

List of Tables

	1-1 Resource Name Resolution
	2-1 Valid Order Workflow
	2-2 Invalid Order Workflow
	2-3 MATCH_RECOGNIZE Pattern Quantifiers
	2-4 Condition Definitions
	4-1 New Update Site Dialog Attributes
	4-2 Oracle Event Processing IDE for Eclipse Plug-Ins
	4-3 Oracle Event Processing IDE for Eclipse Plug-Ins
	5-1 Oracle Event Processing Project Artifacts
	5-2 Create an Oracle Event Processing Application Dialog
	5-3 Oracle Event Processing Application Content Dialog
	5-4 New OEP Assembly File Dialog
	5-5 New OEP Configuration File Dialog
	5-6 Oracle Event Processing Application Content Dialog
	5-7 Oracle Event Processing Problem Severities
	6-1 Eclipse and Oracle Event Processing Server Concepts
	6-2 New Server: Define New Server Dialog (No Installed Runtimes) Attributes
	6-3 New Server: New Oracle Event Processing v11 Runtime Dialog Attributes
	6-4 New Server: Define New Server (Installed Runtimes) Dialog Attributes
	6-5 New Server: New Oracle Event Processing v11 Server Dialog Attributes for a Local Server
	6-6 New Server: Define New Server Dialog (No Installed Runtimes) Attributes
	6-7 New Server: New Oracle Event Processing v11 Runtime Dialog Attributes
	6-8 New Server: Define New Server (Installed Runtimes) Dialog Attributes
	6-9 New Server: Oracle Event Processing v11 Server Dialog Attributes for a Local Server
	6-10 New Server Runtime Dialog Attributes
	6-11 New Server Runtime Dialog Attributes
	6-12 Add and Remove Dialog Attributes
	6-13 Server Overview Editor Attributes
	7-1 Oracle Event Processing Type Dialog
	7-2 EPN Editor Icons
	7-3 New Adapter Wizard - Page 1
	7-4 New Processor Dialog
	9-1 Data Types for Event Types
	9-2 csvgen Adapter Types
	9-3 EPN Assembly File event-type Element Property Attributes
	9-4 SQL Column Types and Oracle Event Processing Type Equivalents
	11-1 jms-adapter Inbound Child Elements
	11-2 jms-adapter Outbound Component Configuration Child Elements
	12-1 http-pub-sub-adapter for Publishing Component Configuration Child Elements
	12-2 http-pub-sub-adapter for Subscribing Component Configuration Child Elements
	14-1 bea-jaxws.xml File Attributes
	15-1 Interfaces to Support Suspending and Resuming an Adapter
	16-1 Interfaces for Implementing an Event Source
	16-2 Interfaces Implemented by Sender Classes
	16-3 Comparison of Event Beans and Spring Beans
	17-1 EPN Assembly File table Element Attributes
	18-1 spatial:context Element Attributes
	20-1 Child Elements of bdb-config
	20-2 Child Elements of record-parameters
	20-3 Child Elements of playback-parameters
	21-1 Load Generator Properties
	22-1 Event Inspector JSON Event Required Attributes
	23-1 Oracle Event Processing Application LIbrary Path
	23-2 Oracle Event Processing Application LIbrary Path Variable
	23-3 bundler.sh Command Line Options
	23-4 Factory Class and Service Interfaces
	23-5 New Java Class Parameters
	23-6 weblogic.i18ngen Utility Options
	24-1 Oracle Event Processing High Availability Quality of Service
	24-2 Oracle Event Processing High Availability Application Types
	24-3 Child Elements of wlevs:adapter for the High Availability Input Adapter
	24-4 High Availability Input Adapter Instance Properties
	24-5 Child Elements of ha-inbound-adapter for the High Availability Input Adapter
	24-6 Child Elements of wlevs:adapter for the Buffering Output Adapter
	24-7 Buffering Output Adapter Instance Properties
	24-8 Child Elements of ha-buffering-adapter for the Buffering Output Adapter
	24-9 Child Elements of wlevs:adapter for the Broadcast Output Adapter
	24-10 Broadcast Output Adapter Instance Properties
	24-11 Child Elements of ha-broadcast-adapter for the Broadcast Output Adapter
	24-12 Child Elements of wlevs:adapter for the Correlating Output Adapter
	24-13 Correlating Output Adapter Instance Properties
	24-14 Child Elements of ha-correlating-adapter for the Correlating Output Adapter
	25-1 Event Partitioner Channel Threading Options
	25-2 New Java Class Options for EventPartitioner
	25-3 Oracle Event Processing Server Configuration File groups Element Configuration
	25-4 Oracle Event Processing Server Configuration File groups Element Configuration
	C-1 Attributes of the wlevs:adapter Application Assembly Element
	C-2 Attributes of the wlevs:application-timestamped Application Assembly Element
	C-3 Attributes of the wlevs:cache Application Assembly Element
	C-4 Attributes of the wlevs:cache-listener Application Assembly Element
	C-5 Attributes of the wlevs:cache-loader Application Assembly Element
	C-6 Attributes of the wlevs:cache-source Application Assembly Element
	C-7 Attributes of the wlevs:cache-store Application Assembly Element
	C-8 Attributes of the wlevs:caching-system Application Assembly Element
	C-9 Attributes of the wlevs:channel Application Assembly Element
	C-10 Attributes of the wlevs:event-bean Application Assembly Element
	C-11 Attributes of the wlevs:event-type Application Assembly Element
	C-12 Attributes of the wlevs:factory Application Assembly Element
	C-13 Attributes of the wlevs:function Application Assembly Element
	C-14 Attributes of the wlevs:instance-property Application Assembly Element
	C-15 Attributes of the wlevs:listener Application Assembly Element
	C-16 Attributes of the wlevs:metadata Application Assembly Element
	C-17 Attributes of the wlevs:processor Application Assembly Element
	C-18 Attributes of the wlevs:properties Application Assembly Element
	C-19 Attributes of the wlevs:property Application Assembly Element
	C-20 Attributes of the wlevs:property Application Assembly Element
	C-21 Attributes of the wlevs:source Application Assembly Element
	C-22 Attributes of the wlevs:table Application Assembly Element
	C-23 Attributes of the wlevs:table-source Application Assembly Element
	D-1 Attributes of the binding Component Configuration Element
	D-2 Attributes of the database Component Configuration Element
	D-3 Attributes of the group-binding Component Configuration Element
	D-4 Attributes of the listeners Component Configuration Element
	D-5 Attributes of the param Component Configuration Element
	D-6 Attributes of the params Component Configuration Element
	D-7 Attributes of the query Component Configuration Element
	D-8 Attributes of the rule Component Configuration Element
	D-9 Attributes of the view Component Configuration Element
	E-1 Attributes of the wlevs:deployment Deployment Element
	F-1 Child Elements of: auth-constraint
	F-2 Child Elements of: bdb-config
	F-3 Child Elements of: channel-resource-collection
	F-4 Child Elements of: cluster
	F-5 Child Elements of: connection-pool-params
	F-6 Child Elements of: data-source-params
	F-7 Child Elements of: driver-params
	F-8 Child Elements of: debug
	F-9 Child Elements of: event-store
	F-10 Child Elements of: exported-jndi-context
	F-11 Child Elements of: jetty
	F-12 Child Elements of: jetty-web-app
	F-13 Child Elements of: jmx
	F-14 Child Elements of: jndi-context
	F-15 Child Elements of: log-file
	F-16 Child Elements of: log-stdout
	F-17 Child Elements of: logging-service
	F-18 Child Elements of: netio
	F-19 Child Elements of: netio-client
	F-20 Child Elements of: rdbms-event-store-provider
	F-21 Child Elements of: rmi
	F-22 Child Elements of: scheduler
	F-23 Child Elements of: server-config
	F-24 Child Elements of: services
	F-25 Child Elements of: show-detail-error-message
	F-26 Child Elements of: ssl
	F-27 Child Elements of: transaction-manager
	F-28 Child Elements of: use-secure-connections
	F-29 Child Elements of: weblogic-instances
	F-30 Child Elements of: weblogic-rmi-client
	F-31 Child Elements of: work-manager
	F-32 Child Elements of: xa-params
	G-1 Attributes of the message_catalog Element
	G-2 Attributes of the logmessage Element
	G-3 Attributes of the message Element
	H-1 Attributes of the locale_message_catalog Element
	H-2 Attributes of the logmessage Element
	H-3 Attributes of the message Element
	I-1 Attributes of the com.bea.wlevs.util.Service JWS Annotation Tag

Part I

Getting Started with Creating Oracle Event Processing Applications

Part I contains the following chapters:

	
Chapter 1, "Overview of Creating Oracle Event Processing Applications"

	
Chapter 2, "Oracle Event Processing Samples"

	
Chapter 3, "Getting Started with Developing Oracle Event Processing Applications"

3 Getting Started with Developing Oracle Event Processing Applications

This chapter provides suggestions for getting started in building Oracle Event Processing applications, including suggested start-to-finish steps, setting up a development environment, and tools for development and testing.

This chapter includes the following sections:

	
Section 3.1, "Creating an Oracle Event Processing Application"

	
Section 3.2, "Setting Your Development Environment"

	
Section 3.3, "Using an IDE to Develop Applications"

	
Section 3.4, "Testing Applications"

3.1 Creating an Oracle Event Processing Application

The following procedure shows the suggested start-to-finish steps to create an Oracle Event Processing application. Although it is not required to program and configure the various components in the order shown, the procedure shows a typical and logical flow recommended by Oracle.

It is assumed in the procedure that you are using an IDE, although it is not required and the one you use is your choice. For one targeted to Oracle Event Processing developers, see Chapter 4, "Overview of the Oracle Event Processing IDE for Eclipse"

To create an Oracle Event Processing application:

	
Set up your environment as described in Section 3.2, "Setting Your Development Environment."

	
Create an Oracle Event Processing project using the Oracle Event Processing IDE for Eclipse.

For more information, see Chapter 5, "Oracle Event Processing IDE for Eclipse Projects".

	
Design your event processing network (EPN).

Using the Oracle Event Processing IDE for Eclipse and the EPN editor, add the full list of components that make up the application and how they are connected to each other, as well as registering the event types used in your application.

This step combines both designing of your application, in particular determining the components that you need to configure and code, as well as creating the actual XML file that specifies all the components (the EPN assembly file) and the XML file that specifies component configuration (the component configuration file). You will likely be constantly updating these XML files as you implement your application, but Oracle recommends you start with this step so you have a high-level view of your application.

For more information, see:

	
Chapter 7, "Oracle Event Processing IDE for Eclipse and the Event Processing Network"

	
Section 5.3, "Creating EPN Assembly Files."

	
Section 5.4, "Creating Component Configuration Files."

	
Determine the event types that your application is going to use, and, if creating your own JavaBean, program the Java file.

See Chapter 9, "Defining and Using Event Types"

	
Program, and optionally configure, the adapters or event beans that act as inbound, intermediate, or outbound components of your event processing network. You can create your own adapters or event beans, or use the adapters provided by Oracle Event Processing. For details, see:

	
Section 1.5, "Oracle Event Processing APIs"

	
Section 1.4.3, "Configuring Oracle Event Processing Resource Access"

	
Chapter 11, "Integrating the Java Message Service"

	
Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

	
Chapter 15, "Integrating an External Component Using a Custom Adapter"

	
Chapter 16, "Handling Events with Java"

	
Configure the processors by creating their component configuration XML files; the most important part of this step is designing and declaring the initial rules that are associated with each processor.

See:

	
Chapter 17, "Querying an Event Stream with Oracle CQL"

	
Chapter 19, "Querying an Event Stream with Oracle EPL"

	
Design the rules that the processors are going to use to select events from their upstream channels and output events to their downstream channels.

See:

	
Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
Oracle Fusion Middleware EPL Language Reference for Oracle Event Processing

	
Note:

Oracle CQL replaces Event Processing Language (EPL) in Oracle Event Processing 11g Release 1 (11.1.1). Oracle Event Processing supports EPL for backwards compatibility.

	
Optionally configure the channels that stream data between adapters, processors, and the business logic POJO by creating their configuration XML files.

See Chapter 10, "Connecting EPN Stages Using Channels."

	
Optionally configure the caching system to publish or consume events to and from a cache to increase the availability of the events and increase the performance of your applications.

See Chapter 13, "Integrating a Cache."

	
Optionally, use the Oracle Event Processing server log subsystem to write log messages from your application to the Oracle Event Processing server log:

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
...
Log LOG=LogFactory.getLog("LogName");
...
LOG.debug("Some debug information");
...

Using the Oracle Event Processing Visualizer, you can deploy your application, configure the log level for your application, and view the Oracle Event Processing server console.

For more information, see:

	
"Configuring Logging and Debugging for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
Section 23.4, "Managing Log Message Catalogs"

	
"How to Configure Component Logging" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
"How to View Console Output" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

3.2 Setting Your Development Environment

You must set your development environment before you can start Oracle Event Processing instances and run the samples. In particular, you must set the PATH and JAVA_HOME environment variables so that you are using the correct version of the JRockit JDK.

There are two ways in which JRockit might have been installed on your computer:

	
As part of the Oracle JRockit Real Time installation. This version of the JRockit JDK includes the deterministic garbage collector.

	
As part of the Oracle Event Processing 11g Release 1 (11.1.1) installation. This version of the JRockit JDK does not include the deterministic garbage collector, and is provided for testing purposes only.

Although not required, Oracle recommends that you run Oracle Event Processing using the JRockit JDK version included in Oracle JRockit Real Time for best results; however, the following procedures describe how to set your environment for either case.

For more information about JRockit, see Section 2.4, "Increasing the Performance of the Samples".

This section describes:

	
Section 3.2.1, "How to Set Your Development Environment on Windows"

	
Section 3.2.2, "How to Set Your Development Environment on UNIX"

3.2.1 How to Set Your Development Environment on Windows

This procedure describes how to set your development environment on Windows.

To make it easier to reset your development environment after logging out of a session, you can create a command file, such as setEnv.cmd, that contains the set commands this section describes.

You can also set the required environment variables permanently on your Windows computer by invoking the Control Panel > System window, clicking the Advanced tab, and then clicking the Environment Variables button. You can set the environment variables for the current user or for the entire system.

To set your development environment on Windows:

	
Update your PATH environment variable to include the bin directory of the JRockit JDK. Also, be sure that your PATH environment variable includes the bin directory of your Ant installation:

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

If you installed Oracle JRockit Real Time in the d:\jrockit directory and Ant is installed in the d:\ant directory, set your PATH environment variable as shown:

prompt> set PATH=d:\jrockit\[JRRT_HOME]\bin;d:\ant\bin;%PATH%

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle Event Processing:

If you installed Oracle Event Processing in the d:\Oracle\Middleware directory and Ant is installed in the d:\ant directory, set your PATH environment variable as shown:

prompt> set PATH=d:\Oracle\Middleware\jrockit_160_20\bin;d:\ant\bin;%PATH%

	
Ensure that the JAVA_HOME variable in the setDomainEnv.cmd script points to the correct JRockit JDK. If it does not, edit the script.

The setDomainEnv.cmd script is located in the defaultserver subdirectory of the main domain directory; the defaultserver subdirectory contains the files for the standalone server of each domain. For example, the HelloWorld domain is located in MIDDLEWARE_HOME\ocep_11.1\samples\domains\helloworld_domain, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle Event Processing, such as d:\Oracle\Middleware.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

The set command should be as follows:

set JAVA_HOME=d:\jrockit\[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle Event Processing:

The set command should be as follows:

set JAVA_HOME=d:\Oracle\Middleware\jrockit_160_20

	
Set the JAVA_HOME variable in your own development environment to point to the JRockit JDK.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

The set command should be as follows:

prompt> set JAVA_HOME=d:\jrockit\[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle Event Processing:

The set command should be as follows:

prompt> set JAVA_HOME=d:\Oracle\Middleware\jrockit_160_20

3.2.2 How to Set Your Development Environment on UNIX

This procedure describes how to set your development environment on UNIX.

To make it easier to reset your development environment after logging out of a session, you can create a command file, such as setEnv.sh, that contains the set commands this section describes.

To set your development environment on UNIX:

	
Update your PATH environment variable to include the bin directory of the JRockit JDK. Also, be sure that your PATH environment variable includes the bin directory of your Ant installation.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

If you installed Oracle JRockit Real Time in the /jrockit directory and Ant is installed in the /ant directory, set your PATH environment variable as follows:

prompt> PATH=/jrockit/j[JRRT_HOME]/bin:/ant/bin:$PATH

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle Event Processing:

If you installed Oracle Event Processing in the /Oracle/Middleware directory and Ant is installed in the /ant directory, set your PATH environment variable as shown:

prompt> PATH=/Oracle/Middleware/jrockit_160_20/bin:/ant/bin:$PATH

	
Ensure that the JAVA_HOME variable in the setDomainEnv.sh script points to the correct JRockit JDK. If it does not, edit the script.

The setDomainEnv.sh script is located in the defaultserver subdirectory of the main domain directory; the defaultserver subdirectory contains the files for the standalone server of each domain. For example, the HelloWorld domain is located in MIDDLEWARE_HOME/ocep_11.1/samples/domains/helloworld_domain, where MIDDLEWARE_HOME refers to the Middleware home directory you specified when you installed Oracle Event Processing, such as /Oracle/Middleware.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

The JAVA_HOME variable should be set as follows:

JAVA_HOME=/jrockit/[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle Event Processing:

The JAVA_HOME variable should be set as follows:

JAVA_HOME=/Oracle/Middleware/jrockit_160_20

	
Set the JAVA_HOME variable in your development environment to point to the JRockit JDK.

	
If using the JRockit JDK installed with Oracle JRockit Real Time:

The JAVA_HOME variable should be set as follows:

prompt> JAVA_HOME=/jrockit/[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

	
If using the JRockit JDK installed with Oracle Event Processing:

The JAVA_HOME variable should be set as follows:

prompt> JAVA_HOME=/Oracle/Middleware/jrockit_160_20

3.3 Using an IDE to Develop Applications

Oracle Event Processing includes a pluging that enhances the Eclipse IDE with features specifically designed to ease the work of building Oracle Event Processing applications. For more information about the IDE, see Section 4, "Overview of the Oracle Event Processing IDE for Eclipse".

3.4 Testing Applications

You can test Oracle Event Processing applications you build by using the included csvadapter and load generator.

The load generator is a command-line tool the reads a comma-separated values (CSV) file and feeds the results to the csvadapter. The csvadapter, in turn, is designed to receive values from the load generator, then bind those values to an event type that you specify.

Using these tools is a relatively simple way to try out code in development before you are ready for the application to receive data from the actual event data source.

For more information about testing with these tools, see Section 21, "Testing Applications With the Load Generator and csvgen Adapter".

7 Oracle Event Processing IDE for Eclipse and the Event Processing Network

This chapter describes how to use the Oracle Event Processing IDE for Eclipse to develop event processing networks (EPNs), where application components are wired together. The EPN Editor provides a graphical view of the EPN and offers visualization and navigation features to help you build Oracle Event Processing applications.

This chapter includes the following sections:

	
Section 7.1, "Opening the EPN Editor"

	
Section 7.2, "EPN Editor Overview"

	
Section 7.3, "Navigating the EPN Editor"

	
Section 7.4, "Using the EPN Editor"

7.1 Opening the EPN Editor

You can open the EPN Editor from either the project folder or a context or configuration file of an Oracle Event Processing application.

7.1.1 How to Open the EPN Editor from a Project Folder

You can open the EPN Editor from the Eclipse project folder of an Oracle Event Processing application. Alternatively, you can open the EPN Editor from a context or configuration file (see Section 7.1.2, "How to Open the EPN Editor from a Context or Configuration File").

To open the EPN Editor from a project:

	
Launch the Oracle Event Processing IDE for Eclipse.

	
Open your Oracle Event Processing project in the Project Explorer.

	
Right-click the project folder and select Open EPN Editor as Figure 7-1 shows.

Figure 7-1 Opening the EPN Editor from a Project

[image: Description of Figure 7-1 follows]

The EPN Editor opens in a tab named EPN:PROJECT-NAME, where PROJECT-NAME is the name of your Oracle Event Processing project, as Figure 7-2 shows.

Figure 7-2 EPN Editor

[image: Description of Figure 7-2 follows]

7.1.2 How to Open the EPN Editor from a Context or Configuration File

You can open the EPN Editor from a Spring context file or an Oracle Event Processing server configuration file in an Oracle Event Processing application. Alternatively, you can open the EPN Editor from a context or configuration file (see Section 7.1.1, "How to Open the EPN Editor from a Project Folder")

To open the EPN Editor from a context or configuration file:

	
Launch the Oracle Event Processing IDE for Eclipse.

	
Open your Oracle Event Processing project in the Project Explorer.

	
Right-click a context or configuration file and select Open in EPN Editor as Figure 7-3 shows.

Figure 7-3 Opening the EPN Editor from a Context or Configuration File

[image: Description of Figure 7-3 follows]

The EPN Editor opens in a tab named EPN:PROJECT-NAME, where PROJECT-NAME is the name of your Oracle Event Processing project, as Figure 7-4 shows.

Figure 7-4 EPN Editor

[image: Description of Figure 7-4 follows]

7.2 EPN Editor Overview

This section describes the main controls you use to manage the EPN view and how the EPN Editor displays Oracle Event Processing application information, including:

	
Section 7.2.1, "Flow Representation"

	
Section 7.2.2, "Filtering"

	
Section 7.2.3, "Zooming"

	
Section 7.2.4, "Layout"

	
Section 7.2.5, "Showing and Hiding Unconnected Beans"

	
Section 7.2.6, "Printing and Exporting to an Image"

	
Section 7.2.7, "Configuration Badging"

	
Section 7.2.8, "Link Specification Location Indicator"

	
Section 7.2.9, "Nested Stages"

	
Section 7.2.10, "Event Type Repository Editor"

7.2.1 Flow Representation

The primary display in the editor is of the flow inside the application as Figure 7-5 shows.

Figure 7-5 EPN Flow Representation

[image: Description of Figure 7-5 follows]

The EPN is composed of nodes connected by links and streams. Nodes are of various types including adapter, processor, database table, bean, and cache. For more information on the graphic notation the EPN Editor uses on nodes, links, and streams, see:

	
Section 7.2.7, "Configuration Badging"

	
Section 7.2.8, "Link Specification Location Indicator"

7.2.2 Filtering

Although you often specify your EPN in a single assembly file, you may specify an EPN across multiple assembly files.

By default the EPN Editor shows the EPN for a single Oracle Event Processing application bundle with the information combined from all files.

To see the network for a single assembly file simply select that file from the Filter pull-down menu as Figure 7-6 shows.

Figure 7-6 Filtering the EPN by Assembly File

[image: Description of Figure 7-6 follows]

When editing an EPN, the assembly file shown in the EPN Editor filter is the assembly file to which new nodes will be added. If the EPN Editor filter is set to Full EPN then the first assembly file in the filter list will be the file to which new nodes will be added. Existing nodes will be edited in or deleted from the assembly file in which they are defined.

If the assembly file the EPN Editor edits is open in an Eclipse source editor, then the edits will be made to the editor for that open file. In this case, you will need to save changes to the open editor before the changes appear in the file on disk.

If the assembly file the EPN Editor edits is not open in an Eclipse source editor, then the edits are immediately applied to the file on disk.

For more information, see Section 5.3, "Creating EPN Assembly Files".

7.2.3 Zooming

You can change the zoom level of the EPN Editor by entering a percent value into the zoom field or selecting a value from the zoom field pull-down menu as Figure 7-7 shows. To fit the EPN into the current EPN Editor window, select Fit to Window.

Figure 7-7 Zoom Level

[image: Description of Figure 7-7 follows]

7.2.4 Layout

You can optimize and simplify the EPN layout by clicking Layout EPN as Figure 7-8 shows.

Figure 7-8 Optimize Layout

[image: Description of Figure 7-8 follows]

7.2.5 Showing and Hiding Unconnected Beans

You can also filter out <bean> elements with no references in the EPN. Clicking Show/Hide Unconnected Beans will toggle the visibility of such beans as Figure 7-9 shows. For more information, see Section 7.4.3, "Laying Out Nodes".

Figure 7-9 Show/Hide Unconnected Beans

[image: Description of Figure 7-9 follows]

7.2.6 Printing and Exporting to an Image

You can export the EPN Editor view to an image file by clicking Export to Image as Figure 7-10 shows. You can export the image as a .bmp, .gif, .jpg, or .png file.

Figure 7-10 Exporting the EPN as an Image File

[image: Description of Figure 7-10 follows]

You can print the EPN Editor view by clicking Print as Figure 7-11 shows.

Figure 7-11 Printing the EPN

[image: Description of Figure 7-11 follows]

7.2.7 Configuration Badging

Nodes that have configuration information in one of the configuration files in the META-INF/wlevs directories are badged with an indicator on the bottom right as Figure 7-12 shows.

Figure 7-12 Configuration Badging

[image: Description of Figure 7-12 follows]

Nodes with this badge will also have the Go To Configuration Source context menu item.

7.2.8 Link Specification Location Indicator

When working with streams, you can specify a link in the assembly file as a:

	
source element in the downstream node.

	
listener element in the upstream node

A circle on the line indicates where a particular link is specified in the assembly file.

Figure 7-13 shows an example in which the link is specified as a source element on the downstream node outStream so the circle is next to the outStream node. Figure 7-14 shows the corresponding assembly file.

Figure 7-13 Link Source

[image: Description of Figure 7-13 follows]

Figure 7-14 Link Source Assembly File

[image: Description of Figure 7-14 follows]

Figure 7-15 shows an example in which the link is specified as a listener element in the upstream node algoTradingProcessor so the circle is next to the algoTradingProcessor node. Figure 7-16 shows the corresponding assembly file.

Figure 7-15 Link Listener

[image: Description of Figure 7-15 follows]

Figure 7-16 Link Listener Assembly File

[image: Description of Figure 7-16 follows]

7.2.9 Nested Stages

When you define a child node within a parent node, the child node is said to be nested. Only the parent node can specify the child node as a listener. You can drag references from a nested element, but not to them. For more information, see Section 7.4.2, "Connecting Nodes".

Consider the EPN that Figure 7-17 shows. Example 7-1 shows the EPN assembly source for this EPN. Note that the HelloWorldBean is nested within the helloworldOutputChannel. As a result, it appears within a box in the EPN diagram. Only the parent helloworldOutputChannel may specify the nested bean as a listener.

Figure 7-17 EPN With Nested Bean

[image: Description of Figure 7-17 follows]

Example 7-1 Assembly Source for EPN With Nested Bean

<wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
</wlevs:channel>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
</wlevs:channel>

Alternatively, you can define this EPN so that all nodes are nested as Figure 7-18 shows. Example 7-2 shows the EPN assembly source for this EPN. Note that all the nodes are nested and as a result, all nodes appear within a box in the EPN diagram. The helloworldAdapter is the outermost parent node and does not appear within a box in the EPN diagram.

Figure 7-18 EPN With all Nodes Nested

[image: Description of Figure 7-18 follows]

Example 7-2 Assembly Source for EPN With all Nodes Nested

<wlevs:adapter id="helloworldAdapter" class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 <wlevs:listener>
 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener>
 <wlevs:processor id="helloworldProcessor">
 <wlevs:listener>
 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 </wlevs:channel>
 </wlevs:listener>
 </wlevs:processor>
 </wlevs:listener>
 </wlevs:channel>
 </wlevs:listener>
</wlevs:adapter>

7.2.10 Event Type Repository Editor

You can create and edit JavaBean and tuple event types using the event type repository editor.

To open the event type repository editor, click on the Event Types tab in the EPN editor as Figure 7-19 shows.

Figure 7-19 Event Type Repository Editor

[image: Description of Figure 7-19 follows]

For more information, see:

	
Section 9.3.1.1, "How to Create an Oracle Event Processing Event Type as a JavaBean Using the Event Type Repository Editor"

	
Section 9.3.2.2, "How to Create an Oracle Event Processing Event Type as a Tuple Using the Event Type Repository Editor"

For information on the other types of events you can create, see Section 9.1, "Overview of Oracle Event Processing Event Types".

7.3 Navigating the EPN Editor

Because the EPN Editor has a view of the whole project it is a natural place from which to navigate to the various artifacts that make up an Oracle Event Processing application. Oracle Event Processing IDE for Eclipse offers the following features to help navigate the EPN Editor:

	
Section 7.3.1, "Moving the Canvas"

	
Section 7.3.2, "Shortcuts to Component Configuration and EPN Assembly Files"

	
Section 7.3.3, "Hyperlinking"

	
Section 7.3.4, "Context Menus"

	
Section 7.3.5, "Browsing Oracle Event Processing Types"

7.3.1 Moving the Canvas

To move the EPN canvas without using the horizontal and vertical scroll bars, you can use any of the following options:

	
Position the cursor on the canvas, hold down the middle mouse button, and drag.

	
Hold down the space bar and click and drag the canvas.

	
In the Overview view, click in the highlight box and drag.

7.3.2 Shortcuts to Component Configuration and EPN Assembly Files

If a node has a configuration object associated with it, then double-clicking that node will open the component configuration file where that node's behavior is defined.

Otherwise, double-clicking that node will open the EPN assembly file (the Spring context file) where that node is defined.

A configuration badge will be shown on nodes with associated configuration objects as shown in Figure 7-20.

Figure 7-20 Node with Configuration Badge

[image: Description of Figure 7-20 follows]

For more information, see:

	
Section 7.2.7, "Configuration Badging"

	
Section 7.3.3, "Hyperlinking"

7.3.3 Hyperlinking

When editing a component configuration file, EPN assembly file, or Oracle CQL statement, hold down the Ctrl key to turn on hyperlinking. Using hyperlinking, you can easily move between assembly and configuration files and follow reference IDs to jump to bean implementation classes.

This section describes:

	
Section 7.3.3.1, "Hyperlinking in Component Configuration and EPN Assembly Files"

	
Section 7.3.3.2, "Hyperlinking in Oracle CQL Statements"

7.3.3.1 Hyperlinking in Component Configuration and EPN Assembly Files

Figure 7-21 shows a component configuration file with the cursor over the value of a processor element name child element while holding down the Ctrl key. The name value has an underline to indicate it is a hyperlink. Click this link to jump to the corresponding element in the EPN assembly file as Figure 7-22 shows.

Figure 7-21 Component Configuration File: Hyperlinking to EPN Assembly File

[image: Description of Figure 7-21 follows]

Similarly, hovering over the wlevs:processor element id child element value filterFanoutProcessor while holding down the Ctrl key allows you to hyperlink back to the component configuration file.

Figure 7-22 EPN Assembly File: Hyperlinking to Component Configuration File

[image: Description of Figure 7-22 follows]

7.3.3.2 Hyperlinking in Oracle CQL Statements

Figure 7-23 shows a component configuration file with the cursor over an event attribute while holding down the Ctrl key. The fromRate attribute has an underline to indicate it is a hyperlink. Click this link to jump to the corresponding event definition in the EPN assembly file as Figure 7-24 shows.

	
Note:

Hyperlinking in Oracle SQL statements is designed for simple use cases and may not work as expected in more complex implementations.

Figure 7-23 Oracle CQL Statement: Event Schema

[image: Description of Figure 7-23 follows]

Figure 7-24 Corresponding Event Definition in EPN Assembly File

[image: Description of Figure 7-24 follows]

Similarly, you can Ctrl-click the FxQuoteStream channel in the Oracle CQL statement that Figure 7-23 shows to jump to the channel's definition. This is applicable wherever references to external objects are present in a Oracle CQL statement.

7.3.4 Context Menus

Each node on the EPN Editor has a group of context menu items that provide convenient access to various node-specific functions. Right-click the node to display its context menu.

Depending on the node type, you can use the EPN Editor context menu to select from the following options:

	
Go to Configuration Source: opens the corresponding component configuration file and positions the cursor in the appropriate element. You can use hyperlinking to quickly move from this file to the corresponding EPN assembly file. For more information, see Section 7.3.3, "Hyperlinking".

	
Go to Assembly Source: opens the corresponding EPN assembly file and positions the cursor in the appropriate element. You can use hyperlinking to quickly move from this file to the corresponding component configuration file. For more information, see Section 7.3.3, "Hyperlinking"

	
Go to Java Source: opens the corresponding Java source file for this component.

	
Delete: deletes the component from both the EPN assembly file and component configuration file (if applicable).

	
Rename: allows you to change the name of the component. The name is updated in both the EPN assembly file and component configuration file (if applicable).

	
Help: displays context sensitive help for the component.

Note that these navigation options will become disabled when a corresponding source artifact cannot be found. For example, if an adapter does not have a corresponding entry in a configuration XML file, its Go to Configuration Source menu item will be greyed out.

7.3.5 Browsing Oracle Event Processing Types

A typical Oracle Event Processing project contains many instances of Oracle Event Processing types such as adapters, channels, processors, event beans. In a large, complex Oracle Event Processing project, it can be a challenge to locate a particular instance. The Oracle Event Processing IDE for Eclipse provides an Oracle Event Processing type browser that you can use to quickly locate instances of any Oracle Event Processing type.

7.3.5.1 How to Browse Oracle Event Processing Types

You can open the Oracle Event Processing type browser using the keyboard short cut Ctrl-Alt-T.

To browse Oracle Event Processing types:

	
Open an Oracle Event Processing project.

In the following procedure, consider the Oracle Event Processing project that Figure 7-25 shows. This is based on the Oracle Event Processing foreign exchange example. For more information on this example, see Section 2.8, "Foreign Exchange (FX) Example".

Figure 7-25 Example Oracle Event Processing EPN

[image: Description of Figure 7-25 follows]

	
Type the keyboard short cut Ctrl-Alt-T.

The Oracle Event Processing type browser appears as Figure 7-26 shows.

Figure 7-26 Oracle Event Processing Type Browser

[image: Description of Figure 7-26 follows]

	
Configure the Oracle Event Processing Type dialog as shown in Table 7-1.

Table 7-1 Oracle Event Processing Type Dialog

	Attribute	Description
	
Select an item to open

	
Specify a filter to match the names of the items you wan to find.

Use the ? wildcard for any single character and the * wildcard for any string of two or more characters.

	
Matching items

	
The list of Oracle Event Processing type instances whose name matches the filter you specified.

By default, the status line below the Matching items list shows the fully qualified path to the selected item in the Select an item to open list. To toggle status line display, click on the pull-down menu in the right hand corner and select Show Status Line.

	
Select a type in the Matching Items list and click OK.

The type is opened in the source file in which it is defined. For example, selecting FilterAsia from the Matching Items list and clicking OK opens the com.oracle.cep.sample.fx.content.xml EPN assembly file in which this processor is defined as Figure 7-27 shows.

Figure 7-27 Opening the FilterAsia EPN Assembly File

[image: Description of Figure 7-27 follows]

To navigate to the corresponding component configuration file as Figure 7-28 shows, Ctrl-click the FilterAsia id attribute value.

Figure 7-28 Opening the FilterAsia Component Configuration File

[image: Description of Figure 7-28 follows]

For more information on hyperlinking, see Section 7.3.3, "Hyperlinking".

7.4 Using the EPN Editor

The EPN Editor allows you to create and edit an application's EPN using actions on the editor surface. Most actions in the EPN Editor result in edits to an assembly file in that application. You can use a single EPN assembly file or multiple EPN assembly files (for more information, see Section 7.2.2, "Filtering").

The following sections describe EPN Editor editing tasks, including:

	
Section 7.4.1, "Creating Nodes"

	
Section 7.4.2, "Connecting Nodes"

	
Section 7.4.3, "Laying Out Nodes"

	
Section 7.4.4, "Renaming Nodes"

	
Section 7.4.5, "Deleting Nodes"

For more information, see:

	
Section 5.1, "Oracle Event Processing Project Overview"

	
Section 7.2, "EPN Editor Overview"

	
Section 7.1, "Opening the EPN Editor"

	
Section 7.3, "Navigating the EPN Editor"

7.4.1 Creating Nodes

When adding new nodes to an EPN using the EPN editor, a new node will appear at the location of the mouse click that was used to show the EPN Editor context menu. You can create any of the nodes that Table 7-2 lists.

Table 7-2 EPN Editor Icons

	Node	Description
	[image: Adapter icon]
	
Adapter: a node that interfaces an event data source with the EPN or interfaces the EPN with an event data sink.

For more information, see:

	
Section 7.4.1.2, "How to Create an Adapter Node"

	
Chapter 11, "Integrating the Java Message Service"

	
Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

	
Chapter 15, "Integrating an External Component Using a Custom Adapter"

	
Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter"

	
[image: Channel icon]

	
Channel: a node that conveys events between an event data source and an event data sink.

For more information, see:

	
Section 7.4.1.1, "How to Create a Basic Node"

	
Chapter 10, "Connecting EPN Stages Using Channels"

	
[image: Processor icon]

	
Processor: a node that executes Oracle CQL or EPL rules on the event data offered to it by one or more channels.

For more information, see:

	
Section 7.4.1.3, "How to Create a Processor Node"

	
Chapter 17, "Querying an Event Stream with Oracle CQL"

	
Chapter 19, "Querying an Event Stream with Oracle EPL"

	
[image: Event Bean icon]

	
Event Bean: a node similar to a standard Spring bean except that it can be managed by the Oracle Event Processing management framework and can actively use the capabilities of the Oracle Event Processing server container.

For more information, see:

	
Section 7.4.1.1, "How to Create a Basic Node"

	
Chapter 16, "Handling Events with Java"

	
[image: Bean icon]

	
Spring Bean: a Plain Old Java Object (POJO) node that consumes events. A Spring bean is managed by the Spring framework.

For more information, see:

	
Section 7.4.1.1, "How to Create a Basic Node"

	
Chapter 16, "Handling Events with Java"

	
[image: Cache icon]

	
Cache: a node that provides a temporary storage area for events, created exclusively to improve the overall performance of your Oracle Event Processing application.

For more information, see:

	
Section 7.4.1.1, "How to Create a Basic Node"

	
Chapter 13, "Integrating a Cache"

	
[image: Table icon]

	
Table: a node that connects a relational database table to the EPN as an event data source.

For more information, see:

	
Section 7.4.1.1, "How to Create a Basic Node"

	
Section 17.3, "Configuring an Oracle CQL Processor Table Source"

The user may not reposition the nodes on the EPN Editor. To refresh the layout of the nodes on the EPN Editor, click the Layout EPN button on the EPN Editor toolbar. For more information, see Section 7.4.3, "Laying Out Nodes".

When a child node is nested within a parent node, its icon appears within a box. For more information, see Section 7.2.9, "Nested Stages".

7.4.1.1 How to Create a Basic Node

Basic nodes include beans, caches, channels, event beans, and tables.

For information on how to create other nodes, see Section 7.4.1, "Creating Nodes".

To create a basic node:

	
Open the EPN Editor (see Section 7.1, "Opening the EPN Editor").

	
Right-click on an empty portion of the EPN Editor surface and select New from the context menu as Figure 7-29 shows.

Figure 7-29 Creating a Basic Node

[image: Description of Figure 7-29 follows]

	
Select the type of node you want to create.

The EPN Editor edits the source file indicated in the EPN Editor filter and the EPN Editor displays the new EPN node. For most nodes, a default ID is chosen and the new node is immediately opened for rename as Figure 7-30 shows.

Figure 7-30 New Basic Node

[image: Description of Figure 7-30 follows]

To rename the node, see Section 7.4.4, "Renaming Nodes".

To reposition the node and update the EPN Editor layout, see Section 7.4.3, "Laying Out Nodes".

	
Optionally, configure additional node options.

See:

	
Chapter 10, "Connecting EPN Stages Using Channels"

	
Section 17.3, "Configuring an Oracle CQL Processor Table Source"

	
Chapter 13, "Integrating a Cache"

	
Chapter 15, "Integrating an External Component Using a Custom Adapter"

	
Chapter 16, "Handling Events with Java"

	
Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter"

7.4.1.2 How to Create an Adapter Node

This section describes how to create an adapter using the EPN Editor, including:

	
JMS adapters (in-bound or out-bound)

	
HTTP publish-subscribe server adapters (publishing or subscribing)

For information on how to create other nodes, see Section 7.4.1, "Creating Nodes".

To create an adapter node:

	
Open the EPN Editor (see Section 7.1, "Opening the EPN Editor").

	
Right-click on an empty portion of the EPN Editor surface and select New from the context menu as Figure 7-31 shows.

Figure 7-31 Creating an Adapter Node

[image: Description of Figure 7-31 follows]

	
Select node type Adapter.

The New Adapter wizard appears as shown in Figure 7-32.

Figure 7-32 New Adapter Wizard

[image: Description of Figure 7-32 follows]

	
Configure the New Adapter Wizard - Page 1 as shown in Table 7-3.

Table 7-3 New Adapter Wizard - Page 1

	Attribute	Description
	
Adapter ID

	
Specifies the ID of the adapter EPN element and the name of the associated adapter configuration element.

	
Provider

	
Select the adapter provider type from the pull-down menu for an adapter already defined in the Oracle Event Processing component configuration schema.

Select one of:

	
jms-inbound: JMS in-bound adapter.

	
jms-outbound: JMS out-bound adapter.

	
httppub: HTTP publish-subscribe adapter for publishing.

	
httpsub: HTTP publish-subscribe adapter for subscribing.

	
Class

	
Specify the fully qualified Java class name of a custom adapter.

NOTE: If you are using a custom adapter factory, you must add the wlevs:factory element manually. For more information, see Chapter 15, "Integrating an External Component Using a Custom Adapter".

	
Create a new file

	
Creates the adapter component configuration in a new file.

The new file is created in the application's META-INF/wlevs directory with the same name as the adapter ID.

	
Use an existing configuration file

	
Creates the adapter component configuration in an existing configuration file.

The new adapter configuration element is appended to the configurations in the selected file.

	
Proceed depending on how you configured the adapter implementation:

	
If you selected Class, Proceed to step 8.

	
If you selected Provider, proceed to step 6.

	
Click Next.

The provider-specific New Adapter Wizard page appears.

	
Configure the provider-specific New Adapter Wizard page as the following figures show:

	
Figure 7-33, "New Adapter Wizard - jms-inbound"

See Section 11.6.1, "JMS Inbound Adapter Component Configuration".

	
Figure 7-34, "New Adapter Wizard - jms-outbound"

See Section 11.6.2, "JMS Outbound Adapter Component Configuration".

	
Figure 7-35, "New Adapter Wizard - httppub"

See Section 12.5.1, "HTTP Pub-Sub Adapter for Publishing Component Configuration".

	
Figure 7-36, "New Adapter Wizard - httpsub"

See Section 12.5.2, "HTTP Pub-Sub Adapter for Subscribing Component Configuration".

Figure 7-33 New Adapter Wizard - jms-inbound

[image: Description of Figure 7-33 follows]

Figure 7-34 New Adapter Wizard - jms-outbound

[image: Description of Figure 7-34 follows]

Figure 7-35 New Adapter Wizard - httppub

[image: Description of Figure 7-35 follows]

Figure 7-36 New Adapter Wizard - httpsub

[image: Description of Figure 7-36 follows]

	
Click Finish.

	
Use the new adapter node on the EPN.

The EPN Editor creates the adapter configuration in the file you specified in the New Adapter wizard, edits the source file indicated in the EPN Editor filter, and displays the new EPN node as Figure 7-37 shows.

Figure 7-37 New Adapter Node

[image: Description of Figure 7-37 follows]

To rename the node, see Section 7.4.4, "Renaming Nodes".

To reposition the node and update the EPN Editor layout, see Section 7.4.3, "Laying Out Nodes".

	
Optionally, configure additional node options.

For more information, see:

	
Chapter 11, "Integrating the Java Message Service"

	
Chapter 12, "Integrating an HTTP Publish-Subscribe Server"

7.4.1.3 How to Create a Processor Node

This section describes how to create a processor node using the EPN Editor. For information on creating other node types, see Section 7.4.1.1, "How to Create a Basic Node".

When deploying an Oracle Event Processing application with a wlevs:processor node, other nodes in an EPN may reference that processor only if a processor configuration exists for that processor. Processor configurations are defined in Oracle Event Processing application configuration files. See Section 1.4.2, "Overview of Component Configuration Files" for more information about Oracle Event Processing configuration files.

To create a processor node:

	
Open the EPN Editor (see Section 7.1, "Opening the EPN Editor").

	
Right-click on an empty portion of the EPN Editor surface and select New from the context menu as Figure 7-38 shows.

Figure 7-38 Creating a Processor Node

[image: Description of Figure 7-38 follows]

	
Select node type Processor.

The New Processor dialog appears as shown in Figure 7-39.

Figure 7-39 New Processor Dialog

[image: Description of Figure 7-39 follows]

	
Configure the New Processor dialog as shown in Table 7-4.

Table 7-4 New Processor Dialog

	Attribute	Description
	
Processor ID

	
Specifies the ID of the processor EPN element and the name of the associated processor configuration element

	
Create a new file

	
Creates the processor configuration in a new file.

The new file is created in the application's META-INF/wlevs directory with the same name as the processor ID.

	
Use an existing configuration file

	
Creates the processor configuration in an existing configuration file.

The new processor configuration element is appended to the configurations in the selected file.

	
Click OK.

The EPN Editor creates the processor configuration in the file you specified in the New Processor dialog, edits the source file indicated in the EPN Editor filter, and displays the new EPN node as Figure 7-40 shows.

Figure 7-40 New Processor Node

[image: Description of Figure 7-40 follows]

To rename the node, see Section 7.4.4, "Renaming Nodes".

To reposition the node and update the EPN Editor layout, see Section 7.4.3, "Laying Out Nodes".

	
Note:

In Oracle Event Processing, you must use a channel to connect a push event source to an Oracle CQL processor and to connect an Oracle CQL processor to an event sink. For more information, see Section 10.1.2, "Channels Representing Streams and Relations".

	
Optionally, configure additional processor options.

See:

	
Chapter 17, "Querying an Event Stream with Oracle CQL"

	
Chapter 19, "Querying an Event Stream with Oracle EPL"

7.4.2 Connecting Nodes

The nodes in the EPN represent the flow of events through an Event Processing Network of an Oracle Event Processing application. When a node may forward events to another node in the EPN, the EPN Editor allows you to connect that node visually by dragging a line from the source node to the destination node.

7.4.2.1 How to Connect Nodes

This section describes how to connect nodes in the EPN Editor.

To connect nodes:

	
Open the EPN Editor (see Section 7.1, "Opening the EPN Editor").

	
Select the source of events and drag to the target of the event flow.

	
If a connection is allowed, a plug icon is shown at the target end as Figure 7-41 shows.

Figure 7-41 Connecting Nodes: Connection Allowed

[image: Description of Figure 7-41 follows]

	
If the connection is not allowed, a forbidden icon is shown at the target end as Figure 7-42 shows.

Figure 7-42 Connecting Nodes: Connection Forbidden

[image: Description of Figure 7-42 follows]

Not all nodes may be a target of event flow. For example, connection is forbidden if:

	
A node does not define a valid identifier.

	
A node is nested (for more information, see Section 7.2.9, "Nested Stages").

	
Release the mouse button to complete the connection.

When the connection is made, the EPN Editor updates the EPN assembly file. For example:

	
When you connect an adapter to a channel or a channel to a processor or event bean, the EPN Editor adds a wlevs:listener element to the source node with a reference to the target node by ID.

	
When you connect a table to a processor, the EPN Editor adds a wlevs:table-source element to the target processor node that references the source table.

For example, suppose you connect the adapter to the channel, and the channel to the processor shown in Figure 7-43.

Figure 7-43 Valid Connections

[image: Description of Figure 7-43 follows]

Figure 7-44 shows the EPN assembly file before connection.

Figure 7-44 EPN Assembly File: Before Connection

[image: Description of Figure 7-44 follows]

Figure 7-45 shows the EPN assembly file after connection.

Figure 7-45 EPN Assembly File: After Connection

[image: Description of Figure 7-45 follows]

7.4.3 Laying Out Nodes

Certain EPN Editor actions will use the location of the action as the location of the rendered result. For example, when adding new nodes to an EPN using the EPN editor, a new node will appear at the location of the mouse click that was used to show the EPN Editor context menu. The user may not reposition the nodes on the EPN Editor. To refresh the layout of the nodes on the EPN Editor, click the Layout EPN button on the EPN Editor toolbar as Figure 7-46 shows.

Figure 7-46 Laying Out Nodes

[image: Description of Figure 7-46 follows]

For more information, see Section 7.2.4, "Layout".

7.4.4 Renaming Nodes

Most node types support a rename operation that will change all references to the node across both assembly and configuration XML files. You can select Rename from the node's context menu as Figure 7-47 shows.

Figure 7-47 Renaming Nodes

[image: Description of Figure 7-47 follows]

7.4.5 Deleting Nodes

You may delete most nodes and connections visible on the EPN Editor using the node's context menu or the Delete key:

	
Using the keyboard, select the object you want to delete and then click the Delete key.

	
Using the context menu, right-click on the object to show the context menu, then select Delete as Figure 7-48 shows.

Figure 7-48 Deleting Nodes

[image: Description of Figure 7-48 follows]

When deleting a node, the incoming and outgoing connections are also deleted. For example, Figure 7-49 shows the EPN and Figure 7-51 shows the assembly file before deleting the channel node named stream.

Figure 7-49 EPN Before Deleting a Channel Node

[image: Description of Figure 7-49 follows]

Figure 7-50 Assembly File Before Deleting a Channel Node

[image: Description of Figure 7-50 follows]

Figure 7-51 shows the EPN and Figure 7-52 shows the assembly file after deleting this channel node.

Figure 7-51 EPN After Deleting a Channel Node

[image: Description of Figure 7-51 follows]

Figure 7-52 Assembly File After Deleting a Channel Node

[image: Description of Figure 7-52 follows]

	
Note:

If a bean or other anonymous element is deleted, then the object containing that object is deleted too. For example, given a bean within a wlevs:listener element, then deleting the bean will delete the listener element too.

9 Defining and Using Event Types

This chapter describes how to define the Oracle Event Processing event types you will need to carry event data through an event processing network, including how to implement and configure event types and how to access the event type repository.

Through the event types you define, your code has access to event data. As described in this chapter, you define event types that are based on one of several data types such as JavaBean classes you write. You add your event types to your application by configuring them as part of the event type repository. Although event types are typically added to the repository through configuration XML, you can also write code to access the repository programmatically.

This chapter includes the following sections:

	
Section 9.1, "Overview of Oracle Event Processing Event Types"

	
Section 9.2, "Designing Event Types"

	
Section 9.3, "Creating Event Types"

	
Section 9.4, "Accessing the Event Type Repository"

	
Section 9.5, "Sharing Event Types Between Application Bundles"

9.1 Overview of Oracle Event Processing Event Types

An event type is how you represent event data in an Oracle Event Processing application. An event is structured data related to something that occurred at a particular time. For example, if your application is designed to react to changes in a server room's environment, event data could include snapshot information collected by a device that monitors the environment. Or if your application pays attention to trends and patterns related to stock market trades, event data could be values corresponding to a trade, including what stock was traded, what the trade volume was, what the share price was, and so on.

Event data entering your application can arrive in any of a wide variety of forms. By creating an event type to represent the data inside the application, you create a predictable way for your application's logic to work with the data. Because event types are the transport vehicles for event data, defining them is an essential part of building an Oracle Event Processing application.

For a hands-on look at creating and using event types, take a look at Section 8.3, "Create an Event Type to Carry Event Data".

9.1.1 Where Event Type Instances are Used

Instances of event types you create carry event data through the event processing network (EPN) of your application. Keep in mind how you're going to be using the events in code to make better decisions about designing and implementing event types.

Event type instances are used by either the Oracle Event Processing server or your own application logic. Typically, the Oracle Event Processing server creates an instance of the type and binds the data to it. However, for more control over how the event type instance is created, you can create an event type builder. For more information, see Section 9.3.1.5, "Controlling Event Type Instantiation with an Event Type Builder Class".

The following lists the primary places where an event type instance is used:

	
When incoming event data arrives from an external source, it is bound to an event type instance.

	
When an Oracle CQL processor executes a query and outputs a result, an instance of the event type is created for carrying result event data to a stage that is downstream in the EPN.

	
In your application's Java logic, such as Java code for handling events, you can create new event type instances and send them to a stage that is downstream in the EPN. Java code that creates events is known as an event source. For more information about implementing event sources, see Section 16.2.2, "Implementing an Event Source".

9.1.2 High-Level Process for Creating Event Types

At a high level, the process for creating an event type is a matter of identifying the event data that the event type will need to carry, then implement the type as one of the data types supported by Oracle Event Processing.

Here are high-level steps:

	
Design the event type. Essentially, this is a matter of identifying the set of event data that's relevant for your application, then choosing how that data should be represented by an event type. For more information, see Section 9.2, "Designing Event Types".

	
Create the event type. Once you know how data should be represented by the type, you can create the type in one of three ways: by implementing it as a JavaBean class, by configuring it as a tuple, or by configuring it as a java.util.Map. You might also want to implement an event type builder for more control over how the type is instantiated. For more information, see Section 9.3, "Creating Event Types".

9.2 Designing Event Types

When you design an event type, you map raw event data to the implementation options that Oracle Event Processing supports.

Designing an event includes the following tasks:

	
Identify the structure of event data that the event type will represent. This could be the structure of raw event data coming from an external source such as a monitor in a server room. It could also be a data structure required by a downstream stage or component to which your code will send instances of the type. For more information, see Section 9.2.1, "Identifying the Structure of Event Data".

	
Choose the data type that will be the basis of the event type you're creating. Your event type will be based on one of three data types supported by Oracle Event Processing: a JavaBean class, a tuple, or a java.util.Map instance. For more information, see Section 9.2.2, "Choosing a Data Type for an Event Type".

	
Keeping in mind the planned uses for the event type, and being aware of potential constraints imposed by those uses. For more information, see Section 9.2.3, "Constraints on Design of Event Types".

Finally, note that when configuring event types in the application's EPN XML file, you can mix type usage. For more information, see Section 9.2.4, "Mixing Use of Event Type Data Types".

9.2.1 Identifying the Structure of Event Data

An early task (though typically a simple one) in defining an event processing network is clarifying the structure of event data, then defining the form in which that data will be handled inside the EPN. The event type you create will include a property for each piece of event data your application cares about. Each of those properties will have its own data type.

Before you can create an event type, use a sample of the event data to define the type's properties and their data types. For an example, consider a very simple set of event data coming from a stock trade. Represented as a row of comma-separated values, the trade event data might look as follows:

ORCL,14.1,6000

The following table illustrates how you could separate the event data into its distinct values, defining an event type property for each.

	Sample Data Value	Role	Type of Data	Event Type

Property Name
	
ORCL

	
stock symbol

	
character

	
symbol

	
14.1

	
share price

	
number

	
price

	
6000

	
volume of shares traded

	
number

	
volume

Regardless of how you create your event type, you'll need to have a sense of its properties and their data types. However, how you specify those property data types will vary depending on the data type on which you base your event type. For example, if you implement a JavaBean class as your event type, data types for the three values specified in the table would likely be as follows:

	Event Type

Property Name	Java Data Type
	
symbol

	
String

	
price

	
Double

	
volume

	
Integer

The data types would be different if you were creating your event type as a tuple or java.util.Map. For more information, see Section 9.2.2, "Choosing a Data Type for an Event Type".

9.2.2 Choosing a Data Type for an Event Type

Event types you create are based on one of three data types supported by Oracle Event Processing: a JavaBean class, a tuple, or a java.util.Map.

Each data type has its own benefits and limitations, but the best practice is to create your event type as a JavaBean class, implementing event type properties as accessor methods. With a JavaBean, you will have greater flexibility to deal with event types as part of your application logic, as well as simplified integration with existing systems. With an event type implemented as a JavaBean class, you can also (if you like) closely control event type instantiation by implementing an event type builder class.

When you create your event type as a tuple or java.util.Map, you do so by defining the event type in the EPN assembly file, specifying its properties declaratively. Unless you explicitly declare that a java.util.Map should be used, Oracle Event Processing will use the tuple type as the default.

For the benefits and limitations of each supported data type, see Table 9-1, "Data Types for Event Types":

Table 9-1 Data Types for Event Types

	Data Type	Description	Benefits and Limitations
	
JavaBean

	
A Java class written to JavaBean conventions. In addition to being used by logic you write, the type's accessor ("get" and "set") methods will be used by the Oracle Event Processing server and CQL processor to retrieve and set event property values.

For more information, see Section 9.3.1, "Creating an Oracle Event Processing Event Type as a JavaBean".

	
Benefits: This type is the best practice because it provides the greatest flexibility and ease of use for application logic that handles events. You access property values directly through accessor methods. A JavaBean class is more likely to be useful when integrating your Oracle Event Processing application with other systems. For control over how the type is instantiated, you can implement an event type builder class.

Limitations: Requires writing a JavaBean class, rather than simply declaring the event type in a configuration file. Oracle CQL does not support JavaBean properties in GROUP BY, PARTITION BY, and ORDER BY, although you can work around this by using an Oracle CQL view.

	
Tuple

	
A structure that you create and register declaratively in the EPN assembly file.

For more information, see Section 9.3.2, "Creating an Oracle Event Processing Event Type as a Tuple".

	
Benefits: Requires no Java programming to create the event type. An event type is created by declaring it in the EPN assembly file. Useful for quick prototyping.

Limitations: Using instances of this type in Java application logic requires programmatically accessing the event type repository to get the instance's property values. A tuple is also unlikely to be useful when integrating the Oracle Event Processing with other systems.

	
java.util.Map

	
Based on an instance of java.util.Map. You don't implement or extend the Map interface. Rather, you specify that the interface should be used when configuring the event type in the EPN assembly file. If you write Java code to access the type instance, you treat it as a Map instance.

For more information, see Section 9.3.3, "Creating an Oracle Event Processing Event Type as a java.util.Map".

	
Benefits: Requires no Java programming to create the type. An event type is created by declaring it in the EPN assembly file. Useful for quick prototyping.

Limitations: Does not perform as well as other types.

For more detailed information on how Oracle CQL handles and supports various data types, see:

	
"Datatypes" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

9.2.3 Constraints on Design of Event Types

Depending on how you plan to use an event type, you might need to keep in mind certain constraints. For example, you might need to limit the data types of its properties or how you set values of certain attributes when configuring the event type.

The following sections describe areas of constraints on event type design:

	
Section 9.2.3.1, "Constraints on Event Types for Use With the csvgen Adapter"

	
Section 9.2.3.2, "Constraints on Event Types for Use With a Database Table Source"

9.2.3.1 Constraints on Event Types for Use With the csvgen Adapter

When you declaratively specify the properties of an event type for use with the csvgen adapter, you may only use the data types that Table 9-2 describes.

Table 9-2 csvgen Adapter Types

	Type	Usage
	
char

	
Single or multiple character values. Use for both char and java.lang.String values.

Optionally, you may use the length attribute to specify the maximum length of the char value as Example 9-6 shows for the property with name id. The default length is 256 characters. If you need more than 256 characters you should specify an adequate length.

	
int

	
Numeric values in the range that java.lang.Integer specifies.

	
float

	
Numeric values in the range that java.lang.Float specifies.

	
long

	
Numeric values in the range that java.lang.Long specifies.

	
double

	
Numeric values in the range that java.lang.Double specifies.

For more information, see:

	
Chapter 21, "Testing Applications With the Load Generator and csvgen Adapter"

9.2.3.2 Constraints on Event Types for Use With a Database Table Source

You can use a relational database table as a source of event data, binding data from the table to your event type instance at runtime. When your event data source is a database table, you must follow the guidelines represented by the following tables.

When an event type will receive data from a database table, a property configured for the type will each receive data from a particular column in the database. When configuring the event type, note that its property child elements have attributes that have particular meanings and value constraints, as described in Table 9-3, "EPN Assembly File event-type Element Property Attributes".

Table 9-3 EPN Assembly File event-type Element Property Attributes

	Attribute	Description
	
name

	
The name of the table column you want to access as specified in the SQL create table statement. You do not need to specify all columns.

	
type

	
The Oracle Event Processing Java type from Table 9-4 that corresponds to the column's SQL data type.

	
length

	
The column size as specified in the SQL create table statement.

When you specify the properties of an event type for use with a relational database table, you must observe the additional JDBC type restrictions listed in Table 9-4, "SQL Column Types and Oracle Event Processing Type Equivalents".

Table 9-4 SQL Column Types and Oracle Event Processing Type Equivalents

	SQL Type	Oracle Event Processing Java Type	com.bea.wlevs.ede.api.Type	Description
	
ARRAY

	
[Ljava.lang.Object

	
	
Array, of depth 1, of java.lang.Object.

	
BIGINT

	
java.math.BigInteger

	
bigint

	
An instance of java.math.BigInteger.

	
BINARY

	
byte[]

	
	
Array, of depth 1, of byte.

	
BIT

	
java.lang.Boolean

	
boolean

	
An instance of java.lang.Boolean.

	
BLOB

	
byte[]

	
	
Array, of depth 1, of byte.

	
BOOLEAN

	
java.lang.Boolean

	
boolean

	
An instance of java.lang.Boolean.

	
CHAR

	
java.lang.Character

	
char

	
An instance of java.lang.Character.

	
CLOB

	
byte[]

	
	
Array, of depth 1, of byte.

	
DATE

	
java.sql.Date

	
timestamp

	
An instance of java.sql.Date.

	
DECIMAL

	
java.math.BigDecimal

	
	
An instance of java.math.BigDecimal.

	
BINARY_DOUBLEFoot 1 or DOUBLEFoot 2

	
java.lang.Double

	
double

	
An instance of java.lang.Double

	
BINARY_FLOATFootref 1 or FLOATFootref 2

	
java.lang.Double

	
float

	
An instance of java.lang.Double

	
INTEGER

	
java.lang.Integer

	
int

	
An instance of java.lang.Integer.

	
JAVA_OBJECT

	
java.lang.Object

	
object

	
An instance of java.lang.Object.

	
LONGNVARCHAR

	
char[]

	
char

	
Array, of depth 1, of char.

	
LONGVARBINARY

	
byte[]

	
	
Array, of depth 1, of byte.

	
LONGVARCHAR

	
char[]

	
char

	
Array, of depth 1, of char.

	
NCHAR

	
char[]

	
char

	
Array, of depth 1, of char.

	
NCLOB

	
byte[]

	
	
Array, of depth 1, of byte.

	
NUMERIC

	
java.math.BigDecimal

	
	
An instance of java.math.BigDecimal.

	
NVARCHAR

	
char[]

	
char

	
Array, of depth 1, of char.

	
OTHER

	
java.lang.Object

	
object

	
An instance of java.lang.Object.

	
REAL

	
java.lang.Float

	
float

	
An instance of java.lang.Float

	
SMALLINT

	
java.lang.Integer

	
int

	
An instance of java.lang.Integer.

	
SQLXML

	
xmltype

	
xmltype

	
For more information on processing XMLTYPE data in Oracle CQL, see "SQL/XML (SQLX)" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

	
TIME

	
java.sql.Time

	
	
An instance of java.sql.Time.

	
TIMESTAMP

	
java.sql.Timestamp

	
timestamp

	
An instance of java.sql.Timestamp.

	
TINYINT

	
java.lang.Integer

	
int

	
An instance of java.lang.Integer.

	
VARBINARY

	
byte[]

	
	
Array, of depth 1, of byte.

	
VARCHAR

	
char[]

	
char

	
Array, of depth 1, of char.

Footnote 1 Oracle SQL.

Footnote 2 Non-Oracle SQL.

For more information, see:

	
Section 17.3, "Configuring an Oracle CQL Processor Table Source"

9.2.4 Mixing Use of Event Type Data Types

When defining an event type in the EPN assembly file, you can use a JavaBean-based event type as another event type's property data type.

Example 9-1 shows a tuple event type Student that defines its address property as JavaBean event type Address.

Example 9-1 Event Type Repository

<event-type-repository>
 <event-type name="Student">
 <property name="name" type="char"/>
 <property name="address" type="Address"/>
 </event-type>

 <event-type name="Address">
 <class-name>test.Address</class-name>
 </event-type>
<event-type-repository>

9.3 Creating Event Types

Event types define the event properties that provide access to event data within Oracle Event Processing applications. You then use these event types in the adapter and Java code, as well as in the Oracle CQL rules.

When you create an event type, you choose one of the three supported data types as a base for the type you're creating. The best practice is that you can create the type as a JavaBean class, writing a little Java code to handle event data in properties. You can also create the type declaratively as a tuple or java.util.Map.

Before you create types, you might want to see Section 9.2, "Designing Event Types" for design considerations.

This section describes:

	
Section 9.3.1, "Creating an Oracle Event Processing Event Type as a JavaBean"

	
Section 9.3.2, "Creating an Oracle Event Processing Event Type as a Tuple"

	
Section 9.3.3, "Creating an Oracle Event Processing Event Type as a java.util.Map"

9.3.1 Creating an Oracle Event Processing Event Type as a JavaBean

Creating an event type as a JavaBean gives you the greatest level of flexibility when using instances of the type in your application logic. As a result, using a JavaBean class is the best practice for creating an event type.

	
Note:

Oracle CQL does not support expressions in GROUP BY, PARTITION BY, and ORDER BY. As a result, these do not support Java properties and will fail. When those features are needed, use Oracle CQL views as a workaround.

Part of the flexibility in using a JavaBean event type comes from the two different ways to have the type instantiated: by the server or by an event type builder class that you provide. By providing an event type builder class as an instance factory, you can create the instance yourself, controlling how they are created, including how event data values are bound to JavaBean properties. For more information, see Section 9.3.1.5, "Controlling Event Type Instantiation with an Event Type Builder Class".

When creating an event type as a JavaBean class, use the following guidelines to ensure the best integration with the Oracle Event Processing system:

	
Create an empty-argument public constructor with which the Oracle Event Processing server can instantiate the class.

	
For each event property, implement public accessors (get and set methods) following JavaBean conventions. These will be used by the server to access event property values. When you define an event type as a JavaBean, you may use any Java type for its properties.

If you're unfamiliar with JavaBean conventions, see the JavaBeans Tutorial at http://docs.oracle.com/javase/tutorial/javabeans/ for additional details.

	
Implement the hashCode and equals methods. This optimizes the class for use by the Oracle Event Processing server, which sometimes uses a hash index whose composite key is created from the event type instance hash codes.

If you're using the Eclipse IDE, you can easily implement hashCode and equals methods through the Source context menu for a class after you have added its accessors.

	
Make the class serializable if you intend to cache events in Oracle Coherence.

This topic describes:

	
Section 9.3.1.1, "How to Create an Oracle Event Processing Event Type as a JavaBean Using the Event Type Repository Editor"

	
Section 9.3.1.2, "How to Create an Oracle Event Processing Event Type as a JavaBean Manually"

9.3.1.1 How to Create an Oracle Event Processing Event Type as a JavaBean Using the Event Type Repository Editor

This procedure describes how to create and register an Oracle Event Processing event type as a JavaBean using the Oracle Event Processing IDE for Eclipse event type repository editor. For more information about the Oracle Event Processing IDE for Eclipse, see Example 4-0, "Overview of the Oracle Event Processing IDE for Eclipse".

Alternatively, you can create and register your event type as a JavaBean manually (see Section 9.3.1.2, "How to Create an Oracle Event Processing Event Type as a JavaBean Manually").

To create an Oracle Event Processing event type as a Java Bean using the event type repository editor:

	
Create a JavaBean class to represent your event type.

Be sure to follow the guidelines described in Section 9.3.1, "Creating an Oracle Event Processing Event Type as a JavaBean".

Example 9-2 shows the MarketEvent which is implemented by the com.bea.wlevs.example.algotrading.event.MarketEvent class.

Example 9-2 MarketEvent Class

package com.bea.wlevs.example.algotrading.event;

public final class MarketEvent {
 private final Long timestamp;
 private final String symbol;
 private final Double price;
 private final Long volume;
 private final Long latencyTimestamp;

 public MarketEvent() {}

 public Double getPrice() {
 return this.price;
 }
 public void setPrice(Double price) {
 this.price = price;
 }

 public String getSymbol() {
 return this.symbol;
 }
 public void setSymbol(String symbol) {
 this.symbol = symbol;
 }

 public Long getTimestamp() {
 return this.timestamp;
 }
 public void setTimestamp(Long timestamp) {
 this.timestamp = timestamp;
 }

 public Long getLatencyTimestamp() {
 return this.latencyTimestamp;
 }
 public void setLatencyTimestamp(Long latencyTimestamp) {
 this.latencyTimestamp = latencyTimestamp;
 }

 public Long getVolume() {
 return this.volume;
 }
 public void setVolume(Long volume) {
 this.volume = volume;
 }

 // Implementation for hashCode and equals methods.
}

	
Compile the JavaBean that represents your event type.

	
In the IDE, open the EPN in the EPN editor.

For more information, see Section 7.1, "Opening the EPN Editor".

	
Click the Event Types tab.

	
Click Add Event Type (green plus sign).

A new event is added to the Event Type Definitions list with default name newEvent as Figure 9-1 shows.

Figure 9-1 Event Type Repository Editor - JavaBean Event

[image: Description of Figure 9-1 follows]

	
In the Event Type Definitions list, select newEvent.

The properties of this event appear in the Event Type Details area as Figure 9-1 shows.

	
Enter a name for this event in the Type name field.

	
Click Properties defined in Java bean.

	
Enter the fully qualified class name of your JavaBean class in the Class field.

For example com.bea.wlevs.example.algotrading.event.MarketEvent.

	
Click the Save button in the tool bar (or type CTRL-S).

The event is now in the event type repository.

You can use the event type repository editor:

	
To view the corresponding event type definition in the EPN assembly file, double-click the event type in the Event Type Definitions area.

	
To delete this event, select the event type in the Event Type Definitions area and click Delete Event Type (red x).

9.3.1.2 How to Create an Oracle Event Processing Event Type as a JavaBean Manually

This procedure describes how to create and register an Oracle Event Processing event type as a JavaBean manually.

Alternatively, you can create and register your event type as a JavaBean using the Oracle Event Processing IDE for Eclipse event type repository editor (see Section 9.3.1.1, "How to Create an Oracle Event Processing Event Type as a JavaBean Using the Event Type Repository Editor").

To create an Oracle Event Processing event type as a Java bean manually:

	
Create a JavaBean class to represent your event type.

Follow standard JavaBean programming guidelines. See the JavaBeans Tutorial at http://java.sun.com/docs/books/tutorial/javabeans/ for additional details.

When you design your event, you must restrict your design to the even data types that Section 9.2.4, "Mixing Use of Event Type Data Types" describes.

Example 9-3 shows the MarketEvent which is implemented by the com.bea.wlevs.example.algotrading.event.MarketEvent class.

Example 9-3 MarketEvent Class

package com.bea.wlevs.example.algotrading.event;

public final class MarketEvent {
 private final Long timestamp;
 private final String symbol;
 private final Double price;
 private final Long volume;
 private final Long latencyTimestamp;

 public MarketEvent() {}

 public Double getPrice() {
 return this.price;
 }
 public void setPrice(Double price) {
 this.price = price;
 }

 public String getSymbol() {
 return this.symbol;
 }
 public void setSymbol(String symbol) {
 this.symbol = symbol;
 }

 public Long getTimestamp() {
 return this.timestamp;
 }
 public void setTimestamp(Long timestamp) {
 this.timestamp = timestamp;
 }

 public Long getLatencyTimestamp() {
 return this.latencyTimestamp;
 }
 public void setLatencyTimestamp(Long latencyTimestamp) {
 this.latencyTimestamp = latencyTimestamp;
 }

 public Long getVolume() {
 return this.volume;
 }
 public void setVolume(Long volume) {
 this.volume = volume;
 }

 // Implementation for hashCode and equals methods.
}

	
Compile the JavaBean that represents your event type.

	
Register your JavaBean event type in the Oracle Event Processing event type repository:

	
To register declaratively, edit the EPN assembly file using the wlevs:event-type-repository element wlevs:event-type child element as Example 9-4 shows.

Example 9-4 EPN Assembly File event-type-repository

<wlevs:event-type-repository>
 <wlevs:event-type type-name="MarketEvent">
 <wlevs:class>
 com.bea.wlevs.example.algotrading.event.MarketEvent
 </wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>

	
To register programmatically, use the EventTypeRepository class as Example 9-5 shows.

Example 9-5 Programmatically Registering an Event

EventTypeRepository rep = getEventTypeRepository();
rep.registerEventType(
 "MarketEvent",
 com.bea.wlevs.example.algotrading.event.MarketEvent.getClass()
);

For more information, see Section 9.4, "Accessing the Event Type Repository".

9.3.1.3 Using JavaBean Event Type Instances in Java Code

Reference the event types as standard JavaBeans in the Java code of the adapters and business logic in your application.

The following code implements the onEvent method from an event sink class. For more information on event sinks, see Section 16.2.1, "Implementing an Event Sink".

public void onInsertEvent(Object event)
 throws EventRejectedException {
 if (event instanceof MarketEvent){
 MarketEvent marketEvent = (MarketEvent) event;
 System.out.println("Price: " + marketEvent.getPrice());
 }
}

9.3.1.4 Using JavaBean Event Type Instances in Oracle CQL Code

The following Oracle CQL rule shows how you can reference the MarketEvent in a SELECT statement. It assumes an upstream channel called marketEventChannel whose event type is MarketEvent.

<query id="helloworldRule">
 <![CDATA[SELECT MarketEvent.price FROM marketEventChannel [NOW]]]>
</query>

Also, with property data types implemented as JavaBeans, Oracle CQL code can get values within those properties by using standard JavaBean-style property access.

For example, the following configuration snippet declares a StudentType event type that is implemented as a JavaBean class. The school.Student class is a JavaBean with an address property that is itself an Address JavaBean class. The following query suggests how you might access values of the Address object underlying the address property. This query selects student addresses whose postal code begins with "97".

<query id="studentAddresses">
 SELECT
 student.address
 FROM
 StudentType as student
 WHERE
 student.address.postalCode LIKE '^97'
</query>

9.3.1.5 Controlling Event Type Instantiation with an Event Type Builder Class

You can create an event type builder to have more control over how event type instances are created. For example, using an event type builder you can ensure that the properties of a configured event are correctly bound to the properties of an event type class, such as one you have implemented as a JavaBean. You would need an event type builder in a case, for example, where event property names assumed in CQL code are different from the names of properties declared in the class.

For example, assume the event type has a firstname property, but the CQL rule that executes on the event type assumes the property is called fname. Assume also that you cannot change either the event type class (because you are using a shared event class from another bundle, for example) or the CQL rule to make them compatible with each other. In this case you can use an event type builder factory to change the way the event type instance is created so that the property is named fname rather than firstname.

At runtime, an event type builder class receives property values from the Oracle Event Processing server and uses those values to create an instance of the event type class you created. Your event type builder then returns the instance to the server. In this way, your builder class is in effect an intermediary, instantiating event types in cases where the server is unable to determine how to map configured properties to event type properties.

Creating and using an event type builder involves implementing the builder class and configuring a JavaBean event type to use the builder, as described in the following sections:

	
Section 9.3.1.5.1, "Implementing an Event Type Builder Class"

	
Section 9.3.1.5.2, "Configuring an Event Type that Uses an Event Type Builder"

9.3.1.5.1 Implementing an Event Type Builder Class

When you program the event type builder factory, you must implement the EventBuilder.Factory inner interface of the com.bea.wlevs.ede.api.EventBuilder interface; see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing for details about the methods you must implement, such as createBuilder and createEvent.

The following example of an event type builder factory class is taken from the FX sample:

package com.bea.wlevs.example.fx;

import java.util.HashMap;
import java.util.Map;
import com.bea.wlevs.ede.api.EventBuilder;
import com.bea.wlevs.example.fx.OutputBean.ForeignExchangeEvent;

public class ForeignExchangeBuilderFactory implements EventBuilder.Factory {

 // Called by the server to get an instance of this builder.
 public EventBuilder createBuilder() {
 return new ForeignExchangeBuilder();
 }

 // Inner interface implementation that is the builder.
 static class ForeignExchangeBuilder implements EventBuilder {

 // A Map instance to hold properties until the event type is instantiated.
 private Map<String,Object> values = new HashMap<String,Object>(10);

 // Called by the server to put an event type property. Values from the map
 // will be used to instantiate the event type.
 public void put(String property, Object value) throws IllegalStateException {
 values.put(property, value);
 }

 // Called by the server to create the event type instance once property
 // values have been received.
 public Object createEvent() {
 return new ForeignExchangeEvent(
 (String) values.get("symbol"),
 (Double) values.get("price"),
 (String) values.get("fromRate"),
 (String) values.get("toRate"));
 }
 }
}

9.3.1.5.2 Configuring an Event Type that Uses an Event Type Builder

When you register the event type in the EPN assembly file, use the <wlevs:property name="builderFactory"> child element of the wlevs:event-type element to specify the name of the event type builder class. The hard-coded builderFactory value of the name attribute alerts Oracle Event Processing that it should use the specified factory class, rather than its own default factory, when creating instances of this event. For example, in the FX example, the builder factory is registered as shown in bold:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="ForeignExchangeEvent">
 <wlevs:class>com.bea.wlevs.example.fx.OutputBean$ForeignExchangeEvent</wlevs:class>
 <wlevs:property name="builderFactory">
 <bean id="builderFactory"
 class="com.bea.wlevs.example.fx.ForeignExchangeBuilderFactory"/>
 </wlevs:property>
 </wlevs:event-type>
</wlevs:event-type-repository>

9.3.2 Creating an Oracle Event Processing Event Type as a Tuple

You can create an Oracle Event Processing event type as a tuple simply by adding the type's configuration XML to the EPN XML file. As a result, a tuple is the easiest way to create an event type, and so can be useful for quick prototyping. However, both the tuple and java.util.Map data types provide less flexibility than creating an event type as a JavaBean class.

With a tuple-based event type, your Java code using instances of the type must always set and get its property values using EventTypeRepository APIs.

When you design your event, you must restrict design of the type's properties to the data types described in Section 9.3.2.1, "Types for Properties in Tuple-Based Event Types".

Before you get started, consider reading the event type design recommendations in Section 9.2, "Designing Event Types".

This topic describes:

	
Section 9.3.2.2, "How to Create an Oracle Event Processing Event Type as a Tuple Using the Event Type Repository Editor"

	
Section 9.3.2.3, "How to Create an Oracle Event Processing Event Type as a Tuple Manually"

9.3.2.1 Types for Properties in Tuple-Based Event Types

When you specify the properties of the event type declaratively in the EPN assembly file as a tuple, you may use any of the types specified in com.bea.wlevs.ede.api.Type.

For more information on supported property types, see Section C.23, "wlevs:property".

Example 9-6 shows the use of different types:

Example 9-6 Specifying com.bea.welvs.ede.api.Type Data Types for Tuple Event Type Properties

<wlevs:event-type-repository>
 <wlevs:event-type type-name="SimpleEvent">
 <wlevs:properties>
 <wlevs:property name="id" type="char" length="1000" />
 <wlevs:property name="msg" type="char" />
 <wlevs:property name="count" type="double" />
 <wlevs:property name="time_stamp" type="timestamp" />
 </wlevs:properties>
 </wlevs:event-type>
...
</wlevs:event-type-repository>

For more information, see Section 9.3.2, "Creating an Oracle Event Processing Event Type as a Tuple".

9.3.2.2 How to Create an Oracle Event Processing Event Type as a Tuple Using the Event Type Repository Editor

This procedure describes how to create and register an Oracle Event Processing event type as a tuple using the Oracle Event Processing IDE for Eclipse event type repository editor. For more information about the Oracle Event Processing IDE for Eclipse, see Chapter 4, "Overview of the Oracle Event Processing IDE for Eclipse".

You can instead create and register your event type as a tuple manually (see Section 9.3.2.3, "How to Create an Oracle Event Processing Event Type as a Tuple Manually").

To create an Oracle Event Processing event type as a tuple using the event type repository editor:

	
Decide on the properties your event type requires.

When you design your event, you must restrict your design to the even data types that Section 9.3.2.1, "Types for Properties in Tuple-Based Event Types" describes.

	
In the IDE, open the EPN in the EPN editor.

For more information, see Section 7.1, "Opening the EPN Editor".

	
Click the Event Type tab.

	
Click Add Event Type (green plus sign).

A new event is added to the Event Type Definitions list with default name newEvent as Figure 9-2 shows.

Figure 9-2 Event Type Repository Editor - Tuple Event

[image: Description of Figure 9-2 follows]

	
In the Event Type Definitions list, select newEvent.

The properties of this event appear in the Event Type Details area as Figure 9-2 shows.

	
Enter a name for this event in the Type name field.

	
Click Properties defined declaratively.

	
Add one or more event properties:

	
Click Add Event Property (green plus sign).

A new row is added to the Event Type Details table.

	
Click in the Name column of this row and enter a property name.

	
Click in the Type column of this row and select a data type from the pull down menu.

When you design your event, you must restrict your design to the even data types that Section 9.3.2.1, "Types for Properties in Tuple-Based Event Types" describes.

	
For char data type properties only, click in the 'char' Length column of this row and enter a value for the maximum length of this char property.

Optionally, you may used the length attribute to specify the maximum length of the char value. The default length is 256 characters. The maximum length is java.lang.Integer.MAX_VALUE. If you need more than 256 characters you should specify an adequate length.

	
Click the Save button in the tool bar (or type CTRL-S).

The event is now in the event type repository.

You can use the event type repository editor:

	
To view the corresponding event type definition in the EPN assembly file, double-click the event type in the Event Type Definitions area.

	
To delete this event, select the event type in the Event Type Definitions area and click Delete Event Type (red x).

9.3.2.3 How to Create an Oracle Event Processing Event Type as a Tuple Manually

This procedure describes how to create and register an Oracle Event Processing event type declaratively in the EPN assembly file as a tuple.

Note, however, that the best practice for creating event types is to create them as JavaBean classes. For more information, see Section 9.3.1, "Creating an Oracle Event Processing Event Type as a JavaBean".

For more information on valid data types, see Section 9.3.2.1, "Types for Properties in Tuple-Based Event Types".

To create an Oracle Event Processing event type as a tuple:

	
Decide on the properties your event type requires.

When you design your event, you must restrict your design to the data types that Section 9.3.2.1, "Types for Properties in Tuple-Based Event Types" describes.

	
Register your event type declaratively in the Oracle Event Processing event type repository:

To register declaratively, edit the EPN assembly file using the wlevs:event-type-repository element wlevs:event-type child element as Example 9-7 shows.

Example 9-7 EPN Assembly File event-type-repository

<wlevs:event-type-repository>
 <wlevs:event-type type-name="CrossRateEvent">
 <wlevs:properties>
 <wlevs:property name="price" type="double"/>
 <wlevs:property name="fromRate" type="char"/>
 <wlevs:property name="toRate" type="char"/>
 </wlevs:properties>
 </wlevs:event-type>
</wlevs:event-type-repository>

At runtime, Oracle Event Processing generates a bean instance of CrossRateEvent for you. The CrossRateEvent has three properties: price, fromRate, and toRate.

For more information on the valid values of the type attribute, see Section 9.3.2.1, "Types for Properties in Tuple-Based Event Types".

For reference information on the configuration XML, see Section C.13, "wlevs:event-type", Section C.22, "wlevs:properties", and Section C.23, "wlevs:property"

9.3.2.4 Using a Tuple Event Type Instance in Java Code

When using a tuple-based event type in Java code, you must use a com.bea.wlevs.ede.api.EventTypeRepository instance to get the names of the type's properties before getting their values. (For information on getting an EventTypeRepository instance, see Section 9.4, "Accessing the Event Type Repository".)

The following example uses the repository in a class acting as an event sink.

@Service
public void setEventTypeRepository(EventTypeRepository etr) {
 etr_ = etr;
}
...
// Called by the server to pass in the event type instance.
public void onInsertEvent(Object event) throws EventRejectedException {

 // Get the event type for the current event instance
 EventType eventType = etr_.getEventType(event);

 // Get the event type name
 String eventTypeName = eventType.getTypeName();

 // Get the event property names
 String[] propNames = eventType.getPropertyNames();

 // See if property you're looking for is present
 if(eventType.isProperty("fromRate")) {
 // Get property value
 Object propValue =
 eventType.getProperty("fromRate").getValue(event);
 }
 // Throw com.bea.wlevs.ede.api.EventRejectedException to have an
 // exception propagated up to senders. Other errors will be
 // logged and dropped.
}

9.3.2.5 Using a Tuple Event Type Instance in Oracle CQL Code

The following Oracle CQL rule shows how you can reference the CrossRateEvent in a SELECT statement:

<query id="FindCrossRatesRule"><![CDATA[
 select ((a.price * b.price) + 0.05) as internalPrice,
 a.fromRate as crossRate1,
 b.toRate as crossRate2
 from FxQuoteStream [range 1] as a, FxQuoteStream [range 1] as b
 where
 NOT (a.price IS NULL)
 and
 NOT (b.price IS NULL)
 and
 a.toRate = b.fromRate
]]></query>

9.3.3 Creating an Oracle Event Processing Event Type as a java.util.Map

You can create and register an Oracle Event Processing event type as a java.util.Map.

You can create an Oracle Event Processing event type as a java.util.Map simply by adding the type's configuration XML to the EPN XML file. As a result, this is an easy way to create an event type. However, both the tuple and java.util.Map data types provide less flexibility than creating an event type as a JavaBean class.

Creating and using an event type as a Map is something of a hybrid of the processes for the tuple type and a JavaBean class. As with a tuple-based event type, you create the Map-based type declaratively, by configuring it in the EPN XML file. And as with a JavaBean-based event type, you needn't use com.bea.wlevs.ede.api.EventTypeRepository APIs to access instance property values.

This topic describes:

	
Section 9.3.3.2, "How to Create an Oracle Event Processing Event Type as a java.util.Map"

9.3.3.1 Types for Properties in java.util.Map-Based Event Types

When you specify the event type properties declaratively in the EPN assembly file as a java.util.Map, you may use any Java type for its properties. However, you specify the "type" of the event properties as either:

	
The fully qualified name of a Java class that must conform to the same rules as Class.forName() and must be available in the application's class loader.

	
A Java primitive (for example, int or float).

You may specify an array by appending the characters [] to the event type name.

Example 9-8 shows how to use these types:

Example 9-8 Specifying Java Data Types for java.util.Map Event Type Properties

<wlevs:event-type-repository>
 <wlevs:event-type type-name="AnotherEvent">
 <wlevs:properties type="map">
 <wlevs:property>
 <entry key="name" value="java.lang.String"/>
 <entry key="employeeId" value="java.lang.Integer[]"/>
 <entry key="salary" value="float"/>
 <entry key="projectIds" value="short[]"/>
 </wlevs:property>
 <wlevs:properties>
 </wlevs:event-type>
</wlevs:event-type-repository>

For more information, see Section 9.3.3.2, "How to Create an Oracle Event Processing Event Type as a java.util.Map".

9.3.3.2 How to Create an Oracle Event Processing Event Type as a java.util.Map

This procedure describes how to create and register an Oracle Event Processing event type as a java.util.Map. Oracle recommends that you create an Oracle Event Processing event type as a JavaBean (see Section 9.3.1.2, "How to Create an Oracle Event Processing Event Type as a JavaBean Manually").

For more information on valid event type data types, see Section 9.3.3.1, "Types for Properties in java.util.Map-Based Event Types".

To create an Oracle Event Processing event type as a java.util.Map:

	
Decide on the properties your event type requires.

	
Register your event type in the Oracle Event Processing event type repository:

	
To register declaratively, edit the EPN assembly file using the wlevs:event-type-repository element wlevs:event-type child element as Example 9-9 shows.

Example 9-9 EPN Assembly File event-type-repository

<wlevs:event-type-repository>
 <wlevs:event-type type-name="AnotherEvent">
 <wlevs:properties type="map">
 <wlevs:property name="name" value="java.lang.String"/>
 <wlevs:property name="age" value="java.lang.Integer"/>
 <wlevs:property name="address" value="java.lang.String"/>
 </wlevs:properties >
 </wlevs:event-type>
</wlevs:event-type-repository>

At runtime, Oracle Event Processing generates a bean instance of AnotherEvent for you. The AnotherEvent has three properties: name, age, and address.

	
To register programmatically, use the EventTypeRepository class as Example 9-10 shows.

Example 9-10 Programmatically Registering an Event

EventTypeRepository rep = getEventTypeRepository();
java.util.Map map = new Map({name, java.lang.String},
 {age, java.lang.Integer}, {address, java.lang.String});
rep.registerEventType("AnotherEvent", map);

For more information, see Section 9.4, "Accessing the Event Type Repository".

9.3.3.3 Using a Map Event Type Instance in Java Code

When using a Map-based event type instance in Java code, you access its properties as you would with any java.util.Map instance.

public void onInsertEvent(Object event)
 throws EventRejectedException {

 java.util.Map anEvent = (java.util.Map) event;
 System.out.println("Age: " + anEvent.get("age"));
}

9.3.3.4 Using a Map Event Type Instance in Oracle CQL Code

Access the event types from Oracle CQL and EPL rules:

The following Oracle CQL rule shows how you can reference the MarketEvent in a SELECT statement:

<query id="helloworldRule">
 <![CDATA[select age from eventChannel [now]]]>
</query>

9.4 Accessing the Event Type Repository

The Oracle Event Processing event type repository keeps track of the event types defined for your application. When you create an event type, you make it available for use in the application by configuring it in the event type repository. In some cases, you might need to write code that explicitly accesses the repository.

For example, when your event type is created as a tuple, Java logic that accesses instance of the type will need to first retrieve the type definition using the repository API, then use the API to access the instance property values.

The EventTypeRepository is a singleton OSGi service. Because it is a singleton, you only need to specify its interface name to identify it. You can get a service from OSGi in any of the following ways:

	
Section 9.4.1, "Using the EPN Assembly File"

	
Section 9.4.2, "Using the Spring-DM @ServiceReference Annotation"

	
Section 9.4.3, "Using the Oracle Event Processing @Service Annotation"

For more information, see Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

9.4.1 Using the EPN Assembly File

You can access the EventTypeRepository by specifying an osgi:reference in the EPN assembly file as Example 9-11 shows.

Example 9-11 EPN Assembly File With OSGi Reference to EventTypeRepository

<osgi:reference id="etr" interface="com.bea.wlevs.ede.api.EventTypeRepository" />
<bean id="outputBean" class="com.acme.MyBean" >
 <property name="eventTypeRepository" ref="etr" />
</bean>

Then, in the MyBean class, you can access the EventTypeRepository using the eventTypeRepository property initialized by Spring as Example 9-12 shows.

Example 9-12 Accessing the EventTypeRepository in the MyBean Implementation

package com.acme;

import com.bea.wlevs.ede.api.EventTypeRepository;
import com.bea.wlevs.ede.api.EventType;

public class MyBean {
 private EventTypeRepository eventTypeRepository;

 public void setEventTypeRepository(EventTypeRepository eventTypeRepository) {
 this.eventTypeRepository = eventTypeRepository;
 }

 public void onInsertEvent(Object event) throws EventRejectedException {
 // get the event type for the current event instance
 EventType eventType = eventTypeRepository.getEventType(event);
 // Throw com.bea.wlevs.ede.api.EventRejectedException to have an
 // exception propagated up to senders. Other errors will be
 // logged and dropped.
 }
}

9.4.2 Using the Spring-DM @ServiceReference Annotation

You can access the EventTypeRepository by using the Spring-DM @ServiceReference annotation to initialize a property in your Java source as Example 9-13 shows.

Example 9-13 Java Source File Using the @ServiceReference Annotation

import org.springframework.osgi.extensions.annotation.ServiceReference;
import com.bea.wlevs.ede.api.EventTypeRepository;
...
@ServiceReference
setEventTypeRepository(EventTypeRepository etr) {
 ...
}

9.4.3 Using the Oracle Event Processing @Service Annotation

You can access the EventTypeRepository by using the Oracle Event Processing @Service annotation to initialize a property in your Java source as Example 9-14 shows.

Example 9-14 Java Source File Using the @Service Annotation

import com.bea.wlevs.util.Service;
import com.bea.wlevs.ede.api.EventTypeRepository;
...
@Service
setEventTypeRepository(EventTypeRepository etr) {
 ...
}

For more information, see Section I.5, "com.bea.wlevs.util.Service".

9.5 Sharing Event Types Between Application Bundles

Each Oracle Event Processing application gets its own Java classloader and loads application classes using that classloader. This means that, by default, one application cannot access the classes in another application. However, because the event type repository is a singleton service, you can configure the repository in one bundle and then explicitly export the event type classes so that applications in separate bundles (deployed to the same Oracle Event Processing server) can use these shared event types.

The event type names in this case are scoped to the entire Oracle Event Processing server instance. This means that you will get an exception if you try to create an event type that has the same name as an event type that has been shared from another bundle, but the event type classes are different.

To share event type classes, add their package name to the Export-Package header of the MANIFEST.MF file of the bundle that contains the event type repository you want to share.

Be sure you deploy the bundle that contains the event type repository before all bundles that contain applications that use the shared event types, or you will get a deployment exception.

For more information, see:

	
Section 9.2.4, "Mixing Use of Event Type Data Types"

	
Section 23.2.3, "Assembling Applications With Foreign Stages"

	
"Oracle Java Data Cartridge" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

16 Handling Events with Java

This chapter describes how to implement the Oracle Event Processing interfaces needed for a Java class to act as an event sink and event source, receiving and sending events in an event processing network (EPN). It also describes how to configure a Java class as an Oracle Event Processing event bean or Spring bean.

Whether you are writing new logic in Java or wanting to incorporate existing Java code, Oracle Event Processing provides several ways to add Java code to your application. Your options include where and how the code executes, as well as how you configure it.

This chapter includes the following sections:

	
Section 16.1, "Roles for Java Code in an Event Processing Network"

	
Section 16.2, "Handling Events with Sources and Sinks"

	
Section 16.3, "Configuring Java Classes as Beans"

16.1 Roles for Java Code in an Event Processing Network

Whether you are writing new functionality or have existing logic in Java that you want to incorporate into an Oracle Event Processing application, places where you code might go depending on its role.

Note that many Oracle Event Processing applications have no need for Java code at all. For example, an application's logic might be captured in Oracle CQL alone.

Use the following descriptions of roles for Java code to find the best place for your code.

	
Java classes as beans to handle events passing through an event processing network (EPN)

You can write Java code to handle events as they flow through the EPN, receiving events, sending them, or both. For example, you could add a class that supports both receiving and sending events, using it as intermediate logic in the EPN. There, it could retrieve data from events it receives, then create a new kind event from the data for use by a particular downstream component.

For more information on implementing Java classes that receive and send events, see Section 16.3, "Configuring Java Classes as Beans".

	
Custom adapters to integrate external components for incoming or outgoing events

You can implement a Java class as logic in a custom adapter designed to interact with an external component that is not supported by adapters included with Oracle Event Processing. For example, you could implement an adapter that is able to receive events from an event source that isn't supported by the included JMS or HTTP Publish-Subscribe adapters.

The Java code in custom adapters implements the event source and event sink functionality discussed in this chapter -- see Section 16.2, "Handling Events with Sources and Sinks". For more information about other aspects of custom adapters, see Chapter 15, "Integrating an External Component Using a Custom Adapter".

	
Java functions to enhance functionality in Oracle CQL code

You can call Java methods from Oracle CQL code to augment Oracle CQL with your own logic. For example, if you have written a Java class with methods that perform calculations on data such as that your application will receive as event data, you might call methods of that class within Oracle CQL code as part of a select statement.

For more information, see "User-Defined Functions" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
JavaBean class as an event type that represents event data

You can create an event type -- the vehicle for carrying event data through your application -- by implementing the type as a JavaBean class. Although there are alternatives, this is the best practice approach.

For more information, see Section 9.3.1, "Creating an Oracle Event Processing Event Type as a JavaBean".

16.2 Handling Events with Sources and Sinks

When you write Java code designed to handle events, you create a class that is an event sink or event source. An event sink is able to receive events as they flow through an event processing network. An event source can create events and send them along to a downstream stage in the EPN. For example, you might create a class that receive events, does something with their data, then send them along to the next stage.

Event sinks and sources implement particular interfaces provided by the Oracle Event Processing API. An event sink implements interfaces that include methods through which the Oracle Event Processing server can pass into it event type instances. An event source implements an interface that includes a method through which it receives an object with which to send events. A single class can implement either or both kinds of functionality, depending on its role in the event processing network (EPN).

	
Note:

This section assumes that you are familiar with streams and relations and the differing ways they represent events moving through an event processing network. If not, be sure to read Section 1.3, "Overview of Events, Streams and Relations".

Common places for event-handling Java code are adapters and beans. An adapter is a part of the EPN that communicates with external components. It is designed to receive external event data and create events from the data, or to receive internal events and send their data along to another component outside the EPN. Writing event handling code, as described in this chapter, is an important part of creating an adapter. For more on creating adapters, see Chapter 15, "Integrating an External Component Using a Custom Adapter".

[image: Description of java_logic.gif follows]

Like an adapter, a bean can handle events. But you typically add a bean in the midst of an EPN so that events will pass into and out of it. For example, you might want to add a bean whose Java code executes application logic in response to data in events passing through it.

The following procedure describes the typical steps for creating a Java class that receives and sends events.

	
Implement the interfaces needed to receive or send events. Your options for developing Java logic as an EPN component are as follows:

	
To create a class that can receive events as they pass through the EPN, implement interfaces that make the class an event sink. Those interfaces include StreamSink or RelationSink for receiving single events, and BatchStreamSink or BatchRelationSink for receiving batches of events. For more information, see Section 16.2.1, "Implementing an Event Sink".

	
To create a class that can send events to other parts of the EPN, implement interfaces that make the class an event source. Those interfaces include StreamSource or RelationSource for sending single events, and BatchStreamSource or BatchRelationSource for sending batches of events. For more information, see Section 16.2.2, "Implementing an Event Source".

	
Configure the class so that you can add it to the EPN where it belongs.

	
If the class will be part of an adapter, you will want to finish the adapter implementation, then configure it as described in Chapter 15, "Integrating an External Component Using a Custom Adapter".

	
If the class will be added to the EPN as a bean, you will want to configure it as described in Section 16.3, "Configuring Java Classes as Beans".

	
Note:

This procedure assumes that the custom event bean is bundled in the same application JAR file that contains the other components of the EPN, such as the processor, streams, and business logic POJO. If you want to bundle the custom event bean in its own JAR file so that it can be shared among multiple applications, see Section 23.2.4.2, "How to Assemble an Event Bean in its Own Bundle."

16.2.1 Implementing an Event Sink

You can create a Java class that is able to receive events as they pass through an event processing network. A component that can receive events is an event sink. You might create an event sink, for example, to receive events in the midst of an event processing network, with logic for responding to each event's content.

A Java class that is an event sink implements one of the interfaces described in this section. Each of these interfaces provides methods that the Oracle Event Processing server uses to pass events to the class as the events exit the EPN stage connected upstream of the class, typically a channel.

	
Note:

For a step-by-step development example that includes creating a simple event sink, be sure to see Chapter 8, "Walkthrough: Assembling a Simple Application".

The interfaces described here are intended to provide support for events arriving either as streams or relations. However, interfaces for relation support also support receiving events arriving as streams. As described in the following table, the interfaces are hierarchically related.

	Interface	Description
	
com.bea.wlevs.ede.api.StreamSink

	
Implement this to receive events arriving sequentially as a stream.

	
com.bea.wlevs.ede.api.RelationSink

	
Implement this to receive events arriving sequentially as a relation. Extends StreamSink., so it also provides support for receiving events as a stream.

	
com.bea.wlevs.ede.api.BatchStreamSink

	
Implement this to support receiving batched events arriving as a stream. Events might arrive batched by timestamp if the channel they are coming from is configured to allow batching. Extends StreamSink, so it also provides support for receiving events unbatched.

	
com.bea.wlevs.ede.api.BatchRelationSink

	
Implement this to support receiving batched events arriving as a relation. Events might arrive batched by timestamp if the channel they are coming from is configured to allow batching. Extends RelationSink, so it also provides support for receiving events unbatched as either streams or relations.

16.2.1.1 Implementing StreamSink or BatchStreamSink

A class that receives events as a stream will receive only events that are, from the Oracle Event Processing standpoint, "inserted." That's because in a stream, events are always appended to the end of a sequence. Events in a stream are also always received in ascending time order, so that their timestamps have non-decreasing values from one event to the one that follows it. (The idea of non-decreasing timestamps allows for the possibility that the timestamp of one event can be the same as the timestamp of the event that precedes it, but not earlier than that preceding timestamp. It's either the same or later.)

As a result, the interfaces for support to receive events as a stream have one method each for receiving events. Contrast this with the interfaces for receiving events as a relation, which support receiving multiple kinds of events.

You implement the StreamSink interface if you expect your class to receive unbatched events as a stream. It has a single method, onInsertEvent, which the Oracle Event Processing server calls to pass in each event from the stream as it leaves the upstream stage that is connected to your class.

In Example 16-1, "Implementing the StreamSink Interface", a simple StreamSink implementation that receive stock trade events receives each event as an Object instance, then tests to see if the event is an instance of a particular event type. If it is, then the code retrieves values of properties known to be members of that type.

Example 16-1 Implementing the StreamSink Interface

public class TradeListener implements StreamSink {

 public void onInsertEvent(Object event) throws EventRejectedException {
 if (event instanceof TradeEvent){
 String symbolProp = ((TradeEvent) event).getSymbol();
 Integer volumeProp = ((TradeEvent) event).getVolume();
 // Code to do something with the property values.
 }
 }
}

You implement the BatchStreamSink interface if you expect your class to receive batched events as a stream. The interface has a single method, onInsertEvents, which the Oracle Event Processing server calls to pass in a collection of events received from the upstream stage. (The BatchStreamSink interface extends StreamSink, so can receive unbatched events also.)

For more information about event batching, see Section 10.1.6, "Batch Processing Channels".

16.2.1.2 Implementing RelationSink or BatchRelationSink

A class that receives events as a relation can receive any of the kinds of events possible in a relation: insert events, delete events, and update events. Unlike a stream, events in a relation are unordered and include events that have been updated or deleted by code that created or operated on the relation.

As a result, the interfaces for support to receive events as a relation have methods through which your class can receive insert, delete, or update events.

You implement the RelationSink interface if you expect your class to receive unbatched events as a relation. It has three methods (one inherited from the StreamSink interface, which it extends), onInsertEvent, onDeleteEvent, and onUpdateEvent. At runtime, the Oracle Event Processing server will call the appropriate method depending on which type of event is being received from the upstream channel connected to your class.

Example 16-2 Implementing the RelationSink Interface

public class TradeListener implements RelationSink {

 public void onInsertEvent(Object event) throws EventRejectedException {
 if (event instanceof TradeEvent){
 String symbolProp = ((TradeEvent) event).getSymbol();
 Integer volumeProp = ((TradeEvent) event).getVolume();
 // Do something with the inserted event.
 }
 }

 @Override
 public void onDeleteEvent(Object event) throws EventRejectedException {
 if (event instanceof TradeEvent){
 // Do something with the deleted event.
 }
 }

 @Override
 public void onUpdateEvent(Object event) throws EventRejectedException {
 if (event instanceof TradeEvent){
 // Do something with the updated event.
 }
 }
}

You implement the BatchRelationSink interface if you expect your class to receive batched events as a relation. It has an onEvents method designed to receive all three types of events from the batch in java.util.Collection instances:

onEvents(insertEvents, deleteEvents, updateEvents)

In addition, the interface extends the RelationSink interface to provide support for receiving unbatched events.

At runtime, the Oracle Event Processing server calls the appropriate method to pass in events received from the upstream stage connected to your class.

For more information about event batching, see Section 10.1.6, "Batch Processing Channels".

For complete API reference information about the Oracle Event Processing APIs described in this section, see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

16.2.2 Implementing an Event Source

You can create a Java class that is able to send events to a downstream stage in an event processing network. A component that can send events is an event source. You might create an event source, for example, to send events your Java code has created or altered from event data flowing through the EPN.

A Java class that is an event source implements one of the interfaces described in this section. Each of these interfaces provides a method used by the Oracle Event Processing server to pass into your class an instance of a sender class.

The sender instance your event source receives, in turn, implements one of the sender interfaces described in this section. The sender interfaces provide methods your code can call to send events as streams or relations, batched or unbatched, along to the downstream EPN stage that follows it, such as a channel.

The interfaces described here are intended to provide support for sending events either as streams or relations. However, interfaces for relation support also support sending events as streams.

Table 16-1 Interfaces for Implementing an Event Source

	Interface	Description
	
com.bea.wlevs.ede.api.StreamSource

	
Implement this for the ability to send events as a stream. At runtime, the Oracle Event Processing server will inject an instance of a stream sender class.

	
com.bea.wlevs.ede.api.RelationSource

	
Implement this for the ability to send events as a relation or stream. At runtime, the Oracle Event Processing server will inject an instance of a relation sender class. Extends StreamSource., so it also provides support as a source of stream events.

The interfaces listed in Table 16-2, "Interfaces Implemented by Sender Classes" are implemented by sender classes your event source class receives from the Oracle Event Processing server.

Table 16-2 Interfaces Implemented by Sender Classes

	Interface	Description
	
com.bea.wlevs.ede.api.StreamSender

	
Provides a method with which your code can send events as a stream.

	
com.bea.wlevs.ede.api.RelationSender

	
Provides methods with which your code can send events as a relation. Extends StreamSender, so it also provides support for sending events as a stream.

	
com.bea.wlevs.ede.api.BatchStreamSender

	
Provides a method with which your code can send batched events as a stream. You might send ev

ents batched by timestamp if the downstream stage to which you're sending them is a channel configured for batched events. Extends StreamSender, so it also provides support for sending events unbatched.

	
com.bea.wlevs.ede.api.BatchRelationSender

	
Provides a method with which your code can send batched events as a relation. You might send events batched by timestamp if the downstream stage to which you're sending them is a channel configured for batched events. Extends RelationSender, so it also provides support for sending events unbatched.

16.2.2.1 Implementing StreamSource

A class that is a source of events as a stream should send only events that are, from the Oracle Event Processing standpoint, "inserted." Sending only inserted events models a stream, rather than a relation. Events sent from a stream source should also have non-decreasing timestamps from one event to the event that follows it. In other words, the timestamp of an event that follows another should either be the same as or later than the event that preceded it.

When you implement StreamSource, your code can send events batched or unbatched. Your implementation of the StreamSource setEventSender method will receive a sender instance that you can cast to one of the types described in Table 16-2, "Interfaces Implemented by Sender Classes". Your code should use the sender instance to send events as expected by the downstream stage to which the events will be going.

If your code is sending events to a channel that enables batching, you should use one of the batched event senders to batch events by timestamp before sending them. For more information, see Section 10.1.6, "Batch Processing Channels".

The sender instance also provides a sendHeartbeat method with which you can send a heartbeat if the receiving channel is configured to be application timestamped.

16.2.2.2 Implementing RelationSource

A class that is a source of events as a relation can send insert, delete, and update events as expected by the downstream stage that is receiving the events.

When you implement RelationSource, your code can send events batched or unbatched. Your implementation of the RelationSource setEventSender method will receive a sender instance that you can cast to one of the types described in Table 16-2, "Interfaces Implemented by Sender Classes". Your code should use the sender instance to send events as expected by the downstream stage.

As you implement RelationSource, keep in mind the following constraints when using the sender instance your class receives:

	
For sendDeleteEvent, you must send an instance of the same event type as that configured for the channel.

	
For sendInsertEvent, a unique constraint violation exception will be raised and the input event discarded if an event with the same primary key is already in the relation.

	
For sendUpdateEvent, an invalid update tuple exception will be raised and the input event will be discarded if an event with the given primary key is not in the relation.

In Example 16-3, "Implementing the RelationSource Interface", a simple RelationSource implementation receives a StreamSender, then casts the sender to a RelationSender in order to send events as a relation. This class creates a new TradeEvent instance from the event type configured in the repository, but the sendEvents method could as easily have received an instance as a parameter from another part of the code.

Example 16-3 Implementing the RelationSource Interface

package com.oracle.cep.example.tradereport;

import com.bea.wlevs.ede.api.EventType;
import com.bea.wlevs.ede.api.EventTypeRepository;
import com.bea.wlevs.ede.api.RelationSender;
import com.bea.wlevs.ede.api.RelationSource;
import com.bea.wlevs.ede.api.StreamSender;
import com.bea.wlevs.util.Service;

public class TradeEventSource implements RelationSource {

 // Variables for event type respository and event sender. Both
 // will be set by the server.
 EventTypeRepository m_repos = null;
 RelationSender m_sender = null;

 // Called by the server to set the repository instance.
 @Service
 public void setEventTypeRepository(EventTypeRepository repos) {
 m_repos = repos;
 }

 // Called by the server to set the sender instance.
 @Override
 public void setEventSender(StreamSender sender) {
 // Cast the received StreamSender to a RelationSender
 m_sender = (RelationSender)sender;
 }

 /**
 * Sends events to the next EPN stage using the sender
 * received from the server. This code assumes that an event
 * instance isn't received from another part of the class,
 * instead creating a new instance from the repository.
 */
 private void sendEvents(){
 EventType eventType = m_repos.getEventType("TradeEvent");
 TradeEvent tradeEvent = (TradeEvent)eventType.createEvent();
 m_sender.sendDeleteEvent(tradeEvent);
 }
}

16.3 Configuring Java Classes as Beans

When you write Java classes to handle events, you can add them to an EPN by configuring them in the EPN assembly file. You can configure a class a either a Spring bean or an Oracle Event Processing event bean.

	
Note:

You can also add a class as part of an adapter, whose code receives or sends events when interacting with an external component. For more about configuring a class as an adapter, see Chapter 15, "Integrating an External Component Using a Custom Adapter".

Whether you configure your class as an event bean or Spring bean depends on your deployment context and the features you want to support. Essentially, however, you might want to configure the class as Spring bean if you're interested in taking advantage of an Spring features, such as when you're already using Spring elsewhere.

Table 16-3, "Comparison of Event Beans and Spring Beans" lists the features provided by event beans and Spring beans.

Table 16-3 Comparison of Event Beans and Spring Beans

	Bean Type	Description
	
Event bean

	
Useful as an EPN stage to actively use the capabilities of the Oracle Event Processing server container. An event bean:

	
Is a type of Oracle Event Processing EPN stage.

	
Can be monitored by the Oracle Event Processing monitoring framework.

	
Can make use of the configuration metadata annotations.

	
Can be set to record and play-back events that pass through it.

	
Can participate in the Oracle Event Processing server bean lifecycle by specifying methods in its XML declaration, rather than by implementing Oracle Event Processing server API interfaces.

	
Spring bean

	
Useful for legacy integration to Spring. A Spring bean:

	
Is useful if you have a Spring bean you want to add to an EPN.

	
Is not a type of Oracle Event Processing EPN stage.

	
Cannot be monitored by the Oracle Event Processing monitoring framework.

	
Cannot use the configuration metadata annotations.

	
Cannot be set to record and play back events that pass through it.

For more details on each of the different bean types, see the following:

	
Section 16.3.1, "Configuring a Java Class as an Event Bean"

	
Section 16.3.2, "Configuring a Java Class as a Spring Bean"

16.3.1 Configuring a Java Class as an Event Bean

You can configure a Java class as an Oracle Event Processing event bean in the EPN assembly file and the componenent configuration file. Configuring it as a event bean in the EPN assembly file will add the bean to the EPN with default settings. You can then configure it in the component configuration file to support runtime configuration changes to certain features.

For more information, see the following sections:

	
Section 16.3.1.1, "Configuring an Event Bean in an EPN Assembly File"

	
Section 16.3.1.2, "Configuring an Event Bean in a Component Configuration File"

For a complete description of the configuration file, including registration of other components of your application, see Section 5.3, "Creating EPN Assembly Files."

16.3.1.1 Configuring an Event Bean in an EPN Assembly File

In an EPN assembly file, you use the wlevs:event-bean element to declare a custom event bean as a component in the event processor network. Note that the configuration code will differ for event beans created from a factory. For more information, see Section 16.3.1.3, "Creating an Event Bean Factory".

In the following example, the TradeListener class is configured as an event bean whose downstream connection is a channel with ID BeanOutputChannel:

<wlevs:event-bean id="TradeListenerBean"
 class="com.oracle.cep.example.tradereport.TradeListener">
 <wlevs:listener ref="BeanOutputChannel"/>
</wlevs:event-bean>

You can also use a wlevs:instance-property child element to set any static properties in the bean. Static properties are those that you will not change after the bean is deployed.

For example, if your bean class has a setThreshold method, you can pass it the port number as shown:

<wlevs:event-bean id="TradeListenerBean"
 class="com.oracle.cep.example.tradereport.TradeListener">
 <wlevs:instance-property name="threshold" value="6000" />
 <wlevs:listener ref="BeanOutputChannel"/>
</wlevs:event-bean>

You reference an event bean that is an event sink by using the wlevs:listener element. In the following example, a TradeListenerBean event bean receives events from a channel ProcessorOutputChannel:

<wlevs:channel id="ProcessorOutputChannel" >
 <wlevs:listener ref="TradeListenerBean" />
</wlevs:channel>

16.3.1.2 Configuring an Event Bean in a Component Configuration File

You can add configuration for an event bean in a component configuration file. Configuration you add here is available to be updated at runtime. Adding configuration in a component configuration file assumes that you have added the event bean to the EPN by configuring it in the EPN assembly file (see Section 16.3.1.1, "Configuring an Event Bean in an EPN Assembly File" for more information).

You can also create a separate component configuration XML file as needed according to your development environment. For example, if your application has more than one custom event bean, you can create separate XML files for each, or create a single XML file that contains the configuration for all custom event beans, or even all components of your application (beans, adapters, processors, and streams).

In the following example, a TradeListenerBean event bean is configured for event recording. Each event bean configuration should have a separate event-bean child element of the config element.

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application">
 <event-bean>
 <name>TradeListenerBean</name>
 <record-parameters>
 <dataset-name>tradereport_sample</dataset-name>
 <event-type-list>
 <event-type>TradeEvent</event-type>
 </event-type-list>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
 </record-parameters>
 </event-bean>
</wlevs:config>

Uniquely identify each event bean with the name child element. This name must be the same as the value of the id attribute in the wlevs:event-bean element of the EPN assembly file that defines the event processing network of your application. This is how Oracle Event Processing knows to which particular event bean component in the EPN assembly file this configuration applies.

You can also extend component configuration with your own elements. For more information, see Section 26, "Extending Component Configuration".

For a reference on the component configuration XML schema, see Section B.2, "Component Configuration Schema wlevs_application_config.xsd".

16.3.1.3 Creating an Event Bean Factory

You can use a single event bean implementation in multiple event processing networks by implementing and configuring an event bean factory. The factory class provides event bean instances for the applications that request one.

For detail on the APIs described here, see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing

Creating an event bean factory involves the following steps:

	
In your event bean class, implement the com.bea.wlevs.ede.api.EventBean interface so that the bean can be returned by the factory. This is a marker interface, so there are no methods to implement.

public class TradeListener implements EventBean, StreamSink {
 // Bean implementation code.
}

	
Implement an event bean factory class to create and return instances of the event bean.

Your event bean factory class must implement the com.bea.wlevs.ede.api.EventBeanFactory interface. In your implementation of its create method, create an instance of your event bean.

import com.oracle.cep.example.tradereport.TradeListener;
import com.bea.wlevs.ede.api.EventBeanFactory;

public class TradeListenerFactory implements EventBeanFactory {
 public TradeListenerFactory() {
 }
 public synchronized TradeListener create()
 throws IllegalArgumentException {

 // Your code might have a particular way to create the instance.
 return new TradeListener();

 }
}

	
In an EPN assembly file, configure the factory class.

You register factories in the EPN assembly file using the wlevs:factory element, as shown in the following example:

<wlevs:factory provider-name="tradeListenerProvider"
 class="com.oracle.cep.example.tradereport.TradeListenerFactory"/>

If you need to specify service properties, then you must also use the osgi:service element to register the factory as an OSGI service in the EPN assembly file. The scope of the OSGI service registry is all of Oracle Event Processing. This means that if more than one application deployed to a given server is going to use the same even bean factory, be sure to register the factory only once as an OSGI service.

Add an entry to register the service as an implementation of the com.bea.wlevs.ede.api.EventBeanFactory interface. Provide a property, with the key attribute equal to type, and the name by which this event bean provider will be referenced. Finally, add a nested standard Spring bean element to register your specific event bean class in the Spring application context

<osgi:service interface="com.bea.wlevs.ede.api.EventBeanFactory">
 <osgi:service-properties>
 <entry key="type" value="tradeListenerProvider"</entry>
 </osgi:service-properties>
 <bean class="com.oracle.cep.example.tradereport.TradeListenerFactory" />
</osgi:service>

	
In applications that will use instances of the event bean, configure the event bean by specifying the configured event bean factory as a provider (rather than specifying the bean by its class name), as shown in the following example:

<wlevs:event-bean id="TradeListenerBean"
 provider="tradeListenerProvider">
 ...
</wlevs:event-bean>

For more on bundling an event bean in its own bundle for reuse, see Section 23.2.4.2, "How to Assemble an Event Bean in its Own Bundle".

16.3.2 Configuring a Java Class as a Spring Bean

You can configure a Java class as a Spring bean in order to include the class in an event processing network. This is a good option if you have an existing Spring bean that you want to incorporate into the EPN. Or you might simply want to have your Java code make use of Spring features.

A Spring bean is a Java class managed by the Spring framework. You add a class as a Spring bean by configuring it in the EPN assembly file using the standard bean element.

Keep in mind that a Spring bean is not a type of Oracle Event Processing stage. In other words, it cannot be monitored by the Oracle Event Processing monitoring framework, cannot use the configuration metadata annotations, and cannot be set to record and play-back events that pass through it.

In the EPN assembly file, you use the bean element to declare a custom Spring bean as a component in the event processor network. For example:

<bean id="TradeListenerBean"
 class="com.oracle.cep.example.tradereport.TradeListener">
</bean>

16.3.2.1 Supporting Spring Bean Characteristics

In a Spring bean you are planning to add to an EPN, you can implement the various lifecycle interfaces. These include InitializingBean, DisposableBean, and the active interfaces, such as RunnableBean. The Spring bean event source can also use configuration metadata annotations such as @Prepare, @Rollback, and @Activate.

17 Querying an Event Stream with Oracle CQL

This chapter describes how to configure Oracle Continuous Query Language (Oracle CQL) processors for Oracle Event Processing event processing networks. It includes information on configuring the processor's data source and optimizing performance.

This chapter includes the following sections:

	
Section 17.1, "Overview of Oracle CQL Processor Configuration"

	
Section 17.2, "Configuring an Oracle CQL Processor"

	
Section 17.3, "Configuring an Oracle CQL Processor Table Source"

	
Section 17.4, "Configuring an Oracle CQL Processor Cache Source"

	
Section 17.5, "Configuring an Oracle CQL Processor for Parallel Query Execution"

	
Section 17.6, "Handling Faults"

	
Section 17.7, "Example Oracle CQL Processor Configuration Files"

17.1 Overview of Oracle CQL Processor Configuration

An Oracle Event Processing application contains one or more event processors, or processors for short. Each processor takes as input events from one or more adapters; these adapters in turn listen to data feeds that send a continuous stream of data from a source. The source could be anything, such as a financial data feed or the Oracle Event Processing load generator.

The main feature of an Oracle CQL processor is its associated Oracle Continuous Query Language (Oracle CQL) rules that select a subset of the incoming events to then pass on to the component that is listening to the processor. The listening component could be another processor, or the business object POJO that typically defines the end of the event processing network, and thus does something with the events, such as publish them to a client application. For more information on Oracle CQL, see the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

For each Oracle CQL processor in your application, you must create a processor element in a component configuration file. In this processor element you specify the initial set of Oracle CQL rules of the processor and any optional processor configuration.

You can configure additional optional Oracle CQL processor features in the Oracle CQL processor EPN assembly file.

The component configuration file processor element's name element must match the EPN assembly file processor element's id attribute. For example, given the EPN assembly file processor element shown in Example 17-1, the corresponding component configuration file processor element is shown in Example 17-2.

Example 17-1 EPN Assembly File Oracle CQL Processor Id: proc

<wlevs:processor id="proc">
 <wlevs:table-source ref="Stock" />
</wlevs:processor>

Example 17-2 Component Configuration File Oracle CQL Processor Name: proc

<processor>
 <name>proc</name>
 <rules>
 <query id="q1"><![CDATA[
 SELECT ExchangeStream.symbol, ExchangeStream.price, Stock.exchange
 FROM ExchangeStream [Now], Stock
 WHERE ExchangeStream.symbol = Stock.symbol
]]></query>
 </rules>
</procesor>

You can create a processor element in any of the following component configuration files:

	
The default Oracle Event Processing application configuration file (by default, META-INF/wlevs/config.xml).

	
A separate configuration file.

If your application has more than one processor, you can create a processor element for each of them in the default config.xml file, you can create separate XML files in META-INF/wlevs for each, or create a single XML file in META-INF/wlevs that contains the configuration for all processors, or even all components of your application (adapters, processors, and channels). Choose the method that best suits your development environment.

By default, Oracle Event Processing IDE for Eclipse creates one component configuration file and one EPN assembly file. When you create an Oracle CQL processor using Oracle Event Processing IDE for Eclipse, by default, the processor element is added to the default component configuration file META-INF/wlevs/config.xml file. Using Oracle Event Processing IDE for Eclipse, you can choose to create a new configuration file or use an existing configuration file at the time you create the Oracle CQL processor.

Component configuration files are deployed as part of the Oracle Event Processing application bundle. You can later update this configuration at runtime using Oracle Event Processing Visualizer, the wlevs.Admin utility, or manipulating the appropriate JMX Mbeans directly.

For more information, see:

	
Section 1.4.2, "Overview of Component Configuration Files"

	
Section 1.4.1, "Overview of EPN Assembly Files"

	
Section 5.3, "Creating EPN Assembly Files"

	
Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
"wlevs.Admin Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
"Configuring JMX for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

For more information on Oracle CQL processor configuration, see:

	
Section 17.1.1, "Controlling Which Queries Output to a Downstream Channel"

	
Section 17.2, "Configuring an Oracle CQL Processor"

	
Section 17.3, "Configuring an Oracle CQL Processor Table Source"

	
Section 17.4, "Configuring an Oracle CQL Processor Cache Source"

	
Section 17.7, "Example Oracle CQL Processor Configuration Files"

17.1.1 Controlling Which Queries Output to a Downstream Channel

If you configure an Oracle CQL processor with more than one query, by default, all queries output their results to the downstream channel.

You can control which queries may output their results to a downstream channel using the channel selector element to specify a space delimited list of query names that may output their results on this channel.

You may configure a channel element with a selector before creating the queries in the upstream processor. In this case, you must specify query names that match the names in the selector.

For more information, see Section 10.1.5, "Controlling Which Queries Output to a Downstream Channel: selector".

17.2 Configuring an Oracle CQL Processor

You can configure a processor manually or by using the Oracle Event Processing IDE for Eclipse.

See Section B.2, "Component Configuration Schema wlevs_application_config.xsd" for the complete XSD Schema that describes the processor component configuration file.

See Section 17.7, "Example Oracle CQL Processor Configuration Files" for a complete example of an Oracle CQL processor component configuration file and assembly file.

This section describes the following topics:

	
Section 17.2.1, "How to Configure an Oracle CQL Processor Using Oracle Event Processing IDE for Eclipse"

	
Section 17.2.2, "How to Create an Oracle CQL Processor Component Configuration File Manually"

17.2.1 How to Configure an Oracle CQL Processor Using Oracle Event Processing IDE for Eclipse

The most efficient and least error-prone way to create and edit a processor is to use the Oracle Event Processing IDE for Eclipse. Optionally, you can create and edit a processor manually (see Section 17.2.2, "How to Create an Oracle CQL Processor Component Configuration File Manually").

To configure an Oracle CQL processor using Oracle Event Processing IDE for Eclipse:

	
Use Oracle Event Processing IDE for Eclipse to create a processor.

See Section 7.4.1.3, "How to Create a Processor Node".

When you use the EPN editor to create an Oracle CQL processor, Oracle Event Processing IDE for Eclipse prompts you to choose either the default component configuration file or a new component configuration file. For more information, see Chapter 7, "Oracle Event Processing IDE for Eclipse and the Event Processing Network".

	
Right-click the processor node and select Go to Configuration Source.

Oracle Event Processing IDE for Eclipse opens the appropriate component configuration file. The default processor component configuration is shown in Example 17-3.

The default processor component configuration includes a name element and rules element.

Use the rules element to group the child elements you create to contain the Oracle CQL statements this processor executes, including:

	
rule: contains Oracle CQL statements that register or create user-defined windows. The rule element id attribute must match the name of the window.

	
view: contains Oracle CQL view statements (the Oracle CQL equivalent of subqueries). The view element id attribute defines the name of the view.

	
query: contains Oracle CQL select statements. The query element id attribute defines the name of the query.

The default processor component configuration includes a dummy query element with id Query.

Example 17-3 Default Processor Component Configuration

<processor>
 <name>proc</name>
 <rules>
 <query id="Query"><!-- <![CDATA[select * from MyChannel [now]]]> -->
 </query>
 </rules>
</processor>

	
Replace the dummy query element with the rule, view, and query elements you create to contain the Oracle CQL statements this processor executes.

For more information, see "Introduction to Oracle CQL Queries, Views, and Joins" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

	
Select File > Save.

	
Optionally, configure additional Oracle CQL processor features in the assembly file:

	
Section 17.1.1, "Controlling Which Queries Output to a Downstream Channel"

	
Section 17.3, "Configuring an Oracle CQL Processor Table Source"

	
Section 17.4, "Configuring an Oracle CQL Processor Cache Source"

17.2.2 How to Create an Oracle CQL Processor Component Configuration File Manually

Although the most efficient and least error-prone way to create and edit a processor configuration is to use the Oracle Event Processing IDE for Eclipse (see Section 17.2.1, "How to Configure an Oracle CQL Processor Using Oracle Event Processing IDE for Eclipse"), alternatively, you can also create and maintain a processor configuration file manually.

This section describes the main steps to create the processor configuration file manually. For simplicity, it is assumed in the procedure that you are going to configure all processors in a single XML file, although you can also create separate files for each processor.

To create an Oracle CQL processor component configuration file manually:

	
Design the set of Oracle CQL rules that the processor executes. These rules can be as simple as selecting all incoming events to restricting the set based on time, property values, and so on, as shown in the following:

SELECT *
FROM TradeStream [Now]
WHERE price > 10000

Oracle CQL is similar in many ways to Structure Query Language (SQL), the language used to query relational database tables, although the syntax between the two differs in many ways. The other big difference is that Oracle CQL queries take another dimension into account (time), and the processor executes the Oracle CQL continually, rather than SQL queries that are static.

For more information, see "Introduction to Oracle CQL Queries, Views, and Joins" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

	
Create the processor configuration XML file that will contain the Oracle CQL rules you designed in the preceding step, as well as other optional features, for each processor in your application.

You can name this XML file anything you want, provided it ends with the .xml extension.

The root element of the processor configuration file is config, with namespace definitions shown in the next step.

	
For each processor in your application, add a processor child element of config.

Uniquely identify each processor with the name child element. This name must be the same as the value of the id attribute in the wlevs:processor element of the EPN assembly file that defines the event processing network of your application. This is how Oracle Event Processing knows to which particular processor component in the EPN assembly file this processor configuration applies. See Section 5.3, "Creating EPN Assembly Files" for details.

For example, if your application has two processors, the configuration file might initially look like:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application">
 <processor>
 <name>firstProcessor</name>
 ...
 </processor>
 <processor>
 <name>secondProcessor</name>
 ...
 </processor>
</n1:config>

In the example, the configuration file includes two processors called firstProcessor and secondProcessor. This means that the EPN assembly file must include at least two processor registrations with the same identifiers:

<wlevs:processor id="firstProcessor" ...>
 ...
</wlevs:processor>
<wlevs:processor id="secondProcessor" ...>
 ...
</wlevs:processor>

	
Caution:

Identifiers and names in XML files are case sensitive, so be sure you specify the same case when referencing the component's identifier in the EPN assembly file.

	
Add a rules child element to each processor element.

Use the rules element to group the child elements you create to contain the Oracle CQL statements this processor executes, including:

	
rule: contains Oracle CQL statements that register or create user-defined windows. The rule element id attribute must match the name of the window.

	
view: contains Oracle CQL view statements (the Oracle CQL equivalent of subqueries). The view element id attribute defines the name of the view.

	
query: contains Oracle CQL select statements. The query element id attribute defines the name of the query.

Use the required id attribute of the view and query elements to uniquely identify each rule. Use the XML CDATA type to input the actual Oracle CQL rule. For example:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>proc</name>
 <rules>
 <view id="lastEvents" schema="cusip bid srcId bidQty"><![CDATA[
 select mod(price)
 from filteredStream[partition by srcId, cusip rows 1]
]]></view>
 <query id="q1"><![CDATA[
 SELECT *
 FROM lastEvents
 WHERE price > 10000
]]></query>
 </rules>
 </processor>
</n1:config>]]></query>

	
Save and close the file.

	
Optionally, configure additional Oracle CQL processor features in the assembly file:

	
Section 17.1.1, "Controlling Which Queries Output to a Downstream Channel"

	
Section 17.3, "Configuring an Oracle CQL Processor Table Source"

	
Section 17.4, "Configuring an Oracle CQL Processor Cache Source"

17.3 Configuring an Oracle CQL Processor Table Source

You can access a relational database table from an Oracle CQL query using:

	
table source: using a table source, you may join a stream only with a NOW window and only to a single database table.

	
Note:

Because changes in the table source are not coordinated in time with stream data, you may only join the table source to an event stream using a Now window and you may only join to a single database table. For more information, see "S[now]" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

To integrate arbitrarily complex SQL queries and multiple tables with your Oracle CQL queries, consider using the Oracle JDBC data cartridge instead.

For more information, Section 17.3, "Configuring an Oracle CQL Processor Table Source".

	
Oracle JDBC data cartridge: using the Oracle JDBC data cartridge, you may integrate arbitrarily complex SQL queries and multiple tables and datasources with your Oracle CQL queries.

	
Note:

Oracle recommends that you use the Oracle JDBC data cartridge to access relational database tables from an Oracle CQL statement.

For more information, see "Understanding the Oracle JDBC Data Cartridge" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

In all cases, you must define datasources in the Oracle Event Processing server config.xml file. For more information, see "Configuring Access to a Relational Database" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

Oracle Event Processing relational database table event sources are pull data sources: that is, Oracle Event Processing will periodically poll the event source.

In this section, assume that you create the table you want to access using the SQL statement that Example 17-4 shows.

Example 17-4 Table Create SQL Statement

create table Stock (symbol varchar(16), exchange varchar(16));

After configuration, you can define Oracle CQL queries that access the Stock table as if it was just another event stream. In the following example, the query joins one event stream ExchangeStream with the Stock table:

Example 17-5 Oracle CQL Query on Relational Database Table Stock

SELECT ExchangeStream.symbol, ExchangeStream.price, Stock.exchange
FROM ExchangeStream [Now], Stock
WHERE ExchangeStream.symbol = Stock.symbol

	
Note:

Because changes in the table source are not coordinated in time with stream data, you may only join the table source to an event stream using a Now window and you may only join to a single database table.

To integrate arbitrarily complex SQL queries and multiple tables with your Oracle CQL queries, consider using the Oracle JDBC data cartridge instead.

For more information, see "Understanding the Oracle JDBC Data Cartridge" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

17.3.1 How to Configure an Oracle CQL Processor Table Source Using Oracle Event Processing IDE for Eclipse

The most efficient and least error-prone way to configure an Oracle CQL processor to access a relational database table is to use the Oracle Event Processing IDE for Eclipse.

To configure an Oracle CQL processor table source using Oracle Event Processing IDE for Eclipse:

	
Create a data source for the database that contains the table you want to use.

Example 17-6 shows an example Oracle Event Processing server config.xml file with data source StockDS.

Example 17-6 Oracle Event Processing Server config.xml File With Data Source StockDS

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/server wlevs_server_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/server"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <domain>
 <name>ocep_domain</name>
 </domain>

...

 <data-source>
 <name>StockDs</name>
 <connection-pool-params>
 <initial-capacity>1</initial-capacity>
 <max-capacity>10</max-capacity>
 </connection-pool-params>
 <driver-params>
 <url>jdbc:derby:</url>
 <driver-name>org.apache.derby.jdbc.EmbeddedDriver</driver-name>
 <properties>
 <element>
 <name>databaseName</name>
 <value>db</value>
 </element>
 <element>
 <name>create</name>
 <value>true</value>
 </element>
 </properties>
 </driver-params>
 <data-source-params>
 <jndi-names>
 <element>StockDs</element>
 </jndi-names>
 <global-transactions-protocol>None</global-transactions-protocol>
 </data-source-params>
 </data-source>

...

</n1:config>

For more information, see "Configuring Access to a Relational Database" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Use Oracle Event Processing IDE for Eclipse to create a table node.

See Section 7.4.1.1, "How to Create a Basic Node".

	
Use Oracle Event Processing IDE for Eclipse to create an Oracle CQL processor.

See Section 7.4.1.3, "How to Create a Processor Node".

	
Connect the table node to the Oracle CQL processor node.

See Section 7.4.2.1, "How to Connect Nodes".

The EPN Editor adds a wlevs:table-source element to the target processor node that references the source table.

	
Right-click the table node in your EPN and select Go to Assembly Source.

Oracle Event Processing IDE for Eclipse opens the EPN assembly file for this table node.

	
Edit the table element as Example 17-7 shows and configure the table element attributes as shown in Table 17-1.

Example 17-7 EPN Assembly File table Element

<wlevs:table id="Stock" event-type="StockEvent" data-source="StockDs" />

Table 17-1 EPN Assembly File table Element Attributes

	Attribute	Description
	
id

	
The name of the table source. Subsequent references to this table source use this name.

	
event-type

	
The type-name you specify for the table event-type you create in step 9.

	
data-source

	
The data-source name you specified in the Oracle Event Processing server config.xml file in step 1.

	
Right-click the Oracle CQL processor node connected to the table in your EPN and select Go to Assembly Source.

Oracle Event Processing IDE for Eclipse opens the EPN assembly file for this Oracle CQL processor.

	
Edit the Oracle CQL processor element's table-source child element as Example 17-8 shows.

Set the ref attribute to the id of the table element you specified in step 6.

Example 17-8 EPN Assembly File table-source Element

<wlevs:processor id="proc">
 <wlevs:table-source ref="Stock" />
</wlevs:processor>

	
Edit the EPN assembly file to update the event-type-repository element with a new event-type child element for the table as Example 17-9 shows.

Create a property child element for each column of the table you want to access and configure the property attributes as described in in Section 9.2.3.2, "Constraints on Event Types for Use With a Database Table Source".

Example 17-9 EPN Assembly File event-type element for a Table

<wlevs:event-type-repository>
 ...
 <wlevs:event-type type-name="StockEvent">
 <wlevs:properties>
 <wlevs:property name="symbol" type="char[]" length="16" />
 <wlevs:property name="exchange" type="char[]" length="16" />
 </wlevs:properties>
 </wlevs:event-type>
 ...
</wlevs:event-type-repository>

For more information on creating event types, see:

	
Chapter 9, "Creating Event Types"

	
Section 9.2.2, "Choosing a Data Type for an Event Type"

	
Right-click the Oracle CQL processor node connected to the table in your EPN and select Go to Configuration Source.

Oracle Event Processing IDE for Eclipse opens the component configuration file for this Oracle CQL processor.

	
Edit the component configuration file to add Oracle CQL queries that use the table's event-type as shown in Example 17-10.

Example 17-10 Oracle CQL Query Using Table Event Type StockEvent

<processor>
 <name>proc</name>
 <rules>
 <query id="q1"><![CDATA[
 SELECT ExchangeStream.symbol, ExchangeStream.price, Stock.exchange
 FROM ExchangeStream [Now], Stock
 WHERE ExchangeStream.symbol = Stock.symbol
]]></query>
 </rules>
</processor>

	
Note:

Because changes in the table source are not coordinated in time with stream data, you may only use a Now window. For more information, see "S[Now]" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

17.4 Configuring an Oracle CQL Processor Cache Source

You can configure an Oracle CQL processor to access the Oracle Event Processing cache.

For more information, see:

	
Section 13.1, "Overview of Integrating a Cache"

	
Section 13.6.5, "Accessing a Cache From an Oracle CQL User-Defined Function"

	
Section 13.6.1, "Accessing a Cache from an Oracle CQL Statement"

17.5 Configuring an Oracle CQL Processor for Parallel Query Execution

For improved performance, you can enable a CQL query to execute in parallel rather than serially, as it does by default. When the CQL code supports it, you can configure a query so that it can process incoming events in parallel when multiple threads are available to the CQL processor.

You should enable parallel query execution only in cases where the relative order of the query output events is unimportant to the query's downstream client. For example, event ordering probably isn't important if your query is intended primarily to filter events, such as to deliver to clients a set of stock transactions involving a particular company, where the transaction sequence is irrelevant.

By default (without enabling parallel execution), queries process events from a channel serially. For events routed through a channel that uses a system timestamp, event order is the order in which events are received; through a channel that is application timestamped, event order is the order determined by a timestamp value included in the event. Relaxing the total order constraint allows the configured query to not consider event order for that query, processing events in parallel where possible.

17.5.1 Setting Up Parallel Query Execution Support

While specifying support for parallel query execution is at its core a simple configuration task, be sure to follow the other steps below so that you get the most out of the feature.

	
Use the ordering-constraint attribute to support parallel execution.

	
Make sure you have enough threads calling into the processor to meet your performance goals. The maximum amount of parallel query execution is constrained by the number of threads available to the CQL processor. For example, if an adapter upstream of the processor supports the number of threads you need and there is a channel between the adapter and the processor, try configuring the channel with a max-threads count of 0 so that it acts as a pass-through.

If you don't want a pass-through, be sure to configure the query's upstream channel with a max-threads value greater than 1. (To make a max-threads value setting useful, you'll need to also set the max-size attribute to a value greater than 0.) For more information, see Chapter 10, "Connecting EPN Stages Using Channels".

	
Follow other guidelines related to setting the max-threads attribute value. For example, to make a max-threads value setting useful, you'll need to also set the max-size attribute to a value greater than 0.

	
Ensure, if necessary, that a bean receiving the query results is thread-aware, such as by using synchronized blocks. For example, you might need to do so if the bean's code builds a list from results received from queries executed on multiple threads.

17.5.2 Using the ordering-constraint Attribute

You enable parallel query execution by relaxing the default ordering constraint that ensures that events are processed serially. You do this by setting the ordering-constraint attribute on a query or view element.

In Example 17-11, the ordering-constraint attribute is set to UNORDERED so that the query will execute in parallel whenever possible:

Example 17-11 Query Configured to Allow Parallel Execution

<query id="myquery" ordering-constraint="UNORDERED">
 SELECT symbol FROM S WHERE price > 10
</query>

The ordering-constraint attribute supports the following three values:

	
ORDERED means that the order of output events (as implied by the order of input events) is important. The CQL engine will process events serially. This is the default behavior.

	
UNORDERED means that order of the output events is not important to the consumer of the output events. This gives the freedom to the CQLProcessor to process events in parallel on multiple threads. When possible, the query will execute in parallel on multiple threads to process the events.

	
PARTITION_ORDERED means that you're specifying that order of output events within a partition is to be preserved (as implied by the order of input events) while order of output events across different partitions is not important to the consumer of the output events. This relaxation provides some freedom to the CQL engine to process events across partitions in parallel (when possible) on multiple threads.

Use the PARTITION_ORDERED value when you want to specify that events conforming to a given partition are processed serially, but that order can be disregarded across partitions and events belonging to different partitions may be processed in parallel. When using the PARTITION_ORDERED value, you must also add the partition-expression attribute to specify which expression for partitioning should be the basis for relaxing the cross-partition ordering constraint.

In Example 17-12, the GROUP BY clause partitions the output based on symbol values. The partition-expression attribute specifies that events in a given subset of events corresponding to a particular symbol value should be handled serially. Across partitions, on the other hand, order can be disregarded.

Example 17-12 Query Configured to Allow Parallel Execution Across Partitions

<query id="myquery" ordering-constraint="PARTITION_ORDERED"
 partitioning-expression="symbol">
 SELECT
 COUNT(*) as c, symbol
 FROM
 S[RANGE 1 minute]
 GROUP BY
 symbol
</query>

17.5.3 Using partition-order-capacity with Partitioning Queries

In general, you'll probably see improved performance for queries by making more threads available and setting the ordering-constraint attribute so that they're able to execute in parallel when possible. As with most performance tuning techniques, a little trial and error with these settings should yield a combination that gets better results.

However, in some cases where your queries use partitioning -- and you've set the ordering-constraint attribute to PARTITION_ORDERED -- you might not see the amount of scaling you'd expect. For example, consider a case in which running with four threads doesn't improve performance very much over running with two threads. In such a case, you can try using the partition-order-capacity value to get the most out of CQL engine characteristics at work with queries that include partitions.

The partition-order-capacity value specifies the maximum amount of parallelism that will be permitted within a given processor instance when processing a PARTITION_ORDERED query. When available threads are handling events belonging to different partitions, the value sets a maximum number of threads that will be allowed to simultaneously run in the query.

As with other aspects of performance tuning, getting the most out of partition-order-capacity may take a bit of experimentation. When tuning with partition-order-capacity, a good starting point is to set it equal to the maximum number of threads you expect to have active in any CQL processor instance. In some cases (for example, at high data rates or with expensive processing downstream from the CQL processor), it may be helpful to set the partition-order-capacity value even higher than the available number of threads. However, you should only do this if performance testing confirms that it's helpful for a given application and load.

The partition-order-capacity value is set from one of four places, two of which are fallbacks when you don't explicitly set it yourself. These are, in order of precedence:

	
The partition-order-capacity element set on a channel configuration. If you specify this on the input channel for a processor, it takes effect for any PARTITION_ORDERED queries in that processor. For more information, see Section D.72, "partition-order-capacity" in Appendix D, "Schema Reference: Component Configuration wlevs_application_config.xsd".

	
The partition-order-capacity property in server configuration. This value will be used for all PARTITION_ORDERED queries running on the server unless the value is set on a channel. For more information, see Section F.29, "partition-order-capacity" in Appendix F, "Schema Reference: Server Configuration wlevs_server_config.xsd".

	
The max-threads value set on a channel configuration. If you specify this on the input channel for a processor, it takes effect for any PARTITION_ORDERED queries in that processor

	
A system default value (currently set to 4) is used if you don't specify either a partition-order-capacity value or max-threads value, or if the max-threads value is set to 0 (meaning it's a pass-through channel).

When using partition-order-capacity, keep in mind the following:

	
The partition-order-capacity value is only useful when you're setting the ordering-constraint attribute to PARTITION_ORDERED.

	
Increasing partition-order-capacity generally increases parallelism and scaling. For example, if your profiling reveals lock contention bottlenecks, you might find it helpful to increase partition-order-capacity to see if contention is reduced.

	
Setting partition-order-capacity even higher than the number of available threads can be helpful in some cases because of the particular way partitioning is done in the CQL processor.

	
There is some resource cost in memory used by specifying very high values.

	
Tuning this parameter is very dependent on details of the application and the input rate. Tuning by experimentation may be necessary to determine an optimal value.

17.5.4 Limitations

Think of parallel query execution as a performance enhancement feature that you specify support for so that the CQL processor can use it whenever possible. Not all queries can be executed in parallel. This includes queries using certain CQL language features.

For example, if your query uses some form of aggregation -- such as to find the maximum value from a range of values -- the CQL processor may not be able to fully execute the query in parallel (this is needed to guarantee the correct result considering the ordering constraint). Some query semantics in themselves also constrain the query to ordered processing. Such queries will be executed serially regardless of whether you specify support for parallel execution.

Also, the IStream, RStream and DStream operators maintain the state of their operand for processing, making it necessary for the CQL processor to synchronize threads in order to execute the query.

Note that the CQL processor always respects the semantic intention of your query. In cases where the ordering-constraint attribute would change this intention, the attribute is coerced to a value that keeps the intention intact.

If you're using the partitioning-expression attribute, keep in mind that the attribute supports a single expression only. Entering multiple property names for the value is not supported.

17.6 Handling Faults

You can write code to handle faults that occur in code that does not have an inherent fault handling mechanism. This includes Oracle CQL code and multi-threaded EPN channels. By default, the CQL language has no mechanism for handling errors that occur, as does Java with its try/catch structure. To handle faults that occur in CQL, you can write a fault handler, then connect the handler to the EPN stage for which it handles faults, such as an Oracle CQL processor.

You can also associate a fault handler with a multi-threaded channel -- that is, a channel whose max-threads setting is greater than 0. This provides fault handling in the case of exceptions that are thrown to the channel from a stage that is downstream of the channel. Note that channels whose max-threads setting is 0 are pass-through channels that already re-throw exception to their upstream stages. For additional information specific to fault handlers for channels, see Section 10.1.8, "Handling Faults in Channels".

A fault handler is a Java class that implements the com.bea.wlevs.ede.api.FaultHandler interface. You connect the class to an EPN stage by registering your fault handler as an OSGi service and associating it with the stage. For more information about OSGi, see Appendix A, "Additional Information about Spring and OSGi".

Without a custom fault handler, you get the following default fault handling behavior:

	
When an exception occurs in Oracle CQL, the CQL engine catches the exception and stops the query processor.

	
If an exception occurs in a stage that is downstream of the processor, then that stage will be dropped as a listener.

	
Exceptions are logged (under the CQLServer category) and the events that are part of the exception's cause are discarded.

	
Upstream stages are not notified of the failure.

When using custom fault handlers you write, you can:

	
Associate a fault handler with an Oracle CQL processor or multi-threaded channel so that faults in those stages are thrown as exceptions to the handler. There, you can handle or re-throw the exception.

	
Allow query processing to continue as your code either handles the exception or re-throws it to the stage that is next upstream.

	
Save event data from being lost while handling a fault. For example, if you have configured a connection to a data source, you could save event data there.

	
Log fault and event information when faults occur.

	
Use multiple fault handlers where needed in an EPN so that exceptions thrown upstream will be handled when they reach other Oracle CQL processors and channels.

In other words, consider associating a fault handler with a stage that does not have its own mechanism for responding to faults, including Oracle CQL processors and multi-threaded channels. Other stages, such as custom adapters you write in Java, which have their own exception-handling model, would not benefit from a fault handler.

Queries can continue as your fault handling code evaluates the fault to determine what action should be taken, including re-throwing the fault to a stage that is upstream of the CQL processor.

For example, the upstream stage of the CQL processor could be the JMS subscriber adapter, which has the option of rolling back the JMS transaction (if the session is transacted), allowing the event to be re-delivered. It can also commit the transaction if the event has been re-delivered already and found that the problem is not solvable.

Note that even when you are using a custom fault handler, query state is reset after a fault as if the query had been stopped and restarted. Yet contrast this with the default behavior, where the query is stopped and all subsequent events are dropped.

17.6.1 Implementing a Fault Handler Class

You create a fault handler class by implementing the com.bea.wlevs.ede.api.FaultHandler interface. After you have written the class, you associated it with the stage for which it will handle faults by registering it as an OSGi service. For more information, see Section 17.6.2, "Registering a Fault Handler".

Your implementation of the interface's one method, handleFault, receives exceptions for the EPN stage with which the handler is associated. The exception itself is either an instance of com.bea.wlevs.ede.api.EventProcessingException or, if there has been a JVM error, an instance of java.lang.Error.

The method also receives a string array containing the names of upstream stages, or catchers, to which the exception will go if your code re-throws it. If there is more than one catcher in the array, your re-thrown exception will go to all of them. There are two cases when the catchers array will be empty: when the exception occurs while executing a temporal query and if the exception is thrown to a channel's fault handler. In these cases, the fault handler is executed in the context of a background thread; there is no linkage to upstream stages.

An exception that is re-thrown from a fault handler will travel back up through upstream EPN stages until it is either caught or reaches a stage that cannot catch it (such as a processor or multi-threaded channel that does not have an associated fault handler). Note that if you re-throw an exception, any channels in the catchers list must have an associated fault handler in order to catch the exception.

The EventProcessingException instance could also be one of the exception types that extend that class, including CQLExecutionException, ArithmeticExecutionException, and others (be sure to see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing). The EventProcessingException instance provides methods with which your code can retrieve insert, delete, and update events that were involved in generating the fault.

Your implementation of the method should do one of the following:

	
Consume the fault in the way that a Java try/catch statement might. If your implementation does not re-throw the fault, then event processing will continue with subsequent events. However, query processing continues with its state reset as if the query had been restarted. Processing state is lost and processing begins fresh with events that follow those that provoked the fault.

	
Re-throw the fault so that it will be received by upstream stages (or their fault handlers). As when the fault is consumed, queries continue processing events, although query state is reset with subsquent events. The upstream stage receiving the fault always has the option of explicitly stopping the offending query by using the CQL processor's MBean interface.

In Example 17-13, "Fault Handler Class", the code provides a high level illustration of handling a fault.

Example 17-13 Fault Handler Class

package com.example.faulthandler;

import com.bea.wlevs.ede.api.FaultHandler;

public class SimpleFaultHandler implements FaultHandler
{
 private String suppress;

 // Called by the server to pass in fault information.
 @Override
 public void handleFault(Throwable fault, String[] catchers) throws Throwable
 {
 // Log the fault.
 return;
 }
}

17.6.2 Registering a Fault Handler

After you have written a fault handling class, you can associate it with an EPN stage by registering it as an OSGi service. The simplest way to do this is to register the handler declaratively in the EPN assembly file.

	
Note:

Due to inherent OSGi behavior, runtime fault handler registration from your configuration happens asynchronously, meaning that a small amount of warm-up time might be required before the handler is able to receive faults. To be sure your handler is ready for the first events entering the network, consider adding a wait period before the application begins receiving events.

In Example 17-14, "Code to Register a Fault Handler with an EPN Stage", the EPN assembly file excerpt shows a service element stanza that registers the SimpleFaultHandler class as the fault handler for the Oracle CQL processor whose id is exampleProcessor.

Example 17-14 Code to Register a Fault Handler with an EPN Stage

<osgi:service interface="com.bea.wlevs.ede.api.FaultHandler">
 <osgi:service-properties>
 <entry key="application.identity" value="myapp"/>
 <entry key="stage.identity" value="exampleProcessor"/>
 </osgi:service-properties>
 <bean class="com.example.faulthandler.SimpleFaultHandler"/>
</osgi:service>

<!-- A processor with a user-defined function. -->
<wlevs:processor id="exampleProcessor" >
 ...
</wlevs:processor>

For more on the schema for registering OSGi services, see http://static.springsource.org/osgi/docs/1.1.x/reference/html/appendix-schema.html. For more on OSGi, see http://en.wikipedia.org/wiki/OSGi.

17.7 Example Oracle CQL Processor Configuration Files

This section provides example Oracle CQL processor configuration files, including:

	
Section 17.7.1, "Oracle CQL Processor Component Configuration File"

	
Section 17.7.2, "Oracle CQL Processor EPN Assembly File"

17.7.1 Oracle CQL Processor Component Configuration File

The following example shows a component configuration file for an Oracle CQL processor.

<?xml version="1.0" encoding="UTF-8"?>
<n1:config
 xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <processor>
 <name>proc</name>
 <rules>
 <view id="lastEvents"><![CDATA[
 select mod(price)
 from filteredStream[partition by srcId, cusip rows 1]
]]></view>
 <query id="q1"><![CDATA[
 SELECT *
 FROM lastEvents
 WHERE price > 10000
]]></query>
 </rules>
 </processor>
</n1:config>

In the example, the name element specifies that the processor for which the Oracle CQL rules are being configured is called proc. This in turn implies that the EPN assembly file that defines your application must include a corresponding wlevs:processor element with an id attribute value of proc to link these Oracle CQL rules with an actual proc processor instance (see Section 17.7.2, "Oracle CQL Processor EPN Assembly File").

This Oracle CQL processor component configuration file also defines a view element to specify an Oracle CQL view statement (the Oracle CQL equivalent of a subquery). The results of the view's select are not output to a down-stream channel.

Finally, this Oracle CQL processor component configuration file defines a query element to specify an Oracle CQL query statement. The query statement selects from the view. By default, the results of a query are output to a down-stream channel. You can control this behavior in the channel configuration using a selector element. For more information, see:

	
Section 10.2.1, "How to Configure a System-Timestamped Channel Using Oracle Event Processing IDE for Eclipse"

	
Section 10.2.2, "How to Configure an Application-Timestamped Channel Using Oracle Event Processing IDE for Eclipse"

17.7.2 Oracle CQL Processor EPN Assembly File

The following example shows an EPN assembly file for an Oracle CQL processor.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="ExchangeEvent">
 <wlevs:properties>
 <wlevs:property name="symbol" type="char[]" length="16" />
 <wlevs:property name="price" type="java.lang.Double" />
 </wlevs:properties>
 </wlevs:event-type>
 <wlevs:event-type type-name="StockExchangeEvent">
 <wlevs:properties>
 <wlevs:property name="symbol" type="char[]" length="16" />
 <wlevs:property name="price" type="java.lang.Double" />
 <wlevs:property name="exchange" type="char[]" length="16" />
 </wlevs:properties>
 </wlevs:event-type>
 <wlevs:event-type type-name="StockEvent">
 <wlevs:properties>
 <wlevs:property name="symbol" type="char[]" length="16" />
 <wlevs:property name="exchange" type="char[]" length="16" />
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <!-- Assemble EPN (event processing network) -->
 <wlevs:adapter id="adapter" class="com.bea.wlevs.example.db.ExchangeAdapter" >
 <wlevs:listener ref="ExchangeStream"/>
 </wlevs:adapter>

 <wlevs:channel id="ExchangeStream" event-type="ExchangeEvent" >
 <wlevs:listener ref="proc"/>
 </wlevs:channel>

 <wlevs:table id="Stock" event-type="StockEvent" data-source="StockDs" />

 <wlevs:processor id="proc" advertise="true" >
 <wlevs:table-source ref="Stock" />
 </wlevs:processor>

 <wlevs:channel id="OutputStream" advertise="true" event-type="StockExchangeEvent" >
 <wlevs:listener ref="bean"/>
 <wlevs:source ref="proc"/>
 </wlevs:channel>

 <osgi:reference id="ds" interface="com.bea.core.datasource.DataSourceService" cardinality="0..1" />

 <!-- Create business object -->
 <bean id="bean" class="com.bea.wlevs.example.db.OutputBean">
 <property name="dataSourceService" ref="ds"/>
 </bean>

</beans>

20 Configuring Event Record and Playback

This chapter describes how to configure event recording and playback for debugging Oracle Event Processing event processing networks, including how to specify an event persistence store and query the store.

This chapter includes the following sections:

	
Section 20.1, "Overview of Configuring Event Record and Playback"

	
Section 20.2, "Configuring Event Record and Playback in Your Application"

	
Section 20.3, "Creating a Custom Event Store Provider"

20.1 Overview of Configuring Event Record and Playback

Oracle Event Processing event repository feature allows you to persist the events that flow out of a component of the event processing network (EPN) to a store, such as a database table, and then play them back at a later stage or explicitly query the events from a component such as an event bean.

A typical use case of this feature is the ability to debug a problem with a currently running application. If you have been recording the events at a node in the EPN when the problem occurred, you can later playback the same list of events to recreate the problem scenario for debugging purposes.

The following graphic shows the EPN of the Event Record and Playback example and demonstrates at what point events are recorded and where they are played back. The simpleEventSource adapter has been configured to record events; as indicated, the record happens as events flow out of the adapter. The eventStream channel has been configured to playback events; as indicated, the playback happens at the point where events flow into the channel.

Figure 20-1 Configuring Record and Playback in an EPN

[image: Description of Figure 20-1 follows]

This section describes:

	
Section 20.1.1, "Storing Events in the Persistent Event Store"

	
Section 20.1.2, "Recording Events"

	
Section 20.1.3, "Playing Back Events"

	
Section 20.1.4, "Querying Stored Events"

	
Section 20.1.5, "Record and Playback Example"

20.1.1 Storing Events in the Persistent Event Store

When you record events, Oracle Event Processing server stores them in a persistent event store. You can use the persistent event store that Oracle Event Processing server provides or define your own:

	
Section 20.1.1.1, "Default Persistent Event Store"

	
Section 20.1.1.2, "Custom Persistent Event Store"

	
Section 20.1.1.3, "Persistent Event Store Schema"

20.1.1.1 Default Persistent Event Store

By default, Oracle Event Processing uses a Berkeley DB instance bundled with the Oracle Event Processing server to store recorded events.

Berkeley DB is a fast, scalable, transactional database engine with industrial grade reliability and availability. For more information, see:

	
http://www.oracle.com/technology/products/berkeley-db/je/index.html

	
http://www.oracle.com/technology/documentation/berkeley-db/je/index.html

By default, Oracle Event Processing server creates the Berkeley DB instance in:

ORACLE_CEP_HOME/user_projects/domains/domainname/servername/bdb

Where ORACLE_CEP_HOME refers to the directory in which you installed Oracle Event Processing (such as /oracle_home), domainname refers to the name of your domain, and servername refers to the name of your server (For example, /oracle_cep/user_projects/domains/mydomain/myserver).

You can change this default by configuring the bdb-config element db-env-path child element as Section 20.2.1, "Configuring an Event Store for Oracle Event Processing Server" describes.

20.1.1.2 Custom Persistent Event Store

Optionally, you can create a custom persistent event store provider to store recorded events. For example, you could specify a Relational Database Management System such as Oracle Database or Derby as your persistent event store.

For more information, see Section 20.3, "Creating a Custom Event Store Provider."

20.1.1.3 Persistent Event Store Schema

You do not create the actual database schema used to store the recorded events. Oracle Event Processing server automatically does this for you after you deploy an application that uses the record and playback feature and recording begins.

For more information, see Section 20.2.5, "Description of the Berkeley Database Schema".

20.1.2 Recording Events

You can configure recording for any component in the event processing network (EPN) that produces events: processors, adapters, streams, and event beans. Processors and streams always produce events; adapters and event beans must implement the EventSource interface. Additionally, you can configure that events from different components in the EPN be stored in different persistent stores, or that all events go to the same store. Note that only events that are outputted by the component are recorded.

You enable the recording of events for a component by updating its configuration file and adding the record-parameters element. Using the child elements of record-parameters, you specify the event store to which the events are recorded, an initial time period when recording should take place, the list of event types you want to store, and so on.

After you deploy the application and events start flowing through the network, recording begins either automatically because you configured it to start at a certain time or because you dynamically start it using administration tools. For each component you have configured for recording, Oracle Event Processing stores the events that flow out of it to the appropriate store along with a timestamp of the time it was recorded.

20.1.3 Playing Back Events

You can configure playback for any component in the event processing network (EPN): processors, adapters, streams, and event beans. Typically the playback component is a node later in the network than the node that recorded the events.

You enable the playback of events for a component by updating its configuration file and adding the playback-parameters element. Using the child elements of playback-parameters, you specify the event store from which the events are played back, the list event types you want to play back (by default all are played back), the time range of the recorded events you want to play back, and so on. By default, Oracle Event Processing plays back the events in a time accurate manner; however, you can also configure that the events get played back either faster or slower than they originally flowed out of the component from which they were recorded.

After you deploy the application and events start flowing through the network, you must start the playback by using the administration tools (Oracle Event Processing Visualizer or wlevs.Admin). Oracle Event Processing reads the events from the appropriate persistent store and inserts them into the appropriate place in the EPN.

It is important to note that when a component gets a playback event, it looks exactly like the original event. Additionally, a component later in the network has been configured to record events, then Oracle Event Processing records the playback events as well as the "real" events.

For more information, see:

	
"Recording and Playing Back Events Flowing Through an EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
"Commands for Controlling Event Record and Playback" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

20.1.4 Querying Stored Events

You can use the event store API to query a store for past events given a record time range and the component from which the events were recorded. The actual query you use depends on the event repository provider; for example, you would use Oracle CQL or EPL for the default persistent event store provider included with Oracle Event Processing. You can also use these APIs to delete old events from the event store.

20.1.5 Record and Playback Example

The sample code in this section is taken from the event record and playback example, located in the ORACLE_CEP_HOME\ocep_11.1\samples\source\applications\recplay directory, where ORACLE_CEP_HOME refers to the main Oracle Event Processing installation directory, such as d:\oracle_cep.

For details about running and building the example, see Section 2.10, "Event Record and Playback Example".

20.2 Configuring Event Record and Playback in Your Application

Depending on how you are going to use the event repository, there are different tasks that you must perform, as described in the following procedure that in turn point to sections with additional details.

To configure record and playback of events in your application:

	
Optionally configure the Berkeley database event store for your Oracle Event Processing server instance.

You may use the default Berkeley database configuration as is. You only need to make configuration changes to customize the location of the Berkeley database instance or to tune performance.

See Section 20.2.1, "Configuring an Event Store for Oracle Event Processing Server."

	
Configure a component in your EPN to record events by updating the component's configuration file.

The component can be a processor, adapter, channel, or event bean. Only events flowing out of the component are recorded.

See Section 20.2.2, "Configuring a Component to Record Events."

	
Configure a component in your EPN to playback events by updating the component's configuration file.

The component can be a processor, adapter, channel, or event bean. Only components that are also event sinks can playback events; events are played to the input side of the component.

See Section 20.2.3, "Configuring a Component to Playback Events."

	
Redeploy your application for the changes to take effect.

	
If you have not specified an explicit start and end time for recording events, you must use Oracle Event Processing Visualizer or wlevs.Admin to start recording. You must always use these administration tools to start and end the playback of events.

See Section 20.2.4, "Starting and Stopping the Record and Playback of Events."

20.2.1 Configuring an Event Store for Oracle Event Processing Server

You may use the default Berkeley database configuration as is. You only need to make configuration changes to customize the location of the Berkeley database instance or to tune performance.

For more information, see Section 20.3, "Creating a Custom Event Store Provider".

To configure an event store for Oracle Event Processing server:

	
Stop your Oracle Event Processing server instance, if it is running.

	
Using your favorite XML editor, open the server's config.xml file for edit.

The config.xml file is located in the DOMAIN_DIR/servername/config directory of your server, where DOMAIN_DIR refers to the domain directory, such as /oracle_cep/user_projects/domains/myDomain and servername refers to the name of your server, such as defaultserver.

	
Edit the bdb-config element to the config.xml file.

Example 20-1 shows a fully configured bdb-config element.

Example 20-1 bdb-config Element

<bdb-config>
 <db-env-path>bdb</db-env-path>
 <cache-size>1000</cache-size>
</bdb-config>

Table 20-1 lists the child elements of bdb-config that you can specify.

Table 20-1 Child Elements of bdb-config

	Child Element	Description
	
db-env-path

	
Specifies the subdirectory in which Oracle Event Processing server creates Berkeley database instances relative to the DOMAIN_DIR/servername/config directory of your server, where DOMAIN_DIR refers to the domain directory, such as /oracle_cep/user_projects/domains/myDomain and servername refers to the name of your server, such as defaultserver.

Default: bdb

	
cache-size

	
Specifies the amount of memory, in bytes, available for Berkeley database cache entries. You can adjust the cache size to tune Berkeley database performance.

For more information, see:

	
http://www.oracle.com/technology/documentation/berkeley-db/je/GettingStartedGuide/cachesize.html.

	
http://www.oracle.com/technology/documentation/berkeley-db/je/java/com/sleepycat/je/EnvironmentMutableConfig.html#setCacheSize(long)

Default: je.maxMemoryPercent * JVM maximum memory

	
Restart your Oracle Event Processing server instance.

20.2.2 Configuring a Component to Record Events

You can configure any processor, adapter, channel, or event bean in your application to record events. As with all other component configuration, you specify that a component records events by updating its configuration file. For general information about these configuration files, see Section 1.4.2, "Overview of Component Configuration Files."

This section describes the main steps to configure a component to record events. For simplicity, it is assumed in the procedure that you are configuring an adapter to record events and that you have already created its component configuration file.

See Section B.2, "Component Configuration Schema wlevs_application_config.xsd" for the complete XSD Schema that describes the event recording configuration file elements.

Using your favorite XML editor, open the component configuration XML file and add a record-parameters child element to the component you want to configure to record events. For example, to configure an adapter called simpleEventSource:

<?xml version="1.0" encoding="UTF-8"?>
 <n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <adapter>
 <name>simpleEventSource</name>
 <record-parameters>
 ...
 </record-parameters>
 ...
 </adapter>
 ...
</n1:config>

Add child elements to record-parameters to specify the name of the event store provider, the events that are stored, the start and stop time for recording, and so on. For example:

<adapter>
 <name>simpleEventSource</name>
 <record-parameters>
 <dataset-name>recplay_sample</dataset-name>
 <event-type-list>
 <event-type>SimpleEvent</event-type>
 </event-type-list>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
 </record-parameters>
</adapter>

Table 20-2 lists the child elements of record-parameters that you can specify. Only dataset-name is required.

Table 20-2 Child Elements of record-parameters

	Child Element	Description
	
dataset-name

	
Specifies the group of data that the user wants to group together.

In the case of BDB provider, the dataset name will be used as the database environment in Berkeley database.

In the case of the Oracle RDBMS-based provider, it specifies the database area, or schema, in which the tables that store the recorded events are created.

When configuring the Oracle RDBMS-based provider, you are required to specify this element.

	
event-type-list

	
Specifies the event types that are recorded to the event store. If this element is not specified, then Oracle Event Processing records all event types that flow out of the component.

Use the event-type child component to list one or more events, such as:

 <event-type-list>
 <event-type>EventOne</event-type>
 <event-type>EventTwo</event-type>
 </event-type-list>

When configuring the Oracle RDBMS-based provider, you are required to specify this element.

	
time-range

	
Specifies the time period during which recording should take place using a start and end time.

The time period is configured by using a start child element to specify a start time and an end child element to specify the end time.

Express the start and end time as XML Schema dateTime values of the form:

yyyy-mm-ddThh:mm:ss

For example, to specify that recording should start on January 20, 2010, at 5:00am and end on January 20, 2010, at 6:00 pm, enter the following:

 <time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
 </time-range>

For complete details of the XML Schema dateTime format, see http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation.

If you do not specify a time period, then no events are recorded when the application is deployed and recording will only happen after you explicitly start it using Oracle Event Processing Visualizer or wlevs.Admin.

You can specify time-range or time-range-offset, but not both.

	
time-range-offset

	
Specifies the time period during which recording should take place, using a start time and a duration.

The time period is configured by using a start child element to specify a start time and duration child element to specify the amount of time after the start time that recording should stop.

Express the start time as an XML Schema dateTime value of the form:

yyyy-mm-ddThh:mm:ss

Express the duration in the form:

hh:mm:ss

For example, to specify that recording should start on January 20, 2010, at 5:00am and continue for 3 hours, enter the following

 <time-range-offset>
 <start>2010-01-20T05:00:00</start>
 <duration>03:00:00</duration>
 </time-range-offset>

For complete details of the XML Schema dateTime format, see http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation.

If you do not specify a time period, then no events are recorded when the application is deployed and recording will only happen after you explicitly start it using Oracle Event Processing Visualizer or wlevs.Admin.

You can specify time-range or time-range-offset, but not both.

	
batch-size

	
Specifies the number of events that Oracle Event Processing picks up in a single batch from the event buffer to write the event store.

Default value is 1000.

	
batch-time-out

	
Specifies the number of seconds that Oracle Event Processing waits for the event buffer window to fill up with the batch-size number of events before writing to the event store.

Default value is 60

	
max-size

	
If specified, Oracle Event Processing uses a stream when writing to the event store, and this element specifies the size of the stream, with non-zero values indicating asynchronous writes.

Default value is 1024.

	
max-threads

	
If specified, Oracle Event Processing uses a stream when writing to the event store, and this element specifies the maximum number of threads that will be used to process events for this stream. Setting this value has no effect when max-size is 0.

The default value is 1.

20.2.3 Configuring a Component to Playback Events

You can configure any processor, adapter, channel, or event bean in your application to playback events, although the component must be a node downstream of the recording component so that the playback component will actually receive the events and play them back. As with all other component configuration, you specify that a component plays back events by updating its configuration file. For general information about these configuration files, see Section 1.4.2, "Overview of Component Configuration Files."

This section describes the main steps to configure a component to play back events. For simplicity, it is assumed in the procedure that you are configuring a channel to playback events from a node upstream in the EPN that has recorded events, and that you have already created the channel's configuration file.

See for the complete XSD Schema that describes the event playback configuration file elements.

Using your favorite XML editor, open the component configuration XML file and add a playback-parameters child element to the component you want to configure to playback events. For example, to configure a channel called eventStream:

<?xml version="1.0" encoding="UTF-8"?>
 <n1:config xmlns:n1="http://www.bea.com/ns/wlevs/config/application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <channel>
 <name>eventStream</name>
 <playback-parameters>
 ...
 </playback-parameters>
 </channel>
 ...
</n1:config>

Add child elements to playback-parameters to specify the name of the event store provider, the events that are played back, and so on. For example:

 <channel>
 <name>eventStream</name>
 <playback-parameters>
 <dataset-name>recplay_sample</dataset-name>
 <event-type-list>
 <event-type>SimpleEvent</event-type>
 </event-type-list>
 </playback-parameters>
 </channel>

Table 20-3 lists the child elements of playback-parameters that you can specify. Only dataset-name is required.

Table 20-3 Child Elements of playback-parameters

	Child Element	Description
	
dataset-name

	
Specifies the group of data that the user wants to group together.

In the case of BDB provider, the dataset name will be used as the database environment in Berkeley database.

In the case of the Oracle RDBMS-based provider, it specifies the database area, or schema, in which the tables that store the recorded events are queried for the playback events.

When configuring the Oracle RDBMS-based provider, you are required to specify this element.

	
event-type-list

	
Specifies the event types that are played back from the event store. If this element is not specified, then Oracle Event Processing plays back all event types.

Use the event-type child component to list one or more events, such as:

 <event-type-list>
 <event-type>EventOne</event-type>
 <event-type>EventTwo</event-type>
 </event-type-list>

When configuring the Oracle RDBMS-based provider, you are required to specify this element.

	
time-range

	
Specifies the time period during which play back should take place using a start and end time.

The time period is configured by using a start child element to specify a start time and an end child element to specify the end time.

Express the start and end time as XML Schema dateTime values of the form:

yyyy-mm-ddThh:mm:ss

For example, to specify that play back should start on January 20, 2010, at 5:00am and end on January 20, 2010, at 6:00 pm, enter the following:

 <time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
 </time-range>

For complete details of the XML Schema dateTime format, see http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation.

If you do not specify a time period, then no events are played back when the application is deployed and play back will only happen after you explicitly start it using Oracle Event Processing Visualizer or wlevs.Admin.

You can specify time-range or time-range-offset, but not both.

	
time-range-offset

	
Specifies the time period during which play back should take place, using a start time and a duration.

The time period is configured by using a start child element to specify a start time and duration child element to specify the amount of time after the start time that play back should stop.

Express the start time as an XML Schema dateTime value of the form:

yyyy-mm-ddThh:mm:ss

Express the duration in the form:

hh:mm:ss

For example, to specify that play back should start on January 20, 2010, at 5:00am and continue for 3 hours, enter the following

 <time-range-offset>
 <start>2010-01-20T05:00:00</start>
 <duration>03:00:00</duration>
 </time-range-offset>

For complete details of the XML Schema dateTime format, see http://www.w3.org/TR/xmlschema-2/#dateTime-lexical-representation.

If you do not specify a time period, then no events are played back when the application is deployed and play back will only happen after you explicitly start it using Oracle Event Processing Visualizer or wlevs.Admin.

You can specify time-range or time-range-offset, but not both.

	
playback-speed

	
Specifies the playback speed as a positive float.

The default value is 1, which corresponds to normal speed. A value of 2 means that events will be played back 2 times faster than the original record speed. Similarly, a value of 0.5 means that events will be played back at half the speed.

	
repeat

	
Specifies whether to playback events again after the playback of the specified time interval is over.

Valid values are true and false. Default value is false. A value of true means that the repeat of playback continues an infinite number of times until it is deliberately stopped. False means that events will be played back only once.

	
max-size

	
If specified, Oracle Event Processing uses a stream when playing back events from the event store, and this element specifies the size of the stream, with non-zero values indicating asynchronous writes.

Default value is 1024.

	
max-threads

	
If specified, Oracle Event Processing uses a stream when playing back events from the event store, and this element specifies the maximum number of threads that will be used to process events for this stream. Setting this value has no effect when max-size is 0.

The default value is 1.

20.2.4 Starting and Stopping the Record and Playback of Events

After you configure the record and playback functionality for the components of an application, and you deploy the application to Oracle Event Processing, the server starts to record events only if you specified an explicit start/stop time in the initial configuration.

For example, if you included the following element in a component configuration:

<time-range>
 <start>2010-01-20T05:00:00</start>
 <end>2010-01-20T18:00:00</end>
</time-range>

then recording will automatically start on January 20, 2010 at 5:00 am.

The only way to start the playback of events, however, is by using Oracle Event Processing Visualizer or wlevs.Admin. You also use these tools to dynamically start and stop the recording of events.

For more information, see:

	
"Recording and Playing Back Events Flowing Through an EPN" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
"Commands for Controlling Event Record and Playback" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

Visualizer and wlevs.Admin use managed beans (MBeans) to dynamically start and stop event recording and playback, as well as manage the event store configuration. A managed bean is a Java bean that provides a Java Management Extensions (JMX) interface. JMX is the Java EE solution for monitoring and managing resources on a network. You can create your own administration tool and use JMX to manage event store functionality by using the com.bea.wlevs.management.configuration.StageMBean.

For more information, see:

	
"Configuring JMX for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
Oracle Fusion Middleware Java API Reference for Oracle Event Processing

20.2.5 Description of the Berkeley Database Schema

When you configure a stage for event record and playback, you specify a dataset-name to identify the recorded data.

Oracle Event Processing server creates a subdirectory with this name below the db-env-path you specify in your bdb-config element.

For example, consider the bdb-config element is as Example 20-2 shows.

Example 20-2 Default bdb-config Element

<bdb-config>
 <db-env-path>bdb</db-env-path>
</bdb-config>

If your dataset-name is test1, then Oracle Event Processing server stores recorded data in directory:

ORACLE_CEP_HOME/user_projects/domains/domainname/servername/bdb/test1

Where ORACLE_CEP_HOME refers to the directory in which you installed Oracle Event Processing (such as /oracle_home), domainname refers to the name of your domain, and servername refers to the name of your server (For example, /oracle_cep/user_projects/domains/mydomain/myserver).

Within the data-set subdirectory, Oracle Event Processing creates a Berkeley database environment that contains a separate database for each event type you record. The database name is the same as the event type name as specified in the event type repository.

The database key is record time plus sequence number.

20.3 Creating a Custom Event Store Provider

Oracle Event Processing provides an event store API that you can use to create a custom event store provider. Oracle provides an RDBMS-based implementation for storing events in a relational database, or one that supports JDBC connections. If you want to store events in a different kind of database, or for some reason the Oracle RDBMS provider is not adequate for your needs, then you can create your own event store provider using the event store API.

The event store API is in the com.bea.wlevs.eventstore package; the following list describes the most important interfaces:

	
EventStore—Object that represents a single event store. The methods of this interface allow you to persist events to the store and to query the contents of the store using a provider-specific query.

	
EventStoreManager—Manages event stores. Only one instance of the EventStoreManager ever exists on a given Oracle Event Processing server, and this instance registers itself in the OSGi registry so that event store providers can in turn register themselves with the event store manager. You use this interface to find existing event stores, create new ones, get the provider for a given event store, and register an event provider. The event store manager delegates the actual work to the event store provider.

	
EventStoreProvider—Underlying repository that provides event store services to clients.

For more information, see the Oracle Fusion Middleware Java API Reference for Oracle Event Processing.

23 Assembling and Deploying Oracle Event Processing Applications

This chapter describes how to assemble and deploy Oracle Event Processing applications manually, by using the Oracle Event Processing IDE for Eclipse, and by using Oracle Event Processing Visualizer.

This chapter includes the following sections:

	
Section 23.1, "Overview of Application Assembly and Deployment"

	
Section 23.2, "Assembling an Oracle Event Processing Application"

	
Section 23.3, "Managing Application Libraries"

	
Section 23.4, "Managing Log Message Catalogs"

	
Section 23.5, "Deploying Oracle Event Processing Applications"

23.1 Overview of Application Assembly and Deployment

The term application assembly refers to the process of packaging the components of an application, such as the Java files and XML configuration files, into an OSGI bundle that can be deployed to Oracle Event Processing. The term application deployment refers to the process of making an application available for processing client requests in an Oracle Event Processing domain.

This section describes:

	
Section 23.1.1, "Applications"

	
Section 23.1.3, "Application Libraries"

	
Section 23.1.2, "Application Dependencies"

	
Section 23.1.4, "Deployment and Deployment Order"

	
Section 23.1.5, "Configuration History Management"

	
Note:

Oracle Event Processing applications are built on top of the Spring Framework and OSGi Service Platform and make extensive use of their technologies and services. See Appendix A, "Additional Information about Spring and OSGi," for links to reference and conceptual information about Spring and OSGi.

23.1.1 Applications

In the context of Oracle Event Processing assembly and deployment, an application is defined as an OSGi bundle (see http://www2.osgi.org/javadoc/r4/org/osgi/framework/Bundle.html) JAR file that contains the following artifacts:

	
The compiled Java class files that implement some of the components of the application, such as the adapters, adapter factory, and POJO that contains the business logic.

	
One or more Oracle Event Processing configuration XML files that configure the components of the application. The only type of component that is required to have a configuration file is the event processor; all other components (adapters and streams) do not require configuration files if the default configuration of the component is adequate. You can combine all configuration files into a single file, or separate the configuration for individual components in their own files.

The configuration files must be located in the META-INF/wlevs directory of the OSGi bundle JAR file if you plan to dynamically deploy the bundle. If you have an application already present in the domain directory, then the configuration files need to be extracted in the same directory.

	
An EPN assembly file that describes all the components of the application and how they are connected to each other.

The EPN assembly file must be located in the META-INF/spring directory of the OSGi bundle JAR file.

	
A MANIFEST.MF file that describes the contents of the JAR.

23.1.2 Application Dependencies

The OSGI bundle declares dependencies by specifying imported and required packages. It also provides functionality to other bundles by exporting packages. If a bundle is required to provide functionality to other bundles, you must use Export-Package to allow other bundles to reference named packages. All packages not exported are not available outside the bundle.

You define dependencies at design time.

This section describes:

	
Section 23.1.2.1, "Private Application Dependencies"

	
Section 23.1.2.2, "Shared Application Dependencies"

	
Section 23.1.2.3, "Native Code Dependencies"

For more information, see:

	
Section 23.1.4, "Deployment and Deployment Order"

	
Section 23.2, "Assembling an Oracle Event Processing Application"

23.1.2.1 Private Application Dependencies

Some dependencies are satisfied by a component bundled in and deployed with an application. For example, standard JAR files or property files.

For more information, see:

	
Section 5.7.1, "How to Add a Standard JAR File to an Oracle Event Processing Project"

	
Section 5.7.2, "How to Add an OSGi Bundle to an Oracle Event Processing Project"

	
Section 5.7.3, "How to Add a Property File to an Oracle Event Processing Project"

23.1.2.2 Shared Application Dependencies

Some dependencies are satisfied by a component deployed to the Oracle Event Processing server application library directory. These components are not bundled in and deployed with a specific application. Instead, they are accessible to any application that imports one or more of the packages that the application library exports.

For more information, see:

	
Section 23.1.2.3, "Native Code Dependencies"

	
Section 23.1.3, "Application Libraries"

	
Section 5.7.4, "How to Export a Package"

	
Section 5.7.5, "How to Import a Package"

23.1.2.3 Native Code Dependencies

In some cases, you may create an application library that depends on native code libraries that you cannot or may not choose to package as application libraries.

In this case, you can put native code libraries in the operating system path (bootclasspath) of the Oracle Event Processing server when it is started, so that the native code libraries can be loaded by library bundles that need to call this native code.

For more information, see:

	
Section 23.1.2.2, "Shared Application Dependencies"

	
"Configuring the Oracle Event Processing Server Boot Classpath" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

23.1.3 Application Libraries

The Oracle Event Processing application library gives you a convenient location to deploy shared libraries and gives you complete control over the order in which shared libraries are deployed at Oracle Event Processing server start up time.

An application library is an OSGi bundle that contains a Java archive (JAR) of compiled Java classes and any other required artifacts.

You can use application libraries for a variety of purposes such as drivers or foreign stages (partial or complete Oracle Event Processing applications that are useful to other downstream applications).

Although you can add a library to a project as a simple embedded JAR file, there are advantages to using an application library, including:

	
Simplifying application assembly and maintenance activities such as deploying an updated version of the library.

	
Encouraging re-use.

	
Reducing server disk space consumption.

You deploy application libraries to either of the following Oracle Event Processing server directories:

	
Section 23.1.3.1, "Library Directory"

	
Section 23.1.3.2, "Library Extensions Directory"

	
Section 23.1.3.3, "Creating Application Libraries"

For more information, see:

	
Section 23.3, "Managing Application Libraries"

	
Section 23.1.2, "Application Dependencies"

	
Section 23.1.4, "Deployment and Deployment Order"

	
Section 1.4.1.2, "Referencing Foreign Stages in an EPN Assembly File"

	
Appendix A, "Additional Information about Spring and OSGi"

23.1.3.1 Library Directory

By default, the Oracle Event Processing server library directory is:

DOMAIN_DIR/servername/modules

Where:

	
DOMAIN_DIR: is the domain directory such as /oracle_cep/user_projects/domains/mydomain.

	
servername: is the server instance, such as myserver.

For example:

/oracle_cep/user_projects/domains/mydomain/myserver/modules

The libraries in this directory are deployed after the components in the library extensions directory but before any Oracle Event Processing applications.

If your library is a driver (such as a JDBC driver), you must put it in the library extensions directory as Section 23.1.3.2, "Library Extensions Directory" describes.

To configure the root of the application library directory path, see Section 23.3.1, "How to Define the Application Library Directory Using Oracle Event Processing IDE for Eclipse".

23.1.3.2 Library Extensions Directory

By default, the Oracle Event Processing server library extensions directory is:

DOMAIN_DIR/servername/modules/ext

Where:

	
DOMAIN_DIR: is the domain directory such as /oracle_cep/user_projects/domains/mydomain.

	
servername: is the server instance, such as myserver.

For example:

/oracle_cep/user_projects/domains/mydomain/myserver/modules/ext

The libraries in this directory are deployed first along with the Oracle Event Processing server core modules.

If your library is a driver (such as a JDBC driver), you must put it in the library extensions directory so that it is activated in the correct order. For example, to override an older version with a newer version or to provide access to an alternative driver. For more information, see "Configuring Access to a Different Database Driver or Driver Version" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

If your library is not a driver, you may put it in the library directory as Section 23.1.3.1, "Library Directory" describes.

To configure the root of the application library extensions directory path, see Section 23.3.1, "How to Define the Application Library Directory Using Oracle Event Processing IDE for Eclipse".

23.1.3.3 Creating Application Libraries

Oracle Event Processing provides a bundler.sh utility you can use to create an OSGi bundle wrapper around an arbitrary Java Archive. The resultant bundle JAR may be deployed to an OSGi container where the Java packages/classes found within the bundle may be imported and utilized by other deployed bundles. An example use case is the packaging of third-party JDBC drivers.

The utility reads the specified source JAR file and creates a target JAR file that includes the content of the source JAR and a manifest with the appropriate bundle-related entries specified. All Java packages found in the source archive will be exported by the target bundle.

Optionally, a bundle activator can be generated that instantiates one or more classes found within the JAR and registers each object as an OSGi service. This feature provides the ability for component bundles to access and manipulate multiple versions of specific factory classes at runtime.

If you wish to manually configure the activator implementation, you can use the Oracle Event Processing IDE for Eclipse.

For more information, see:

	
Section 23.3.2, "How to Create an Application Library Using bundler.sh"

	
Section 23.3.3, "How to Create an Application Library Using Oracle Event Processing IDE for Eclipse"

	
"How to Access a Database Driver Using an Application Library Built With bundler.sh" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

23.1.4 Deployment and Deployment Order

After you have assembled the application, you deploy it by making it known to the Oracle Event Processing domain using the deployment tool appropriate for your needs. For detailed instructions, see Section 23.5, "Deploying Oracle Event Processing Applications."

The Oracle Event Processing server deploys components in the following order at Oracle Event Processing server start up time:

	
Deploy libraries in the library extensions directory (DOMAIN_DIR/servername/modules/ext directory).

	
Deploy libraries in the library directory (DOMAIN_DIR/servername/modules directory).

	
Deploy Oracle Event Processing applications.

The Oracle Event Processing server deploys libraries from both the library extensions directory and library directory based on the lexical order of the library names. Lexical ordering includes the relative directory name plus JAR file name.

For example:

	
modules/a.jar will start before modules/b.jar

	
modules/0/my.jar will start before module/my.jar since 0/my.jar comes before my.jar in lexical order

Using this convention, you can control the order in which Oracle Event Processing server deploys JAR files simply by organizing JAR files into appropriately named subdirectories of either the library extensions directory or library directory.

Once the application is deployed to Oracle Event Processing, the configured adapters immediately start listening for events for which they are configured, such as financial data feeds and so on.

For more information, see Section 23.1.3, "Application Libraries".

23.1.5 Configuration History Management

When you deploy an application to the Oracle Event Processing server, the Oracle Event Processing server creates a configuration history for the application. Any configuration changes you make to rules or Oracle Event Processing high availability adapter configuration are recorded in this history are recorded in this history. You can view and roll-back (undo) these changes using the Oracle Event Processing Visualizer or wlevs.Admin tool.

For more information, see:

	
"Configuration History Management" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
"Commands for Managing Configuration History" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

23.2 Assembling an Oracle Event Processing Application

Assembling an Oracle Event Processing application refers to bundling the artifacts that make up the application into an OSGi bundle JAR file as http://www2.osgi.org/javadoc/r4/org/osgi/framework/Bundle.html describes. These artifacts include:

	
compiled Java classes

	
Oracle Event Processing component configuration files that configure application components (such as the processors or adapters)

	
EPN assembly file

	
MANIFEST.MF file

See Appendix A, "Additional Information about Spring and OSGi," for links to reference and conceptual information about Spring and OSGi.

This section describes:

	
Section 23.2.1, "Assembling an Oracle Event Processing Application Using Oracle Event Processing IDE for Eclipse"

	
Section 23.2.2, "Assembling an Oracle Event Processing Application Manually"

	
Section 23.2.3, "Assembling Applications With Foreign Stages"

	
Section 23.2.4, "Assembling a Custom Adapter or Event Bean in Its Own Bundle"

23.2.1 Assembling an Oracle Event Processing Application Using Oracle Event Processing IDE for Eclipse

You can use Oracle Event Processing IDE for Eclipse to easily assemble your Oracle Event Processing application.

For more information, see:

	
Section 5.5, "Exporting Oracle Event Processing Projects"

	
Section 5.6, "Upgrading Projects"

	
Section 5.7, "Managing Libraries and Other Non-Class Files in Oracle Event Processing Projects"

If your application depends on foreign stages, see Section 23.2.3, "Assembling Applications With Foreign Stages".

23.2.2 Assembling an Oracle Event Processing Application Manually

Optionally, you can assemble your Oracle Event Processing application manually.

For simplicity, the following procedure creates a temporary directory that contains the required artifacts, and then jars up the contents of this temporary directory. This is just a suggestion and you are not required, of course, to assemble the application using this method.

	
Note:

See the HelloWorld example source directory for a sample build.xml Ant file that performs many of the steps described below. The build.xml file is located in ORACLE_CEP_HOME\ocep_11.1\samples\source\applications\helloworld, where ORACLE_CEP_HOME refers to the main Oracle Event Processing installation directory, such as d:\oracle_cep.

To assemble an Oracle Event Processing application manually:

	
Open a command window and set your environment as described in Section 3.2, "Setting Your Development Environment."

	
Create an empty directory, such as output:

prompt> mkdir output

	
Compile all application Java files into the output directory.

	
Create an output/META-INF/spring directory.

	
Copy the EPN assembly file that describes the components of your application and how they are connected into the output/META-INF/spring directory.

See Section 5.3, "Creating EPN Assembly Files" for details about this file.

	
Create an output/META-INF/wlevs directory.

	
Copy the XML files that configure the components of your application (such as the processors or adapters) into the output/META-INF/wlevs directory.

	
Create a MANIFEST.MF file that contains descriptive information about the bundle.

See Section 23.2.2.1, "Creating the MANIFEST.MF File."

	
If you need to access third-party JAR files from your Oracle Event Processing application, see Section 23.2.2.2, "Accessing Third-Party JAR Files."

	
Create a JAR file that contains the contents of the output directory.

Be sure you specify the MANIFEST.MF file you created in the previous step rather than the default manifest file.

You can name the JAR file anything you want. In the Oracle Event Processing examples, the name of the JAR file is a combination of Java package name and version, such as:

com.bea.wlevs.example.helloworld_1.0.0.0.jar

Consider using a similar naming convention to clarify which bundles are deployed to the server.

See the Apache Ant documentation at http://ant.apache.org/manual/Tasks/jar.html for information on using the jar task or the Java SE documentation at http://download.oracle.com/javase/6/docs/technotes/tools/windows/jar.html for information on using the jar command-line tool.

	
If your application depends on foreign stages, see Section 23.2.3, "Assembling Applications With Foreign Stages".

23.2.2.1 Creating the MANIFEST.MF File

The structure and contents of the MANIFEST.MF file is specified by the OSGi Framework. Although the value of many of the headers in the file is specific to your application or business, many of the headers are required by Oracle Event Processing.

In particular, the MANIFEST.MF file defines the following:

	
Application name—Specified with the Bundle-Name header.

	
Symbolic application name—Specified with the Bundle-SymbolicName header.

Many of the Oracle Event Processing tools, such as the wlevs.Admin utility and JMX subsystem, use the symbolic name of the bundle when referring to the application.

	
Application version—Specified with the Bundle-Version header.

	
Imported packages—Specified with the Import-Package header.

Oracle Event Processing requires that you import the following packages at a minimum:

Import-Package:
 com.bea.wlevs.adapter.defaultprovider;version="11.1.1",
 com.bea.wlevs.ede;version="11.1.1",
 com.bea.wlevs.ede.api;version="11.1.1",
 com.bea.wlevs.ede.impl;version="11.1.1",
 org.osgi.framework;version="1.3.0",
 org.springframework.beans.factory;version="2.5.6",
 org.apache.commons.logging;version="1.1.0",
 com.bea.wlevs.spring;version="11.1.1",
 com.bea.wlevs.util;version="11.1.1",
 org.springframework.beans;version="2.5.6",
 org.springframework.util;version="2.0",
 org.springframework.core.annotation;version="2.5.6",
 org.springframework.beans.factory;version="2.5.6",
 org.springframework.beans.factory.config;version="2.5.6",
 org.springframework.osgi.context;version="1.2.0",
 org.springframework.osgi.service;version="1.2.0"

If you have extended the configuration of an adapter, then you must also import the following packages:

 javax.xml.bind;version="2.0",
 javax.xml.bind.annotation;version=2.0,
 javax.xml.bind.annotation.adapters;version=2.0,
 javax.xml.bind.attachment;version=2.0,
 javax.xml.bind.helpers;version=2.0,
 javax.xml.bind.util;version=2.0,
 com.bea.wlevs.configuration;version="11.1.1",
 com.bea.wlevs.configuration.application;version="11.1.1",
 com.sun.xml.bind.v2;version="2.0.2"

	
Exported packages—Specified with the Export-Package header. You should specify this header only if you need to share one or more application classes with other deployed applications. A typical example is sharing an event type JavaBean.

If possible, you should export packages that include only the interfaces, and not the implementation classes themselves. If other applications are using the exported classes, you will be unable to fully undeploy the application that is exporting the classes.

Exported packages are server-wide, so be sure their names are unique across the server.

The following complete MANIFEST.MF file is from the HelloWorld example, which extends the configuration of its adapter:

Manifest-Version: 1.0
Archiver-Version:
Build-Jdk: 1.6.0_06
Extension-Name: example.helloworld
Specification-Title: 1.0.0.0
Specification-Vendor: Oracle.
Implementation-Vendor: Oracle.
Implementation-Title: example.helloworld
Implementation-Version: 1.0.0.0
Bundle-Version: 11.1.1.4_0
Bundle-ManifestVersion: 1
Bundle-Vendor: Oracle.
Bundle-Copyright: Copyright (c) 2006 by Oracle.
Import-Package: com.bea.wlevs.adapter.defaultprovider;version="11.1.1",
 com.bea.wlevs.ede;version="11.1.1",
 com.bea.wlevs.ede.impl;version="11.1.1",
 com.bea.wlevs.ede.api;version="11.1.1",
 org.osgi.framework;version="1.3.0",
 org.apache.commons.logging;version="1.1.0",
 com.bea.wlevs.spring;version="11.1.1",
 com.bea.wlevs.util;version="11.1.1",
 net.sf.cglib.proxy,
 net.sf.cglib.core,
 net.sf.cglib.reflect,
 org.aopalliance.aop,
 org.springframework.aop.framework;version="2.5.6",
 org.springframework.aop;version="2.5.6",
 org.springframework.beans;version="2.5.6",
 org.springframework.util;version="2.0",
 org.springframework.core.annotation;version="2.5.6",
 org.springframework.beans.factory;version="2.5.6",
 org.springframework.beans.factory.config;version="2.5.6",
 org.springframework.osgi.context;version="1.2.0",
 org.springframework.osgi.service;version="1.2.0",
 javax.xml.bind;version="2.0",
 javax.xml.bind.annotation;version=2.0,
 javax.xml.bind.annotation.adapters;version=2.0,
 javax.xml.bind.attachment;version=2.0,
 javax.xml.bind.helpers;version=2.0,
 javax.xml.bind.util;version=2.0,
 com.bea.wlevs.configuration;version="11.1.1",
 com.bea.wlevs.configuration.application;version="11.1.1",
 com.sun.xml.bind.v2;version="2.0.2"
Bundle-Name: example.helloworld
Bundle-Description: WLEvS example helloworld
Bundle-SymbolicName: helloworld

23.2.2.2 Accessing Third-Party JAR Files

When creating your Oracle Event Processing applications, you might need to access legacy libraries within existing third-party JAR files. You can ensure access to this legacy code using any of the following approaches:

	
Section 23.1.3, "Application Libraries"

	
Section 23.2.2.2.1, "Accessing Third-Party JAR Files Using Bundle-Classpath"

	
Section 23.2.2.2.2, "Accessing Third-Party JAR Files Using -Xbootclasspath"

23.2.2.2.1 Accessing Third-Party JAR Files Using Bundle-Classpath

The recommended approach is to package the third-party JAR files in your Oracle Event Processing application JAR file. You can put the JAR files anywhere you want.

	
Note:

This approach gives you little control over the order in which JAR files are loaded and it is possible that dependency conflicts may occur. For this reason, Oracle recommends that you use the Oracle Event Processing server application library approach instead. For more information, see Section 23.1.3, "Application Libraries".

However, to ensure that your Oracle Event Processing application finds the classes in the third-party JAR file, you must update the application classpath by adding the Bundle-Classpath header to the MANIFEST.MF file. Set Bundle-Classpath to a comma-separate list of the JAR file path names that should be searched for classes and resources. Use a period (.) to specify the bundle itself. For example:

Bundle-Classpath: ., commons-logging.jar, myExcitingJar.jar, myOtherExcitingJar.jar

If you need to access native libraries, you must also package them in your JAR file and use the Bundle-NativeCode header of the MANIFEST.MF file to specify their location in the JAR.

For more information, see Section 5.7.1, "How to Add a Standard JAR File to an Oracle Event Processing Project".

23.2.2.2.2 Accessing Third-Party JAR Files Using -Xbootclasspath

If the JAR files include libraries used by all applications deployed to Oracle Event Processing, such as JDBC drivers, you can add the JAR file to the server's boot classpath by specifying the -Xbootclasspath/a option to the java command in the scripts used to start up an instance of the server.

	
Note:

This approach gives you little control over the order in which JAR files are loaded and it is possible that dependency conflicts may occur. For this reason, Oracle recommends that you use the Oracle Event Processing server application library approach instead. For more information, see Section 23.1.3, "Application Libraries".

The name of the server start script is startwlevs.cmd (Windows) or startwlevs.sh (UNIX), and the script is located in the server directory of your domain directory. The out-of-the-box sample domains are located in ORACLE_CEP_HOME/ocep_11.1/samples/domains, and the user domains are located in ORACLE_CEP_HOME/user_projects/domains, where ORACLE_CEP_HOME refers to the main Oracle Event Processing installation directory, such as d:\oracle_cep.

Update the start script by adding the -Xbootclasspath/a option to the java command that executes the wlevs_2.0.jar file. Set the -Xbootclasspath/a option to the full pathname of the third-party JAR files you want to access system-wide.

For example, if you want all deployed applications to be able to access a JAR file called e:\jars\myExcitingJAR.jar, update the java command in the start script as follows. The updated section is shown in bold (in practice, the command should be on one line):

%JAVA_HOME%\bin\java -Dwlevs.home=%USER_INSTALL_DIR% -Dbea.home=%BEA_HOME%
 -Xbootclasspath/a:e:\jars\myExcitingJAR.jar
 -jar "%USER_INSTALL_DIR%\bin\wlevs_2.0.jar" -disablesecurity %1 %2 %3 %4 %5 %6

23.2.3 Assembling Applications With Foreign Stages

When assembling applications that depend on foreign stages, be aware of classpath dependencies. Consider the application dependency graph that Figure 23-1 shows.

Figure 23-1 Foreign Stage Dependency Graph

[image: Description of Figure 23-1 follows]

In this example, Application A depends on Application B, Application B depends on Application C, and Application C depends on Application A. Application C declares and exports an event type class for Java Bean event type MarketEvent. Applications A and B import the MarketEvent class that Application C provides.

Note the following:

	
When you redeploy a foreign stage, you must redeploy all foreign stages that depend on that application or foreign stage.

For example, if you redeploy Application B, you must also redeploy Application A.

	
If there is a classpath dependency between one foreign stage and another, when you deploy the foreign stage that declares and exports the shared class, you must redeploy all foreign stages that import the shared class.

For example, if you redeploy Application C, you must also redeploy Application A and B because Application A and B have a classpath dependency on Application C (MarketEvent).

For more information, see:

	
Section 1.4.1.2, "Referencing Foreign Stages in an EPN Assembly File"

	
Section 23.5, "Deploying Oracle Event Processing Applications"

23.2.4 Assembling a Custom Adapter or Event Bean in Its Own Bundle

Typically, custom adapters and event beans are bundled in the same application JAR file that contains the other components of the EPN, such as the processor, streams, and business logic POJO. However, you might sometimes want to bundle the adapter in its own JAR file and then reference the adapter in other application bundles.

This is useful if, for example, two different applications read data coming from the same data feed provider and both applications use the same event types. In this case, it makes sense to share a single adapter and event type implementations rather than duplicate the implementation in two different applications.

There is no real difference in how you configure an adapter and an application that uses it in separate bundles; the difference lies in where you put the configuration.

This section describes:

	
Section 23.2.4.1, "How to Assemble a Custom Adapter in its Own Bundle"

	
Section 23.2.4.2, "How to Assemble an Event Bean in its Own Bundle"

23.2.4.1 How to Assemble a Custom Adapter in its Own Bundle

You can assemble a custom adapter and its dependent classes in its own bundle.

To assemble a custom adapter in its own bundle:

	
Create an OSGI bundle that contains only the custom adapter Java class, the custom adapter factory Java class, and optionally, the event type Java class into which the custom adapter converts incoming data.

In this procedure, this bundle is called GlobalAdapter.

	
In the EPN assembly file of the GlobalAdapter bundle:

	
Register the adapter factory as an OSGI service as Section 15.6, "Creating a Custom Adapter Factory" describes.

	
If you are also including the event type in the bundle, register it as Section 9.5, "Sharing Event Types Between Application Bundles" describes.

	
Do not declare the custom adapter component using the wlevs:adapter element.

You will use this element in the EPN assembly file of the application bundle that actually uses the adapter.

	
If you want to further configure the custom adapter, follow the usual procedure as Section 15.5.2, "Configuring a Custom Adapter in a Component Configuration File" describes.

	
If you are including the event type in the GlobalAdapter bundle, export the JavaBean class in the MANIFEST.MF file of the GlobalAdapter bundle using the Export-Package header as Section 5.7.4, "How to Export a Package" describes.

	
Assemble and deploy the GlobalAdapter bundle as Section 23.5, "Deploying Oracle Event Processing Applications" describes.

	
In the EPN assembly file of the application that is going to use the custom adapter, declare the custom adapter component as Section 15.5.1, "Configuring a Custom Adapter in an EPN Assembly File" describes.

You still use the provider attribute to specify the OSGI-registered adapter factory, although in this case the OSGI registration happens in a different EPN assembly file (of the GlobalAdapter bundle) from the EPN assembly file that actually uses the adapter.

	
If you have exported the event type in the GlobalAdapter bundle, you must explicitly import it into the application that is going to use it.

You do this by adding the package to the Import-Package header of the MANIFEST.MF file of the application bundle as Section 23.2.2.1, "Creating the MANIFEST.MF File" describes.

23.2.4.2 How to Assemble an Event Bean in its Own Bundle

You can assemble a custom event bean and its dependent classes in its own bundle.

To assemble a custom event bean in its own bundle:

	
Create an OSGI bundle that contains only the custom event bean Java class and the custom event bean factory Java class.

In this procedure, this bundle is called GlobalEventBean.

	
In the EPN assembly file of the GlobalEventBean bundle:

	
Register the custom event bean factory as an OSGI service as Section 16.3.1.3, "Creating an Event Bean Factory" describes.

	
Do not declare the custom event bean component using the wlevs:event-bean element.

You will use this element in the EPN assembly file of the application bundle that actually uses the event-bean.

	
Assemble and deploy the GlobalEventBean bundle as Section 23.5, "Deploying Oracle Event Processing Applications" describes.

	
In the EPN assembly file of the application that is going to use the custom event bean, declare the custom event bean component as Section 16.3.1.3, "Creating an Event Bean Factory" describes.

You still use the provider attribute to specify the OSGI-registered custom event bean factory, although in this case the OSGI registration happens in a different EPN assembly file (of the GlobalEventBean bundle) from the EPN assembly file that actually uses the adapter.

	
If you have exported the event type in the GlobalEventBean bundle, you must explicitly import it into the application that is going to use it.

You do this by adding the package to the Import-Package header of the MANIFEST.MF file of the application bundle as Section 23.2.2.1, "Creating the MANIFEST.MF File" describes.

23.3 Managing Application Libraries

The Oracle Event Processing application library gives you a convenient location to deploy shared libraries and gives you complete control over the order in which shared libraries are deployed at Oracle Event Processing server start up time.

This section describes how to manage an Oracle Event Processing server application library, including:

	
Section 23.3.1, "How to Define the Application Library Directory Using Oracle Event Processing IDE for Eclipse"

	
Section 23.3.2, "How to Create an Application Library Using bundler.sh"

	
Section 23.3.3, "How to Create an Application Library Using Oracle Event Processing IDE for Eclipse"

	
Section 23.3.4, "How to Update an Application Library Using Oracle Event Processing IDE for Eclipse"

	
Section 23.3.5, "How to View an Application Library Using the Oracle Event Processing Visualizer"

For more information, see Section 23.1.3, "Application Libraries".

23.3.1 How to Define the Application Library Directory Using Oracle Event Processing IDE for Eclipse

Before you can use the Oracle Event Processing server application library, you must update your Oracle Event Processing IDE for Eclipse design time configuration with the location of the application library directory.

For information on default application library configuration, see:

	
Section 23.1.3.1, "Library Directory"

	
Section 23.1.3.2, "Library Extensions Directory"

For more information, see Section 23.3, "Managing Application Libraries".

To define an application library directory using Oracle Event Processing IDE for Eclipse:

	
Launch the Oracle Event Processing IDE for Eclipse.

	
Right-click the project and select Properties.

The Preferences dialog appears as shown in Figure 23-2.

Figure 23-2 Preferences Dialog: Application Library Path

[image: Description of Figure 23-2 follows]

	
Select Oracle Oracle Event Processing Application Library Path.

	
Specify the application library path as Table 23-1 describes.

Table 23-1 Oracle Event Processing Application LIbrary Path

	Option	Description
	
Use an absolute path

	
Select this option to specify an absolute file path to the application library directory.

See Section 23.3.1.1, "How to Configure an Absolute Path".

	
Extend a path variable

	
Select this option to specify an application library path based on a path variable.

See Section 23.3.1.2, "How to Extend a Path Variable".

23.3.1.1 How to Configure an Absolute Path

You can specify the application library path as an absolute file path. It may be more convenient in a team environment to specify the application library path based on a path variable as Section 23.3.1.2, "How to Extend a Path Variable" describes.

To configure an absolute path:

	
Click the Browse button to open a file system browser.

	
Use the file system browser to choose a directory.

	
Note:

The directory must reside within an Oracle Event Processing server domain. For more information, see Section 6.2, "Creating Oracle Event Processing Servers".

	
Click OK.

	
Click Apply.

	
Click OK.

23.3.1.2 How to Extend a Path Variable

You can specify the application library path by extending a path variable. This is the most flexible approach and is appropriate for team environments. Alternatively, you can specify the application library with an absolute path as Section 23.3.1.1, "How to Configure an Absolute Path" describes.

To extend a path variable:

	
Click the Variable button.

The Select Path Variable dialog appears as Figure 23-3 shows.

Figure 23-3 Select Path Variable Dialog

[image: Description of Figure 23-3 follows]

	
Click New.

The New Variable dialog appears as Figure 23-4 shows.

Figure 23-4 New Variable Dialog

[image: Description of Figure 23-4 follows]

	
Configure the New Variable dialog as Table 23-2 describes.

Table 23-2 Oracle Event Processing Application LIbrary Path Variable

	Option	Description
	
Name

	
Enter a name for the variable.

	
Location

	
Click the Folder button to open a file system browser and choose the root directory to use as the application library directory.

NOTE: The directory must reside within an Oracle Event Processing server domain. For more information, see Section 6.2, "Creating Oracle Event Processing Servers"

	
Click OK.

The new variable appears in the Select Path Variable dialog as Figure 23-5 shows.

Figure 23-5 Select Path Variable: With Variable

[image: Description of Figure 23-5 follows]

	
Optionally, select the variable and click Extend.

The Variable Extension dialog appears as Figure 23-6 shows. This dialog shows any directories below the root directory you specified for this variable.

Figure 23-6 Variable Extension Dialog

[image: Description of Figure 23-6 follows]

	
Select a sub-directory and click OK.

The application library path is specified relative to the path variable you defined as Figure 23-7 shows.

Figure 23-7 Preferences Dialog: Application Library Path With Path Variable

[image: Description of Figure 23-7 follows]

	
Click Apply.

	
Click OK.

23.3.2 How to Create an Application Library Using bundler.sh

This procedure describes how to create an OSGi bundle using the bundler utility.

This is the preferred method. If you wish to manually configure the activator implementation, see Section 23.3.3, "How to Create an Application Library Using Oracle Event Processing IDE for Eclipse".

If you are creating an application library for a new JDBC driver, see "How to Access a Database Driver Using an Application Library Built With bundler.sh" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

For more information, see Section 23.1.3.3, "Creating Application Libraries".

To create an application library using bundler.sh:

	
Set up your environment as described in Section 3.2, "Setting Your Development Environment."

	
Execute the bundler.sh script to create an OSGi bundle containing your driver.

The bundler.sh script is located in the ORACLE_CEP_HOME/ocep_11.1/bin directory, where ORACLE_CEP_HOME is the directory in which you installed the Oracle Event Processing server.

Example 23-1 lists the bundler.sh command line options and Table 23-3 describes them.

Example 23-1 bundler.sh Command Line Options

bundler -source JAR -name NAME -version VERSION
[-factory CLASS+] [-service INTERFACE+] [-fragmenthost HOST]
[-stagedir PATH] [-targetdir PATH]
[+import PACKAGE|REGEX+] [-imods REGEX;MODS+] [-import PACKAGE+]
[+export PACKAGE|REGEX+] [-emods REGEX;MODS+]
[-dimport PACKAGE+] [-explode] [-verbose]

Table 23-3 bundler.sh Command Line Options

	Argument	Description
	
-source JAR

	
The path of the source JAR file to be bundled.

	
-name NAME

	
The symbolic name of the bundle. The root of the target JAR file name is derived from the name value.

	
-version VERSION

	
The bundle version number. All exported packages are qualified with a version attribute with this value. The target JAR file name contains the version number.

	
-factory CLASS+

	
An optional argument that specifies a space-delimited list of one or more factory classes that are to be instantiated and registered as OSGi services. Each service is registered with the OSGi service registry with name (-name) and version (-version) properties.

This argument is incompatible with the -fragmenthost argument.

	
-service INTERFACE+

	
An optional argument that specifies a space-delimited list of one or more Java interfaces that are used as the object class of each factory object service registration. If no interface names are specified, or the number of interfaces specified does not match the number of factory classes, then each factory object will be registered under the factory class name.

	
-fragmenthost HOST

	
An optional argument indicating that the resultant bundle is a fragment bundle and specifies the symbolic name of the host bundle.

This argument is incompatible with the -factory argument.

	
-stagedir PATH

	
An optional argument that specifies where to write temporary files when creating the target JAR file.

Default: ./bundler.tmp

	
-targetdir PATH

	
An optional argument that specifies the location of the generated bundle JAR file.

Default: current working directory (.).

	
+import PACKAGE|REGEX+

	
A space-delimited list of one or more packages or regular expressions that select the packages to exclude from the manifest Import-Package attribute.

By default, all dependent packages will be imported (except java.*).

	
-imods REGEX;MODS+

	
The import modifiers will be applied to the packages matching regular expression.

	
-import PACKAGE

	
Additional packages to include on the manifest Import-Package attribute.

Note that any specified import modifiers will not be applied.

	
+export PACKAGE|REGEX+

	
A space-delimited list of one or more packages or regular expressions that select the packages to exclude from the manifest Export-Package attribute.

By default, all bundle packages will be exported.

	
-emods REGEX;MODS+

	
The export modifiers will be applied to the packages matching regular expression.

	
-dimport PACKAGE+

	
Packages to include on the manifest DynamicImport-Package attribute.

	
-explode

	
This optional flag specifies that the content of the source JAR should be exploded into the target JAR file.

By default, the source JAR is nested within the target JAR file and the generated bundle manifest will contain an appropriate Bundle-Classpath attribute.

	
-verbose

	
An optional flag to enable verbose output.

Example 23-2 shows how to use the bundler.sh to create an OSGi bundle for an Oracle JDBC driver.

Example 23-2 Using the Bundler Utility

bundler.sh \
 -source C:\drivers\com.oracle.ojdbc14_11.2.0.jar \
 -name oracle11g \
 -version 11.2.0 \
 -factory oracle.jdbc.xa.client.OracleXADataSource oracle.jdbc.OracleDriver \
 -service javax.sql.XADataSource java.sql.Driver \
 -targetdir C:\stage

The source JAR is an Oracle driver located in directory C:\drivers. The name of the generated bundle JAR is the concatenation of the -name and -version arguments (oracle10g_11.2.0.jar) and is created in the C:\stage directory. The bundle JAR contains the files that Example 23-3 shows.

Example 23-3 Bundle JAR Contents

 1465 Thu Jun 29 17:54:04 EDT 2006 META-INF/MANIFEST.MF
1540457 Thu May 11 00:37:46 EDT 2006 com.oracle.ojdbc14_11.2.0.jar
 1700 Thu Jun 29 17:54:04 EDT 2006 com/bea/core/tools/bundler/Activator.class

The command line options specify that there are two factory classes that will be instantiated and registered as an OSGi service when the bundle is activated, each under a separate object class as Table 23-4 shows.

Table 23-4 Factory Class and Service Interfaces

	Factory Class	Service Interface
	
oracle.jdbc.xa.client.OracleXADataSource

	
javax.sql.XADataSource

	
oracle.jdbc.OracleDriver

	
java.sql.Driver

Each service registration will be made with a name property set to oracle11g and a version property with a value of 11.2.0. Example 23-4 shows the Oracle Event Processing server log messages showing the registration of the services.

Example 23-4 Service Registration Log Messages

...
INFO: [Jun 29, 2006 5:54:18 PM] Service REGISTERED: { version=11.2.0, name=oracle11g, objectClass=[javax.sql.XADataSource], service.id=23 }
INFO: [Jun 29, 2006 5:54:18 PM] Service REGISTERED: { version=11.2.0, name=oracle11g, objectClass=[java.sql.Driver], service.id=24 }
INFO: [Jun 29, 2006 5:54:18 PM] Bundle oracle11g STARTED
...

	
Copy the application library JAR to the appropriate Oracle Event Processing server application library directory:

	
If your bundle is a driver, you must put it in the library extensions directory.

See Section 23.1.3.2, "Library Extensions Directory".

	
If your bundle is not a driver, you may put it in the library directory.

See Section 23.1.3.1, "Library Directory"

For more information, see Section 23.1.3, "Application Libraries".

	
Stop and start the Oracle Event Processing server.

See "Starting and Stopping Oracle Event Processing Servers" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

23.3.3 How to Create an Application Library Using Oracle Event Processing IDE for Eclipse

This procedure describes how to create an OSGi bundle for your driver using the Oracle Event Processing IDE for Eclipse and deploy it on the Oracle Event Processing server.

This is the preferred method. If do not wish to manually configure the activator implementation, see Section 23.3.2, "How to Create an Application Library Using bundler.sh".

If you are creating an application library for a new JDBC driver, see "How to Access a Database Driver Using an Application Library Built With Oracle Event Processing IDE for Eclipse" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

To create an application library using Oracle Event Processing IDE for Eclipse:

	
Using the Oracle Event Processing IDE for Eclipse, create a new Oracle Event Processing project.

For more information, Section 5.2, "Creating Oracle Event Processing Projects".

	
Right-click your project folder and select New > Folder.

	
Enter lib in the Folder name field and click Finish.

	
Outside of the Oracle Event Processing IDE for Eclipse, copy your JDBC JAR file into the lib folder.

	
Inside the Oracle Event Processing IDE for Eclipse, right-click the lib folder and select Refresh.

The JAR file appears in the lib folder as Figure 23-8 shows.

Figure 23-8 Oracle Event Processing IDE for Eclipse lib Directory

[image: Description of Figure 23-8 follows]

	
Right-click the src directory and select New > Class.

The Java Class dialog appears as Figure 23-9 shows.

Figure 23-9 New Java Class Dialog

[image: Description of Figure 23-9 follows]

	
Configure the New Java Class dialog as Table 23-5 shows.

Table 23-5 New Java Class Parameters

	Parameter	Description
	
Package

	
The package name. For example, com.foo.

	
Name

	
The name of the class. For example, MyActivator.

Leave the other parameters at their default values.

	
Click Finish.

A new Java class is added to your project.

	
Edit the Java class to implement it as Example 23-5 shows.

Be sure to set the NAME and VERSION so that they supersede the existing version of JDBC driver. In this example, the existing version is:

	
oracle10g

	
10.0.0

To supersede the existing version, the MyActivator class sets these values to:

	
oracle11g

	
11.2.0

Example 23-5 MyActivator Class Implementation

package com.foo;

import java.util.Dictionary;
import java.util.Properties;

import javax.sql.XADataSource;
import java.sql.Driver;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceRegistration;

public class MyActivator implements BundleActivator {

 private static final String NAME="oracle11g";
 private static final String VERSION="11.2.0";

 private String[] factories = {"oracle.jdbc.xa.client.OracleXADataSource","oracle.jdbc.OracleDriver"};
 private String[] interfaces= {"javax.sql.XADataSource","java.sql.Driver"};
 private ServiceRegistration[] serviceRegistrations = new ServiceRegistration[factories.length];

 public void start(BundleContext bc) throws Exception {
 Dictionary props = new Properties();
 props.put("name", NAME);
 props.put("version", VERSION);
 for (int i=0; i<factories.length; i++) {
 Object svc = bc.getBundle().loadClass(factories[i]).newInstance();
 serviceRegistrations[i] = bc.registerService(interfaces[i], svc, props);
 }
 }

 public void stop(BundleContext bc) throws Exception {
 for (int i=0; i<serviceRegistrations.length; i++) {
 serviceRegistrations[i].unregister();
 }
 }
}

	
Right-click the META-INF/MANIFEST.MF file and select Open With > Plug-in Manifest Editor.

The Manifest Editor appears as Figure 23-10 shows.

Figure 23-10 Manifest Editor: Overview Tab

[image: Description of Figure 23-10 follows]

	
Click the Runtime tab.

The Runtime tab appears as Figure 23-11 shows.

Figure 23-11 Manifest Editor: Runtime Tab

[image: Description of Figure 23-11 follows]

	
In the Classpath pane, click Add.

The JAR Selection dialog appears as Figure 23-12 shows.

Figure 23-12 JAR Selection Dialog

[image: Description of Figure 23-12 follows]

	
Expand the lib directory and select your database driver JAR file.

	
Click OK.

	
Click the Dependencies tab.

The Dependencies tab appears as Figure 23-13 shows.

Figure 23-13 Manifest Editor: Dependencies Tab

[image: Description of Figure 23-13 follows]

	
In the Imported Packages pane, click Add.

The Package Selection dialog appears as Figure 23-14 shows.

Figure 23-14 Package Selection Dialog

[image: Description of Figure 23-14 follows]

	
In the Exported Packages field, enter org.osgi.framework.

The list box shows all the packages with that prefix as Figure 23-14 shows.

	
Select org.osgi.framework in the list box and click OK.

	
Click the MANIFEST.MF tab.

The MANIFEST.MF tab appears as Figure 23-15 shows.

Figure 23-15 Manifest Editor

[image: Description of Figure 23-15 follows]

	
Un-JAR your JAR to a temporary directory as Example 23-6 shows.

Example 23-6 Un-JAR the Database Driver

$ pwd
/tmp
$ ls com.*
com.bea.oracle.ojdbc6_1.0.0.0_11-1-0-7.jar
$ mkdir driver
$ cd driver
$ jar -xvf ../com.bea.oracle.ojdbc6_1.0.0.0_11-1-0-7.jar
$ ls
META-INF oracle
$ cd META-INF
$ ls
MANIFEST.MF services

	
Open your JAR MANIFEST.MF file and copy its Export-Package entry and paste it into the Manifest Editor as Example 23-7 shows.

Example 23-7 Adding Export-Package to the Manifest Editor

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: %project.name
Bundle-SymbolicName: JDBCDriver
Bundle-Version: 1.0.0
Bundle-Localization: bundle
Bundle-Vendor: %project.vendor
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Bundle-ClassPath: .
Import-Package: com.bea.wlevs.configuration;version="11.1.1.4_0", ...
Export-Package: oracle.core.lmx;version=1.0.0.0_11-1-0-7,oracle.core.l
 vf;version=1.0.0.0_11-1-0-7,oracle.jdbc;version=1.0.0.0_11-1-0-7,orac
 le.jdbc.aq;version=1.0.0.0_11-1-0-7,oracle.jdbc.connector;version=1.0
 .0.0_11-1-0-7,oracle.jdbc.dcn;version=1.0.0.0_11-1-0-7,oracle.jdbc.dr
 iver;version=1.0.0.0_11-1-0-7,oracle.jdbc.internal;version=1.0.0.0_11
 -1-0-7,oracle.jdbc.oci;version=1.0.0.0_11-1-0-7,oracle.jdbc.oracore;v
 ersion=1.0.0.0_11-1-0-7,oracle.jdbc.pool;version=1.0.0.0_11-1-0-7,ora
 cle.jdbc.rowset;version=1.0.0.0_11-1-0-7,oracle.jdbc.util;version=1.0
 .0.0_11-1-0-7,oracle.jdbc.xa;version=1.0.0.0_11-1-0-7,oracle.jdbc.xa.
 client;version=1.0.0.0_11-1-0-7,oracle.jpub.runtime;version=1.0.0.0_1
 1-1-0-7,oracle.net.ano;version=1.0.0.0_11-1-0-7,oracle.net.aso;versio
 n=1.0.0.0_11-1-0-7,oracle.net.jndi;version=1.0.0.0_11-1-0-7,oracle.ne
 t.ns;version=1.0.0.0_11-1-0-7,oracle.net.nt;version=1.0.0.0_11-1-0-7,
 oracle.net.resolver;version=1.0.0.0_11-1-0-7,oracle.security.o3logon;
 version=1.0.0.0_11-1-0-7,oracle.security.o5logon;version=1.0.0.0_11-1
 -0-7,oracle.sql;version=1.0.0.0_11-1-0-7,oracle.sql.converter;version
 =1.0.0.0_11-1-0-7

	
Add a Bundle-Activator element to the Manifest Editor as Example 23-8 shows.

The value of the Bundle-Activator is the fully qualified class name of your Activator class.

Example 23-8 Adding a Bundle-Activator Element to the Manifest Editor

Manifest-Version: 1.0
Bundle-Activator: com.foo.MyActivator
Bundle-ManifestVersion: 2
Bundle-Name: %project.name
Bundle-SymbolicName: JDBCDriver
Bundle-Version: 1.0.0
Bundle-Localization: bundle
Bundle-Vendor: %project.vendor
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Bundle-ClassPath: .
Import-Package: com.bea.wlevs.configuration;version="11.1.1.4_0", ...
Export-Package: oracle.core.lmx;version=1.0.0.0_11-1-0-7, ...
...

	
Add a DynamicImport-Package element to the Manifest Editor as Example 23-9 shows.

Example 23-9 Adding a DynamicImport-Package Element to the Manifest Editor

Manifest-Version: 1.0
Bundle-Activator: com.foo.MyActivator
Bundle-ManifestVersion: 2
Bundle-Name: %project.name
Bundle-SymbolicName: JDBCDriver
Bundle-Version: 1.0.0
Bundle-Localization: bundle
Bundle-Vendor: %project.vendor
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Bundle-ClassPath: .
DynamicImport-Package: *
Import-Package: com.bea.wlevs.configuration;version="11.1.1.4_0", ...
Export-Package: oracle.core.lmx;version=1.0.0.0_11-1-0-7, ...
...

	
Export your Oracle Event Processing application to a JAR file.

For more information, see Section 5.5.1, "How to Export an Oracle Event Processing Project".

	
Copy the bundler JAR to the appropriate Oracle Event Processing server application library directory:

	
If your bundle is a driver, you must put it in the library extensions directory.

See Section 23.1.3.2, "Library Extensions Directory".

	
If your bundle is not a driver, you may put it in the library directory.

See Section 23.1.3.1, "Library Directory"

For more information, see Section 23.1.3, "Application Libraries".

	
Stop and start the Oracle Event Processing server.

See "Starting and Stopping Oracle Event Processing Servers" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

23.3.4 How to Update an Application Library Using Oracle Event Processing IDE for Eclipse

When you add, replace, or remove a JAR file in the application library extension or application library directory or their user-defined subdirectories, you must make this change in two places:

	
On the local Oracle Event Processing server you used to create a server runtime in the Oracle Event Processing IDE for Eclipse.

	
On the production Oracle Event Processing server to which you deploy dependent applications.

These changes need not be performed simultaneously: you must make the change to the local Oracle Event Processing server before making code changes to projects that depend on the application library change; you must make the change to the production Oracle Event Processing server before you deploy applications that depend on the application library change.

For more information, see Section 23.3, "Managing Application Libraries".

To update an application library using Oracle Event Processing IDE for Eclipse:

	
Add a new or revised bundle to the application library extension or application library directory on the production Oracle Event Processing server.

This is the server to which you will deploy applications that depend on this application library.

To control library deployment order, organize your libraries in appropriately named subdirectories.

For more information, see:

	
Section 23.1.3.2, "Library Extensions Directory"

	
Section 23.1.3.1, "Library Directory"

	
Section 23.1.4, "Deployment and Deployment Order"

	
Stop and start the production Oracle Event Processing server.

The Oracle Event Processing server refreshes itself from the updated application library extension or application library directory.

For more information, see:

	
"Starting and Stopping an Oracle Event Processing Server in a Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
"Starting and Stopping an Oracle Event Processing Server in a Multi-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
Add the same new or revised bundle to the application library extension or application library directory on your Oracle Event Processing IDE for Eclipse targeted runtime Oracle Event Processing server.

	
Start the Oracle Event Processing IDE for Eclipse.

	
Right click a project and select Refresh Targeted Runtimes.

The Oracle Event Processing IDE for Eclipse refreshes this project from the updated application library extension or application library directory on your Oracle Event Processing IDE for Eclipse targeted runtime Oracle Event Processing server.

	
If necessary, update your application's dependencies.

For example, if you added a new bundle or changed the version of an existing bundle.

For more information, see Section 23.1.2, "Application Dependencies".

	
Assemble and deploy your application to the production Oracle Event Processing server.

For more information, see Section 23.5, "Deploying Oracle Event Processing Applications".

The dependencies you defined for this application in the Oracle Event Processing IDE for Eclipse at development time will be satisfied by the components you installed in the application library of your production Oracle Event Processing server at runtime.

23.3.5 How to View an Application Library Using the Oracle Event Processing Visualizer

Using the Oracle Event Processing Visualizer, you can view the application libraries deployed to the Oracle Event Processing server.

You can view libraries from both the library extensions directory and libraries directory.

	
Note:

You cannot deploy an application library to an Oracle Event Processing server using the Oracle Event Processing Visualizer. You may only deploy Oracle Event Processing applications to an Oracle Event Processing server using the Oracle Event Processing Visualizer.

For more information, see:

	
"How to View the Application Libraries Deployed to an Oracle Event Processing Server" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing

	
Section 23.1.3.2, "Library Extensions Directory"

	
Section 23.1.3.1, "Library Directory"

	
Section 23.3, "Managing Application Libraries"

23.4 Managing Log Message Catalogs

This section describes how to manage log message catalogs that you can use to localize an Oracle Event Processing application, including:

	
Section 23.4.1, "Using Message Catalogs With Oracle Event Processing Server"

	
Section 23.4.2, "How to Parse a Message Catalog to Generate Logger and TextFormatter Classes for Localization"

For more information, see:

	
"Configuring Logging and Debugging for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
Appendix G, "Schema Reference: Message Catalog msgcat.dtd"

	
Appendix H, "Schema Reference: Locale Message Catalog l10n_msgcat.dtd"

23.4.1 Using Message Catalogs With Oracle Event Processing Server

A message catalog is a single XML file that contains a collection of text messages, with each message indexed by a unique identifier. You compile these XML files into classes using weblogic.i18ngen during the build process. (See weblogic.i18ngen Utility for more information). The methods of the resulting classes are the objects used to log messages at runtime.

Message catalogs support multiple locales or languages. For a specific message catalog there is exactly one default version, known as the top-level catalog, which contains the English version of the messages. Then there are corresponding locale-specific catalogs, one for each additional supported locale.

The top-level catalog (English version) includes all the information necessary to define the message. The locale-specific catalogs contain only the message ID, the date changed, and the translation of the message for the specific locale.

The message catalog files are defined by one of the following XML document type definition (DTD) files:

	
msgcat.dtd - Describes the syntax of top-level, default catalogs.

	
l10n_msgcat.dtd - Describes the syntax of locale-specific catalogs.

The DTDs are stored in ORACLE_CEP_HOEM/modules/com.bea.core.i18n.generator_1.4.0.0.jar.

You can create a single log message catalog for all logging requirements, or create smaller catalogs based on a subsystem or Java package. Oracle recommends using multiple subsystem catalogs so you can focus on specific portions of the log during viewing.

For simple text catalogs, we recommend creating a single catalog for each utility being internationalized

This section describes:

	
Section 23.4.1.1, "Message Catalog Hierarchy"

	
Section 23.4.1.2, "Guidelines for Naming Message Catalogs"

	
Section 23.4.1.3, "Using Message Arguments"

	
Section 23.4.1.4, "Message Catalog Formats"

	
Section 23.4.1.5, "Message Catalog Localization"

For more information, see:

	
Appendix G, "Schema Reference: Message Catalog msgcat.dtd"

	
Appendix H, "Schema Reference: Locale Message Catalog l10n_msgcat.dtd"

23.4.1.1 Message Catalog Hierarchy

All messages must be defined in the default, top-level catalog.

Catalogs that provide different localizations of the base catalogs are defined in msgcat subdirectories named for the locale (for example, msgcat/de for Germany). You might have a top-level catalog named mycat.xml, and a German translation of it called ..de/mycat.xml. Typically the top-level catalog is English. However, English is not required for any catalogs.

Locale designations (for example, de) also have a hierarchy as defined in the java.util.Locale documentation. A locale can include a language, country, and variant. Language is the most common locale designation. Language can be extended with a country code. For instance, en\US, indicates American English. The name of the associated catalog is ..en\US\mycat.xml. Variants are vendor or browser-specific and are used to introduce minor differences (for example, collation sequences) between two or more locales defined by either language or country.

23.4.1.2 Guidelines for Naming Message Catalogs

Because the name of a message catalog file (without the .xml extension) is used to generate runtime class and property names, you should choose the name carefully.

Follow these guidelines for naming message catalogs:

	
Do not choose a message catalog name that conflicts with the names of existing classes in the target package for which you are creating the message catalog.

	
The message catalog name should only contain characters that are allowed in class names.

	
Follow class naming standards.

For example, the resulting class names for a catalog named Xyz.xml are XyzLogLocalizer and XyzLogger.

The following considerations also apply to message catalog files:

	
Message IDs are generally six-character strings with leading zeros. Some interfaces also support integer representations.

	
Note:

This only applies to log message catalogs. Simple text catalogs can have any string value.

	
Java lets you group classes into a collection called a package. Oracle recommends that a package name be consistent with the name of the subsystem in which a particular catalog resides. Consistent naming makes OSGi imports easier to define.

	
The log Localizer "classes" are actually ResourceBundle property files.

23.4.1.3 Using Message Arguments

The message body, message detail, cause, and action sections of a log message can include message arguments, as described by java.text.MessageFormat. Make sure your message contents conform to the patterns specified by java.text.MessageFormat. Only the message body section in a simple text message can include arguments. Arguments are values that can be dynamically set at runtime. These values are passed to routines, such as printing out a message. A message can support up to 10 arguments, numbered 0-9. You can include any subset of these arguments in any text section of the message definition (Message Body, Message Detail, Probable Cause), although the message body must include all of the arguments. You insert message arguments into a message definition during development, and these arguments are replaced by the appropriate message content at runtime when the message is logged.

The following excerpt from an XML log message definition shows how you can use message arguments. The argument number must correspond to one of the arguments specified in the method attribute. Specifically, {0} with the first argument, {1} with the second, and so on. In Example 23-10, {0} represents the file that cannot be opened, while {1} represents the file that will be opened in its place.

Example 23-10 Message Arguments

<messagebody>Unable to open file, {0}. Opening {1}. All arguments must be in body.</messagebody>

 <messagedetail> File, {0} does not exist. The server will restore the file
 contents from {1}, resulting in the use of default values for all future
 requests. </messagedetail>

 <cause>The file was deleted</cause>

 <action>If this error repeats then investigate unauthorized access to the
 file system.</action>

An example of a method attribute is as follows:

-method="logNoFile(String name, String path)"

The message example in Example 23-10 expects two arguments, {0} and {1}:

	
Both are used in the <messagebody>

	
Both are used in the <messagedetail>

	
Neither is used in <cause> or <action>

	
Note:

A message can support up to 10 arguments, numbered 0-9. You can include any subset of these arguments in any text section of the message definition (message detail, cause, action), although the message body must include all of the arguments

In addition, the arguments are expected to be of String type, or representable as a String type. Numeric data is represented as {n,number}. Dates are supported as {n,date}. You must assign a severity level for log messages. Log messages are generated through the generated Logger methods, as defined by the method attribute.

23.4.1.4 Message Catalog Formats

The catalog format for top-level and locale-specific catalog files is slightly different. The top-level catalogs define the textual messages for the base locale (by default, this is the English language). Locale-specific catalogs (for example, those translated to Spanish) only provide translations of text defined in the top-level version. Log message catalogs are defined differently from simple text catalogs.

23.4.1.4.1 Log Message Catalog

Example 23-11 shows a log message catalog, MyUtilLog.xml, containing one log message. This log message illustrates the usage of the messagebody, messagedetail, cause, and action elements.

Example 23-11 Log Message Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
"http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 baseid="600000"
 endid="600100"
 <log_message
 messageid="600001"
 severity="warning"
 method="logNoAuthorization(String arg0, java.util.Date arg1,int arg2)"
 <messagebody>
 Could not open file, {0} on {1,date} after {2,number} attempts.
 </messagebody>
 <messagedetail>
 The configuration for this application will be defaulted to
 factory settings. Custom configuration information resides
 in file, {0}, created on {1,date}, but is not readable.
 </messagedetail>
 <cause>
 The user is not authorized to use custom configurations. Custom
 configuration information resides in file, {0}, created on
 {1,date}, but is not readable.The attempt has been logged to
 the security log.
 </cause>
 <action>
 The user needs to gain approriate authorization or learn to
 live with the default settings.
 </action>
 </log_message>
</message_catalog>

For more information, see Appendix G, "Schema Reference: Message Catalog msgcat.dtd".

23.4.1.4.2 Simple Text Catalog

Example 23-12 shows a simple text catalog, MyUtilLabels.xml, with one simple text definition.

Example 23-12 Simple Text Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC "weblogic-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/msgcat.dtd">
<message_catalog>
 l10n_package="programs.utils"
 i18n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0"
 <message>
 messageid="FileMenuTitle"
 <messagebody>
 File
 </messagebody>
 </message>
</message_catalog>

For more information, see Appendix G, "Schema Reference: Message Catalog msgcat.dtd".

23.4.1.4.3 Locale-Specific Catalog

Example 23-13 shows a French translation of a message that is available in ..\msgcat\fr\MyUtilLabels.xml.

Example 23-13 Locale-Specific Catalog

<?xml version="1.0"?>
<!DOCTYPE message_catalog PUBLIC
 "weblogic-locale-message-catalog-dtd"
 "http://www.bea.com/servers/wls90/dtd/l10n_msgcat.dtd">
<locale_message_catalog
 l10n_package="programs.utils"
 subsystem="MYUTIL"
 version="1.0">
 <message>
 <messageid="FileMenuTitle">
 <messagebody> Fichier </messagebody>
 </message>
</locale_message_catalog>

When entering text in the messagebody, messagedetail, cause, and action elements, you must use a tool that generates valid Unicode Transformation Format-8 (UTF-8) characters, and have appropriate keyboard mappings installed. UTF-8 is an efficient encoding of Unicode character-strings that optimizes the encoding ASCII characters. Message catalogs always use UTF-8 encoding.

For more information, see Appendix H, "Schema Reference: Locale Message Catalog l10n_msgcat.dtd".

23.4.1.5 Message Catalog Localization

Catalog subdirectories are named after lowercase, two-letter ISO 639 language codes (for example, ja for Japanese and fr for French). You can find supported language codes in the java.util.Locale Javadoc.

Variations to language codes are achievable through the use of uppercase, two-letter ISO 3166 country codes and variants, each of which are subordinate to the language code. The generic syntax is lang\country\variant.

For example, zh is the language code for Chinese. CN is a country code for simplified Chinese, whereas TW is the country code for traditional Chinese. Therefore zh\CN and zh\TW are two distinct locales for Chinese.

Variants are of use when, for instance, there is a functional difference in platform vendor handling of specific locales. Examples of vendor variants are WIN, MAC, and POSIX. There may be two variants used to further qualify the locale. In this case, the variants are separated with an underscore (for example, Traditional_Mac as opposed to Modern_MAC).

	
Note:

Language, country, and variants are all case sensitive.

A fully-qualified locale would look like zh\TW\WIN, identifying traditional Chinese on a Win32 platform.

Message catalogs to support the above locale would involve the following files:

	
*.xml - default catalogs

	
\zh*.xml - Chinese localizations

	
\zh\TW*.xml - Traditional Chinese localizations

	
\zh\TW\WIN*.xml - Traditional Chinese localizations for Win32 code sets

Specific localizations do not need to cover all messages defined in parent localizations.

23.4.2 How to Parse a Message Catalog to Generate Logger and TextFormatter Classes for Localization

After you create your message catalog XML file, you can use the weblogic.i18ngen utility to create Logger and TextFormatter classes.

use the weblogic.i18ngen utility to parse message catalogs (XML files) to produce Logger and TextFormatter classes used for localizing the text in log messages. The utility creates or updates the i18n_user.properties properties file, which is used to load the message ID lookup class hashtable weblogic.i18n.L10nLookup.

Any errors, warnings, or informational messages are sent to stderr.

In order for user catalogs to be recognized, the i18n_user.properties file must reside in a directory identified in the Oracle Event Processing server classpath.

Oracle recommends that the i18n_user.properties file reside in the Oracle Event Processing server classpath. If the i18n_user.properties file is in targetdirectory, then targetdirectory should be in the Oracle Event Processing server classpath.

To parse a message catalog to generate Logger and TextFormatter classes:

	
Create your message catalog XML file.

See Section 23.4.1, "Using Message Catalogs With Oracle Event Processing Server".

	
Set up your development environment.

See Section 3.2, "Setting Your Development Environment."

	
Execute the weblogic.i18ngen utility using the following syntax:

java weblogic.i18ngen [options] [filelist]

Where:

	
options: see Table 23-6.

	
filelist: Process the files and directories in this list of files. If directories are listed, the command processes all XML files in the listed directories. The names of all files must include an XML suffix. All files must conform to the msgcat.dtd syntax. weblogic.i18ngen prints the fully-qualified list of names (Java source) to stdout for those files actually generated.

Table 23-6 weblogic.i18ngen Utility Options

	Option	Description
	
-build

	
Generates all necessary files and compiles them.

The -build option combines the -i18n, -l10n, -keepgenerated, and -compile options.

	
-d targetdirectory

	
Specifies the root directory to which generated Java source files are targeted. User catalog properties are placed in i18n_user.properties, relative to the designated targetdirectory. Files are placed in appropriate directories based on the i18n_package and l10n_package values in the corresponding message catalog. The default target directory is the current directory. This directory is created as necessary.

If this argument is omitted, all classes are generated in the current directory, without regard to any class hierarchy described in the message catalog.

	
-n

	
Parse and validate, but do not generate classes.

	
-keepgenerated

	
Keep generated Java source (located in the same directory as the class files).

	
-ignore

	
Ignore errors.

	
-i18n

	
Generates internationalizers (for example, Loggers and TextFormatters).

	
-l10n

	
Generates localizers (for example, LogLocalizers and TextLocalizers).

	
-compile

	
Compiles generated Java files using the current CLASSPATH. The resulting classes are placed in the directory identified by the -d option. The resulting classes are placed in the same directory as the source.

Errors detected during compilation generally result in no class files or properties file being created. i18ngen exits with a bad exit status.

	
-nobuild

	
Parse and validate only.

	
-debug

	
Debugging mode.

	
-dates

	
Causes weblogic.i18ngen to update message timestamps in the catalog. If the catalog is writable and timestamps have been updated, the catalog is rewritten.

	
Note:

Utilities can be run from any directory, but if files are listed on the command line, then their path is relative to the current directory.

	
Translate your log messages and generate the required localized resource bundles.

	
Ensure that the i18n_user.properties file is in the Oracle Event Processing server classpath.

	
Import the following packages in your Oracle Event Processing application:

	
weblogic.i18n.logging

	
weblogic.logging

	
Assemble and deploy your application, including your log message resource bundles.

23.5 Deploying Oracle Event Processing Applications

After you assemble your Oracle Event Processing application, you deploy it to an Oracle Event Processing server domain.

This section describes:

	
Section 23.5.1, "How to Deploy an Oracle Event Processing Application Using Oracle Event Processing IDE for Eclipse"

	
Section 23.5.2, "How to Deploy an Oracle Event Processing Application Using Oracle Event Processing Visualizer"

	
Section 23.5.3, "How to Deploy an Oracle Event Processing Application Using the Deployer Utility"

For more information, see:

	
"Deploying an Application to an Oracle Event Processing Standalone-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
"Deploying an Oracle Event Processing Application to a Multi-Server Domain" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

23.5.1 How to Deploy an Oracle Event Processing Application Using Oracle Event Processing IDE for Eclipse

You can deploy an Oracle Event Processing application using Oracle Event Processing IDE for Eclipse.

Using the Oracle Event Processing IDE for Eclipse, you can deploy an application to either a stand-alone or multi-server domain.

	
Note:

If you are using foreign stages, beware of the rules governing deployment and redeployment of dependent stages as Section 23.2.3, "Assembling Applications With Foreign Stages" describes.

To deploy an Oracle Event Processing application using Oracle Event Processing IDE for Eclipse:

	
Assemble your Oracle Event Processing application.

See Section 23.2, "Assembling an Oracle Event Processing Application."

	
Use the Oracle Event Processing IDE for Eclipse to deploy your application.

See Section 6.3.6, "How to Deploy an Application to an Oracle Event Processing Server".

23.5.2 How to Deploy an Oracle Event Processing Application Using Oracle Event Processing Visualizer

The simplest way to deploy an Oracle Event Processing application to an Oracle Event Processing server domain is to use the Oracle Event Processing Visualizer.

Using the Oracle Event Processing Visualizer, you can deploy an application to either a stand-alone or multi-server domain.

	
Note:

If you are using foreign stages, beware of the rules governing deployment and redeployment of dependent stages as Section 23.2.3, "Assembling Applications With Foreign Stages" describes.

To deploy an Oracle Event Processing application using Oracle Event Processing Visualizer:

	
Assemble your Oracle Event Processing application.

See Section 23.2, "Assembling an Oracle Event Processing Application."

	
Start the Oracle Event Processing Visualizer.

See Section 6.3.9, "How to Start the Oracle Event Processing Visualizer from Oracle Event Processing IDE for Eclipse".

	
Use the Oracle Event Processing Visualizer to deploy your application.

See "Deploying an Application" in the Oracle Fusion Middleware Visualizer User's Guide for Oracle Event Processing.

23.5.3 How to Deploy an Oracle Event Processing Application Using the Deployer Utility

The following procedure describes how to deploy an application to Oracle Event Processing using the Deployer command-line utility.

Using the Deployer, you can deploy an application to either a stand-alone or multi-server domain.

For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Note:

If you are using foreign stages, beware of the rules governing deployment and redeployment of dependent stages as Section 23.2.3, "Assembling Applications With Foreign Stages" describes.

To deploy an Oracle Event Processing application using the Deployer utility:

	
Assemble your Oracle Event Processing application.

See Section 23.2, "Assembling an Oracle Event Processing Application."

	
Open a command window and set your environment as described in Section 3.2, "Setting Your Development Environment."

	
Update your CLASSPATH variable to include the wlevsdeploy.jar JAR file, located in the ORACLE_CEP_HOME/ocep_11.1/bin directory where, ORACLE_CEP_HOME refers to the main Oracle Event Processing installation directory, such as /oracle_cep.

	
Note:

If you are running the Deployer on a remote computer, see "Running the Deployer Utility Remotely" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Be sure you have configured Jetty for the Oracle Event Processing instance to which you are deploying your application.

For more information, see "Configuring Jetty for Oracle Event Processing" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
In the command window, run the Deployer utility using the following syntax to install your application (in practice, the command should be on one line):

prompt> java -jar wlevsdeploy.jar -url http://host:port/wlevsdeployer
 -user user -password password -install application_jar_file

where

	
host refers to the hostname of the computer on which Oracle Event Processing is running.

	
port refers to the port number to which Oracle Event Processing listens; default value is 9002.

This port is specified in the DOMAIN_DIR/config/config.xml file that describes your Oracle Event Processing domain, where DOMAIN_DIR refers to your domain directory.

The port number is the value of the <Port> child element of the <Netio> element:

<Netio>
 <Name>NetIO</Name>
 <Port>9002</Port>
</Netio>

	
user refers to the username of the Oracle Event Processing administrator.

	
password refers to the password of the Oracle Event Processing administrator.

	
application_jar_file refers to your application JAR file, assembled into an OSGi bundle as described in Section 23.2, "Assembling an Oracle Event Processing Application." This file must be located on the same computer from which you execute the Deployer utility.

For example, if Oracle Event Processing is running on host ariel, listening on port 9002, username and password of the administrator is wlevs/wlevs, and your application JAR file is called myapp_1.0.0.0.jar and is located in the /applications directory, then the command is (in practice, the command should be on one line):

prompt> java -jar wlevsdeploy.jar -url http://ariel:9002/wlevsdeployer
 -user wlevs -password wlevs -install /applications/myapp_1.0.0.0.jar

After the application JAR file has been successfully installed and all initialization tasks completed, Oracle Event Processing automatically starts the application and the adapter components immediately start listening for incoming events.

The Deployer utility provides additional options to resume, suspend, update, and uninstall an application JAR file, as well as deploy an application to a specified group of a multi-server domain. For more information, see "Deployer Command-Line Reference" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Note:

You may only deploy to a group if the server is part of a multi-server domain (that is, if clustering is enabled). You may not deploy to a group if the server is part of a standalone-server domain (that is, if clustering is disabled). For more information, see "Overview of Oracle Event Processing Multi-Server Domain Administration" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

Oracle Event Processing uses the deployments.xml file to internally maintain its list of deployed application OSGi bundles. This file is located in the DOMAIN_DIR/servername directory, where DOMAIN_DIR refers to the main domain directory corresponding to the server instance to which you are deploying your application and servername refers to the actual server. See Appendix B, "Deployment Schema deployment.xsd" for information about this file. This information is provided for your information only; Oracle does not recommend updating the deployments.xml file manually.

24 Developing Applications for High Availability

This chapter introduces Oracle Event Processing components and design patterns that you can use to increase the availability of your Oracle Event Processing applications, along with how to configure high availability for your Oracle Event Processing application to provide the quality of service you require.

This chapter includes the following sections:

	
Section 24.1, "Understanding High Availability"

	
Section 24.2, "Configuring High Availability"

24.1 Understanding High Availability

This section introduces Oracle Event Processing components and design patterns that you can use to increase the availability of your Oracle Event Processing applications.

This section includes the following sections:

	
Section 24.1.1, "High Availability Architecture"

	
Section 24.1.2, "Choosing a Quality of Service"

	
Section 24.1.3, "Designing an Oracle Event Processing Application for High Availability"

24.1.1 High Availability Architecture

Like any computing resource, Oracle Event Processing servers can be subject to both hardware and software faults that can lead to data- or service-loss. Oracle Event Processing high availability options seek to mitigate both the likelihood and the impact of such faults.

Oracle Event Processing supports an active-standby high availability architecture. This approach has the advantages of high performance, simplicity, and short failover time.

An Oracle Event Processing application that needs to be highly available is deployed to a group of two or more Oracle Event Processing server instances running in an Oracle Event Processing multi-server domain. Oracle Event Processing will automatically choose one server in the group to be the active primary. The remaining servers become active secondaries.

The primary and secondary servers are all configured to receive the same input events and process them in parallel but only the primary server outputs events to the Oracle Event Processing application client. Depending on the quality of service you choose, the secondary servers buffer their output events using in-memory queues and the primary server keeps the secondary servers up to date with which events the primary has already output.

Figure 24-1 shows a typical configuration.

Figure 24-1 Oracle Event Processing High Availability: Primary and Secondary Servers

[image: Description of Figure 24-1 follows]

This section describes:

	
Section 24.1.1.1, "High Availability Lifecycle and Failover"

	
Section 24.1.1.2, "Deployment Group and Notification Group"

	
Section 24.1.1.3, "High Availability Components"

	
Section 24.1.1.4, "High Availability and Scalability"

	
Section 24.1.1.5, "High Availability and Oracle Coherence"

24.1.1.1 High Availability Lifecycle and Failover

Figure 24-2 shows a state diagram for the Oracle Event Processing high availability lifecycle. In this diagram, the state names (SECONDARY, BECOMING_PRIMARY, and PRIMARY) correspond to the Oracle Event Processing high availability adapter RuntimeMBean method getState return values. These states are specific to Oracle Event Processing.

Figure 24-2 Oracle Event Processing High Availability Lifecycle State Diagram

[image: Description of Figure 24-2 follows]

It is not possible to specify the server that will be the initial primary. Initially, the first server in the multi-server domain to start up becomes the primary so by starting servers in a particular order, you can influence primary selection. There is no way to force a particular, running server to become the primary. If a primary fails, and then comes back up, it will not automatically become the primary again unless the current primary fails causing a failover.

This section describes the Oracle Event Processing high availability lifecycle in more detail, including:

	
Section 24.1.1.1.1, "Secondary Failure"

	
Section 24.1.1.1.2, "Primary Failure and Failover"

	
Section 24.1.1.1.3, "Rejoining the High Availability Multi-Server Domain"

24.1.1.1.1 Secondary Failure

In general, when a secondary server fails, there is no effect on Oracle Event Processing application operation as Figure 24-3 shows. Regardless of the quality of service you choose, there are no missed or duplicate events.

Figure 24-3 Secondary Failure

[image: Description of Figure 24-3 follows]

24.1.1.1.2 Primary Failure and Failover

However, when a primary server fails, as Figure 24-4 shows, Oracle Event Processing performs a failover that may cause missed or duplicate events, depending on the quality of service you choose.

Figure 24-4 Primary Failure and Failover

[image: Description of Figure 24-4 follows]

During failover, Oracle Event Processing automatically selects a new primary and the new primary transitions from the SECONDARY state to the BECOMING_PRIMARY state. Depending on the quality of service you choose, the new primary will not transition to PRIMARY state until a configurable readiness threshold is met. For details, see the specific quality of service option in Section 24.1.2, "Choosing a Quality of Service".

24.1.1.1.3 Rejoining the High Availability Multi-Server Domain

When a new Oracle Event Processing server is added to an Oracle Event Processing high availability multi-server domain or an existing failed server restarts, the server will not have fully joined the Oracle Event Processing high availability deployment and notification groups until all applications deployed to it have fully joined. The type of application determines when it can be said to have fully joined.

If the application must generate exactly the same sequence of output events as existing secondaries (a Type 1 application), then it must be able to rebuild its internal state by processing input streams for some finite period of time (the warm-up-window-length period). This warm-up-window-length time determines the minimum time it will take for the application to fully join the Oracle Event Processing high availability deployment and notification groups.

If the application does not need to generate exactly the same sequence of output events as existing secondaries (a Type 2 application), then it does not require a warm-up-window-length time and will fully join the Oracle Event Processing high availability deployment and notification groups as soon as it is deployed.

For more information, see Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time".

24.1.1.2 Deployment Group and Notification Group

All the servers in the multi-server domain belong to the same deployment group: this is the group to which you deploy an application. For the purposes of Oracle Event Processing high availability, you must deploy the same application to all the servers in this group.

By default, all the servers in the multi-server domain also belong to the same notification group. The servers listen to the notification group for membership notifications that indicate when a server has failed (and exited the group) or resumed operation (and rejoined the group), as well as for synchronization notifications from the primary.

If you need to scale your Oracle Event Processing high availability application, you can use the ActiveActiveGroupBean to define a notification group that allows two or more servers to function as a primary server unit while retaining the convenience of a single deployment group that spans all servers (primaries and secondaries).

You must use Oracle Coherence-based clustering to create the multi-server domain deployment group. You may use either default groups or custom groups.

For more information, see:

	
Section 24.1.1.4, "High Availability and Scalability"

	
Section 24.1.1.5, "High Availability and Oracle Coherence"

	
"How to Create an Oracle Event Processing Multi-Server Domain With Default Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
"How to Create an Oracle Event Processing Multi-Server Domain With Custom Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

24.1.1.3 High Availability Components

To implement Oracle Event Processing high availability options, you configure your Event Processing Network (EPN) with a high availability input adapter after each input adapter and a high availability output adapter before each output adapter.

Figure 24-5 shows a typical EPN with all possible high availability adapters in place.

Figure 24-5 High Availability Adapters in the EPN

[image: Description of Figure 24-5 follows]

	
Note:

For simplicity, Figure 24-5 does not show channels and shows only one processor. However, the EPN may be arbitrarily complex with multiple input streams and output streams, channels, multiple processors, event beans, and so on. The only restriction is that each input adapter must be followed by a high availability input adapter and each output adapter must be preceded by a high availability output adapter. Similarly, for simplicity, a multi-server domain of only two Oracle Event Processing servers is shown but you may have an arbitrary number of secondary servers.

The optional high availability input adapter in the primary communicates with the corresponding high availability input adapters in each secondary to normalize event timestamps.

Oracle Event Processing high availability provides one type of high availability input adapter. See Section 24.1.1.3.1, "High Availability Input Adapter".

The high availability output adapter in the primary is responsible for outputting events to the output streams that connect the Oracle Event Processing application to its downstream client. The high availability output adapter in the primary also communicates with the corresponding high availability output adapters in each secondary, and, depending on the high availability quality of service you choose, may instruct the secondary output adapters to trim their in-memory queues of output events.

Oracle Event Processing high availability provides the following high availability output adapters:

	
Section 24.1.1.3.2, "Buffering Output Adapter"

	
Section 24.1.1.3.3, "Broadcast Output Adapter"

	
Section 24.1.1.3.4, "Correlating Output Adapter"

Oracle Event Processing high availability also provides a notification groups Spring bean to increase scalability in JMS applications. See Section 24.1.1.3.5, "ActiveActiveGroupBean".

Which adapter you choose is determined by the high availability quality of service you choose. See Section 24.1.2, "Choosing a Quality of Service".

24.1.1.3.1 High Availability Input Adapter

The optional Oracle Event Processing high availability input adapter on the primary Oracle Event Processing server assigns a time (in nanoseconds) to events as they arrive at the adapter and forwards the time values assigned to events to all secondary servers. This ensures that all servers running the application use a consistent time value (and generate the same results) and avoids the need for distributed clock synchronization.

Since a time value is assigned to each event before the event reaches any downstream channels in the EPN, downstream channels should be configured to use application time so that they do not assign a new time value to events as they arrive at the channel.

Input events must have a key that uniquely identifies each event in order to use this adapter.

You can configure the Oracle Event Processing high availability input adapter to send heartbeat events.

The Oracle Event Processing high availability input adapter is applicable to all high availability quality of service options. However, because the high availability input adapter increases performance overhead, it is not appropriate for some high availability quality of service options (such as Section 24.1.2.1, "Simple Failover" and Section 24.1.2.2, "Simple Failover with Buffering"). For these options, you should instead consider using application time with some incoming event property.

For more information, see:

	
Section 24.1.2.3, "Light-Weight Queue Trimming"

	
Section 24.1.2.4, "Precise Recovery with JMS"

	
Section 24.2.2.1, "How to Configure the High Availability Input Adapter".

24.1.1.3.2 Buffering Output Adapter

The Oracle Event Processing high availability buffering output adapter implements a buffered queue trimming strategy. The buffer is a sliding window of output events from the stream. The size of the window is measured in milliseconds.

The Oracle Event Processing high availability buffering output adapter is applicable to simple failover and simple failover with buffering high availability quality of service options.

For more information, see:

	
Section 24.1.2.1, "Simple Failover"

	
Section 24.1.2.2, "Simple Failover with Buffering"

	
Section 24.2.2.2, "How to Configure the Buffering Output Adapter".

24.1.1.3.3 Broadcast Output Adapter

The Oracle Event Processing high availability broadcast output adapter implements a distributed queue trimming strategy. The active primary instance broadcasts messages to the active secondary instances in the notification group telling them when to trim their local representation of the queue.

The Oracle Event Processing high availability broadcast output adapter is applicable to the light-weight queue trimming high availability quality of service option.

For more information, see:

	
Section 24.1.2.3, "Light-Weight Queue Trimming"

	
Section 24.2.2.3, "How to Configure the Broadcast Output Adapter".

24.1.1.3.4 Correlating Output Adapter

The Oracle Event Processing high availability correlating output adapter correlates two event streams, usually from JMS. This adapter correlates an inbound buffer of events with a second source of the same event stream, outputting the buffer if correlation fails after a configurable time interval. Correlated events are trimmed from the queue. Correlated events are assumed to be in-order.

The Oracle Event Processing high availability correlating output adapter is applicable to precise recovery with JMS high availability quality of service option.

For more information, see:

	
Section 24.1.2.4, "Precise Recovery with JMS"

	
Section 24.2.2.4, "How to Configure the Correlating Output Adapter".

24.1.1.3.5 ActiveActiveGroupBean

The com.oracle.cep.cluster.hagroups.ActiveActiveGroupBean is a Spring bean that allows you to partition an input stream from a JMS input adapter.

This component is applicable to precise recovery with JMS high availability quality of service only. However, it can also be used without high availability to increase Oracle Event Processing application scalability.

For more information, see:

	
Section 24.1.1.4, "High Availability and Scalability"

	
Section 24.1.2.4, "Precise Recovery with JMS"

	
Section 25.1.2.2, "ActiveActiveGroupBean"

24.1.1.4 High Availability and Scalability

If you need to scale your Oracle Event Processing high availability application, you can use the ActiveActiveGroupBean to define a notification group that allows two or more servers to function as a high availability unit while retaining the convenience of a single deployment group that spans all servers (primaries and secondaries).

Figure 24-6 shows three Oracle Event Processing application scenarios progressing from the simplest configuration, to high availability, and then to both high availability and scalability.

Figure 24-6 High Availability and Scalability

[image: Description of Figure 24-6 follows]

Most applications begin in a single-server domain without high availability. In this, the simplest scenario, an Oracle Event Processing application running on one Oracle Event Processing server processes an input event stream and produces output events.

In the high availability scenario, the Oracle Event Processing application has been configured to use Oracle Event Processing high availability options. This application is deployed to the deployment group of a multi-server domain composed of two servers. In this scenario, only the primary server outputs events.

In the high availability and scalability scenario, the Oracle Event Processing high availability application has been configured to use the ActiveActiveGroupBean to define notification groups. Each notification group contains two or more Oracle Event Processing servers that function as a single, high availability unit. In this scenario, only the primary server in each notification group outputs events. Should the primary server in a notification group go down, an Oracle Event Processing high availability fail over occurs and a secondary server in that notification group is declared the new primary and resumes outputting events according to the Oracle Event Processing high availability quality of service you configure.

For more information, see:

	
Section 25.1.2.2, "ActiveActiveGroupBean"

	
Section 25.2.2.2, "How to Configure Scalability in a JMS Application With Oracle Event Processing High Availability"

24.1.1.5 High Availability and Oracle Coherence

Oracle Event Processing high availability options depend on Oracle Coherence. You cannot implement Oracle Event Processing high availability options without Oracle Coherence.

When considering performance tuning, be sure to evaluate your Oracle Coherence configuration in addition to your Oracle Event Processing application.

For more information, see:

	
Section 27.2.5, "Oracle Coherence Performance Tuning Options"

	
"Configuring the Oracle Coherence Cluster" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

	
Oracle Coherence Developer's Guide at http://download.oracle.com/docs/cd/E15357_01/coh.360/e15723/toc.htm

24.1.2 Choosing a Quality of Service

Using Oracle Event Processing high availability, you may choose any of the quality of service options that Table 24-1 lists. Choose the quality of service option that suits your application's tolerance for missed and duplicate events as well as expected event throughput. Note that primary and secondary server hardware requirements increase as the quality of service becomes more precise.

Table 24-1 Oracle Event Processing High Availability Quality of Service

	High Availability Option	Missed Events?	Duplicate Events?	Performance Overhead
	
Section 24.1.2.1, "Simple Failover"

	
Yes (many)

	
Yes (few)

	
Negligible

	
Section 24.1.2.2, "Simple Failover with Buffering"

	
Yes (few)Foot 1

	
Yes (many)

	
Low

	
Section 24.1.2.3, "Light-Weight Queue Trimming"

	
No

	
Yes (few)

	
Low-MediumFoot 2

	
Section 24.1.2.4, "Precise Recovery with JMS"

	
No

	
No

	
High

Footnote 1 If you configure a big enough buffer then there will be no missed events.

Footnote 2 The performance overhead is tunable. You can adjust the frequency of trimming to reduce the overhead, but incur a higher number of duplicates at failover.

24.1.2.1 Simple Failover

This high availability quality of service is characterized by the lowest performance overhead (fastest recovery time) and the least data integrity (both missed events and duplicate events are possible during failover).

The primary server outputs events and secondary servers simply discard their output events; they do not buffer output events. If the current active primary fails, a new active primary is chosen and begins sending output events once it is notified.

During failover, many events may be missed or duplicated by the new primary depending on whether it is running ahead of or behind the old primary, respectively.

During the failover window, events may be missed. For example, if you are processing 100 events per second and failover takes 10 s then you miss 1000 events

The new primary enters the PRIMARY state immediately. There is no configurable readiness threshold that must be met before the new primary transitions out of the BECOMING_PRIMARY state.

When an Oracle Event Processing server rejoins the multi-server domain, it is immediately available as a secondary.

To implement this high availability quality of service, you configure your EPN with a high availability buffering output adapter (with a sliding window of size zero) before each output adapter. To reduce performance overhead, rather than use a high availability input adapter, use application time with some incoming event property.

For more information, see Section 24.2.1.1, "How to Configure Simple Failover".

24.1.2.2 Simple Failover with Buffering

This high availability quality of service is characterized by a low performance overhead (faster recovery time) and increased data integrity (no missed events but many duplicate events are possible during failover).

The primary server outputs events and secondary servers buffer their output events. If the current active primary fails, a new active primary is chosen and begins sending output events once it is notified.

During the failover window, events may be missed. For example, if you are processing 100 events per second and failover takes 10 s then you miss 1000 events. If the secondary buffers are large, a significant number of duplicates may be output. On the other hand, a larger buffer reduces the chances of missed messages.

When an Oracle Event Processing server rejoins the multi-server domain, if your application is an Oracle Event Processing high availability Type 1 application (the application must generate exactly the same sequence of output events as existing secondaries), it must wait the warm-up-window-length time you configure for the Oracle Event Processing high availability output adapter before it is available as a secondary.

To implement this high availability quality of service, you configure your EPN with a high availability buffering output adapter (with a sliding window of size greater than zero) before each output adapter. To reduce performance overhead, rather than use a high availability input adapter, use application time with some incoming event property.

For more information, see:

	
Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time"

	
Section 24.2.1.2, "How to Configure Simple Failover With Buffering"

24.1.2.3 Light-Weight Queue Trimming

This high availability quality of service is characterized by a low performance overhead (faster recovery time) and increased data integrity (no missed events but a few duplicate events are possible during failover).

The active primary communicates to the secondaries the events that it has actually processed. This enables the secondaries to trim their buffer of output events so that it contains only those events that have not been sent by the primary at a particular point in time. Because events are only trimmed after they have been sent by the current primary, this allows the secondary to avoid missing any output events when there is a failover.

The frequency with which the active primary sends queue trimming messages to active secondaries is configurable:

	
Every n events (n>0)

This limits the number of duplicate output events to at most n events at failover.

	
Every n milliseconds (n>0)

The queue trimming adapter requires a way to identify events consistently among the active primary and secondaries. The recommended approach is to use application time to identify events, but any key value that uniquely identifies events will do.

The advantage of queue trimming is that output events are never lost. There is a slight performance overhead at the active primary, however, for sending the trimming messages that need to be communicated and this overhead increases as the frequency of queue trimming messages increases.

During failover, the new primary enters the BECOMING_PRIMARY state and will not transition into the PRIMARY state until its event queue (that it was accumulating as a secondary) has been flushed. During this transition, new input events are buffered and some duplicate events may be output.

When an Oracle Event Processing server rejoins the multi-server domain, if your application is an Oracle Event Processing high availability Type 1 application (an application that must generate exactly the same sequence of output events as existing secondaries), it must wait the warm-up-window-length time you configure for the Oracle Event Processing high availability output adapter before it is available as a secondary.

To implement this high availability quality of service, you configure your EPN with a high availability input adapter after each input adapter and a high availability broadcast output adapter before each output adapter.

For more information, see Section 24.2.1.3, "How to Configure Light-Weight Queue Trimming".

24.1.2.4 Precise Recovery with JMS

This high availability quality of service is characterized by a high performance overhead (slower recovery time) and maximum data integrity (no missed events and no duplicate events during failover).

This high availability quality of service is compatible with only JMS input and output adapters.

In this high availability quality of service, we are not concerned with transactional guarantees along the event path for a single-server but in guaranteeing a single output from a set of servers. To achieve this, secondary servers listen, over JMS, to the event stream being published by the primary. As Figure 24-7 shows, this incoming event stream is essentially a source of reliable queue-trimming messages that the secondaries use to trim their output queues. If JMS is configured for reliable delivery we can be sure that the stream of events seen by the secondary is precisely the stream of events output by the primary and thus failover will allow the new primary to output precisely those events not delivered by the old primary.

Figure 24-7 Precise Recovery with JMS

[image: Description of Figure 24-7 follows]

During failover, the new primary enters the BECOMING_PRIMARY state and will not transition into the PRIMARY state its event queue (that it was accumulating as a secondary) has been flushed. During this transition, new input events are buffered and no duplicate events are output.

When an Oracle Event Processing server rejoins the multi-server domain, if your application is an Oracle Event Processing high availability Type 1 application (the application must generate exactly the same sequence of output events as existing secondaries), it must wait the warm-up-window-length time you configure for the Oracle Event Processing high availability output adapter before it is available as a secondary.

To implement this high availability quality of service, you configure your EPN with a high availability input adapter after each input adapter and a high availability correlating output adapter before each output adapter.

To increase scalability, you can also use the cluster groups bean with high availability quality of service.

For more information, see:

	
Section 24.2.1.4, "How to Configure Precise Recovery With JMS"

	
Section 25.2.2, "Configuring Scalability With the ActiveActiveGroupBean"

24.1.3 Designing an Oracle Event Processing Application for High Availability

Although you can implement Oracle Event Processing high availability declaratively, to fully benefit from the high availability quality of service you choose, you must design your Oracle Event Processing application to take advantage of the high availability options that Oracle Event Processing provides.

When designing your Oracle Event Processing application for high availability, consider the following:

	
Section 24.1.3.1, "Primary Oracle Event Processing High Availability Use Case"

	
Section 24.1.3.2, "High Availability Design Patterns"

	
Section 24.1.3.3, "Oracle CQL Query Restrictions"

24.1.3.1 Primary Oracle Event Processing High Availability Use Case

You can adapt Oracle Event Processing high availability options to various Oracle Event Processing application designs but in general, Oracle Event Processing high availability is designed for the following use case:

	
An application receives input events from one or more external systems.

	
The external systems are publish-subscribe style systems that allow multiple instances of the application to connect simultaneously and receive the same stream of messages.

	
The application does not update any external systems in a way that would cause conflicts should multiple copies of the application run concurrently.

	
The application sends output events to an external downstream system. Multiple instances of the application can connect to the downstream system simultaneously, although only one instance of the application is allowed to send messages at any one time.

Within these constraints, the following different cases are of interest:

	
The application is allowed to skip sending some output events to the downstream system when there is a failure. Duplicates are also allowed.

For this case, the following Oracle Event Processing high availability quality of service options are applicable:

	
Section 24.1.2.1, "Simple Failover"

	
The application is allowed to send duplicate events to the downstream system, but must not skip any events when there is a failure.

For this case, the following Oracle Event Processing high availability quality of service options are applicable:

	
Section 24.1.2.2, "Simple Failover with Buffering"

	
Section 24.1.2.3, "Light-Weight Queue Trimming"

	
The application must send exactly the same stream of messages/events to the downstream system when there is a failure, modulo a brief pause during which events may not be sent when there is a failure.

For this case, the following Oracle Event Processing high availability quality of service options are applicable

	
Section 24.1.2.4, "Precise Recovery with JMS"

24.1.3.2 High Availability Design Patterns

When designing your Oracle Event Processing application for use with Oracle Event Processing high availability options, observe the following design patterns:

	
Section 24.1.3.2.1, "Select the Minimum High Availability Your Application can Tolerate"

	
Section 24.1.3.2.2, "Use Oracle Event Processing High Availability Components at All Ingress and Egress Points"

	
Section 24.1.3.2.3, "Only Preserve What You Need"

	
Section 24.1.3.2.4, "Limit Oracle Event Processing Application State"

	
Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time"

	
Section 24.1.3.2.8, "Ensure Applications are Idempotent"

	
Section 24.1.3.2.9, "Source Event Identity Externally"

	
Section 24.1.3.2.10, "Understand the Importance of Event Ordering"

	
Section 24.1.3.2.14, "Write Oracle CQL Queries with High Availability in Mind"

	
Section 24.1.3.2.15, "Avoid Coupling Servers"

	
Section 24.1.3.2.16, "Plan for Server Recovery"

24.1.3.2.1 Select the Minimum High Availability Your Application can Tolerate

Be sure that the extra cost of precise recovery (per-node throughput decrease) is actually necessary for your application.

24.1.3.2.2 Use Oracle Event Processing High Availability Components at All Ingress and Egress Points

You must use an Oracle Event Processing high availability input adapter after each regular input adapter and you must use an Oracle Event Processing high availability output adapter before each regular output adapter.

24.1.3.2.3 Only Preserve What You Need

Most Oracle Event Processing systems are characterized by a large number of raw input events being queried to generate a smaller number of “enriched” events. In general it makes sense to only try and preserve these enriched events – both because there are fewer of them and because they are more valuable.

24.1.3.2.4 Limit Oracle Event Processing Application State

Oracle Event Processing systems allow you to query windows of events. It can be tempting to build systems using very large windows, but this increases the state that needs to be rebuilt when failure occurs. In general it is better to think of long-term state as something better kept in stable storage, such as a distributed cache or a database – since the high availability facilities of these technologies can be appropriately leveraged.

24.1.3.2.5 Choose an Adequate warm-up-window-length Time

When a new Oracle Event Processing server is added to an Oracle Event Processing high availability multi-server domain or an existing failed server restarts, the server will not have fully joined the Oracle Event Processing high availability deployment and notification groups until all applications deployed to it have fully joined. The type of application determines when it can be said to have fully joined.

Oracle Event Processing high availability applications can be described as Type 1 or Type 2 applications as Table 24-2 shows.

Table 24-2 Oracle Event Processing High Availability Application Types

	Application Type	Must generate exactly the same sequence of output events?	Must be able to rebuild internal state by processing input streams within a finite period of time?	Must wait this period of time before it has fully joined?
	
Type 1

	
Yes

	
Yes

	
Yes

	
Type 2

	
No

	
No

	
No

For more information, see Section 24.1.1.1.3, "Rejoining the High Availability Multi-Server Domain".

24.1.3.2.6 Type 1 Applications

A Type 1 application requires the new secondary to generate exactly the same sequence of output events as existing secondaries once it fully joins the Oracle Event Processing high availability deployment and notification groups.

It is a requirement that a Type 1 application be able to rebuild its internal state by processing its input streams for some finite period of time (warm-up-window-length time), after which it generates exactly the same stream of output events as other secondaries running the application.

The warm-up-window-length time is configured on an Oracle Event Processing high availability output adapter. The warm-up-window-length time length is specified in terms of seconds or minutes. For example, if the application contains Oracle CQL queries with range-based windows of 5, 7, and 15 minutes then the minimum warm-up-window-length time is 15 minutes (the maximum range-based window size). Oracle recommends that the maximum window length be padded with a few minutes time, as well, to absolutely ensure that the necessary state is available. So, in the previous example 17 minutes or even 20 minutes would be a good length for the warm-up-window-length time.

The Oracle Event Processing server uses system time during the warm-up-window-length time period, so it is not directly correlated with the application time associated with events being processed.

Type 1 applications must only be interested in events that occurred during a finite amount of time. All range-based Oracle CQL windows must be shorter than the warm-up-window-length time and tuple-based windows must also be qualified by time. For example, the application should only care about the last 10 events if they occurred within the last five minutes. Applications that do not have this property cannot be Type 1 applications and cannot use the warm-up-window-length period. For example, an application that uses an tuple-based partitioned window that has no time qualification cannot use the warm-up-window-length period, since an arbitrary amount of time is required to rebuild the state of the window.

If a Type 1 application uses the Oracle Event Processing high availability broadcast output adapter, it may trim events using a unique application-specific key, or a monotonic key like application time. Trimming events using application time is encouraged as it is more robust and less susceptible to bugs in the application that may cause an output event to fail to be generated.

For more information, see:

	
Section 24.1.3.3, "Oracle CQL Query Restrictions"

	
Section 24.1.1.3.2, "Buffering Output Adapter"

	
Section 24.1.1.3.3, "Broadcast Output Adapter"

	
Section 24.1.1.3.4, "Correlating Output Adapter"

24.1.3.2.7 Type 2 Applications

A Type 2 application does not require the new secondary to generate exactly the same sequence of output events as existing secondaries once it fully joins the Oracle Event Processing high availability deployment and notification groups. It simply requires that the new cluster member generate valid output events with respect to the point in time at which it begins processing input events.

A Type 2 application does not require a warm-up-window-length period.

Most applications will be Type 2 applications. It is common for an application to be brought up at an arbitrary point in time (on the primary Oracle Event Processing server), begin processing events from input streams at that point, and generate valid output events. In other words, the input stream is not paused while the application is started and input events are constantly being generated and arriving. It is reasonable to assume that in many cases a secondary node that does the same thing, but at a slightly different time, will also produce output events that are valid from the point of view of the application, although not necessarily identical to those events produced by the primary because of slight timing differences.For example, a financial application that only runs while the market is open might operate as a Type 2 application as follows: all servers can be brought up before the market opens and will begin processing incoming events at the same point in the market data stream. Multiple secondaries can be run to protect against failure and as long as the number of secondaries is sufficient while the market is open, there is no need to restart any secondaries that fail nor add additional secondaries, so no secondary needs to recover state.

24.1.3.2.8 Ensure Applications are Idempotent

You should be able to run two copies of an application on different servers and they should not conflict in a shared cache or database. If you are using an external relation (such as a cache or table), then you must ensure that when a Oracle Event Processing server rejoins the cluster, your application is accessing the same cache or table as before: it must be joining against the same external relation again. The data source defined on the server must not have been changed; must ensure you're pulling data from same data source.

24.1.3.2.9 Source Event Identity Externally

Many high availability solutions require that events be correlated between different servers and to do this events need to be universally identifiable. The best way to do this is use external information – preferably a timestamp – to seed the event, rather than relying on the Oracle Event Processing system to provide this.

For more information, see Section 24.1.3.3.6, "Prefer Application Time".

24.1.3.2.10 Understand the Importance of Event Ordering

For Oracle Event Processing high availability quality of service options that use queue trimming, not only must primary and secondary servers generate the same output events, but they must also generate them in exactly the same order.

Primary and secondary servers must generate the same output events and in exactly the same order when you choose Oracle Event Processing high availability quality of service options that use queue trimming and equality-based event identify (that is, nonmonotonic event identifiers - event identifiers that do not increase continually). In this case, generating output events in different orders can lead to either missed output events or unnecessary duplicate output events when there is a failure

Consider the output event streams shown in Figure 24-8. The primary has output events a, b, and c. After outputting event c, the primary sends the secondary a queue trimming message.

Figure 24-8 Event Order

[image: Description of Figure 24-8 follows]

The secondary trims all events in its queue generated prior to event c including event c itself. In this case, the set of events trimmed will be {a, b, e, d, c} which is wrong because the primary has not yet output events d and e. If a failover occurs after processing the trimming message for event c, events will be lost.

To manage event ordering, consider the following design patterns:

	
Section 24.1.3.2.11, "Prefer Deterministic Behavior"

	
Section 24.1.3.2.12, "Avoid Multithreading"

	
Section 24.1.3.2.13, "Prefer Monotonic Event Identifiers"

24.1.3.2.11 Prefer Deterministic Behavior

In order for an application to generate events in the same order when run on multiple instances, it must be deterministic. The application must not rely on things like:

	
Random number generator that may return different results on different machines.

	
Methods like System.getTimeMillis or System.nanoTime which can return different results on different machines because the system clocks are not synchronized.

24.1.3.2.12 Avoid Multithreading

Because thread scheduling algorithms are very timing dependent, multithreading can be a source of nondeterministic behavior in applications. That is, different threads can be scheduled at different times on different machines.

For example, avoid creating an EPN in which multiple threads send events to an Oracle Event Processing high availability adapter in parallel. If such a channel is an event source for an Oracle Event Processing high availability adapter, it would cause events to be sent to the adapter in parallel by different threads and could make the event order nondeterministic.

For more information on channel configuration to avoid, see:

	
Section 25.1.2.1, "EventPartitioner"

	
max-threads in Table C-9, "Attributes of the wlevs:channel Application Assembly Element"

24.1.3.2.13 Prefer Monotonic Event Identifiers

Event identifiers may be monotonic or nonmontonic.

A monotonic identifier is one that increases continually (such as a time value).

A nonmonotonic identifier does not increase continually and may contain duplicates.

In general, you should design your Oracle Event Processing application using monotonic event identifiers. Using a monotonic event identifier, the Oracle Event Processing high availability adapter can handle an application that may produce events out of order.

24.1.3.2.14 Write Oracle CQL Queries with High Availability in Mind

Not all Oracle CQL query usage is supported when using Oracle Event Processing high availability. You may need to redefine your Oracle CQL queries to address these restrictions.

For more information, see Section 24.1.3.3, "Oracle CQL Query Restrictions".

24.1.3.2.15 Avoid Coupling Servers

The most performant high availability for Oracle Event Processing systems is when servers can run without requiring coordination between them. Generally this can be achieved if there is no shared state and the downstream system can tolerate duplicates. Increasing levels of high availability are targeted at increasing the fidelity of the stream of events that the downstream system sees, but this increasing fidelity comes with a performance penalty.

24.1.3.2.16 Plan for Server Recovery

When a secondary server rejoins the multi-server domain, the server must have time to rebuild the Oracle Event Processing application state to match that of the current primary and active secondaries as Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time" describes.

The time it takes for a secondary server to become available as an active secondary after rejoining the multi-server domain will be a factor in the number of active secondaries you require.

If a secondary is declared to be the new primary before it is ready, the secondary will throw an exception.

24.1.3.3 Oracle CQL Query Restrictions

When writing Oracle CQL queries in an Oracle Event Processing application that uses Oracle Event Processing high availability options, observe the following restrictions:

	
Section 24.1.3.3.1, "Range-Based Windows"

	
Section 24.1.3.3.2, "Tuple-Based Windows"

	
Section 24.1.3.3.3, "Partitioned Windows"

	
Section 24.1.3.3.4, "Sliding Windows"

	
Section 24.1.3.3.5, "DURATION Clause and Non-Event Detection"

	
Section 24.1.3.3.6, "Prefer Application Time"

For more information on Oracle CQL, see the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

24.1.3.3.1 Range-Based Windows

In a Type 1 application (where the application must generate exactly the same sequence of output events as existing secondaries), all range-based Oracle CQL windows must be shorter than the warm-up-window-length time. See also Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time".

Channels must use application time if Oracle CQL queries contain range-based Windows. See also Section 24.1.3.3.6, "Prefer Application Time".

For more information, see "Range-Based Stream-to-Relation Window Operators" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

24.1.3.3.2 Tuple-Based Windows

In a Type 1 application (where the application must generate exactly the same sequence of output events as existing secondaries), all tuple-based windows must also be qualified by time. See also Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time".

For more information, see "Tuple-Based Stream-to-Relation Window Operators" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

24.1.3.3.3 Partitioned Windows

Consider avoiding partitioned windows: there are cases where a partition cannot be rebuilt. If using partitioned windows, configure a warm-up-window-length time long enough to give the Oracle Event Processing server time to rebuild the partition. See also Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time".

For more information, see "Partitioned Stream-to-Relation Window Operators" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

24.1.3.3.4 Sliding Windows

Oracle CQL queries should not use sliding windows if new nodes that join the multi-server domain are expected to generate exactly the same output events as existing nodes.

For more information, see:

	
Section 24.1.1.1.3, "Rejoining the High Availability Multi-Server Domain"

	
"S[range T1 slide T2]" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
"S [rows N1 slide N2]" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
"S [partition by A1,..., Ak rows N range T1 slide T2]" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

24.1.3.3.5 DURATION Clause and Non-Event Detection

You must use application time if Oracle CQL queries contain a DURATION clause for non-event detection.

For more information, see:

	
Section 24.1.3.3.6, "Prefer Application Time"

	
"DURATION Clause" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

24.1.3.3.6 Prefer Application Time

In Oracle Event Processing each event is associated with a point in time at which the event occurred. Oracle CQL recognizes two types of time:

	
Application time: a time value assigned to each event outside of Oracle CQL by the application before the event enters the Oracle CQL processor.

	
System time: a time value associated with an event when it arrives at the Oracle CQL processor, essentially by calling System.nanoTime().

Application time is generally the best approach for applications that need to be highly available. The application time is associated with an event before the event is sent to Oracle Event Processing, so it is consistent across active primary and secondary instances. System time, on the other hand, can cause application instances to generate different results since the time value associated with an event can be different on each instance due to system clocks not being synchronized.

You can use system time for applications whose Oracle CQL queries do not use time-based windows. Applications that use only event-based windows depend only on the arrival order of events rather than the arrival time, so you may use system time in this case.

If you must use system time with Oracle CQL queries that do use time-based windows, then you must use a special Oracle Event Processing high availability input adapter that intercepts incoming events and assigns a consistent time that spans primary and secondary instances.

24.2 Configuring High Availability

This section describes how to configure high availability for your Oracle Event Processing application to provide the quality of service you require, including information on configuring failover, recovery and queue trimming, as well as configuring high availability adapters.

This section includes the following sections:

	
Section 24.2.1, "Configuring High Availability Quality of Service"

	
Section 24.2.2, "Configuring High Availability Adapters"

24.2.1 Configuring High Availability Quality of Service

You configure Oracle Event Processing high availability quality of service in the EPN assembly file and component configuration files. For general information about these configuration files, see:

	
Section 1.4.1, "Overview of EPN Assembly Files"

	
Section 1.4.2, "Overview of Component Configuration Files"

	
Note:

After making any Oracle Event Processing high availability configuration changes, you must redeploy your Oracle Event Processing application. See Section 23.5, "Deploying Oracle Event Processing Applications".

This section describes:

	
Section 24.2.1.1, "How to Configure Simple Failover"

	
Section 24.2.1.2, "How to Configure Simple Failover With Buffering"

	
Section 24.2.1.3, "How to Configure Light-Weight Queue Trimming"

	
Section 24.2.1.4, "How to Configure Precise Recovery With JMS"

For more information on configuring an Oracle Event Processing high availability application for scalability, see Chapter 25, "Developing Scalable Applications".

24.2.1.1 How to Configure Simple Failover

You configure simple failover using the Oracle Event Processing buffering output adapter with a sliding window size of zero (0).

This procedure starts with the example EPN that Figure 24-9 shows and adds the required components to configure it for simple failover. Example 24-1 shows the corresponding EPN assembly file and Example 24-2 shows the corresponding component configuration file.

For more information about this Oracle Event Processing high availability quality of service, see Section 24.1.2.1, "Simple Failover".

Figure 24-9 Simple Failover EPN

[image: Description of Figure 24-9 follows]

Example 24-1 Simple Failover EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

</beans>

Example 24-2 Simple Failover Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>
</wlevs:config>

To configure simple failover:

	
Create a multi-server domain using Oracle Coherence.

For more information, see:

	
"How to Create an Oracle Event Processing Multi-Server Domain With Default Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
"How to Create an Oracle Event Processing Multi-Server Domain With Custom Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Create an Oracle Event Processing application.

For more information, see Section 5.2, "Creating Oracle Event Processing Projects".

	
Edit the MANIFEST.MF file to add the following Import-Package entries:

	
com.bea.wlevs.ede.api.cluster

	
com.oracle.cep.cluster.hagroups

	
com.oracle.cep.cluster.ha.adapter

	
com.oracle.cep.cluster.ha.api

For more information, see Section 5.7.2, "How to Add an OSGi Bundle to an Oracle Event Processing Project".

	
Configure your Oracle Event Processing application EPN assembly file to add an Oracle Event Processing high availability buffering output adapter as Example 24-3 shows.

	
Add a wlevs:adapter element with provider set to ha-buffering after channel helloworldOutputChannel.

	
Update the wlevs:listener element in channel helloworldOutputChannel to reference the ha-buffering adapter by its id.

	
Add a wlevs:listener element to the ha-buffering adapter that references the HelloWorldBean class.

Example 24-3 Simple Failover EPN Assembly File: Buffering Output Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener ref="myHaSlidingWindowAdapter"/>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 </wlevs:adapter>

</beans>

	
Optionally, configure the channel downstream from the input adapter (helloworldInputChannel) to configure an application timestamp based on an appropriate event property as Example 24-4 shows.

For simple failover, you can use system timestamps because events are not correlated between servers. However, it is possible that slightly different results might be output from the buffer if application timestamps are not used.

In this example, event property arrivalTime is used.

The wlevs:expression should be set to this event property.

Example 24-4 Application Timestamp Configuration

...
 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>arrivalTime</wlevs:expression>
 </wlevs:application-timestamped>
 </wlevs:channel>
...

	
Configure the Oracle Event Processing high availability buffering output adapter.

Set the instance property windowLength to zero (0) as Example 24-5 shows.

Example 24-5 Configuring windowLength in the Buffering Output Adapter

...
 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="windowLength" value="0"/>
 </wlevs:adapter>
...

For more information, see Section 24.2.2.2.1, "Buffering Output Adapter EPN Assembly File Configuration".

	
Optionally, configure the component configuration file to include the Oracle Event Processing high availability buffering output adapter as Example 24-6 shows.

Example 24-6 Simple Failover Component Configuration File With High Availability Adapters

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>

 <ha:ha-buffering-adapter >
 <name>myHaSlidingWindowAdapter</name>
 <window-length>0</window-length>
 </ha:ha-buffering-adapter >

</wlevs:config>

For more information, see:

	
Section 24.2.2.2.2, "Buffering Output Adapter Component Configuration File Configuration"

	
Deploy your application to the deployment group you created in step 1.

For more information, see Section 23.5, "Deploying Oracle Event Processing Applications".

Oracle Event Processing automatically selects one of the Oracle Event Processing servers as the primary.

24.2.1.2 How to Configure Simple Failover With Buffering

You configure simple failover using the Oracle Event Processing buffering output adapter with a sliding window size greater than zero (0).

This procedure starts with the example EPN that Figure 24-10 shows and adds the required components to configure it for simple failover with buffering. Example 24-7 shows the corresponding EPN assembly file and Example 24-8 shows the corresponding component configuration file.

For more information about this Oracle Event Processing high availability quality of service, see Section 24.1.2.2, "Simple Failover with Buffering".

Figure 24-10 Simple Failover With Buffering EPN

[image: Description of Figure 24-10 follows]

Example 24-7 Simple Failover With Buffering EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel"
 event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

</beans>

Example 24-8 Simple Failover With Buffering Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>
</wlevs:config>

To configure simple failover with buffering:

	
Create a multi-server domain using Oracle Coherence.

For more information, see:

	
"How to Create an Oracle Event Processing Multi-Server Domain With Default Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
"How to Create an Oracle Event Processing Multi-Server Domain With Custom Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Create an Oracle Event Processing application.

For more information, see Section 5.2, "Creating Oracle Event Processing Projects".

	
Edit the MANIFEST.MF file to add the following Import-Package entries:

	
com.bea.wlevs.ede.api.cluster

	
com.oracle.cep.cluster.hagroups

	
com.oracle.cep.cluster.ha.adapter

	
com.oracle.cep.cluster.ha.api

For more information, see Section 5.7.2, "How to Add an OSGi Bundle to an Oracle Event Processing Project".

	
Configure your Oracle Event Processing application EPN assembly file to add an Oracle Event Processing high availability buffering output adapter as Example 24-3 shows.

	
Add a wlevs:adapter element with provider set to ha-buffering after channel helloworldOutputChannel.

	
Update the wlevs:listener element in channel helloworldOutputChannel to reference the ha-buffering adapter by its id.

	
Add a wlevs:listener element to the ha-buffering adapter that references the HelloWorldBean class.

Example 24-9 Simple Failover EPN Assembly File: Buffering Output Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
 advertise="true">
 <wlevs:listener ref="myHaSlidingWindowAdapter"/>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 </wlevs:adapter>

</beans>

	
Optionally, configure the channel downstream from the input adapter (helloworldInputChannel) to configure an application timestamp based on an appropriate event property as Example 24-10 shows.

For simple failover with buffering, you can use system timestamps because events are not correlated between servers. However, it is possible that slightly different results might be output from the buffer if application timestamps are not used.

In this example, event property arrivalTime is used.

The wlevs:expression should be set to this event property.

Example 24-10 Application Timestamp Configuration

...
 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>arrivalTime</wlevs:expression>
 </wlevs:application-timestamped>
 </wlevs:channel>
...

	
Configure the Oracle Event Processing high availability buffering output adapter.

Set the instance property windowLength to a value greater than zero (0) as Example 24-11 shows.

Example 24-11 Configuring windowLength in the Buffering Output Adapter

...
 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-buffering" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="windowLength" value="15000"/>
 </wlevs:adapter>
...

For more information, see Section 24.2.2.2.1, "Buffering Output Adapter EPN Assembly File Configuration".

	
Optionally, configure the component configuration file to include the Oracle Event Processing high availability buffering output adapter as Example 24-12 shows.

Example 24-12 Simple Failover With Buffering Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>

 <ha:ha-buffering-adapter >
 <name>myHaSlidingWindowAdapter</name>
 <window-length>15000</window-length>
 </ha:ha-buffering-adapter >

</wlevs:config>

For more information, see:

	
Section 24.2.2.2.2, "Buffering Output Adapter Component Configuration File Configuration"

	
If your application is an Oracle Event Processing high availability Type 1 application (the application must generate exactly the same sequence of output events as existing secondaries), configure the warm-up-window-length for the buffering output adapter.

For more information, see:

	
Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time"

	
Section 24.2.2.2.2, "Buffering Output Adapter Component Configuration File Configuration"

	
Deploy your application to the deployment group you created in step 1.

For more information, see Section 23.5, "Deploying Oracle Event Processing Applications".

Oracle Event Processing automatically selects one of the Oracle Event Processing servers as the primary.

24.2.1.3 How to Configure Light-Weight Queue Trimming

You configure light-weight queue trimming using the Oracle Event Processing high availability input adapter and the broadcast output adapter.

This procedure starts with the example EPN that Figure 24-11 shows and adds the required components to configure it for light-weight queue trimming. Example 24-13 shows the corresponding EPN assembly file and Example 24-14 shows the corresponding component configuration file.

For more information about this Oracle Event Processing high availability quality of service, see Section 24.1.2.3, "Light-Weight Queue Trimming".

Figure 24-11 Light-Weight Queue Trimming EPN

[image: Description of Figure 24-11 follows]

Example 24-13 Light-Weight Queue Trimming EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
 advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

</beans>

Example 24-14 Light-Weight Queue Trimming Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>
</wlevs:config>

To configure light-weight queue trimming:

	
Create a multi-server domain using Oracle Coherence.

For more information, see:

	
"How to Create an Oracle Event Processing Multi-Server Domain With Default Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
"How to Create an Oracle Event Processing Multi-Server Domain With Custom Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Create an Oracle Event Processing application.

For more information, see Section 5.2, "Creating Oracle Event Processing Projects".

	
Edit the MANIFEST.MF file to add the following Import-Package entries:

	
com.bea.wlevs.ede.api.cluster

	
com.oracle.cep.cluster.hagroups

	
com.oracle.cep.cluster.ha.adapter

	
com.oracle.cep.cluster.ha.api

For more information, see Section 5.7.2, "How to Add an OSGi Bundle to an Oracle Event Processing Project".

	
Configure your Oracle Event Processing application EPN assembly file to add an Oracle Event Processing high availability input adapter as Example 24-15 shows:

	
Add a wlevs:adapter element with provider set to ha-inbound after the regular input adapter helloworldAdapter.

	
Add a wlevs:listener element to the regular input adapter helloworldAdapter that references the ha-inbound adapter by its id.

	
Add a wlevs:source element to the helloworldInputChannel that references the ha-inbound adapter by its id.

Example 24-15 Light-Weight Queue Trimming EPN Assembly File: High Availability Input Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 <wlevs:listener ref="myHaInputAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
 advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

</beans>

	
Configure your Oracle Event Processing application EPN assembly file to add an Oracle Event Processing high availability broadcast output adapter as Example 24-16 shows.

	
Add a wlevs:adapter element with provider set to ha-broadcast after channel helloworldOutputChannel.

	
Update the wlevs:listener element in channel helloworldOutputChannel to reference the ha-broadcast adapter by its id.

	
Add a wlevs:listener element to the ha-broadcast adapter that references the HelloWorldBean class.

Example 24-16 Light-Weight Queue Trimming EPN Assembly File: Broadcast Output Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message" value="HelloWorld - the current time is:"/>
 <wlevs:listener ref="myHaInputAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="helloworldProcessor" />

 <wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEvent"
 advertise="true">
 <wlevs:listener ref="myHaBroadcastAdapter"/>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

 <wlevs:adapter id="myHaBroadcastAdapter" provider="ha-broadcast" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 </wlevs:adapter>

</beans>

	
Configure the Oracle Event Processing high availability input adapter.

Consider the following example configurations:

	
Example 24-17, "High Availability Input Adapter: Default Configuration"

	
Example 24-18, "High Availability Input Adapter: Tuple Events"

	
Example 24-19, "High Availability Input Adapter: Key of One Event Property"

	
Example 24-20, "High Availability Input Adapter: Key of Multiple Event Properties"

For more information, see Section 24.2.2.1.1, "High Availability Input Adapter EPN Assembly File Configuration".

Example 24-17 High Availability Input Adapter: Default Configuration

This example shows a high availability input adapter configuration using all defaults. The mandatory key is based on all event properties and the event property that the high availability input adapter assigns a time value to is an event property named arrivalTime.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 </wlevs:adapter>
...

Example 24-18 High Availability Input Adapter: Tuple Events

This example shows a high availability input adapter configuration using all defaults. The mandatory key is based on all event properties and the event property that the high availability input adapter assigns a time value to is an event property named arrivalTime. Because the events are tuple-based events, you must specify the event type (MyEventType) using the eventType property.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="eventType" value="MyEventType"/>
 </wlevs:adapter>
...

Example 24-19 High Availability Input Adapter: Key of One Event Property

This example shows a high availability input adapter configuration where the mandatory key is based on one event property (named id) and the event property that the high availability input adapter assigns a time value to is an event property named arrivalTime.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="keyProperties" value="id"/>
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 </wlevs:adapter>
...

Example 24-20 High Availability Input Adapter: Key of Multiple Event Properties

This example shows a high availability input adapter configuration where the mandatory key is based on more than one event property (properties orderID and accountID) and the event property that the high availability input adapter assigns a time value to is an event property named arrivalTime. A compound key Java class (com.acme.MyCompoundKeyClass) is mandatory and its implementation is shown in Example 24-21. The hashCode and equals methods are required. When you specify a keyClass, the keyProperties instance property is ignored: Oracle Event Processing assumes that the compound key is based on all the getter methods in the keyClass.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="keyClass" value="com.acme.MyCompoundKeyClass"/>
 </wlevs:adapter>
...

Example 24-21 MyCompoundKeyClass Implementation

package com.acme;

public class MyCompoundKeyClass {
 private int orderID;
 private int accountID;

 public MyCompoundKeyClass() {}

 public int getOrderID() {
 return orderID;
 }
 public setOrderID(int orderID) {
 this.orderID = orderID;
 }
 public int getAccountID() {
 return accountID;
 }
 public setOrderID(int accountID) {
 this.accountID = accountID;
 }

 public int hashCode() {
 int hash = 1;
 hash = hash * 31 + orderID.hashCode();
 hash = hash * 31 + (accountID == null ? 0 : accountID.hashCode());
 return hash;
 }

 public boolean equals(Object obj) {
 if (obj == this) return true;
 if (obj == null) return false;
 if (!(obj instanceof MyCompoundKeyClass)) return false;
 MyCompoundKeyClass k = (MyCompoundKeyClass) obj;
 return k.accountID == accountID && k.orderID == orderID;
 }
}

	
Configure the channel downstream from the high availability input adapter (helloworldInputChannel) to configure an application timestamp based on the high availability input adapter timeProperty setting as Example 24-22 shows.

The wlevs:expression should be set to the timeProperty value.

Example 24-22 Application Timestamp Configuration

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="keyProperties" value="id"/>
 <wlevs:instance-property name="eventType" value="HelloWorldEvent"/>
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 </wlevs:adapter>

 <wlevs:channel id="helloworldInputChannel" event-type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>arrivalTime</wlevs:expression>
 </wlevs:application-timestamped>
 </wlevs:channel>
...

	
Configure the Oracle Event Processing high availability broadcast output adapter.

Consider the following example configurations:

	
Example 24-23, "Broadcast Output Adapter: Default Configuration"

	
Example 24-24, "Broadcast Output Adapter: Key of One Event Property"

	
Example 24-25, "Broadcast Output Adapter: Key of Multiple Event Properties"

For more information, see Section 24.2.2.3.1, "Broadcast Output Adapter EPN Assembly File Configuration".

Example 24-23 Broadcast Output Adapter: Default Configuration

This example shows a broadcast output adapter configuration using all defaults. The mandatory key is based on all event properties, key values are nonmonotonic (do not increase continually) and total order (unique).

...
 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-broadcast" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 </wlevs:adapter>
...

Example 24-24 Broadcast Output Adapter: Key of One Event Property

This example shows a broadcast output adapter configuration where the mandatory key is based on one event property (named timeProperty), key values are monotonic (they do increase continually) and not total order (not unique).

...
 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-broadcast" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="keyProperties" value="timeProperty"/>
 <wlevs:instance-property name="monotonic" value="true"/>
 <wlevs:instance-property name="totalOrder" value="false"/>
 </wlevs:adapter>
...

Example 24-25 Broadcast Output Adapter: Key of Multiple Event Properties

This example shows a broadcast output adapter configuration where the mandatory key is based on more than one event property (properties timeProperty and accountID), key values are monotonic (they do increase continually) and total order (unique). A compound key Java class (com.acme.MyCompoundKeyClass) is mandatory and its implementation is shown in Example 24-26. The hashCode and equals methods are required. When you specify a keyClass, the keyProperties instance property is ignored: Oracle Event Processing assumes that the compound key is based on all the getter methods in the keyClass.

...
 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-broadcast" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="keyClass" value="com.acme.MyCompoundKeyClass"/>
 <wlevs:instance-property name="monotonic" value="true"/>
 <wlevs:instance-property name="totalOrder" value="true"/>
 </wlevs:adapter>
...

Example 24-26 MyCompoundKeyClass Implementation

package com.acme;

public class MyCompoundKeyClass {
 private int timeProperty;
 private int accountID;

 public MyCompoundKeyClass() {}

 public int getTimeProperty() {
 return orderID;
 }
 public setTimeProperty(int timeProperty) {
 this.timeProperty = timeProperty;
 }
 public int getAccountID() {
 return accountID;
 }
 public setOrderID(int accountID) {
 this.accountID = accountID;
 }

 public int hashCode() {
 int hash = 1;
 hash = hash * 31 + timeProperty.hashCode();
 hash = hash * 31 + (accountID == null ? 0 : accountID.hashCode());
 return hash;
 }

 public boolean equals(Object obj) {
 if (obj == this) return true;
 if (obj == null) return false;
 if (!(obj instanceof MyCompoundKeyClass)) return false;
 MyCompoundKeyClass k = (MyCompoundKeyClass) obj;
 return k.accountID == accountID && k.orderID == orderID;
 }
}

	
Optionally, configure the component configuration file to include the Oracle Event Processing high availability input adapter and buffering output adapter as Example 24-27 shows.

Example 24-27 Light-Weight Queue Trimming Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from helloworldInputChannel [Now]]]>
 </query>
 </rules>
 </processor>

 <ha:ha-inbound-adapter>
 <name>myHaInputAdapter</name>
 </ha:ha-inbound-adapter>

 <ha:ha-broadcast-adapter>
 <name>myHaBroadcastAdapter</name>
 <trimming-interval units="events">10</trimming-interval>
 </ha:ha-broadcast-adapter>

</wlevs:config>

For more information, see:

	
Section 24.2.2.1.2, "High Availability Input Adapter Component Configuration File Configuration"

	
Section 24.2.2.3.2, "Broadcast Output Adapter Component Configuration File Configuration"

	
If your application is an Oracle Event Processing high availability Type 1 application (the application must generate exactly the same sequence of output events as existing secondaries), configure the warm-up-window-length for the broadcast output adapter.

For more information, see:

	
Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time"

	
Section 24.2.2.3.2, "Broadcast Output Adapter Component Configuration File Configuration"

	
Deploy your application to the deployment group you created in step 1.

For more information, see Section 23.5, "Deploying Oracle Event Processing Applications".

Oracle Event Processing automatically selects one of the Oracle Event Processing servers as the primary.

24.2.1.4 How to Configure Precise Recovery With JMS

You configure precise recovery with JMS using the Oracle Event Processing high availability input adapter and correlating output adapter.

This procedure describes how to create the example EPN that Figure 24-12 shows. Example 24-28 shows the corresponding EPN assembly file and Example 24-29 shows the corresponding component configuration file.

For more information about this Oracle Event Processing high availability quality of service, see Section 24.1.2.4, "Precise Recovery with JMS".

	
Note:

The JMS destination used by JMS adapters for precise recovery must be topics, rather than queues.

Figure 24-12 Precise Recovery With JMS EPN

[image: Description of Figure 24-12 follows]

Example 24-28 Precise Recovery With JMS EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="StockTick">
 <wlevs:properties>
 <wlevs:property name="lastPrice" type="double" />
 <wlevs:property name="symbol" type="char" />
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">
 <wlevs:listener ref="myHaInputAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="keyProperties" value="sequenceNo"/>
 <wlevs:instance-property name="timeProperty" value="inboundTime"/>
 </wlevs:adapter>

 <wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor1" />
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>inboundTime</wlevs:expression>
 </wlevs:application-timestamped>
 </wlevs:channel>

 <wlevs:processor id="processor1">
 <wlevs:listener ref="channel2" />
 </wlevs:processor>

 <wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
 <wlevs:instance-property name="correlatedSource" ref="clusterCorrelatingOutstream"/>
 <wlevs:instance-property name="failOverDelay" value="2000"/>
 <wlevs:listener ref="JMSOutboundAdapter"/>
 </wlevs:adapter>

 <wlevs:channel id="channel2" event-type="StockTick">
 <wlevs:listener ref="myHaCorrelatingAdapter" />
 </wlevs:channel>

 <wlevs:adapter id="JMSOutboundAdapter" provider="jms-outbound">
 </wlevs:adapter>

 <wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound">
 </wlevs:adapter>

 <wlevs:channel id="clusterCorrelatingOutstream" event-type="StockTick" advertise="true">
 <wlevs:source ref="JMSInboundAdapter2"/>
 </wlevs:channel>
</beans>

Example 24-29 Precise Recovery With JMS Component Configuration Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 <processor>
 <name>processor1</name>
 <rules>
 <query id="helloworldRule">
 <![CDATA[select * from channel1 [Now]]]>
 </query>
 </rules>
 </processor>
</wlevs:config>

To configure precise recovery with JMS:

	
Create a multi-server domain using Oracle Coherence.

For more information, see:

	
"How to Create an Oracle Event Processing Multi-Server Domain With Default Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
"How to Create an Oracle Event Processing Multi-Server Domain With Custom Groups Using Oracle Coherence" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
Create an Oracle Event Processing application.

For more information, see Section 5.2, "Creating Oracle Event Processing Projects".

	
Edit the MANIFEST.MF file to add the following Import-Package entries:

	
com.bea.wlevs.ede.api.cluster

	
com.oracle.cep.cluster.hagroups

	
com.oracle.cep.cluster.ha.adapter

	
com.oracle.cep.cluster.ha.api

For more information, see Section 5.7.2, "How to Add an OSGi Bundle to an Oracle Event Processing Project".

	
Configure your Oracle Event Processing application EPN assembly file to add an Oracle Event Processing high availability input adapter as Example 24-30 shows:

	
Add a wlevs:adapter element with provider set to ha-inbound after the regular input adapter JMSInboundAdapter.

	
Add a wlevs:listener element to the regular input adapter JMSInboundAdapter that references the ha-inbound adapter by its id.

	
Add a wlevs:source element to the channel channel1 that references the ha-inbound adapter by its id.

Example 24-30 Precise Recovery With JMS EPN Assembly File: High Availability Input Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="StockTick">
 <wlevs:properties>
 <wlevs:property name="lastPrice" type="double" />
 <wlevs:property name="symbol" type="char" />
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">
 <wlevs:listener ref="myHaInputAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 </wlevs:adapter>

 <wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor1" />
 <wlevs:source ref="myHaInputAdapter"/>
 </wlevs:channel>

...

</beans>

	
Configure your Oracle Event Processing application EPN assembly file to add an Oracle Event Processing high availability correlating output adapter as Example 24-31 shows.

	
Add a wlevs:adapter element with provider set to ha-correlating after channel channel2.

	
Update the wlevs:listener element in channel channel2 to reference the ha-correlating adapter by its id.

	
Add a wlevs:listener element to the ha-correlating adapter that references the regular output adapter JMSOutboundAdapter.

Example 24-31 Precise Recovery With JMS EPN Assembly File: Correlating Output Adapter

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="StockTick">
 <wlevs:properties>
 <wlevs:property name="lastPrice" type="double" />
 <wlevs:property name="symbol" type="char" />
 </wlevs:properties>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">
 <wlevs:listener ref="myHaInputAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 </wlevs:adapter>

 <wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor1" />
 <wlevs:source ref="myHaInputAdapter"/>
 </wlevs:channel>

 <wlevs:processor id="processor1">
 <wlevs:listener ref="channel2" />
 </wlevs:processor>

 <wlevs:channel id="channel2" event-type="StockTick">
 <wlevs:listener ref="myHaCorrelatingAdapter" />
 </wlevs:channel>

 <wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
 <wlevs:listener ref="JMSOutboundAdapter"/>
 </wlevs:adapter>

 <wlevs:adapter id="JMSOutboundAdapter" provider="jms-outbound">
 </wlevs:adapter>

...

</beans>

	
Configure the Oracle Event Processing high availability input adapter.

Consider the following example configurations:

	
Example 24-32, "High Availability Input Adapter: Default Configuration"

	
Example 24-33, "High Availability Input Adapter: Tuple Events"

	
Example 24-34, "High Availability Input Adapter: Key of One Event Property"

	
Example 24-35, "High Availability Input Adapter: Key of Multiple Event Properties"

For more information, see Section 24.2.2.1.1, "High Availability Input Adapter EPN Assembly File Configuration".

Example 24-32 High Availability Input Adapter: Default Configuration

This example shows a high availability input adapter configuration using all defaults. The mandatory key is based on all event properties and the event property that the high availability input adapter assigns a time value to is an event property named arrivalTime.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 </wlevs:adapter>
...

Example 24-33 High Availability Input Adapter: Tuple Events

This example shows a high availability input adapter configuration using all defaults. The mandatory key is based on all event properties and the event property that the high availability input adapter assigns a time value to is an event property named arrivalTime. Because the events are tuple-based events, you must specify the event type (MyEventType) using the eventType property.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="eventType" value="MyEventType"/>
 </wlevs:adapter>
...

Example 24-34 High Availability Input Adapter: Key of One Event Property

This example shows a high availability input adapter configuration where the mandatory key is based on one event property (named sequenceNo) and the event property that the high availability input adapter assigns a time value to is an event property named inboundTime.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="keyProperties" value="sequenceNo"/>
 <wlevs:instance-property name="timeProperty" value="inboundTime"/>
 </wlevs:adapter>
...

Example 24-35 High Availability Input Adapter: Key of Multiple Event Properties

This example shows a high availability input adapter configuration where the mandatory key is based on more than one event property (properties orderID and accountID) and the event property that the high availability input adapter assigns a time value to is an event property named arrivalTime. A compound key Java class (com.acme.MyCompoundKeyClass) is mandatory and its implementation is shown in Example 24-36. The hashCode and equals methods are required. When you specify a keyClass, the keyProperties instance property is ignored: Oracle Event Processing assumes that the compound key is based on all the getter methods in the keyClass.

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="keyClass" value="com.acme.MyCompoundKeyClass"/>
 </wlevs:adapter>
...

Example 24-36 MyCompoundKeyClass Implementation

package com.acme;

public class MyCompoundKeyClass {
 private int orderID;
 private int accountID;

 public MyCompoundKeyClass() {}

 public int getOrderID() {
 return orderID;
 }
 public setOrderID(int orderID) {
 this.orderID = orderID;
 }
 public int getAccountID() {
 return accountID;
 }
 public setOrderID(int accountID) {
 this.accountID = accountID;
 }

 public int hashCode() {
 int hash = 1;
 hash = hash * 31 + orderID.hashCode();
 hash = hash * 31 + (accountID == null ? 0 : accountID.hashCode());
 return hash;
 }

 public boolean equals(Object obj) {
 if (obj == this) return true;
 if (obj == null) return false;
 if (!(obj instanceof MyCompoundKeyClass)) return false;
 MyCompoundKeyClass k = (MyCompoundKeyClass) obj;
 return k.accountID == accountID && k.orderID == orderID;
 }
}

	
Configure the channel downstream from the high availability input adapter (channel1) to configure an application timestamp based on the high availability input adapter timeProperty setting as Example 24-37 shows.

The wlevs:expression should be set to the timeProperty value.

Example 24-37 Application Timestamp Configuration

...
 <wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="eventType" value="HelloWorldEvent"/>
 <wlevs:instance-property name="keyProperties" value="sequenceNo"/>
 <wlevs:instance-property name="timeProperty" value="inboundTime"/>
 </wlevs:adapter>

 <wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor1" />
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>inboundTime</wlevs:expression>
 </wlevs:application-timestamped>
 </wlevs:channel>
...

	
Configure the Oracle Event Processing high availability correlating output adapter failOverDelay.

Example 24-38 shows a correlating output adapter configuration where the failOverDelay is 2000 milliseconds.

Example 24-38 Correlating Output Adapter Configuration: failOverDelay

...
 <wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
 <wlevs:listener ref="JMSOutboundAdapter"/>
 <wlevs:instance-property name="failOverDelay" value="2000"/>
 </wlevs:adapter>
...

For more information, see Section 24.2.2.4.1, "Correlating Output Adapter EPN Assembly File Configuration".

	
Create a second regular JMS input adapter.

Example 24-39 shows a JMS adapter named JMSInboundAdapter2.

Example 24-39 Inbound JMS Adapter Assembly File

...
 <wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound">
 </wlevs:adapter>
...

This JMS input adapter must be configured identically to the first JMS input adapter (in this example, JMSInboundAdapter). Example 24-40 shows the component configuration file for both the JMS input adapters. Note that both have exactly the same configuration, including the same provider.

Example 24-40 Inbound JMS Adapter Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 ...
 <jms-adapter>
 <name>JMSInboundAdapter</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 </jms-adapter>

 <jms-adapter>
 <name>JMSInboundAdapter2</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 </jms-adapter>
 ...
</wlevs:config>

	
Create a channel to function as the correlated source.

You must configure this channel with the second regular JMS input adapter as its source.

Example 24-41 shows a correlated source named clusterCorrelatingOutstream whose source is JMSInboundAdapter2.

Example 24-41 Creating the Correlated Source

...
 <wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound">
 </wlevs:adapter>

 <wlevs:channel id="clusterCorrelatingOutstream" event-type="StockTick" advertise="true">
 <wlevs:source ref="JMSInboundAdapter2"/>
 </wlevs:channel>

	
Configure the Oracle Event Processing high availability correlating output adapter with the correlatedSource.

Example 24-38 shows a correlating output adapter configuration where the correlatedSource is clusterCorrelatingOutstream.

Example 24-42 Correlating Output Adapter: correlatedSource

...
 <wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-correlating" >
 <wlevs:listener ref="JMSOutboundAdapter"/>
 <wlevs:instance-property name="failOverDelay" value="2000"/>
 <wlevs:instance-property name="correlatedSource" value="clusterCorrelatingOutstream"/>
 </wlevs:adapter>
...

For more information, see Section 24.2.2.4.1, "Correlating Output Adapter EPN Assembly File Configuration".

	
If your application is an Oracle Event Processing high availability Type 1 application (the application must generate exactly the same sequence of output events as existing secondaries), configure the warm-up-window-length for the correlating output adapter.

For more information, see:

	
Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time"

	
Section 24.2.2.4.2, "Correlating Output Adapter Component Configuration File Configuration"

	
Configure the component configuration file to enable session-transacted for both inbound JMS adapters and the outbound JMS adapter as Example 24-43 shows:

Example 24-43 Inbound and Outbound JMS Adapter Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 ...
 <jms-adapter>
 <name>JMSInboundAdapter</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>true</session-transacted>
 </jms-adapter>

 <jms-adapter>
 <name>JMSInboundAdapter2</name>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>./Topic1</destination-jndi-name>
 <user>weblogic</user>
 <password>weblogic</password>
 <work-manager>JettyWorkManager</work-manager>
 <concurrent-consumers>1</concurrent-consumers>
 <session-transacted>true</session-transacted>
 </jms-adapter>
 ...
 <jms-adapter>
 <name>JMSOutboundAdapter</name>
 <event-type>JMSEvent</event-type>
 <jndi-provider-url>t3://localhost:7001</jndi-provider-url>
 <destination-jndi-name>Topic1</destination-jndi-name>
 <delivery-mode>nonpersistent</delivery-mode>
 <session-transacted>true</session-transacted>
 </jms-adapter>
 ...
</wlevs:config>

	
Optionally, configure the component configuration file to include the Oracle Event Processing high availability input adapter and correlating output adapter as Example 24-27 shows.

Example 24-44 High Availability Input and Output Adapter Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 xmlns:ha="http://www.oracle.com/ns/cep/config/cluster">
 ...
 <ha:ha-inbound-adapter>
 <name>myHaInputAdapter</name>
 </ha:ha-inbound-adapter>
 ...
 <ha:ha-correlating-adapter>
 <name>myHaBroadcastAdapter</name>
 <fail-over-delay>2000</fail-over-delay>
 </ha:ha-correlating-adapter>
 ...
</wlevs:config>

For more information, see:

	
Section 24.2.2.1.2, "High Availability Input Adapter Component Configuration File Configuration"

	
Section 24.2.2.4.2, "Correlating Output Adapter Component Configuration File Configuration"

	
Optionally, add an ActiveActiveGroupBean to your EPN to improve scalability.

For more information, see Section 25.2.2, "Configuring Scalability With the ActiveActiveGroupBean".

	
Deploy your application to the deployment group you created in step 1.

For more information, see Section 23.5, "Deploying Oracle Event Processing Applications".

Oracle Event Processing automatically selects one of the Oracle Event Processing servers as the primary.

24.2.2 Configuring High Availability Adapters

You configure Oracle Event Processing high availability adapters in the EPN assembly file and component configuration files, similar to how you configure other components in the EPN, such as channels or processors. For general information about these configuration files, see:

	
Section 1.4.1, "Overview of EPN Assembly Files"

	
Section 1.4.2, "Overview of Component Configuration Files"

	
Note:

After making any Oracle Event Processing high availability configuration changes, you must redeploy your Oracle Event Processing application. See Section 23.5, "Deploying Oracle Event Processing Applications".

This section describes the configurable options for each of the Oracle Event Processing high availability adapters, including:

	
Section 24.2.2.1, "How to Configure the High Availability Input Adapter"

	
Section 24.2.2.2, "How to Configure the Buffering Output Adapter"

	
Section 24.2.2.3, "How to Configure the Broadcast Output Adapter"

	
Section 24.2.2.4, "How to Configure the Correlating Output Adapter"

24.2.2.1 How to Configure the High Availability Input Adapter

The Oracle Event Processing high availability broadcast input adapter is implemented by BroadcastInputAdapter.

This section describes how to configure the Oracle Event Processing high availability input adapter, including:

	
Section 24.2.2.1.1, "High Availability Input Adapter EPN Assembly File Configuration"

	
Section 24.2.2.1.2, "High Availability Input Adapter Component Configuration File Configuration"

For more information, see Section 24.1.1.3.1, "High Availability Input Adapter".

24.2.2.1.1 High Availability Input Adapter EPN Assembly File Configuration

The root element for declaring an Oracle Event Processing high availability input adapter is wlevs:adapter with provider element set to ha-inbound as Example 24-45 shows. You specify a wlevs:listener element for the Oracle Event Processing high availability input adapter in the actual input adapter as Example 24-45 shows.

Example 24-45 High Availability Input Adapter EPN Assembly File

<wlevs:adapter id="jmsAdapter" provider="jms-inbound"
 <wlevs:listener ref="myHaInputAdapter"/>
</wlevs:adapter>

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound">
 <wlevs:instance-property name="keyProperties" value="id"/>
 <wlevs:instance-property name="timeProperty" value="arrivalTime"/>
 <wlevs:instance-property name="eventType" value="MyEventType"/>
</wlevs:adapter>

<wlevs:channel id="inputChannel" event-type="MyEventType ">
 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>arrivalTime</wlevs:expression>
 </wlevs:application-timestamped>
</wlevs:channel>

Table 24-3 describes the additional child elements of wlevs:adapter you can configure for an Oracle Event Processing high availability input adapter.

Table 24-3 Child Elements of wlevs:adapter for the High Availability Input Adapter

	Child Element	Description
	
wlevs:instance-property

	
Specify one or more instance-property element name and value attributes as Table 24-4 describes.

Table 24-4 lists the instance properties that the Oracle Event Processing high availability input adapter supports.

Table 24-4 High Availability Input Adapter Instance Properties

	Name	Value
	
timeProperty

	
Specify the name of the event property to which the high availability input adapter assigns a time value.

This is the same property that you use in the wlevs:application-timestamped element of the downstream EPN component to which the high availability input adapter is connected as Example 24-45 shows.

	
keyProperties

	
Specify a space delimited list of one or more event properties that the Oracle Event Processing high availability input adapter uses to identify event instances.

If you specify more than one event property, you must specify a keyClass.

Default: all event properties.

	
keyClass

	
Specify the fully qualified class name of a Java class used as a compound key.

By default, all JavaBean properties in the keyClass are assumed to be keyProperties, unless the keyProperties setting is used.

	
eventType

	
Specify the type name of the events that the Oracle Event Processing high availability input adapter receives from the actual input adapter. This is the same event type that you use in the downstream EPN component to which the high availability input adapter is connected as Example 24-45 shows.

For tuple events, this property is mandatory.

For all other Java class-based event types, this property is optional.

For more information, see Section 9.1, "Overview of Oracle Event Processing Event Types".

24.2.2.1.2 High Availability Input Adapter Component Configuration File Configuration

The root element for configuring an Oracle Event Processing high availability input adapter is ha-inbound-adapter. The name child element for a particular adapter must match the id attribute of the corresponding wlevs:adapter element in the EPN assembly file that declares this adapter as Example 24-50 shows.

Example 24-46 High Availability Input Adapter Component Configuration File

<ha:ha-inbound-adapter>
 <name>myHaInputAdapter</name>
 <heartbeat units="millis">1000</heartbeat>
 <batch-size>10</batch-size>
</ha:ha-inbound-adapter>

Table 24-5 describes the additional child elements of ha-inbound-adapter you can configure for an Oracle Event Processing high availability input adapter.

Table 24-5 Child Elements of ha-inbound-adapter for the High Availability Input Adapter

	Child Element	Description
	
heartbeat

	
Specify the length of time that the Oracle Event Processing high availability input adapter can be idle before it generates a heartbeat event to advance time as an integer number of units.

Valid values for attribute units:

	
nanos: wait the specified number of nanoseconds.

	
millis: wait the specified number of milliseconds.

	
secs: wait the specified number of seconds.

Default: Heartbeats are not sent.

	
batch-size

	
Specify the number of events in each timing message that the primary broadcasts to its secondaries. A value of n means that n {key, time} pairs are sent in each message. You can use this property for performance tuning (see Section 27.2.3, "High Availability Input Adapter Configuration"

Default: 1 (disable batching).

24.2.2.2 How to Configure the Buffering Output Adapter

The Oracle Event Processing high availability buffering output adapter is implemented by SlidingWindowQueueTrimmingAdapter.

This section describes how to configure the Oracle Event Processing high availability buffering output adapter, including:

	
Section 24.2.2.2.1, "Buffering Output Adapter EPN Assembly File Configuration"

	
Section 24.2.2.2.2, "Buffering Output Adapter Component Configuration File Configuration"

For more information, see Section 24.1.1.3.2, "Buffering Output Adapter".

24.2.2.2.1 Buffering Output Adapter EPN Assembly File Configuration

The root element for declaring an Oracle Event Processing high availability buffering output adapter is wlevs:adapter with provider element set to ha-buffering as Example 24-47 shows.

Example 24-47 Buffering Output Adapter EPN Assembly File

<wlevs:adapter id="mySlidingWindowingAdapter" provider ="ha-buffering">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.cluster.ClusterAdapterBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="windowLength" value="15000"/>
</wlevs:adapter>

Table 24-6 describes the additional child elements of wlevs:adapter you can configure for an Oracle Event Processing high availability buffering output adapter.

Table 24-6 Child Elements of wlevs:adapter for the Buffering Output Adapter

	Child Element	Description
	
wlevs:listener

	
Specify the regular output adapter downstream from this Oracle Event Processing high availability buffering output adapter.

	
wlevs:instance-property

	
Specify one or more instance-property element name and value attributes as Table 24-7 describes.

Table 24-7 lists the instance properties that the Oracle Event Processing high availability broadcast output adapter supports.

Table 24-7 Buffering Output Adapter Instance Properties

	Name	Value
	
windowLength

	
Specify the size of the sliding window as an integer number of milliseconds.

Default: 15000.

24.2.2.2.2 Buffering Output Adapter Component Configuration File Configuration

The root element for configuring an Oracle Event Processing high availability buffering output adapter is ha-buffering-adapter. The name child element for a particular adapter must match the id attribute of the corresponding wlevs:adapter element in the EPN assembly file that declares this adapter as Example 24-48 shows.

Example 24-48 Buffering Output Adapter Component Configuration File

<ha:ha-buffering-adapter >
 <name>mySlidingWindowingAdapter</name>
 <window-length>15000</window-length>
 <warm-up-window-length units="minutes">6</warm-up-window-length>
</ha:ha-buffering-adapter >

Table 24-8 describes the additional child elements of ha-buffering-adapter you can configure for an Oracle Event Processing high availability buffering output adapter.

Table 24-8 Child Elements of ha-buffering-adapter for the Buffering Output Adapter

	Child Element	Description
	
window-length

	
Specify the size of the sliding window as an integer number of milliseconds.

Default: 15000.

	
warm-up-window-length

	
Specify the length of time it takes the application to rebuild state after a previously failed secondary restarts or a new secondary is added as an integer number of units.

Valid values for attribute units:

	
seconds: wait the specified number of seconds.

	
minutes: wait the specified number of minutes.

Default: units is seconds.

For more information, see Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time".

24.2.2.3 How to Configure the Broadcast Output Adapter

The Oracle Event Processing high availability broadcast output adapter is implemented by class GroupBroadcastQueueTrimmingAdapter.

This section describes how to configure the Oracle Event Processing high availability broadcast output adapter, including:

	
Section 24.2.2.3.1, "Broadcast Output Adapter EPN Assembly File Configuration"

	
Section 24.2.2.3.2, "Broadcast Output Adapter Component Configuration File Configuration"

For more information, see Section 24.1.1.3.3, "Broadcast Output Adapter".

24.2.2.3.1 Broadcast Output Adapter EPN Assembly File Configuration

The root element for declaring an Oracle Event Processing high availability broadcast output adapter is wlevs:adapter with provider element set to ha-broadcast as Example 24-49 shows.

Example 24-49 Broadcast Output Adapter EPN Assembly File

<wlevs:adapter id="myBroadcastAdapter" provider="ha-broadcast">
 <wlevs:listener ref="actualAdapter"/>
 <wlevs:instance-property name="keyProperties" value="time"/>
 <wlevs:instance-property name="monotonic" value="true"/>
</wlevs:adapter>

Table 24-9 describes the additional child elements of wlevs:adapter you can configure for an Oracle Event Processing high availability broadcast output adapter.

Table 24-9 Child Elements of wlevs:adapter for the Broadcast Output Adapter

	Child Element	Description
	
wlevs:listener

	
Specify the regular output adapter downstream from this Oracle Event Processing high availability broadcast output adapter.

	
wlevs:instance-property

	
Specify one or more instance-property element name and value attributes as Table 24-10 describes.

Table 24-10 lists the instance properties that the Oracle Event Processing high availability broadcast output adapter supports.

Table 24-10 Broadcast Output Adapter Instance Properties

	Name	Value
	
keyProperties

	
Specify a space delimited list of one or more event properties that the Oracle Event Processing high availability broadcast output adapter uses to identify event instances.

If you specify more than one event property, you must specify a keyClass.

Default: all event properties.

	
keyClass

	
Specify the fully qualified class name of a Java class used as a compound key.

By default, all JavaBean properties in the keyClass are assumed to be keyProperties, unless the keyProperties setting is used.

A compound key may be monotonic and may be totalOrder.

	
monotonic

	
Specify whether or not the key value is constantly increasing (like a time value).

Valid values are:

	
true: the key is constantly increasing.

	
false: the key is not constantly increasing.

Default: false.

	
totalOrder

	
Specify whether or not event keys are unique. Applicable only when instance property monotonic is set to true.

Valid values are:

	
true: event keys are unique.

	
false: event keys are not unique.

Default: true.

24.2.2.3.2 Broadcast Output Adapter Component Configuration File Configuration

The root element for configuring an Oracle Event Processing high availability broadcast output adapter is ha-broadcast-adapter. The name child element for a particular adapter must match the id attribute of the corresponding wlevs:adapter element in the EPN assembly file that declares this adapter as Example 24-50 shows.

Example 24-50 Broadcast Output Adapter Component Configuration File

<ha:ha-broadcast-adapter>
 <name>myBroadcastAdapter</name>
 <trimming-interval units="events">10</trimming-interval>
 <warm-up-window-length units="minutes">6</warm-up-window-length>
</ha:ha-broadcast-adapter>

Table 24-11 describes the additional child elements of ha-broadcast-adapter you can configure for an Oracle Event Processing high availability broadcast output adapter.

Table 24-11 Child Elements of ha-broadcast-adapter for the Broadcast Output Adapter

	Child Element	Description
	
trimming-interval

	
Specify the interval at which trimming messages are broadcast as an integer number of units. You can use this property for performance tuning (see Section 27.2.4, "Broadcast Output Adapter Configuration").

Valid values for attribute units:

	
events: broadcast trimming messages after the specified number of milliseconds.

	
millis: broadcast trimming messages after the specified number of events are processed.

Default: units is events.

	
warm-up-window-length

	
Specify the length of time it takes the application to rebuild state after a previously failed secondary restarts or a new secondary is added as an integer number of units.

Valid values for attribute units:

	
seconds: wait the specified number of seconds.

	
minutes: wait the specified number of minutes.

Default: units is seconds.

For more information, see Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time".

24.2.2.4 How to Configure the Correlating Output Adapter

The Oracle Event Processing high availability correlating output adapter is implemented by class CorrelatedQueueTrimmingAdapter.

This section describes how to configure the Oracle Event Processing high availability correlating output adapter, including:

	
Section 24.2.2.4.1, "Correlating Output Adapter EPN Assembly File Configuration"

	
Section 24.2.2.4.2, "Correlating Output Adapter Component Configuration File Configuration"

For more information, see Section 24.1.1.3.4, "Correlating Output Adapter".

24.2.2.4.1 Correlating Output Adapter EPN Assembly File Configuration

The root element for declaring an Oracle Event Processing high availability correlating output adapter is wlevs:adapter with provider element set to ha-correlating as Example 24-51 shows.

Example 24-51 Correlating Output Adapter EPN Assembly File

<wlevs:adapter id="myCorrelatingAdapter" provider="ha-correlating">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.cluster.ClusterAdapterBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="correlatedSource" ref="clusterCorrOutstream"/>
 <wlevs:instance-property name="failOverDelay" value="2000"/>
</wlevs:adapter>

Table 24-12 describes the additional child elements of wlevs:adapter you can configure for an Oracle Event Processing high availability correlating output adapter.

Table 24-12 Child Elements of wlevs:adapter for the Correlating Output Adapter

	Child Element	Description
	
wlevs:listener

	
Specify the regular output adapter downstream from this Oracle Event Processing high availability buffering output adapter.

	
wlevs:instance-property

	
Specify one or more instance-property element name and value attributes as Table 24-13 describes.

Table 24-13 lists the instance properties that the Oracle Event Processing high availability correlating output adapter supports.

Table 24-13 Correlating Output Adapter Instance Properties

	Name	Value
	
correlatedSource

	
Specify the event source that will be used to correlate against. Events seen from this source will be purged from the trimming queue. Events still in the queue at failover will be replayed.

	
failOverDelay

	
Specify the delay timeout in milliseconds that is used to decide how soon after failover correlation should restart.

Default: 0 ms.

24.2.2.4.2 Correlating Output Adapter Component Configuration File Configuration

The root element for configuring an Oracle Event Processing high availability correlating output adapter is ha-correlating-adapter. The name child element for a particular adapter must match the id attribute of the corresponding wlevs:adapter element in the EPN assembly file that declares this adapter as Example 24-52 shows.

Example 24-52 Correlating Output Adapter Component Configuration File

<ha:ha-correlating-adapter>
 <name>myCorrelatingAdapter</name>
 <window-length>15000</window-length>
 <warm-up-window-length units="minutes">6</warm-up-window-length>
</ha:ha-correlating-adapter>

Table 24-14 describes the additional child elements of ha-broadcast-adapter you can configure for an Oracle Event Processing high availability correlating output adapter.

Table 24-14 Child Elements of ha-correlating-adapter for the Correlating Output Adapter

	Child Element	Description
	
fail-over-delay

	
Specify the delay timeout in milliseconds that is used to decide how soon after failover correlation should restart.

Default: 0 ms.

	
warm-up-window-length

	
Specify the length of time it takes the application to rebuild state after a previously failed secondary restarts or a new secondary is added as an integer number of units.

Valid values for attribute units:

	
seconds: wait the specified number of seconds.

	
minutes: wait the specified number of minutes.

Default: units is seconds.

For more information, see Section 24.1.3.2.5, "Choose an Adequate warm-up-window-length Time".

Part V

Appendices

Part V contains the following appendices:

	
Appendix A, "Additional Information about Spring and OSGi"

	
Appendix B, "Oracle Event Processing Schemas"

	
Appendix C, "Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd"

	
Appendix D, "Schema Reference: Component Configuration wlevs_application_config.xsd"

	
Appendix E, "Schema Reference: Deployment deployment.xsd"

	
Appendix F, "Schema Reference: Server Configuration wlevs_server_config.xsd"

	
Appendix G, "Schema Reference: Message Catalog msgcat.dtd"

	
Appendix H, "Schema Reference: Locale Message Catalog l10n_msgcat.dtd"

	
Appendix I, "Oracle Event Processing Metadata Annotation Reference"

C Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd

This appendix provides a reference to elements of the spring-wlevs-v11_1_1_6.xsd schema, the schema behind assembly XML files with which you declare the components that make up your Oracle Event Processing event processing networks (EPNs).

This appendix includes the following sections:

	
Section C.1, "Overview of the Oracle Event Processing Application Assembly Elements"

	
Section C.2, "wlevs:adapter"

	
Section C.3, "wlevs:application-timestamped"

	
Section C.4, "wlevs:cache"

	
Section C.5, "wlevs:cache-listener"

	
Section C.6, "wlevs:cache-loader"

	
Section C.7, "wlevs:cache-source"

	
Section C.8, "wlevs:cache-store"

	
Section C.9, "wlevs:caching-system"

	
Section C.10, "wlevs:channel"

	
Section C.11, "wlevs:class"

	
Section C.12, "wlevs:event-bean"

	
Section C.13, "wlevs:event-type"

	
Section C.14, "wlevs:event-type-repository"

	
Section C.15, "wlevs:expression"

	
Section C.16, "wlevs:factory"

	
Section C.17, "wlevs:function"

	
Section C.18, "wlevs:instance-property"

	
Section C.19, "wlevs:listener"

	
Section C.20, "wlevs:metadata"

	
Section C.21, "wlevs:processor"

	
Section C.22, "wlevs:properties"

	
Section C.23, "wlevs:property"

	
Section C.24, "wlevs:property"

	
Section C.25, "wlevs:source"

	
Section C.26, "wlevs:table"

	
Section C.27, "wlevs:table-source"

C.1 Overview of the Oracle Event Processing Application Assembly Elements

Oracle Event Processing provides a number of application assembly elements that you use in the EPN assembly file of your application to register event types, declare the components of the event processing network and specify how they are linked together. The EPN assembly file is an extension of the standard Spring context file.

C.1.1 Element Hierarchy

The Oracle Event Processing application assembly elements are organized into the following hierarchy:

beans
 Standard Spring and OSGi elements such as bean, osgi-service, and so on.
 wlevs:event-type-repository
 wlevs:event-type
 wlevs:class
 wlevs:metadata
 wlevs:properties
 wlevs:property
 wlevs:adapter
 wlevs:listener
 wlevs:instance-property
 wlevs:property
 wlevs:processor
 wlevs:listener
 wlevs:source
 wlevs:function
 wlevs:instance-property
 wlevs:property
 wlevs:cache-source
 wlevs:table-source
 wlevs:channel
 wlevs:listener
 wlevs:source
 wlevs:instance-property
 wlevs:property
 wlevs:application-timestamped
 wlevs:expression
 wlevs:event-bean
 wlevs:listener
 wlevs:instance-property
 wlevs:property
 wlevs:factory
 wlevs:cache
 wlevs:caching-system
 wlevs:cache-loader
 wlevs:cache-store
 wlevs:cache-listener
 wlevs:caching-system
 wlevs:instance-property
 wlevs:property
 wlevs:table

C.1.2 Example of an EPN Assembly File That Uses Oracle Event Processing Elements

The following sample EPN assembly file from the HelloWorld application shows how to use many of the Oracle Event Processing elements:

<?xwml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd">
 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>
 <wlevs:adapter id="helloworldAdapter"
 class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
 <wlevs:instance-property name="message"
 value="HelloWorld - the currenttime is:"/>
 </wlevs:adapter>
 <wlevs:processor id="helloworldProcessor" />
 <wlevs:channel id="helloworldInstream" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>
 <wlevs:channel id="helloworldOutstream" advertise="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>
</beans>

C.2 wlevs:adapter

Use this element to declare an adapter component to the Spring application context.

C.2.1 Child Elements

The wlevs:adapter application assembly element supports the following child elements:

	
wlevs:listener

	
wlevs:instance-property

	
wlevs:property

C.2.2 Attributes

Table C-1 lists the attributes of the wlevs:adapter application assembly element.

Table C-1 Attributes of the wlevs:adapter Application Assembly Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this component.

This identifier must correspond to the <name> element in the XML configuration file for this adapter, if one exists.

	
String

	
Yes.

	
advertise

	
Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

	
listeners

	
Specifies the components that listen to this component.

Set this attribute to the value of the id attribute of the element that declared the component.

	
String

	
No.

	
provider

	
Specifies the adapter service provider. Typically the value of this attribute is a reference to the OSGi-registered adapter factory service.

If you are using the csvgen or loadgen utilities to simulate a data feed, use the hard-coded csvgen or loadgen values, respectively, such as:

provider="csvgen"

If you are using one of the built-in HTTP publish-subscribe adapters, then specify the following hard-coded values:

	
For the built-in pub-sub adapter used for publishing, specify the hard-coded httppub value, such as:

provider="httppub"

	
For the built-in pub-sub adapter used for subscribing, specify the hard-coded httpsub value, such as:

provider="httpsub"

If you are using a JMS adapter, then specify one of the following hard-coded values:

	
For the inbound JMS adapter, specify the jms-inbound value, such as:

provider="jms-inbound"

	
For the outbound JMS adapter, specify the jms-outbound value, such as:

provider="jms-outbound"

You must specify either the provider or class attribute, but not both, otherwise an exception is raised.

	
String

	
No.

	
class

	
Specifies the Java class that implements this adapter.

You must specify either the provider or class attribute, but not both, otherwise an exception is raised.

	
String

	
No

	
onevent-method

	
Specifies the method of the adapter implementation that corresponds to the lifecycle onEvent method.

Oracle Event Processing invokes this method when the adapter receives an event.

	
String

	
No

	
init-method

	
Specifies the method of the adapter implementation that corresponds to the lifecycle init method.

Oracle Event Processing invokes this method after it has set all the supplied instance properties. This method allows the adapter instance to perform initialization only possible when all bean properties have been set and to throw an exception in the event of misconfiguration.

	
String

	
No

	
activate-method

	
Specifies the method of the adapter implementation that corresponds to the lifecycle activate method.

Oracle Event Processing invokes this method after the dynamic configuration of the adapter has completed. This method allows the adapter instance to perform initialization only possible when all dynamic bean properties have been set and the EPN has been wired.

	
String

	
No

	
suspend-method

	
Specifies the method of the adapter implementation that corresponds to the lifecycle suspend method.

Oracle Event Processing invokes this method when the application is suspended.

	
String

	
No

	
destroy-method

	
Specifies the method of the adapter implementation that corresponds to the lifecycle destroy method.

Oracle Event Processing invokes this method when the application is stopped.

	
String

	
No

C.2.3 Example

The following example shows how to use the wlevs:adapter element in the EPN assembly file:

<wlevs:adapter id="helloworldAdapter" provider="hellomsgs">
 <wlevs:instance-property name="message"
 value="HelloWorld - the current time is:"/>
</wlevs:adapter>

In the example, the adapter's unique identifier is helloworldAdapter. The provider is an OSGi service, also registered in the EPN assembly file, whose reference is hellomsgs. The adapter has a static property called message, which implies that the adapter Java file has a setMessage method.

C.3 wlevs:application-timestamped

Use this element to specify if an wlevs:channel is application timestamped, that is, if the application is responsible for assigning a timestamp to each event, using any time domain.

Otherwise, wlevs:channel is system timestamped, that is, the Oracle Event Processing server is responsible for assigning a timestamp to each event using System.nanoTime.

C.3.1 Child Elements

The wlevs:application-timestamped application assembly element supports the following child elements.

	
wlevs:expression—Specifies an expression to be used as an application timestamp for event processing.

C.3.2 Attributes

Table C-2 lists the attributes of the wlevs:application-timestamped application assembly element.

Table C-2 Attributes of the wlevs:application-timestamped Application Assembly Element

	Attribute	Description	Data Type	Required?
	
is-total-order

	
Indicates if the application time published is always strictly greater than the last value used.

Valid values are true or false. Default: false.

For more information, see "Time" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

	
Boolean

	
No.

C.3.3 Example

The following example shows how to use the wlevs:application-timestamped element in the EPN assembly file to specify an implicitly application timestamped channel:

<wlevs:channel id="fxMarketAmerOut" >
 <wlevs:application-timestamped>
 </wlevs:application-timestamped>
</wlevs:channel>

In the example, the application handles event timestamps internally.

The following example shows how to use wlevs:application-timestamped element in the EPN assembly file to specify an explicitly application timestamped channel by specifying the wlevs:expression element.

<wlevs:channel id="fxMarketAmerOut" >
 <wlevs:application-timestamped>
 <wlevs:expression>mytime+10</wlevs:expression>
 </wlevs:application-timestamped>
</wlevs:channel>

In the example, the wlevs:expression element defines the arithmetic expression used to assign a timestamp to each event.

C.4 wlevs:cache

Use this element to declare a cache to the Spring application context.

C.4.1 Child Elements

The wlevs:cache application assembly element supports the following child elements.

	
wlevs:caching-system—Specifies the caching system to which this cache belongs.

	
Note:

This child element is different from the wlevs:caching-system element used to declare a caching system. The child element of the wlevs:cache element takes a single attribute, ref, that references the id attribute of a declared caching system.

	
wlevs:cache-loader—Specifies the cache loader for this cache.

	
wlevs:cache-store—Specifies a cache store for this cache.

	
wlevs:cache-listener—Specifies a listener for this cache, or a component to which the cache sends events.

C.4.2 Attributes

Table C-3 lists the attributes of the wlevs:cache application assembly element.

Table C-3 Attributes of the wlevs:cache Application Assembly Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this component.

This identifier must correspond to the <name> element in the XML configuration file for this cache.

	
String

	
Yes.

	
name

	
Specifies an alternate name for this cache. If not specified, then the name of the cache is the same as its id attribute.

	
String

	
No.

	
key-properties

	
Specifies a comma-separated list of names of the properties that together form the unique key value for the objects in the cache, or cache key. A cache key may be composed of a single property or multiple properties. When you configure a cache as a listener in an event processing network, Oracle Event Processing inserts events that reach the cache using the unique key value as a key.

If you specify a key class using the key-class attribute, then this attribute is optional. If you specify neither key-properties nor key-class, then Oracle Event Processing uses the event object itself as both the key and value when it inserts the event object into the cache.

	
String

	
No.

	
key-class

	
Specifies the name of the Java class used for the cache key when the key is a composite key.

If you do not specify the key-properties attribute, then all properties on the key-class are assumed to be key properties. If you specify neither key-properties nor key-class, then Oracle Event Processing uses the event object itself as both the key and value when it inserts the event object into the cache

	
String

	
No.

	
value-type

	
Specifies the type for the values contained in the cache. Must be a valid type name in the event type repository.

This attribute is required only if the cache is referenced in an Oracle CQL or EPL query. This is because the query processor needs to know the type of events in the cache.

	
String

	
No.

	
caching-system

	
Specifies the caching system in which this cache is contained.

The value of this attribute corresponds to the id attribute of the appropriate wlevs:caching-system element.

	
String

	
Yes.

	
advertise

	
Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

C.4.3 Example

The following example shows how to use the wlevs:cache element in the EPN assembly file:

<wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
 <wlevs:cache-listener ref="tradeListener" />
</wlevs:cache>

In the example, the cache's unique identifier is cache-id and its alternate name is alternative-cache-name. The caching system to which the cache belongs has an id of caching-system-id. The cache has a listener to which the cache sends events; the component that listens to it has an id of tradeListener.

C.5 wlevs:cache-listener

Use this element to specify a cache as a source of events to the listening component. The listening component must implement the com.bea.cache.jcache.CacheListener interface.

This element is always a child of wlevs:cache.

C.5.1 Attributes

Table C-4 lists the attributes of the wlevs:cache-listener application assembly element.

Table C-4 Attributes of the wlevs:cache-listener Application Assembly Element

	Attribute	Description	Data Type	Required?
	
ref

	
Specifies the component that listens to this cache.

Set this attribute to the value of the id attribute of the listening component. The listening component can be an adapter or a Spring bean.

	
String

	
No.

C.5.2 Example

The following example shows how to use the wlevs:cache-listener element in the EPN assembly file:

 <wlevs:caching-system id="caching-system-id"/>
 ...
 <wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
 <wlevs:cache-listener ref="cache-listener-id" />
 </wlevs:cache>
 ...
 <bean id="cache-listener-id" class="wlevs.example.MyCacheListener"/>

In the example, the cache-listener-id Spring bean listens to events coming from the cache; the class that implements this component, wlevs.example.MyCacheListener, must implement the com.bea.jcache.CacheListener interface. You must program the wlevs.example.MyCacheListener class yourself.

C.6 wlevs:cache-loader

spring-wlevs-v11_1_1_6.xsdSpecifies the Spring bean that implements an object that loads data into a cache.

This element is always a child of wlevs:cache.

C.6.1 Attributes

Table C-5 lists the attributes of the wlevs:cache-loader application assembly element.

Table C-5 Attributes of the wlevs:cache-loader Application Assembly Element

	Attribute	Description	Data Type	Required?
	
ref

	
Specifies the Spring bean that implements the class that loads data into the cache.

Set this attribute to the value of the id attribute of the Spring bean.

The Spring bean must implement the com.bea.cache.jcache.CacheLoader interface.

	
String

	
Yes.

C.6.2 Example

The following example shows how to use the wlevs:cache-loader element in the EPN assembly file:

 <wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
 <wlevs:cache-loader ref="cache-loader-id" />
 </wlevs:cache>
 ...
 <bean id="cache-loader-id" class="wlevs.example.MyCacheLoader"/>

In the example, the cache-loader-id Spring bean, implemented with the wlevs.example.MyCacheLoader class that in turn implements the com.bea.cache.jcache.CacheLoader interface, is a bean that loads data into a cache. The cache specifies this loader by pointing to it with the ref attribute of the wlevs:cache-loader child element.

C.7 wlevs:cache-source

Specifies a cache that supplies data to this processor component. The processor component in turn is associated with an Oracle CQL or EPL query that directly references the cache.

Use the value-type attribute of the wlevs:cache element to declare the event type of the data supplied by the cache.

This element is a child of only wlevs:processor element.

C.7.1 Attributes

Table C-6 lists the attributes of the wlevs:cache-source application assembly element.

Table C-6 Attributes of the wlevs:cache-source Application Assembly Element

	Attribute	Description	Data Type	Required?
	
ref

	
Specifies the cache that is a source of data for the processor component.

Set this attribute to the value of the id attribute of the cache.

	
String

	
Yes.

C.7.2 Example

The following example shows how to use the wlevs:cache-source element in the EPN assembly file:

<wlevs:caching-system id="caching-system-id"/>
 ...
 <wlevs:cache id="cache-id"
 name="alternative-cache-name"
 value-type="Company">
 <wlevs:caching-system ref="caching-system-id"/>
 </wlevs:cache>
 <wlevs:channel id="stream-id"/>
 <wlevs:processor id="processor-id">
 <wlevs:cache-source ref="cache-id">
 <wlevs:source ref="stream-id">
 </wlevs:processor>

In the example, the processor will have data pushed to it from the stream-id channel as usual; however, the Oracle CQL or EPL queries that execute in the processor can also pull data from the cache-id cache. When the query processor matches an event type in the FROM clause to an event type supplied by a cache, such as Company, the processor pulls instances of that event type from the cache.

C.8 wlevs:cache-store

Specifies the Spring bean that implements a custom store that is responsible for writing data from the cache to a backing store, such as a table in a database.

This element is always a child of wlevs:cache.

C.8.1 Attributes

Table C-7 lists the attributes of the wlevs:cache-store application assembly element.

Table C-7 Attributes of the wlevs:cache-store Application Assembly Element

	Attribute	Description	Data Type	Required?
	
ref

	
Specifies the Spring bean that implements the custom store.

Set this attribute to the value of the id attribute of the Spring bean.

The Spring bean must implement the com.bea.cache.jcache.CacheStore interface.

	
String

	
Yes.

C.8.2 Example

The following example shows how to use the wlevs:cache-store element in the EPN assembly file:

 <wlevs:cache id="cache-id" name="alternative-cache-name">
 <wlevs:caching-system ref="caching-system-id"/>
 <wlevs:cache-store ref="cache-store-id" />
 </wlevs:cache>
 ...
 <bean id="cache-store-id" class="wlevs.example.MyCacheStore"/>

In the example, the cache-store-id Spring bean, implemented with the wlevs.example.MyCacheStore class that in turn implements the com.bea.cache.jcache.CacheStore interface, is a bean for the custom store, such as a database. The cache specifies this store by pointing to it with the ref attribute of the wlevs:cache-store child element.

C.9 wlevs:caching-system

Specifies the caching system used by the application.

C.9.1 Child Elements

The wlevs:caching-system application assembly element supports the following child element:

	
wlevs:instance-property

	
wlevs:property

C.9.2 Attributes

Table C-8 lists the attributes of the wlevs:caching-system application assembly element.

Table C-8 Attributes of the wlevs:caching-system Application Assembly Element

	Attribute	Description	Data Type	Required?
	
id

	
Specifies the unique identifier for this caching system.

This identifier must correspond to the <name> element in the XML configuration file for this caching system

	
String

	
Yes.

	
advertise

	
Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

	
provider

	
Specifies the provider of the caching system if you are using a third-party implementation, such as Oracle Coherence:

<wlevs:caching-system id="myCachingSystem" provider=coherence" />

Typically this attribute corresponds to the provider-name attribute of a <factory> Spring element that specifies the factory class that creates instances of the third-party caching system.

If you do not specify the provider or class attribute, then the default value is the Oracle Event Processing native caching implementation for local single-JVM caches; this implementation uses an in-memory store.

	
String

	
No.

	
class

	
Specifies the Java class that implements this caching system; use this attribute to specify a third-party implementation rather than the Oracle Event Processing native caching implementation.

If you specify this attribute, it is assumed that the third-party implementation code resides inside the Oracle Event Processing application bundle itself. The class file to which this attribute points must implement the com.bea.wlevs.cache.api.CachingSystem interface.

If you do not specify the provider or class attribute, then the default value is the Oracle Event Processing native caching implementation for local single-JVM caches; this implementation uses an in-memory store.

	
String

	
No

C.9.3 Example

The following example shows the simplest use of the wlevs:caching-system element in the EPN assembly file:

 <wlevs:caching-system id="caching-system-id"/>

The following example shows how to specify a third-party implementation that uses a factory as a provider:

 <wlevs:caching-system id ="caching-system-id" provider="caching-provider"/>
 <factory id="factory-id" provider-name="caching-provider">
 <class>the.factory.class.name</class>
 </factory>

In the example, the.factory.class.name is a factory for creating some third-party caching system; the provider attribute of wlevs:caching-system in turn references it as the caching system implementation for the application.

C.10 wlevs:channel

Use this element to declare a channel to the Spring application context.

By default, channels assume that events are system timestamped. To configure application timestamped events, see child element wlevs:application-timestamped.

C.10.1 Child Elements

The wlevs:channel application assembly element supports the following child elements:

	
wlevs:listener

	
wlevs:source

	
wlevs:instance-property

	
wlevs:property

	
wlevs:application-timestamped

C.10.2 Attributes

Table C-9 lists the attributes of the wlevs:channel application assembly element.

Table C-9 Attributes of the wlevs:channel Application Assembly Element

	Attribute	Description	Data Type	Required?
	
advertise

	
Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

	
batching

	
Specifies whether batching of events should be enabled for the event channel.

Valid values are true and false. Default value is false.

For more information, see Section 10.1.6, "Batch Processing Channels".

	
Boolean

	
No.

	
event-type

	
Specifies the type of events that are allowed to pass through the event channel.

	
String

	
Yes.

	
id

	
Unique identifier for this component.

This identifier must correspond to the <name> element in the XML configuration file for this channel, if one exists.

	
String

	
Yes.

	
is-relation

	
Specifies the kind of events that are allowed to pass through the event channel. Two kind of events are supported: streams and relations. Streams are append-only. Relations support insert, delete, and updates.

The default value for this attribute is false.

	
Boolean

	
No.

	
listeners

	
Specifies the components that listen to this component. Separate multiple components using commas.

Set this attribute to the value of the id attribute of the element (wlevs:adapter, wlevs:channel, or wlevs:processor) that defines the listening component.

	
String

	
No.

	
max-size

	
Specifies the maximum size of the FIFO buffer for this channel as max-size number of events.

When max-size = 0, the channel synchronously passes-through events.

When max-size > 0, the channel processes events asynchronously, buffering events by the requested size.

If max-threads is zero, then max-size is zero.

The default value for this attribute is 1024.

	
integer

	
No.

	
max-threads

	
Specifies the maximum number of threads that will be used to process events for this channel.

When max-threads = 0, the channel acts as a pass-through. Event ordering is preserved.

When max-threads > 0, the channel acts as classic blocking queue, where upstream components are producers of events and the downstream components are the consumers of events. The queue size is defined by the configuration max-size. There will be up to max-threads number of threads consuming events from the queue. Event ordering is non-deterministic.

You can change max-threads from 0 to a positive integer (that is, from a pass through to multiple threads) without redeploying. However, if you change max-threads from a positive integer to 0 (that is, from multiple threads to a pass through), then you must redeploy your application.

If the max-size attribute is 0, then setting a value for max-threads has no effect.

The default value for this attribute is 1.

	
integer

	
No.

	
primary-key

	
Specifies the primary key of a relation, as a list of event property names, separated by "," or white-spaces.

For more information, see Section 10.1.2.2, "Channels as Relations".

	
String

	
No.

	
provider

	
Specifies the streaming provider.

Valid values are:

	
oracle.channel

Default value is oracle.channel, which is the out-of-the-box streaming provider.

	
String

	
No.

	
source

	
Specifies the component from which the channel sources events.

Set this attribute to the value of the id attribute of the element (wlevs:adapter, wlevs:channel, or wlevs:processor) that defines the source component.

	
String

	
No.

C.10.3 Example

The following example shows how to use the wlevs:channel element in the EPN assembly file:

<wlevs:channel id="fxMarketAmerOut" />

The example shows how to declare a channel service with unique identifier fxMarketAmerOut.

C.11 wlevs:class

Use this element to specify the fully-qualified name of the JavaBean class to use as an event type implementation. This element must be a child of the wlevs:event-type element.

C.11.1 Example

The following example shows how to use the wlevs:class element in the EPN assembly file:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="SimpleEvent">
 <wlevs:class>com.example.myapp.MyEventType</wlevs:class>
 </wlevs:event-type>
...
</wlevs:event-type-repository>

C.12 wlevs:event-bean

Use this element to declare to the Spring application context that an event bean is part of your event processing network (EPN). Event beans are managed by the Oracle Event Processing container, analogous to Spring beans that are managed by the Spring framework. In many ways, event beans and Spring beans are similar so it is up to a developer which one to use in their EPN. Use a Spring bean for legacy integration to Spring. Use an event bean if you want to take full advantage of the additional capabilities of Oracle Event Processing.

For example, you can monitor an event bean using the Oracle Event Processing monitoring framework, make use of the Configuration framework metadata annotations, and record and playback events that pass through the event bean. An event-bean can also participate in the Oracle Event Processing bean lifecycle by specifying methods in its EPN assembly file declaration, rather than by implementing Oracle Event Processing API interfaces.

C.12.1 Child Elements

The wlevs:event-bean application assembly element supports the following child elements:

	
wlevs:listener

	
wlevs:instance-property

	
wlevs:property

C.12.2 Attributes

Table C-10 lists the attributes of the wlevs:event-bean application assembly element.

Table C-10 Attributes of the wlevs:event-bean Application Assembly Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this component.

This identifier must correspond to the <name> element in the XML configuration file for this event-bean, if one exists.

	
String

	
Yes.

	
advertise

	
Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

	
listeners

	
Specifies the components that listen to this component.

Set this attribute to the value of the id attribute of the element that declared the component.

	
String

	
No.

	
class

	
Specifies the Java class that implements this event bean. The bean is not required to implement any Oracle Event Processing interfaces.

You must specify either the provider or class attribute, but not both, otherwise an exception is raised.

	
	

	
provider

	
Specifies the service provider.

In this case, an EDE factory registered with this specific provider name must exist in the application.

You must specify either the provider or class attribute, but not both, otherwise an exception is raised.

	
String

	
No.

	
onevent-method

	
Specifies the method of the event bean implementation that corresponds to the lifecycle onEvent method.

Oracle Event Processing invokes this method when the event bean receives an event.

By using this lifecycle attribute, the event bean implementation does not have to explicitly implement an Oracle Event Processing interface.

	
String

	
No

	
init-method

	
Specifies the method of the event bean implementation that corresponds to the lifecycle init method.

Oracle Event Processing invokes this method after it has set all the supplied instance properties. This method allows the bean instance to perform initialization only possible when all bean properties have been set and to throw an exception in the event of misconfiguration.

By using this lifecycle attribute, the event bean implementation does not have to explicitly implement an Oracle Event Processing interface.

	
String

	
No

	
activate-method

	
Specifies the method of the event bean implementation that corresponds to the lifecycle activate method.

Oracle Event Processing invokes this method after the dynamic configuration of the bean has completed. This method allows the bean instance to perform initialization only possible when all dynamic bean properties have been set and the EPN has been wired.

By using this lifecycle attribute, the event bean implementation does not have to explicitly implement an Oracle Event Processing interface.

	
String

	
No

	
suspend-method

	
Specifies the method of the event bean implementation that corresponds to the lifecycle suspend method.

Oracle Event Processing invokes this method when the application is suspended.

By using this lifecycle attribute, the event bean implementation does not have to explicitly implement an Oracle Event Processing interface.

	
String

	
No

	
destroy-method

	
Specifies the method of the event bean implementation that corresponds to the lifecycle destroy method.

Oracle Event Processing invokes this method when the application is stopped.

By using this lifecycle attribute, the event bean implementation does not have to explicitly implement an Oracle Event Processing interface.

	
String

	
No

C.12.3 Example

The following example shows how to use the wlevs:event-bean element in the EPN assembly file:

 <wlevs:event-bean id="myBean" class="com.customer.SomeEventBean" >
 <wlevs:listener ref="myProcessor" />
 </wlevs:event-bean>

In the example, the event bean called myBean is implemented with the class com.customer.SomeEventBean. The component called myProcessor receives events from the myBean event bean.

C.13 wlevs:event-type

Specifies the definition of an event type used in the Oracle Event Processing application. Once you define the event types of the application, you can reference them in the adapter and business class POJO, as well as the Oracle CQL rules.

You can define an event type in the following ways:

	
Create a JavaBean class that represents your event type and specify its fully qualified classname using the wlevs:class child element.

	
Specify event type properties declaratively by using a wlevs:properties child element.

You can specify one of either wlevs:class or wlevs:properties as a child of wlevs:event-type, but not both.

The best practice is to define your event type by using the wlevs:class child element because you can then reuse the specified JavaBean class, and you control exactly what the event type looks like.

C.13.1 Child Elements

The wlevs:event-type application assembly element supports the following child elements:

	
wlevs:class

	
wlevs:metadata (deprecated)

	
wlevs:properties

	
wlevs:property

C.13.2 Attributes

Table C-11 lists the attributes of the wlevs:event-type application assembly element.

Table C-11 Attributes of the wlevs:event-type Application Assembly Element

	Attribute	Description	Data Type	Required?
	
id

	
Specifies the unique identifier for this event type.

If you do not specify this attribute, Oracle Event Processing automatically generates an identifier for you.

	
String

	
No.

	
type-name

	
Specifies the name of this event type.

This is the name you use whenever you reference the event type in the adapter, business POJO, or Oracle CQL or EPL rules.

	
String

	
Yes.

	
object-support

	
Specifies if Java objects should be fully supported. Allowable values are true, false, and object-relational; default is object-relational.

If set to false, then the Java primitive wrappers (for example, java.lang.Integer) and java.lang.String are treated solely as primitive types.

If set to true, then Java primitive wrappers are treated as classes.

If set to object-relational,

	
String

	
No.

C.13.3 Example

The following example shows how to use the wlevs:event-type element in the EPN assembly file:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="SimpleEvent">
 <wlevs:properties>
 <wlevs:property name="msg" type="char" />
 <wlevs:property name="count" type="long" />
 <wlevs:property name="time_stamp" type="timestamp" />
 </wlevs:properties>
 </wlevs:event-type>
...
</wlevs:event-type-repository>

In the example, the name of the event type is SimpleEvent and its definition is determined by the wlevs:property elements. The values for the type attribute must conform to the com.bea.wlevs.ede.api.Type class.

For more information, see Section 9.2.2, "Choosing a Data Type for an Event Type".

C.14 wlevs:event-type-repository

Use this element to group together one or more wlevs:event-type elements, each of which is used to register an event type used throughout the application.

This element does not have any attributes.

C.14.1 Child Elements

The wlevs:event-type-repository application assembly element supports the following child element:

	
wlevs:event-type

C.14.2 Example

The following example shows how to use the wlevs:event-type-repository element in the EPN assembly file:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">
 <wlevs:class>
 com.bea.wlevs.event.example.helloworld.HelloWorldEvent
 </wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>

In the example, the wlevs:event-type-repository element groups a single wlevs:event-type element to declare a single event type: HelloWorldEvent. See Section C.13, "wlevs:event-type" for additional details.

C.15 wlevs:expression

Use this element to specify an arithmetic expression in wlevs:application-timestamped to be used as an application timestamp for event processing.

For more information, see "arith_expr" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing.

C.15.1 Example

The following example shows how to use wlevs:expression element in the EPN assembly file to specify an explicitly application timestamped channel.

<wlevs:channel id="fxMarketAmerOut" >
 <wlevs:application-timestamped>
 <wlevs:expression>mytime + 10</wlevs:expression>
 </wlevs:application-timestamped>
</wlevs:channel>

In the example, the wlevs:expression element defines the arithmetic expression used to assign a timestamp to each event.

C.16 wlevs:factory

Use this element to register a factory class as a service. Use of this element decreases the dependency of your application on Spring-OSGi interfaces.

The Java source of this factory must implement the com.bea.wlevs.ede.api.Factory interface.

The factory element does not allow you to specify service properties. If you need to specify service properties, then you must use the Spring- OSGi osgi:service element instead.

This element does not have any child elements.

C.16.1 Attributes

Table C-12 lists the attributes of the wlevs:factory application assembly element.

Table C-12 Attributes of the wlevs:factory Application Assembly Element

	Attribute	Description	Data Type	Required?
	
class

	
Specifies the Java class that implements the factory. This class must implement the com.bea.wlevs.ede.api.Factory interface.

	
String

	
Yes.

	
provider-name

	
Specifies the name of this provider. Reference this name later in the component that uses this factory.

	
String

	
Yes.

C.16.2 Example

The following example shows how to use the wlevs:factory element in the EPN assembly file:

<wlevs:factory provider-name="myEventSourceFactory"
 class="com.customer.MyEventSourceFactory" />

In the example, the factory implemented by the com.customer.MyEventSourceFactory goes by the provider name of myEventSourceFactory.

C.17 wlevs:function

Use this element to specify a bean that contains user-defined functions for a processor. Oracle Event Processing supports both single-row and aggregate functions.

This element always has a standard Spring bean element either as a child or as a reference that specifies the Spring bean that implements the user-defined function.

For a single-row function for an Oracle CQL processor, you may specify one method on the implementing class as the function using the exec-method attribute. In this case, the method must be public and must be uniquely identifiable by its name (that is, the method cannot have been overridden). You may define an alias for the exec-method name using the function-name attribute. In the Oracle CQL query, you may call only the exec-method (either by its name or the function-name alias).

For a single-row function on an EPL processor, you may define an alias for the implementing class name using the function-name attribute. The exec-method name is not applicable in this case. In the EPL query, you may call any public or static method on the implementing class using either the implementing class name or the function-name alias.

For an aggregate function on either an Oracle CQL or EPL processor, the Spring bean must implement the following interfaces from the com.bea.wlevs.processor package:

	
AggregationFunctionFactory

	
AggregationFunction

For an aggregate function, the exec-method attribute is not applicable on both an Oracle CQL processor and an EPL processor.

For more information, see:

	
"User-Defined Functions" in the Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing

	
"EPL Reference: Functions" in the Oracle Fusion Middleware EPL Language Reference for Oracle Event Processing

C.17.1 Attributes

Table C-13 lists the attributes of the wlevs:function application assembly element.

Table C-13 Attributes of the wlevs:function Application Assembly Element

	Attribute	Description	Data Type	Required?
	
exec-method

	
For a user-defined single-row function on an Oracle CQL processor, this element specifies the method name of the Spring bean that implements the function. In this case, the method must be public and must be uniquely identifiable by its name (that is, the method cannot have been overridden).

For a user-defined single-row or aggregate function on an EPL processor or a user-defined aggregate function on an Oracle CQL processor, this attribute is not applicable.

	
String

	
No.

	
function-name

	
For a user-defined single-row function on an Oracle CQL processor, use this attribute to define an alias for the exec-method name. You can then use the function-name in your Oracle CQL query instead of the exec-name.

For a user-defined single-row function on an EPL processor, use this attribute to define an alias for the implementing Spring bean class name. You can then use the function-name in your EPL query instead of the Spring bean class name and still invoke any public or static method that the Spring bean class implements.

For a user-defined aggregate function on an Oracle CQL or EPL processor, use this attribute to define an alias for the implementing Spring bean class name. You can then use the function-name in your EPL query instead of the Spring bean class name.

The default value is the Spring bean name.

	
String

	
No.

	
ref

	
Specifies the Spring bean that implements the function.

Set this attribute to the value of the id attribute of the Spring bean.

This is an alternative to making the Spring bean element a child of the wlevs:function element.

	
String

	
No.

C.17.2 Example

The following examples show how to use the wlevs:function element and its attributes on both Oracle CQL and EPL processors:

	
Section C.17.2.1, "Single-Row User-Defined Function on an Oracle CQL Processor"

	
Section C.17.2.2, "Single-Row User-Defined Function on an EPL Processor"

	
Section C.17.2.3, "Aggregate User-Defined Function on an Oracle CQL Processor"

	
Section C.17.2.4, "Aggregate User-Defined Function on an EPL Processor"

	
Section C.17.2.5, "Specifying the Implementation Class: Nested Bean or Reference"

C.17.2.1 Single-Row User-Defined Function on an Oracle CQL Processor

Example C-1 shows how you implement a single-row user-defined the function for an Oracle CQL processor.

Example C-1 Single-Row User Defined Function Implementation Class

package com.bea.wlevs.example.function;

public class MyMod {
 public Object execute(int arg0, int arg1) {
 return new Integer(arg0 % arg1);
 }
}

Example C-2 shows how to use the wlevs:function to define a single-row function on an Oracle CQL processor in the EPN assembly file.

Example C-2 Single-Row User Defined Function for an Oracle CQL Processor

<wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="mymod" exec-method=”execute” />
 <bean class="com.bea.wlevs.example.function.MyMod"/>
 </wlevs:function>
</wlevs:processor>

Example C-3 shows how you invoke the function in an Oracle CQL query.

Example C-3 Invoking the Single-Row User-Defined Function on an Oracle CQL Processor

...
<view id="v1" schema="c1 c2 c3 c4"><![CDATA[
 select
 mymod(c1, 100), c2, c3, c4
 from
 S1
]]></view>
...
<query id="q1"><![CDATA[
 select * from v1 [partition by c1 rows 1] where c4 - c3 = 2.3
]]></query>
...

C.17.2.2 Single-Row User-Defined Function on an EPL Processor

Example C-4 shows how you implement a single-row user-defined the function for an EPL processor.

Example C-4 Single-Row User Defined Function Implementation Class

package com.bea.wlevs.example.function;

public class LegacyMathBean {
 public Object square(Object[] args) {
 ...
 }
 public Object cube(Object[] args) {
 ...
 }
}

Example C-5 shows how to use the wlevs:function to define a single-row function for an EPL processor in the EPN assembly file.

Example C-5 Single-Row User Defined Function for an EPL Processor

 <wlevs:processor id="testProcessor" provider="epl">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="math" />
 <bean class="com.bea.wlevs.example.function.LegacyMathBean"/>
 </wlevs:function>
 </wlevs:processor>

Example C-6 shows how you invoke the function in an EPL query.

Example C-6 Invoking the Single-Row User-Defined Function on an EPL Processor

<rule><![CDATA[
 select math.square(inputValue) ...
]]></rule>

C.17.2.3 Aggregate User-Defined Function on an Oracle CQL Processor

Example C-7 shows how to implement a user-defined aggregate function for an Oracle CQL processor.

Example C-7 Aggregate User Defined Function Implementation Class

package com.bea.wlevs.test.functions;

import com.bea.wlevs.processor.AggregationFunction;
import com.bea.wlevs.processor.AggregationFunctionFactory;

public class Variance implements AggregationFunctionFactory, AggregationFunction {

 private int count;
 private float sum;
 private float sumSquare;

 public Class<?>[] getArgumentTypes() {
 return new Class<?>[] {Integer.class};
 }

 public Class<?> getReturnType() {
 return Float.class;
 }

 public AggregationFunction newAggregationFunction() {
 return new Variance();
 }

 public void releaseAggregationFunction(AggregationFunction function) {
 }

 public Object handleMinus(Object[] params) {
 if (params != null && params.length == 1) {
 Integer param = (Integer) params[0];
 count--;
 sum -= param;
 sumSquare -= (param * param);
 }

 if (count == 0) {
 return null;
 } else {
 return getVariance();
 }
 }

 public Object handlePlus(Object[] params) {
 if (params != null && params.length == 1) {
 Integer param = (Integer) params[0];
 count++;
 sum += param;
 sumSquare += (param * param);
 }

 if (count == 0) {
 return null;
 } else {
 return getVariance();
 }
 }

 public Float getVariance() {
 float avg = sum / (float) count;
 float avgSqr = avg * avg;
 float var = sumSquare / (float)count - avgSqr;
 return var;
 }

 public void initialize() {
 count = 0;
 sum = 0.0F;
 sumSquare = 0.0F;
 }

}

Example C-8 shows how to use the wlevs:function to define an aggregate function on an Oracle CQL processor in the EPN assembly file.

Example C-8 Aggregate User Defined Function for an Oracle CQL Processor

 <wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="var">
 <bean class="com.bea.wlevs.test.functions.Variance"/>
 </wlevs:function>
 </wlevs:processor>

Example C-9 shows how you invoke the function in an Oracle CQL query.

Example C-9 Invoking the Aggregate User-Defined Function on an Oracle CQL Processor

...
<query id="uda6"><![CDATA[
 select var(c2) from S4[range 3]
]]></query>
...

C.17.2.4 Aggregate User-Defined Function on an EPL Processor

Example C-10 shows how to implement a user-defined aggregate function for an EPL processor.

Example C-10 Aggregate User Defined Function Implementation Class

package com.bea.wlevs.test.functions;

import com.bea.wlevs.processor.AggregationFunction;
import com.bea.wlevs.processor.AggregationFunctionFactory;

public class Variance implements AggregationFunctionFactory, AggregationFunction {

 private int count;
 private float sum;
 private float sumSquare;

 public Class<?>[] getArgumentTypes() {
 return new Class<?>[] {Integer.class};
 }

 public Class<?> getReturnType() {
 return Float.class;
 }

 public AggregationFunction newAggregationFunction() {
 return new Variance();
 }

 public void releaseAggregationFunction(AggregationFunction function) {
 }

 public Object handleMinus(Object[] params) {
 if (params != null && params.length == 1) {
 Integer param = (Integer) params[0];
 count--;
 sum -= param;
 sumSquare -= (param * param);
 }

 if (count == 0) {
 return null;
 } else {
 return getVariance();
 }
 }

 public Object handlePlus(Object[] params) {
 if (params != null && params.length == 1) {
 Integer param = (Integer) params[0];
 count++;
 sum += param;
 sumSquare += (param * param);
 }

 if (count == 0) {
 return null;
 } else {
 return getVariance();
 }
 }

 public Float getVariance() {
 float avg = sum / (float) count;
 float avgSqr = avg * avg;
 float var = sumSquare / (float)count - avgSqr;
 return var;
 }

 public void initialize() {
 count = 0;
 sum = 0.0F;
 sumSquare = 0.0F;
 }

}

Example C-11 shows how to use the wlevs:function to define an aggregate function on an EPL processor in the EPN assembly file.

Example C-11 Aggregate User Defined Function for an EPL Processor

 <wlevs:processor id="testProcessor" provider="epl">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="var">
 <bean class="com.bea.wlevs.test.functions.Variance"/>
 </wlevs:function>
 </wlevs:processor>

Example C-12 shows how you invoke the function in an EPL query.

Example C-12 Invoking the Aggregate User-Defined Function on an EPL Processor

...
<rule><![CDATA[
 select var(c2) from S4
]]></rule>
...

C.17.2.5 Specifying the Implementation Class: Nested Bean or Reference

Example C-13 shows how to use the wlevs:function element with a nested bean element in the EPN assembly file.

Example C-13 User Defined Function Using Nested Bean Element

 <wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="testfunction">
 <bean class="com.bea.wlevs.example.cache.function.TestFunction"/>
 </wlevs:function>
 </wlevs:processor>

Example C-14 shows how to use the wlevs:function element and its ref attribute to reference a bean element defined outside of the wlevs:function element in the EPN assembly file.

Example C-14 User Defined Function Using Reference

 <wlevs:processor id="testProcessor">
 <wlevs:listener ref="providerCache"/>
 <wlevs:listener ref="outputCache"/>
 <wlevs:cache-source ref="testCache"/>
 <wlevs:function function-name="testfunction" ref="testFunctionID" />
 </wlevs:processor>
 ...
 <bean id="testFunctionID" class="com.bea.wlevs.example.cache.function.TestFunction"/>

C.18 wlevs:instance-property

Specifies the properties that apply to the create stage instance of the component to which this is a child element. This allows declarative configuration of user-defined stage properties.

For example, when you specify an wlevs:instance-property for a wlevs:event-bean, Oracle Event Processing will look for a corresponding setter method on the Java class you implement, not on the com.bea.wlevs.spring.EventBeanFactoryBean that instantiates your class. To specify a property on the factory, use wlevs:property

This element is used only as a child of wlevs:adapter, wlevs:event-bean, wlevs:processor, wlevs:channel, or wlevs:caching-system.

The wlevs:instance-property element is defined as the Spring propertyType type; for additional details of this Spring data type, the definition of the allowed child elements, and so on, see the http://www.springframework.org/schema/beans/spring-beans-2.0.xsd.

C.18.1 Child Elements

You can specify one of the following standard Spring elements as a child element of the wlevs:instance-property element:

	
meta

	
bean

	
ref

	
idref

	
value

	
null

	
list

	
set

	
map

	
props

C.18.2 Attributes

Table C-14 lists the attributes of the wlevs:instance-property application assembly element.

Table C-14 Attributes of the wlevs:instance-property Application Assembly Element

	Attribute	Description	Data Type	Required?
	
name

	
Specifies the name of the property, following JavaBean naming conventions.

	
String

	
Yes.

	
ref

	
A short-cut alternative to a nested <ref bean='...'/> element.

	
String

	
No.

	
value

	
A short-cut alternative to a nested <value>...</value> element.

	
String

	
No.

C.18.3 Example

The following example shows how to use the wlevs:instance-property element in the EPN assembly file:

<wlevs:event-bean id="pubsubCounterBeanRemote"
 class="com.oracle.cep.example.httppubsub.RemoteEventCounter">
 <wlevs:listener ref="pubsubRemote" />
 <wlevs:instance-property name="expectedEvents" value="4000" />
</wlevs:event-bean>

In the example, the event bean com.oracle.cep.example.httppubsub.RemoteEventCounter class provides an appropriate setter method:

...
 private int expectedEvents;

 public void setExpectedEvents(String expectedEvents) {
 this.expectedEvents = new Integer(expectedEvents).intValue();
 }
...

Note that the instance-property is of type String. Your setter method must convert this if necessary. In this example, the String is converted to an int value.

The name of the setter method must conform to JavaBean naming conventions. In this example, the setter name is setExpectedEvents and this corresponds to the wlevs:instance-property element name attribute value expectedEvents, according to JavaBean conventions. If the name attribute value is obj and the setter method name is setObject, Oracle Event Processing will throw an Invalid Property exception. In this case, the setter name should be setObj.

C.19 wlevs:listener

Specifies the component that listens to the component to which this element is a child. A listener can be an instance of any other component. You can also nest the definition of a component within a particular wlevs:listener component to specify the component that listens to the parent.

	
Caution:

Nested definitions are not eligible for dynamic configuration or monitoring.

This element is always a child of wlevs:adapter, wlevs:processor, wlevs:channel, or wlevs:caching-system.

C.19.1 Attributes

Table C-15 lists the attributes of the wlevs:listener application assembly element.

Table C-15 Attributes of the wlevs:listener Application Assembly Element

	Attribute	Description	Data Type	Required?
	
ref

	
Specifies the component that listens to the parent component .

Set this attribute to the value of the id attribute of the listener component.

You do not specify this attribute if you are nesting listeners.

	
String

	
No.

C.19.2 Example

The following example shows how to use the wlevs:listener element in the EPN assembly file:

 <wlevs:processor id="helloworldProcessor">
 <wlevs:listener ref="helloworldOutstream"/>
 </wlevs:processor>

In the example, the hellworldOutstream component listens to the helloworldProcessor component. It is assumed that the EPN assembly file also contains a declaration for a wlevs:adapter, wlevs:channel, or wlevs:processor element whose unique identifier is helloworldOutstream.

C.20 wlevs:metadata

Specifies the definition of an event type by listing its fields as a group of Spring entry elements. When you define an event type this way, Oracle Event Processing automatically generates the Java class for you.

Use the key attribute of the entry element to specify the name of a field and the value attribute to specify the Java class that represents the field's data type.

This element is used only as a child of wlevs:event-type.

The wlevs:metadata element is defined as the Spring mapType type; for additional details of this Spring data type, see the http://www.springframework.org/schema/beans/spring-beans-2.0.xsd.

C.20.1 Child Elements

The wlevs:metadata element can have one or more standard Spring entry child elements as defined in the http://www.springframework.org/schema/beans/spring-beans-2.0.xsd.

C.20.2 Attributes

Table C-16 lists the attributes of the wlevs:metadata application assembly element.

Table C-16 Attributes of the wlevs:metadata Application Assembly Element

	Attribute	Description	Data Type	Required?
	
key-type

	
The default fully qualified classname of a Java data type for nested entry elements.

You use this attribute only if you have nested entry elements.

	
String

	
No.

C.20.3 Example

The following example shows how to use the wlevs:metadata element in the EPN assembly file:

<wlevs:event-type type-name="ForeignExchangeEvent">
 <wlevs:metadata>
 <entry key="symbol" value="java.lang.String"/>
 <entry key="price" value="java.lang.Double"/>
 <entry key="fromRate" value="java.lang.String"/>
 <entry key="toRate" value="java.lang.String"/>
 </wlevs:metadata>
 ...
</wlevs:event-type>

In the example, the wlevs:metadata element groups together four standard Spring entry elements that represent the four fields of the ForeignExchangeEvent: symbol, price, fromRate, and toRate. The data types of the fields are java.lang.String, java.lang.Double, java.lang.String, and java.lang.String, respectively.

C.21 wlevs:processor

Use this element to declare a processor to the Spring application context.

C.21.1 Child Elements

The wlevs:processor Spring element supports the following child elements:

	
wlevs:instance-property

	
wlevs:listener

	
wlevs:property

	
wlevs:cache-source

	
wlevs:table-source

	
wlevs:function

C.21.2 Attributes

Table C-17 lists the attributes of the wlevs:processor application assembly element.

Table C-17 Attributes of the wlevs:processor Application Assembly Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this component.

This identifier must correspond to the <name> element in the XML configuration file for this processor; this is how Oracle Event Processing knows which Oracle CQL or EPL rules to execute for which processor component in your network.

	
String

	
Yes.

	
advertise

	
Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

	
Boolean

	
No.

	
listeners

	
Specifies the components that listen to this component.

Set this attribute to the value of the id attribute of the element that declared the component.

	
String

	
No.

	
provider

	
Specifies the language provider of the processor, such as the Oracle Continuous Query Language (Oracle CQL) or Event Processor Language (EPL).

Valid values are:

	
epl

	
cql

The default value is cql.

	
String

	
No.

	
queryURL

	
Specifies a URL that points to an Oracle CQL or EPL rules definition file for this processor.

	
String.

	
No.

C.21.3 Example

The following example shows how to use the wlevs:processor element in the EPN assembly file:

<wlevs:processor id="spreader" />

The example shows how to declare a processor with ID spreader. This means that in the processor configuration file that contains the Oracle CQL rules for this processor, the name element must contain the value spreader. This way Oracle Event Processing knows which Oracle CQL or EPL rules it must file for this particular processor.

C.22 wlevs:properties

Defines the list of properties for an event type. Use this element when you are defining an event type declaratively, such as for a type based on a tuple or java.util.Map. For an event type created from a JavaBean class, allow properties to be defined by accessor methods in the class.

C.22.1 Child Elements

The wlevs:properties application assembly element supports the following child elements:

	
wlevs:property

C.22.2 Attributes

Table C-18 lists the attributes of the wlevs:event-type application assembly element.

Table C-18 Attributes of the wlevs:properties Application Assembly Element

	Attribute	Description	Data Type	Required?
	
type

	
Specifies the type that this event type should be created from. Allowable values are tuple and map; default is tuple.

If this attribute's value is map, then Oracle Event Processing will instantiate the event type as a java.util.Map instance. Otherwise, the type will be instantiated as a tuple.

	
String

	
No.

C.22.3 Example

The following example shows how to use the wlevs:properties element in the EPN assembly file:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="SimpleEvent">
 <wlevs:properties>
 <wlevs:property name="msg" type="char" />
 <wlevs:property name="count" type="long" />
 <wlevs:property name="time_stamp" type="timestamp" />
 </wlevs:properties>
 </wlevs:event-type>
...
</wlevs:event-type-repository>

In the example, the name of the event type is SimpleEvent and its definition is determined by the wlevs:property elements. The values for the type attribute must conform to the com.bea.wlevs.ede.api.Type class.

For more information, see Section 9.2.2, "Choosing a Data Type for an Event Type".

C.23 wlevs:property

Defines the property of an event type that you create declaratively, such as an event type based on a tuple or java.util.Map. You use this wlevs:property element as a child of the wlevs:properties element.

Note that this element is different from the wlevs:property element that is an extension of the Spring beans property element. This element must always be used as a child of the wlevs:properties element.

C.23.1 Attributes

Table C-19 lists the attributes of the wlevs:property application assembly element.

Table C-19 Attributes of the wlevs:property Application Assembly Element

	Attribute	Description	Data Type	Required?
	
name

	
Name of the event property.

	
String

	
Yes.

	
type

	
Type of the event property.

If this event type is defined as a tuple, then the type attribute value must be one of the OCEP native types defined by com.bea.wlevs.ede.api.Type. Those include bigint, boolean, byte, char, double, float, int, interval, object, sqlxml, timestamp, unknown, xmltype.

If this event type is defined as a map, then the type attribute value is the fully qualified name of a Java class that must be available in the class loader of the application that defines the event type. The string used as the Java class name must conform to the same rules as Class.forName(). In addition, Java primitives can be used (e.g. int, float).

Finally, you can specify an array by appending the characters '[]' to the Java class name

	
String

	
Yes.

	
length

	
If the property is of array type, this specifies the length of the array. If the type is not an array and length is specified, it will be ignored.

.

	
String

	
No.

C.23.2 Example

The following example shows how to use the wlevs:property element in the EPN assembly file:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="SimpleEvent">
 <wlevs:properties>
 <wlevs:property name="msg" type="char" />
 <wlevs:property name="count" type="long" />
 <wlevs:property name="time_stamp" type="timestamp" />
 </wlevs:properties>
 </wlevs:event-type>
...
</wlevs:event-type-repository>

In the example, the name of the event type is SimpleEvent and its definition is determined by the wlevs:property elements. The values for the type attribute must conform to the com.bea.wlevs.ede.api.Type class.

C.24 wlevs:property

Specifies a custom property to apply to the event type.

For example, when you specify a wlevs:property for a wlevs:event-bean, Oracle Event Processing will look for a corresponding setter method on the com.bea.wlevs.spring.EventBeanFactoryBean that instantiates your Java class, not on the Java class you implement. To specify a property on your Java class, use wlevs:instance-property.

This element is used only as a child of wlevs:adapter, wlevs:event-bean, wlevs:event-type, wlevs:processor, wlevs:channel, or wlevs:caching-system.

The wlevs:property element is defined as the Spring propertyType type; for additional details of this Spring data type, the definition of the allowed child elements, and so on, see the http://www.springframework.org/schema/beans/spring-beans-2.0.xsd.

C.24.1 Child Elements

You can specify one of the following standard Spring elements as a child element of the wlevs:property element:

	
meta

	
bean

	
ref

	
idref

	
value

	
null

	
list

	
set

	
map

	
props

C.24.2 Attributes

Table C-20 lists the attributes of the wlevs:property application assembly element.

Table C-20 Attributes of the wlevs:property Application Assembly Element

	Attribute	Description	Data Type	Required?
	
name

	
Specifies the name of the property, following JavaBean naming conventions.

	
String

	
Yes.

	
ref

	
A short-cut alternative to a nested <ref bean='...'/> element.

	
String

	
No.

	
value

	
A short-cut alternative to a nested <value>...</value> element.

	
String

	
No.

C.24.3 Example

The following example shows how to use the wlevs:property element in the EPN assembly file:

<wlevs:event-type type-name="ForeignExchangeEvent">
 <wlevs:metadata>
 <entry key="symbol" value="java.lang.String"/>
 <entry key="price" value="java.lang.Double"/>
 </wlevs:metadata>
 <wlevs:property name="builderFactory">
 <bean id="builderFactory"
 class="com.bea.wlevs.example.fx.ForeignExchangeBuilderFactory"/>
 </wlevs:property>
</wlevs:event-type>

In the example, the wlevs:property element defines a custom property of the ForeignExchangeEvent called builderFactory. The property uses the standard Spring bean element to specify the Spring bean used as a factory to create ForeignExchangeEvents.

C.25 wlevs:source

Specifies an event source for this component, or in other words, the component which the events are coming from. Specifying an event source is equivalent to specifying this component as an event listener to another component.

You can also nest the definition of a component within a particular wlevs:source component to specify the component source.

	
Caution:

Nested definitions are not eligible for dynamic configuration or monitoring.

This element is a child of wlevs:channel or wlevs:processor.

C.25.1 Attributes

Table C-21 lists the attributes of the wlevs:source application assembly element.

Table C-21 Attributes of the wlevs:source Application Assembly Element

	Attribute	Description	Data Type	Required?
	
ref

	
Specifies the source of the channel to which this element is a child.

Set this attribute to the value of the id attribute of the source component.

You do not specify this attribute if you are nesting sources.

	
String

	
No.

C.25.2 Example

The following example shows how to use the wlevs:source element in the EPN assembly file:

 <wlevs:channel id="helloworldInstream">
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:channel>

In the example, the component with id helloworldAdapter is the source of the helloworldInstream channel component.

C.26 wlevs:table

Specifies a relational database table that supplies data to one or more processor components. The processor components in turn are associated with an Oracle CQL query that directly references the table.

C.26.1 Attributes

Table C-22 lists the attributes of the wlevs:table application assembly element.

Table C-22 Attributes of the wlevs:table Application Assembly Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this component.

This identifier must correspond to the <name> element in the XML configuration file for this table.

	
String

	
Yes.

	
event-type

	
The name of the event type associated with this table as defined in the event type repository.

	
String

	
Yes.

	
data-source

	
The name of the relational data source defined in the Oracle Event Processing server configuration file used to access this database table.

	
String

	
Yes.

C.26.2 Example

The following example shows how to use the wlevs:table element in the EPN assembly file:

<wlevs:table id="Stock" event-type="StockEvent" data-source="StockDs" />

<wlevs:processor id="proc">
 <wlevs:table-source ref="Stock" />
</wlevs:processor>

In this example, a wlevs:processor references the table using its wlevs:table-source element.

C.27 wlevs:table-source

Specifies a relational database table that supplies data to this processor component. The processor component in turn is associated with an Oracle CQL query that directly references the table.

This element is a child of only wlevs:processor element.

C.27.1 Attributes

Table C-23 lists the attributes of the wlevs:table-source application assembly element.

Table C-23 Attributes of the wlevs:table-source Application Assembly Element

	Attribute	Description	Data Type	Required?
	
ref

	
Specifies the relational database table that is a source of data for the processor component.

Set this attribute to the value of the id attribute of a wlevs:table element.

	
String

	
Yes.

C.27.2 Example

The following example shows how to use the wlevs:table-source element in the EPN assembly file:

<wlevs:table id="Stock" event-type="StockEvent" data-source="StockDs" />

<wlevs:processor id="proc">
 <wlevs:table-source ref="Stock" />
</wlevs:processor>

E Schema Reference: Deployment deployment.xsd

This appendix provides a reference to the elements of the deployment.xsd schema, the schema behind the XML with which you configure Oracle Event Processing application deployment.

This appendix includes the following sections:

	
Section E.1, "Overview of the Oracle Event Processing Deployment Elements"

	
Section E.2, "wlevs:deployment"

E.1 Overview of the Oracle Event Processing Deployment Elements

Oracle Event Processing provides a number of application assembly elements that you use in the EPN assembly file of your application to register event types, declare the components of the event processing network and specify how they are linked together. The EPN assembly file is an extension of the standard Spring context file.

E.1.1 Element Hierarchy

The Oracle Event Processing component configuration elements are organized into the following hierarchy:

beans
 Standard Spring and OSGi elements such as bean, osgi-service, and so on.

E.1.2 Example of an Oracle Event Processing Deployment Configuration File

The following sample deployment configuration file from the fx application shows how to use many of the Oracle Event Processing elements:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/deployment" xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.bea.com/ns/wlevs/deployment
 http://www.bea.com/ns/wlevs/deployment/deployment.xsd">
 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="systemPropertiesModeName" value="SYSTEM_PROPERTIES_MODE_OVERRIDE"/>
</bean>
<wlevs:deployment
 id="fx"
 state="start"
 location="file:${wlevs.domain.home}/applications/fx/com.bea.wlevs.example.fx_11.1.0.0.jar"/>
</beans>

E.2 wlevs:deployment

Use this element to declare an adapter component to the Spring application context.

E.2.1 Child Elements

The wlevs:deployment deployment element has no child elements:

E.2.2 Attributes

Table E-1 lists the attributes of the wlevs:deployment deployment element.

Table E-1 Attributes of the wlevs:deployment Deployment Element

	Attribute	Description	Data Type	Required?
	
id

	
Unique identifier for this deployed application.

	
String

	
Yes.

	
depends-on

	
The names of the beans that this deployment bean depends on being initialized. The bean factory will guarantee that these beans get initialized before this bean.

	
String

	
Yes.

	
location

	
URL that specifies the location of the bundle that is to be deployed. If a relative URL is specified then the location is relative the DOMAIN_DIR domain directory.

For example:

location="file:applications/simpleApp/simpleApp.jar"

Specifies that the bundle simpleApp.jar, located in the DOMAIN_DIR/applications/simpleApp directory, is to be deployed to Oracle Event Processing server.

	
String

	
No.

	
state

	
Specifies the state that the bundle should be in once it is deployed to the Oracle Event Processing server. The value of this attribute must be one of the following:

	
start: Install and start the bundle so that it immediately begins taking client requests.

	
install: Install the bundle, but do not start it.

	
update: Update an existing bundle.

Default value: start.

	
String

	
No.

E.2.3 Example

The following example shows how to use the wlevs:deployment element in the deployment file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/deployment" xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.bea.com/ns/wlevs/deployment
 http://www.bea.com/ns/wlevs/deployment/deployment.xsd">
 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="systemPropertiesModeName" value="SYSTEM_PROPERTIES_MODE_OVERRIDE"/>
</bean>
<wlevs:deployment
 id="fx"
 state="start"
 location="file:${wlevs.domain.home}/applications/fx/com.bea.wlevs.example.fx_11.1.0.0.jar"/>
</beans>

F Schema Reference: Server Configuration wlevs_server_config.xsd

This appendix provides a reference to elements of the welvs_server_config.xsd schema, the schema behind XML you use to configure Oracle Event Processing server attributes and services such as logging, Oracle Continuous Query Language (CQL), Secure Sockets Layer (SSL), Java Management Extensions (JMX), HTTP Publish-Subscribe, and more.

This appendix includes the following sections:

	
Section F.1, "Overview of the Oracle Event Processing Server Configuration Elements"

	
Section F.2, "auth-constraint"

	
Section F.3, "bdb-config"

	
Section F.4, "channels"

	
Section F.5, "channel-constraints"

	
Section F.6, "channel-resource-collection"

	
Section F.7, "cluster"

	
Section F.8, "connection-pool-params"

	
Section F.9, "cql"

	
Section F.10, "data-source"

	
Section F.11, "data-source-params"

	
Section F.12, "driver-params"

	
Section F.13, "domain"

	
Section F.14, "debug"

	
Section F.15, "event-store"

	
Section F.16, "exported-jndi-context"

	
Section F.17, "http-pubsub"

	
Section F.18, "jetty"

	
Section F.19, "jetty-web-app"

	
Section F.20, "jmx"

	
Section F.21, "jndi-context"

	
Section F.22, "log-file"

	
Section F.23, "log-stdout"

	
Section F.24, "logging-service"

	
Section F.25, "message-filters"

	
Section F.26, "name"

	
Section F.27, "netio"

	
Section F.28, "netio-client"

	
Section F.29, "partition-order-capacity"

	
Section F.30, "path"

	
Section F.31, "pubsub-bean"

	
Section F.32, "rdbms-event-store-provider"

	
Section F.33, "rmi"

	
Section F.34, "scheduler"

	
Section F.35, "server-config"

	
Section F.36, "services"

	
Section F.37, "show-detail-error-message"

	
Section F.38, "ssl"

	
Section F.39, "timeout-seconds"

	
Section F.40, "transaction-manager"

	
Section F.41, "use-secure-connections"

	
Section F.42, "weblogic-instances"

	
Section F.43, "weblogic-jta-gateway"

	
Section F.44, "weblogic-rmi-client"

	
Section F.45, "work-manager"

	
Section F.46, "xa-params"

F.1 Overview of the Oracle Event Processing Server Configuration Elements

Oracle Event Processing provides a number of server configuration elements that you use to configure Oracle Event Processing server-specific attributes and services.

F.1.1 Element Hierarchy

The top-level Oracle Event Processing server configuration elements are organized into the following hierarchy:

	
config

	
domain

	
rmi

	
jndi-context

	
exported-jndi-context

	
jmx

	
transaction-manager

	
work-manager

	
logging-service

	
log-stdout

	
log-file

	
jetty-web-app

	
netio

	
jetty

	
netio-client

	
debug

	
data-source

	
http-pubsub

	
event-store

	
cluster

	
bdb-config

	
rdbms-event-store-provider

	
ssl

	
weblogic-rmi-client

	
weblogic-jta-gateway

	
use-secure-connections

	
show-detail-error-message

	
cql

F.1.2 Example of an Oracle Event Processing Server Configuration File

The following sample Oracle Event Processing server configuration file from the HelloWorld application shows how to use many of the Oracle Event Processing elements:

<?xml version="1.0" encoding="UTF-8"?>
<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/server wlevs_server_config.xsd"
 xmlns:n1="http://www.bea.com/ns/wlevs/config/server"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <domain>
 <name>WLEventServerDomain</name>
 </domain>

 <netio>
 <name>NetIO</name>
 <port>9002</port>
 </netio>

 <netio>
 <name>sslNetIo</name>
 <ssl-config-bean-name>sslConfig</ssl-config-bean-name>
 <port>9003</port>
 </netio>

 <work-manager>
 <name>JettyWorkManager</name>
 <min-threads-constraint>5</min-threads-constraint>
 <max-threads-constraint>10</max-threads-constraint>
 </work-manager>

 <jetty>
 <name>JettyServer</name>
 <network-io-name>NetIO</network-io-name>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <secure-network-io-name>sslNetIo</secure-network-io-name>
 </jetty>

 <rmi>
 <name>RMI</name>
 <http-service-name>JettyServer</http-service-name>
 </rmi>

 <jndi-context>
 <name>JNDI</name>
 </jndi-context>

 <exported-jndi-context>
 <name>exportedJndi</name>
 <rmi-service-name>RMI</rmi-service-name>
 </exported-jndi-context>

 <jmx>
 <rmi-service-name>RMI</rmi-service-name>
 <rmi-jrmp-port>9999</rmi-jrmp-port>
 <jndi-service-name>JNDI</jndi-service-name>
 <rmi-registry-port>9004</rmi-registry-port>
 </jmx>

 <ssl>
 <name>sslConfig</name>
 <key-store>./ssl/evsidentity.jks</key-store>
 <key-store-pass>
 <password>{Salted-3DES}s4YUEvH4Wl2DAjb45iJnrw==</password>
 </key-store-pass>
 <key-store-alias>evsidentity</key-store-alias>
 <key-manager-algorithm>SunX509</key-manager-algorithm>
 <ssl-protocol>TLS</ssl-protocol>
 <enforce-fips>false</enforce-fips>
 <need-client-auth>false</need-client-auth>
 </ssl>

 <http-pubsub>
 <name>pubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>true</publish-without-connect-allowed>
 </server-config>
 <channels>
 <element>
 <channel-pattern>/evsmonitor</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsalert</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsdomainchange</channel-pattern>
 </element>
 </channels>
 </pub-sub-bean>
 </http-pubsub>

 <!-- Sample cluster configuration -->
 <!--
 <cluster>
 <server-name>myServer</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <enabled>coherence</enabled>
 <security>none</security>
 <groups></groups>
 </cluster>
 -->

 <logging-service>
 <name>myLogService</name>
 <log-file-config>myFileConfig</log-file-config>
 <stdout-config>myStdoutConfig</stdout-config>
 <logger-severity>Notice</logger-severity>
 <!-- logger-severity-properties is used to selectively enable logging for
 individual categories -->
 <!--logger-severity-properties>
 <entry>
 <key>org.springframework.osgi.extender.internal.dependencies.startup</key>
 <value>Debug</value>
 </entry>
 </logger-severity-properties-->
 </logging-service>

 <log-file>
 <name>myFileConfig</name>
 <rotation-type>none</rotation-type>
 </log-file>

 <log-stdout>
 <name>myStdoutConfig</name>
 <stdout-severity>Debug</stdout-severity>
 </log-stdout>

</n1:config>

F.2 auth-constraint

Use this element to configure an authorization constraint for a channel-constraints element.

For more information on channels, see channels.

F.2.1 Child Elements

The auth-constraint server configuration element supports the child elements that Table F-1 lists

Table F-1 Child Elements of: auth-constraint

	XML Tag	Type	Description
	
description

	
string

	
The description of the role.

	
role-name

	
string

	
A valid role name.

"Users, Groups, and Roles" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

F.2.2 Attributes

The auth-constraint server configuration element has no attributes.

F.2.3 Example

The following example shows how to use the auth-constraint element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>myPubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
...
 <channel-constraints>
 <element>
...
 <auth-constraint>
 <description>Administrators</description>
 <role-name>admin</role-name>
 </auth-constraint>
 </element>
 </channel-constraints>
 </pub-sub-bean>
</http-pubsub>

F.3 bdb-config

Use this element to configure the default event store provider that uses a Berkeley database instance.

Optionally, you may configure Oracle Event Processing server to use a relational database instance as the event store provider as Section F.32, "rdbms-event-store-provider" describes.

F.3.1 Child Elements

The bdb-config server configuration element supports the child elements that Table F-2 lists

Table F-2 Child Elements of: bdb-config

	XML Tag	Type	Description
	
db-env-path

	
string

	
Specifies the subdirectory in which Oracle Event Processing server creates Berkeley database instances relative to the DOMAIN_DIR/servername/config directory of your server, where DOMAIN_DIR refers to the domain directory, such as /oracle_cep/user_projects/domains/myDomain and servername refers to the name of your server, such as defaultserver.

Default: bdb

	
cache-size

	
long

	
Specifies the amount of memory, in bytes, available for Berkeley database cache entries. You can adjust the cache size to tune Berkeley database performance.

For more information, see:

	
http://www.oracle.com/technology/documentation/berkeley-db/je/GettingStartedGuide/cachesize.html.

	
http://www.oracle.com/technology/documentation/berkeley-db/je/java/com/sleepycat/je/EnvironmentMutableConfig.html#setCacheSize(long)

Default: je.maxMemoryPercent * JVM maximum memory

F.3.2 Attributes

The bdb-config server configuration element has no attributes.

F.3.3 Example

The following example shows how to use the bdb-config element in the Oracle Event Processing server configuration file:

<bdb-config>
 <db-env-path>bdb</db-env-path>
 <cache-size>1000</cache-size>
</bdb-config>

F.4 channels

Use this element to configure one or more channels for a pubsub-bean element.

Channel patterns always begin with a forward slash (/). Clients subscribe to these channels to either publish or receive messages

F.4.1 Child Elements

The channels server configuration element contains one or more element child elements that each contain a channel-pattern child element and zero or more message-filters child elements. Each message-filters child element contains an element child element with the string value of a message-filter-name that corresponds to a message-filters element.

F.4.2 Attributes

The channels server configuration element has no attributes.

F.4.3 Example

The following example shows how to use the channels element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>myPubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <supported-transport>
 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>
 true
 </publish-without-connect-allowed>
 </server-config>
 <channels>
 <element>
 <channel-pattern>/evsmonitor</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsalert</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsdomainchange</channel-pattern>
 </element>
 </channels>
 </pub-sub-bean>
</http-pubsub>

F.5 channel-constraints

Use this element to configure one or more channel constraints for a pubsub-bean element.

For more information on channels, see channels.

F.5.1 Child Elements

The channel-constraints server configuration element contains one or more element child element that each support the following child elements:

	
channel-resource-collection

	
auth-constraint

F.5.2 Attributes

The channel-constraints server configuration element has no attributes.

F.5.3 Example

The following example shows how to use the channel-constraints element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>myPubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
...
 <channel-constraints>
 <element>
 <channel-resource-collection>
 <element>
 <channel-resource-name>Foo</channel-resource-name>
 <descriptions>
 <element>Foo</element>
 </descriptions>
 <channel-patterns>
 <element>Foo</element>
 </channel-patterns>
 <channel-operations>
 <element>Foo</element>
 </channel-operations>
 </element>
 </channel-resource-collection>
 <auth-constraint>
 <description>Foo</description>
 <role-name>Foo</role-name>
 </auth-constraint>
 </element>
 </channel-constraints>
 </pub-sub-bean>
</http-pubsub>

F.6 channel-resource-collection

Use this element to configure one or more channel resource collections for a channel-constraints element.

For more information on channels, see channels.

F.6.1 Child Elements

The channel-resource-collection server configuration element contains zero or more element child elements that support the child elements that Table F-3 lists

Table F-3 Child Elements of: channel-resource-collection

	XML Tag	Type	Description
	
channel-resource-name

	
string

	
The name of this channel resource.

	
descriptions

	
string

	
Description of this channel resource collection.

This element contains an element child element with a string value.

	
channel-patterns

	
string

	
Specifies a channel pattern.

This element contains an element child element with a string value.

	
channel-operations

	
string

	
Specifies the operation to channel, validate values include:

	
create

	
delete

	
subscribe

	
publish

This element contains an element child element with a string value.

F.6.2 Attributes

The channel-resource-collection server configuration element has no attributes.

F.6.3 Example

The following example shows how to use the channel-resource-collection element in the Oracle Event Processing server configuration file:

<http-pubsub>
 <name>myPubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
...
 <channel-constraints>
 <element>
 <channel-resource-collection>
 <element>
 <channel-resource-name>Foo</channel-resource-name>
 <descriptions>
 <element>Foo</element>
 </descriptions>
 <channel-patterns>
 <element>Foo</element>
 </channel-patterns>
 <channel-operations>
 <element>Foo</element>
 </channel-operations>
 </element>
 </channel-resource-collection>
 <auth-constraint>
 <description>Foo</description>
 <role-name>Foo</role-name>
 </auth-constraint>
 </element>
 </channel-constraints>
 </pub-sub-bean>
</http-pubsub>

F.7 cluster

Use this element to configure a cluster component in the Oracle Event Processing server.

For more information, see "Administrating Multi-Server Domains With Oracle Event Processing Native Clustering" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

F.7.1 Child Elements

The cluster server configuration element supports the child elements that Table F-4 lists.

Table F-4 Child Elements of: cluster

	XML Tag	Type	Description
	
name

	
string

	
The name of this cluster. For more information, see name.

	
server-name

	
string

	
Specifies a unique name for the server. Oracle Event Processing Visualizer uses the value of this element when it displays the server in its console.

Default value:

	
Oracle Event Processing native clustering: WLEvServer-identity where identity is the value of the identity element.

	
Oracle Coherence: WLEvServer-identity where identity is the member ID as determined by Oracle Coherence.

	
server-host-name

	
string

	
Specifies the host address or IP used for point-to-point HTTP multi-server communication. Default value is the IP address associated with the default NIC for the machine.

	
multicast-address

	
string

	
This child element is required unless all servers of the multi-server domain are hosted on the same computer; in that case you can omit the multicast-address element and Oracle Event Processing automatically assigns a multicast address to the multi-server domain based on the computer's IP address.

If, however, the servers are hosted on different computers, then you must provide an appropriate domain-local address. Oracle recommends you use an address of the form 239.255.X.X, which is what the auto-assigned multicast address is based on.

All the Oracle Event Processing servers using this multicast-address must be on the same subnet.

Using Oracle Coherence, there is also an extension: if you use a unicast address then Oracle Coherence will be configured in Well Known Address (WKA) mode. This is necessary in environments that do not support multicast.

	
multicast-interface

	
string

	
The name of the interface that the multicast address should be bound to. This can be one of:

	
Simple name, such as eth0.

	
IP address to which the NIC is bound, such as 192.168.1.2.

	
IP address and network mask to which the NIC is bound separated by a /, such as 192.68.1.2/255.255.255.0.

	
multicast-port

	
int

	
Specifies the port used for multicast traffic. Default value is 9100.

	
identity

	
string

	
Applicable only to Oracle Event Processing native clustering: specifies the server's identity and must be an integer between 1 and INT_MAX. Oracle Event Processing numerically compares the server identities during multi-server operations; the server with the lowest identity becomes the domain coordinator. Be sure that each server in the multi-server domain has a different identity; if servers have the same identity, the results of multi-server operations are unpredictable.

Not applicable to Oracle Coherence.

	
enabled

	
See Description

	
Specifies whether or not the cluster is enabled. Valid values:

	
coherence

	
evs4j

	
true: cluster is enabled (Oracle Coherence mode)

	
false: cluster is not enabled (default).

	
security

	
See Description

	
Specifies the type of security for this cluster. Valid values:

	
none—Default value. Specifies that no security is configured for the multi-server domain.

	
encrypt—Specifies that multi-server messages should be encrypted.

	
groups

	
string

	
Specifies a comma-separated list of the names of the groups this cluster belongs to. For more information, see "Groups" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing.

	
operation-timeout

	
int

	
Specifies, in milliseconds, the timeout for point-to-point HTTP multi-server requests. Default value is 30000.

F.7.2 Attributes

The cluster server configuration element has no attributes.

F.7.3 Example

The following example shows how to use the cluster element in the Oracle Event Processing server configuration file:

<cluster>
 <name>MyCluster</name>
 <server-name>myServer1</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <identity>1</identity>
 <enabled>true</enabled>
</cluster>

In the example, the cluster element's unique identifier is MyCluster.

F.8 connection-pool-params

Use this element to specify connection pool-related data-source parameters.

F.8.1 Child Elements

The connection-pool-params server configuration element supports the child elements that Table F-5 lists.

Table F-5 Child Elements of: connection-pool-params

	XML Tag	Type	Description
	
statement-timeout

	
int

	
The time after which a statement currently being executed will time out. statement-timeout relies on underlying JDBC driver support. The server passes the time specified to the JDBC driver using the java.sql.Statement.setQueryTimeout method. If your JDBC driver does not support this method, it may throw an exception and the timeout value is ignored. A value of -1 disables this feature. A value of 0 means that statements will not time out.

Default: -1.

	
profile-harvest-frequency-seconds

	
int

	
The number of seconds between diagnostic profile harvest operations.

Default: 300.

	
inactive-connection-timeout-seconds

	
int

	
The number of inactive seconds on a reserved connection before the connection is reclaimed and released back into the connection pool.

Default: 0.

	
shrink-frequency-seconds

	
int

	
The number of seconds to wait before shrinking a connection pool that has incrementally increased to meet demand.

Default: 900.

	
driver-interceptor

	
string

	
Specifies the absolute name of the application class used to intercept method calls to the JDBC driver. The application specified must implement the weblogic.jdbc.extensions.DriverInterceptor interface.

	
seconds-to-trust-an-idle-pool-connection

	
int

	
The number of seconds within a connection use that the server trusts that the connection is still viable and will skip the connection test, either before delivering it to an application or during the periodic connection testing process.

Default: 10.

	
pinned-to-thread

	
boolean

	
This option can improve performance by enabling execute threads to keep a pooled database connection even after the application closes the logical connection.

Default: false.

	
test-connections-on-reserve

	
boolean

	
Test a connection before giving it to a client. Requires that you specify test-table-name.

Default: false.

	
profile-type

	
int

	
Specifies that type of profile data to be collected.

	
statement-cache-type

	
string

	
The algorithm used for maintaining the prepared statements stored in the statement cache. Valid values:

	
LRU - when a new prepared or callable statement is used, the least recently used statement is replaced in the cache

	
FIXED - the first fixed number of prepared and callable statements are cached

Default: LRU.

	
connection-reserve-timeout-seconds

	
int

	
The number of seconds after which a call to reserve a connection from the connection pool will timeout. When set to 0, a call will never timeout. When set to -1, a call will timeout immediately.

Default: -1.

	
credential-mapping-enabled

	
boolean

	
Enables the server to set a light-weight client ID on the database connection based on a map of database IDs when an application requests a database connection.

Default: false.

	
login-delay-seconds

	
int

	
The number of seconds to delay before creating each physical database connection. This delay supports database servers that cannot handle multiple connection requests in rapid succession. The delay takes place both during initial data source creation and during the lifetime of the data source whenever a physical database connection is created.

Default: 0.

	
test-table-name

	
string

	
The name of the database table to use when testing physical database connections. This name is required when you specify test-frequency-seconds and enable test-reserved-connections. The default SQL code used to test a connection is select count(*) from test-table-name where test-table-name is the value of the test-table-name element. Most database servers optimize this SQL to avoid a table scan, but it is still a good idea to set test-table-name to the name of a table that is known to have few rows, or even no rows. If test-table-name begins with SQL, then the rest of then the rest of the string following that leading token will be taken as a literal SQL statement that will be used to test connections instead of the standard query.

	
statement-cache-size

	
int

	
The number of prepared and callable statements stored in the cache between 1 and 1024. This may increase server performance.

Default: 10.

	
init-sql

	
string

	
SQL statement to execute that will initialize newly created physical database connections. Start the statement with SQL followed by a space.

	
connection-creation-retry-frequency-seconds

	
int

	
The number of seconds between attempts to establish connections to the database. If you do not set this value, data source creation fails if the database is unavailable. If set and if the database is unavailable when the data source is created, the server will attempt to create connections in the pool again after the number of seconds you specify, and will continue to attempt to create the connections until it succeeds. When set to 0, connection retry is disabled.

Default: 0.

	
test-frequency-seconds

	
int

	
The number of seconds between when the server tests unused connections. (Requires that you specify a Test Table Name.) Connections that fail the test are closed and reopened to re-establish a valid physical connection. If the test fails again, the connection is closed. In the context of multi data sources, this attribute controls the frequency at which the server checks the health of data sources it had previously marked as unhealthy. When set to 0, the feature is disabled.

Default: 120.

	
jdbc-xa-debug-level

	
int

	
Specifies the JDBC debug level for XA drivers.

Default: 10.

	
initial-capacity

	
int

	
The number of physical connections to create when creating the connection pool in the data source. If unable to create this number of connections, creation of the data source will fail.

Default: 1.

	
max-capacity

	
int

	
The maximum number of physical connections that this connection pool can contain.

Default: 15.

	
capacity-increment

	
int

	
The number of connections created when new connections are added to the connection pool.

Default: 1.

	
highest-num-waiters

	
int

	
The maximum number of connection requests that can concurrently block threads while waiting to reserve a connection from the data source's connection pool.

Default: Integer.MAX_VALUE.

F.8.2 Attributes

The connection-pool-params server configuration element has no attributes.

F.8.3 Example

The following example shows how to use the connection-pool-params element in the Oracle Event Processing server configuration file:

<data-source>
 <name>orads</name>
 <xa-params>
 <keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
 </xa-params>
 <driver-params>
 <url>jdbc:oracle:thin:@localhost:1521:ce102</url>
 <driver-name>oracle.jdbc.OracleDriver</driver-name>
 <properties>
 <element>
 <name>user</name>
 <value>wlevs</value>
 </element>
 <element>
 <name>password</name>
 <value>wlevs</value>
 </element>
 </properties>
 </driver-params>
 <connection-pool-params>
 <initial-capacity>5</initial-capacity>
 <max-capacity>10</max-capacity>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <test-frequency-seconds>5</test-frequency-seconds>
 </connection-pool-params>
 <data-source-params>
 <jndi-names>
 <element>orads</element>
 </jndi-names>
 <global-transactions-protocol>None</global-transactions-protocol>
 </data-source-params>
</data-source>

F.9 cql

Use this element to configure Oracle CQL-specific options in the Oracle Event Processing server.

F.9.1 Child Elements

The cql server configuration element supports the following child elements:

	
name

	
scheduler

	
partition-order-capacity

F.9.2 Attributes

The cql server configuration element has no attributes.

F.9.3 Example

The following example shows how to use the cql element in the Oracle Event Processing server configuration file:

<cql>
 <name>myCQL</name>
 <storage>
 <folder>myfolder</folder>
 <metadata-name>myname</metadata-name>
 </storage>
 <scheduler>
 <class-name>myclass</class-name>
 <threads>10</threads>
 <direct-interop>false</direct-interop>
 </scheduler>
</cql>

In the example, the cql element's unique identifier is myCQL.

F.10 data-source

This configuration type defines configuration for a DataSource service.

F.10.1 Child Elements

The data-source server configuration element supports the following child elements:

	
name

	
xa-params

	
data-source-params

	
connection-pool-params

	
driver-params

F.10.2 Attributes

The data-source server configuration element has no attributes.

F.10.3 Example

The following example shows how to use the data-source element in the Oracle Event Processing server configuration file:

<data-source>
 <name>orads</name>
 <driver-params>
 <url>jdbc:oracle:thin:@localhost:1521:ce102</url>
 <driver-name>oracle.jdbc.OracleDriver</driver-name>
 <properties>
 <element>
 <name>user</name>
 <value>wlevs</value>
 </element>
 <element>
 <name>password</name>
 <value>wlevs</value>
 </element>
 </properties>
 </driver-params>
 <connection-pool-params>
 <initial-capacity>5</initial-capacity>
 <max-capacity>10</max-capacity>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <test-frequency-seconds>5</test-frequency-seconds>
 </connection-pool-params>
 <data-source-params>
 <jndi-names>
 <element>orads</element>
 </jndi-names>
 <global-transactions-protocol>None</global-transactions-protocol>
 </data-source-params>
</data-source>

In the example, the data-source element's unique identifier is orads.

F.11 data-source-params

Use this element to specify data source-related data-source parameters.

F.11.1 Child Elements

The data-source-params server configuration element supports the child elements that Table F-6 lists.

Table F-6 Child Elements of: data-source-params

	XML Tag	Type	Description
	
algorithm-type

	
See Description

	
The algorithm determines the connection request processing for the multi data source. Valid values:

	
Failover

	
Load-Balancing

Default: Failover.

	
stream-chunk-size

	
int

	
Specifies the data chunk size for steaming data types between 1 and 65536.

Default: 256.

	
row-prefetch

	
boolean

	
Specifies whether or not multiple rows to be prefetched (that is, sent from the server to the client) in one server access.

Default: false.

	
data-source-list

	
string

	
The list of data sources to which the multi data source will route connection requests. The order of data sources in the list determines the failover order.

	
failover-request-if-busy

	
boolean

	
For multi data sources with the Failover algorithm, enables the multi data source to failover connection requests to the next data source if all connections in the current data source are in use.

Default: false.

	
row-prefetch-size

	
int

	
If row prefetching is enabled, specifies the number of result set rows to prefetch for a client between 2 and 65536.

Default: 48.

	
jndi-names

	
See Description

	
The JNDI path to where this Data Source is bound. By default, the JNDI name is the name of the data source. This element contains the following child elements:

	
element: contains the string name of a valid data-source element. For more information, see data-source.

	
config-data-source-DataSourceParams-JNDINames.

	
scope

	
boolean

	
Specifies the scoping of the data source. Note that Global is the only scoped supported by MSA.

Default: Global.

	
connection-pool-failover-callback-handler

	
string

	
The name of the application class to handle the callback sent when a multi data source is ready to failover or fail back connection requests to another data source within the multi data source. The name must be the absolute name of an application class that implements the weblogic.jdbc.extensions.ConnectionPoolFailoverCallback interface.

	
global-transactions-protocol

	
int

	
Determines the transaction protocol (global transaction processing behavior) for the data source. Valid values:

	
TwoPhaseCommit - Standard XA transaction processing. Requires an XA driver

	
LoggingLastResource - A performance enhancement for one non-XA resource

	
EmulateTwoPhaseCommit - Enables one non-XA resource to participate in a global transaction, but has some risk to data

	
OnePhaseCommit - One-phase XA transaction processing using a non-XA driver. This is the default setting

	
None - Support for local transactions only

Default: OnePhaseCommit.

F.11.2 Attributes

The data-source-params server configuration element has no attributes.

F.11.3 Example

The following example shows how to use the data-source-params element in the Oracle Event Processing server configuration file:

<data-source>
 <name>orads</name>
 <xa-params>
 <keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
 </xa-params>
 <driver-params>
 <url>jdbc:oracle:thin:@localhost:1521:ce102</url>
 <driver-name>oracle.jdbc.OracleDriver</driver-name>
 <properties>
 <element>
 <name>user</name>
 <value>wlevs</value>
 </element>
 <element>
 <name>password</name>
 <value>wlevs</value>
 </element>
 </properties>
 </driver-params>
 <connection-pool-params>
 <initial-capacity>5</initial-capacity>
 <max-capacity>10</max-capacity>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <test-frequency-seconds>5</test-frequency-seconds>
 </connection-pool-params>
 <data-source-params>
 <jndi-names>
 <element>orads</element>
 </jndi-names>
 <global-transactions-protocol>None</global-transactions-protocol>
 </data-source-params>
</data-source>

F.12 driver-params

Use this element to specify JDBC driver-related data-source parameters.

F.12.1 Child Elements

The driver-params server configuration element supports the child elements that Table F-7 lists.

Table F-7 Child Elements of: driver-params

	XML Tag	Type	Description
	
use-xa-data-source-interface

	
boolean

	
Specifies that the server should use the XA interface of the JDBC driver. If the JDBC driver class used to create database connections implements both XA and non-XA versions of a JDBC driver, you can set this attribute to indicate that the server should treat the JDBC driver as an XA driver or as a non-XA driver.

Default: true.

	
password

	
string

	
The password attribute passed to the JDBC driver when creating physical database connections.

	
driver-name

	
string

	
The full package name of JDBC driver class used to create the physical database connections in the connection pool in the data source.

	
url

	
string

	
The URL of the database to connect to. The format of the URL varies by JDBC driver. The URL is passed to the JDBC driver to create the physical database connections.

	
properties

	
string

	
Specifies the list of properties passed to the JDBC driver when creating physical database connections. This element contains one or more element child elements that contain child elements:

	
name: the property name.

	
value: the property value.

F.12.2 Attributes

The driver-params server configuration element has no attributes.

F.12.3 Example

The following example shows how to use the driver-params element in the Oracle Event Processing server configuration file:

<data-source>
 <name>orads</name>
 <xa-params>
 <keep-xa-conn-till-tx-complete>true</keep-xa-conn-till-tx-complete>
 </xa-params>
 <driver-params>
 <url>jdbc:oracle:thin:@localhost:1521:ce102</url>
 <driver-name>oracle.jdbc.OracleDriver</driver-name>
 <properties>
 <element>
 <name>user</name>
 <value>wlevs</value>
 </element>
 <element>
 <name>password</name>
 <value>wlevs</value>
 </element>
 </properties>
 </driver-params>
 <connection-pool-params>
 <initial-capacity>5</initial-capacity>
 <max-capacity>10</max-capacity>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <test-frequency-seconds>5</test-frequency-seconds>
 </connection-pool-params>
 <data-source-params>
 <jndi-names>
 <element>orads</element>
 </jndi-names>
 <global-transactions-protocol>None</global-transactions-protocol>
 </data-source-params>
</data-source>

F.13 domain

Use this element to configure a domain name in the Oracle Event Processing server.

F.13.1 Child Elements

The domain server configuration element supports the following child elements:

	
name

F.13.2 Attributes

The domain server configuration element has no attributes.

F.13.3 Example

The following example shows how to use the domain element in the Oracle Event Processing server configuration file:

<domain>
 <name>WLEventServerDomain</name>
</domain>

In the example, the domain's unique identifier is WLEventServerDomain.

F.14 debug

Use this element to configure one or more debug properties for the Oracle Event Processing server.

F.14.1 Child Elements

The debug server configuration element supports the child elements that Table F-8 lists.

Table F-8 Child Elements of: debug

	XML Tag	Type	Description
	
name

	
string

	
The name of this debug configuration. For more information, see name.

	
debug-properties

	
string

	
One or more child elements formed by taking a debug flag name (without its package name) and specifying a value of true.

For more information including a full list of all debug flags, see "How to Configure Oracle Event Processing Debugging Options Using a Configuration File" in the Oracle Fusion Middleware Administrator's Guide for Oracle Event Processing

F.14.2 Attributes

The debug server configuration element has no attributes.

F.14.3 Example

The following example shows how to use the debug element to turn on Simple Declarative Services (SDS) debugging using debug flag com.bea.core.debug.DebugSDS in the Oracle Event Processing server configuration file.

<debug>
 <name>myDebug</name>
 <debug-properties>
 <DebugSDS>true</DebugSDS>
...
 </debug-properties>
</debug>

F.15 event-store

Use this element to configure an event store for the Oracle Event Processing server.

F.15.1 Child Elements

The event-store server configuration element supports the child elements that Table F-9 lists.

Table F-9 Child Elements of: event-store

	XML Tag	Type	Description
	
name

	
string

	
The name of this debug configuration. For more information, see name.

	
provider-order

	
string

	
Specifies the name of one or more provider child elements in the order in which the Oracle Event Processing server should access them.

For more information, see:

	
rdbms-event-store-provider

F.15.2 Attributes

The event-store server configuration element has no attributes.

F.15.3 Example

The following example shows how to use the event-store element in the Oracle Event Processing server configuration file:

<config>
 <event-store>
 <name>myEventStore</name>
 <provider-order>
 <provider>provider1</provider>
 <provider>provider2</provider>
 </provider-order>
 </event-store>
</config>

In the example, the adapter's unique identifier is myEventStore.

F.16 exported-jndi-context

This configuration type is used to export a remote JNDI service that may be accessed via clients using RMI. It registers the JNDI context with the RMI service, so that it may be accessed remotely by clients that pass a provider URL parameter when they create their InitialContext object. This service requires that a jndi-context configuration object also be specified. If it is not, then this service will not be able to start.

F.16.1 Child Elements

The exported-