on" group used with the attached section. That is, if the section repeats on G_department_id, manager must be a column in that group.

<foreach>
 <mail id="mgr1090" to="&<manager>@mycompany.com">
 <attach format="pdf" name="attach.pdf" srcType="report" instance="this">
 <include src="mainSection"/>
 </attach>
 </mail>
</foreach>

Oracle Reports 11g Release 1 (11.1.1) supports PDF encryption in distribution and bursting of reports. With this feature, you can secure Reports output through PDF Security in the following way:

<foreach>
 <mail id="mgr1090" to="&<manager>@mycompany.com">
 <property name="pdfuser" value="&<manager>" />
 <attach format="pdf" name="attach.pdf" srcType="report" instance="this">
 <include src="mainSection"/>
 </attach>
 </mail>
</foreach

20.5.3 file Examples

Whenever you burst and distribute grouped reports to files, be sure to specify filenames with variable values based on the repeating group or some other variable information. Otherwise, you run the risk of having each successive file that is created overwrite the previously created file. For example, if you specify an output filename of department.pdf, and you output separate instances of each department's report, the second department.pdf file will overwrite the first department.pdf file; the third will overwrite the second, and so on. You will end up with only one report, that of the final department. Instead, with grouped reports that you want to output separately according to each group instance, use variable values to specify filenames, for example: name="department_&<department_id>.pdf".

The examples in this section include:

	
File for Whole Report

	
File for Combined Report Sections

	
File for Each Group of Combined Sections

	
File for Each Report Group Instance

20.5.3.1 File for Whole Report

This example will yield one file named report.pdf that contains the entire report.

20.5.3.1.1 Windows

<file id="a1" name="c:\reports\report.pdf" format="pdf">
 <include src="report"/>
</file>

20.5.3.1.2 UNIX

<file id="a1" name="/reports/report.pdf" format="pdf">
 <include src="report"/>
</file>

20.5.3.2 File for Combined Report Sections

This example will yield one file named sections.pdf that contains a report consisting of the header section and the main section of the report.

<file id="a2" name="sections.pdf" format="pdf">
 <include src="headerSection"/>
 <include scr="mainSection"/>
</file>

20.5.3.3 File for Each Group of Combined Sections

In this example, a separate file will be created for each repeating group. Each file will contain a report that combines the relevant group main and trailer sections. The main and trailer sections must repeat on the same group, and the variable file name must refer to a column contained within the "repeat on" group. That is, if the report repeats on department_id, and you have four departments, 10 through 40, then one file will contain the main and trailer sections of department 10, the next will contain the main and trailer sections of department 20, and so on. The variable value under name must refer to a column that is within the G_department_id group.

<foreach>
 <file id="file9" name="department_&<department_id>.pdf" instance="this">
 <include src="mainSection"/>
 <include src="trailerSection"/>
 </file>
</foreach>

20.5.3.4 File for Each Report Group Instance

In this example, assuming the report is grouped on department_id and there are four departments, 10 through 40, you will end up with four files respectively named: department_10.pdf, department_20.pdf, department_30.pdf, and department_40.pdf.

<foreach>
 <file id="a20" name="department_&<department_id>.pdf" instance="this">
 <include src="report"/>
 </file>
</foreach>

20.5.4 printer Examples

The examples in this section include:

	
Print Whole Report

	
Print Two Sections of a Report

	
Print Grouped Report

	
Print Combined Sections for Each Group Instance

	
Print Relevant Instance of a Report to Its Relevant Printer

The way printer names are specified, differs between Windows and UNIX. Each example demonstrates both ways.

20.5.4.1 Print Whole Report

In this example, the entire report will be sent to the specified printer.

20.5.4.1.1 Windows

<printer id="a80" name="\\neptune\prtr20">
 <include src="report"/>
</printer>

20.5.4.1.2 UNIX

<printer id="a80" name="10th_floor_printer">
 <include src="report"/>
</printer>

20.5.4.2 Print Two Sections of a Report

In this example, two sections of a report will be sent to the printer.

20.5.4.2.1 Windows

<printer id="a1" name="\\neptune\prtr20">
 <include src="headerSection"/>
 <include src="mainSection"/>
</printer>

20.5.4.2.2 UNIX

<printer id="a1" name="10th_floor_printer">
 <include src="headerSection"/>
 <include src="mainSection"/>
</printer>

20.5.4.3 Print Grouped Report

In this example, one report will be printed. The report will be grouped by, for example, department_id. For this to work, all sections of the report must repeat on the same group.

20.5.4.3.1 Windows

<foreach>
 <printer id="prt20" name="\\neptune\prtr20" instance="all">
 <include src="report"/>
 </printer>
</foreach>

20.5.4.3.2 UNIX

<foreach>
<printer id="prt20" name="10th_floor_printer" instance="all">
<include src="report"/>
</printer>
</foreach>

20.5.4.4 Print Combined Sections for Each Group Instance

This example will yield a number of print jobs: one for each group instance. The combined sections must repeat on the same group. If the report repeats on department_id, and you have four departments, 10 through 40, you will end up with four print jobs: one for department 10; one for department 20; and so on. The main and trailer sections must both repeat on department_id.

20.5.4.4.1 Windows

<foreach>
 <printer id="prt20" name="\\neptune\prtr20" instance="this">
 <include src="mainSection"/>
 <include src="trailerSection"/>
 </printer>
</foreach>

20.5.4.4.2 UNIX

<foreach>
 <printer id="prt20" name="10th_floor_printer" instance="this">
 <include src="mainSection"/>
 <include src="trailerSection"/>
 </printer>
</foreach>

20.5.4.5 Print Relevant Instance of a Report to Its Relevant Printer

For this example to work, the repeat on group must contain a column of printer names appropriate to the host platform (for example, the printer_name column must contain an appropriate printer alias on UNIX and a printer server/name combination on Windows). For example, if the report is grouped by department_id, then G_department_id must also have a printer_name column. Assuming the printer_name is tied to a department, then department 10's report would be printed on department 10's printer; department 20's report would be printed on department 20's printer; and so on.

<foreach>
 <printer id="a60" name="&printer_name" instance="this">
 <include src="mainSection"/>
 </printer>
</foreach>

Each group instance equals a separate print job. Each print job goes to the relevant department's printer

20.5.5 destype Examples

You can use destype to define a custom destination or pluggable destination that can be used by Oracle Reports during distribution. For more information, see Section 20.4.9, "destype". The examples in this section include the following destinations:

	
Oracle Portal Destination

	
FTP Destination

	
WebDAV Destination

	
Fax Destination

20.5.5.1 Oracle Portal Destination

This example shows the generic tag structure for sending report output to the Oracle Portal destination. When you push report output to Oracle Portal using DESTYPE=ORACLEPORTAL, the report output is created in the PAGEGROUP folder.

	
See Also:

Appendix A, "Command-Line Keywords" for more information on the properties shown in the examples.

<destinations>
 <destype id="customforPortal" name="oraclePortal">
 <property name="outputpage" value="sample_report"/>
 <property name="statuspage" value="Reports_Status"/>
 <property name="pagegroup" value="REPORTS_OUTPUT"/>
 <property name="itemtitle" value="MyReport"/>
 <include src="report"/>
 </destype>
</destinations>

20.5.5.2 FTP Destination

This example shows the generic tag structure for sending report output to the FTP destination.

<destinations>
 <foreach>
 <destype id="ftp1" name="ftp" instance="this" format="pdf">
 <property name="desname"
 value="ftp://username:passwd@ftpServer/dir/myreport_&<
 DEPARTMENT_NAME>.pdf"/>
 <include src="mainSection"/>
 </destype>
 </foreach>
</destinations>

20.5.5.3 WebDAV Destination

This example shows the generic tag structure for sending report output to the WebDAV destination.

<destinations>
 <foreach>
 <destype id="webdav1" name="webdav" instance="this" format="pdf">
 <property name="desname"
 value="http://user:passwd@WebDAVServer/dir/myreport_&<
 DEPARTMENT_NAME>.pdf"/>
 <include src="mainSection"/>
 </destype>
 </foreach>
</destinations>

20.5.5.4 Fax Destination

This example shows the generic tag structure for sending report output to the fax destination.

<destype id="faxdest" name="fax">
 <property name="number" value="123456789"/>
 <include src="report"/>
</destype>

Alternatively, for ease of use, you can specify a custom, more specific tag structure:

<fax id="faxdest" number="123456789">
 <include src="report"/>
</fax>

	
Note:

All you must do after you modify the distribution.xsl file is, save it back to the same location under the same file name. Oracle Reports will automatically look for this file when resolving distributions.

4.5 Post- Upgrade Tasks

After you upgrade to OracleAS Reports Services 11g, review the following sections, which provide information about typical post-upgrade tasks for OracleAS Reports Services users:

	
Configuring Security After Upgrade to Oracle Reports 11g

	
Additional Oracle Reports Post-Upgrade Tasks

4.5.1 Configuring Security After Upgrade to Oracle Reports 11g

When you upgrade to Oracle Reports 11g, the security configuration is not upgraded. As a result, the security configuration of Oracle Reports 11g remains the same as it was before the upgrade.

For information about the security features available in Oracle Reports 11g and how to configure them, see Chapter 15, "Securing Oracle Reports Services".

4.5.2 Additional Oracle Reports Post-Upgrade Tasks

The following sections describe some other common post-upgrade tasks to complete after upgrading to OracleAS Reports Services 11g:

	
Modifying Oracle Reports Shell Scripts After Upgrade

	
Modifying Oracle Reports DAT Files After Upgrade

	
About the In-process Server Target After Upgrade

	
Viewing Cached Reports Output Files After Upgrade

4.5.2.1 Modifying Oracle Reports Shell Scripts After Upgrade

Any shell scripts that are stored in the bin directory of the Oracle Reports 10g Oracle home, such as reports.sh, rwrun.sh, and rwserver.sh are not upgraded automatically during the upgrade process. Instead, you must change these scripts manually, as needed. After the upgrade, you can find these scripts in the following Oracle Fusion Middleware 11g directory:

ORACLE_INSTANCE/config/reports/bin

4.5.2.2 Modifying Oracle Reports DAT Files After Upgrade

OracleAS Reports Services DAT files are upgraded during the upgrade process. However, if job command entries in the DAT files contain references to old Oracle Home path names or invalid path names, then those jobs will fail. Therefore, you must reschedule any such report jobs.

4.5.2.3 About the In-process Server Target After Upgrade

In OracleAS Reports Services 10g, the in-process server target appears in the Oracle Enterprise Manager Application Server Control as Reports Server.

However, after you upgrade to OracleAS Reports Services 11g, the in-process server does not appear as Reports server in Oracle Enterprise Manager Fusion Middleware Control. Instead, it appears as a Reports application, called reports, and you can manage the in-process server target and the Reports servlet on the Reports application page.

4.5.2.4 Viewing Cached Reports Output Files After Upgrade

Cached Reports output files are not upgraded to Oracle Reports 11g.

21.1 The Event-Driven Publishing API

The Event-Driven Publishing API is a PL/SQL package that provides the basic functions required for the development of procedures that respond to events in the database. Event-driven jobs are submitted using the HTTP protocol. The server assigns a unique job_ident record to every call, useful for tracking the status of the job.

21.1.1 Elements of the API

The API consists of several key elements:

	
The SRW Package contains all relevant functions and procedures for submitting jobs, checking job status, and cancelling jobs, as well as manipulating parameter lists.

	
The SRW_ParamList defines a parameter list. A parameter list is the main vehicle for passing values when submitting a job. A parameter list is required for each job submission. It must contain several key parameters.

	
The SRW_ParamList_Object is required for such features as Advanced Queuing, where a parameter list must be stored in the database so that it may be passed along with a message.

These API elements are discussed in more detail in the following sections.

The API is installed together with Oracle Reports Services Security and Oracle Portal, but neither is required. Installation scripts are also available separately should you want to install the API into a database that does not also hold Oracle Portal:

	
srwAPIins.sql installs the Event-Driven Publishing API.

	
srwAPIgrant.sql grants access privileges to the API. Run this script for each user to whom you will grant access to the API. If everyone may have access, you can run this once and grant access to PUBLIC.

	
srwAPIdrop.sql removes the API.

21.1.2 Creating and Manipulating a Parameter List

A parameter list is a PL/SQL variable of type SRW_PARAMLIST. A variable of this type is an array of 255 elements of type SRW_PARAMETER, which itself consists of two attributes: NAME and VALUE. The API provides procedures for manipulating parameter lists, including:

	
Add_Parameter

	
Remove_Parameter

	
Clear_Parameter_List

21.1.2.1 Add_Parameter

Whenever you use a parameter list for the first time, it must be initialized before you can add parameters to it. For example:

DECLARE

myPlist SRW_PARAMLIST;

BEGIN

myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
srw.add_parameter(myPlist,'myParameter','myValue');

END;

Both attributes of a parameter (NAME and VALUE) are of type VARCHAR2 and may not exceed a length of 80 characters for the NAME and 255 characters for the value.

The ADD_PARAMETER function has a fourth—optional—attribute, called MODE. MODE determines whether a parameter will be overwritten or an error raised in the event that a parameter with the same name already exists. To specify that an error will be raised in the event of duplicate names, use the constant CHECK_FOR_EXISTANCE. This is the default value for the MODE attribute. To specify that a parameter will be overwritten in the event of duplicate names, use the constant OVERWRITE_IF_EXISTS.

21.1.2.2 Remove_Parameter

Use REMOVE_PARAMETER to remove a parameter from a parameter list. Call the procedure, and pass the parameter list from which you want to remove a parameter along with the name of the parameter you want to remove.

For example:

DECLARE

myPlist SRW_PARAMLIST;

BEGIN

myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
srw.add_parameter(myPlist,'myParameter','myValue');
srw.remove_parameter(myPlist,'myParameter');

END;

21.1.2.3 Clear_Parameter_List

To remove ALL parameters from your list, use CLEAR_PARAMETER_LIST. For example:

DECLARE

myPlist SRW_PARAMLIST;

BEGIN

myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
srw.add_parameter(myPlist,'myParameter','myValue');
srw.clear_parameter_list(myPlist);

END;

This will remove all parameters from your list.

21.1.3 Including non-ASCII Characters in Parameter Names and Values

To use non-ASCII characters in user parameter names and values when using the Event-Driven Publishing API, you must include in your parameter list a parameter called DEFAULTCHARSET, with its value set to a valid character set name. This character set name can be specified with either the database's NLS_CHARACTERSET (for example, JA16SJIS) or IANA-defined character set name (for example, WINDOWS-31J). You must also ensure that the value of the DEFAULTCHARSET parameter matches the defaultcharset parameter specified in the rwservlet.properties file. Oracle Reports Services encodes non-ASCII user parameter names and values using the character set specified by DEFAULTCHARSET, allowing you to use the Event-Driven Publishing API for reports with non-ASCII characters in parameter names and values.

	
Note:

If you do not add a parameter called DEFAULTCHARSET to your parameter list, Oracle Reports Services encodes your user parameter names and values using the database's

NLS_CHARACTERSET.

21.1.4 Submitting a Job

A parameter list contains all vital parameters for submitting a job. The job type determines which parameters are required on the list to enable the Reports Server to process the request.

The listed parameters are the same ones that you must specify when you submit a job from a browser to Oracle Reports Servlet (rwservlet). In such a case, if the job is a report you will need at least the following parameters but may have more:

	
GATEWAY provides the URL to Oracle Reports Servlet (rwservlet) you will use to process the request.

	
SERVER identifies the Reports Server to be used in conjunction with Oracle Reports Servlet (rwservlet).

	
REPORT identifies the report file to be run.

	
USERID identifies the name and user ID of the person running the report.

	
AUTHID provides authorization information in the event you are running against a secured server.

Each request returns a job_ident record that holds the information required to identify the job uniquely. This information is stored in variable of type SRW.JOB_IDENT. Be aware that this is a PACKAGE-TYPE and must be referenced SRW.JOB_IDENT; while the parameter list is an OBJECT-TYPE and must be referenced SRW_PARAMLIST.

For example:

DECLARE

myPlist SRW_PARAMLIST;
myIdent SRW.Job_Ident;

 BEGIN

myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
srw.add_parameter(myPlist,'GATEWAY','http://…');
srw.add_parameter(myPlist,'SERVER','mySVR');
srw.add_parameter(myPlist,'REPORT','myReport.RDF');
srw.add_parameter(myPlist,'USERID','me/secret');
myIdent := srw.run_report(myPlist);

END;

The API method RUN_REPORT takes a parameter list that contains all vital information as input (through ADD_PARAMETER), creates and submits the request, and returns the job_ident record.

The job_ident record contains the following parameters:

	
MyIdent.GatewayURL

	
MyIdent.ServerName

	
MyIdent.JobID

	
MyIdent.AuthID

These parameters are needed by the SRW.REPORT_STATUS function to get status information for a submitted job.

21.1.5 Checking for Status

The Event-Driven Publishing API provides a two-way communication with the Reports Server. You submit a job to the server, and you can query the status of this job from the server using the SRW.REPORT_STATUS function.

This function will return a record of type SRW.STATUS_RECORD that holds the same information you would see in the job status display if you were using the executing the rwservlet Web command showjobs.

For example:

DECLARE

myPlist SRW_PARAMLIST;
myIdent SRW.Job_Ident;
myStatus SRW.Status_Record;

BEGIN

myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
srw.add_parameter(myPlist,'GATEWAY','http://…');
srw.add_parameter(myPlist,'SERVER','mySVR');
srw.add_parameter(myPlist,'REPORT','MyReport.RDF');
srw.add_parameter(myPlist,'USERID','me/secret');
myIdent := srw.run_report(myPlist);
myStatus := srw.report_status(myIdent);

END;

You can use the returned status record for fetching information about the status of your job.

21.1.6 Using the Servers' Status Record

The status record contains processing information about your job. It contains the same information found in the server queue (showjobs). Additionally, it contains information about the files produced for finished jobs and the lineage for scheduled jobs.

The most important information in the status record is the current job status and the status text, used in turn to check for runtime errors and their causes.

You can use timing information to determine if a job is subject to cancellation because it has exceeded its predicted time for completion.

One way to use the status record is to cancel a job. The Event-Driven Publishing API offers a method for cancelling a job that has been submitted to the server. This might be handy if you want to remove a job that has exceeded its allowed time to run or if you simply have scheduled jobs you want to cancel.

To cancel a job, use the following procedure:

DECLARE

myPlist SRW_PARAMLIST;
myIdent SRW.JOB_IDENT;
myStatus SRW.STATUS_RECORD;

BEGIN

myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
SRW.ADD_PARAMETER(myPlist,'GATEWAY','http://…');
SRW.ADD_PARAMETER(myPlist,'SERVER','mySVR');
SRW.ADD_PARAMETER(myPlist,'REPORT','myReport.RDF');
SRW.ADD_PARAMETER(myPlist,'USERID','me/secret');
myIdent := SRW.RUN_REPORT(myPlist);
myStatus := SRW.REPORT_STATUS(myIdent);
if myStatus.StatusCode != srw.RUNNING then
SRW.CANCEL_REPORT(myIdent);

END;

As evident in this example, you cancel a report by calling the CANCEL_REPORT procedure (SRW.CANCEL_REPORT) and passing it the job_ident record of the job you want to cancel. The procedure takes an optional parameter list to enable you to pass any additional parameters you might need.

11.6 Generating a Barcode PDF File

This section outlines the steps involved in generating a PDF file with barcode information. Before using the font features covered in this section, refer to Table 11-4 to determine which feature best suits your application needs.

11.6.1 Font Embedding

The steps involved in generating a barcode PDF file using the font embedding feature are as follows:

	
Set the REPORTS_PATH environment variable to the font directory containing the Type1 font.

	
Open the uifont.ali file and include the following under the font embed [PDF:Embed] section.

	
Note:

The uifont.ali file is located in the following directory on Windows and UNIX:

	
ORACLE_INSTANCE\config\FRComponent\

frcommon\guicommon\tk\admin

Example

[PDF:Embed]
SAdHC39a = "SAdHC39a.pfm SAdHC39a.pfb"

	
Create a report having Barcode data and set its font to the one specified in the example.

	
Run a report with DESTYPE=FILE DESFORMAT=PDF.

11.6.2 Font Subsetting

The steps involved in generating a barcode PDF file using the font subsetting feature are as follows:

	
Set the REPORTS_PATH environment variable to the directory containing the TrueType font. For example, C:\WINNT\Fonts.

	
Open the uifont.ali file and edit the [PDF:Subset] section to specify the TrueType font name.

	
Note:

The uifont.ali file is located in the following directory on Windows and UNIX:

	
ORACLE_INSTANCE\config\FRComponent\

frcommon\guicommon\tk\admin

Example

[PDF:Subset]
SAdHC39a = "SAdHC39a.ttf"

	
Create a report having barcode data and set it to the font specified in the example.

	
Run a report with DESTYPE=FILE DESFORMAT=PDF.

4.4 Summary of the Upgraded Files

Table 4-2 summarizes Oracle Reports files, including the configuration files, which are upgraded during the upgrade process, as described in Table 4-1.

Table 4-2 Upgraded Oracle Reports Files

	11g Target FIle Name	11g Target Configuration Path	Upgrade Modification
	
<stand_alone_server_name>.conf

	
$ORACLE_INSTANCE/config/ReportsServerComponent/<server_name>/rwserver.conf

	
Migration of Standalone Server configuration.

Exception: <rwsec> element is not migrated.

	
<in-process_server_name>.conf

	
$DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration//rwserver.conf

	
Migration of configuration for in-process server.

Exception: <rwsec> element is not migrated.

	
rwnetwork.conf

	
J2SE: $ORACLE_INSTANCE/config/ReportsServerComponent/<server_name>/rwnetwork.conf

J2SE: $ORACLE_INSTANCE/config/ReportsToolsComponent/ReportsTools/rwnetwork.conf

J2SE: $ORACLE_INSTANCE/config/ReportsBridgeComponent;/<bridge_name>/rwnetwork.conf

J2EE: $DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration/>/rwnetwork.conf

	
Migration of network configuration to Standalone Server, Reports Bridge, Reports tools and In-process Server.

Exception: Channel and port attributes in <multicast> element are not migrated.

	
xmlpds.conf

	
J2SE: $ORACLE_INSTANCE/config/ReportsServerComponent/<server_name>/xmlpds.conf

J2SE: $ORACLE_INSTANCE/config/ReportsToolsComponent/ReportsTools/xmlpds.conf

J2EE: $DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration//xmlpds.conf

	
Migration of configuration to Standalone Server, Reports tools and In-process Server.

	
textpds.conf

	
J2SE: $ORACLE_INSTANCE/config/ReportsServerComponent/<server_name>/textpds.conf

J2SE: $ORACLE_INSTANCE/config/ReportsToolsComponent/ReportsTools/textpds.conf

J2EE: $DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration/textpds.conf

	
Migration of configuration to Standalone Server, Reports tools and In-process Server.

	
Jdbcpds.conf

	
J2SE: $ORACLE_INSTANCE/config/ReportsServerComponent/<server_name>/jdbcpds.conf

J2SE: $ORACLE_INSTANCE/config/ReportsToolsComponent/ReportsTools/jdbcpds.conf

J2EE: $DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration/jdbcpds.conf

	
Migration of configuration to Standalone Server, Reports tools and in-process server.

	
proxyinfo.xml

	
J2SE: $ORACLE_INSTANCE/config/ReportsServerComponent/<server_name>/rwserver.conf

J2SE: $ORACLE_INSTANCE/config/ReportsToolsComponent/ReportsTools/rwserver.conf

J2EE: $DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration/rwserver.conf

	
Migration of configuration to Standalone Server, Reports tools and In-process Server.

	
rwservlet.properties

	
$DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration/rwservlet.properties

	
Migration of configuration to in-process server.

Exception: <singlesignon> element is not migrated.

	
<bridge_name>.conf

	
$ORACLE_INSTANCE/config/ReportsBridgeComponent/<bridge_name>/bridge.conf

	
Migration of configuration to Reports Bridge.

	
Cgicmd.dat

	
$DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration/cgicmd.dat

	
Migration of configuration to In-process Server.

	
*.res

	
$ORACLE_HOME/reports/res

	
Copy all files to target location.

	
*.dat

	
$ORACLE_INSTANCE/config/reports/server

	
Copy all files to target location.

	
Opmn.xml

	
$ORACLE_INSTANCE/config/OPMN/opmn/opmn.xml

	
Migration of Reports specific entries.

	
Uifont.ali

	
On Windows: ORACLE_INSTANCE\config\FRComponent\frcommon\tools\common

On UNIX: ORACLE_INSTANCE/config/FRComponent/frcommon/guicommon/tk/admin

	
Copy file to target location.

	
Uiprint.txt

	
$ORACLE_INSTANCE/config/FRComponent/frcommon/guicommon/tk/admin

	
Copy file to target location.

	
uiscreenprint.txt

	
$ORACLE_INSTANCE/config/FRComponent/frcommon/guicommon/tk/admin

	
Copy file to target location.

	
uiscreenprint.ppd

	
$ORACLE_INSTANCE/config/FRComponent/frcommon/guicommon/tk/admin

	
Copy file to target location.

	
*.ppd

	
$ORACLE_HOME/guicommon/tk/admin/PPD

	
Copy all files in source location to target location.

	
*.afm

	
$ORACLE_HOME/guicommon/tk/admin/AFM

	
Copy all files in source location to target location.

	
*.hpd

	
$ORACLE_HOME/guicommon/tk/admin/HPD

	
Copy all files in source location to target location.

	
*.tfm

	
$ORACLE_HOME/guicommon/tk/admin/TFM

	
Copy all files in source location to target location.

	
*.rgb

	
$ORACLE_HOME/frcommon/templates/tk/config/

	
Copy all files in source location to target location.

	
Cauprefs.ora (Windows only)

	
$ORACLE_INSTANCE/config/FRComponent/frcommon/tools/admin

	
Copy file to target location.

	
Cagprefs.ora (Windows only)

	
$ORACLE_INSTANCE/config/FRComponent/frcommon/tools/admin

	
Copy file to target location.

	
Prefs.ora (Linux only)

	
$ORACLE_INSTANCE/config/FRComponent/frcommon/tools/admin

	
Copy file to target location.

	
Windows Registry

	
Windows Registry

	
Migration of Windows registry entries. Only Reports specific registry entries are migrated.

D Troubleshooting Oracle Reports Services

This appendix describes common problems that you might encounter when deploying your reports using Oracle Reports Services and explains how to solve them. It also gives detailed instructions on how to diagnose problems. It contains the following topics:

	
Problems and Solutions

	
Diagnosing Performance Problems

	
Diagnosing Font Problems

	
Diagnosing Printing Problems

	
Diagnosing JDBC PDS Problems

	
Diagnosing Oracle Portal Problems

	
Diagnosing Globalization Problems

	
Diagnosing Oracle Reports Bridge Problems

	
Need More Help?

15.13 Oracle Portal-Based Security for Backward Compatibility

Prior to 11g Release 1 (11.1.1), Oracle Internet Directory was used for authentication and Oracle Portal for authorization. Oracle Reports 11g Release 1 (11.1.1) accomplishes both authentication and authorization through Oracle Platform Security Services.

For backward compatibility, 11g Release 1 (11.1.1) supports:

	
Security with OracleAS Portal 10g and Portal Classic 11g. You can configure Oracle Portal for authorization using Oracle Enterprise Manager, as described in Section 7.8.1.1, "Switching to Oracle Portal Security".

	
Users and groups created in 10g Release 2 (10.1.2) identity management (IM).

	
Non-secured mode of operation with Reports Server.

15.13.1 Security Features Provided by Oracle Portal

Oracle Portal provides a number of security features available to Oracle Reports Services that enable you to ensure that the appropriate users are getting important data in a secure fashion. With Oracle Portal security features in place, your users see only the data they're supposed to see.

Use Oracle Portal to control:

	
Who has access to each report

	
When a report can be run

	
Which servers and printers can be used to run a report

	
Which report parameters a user can edit with what range of values

Oracle Portal is a browser-based, data publishing and developing solution that offers Web-based tools for publishing information on the Web and building Web-based, data-driven applications.

Oracle Portal is tightly integrated with Oracle Reports Services to create a robust and secure data publishing environment. Oracle Portal provides easy-to-use wizards for setting up Oracle Reports Services security. These include wizards for defining user access to reports, Reports Servers, printers, output formats, and report parameters.

Once you define access control information, it's stored in the Oracle Portal repository. As an Oracle Portal user, you can then, optionally, publish registered RDFs and JSPs to an Oracle Portal page. As with all Oracle Portal functionality, using Portal to deliver your reports is not required. You can deliver reports through command lines, as you may always have, and still benefit from the access control features available to you through Oracle Portal.

Access to Oracle Reports Services' security features is not dependent on whether you also use Portal to publish report links or report content. Even if you don't publish through Portal, you can still take advantage of the Oracle Reports Services' security features available in Oracle Portal to control user access to all of your reports.

When you expose a report as a portlet through Oracle Portal, Oracle Reports leverages OracleAS Single Sign-On, which eliminates the need for users to enter multiple log ins, first to the portal then to each of the reports exposed through portlets within the portal. With OracleAS Single Sign-On, when you log in, Oracle Portal automatically logs you into all registered portlet providers and subsystems.

For more information, refer to Chapter 16, "Deploying Reports in Oracle Portal".

18.11 Additional Parameters

When you send a request to the Reports Server through rwcgi ,the following additional parameters, the values of which you cannot change, are implicitly passed along with your request:

Table 18-4 Additional Parameters Passed With a Report Request

	Name	Description
	
ACCEPT_LANGUAGE

	
The comma separated list of languages accepted by the browser/user.

	
REMOTE_ADDR

	
The remote IP address from which the user is making the request.

	
REMOTE_HOST

	
The remote host name from which the user is making the request.

	
SCRIPT_NAME

	
The virtual path of the script being executed.

	
SERVER_NAME

	
The host name or IP address of the server on which Oracle Reports Servlet (rwservlet) is running.

	
SERVER_PORT

	
The port number of the server on which Oracle Reports Servlet (rwservlet) is running.

	
SERVER_PROTOCOL

	
The name and revision of the information protocol with which the request was sent.

	
USER_AGENT

	
The description of the remote client's browser.

7.1 What's New In This Release?

Oracle Reports 11g Release 1 (11.1.1) provides significant enhancements to Oracle Enterprise Manager, including pages to administer and configure Oracle Reports Services through the Oracle Enterprise Manager user interface, rather than by editing configuration files, as summarized in Table 7-1 (a subset of Table 1-1, "11g Functionality vs. 10g Functionality"):

Table 7-1 11g Oracle Enterprise Manager Features vs. 10g Functionality

	11g New Features	Equivalent 10g Functionality
	
Monitoring and Management

	

	
New rich and customizable Oracle Enterprise Manager user interface, providing:

	
Navigation pane showing hierarchical view of complete Farm and all components.

	
New pages for Oracle Reports to perform comprehensive administration, management, configuration, tuning, and diagnostics of complete reporting environment.

	
Large number of metrics for monitoring and tuning.

	
Administration dashboard for instant access to start, stop, restart, grouping, servlet, plug-in registration, and more.

	
Significant reduction of configuration parameters, and categorization.

	
Extensive real-time and historical performance metrics.

	
Reports Server auditing.

	
Oracle Internet Directory reassociation

	
Portal metadata repository and association.

	
Direct access to documentation and collateral from Oracle Enterprise Manager.

	
Enterprise Manager Application Server (AS) Control and manually editing configuration files.

	
New trend graphs, key statistics. Anticipation of common problems with early symptoms.

	
N/A

	
Job Administration and Scheduling

For more information, see Section 7.7, "Administering and Scheduling Jobs".

	

	
Advanced job queue administration. Comprehensive job queue management user interface in Oracle Enterprise Manager (search and filters, resubmit the job, view errors, and more).

	
Basic job queue user interface.

	
Rich calendar-based scheduling user interface. Comprehensive Reports Server job scheduling in Oracle Enterprise Manager.

	
Reports job scheduling done through Oracle Reports Queue Manager (rwrqm), Oracle Portal user interface, or command line only.

	
Security

For more information, see Section 7.8, "Securing Oracle Reports Services".

	

	
Oracle Enterprise Manager advanced user interface. Administrators can use Oracle Enterprise Manager to more easily define and manage granular security policies for reports, Web commands, and folder access.

	
Basic UI in OracleAS Portal for defining the policies. Hard-coded Web command access to the Oracle Reports seeded roles. Access policies at file (report) level only, not folder level.

24.7 General Layout Guidelines

This section outlines guidelines that you can follow when designing your report's layout to improve performance:

	
Fetching Ahead

	
Bursting and Distribution

24.7.1 Fetching Ahead

Oracle Reports enables you to display data such as total number of pages or grand totals, in the report margins or on the report header pages. This option, although useful, forces the entire report to be "fetched ahead". Fetching-ahead requires the entire report to be processed before the first page can be output. The usual model is to format pages as and when required.

Although the fetched-ahead functionality does not affect the overall time the report takes to generate, it affects the amount of temporary storage required and the time taken before the first page can be viewed. This is an example of perceived performance as opposed to actual performance. If the report is to be output to the screen in a production environment, fetching ahead should be avoided unless the performance variance is deemed acceptable.

24.7.2 Bursting and Distribution

With report bursting, a report layout can be made up of three distinct sections: header, body, and trailer. A report can comprise all three sections, or it can be viewed as three separate reports within one report. Oracle Reports enables you to control bursting at group record level offering a further level of granularity. This is made possible by the Distribution and Repeat On properties for each individual section. The performance gain is evident when bursting is used in conjunction with distribution, allowing each section of a report to have multiple formats and sent to multiple destinations. Once the distribution options has been set the report needs only to be run once, to be output to multiple destinations with a single execution of the query(s). Previously the report had to be executed multiple times.

When you implement bursting and distribution in a report, you can generate section-level distribution by setting the Repeat On property for a section to a data model break group, which generates an instance of the section for each column record of that break group. Then, you can distribute each instance of the section as appropriate (for example, to individual managers in the MANAGER group).

If you set the Repeat On property for more than one of the Header, Main, and Trailer sections of a report, all Repeat On property values must be set to the same data model break group. If the Repeat On property for any one of the Header, Main, and Trailer sections is set to a different data model break group, Oracle Reports raises any of the following messages:

REP-0069: Internal Error
REP-57054: In-Process job terminated: Terminated with error
REP-594: No report output generated

Part III

Managing Runtime Behavior

Part III contains information that will help you to manage the runtime behavior of Oracle Reports:

	
Chapter 9, "Managing Fonts in Oracle Reports"

	
Chapter 10, "Printing on UNIX with Oracle Reports"

	
Chapter 11, "Using PDF in Oracle Reports"

	
Chapter 12, "Font Model and Cross-Platform Deployment"

	
Chapter 13, "Configuring Destinations for Oracle Reports Services"

	
Chapter 14, "Configuring and Using the Pluggable Data sources"

	
Chapter 15, "Securing Oracle Reports Services"

	
Chapter 17, "Configuring and Administering OracleAS Single Sign-On"

	
Chapter 16, "Deploying Reports in Oracle Portal"

8.7 Entering Proxy Information

Some features of Oracle Reports Services support retrieving or sending information through a firewall. For example, the URL engine, the XML data source, the Text data source, and the mail destination features all retrieve or send information through the firewall. For these features to function properly, Reports Server requires certain proxy information.

In Oracle Reports 11g Release 1 (11.1.1), proxy information is stored in the Reports Server configuration file (rwserver.conf). You can specify proxy information in either of the following ways:

	
Using Oracle Enterprise Manager (recommended)

	
Editing the Server Configuration File

8.7.1 Using Oracle Enterprise Manager

To specify proxy information using Oracle Enterprise Manager, refer to Section 7.14, "Configuring Proxy Information".

8.7.2 Editing the Server Configuration File

To specify proxy information by editing the server configuration file (rwserver.conf) directly, add the proxyServer element, as described in Section 8.2.1.24, "proxyServer".

D.7 Diagnosing Globalization Problems

For common globalization problems and solutions in Oracle Reports, see Section 23.7, "Troubleshooting Globalization Issues" in Chapter 23, "Implementing Globalization and Bidirectional Support".

3 Verifying Your Installation

After installing Oracle Reports 11g Release 1 (11.1.1), read through the section in this chapter to verify you are ready to use Oracle Reports Services to publish your reports:

	
What's New In This Release?

	
Understanding the Oracle Fusion Middleware Installation Structure

	
Verifying OOTB Installation

	
Verifying the Reports Server Environment

	
Confirming Security with Oracle Portal-Based Security

	
Upgrading from the Prior Release

	
Granting Access to RWbuilder

24.5 Accessing the Data

If your performance measuring tools show that the report spends a large amount of time accessing data from the data source(s), you must review the structure of the data and determine how the data is being used. Inefficient schema design has a dramatic affect on the performance of a report. For example, an overly normalized data model can result in many avoidable joins or queries.

This section discusses ways to review and improve the efficiency of the data used in your report:

	
Non-SQL Data Sources

	
Database Indexes

	
Calculations

	
Redundant Data

	
Break Groups

	
Group Filters

	
To Link or Not To Link

24.5.1 Non-SQL Data Sources

To publish data from any data source, use the pluggable data source architecture in Oracle Reports. Out-of-the-box Oracle Reports supports non-SQL data sources, such as XML, Text, and JDBC pluggable data sources. Both XML and Text pluggable data sources can be accessed through a remote URL (even across firewalls). If speed is a concern, download the data locally and use the local data stream rather than a remote URL. You can also specify the domains for which you can bypass a proxy server.

The XML pluggable data source supports runtime XML data validation. Select the Validate Data Source check box in the XML Query Wizard to ensure that the XML data is verified as it is fetched against the data definition specified in the DTD or in the XML schema. This is a very costly operation and proves to be useful only when you develop the report and not during production. You will see a noticeable performance difference when the XML data stream is very large.

You can specify either an XML schema or a DTD schema for the data definition. An XML schema forces type checking, whereas a DTD schema does not require type checking as all data is treated as strings.

	
Note:

Ensure that the data types of the non-SQL sources match column wise.

You can also specify an extensible style sheet language (XSL) file for the XML data stream to convert it from any format into a simple row set/row data feed. It is better to have data in the correct format to start with, unless you want to apply the XSL at run time.

Pluggable Text data sources support the use of cell wrappers. This causes the file format level delimiter to be ignored for every field that has a wrapper defined. Avoid using cell wrappers unless really required.

The JDBC pluggable data source supports JDBC bridges, as well as thick and thin JDBC drivers. Selecting the driver directly impacts the fetching of data. The choice depends on the application and the database being used. Using a native driver generally results in better performance. For more information, see Chapter 14, "Configuring and Using the Pluggable Data sources".

24.5.2 Database Indexes

Columns used in a SQL WHERE clause should be indexed. The impact of indexes used on columns in the master queries of a report are minor, as these queries access the database once. To improve performance significantly, indexes should be used on any linked columns in the detail query.

	
Note:

Lack of appropriate indexes can result in many full-table scans and slows down performance.

24.5.3 Calculations

Within a report (either through summary or formula columns), ensure that most of the calculations are performed by the data source. In case of SQL queries, calculations are performed on the database rather than on the data retrieved by the report. User-defined functions and procedures stored by the database can also be included in the query select list of an Oracle Database or a JDBC query. This is more efficient than using a local function, since the calculated data is returned as part of the result set from the database.

Example

The following PL/SQL function can be stored in the Oracle Database:

CREATE OR REPLACE FUNCTION CityState (

 p_location_id world_cities.location_id%TYPE)
 RETURN VARCHAR2 is
 v_result VARCHAR2(100);

BEGIN

 SELECT city || ','||state

 INTO v_result
 FROM world_cities

 WHERE location_id = p_location_id;
 RETURN v_result;

END CityState;

This function returns the city separated by a comma, a space, and the state. This formatting is done at the database level and passed back to the report to display.

In the report, the SQL query would look like:

SELECT location_id, citystate(location_id)"City
& State" FROM world_cities

The result would look like this:

LOCATION_ID CITY & STATE
----------- -------------------------
 1 Redwood Shores, California
 2 Seattle, Washington
 3 Los Angeles, California
 4 New York, New York

24.5.4 Redundant Data

A report's query should ideally select only required columns. The fewer queries you have, the faster your report will run. Single-query data models execute more quickly than multiquery data models. However, situations can arise where a report not only needs to produce a different format for different users, but also needs to utilize different query statements. Although this can be achieved by producing two different reports, it may be desirable to have a single report for easier maintenance. In this instance, the redundant queries should be disabled using the SRW.SET_MAXROW built-in procedure.

	
Note:

For a description of the SRW built-in package, including the SRW.SET_MAXROW built-in procedure, see the Oracle Reports online Help.

Example

The following code used in the Before Report trigger will disable either Query_Emp or Query_Dept, depending on the user parameter:

IF :Parameter_1 = 'A' THEN

 SRW.SET_MAXROW('Query_Emp',0);

ELSE

 SRW.SET_MAXROW('Query_Dept',0);

END IF;

	
Note:

The only meaningful place to use the SRW.SET_MAXROW built-in procedure is in the Before Report trigger (after the query has been parsed). Calling the SRW.SET_MAXROW built-in procedure after this point raises the SRW.MAXROW_UNSET built-in exception. The query will still be parsed and bound, but no data will be returned to the report.

You can define a query based either on an XML or a Text pluggable data source by selecting the fields to be used in the query (that is, all available fields or a subset). If you must use a subset of the fields, do so at the query level using parameters, as opposed to fetching all the values and filtering them using a group filter or layout level format triggers.

24.5.5 Break Groups

Limit the number of break groups to improve your report's performance. Oracle Reports sets the break level for each column in the data model that has the break order property set except the lowest child group.

For a SQL query, Oracle Reports appends this as an extra column to the ORDER BY clause in the query. The fewer columns in the ORDER BY clause, the less work the database has to do before returning the data in the required order. Creating a break group may render an ORDER BY clause redundant in spite of defining it as part of the query. Remove any such ORDER BY clauses as it requires extra processing by the database.

If your report requires the use of break groups, set the Break Order property for as few columns as possible. A break order column is indicated by a small arrow to the left of the column name in the group in the Reports Builder Data Model View. Each break group above the lowest child group of a query requires at least one column to have the Break Order property set. Removing the break order from columns where sorting is not required increases performance.

Limit break groups to a single column whenever possible. These columns should be as small as possible and be database columns (as opposed to summary or formula columns) wherever feasible. Both conditions help the local caching that Oracle Reports does, before the data is formatted for maximum efficiency. Clearly, these conditions cannot always be met but can increase efficiency whenever utilized.

24.5.6 Group Filters

Group filters reduce the number of records displayed. Filtering takes place after the query returns the data (from the data source) to Oracle Reports. Even if the filter is defined to display only the top five records, the result set will contain all the records returned by the query. Hence, it is more efficient to incorporate the group filter functionality into the query's WHERE clause or into the Maximum Rows property, whenever possible. This restricts the data returned by the database.

24.5.7 To Link or Not To Link

There are a number of ways to create data models that include more than one table. Consider the standard case of the dept/emp join, with the requirement to create a report that lists all the employees in each department in the company. You can create either of the following:

	
Single query:

SELECT d.dname, e.ename
FROM emp e, dept d
WHERE e.deptno(+) = d.deptno

	
Two queries with a column link based on deptno:

SELECT deptno, dname FROM dept
SELECT deptno, ename FROM emp

When you design the data model in the report, minimize the actual number of queries by using fewer large multitable queries, rather than several simple single-table queries. Every time a query is run, Oracle Reports needs to parse, bind, and execute a cursor. A single query report returns all the required data in a single cursor, rather than many cursors. With master-detail queries, the detail query will be parsed, bound, and executed again for each master record retrieved. In this example, it is more efficient to merge the two queries and use break groups to create the master-detail effect.

Keep in mind that the larger and more complex a query gets, the more difficult it is to be maintained. You must decide when to achieve the balance between performance and maintenance requirements.

11.3 Generating a Unicode PDF File

This section outlines the steps involved in generating a PDF file with a Unicode character set. Before using the font features covered in this section, refer to Table 11-4 to determine which feature best suits your application needs.

11.3.1 Font Subsetting

The steps involved in generating a Unicode PDF file using the font subsetting feature are as follows:

	
Set NLS_LANG=AMERICAN_AMERICA.UTF8.

	
Set REPORTS_PATH to the font directory in which the TrueType font exists. For example, C:\WINNT\fonts.

	
Open the uifont.ali file and edit the [PDF:Subset] section to specify the TrueType font name.

	
Note:

The uifont.ali file is located in the following directory on Windows and UNIX:

	
ORACLE_INSTANCE\config\FRComponent\

frcommon\guicommon\tk\admin

Example

[PDF:Subset]
"Andale Duospace WT J" = "Aduoj.ttf"
"Albany WT J"="AlbanWTJ.ttf"

The specified font should cover the Unicode range that your report uses.

	
Create a report having MLS data and set its font to the Unicode font.

	
Run a report having MLS data with DESTYPE=FILE DESFORMAT=PDF.

8 Configuring Oracle Reports Services

When you install Oracle Fusion Middleware, Oracle Reports is configured automatically for you. There will likely be adjustments you wish to make to customize your environment, but you will not be required to set up the entire environment, or even most of it.

This chapter is included largely for reference, should you wish to have a better understanding of the default configuration. It lists services-related configuration files and describes in detail the content of most of them. It includes the following main sections:

	
Oracle Reports Services Configuration Files

	
Reports Server Configuration File

	
Oracle Reports Servlet Configuration File

	
Oracle Reports Bridge Configuration File

	
Network Configuration File

	
Configuring the URL Engine

	
Entering Proxy Information

	
Configuring Reports Server with the Oracle Process Manager and Notification Server and Oracle Enterprise Manager

	
Configuring Oracle Reports to Communicate with Oracle BPEL Process Manager

	
Optimizing the Deployment of Reports

	
Sample system-jazn-data.xml File

	
Configuring Reports Managed Server

Another aspect of configuration is the setting of environment variables. These are set for you automatically during installation. For reference, environment variables are described in Appendix B, "Environment Variables".

21.3 Invoking a Report from a Database Event

Database triggers are the primary mechanism for invoking reports using the Event-Driven Publishing API. The Oracle database enables you to define various scopes of triggers that fire in response to various events. To submit a database-driven job, you use the code described in the previous sections within a database trigger.

There are many ways to use event-driven publishing. One way is to create security protocols using a trigger that fires whenever a grant is done or a user logs on or off. Another way is to create automated processes that respond to certain types of changes to data in a table. For example, a database trigger could fire when the status of an expense report changes to DONE; in turn, a report could automatically be sent to an employee's manager.

For example:

CREATE TRIGGER EXP_REP_TRG

AFTER INSERT OR UPDATE on EXP_REP FOR EACH ROW
DECLARE
myPlist SRW_PARAMLIST;
myIdent SRW.JOB_IDENT;

BEGIN

IF (:new.ExpStat = 'DONE') THEN

myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
SRW.ADD_PARAMETER(myPlist,'GATEWAY','http://…');
SRW.ADD_PARAMETER(myPlist,'SERVER','fooSVR');
SRW.ADD_PARAMETER(myPlist,'REPORT','foo.RDF');
SRW.ADD_PARAMETER(myPlist,'USERID','foo/bar');
SRW.ADD_PARAMETER(myPlist,'ExpenseID',:new.ExpID);
myIdent := SRW.RUN_REPORT(myPlist);

END IF;

END;

This trigger will fire after each update on the EXP_REP table. In the event the status changes to DONE, the report request is run.

If you want your request to run against a key specified in the cgicmd.dat key map file (for more information, see Section 18.13, "Using a Key Map File"), specify the CMDKEY parameter in lieu of the REPORT parameter. If the key contains user ID information, you can omit the USERID parameter as well. For example:

CREATE TRIGGER EXP_REP_TRG

AFTER INSERT OR UPDATE on EXP_REP FOR EACH ROW
DECLARE
myPlist SRW_PARAMLIST;
myIdent SRW.JOB_IDENT;

BEGIN

IF (:new.ExpStat = 'DONE') THEN

myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
SRW.ADD_PARAMETER(myPlist,'GATEWAY','http://…');
SRW.ADD_PARAMETER(myPlist,'SERVER','fooSVR');
SRW.ADD_PARAMETER(myPlist,'CMDKEY','keyvalue');
SRW.ADD_PARAMETER(myPlist,'ExpenseID',:new.ExpID);
myIdent := SRW.RUN_REPORT(myPlist);

END IF;

END;

Additionally, if you have defined an advanced distribution model through a distribution XML file, you can specify that file with the DESTINATION parameter. For example:

CREATE TRIGGER EXP_REP_TRG

AFTER INSERT OR UPDATE on EXP_REP FOR EACH ROW
DECLARE
myPlist SRW_PARAMLIST;
myIdent SRW.JOB_IDENT;

BEGIN

IF (:new.ExpStat = 'DONE') THEN

myPlist := SRW_PARAMLIST(SRW_PARAMETER('',''));
SRW.ADD_PARAMETER(myPlist,'GATEWAY','http://…');
SRW.ADD_PARAMETER(myPlist,'SERVER','fooSVR');
SRW.ADD_PARAMETER(myPlist,'REPORT','foo.RDF');
SRW.ADD_PARAMETER(myPlist,'USERID','foo/bar');
SRW.ADD_PARAMETER(myPlist,'DISTRIBUTE','YES');
SRW.ADD_PARAMETER(myPlist,'DESTINATION','filename.xml');
SRW.ADD_PARAMETER(myPlist,'ExpenseID',:new.ExpID);
myIdent := SRW.RUN_REPORT(myPlist);

END IF;

END;

This is one way to move this kind of logic from your application into the database and use the database as a central storage for business processes.

	
Note:

You'll find additional examples of the Event-Driven Publishing API in action in the demo script srw_test.sql, included with your Oracle Reports Services installation.

9.5 Font Types

This section discusses the fonts and character sets relevant to Oracle Reports:

	
Character Sets

	
Unicode

	
Type1 Fonts

	
TrueType Fonts

	
TrueType Collection

	
Barcode Fonts

	
CID Fonts

9.5.1 Character Sets

The character set component of the NLS environment variables specifies the character set in which data is represented in your environment. When data is transferred from a system using one character set to a system using another character set, it is processed and displayed correctly on the second system, even though some characters might be represented by different binary values in the character sets.

If you are designing a multilingual application, or even a single-language application that runs with multiple character sets, you must determine the character set most widely used at runtime and then generate with the NLS environment variable (NLS_LANG) set to that particular character set.

If you design and generate an application in one character set and run it in another character set, performance can suffer. Furthermore, if the runtime character set does not contain all the characters in the generate character set, then question marks appear in place of the unrecognized characters. Portable Document Format (PDF) supports multibyte character sets. There might be situations where you create an application with a specific font but find that a different font is being used when you run that application. You would most likely encounter this when using an English font (such as MS Sans Serif or Arial) in environments other than Western European. This occurs because Oracle Reports checks to see if the character set associated with the font matches the character set specified by the language environment variable (NLS_LANG). If the two do not match, Oracle Reports automatically substitutes the font with another font whose associated character set matches the character set specified by the language environment variable. This automatic substitution assures that the data being returned from the database gets displayed correctly in the application. Note: If you enter local characters using an English font, then Windows does an implicit association with another font. There might be cases, however, where you do not want this substitution to take place. You can avoid this substitution by mapping all desired fonts to the WE8ISO8859P1 character set in the font alias file (uifont.ali).

9.5.2 Unicode

Unicode is a global character set that allows multilingual text to be displayed in a single application. This enables multinational corporations to develop a single multilingual application and deploy it worldwide. For information about using Unicode in your multilingual applications, refer to Section 23.5, "Unicode".

9.5.3 Type1 Fonts

PostScript font formats Adobe Type 1 fonts are stored in two common formats:.pfa (PostScript Font ASCII) and.pfb (PostScript Font Binary). These contain descriptions of the character shapes, with each character being generated by a small program that calls on other small programs to compute common parts of the characters in the font. In both cases, the character descriptions are encrypted. Before such a font can be used, it must be rendered into dots in a bitmap, either by the PostScript interpreter, or by a specialized rendering engine, such as Adobe Type Manager, which is used to generate low-resolution screen fonts on Apple Macintosh and on Microsoft Windows systems.

The Type 1 binary files (.pfa and.pfb) contain character information, while the metric files (.afm (Adobe Font Metric) and.pfm (Printer Font Metric)) contain the metric information to form the character. These metrics files are ASCII files with a well-defined easy-to-parse structure.

9.5.4 TrueType Fonts

The personal computer brought about a need for scalable font technology, thought to be an important part of any future operating system. TrueType is this scalable font technology that enables you to view the same output without the jagged aliasing caused by scaling that is apparent when bitmapped fonts are used.

This technology involves two parts:

	
The Rasterizer

	
TrueType fonts

The Rasterizer is an application that is included in both Windows and Macintosh operating systems. It acts as an interpreter and translates the font information into a form that the video display can render.

The TrueType fonts themselves contain information that describes the outline of each character in the typeface. Higher quality fonts also contain hinting codes. Hinting is a process that makes a font that has been scaled down to a small size look its best. Instead of simply relying on the vector outline, the hinting codes ensure that the characters line up well with the pixels so that the font looks as smooth and legible as possible.

Adobe wanted both Apple and Microsoft to license its PostScript code, which was capable of handling this role, but both companies were concerned about having a third party control key parts of their operating systems. Apple and Microsoft agreed to a cross-licensing and product development deal, with Microsoft creating a PostScript-style graphics engine and Apple creating a font system. Apple developed what was to become TrueType, which proved superior to other competing technologies on performance and rendering quality. Apple and Microsoft announced their strategic alliance against Adobe, where Apple would do the font system, Microsoft the printing engine. Apple released TrueType in March 1991 and the first TrueType fonts:

	
Times Roman

	
Helvetica

	
Courier

Microsoft introduced TrueType into Windows with version 3.1 in early 1992. They created a core set of fonts:

	
Times New Roman

	
Arial

	
Courier

Both Apple's and Microsoft's TrueType fonts showed that scalable fonts could generate bitmaps virtually as though each size had been designed by hand.

9.5.5 TrueType Collection

A TrueType Collection (TTC) is an efficient way of sharing common font data, such as character information and glyphs. This data sharing results in an optimized file size as the common glyphs are stored in a single file structure, instead of within each font. The end result is a single file that is a combination of two or more fonts. For example, certain Japanese fonts in a font family may share a common set of kanji characters. They can be included in a TTC file.

For example, the TTC file, msgothic.ttc, is a collection file consisting of three fonts. They are MS Gothic, MS PGothic, and MS UI Gothic.

9.5.6 Barcode Fonts

Barcode fonts can be quite confusing. Some industries have chosen a specific barcode type. If this is what you need, then using the appropriate barcode font should work. For example, if you are interested in putting barcode on retail packages or books, the choice of a barcode is simple. Retail packages in North America use the UPC-A bar code. European retail articles use the EAN barcode .

All book ISBN numbers use the Bookland barcode (an EAN 13 bar code with a 5 digit supplement). Fonts are one way to obtain barcode, but not the only way. Oracle Reports offers another solution for producing barcodes using a Java barcode bean. The Java barcode bean is capable of creating barcodes based on the most popular barcode types.

9.5.7 CID Fonts

Character IDentifier (CID) fonts are a format of composite (multibyte) Type1 fonts used to better address the requirements of Far East markets. Adobe developed the CID-keyed font file format to support large character set fonts for use with PostScript. It is the ideal format for Chinese, Japanese, or Korean fonts and can also be used for roman fonts with very large character sets. CID-keyed refers to the character identifier (CID) numbers used to index and access the characters in the font. A CID (character identifier) font consists of a large font file containing all the character outlines and a small CMap file that contains a list of characters, encodings, and character identifiers. The combination of the font file and the CMap file yields a font that is a specific character set and encoding information. Each CID font can support many character set and encoding combinations.

18.12 Reusing Report Output from Cache

When you run a report, a copy of the report output is saved in the Oracle Reports Services cache. Subsequently, if an identical report is run (that is, with the same cache key), then the current request is recognized as a duplicate job.

There are several scenarios where reports caching takes effect:

	
When a new job request "A" comes to the Reports Server, and there is another job "B" that has the same cache key in the Current Jobs Queue (where it is waiting for an available engine or is in the middle of execution), then job "A" will use the output from job "B".

The job cache key excludes the destype, desname, server, and tolerance parameters, and includes almost all other parameters.

This level of cache happens automatically. You need not specify any other parameters in the command line for it to work.

	
If the user specifies TOLERANCE=n (where n is a number in units of minutes) in the new job request "A", then Reports Server will try to find a job in the Finished Jobs Queue than was successfully completed within n minutes. If Reports Server finds such a job, then the new job request "A" will return the output of job "B".

	
Note:

Refer to Section A.8.22, "TOLERANCE" for more information.

Oracle Reports Services cache results are persistent. If the Reports Server is shut down, once it is up again all the previous cache results are recovered and ready to use again.

18.12.1 Usage Note

You can set the cache size through Reports Queue Manager (rwrqm on Windows, or rwrqv.sh on Solaris) or through the cache element in the server configuration file (rwserver.conf). Reports Server attempts to keep the total size of cache files below the set limit, deleting the oldest cache files. In addition, you can empty the cache through Reports Queue Manager.

For more information on setting the cache, refer to the Reports Queue Manager online Help, and see Chapter 8, "Configuring Oracle Reports Services".

Oracle® Fusion Middleware

Publishing Reports to the Web with Oracle Reports Services

11g Release 1 (11.1.1)

B32121-06

July 2013

Oracle Fusion Middleware Publishing Reports to the Web with Oracle Reports Services, 11g Release 1 (11.1.1)

B32121-06

Copyright © 2003, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Swati Thacker

Contributing Author: Gururaj B S, Usha M P, and Ingrid Snedecor

Contributors: Rajesh Ramachandran, Rajiv Malhotra, Ratheesh Pai, Vidya Viswanathan, Suma Shanthappa, Vikram Nanda, Pankaj Yadav, Balaravikumar Shanmugasundaram, Hariharan Srinivasan, Vinod Murthy, Nagesh Patange, Navneet Singh, Rohit Marwaha, Prabakara Reddy, Philipp Weckerle, Kumar Dhanagopal

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

E.2 Command Line Syntax

rwdiag includes keywords that enable you to do the following:

	
Locate a Reports Server or bridge running on the network.

	
List all running Reports Servers or bridges on the network.

	
Monitor packets on the network broadcast by Reports Servers or clients.

E.2.1 Syntax

rwdiag.bat | rwdiag.sh {-find serverName | -findAll |-monitor [-log log_file_name]} [-conf config_file_name] [-timeout seconds]

Where

rwdiag.bat is the script for Microsoft Windows.

rwdiag.sh is the script for UNIX.

-find serverName finds the Reports Server with given name running on the current network.

-findAll finds and lists all Reports Servers and bridges on the network.

-monitor lists the packets broadcast on the network. To stop monitoring, press q and Enter. This option is not supported when the discovery mechanism specified in the network configuration file is a naming service.

-log log_file_name specifies a log file to which the monitor output is written. If not specified, the monitor output is displayed on the screen. The file name can be an absolute path. If just a file name is specified, the log file is created in the current folder.

-conf config_file_name specifies a custom configuration file. If not specified, rwnetwork.conf is the default file name. The settings such as discovery mechanism (broadcast or naming service) and port numbers are taken from this file. The utility assumes the configuration file is located in <INSTANCE_ HOME>\config\ReportsToolsComponent\ReportsTools\conf. If a non-existent file is specified, the file is created with the default settings in rwnetwork.template.

-timeout seconds specifies the timeout value in seconds. If not specified, the default value is 10 seconds. Timeout is the length of time the client waits for a response from the server after broadcasting the request packet. This option is ignored when the discovery mechanism specified in the network configuration file is naming service.

E.2.2 Usage Notes

	
The host information is not available when using a naming service discovery mechanism.

	
Time taken to locate the server is not displayed for a naming service discovery mechanism because the lookup is based upon the Reports Server name in the naming service. The utility does not need to await response from the server. Hence, the time taken is not relevant for a naming service.

	
Bridges cannot be located using a naming service because they do not bind to the naming service. Only Reports Server implementations are bound to the naming service.

	
The timeout value in the configuration file is ignored. Only the value specified in the command line is taken into account. If not specified in the command line, the default value is 10 seconds.

	
If the Reports Server you try to locate is not found, the utility generates a REP-50504 message, which states that the server was not found.

C Batch Registering Reports in Oracle Portal

If you have a number of reports that you wish to register in Oracle Portal, it is often preferable to register them as a group in a batch script rather than individually in the Oracle Portal user interface. Likewise, if you have a large number of reports that you wish to unregister, a batch script is more efficient.

	
Batch Registering Report Definition Files

	
Batch Removing Report Packages

	
PL/SQL Batch Registering Function

A.8 Command Line Keywords (RUNDEBUG to WEBSERVER_PORT)

This section provides a brief description of the Oracle Reports components and the keywords that each component can use.

A.8.1 RUNDEBUG

Table A-106 indicates which components can use the RUNDEBUG keyword.

Table A-106 Components That Use RUNDEBUG

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
yes

	
yes

	
yes

	
no

	
yes

	
no

Description Use RUNDEBUG to specify that you want extra runtime checking for logical errors in the report. RUNDEBUG checks for things that are not errors but might result in undesirable output, and displays these as warnings at runtime, before displaying the report output. Using RUNDEBUG to run a report in debug mode is not the same as debugging a report using the PL/SQL Interpreter.

RUNDEBUG checks for the following:

	
Frames or repeating frames that overlap but do not enclose another object. This can lead to objects overwriting other objects in the output.

	
Layout objects with page-dependent references that do not have fixed sizing. Such objects will be fixed in size regardless of the Vertical Elasticity and Horizontal Elasticity property settings.

	
Bind variables referenced at the wrong frequency in PL/SQL.

Syntax RUNDEBUG={YES|NO}

Values

	
YES Perform extra runtime error checking.

	
NO Do not perform extra runtime error checking.

Default YES

Usage Notes RUNDEBUG can be used when running JSP-based Web reports from the command line.

A.8.2 SAVE_RDF

Table A-107 indicates which components can use the SAVE_RDF keyword.

Table A-107 Components That Use SAVE_RDF

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
yes

	
yes

	
no

	
no

	
no

Description Use SAVE_RDF to specify a filename for a combined RDF file and XML customization file. This keyword is useful when you combine an existing RDF file with a Oracle Reports XML customization file using the CUSTOMIZE keyword, and you wish to save the combination to a new RDF file.

Syntax SAVE_RDF=filename.rdf

Values Any valid file name.

Default None

Usage Notes You can use SAVE_RDF with a JSP file, but only the paper layout part, not the Web source.

A.8.3 SCHEDULE

Table A-108 indicates which components can use the SCHEDULE keyword.

Table A-108 Components That Use SCHEDULE

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
yes

	
no

	
no

	
no

	
yes

	
no

Description Use SCHEDULE to set the day, time, and frequency a report should be run. The default is to run the report once, now. Time values are expressed according to a 24-hour day (that is, one o'clock is expressed 13:00). To eliminate the need for quoting the scheduling command, use underscores (_) instead of spaces. You can also specify an expiration for a report job after a number of runs or on a particular date/time.

Syntax SCHEDULE=string

where string is:

[FREQ from] TIME [retry {n} after LEN expires {on|after} time|n]

Table A-109 lists and explains the values used in this string.

Table A-109 Values for string used with the SCHEDULE keyword

	FREQ	hourly | daily | weekly | monthly | {every {LEN | DAYREPEAT}} | {last {WEEKDAYS | weekday | weekend} before {n}+}
	
LEN

	
{n}+ {minute[s] | hour[s] | day[s] | week[s] | month[s]}

	
DAYREPEAT

	
{first | second | third | fourth | fifth} WEEKDAYS of month

	
WEEKDAYS

	
mon | tue | wed | thu | fri | sat | sun

	
TIME

	
now | CLOCK [DATE]

	
CLOCK

	
h:m | h:mm | hh:m | hh:mm

	
DATE

	
today | tomorrow | {MONTHS {d | dd} [,year]}

	
MONTHS

	
jan | feb | mar | apr | may | jun | jul | aug | sep | oct | nov | dec

	
EXPIRES

	
on {today | tomorrow | {MONTHS {d | dd} [,year]}}|after n

Default None

Examples

SCHEDULE=every_first_fri_of_month_from_15:53_Oct_23,_1999_retry_3_after_1_hour_expires_on_15:53_Oct_23,_2003

SCHEDULE=last_weekday_before_15_from_15:53_Oct_23,_1999_retry_after_1_hour_expires_after_100

Or:

SCHEDULE="every first fri of month from 15:53 Oct 23, 1999 retry 3 after 1 hour expires on 15:53 Oct 23, 2003"

SCHEDULE="last weekday before 15 from 15:53 Oct 23, 1999 retry after 1 hour expires after 100"

A.8.4 SERVER

Table A-110 indicates which components can use the SERVER keyword.

Table A-110 Components That Use SERVER

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
yes

	
no

	
no

	
no

	
yes

	
yes

Description Use SERVER to specify the name of the Reports Server you want to use to run this report.

Syntax SERVER=server_name

Values See Syntax

Usage Notes

	
For jobs run with rwservlet or as a JSP, you can omit the SERVER keyword if you have specified a default server in the Oracle Reports Servlet (rwservlet) configuration file, rwservlet.properties; or you can include the SERVER keyword to override the default.

	
SERVER can be used when running JSP-based Web reports from the command line.

A.8.5 SHOWAUTH

Table A-111 indicates which components can use the SHOWAUTH keyword.

Table A-111 Components That Use SHOWAUTH

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
no

	
no

	
no

	
yes

	
no

Description Use SHOWAUTH to display the Reports Server logon page and run the report.

Syntax http://your_webserver/reports/rwservlet/showauth[?]

[server=server_name][&authid=username/password]

[&nextpage=key_in_cgicmd.dat]&authtype={s|d}

Values See Syntax

Default None

Usage Notes

	
This keyword is a command that does not require a value; that is, commands are entered by themselves without a corresponding value.

	
After authentication, the URL specified by the cgicmd.dat key in the nextpage parameter will be run by the Reports servlet.

	
The parameter authtype is mandatory.

When authtype=s the Reports System User Authentication dialog box is displayed. When authtype=d, the Reports Database User Authentication dialog box is displayed.

	
Related keywords are SERVER and AUTHID.

A.8.6 SHOWENV

Table A-112 indicates which components can use the SHOWENV keyword.

Table A-112 Components That Use SHOWENV

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
no

	
no

	
no

	
yes

	
no

Description Use SHOWENV to display the rwservlet configuration file (rwservlet.properties).

Syntax http://your_webserver/reports/rwservlet/showenv[?]

[server=server_name][&authid=username/password]

Values See Syntax

Default None

Usage Notes

	
This keyword is a command that does not require a value; that is, commands are entered by themselves without a corresponding value.

	
Related keywords are SERVER and AUTHID.

A.8.7 SHOWJOBID

Table A-113 indicates which components can use the SHOWJOBID keyword.

Table A-113 Components That Use SHOWJOBID

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
no

	
no

	
no

	
yes

	
no

Description SHOWJOBID shows the status of the Reports Server job with job ID n.

Syntax http://your_webserver/reports/rwservlet/showjobidn[?]

[server=server_name][&authid=username/password]

[&statusformat={html|xml|xmldtd}]

Values See Syntax

Default None

Usage Notes

	
This keyword is a command that does not require a value; that is, commands are entered by themselves without a corresponding value.

	
The job must be current (enqueued or scheduled).

	
Use SHOWJOBS to see the current list of jobs. The STATUSFORMAT can be set to html (default), xml , or xmldtd to return status in that format. The status information is generated in HTML, XML, or XMLDTD (with an internal DTD subset).

	
Related keywords are SHOWJOBS, SERVER, AUTHID, and STATUSFORMAT.

A.8.8 SHOWJOBS

Table A-114 indicates which components can use the SHOWJOBS keyword.

Table A-114 Components That Use SHOWJOBS

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
no

	
no

	
no

	
yes

	
no

Description Use SHOWJOBS to display a Web view of Reports Server queue status. In a cluster environment, SHOWJOBS displays all the in-process servers that are part of the cluster. You can view the jobs of both cluster and individual servers. Even if the server is down, you can retrieve information about past jobs for that server.

Syntax http://your_webserver/reports/rwservlet/showjobs[n][?]

[server=server_name][&authid=username/password]

[&queuetype={current|past|future}]

[&startrow=start_position_in_job_queue]

[&count=number_of_jobs_to_display]

[&statusformat={html|xml|xmldtd}]

Values See Syntax

Default None

Usage Notes

	
This keyword does not require a value; that is, keywords are entered by themselves without a corresponding value.

	
The name of the Reports Server must be specified implicitly by environment variable or Oracle Reports Servlet (rwservlet) configuration file, or explicitly in the URL request. The refresh number n is optional. When it is specified, the report's queue status will be updated every n seconds.

	
The STATUSFORMAT can be set to html (default), xml, or xmldtd to return status in that format. The status information is generated in HTML, XML, or XMLDTD (with an internal DTD subset).

	
Related keywords are SERVER, AUTHID, and STATUSFORMAT.

Example

Use SHOWJOBS to display a consolidated job queue in a high availability environment, as follows:

http://host:port/reports/rwservlet/showjobs

where host and port is the load balancer host name and port number.

A.8.9 SHOWMAP

Table A-115 indicates which components can use the SHOWMAP keyword.

Table A-115 Components That Use SHOWMAP

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
no

	
no

	
no

	
yes

	
no

Description Use SHOWMAP to display rwservlet key mappings.

Syntax http://your_webserver/reports/rwservlet/showmap[?]

[server=server_name][&authid=username/password]

Values See Syntax

Default None

Usage Notes:

	
This keyword does not require a value; that is, commands are entered by themselves without a corresponding value.

	
Related keywords are SERVER and AUTHID.

A.8.10 SHOWMYJOBS

Table A-116 indicates which components can use the SHOWMYJOBS keyword.

Table A-116 Components That Use SHOWMYJOBS

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
no

	
no

	
no

	
yes

	
no

Description Use SHOWMYJOBS to display the Reports Server queue status for a particular user.

Syntax http://your_webserver/reports/rwservlet/showmyjobs[?]

[server=server_name][&authid=username/password]

[&statusformat={html|xml|xmldtd}]

Values See Syntax

Default None

Usage Notes

	
This keyword does not require a value; that is, commands are entered by themselves without a corresponding value.

	
The STATUSFORMAT can be set to html (default), xml, or xmldtd to return status in that format. The status information is generated in html, xml, or xmldtd (with an internal dtd subset).

	
Related keywords are SERVER, AUTHID, and STATUSFORMAT.

A.8.11 SHUTDOWN

Table A-117 indicates which components can use the SHUTDOWN keyword.

Table A-117 Components That Use SHUTDOWN

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver	rwbridge
	
no

	
no

	
no

	
no

	
no

	
yes

	
yes

Description Use SHUTDOWN to shut down a previously running server, or to shut down the Oracle Reports Bridge.

When used with rwserver, you must also use AUTHID to supply a user name and password.

When used with rwbridge, you must also use AUTHID to supply a user name and password if the Oracle Reports Bridge is secured (the identifier element is set in the Oracle Reports Bridge configuration file).

Syntax SHUTDOWN={NORMAL|IMMEDIATE}

Values

	
NORMAL Shuts the server or Oracle Reports Bridge down gracefully, using normal shutdown procedures.

	
IMMEDIATE Shuts the server or Oracle Reports Bridge down immediately, without waiting for other processes to complete running.

Default NORMAL

Usage Notes The user of the SHUTDOWN keyword must be an Oracle Reports Administrative user. If the server has security enabled, it will query the security API to determine the user's role eligibility to execute the shutdown (in other words, the user must be an Oracle Reports Administrative user). If security is not enabled, then the user must nonetheless be an Oracle Reports Administrative user defined for that server.

A.8.12 SITENAME

Table A-118 indicates which components can use the SITENAME keyword.

Table A-118 Components That Use SITENAME

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
yes

	
yes

	
no

	
no

	
yes

	
no

Description Use SITENAME to specify the name of the Oracle WebDB Release 2.2 site to which report output should be pushed. This keyword is maintained for backward compatibility with Oracle WebDB Release 2.2; for backward compatibility with Oracle9iAS Portal Release 1, see CONTENTAREA. Beginning with Oracle Portal 10g Release 1 (9.0.4), use PAGEGROUP.

Syntax SITENAME=name

Values

name Any valid site name used in Oracle WebDB Release 2.2.

Default None

Usage Notes

	
Use of this keyword is required to push Oracle Reports output to Oracle WebDB Release 2.2.

	
Relevant keywords include CONTENTAREA*, EXPIREDAYS, ITEMTITLE, OUTPUTFOLDER*, OUTPUTPAGE, PAGEGROUP, SITENAME*, STATUSFOLDER*, STATUSPAGE.

* maintained for backward compatibility with Oracle9iAS Portal Release 1 and Oracle WebDB Release 2.2.

A.8.13 SOURCE

Table A-119 indicates which components can use the SOURCE keyword.

Table A-119 Components That Use SOURCE

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
no

	
no

	
yes

	
no

	
no

Description Use SOURCE to specify the report/library or list of reports/libraries to be converted. The rwconverter command requires that you specify a source report or library.

Syntax SOURCE={source_name|(source_name1, source_name2, ...)}

Values Any valid report/library name or filename, or a list of valid report/library names or filenames enclosed in parentheses and separated by commas (for example, (qanda, test, dmast)).

Default None

Usage Notes

	
SQL wildcard characters (% and _) may be used for reports or libraries that are stored in the database. For example, R% would fetch all reports stored in the database that begin with R. All reports that match will be converted.

	
A list of report/library names or filenames must be enclosed in parentheses, with commas separating the names. For example:

(qanda,test,dmast) OR (qanda, test, dmast)

	
Wildcard characters are invalid for reports/libraries stored in files (that is, with extensions of .rdf, .rep, .rex, .pld, .pll, or .xml).

	
The value(s) for the SOURCE keyword may be operating system-specific.

	
If you are using user-owned Oracle Reports Builder tables, reports/libraries from multiple users must be converted for each user individually.

	
To convert reports/libraries, you must have created them or been granted access to the ones you did not create. If no USERID string is prefixed to the report/library name, the USERID string is assumed to be that the current user.

	
When DTYPE=REGISTER, you may only want to list report definition files with common parameters, such as destination types and formats, user access, and availability calendars.

A.8.14 SQLTRACE

Table A-120 indicates which components can use the SQLTRACE keyword.

Table A-120 Components That Use SQLTRACE

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
yes

	
yes

	
yes

	
no

	
yes

	
no

Description Use SQLTRACE to specify whether to perform SQL tracing on your report without modifying the report definition.

Syntax SQLTRACE=[YES|NO]

Values

	
YES SQL tracing will be performed on the report.

	
NO SQL tracing will not be performed on the report.

Default NO

A.8.15 SSOCONN

Table A-121 indicates which components can use the SSOCONN keyword.

Table A-121 Components That Use SSOCONN

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
no

	
no

	
no

	
yes

	
no

Description Use SSOCONN to specify one or more connect strings to use to connect to one or more data sources in a Single Sign-On environment.

Syntax SSOCONN=key[/type[/conn_string_parameter]][,key[/type[/conn_string_parameter]]]

Values The following information describes the variable values expressed in the SSOCONN syntax:

	
key refers to a connection string value stored in Oracle Internet Directory.

	
type is the kind of data source to which you are connecting, to identify the format in the string associated with key. The type value must be a valid resource type stored in the Oracle Internet Directory. Oracle Reports provides default resource types for the following:

	
Oracle database (OracleDB)

	
JDBC (JDBCPDS)

	
Oracle Express (EXPRESSPDS)

	
conn_string_parameter is the name of the Oracle Reports system or user parameter to be used to pass the connection string to rwservlet to run the report. For example, in the case of the OracleDB data source, Oracle Reports receives the connection string through the USERID parameter and uses it to connect to the specified Oracle database. Similarly, for JDBCPDS, P_JDBCPDS is used. If you have your own custom pluggable data sources, you must define your own user parameter for passing the connection string to Oracle Reports and specify it as conn_string_parameter for SSOCONN.

For example:

SSOCONN=mykey/OracleDB/USERID

Default None

Usage Notes

	
If multiple data sources are used in the report, use a comma to separate data source connection strings. For example:

ssoconn=key1/type1/conn_str,key2/type2/conn_str2,key3/type3/conn_str3

	
When you use SSOCONN in a command line, you cannot:

	
Specify AUTHID in the same command line.

	
Run against a Reports Server that is not secure.

	
Have SINGLESIGNON=NO in rwservlet.properties.

	
Simplified versions of SSOCONN are also available, as shown in Table A-122.

Table A-122 Simplified Versions of the SSOCONN Option

	Option	Description
	
ssoconn=mkey

	
When only the key name is specified, the default values for type and conn_string_parameter are: OracleDB and USERID.

	
ssoconn=mkey/PDSApp

	
When both key name and data source type are specified, the default value for conn_string_parameter is USERID.

	
SSOCONN can be used when running JSP-based Web reports from the command line. If you are using the SSOCONN keyword with a report run as a JSP, use an ampersand (&) to separate connection strings. For example:

http://...:8888/myjsp/foo.jsp?name1=value1&name2=value2 …

	
Note:

For more information on Oracle Reports and Single Sign-On (SSO), see Chapter 17, "Configuring and Administering OracleAS Single Sign-On".

A.8.16 STATUSFOLDER

Table A-123 indicates which components can use the STATUSFOLDER keyword.

Table A-123 Components That Use STATUSFOLDER

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
yes

	
yes

	
no

	
no

	
yes

	
no

Description Use STATUSFOLDER to specify the name of the Oracle WebDB Release 2.2 or Oracle9iAS Portal Release 1 folder to which job status information should be pushed. If this is omitted, a new folder is created called Oracle_Reports_Status. This keyword is maintained for backward compatibility with Oracle WebDB Release 2.2 and Oracle9iAS Portal Release 1. Beginning with Oracle Portal 10g Release 1 (9.0.4), use STATUSPAGE.

Syntax STATUSFOLDER=folder

Values

folder Any valid folder name (internal name) used in Oracle WebDB Release 2.2 or Oracle9iAS Portal Release 1.

Default Oracle_Reports_Status

Usage Notes

	
Use of this keyword is optional to push Oracle Reports output to Oracle WebDB Release 2.2 or Oracle9iAS Portal Release 1.

	
The value for this keyword is case sensitive.

	
Relevant keywords include CONTENTAREA*, EXPIREDAYS, ITEMTITLE, OUTPUTFOLDER*, OUTPUTPAGE, PAGEGROUP, SITENAME*, STATUSFOLDER*, STATUSPAGE.

* maintained for backward compatibility with Oracle9iAS Portal Release 1 and Oracle WebDB Release 2.2.

A.8.17 STATUSFORMAT

Table A-124 indicates which components can use the STATUSFORMAT keyword.

Table A-124 Components That Use STATUSFORMAT

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
no

	
no

	
no

	
yes

	
no

Description Use STATUSFORMAT to specify the format for the Web view of the Reports Server queue status.

Syntax http://yourwebserver/rwservlet/showjobs?

server=server_name&statusformat={html|xml|xmldtd}

Values

	
html Outputs the Reports Server queue status in HTML format.

	
xml Outputs the Reports Server queue status in XML format.

	
Note:

Oracle Reports 11g Release 1 (11.1.1) includes a new param named ERRORSTATUSXML that can be used to view the error status in the XML format even if Reports job fails. To view the ERRORSTATUSXML in XML, set ERRORSTATUSXML=Yes on the rwservlet command line.

In case of event-based reporting, before calling the srw.run_reports you must complete the following steps to enable ERRORSTATUSXML:

	
Call srw.ignore_server_error, and

	
Call srw.add_parameter to add errorstatusxml=yes to the request.

	
xmldtd Outputs the Reports Server queue status in XML format with in-line Data Type Definition information.

Default html

Usage Notes Use STATUSFORMAT in conjunction with the SHOWJOBS and SHOWMYJOBS keywords.

A.8.18 STATUSPAGE

Table A-125 indicates which components can use the STATUSPAGE keyword.

Table A-125 Components That Use STATUSPAGE

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
yes

	
yes

	
no

	
no

	
yes

	
no

Description Use STATUSPAGE to specify the name of the Oracle Portal page to which job status information should be pushed. If this is omitted, a new page is created called Oracle_Reports_Status. For backward compatibility with earlier releases (Oracle WebDB Release 2.2 and Oracle9iAS Portal Release 1), see STATUSFOLDER.

Syntax STATUSPAGE=page

Values

page Any valid page name (internal name) used in Oracle Portal.

Default Oracle_Reports_Status

Usage Notes

	
Use of this keyword is optional to push output to Oracle Portal.

	
The value for this keyword is case sensitive.

	
Relevant keywords include CONTENTAREA*, EXPIREDAYS, ITEMTITLE, OUTPUTFOLDER*, OUTPUTPAGE, PAGEGROUP, SITENAME*, STATUSFOLDER*, STATUSPAGE.

* maintained for backward compatibility with Oracle9iAS Portal Release 1 and Oracle WebDB Release 2.2.

A.8.19 STYPE

Table A-126 indicates which components can use the STYPE keyword.

Table A-126 Components That Use STYPE

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
no

	
no

	
yes

	
no

	
no

Description Use STYPE to specify the format of the report(s) or libraries to be converted.

Syntax STYPE={PLDFILE|PLLFILE|RDFFILE|REXFILE|XMLFILE|JSPFILE}

Values Use any one of the following values:

	
PLDFILE Source PL/SQL libraries are stored in files in ASCII format.

	
PLLFILE Source PL/SQL libraries are stored in files containing source code and P-code (compiled PL/SQL).

	
RDFFILE Source report(s) are stored in one or more report definition files (files with the rdf extension).

	
REXFILE Source report(s) are stored in one or more text files (files with the rex extension).

	
XMLFILE Source report(s) are stored in one or more XML files.

	
JSPFILE Source report(s) are stored in one or more JSP files.

Default RDFFILE

Usage Notes When DTYPE=REGISTER, choose RDDFILE,REXFILE,XML, or JSPFILE for STYPE.

A.8.20 SUBJECT

Table A-127 indicates which components can use the SUBJECT keyword.

Table A-127 Components That Use SUBJECT

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
yes

	
yes

	
no

	
no

	
yes

	
no

Description Use SUBJECT to specify the subject line of an e-mail.

Syntax SUBJECT="string"

Values Any text string.

Default None

Usage Notes

	
Enclose subjects that contain character spaces in quotation marks (" "). Single-word subjects do not require quotation marks.

	
Related keywords include BCC, CC, FROM, and REPLYTO. Note that DESNAME is used to specify the main recipient(s) of the e-mail.

A.8.21 SUPPRESSLAYOUT

Table A-128 indicates which components can use the SUPPRESSLAYOUT keyword.

Table A-128 Components That Use SUPPRESSLAYOUT

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
yes

	
yes

	
yes

	
no

	
yes

	
no

Description Use SUPPRESSLAYOUT to specify whether to suppress the formatting of the paper layout at runtime. The keyword allows users to control whether the paper layout in a report is executed at runtime. The most common use of this keyword is to increase the performance of JSP reports. Since a JSP report may have a paper layout and reference objects in it through an <rw:include> tag, Oracle Reports formats the paper layout before running the JSP section of the report. To improve the performance of single source JSP reports that store both paper and Web layouts but do not reference paper layout objects, set SUPPRESSLAYOUT=YES on the command line.

	
Note:

If there is an <rw:include> tag, then no output will be created for the tag.

Syntax SUPPRESSLAYOUT=[YES|NO]

Values

	
YES Paper layout objects will not be formatted at runtime

	
NO Paper layout objects will be formatted at runtime.

Default NO

A.8.22 TOLERANCE

Table A-129 indicates which components can be used with the TOLERANCE keyword.

Table A-129 Components That Use TOLERANCE

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
yes

	
no

	
no

	
no

	
yes

	
no

Description Use TOLERANCE to set the maximum acceptable time (in minutes) for reusing a report's cached output when a duplicate job is detected. Setting the time tolerance on a report reduces the processing time when duplicate jobs are found.

See Reusing Report Output from Cache for more information on duplicate job detection.

Syntax TOLERANCE=time_string

Values

time_string Can be in one of two formats:

	
n{unit}, for a number with an optional unit. The unit can be minute(s), hour(s), or day(s). The default unit is minute(s) if no unit is specified.

	
{Mon DD, YYYY} hh:mi:ss am|pm {timezone}, for a date/time format. Date information is optional. If it isn't specified, today is assumed. Time zone is also optional. If it isn't specified, the Reports Server's time zone is used. The date/time is always in a US locale. This format is the same as defined in the Java DateFormat.MEDIUM type.

Default None

Usage Notes

	
If TOLERANCE is not specified, then Oracle Reports Services reruns the report even if a duplicate report is found in the cache.

	
If a report is being processed (that is, in the current job queue) when an identical job is submitted, then Oracle Reports Services reuses the output of the currently running job even if TOLERANCE is not specified or is set to zero.

A.8.23 URLPARAMETER

Table A-130 indicates which components can use the URLPARAMETER keyword.

Table A-130 Components That Use URLPARAMETER

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
yes

	
no

	
no

	
no

	
yes

	
no

Description Use URLPARAMETER to specify the URL that is to be fetched with the URL engine.

Syntax URLPARAMETER=http://your_webserver/page_name.html

Values Any valid URL.

Default None

Usage Notes This keyword is relevant when jobType=rwurl in the job element in the Reports Server configuration file, and a URL engine is in place.

A.8.24 USEJVM

Table A-131 indicates which components can use the USEJVM keyword.

Table A-131 Components That Use USEJVM

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
yes

	
no

	
no

	
no

	
no

	
no

Description Use USEJVM to specify whether or not rwclient should use Java Virtual Machine (JVM) to communicate with Reports Server.

Syntax USEJVM=YES|NO

Values

	
YES rwclient starts JVM and tries to connect to Reports Server using CORBA; if this fails, then it will attempt to connect using SQLNet, which is available for backward compatibility.

	
NO rwclient does not start JVM; instead, it uses SQLNet to communicate with Reports Server (Oracle Reports 6i Server).

Default YES

A.8.25 USERID

Table A-132 indicates which components can use the USERID keyword.

Table A-132 Components That Use USERID

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
yes

	
yes

	
yes

	
yes

	
yes

	
no

Description Use USERID only if you are not using Single Sign-On to specify your Oracle user name and password, with an optional database name for accessing a remote database. If the password is omitted, then a database logon form opens automatically before the user is allowed to run the report.

If you want users to log on to the database, then omit the password portion of the USERID keyword from the report request. If you want users to log on every time they run report requests, then use the cgicmd.dat key map file (for more information, see Section 18.13, "Using a Key Map File") to specify the runtime command, and include the %D option in the relevant key mapping entry.

Syntax userid=username[/password][@database]

Values

	
username Username assigned by the database administrator.

	
password Password for the username. See "Usage Notes", below.

	
database The name of the database you are accessing.

Default None

Usage Notes

	
The logon definition cannot exceed 512 bytes in length.

	
USERID can be used when running JSP-based Web reports from the command line.

	
It is strongly recommended that you do not include the password when using USERID with rwbuilder, rwrun, rwclient, or rwconverter. On many operating systems, this information can become available to any user (for example, with the ps command on UNIX). Instead, use the SSOCONN keyword.

A.8.26 USERSTYLES

Table A-133 indicates which components can use the USERSTYLES keyword.

Table A-133 Components That Use USERSTYLES

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
yes

	
yes

	
yes

	
no

	
yes

	
no

Description Use USERSTYLES to specify whether an external style sheet file (.css) is associated with a report when generating HTMLCSS output. The style sheets to be applied to the report are specified by the report's Style Sheets property. The value is set to YES by default, and will override any design-time styles included in the Paper Design layout.

	
See Also:

Oracle Reports Building Reports for more information on online HTML formatting.

Syntax USERSTYLES=YES|NO

Values

	
YES Associates your report with one or more external style sheets, as specified by the report's Style Sheets property, when generating HTMLCSS output.

	
NO Associates your report with the formatting applied during the design of the report. External style sheets will be ignored.

Default YES

Usage Notes

	
If you specify a value other than YES or NO, Oracle Reports defaults to YES.

	
If you find that your report is not associated with an external style sheet, ensure the following:

	
You have specified the correct path to the style sheet in the Style Sheets property.

	
The styles specified by the CSS Class Name and the CSS ID properties are defined in the specified style sheets.

	
See Also:

Oracle Reports online Help for more information on the Style Sheets, CSS Class Name, and CSS ID properties.

	
USERSTYLES is set to YES.

Example

http://myias.mycomp.com:7779/reports/rwservlet?server=myrepserv+report=test.jsp+us
erid=scott/tiger@mydb+desformat=HTMLCSS+DESTYPE=cache+userstyles=yes

A.8.27 VALIDATETAG

Table A-133 indicates which components can use the VALIDATETAG keyword.

Table A-134 Components That Use VALIDATETAG

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
no

	
yes

	
no

	
no

	
no

Description VALIDATETAG specifies whether to enforce JSP tag validation and check for items such as duplicate field identification or malformed attributes when designing or deploying a JSP-based Web report.

	
See Also:

Section 24.8, "Running the Report" for more information about using VALIDATETAG to tune the performance of your report.

Syntax VALIDATETAG=YES|NO

Values

	
YES Enforces tag validation and checks for items such as duplicate field identification or malformed attributes.

	
NO Turns tag validation off.

Default

	
YES At design time, when running a JSP-based Web report from Oracle Reports Builder.

	
NO At run time, when deploying a JSP-based Web report.

Usage notes

	
This feature is useful only during the design phase, but not in the production environment. By default, VALIDATETAG=YES in Oracle Reports Builder during report design, and VALIDATETAG=NO in Oracle Reports Services for report deployment. To turn this option on when deploying a report, specify VALIDATETAG=YES in your http request (for example, http://my.server.com/myreport.jsp?VALIDATETAG=YES).

	
Using VALIDATETAG=YES when deploying a report slows performance.

	
If you start Reports Builder from the command line with rwbuilder VALIDATETAG=NO, you run the risk of designing a report with invalid JSP tag structure.

A.8.28 WEBSERVER_DEBUG

Table A-135 indicates which components can use the WEBSERVER_DEBUG keyword.

Table A-135 Components That Use WEBSERVER_DEBUG

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
no

	
yes

	
no

	
no

	
no

Description Use WEBSERVER_DEBUG for JSP debugging. It creates the stderr.log and stdout.log files under the docroot/port# directory, and leaves temporary JSP files under docroot/port#/default and log files under docroot/port#/log for your inspection.

Syntax WEBSERVER_DEBUG={YES|NO}

Values

	
YES Creates debugging files.

	
NO Does not create debugging files.

Default NO

Usage Notes

	
Use this keyword only when you're running a job as a JSP.

	
Relevant keywords include WEBSERVER_DEBUG,WEBSERVER_DOCROOT,WEBSERVER_PORT.

A.8.29 WEBSERVER_DOCROOT

Table A-136 indicates which components can use the WEBSERVER_DOCROOT keyword.

Table A-136 Components That Use WEBSERVER_DOCROOT

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
no

	
yes

	
no

	
no

	
no

Description Use WEBSERVER_DOCROOT to set the Oracle Reports document root directory. All files you reference in your JSP, such as images, HTML, and the like, should be relative to this directory. By setting the document root to your working directory, you avoid having to copy these files around.

Syntax WEBSERVER_DOCROOT=REPORTS_TMP/docroot

Values The root folder directory for your report files.

Default $DOMAIN_HOME/servers/WLS_REPORTS/tmp/_WL_user/reports_<version>/<random_string>/war

Usage Notes

	
Use this keyword only when you're running a job as a JSP.

	
Relevant keywords include WEBSERVER_DEBUG, WEBSERVER_DOCROOT, WEBSERVER_PORT.

Example

WEBSERVER_DOCROOT=c:/temp/docroot

A.8.30 WEBSERVER_PORT

Table A-137 indicates which components can use the WEBSERVER_PORT keyword.

Table A-137 Components That Use WEBSERVER_PORT

	rwclient	rwrun	rwbuilder	rwconverter	rwservlet	rwserver
	
no

	
no

	
yes

	
no

	
no

	
no

Description Use WEBSERVER_PORT to specify the port number an internal Web server listens to. Oracle Reports Builder runs the JSP reports at the port number specified by WEBSERVER_PORT.

Syntax WEBSERVER_PORT=port_num

Values

port_num Any valid port number

Default

Port number of the external web server such as Oracle HTTP Server

Usage Notes

	
Use this keyword only when you're running a job as a JSP.

	
Relevant keywords include WEBSERVER_DEBUG,WEBSERVER_DOCROOT,WEBSERVER_PORT.

1.2 What's New In This Release?

Oracle Reports 11g Release 1 (11.1.1) provides many new features and enhancements. The primary themes of this release are:

	
Tighter integration with Oracle Fusion Middleware platform and services.

	
Enhancements in top supportability areas with architectural changes.

	
New features in key enterprise reporting areas.

Table 1-1 details the new functionality in Oracle Reports 11g Release 1 (11.1.1), along with the equivalent 10g Release 2 (10.1.2) functionality, when applicable. The new features and enhancements are grouped into the following categories:

	
Install and Upgrade

	
Monitoring and Management

	
Job Administration and Scheduling

	
Security

	
High Availability

	
Font Management and Support

	
Distribution and Bursting

	
ENHANCEDSPREADSHEET Output Format

	
Graphing

	
Diagnosability

	
Forms-Reports Integration

	
Server Stability

	
Service-Oriented Architecture (SOA) Integration: Oracle BPEL Process Manager

	
Enhanced Printing Support Based on Common UNIX Printing System (CUPS)

Table 1-1 11g Functionality vs. 10g Functionality

	11g New Features and Enhancements	Equivalent 10g Functionality
	
Install and Upgrade

	

	
Flexible Install types. In Oracle Fusion Middleware 11g, the install type contains Oracle Reports, Forms, Portal, and Discoverer. In the installer, you can selectively install any one of these products or all of them.

	
Predefined install types only.

	
Separate installation of binaries from configuration, allowing shared binaries across servers. Oracle Installer allows for install only and then configuration only as two separate steps.

For more information, see Section 3.2, "Understanding the Oracle Fusion Middleware Installation Structure".

	
Single ORACLE_HOME installation including both binaries and configuration.

	
New and improved management screens in Oracle Enterprise Manager. Oracle Enterprise Manager provides enhanced usability for all the administration, monitoring, and diagnosability operations. For more information, see Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager".

	
Oracle Enterprise Manager Application Server (AS) Control, and modifying configuration files.

	
Fully automated upgrade from 10g Release 2 (10.1.2.x). For more information, see Section 3.6, "Upgrading from the Prior Release".

	
Not Applicable (N/A)

	
For more information about installation, see Chapter 3, "Verifying Your Installation".

See Also: Oracle Fusion Middleware Quick Installation Guide for Oracle Portal, Forms, Reports, and Discoverer

	

	
Monitoring and Management

	

	
New rich and customizable Oracle Enterprise Manager user interface, providing:

	
Navigation pane showing hierarchical view of complete Farm and all components.

	
New pages for Oracle Reports to perform comprehensive administration, management, configuration, tuning, and diagnostics of complete reporting environment.

	
Large number of metrics for monitoring and tuning.

	
Administration dashboard for instant access to start, stop, restart, grouping, servlet, plug-in registration, and more.

	
Significant reduction of configuration parameters, and categorization.

	
Extensive real-time and historical performance metrics.

	
Reports Server auditing

	
Oracle Internet Directory reassociation

	
Portal metadata repository discovery and association.

	
Direct access to documentation and collateral from Oracle Enterprise Manager.

For more information, see Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager".

	
Enterprise Manager Application Server (AS) Control and manually editing configuration files.

	
New trend graphs, key statistics.

Anticipation of common problems with early symptoms.

	
N/A

	
Job Administration and Scheduling

	

	
Advanced job queue administration. Comprehensive job queue management user interface in Oracle Enterprise Manager (search and filters, resubmit the job, view errors, and more).

	
Basic job queue user interface.

	
Rich calendar-based scheduling user interface. Comprehensive Reports Server job scheduling in Oracle Enterprise Manager.

	
Reports job scheduling done through Oracle Reports Queue Manager (rwrqm), Oracle Portal user interface, or command line only.

	
For more information about job administration and scheduling, see Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager".

	

	
Security

	

	
A standards-based Java EE security model through Oracle Platform Security Services. This provides a flexible, simple to administer, and high performance security mechanism.

	
Reports Server authentication restricted to use only Oracle Internet Directory. Authorization of Reports Server required OracleAS Portal-based security model (using Portal metadata repository for checking authorization).

	
Oracle Enterprise Manager advanced user interface. Administrators can use Oracle Enterprise Manager to more easily define and manage granular security policies for reports, Web commands, and folder access.

For more information, see Section 7.8, "Securing Oracle Reports Services" in Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager"

	
Basic UI in OracleAS Portal for defining the policies. Hard-coded Web command access to the Oracle Reports seeded roles. Access policies at file (report) level only, not folder level.

	
Read/write access to directories at Reports Server level. Administrators can control the input folders from which reports can be served and output folders to which the output of reports servers can be pushed. This ensures there is no security vulnerability.

	
REPORT_RESTRICT_DIRECTORIES as an interim feature.

	
Database proxy authentication. Support for database authentication using proxy users:

	
Additional security through control of users that are allowed to connect to the database through Oracle Reports.

	
Scalability, through reuse of a single database connection.

	
N/A

	
Security check for distribution destinations. Ability to define security policies for distribution jobs. For example, you can define a security policy that specifies report output may not be burst to ENHANCEDSPREADSHEET format; if the distribution XML file specifies ENHANCEDSPREADSHEET format, the attempt to generate a report to this output format displays an error.

	
No security check performed for destinations specified in the distribution XML file.

	
Security check for system parameters. A security check is performed for all system parameters, including those specified in the report definition as well as on the command line.

	
No security check performed for system parameters.

	
Security auditing. Audit authentication and authorization on the Reports Server.

	

	
Security for report output from Oracle Forms Services. With no configuration required, support for intermediate-level security even when Oracle Forms Services and Oracle Reports Services are not secured.

	
Anyone is able to see anyone else's report output by "guessing" the job ID based on sequential job ID assignment.

	
For more information about security, see Chapter 15, "Securing Oracle Reports Services"

	

	
High Availability

	

	
Database-backed job queue repository. Use of the database as the job repository provides the following High Availability (HA) benefits:

	
Ability to view consolidated jobs for the complete group of Reports Servers in Oracle Enterprise Manager, and perform operations on this consolidated jobs See Section 7.15.2, "Displaying a Consolidated Job Queue".

	
Scheduled jobs do not get lost even if the Reports Server where the jobs are scheduled goes down.

	
The administrator must view the job queues for each Reports Server separately.

If the Reports Server where a job is scheduled goes down, the job is left waiting until that Reports Server comes back up to start executing the job again.

	
Oracle Reports Server cluster with shared job repository and cache, including Java Object Cache. Reports Servers communicate via peer-to-peer mechanisms for job management, to minimize manual administration and for automatic failover of jobs. Access to cached output even when the Reports Server that processed the master job is not available.

	
Use of Oracle Reports caching mechanism. Cache not shared among Reports Servers. Cached output is not available to other servers if the Reports Server where it is cached goes down.

Proprietary clustering and HA mechanism.

	
For more information about High Availability, see Section 2.5, "Setting Up a High Availability Environment".

	

	
Font Management and Support

	

	
Cross-platform support for TrueType Fonts (TTF) and TrueType Collections (TTC). Report output is in most cases identical on UNIX as on Windows, allowing for simplified cross-platform deployment.

Oracle Reports reads the font metrics from the appropriate TTF files to correctly format the report output. This eliminates the issue of text misalignment due to font metrics mismatches. Fonts for which TTF files are available are found automatically. Note that if a TTF font file is not found, then the font lookup mechanism reverts to the pre-11g implementation.

New environment variables REPORTS_ENHANCED_FONTHANDLING and REPORTS_FONT_DIRECTORY.

	
Possible mismatches between fonts in report output on UNIX and Windows due to different font mechanisms on Windows and UNIX. Font aliasing was required, along with PDF font subsetting.

Support for older font file types (for example, AFM) supported. Difficult to get these font types for all fonts. Conversion of TTF to AFM required in many cases, but even these files did not provide the exact output as on Windows.

	
Support for all character sets in PDF. With the new font model, no misalignment will be seen in the PDF subsetted report output. Support for Unicode font subsetting in PDF on UNIX.

	
Only multibyte reports supported. PFM and PFA files must be created to resolve text misalignments in UNIX output. Dependence on AFM files.

Variable width font output was especially problematic, because Reports was unable to get width of characters beyond the first 256 characters in the file, and assumed fixed width for all these characters, resulting in misalignment.

	
Simplified font management and configuration through Oracle Enterprise Manager. Use Oracle Enterprise Manager to modify aliasing and subsetting entries in uifont.ali (such as global aliasing, PDF aliasing, and PDF subsetting), printer resolution, and the default font used.

	
Configure fonts in uifont.ali and configuration file.

	
PDF, password protection, and security. Specify new command line arguments to password-protect PDF reports generated from Oracle Reports. You can also suppress certain permissions to provide security for the generated PDF reports.

	
No capability to encrypt PDF reports or specify security permissions.

	
Font diagnostics. Easy to understand tracing for diagnosis of font issues. Reporting of fonts used, and other debugging tools.

	
Difficult to diagnose issues.

	
For more information about fonts in Oracle Reports, see Chapter 9, "Managing Fonts in Oracle Reports" and Chapter 11, "Using PDF in Oracle Reports".

	

	
Distribution and Bursting

	

	
Full support for bursting and distribution to all destinations and output formats, including:

	
all out-of-the-box and pluggable destinations

	
data-driven formats such as XML and DELIMITEDDATA, as well as layout-based formats such as the new ENHANCEDSPREADSHEET format.

	
Limited destinations and output formats for bursting and distribution.

	
System parameters in report definition honored for distribution. Distributed output honors the DESTYPE, DESFORMAT, and DESNAME system parameters specified in the report definition.

For example, if you define system parameters in the report:

DESTYPE=FILE, DESFORMAT=PDF, and DESNAME=/tmp/a.pdf

the report output is generated and distributed using these values without the parameter values needing to be specified in the distribution XML file or on the command line.

Additionally, if users change the values of DESTYPE, DESFORMAT, or DESNAME on the Runtime Parameter Form during runtime, or if Oracle Reports sets the value of these system parameter based on a runtime calculation, the parameter values are honored when the report is distributed.

	
Values for system parameters DESTYPE, DESFORMAT, and DESNAME specified in the report definition are not honored for distributed output; to change the default values of these system parameters for distributed reports, they must be specified in the distribution file or on the command line.

	
Security check for distribution destinations. Ability to define security policies for distribution jobs. For example, you can define a security policy that specifies report output may not be burst to ENHANCEDSPREADSHEET format; if the distribution XML file specifies ENHANCEDSPREADSHEET format, the attempt to generate a report to this output format displays an error.

	
No security check performed for destinations specified in the distribution XML file.

	
Other improvements such as tolerance support for burst jobs and improved diagnostics.

	
N/A

	
For more information about distribution and bursting, see Chapter 20, "Creating Advanced Distributions".

	

	
ENHANCEDSPREADSHEET Output Format

	

	
Support for large data sets output to spreadsheets. Significantly enhanced support for large data sets (up to 75,000 rows) and matrix reports with new ENHANCEDSPREADSHEET output format.

For more information, see the Oracle Reports online Help and the Oracle Reports Building Reports manual.

	
Failed attempts to generate output for large data sets to SPREADSHEET output format.

	
Graphing

	

	
New graph types: New funnel and curved line graph types allow for more variety in graphing.

	
N/A

	
Enhancements for existing graph types.

Support for number formatting in the Graph Wizard (independent of the Data Model), and plotting irregular time periods on the time-axis.

	
Restrictions on plotting time data.

	
Scalable Vector Graphic (SVG) image support. SVG provides for high resolution and smaller file size in graph output. Graph image output scales up better without losing resolution.

	
Support for only PNG, JPG, and GIF output formats.

	
For more information, see the Oracle Reports online Help and the Oracle Reports Building Reports manual.

	

	
Diagnosability

	

	
Log files in ODL format. All Oracle Reports log files follow Oracle Diagnostic Logging (ODL) format, the standard across Oracle Fusion Middleware, for log format, message types, and log management directives. The log file entries are in Text format (default) or XML format. Searching of log files from Oracle Enterprise Manager is easy and effective

	
N/A

	
More comprehensive choices for tracing:

	
Multiple tracing levels for fine-grained control.

	
New tracing options: NOTIFICATION, WARNING, ERROR (standardized across Oracle Fusion Middleware components).

	
Better naming convention, mechanism to control file size.

	
N/A

	
Enhanced trace viewer and search. New tracing options, levels, log file sizes, and so on can all be specified, viewed, and searched using Oracle Enterprise Manager.

	
Tracing options specified in configuration files or on command line.

	
Extensive diagnostic enhancements. Improved actionable errors with cause and action, job-level tracing, critical errors logged even when tracing is off, better health check mechanisms, and hyperlinks to contextual help and error message registry.

	
N/A

	
For more information about diagnosibility, see Chapter 24, " Diagnosing and Tuning Oracle Reports" (Section 24.3.2, "Log Files" and Section 24.3.7, "Tracing Report Execution").

	

	
Forms-Reports Integration

	

	
Forms-Reports non-SSO security. With no configuration required, support for intermediate-level security even when Oracle Forms Services and Oracle Reports Services are not secured. Other users are not able to see the report output, as job IDs can be random non-sequential numbers.This setting is optional.

For more information, see Section 17.6, "Oracle Forms Services Security Considerations".

	
Anyone is able to see anyone else's report output by "guessing" the job ID based on sequential job ID assignment.

	
Pluggable destinations support from Oracle Forms Services. Report requests can be submitted to all destinations, including any Oracle Reports-registered pluggable destinations from Oracle Forms Services using RUN_REPORT_OBJECT.

For more information, see Section 13.1.1, "Pluggable Destinations from Oracle Forms Services.".

	
Report requests can be submitted to a fixed specific set of destinations, so newly defined destinations can not be used for report output from Oracle Forms Services.

	
JVM pooling. Oracle Forms Services uses the shared JVM controller for all Oracle Reports requests, reducing memory consumption.

	

	
Server Stability

	

	
Database-backed job queue repository. Use of the database as the job repository helps to avoid Reports Server DAT file corruption, and also ensures no loss of scheduled jobs. It is also easier to manage jobs in the database.

	
Only file system-based DAT file repository.

	
New command line argument: JOBRETRY. When specified, this value takes precedence over the retry attribute of the job element. Jobs are retried for all unexpected errors. For more information, see Section A.6.15, "JOBRETRY".

	
Number of times to retry a failed job can be specified in the server configuration file using the retry attribute of the job element, or on the command line for scheduled jobs only Jobs are retried only in the case of engine crash failures.

	
For more information about Reports Server, see Chapter 2, "Understanding the Oracle Reports Services Architecture".

	

	
Service-Oriented Architecture (SOA) Integration: Oracle BPEL Process Manager

	

	
Oracle BPEL Process Manager integration. Users can submit Oracle Reports jobs using the Oracle BPEL Process Manager to automate and monitor reporting requirements.

For more information, see Section 18.9, "Running Reports Using Oracle BPEL Process Manager".

	

	
Enhanced Printing Support Based on Common UNIX Printing System (CUPS)

	

	
CUPS Support

Standard and modularized printing system that can process numerous data formats on the print server and also supports Internet Printing Protocol (IPP).

For more information, see Section 10.5, "Enhanced Printing on Linux Using CUPS".

	

	
Others

	

	
Internet Protocol Version 6 (IPv6) Support

IPv6 support is available out-of-the-box. For more information about IPv6, see Request for Comments (RFC) 2460 at http://www.ietf.org/rfc/rfc2460.txt.

For more information about IPv6 Support in Oracle Fusion Middleware 11g Release 1 (11.1.1), see Oracle Fusion Middleware Administrator's Guide.

	

7.14 Configuring Proxy Information

Some features of Oracle Reports Services support retrieving or sending information through a firewall. For example, the URL engine, the XML data source, the Text data source, and the mail destination features all retrieve or send information through the firewall. For these features to function properly, Reports Server requires certain proxy information.

To specify proxy information:

	
Log in to Oracle Enterprise Manager.

	
Navigate to the Reports Server or Reports Application Home page (see Section 7.3, "Viewing the Component Topology").

	
From the Reports menu, select Administration > Advanced Configuration.

The Advanced Configuration page displays.

	
On the Advanced Configuration page, set proxy hosts and ports available for various protocols, such as http, https, ftp, or file. You can also specify the addresses for which proxies can be bypassed.

7.18 Diagnosing Issues

To help diagnose issues, you can use the Oracle Enterprise Manager logging functionality:

	
Specifying Logging Information

	
Diagnosing Font Issues

7.18.1 Specifying Logging Information

To specify information to be saved in log files for Reports Server or Reports Application (in-process Reports Server):

	
Log in to Oracle Enterprise Manager.

	
Navigate to the component Home page (see Section 7.3, "Viewing the Component Topology").

	
From the Reports menu, select Logs > Log Configuration.

Alternatively, from the Reports Menu, click Administration > Advanced Configuration.

From the Reports Application Diagnostics window, click the link to Advanced Log Configuration.

The Log Configuration page is displayed.

	
Select the Log Levels tab.

	
In the Oracle Diagnostic Logging Level (Java Level) section, change the log levels as desired (see Table 24-4, "11g ODL Message Types vs 10.1.2 Trace Options").

	
Select the Log Files tab.

	
Select the log handler that you want to modify and click the Edit Configuration tab

	
Enter a new path in the Log Path field to change the log file location, if necessary.

	
Change the Maximum Log File Size (MB) and Maximum Size of all Log Files (MB) properties as desired.

In Oracle Enterprise Manager, the rotation policy for log files can be set by specifying the Max Log size and Max number of files properties. For example, if Max Log size is set to 10MB and Max number of files is set to 10, log file rotation automatically takes place when the first log file (diagnostics.log) reaches 1 MB (Max Log size / Max number of files = 10MB/10). ODL then renames this file to diagnostic1.log and starts logging to a new diagnostics.log. When it reaches a size of 1 MB, it is renamed to diagnostics2.log and logging continues in diagnostics.log. When the number of files reaches 10, the earliest log file is purged (diagnostics1.log) and a new diagnostics11.log is created. In this example, the maximum size of all log files is limited to 10 MB and the maximum number of files to 10, removing the risk of creating huge log files of arbitrary size and the machine running out of space, bringing the production system down.

	
Restart the component (see Section 7.4, "Starting, Stopping, and Restarting Oracle Reports Components") for the changes to take effect.

To observe the effects of these changes in the Oracle Enterprise Manager log viewer, see Section 7.11.1, "Viewing and Searching Log Files".

7.18.2 Diagnosing Font Issues

Refer to Section 7.9.2, "Diagnosing Font Issues".

9.9 Troubleshooting Font Issues

To help resolve font issues that may occur in your applications, this section provides the following troubleshooting information:

	
Checking Whether the Desired Font Is Used in a PostScript File

	
Creating Output

	
Reading the Output File

	
Verifying the Output File

	
Correcting Printed Font

	
Checking Environment Variables

	
Repairing Fonts Not Appearing Correctly in Web Source View

	
Understanding Limitations

	
Resolving Common Problems

Checking Whether the Desired Font Is Used in a PostScript File

PostScript files have a list of fonts, which is created after reading the PPD file. If you examine the PostScript file, you can check the fonts by looking for the following tags:

	
DocumentNeededResource has the list of fonts referenced in the PPD file.

	
DocumentSuppliedResource has the list of fonts for which the PostScript driver was able to find the AFM file.

	
%%Page paragraph before the field's %IncludeResource:font has the font name which will be used for the field.

For PCL output files, you can check whether a particular font was used or not. Depending on this information the font settings in Oracle Reports or the printer can be modified.

Example:

The test results below are based on a Lexmark Optra printer. The fonts and their numbers as well as the control commands are examples and may vary with other printers.

Font information The Lexmark has a small menu with the option of printing all available fonts (PCL Emulation Fonts). This includes both resident fonts (defaults) and Flash fonts (installed on the printer separately)

Table 9-6 Sample Font Information

	Font Name	Style	Weight	Example Output
	
R0 Courier

	
0

	
0

	
... <ESC>(<symset><ESC>(s0p<pitch>h0s0b4099T...

	
R39 Courier Bold

	
0

	
3

	
... <ESC>(<symset><ESC>(s0p<pitch>h0s3b4099T...

	
R40 Courier Italic

	
1

	
0

	
... <ESC>(<symset><ESC>(s0p<pitch>h1s0b4099T...

	
R55 Century Schoolbook Roman

	
0

	
0

	
... <ESC>(<symset><ESC>(s1p<point>v0s0b24703T ...

Table 9-7 Sample Flash Font Information

	Font Name	Symbol Set	Style	Weight	Example Output
	
F2 OCR-A

	
0O

	
0

	
0

	
... <ESC>(0O<ESC>(s0p<pitch>h0s0b4200T ...

	
F3 OCR-B

	
1O

	
0

	
3

	
... <ESC>(1O<ESC>(s0p<pitch>h0s0b4206T ...

In these examples, there are many more fonts and each font has its own code. OCRB for example has code 4206. This number is important later on.

Creating Output

When having problems getting the correct font, simplify the report and thereby the output. This can be done by creating a straightforward report using select sysdate from dual as the query and limiting the number of fonts. This will avoid long runs and create much smaller output files.

Reading the Output File

The resulting PCL-file is a binary file but is reasonably readable in the VI editor. The first small part and the end part is binary, but the middle part is readable and contains data that can be interpreted.

Verifying the Output File

The only interesting information is in the readable, middle part of the file. Find the text (this is the text displayed in the reports output) and check out the part preceding the text.

It looks like this:

....;SD1,14,2,0,3,10.34,5,0,6,0,7,4099;LB here is your text

In the preceding example, the font is selected with code 4099. For the Lexmark printer, this is selecting Courier.

In one example, the font OCR-B (code 4206) was needed. The font did not come out until that specific code was generated just before the selected text. It looks like this:

....;SD1,14,2,0,3,8.57,5,0,6,0,7,4206;LBThis is OCRB font....

Correcting Printed Font

If the output file contains the correct code, but the font does not appear on the printer, the printer probably does not have the font available. This will also occur if the code in the output file (deduced from TFM file) is not the same as the one the printer is expecting. On the Lexmark printer, the font was replaced by the default font on the printer.

If the output file does not contain the code for the font, Oracle Reports did not generate the code to the output file. Check for the HPD and TFM files.

Checking Environment Variables

DEBUG_SLFIND can help you ascertain which of these files was used. With reference to the fonts, you can find the list of AFM/TFM files the application looked at after reading the printer definition file and which font files it read after the aliasing. In this manner, you can also determine whether a font is mapped or not. Usually the order of file reading will be as follows.

	
First read the printer definition file.

	
Read all the associated font files for the font supplied by this printer definition file.

	
Read in the alias file.

	
If there is a mapping of file then read in font information files for those fonts and finally again read the AFM file for the fonts that are used in generating the output.

TK_DEBUG_POSTSCRIPT will affect PostScript output. It can be set to any combination of these strings:

	
Functions list each toolkit function called in comments in the PostScript output.

	
Long produces long, slow, intelligible PostScript.

	
Memory displays memory usage at the bottom of each page.

Any of the options can appear in the environment variable, abbreviated down to one letter. You can set it to any combination of these, separated by "/". This variable is case insensitive. For example, Func/L/Mem would give you all three options.

Note that the output that results from using this variable will not be supported by Oracle for customer use. It exists for diagnostics purposes only.

	
Note:

Set the environment variable DEBUG_SLFIND to any file name and run the report. The debug information is written in that particular file.

Usage: # setenv DEBUG_SLFIND mydebug.txt

For more information, see Appendix B, "Environment Variables".

Repairing Fonts Not Appearing Correctly in Web Source View

Text in the user interface of Oracle Reports Builder, such as the window title, uses fonts taken from the system resource files for the current language. These system resource files are supplied with the Oracle Reports installation. In Oracle Reports, you can map these fonts in the [rwbuilder] section of uifont.ali. If found, the mapped font is used instead of the original font; if not, Oracle Reports uses the original font.

	
Note:

The mapped font needs to be a fixed-width font.

In the Web Source view of the Report Editor, the following languages may appear garbled: Arabic, Central European languages, Cyrillic, Greek, Hebrew, Japanese, Thai, and Turkish. To work around this issue, you can set the font names for Oracle Reports Builder in uifont.ali as follows:

[rwbuilder]
.....AR8MSWIN1256="Courier New"
.....CL8MSWIN1251="Courier New"
.....EE8MSWIN1250="Courier New"
.....EL8MSWIN1253="Courier New"
.....IW8MSWIN1255="Courier New"
.....JA16SJIS="MS Gothic"
.....TH8TISASCII="Andale Duospace WT"
.....TR8MSWIN1254="Courier New"

You can download a copy of the Andale Duospace WT (fixed width) font from Oracle Metalink (http://metalink.oracle.com). The ARU number is 2766564.

Understanding Limitations

On Windows:

	
For Unicode, Windows provides True Type Big Fonts. These fonts contain the characters necessary to display or print text from more than one language. For example, if you try to type, display, or print Western European, Central European, and Arabic text on a field and see unexpected characters, then you are probably not using a Big Font. Big Fonts for single-byte languages provided by Microsoft Windows are Arial, Courier New, and Times New Roman. For more information, go to Microsoft's Web site: http://www.microsoft.com/typography/fonts/default.aspx.

	
Wingdings fonts may not appear when NLS_LANG is set to UTF8.

The only Wingdings fonts available when using UTF8 are the characters between ASC 32 and 127. ASC 252 would display a blank because it is not supported by UTF8.

Any of the following font sets would provide a reasonable work around.

	
Webdings - chr(97)

	
Wingdings2 - chr(80)

	
Wingdings2 - chr(87)

On UNIX:

	
AFM support is only for single byte PostScript file generation except for the Japanese encoding. The encoding schemes supported for the AFM files are AdobeStandardEncoding, ExtJIS12-88-CFEncoding, FontSpecific, HRoman, ISOLatinHebrew, JIS12-88-CFEncoding, and JIS12e-88-CFEncoding.

AFM version that is supported is 2.0.

	
X11 does not support the underline font attribute. Output to file should work according to steps given below.

	
In JDK, a bug causes the bold Korean font to appear incorrectly. Oracle Reports Services uses the JRE and therefore all bold Korean strings in graphs within reports show up incorrectly.

	
PostScript printing will not load the fonts to the printer. So for the desired fonts to appear in the printed output, it is necessary that those fonts should be installed on the printer.

	
For PCL output, only TFM font formats are supported.

	
The display system on UNIX (for example, X11) is totally independent of any application or printer. There is no direct connection between printing and displaying. There can be a font displayed on your screen that is not printed.

Display and printer fonts are somewhat similar but have more differences than similarities.

X fonts (display fonts) are bitmap display glyphs, which are displayed on an X terminal by an X Server.

Printer fonts are PostScript fonts (mathematical descriptions of fonts, not bitmaps) that are present in a PostScript printer and are generated by a PostScript Interpreter on that printer.

	
Font size changes after applying a template.

Creating a template with font set to Times New Roman size 10 (for all fields) and making the report use this template, makes the Paper Design view of the Report Editor display a different font size.

The reason for this behavior is that defaulting couldn't fit the layout into the desired area.

First it reduced the size of text fields and then reduced the size of the fonts. This is much better than wrapping the fields and keeping the template font size.

Also, for templates, the font chosen may be different to that in the template since it matches first on the character set. So if the template font doesn't support the current character set, the font will change to one that does. This is mostly visible if you have an English template, which you use in a Hebrew/Arabic environment.

Resolving Common Problems

Problem: Letters are truncated from the right margin on printed label reports.

You have printed a mailing label report on a Windows machine and notice that the last letter, or last few letters, on each line are being truncated. The letters are not missing when you preview the report. You have tried changing the page formatting and font settings, but this has failed to resolve the problem.

Solution: If the report displays correctly using a DESTYPE of Preview, this is not a problem with the printer driver. The problem may be occurring due to the frame properties.

If a frame around the layout objects has a Horizontal Elasticity setting of Fixed and the data exceeds the frame size, it can cause this truncation of data.

Try testing the results after setting the Horizontal Elasticity property to Expand or Variable.

Problem: When generating to file as HTMLCSS, a column is dropped off in the output.

You are generating a report to an HTMLCSS file format and it appears to be fine in the Paper Design view of the Report Editor. When you click the newly created file it comes up in your browser, but the last column is missing from the report output.

If you re-run the report again, it still looks fine in the Paper Design view and the column is there as it should be. Clicking on the file again appears to have the column dropped off and missing from the report output. PDF appears fine in Paper Design view and the Adobe Acrobat reader.

Solution:

	
Close Oracle Reports Builder and other open applications.

	
Choose Windows Control Panel > Display > Settings.

	
Set your fonts to be Small Fonts, click Apply button and then click OK to reconfigure your Windows font settings.

	
Reboot your computer in order for the new font settings to take effect.

	
You can now go back into Windows Control Panel > Display > Settings to verify that you have small fonts as a default for your system.

When you click the HTMLCSS file, your browser shows the report correctly with all of the columns intact.

When viewing HTMLCSS files with your browser, it is recommended to have Small Fonts as the default setting for your Windows system.

If you have Large Fonts as your default, your HTMLCSS file may not display correctly.

Problem: How to choose bitmap fonts sizes of less than 8 point in Oracle Reports Builder.

Solution: There are times when a font size of 6 or less is required for reporting purposes. Keeping in mind that font mapping and sizing is actually a product of operating system font files and driver/printer specifications, it is possible to change many fonts to minimal sizes such as 6 or less.

Oracle Reports typically allows fonts to be downsized to a size of 8. This is accomplished by opening a report in Oracle Reports Builder, going to the Layout Model view, and selecting the report objects that you wish to change. Once the object is selected, go to the font size list next to the font picker and select your font size.

Typically, your size will be limited to a range from 8 to 72 for True Type fonts, less for other fonts.

You can enter a size smaller or larger than the sizes in the list. To do this, again select the object, place your cursor in the font size field, press Delete to remove the current size number, enter the font size you desire, and then press the TAB key. The change takes effect immediately.

Once again, keep in mind that not all font sizes are possible. Also, some combinations of fonts and attributes are not practical. Simply having the ability to choose a font size does not mean that the font will be legible when printed. Fonts that involve small sizes, combined with bold, italic, or other attributes, may also present legibility problems when printed or displayed due to the limitations of the printer driver, printer, font metrics, language, code sets, NLS_LANG, and, of course, human eyesight.

Problem: The report output font size is different in Windows and UNIX.

A simple report designed on Windows uses the Arial and a font size of 8. This report was ported to Sun Solaris and was found to have a different font size in the output on Solaris. In the UNIX environment, the report is uses the Helvetica font and a font size of 9. The Arial font has been mapped to the equivalent font, Helvetica, on UNIX using uifont.ali.

Solution:

	
First look for the font size available for Helvetica on the UNIX system by either using the xlsfont command or any other UNIX font utility.

	
You should map variable sized fonts on Windows to variable sized fonts on UNIX. For example, modify the mapping for MS Windows Arial.8 = Helvetica.8 (assuming that size 8 is available for Helvetica on the UNIX system) and ensure that uifont.ali is in the correct directory.

It's probable that the Helvetica font installed on your machine is bit mapped (rasterized) and so it doesn't automatically scale to any arbitrary size. If so, you must install a scalable Type 1 font, which should allow you to choose any point size.

There may always be differences between fonts on different systems even if the fonts installed are the same because the font configuration files may be different on these systems.

Problem: When printing, fonts are replaced by non True Type fonts. In the Paper Design view, the fonts are fine.

Solution: Check the printer settings (advanced) and ensure that it doesn't say:

True Type Font: Substitute with Device Font

UNIX

Problem: While running Oracle Reports on X-windows emulators, fonts installed on UNIX do not appear in the font lookup box.

Solution: On X-windows emulators, where the font path is usually a font directory on the local machine, the fonts that were installed on will not be available and only the fonts in the local font directory will be used by the Oracle Reports font lookup box. In such cases, you should start a font server on a remote machine where the fonts were installed and point the font path entry to this font server. For starting the font server and setting the font path entry, consult the system manual and X-windows emulator help.

For finding the font path or font server that is currently being used, use the UNIX command xset -.

5.1 Interoperability with Previous Versions of Oracle Reports

Oracle Reports 11g Release 1 (11.1.1) interoperates with Oracle Reports 10.1.2.3. If you are using Oracle Reports 10.1.2.3 client with Oracle Reports 11g Release 1 (11.1.1) server, you must install a patch. For more information about this interoperability scenario and patch requirements, see Oracle Fusion Middleware Release Notes for Microsoft Windows.

D.8 Diagnosing Oracle Reports Bridge Problems

Issues in communication across subnets while using the built-in broadcast mechanism may be related to the Oracle Reports bridge.

problem 1

The Oracle Reports bridge trace file contains the following information:

[2005/12/8 1:45:7:339] Info 50103 (BridgeConnection:getResponsePacket):Getting response object from remote bridgeusunrao06.oracle.com/130.35.37.76:14011[2005/12/8 1:45:8:340] Debug 50103 (BridgePacketHandler:handleRequestPacket): Gotresponse from remote subnet null[2005/12/8 1:45:8:991] Error 64013 (BridgeConnection:getResponsePacket):Bridge failed to serve the requestjava.net.ConnectException: Connection refused:connect

Solution 1

The remote Oracle Reports bridge is not running. Start the Oracle Reports bridge, as described in Section 6.2, "Starting and Stopping Oracle Reports Bridge"

Problem 2

[2005/12/8 1:50:34:219] Info 50103 (BridgeConnection:getResponsePacket):Getting response object from remote bridgeusunrao06.oracle.com/130.35.37.76:14011[2005/12/8 1:50:34:469] Debug 50103 (NetworkUtility:write): Writing[2005/12/8 1:50:34:469] Debug 50103 (NetworkUtility:read): Reading[2005/12/8 1:50:35:220] Debug 50103 (BridgePacketHandler:handleRequestPacket): Gotresponse from remote subnet null

Additionally, the Oracle Reports bridge trace file in the remote subnet (the subnet where Reports Server is located) contains the following information:

[2005/12/8 2:36:59:997] Debug 50103 (Multicast:registerReceiver): Packet handlerregistered[2005/12/8 2:37:1:16] Info 65003 (NetworkUtility:getIOR): Request timed out
[2005/12/8 2:37:2:19] Info 65003 (NetworkUtility:getIOR): Request timed out[2005/12/8 2:37:3:30] Info 65003 (NetworkUtility:getIOR): Request timed out[2005/12/8 2:37:3:31] Debug 50103 (NetworkUtility:getIOR): No response from serverretuning null ior[2005/12/8 2:37:3:32] Info 50103 (Multicast:registerReceiver): Packet handlerunregistered[2005/12/8 2:37:3:32] Debug 50103 (NetworkUtility:write): Writing

Solution 2

Reports Server is not running on the remote subnet. Start Reports Server, as described in Section 6.1, "Starting and Stopping Reports Server"

For comparison, the following sample output shows the Oracle Reports bridge trace for the scenario where the Oracle Reports bridge successfully discovers Reports Server:

[2005/12/8 4:4:6:700] Info 50103 (BridgeConnection:getResponsePacket):Getting response object from remote bridgeusunrao06.oracle.com/130.35.37.76:14011[2005/12/8 4:4:6:950] Debug 50103 (NetworkUtility:write): Writing[2005/12/8 4:4:6:950] Debug 50103 (NetworkUtility:read): Reading[2005/12/8 4:4:7:932] Error 50103 (BridgeConnection:run): Got response[2005/12/8 4:4:7:942] Debug 50103 (BridgePacketHandler:handleRequestPacket):Got response from remote subnet Response Packet -ServerName = vinCorrelationID = 1134056309492SenderID = ServerName: vinVMID: 7e444dbc56c79b06:f9c40:10809ddbdaf:-8000Duplicate = falseType = FULLAdd. Info = Type = server : Host = usunrao06.oracle.com

Problem 3

Reports Server is running on the remote subnet, Oracle Reports bridges are running on both the subnets and are configured properly, but the Oracle Reports clients are not able to connect to the remote Reports Server.This may be caused by an improper setting of timeout value in the bridge configuration file. In this case, the Oracle Reports bridge in the local subnet (the subnet where the client is located) may time out before the Oracle Reports bridge in the remote subnet can respond.

Solution 3

Increase the timeout value in the Oracle Reports bridge configuration file (rwbridge.conf). For example:

<bridge version="10.1.2" port="14011" timeout="2000">

The Oracle Reports bridge in the local subnet waits for the timeout period to get a response from the Oracle Reports bridge in the remote subnet. The Oracle Reports bridge may time out if the network connectivity is slow.Additionally, increase the timeout value in the network configuration file (rwnetwork.conf) to avoid the timeout of Oracle Reports clients before the Oracle Reports bridge responds. For example:

<multicast channel="228.5.6.7" port="14021" timeout="1000" retry="3"/>

In general, perform the following steps to set the Oracle Reports bridge timeout. It is assumed that both bridges are configured properly.

	
Set a very high timeout value for the Oracle Reports bridge in the local subnet.

	
Start both Oracle Reports bridges.

	
Start Reports Server (in the remote subnet).

	
In the local subnet, run the rwdiag utility with the following command:

rwdiag -find server_name

This command prints the time that the Oracle Reports bridge takes to discover the remote Reports Server. For example:

D:\orawin\reports\conf>rwdiag -find vin
Broadcast mechanism used to locate servers
--
Channel address = 228.5.6.7
Channel port = 14021
'vin' found in the network
Time taken - 1181 milliseconds
Name = vin : Type = server : Host = usunrao06.oracle.com

In this example, the Oracle Reports bridge has taken 1181 milliseconds to discover the remote Reports Server.

	
Estimate the timeout value for the Oracle Reports bridge located in the local subnet as follows:

timeout = 1181 * 1.3

which is about 1500 milliseconds.

	
Set the timeout value in the repbrg_bridgename.conf file. For example:

<bridge version="10.1.2" port="14011" timeout="1500">

	
Confirm that the timeout value in the rwnetwork.conf file complies with the following:

timeout (in rwnetwork.conf) * retry (in rwnetwork.conf) > timeout (in repbrg_bridgename.conf)

For example:

timeout (in rwnetwork.conf) * 3 > 1500

Therefore, the value of timeout in rwnetwork.conf should be 1500 or higher

Problem 4

You want to find out which Oracle Reports bridges are configured and running in the subnet.

Solution 4

Use the rwdiag utility to locate all Reports Servers and Oracle Reports bridges. For example, run the following command:

rwdiag -findall

This command generates output similar to the following example:

C:\>rwdiag -findall
Broadcast mechanism used to locate servers
--
Channel address = 228.5.6.7
Channel port = 14021
(1) Name = bugupdate : Type = server : Host = strep15.idc.oracle.com
(2) Name = rep_supadhya-pc_frhome1 : Type = server : Host =supadhya-pc.idc.oracle.com
(3) Name = vinod : Type = server : Host = strep10.idc.oracle.com
(4) Name = rep_strep10 : Type = server : Host = strep10.idc.oracle.com
(5) Name = abc : Type = bridge : Host = strep12.idc.oracle.com
(6) Name = rep_stfrm08_frhome1 : Type = server : Host = stfrm08.idc.oracle.com
(7) Name = rep_stport79_as101202mid : Type = server : Host =stport79.idc.oracle.com
(8) Name = rep_iwinreb20_0508041930_bif : Type = server : Host =iwinreb20.oracle.com
C:\>

For more information on the rwdiag utility, refer to Appendix E, "Reports Server and Bridge Diagnostic Utility".

E.1 Overview of rwdiag

rwdiag is a utility used to find Reports Servers and bridges on the network, and monitor packets broadcast on the network by the Reports Server and its clients. It is also helpful for choosing optimal settings for ORACLE_INSTANCE\config\ReportsToolsComponent\ReportsTools\rwnetwork.conf and for bridge timeout values. rwdiag is similar to the osfind utility provided by the Borland VisiBroker ORB, which has been replaced by the JDK ORB in Oracle Reports.

	
Note:

Oracle Reports replaces the use of Borland's Visibroker with Sun Microsystems' industry-standard Java Developer's Kit Object Request Broker (JDK ORB). The JDK ORB provides support for Reports Server requests from clients across subnets, and enables the broadcast mechanism for dynamic Reports Server discovery both within a subnet and across subnets.

You can invoke rwdiag with one of two scripts depending upon your operating platform:

For Microsoft Windows:

ORACLE_INSTANCE\config\reports\bin\rwdiag.bat

For UNIX:

ORACLE_INSTANCE/config/reports/bin/rwdiag.sh

E.1.1 Examples

The sections that follow provide a series of examples illustrating the use of rwdiag.

E.1.1.1 Example 1

This command line tries to find a Reports Server or bridge named abc on the network with the default search timeout of 10 seconds.

rwdiag.bat -find abc

This command returns a success message, name, type, host name, and the time taken, if abc is found on the network. If a naming service is used as the discovery mechanism for Oracle Reports, only the success message would be returned as the host name would be unavailable to the utility.

E.1.1.2 Example 2

This command tries to find a Reports Server or bridge named abc on the network with a search timeout of 5 seconds.

rwdiag.bat -find abc -timeout 5

E.1.1.3 Example 3

This command tries to find a Reports Server or bridge named abc on the network using the settings in the configuration file xyz.conf.

rwdiag.bat -find abc -conf xyz.conf

	
Note:

If the network configuration file is stored in a location other that the default location, you must specify the complete path of the file.

Following are the contents of xyz.conf:

<?xml version = '1.0' encoding = 'ISO-8859-1'?>
<!DOCTYPE discoveryService SYSTEM "file:c:\orawin\reports\dtd\rwnetworkconf.dtd">
<discoveryService>
<multicast channel="105.2.3.8" port="35078" timeout="1000" retry="3"/>
<!--namingService name="Cos" host="localhost" port="9999"/-->
</discoveryService>

Notice how the channel address and port number are picked up from the configuration file. If for some reason abc were running on another port, it would not be found.

E.1.1.4 Example 4

This command tries to find all Reports Servers and bridges on the network.

rwdiag.bat -findAll

With a broadcast mechanism, all information is provided. If a naming service is used as the discovery mechanism for Oracle Reports, host information is unavailable.

E.1.1.5 Example 5

This command monitors all packets broadcast on the network by the Reports Servers and their clients, and prints the packet information on the screen. The monitoring stops when you press q and Enter.

rwdiag.bat -monitor

E.1.1.6 Example 6

This command monitors all packets broadcast on the network by the Reports Servers and their clients, and saves the packet information to the log file, c:\log.txt. The monitoring stops when you press q and Enter.

rwdiag.bat -monitor -log c:\log.txt

List of Examples

	7-1 Changing HTTP References
	7-2 Example Content of an Exported Certificate
	8-1 Minimum Configuration for Oracle Reports Bridge
	8-2 Full Configuration for Oracle Reports Bridge
	11-1 Font Embedding
	14-1 Building a JDBC Query from JDBC Query Dialog
	14-2 Running a JDBC Query
	24-1 Oracle Reports Builder

18.1 The Reports URL Syntax

This section provides quick reference information on formulating a URL for publishing a report. It covers two deployment types:

	
Oracle Reports Servlet

	
JSP

The information is largely the same for both Windows and UNIX environments. Differences are noted.

18.1.1 Oracle Reports Servlet

The syntax for the URL to run a report through Oracle Reports Servlet (rwservlet) is:

http://web_server.domain_name:port/alias/rwservlet?parameters

Table 18-1 lists and describes the components of the URL.

Table 18-1 Components of a URL That Calls Oracle Reports Servlet

	Component	Description
	
web_server

	
The name you gave the Oracle HTTP Server when you installed it.

	
domain_name

	
Your organization's domain name.

	
port

	
The port number on which the Oracle HTTP Server listens for requests. When no port is specified, the default is used (80).

	
alias

	
The virtual path that stands in for the absolute path to the files a URL will access.

	
rwservlet

	
Invokes Oracle Reports Servlet.

	
?

	
Identifies the beginning of the command line options.

	
parameters

	
All the command line options, or the key to the key map file where command line options are specified.

The URL that calls Oracle Reports Servlet (rwservlet) could look like this:

http://neptune.world.com:80/reports/rwservlet?keyname

where keyname refers to a command listed under a unique header (the key name) in the cgicmd.dat key map file (for more information, see Section 18.13, "Using a Key Map File"). Note that this works differently for JSP files, which use the keyword/value pair cmdkey=value to specify key names for command lines that are stored in the cgicmd.dat file.

When you use Oracle Reports Servlet (rwservlet), you can also execute JSP report files if the JSP files contain paper layouts. When you run the report, specify Oracle Reports Servlet (rwservlet) in the URL and call the JSP with the command line option: report=myreport.jsp.

For example:

http://neptune.world.com:80/reports/rwservlet?report=myreport.jsp&destype=cache&desformat=html

You'll find more information about command line keywords and values in Appendix A, "Command-Line Keywords".

18.1.2 JSP

The syntax for a JSP-based report URL is:

http://web_server.domain_name:port/alias/myreport.jsp?parameters

Table 18-2 lists and describes the components of the JSP-based report URL.

Table 18-2 Components of a JSP-based Report URL

	Component	Description
	
web_server

	
The name you gave the Oracle HTTP Server when you installed it.

	
domain_name

	
Your organization's domain name.

	
port

	
The port number on which the Oracle HTTP Server listens for requests. When no port is specified, the default is used (80).

	
alias

	
The virtual path that stands in for the absolute path to the files a URL will access.

	
myreport.jsp

	
The report *.jsp file that you want this URL to execute.

	
?

	
Identifies the beginning of the command line options.

	
parameters

	
All the command line options, or the key to the key map file where command line options are specified.

The URL used to invoke a JSP-based report could look like this:

http://neptune.world.com:80/jsp/myreport.jsp?

You can specify a key in the URL that refers to a command in the cgicmd.dat file that contains additional command line parameters. In this case, you must use the name value pair: cmdkey=keyname. This can appear anywhere in your URL after the start of the query string (marked by a question mark). For example:

http://neptune.world.com:80/jsp/myreport.jsp?userid=scott/tiger@hrdb&cmdkey=key1

In your URL, use an ampersand (&) with no spaces to string parameters together.

When you use a JSP, you can also use Oracle Reports Servlet (rwservlet). When you run the report, specify Oracle Reports Servlet (rwservlet) in the URL and call the JSP with the command line option: report=myreport.jsp.

For example:

http://neptune.world.com:80/reports/rwservlet?report=myreport.jsp&destype=cache&desformat=html

For more information about command line keywords, see Appendix A, "Command-Line Keywords".

6.6 Starting and Stopping the In-process Reports Server Using Oracle Reports Servlet

If you are using Reports Server as an in-process Reports Server (the default configuration), sending a run report request starts the in-process Reports Server. However, if you are sending a request through a command line, Oracle Reports Servlet (rwservlet) must be started first using either the run report URL or the Web command URL. When you have successfully started rwservlet, you have successfully started the in-process Reports Server.

You can also start an In-process Reports server through Enterprise Manager:

	
Navigate to the Reports application page in Oracle Enterprise Manager

	
From the Reports menu, select Monitoring > Start Reports Application.

The Reports application is started.

	
From the Reports menu, select Administration > Start In-process Reports Server.

The In-process Reports server is started.

To directly start or stop the in-process Reports Server using a URL, enter the following in your Web browser:

http://machine_name:port/reports/rwservlet/startserver
http://machine_name:port/reports/rwservlet/stopserver

3.4 Verifying the Reports Server Environment

Oracle Reports Services report requests flow from the Oracle HTTP Server component, to Oracle Reports Servlet, to Reports Server. Before sending report requests to Reports Server, verify that the environment is up and running:

	
Checking Oracle HTTP Server

	
Checking Oracle Reports Servlet

	
Checking Reports Server

3.4.1 Checking Oracle HTTP Server

Before starting Reports Server through Oracle Enterprise Manager, you must verify that your Oracle HTTP Server is running. For more information about performing this task in Oracle Enterprise Manager, refer to your Oracle Enterprise Manager documentation.

Alternatively, you can verify that the Oracle HTTP Server is running by navigating to the following URL:

http://server_name.domain:port_number/

3.4.2 Checking Oracle Reports Servlet

To verify that Oracle Reports Servlet (rwservlet) is running, navigate to the following URL:

http://host:port/reports/rwservlet/help

where

host is the server that is allotted.

port is either the OHS port or the WebLogic Server port.

Note that the URL is case-sensitive. If this URL executes successfully, you should get a help page describing the rwservlet command line arguments

3.4.3 Checking Reports Server

To verify that Reports Server is running, navigate to the following URL:

http://host:port/reports/rwservlet/getserverinfo?server=server_name

where

host and port are as described in Section 3.4.2, "Checking Oracle Reports Servlet".

server=server_name is not required if you are using the default Reports Server name (rep_machine_name) or the Reports Server specified in the Oracle Reports Servlet configuration file (rwservlet.properties).

If this URL executes successfully, you should see a listing of the job queue for the specified Reports Server.

	
Note:

For more information about the Oracle Reports Servlet configuration file (rwservlet.properties), see Section 8.3, "Oracle Reports Servlet Configuration File".

16.5 Troubleshooting Information

This section contains information on the various steps that you can take to rectify issues that occur.

16.5.1 Resolving Reports-Portal Integration Error When Attempting Create Resource

In Oracle Portal, when configuring Oracle Reports Security settings for Reports Definition File Access, you may encounter an error when editing a report definition file, when you click Run or Run as Portlet.

500 Internal Server Error
Unexpected Error. Please contact Administrator

This error occurs when all of the following conditions are true:

	
Running in an Interop deployment (which allows for a mixed 9.0.2/9.0.4 environment), with 9.0.4 MT (mid-tier), 9.0.4 IM (Identity Management), and 9.0.2 MR (metadata repository) configured to run together.

	
Running Oracle Reports within Oracle Portal, using the SSOCONN parameter.

	
The connection resource specified in the SSOCONN parameter has not been created in the Oracle Internet Directory server.

To implement the workaround, perform the following steps:

	
In the 9.0.4 IM ORACLE_HOME, open the following file in a text editor:

ORACLE_HOME/Apache/Apache/conf/mod_osso.conf

	
Add the following flag:

OssoRedirectByForm on

For example:

<IfModule mod_osso.c>
OssoIpCheck off
OssoIdleTimeout off
OssoConfigFile
/private1/iasinst/install_set1/904infra/Apache/Apache/conf/osso/osso.conf
OssoRedirectByForm on
</IfModule>

22.5 Debugging XML Report Definitions

The following features are available to help you debug your XML report files:

	
XML Parser Error Messages

	
rwbuilder

	
Writing XML to a File for Debugging

22.5.1 XML Parser Error Messages

The XML parser is part of Oracle's XML Development Kit (XDK), which is delivered with the core Oracle Database release. The XML parser is a Java package that checks the validity of XML syntax. The JAR files that contain the XML parser are automatically set up on install and are available to Oracle Reports.

The XML parser catches most syntax errors and displays an error message. The error message contains the line number in the XML where the error occurred as well as a brief description of the problem.

For more information on the XML parser, see the Oracle Technology Network, (http://www.oracle.com/technology/index.html). Search for XML parser or XDK. Information is also available in the documentation that came with your Oracle Database.

22.5.2 rwbuilder

When designing an XML report definition, it is sometimes useful to open it in Oracle Reports Builder. In Oracle Reports Builder, you can quickly determine if the objects are being created or modified as expected. For example, if you are creating summaries in an XML report definition, then opening the definition in Oracle Reports Builder enables you to quickly determine if the summaries are being placed in the appropriate group in the data model.

To open a full report definition in Oracle Reports Builder, use the REPORT (or MODULE) keyword. For example:

rwbuilder USERID=username/password@my_db REPORT=c:\corp\myreports\emp.xml

To open a partial report definition in Oracle Reports Builder, use the CUSTOMIZE keyword. For example:

rwbuilder USERID=username/password@my_db REPORT=emp.rdf CUSTOMIZE=c:\myreports\emp.xml

	
Note:

In this example, the REPORT option specifies a directory path to files stored on a Windows platform. For UNIX, use that platform's standard for specifying directory paths (that is, forward slashes instead of backward slashes).

In both cases, Oracle Reports Builder is opened with the XML report definition in effect. You can then use the various views of Oracle Reports Builder to determine if the report is being created or modified as you expected.

22.5.3 Writing XML to a File for Debugging

If you are using SRW.ADD_DEFINTION to build an XML report definition in memory, then it can be helpful to write the XML to a file for debugging purposes. The following example demonstrates a procedure that writes each line that you pass to it to the document buffer in memory and, optionally, to a file that you specify.

PROCEDURE addaline (newline VARCHAR, outfile Text_IO.File_Type) IS
BEGIN
 SRW.ADD_DEFINITION(newline);
 IF :WRITE_TO_FILE='Yes' THEN
 Text_IO.Put_Line(outfile, newline);
 END IF;
END;

For this example to work, the PL/SQL that calls this procedure must declare a variable of type TEXT_IO.File_Type. For example:

custom_summary Text_IO.File_Type;

You must also open the file for writing and call the addaline procedure, passing it the string to be written and the file to which it should be written. For example:

custom_summary := Text_IO.Fopen(:file_directory || 'vid_summ_per.xml', 'w');
addaline('<report name="video_custom" author="Generated" DTDVersion="9.0.2.0.0">',
custom_summary);

Part I

Getting Started

Part I contains information about Oracle Reports and Oracle Reports Services to get you ready to start publishing your reports:

	
Chapter 1, "Introduction"

	
Chapter 2, "Understanding the Oracle Reports Services Architecture"

	
Chapter 3, "Verifying Your Installation"

	
Chapter 6, "Starting and Stopping Oracle Reports Services"

6 Starting and Stopping Oracle Reports Services

This chapter provides information on starting and stopping Oracle Reports Services. It includes the following main sections:

	
Starting and Stopping Reports Server

	
Starting and Stopping Oracle Reports Bridge

	
Starting Reports Components After Shutting Down an Instance

	
Starting and Stopping the COS Naming Service

	
Starting, Stopping, and Restarting Oracle Reports Components Using Oracle Enterprise Manager

	
Starting and Stopping the In-process Reports Server Using Oracle Reports Servlet

	
Verifying that the Oracle HTTP Server Is Running

	
Verifying that the Reports Servlet and Server are Running

	
Note:

The examples in this chapter use ORACLE_HOME to denote where Oracle Fusion Middleware is installed. This includes Oracle Reports Services.

10.3 Configuring the Printing Environment

This section explains the various configuration steps to be performed on UNIX after printer installation.

	
Editing uiprint.txt File

	
Environment Variables

	
Print Property Dialog Boxes

10.3.1 Editing uiprint.txt File

As discussed in Section 10.1, "UNIX Printing Overview", Oracle Reports creates logical printer drivers. To create these internal printer drivers, it needs information from you like the available printer queue, the type of driver to be used with the queue, the version of the driver, and the printer description file. uiprint.txt is the main file for providing this information. It is located in:

INSTANCE_HOME/config/FRComponent/frcommon/guicommon/tk/admin/uiprint.txt

uiprint.txt is the printer configuration file and Oracle Reports reads it when it creates the internal printer drivers. You should modify this file for each instance of Oracle Reports.

The format of entries in uiprint.txt is:

Printer:DriverType:DriverVersion:PrinterDescription:PrinterDescriptionFile:

This one line entry, in prescribed format, in uiprint.txt defines a printer to be used by Oracle Reports. Each line contains five fields separated by colons. Table 10-1 describes each element of the uiprint.txt entry.

Table 10-1 uiprint.txt Entry Elements

	Element	Description
	
Printer

	
Specifies the name of the printer (or printer queue), as used with the lpr or lp command.

To get a list of all available printers, use the following command:

lpstat -a

To check the status of the printer, use the lpstat command:

Solaris

lpstat -p printername

Linux

lpstat -p printername

HP-UX

lpstat -d printername

HP Tru64

lpstat -p printername

IBM AIX

lpstat -pprintername

No space is allowed after -p on IBM AIX.

	
DriverType

	
Specifies the type of printer driver used for the printer. The driver can be PostScript, PCL, or ASCII.

	
DriverVersion

	
Specifies the version of the driver type that should be used. This can be 1 or 2 for PostScript printers, and PCL Version 5 for PCL.

	
PrinterDescription

	
Specifies the description of the printer, for example, the speed and the location of the printer. This information is used for display in the printer-related dialog box.

	
PrinterDescriptionFile

	
Specifies the printer description file to be used with the printer. It can be one of the following types:

	
When using a PostScript printer, this entry contains the name of a PPD file. PPD stands for PostScript Printer Description. If Oracle Reports cannot find the specified PPD file, it uses default.ppd. Oracle Reports searches for PPD files in the following locations serially:

	
ORACLE_INSTANCE/config/FRComponent/frcommom/guicommon/tk/admin/PPD

	
ORACLE_HOME/guicommon/tk/admin/PPD

	
When using a PCL printer, this entry contains the name of an HPD file. If Oracle Reports cannot find the specified HPD file, it uses ui4.hpd. Oracle Reports searches for HPD files in:

ORACLE_HOME/guicommon/tk/admin/HPD

	
When using an ASCII printer, this entry would be set to none. This field is ignored for all ASCII printers.

Usage Note:

	
All the fields in the uiprint.txt entry must be filled and every line must end with a colon.

	
At least one entry must be defined in uiprint.txt. Alternatively, you can set the related printer variables (TK_PRINTER and PRINTER). Without these, Oracle Reports is unable to perform any printer-related task.

	
See Also:

Section 10.3.2, "Environment Variables" for more information on printer-related environment variables.

The internal printer drivers provide a drawing surface for Oracle Reports. In addition to using this surface for printing, Oracle Reports uses it internally whenever output is generated to a file. Hence, you must have a valid entry in uiprint.txt or to set one of the printer-related environment variables. To simplify the selection of printers for your users, we recommended that you list all printers accessible to users in uiprint.txt.

Example:

Following are two example entries for uiprint.txt:

colprt14:PostScript:2:RMSC Atrium HPLaserJet5:default.ppd:
colprt15PCL:5:RMSC 1st Floor HPLaser4:ui4.hpd:

10.3.2 Environment Variables

This section lists the environment variables related to printing:

	
See Also:

Appendix B, "Environment Variables" for more information on the environment variables that can be set in Oracle Reports.

	
TK_PRINTER / PRINTER

	
TK_PRINTER

	
TK_PRINT_STATUS

	
REPORTS_NO_DUMMY_PRINTER

	
TK_HPD and ORACLE_HPD

	
TK_PPD and ORACLE_PPD

	
TK_TFM and ORACLE_TFM

	
TK_AFM and ORACLE_AFM

10.3.3 Print Property Dialog Boxes

On UNIX, Oracle Reports Builder provides several dialog boxes for printer-related operations.

10.3.3.1 Page Setup dialog box

The Page Setup dialog box enables you to specify how the printed page appears. The available options depend on the type of printer driver being used. The internal printer drivers use this dialog box to get all the information necessary, (for example, scale, rotation, width, and height) for formatting a page on a printer.

10.3.3.2 Print Job dialog box

Each print job has unique characteristics depending on the printer driver being used. The Print Job dialog box displays just prior to print job execution and prompts you for the print job information required to send the job to the printer.

6.1 Starting and Stopping Reports Server

The best way to run Reports Server is through the Oracle Process Manager and Notification Server (OPMN). OPMN provides a centralized mechanism for initializing, maintaining, and shutting down your Oracle HTTP Server, Oracle WebLogic Server processes, and OracleAS Reports Services. For more information on configuring Reports Server through OPMN, see Section 8.8, "Configuring Reports Server with the Oracle Process Manager and Notification Server and Oracle Enterprise Manager"

	
Important:

You must start or stop a Reports Server registered with Oracle Enterprise Manager only through Oracle Enterprise Manager 11g or OPMN. OPMN automatically restarts Reports Server if it stops responding for some reason. OPMN runs as a Windows service on Windows.

In Oracle Reports, running Reports Server as Windows service is no longer supported (rwserver -install server_name). As a result, the related command line keywords INSTALL and UNINSTALL are obsolete. If you start or stop a Reports Server that is managed by OPMN running as a Windows service or through the command line, you may face the following issues:

	
Oracle Enterprise Manager may not accurately reflect the status of Reports Server and metrics information.

	
Oracle Enterprise Manager 11g may display errors when starting or stopping Reports Server.

For more information about the obsolescence of running Reports Server as a Windows service, see A Guide to Functional Changes Between Oracle Reports 6i and 10g on the Oracle Technology Network (OTN).

6.1.1 Starting, Stopping, and Restarting Reports Servers from Oracle Enterprise Manager

When the standalone Reports Server is configured through OPMN, you can start, stop, and restart it through Oracle Enterprise Manager

	
Note:

The in-process server is available as part of wls_reports and thus registered with Oracle Enterprise Manager during installation of Oracle Application Server. If you add any Reports Servers after installing Oracle Application Server, you must register the new server(s) in the Oracle Enterprise Manager's targets.xml file and the Oracle Process Manager and Notification Server's opmn.xml file. For more information, see Section 8.8, "Configuring Reports Server with the Oracle Process Manager and Notification Server and Oracle Enterprise Manager"

To start, stop, or restart a Reports Server:

	
From the Reports Server main page, navigate to Reports > Control menu, and select:

	
Start Up to start the server.

	
Shut Down.. to stop the server.

	
Restart... to restart the server.

6.1.2 Starting, Stopping, and Restarting Reports Servers from the Oracle Process Manager and Notification Server

Before you start the Oracle Reports Server with Oracle Process Manager and Notification (OPMN), you must add the Server to OPMN, as shown in the following example:

ORACLE_INSTANCE/bin/opmnctl createcomponent -adminUsername weblogic -adminHost <host_name> -adminPort <port> -oracleHome <oracle_home -oracleInstance <instance_home> -instanceName <instancename> -componentName <bridge_name> -componentType ReportsServerComponent

You can use the following command lines to start, stop, and restart Reports Server if it was configured through the Oracle Process Manager and Notification Server:

ORACLE_INSTANCE/bin/opmnctl startproc ias-component=reports_server_name
ORACLE_INSTANCE/bin/opmnctl startproc process-type=ReportsServerComponent
ORACLE_INSTANCE/bin/opmnctl stopproc ias-component=reports_server_name
ORACLE_INSTANCE/bin/opmnctl restartproc ias-component=reports_server_name

The Reports Server name must match the name in the ias-component id in the opmn.xml file.

You can also query the status of the Oracle Process Manager and Notification Server, by using the following command:

ORACLE_INSTANCE/bin/opmnctl status

For more information on configuring Reports Server through the Oracle Process Manager and Notification Server, see Section 8.8, "Configuring Reports Server with the Oracle Process Manager and Notification Server and Oracle Enterprise Manager"

6.1.3 Alternative Methods of Starting and Stopping Reports Server

If you choose not to run Reports Server through OPMN and maintain it through Oracle Enterprise Manager, you can use these older methods of running Reports Server:

	
Starting the In-process Server (Windows and UNIX)

	
Starting Reports Server from a Command Line (Windows and UNIX)

	
Stopping Reports Server

	
Important:

Beginning with Oracle Reports 10g Release 2 (10.1.2), running Reports Server as a Windows service is no longer supported, as mentioned at the beginning of this section.

6.1.3.1 Starting the In-process Server (Windows and UNIX)

If you are using Reports Server as an in-process server (the default configuration), sending a run report request starts the in-process server; however, if you are sending a request through a command line, the servlet must be invoked first using either the run report URL or the Web command URL. When you have successfully started the servlet, this also means you have successfully started the in-process server.

To directly start the in-process server from a URL, enter the following from your Web browser:

http://your_machine_name:your_port_num/reports/rwservlet/startserver

6.1.3.2 Starting Reports Server from a Command Line (Windows and Linux)

Before you start the Reports Server from command line, you must set the COMPONENT_CONFIG_PATH environment variable as follows:

COMPONENT_CONFIG_PATH=ORACLE_INSTANCE/config/ReportsServerComponent/<reports_server_name>

To start Reports Server as a standalone server on Windows, use the following command:

rwserver server=server_name

Add the BATCH command line keyword to start up the server without displaying dialog boxes or messages.

rwserver server=server_name batch=yes

You can run this command on UNIX using the following syntax:

rwserver.sh server=server_name

Or:

rwserver.sh server=server_name batch=yes

	
Important:

If DISPLAY is not set, you must start Reports Server in batch mode (batch=yes).

For more information about removing DISPLAY and printer dependencies in UNIX systems, see Section 10.8.

For more information about the REPORTS_DEFAULT_DISPLAY environment variable, see Appendix B.

You can run this command from any directory as long as the shell script can be reached in your PATH environment variable.

6.1.3.3 Stopping Reports Server

There are several ways to stop Reports Server on Windows and UNIX, as follows:

	
If Reports Server is running on Windows through the rwserver executable, or on UNIX through a shell script, rwserver.sh, click Shutdown in the Reports Server dialog box.

	
If you are not running Reports Server from the command line, launch Oracle Enterprise Manager, and navigate to the Reports Server home page and from the Reports menu select Control > Shut Down...

	
If Reports Server is running as an in-process server through the Reports Servlet, issue the following URL:

http://your_host_name:port_number/reports/rwservlet/stopserver?authid=admin user/admin password

	
If Reports Server is running from a command line on Windows or UNIX, use any of the following commands, depending on how you want to shut down the Reports Server.

	
Note:

On UNIX, use rwserver.sh instead of rwserver.

Before you shut down the server, you must set the COMPONENT_CONFIG_PATH environment variable as follows:

COMPONENT_CONFIG_PATH=ORACLE_INSTANCE/config/ReportsServerComponent/<reports_server_name>

To shut down the server normally (that is, finish pending jobs and then stop):

rwserver server=server shutdown=normal authid=username/password

To shut down the server immediately (that is, stop without finishing pendingjobs):

rwserver server=server shutdown=immediate authid=username/password

To shut down the server without displaying any related messages:

rwserver server=server shutdown=normal authid=username/password batch=yes

The keywords used with the rwserver command are described in Appendix A, "Command-Line Keywords"

	
Note:

authid is Reports Server's administration user name and password. In Oracle Reports 11g Release 1 (11.1.1), the default security is based on standards-based Java EE security model through Oracle Platform Security Services. For a non-secure Reports Server, this user is defined in the identifier element. The following bullet contains more information on how to stop a non-secure Reports Server using the command line.

	
When you stop or shut down a non-secure Reports Server from the command line using either rwserver.sh or rwrqv.sh, you must provide a valid authid, which must match the value set in the identifier element in the server configuration file. However, the identifier element is set during Reports configuration while installing Oracle Application Server and encrypted by Reports Server. You can reset the identifier element to any value. If you have registered this Reports Server with Oracle Enterprise Manager and OPMN, you must also change the corresponding properties in targets.xml for Oracle Enterprise Manager integration to work. Perform the following steps:

	
In the non-secure Reports Server's configuration file, server_name.conf, modify the identifier element to specify the username/password and set the encrypted attribute to no. For example:

<identifier encrypted="no">scott/tiger</identifier>

	
Stop and restart Reports Server manually for the changes made to the server_name.conf file to take effect.

	
Note:

You must restart Reports Server for any configuration changes to take effect.

Reports Server will now encrypt the username/password value of the identifier element. After Reports Server reads the changes made in the server_name.conf, the following commands should execute successfully (with scott/tiger as the username/password):

./rwserver.sh server=server_name shutdown=normal authid=scott/tiger
./rwrqv.sh server=server_name shutdown=normal authid=scott/tiger

	
For Oracle Enterprise Manager integration, edit the targets.xml file (in $ORACLE_INSTANCE/EMAGENT/emagent_asinst_1/sysman/emd) using any text editor, as follows:

	
Search for target with TYPE="oracle_repserv" and DISPLAY_NAME="Reports Server: server_name".

	
In the entry, set the UserName property and the Password property to the same user name and password as in the identifier element in the server_name.conf file. Set the ENCRYPTED attribute to FALSE for these two properties.

	
Restart Oracle Enterprise Manager for the changes to take effect.

You should now be able to stop and shut down a non-secure Reports Server using Oracle Enterprise Manager.

	
Note:

These steps are required only for a non-secure Reports Server and not for secure Reports Servers.

19.1 Overview

Oracle Reports provides several ways of submitting a job request to the server-infrastructure for processing:

	
rwservlet

rwservlet translates and delivers a job request between HTTP and the Reports Server, such as when submitting from a Web browser or through the event-driven publishing API.

	
rwclient

rwclient parses and transfers a command line to run a a report on a remote Reports Server.

	
Oracle Forms

Oracle Forms is a rapid application development (RAD) tool, used to build highly scalable Internet database applications.

Integrating the Oracle Reports technology into custom applications, especially Java applications, requires the implementation of the mechanisms used by rwservlet, rwcgi, rwclient, and Oracle Forms to submit jobs to the server from within those applications.

The RWWebService servlet provides the necessary public interfaces and bindings, and is required to be exposed and to function as a Web service. This functionality enables any application developer to include Oracle Reports in their application.

3.6 Upgrading from the Prior Release

Upgrading from Oracle Reports 10.1.2.x to 11g Release 1 (11.1.1) is fully automated:

	
Integrated with Oracle Fusion Middleware Upgrade framework.

	
Automated configuration reduction mapping.

	
Extensive logging and diagnostics.

	
No loss of functionality.

3.6.1 Backward Compatibility and Interoperability

Oracle Reports 11g Release 1 (11.1.1) is fully backward compatible and interoperable with 10.1.2.x:

	
10.1.2.x server/client compatible with 11g Release 1 (11.1.1) server/client.

	
Note:

This interoperability scenario requires the Patch 7597820 to be installed. You can download this patch from the following URL:

http://updates.oracle.com/download/7597820.html.

This patch is required to address the CORBA IDL changes between the two releases for the Job Status information. If you want to use rwservlet of Reports 10g Release 2 (10.1.2.3) with the Reports 11g Release 1 (11.1.1) Server, ensure that you install this patch on your 10.1.2.3 installation. You can download this patch from http://metalink.oracle.com.

	
10.1.2.x reports can be run without any changes or loss of functionality.

	
Support for Oracle Portal and Oracle Internet Directory based security along with new Java EE security.

	
Support for 10.1.2.x Toolkit-based font model along with new Java-based font model.

	
Support for interoperability with 10.1.2.x Oracle Forms Services, Oracle Portal, and Oracle Internet Directory.

17 Configuring and Administering OracleAS Single Sign-On

Oracle Application Server Single Sign-On (OracleAS Single Sign-On) enables you to establish a unique identity for each user, and tie that identity to the resources and data sources unique to that user. For example, a user might log in to an environment such as Oracle Portal, which enables them to access certain reports and printers for which they have the necessary privileges. When they choose to run a report from this environment, they can access the necessary data sources for the report because their data source credentials are stored with the single user identity used to login to Oracle Portal. Thus, logging in once provides them access to all of the resources and data sources they require to run their reports.

Because Oracle Reports Services provides a flexible approach to security, you can implement many variations of this configuration. For example, you might choose not to store data source credentials with the single user identity. Or you might prefer to use direct URLs for launching reports rather than a platform like Oracle Portal. If your reports are public and do not require any security, then you might choose to turn off report security altogether.

This chapter describes how you can implement and administer various configurations of OracleAS Single Sign-On with Oracle Reports Services.

	
Prerequisites

	
Configuring Out-of-the-Box OracleAS Single Sign-On

	
Administering OracleAS Single Sign-On

	
Choosing the Connecting Entity for Oracle Internet Directory

	
Changing the Reports Servlet Port to Be Protected by Single Sign-On

	
Oracle Forms Services Security Considerations

7.16 About the Oracle Fusion Middleware System MBean Browser

The Oracle Fusion Middleware System MBean Browser is a part of Oracle Fusion Middleware Control, and it is used to update configuration settings for middle tier components.

This section contains the following topics:

	
When should I use the Oracle Fusion Middleware System MBean Browser?

	
About Reports Configuration MBeans

7.16.1 When should I use the Oracle Fusion Middleware System MBean Browser?

You use the System MBean Browser to enter or modify Oracle Reports configuration settings that are not available in Fusion Middleware Control Oracle Reports pages.

	
Note:

You should not use the System MBean Browser unless you are an advanced middle tier administrator.

7.16.2 About Reports Configuration MBeans

Configuration MBeans are defined for each of the Oracle Reports configuration files. Table 7-3 lists the configuration MBeans for Oracle Reports.

Table 7-3 Reports Configuration MBeans

	Configuration MBeans	Associated Configuration File
	
ServerConfigMXBean

	
rwserver.conf/rwbuilder.conf

	
JDBCPDSConfigMXBean

	
jdbcpds.conf

	
DiscoveryServiceConfigMXBean

	
rwnetwork.conf

	
TextPDSConfigMXBean

	
textpds.conf

	
XMLPDSConfigMXBean

	
xmlpds.conf

	
CgicmdConfigMXBean

	
cgicmd.dat

	
RWServletConfigMXBean

	
rwservlet.properties

	
BridgeConfigMXBean

	
rwbridge.conf

	
ScreenprinterConfigMXBean

	
screenprinter.ppd

	
Note:

All Reports environment variables that are set in the registry are not exposed using MBeans. However, if they are specified in the server configuration file ENVID, the environment variables are exposed by ReportsServerConfigMXBean. Similarly, all environment variables used in server start/stop shell scripts are not exposed using MBeans.

18.8 Calling Oracle Reports from Oracle Forms Services

The tight product integration between Oracle Reports and Oracle Forms Services enables you to pass blocks of data between the two products and removes the need for subsequent queries. This technique, referred to as query partitioning, ensures that Oracle Reports is responsible for formatting data and ignores dynamic alteration of queries through triggers and lexical parameters.

Oracle Forms Services uses the shared Java Virtual Machine (JVM) controller for all report requests, reducing memory consumption.

	
Note:

Unless data parameters are unreasonably large or the queries particularly complicated, the perceived performance improvements should be negligible. Additionally, only top level groups in a report can accept data parameters passed from forms.

A typical integration between Oracle Forms Services and Oracle Reports is an application that provides a form to fill in data, which is used to generate a report. The steps that occur during this process are similar to the following example:

	
The end user enters values in a form. Some or all of these values are parameter inputs to the associated report.

	
The end user clicks a button, which generates the report as follows:

	
Oracle Forms Services populates all the parameters to execute the report.

	
Oracle Forms Services calls the RUN_REPORT_OBJECT built-in to send a request to Oracle Reports.

	
Oracle Reports returns the job id, and Oracle Forms Services queries on the status of this job id.

	
When the job status is FINISHED, Oracle Forms Services calls the WEB.SHOW_DOCUMENT built-in to submit a request to open the report output.

	
The WEB.SHOW_DOCUMENT built-in opens the following URL in the browser:

http://host:port/reports/rwservlet/getjobidn?server=server_name

	
Note:

For secure mode, the URL will also include authid=authid

For additional information on calling a report from an Oracle Forms Services application, refer to the Integrating Oracle Reports Services 11g in Oracle Forms Services 11g white paper on OTN (http://www.oracle.com/technology/products/forms/techlisting10g.html).

18.8.1 Communication Between Reports and Forms Installed on Different Instances

Oracle Reports 11g Release 1 (11.1.1) communicates with Forms. If Forms and Reports are configured on different Oracle Instances, you must complete the following steps in Forms to facilitate communication with Reports Servers. FORMS_ORACLE_INSTANCE refers to the Oracle Instance where Forms is configured.

	
From your present working directory, run the following command:

cd $FORMS_ORACLE_INSTANCE/config

	
Create the ReportsTools directory as follows:

mkdir -p ReportsToolsComponent/ReportsTools

	
Copy the tools-logging.xml file as follows:

cp $ORACLE_HOME/reports/conf/ReportsTools/tools-logging.xml $FORMS_ORACLE_INSTANCE/config/ReportsToolsComponent/ReportsTools/logging.xml

	
Copy the tools-log-template.xml file as follows:

cp $ORACLE_HOME/reports/conf/ReportsTools/tools-log-template.xml $FORMS_ORACLE_INSTANCE/config/ReportsToolsComponent/ReportsTools/component-logs.xml

	
Copy the rwnetwork.conf file as follows:

cp $ORACLE_HOME/reports/conf/rwnetwork.conf $FORMS_ORACLE_INSTANCE/config/ReportsToolsComponent/ReportsTools/rwnetwork.conf

	
Replace the following macros in the copied files:

	
$$Instance.directory$$ with $FORMS_ORACLE_INSTANCE

	
$$Self.component_type$$ with ReportsToolsComponent

	
$$Self.name$$ with ReportsTools

	
$$Instance.oracle_home$$ with the path to the ORACLE_HOME directory

If Forms and Reports are configured on different OHS Servers, you must route the web requests from OHS instance where Forms is configured to the Reports Servlet as follows:

	
Copy the reports_ohs.conf file as follows:

cp $ORACLE_HOME/reports/conf/reports_ohs.conf $FORMS_ORACLE_INSTANCE/config/OHS/ohs1/moduleconf/.

	
Replace the macros $$managedserverhost$$ and $$managaerserverport$$ with host and port of the WLS_REPORTS managed server.

	
Restart the OHS that is running in FORMS_ORACLE_INSTANCE.

18.8.2 Generating Random and Non-Sequential Job IDs

With 11g Release 1 (11.1.1), Oracle Reports allows you to generate random and non-sequential job IDs to make it impossible to predict the job ID for a particular job. To generate random and non-sequential job IDs for in-process servers, you must pass "-Djobid=random" via JVM options to Oracle WebLogic Server.

For standalone servers, you can generate random and non-sequential job IDs by passing the "-Djobid=random" via JVM options in the command line or by setting the REPORTS_JVM_OPTIONS variable. For more information, see Section B.1.53, "REPORTS_JVM_OPTIONS".

This prevents malicious users from viewing non-secure report output by typing the job id in a URL.

18.3 Deploying Your Reports

Once you have created your report, you can deploy it so that end users can view it. This section describes how to deploy a report with a paper layout (that is, REP, RDF, XML, or JSP report) and how to deploy a report with a Web layout (that is, a JSP report).

	
Note:

For an example on building and testing a JSP-based Web report, refer to the Oracle Reports Tutorial and the "Building a simple Parameter Form for a JSP-based Web report" in the Oracle Reports Building Reports manual.

The following table describes which method you can use to deploy your report, depending on the type of report.

Table 18-3 Methods for Deploying a Report

	Type of Report	Method	Reason for Using
	
Report with paper layout (REP, RDF, XML)

	
Deploying a Report with a Paper Layout

	
Method for deploying a report with only a paper layout.

	
JSP report with a paper layout

	
Deploying a Report with a Paper Layout

	
Simplest method for deploying a paper report of any type. However, if the JSP report has both a paper and Web layout, we recommend you refer to Section 18.3.3, "Deploying a JSP Report to the Web and to Paper".

	
JSP report with a paper and Web layout

	
Deploying a JSP Report to the Web and to Paper

	
Strongly recommended for those who want to publish a report to both the Web and to paper.

	
Note:

rwrun and rwclient execute the paper layout of your report. The report is processed and executed even though your JSP has only a paper layout. If your JSP has only a web layout but not a paper layout, running the JSP report using rwrun or rwclient obtains a blank output. If you have a JSP with paper layout, it is recommended that you save the JSP as RDF and then run the RDF using rwrun or rwclient.

18.3.1 Deploying a Report with a Paper Layout

Once you've created your paper report, you can deploy it to the Reports Server so that users can run the report. The steps in this section show you how to deploy a report of type RDF, REP, XML or JSP.

	
Note:

JSP reports can be deployed either to the Web or to paper, depending on the layout the report designer used for the JSP report. This section discusses how to deploy a JSP report with a paper layout. If you want to deploy a JSP report with a paper and Web layout, follow the steps in Section 18.3.3, "Deploying a JSP Report to the Web and to Paper".

If your report depends on Java classes (for example, Barcode classes, a Web Service stub, and so on), you must configure the process to access these classes. That is, if your JSP report with a paper layout contains a Java class, you must set the classPath property of the engine element in the server configuration file ($ORACLE_INSTANCE/config/ReportsServerComponent/server_name/rwserver.conf for Standalone servers and $DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration/rwserver.conf for In-process servers).

To deploy your paper report:

	
Transfer the report file (RDF, REP, XML, or JSP) and its associated files (for example, PLL, PLX or referenced images) to the deployment directory on your application server.

	
Note:

To transfer the file, you can use any method available, such as FTP or WebDAV.

	
Ensure the directory on the application server where you've transferred the file is listed in the Reports Server access path. If it is not, use the REPORTS_PATH environment variable, or set the sourceDir property of the Reports engine element in the server configuration file.

18.3.2 Running a Report with a Paper Layout

Now that you have deployed your paper report, you can run it from a Web browser.

In a browser, for example, you can type the following URL in the Location

field:

http://your_web_server:port_num/reports/rwservlet?server=server_name&report=
myreport.rdf&userid=username/password@my_db&desformat=pdf&destype=cache

In this example, your report displays in PDF format (desformat=PDF) in the browser.

For more information on running a report from the browser, refer to Section 18.5, "Specifying a Report Request from a Web Browser".

18.3.3 Deploying a JSP Report to the Web and to Paper

There are two ways you can deploy your JSP reports: through the existing Oracle Reports application, or through a Java EE application you create yourself. Using an existing application is useful when you are developing and testing your JSP-based Web reports. When you are ready to deploy your reports, however, we recommend you use an application you've created yourself.

	
Note:

The easiest way to deploy JSP reports is to copy them to the following directory:

$DOMAIN_HOME\servers\WLS_REPORTS\tmp_WL_user\reports_release\dir_name\war

The procedure described in this section for building your own EAR file and deploying it is only indicative; it is not comprehensive. For the detailed procedure, see Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

About JSP reports with both paper and Web layouts

With Oracle Reports Builder, you can create a JSP report with a paper layout, a Web layout, or both. You execute these reports using different processes:

	
JSP reports with paper layouts are executed through the Oracle Reports engine.

	
JSP reports with Web layouts are executed through the Java EE container.

If your report depends on Java classes (for example, Barcode classes, a Web Service stub, and so on), you must configure the process to access these classes. That is, if your JSP report with a paper layout contains a Java class, you must set the classPath property of the engine element in the server configuration file ($ORACLE_INSTANCE/config/ReportsServerComponent/server_name/rwserver.conf for Standalone servers and $DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration/rwserver.conf for In-process servers.)

If your JSP report with a Web layout contains a Java class, you can either add the classes or JAR to the WAR file, or change the Java EE container classpath. For more information, refer to the Oracle Containers for Java EE documentation.

	
Note:

For an example on building a report with a paper and Web layout, see "Building a Report with a Barcode" in the Oracle Reports Building Reports manual. For a simple JSP-based Web report example, refer to the Oracle Reports Tutorial.

The steps in this section show you how to deploy a JSP report with a paper and Web layout using a Java EE application. To deploy your JSP report with a paper and Web layout, you can create a new Oracle Reports Java EE application. You can create this application in an existing instance or a new instance of Oracle WebLogic Server.

18.3.3.1 Creating a New Java EE Application

In this section, you will create a new Java EE application for Oracle Reports. You will create a Web application archive (WAR file) that will contain the application information, then deploy it as an Enterprise archive (EAR file). To create a new Java EE application, you can use Oracle JDeveloper, another Java development tool, or you can create it manually. If you do not use Oracle JDeveloper to create the application, you must make a few modifications to the application, as well as to your JSP report.

To create a Java EE application:

	
Note:

If you are not familiar with creating a Java EE application, refer to Sun Microsystem's Web site (http://java.sun.com/javaee). For more information on using Oracle JDeveloper, refer to the Oracle JDeveloper online Help.

	
Before you create your EAR file, ensure that your application contains all the necessary directories, such as WEB-INF and the web.xml file.

	
Note:

The WEB-INF directory must contain the JSP tag library for Oracle Reports, called reports_tld.jar. In Oracle Fusion Middleware, you can find the tag library here:

DOMAIN_HOME/servers/WLS_REPORTS/tmp/_WL_user/reports_version/random_string/war/WEB-INF/lib/reports_tld.jar

	
Ensure that your JSP-based Web report points to the location of the JSP tag library for Oracle Reports. Otherwise, the report will not run.

To point to the location of the JSP tag library, include the taglib directive in the JSP file:

<%@ taglib uri="/WEB-INF/lib/reports_tld.jar" prefix="rw" %>

	
Create a new EAR file, either manually or using a tool such as Oracle JDeveloper. Ensure you create the WAR file according to the appropriate Java EE format.

	
If your JSP report contains a paper layout and you want to deploy your report to paper, open the web.xml file.

	
Note:

On Oracle Fusion Middleware, the web.xml file is located here:

DOMAIN_HOME/servers/WLS_REPORTS/tmp/_WL_user/reports_version/random_string/war/WEB-INF/lib/reports_tld.jar

If you are deploying a JSP report that only contains a Web layout, continue to Step 7.

	
Add the following code to the web.xml file.

<servlet>
 <servlet-name>rwservlet</servlet-name>
 <servlet-class>oracle.reports.rwclient.RWClient</servlet-class>
 <load-on-startup>yes</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>rwservlet</servlet-name>
 <url-pattern>/rwservlet*</url-pattern>
</servlet-mapping>

This new definition will redirect all URLs starting with /rwservlet to the Oracle Reports Servlet you've defined.

	
Note:

You can change the Oracle Reports Servlet name and URL.

	
Save the web.xml file.

	
Create an EAR file from the WAR file. Once these files are compiled, note where they are saved.

18.3.3.2 Deploying Java EE Application Using WebLogic Server

After you have created the WAR and EAR files, you can deploy them to the Oracle Fusion Middleware, which will serve the application to the Web. You can deploy these files using Oracle Enterprise Manager using either an existing WebLogic Server instance or a new WebLogic Server instance. For more information about deploying Java EE application in Oracle WebLogic Server, see Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

18.3.4 Running a JSP-Based Web Report from a Browser

If your JSP report is a Web report, you can run your JSP-based Web report from a Web browser. In a browser, type the following URL in the Location field:

http://your_computer_name:port/MyReportApp/JSPreportname.jsp?userid=user ID/password@database_name

	
Note:

In the above URL, MyReportApp is the name of the application you created.

If you wish you modify your JSP-based Web report at this point, you can either:

	
Replace the report in this location.

	
Re-create the WAR file with the modified JSP-based Web report, then redeploy the application. For more information, refer to Section 18.3.3.1, "Creating a New Java EE Application".

For more information on running a report from a browser, refer to Section 18.5, "Specifying a Report Request from a Web Browser".

18.3.5 Running a JSP report with a Paper Layout

If your JSP report has a paper layout, you can run your JSP report from a browser using the following URL:

http://your_web_server:portnum/MyReportApp/rwservlet?report=myreport.jsp&userid=
username/password@my_db&server=server_name&desformat=pdf&destype=cache

In this example, your report displays as a PDF (desformat=PDF) in the browser.

For more information on running a report from a browser, refer to Section 18.5, "Specifying a Report Request from a Web Browser".

18.3.6 Running with the WE8MSWIN1252 Character Set on UNIX

There are no UNIX fonts built into the WE8MSWIN1252 character set. This may cause Oracle Reports to fail when NLS_LANG=AMERICAN_AMERICA.WE8MSWIN1252. Therefore, you must map the code page of the installed fonts (defined in the Tk2Motif.rgb file) to the WE8MSWIN1252 character set. TK2Motif.rgb is located in the ORACLE_INSTANCE/config/FRComponent/frcommon/guicommon/tk/admin directory.

	
Note:

This mapping is required for Oracle Reports Builder, Reports Converter in non-batch mode (BATCH=NO), Reports Server and Reports Runtime with REPORTS_DEFAULT_DISPLAY=NO. Reports Server and Reports Runtime uses REPORTS_DEFAULT_DISPLAY to determine the fonts needed.

Example1

Tk2Motif*fontMapCs: ISO8859-1=WE8MSWIN1252 (if there are ISO8859-1 fonts installed).

Glossary

AFM

Acronym for Adobe Font Metrics. AFM and PPD files are supplied by Adobe and by printer vendors. These files contain information about the printer. Along with other parameters, these files are read for the information about the available fonts for the printer, which Oracle Reports will use. For all the fonts listed in the PPD file, Oracle Reports searches for the corresponding AFM file according to the font name and loads all of the fonts for which there is an available AFM.

CGI

Acronym for Common Gateway Interface. A standard for transferring information between a Web server and a CGI program. CGI specifies how to pass arguments to the program as part of the HTTP request, and defines a set of environment variables that are made available to the program. The program then generates output to pass back to the browser. CGI provides server-side processing to allow Web servers to interact dynamically with users.

column

	
A vertical space in a database table that represents a particular domain of data. A column has a column name (for example, ENAME) and a specific datatype (for example, CHAR). For example, in a table of employee information, all of the employees' names would constitute one column. A record group column represents a database column.

	
A data model object created automatically for each column expression in a query's SELECT list, or created manually to perform summaries, formulas, or act as a placeholder.

	
The representation of an attribute of an entity.

data model

A relational model that defines what data should be fetched from the data source(s), what values should be computed, and how data should be ordered in a report. Reports Builder objects that define the data model are queries, groups, columns, parameters, and links.

Data Model view

One of the views of the Report Editor that displays a structural representation of the data in a report. The objects do not appear in the report output, but the structure determines the layout style, and the data objects provide the values that appear in the layout objects.

database

A source for data returned by a query, including database objects such as tables, views, synonyms, snapshots, and queries stored as views. Oracle Reports Services enables you to access any data source.

A set of dictionary tables and user tables that are treated as a unit.

data source

A source for data returned by a query, including database objects such as tables, views, synonyms, snapshots, and queries stored as views. Oracle Reports Services enables you to access any data source.

The pluggable data source (PDS) architecture replaces Oracle Open Client Adapter (OCA), and the Open Database Connectivity (ODBC) drivers are obsolete in Oracle Reports. However, Java Database Connectivity (JDBC) is one of the pluggable data sources available that can utilize the JDBC-ODBC bridge, allowing access to other data sources.

detail query

When defining a master/detail report, the detail query retrieves all related records for each record retrieved by the master, or parent, query.

dialog box

A partial screen or window that prompts you to enter information necessary to complete an operation.

disabled

An interface element state that means a menu item, button, and so on, cannot be used in the current context (that is, it does not respond to keyboard or mouse input).

editor

See view.

enabled

An interface element state that means that a menu item, button, and so on, can be used in the current context (that is, it responds to keyboard or cursor/mouse input).

field

	
An interface element in which you enter, edit, or delete data.

	
A layout object that defines how the data for a specific query column appears.

foreign key

A value or column in one table that refers to a primary key in another table.

format mask

A setting that defines the appearance of the value of a field. For example, a format mask is used to specify the display of currency amounts and dates.

format trigger

A PL/SQL function that enables you to dynamically change the formatting attributes of an object.

formula column

A user-created column that gets its data from a PL/SQL function or expression, a SQL statement, or a combination of these.

frame

A layout object used to enclose other layout objects and control the formatting, frequency, and positioning of several objects simultaneously.

group

	
In Reports Builder, a data model object that is created automatically to contain all the columns selected by a query, or created by the user to modify the hierarchy of the data appearing in a report; it is used primarily for creating breaks in a report, as well as for resetting computations.

	
An object that is composed of several other objects.

HTML

Acronym for HyperText Markup Language. A tag-based ASCII language used to specify the content and links to other documents on Web servers on the Internet. End users with Web browsers view HTML documents and follow links to display other documents.

HTTP

Acronym for HyperText Transfer Protocol. The protocol used to carry Web traffic between a Web browser computer and the Web server being accessed.

hyperlink

A reference (link) from some point in one document to (some point in) another document or another place in the same document. A Web browser usually displays a hyperlink in some distinguishing way (in a different color, font or style). When users activate hyperlinks (by clicking on them with a mouse) the browser displays the target of the link.

IANA

Acronym for Internet Assigned Numbers Authority. An organization working under the auspices of the Internet Architecture Board (IAB) that is responsible for assigning new Internet-wide IP addresses. IANA-defined character sets refers to those character sets that can be defined for the charset tag and may be used in the Internet.

icon

A graphic representation of a window or tool.

image

A bitmapped object that can be stored and loaded into an application. The client cannot modify an imported image.

intranet

An internal TCP/IP network, access to which is restricted (through a firewall) to individuals inside the company or organization. An intranet provides similar services within an organization to those provided by the Internet, but is not necessarily connected to the Internet. A common example of an intranet is when a company sets up one or more Web servers on an internal network for distribution of information or applications within the company.

Java

A computer language that supports programming for the Internet in the form of platform-independent "servlets" or "applets".

JAAS

Java Authentication and Authorization Services, which is a set of APIs that enable services to authenticate and enforce access controls upon users. It implements a Java technology version of the standard Pluggable Authentication Module (PAM) framework, and supports user-based authorization.

JAR

Acronym for Java ARchive. A file used for aggregating many files (Java class files, images, and so on) into one file.

JAZN

Oracle's Implementation of JAAS.

Java EE

Acronym for Java Platform, Enterprise Edition. An environment for developing and deploying enterprise applications in Java consisting of a set of services, application programming interfaces, and protocols that provide for developing multitiered, Web-based applications.

JSP

Acronym for JavaServer Page. JSP technology is an extension to the Java Servlet technology from Sun Microsystems that provides a simple programming vehicle for displaying dynamic content on a Web page. JSP is a server-side technology. A JSP is an HTML page with embedded Java source code that is executed in the Web server or application server. The HTML provides the page layout that is returned to the Web browser, and the Java provides the business logic.

layout

See Paper Layout view.

margin

An optional report region that appears at the top and bottom of each logical page in a report section (Header, Main, or Trailer). The margin may include any layout object, but typically contains boilerplate and fields (for page numbers, page totals, grand totals, and current date and time).

object

	
An item that can be placed on the layout. The following are examples of objects: rectangle, line, ellipse, arc, polygon, polyline, rounded rectangle, freehand, chart, text, symbol, and text field.

	
In an Oracle database, an instance of an object type. An object can be a row in an object table, or the portion of a row contained in a column object in a relational table.

Object Navigator

A hierarchical browsing and editing interface that enables you to locate and manipulate application objects quickly and easily. Features include:

	
A hierarchy represented by indentation and expandable nodes (top-level nodes show module types, database objects, and built-in packages), enabling tasks such as creating, editing, renaming, and deleting objects.

	
A find field and icons, enabling forward and backward searches for any level of node or for an individual item in a node

	
Icons in the horizontal toolbar replicating common File menu functions

Oracle Fusion Middleware (OracleAS)

A strategic platform for network application deployment. By moving application logic to application servers and deploying network clients, organizations can realize substantial savings through reduced complexity, better manageability, and simplified development and deployment. OracleAS provides the only business-critical platform that offers easy database Web publishing and complete legacy integration while transitioning from traditional client/server to network application architectures.

Oracle Developer Suite

Combines leading Oracle application development and business intelligence tools into a single, integrated product. Built on Internet standards such as Java and XML, the suite provides a complete and highly productive development environment for building applications for Oracle Fusion Middleware and the Oracle database.

ORACLE_HOME

An alternate name for the top directory in the Oracle directory hierarchy on some directory-based operating systems. An environment variable that indicates the root directory of Oracle products.

You can refer to the directory specified by ORACLE_HOME in syntax:

On UNIX: $ORACLE_HOME

On Windows: %ORACLE_HOME%

Oracle Portal

A browser-based development tool for building scalable, secure, extensible HTML applications and Web sites. Oracle Reports Services uses Oracle Portal to control end user access to reports published on the Web by storing information about report requests, the secured server, and any Oracle Reports Services printer used to print report output.

Oracle Reports Bridge

Oracle Reports Bridge (rwbridge) provides functionality for discovering a Reports Server across Farms.

Oracle Reports Client (rwclient)

An Oracle Reports component that provides a command-line interface to send a report to a remote Reports Server (rwserver).

Oracle Reports Builder (rwbuilder)

An Oracle Reports component that provides the report building component of Oracle Reports. Report developers use the Oracle Reports Builder design-time user interface to create and maintain report definitions. For more information, refer to the Oracle Reports Online Help (select Help > Contents in Oracle Reports Builder), and the Oracle Reports Building Reports manual.

Oracle Reports Runtime (rwrun)

An Oracle Reports component that runs a report by starting its own in-process server (not to be confused with the default in-process Reports Server), which runs in the same JVM as the rwrun process.

	
Note:

It is recommended that you use rwrun for testing purposes only. Use rwservlet and rwclient in your production environment to take full advantage of the power of Oracle Reports Services.

Oracle Reports Services

The runtime environment that executes, distributes, and publishes your reports for enterprise wide reporting. Using Oracle Reports Services to deploy your reports results in gains of flexibility, time savings, and processing capacity.

Oracle Reports Servlet (rwservlet)

A component of Oracle Reports Services that translates and delivers information between either a Web Server or a Java EE Container (for example, Oracle WebLogic Server) and the Reports Server, enabling you to run a report dynamically from your Web browser.

Oracle Reports Queue Manager (rwrqm)

(Windows only) Maintains timestamp and status information about reports jobs managed by the Reports Server (rwserver).

Paper Design view

One of the views of the Report Editor that displays output for paper reports and enables you to make many commonly required, simple modifications to the layout, such as spacing, formatting fields, color, and editing text, without having to open the Paper Layout view.

Paper Layout view

One of the views of the Report Editor that displays the layout objects in a paper report and enables you to make many modifications to any layout object. All layout objects have properties that you can modify using the Property Inspector. The hierarchy of the layout objects is determined by the Data Model.

Paper Parameter Form view

Displays the layout of the Parameter Form that, at runtime, allows user input of parameter values in the Runtime Parameter Form.

PDF

Acronym for Portable Document Format. A file format (native for Adobe Acrobat) for representing documents in a manner that is independent of the original application software, hardware, and operating system used to create the documents. A PDF file can describe documents containing any combination of text, graphics, and images in a device-independent and resolution independent format.

PL/SQL

Oracle's proprietary extension to the SQL language. Adds procedural and other constructs to SQL that make it suitable for writing applications.

PPD

Acronym for PostScript Printer Definition. PPD and AFM files are supplied by Adobe and by printer vendors. These files contain information about the printer. Along with other parameters, these files are read for the information about the available fonts for the printer, which Oracle Reports will use. For all the fonts listed in the PPD file, Oracle Reports searches for the corresponding AFM file according to the font name and loads all of the fonts for which there is an available AFM.

Property Inspector

A window that enables you to view, locate, and set the properties of the currently selected object(s) in the Object Navigator, Report Editor, and Template Editor. Every Reports Builder object (query, group, frame, parameter, and so on) has associated properties that can be viewed using the Property Inspector. The Property Inspector features:

	
expandable and collapsible nodes

	
in-place property editing

	
search features

	
multiselection

	
complex property dialogs

	
the ability to invoke multiple instances of the Property Inspector

To get help on any property, click the property in the Property Inspector and press F1.

query

A SQL SELECT statement that specifies the data you wish to retrieve from one or more tables or views of a database.

RDF file

A file that contains a single report definition in binary format. .RDF files are used to both run and edit reports.

record

One row fetched by a SQL SELECT statement.

REP file

A file that contains a single report definition in binary format. .REP files are used solely to run reports; you cannot edit a .REP file.

repeating frame

A layout object used to display rows of data that are fetched for a group.

Reports CGI (rwcgi)

	
Note:

Reports CGI (rwcgi) is deprecated (maintained only for backward compatibility); instead, use Reports JSPs, Oracle Reports Servlet (rwservlet), or Reports Web Services.

An Oracle Reports component, also known as the Common Gateway Interface (CGI) or Reports Web Cartridge, that translates and delivers information between either a Web Server or a Java EE Container (for example, Oracle WebLogic Server) and the Reports Server, to run a report dynamically from your Web browser.

Report Editor

The Oracle Reports Builder window that provides different views to help you handle the data objects and layout objects for Web and paper reports. The views are:

	
Data Model view

	
Paper Layout view

	
Paper Design view

	
Paper Parameter Form view

	
Web Source view

Reports CGI (rwcgi)

	
Note:

Reports CGI (rwcgi) is obsolete; instead, use Reports JSPs or Oracle Reports Servlet (rwservlet).

An Oracle Reports component, also known as the Common Gateway Interface (CGI) or Reports Web Cartridge, that translates and delivers information between either a Web Server or a Java EE Container (for example, Oracle WebLogic Server) and the Reports Server, to run a report dynamically from your Web browser.

Reports Engine

A component of Oracle Reports Services that fetches data from the data source, formats the report, send output to cache, and notifies the Reports Server that the job is ready.

Reports Server (rwserver)

Reports Server (rwserver) is an Oracle Reports component that provides reporting services to execute, distribute, and publish your reports for enterprise-wide reporting. A component of Oracle Reports Services that processes client requests, including user authentication, scheduling, caching, and report distribution. Use Oracle Reports clients such as Oracle Reports Servlet (rwservlet), Reports JSP, and Oracle Reports Client (rwclient) to send a report to Reports Server.

row

One set of field values in a table; for example, the fields representing one employee in the example table EMP.

Runtime Parameter Form

A screen or window appearing optionally at runtime in which a user can modify print options and parameters prior to report execution.

schema

A collection of related database objects, usually grouped by database user ID. Schema objects include tables, views, sequences, stored program units, synonyms, indexes, clusters, and database links.

SELECT statement

A SQL statement that specifies which rows and columns to fetch from one or more tables or views.

servlet

A Java application that runs in a Web server or application server and provides server-side processing, typically to access a database or perform e-commerce processing. Because they are written in Java, servlets are portable between servers and operating systems.

Oracle Reports Servlet (rwservlet) and JSP are components of Oracle Reports Services that process custom (JSP) report tags and deliver information between the Oracle HTTP Server and the Reports Server.

SQL

A standard interface for storing and retrieving information in a relational database. SQL is an acronym for Structured Query Language.

SQL file

A file that contains a query stored in text (for example, ASCII or EBCDIC) format.

SQL script

A file containing SQL statements that you can run to perform database administration quickly and easily. Several SQL scripts are shipped with Oracle products.

SQL statement

A SQL instruction to Oracle. A SELECT statement is one type of SQL statement.

style sheet

HTML extensions that provide powerful formatting flexibility in HTML documents. To view an HTML document that takes advantage of style sheets, display it in a browser that supports style sheets.

table

A named collection of related information, stored in a relational database or server, in a two-dimensional grid that is made up of rows and columns.

tabular

A default layout displaying labels at the top of the page and rows of data underneath the labels.

template

A skeleton definition containing common style and standards, and may include graphics. A template provides a standard format to enable quick and easy development of professional standard look-and-feel reports.

Template Editor

A work area in which you can define objects and formatting properties for your templates. It is similar to the Paper Layout view of the Report Editor. You can create, delete, and modify objects (for example, page numbers, text, and graphics) in the margin area. You cannot create and delete objects in the body area, but you can modify the properties of body objects in the Property Inspector.

tool

An iconic button used to create and manipulate objects in an application.

tool palette

A collection of tools represented by iconic buttons in the user interface that allow a report developer to perform tasks, such as drawing a rectangle in the Paper Layout view or creating a query in the Data Model view.

toolbar

A collection of iconic buttons that perform product commands. Usually aligned horizontally along the top, or vertically down the side of a window.

URL

Acronym for Uniform Resource Locator. A compact string representation of the location for a resource that is available through the Internet. It is also the text string format clients use to encode requests to OracleAS.

view

	
In Reports Builder, a work area in which you perform a specific set of tasks, such as defining a report data model, layout, or Parameter Form.

	
A virtual table whose rows do not actually exist in the database, but which is based on a table that is physically stored in the database.

Web browser

A program that end users utilize to read HTML documents and programs stored on a computer (serviced by a Web server).

Web server

A server process (HTTP daemon) running at a Web site which sends out Web pages in response to HTTP requests from remote Web browsers.

Web Source view

One of the views of the Report Editor that displays the HTML or JSP source for a report. You can use this view to add dynamic content to a Web page using the Report Block Wizard and the Graph Wizard. Experienced Java developers can edit the Web source directly in this view.

wizard

A step-by-step interface for commonly performed tasks. The wizards in Reports Builder are:

	
Report Wizard: guides you through the steps to create a basic paper or Web report. Each page of the wizard asks you for information to help you create your initial report.

	
Data Wizard: helps you helps you quickly define or modify a query for a multiquery data models.

	
Graph Wizard: Adds variety of charts and graphs, including true 3-dimensional graphs. Implemented in Reports Builder with the Oracle BI graph bean.

	
Report Block Wizard: enables you to add data to a static HTML page.

XML

Acronym for Extensible Markup Language. A metalanguage using SGML to define and structure data. Reports Builder supports XML output to enable Web publishing as well as electronic data exchange with third-party applications. You can also use XML to build report definitions that can be merged with other report definitions at runtime or run separately.

10.6 Globalization Support

This section explains multibyte character set printing support in Oracle Reports. It also explains the IX and PASTA utilities, which are supported only for Oracle Reports when installed and used in conjunction with Oracle Applications.

	
Multibyte Character Set Printing

	
Overview of IX and PASTA

10.6.1 Multibyte Character Set Printing

Oracle Reports does not currently support Unicode character sets in PostScript output. As an alternative, you can use Oracle Reports PDF output (desformat=pdf), which supports multibyte character sets, and print it.

Oracle Reports supports a set of encoding schemes for the AFM files for the multibyte character sets.

	
See Also:

Chapter 9, "Managing Fonts in Oracle Reports" and Chapter 11, "Using PDF in Oracle Reports" for more font-related information.

The fonts must be installed on the printer that prints the PostScript report output.

Example

Suppose you build a report and its generated PostScript output contains a Chinese character set. First, you need AFM and PPD files that adhere to the encoding scheme for multibyte character sets. The destination printer must also have the required Chinese fonts installed because the PostScript file generated by Oracle Reports on UNIX does not have fonts embedded in it. The PostScript file contains only the font name and the font metrics taken from the AFM files. If you try to send the report to a printer that does not have the Chinese fonts installed, it will not print the Chinese characters properly.

10.6.2 Overview of IX and PASTA

When installed and used with Oracle Applications, Oracle Reports includes utilities for font embedding in PostScript output.

For character-mode reports, the utility is called PASTA. For bit-mapped reports, the utility IX enables you to embed the fonts in the PostScript output, thereby allowing you to print even if the font is not installed on the printer. Both PASTA and IX are supported only for Oracle Reports used with Oracle Applications.

When used for character-mode reports, PASTA takes tagged character mode output (generated through an appropriate prt file) and generates a PostScript rendition of it. IX enables Oracle Reports to print PostScript bit-mapped reports for all character sets, including UTF8, on a PostScript printer. With this functionality, PostScript printing in Unicode as well as all native languages on UNIX is supported. The IX library is turned off by default with the Oracle Reports patch.

Please refer to your Oracle Applications System Administrator's Guide for the setup and usage information for IX and PASTA with Oracle Reports. If you are a member of Oracle Metalink (http://metalink.oracle.com), you can also get this information from MetaLink notes 189708.1 and 159225.

If you have problems with PASTA, you can use the following technique to isolate the problem:

	
Unset the PASTA environment variable.

	
Try to perform the steps that caused the problem again.

	
If the problem reproduces without the environment variable set, then it should be treated as a normal Oracle Reports printing problem and the diagnostic steps provided in this document should be applied.

If the problem reproduces only with the PASTA environment variable set, then follow the diagnostic process given in the Oracle Applications documentation.

7.8 Securing Oracle Reports Services

In 11g Release 1 (11.1.1), Reports Server is secure out-of-the-box using the Oracle Platform Security Services, which accomplishes both authentication and authorization. Oracle Reports uses this Java EE-based security model to allow you to create security policies for running report jobs and Web commands.

In prior releases, Reports Server authentication was restricted to use only Oracle Internet Directory. Authorization of Reports Server required an Oracle Portal-based security model (using Portal metadata repository for checking authorization). If you want to revert to the security mechanism of prior releases, refer to Section 7.8.1.1, "Switching to Oracle Portal Security".

In Oracle Reports 11g Release 1 (11.1.1), administrators can use Oracle Enterprise Manager to more easily define and manage granular security policies and file system access:

	
Enabling and Disabling Security

	
Defining Security Policies for Reports

	
Defining Security Policies for Directories

	
Defining Security Policies for Web Commands

	
Defining Read/Write Access to Directories

	
Enabling and Disabling Single Sign-On

	
Using Oracle Access Manager

	
Managing Credentials

7.8.1 Enabling and Disabling Security

To enable or disable security for the Reports Server or Reports Application:

	
Log in to Oracle Enterprise Manager.

	
Navigate to the component's home page (see Section 7.3, "Viewing the Component Topology").

	
From the Reports menu, select Administration > Advanced Configuration.

The Advanced Configuration page is displayed.

	
In the Reports Security region, check or uncheck Enable Security.

7.8.1.1 Switching to Oracle Portal Security

The steps for deploying reports in Oracle Portal is the same in 11g Release 1 (11.1.1) as in prior releases, as described in Chapter 16, "Deploying Reports in Oracle Portal". However, the security mechanism underlying the deployment has changed. In that, authorization is enabled out of the box, but during installation if only Oracle Internet Directory is specified and Portal is not installed, authorization using Oracle Portal is disabled. The default installation of 11g Release 1 (11.1.1) accomplishes both authentication and authorization through Oracle Platform Security Services

You can continue to use the security features in Oracle Portal from prior releases for backward compatibility. To switch from the new 11g Release 1 (11.1.1) Oracle Platform Security Services to pre-11g Oracle Portal metadata repository-based security:

	
Log in to Oracle Enterprise Manager.

	
Navigate to the Reports Server Home page (see Section 7.3, "Viewing the Component Topology").

	
From the Reports menu, select Administration > Advanced Configuration.

The Reports Server Advanced Configuration page is displayed.

	
In the Reports Security section, check Enable Security, then select Security features available through Oracle Portal.

	
Click Apply.

	
Note:

If you enable Oracle Portal security features, then Oracle Portal must also be configured during installation for authorization to occur:

	
If Oracle Portal is configured during installation, authentication is accomplished using the Oracle Internet Directory and authorization is accomplished using Oracle Portal (which stores authorization policies).

	
If Oracle Portal is not configured during installation, authentication is accomplished using the Oracle Internet Directory and authorization does not occur.

7.8.2 Defining Security Policies for Reports

As administrator, you can specify the reports to which a particular user/role has access by creating security policies for each report. In the security policy, you can also specify the server, destination name (desname), destination type (destype), and other parameters. An authenticated user is authorized against these security policies.

To define security policies for reports for Reports Server or Reports Application (in-process Reports Server):

	
Log in to Oracle Enterprise Manager.

	
Navigate to the component Home page (see Section 7.3, "Viewing the Component Topology").

	
From the Reports menu, select Administration > Manage Reports Security Policies > Reports Policies.

	
Click Create or Edit.

The Security Policy Configuration for Reports page is displayed.

	
Enter appropriate values for the elements on the page to define a security policy for directory access using the descriptions in the Help topic for the page.

Click the Help icon on the page to access the page-level help.

Perform the following to complete the elements on the page,

	
From the Server Name parameter checkbox, select one or more servers to which the security policy has to be applied. If you want to apply the security policy to all servers, select All.

	
In the Reports Definition Files or Directories parameter, enter one or more report definition file names or the directories for which you are defining security policies. For example, to specify a directory, enter: /myreports/runtime/reports/*. Separate multiple entries with a comma (,).

	
Click OK.

All fields on this page require a restart to take effect.

	
Run a report as the specified role and other roles to test that security policies for authentication and authorization are enforced as you have defined. For example, run a report from your browser using the following URLs:

http://host:port/reports/rwservlet?report=report_name.rdf&destype=cache&desformat=html&userid=user/password@mydb&server=ReportsServer_instancename

http://host:port/reports/rwservlet?report=report_name.rdf&userid=user/password@mydb&destype=file&desformat=pdf&desname=report_name.pdf

where

host is the machine where the Oracle Instance is set up

port is the OHS main port

	
Note:

The security policies defined in Oracle Enterprise Manager are stored in the policy store configured by the user. The idstore contains information on the users and the policy store contains the security policies configured by the user.

7.8.3 Defining Security Policies for Directories

In certain cases, you will want to give a particular user access to multiple related reports. Rather than specify a security policy for each report, you can collect all the reports in a single directory, then specify a security policy for the directory. Again, the security policy is checked when the user provides the user name and password.

As an example, imagine that there are 15 finance reports, for which you want to give access to the FINANCE role, and there are 12 Human Resources reports for which you want to give access to the HR role. Rather than specify 15 security policies for FINANCE role, and 12 policies for HR role (one policy per report), you can collect all finance reports in one directory, and collect all the HR reports in another directory, then specify only 2 policies (one per directory). Instead of specifying the report name, you will specify the directory name in the security policy.

To define a security policy for directories:

	
Log in to Oracle Enterprise Manager.

	
Navigate to the Reports Server Home page (see Section 7.3, "Viewing the Component Topology").

	
From the Reports menu, select Administration > Manage Reports Security Policies > Reports Policies.

	
Click Create or Edit.

The Security Policy Configuration for Reports page is displayed.

	
Enter appropriate values for the elements on the page to define a security policy for directory access using the descriptions in the Help topic for the page.

Click the Help icon on the page to access the page-level help.

Perform the following to complete the elements on the page,

	
From the Server Name parameter checkbox, select one or more servers to which the security policy has to be applied. If you want to apply the security policy to all servers, select All.

	
In the Reports Definition Files or Directories parameter, enter one or more report definition file names or the directories for which you are defining security policies. For example, to specify a directory, enter: /myreports/runtime/reports/*. Separate multiple entries with a comma (,).

	
Click OK.

All fields in this page require a restart to take effect.

Now, to use the defined directory access control at the Reports Server level, refer to Section 7.8.1, "Enabling and Disabling Security" to confirm that security is turned on.

	
Note:

The security policies defined in Oracle Enterprise Manager are stored in the policy store configured by the user. The idstore contains information on the users and the policy store contains the security policies configured by the user.

7.8.4 Defining Security Policies for Web Commands

You can also specify the Web commands to which a particular user/role has access by creating security policies for each Oracle Reports Servlet (rwservlet) Web command. The security policy is checked when the user provides the user name and password.

To define security policies for Web commands:

	
Log in to Oracle Enterprise Manager.

	
Navigate to the Reports Application Home page (see Section 7.3, "Viewing the Component Topology").

	
From the Reports menu, select Administration > Manage Reports Security Policies > Web Command Policies.

	
Click Create or Edit to enter appropriate values for the elements on the page.

The Security Policy Configuration for Web Commands page is displayed.

	
Enter appropriate values for the elements on the page to define a web command security policy using the descriptions in the Help topic for the page.

Click the Help icon on the page to access the page-level help.

Perform the following steps to complete the elements on the page,

	
From the Server Name parameter checkbox, select one or more servers to which the security policy has to be applied. If you want to apply the security policy to all servers, select All.

	
From the Web Commands parameter checkbox, select one or more Web commands authorized for the specified servers and grantees. If you want to specify all Web commands, select All.

	
Click OK.

All fields on this page require restart to take effect.

	
Run a report as the specified role and other roles to test that security policies for authentication and authorization are enforced as you have defined. For example, run the showjobs Web command from your browser using the following URL:

http://host:port/reports/rwservlet/showjobs?server=ReportsServer_instancename

where,

host is the machine where the Oracle Instance is set up.

port is the OHS port.

	
Note:

The security policies defined in Oracle Enterprise Manager are stored in the policy store configured by the user. The idstore contains information on the users and the policy store contains the security policies configured by the user.

7.8.5 Defining Read/Write Access to Directories

As an administrator, you can specify read/write access for Reports Server, Reports Application (in-process Reports Server), or Oracle Reports Runtime to directories. This feature only checks whether Reports Server, Reports Application, or Oracle Reports Runtime is authorized to read from or write to a specified directory, and is unrelated to security policies that check the user name and password.

	
Read access. To avoid the security issue of exposing sensitive content of files, you can specify the directories from which Reports Server, Reports Application, or Oracle Reports Runtime is allowed to read.

For example, a malicious user may specify the following keywords to run a report on Windows:

distribute=yes&destination=C:\Temp

This would generate an error stating that there was an error in the syntax of the file. To avoid this, enable file system access control to specify read directories that do not include system directories.

	
Write access. To avoid the security issue of a malicious user potentially overwriting a system file by sending report output to a system directory, you can specify the directories to which Reports Server, Reports Application, or Oracle Reports Runtime is allowed to write. Attempts to write to other directories will return an error.

For example, a user may run a report to the following destination on Windows:

desname=C:\Temp

This would overwrite a system file unless file system access control was enabled to specify write directories that do not include system directories.

To define read/write access to directories for Reports Server, Reports Application, or Oracle Reports Runtime:

	
Log in to Oracle Enterprise Manager.

	
Navigate to the component's home page (see Section 7.3, "Viewing the Component Topology").

	
From the Reports menu, select Administration > Advanced Configuration.

The Advanced Configuration page displays.

	
In the File System Access Control section, check Enable File System Access Control, then enter the names of the Read Directories and Write Directories to which Reports Server, Reports Application, or Oracle Reports Runtime should have access. These entries set the read and write sub-elements of the folderaccess element in the configuration file.

Read Directories: To avoid the security issue of exposing sensitive content of files, enter the names of the directories from which Reports Server is allowed to read. Separate directory names with a semicolon (;).

Write Directories: Enter the names of the directories to which Reports Server is allowed to write. Attempts to write to other folders will return an error.

7.8.6 Enabling and Disabling Single Sign-On

If you plan to take advantage of Oracle Application Server Single Sign-On, you can use Oracle Enterprise Manager to set the SINGLESIGNON parameter in the rwservlet.properties configuration file. SINGLESIGNON=YES by default on installation. For more information about Single Sign-On, refer to Chapter 17, "Configuring and Administering OracleAS Single Sign-On".

To enable Single Sign-On:

	
Log in to Oracle Enterprise Manager.

	
Navigate to the Reports Application Home page (see Section 7.3, "Viewing the Component Topology").

	
From the Reports menu, select Administration > Advanced Configuration.

The Reports Application Advanced Configuration page displays.

	
In the Reports Security section, check Enable Single Sign-On.

	
Click Apply.

7.8.7 Using Oracle Access Manager

Oracle Access Manager is a component of Oracle Fusion Middleware that you can use in place of OracleAS Single Sign-On 10g to implement centralized authentication, policy-based authorizations, delegated administration, and so on.

You can use the Oracle Fusion Middleware Upgrade Assistant to upgrade from OracleAS Single Sign-On 10g to Oracle Access Manager 11g. For more information about upgrading to Oracle Access Manager 11g, see the "Upgrading Your Oracle Single Sign-On Environment" chapter in the Oracle Fusion Middleware Upgrade Guide for Oracle Identity Management.

7.8.8 Managing Credentials

This section explains how to use the oracle Enterprise Manager to manage credentials in a domain credential store.

	
Log in to Oracle Enterprise Manager and navigate to WebLogic Domain > Security > Credentials, to display the Credentials page.

	
Use the button Delete to remove a selected item (key or map) in the table. Note that deleting a credential map, deletes all keys in it. Similarly, use the button Edit to view or modify the data in a selected item.

	
To display credentials matching a given key name, enter the string to match in the box Credential Key Name, and then click the blue button to the right of it. The result of the query is displayed in the table.

	
To redisplay the list of credentials after examining the results of a query, select WebLogic Domain > Security > Credentials.

To add a new key to a credential map:

	
Click Create Map to display the Create Map dialog.

	
In this dialog, enter the name of the map for the credential being created.

	
Click OK to return to the Credentials page. The new credential map name is displayed with a folder icon in the table.

	
Note:

In CSF, the Reports Server can access credentials only from the Reports folder, hence you must create credentials under the Reports folder.

To add a new key to a credential map:

	
Click Create Key to display the Create Key dialog.

	
In this dialog, select a map from the pull-down list Select Map where the new key will be inserted, enter a key in the text box Key, select a type from the pull-down list Type (the appearance of the dialog changes according to the type selected), enter the required data.

	
Click OK when finished to return to the Credentials page. The new key is shown under the map icon corresponding to the map you selected.

For more information about Reassociating the Credential Store, see Oracle Fusion Middleware Security Guide.

D.1 Problems and Solutions

This section describes common problems and solutions. It contains the following topics:

	
Hanging Report Requests

	
Reports Server Activity Generates Error REP-50125

	
Long Running Report Failure with Oracle Reports Servlet

	
Fonts Do Not Display Consistently On Different Platforms

	
Running Reports on UNIX Platforms Generates REP-56048

	
Font Issues with Right-to-Left Languages

	
Errors When Running Reports from Oracle Forms Using RUN_REPORT_OBJECT

	
Displaying Report Output in Microsoft Excel

	
Report Containing User Exit Fails on UNIX

	
Printing and Font Errors When Using In-process Reports Server

D.1.1 Hanging Report Requests

When running report requests with Reports Server, the report request may "hang" for various reasons. This can lead to stability issues if not noticed in time. This section highlights such scenarios, explains the issues, how you can identify such patterns, take corrective measures, and gather sufficient information to raise such issues with Oracle Support Services.

To begin with, it is important to understand how Reports Server identifies duplicate jobs. When a job is submitted to Reports Server, it checks whether a similar job exists in its job queue. If it finds a currently running job that is the same as the submitted job, then Reports Server considers the submitted job a duplicate job and the currently running job as the master job. Reports Server does not execute the duplicate job; instead, it waits for the master job to finish and passes the same output to the duplicate job. Although an idle engine is available, the duplicate job is not submitted to the engine. This is expected behavior and does not mean that the request is hanging.

In addition to the Solutions provided in this section, refer to Section 24.4, "Tuning Reports Server Configuration".

	
Note:

Scalability improvements in Oracle Reports 10g Release 2 (10.1.2) and 11g Release 1 (11.1.1) improve the stability of Reports Server to ensure report requests complete successfully.

Problem 1

Master job "hangs" before finishing.

Solution 1

If a master job hangs for some reason, then the next duplicate job in line is made the master job.

Check the engineResponseTimeOut attribute in the engine element of the rwserver.conf file (see Section 8.2.1.9, "engine"). Set this attribute judiciously to avoid server instability. This enables Reports Server to automatically detect and recover from this type of hanging situation. You can also use the showjobs command to end the hanging job and allow Reports Server to continue processing other requests. For information about the showjobs command, see Section A.8.8, "SHOWJOBS".

For example, consider a scenario where you have a set of reports. The largest report takes a maximum of 5 minutes to run. In this case, you can set engineResponseTimeOut to 5 minutes.

	
Notes:

	
When an engine is executing the job, the engine updates the server with the latest status, such as formatting page 1, 2, and so on. If Reports Server does not receive any update from the engine for more than 5 minutes, it is assumed that the engine is hanging and therefore, Reports Server stops the engine.

	
When you have reports of various complexities that take 1 minute to 1 hour to run, you should specify ENGINERESPONSETIMOUT on the command line while running the report (see Section A.6.4, "ENGINERESPONSETIMEOUT").

	
If you have interactive jobs as well as scheduled and batch jobs, it is good practice to start one server for interactive jobs and one for batch and scheduled jobs. For performance and stability reasons, you should avoid using the same server for both interactive and batch/scheduled jobs.

Despite setting the engineResponseTimeOut attribute (or ENGINERESPONSETIMEOUT keyword on the command line) judiciously, if you still encounter instability and crashes, perform the following steps to report the problem to Oracle Support Services:

	
Enable server tracing and logging (see Section 24.3.7, "Tracing Report Execution"). If it is not possible to enable tracing, enable logging alone by setting the log element's option attribute to failedJobs in the rwserver.conf file (see Section 8.2.1.13, "log"). When you enable logging, you can see the failed job reports in the reports.log file. Identify the report that is failing or causing the engine to hang.

	
Enable engine diagnostic logging by modifying the engine element to include the diagnosis property in the rwserver.conf file (see "Properties" in Section 8.2.1.9, "engine"), then run the report that you identified in Step 1 to reproduce the hang.

	
Report the hang to Oracle Support Services with the following information:

	
rwserver.conf file.

	
reports.log file.

	
Engine diagnostic output when the hang is reproduced.

	
Report definition file so that Oracle Support Services can reproduce the problem.

Problem 2

Reports Server stops responding or crashes when running report requests, exhibited by any of the following:

	
When a job is submitted through a browser, the browser seems to hang (no response).

	
A job is not submitted to an engine although the engine is idle.

	
Web commands do not work and the browser times out after some time.

	
Scheduled jobs are not run.

Solution 2

Restart Reports Server to attempt to recover from this problem. If the problem persists, report it to Oracle Support Services with the following information:

	
rwserver.conf file.

	
Approximate load on Reports Server at the time of the hang.

	
Thread dump of Reports Server, which you can obtain as follows:

	
On Solaris, use the kill -3 server_pid command when Reports Server hangs. This command writes the thread information to the console output. To redirect the thread information and error streams from the console to a file, modify the rwserver.sh file in the $ORACLE_INSTANCE/config/reports/bin directory. For example:

exec $ORACLE_INSTANCE/config/reports/bin/rwserver "$@" > threaddump.txt 2>&1

	
Note:

This example is for the UNIX k shell. The code may be slightly different if you are using some other shell.

If you are using the in-process Reports Server, use the Give kill -3 to WLS_REPORTS managed server process. The thread dump will be in FMW_HOME/user_projects/domains/domain_name/servers/WLS_REPORTS/logs/WLS_REPORTS.out

	
On Windows, the kill -3 command does not work. Instead, at a command prompt, type the command specified in Table D-1 to start Reports Server; when the issue is reproduced, shift focus to the command prompt window, then press Control+Break to get the thread dump.

Table D-1 Commands to Obtain Thread Dump on Windows

	Reports Server Version	Command
	
11.1.1.x.x

	
Set the environment variable COMPONENT_CONFIG_PATH to the Reports Server configuration directory and run the following command:

ORACLE_HOME/jdk/bin/java –Xmx256M –classpath %REPORTS_CLASSPATH% oracle.reports.server.RWServer oracle_home=ORACLE_HOME server=server_name showui=yes|nobatch=yes|no

	
10.1.2.0.2

	

ORACLE_HOME/jdk/bin/java –Xmx256M –classpath %REPORTS_
CLASSPATH% oracle.reports.server.RWServer oracle_
home=ORACLE_HOME server=server_name showui=yes|no
batch=yes|no

	
9.0.4

	

ORACLE_HOME/jdk/bin/java
-Xbootclasspath/p:$OH/vbroker4/lib/vbjboot.jar –Xmx256M
–classpath %REPORTS_CLASSPATH%
oracle.reports.server.RWServer oracle_home=ORACLE_HOME
server=server_name showui=yes|no batch=yes|no

	
9.0.2

	

ORACLE_HOME/jdk/bin/java –Xmx256M –classpath %REPORTS_
CLASSPATH% oracle.reports.server.RWServer oracle_
home=ORACLE_HOME server=server_name showui=yes|no
batch=yes|no

Problem 3

The in-process Reports Server fails to start and the browser displays the following message while trying to run a report with the in-process Reports Server:

REP-52266: The in-process Reports Server failed to start.

When the standalone server is started, it shuts down immediately.

Solution 3

Enable tracing (see Section 24.3.7, "Tracing Report Execution") and start the in-process Reports Server. The default Reports Server rwserver_diagnostic.log file should capture the actual cause of the problem:

	
Reports Server has failed to initialize one of the pluggable data sources or destinations. Correct the configuration for the pluggable data source (PDS) or destination and restart Reports Server. For general information about PDSs, see the Pluggable Data Sources section of the Oracle Reports online Help. For information about the Pluggable Data Sources, see Chapter 14, "Configuring and Using the Pluggable Data sources".

	
The engine has failed to start. Check the rwEng_{engNo}_diagnostic.log file in the $DOMAIN_HOME/servers/WLS_REPORTS/logs/reports directory. This file must contain the following lines:

Debug 50103 (EngineImpl:EngineImpl): CInitEngine returns 0
Info 55003 (RWEngine:init): Register this engine to Oracle Reports Server server_name

If the rwEng_{engNo}_diagnostic.log file does not contain these lines, it means that the engine has failed to start.

If the CinitEngine return value in the file is negative, then it represents an error in initializing the Reports Engine.If the CinitEngine return value is not equal to zero, check the System environment variable PATH if you are using Windows and the LD_LIBRARY_PATH environment variable in setdomainenv.sh file which is located in DOMAIN_HOME/bin if you are using Solaris. For the in-process Reports Server, the values of PATH and LD_LIBRARY_PATH are taken from the System environment variable PATH for windows and LD_LIBRARY_PATH in setdomainenv.sh file which is located in DOMAIN_HOME/bin for Solaris.

Problem 4

Reports Engine crashes or hangs when running report requests.

Solution 4

Case 1: Consider the scenario where Reports Server is running thousands of reports every day, printing reports, and publishing them to the Web. In this scenario, the browser may wait for the response and eventually time out. Even Web commands to see the job queue may not work.

Turn on tracing (see Section 24.3.7, "Tracing Report Execution") and when this problem occurs, take a thread dump by running the kill -3 server_pid command on Solaris (as described under Solution 2. The following lines of code are the result of running the kill -3 server_pid command. These lines indicate a hang when Reports Server is trying to write the report to a network drive:

"RequestProcessor[7]" daemon prio=5 tid=0x1835f210 nid=0x181c waiting on condition [224cf000..224cfd88]
 at java.io.FileOutputStream.write (Native Code)
 at oracle.reports.utility.copyFile (Utility.java:424)
 at oracle.reports.server.DesFile.sendFile(DesFile.java:74)
 at oracle.reports.server.Destination.send(Destination.java:484)
 at oracle.reports.server.JobObject.distribute(JobObject.java:1582)
 at oracle.reports.server.JobManager.updateJobStatus(JobManager.java:2231)
 at oracle.reports.server.EngineCommImpl.updateEngineJobStatus(
 EngineCommImpl.java:134)
 at oracle.reports.server._EngineCommImplBase._invoke(
 _EngineCommImplBase.java:94)
 at com.sun.corba.se.internal.corba.ServerDelegate.dispatch
 (ServerDelegate.java:353)
 at com.sun.corba.se.internal.iiop.ORB.process(ORB.java:280)
 at com.sun.corba.se.internal.iiop.RequestProcessor.process
 (RequestProcessor.java:81)
 at com.sun.corba.se.internal.orbutil.ThreadPool$PooledThread.run
 (ThreadPool.java:106)

The trace file for this scenario is as follows:

[2005/5/31 6:26:47:321] Info 50132 (JobObject:reset): jobid = 15 Get command line:
server=vin report=c:\backup\reps\emp.rdf destype=file desformat=html
desname=c:\test.html userid=scott@ora9i authid=vnhegde
[2005/5/31 6:26:48:92] Debug 50103 (JobManager:firstToRun): job 15 is first to run
[2005/5/31 6:26:48:212] Debug 50103 (ConnectionImpl:runJob): Job queue for jobid =
 15 is 0
[2005/5/31 6:26:48:212] Debug 50103 (ConnectionImpl:runJob): jobid = 15 is in
 current queue
[2005/5/31 6:26:48:212] Debug 50103 (ConnectionImpl:runJob): Calling
 findDuplicatedJob for jobid = 15
[2005/5/31 6:26:48:212] Debug 50103 (JobManager:findDuplicatedJob): Found no
 duplicated job for job 15
[2005/5/31 6:26:48:212] Debug 50103 (ConnectionImpl:runJob): No Duplicate jobs for
 jobid = 15
[2005/5/31 6:26:48:212] Debug 50103 (ConnectionImpl:runJob): Job 15 is Enqueued
[2005/5/31 6:26:48:212] Debug 50103 (JobManager:firstToRun): job 15 is first to
 run
[2005/5/31 6:26:48:212] Debug 50103 (JobManager.runJobLocal): Trying to get engine
 for Job 15
[2005/5/31 6:26:48:212] Debug 50103 (EngineManager:getIdleEngine): Target max
 engines = 1
[2005/5/31 6:26:48:222] Debug 50103 (EngineManager:getIdleEngine): rwEng-0 is used
 = true
[2005/5/31 6:26:48:222] Debug 50103 (EngineManager:getIdleEngine): rwEng-0 state
 is 1
[2005/5/31 6:26:48:222] State 56004 (EngineInfo:setState): Engine rwEng-0 state
 is: Reserved
[2005/5/31 6:26:48:222] Debug 50103 (JobManager.runJobLocal): Job 15 got Engine
 rwEng-0
[2005/5/31 6:26:48:222] Debug 50103 (JobManager:runJobInEngine): Job 15 calling
 setCommand on engine rwEng-0
[2005/5/31 6:26:48:222] Debug 50103 (EngineManager:updateEngineState): Engine
 rwEng-0 status is 3
[2005/5/31 6:26:48:222] State 56004 (EngineInfo:setState): Engine rwEng-0 state
 is: Running
[2005/5/31 6:26:48:222] Debug 50103 (EngineManager:updateEngineState): Engine
 rwEng-0 status is 5
[2005/5/31 6:26:48:222] State 56004 (EngineInfo:setState): Engine rwEng-0 state
 is: Idle
[2005/5/31 6:26:48:232] Debug 50103 (JobManager:runJobInEngine): Send job 15 to
 engine rwEng-0
[2005/5/31 6:26:48:232] Debug 50103 (EngineManager:updateEngineState): Engine
 rwEng-0 status is 3
[2005/5/31 6:26:48:232] State 56004 (EngineInfo:setState): Engine rwEng-0 state
 is: Running
[2005/5/31 6:26:48:482] State 56016 (JobManager:updateJobStatus): Job 15 status
 is: Running the report Initializing report
[2005/5/31 6:26:48:482] Debug 50103 (JobManager:updateJobStatus): Finished
 updating job: 15
[2005/5/31 6:26:50:856] State 56016 (JobManager:updateJobStatus): Job 15 status
 is: Running the report Formatting page 1
[2005/5/31 6:26:50:856] Debug 50103 (JobManager:updateJobStatus): Finished
 updating job: 15
[2005/5/31 6:26:52:468] Debug 50103 (RWCacheItem:addFile): add file
 'test33347112.htm' for job 15
[2005/5/31 6:26:52:468] Debug 50103 (RWCache:updateCurrentCapacity): Current cache
 capacity is 197239

In this trace file, note the following:

	
A job with ID 15 is submitted at 6:26:47:321

	
A duplicate job is checked for at 6:26:48:212

	
rwEng-0 is obtained at 6:26:48:222

	
The engine started running at 6:26:48:222

	
The first page is formatted at 6:26:50:856

After this there is no update on the job. The Finished successfully line is not present. This indicates that there is a problem with the job.

The following example shows a trace file for a job that finished successfully:

[2005/5/31 6:25:57:198] Info 50132 (JobObject:reset): jobid = 14 Get command line:
server=vin report=c:\backup\reps\emp.rdf destype=file desformat=html
desname=c:\test.html userid=scott@ora9i authid=vphegde
[2005/5/31 6:25:58:80] Debug 50103 (ConnectionImpl:runJob): Job queue for jobid =
 14 is 0
[2005/5/31 6:25:58:90] Debug 50103 (ConnectionImpl:runJob): jobid = 14 is in
 current queue
[2005/5/31 6:25:58:90] Debug 50103 (ConnectionImpl:runJob): Calling
 findDuplicatedJob for jobid = 14
[2005/5/31 6:25:58:90] Debug 50103 (JobManager:findDuplicatedJob): Found no
 duplicated job for job 14
[2005/5/31 6:25:58:90] Debug 50103 (ConnectionImpl:runJob): No Duplicate jobs for
 jobid = 14
[2005/5/31 6:25:58:90] Debug 50103 (ConnectionImpl:runJob): Job 14 is Enqueued
[2005/5/31 6:25:58:90] Debug 50103 (JobManager:firstToRun): job 14 is first to run
[2005/5/31 6:25:58:90] Debug 50103 (JobManager.runJobLocal): Trying to get engine
 for Job 14
[2005/5/31 6:25:58:90] Debug 50103 (EngineManager:getIdleEngine): Target max
 engines = 1
[2005/5/31 6:25:58:90] Debug 50103 (EngineManager:getIdleEngine): rwEng-0 is used
 = true
[2005/5/31 6:25:58:90] Debug 50103 (EngineManager:getIdleEngine): rwEng-0 state is
 1
[2005/5/31 6:25:58:90] State 56004 (EngineInfo:setState): Engine rwEng-0 state is:
 Reserved
[2005/5/31 6:25:58:90] Debug 50103 (JobManager.runJobLocal): Job 14 got Engine
 rwEng-0
[2005/5/31 6:25:58:90] Debug 50103 (JobManager:runJobInEngine): Job 14 calling
 setCommand on engine rwEng-0
[2005/5/31 6:25:58:100] Debug 50103 (EngineManager:updateEngineState): Engine
 rwEng-0 status is 3
[2005/5/31 6:25:58:100] State 56004 (EngineInfo:setState): Engine rwEng-0 state
 is: Running
[2005/5/31 6:25:58:100] Debug 50103 (EngineManager:updateEngineState): Engine
 rwEng-0 status is 5
[2005/5/31 6:25:58:100] State 56004 (EngineInfo:setState): Engine rwEng-0 state
 is: Idle
[2005/5/31 6:25:58:100] Debug 50103 (JobManager:runJobInEngine): Send job 14 to
 engine rwEng-0
[2005/5/31 6:25:58:110] Debug 50103 (EngineManager:updateEngineState): Engine
 rwEng-0 status is 3
[2005/5/31 6:25:58:110] State 56004 (EngineInfo:setState): Engine rwEng-0 state
 is: Running
[2005/5/31 6:25:58:350] State 56016 (JobManager:updateJobStatus): Job 14 status
 is: Running the report Initializing report
[2005/5/31 6:25:58:350] Debug 50103 (JobManager:updateJobStatus): Finished
 updating job: 14
[2005/5/31 6:26:0:663] State 56016 (JobManager:updateJobStatus): Job 14 status is:
 Running the report Formatting page 1
[2005/5/31 6:26:0:663] Debug 50103 (JobManager:updateJobStatus): Finished updating
 job: 14
[2005/5/31 6:26:2:256] Debug 50103 (RWCacheItem:addFile): add file
 'test54106877.htm' for job 14
[2005/5/31 6:26:2:256] Debug 50103 (RWCache:updateCurrentCapacity): Current cache
 capacity is 182329
[2005/5/31 6:26:2:286] State 56016 (JobManager:updateJobStatus): Job 14 status is:
 Finished successfully
[2005/5/31 6:26:3:7] Debug 50103 (JobManager:notifyWaitingJobs): Master job 14
 notify its duplicated jobs.
[2005/5/31 6:26:3:7] Debug 50103 (JobManager:updateJobStatus): Finished updating
 job: 14
[2005/5/31 6:26:3:7] Debug 50103 (EngineManager:updateEngineState): Engine rwEng-0
 status is 1
[2005/5/31 6:26:3:7] State 56004 (EngineInfo:setState): Engine rwEng-0 state is:
 Ready
[2005/5/31 6:26:3:57] Info 56013 (ConnectionManager:release): Connection 1 is
 released

In this trace file, after formatting the page 1, note the following:

	
The job finished successfully at 6:26:2:286

	
Duplicate jobs are notified at 6:26:3:7

	
Connection is released at 6:26:3:57

These lines were not present in the first example. All jobs must contain these lines in the Reports Server trace files. A missing event or abrupt end means that the job has not finished successfully and is a potential cause for the hang.

Case 2: Consider the scenario where the following error displays:

REP-56048: Engine rwEng-0 crashed, job Id: 17

In this scenario, check the Reports Server and engine trace files. A typical crash resembles the following in the Reports Server trace file:

[2005/6/1 3:38:35:156] Exception 50125 (org.omg.CORBA.COMM_FAILURE: vmcid: SUN
 minor code: 208 completed: Maybe
 at com.sun.corba.se.internal.iiop.IIOPConnection.purge_
 calls(IIOPConnection.java:438)
 at com.sun.corba.se.internal.iiop.ReaderThread.run(ReaderThread.java:70)
): Internal error org.omg.CORBA.COMM_FAILURE: vmcid: SUN minor code: 208
 completed: Maybe
[2005/6/1 3:38:35:156] Info 56029 (EngineManager:shutdownEngine): Shutting down
 engine rwEng-0
[2005/6/1 3:38:36:137] Exception 50125 (org.omg.CORBA.COMM_FAILURE: vmcid: SUN
 minor code: 201 completed: No
 at com.sun.corba.se.internal.iiop.ConnectionTable.getConnection
 (ConnectionTable.java:148)
 at com.sun.corba.se.internal.iiop.ConnectionTable.getConnection
 (ConnectionTable.java:65)
 at com.sun.corba.se.internal.iiop.GIOPImpl.getConnection(GIOPImpl.java:67)
 at com.sun.corba.se.internal.corba.ClientDelegate.createRequest
 (ClientDelegate.java:652)
 at com.sun.corba.se.internal.corba.ClientDelegate.createRequest
 (ClientDelegate.java:594)
 at com.sun.corba.se.internal.corba.ClientDelegate.request
 (ClientDelegate.java:886)
 at org.omg.CORBA.portable.ObjectImpl._request(ObjectImpl.java:431)
 at oracle.reports.engine._EngineClassStub.shutdown(_EngineClassStub.java:173)
 at oracle.reports.server.EngineManager.shutdownEngine(EngineManager.java:1354)
 at oracle.reports.server.JobManager.runJobInEngine(JobManager.java:974)
 at oracle.reports.server.JobManager.runJobLocal(JobManager.java:1779)
 at oracle.reports.server.JobManager.dispatch(JobManager.java:1045)
 at oracle.reports.server.ConnectionImpl.runJob(ConnectionImpl.java:1274)
 at oracle.reports.server._ConnectionImplBase._invoke
 (_ConnectionImplBase.java:401)
 at com.sun.corba.se.internal.corba.ServerDelegate.dispatch
 (ServerDelegate.java:353)
 at com.sun.corba.se.internal.iiop.ORB.process
 (ORB.java:280)
 at com.sun.corba.se.internal.iiop.RequestProcessor.process
 (RequestProcessor.java:81)
 at com.sun.corba.se.internal.orbutil.ThreadPool$PooledThread.run
 (ThreadPool.java:106)
): Internal error org.omg.CORBA.COMM_FAILURE: vmcid: SUN minor code: 201
 completed: No
[2005/6/1 3:38:36:147] State 56004 (EngineInfo:setState): Engine rwEng-0 state is:
 Shutdown
[2005/6/1 3:38:36:147] Info 56047 (EngineManager:remove): Reports Server shut down
 engine rwEng-0
[2005/6/1 3:38:36:147] State 56016 (JobManager:updateJobStatus): Job 17 status is:
 Terminated with error:
REP-56048: Engine rwEng-0 crashed, job Id: 17
[2005/6/1 3:38:36:157] Debug 50103 (JobManager:notifyWaitingJobs): Master job 17
 notify its duplicated jobs.
[2005/6/1 3:38:36:157] Debug 50103 (JobManager:updateJobStatus): Finished updating
 job: 17
[2005/6/1 3:38:36:157] Exception 56048 (): Engine rwEng-0 crashed, job Id: 17
oracle.reports.RWException: IDL:oracle/reports/RWException:1.0
 at oracle.reports.server.JobManager.runJobInEngine(JobManager.java:1009)
 at oracle.reports.server.JobManager.runJobLocal(JobManager.java:1779)
 at oracle.reports.server.JobManager.dispatch(JobManager.java:1045)
 at oracle.reports.server.ConnectionImpl.runJob(ConnectionImpl.java:1274)
 at oracle.reports.server._ConnectionImplBase._invoke
 (_ConnectionImplBase.java:401)
 at com.sun.corba.se.internal.corba.ServerDelegate.dispatch
 (ServerDelegate.java:353)
 at com.sun.corba.se.internal.iiop.ORB.process
 (ORB.java:280)
 at com.sun.corba.se.internal.iiop.RequestProcessor.process
 (RequestProcessor.java:81)
 at com.sun.corba.se.internal.orbutil.ThreadPool$PooledThread.run
 (ThreadPool.java:106)

In the engine trace file, the last few lines of the crash trace resemble the following:

[2005/6/1 3:38:34:575] (rwfdt:rwfdtprint) Distributing the report
[2005/6/1 3:38:34:585] (rwfdt:rwfdtpredo) running
[2005/6/1 3:38:34:585] (rwfdt:rwfdtpredo) no preformat of pages requested, quit
[2005/6/1 3:38:34:585] (rwfdt:rwfdtni_NextInstance) running
[2005/6/1 3:38:34:595] (rwfdt:rwfdtni_NextInstance) quit
[2005/6/1 3:38:34:595] (rwfdt:rwfdtgcf_GenCachefile) running
[2005/6/1 3:38:34:615] (rwfdt:rwfdtgcf_GenCachefile) Cache file is
 D:\orawin\reports\cache\03564661.htm
[2005/6/1 3:38:34:615] (rwfdt:rwfdtgcf_GenCachefile) quit
[2005/6/1 3:38:34:615] (rwfdt:rwfdtprint) caching output from backend drivers
[2005/6/1 3:38:34:755] (C Engine)

	
Note:

The engine trace file ends abruptly whenever the engine crashes.

Action: Identify the report that is causing the engine crash. You can do this by identifying the job ID. In the preceding examples, the engine crashed while running jobid 17. In the server trace file, search for the jobid = 17 Get command line string. This line contains the complete command line that includes the report name also. Enable tracing and engine diagnosis. Run the problematic report multiple times to reproduce the crash. When the crash is reproduced, pass on the trace files and diagnosis output to Oracle Support Services for analysis.

D.1.2 Reports Server Activity Generates Error REP-50125

REP-50125 is a common error message issued in multiple situations involving Reports Server:

REP-50125: Caught exception: {0}

Cause: Oracle Reports has caught an internal exception.

Action: Contact Oracle Support Services for additional assistance.

Problem 1

The Cause and Action in the help topic for REP-50125 do not contain enough information to effectively identify and diagnose the problem.

Solution 1

With Oracle Reports 10g Release 2 (10.1.2), the following new error messages addressed specific scenarios to provide focused troubleshooting assistance in the Cause and Action exposed in the help topics:

	
REP-56126: Failed to parse server config file {0}

Cause: Failed to parse server config file. XML syntax is wrong.

Action: Correct the server config file and start the server.

	
REP-56127: Failed to decrypt <{0}> element

Cause: Decrypt call failed on the element.

Action: Please make sure encrypted attribute is set properly for the element.

	
REP-56128: Failed to initialize {0} destination. Nested Exception: {1}

Cause: Destination initialization failed.

Action: Please check and correct the configuration for the destination.

Problem 2

REP-50125 displays when starting up Reports Server.

Solution 2

Refer to Note 289748.1 on Oracle MetaLink at http://metalink.oracle.com: Troubleshooting Problems When Starting Up Reports Server.

Problem 3

REP-50125 displays when running report requests.

Solution 3

Refer to Note 290827.1 on Oracle MetaLink at http://metalink.oracle.com: Troubleshooting Failed Reports Requests Issued Against Reports Server.

Problem 4

REP-50125 displays with segmentation violation when starting Reports Server on SLES-8/UnitedLinux 1.0.

Solution 4

With Oracle Reports 10g Release 2 (10.1.2), SLES8 and SLES9 were supported. However, Oracle Reports 11g Release 1 (11.1.1) does not support UnitedLinux 1.0, so you cannot use this platform to run report requests.

Problem 5

REP-50125 displays when running reports on Linux with openmotif.

Solution 5

Only openmotif 2.1.30 (not higher) is supported for Oracle Reports 6i, 9i, and 10g on Linux.

D.1.3 Long Running Report Failure with Oracle Reports Servlet

Long running report requests submitted through Oracle Reports Servlet (rwservlet) may not succeed or cause crashing/hanging engines and timeouts on dependent AS components.

Problem

A report that runs for a long time with rwservlet does not finish.

Solution

Perform the following checks:

	
If you are running the report synchronously through your Web browser, verify that the failure is not caused by a timeout on the HTTP server. Submit the same job asynchronously; if it finishes successfully, modify the HTTP server timeout in the application server configuration or consider executing your long running reports asynchronously (which is the suggested method). You can leverage the Reports Server notification feature to inform your users when their job has finished.

	
Verify that your overall response time of the server has not had any significant changes, by looking at the Reports Server statistics in Enterprise Manager.

	
Verify that our database server is responding in a normal manner. Sometimes database load can have a significant impact on the performance, especially on long running reports.

D.1.4 Fonts Do Not Display Consistently On Different Platforms

Deploying reports on multiple platforms may result in font issues.

Problem

When you deploy a report on multiple platforms, font rendering and mapping is not consistent across all platforms.

Solution

With Oracle Reports 10g Release 2 (10.1.2), this issue was addressed in new documentation in the following chapters:

	
Chapter 9, "Managing Fonts in Oracle Reports" (in particular, see Section 9.1, "Using Fonts" for an understanding of the font handling mechanism in Oracle Reports).

	
Chapter 11, "Using PDF in Oracle Reports" (in particular, see Section 11.2.2, "Font-Related Features").

	
Chapter 12, "Font Model and Cross-Platform Deployment" (in particular, see Section 12.3.1, "Font Availability On Different Platforms" and Section 12.3.2, "Fixing Font-Related Issues").

D.1.5 Running Reports on UNIX Platforms Generates REP-56048

REP-56048 is a common error message issued when running a report (for example, using rwservlet, rwclient, or through Oracle Forms) on UNIX. The Reports Server passes the job to a Report Engine that is responsible for running the report. The Report Engine crashes, resulting in this error:

REP-56048: Engine {0} crashed

Cause: Reports Server detected the specified engine crashed.

Action: Reports Server should restart another engine. Report the problem to Oracle Support Services with the test case that causes engine crash.

Refer to the solutions below and to Solution 4 in Section D.1.1, "Hanging Report Requests" to attempt to resolve the problem. If REP-56048 persists, perform the following steps to report the problem to Oracle Support Services:

	
Enable server tracing and logging (see Section 24.3.7, "Tracing Report Execution"). If it is not possible to enable tracing, enable logging alone by setting the log element's option attribute to failedJobs in the rwserver.conf file (see Section 8.2.1.13, "log"). When you enable logging, you can see the failed job reports in the reports.log file. Identify the report that is failing or causing the engine to crash.

	
Enable engine diagnostic logging by modifying the engine element to include the diagnosis property in the rwserver.conf file (see "Properties" in Section 8.2.1.9, "engine"), then run the report that you identified in Step 1 to reproduce the crash.

	
Report the crash to Oracle Support Services with the following information:

	
rwserver.conf file.

	
reports.log file.

	
Engine diagnostic output when the crash is reproduced.

	
Report definition file so that Oracle Support Services can reproduce the problem.

Problem 1

REP-56048 displays when running reports on UNIX platforms, and character sets defined in NLS_LANG are other than WE8ISO8859P1 or IW8ISO8859P8.

Solution 1

Modify entries in Tk2Motif.rgb for mapping Oracle character set names and XLFD's CHARSET_REGISTRY to CHARSET_ENCODING (the last two fields; for example, iso8859-1). For more information, see:

	
Section 9.3, "Font Configuration Files"

	
Section 18.3.6, "Running with the WE8MSWIN1252 Character Set on UNIX"

	
Section 23.7, "Troubleshooting Globalization Issues"

	
Setting Globalization Support Environment Variables

	
Running Oracle Reports in a Japanese Environment on HP-UX

You can also try to run this report with Reports Runtime (rwrun) to verify the environment settings before running it through the Report Engine.

Problem 2

REP-56048 displays when running reports on UNIX platforms, and DISPLAY environment variable is not set.

Solution 2

With Oracle Reports 10g Release 1 (9.0.4), the REPORTS_DEFAULT_DISPLAY environment variable removes the dependency on the DISPLAY environment variable. By default, REPORTS_DEFAULT_DISPLAY=YES. Make sure that REPORTS_DEFAULT_DISPLAY has not been set to NO.

For more information, see Section B.1.42, "REPORTS_DEFAULT_DISPLAY".

Problem 3

REP-56048 displays when tracing is enabled while running a big report.

Solution 3

If tracing is enabled, Reports Engine might crash for reports with large output. This may be due to the size of the trace file and that there was insufficient disk space, memory, or processor capacity available to create it. To avoid this error, enable engine diagnostic logging only by modifying the engine element to include the diagnosis property in the rwserver.conf file (see "Properties" in Section 8.2.1.9, "engine"), when diagnostic information is required to troubleshoot a problem with a report. You can also restrict the trace file generated using the traceModule attribute of the trace element in the rwserver.conf configuration file.

For general information about tracing, see Section 24.3.7, "Tracing Report Execution".

Problem 4

REP-56048 displays when DISTRIBUTE=YES on UNIX.

Solution 4

Distribution fails on UNIX if the PRINTER environment variable is not set to a valid printer when one of the destinations specified in the distribution file is a printer. Set the following environment variables:

PRINTER=printer_name; export PRINTER
TK_PRINTER=printer_name; export TK_PRINTER
TK_PRINT_STATUS="echo %n is valid"; export TK_PRINT_STATUS
TK_PRINT=echo; export TK_PRINT

In ORACLE_INSTANCE/config/FRComponent/frcommon/guicommon/tk/admin/uiprint.txt, add the following line:

printer_name:PostScript:1:test:default.ppd:

For more information on report distribution, see Chapter 20, "Creating Advanced Distributions".

Problem 5

REP-56048 displays when printing a report on UNIX.

Solution 5

Oracle Reports uses the shell script rwlpr.sh for printing on UNIX. Directly modifying this file is not supported. Please contact Oracle Support Services for assistance.

For more information on printing on UNIX, see Chapter 10, "Printing on UNIX with Oracle Reports".

Problem 6

REP-56048 displays when running a report containing graphics on UNIX.

Solution 6

This error may result if Oracle Reports is linked against a version of Motif other than the operating system's default. Refer to the Oracle Reports chapter in the Oracle Fusion Middleware Release Notes for Microsoft Windows for the correct version of Motif to which to link.

Problem 7

REP-56048 displays when generating delimited report output for a matrix report.

Solution 7

Generate the report output to DelimitedData (DESFORMAT=DELIMITEDDATA) or spreadsheet (DESFORMAT=SPREADSHEET) output instead of Delimited. DelimitedData supports large reports, but the output in Microsoft Excel displays only data (as defined by the report data model), no layout information. To generate report output that preserves the formatting defined in report layout, use the output format DESFORMAT=SPREADSHEET.

For more information on delimited and spreadsheet output, see "About delimited output" and "About spreadsheet output" in the Oracle Reports online Help (and also in the "Advanced Concepts" chapter in the Oracle Reports Building Reports manual). Also see Section A.5.27, "DESFORMAT".

Problem 8

REP-56048 displays when running a report through the Reports Engine when none of the previous solutions resolve the problem.

Solution 8

This error may be related to your environment settings or caused by the report itself. By checking the Oracle Reports Servlet (rwservlet) showjobs page for your Reports Server, you should be able to determine the job that resulted in the error. If you are on a UNIX machine, there should be a core dump created in your environment. To facilitate searching for related bugs, extract a stack trace from this core dump. Note that the executable should be java rather than rwrun.

In previous releases, to get a stack trace from the core file, you ran a debugger on the runtime component. This is still applicable if you are able to reproduce the problem with only the rwrun component. However, if the crash occurs only through the Reports Server, then the engine will be called using a Java wrapper, and you must run the debugger on the Java executable. This will automatically load any Oracle Reports libraries.

For example:

dbx java core

This example is for dbx. Once you have the stack trace, you will be able to search Oracle MetaLink at http://metalink.oracle.com for any related issues using the last few calls in the stack.

If a particular job seems to be causing the problem, then the next step would be to try running that report with rwclient and rwrun. Running with rwclient removes the Web component from the environment. Running with rwrun is equivalent to bypassing the Reports Server and running with just the engine.

D.1.6 Font Issues with Right-to-Left Languages

Bidirectional support enables you to display report output in either a left-to-right or right-to-left orientation, depending on the requirements of your audience. Font issues with right-to-left languages generate imperfect report output.

Problem

Misalignment of right-aligned text and limitations requiring fixed width fonts.

Solution

With Oracle Reports 10g Release 2 (10.1.2), this issue was addressed with improvements to PDF output with font subsetting enabled for languages that read right to left (such as Hebrew and Arabic), ensuring that text will be accurately right-aligned. However, on UNIX platforms, you may see some misalignment for right-aligned text.

To resolve font issues related to right-to-left text, refer to the information in the following sections:

	
Section 23.4, "Bidirectional Support" discusses the options available to you in designing reports for right-to-left languages.

	
Section 11.4, "Generating a Bidirectional (BiDi) PDF File" outlines the steps involved in generating a PDF file for bidirectional (BiDi) languages.

	
Section B.1.30, "REPORTS_ALLOW_DB_CONNECT_STRING" This environment variable allows you to use DB connection strings in the userid parameter.

	
Section B.1.31, "REPORTS_BIDI_ALGORITHM" describes the use of this environment variable, which switches the bidirectional (BiDi) layout algorithm for BiDi languages (for example, Arabic or Hebrew).

	
Section 12.6, "Generating Multibyte PDF Output" includes an example of a workaround for fixed width font on UNIX.

D.1.7 Errors When Running Reports from Oracle Forms Using RUN_REPORT_OBJECT

The most secure approach for calling Oracle Reports from Oracle Forms on the Web is to use Oracle Reports Services in combination with RUN_REPORT_OBJECT. For detailed information about using RUN_REPORT_OBJECT to call Oracle Reports from Oracle Forms, refer to the Oracle Application Server 10g Integrating Oracle Reports in Oracle Forms Services Applications white paper on OTN (http://otn.oracle.com/products/forms/pdf/10g/frm10gsrw10g.pdf).

Also refer to Oracle Fusion Middleware Forms Services Deployment Guide.

Problem 1

RUN_REPORT_OBJECT generates the following error:

FRM-41214: Unable to run report.

Solution 1

When deploying a report over the Web with output to be shown in the browser window, DESTYPE should be set to CACHE, not SCREEN or PREVIEW. To display the output of report in the browser use WEB.SHOW_DOCUMENT, rather than RUN_REPORT_OBJECT.

Problem 2

RUN_REPORT_OBJECT generates the following error:

FRM-41213: Unable to connect to the report server server_name.

Solution 2

Check the following:

	
Ensure that the Reports Server being referenced in the RUN_REPORT_OBJECT code is started.

	
Make sure that the Oracle WebLogic Server instance for Oracle Reports is started.

	
Make sure that parameters being passed to RUN_REPORT_OBJECT have no spaces in their values, or are enclosed in single quotes.

Problem 3

RUN_REPORT_OBJECT generates the following error:

REP-503 You did not specify the name of a report.

Solution 3

Make sure that the report name is specified in the Property Inspector of the Report object in the Oracle Forms Object Navigator.

Problem 4

Unable to run report from a form and pass parameter from a form to the report.

Solution 4

Check the following:

	
Make sure that you are passing the parameters in the proper format from Oracle Forms. the initial value for the parameter is specified in the Property Inspector of the parameter in Reports Builder.

	
Make sure that the initial value for the parameter is specified in the Property Inspector of the parameter in Reports Builder.

	
Try passing the command line in a Before Report trigger or by using the report Parameter Form.

If the issue persists, enable report tracing (see Section 24.3.7, "Tracing Report Execution") to pinpoint the source of the problem.

Problem 5

Using a report Parameter Form (PARAMFORM=YES) in conjunction with RUN_REPORT_OBJECT fails with "Internal Server Error".

Solution 5

Refer to the Oracle Forms Services - Using Run_Report_Object() to call Reports with a parameter form white paper on OTN (http://otn.oracle.com/products/forms/pdf/10g/frmrepparamform.pdf).

D.1.8 Displaying Report Output in Microsoft Excel

Generating a report to delimited output to display in Microsoft Excel is a common requirement, which can be accomplished in a number of ways. Users are often unsure of which method to choose.

Problem

Which delimited output solution is best for given requirements?

Solution

Depending on your report definition and output display requirements, choose the appropriate method for generating your report to delimited output for Microsoft Excel:

	
Requirement: You have a paper layout report, which you want output to Microsoft Excel, but do not need rich formatting of the report layout.

Output Solution: Generate your report to delimited output:

	
DESFORMAT=DELIMITED

	
DESFORMAT=DELIMITEDDATA (for use when you have problems running large volume reports with DELIMITED)

	
Requirement: You have a paper report, which you want to output to Microsoft Excel, including the rich formatting of the report layout.

Output Solution: Generate your report to spreadsheet output:

	
DESFORMAT=SPREADSHEET

	
Requirement: You have a paper report, which you want to output to Microsoft Excel, including the rich formatting of the report layout. Additionally, you would like to deploy your report as a JSP.

Output Solution: Since this is a JSP report, you cannot directly generate to a .xls file (DESTYPE=FILE),but you can save the output that displays in your browser as a .xls file. Refer to the Oracle Reports Building Reports manual to implement this solution using <rw:include>: Chapter 29, "Deploying a Web Layout Report to Microsoft Excel Output".

	
Output Requirement: You have a JSP-based Web report, which you want to output to Microsoft Excel.

Solution: Since this is a JSP report, you cannot directly generate to a .xls file (DESTYPE=FILE), but you can save the output that displays in your browser as a .xls file. Refer to the chapter "Building a report for Spreadsheet Ouput" in the Oracle Reports Building Reports manual, available on the Oracle Technology Network.

For detailed information on spreadsheet output and delimited output, see the Oracle Reports online Help and Oracle Reports Building Reports manual.

D.1.9 Report Containing User Exit Fails on UNIX

User exits may exist in reports developed in prior releases of Oracle Reports.

	
Note:

With Oracle Reports 10g, you can call Java methods using the ORA_JAVA built-in package and the Java Importer. This reduces the need to have user exits in a report and allows for a more open and portable deployment. You may also use the ORA_FFI built-in package, which provides a foreign function interface for invoking C functions in a dynamic library. With the availability of these built-in packages, the use of user exits is deprecated in Oracle Reports, though makefiles are still be supplied to permit you to continue to work with existing user exits.

Problem

A report that contains a user exist fails when run on UNIX.

Solution

On UNIX, Reports Builder (rwbuilder) and Reports Runtime (rwrun) dynamically load the user exit library to successfully run reports that contain user exits. When running reports through Reports Server (rwserver), you must add the following environment variable in rwengine.sh to load the user exit library:

LD_PRELOAD=librw.so:user_exit_library; export LD_PRELOAD

D.1.10 Printing and Font Errors When Using In-process Reports Server

The in-process Reports Server does not recognize the default printer of a user currently logged on to Windows. This is because the service that runs the in-process Reports Server is logged on as the Local System.

Problem

Any of the following:

	
Printing to default printer fails with the REP_3002 error. For example, the following command:

http://myrepsrvr.oracle.com:7777/reports/rwservlet?report=myrep.rdf&destype=printer&desformat=html

results in the following error:

Error:"REP-3002: Error initializing printer. Please make sure a printer is installed."

	
Deploying reports containing Oracle6i Graphics (OGD) graphics causes Reports Server to stop responding.

	
Font alignment problems in a PDF file output from an in-process Reports Server.

Solution

To work around all these issues:

	
Open the Windows registry using a registry editor (for example, regedit.exe). Create a backup of the registry before you edit it.

	
Navigate to the following key:

HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Windows

	
Copy the string value of Device for this key. For example:

\\MOWGLI\sierra,winspool,Ne02:

	
Navigate to the following key:

HKEY_USERS\.DEFAULT\Software\Microsoft\Windows NT\CurrentVersion\Windows

	
Paste the Device value copied from HKEY_CURRENT_USER (the string value of Device for this key will be empty).

	
Note:

This workaround must be applied every time you alter the value of the Default Printer.

This workaround will not work on an OPMN-managed Reports Server.

The pros and cons of running an in-process Reports Server are explored in Chapter 2, "Understanding the Oracle Reports Services Architecture". For additional information, see Section 8.3, "Oracle Reports Servlet Configuration File" (server and inprocess parameter descriptions).

8.12 Sample system-jazn-data.xml File

The system-jazn-data.xml is an XML file which is configured by the user to use as an ID store and/or policy store. The file is located in $DOMAIN_HOME/config/fmwconfig.

Sample system-jazn-data.xml file:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<jazn-data>
 <jazn-realm>
 <realm>
 <name>jazn.com</name>
 <users>
 <user>
 <name>weblogic</name>
 <guid>23AAB190021911DDBF86C74F01C202FB</guid>
 <credentials>PN0Qr+/dpDRV+jSWP378EdjxWDS0PuAs=</credentials>
 </user>
 </users>
 </realm>
 </jazn-realm>
 <policy-store>
 <applications>
 <application>
 <name>reports</name>
 <app-roles>
 <app-role>
 <name>rw_administrator</name>
 <display-name>Reports Administrator</display-name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <class>oracle.security.jps.internal.core.principals.JpsXmlUserImpl</class>
 <name>weblogic</name>
 </member>
 <member>
 <class> weblogic.security.principal.WLSUserImpl </class>
 <name>weblogic</name>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>rw_operator</name>
 <display-name>Reports Operator</display-name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 </app-role>
 <app-role>
 <name>rw_monitor</name>
 <display-name>Reports Monitor</display-name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 </app-role>
 </app-roles>
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>rw_administrator</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.reports.server.ReportsPermission</class>
 <name>report=* server=* destype=* desformat=* allowcustomargs=true</name>
 <actions>*</actions>
 </permission>
 <permission>
 <class>oracle.reports.server.WebCommandPermission</class>
 <name>webcommands=* server=*</name>
 <actions>execute</actions>
 </permission>
 </permissions>
 </grant>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>RW_BASIC_USER</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.reports.server.ReportsPermission</class>
 <name>report=test.rdf server=* destype=* desformat=* allowcustomargs=true</name>
 <actions>*</actions>
 </permission>
 <permission>
 <class>oracle.reports.server.WebCommandPermission</class>
 <name>webcommands=showmyjobs,getjobid,showjobid server=*</name>
 <actions>execute</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
 </application>
</applications>
</policy-store>

15.3 Authentication in Oracle Reports

This section describes authentication features, tasks, and concepts that are specific to Oracle Reports.

It discusses the following topics:

	
OracleAS Single Sign-On Authentication

	
Non-SSO Authentication

	
Authentication Scenarios for JPS-Based Security

	
Authentication Scenario for Portal-Based Security

Authentication Methods

Oracle Reports 11g Release 1 (11.1.1) supports the following authentication methods:

	
OracleAS Singe Sign-On. For more information, see OracleAS Single Sign-On Authentication.

	
Non-SSO, including the following:

	
Oracle Internet Directory (rwsec, or JPS-OID configured)

	
Embedded ID store (in-process servers)

	
JAZN-XML File-Based ID store (standalone servers)

	
Note:

For more information about non-SSO authentication methods, see Non-SSO Authentication.

The following table summarizes the authentication methods for JPS-based security that Oracle Reports supports.

Table 15-2 Authentication Methods for JPS-Based Security

	Type of Reports Server	Oracle Internet Directory	WebLogic ID Store	Single Sign-On	File-Based
	
In-process servers

	
Yes

	
Yes

	
Yes

	
No

	
Standalone servers

	
Yes

	
No

	
Yes

	
Yes

The following table summarizes the authentication methods for Portal-based security that Oracle Reports supports.

Table 15-3 Authentication Methods for Portal-Based Security

	Type of Reports Server	Authentication Based on Oracle Internet Directory	Single Sign-On
	
In-process servers

	
Yes

	
Yes

	
Standalone servers

	
Yes

	
Yes

15.3.1 OracleAS Single Sign-On Authentication

OracleAS Single Sign-On makes use of an encrypted cookie to track authenticated application users. When rwservlet receives a request to execute a report on a secured Reports Server, it queries the Oracle HTTP Server (through the getRemoteUser call) to determine whether the user has already logged on through OracleAS Single Sign-On (that is, a Single Sign-On cookie exists for the user):

	
If the user has logged on already (that is, the cookie exists), then rwservlet gets the user's identity from the Oracle HTTP Server.

	
If the user has not logged on already (that is, the cookie does not exist yet), then the Oracle HTTP Server redirects the user to OracleAS Single Sign-On, which prompts the user to login. Once the user is authenticated, the Single Sign-On cookie is created and the user is redirected back to rwservlet, which then proceeds as described in the previous bullet item.

15.3.1.1 Report Request Flow with Single Sign-On

In this scenario, a report request is sent to a secured Reports Server with Single Sign-On enabled.

Figure 15-1 Authentication Process with Single Sign-On

[image: Description of Figure 15-1 follows]

Description of "Figure 15-1 Authentication Process with Single Sign-On"

The following numbered steps map to the numbers in Figure 15-2:

	
User requests the report (through a URL).

The report request is made through one of the following methods:

	
The user chooses a link on a Web page or a bookmark that contains a URL that requests the report.

	
Note:

The URL may optionally contain or reference (that is, through the key map file) a Single Sign-On parameter (SSOCONN) with a value of the form:

key_name/data_source_type/parameter_name

In the case of an Oracle database, the Single Sign-On value would look something like the following:

mykey/OracleDB/userid

If you do not specify a data source type and parameter name, an Oracle database is assumed.

	
From within Oracle Portal (if configured), the user requests to run the report object (for example, clicks the Run link). The user must be logged into Oracle Portal and, consequently, OracleAS Single Sign-On. As part of its security, Oracle Portal validates that the user has the required security permissions to see the report object. For example, if the report object is on a page, the user must have appropriate privileges to see the page and the reports object. Otherwise, Oracle Portal will not display the page or the report object to the user.

	
Oracle HTTP Server routes the request to rwservlet deployed on Oracle WebLogic Server.

The URL redirects the user to either rwservlet or the JSP depending upon whether this report has been set to execute through rwservlet or a JSP.

	
rwservlet asks OracleAS Single Sign-On to authenticate the user.

	
OracleAS Single Sign-On server requests the user name and password.

	
Oracle HTTP Server displays the login page to the user, and the user provides user name and password.

	
User name and password are passed on to OracleAS Single Sign-On.

	
OracleAS Single Sign-On verifies the credentials with Oracle Internet Directory.

	
If the user is authenticated, OracleAS Single Sign-on server passes the "user authenticated" message to rwservlet.

If you used SSOCONN in your URL, rwservlet checks the Single Sign-On key against Oracle Internet Directory to see if it already has been mapped to a data source connection string (for example, scott/tiger@my_or_db).

If you used SSOCONN and Oracle Internet Directory already has a connection string associated with the key, then rwservlet uses that connection string for the data source connection of the report.

	
Note:

Because of this feature, many users can use the same report URL even if they all use different data source connection strings.

If you used SSOCONN but Oracle Internet Directory does not already contain a connection string for the key, the Oracle Delegated Administration Services Create Resource page displays for the user to enter their data source connection string. See Figure 15-3.

Oracle Delegated Administration Services stores the string in Oracle Internet Directory for future use and rwservlet uses the newly entered connection string for the data source connection string of the report.

Figure 15-2 Oracle Delegated Administration Services Create Resource

[image: Description of Figure 15-2 follows]

Description of "Figure 15-2 Oracle Delegated Administration Services Create Resource"

15.3.2 Non-SSO Authentication

If any of the non-SSO authentication methods is used (based on Oracle Internet Directory, File-based in case of JPS-based security, and Embedded ID store), then any user accessing a secured instance of the Reports Server is challenged to identify themselves by rwservlet or Reports clients through their own authentication mechanism.

Table 15-4 Non-SSO Authentication Methods

	ID Store	Authentication
	
Oracle Internet Directory (rwsec, or JPS-OID configured)

	
Authentication against Oracle Internet Directory

	
Embedded ID store (in-process servers)

	
Authentication against embedded ID store of WebLogic Server

	
JAZN-XML File-based ID store (standalone servers)

	
Authentication against file-based ID store

Because the HTTP 1.0 protocol is stateless (that is, each call to the server is effectively independent of all others), users may want to authenticate themselves for each report request unless a cookie is maintained. To allow users to authenticate themselves only once per session, rwservlet has its own client-side cookie, the AUTHID cookie, in which it stores the required authentication information for the current session. Once the user is authenticated, an encrypted cookie is created in the browser to enable the user to submit multiple report jobs without re-authenticating for each request.

	
Note:

If you want to force users to authenticate themselves for a specific report, you can use the SHOWAUTH command line keyword. Alternatively, you can include a %S in the corresponding report entry in the key map file. This file is usually called cgicmd.dat and is located in $DOMAIN_HOME/config/fmwconfig/servers/<WLS_SERVER_NAME>/applications/reports_<version>/configuration/cgicmd.dat. %S forces users to enter their username and password each time the report is called. For more information, see Section 18.13, "Using a Key Map File".

The AUTHID cookies are terminated when the user closes their browser session, but you should not rely strictly on this method of terminating the cookie. You should limit the lifetime of the cookie within a given session. For example, a user might log on and then go to lunch, leaving the browser session open. To minimize the potential for a security breach in this situation, the administrator may specify the COOKIEEXPIRE parameter as an attribute of the element cookie in the rwservlet.properties file.

For example, you can specify the cookie element in the rwservlet.properties file as follows:

<cookie cookieexpire="30" encryptionkey="reports"/>

When rwservlet receives a job request, it compares the time saved in the cookie with the current system time. If the time is longer than the number of minutes defined in the environment variable (for example, 30 minutes), the cookie is rejected and the user is challenged to provide authentication information.

	
See Also:

Section 8.3, "Oracle Reports Servlet Configuration File" for more information about the COOKIEEXPIRE parameter and the rwservlet.properties file.

15.3.2.1 Report Request Flow with Non-SSO (Oracle Internet Directory-Based, File-Based, or Embedded ID Store)

In this scenario, the report request is sent to a secured Reports Server with Single Sign-On disabled. Non-SSO authentication methods include Oracle Internet Directory-based, File-based, and Embedded ID store. In this case, rwservlet or a JSP report might be called through the use of a bookmark or from an Oracle Portal component.

Figure 15-3 Authentication Process Without Single Sign-On

[image: Description of Figure 15-3 follows]

Description of "Figure 15-3 Authentication Process Without Single Sign-On"

The following numbered steps map to the numbers in Figure 15-4:

	
User requests the report (through a URL).

The user must somehow gain access to the URL that launches the report request (for example, through a link on a Web page or a bookmark), and choose the URL.

	
Oracle HTTP Server routes the request to rwservlet deployed on Oracle WebLogic Server.

	
rwservlet asks for user credentials (that is, user name and password).

rwservlet checks for the AUTHID parameter in the URL or an existing Oracle Reports AUTHID cookie. If it finds the AUTHID parameter, it uses that to authenticate the user. If it does not find the AUTHID parameter, it looks for an existing Oracle Reports AUTHID cookie. (If the report is launched from Oracle Portal, AUTHID is added to the URL automatically.) If neither the AUTHID parameter nor an Oracle Reports AUTHID cookie is found, rwservlet sends the System Authentication page to the Oracle HTTP Server, to display to the user.

	
Oracle HTTP Server displays the login page to the user, and the user provides user name and password.

On the login page, the user must supply a user name and password. This information is stored in an Oracle Reports AUTHID cookie for future reference.

	
User name and password are passed on to rwservlet.

If only partial data source credentials are provided in the URL (for example, USERID=scott@orqa), the Database Authentication page displays with the partial credentials shown. The user must supply the remainder of the data source credentials before proceeding further. Note that you can control which Database Authentication page is used through the DBAUTH parameter in the rwservlet.properties file. If no data source credentials are provided, the Database Authentication page does not display and it is assumed the report does not require a data source.

	
See Also:

Section 8.3, "Oracle Reports Servlet Configuration File" for more information about the DBAUTH parameter and the rwservlet.properties file.

The data source credentials are stored in an Oracle Reports USERID cookie for future reference. Note that pluggable data source (PDS) credentials are not stored in Oracle Reports USERID cookies.

	
rwservlet forwards user name and password to Reports Server.

rwservlet constructs a command line with the necessary information from the previous steps and passes it to Reports Server.

	
Reports Server authenticates the user (that is, verifies the user name and password) against the ID Store.

Reports Server validates the user credentials against the ID store (Oracle Internet Directory, embedded ID store or file-based Oracle Internet Directory). If the validation check fails for any reason, then an error condition is returned to the user and the process terminates.

15.3.3 Authentication Scenarios for JPS-Based Security

This section discusses the following authentication scenarios:

	
If Reports is using JPS security, JPS-OID for security policies, and an embedded ID store

	
If Reports is using JPS security and JPS-OID as ID store

	
Note:

By default, an in-process server uses the embedded ID store of Oracle WebLogic Server as the ID store and the system-jazn-data.xml file as the policy store. Standalone servers use the system-jazn-data.xml file as both ID store and policy store.

15.3.3.1 If Reports is using JPS security, JPS-OID for security policies, and an embedded ID store

It is recommended that you move users in your current ID store, such as embedded ID store, to Oracle Internet Directory, which is an LDAP-based ID store. Subsequently, you can map users to application roles. For information about moving users to Oracle Internet Directory, see the section "Migrating Identities Manually" in the Oracle Fusion Middleware Security Guide. For information about mapping users to application roles, see Mapping Users to Application Roles.

15.3.3.2 If Reports is using JPS security and JPS-OID as ID store

You must map users in Oracle Internet Directory to the default application roles. For information about mapping users to application roles, see Mapping Users to Application Roles.

	
Note:

In the above authentication scenarios, if Single Sign-On is enabled, the Single Sign-On screen is displayed. If Single Sign-On is disabled, the Reports sysauth screen is displayed. In either case, users are authenticated against Oracle Internet Directory. If you have not moved your users to Oracle Internet Directory, then users are authenticated against the embedded ID store for in-process servers. For standalone servers, such users are authenticated against the file-based ID store.

15.3.4 Authentication Scenario for Portal-Based Security

If you are using Portal-based security, Oracle Internet Directory-based authentication is used.

You can map users to application roles. For information about mapping users to application roles, see Mapping Users to Application Roles.

	
Note:

In the above authentication scenarios, if Single Sign-On is enabled, the Single Sign-On screen is displayed. If Single Sign-On is disabled, the Reports sysauth screen is displayed. In either case, users are authenticated against Oracle Internet Directory.

18.6 Sending a Request to the URL Engine

If you have activated the Reports Server's URL engine, you can send job requests to the URL engine by using the following command line options:

	
urlParameter identifies the URL to be placed in the cache. For example, http://www.oracle.com or a JSP report.

	
jobType is the name of a job type (for example, rwurl) in the server configuration file that is associated with a URL engine.

	
Note:

For information on activating the URL engine, refer to Section 8.6, "Configuring the URL Engine".

For example, a request that specifies an external URL for urlParameter might look like the following:

http://your_webserver:portnum/reports/rwservlet?server=
ReportsServer+jobType=rwurl+urlParameter=
"http://www.oracle.com"+destype=mail+desname=foo@bar.com+desformat=htmlcss

Alternatively, a request that specifies a JSP report for urlParameter would look like the following:

http://your_webserver:portnum/reports/rwservlet?server=
ReportsServer+jobType=rwurl+destype=cache+urlParameter=
"http%3A%2F%2Flocalhost%2Ffoo.jsp%3Fuserid%3Dscott%2Ftiger@oraDB%3Fserver%3DreportsServer"

	
Note:

If the URL has special characters, they must be encoded as per the x-www-form-urlencoded format.

9 Managing Fonts in Oracle Reports

This chapter provides information about fonts in Oracle Reports:

	
Using Fonts

	
Adding Fonts

	
Font Configuration Files

	
Font Aliasing

	
Font Types

	
Verifying Report Output on Different Platforms

	
Running a Unicode Report using TTF/TTC Fonts

	
Diagnosing Font Issues

	
Troubleshooting Font Issues

6.7 Verifying that the Oracle HTTP Server Is Running

OracleAS Reports Services depends upon the Oracle HTTP Server component. Before starting Reports Server through Oracle Enterprise Manager or OPMN, you must verify that your Oracle HTTP Server is running. For more information about performing this task in Oracle Enterprise Manager, refer to your Oracle Enterprise Manager documentation.

Alternatively, you can verify that the Oracle HTTP Server is running, in your browser, by navigating to the following URL:

http://server_name.domain:port_number/

18.4 Publishing a Report in Oracle Portal

One of the best ways to publish your report is through the declarative, secure interface of Oracle Portal. To publish a report in Oracle Portal, refer to Chapter 16, "Deploying Reports in Oracle Portal". Specifically, you must first register your Oracle Reports components in Oracle Portal (see Section 16.2, "Registering Oracle Reports Components"), then expose your report in a portal (see Section 16.3, "Publishing Your Report as a Portlet").

	
Note:

When you use features like Oracle Portal Security, Portal Destination, and Job Status Repository, the JDBC database connections made by Oracle Reports Services may override the initial NLS_LANG setting. This change may in turn affect the behavior of the running report, such as bidirectional output in PDF. On UNIX platforms, you can work around this issue using the environment switching functionality to dynamically set the environment for reports. Refer to Section 8.2.2, "Dynamic Environment Switching" for more information.

9.6 Verifying Report Output on Different Platforms

Oracle Reports 11g Release 1 (11.1.1) uses the widely available font formats like TTF and TTC on both Windows and UNIX to generate report output that in most cases looks identical on both platforms, with no configuration necessary.

Oracle Reports reads the font metrics from the appropriate TTF files to correctly format the report output. This eliminates the issue of text misalignment due to font metrics mismatches. Fonts for which TTF files are available are found automatically. Note that if a TTF font file is not found, then the font lookup mechanism reverts to the pre-11g implementation.

Run a sample TTC font type report on Windows:

	
Open the TTC font type report in Reports Builder.

	
Select File > Generate to File > PDF and save the output.

Run the same TTC font type report on UNIX:

	
First check whether the TTC font used by the report is already available on the UNIX server machine in $ORACLE_INSTANCE/reports/fonts (for example, MSGOTHIC.TTC). If it is not available, copy it from the Windows machine (C:\WINDOWS\Fonts).

	
Run the report using the following command line:

http://host:port/report=report_name.rdf&destype=cache&desformat=pdf&userid=user/password@db

Compare the output on UNIX with that on Windows to confirm that they are almost identical.

	
Tip:

On UNIX, set the DPI as in Windows. For example, if you change the UNIX DPI from 96 to 600, which is the Windows DPI value, the PDF and RTF outputs on UNIX will be identical to that of Windows.

However, the HTML ouput file is large because the DPI value of the screen printer is changed. This problem occurs only if a valid printer is not set and the screen resolution (screenprinter.ppd) is used for both PDF and HTML drivers. For example, if the valid/dummy printer is set to TK_PRINTER with the DPI resolution 600, the same value as that of Windows, the HTML and PDF outputs on UNIX will be identical to that of Windows.

Example

Here is an example of how to produce report HTML output that looks the same on Windows and UNIX if the DPI of Windows is 600:

	
If you do not have a valid printer, add the following entry in the uiprint.txt file:

Font:ASCII: DPI changed PPD file:default.ppd:

	
Change the Default Resolution to 600 in the datap462.ppd file as follows:

*DefaultResolution: 600dpi

	
Note:

Do not change the resolution of screenprinter.ppd.

	
If you have a valid printer, configure the printer in the uiprint.txt file and change the DefaultResolution to 600.

	
Run the report after placing the fonts in the font folder.

20.7 Limitations with Using Distribution

This section outlines the limitations with using distribution in Oracle Reports:

	
Delimited Output

	
Dynamic Format Values

20.7.1 Delimited Output

	
Report bursting and distribution does not support Delimited output format. You cannot specify DELIMITED as an output format in a distribution XML file or in the Distribution dialog box.

	
Note:

You can distribute a report in DelimitedData output format, specified either in a distribution XML file or in the Distribution dialog box in Reports Builder

20.7.2 Dynamic Format Values

XML distribution supports only static values for the format attribute (as seen in distribution.dtd). Thus, you cannot specify lexical parameters (to be resolved at runtime) for the format attribute. Hence the format cannot be dynamically determined either for the entire report or for a specific section.

24.6 Formatting the Data

After the data is retrieved from the data source, Oracle Reports generates the report layout and formats the output. The time taken for a paper layout depends on a number of factors, but generally comes down to:

	
The work required to prevent an object from being overwritten by another object.

	
The efficiency of any calculations or functions performed in the format triggers.

The rules for a Web layout are a little different as Oracle Reports does not own the Web page or control the rendering mechanism. It merely injects data into a regular JSP page.

This section discusses reviewing and tuning the format of your report:

	
Paper Layout (including Format Triggers and Image Outputs)

	
Web Layout and JSP Report Definition

24.6.1 Paper Layout

When generating a default paper layout, Oracle Reports places a frame around virtually every object to prevent the object from being overwritten by another object. At runtime, every layout object (frames, fields, boilerplate, and so on) is examined to determine the likelihood of that object being overwritten. In some situations (for example, boilerplate text column headings) when there is clearly no risk of the objects being overwritten, the immediately surrounding frame is removed. This reduces the number of objects that Oracle Reports must format and consequently, improves performance.

An object that is defined as variable, expanding, or contracting in either or both the horizontal or vertical directions requires extra processing. In this case, Oracle Reports must determine the instance of the object's size, before formatting that object and those around it. There is no processing overhead involved for objects assigned a fixed size, as the size and positional relationships between the objects is known.

The following guidelines helps to improve performance when creating a paper layout:

	
Make your non-graphical layout objects (for example, boilerplate text or fields with text) fixed in size by setting the Vertical Elasticity and Horizontal Elasticity properties of the field to Fixed. In particular, setting the size of repeating frames and their contents to fixed, improves performance. Variable (size) non-graphical objects require more processing overhead, because Oracle Reports Builder must determine their size before formatting them. However, the overhead for fixed non-graphical objects is less, since the additional processing is not required.

	
Make your graphical layout objects (for example, images and graphs) variable in size by setting the Vertical Elasticity and Horizontal Elasticity properties of the objects to Variable. Fixed graphical objects require more processing overhead as their contents have to be scaled to fit. Variable objects grow or shrink with the contents eliminating the need for scaling.

	
Make text fields span a line (maximum) and ensure that their contents fit within the specified width (for example, use the SUBSTR function). If a text field spans more than a line, Oracle Reports Builder must use its word wrapping algorithm to format that field. Ensuring the text field takes only one line to format avoids the processing overhead of the word wrapping algorithm.

	
Minimize the use of different formatting attributes (for example, fonts) within the same field or boilerplate text, because it takes longer to format.

	
Use the SUBSTR function in the report query to truncate the data at the database level, instead of truncating a character string from a field in the Report Builder layout.

	
For paper layout only reports, .rdf and .rep files run faster than a.jsp file, because the serialized formats of a .rdf or a .rep file do not require parsing. Additionally, a .rep file runs faster than a .rdf file as it is optimized for the current platform.

24.6.1.1 Format Triggers

Format triggers can dynamically disable, enable, and change the appearance of an object. Exercise caution when using them as they fire each time an instance of their associated object is produced and formatted (at runtime).

Consider the following example:

A tabular report includes a single repeating frame that expands vertically and has the Page Protect property set to On. As the report is formatted, there is room for one more line at the bottom of the first page. Oracle Reports starts to format the next instance of the repeating frame and fires its associated format trigger. One of the objects inside the repeating frame is found to have expanded and this instance of the repeating frame is moved to the following page. The format trigger for the repeating frame is fired again. Although the repeating frame only appears once (at the top of the second page), the format trigger has fired twice. DML should not be performed in a format trigger, because you are not sure how many times the format trigger will fire for a particular object.

With this example, had the format trigger contained an INSERT statement, then two rows of data would have been inserted.

Format triggers can be used against repeating frames to filter data. However, by introducing filtering at appropriate levels, you not only improve a report's performance but also reduce the complexity required for this type of a report.

Use the following filtering order whenever possible:

	
Modify the SQL statement to prevent the data being returned from the server.

	
Use the group filter to introduce filtering in the Data Model.

	
Use return false inside the format trigger.

Format triggers should be placed at the highest level possible in the object/frame hierarchy so that the trigger fires at the lowest possible frequency. For example:

Figure 24-1 Format Triggers

[image: Description of Figure 24-1 follows]

Description of "Figure 24-1 Format Triggers"

Maximize the efficiency of the code, whenever you define any triggers or PL/SQL program units within Oracle Reports. For example, to change the display attributes of a field dynamically to draw attention to values outside the norm, change the attributes using individual built-ins such as the SRW.SET_TEXT_COLOR built-in procedure.

Refer to the Oracle Database PL/SQL Language Reference for general PL/SQL tuning issues.

Assigning a transparent border and fill pattern to layout objects (for example, frames and repeating frames) improves performance, as these objects are not rendered as a bitmap file.

24.6.1.2 Image Outputs

You can improve the performance of reports that include images by judiciously setting environment variables related to image support.

Improving performance of graphs output to a PDF file or a printer

The REPORTS_GRAPH_IMAGE_DPI environment variable specifies a dots per inch (DPI) value for graphs output to a PDF file or a printer. The default value for this environment variable is set at 72 DPI to minimize the time taken to generate the report, as well as to reduce the report file size. If you specify a value higher than 72 DPI, you will see an improvement in the image resolution for graphs sent to a PDF file or a printer. However, this affects the time taken to generate the report output as well as the file size.

With the value of 250, the time taken to generate a report with an Oracle Reports graph increases 5 to 6 times when compared to the time taken to generate the same report with the value set to 72 DPI. The PDF file size also increases 5 to 6 times.

This functionality is currently not supported in Oracle Reports distribution functionality, as this is specific to PDF and printer outputs only.

	
Note:

When you set a DPI value greater than 250 and your graph is bigger than 5"x5" (approximately), you may also want to change the JVM heap size value using the REPORTS_JVM_OPTIONS environment variable to avoid the Out Of Memory error for the JVM.

For more information, refer to Section B.1.50, "REPORTS_GRAPH_IMAGE_DPI".

Improving performance of JPEG/GIF/PNG output image formats

If your input image format is JPEG, it is recommended that you do not set the REPORTS_OUTPUTIMAGEFORMAT environment variable to GIF or PNG, which will increase the image size more and might degrade the performance problem. Similarly, if your input image format is GIF or PNG, it is recommended that you do not set the REPORTS_OUTPUTIMAGEFORMAT environment variable to JPEG. For better performance, use the same format for both input and output format.

For more information, refer to Section B.1.58, "REPORTS_OUTPUTIMAGEFORMAT".

Improving performance of JPEG images

The REPORTS_JPEG_QUALITY_FACTOR environment variable specifies the level of image quality desired for JPEG images. It provides control over the trade-off between JPEG image quality and size of the image. The better the quality of the image, the greater the image file size and lower performance. If you want to improve the performance, set value to 0. The default value is 100 (highest quality). A value of 75 provides a good quality image, while ensuring a good compression ratio.

For more information, refer to Section B.1.52, "REPORTS_JPEG_QUALITY_FACTOR".

24.6.2 Web Layout and JSP Report Definition

In Oracle Reports, you can use your favorite Web authoring tool to design the static portion of your Web page and then use Oracle Reports Builder to insert the dynamic portion (data) into appropriate sections of the page. A poorly designed Web page impacts perceived performance. Alternatively, you can use pre-defined Oracle Database Web templates to build the Web page.

Avoid including Java code in a JSP file (mixing business and data access Java code with presentation logic) as it increases the JSP's footprint and limits the efficient use and management of system resources.

Customized formatting of a Web page is always an expensive operation. Any type of formatting that cannot be natively achieved through Oracle Reports (for example, change the foreground color of a data block) should be done using Java. We discourage the use of PL/SQL wrappers for formatting purposes.

A .jsp report definition can contain both a paper layout definition and a Web layout definition. Oracle Reports always formats the paper layout definition first when executing the report, since the Web layout section of a JSP report could contain an <rw:include> tag referencing a paper layout object. If your JSP report does not reference any paper layout objects at all, we recommend using the SUPPRESSLAYOUT command line keyword to prevent Oracle Reports executing the paper layout formatting.

3.3 Verifying OOTB Installation

Make sure Oracle Reports components are created out-of-the-box (OOTB), and are available and ready to use after installation and configuration in the following way:

	
Using Oracle Enterprise Manager

3.3.1 Using Oracle Enterprise Manager

In Oracle Enterprise Manager, navigate to the following pages to manage and view Oracle Reports components:

	
Reports Server Home Page, along with Basic Configuration and Advanced Configuration pages

	
Forms/Reports Common Component Configuration Page

	
Reports Tools Component Configuration Page

	
Reports New Job Scheduling Page

	
Reports Bridge Home Page, along with configuration pages

	
Reports Application Home Page, along with Basic Configuration and Advanced Configuration pages

	
Reports Security Policies Page

	
Reports Security Configuration Page

	
Reports Log Configuration Page

	
Reports Jobs Page (Finished/Scheduled/Current/Long Running/Failed)

Use these pages to perform checks and verifications, start a standalone Reports Server, shut down the standalone Reports Server, and run a report using rwservlet and the in-process Reports Server.

For more information, see Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager".

21.2 Debugging Applications that Use the Event-Driven Publishing API

Because these processes all run behind the scenes, there is no actual place where debugging information is produced during normal execution. Therefore, the API has two procedures that toggle a special debugging mode that produces extensive debugging information through DBMS_OUTPUT:

	
SRW.START_DEBUGGING

	
SRW.STOP_DEBUGGING

To switch on debugging mode simply call SRW.START_DEBUGGING and to stop it call SRW.STOP_DEBUGGING. The debugging mode must be started immediately before you run your actual logic. It stays on as long as the current instance of the package is loaded.

One way you can display this information is by setting SERVEROUT to ON in SQL*PLUS before you run your script.

In addition to this method of debugging, the API has a set of pre-defined exceptions to be used for error handling. You'll find examples of these exceptions in the srw_test.sql script provided with your Oracle Reports Services installation.

Preface

This manual describes the different options available for publishing reports with Oracle Reports Services, as well as how to configure the Oracle Reports Services software for publishing reports.

	
Note:

For the portable document format (PDF) version of this manual, when a URL breaks onto two lines, the full URL data is not sent to the browser when you click it. To get to the correct target of any URL included in the PDF, copy and paste the URL into your browser's address field. In the HTML version of this manual, you can click on a link to directly display its target in your browser.

Audience

This manual is intended for anyone who is interested in publishing reports with Oracle Reports Services. To configure Oracle Reports Services, it is useful to have a solid understanding of the following technologies:

	
Your operating system

	
Java

	
Databases

	
CORBA

	
JSP files

	
XML and DTD files

	
Web server configuration

	
HTTP

This manual will guide you through configuring components related to these technologies.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

Related Documentation

For more information about Oracle Reports, refer to the following resources:

	
Oracle Technology Network (OTN) Oracle Reports page (http://www.oracle.com/technology/products/reports/index.html)

	
Oracle Reports Tutorial

	
Oracle Reports Building Reports

	
Oracle Reports online Help, which you can access from Reports Builder in any of the following ways:

	
Choose Help > Help Contents.

	
Click Help or press F1 in any dialog box.

	
In the Property Inspector, click a property, then press F1 to display the property's help topic.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	
monospace

	
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

	
monospace italic

	
Monospace italic type indicates variables or user-supplied names.

	
[]

	
Brackets enclose optional clauses from which you can choose one or none.

7.11 Managing Log Files

Oracle Reports 11g Release 1 (11.1.1) provides improved diagnosability through logging and tracing enhancements.

All Oracle Reports log files follow Oracle Diagnostic Logging (ODL) format, the standard across Oracle Fusion Middleware, for log format, message types, and log management directives. The log file entries are in Text format (default) or XML format. For detailed information, refer to Oracle Fusion Middleware Administrator's Guide.

For information about log file enhancements, see Section 24.3.2, "Log Files"

	
Note:

If you change the log path for the in-process server engine (that is, oracle.reports.engine logger), ensure that you make similar changes in the logmetadata.xml file. This file resides in the same directory as logging.xml.

7.11.1 Viewing and Searching Log Files

To view and search log files in Oracle Enterprise Manager:

	
Log in to Oracle Enterprise Manager.

	
Navigate to the desired component's home page (see Section 7.3, "Viewing the Component Topology"): Reports Server, Reports Application, Reports Bridge, or Reports Tools.

	
From the Reports menu, select Logs > View Log Messages.

The Oracle Enterprise Manager Log Messages page is displayed.

	
View the trend metrics; that is, how many errors of each type (Incident Error, Error, Warning, Notification, Trace) have been logged in the log files for the component.

	
Use the search options available in the page to search inside log files with various parameters, such as specific message type or time duration.

To modify the information logged in log files to diagnose issues, see Section 7.18.1, "Specifying Logging Information".

7.11.2 Configuring Log Levels

To configure Log Levels in Oracle Enterprise Manager:

	
Log in to Oracle Enterprise Manager.

	
Navigate to the component's home page (see Section 7.3, "Viewing the Component Topology").

	
From the Reports menu, select Logs > Log Configuration.

The Log Configuration page is displayed.

	
Select the Log Levels tab

	
Select the appropriate log level for each Logger Name from the ODL Level drop-down list.

	
Click Apply

7.11.3 Editing Log Files

To edit the log files in Oracle Enterprise Manager:

	
Log in to Oracle Enterprise Manager.

	
Navigate to the component's home page

	
From the Reports menu, select Logs > Log Configuration

The Log Configuration page is displayed

	
Select the Log Files tab

	
From the list of log files that is displayed, select the file which you want to edit

	
Click Edit Configuration...

The Edit Log File pop-up window is displayed

	
Edit the required parameters.

	
Click OK

	
Note:

If you change the Log File Format in the Edit Log File window, you must change the file extension in the *Log Path field, or manually delete the existing content from the log file. Therefore, the same diagnostic log file does not contain messages of different formats.

Part V

Globalization Support and Bidirectional Support

Part V provides information about Reports-related globalization support settings and bidirectional support:

	
Chapter 23, "Implementing Globalization and Bidirectional Support"

7.17 Modifying Reports Configuration Settings Using the System MBean Browser

To modify Oracle Reports configuration settings using the System MBean Browser:

	
Start Oracle Enterprise Manager Fusion Middleware Control and display the Farm Home page.

	
Select Fusion Middleware > ReportsDomain > WLS_REPORTS. The WLS_REPORTS page is displayed.

	
From the WebLogic Server menu, choose System MBean Browser. Fusion Middleware Control displays the System MBean Browser page.

	
Click the plus (+) symbol in the left column to expand a node in the navigation tree and drill down to the MBean you wish to access. The navigation tree expands to display links for viewing or updating settings. Each node in the navigation tree represents settings in a configuration file.

	
Click a node in the navigation tree, and click the Attributes tab to display the details for a group of attributes. Attribute details include name, description of each attribute, access details and its current value.

	
Update an attribute value in one of the following ways:

	
Using the current page:

	
Enter a new attribute value into the Value field for the appropriate row.

	
Click Apply to apply the changes.

	
Displaying a page to view or update the setting:

	
Click the link in the Name column to display a new page.

	
Enter a new attribute value in the Value field.

	
Click Apply to apply the changes.

	
Click Return to close the page and display the navigation tree.

	
Repeat the previous steps to view or update another attribute value.

	
Note:

Only attribute values with write or read-write permissions can be modified.

2.2 Oracle Fusion Middleware Platform

Oracle Reports 11g Release 1 (11.1.1) is integrated with Oracle Fusion Middleware and Oracle WebLogic Server, which results in simpler administration of complex topology and deployments. You can manage and monitor Oracle Reports components using either:

	
Oracle Enterprise Manager, included with Oracle Fusion Middleware (recommended). Refer to Chapter 7, "Administering Oracle Reports Services Using Oracle Enterprise Manager".

	
Oracle Process Manager and Notification Server (OPMN)

For complete overview and conceptual information about Oracle Fusion Middleware, refer to the following manuals:

	
Oracle Fusion Middleware Concepts

	
Oracle Fusion Middleware Administrator's Guide

8.10 Configuring Oracle Reports to Communicate with Oracle BPEL Process Manager

Oracle Reports exposes web service named RWWebService. For more information about this web service, see Chapter 19, "Using the Oracle Reports Web Service". Oracle Reports web services, which are synchronous in nature, can be used in a BPEL process as a Partner link.

To invoke an Oracle Reports web service asynchronously in a BPEL process, do the following:

	
Create an intermediate asynchronous BPEL process that uses the synchronous Oracle Reports web service and provides an interface to the caller for making a callback.

	
Deploy this intermediate asynchronous BPEL process as a service in the SOA suite, which can be used as a Partner link.

You can access the WSDL of the Oracle Reports web service at the following location:

http://yourwebserver:port/reports/rwwebservice?

WSDL contains information about the different ways of invoking RWWebservice. You can access the XSD file at the following location:

http://yourwebserver:port/reports/rwwebservice?xsd=1

You can save the XSD file on your local machine and use it when creating a BPEL process.

8.10.1 Using RWWebservice to Submit Jobs to the Reports Server

To submit jobs to the Oracle Reports server using RWWebService, perform the following steps:

	
Install Oracle JDeveloper. For more information, see Oracle Fusion Middleware Installation Guide for Oracle JDeveloper.

	
Install OracleAS SOA.

	
Start the SOA suite.

	
Create a connection from Oracle JDeveloper to the SOA suite.

	
Create a new application.

	
Create a new asynchronous BPEL process project and use the RWWebservice.xsd file to define the input and output parameters of the BPEL process.

	
Create a Partner link that refers to the RWWebService WSDL:

	
When prompted by Oracle JDeveloper, click Yes to create Partner link types.

	
Select Partner Role.

	
Create a scope in your process.

	
Within the scope, create an Invoke activity and use it to invoke the runJob operation on the RWWebService Partner link.

	
Create input and output variables automatically. The input parameter provides input to the runJob operation of RWWebService, and the output parameter contains the output of the runJob operation.

	
Within the scope, before the Invoke activity, create an Assign activity:

	
In this Assign activity, map the user input parameters to the parameters that RWWebService requires.

	
Set Param0 = reports job command (string).

	
Set Param1 = true (boolean, specifying that the job submission must be synchronous).

	
Within the scope, after the Invoke activity, create an Assign activity. In this Assign activity, map the output variable of the Invoke activity to the result variable that is written back to the client.

	
Compile and deploy the BPEL process on the SOA suite.

	
Use the Oracle BPEL Process Manager console to run the BPEL process.

You can use this BPEL process in another BPEL process and submit jobs to the reports server asynchronously from a BPEL process.

	
Important:

For completing steps from 2 to 11 mentioned in Section 8.10.1, see the following documents:

	
Oracle Fusion Middleware Installation Guide for Oracle SOA Suite

	
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

	
Oracle Fusion Middleware Tutorial for Running Fusion Order Demo for Oracle SOA Suite

8.10.2 Submitting Jobs to the Reports Server from a BPEL Process Asynchronously

To submit jobs to the Oracle Reports server from a BPEL process asynchronously, do the following:

	
Create a new asynchronous BPEL process project and use the RWWebservice.xsd file to define the input and output parameters of the BPEL process.

	
Create a Partner link that refers to the WSDL of the newly created BPEL process:

	
When prompted by Oracle JDeveloper, click Yes to create Partner link types.

	
Select Partner Role.

	
Create a scope in your process.

	
Within the scope, create an Invoke activity and use it to invoke the runJob operation on the intermediate process Partner link.

	
Create input variables automatically. The input parameter provides input to the runJob operation of the intermediate BPEL process.

	
Create a Receive activity to receive the callback from the intermediate process.

	
Within the scope, before the Invoke activity, create an Assign activity:

	
In this Assign activity, map the user input parameters to the parameters that the intermediate BPEL process requires.

	
Set Param0 = reports job command (string).

	
Set Param1 = true (boolean, specifying that the job submission must be synchronous).

	
Within the scope, after the Invoke activity, create a Receive activity.

	
Create input variables automatically. The input parameter receives a response from the runJobresponse operation of the intermediate BPEL process.

	
Within the scope, after the Invoke activity, create an Assign activity. In this Assign activity, map the input variable of the Receive activity to the result variable that is written back to the client.

	
Compile and deploy the BPEL process on the SOA suite.

	
Use the Oracle BPEL Process Manager console to run the BPEL process.

5 Interoperability Scenarios and Considerations

This chapter discusses interoperability scenarios and considerations for Oracle Reports 11g Release 1 (11.1.1).

It includes the following sections:

	
Interoperability with Previous Versions of Oracle Reports

	
Interoperability with Other Oracle Components

Index

A B C D E F G H I J K L M N O P Q R S T U V W X

A

	access controls, 16.2
	
	availability calendar, combined, 16.2.4.2
	availability calendar, simple, 16.2.4.1
	printer, 16.2.3
	report, 16.2.2
	server, 16.2.1

	accessible command keyword, A.5.1
	Adobe Font Metrics (AFM) files
	
	see AFM files, 9.3

	Advanced Queuing, 21.1.1, 21.4, 21.4.1, 21.4.2, 21.4.2
	
	dbms_AQadm package, 21.4.1
	dbms_aq.dequeue, 21.4.3
	DEQUEUE, 21.4
	ENQUEUE, 21.4
	MESSAGES, 21.4

	AFM files, 9.3, 9.5.3, 10.4.4
	allowhtmltags configuration element, 8.3.1.1.8
	API
	
	cache, 8.2.1.3
	debugging events, 21.2
	destinations, 8.2.1.6, 13.2
	engine, 8.2.1.9
	events, 8.2.1.10, 21
	Notification, 8.2.1.15
	pluggable destinations, 13.2
	repository, 8.2.1.12
	Security, 8.2.1.23

	architecture
	
	globalization support, 23.1, 23.1

	arraysize command keyword, 24.8
	attach distribution element, 20.4.5
	
	format attribute, 20.4.5
	instance attribute, 20.4.5
	name attribute, 20.4.5
	srcType attribute, 20.4.5

	attributes, using variables with, 20.3.2
	authid parameter, events, 21.1.4
	autocommit command keyword, A.5.4
	auxDatFiles attribute of jobRecovery element, 8.2.1.11
	availability calendar, 16.2.4
	
	combined, 16.2.4.2
	simple, 16.2.4.1

B

	background command keyword, A.5.5
	barcode fonts, 9.5.6
	batch command keyword, A.5.6
	batch modifications, XML, 22.4.3
	batch registering reports in OracleAS Portal, C
	bcc attribute
	
	mail, 20.4.3

	bcc command keyword, A.5.7
	bidirectional support, 23.4
	blankpages command keyword, A.5.8
	body, 24.7.2
	body distribution element, 20.4.4
	
	format attribute, 20.4.4
	instance attribute, 20.4.4
	srcType attribute, 20.4.4

	break groups
	
	ORDER BY, 24.5.5

	bridge
	
	see Oracle Reports Bridge, A.2.7

	bridge configuration element, 8.4.1.1
	
	port attribute, 8.4.1.1
	timeout attribute, 8.4.1.1
	version attribute, 8.4.1.1

	bridgeconfig.xsd, 8.1
	bridgeconf.xsd
	
	bridge element, 8.4.1.1
	identifier element, 8.4.1.2
	remoteBridge element, 8.4.1.3
	remoteBridges element, 8.4.1.4

	browser destination, A.5.31
	buffers command keyword, A.5.9
	bursting, 20.4.2
	
	and distribution, 24.7.2

	bypassProxy configuration element, 8.2.1.26

C

	CA_GPREFS, B.1.1
	CA_UPREFS, B.1.2
	cache configuration element, 8.2.1.3, 18.12.1
	
	cacheSize property, 24.4, 24.8
	class attribute, 8.2.1.3

	cache destination, A.5.31
	cache destype, 13.3.2.1
	cache key, 18.12
	cacheDir property of cache element, 8.2.1.3
	cachelob command keyword, A.5.10
	cacheSize property
	
	tuning Reports Server configuration, 24.4, 24.8

	cacheSize property of cache element, 8.2.1.3
	caching, 18.12
	calculations in reports, 24.5.3
	callback timeout, 8.11
	callBackTimeOut attribute of engine element, 8.2.1.9
	cancelling a job, 21.1.6
	cc attribute
	
	mail, 20.4.3

	cc command keyword, A.5.11
	cell wrappers, 24.5.1
	
	text data sources, 24.5.1

	cellwrapper command keyword, A.5.12
	cgicmd.dat, 18.13, A.5.13, A.8.25
	
	adding entries, 18.13.3
	using, 18.13.4

	channel attribute of multicast element, 8.5.1.2
	character set
	
	unicode, 23.5
	UTF8, 23.5.1

	character sets, 9.5.1, 23, 23.2.1.3, 23.3
	
	design considerations, 23.2.1.3.1
	font aliasing, 23.2.1.3.2

	CID Fonts, 9.5.7
	class attribute of cache element, 8.2.1.3
	class attribute of destination element, 8.2.1.6
	class attribute of engine element, 8.2.1.9
	class attribute of jobStatusRepository element, 8.2.1.12
	class attribute of notification element, 8.2.1.15
	class attribute of security element, 8.2.1.23
	class, in JDBC configuration file, 14.1.1
	classPath attribute of engine element, 8.2.1.9
	cluster configuration element, 8.2.1.4
	clustering, Reports Servers (deprecated), 8.2.1.4, 8.3.1.1.4
	cmdfile command keyword, A.5.13
	cmdkey command keyword, A.5.14
	cmdkey parameter, events, 21.3
	collate command keyword, A.5.15
	command keywords
	
	accessible, A.5.1
	arraysize, 24.8
	autocommit, A.5.4
	background, A.5.5
	batch, A.5.6
	bcc, A.5.7
	blankpages, A.5.8
	buffers, A.5.9
	cachelob, A.5.10
	cc, A.5.11
	cellwrapper, A.5.12
	cmdfile, A.5.13
	cmdkey, A.5.14
	collate, A.5.15
	compile_all, A.5.16
	containshtmltags, A.5.17
	containsole, A.5.18
	contentarea, A.5.19
	copies, 24.8, A.5.20
	CUSTOMIZE, 22
	customize, A.5.21
	dateformatmask, A.5.23
	delauth, A.5.24
	delimited_hdr, A.5.25
	delimiter, A.5.26
	desformat, A.5.27
	desname, A.5.28
	dest, A.5.29
	destination, A.5.30
	destype, A.5.31
	distribute, A.6.1
	dtype, A.6.2
	dunit, A.6.3
	engineresponsetimeout, A.6.4
	envid, A.6.5
	EXPIRATION, 2.3.3, 24.4
	expiration, 24.8, A.6.6
	expiredays, A.6.7
	formsize, A.6.8
	from, A.6.9
	getjobid, A.6.10
	getserverinfo, A.6.11
	help, A.6.12
	itemtitle, A.6.13
	jobname, A.6.14
	jobretry, A.6.15
	jobtype, A.6.16
	jvmoptions, A.6.17
	killengine, A.6.18
	killjobid, A.6.19
	longchunk, 24.8, A.6.20
	mimetype, A.6.21
	mode, A.6.22
	module, A.6.23
	name, A.6.24
	nonblocksql, A.6.25
	notifyfailure, A.6.26
	notifysuccess, A.6.27
	numberformatmask, A.6.28
	onfailure, A.6.29
	onsuccess, A.6.30
	orientation, A.6.31
	ourputpage, A.7.4
	outputfolder, A.7.1
	outputimageformat, A.7.2, A.7.3
	overwrite, A.7.5
	p_availability, A.7.7
	p_description, A.7.8
	p_formats, A.7.9
	p_jdbcpds, A.7.10
	p_name, A.7.11
	p_owner, A.7.12
	p_pformtemplate, A.7.13
	p_printers, A.7.14
	p_privilege, A.7.15
	p_servers, A.7.16
	p_trigger, A.7.17
	p_types, A.7.18
	pagegroup, A.7.19
	pagesize, A.7.20
	pagestream, A.7.21
	parameter, A.7.6
	paramform, 24.8, A.7.22
	parsequery, A.7.23
	pdfcomp, 24.8, A.7.24
	pdfembed, A.7.25, A.7.26, A.7.27, A.7.28
	pfaction, A.7.29
	printjob, A.7.30
	readonly, A.7.31
	RECURSIVE_LOAD, 24.8
	recursive_load, A.7.32
	replyto, A.7.33
	report, A.6.23
	role, A.7.35
	RUNDEBUG, 24.8
	rundebug, A.8.1
	save_rdf, A.8.2
	SCHEDULE, 18.10
	schedule, A.8.3
	server, A.8.4
	showauth, A.8.5
	showenv, A.8.6
	showjobid, A.8.7
	SHOWJOBS, 24.3.9
	showjobs, A.8.8
	showmap, A.8.9
	showmyjobs, A.8.10
	shutdown, A.8.11
	sitename, A.8.12
	source, A.8.13
	ssoconn, A.8.15
	statusfolder, A.8.16
	statusformat, A.8.17
	statuspage, A.8.18
	stype, A.8.19
	subject, A.8.20
	TOLERANCE, 2.3.3, 18.12
	tolerance, A.8.22
	urlparameter, A.8.23
	usejvm, A.8.24
	userid, A.8.25
	userstyles, A.8.26
	VALIDATETAG, 24.8
	validatetag, A.8.27
	webserver_debug, A.8.28
	webserver_docroot, A.8.29
	webserver_port, A.8.30

	command lines, specifying, 18.2
	commands
	
	overview, A.2
	rwbridge, A.2.7
	rwbuilder, 22.5.2, A.2.3
	rwclient, A.2.1
	rwconverter, 22.4, A.2.4
	rwrun, A.2.2
	rwserver, A.2.6
	rwservlet, A.2.5
	syntax, A.1

	compile_all command keyword, A.5.16
	configuration
	
	considerations, 2.4
	proxy information, 8.7
	tuning, 24
	URL engine, 8.6

	configuration elements
	
	allowhtmltags, 8.3.1.1.8
	bridge, 8.4.1.1
	bypassProxy, 8.2.1.26
	cache, 8.2.1.3, 18.12.1
	cluster, 8.2.1.4
	connection, 8.2.1.5
	dbauth, 8.3.1.1.12
	dbProxyConnKeys, 8.2.1.31
	dbProxyKey, 8.2.1.30
	defaultcharset, 8.3.1.1.6
	destination, 8.2.1.6, 13.3.1
	discoveryService, 8.5.1.1
	domain, 8.2.1.25
	engine, 8.2.1.9
	environment, 8.2.1.7
	envVariable, 8.2.1.8
	errortemplate, 8.3.1.1.14
	folderAccess, 8.2.1.22
	helpurl, 8.3.1.1.9
	identifier, 8.2.1.19, 8.4.1.2
	imageurl, 8.3.1.1.10
	inprocess, 8.3.1.1.3
	job, 8.2.1.10
	jobRecovery, 8.2.1.11
	jobRepository, 8.2.1.14
	jobStatusRepository, 8.2.1.12
	jobThresholds, 8.2.1.32
	log, 8.2.1.13
	multicast, 8.5.1.2
	namingService, 8.5.1.3
	notification, 8.2.1.15
	oidconnection, 8.2.1.16
	orbClient, 8.2.1.17
	ORBPorts, 8.2.1.1
	persistFile, 8.2.1.18
	pluginParam, 8.2.1.2
	property, 8.2.1.20
	proxyInfo, 8.2.1.28
	proxyServer, 8.2.1.24
	proxyServers, 8.2.1.27
	queue, 8.2.1.21
	reloadkeymap, 8.3.1.1.11
	remoteBridge, 8.4.1.3
	remoteBridges, 8.4.1.4
	reports_servermap, 8.3.1.1.4, 8.3.1.1.4
	rwservlet, 8.3.1.1
	security, 8.2.1.23
	server, 8.2.1.33, 8.3.1.1.1
	singlesignon, 8.3.1.1.2
	sysauth, 8.3.1.1.13
	webLayout, 8.2.1.29

	configuration files
	
	fonts, 9.3
	Oracle Reports Bridge, 8.1
	Oracle Reports Builder, 8.1
	Oracle Reports Runtime, 8.1
	Oracle Reports Servlet, 8.1
	Reports Server, 8.1
	rwserver.template, 8.2

	configuration, Reports Server, 2.3.3
	connection configuration element, 8.2.1.5
	
	idleTimeOut attribute of connection element, 8.2.1.5
	maxConnect attribute of connection element, 8.2.1.5

	connection, in JDBC configuration file, 14.1.1
	connectString, 14.1.1
	consolidated job queue, 7.7.2, A.8.8
	containshtmltags command keyword, A.5.17
	containsole command keyword, A.5.18
	contentarea command keyword, A.5.19
	cookie, 17.1
	cookie configuration element
	
	cookieexpire attribute of cookie element, 8.3.1.1.5
	encryptionkey attribute of cookie element, 8.3.1.1.5

	cookieexpire attribute, 8.3.1.1.5
	copies attribute
	
	printer, 20.4.8

	copies command keyword, 24.8, A.5.20
	CORBA, A.8.24
	cross-platform porting, 12.8.3
	CUSTOMIZE command keyword, 22
	customize command keyword, A.5.21
	customizing reports, XML, 22

D

	DAS, see Delegated Administration Services
	data definition
	
	DTD schema, 24.5.1
	XML schema, 24.5.1

	data models, creating, 22.3
	data sources
	
	creating through XML, 22.3.1
	group hierarchies with XML, 22.3.3
	linking through XML, 22.3.2

	data type dictionary
	
	distribution.dtd, 20.3.1
	DTD, 24.5.1

	data types
	
	BLOB, 24.8
	CLOB, 24.8
	DATE, 23.2.1
	LONG, 24.8
	LONG RAW, 24.8
	NUMBER, 23.2.1

	Data Wizard
	
	glossary, Glossary

	database attribute of dbProxyKey element, 8.2.1.30
	database indexes
	
	SQL WHERE clause, 24.5.2

	database triggers, 21.3
	dateformatmask command keyword, A.5.23
	day names, language for, 23.2.1.2
	dbauth configuration element, 8.3.1.1.12
	dbms_AQadm package, 21.4.1
	dbms_aq.dequeue, 21.4.3
	dbProxyConnKeys configuration element, 8.2.1.31
	dbProxyKey configuration element, 8.2.1.30
	
	database attribute, 8.2.1.30
	name attribute, 8.2.1.30

	debugging events, 21.2
	defaultcharset configuration element, 8.3.1.1.6
	defaultEnvId attribute of engine element, 8.2.1.9
	delauth command keyword, A.5.24
	Delegated Administration Service, 16.1.2
	Delegated Administration Services, 17.1, 17.2.1.1.1
	delimited output
	
	distribution limitations, 20.7.1

	delimited_hdr command keyword, A.5.25
	DELIMITED_LINE_END, B.1.3
	delimiter command keyword, A.5.26
	deploying reports, 16
	deploying reports, optimizing, 8.11
	DEQUEUE, 21.4
	dequeuing, creating procedure, 21.4.3
	desformat command keyword, A.5.27
	desname command keyword, A.5.28
	dest command keyword, A.5.29
	destination
	
	classes, 13.3.2
	destypes, 13.3.2
	valid values, 13.3.2

	destination command keyword, A.5.30
	destination configuration element, 8.2.1.6, 13.3.1
	
	class attribute, 8.2.1.6
	destype attribute, 8.2.1.6

	destination types, 13.3
	destinations distribution element, 20.4.1
	destype attribute, 13.3.2
	
	cache, 13.3.2.1
	file, 13.3.2.1
	mail, 13.3.2.1
	oraclePortal, 13.3.2.1
	printer, 13.3.2.1

	destype attribute of destination element, 8.2.1.6
	destype command keyword, A.5.31
	destype distribution element, 20.4.9
	
	id attribute, 20.4.9
	instance attribute, 20.4.9
	name attribute, 20.4.9

	DEVELOPER_NLS_LANG, 23.2.2, B.1.5
	diagbodytags attribute, 8.3.1.1.15
	diagheadtags attribute, 8.3.1.1.15
	diagnosis property, D.1.1, D.1.5, D.1.5
	diagnosis property of engine element, 8.2.1.9
	diagtags configuration element
	
	diagbodytags attribute of diagtags element, 8.3.1.1.15
	diagheadtags attribute of diagtags element, 8.3.1.1.15

	direction, of language, 23.2.1.2
	discoveryService configuration element, 8.5.1.1
	DISPLAY
	
	printing on UNIX, 10.8, 10.9.4

	dist parameter, events, 21.3
	distribute command keyword, A.6.1
	distribution
	
	and bursting, 24.7.2
	bursting, 20.4.2
	delimited output, 20.7.1
	dynamic format attribute values, 20.7.2
	limitations, 20.7

	distribution elements
	
	attach, 20.4.5
	body, 20.4.4
	destinations, 20.4.1
	destype, 20.4.9
	file, 20.4.7
	foreach, 20.4.2
	include, 20.4.6
	mail, 20.4.3
	printer, 20.4.8
	property, 20.4.10

	distribution examples, 20.5
	
	destype, 20.5.5
	file, 20.5.3
	foreach, 20.5.1
	mail, 20.5.2
	printer, 20.5.4

	distribution overview, 20.1
	Distribution property, 24.7.2
	distribution, using XML file, 20.6
	distribution.dtd, 20.3.1
	DOC, B.1.4
	docroot attribute of webLayout element, 8.2.1.29
	domain configuration element, 8.2.1.25
	DTD, internal, 14.1.1
	DTD, see data type dictionary
	dtype command keyword, A.6.2
	dunit command keyword, A.6.3
	dynamic environment switching, 8.2.2

E

	elements, see distribution, customization, or configuration
	EM, see Oracle Enterprise Manager
	enableSSL property of pluginParam element, 8.2.1.2
	encryptionkey attribute, 8.3.1.1.5
	engine configuration element, 8.2.1.9
	
	callBackTimeOut attribute, 8.2.1.9
	class attribute, 8.2.1.9
	classPath attribute, 8.2.1.9
	defaultEnvId attribute, 8.2.1.9
	diagnosis property, 8.2.1.9
	engineResponseTimeOut attribute, 8.2.1.9, 24.4
	engLife attribute, 8.2.1.9
	id attribute, 8.2.1.9
	initEngine attribute, 8.2.1.9, 24.4
	jvmOptions attribute, 8.2.1.9
	keepConnection property, 8.2.1.9
	maxConnect attribute, 24.4
	maxEngine attribute, 8.2.1.9, 24.4
	maxIdle attribute, 8.2.1.9
	minEngine attribute, 8.2.1.9, 24.4
	sourcedir property, 8.2.1.9
	tempdir property, 8.2.1.9

	engineId attribute of job element, 8.2.1.10
	engineResponseTimeOut attribute
	
	tuning Reports Server configuration, 24.4

	engineResponseTimeOut attribute of engine element, 8.2.1.9
	engineresponsetimeout command keyword, A.6.4
	engLife attribute of engine element, 8.2.1.9
	ENQUEUE, 21.4
	enqueuing, creating procedure, 21.4.2
	envid command keyword, A.6.5
	environment configuration element, 8.2.1.7, 8.2.1.8
	
	id attribute, 8.2.1.7

	environment switching, 8.2.2
	environment variables
	
	CA_GPREFS, B.1.1
	CA_UPREFS, B.1.2
	DELIMITED_LINE_END, B.1.3
	DEVELOPER_NLS_LANG, 23.2.2, B.1.5
	DOC, B.1.4
	NLS_CALENDAR, B.1.6
	NLS_CREDIT, B.1.7
	NLS_CURRENCY, B.1.8
	NLS_DATE_FORMAT, B.1.9
	NLS_DATE_LANGUAGE, B.1.10
	NLS_DEBIT, B.1.11
	NLS_ISO_CURRENCY, B.1.12
	NLS_LANG, 23.2.1, B.1.13
	NLS_LIST_SEPARATOR, B.1.14
	NLS_MONETARY_CHARACTERS, B.1.15
	NLS_NUMERIC_CHARACTERS, B.1.16
	NLS_SORT, B.1.17
	ORACLE_AFM, B.1.18
	ORACLE_HOME, B.1.19
	ORACLE_HPD, B.1.20, B.1.21
	ORACLE_PATH, B.1.22
	ORACLE_PPD, B.1.23
	ORACLE_TFM, B.1.24
	ORAINFONAV_DOCPATH, B.1.25
	PRINTER, B.1.26
	REMOTE, B.1.27
	REPORTS_ADD_HWMARGIN, B.1.28
	REPORTS_ARABIC_NUMERAL, 11.4, B.1.29
	REPORTS_BIDI_ALGORITHM, 11.4, B.1.31
	REPORTS_CGIDIAGBODYTAGS, B.1.32
	REPORTS_CGIDIAGHEADTAGS, B.1.33
	REPORTS_CGIHELP, B.1.34
	REPORTS_CGIMAP, B.1.35
	REPORTS_CGINODIAG, B.1.36
	REPORTS_CLASSPATH, B.1.37
	REPORTS_CONTAINSHTMLTAGS, B.1.38
	REPORTS_COOKIE_EXPIRE, B.1.39
	REPORTS_DB_AUTH, B.1.40, B.1.41
	REPORTS_DEFAULT_DISPLAY, B.1.42
	REPORTS_DEFAULT_PIXEL_SIZE, B.1.43
	REPORTS_ENABLE_RTF_SPACING, B.1.44
	REPORTS_ENCRYPTION_KEY, B.1.45
	REPORTS_ENHANCED_FONTHANDLING, B.1.47
	REPORTS_ENHANCED_SUBSET, 11.2.2.2.2, 11.2.2.2.2, 11.2.2.2.2, B.1.48
	REPORTS_FONT_DIRECTORY, B.1.49
	REPORTS_GRAPH_IMAGE_DPI, B.1.50
	REPORTS_IGNORE_IMAGE_TAG_RES, B.1.51
	REPORTS_JPEG_QUALITY_FACTOR, B.1.52
	REPORTS_JVM_OPTIONS, B.1.53
	REPORTS_NETWORK_CONFIG, B.1.54
	REPORTS_NLS_XML_CHARSETS, B.1.55
	REPORTS_NO_DUMMY_PRINTER, B.1.56
	REPORTS_NO_HTML_SPACE_REPLACE, B.1.57
	REPORTS_OUTPUTIMAGEFORMAT, B.1.58
	REPORTS_PATH, B.1.59
	REPORTS_RESOURCE, B.1.61
	REPORTS_RESTRICT_DIRECTORIES, B.1.60
	REPORTS_SERVER, B.1.62
	REPORTS_SOLARIS_9, B.1.63
	REPORTS_SPACE_BREAK, B.1.64
	REPORTS_SRWRUN_TO_SERVER, B.1.65
	REPORTS_SSLPORT, B.1.66
	REPORTS_SYS_AUTH, B.1.67
	REPORTS_TAGLIB_URI, B.1.68
	REPORTS_TMP, B.1.69
	REPORTS_USEREXITS, B.1.70
	REPORTS_UTF8_XMLOUTPUT, B.1.71
	RW, B.1.72
	TK_AFM, B.1.76
	TK_HPD, B.1.77
	TK_PPD, B.1.78
	TK_PRINT, B.1.73
	TK_PRINT_STATUS, B.1.74
	TK_PRINTER, B.1.75
	TK_TFM, B.1.79
	USER_NLS_LANG, 23.2.2, B.1.82
	USERNAME, B.1.81

	environment variables, editing, B
	environment variables, globalization support, 23.2
	envVariable configuration element
	
	name attribute, 8.2.1.8
	value Attribute, 8.2.1.8

	error messages, XML, 22.5.1
	errortemplate configuration element, 8.3.1.1.14
	event-driven publishing, 2.3.3, 21
	events
	
	authid parameter, 21.1.4
	cancelling a job, 21.1.6
	cmdkey parameter, 21.3
	creating a message queue, 21.4.1
	creating dequeuing procedure, 21.4.3
	creating enqueuing procedure, 21.4.2
	debugging, 21.2
	dist parameter, 21.3
	gateway parame