

5 Integration with Code Compliance Inspector

This chapter provides an overview and describes how to use the Code Compliance Inspector (CCI) with Oracle Enterprise Repository (OER).

This chapter includes the following sections:

	
Section 5.1, "Overview"

	
Section 5.2, "Checking Compliance and Synchronizing Report Data in OER"

	
Section 5.3, "Configuring Reports for Access from the OER Reports Menu"

5.1 Overview

Adherence to open standards and the enforcement of good coding practices are key principles of SOA governance. The Code Compliance Inspector is a tool that checks for good coding practices in both SOA Suite projects.

The CCI is delivered with a set of pre-defined assertions that are based on the Web Services Interoperability Organization Basic Profile (WS-I BP) to check for design consistency and good coding and documentation practices. The CCI qualifies code as Compliant, Conformant, or Fully Conformant in alignment with those open standards and best practices.

The results are displayed in the Code Compliance Report that shows the level of compliance, pass and failure percentages, and provides a graphical bar chart that groups results by priority and policies. The results also include the Top 10 violating composites. The overall compliance score for a SOA Suite project is shown in the header section of the report.

The Code Compliance Inspector can also be used to check for good coding practices in Oracle Application Integration Architecture (AIA) integration projects. In addition to assertions based on WS-I BP, the Code Compliance Inspector provides assertions based on AIA Integration developer guidelines to check for design consistency and coding practices. CCI compliance results and reports are also supported for AIA composites.

For more information about using the JDeveloper CCI extension to develop composites and to check compliance, see "Using the Code Compliance Inspector" in the Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

Figure 5-1 shows an example of the overall Code Compliance Report. This report is linked through the OER Reports page. You can click through the composites to get more detail about composites. You can also see each composite individually using the Asset Detail page in OER. Additionally, you can post the report files to a server and share the compliance results with colleagues.

Figure 5-1 Overall Code Compliance Report

[image: This image is described in surrounding text]

5.1.1 Overview of Steps for Generating CCI Reports and Publishing them to OER

This section provides an overview of the steps required to collect CCI reports that are ready to be associated in OER with harvested composites and published for view by OER users.

The CCI for OER consists of two command line utilities that are used by build administrators to generate reports that can be published in OER:

	
The checkCompliance command produces HTML compliance report files.

	
The cci-oerSynch command synchronizes the results to the repository, enabling users to access the reports from the OER console.

Here are the overview steps

	
Configure an OER artifact store.

For more information, see Section 5.2.1, "Configuring an OER Artifact Store for CCI Reports".

	
Within in your build environment, configure the cci-oerSynch.properties file.

For more information, see Section 5.2.2, "Configuring the cci-oerSynch.properties File".

	
From your build environment, run the command line compliance script to generate CCI reports from the projects and prepare them for OER publication. You must run the command line tool to enable synchronization with OER.

For more information, see Section 5.2.3, "Running the Check Compliance Command".

	
Ensure that the SOA or AIA projects from which the reports are generated have been harvested into OER.

For more information about harvesting, see "Configuring and Using Automated Harvesting in Design-time and Runtime Environments" in the Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.

	
From your build environment that contains the CCI reports generated by the compliance check command, run the CCI-OER Synch command.

For more information, see Section 5.2.5, "Running the CCI-OER Synch Command".

	
Copy the newly generated CCI reports folder into the physical location associated with your OER artifact store. Note that if this location is hosted on the same system as the original reports folder, the CCI-OER Synch will automate this move. Otherwise, this is a manual step.

For more information, see Section 5.2.6, "Copying the Files".

	
Within your OER installation, configure the Compliance Report properties file to enable access to the CCI reports from the OER Reports menu.

For more information, see Section 5.3, "Configuring Reports for Access from the OER Reports Menu".

5.2 Checking Compliance and Synchronizing Report Data in OER

The CCI command line tools are distributed with OER within the <OER Oracle Home>/tools/solutions/<version>-ComplianceInspector.zip.

Ensure that the contents of the zip file are installed on the machine where your build environment exists.

Here are the set up steps:

	
Copy Compliance Inspector zip file to temporary folder.

	
Unzip the Compliance Inspector zip file.

	
Configure Compliance Inspector's cci-oerSynch.properties file located in: ComplianceInspector/config/cci-oerSynch.properties.

The properties file enables you to set static information about your environment.

	
Note:

Wherever you unzip this file to, the property file is relative to the ComplianceInspector directory under config. You can rename this directory; we refer to this location as the ComplianceInspector_Home.

5.2.1 Configuring an OER Artifact Store for CCI Reports

	
Create and configure an artifact store(s) of the appropriate type (for example, HTTP) within OER.

For more information about using artifact stores, see Chapter 1, "Configuring an Artifact Store".

	
Name the artifact store(s) appropriate for its purpose (CCI-Reports-Production).

5.2.2 Configuring the cci-oerSynch.properties File

This command runs the Code Compliance Inspector on a specified SOA or AIA project folder and creates a new folder containing the CCI reports.

The checkCompliance command also uses the cci-oerSynch.properties file to retrieve the URL of the OER instance in order to look up both the composite Asset Type ID and the username with which you want to connect.

Use the rep://<ARTIFACTSTORE-NAME> as a part of the compliance.report.web.root property within the cci-oerSynch.properties file.

Example: compliance.report.web.root=rep://CCI-Reports-Production/reports

Reports will then have the following URL pattern:

rep://CCI-Reports-Production/reports/cci/AIADemo/reports/composites/AIADemoBatchJMSAdapter.html#hide_link

The second property: compliance.report.web.root, represents the base URI for the host that will contain the Compliance Report HTML files. The value supplied in this property is concatenated with the inputDir parameter when running the CCI-OER Synch tool. This concatenated value is what is embedded into the asset's metadata for the compliance report link.

In most cases, the value of the compliance.report.web.root property will point to the artifact store which was configured in Section 5.2.1.

For example:

rep://CCI-REPORTS

5.2.3 Running the Check Compliance Command

Invoke CCI with the checkCompliance.sh on Linux or checkCompliance.bat command on Windows using the following switches:

	
-inputDir {Absolute path to the folder that contains composite(s)}

This is a mandatory switch indicating where the input dir is located. If the -inputMetaFile switch is not specified, this input is not necessarily representative of a SOA Suite project. If the -inputMetaFile switch is provided, this specifies the project root directory (the source folder containing the project folder from ComplianceInspector_Home).

	
-outputDir {Output folder where the compliance report will be generated}

This is a mandatory switch to indicate where the output reports will be stored. For example:

If your composites live here: /tmp/cci/composites/AIADemo

And you pass the output directory as: /tmp

Then CCI will put the produced files here: /tmp/AIADemo

	
-policiesFile {Policies file name}

Use this optional switch to indicate which policies file CCI should run against, for example, Policies-WS-I_11.x.xml. The file is available under ComplianceInspector/lib or ComplianceInspector/config (Tool class path) or embedded in the compliance.policy.engine.jar.

	
-policy {Policy name}

This is an optional switch to specify the policy to execute. If not given, the default policy from Policies.xml will be executed.

	
-assertion {Assertion name}

Use this optional switch to indicate which assertion CCI should run against. This will run the tool for a specific assertion that you have defined, for example, ABCSTargetNameSpacesCheck.

	
-inputMetaFile {absolute path to a SOA Suite project metafile}

Use this optional switch if you want to run reports for a specific SOA Suite project. The input metafile contains paths pointing to the specific directories that Code Compliance Inspector needs to scan so that the output results are specific for the SOA Suite project. This file contains the names of all of the services that are used in a given SOA Suite project. When this option is specified, the -inputDir switch will point to the project root directory since the input metafile contains the directory path relative to this root. Here are some examples:

-inputMetaFile <dir path of the file>/GenerateScriptInput.xml

-inputMetaFile <dir path of the file>/MyPIPDP.xml

	
-inputMetaFile ALL

Use this optional switch if you want to run reports for all of your SOA Suite projects. When this option is specified, the -inputDir switch will point to the project root directory since the input metafile contains the directory path relative to this root.

	
-version

The -version flag tells you which version of CCI (CCI build date and time) you are using. This is an optional argument that displays the version information.

Examples

Here are some examples for invoking the Code Compliance Inspector from a command line:

	
Windows: checkCompliance.bat -inputDir D:\composites\demo -outputDir D:\ComplianceOut

	
Linux: checkCompliance.sh -inputDir /composites/demo -outputDir /ComplianceOut

5.2.4 Harvesting the SOA or AIA Projects into OER

For more information about harvesting, see "Configuring and Using Automated Harvesting in Design-time and Runtime Environments" in the Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.

5.2.5 Running the CCI-OER Synch Command

The CCI-OER Synch updates composite assets in OER with links to the associated CCI reports. You must have already configured an OER artifact store, or otherwise have determined the location from which OER will publish the reports, before you run the CCI-OER Synch command.

If you are running the CCI-OER Synch command on the system from which OER will publish the reports, then you can specify the folder location in the cci-oerSynch.properties file using the oer.app.report.location property and the command will automatically move the reports from the input folder to the specified location.

If the destination OER report location is on a different system, then you must manually move the folder specified by the -reportLocation argument to the OER report location and ensure that the pathname to this location matches what is specified in the compliance.report.web.root property.

Examples:

For the artifact store:

compliance.report.web.root=rep\://INSTANCE/reports

For a direct HTTP resource:

compliance.report.web.root=http://www.example.com/CCI-REPORTS-Production

Running CCI-OER Synch

	
Update the cci-oerSynch.properties file, located in the ComplianceInspector/config directory, with the machine details where you have OER installed.

	
Run cci-oerSynch.bat or cci-oerSynch.sh, located in the ComplianceInspector/bin directory. Table 5-1 provides a list of the command line arguments you can pass:

Table 5-1 Command Line Arguments for OER Synch

	Argument	Type	Description
	
-url <url to oer web service>

	
Optional

	
URL to OER web service.

For example:

http://example.com:port/oer/services

	
-user <oer user name>

	
Optional

	
Valid OER user login. This user must have privileges to update asset instances.

	
-pwd <oer password for user name specified>

	
Optional

	
Password for the OER user login.

	
-reportLocation <path to output directory generated by CCI>

	
Required

	
Location of the CCI HTML compliance reports, created by the compliance inspection tool, which you want to integrate into OER.

	
Note:

If the optional command line arguments are not given, then the values will be taken from the cci-oerSynch.properties file. Command line arguments take precedence over the properties specified in the cci-oerSynch.properties file. Also, if the password is not given in the command line argument, then you will be prompted to enter it.

5.2.6 Copying the Files

	
Copy the newly generated CCI reports folder into the physical location associated with your OER artifact store.

Note that if this location is hosted on the same system as the original reports folder, the CCI-OER Synch will automate this move. Otherwise, this is a manual step.

	
To verify that this worked, check that the link was created on the composite asset in OER.

5.3 Configuring Reports for Access from the OER Reports Menu

After the CCI-OER Synch has linked CCI reports to composite assets in OER, a link to the report will appear on the composite detail page. CCI reports can be accessed from the OER Reports menu after the following configuration steps have been performed.

	
Note:

The name attribute in the report elements of the ComplianceReport.xml file are referenced within the $OER_APP_HOME/oer-app/WEB-INF/config/reports/custom.toc file. If these elements do not match, then the values of the displayName and description elements will not appear in the OER reports page.

The $OER_APP_HOME/oer-app/WEB-INF/config/reports/custom.toc file enables you to add URL patterns to a reporting system that you may have integrated with that is external from OER. The custom.toc file indicates which other XML files it will access to gather the 'custom' report grouping information from and display the corresponding information referred to in the custom.toc file.

To add and configure the compliance reports

	
Shut down the application server.

	
Edit the $OER_APP_HOME/oer-app/WEB-INF/config/reports/ComplianceReport.xml file.

Here is an out-of-the-box example of ComplianceReport.xml:

<?xml version="1.0" ?>
<reports>
 <report name="complianceReportDoc">
 <displayName>Compliance Report Documentation</displayName>
 <description>Documentation for setting up Compliance Reports.
 </description>
<externalLink>http://www.example.com/pls/topic/lookup?ctx=as111170&
id=OERIN851</externalLink>
 </report>
 <report name="complianceReport">
 <displayName>Compliance Report</displayName>
 <description>This is the index page for all technical compliance
reports.</description>
 <!-- update the host and port, according the your http enabled server
where you have hosted the compliance reports. Use the OER download servlet to
map the OER artifact store URL for browser consumption. Example:
<externalLink>http://server.example.com:7101/oer/com.flashline.cmee.
servlet.enterprisetab.Download?path=rep://INSTANCE/reports/cci/FPDemo/
index.html</externalLink> -->
 <externalLink>http://host.example.com/CCI/reports/index.html</externalLink>
 </report>
</reports>

	
If there is only one SOA Suite project being summarized, then modify the existing report named complianceReport and go to step 9.

	
If you are using an OER artifact store to reference the location of your reports (which is recommended) then you should use the following URL pattern as a part of the externalLink element in the CustomReport.xml file:

http://host.example.com:port/oer/com.flashline.cmee.servlet.enterprisetab.Download?path=rep://<ARTIFACTSTORENAME>/relative_path/index.html

The Download servlet is required to decode and reformat the URL to give the user the correct URL that the artifact store represents. The use of the OER artifact store allows OER administrators to alter the hostname/port and path for the report server(s) without being forced to re-synch or modify multiple assets to update these details.

	
If more than one SOA Suite project will be summarized, then duplicate the report section a number of times equal to the number of projects to be reported by the Check Compliance tool.

	
Update the name attribute of each report element to a meaningful name (each must be unique).

	
Update the displayName, description and external link elements as appropriate to the SOA Suite project's report summary pages and save the edits.

	
Edit the $OER_APP_HOME/oer-app/WEB-INF/config/reports/custom.toc file

Example:

<?xml version="1.0" ?>
<reportSections>
 <reportSection name="Custom">
 <summary></summary>
 <description>Custom reports provide you with the flexibility
to customize reports for your organization or build new reports that align
your organizational metrics with your program goals.</description>
 </reportSection>
 <reportSection name="Compliance Reports">
 <summary></summary>
 <description>Code Compliance Inspector report for design-time
compliance information</description>
 <report name="complianceReportDoc"/>
 <report name="complianceReport"/>
 </reportSection>
</reportSections>

	
Modify the report name elements to match those added or modified in the CustomReport.xml file.

	
Restart the OER application server for the changes to take effect, as shown in Figure 5-2.

Figure 5-2 OER Compliance Report Links

[image: OER compliance reports]

Here is a sample of a ComplianceReport.xml file that is using the OER artifact store to lead to the compliance report summary page:

<?xml version="1.0" ?>
<reports>
 <report name="complianceReport_project1">
 <displayName>Compliance Report (Project 1)</displayName>
 <description>This is the compliance report summary page for Composite
Project 1.</description>
 <!-- update the host and port, according the your http enabled server
where you have hosted the compliance reports -->
 <externalLink>http://host.example.com/CCI/reports/project1/index.html
</externalLink>
 </report>
 <report name="complianceReport_project2">
 <displayName>Compliance Report (Project 2)</displayName>
 <description>This is the compliance report summary page for Composite
Project 2.</description>
 <!-- update the host and port, according the your http enabled server
where you have hosted the compliance reports -->
 <externalLink>http://usclqaap04.us.example.com:8080/tr130107/com.flashline.cmee
.servlet.enterprisetab.Download?path=rep://INSTANCE/reports/cci/FPDemo/
index.html</externalLink>
 </report>
</reports>

The 'real' URL path to this location is:

http://usclqaap04.example.com:8080/tr130107/reports/cci/FPDemo/index.html

The italicized portion of the URL above is the relative path to the report files which is also the relative path after the repository name.

5.3.1 Reviewing the Reports

In OER, click the Compliance Report link shown in Figure 5-3 to see the overall report for all composites, shown in Figure 5-4

Figure 5-3 Compliance Report Link

[image: This image is described in surrounding text]

Figure 5-4 Overall Code Compliance Report

[image: This image is described in surrounding text]

Click a violating composite, shown in Figure 5-4 to see more detail about the violations and then fix the compliance problem.

You can also view compliance information on individual composites through OER, as in Figure 5-5.

Figure 5-5 Technical Compliance Report

[image: Surrounding text describes Figure 5-5 .]

Click the open link in the Compliance Report box to access detailed results, as shown in Figure 5-6.

Figure 5-6 Composite Compliance Report

[image: This image is described in surrounding text]

29 Subscriptions API

This chapter provides use cases for the Subscriptions API that describe how to create, read, or delete subscriptions to assets and how to read users subscribed to an asset in Oracle Enterprise Repository.

This chapter includes the following sections:

	
Section 29.1, "Overview"

	
Section 29.2, "Use Cases"

29.1 Overview

The Subscriptions API provides a mechanism for users to manage the assets to which a user is subscribed. Subscription, in this context, refers specifically to email subscriptions. Subscriptions created through this API are the equivalent of users clicking the Subscribe button on the asset detail page. After a user subscribes to an asset, they are notified through email of events occurring on the asset. For a list of events for which subscribed users are notified, see the "Email Templates" section in Oracle Fusion Middleware User's Guide for Oracle Enterprise Repository.

Using the Subscriptions API of REX, developers can create, delete, and inspect subscriptions to lists of assets. The operations are always performed for the user identified in the authentication token passed as an argument to the various subscription methods.

29.2 Use Cases

This section describes the use cases using the Subscriptions API. It includes the following topics:

	
Section 29.2.1, "Use Case: Create Subscription to Assets"

	
Section 29.2.2, "Use Case: Delete Subscription to Assets"

	
Section 29.2.3, "Use Case: Read Subscriptions for Assets"

	
Section 29.2.4, "Use Case: Read Users Subscribed to an Asset"

29.2.1 Use Case: Create Subscription to Assets

Description

	
Authenticate with REX.

	
Read a list of asset summaries through a query.

	
Subscribe to the matched assets.

Sample Code

Example 29-1 Use Case: Create a Subscription to Assets

package com.flashline.sample.subscriptionapi;
import java.net.MalformedURLException;
import java.net.URL;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import com.flashline.registry.openapi.base.OpenAPIException;
import com.flashline.registry.openapi.entity.AssetSummary;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.query.AssetCriteria;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class CreateSubscription {
 public static void main(String pArgs[]) throws OpenAPIException,
 RemoteException, ServiceException {
 try {
 // ///
 // Connect to Oracle Enterprise Repository
 // ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 FlashlineRegistry repository = new FlashlineRegistryServiceLocator()
 .getFlashlineRegistry(lURL);
 // ///
 // Login to OER
 // ///
 AuthToken authToken = repository.authTokenCreate(pArgs[1], pArgs[2]);
 // ///
 // find the assets to which to subscribe
 // ///
 AssetCriteria criteria = new AssetCriteria();
 criteria.setNameCriteria("%");
 AssetSummary[] lAssetSummaries = repository.assetQuerySummary(authToken,
 criteria);
 // ///
 // Iterate through assets, pulling out the ids and adding
 // to the array of longs
 // ///
 long[] lAssetIDs = new long[lAssetSummaries.length];
 for (int i = 0; i < lAssetSummaries.length; i++) {
 lAssetIDs[i] = lAssetSummaries[i].getID();
 }
 // ///
 // Create the subscriptions. The value of "false" for the
 // parameter pFailOnAnyError, causes the operation to NOT
 // fail for any asset to which the user does not have VIEW
 // privileges, or for which the asset is not subscribable.
 //
 // If this value is not "false", the operation throws
 // an exception if any asset in the array of asset IDs is
 // not subscribable or viewable by the user, and NONE of the
 // subscriptions are recorded in the repository.
 // ///
 repository.subscriptionCreate(authToken, lAssetIDs, false);
 } catch (OpenAPIException lEx) {
 System.out.println("ServerCode = " + lEx.getServerErrorCode());
 System.out.println("Message = " + lEx.getMessage());
 System.out.println("StackTrace:");
 lEx.printStackTrace();
 } catch (RemoteException lEx) {
 lEx.printStackTrace();
 } catch (ServiceException lEx) {
 lEx.printStackTrace();
 } catch (MalformedURLException lEx) {
 lEx.printStackTrace();
 }
 }
}

29.2.2 Use Case: Delete Subscription to Assets

Description

	
Authenticate with REX.

	
Read a list of asset summaries through a query.

	
Delete any subscriptions that may exist for the matched assets.

Sample Code

Example 29-2 Use Case: Delete a Subscription to Assets

package com.flashline.sample.subscriptionapi;
import java.net.MalformedURLException;
import java.net.URL;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import com.flashline.registry.openapi.base.OpenAPIException;
import com.flashline.registry.openapi.entity.AssetSummary;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.query.AssetCriteria;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class DeleteSubscription {
 public static void main(String pArgs[]) throws OpenAPIException,
 RemoteException,
 ServiceException {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 FlashlineRegistry repository = new FlashlineRegistryServiceLocator()
 .getFlashlineRegistry(lURL);
 ///
 // Login to OER
 ///
 AuthToken authToken = repository.authTokenCreate(
 pArgs[1],pArgs[2]);
 ///
 // find the assets for which to delete subscriptions
 ///
 AssetCriteria criteria = new AssetCriteria();
 criteria.setNameCriteria("%");
 AssetSummary[] lAssetSummaries = repository.assetQuerySummary(authToken,
 criteria);
 ///
 // Iterate through assets, pulling out the ids and adding
 // to the array of longs
 ///
 long[] lAssetIDs = new long[lAssetSummaries.length];
 for (int i = 0; i < lAssetSummaries.length; i++) {
 lAssetIDs[i] = lAssetSummaries[i].getID();
 }
 ///
 // Delete the subscriptions on the list of assets.
 ///
 repository.subscriptionDelete(authToken, lAssetIDs);
 } catch (OpenAPIException lEx) {
 System.out.println("ServerCode = " + lEx.getServerErrorCode());
 System.out.println("Message = " + lEx.getMessage());
 System.out.println("StackTrace:");
 lEx.printStackTrace();
 } catch (RemoteException lEx) {
 lEx.printStackTrace();
 } catch (ServiceException lEx) {
 lEx.printStackTrace();
 } catch (MalformedURLException lEx) {
 lEx.printStackTrace();
 }
 }
}

29.2.3 Use Case: Read Subscriptions for Assets

Description

	
Authenticate with REX.

	
Read the list of subscribed assets for the authenticated user.

Sample Code

Example 29-3 Use Case: Read Subscriptions for Assets

package com.flashline.sample.subscriptionapi;
import java.net.MalformedURLException;
import java.net.URL;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import com.flashline.registry.openapi.base.OpenAPIException;
import com.flashline.registry.openapi.entity.Asset;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class ReadSubscriptions {
 public static void main(String pArgs[]) throws OpenAPIException,
 RemoteException,
 ServiceException {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 FlashlineRegistry repository = new FlashlineRegistryServiceLocator()
 .getFlashlineRegistry(lURL);
 ///
 // Login to OER
 ///
 AuthToken authToken = repository.authTokenCreate(
 pArgs[1],pArgs[2]);
 //
 // Read all of the assets to which the user is subscribed.
 //
 long[] lSubscribedAssets =
 repository.subscriptionReadSubscribedAssets(authToken);
 //
 // Print out the assets to which the user is subscribed
 //
 Asset[] lAssets = repository.assetReadArray(authToken, lSubscribedAssets);
 System.out.println("Subscribed Assets for user "+pArgs[1]);
 for(int i=0; i<lAssets.length; i++){
 System.out.println(" -> "+lAssets[i].getLongName());
 }
 } catch (OpenAPIException lEx) {
 System.out.println("ServerCode = " + lEx.getServerErrorCode());
 System.out.println("Message = " + lEx.getMessage());
 System.out.println("StackTrace:");
 lEx.printStackTrace();
 } catch (RemoteException lEx) {
 lEx.printStackTrace();
 } catch (ServiceException lEx) {
 lEx.printStackTrace();
 } catch (MalformedURLException lEx) {
 lEx.printStackTrace();
 }
 }
}

29.2.4 Use Case: Read Users Subscribed to an Asset

Description

	
Authenticate with REX.

	
Read the list of users subscribed to a particular asset.

Sample Code

Example 29-4 Use Case: Read Users Subscribed to an Asset

package com.flashline.sample.subscriptionapi;
import java.net.MalformedURLException;
import java.net.URL;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import com.flashline.registry.openapi.base.OpenAPIException;
import com.flashline.registry.openapi.entity.AssetSummary;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.entity.RegistryUser;
import com.flashline.registry.openapi.query.AssetCriteria;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class ReadSubscribersToAsset {
 public static void main(String pArgs[]) throws OpenAPIException,
 RemoteException,
 ServiceException {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 FlashlineRegistry repository = new FlashlineRegistryServiceLocator()
 .getFlashlineRegistry(lURL);
 ///
 // Login to OER
 ///
 AuthToken authToken = repository.authTokenCreate(
 pArgs[1],pArgs[2]);
 //
 // Assume that this query returns some number of assets...
 //
 AssetCriteria lCriteria = new AssetCriteria();
 lCriteria.setNameCriteria("%");
 AssetSummary[] lAssetSummaries = repository.assetQuerySummary(authToken,
 lCriteria);
 //
 // Read the users that are subscribed to the first asset
 //
 RegistryUser[] lSubscribedUsers =
 repository.subscriptionReadUsersSubscribedToAsset(authToken,
 lAssetSummaries[0].getID());
 for (int i=0; i<lSubscribedUsers.length; i++){
 System.out.println("Subscribed Users:
 "+lSubscribedUsers[i].getUserName());
 }
 } catch (OpenAPIException lEx) {
 System.out.println("ServerCode = " + lEx.getServerErrorCode());
 System.out.println("Message = " + lEx.getMessage());
 System.out.println("StackTrace:");
 lEx.printStackTrace();
 } catch (RemoteException lEx) {
 lEx.printStackTrace();
 } catch (ServiceException lEx) {
 lEx.printStackTrace();
 } catch (MalformedURLException lEx) {
 lEx.printStackTrace();
 }
 }
}

[image: Oracle Corporation]

21 Department API

This chapter provides a use case for the Department API that describes how to create, update, query, and delete departments in Oracle Enterprise Repository.

This chapter includes the following sections:

	
Section 21.1, "Overview"

	
Section 21.2, "Use Case"

21.1 Overview

Departments can be created, read, queried for, and modified. These operations are described below. Bear in mind that after a Department is created, it cannot be deleted. Only two Department attributes are meaningful to a user: name and description.

Additional Import(s) Required

import com.flashline.registry.openapi.entity.Department;

21.2 Use Case

This section describes the use case using the Department API. It includes the following topic:

	
Section 21.2.1, "Use Case: Manipulate Departments"

21.2.1 Use Case: Manipulate Departments

Description

The following sample code illustrates typical tasks involving the manipulation of departments in Oracle Enterprise Repository. This includes creation, updating, querying, and deleting.

Sample Code

Example 21-1 Use Case: Manipulate Departments

package com.flashline.sample.departmentapi;
import java.net.MalformedURLException;
import java.net.URL;
import java.rmi.RemoteException;
import java.util.Calendar;
import javax.xml.rpc.ServiceException;
import com.flashline.registry.openapi.base.OpenAPIException;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.entity.Department;
import com.flashline.registry.openapi.query.DepartmentCriteria;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class Departments {
 public static void main(String pArgs[]) throws java.rmi.RemoteException,
 OpenAPIException {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 FlashlineRegistry repository = new FlashlineRegistryServiceLocator()
 .getFlashlineRegistry(lURL);
 // //////////////////////////////
 // Authenticate with OER
 // //////////////////////////////
 AuthToken authToken = repository.authTokenCreate(pArgs[1],
 pArgs[2]);
 // //////////////////////////////
 // Create a new department
 // Each Department requires a unique name. Descriptions are optional.
 // //////////////////////////////
 Department dept = repository.departmentCreate(authToken,
 "My Dept "+Calendar.getInstance().getTimeInMillis(), "A New
 Department");
 // //////////////////////////////
 // Read a department
 // To read a Department you must have the Department name.
 // //////////////////////////////
 Department dept2 = repository.departmentRead(authToken,
 "ADepartment");
 // //////////////////////////////
 // Query for a department
 //
 // To query for a Department you must fill out a
 // DepartmentCriteria object with an array of SearchTerms. A SearchTerm
 // is a key/value pair. Currently the only valid key is "name".
 //
 // A query for name is a match if the value for the name term
 // occurs anywhere in the name of the department. For example,
 // a search for fred matches fred, alfred, and fredrick.
 // //////////////////////////////
 DepartmentCriteria criteria = new DepartmentCriteria();
 criteria.setNameCriteria("DepartmentName");
 Department[] depts = repository.departmentQuery(authToken,
 criteria);
 // //////////////////////////////
 // Update a department
 //
 // To update a Department you need only to modify a Department
 // reference and call departmentUpdate...
 // //////////////////////////////
 String lOldName = dept.getName();
 String lNewName = "New " + dept.getName();
 Department dept3 = repository.departmentRead(authToken, lOldName);
 dept3.setName(lNewName);
 repository.departmentUpdate(authToken, dept3);
 } catch (OpenAPIException lEx) {
 System.out.println("ServerCode = " + lEx.getServerErrorCode());
 System.out.println("Message = " + lEx.getMessage());
 System.out.println("StackTrace:");
 lEx.printStackTrace();
 } catch (RemoteException lEx) {
 lEx.printStackTrace();
 } catch (ServiceException lEx) {
 lEx.printStackTrace();
 } catch (MalformedURLException lEx) {
 lEx.printStackTrace();
 }
 }
}

9 Configuring Oracle Enterprise Repository to Support Integration with Your IDE

This chapter describes how to configure Oracle Enterprise Repository to support integration with your IDE.

Complete the following steps in Oracle Enterprise Repository before configuring the IDE:

	
Section 9.1, "Install the Harvester"

	
Section 9.2, "Assign IDE Users to Oracle Enterprise Repository Projects"

	
Section 9.3, "Establish Compliance Templates"

	
Section 9.4, "Set up Automatic Usage Detection"

9.1 Install the Harvester

The Harvester can harvest standards-based artifacts generated from any IDE such as Oracle JDeveloper, Eclipse, and VS .NET. The Harvester can be integrated with any of these IDEs and then run with the respective IDE client.

For more information about the Harvester, see Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.

9.2 Assign IDE Users to Oracle Enterprise Repository Projects

Oracle Enterprise Repository tracks assets produced by projects in any IDE such as Oracle JDeveloper, Eclipse, and VS .NET, as well as assets consumed by the projects created in these IDEs.

For more information about adding a new project and assigning users to the project, see Oracle Fusion Middleware User's Guide for Oracle Enterprise Repository.

9.3 Establish Compliance Templates

Compliance Templates describe a particular family of Oracle Enterprise Repository artifacts and are available only for some product configurations such as Eclipse and VS .NET. Compliance templates are required to support the Prescriptive Reuse use cases.

For more information about how to establish compliance templates, see Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.

9.4 Set up Automatic Usage Detection

Software File Identification (SFID) is a process of determining asset usage in Oracle Enterprise Repository. You can use SFID to work with your development environment such as Eclipse and VS .NET. Depending on your IDE, SFID requires the installation of the Oracle Enterprise Repository Plug-in for Workspace Studio, which is an Eclipse-based IDE, or the Oracle Enterprise Repository Plug-in for Visual Studio .NET.

For more information about setting up automatic usage detection using SFID, see Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.

10 Configuring Your IDE to Support Integration with Oracle Enterprise Repository

This chapter describes how to configure Oracle JDeveloper, Eclipse, and Visual Studio .NET (VS .NET) to integrate with Oracle Enterprise Repository.

This chapter includes the following sections:

	
Section 10.1, "Configuring Oracle JDeveloper"

	
Section 10.2, "Configuring Eclipse"

	
Section 10.3, "Configuring VS .NET"

10.1 Configuring Oracle JDeveloper

This section contains the following topics:

	
Section 10.1.1, "Integrating with Oracle JDeveloper 11g R1 Patchset Releases"

	
Section 10.1.2, "Integrating with Oracle JDeveloper 11g R1"

	
Section 10.1.3, "Integrating with Oracle JDeveloper 10g"

10.1.1 Integrating with Oracle JDeveloper 11g R1 Patchset Releases

To create a connection between the Oracle Enterprise Repository and Oracle JDeveloper 11g Release 1 PatchSets:

	
Install Oracle JDeveloper on your local computer.

	
Open Oracle JDeveloper and click Help, Check for Updates. The Check for Updates dialog is displayed.

	
Click Next. The Source page is displayed, as shown in Figure 10-1.

Figure 10-1 Check for Updates - Source Page

[image: This image is described in surrounding text]

Description of "Figure 10-1 Check for Updates - Source Page"

	
Click Next. The Updates page is displayed.

	
Enter soa in the Available Updates box, and search for Oracle SOA Composite Editor 11.1.1.x.x.

	
Select the SOA JDeveloper Extension update and click Next. The Download page is displayed.

	
Note:

The version of Composite editor may change based on the JDeveloper version you are using.

	
Click Next. The Summary page is displayed.

	
Click Finish.

	
Restart Oracle JDeveloper. The Oracle JDeveloper window is displayed.

	
Repeat Steps 2 to 4. The Updates page is displayed.

	
Enter repository in the Available Updates box, and search for available updates.

	
Select both the extensions: Oracle Enterprise Repository Adapter 111.1.1.x.x and Oracle Enterprise Repository Harvester 111.1.1.x.x and click Next. The Download page is displayed.

	
Note:

The versions of Oracle Enterprise Repository Adapter and Oracle Enterprise Repository Harvester Extensions may vary based on the JDeveloper version you are using.

	
Click Next. The Summary page is displayed. Confirm that you have selected extensions for both Oracle Enterprise Repository and Oracle Enterprise Repository Harvester.

	
Click Finish.

	
Restart Oracle JDeveloper. The Oracle JDeveloper window is displayed.

	
Click File, New. The New Gallery dialog is displayed.

	
Select General, Connections, and then select Oracle Enterprise Repository Connection, as shown in Figure 10-2.

Figure 10-2 New Gallery Dialog

[image: This image is described in surrounding text]

Description of "Figure 10-2 New Gallery Dialog"

	
Click OK. The Create Oracle Enterprise Repository Connection dialog is displayed, as shown in Figure 10-3.

Figure 10-3 Create Oracle Enterprise Repository Connection Dialog

[image: This image is described in surrounding text]

Description of "Figure 10-3 Create Oracle Enterprise Repository Connection Dialog"

	
Enter the following information:

	
Repository URL: The URL from where a running instance of Oracle Enterprise Repository can be accessed.

	
User Name: The user name for the Oracle Enterprise Repository.

	
Password: The password for the Oracle Enterprise Repository.

	
Click Test Connection. A success message is displayed in the Status pane.

	
Click OK.

	
In the Resource Palette, under IDE Connections, expand Oracle Enterprise Repository to see the application server connection that you created, as shown in Figure 10-4.

Figure 10-4 Resource Palette

[image: This image is described in surrounding text]

Description of "Figure 10-4 Resource Palette"

	
Enter a search criteria to search for assets in the Search field. A list of all the assets is displayed, as shown in Figure 10-5.

Figure 10-5 Search Results

[image: This image is described in surrounding text]

Description of "Figure 10-5 Search Results"

	
Note:

	
You have to install SOA Harvester Solution Pack into Oracle Enterprise Repository to enable harvesting from JDeveloper. This is applicable for both JDeveloper 10g and 11g.

	
Steps 16 - 23 that describe the procedure for creating and testing the Oracle Enterprise Repository connection is same for all the patchset releases (11.1.1.x.x).

10.1.2 Integrating with Oracle JDeveloper 11g R1

To install the harvester Ant tasks in JDeveloper 11g or in SOA Suite 11g, perform the following steps:

	
Double-click jdeveloper.exe in the jdev installation directory to open Oracle JDeveloper.

	
Note:

You should start and close the JDeveloper application at least once during this step.

	
Unzip the harvester zip file into your JDeveloper installation. The contents of the zip file are extracted to the <jdeveloper_home>/harvester directory.

	
Edit the tools11g.xml file to match your JDeveloper installation.

	
Merge the contents of tools11g.xml into your JDeveloper's product preferences XML file located in the <jdeveloper_home>\system11.1.1.x.xx.xx.xx\o.jdeveloper\product-preferences.xml directory.

If there is an existing entry "<hash n = "oracle.ideimpl.externaltools.ExternalToolList">, then replace with the contents in the tools11g.xml file. If not, add it right after the initial <ide:preferences> element.

10.1.3 Integrating with Oracle JDeveloper 10g

To configure Oracle JDeveloper to support the integration with Oracle Enterprise Repository, perform the following steps:

	
Navigate to the Oracle_HOME\repositoryXXX\core\tools\solutions directory and unzip the 11.1.1.x.x-OER-Harvester.zip file to the Oracle JDeveloper directory. For example, if the jdeveloper.exe file is located in C:\oracle\soa, ensure that the introspector directory is unzipped into that directory.

	
Navigate to the <jdeveloper_home>\harvester directory and right-click the tools.xml file to open in a text editor.

	
Copy all the elements between the <tools> and </tools> elements and paste the copied elements into the tools.xml file in the <jdeveloper_home>\jdev\system\oracle.jdeveloper.10.1.xxxxx directory.

	
Save the tools.xml file in the <jdeveloper_home>\jdev\system\oracle.jdeveloper.10.1.xxxxx directory.

	
Start Oracle JDeveloper. In JDeveloper window, select Tools, External Tools. The following two options are displayed:

	
Submit this File into OER

	
Submit this Project into OER

	
Select Submit this File into OER and click Edit. The Edit External Tool dialog is displayed.

	
Click the Properties tab, and configure the missing properties to point to your Oracle Enterprise Repository server.

	
To point to an external HarvesterSettings.xml file, add a property called settings.file, and set the value to the URL of the settings file, for example, c:\temp\MyHarvesterSettings.xml.

	
Repeat Steps 6 to 8 for the Submit this Project into OER option.

	
In the Applications Navigator, select a file, and right-click and then select Submit this File into OER or Submit this Project into OER.

	
Note:

Oracle JDeveloper 10g does not support multi-select correctly for external tools. Even if you multi-select, only one file is harvested.

	
In the Edit External Tool dialog, click the Process tab.

	
Click Change to change the JDK version to 1.6, and then click OK.

	
Note:

Oracle Enterprise Repository browsing is not supported from Oracle JDeveloper 10g. To make 10g assets as consumable:

	
Harvest assets from JDeveloper 10g.

	
Reharvest from SOA runtime for just WSDLs.

Also, the assets that are harvested from JDeveloper 10g or 11g cannot be used for consumption.

10.2 Configuring Eclipse

The Harvester integrates the Oracle SOA Suite artifacts to Oracle Enterprise Repository to support the visibility, impact analysis, and reusability use cases. This section describes the various steps involved in configuring Eclipse to support integration with Oracle Enterprise Repository:

	
Section 10.2.1, "Enable Harvesting in Eclipse using ANT"

	
Section 10.2.2, "Configure the Oracle Enterprise Repository Plug-ins"

	
Section 10.2.3, "Configure the Oracle Enterprise Repository Preferences"

	
Section 10.2.4, "Enable Automatic Usage Detection"

10.2.1 Enable Harvesting in Eclipse using ANT

This section describes how to harvest sample artifacts into Oracle Enterprise Repository using Eclipse.

10.2.1.1 Setting up Eclipse Environment to use Harvester Using ANT

	
In the Eclipse Workspace, select Run, External Tools, External Tools Configurations.

	
Create a new ANT build.

	
In the Main tab, enter the following:

	
Buildfile: <Harvester_Home>\harvester-ant.xml

	
Base Directory: <Harvester_Home>

	
In the Targets tab, check the introspect-project option.

	
In the Classpath tab, add the following external jars:

	
<Harvester_Home>\lib\mail-1.4.jar

	
<Harvester_Home>\lib\activation-1.0.2.jar

	
In the Properties tab, add the following properties/values

	
project.dir/${project_loc}

	
registration.status/<"Unsubmitted", "Submitted - Pending Review", "Submitted - Under Review", or "Registered">

	
repository.url/http://localhost:7101/oer/

	
repository.username/admin

	
repository.password/<encrypted password>

	
In the Common tab, enable the External Tools option.

	
Click Apply, and then click Close.

After the configuration of the Properties tab, the External Tools dialog is displayed, as shown in Figure 10-6.

Figure 10-6 External Tools Dialog - Properties Tab

[image: This image is described in surrounding text]

Description of "Figure 10-6 External Tools Dialog - Properties Tab "

10.2.1.2 Harvesting in Eclipse Environment using ANT

	
In Eclipse, click New, Project, General, Project to create a new eclipse project.

	
Browse for any WSDL file in the file system, copy and paste it into the project that you just created.

	
Select the project and then click Submit this file to Oracle Enterprise Repository using ANT. This invokes Harvester and submits all the artifacts in the project, as shown in Figure 10-7.

Figure 10-7 The Console Window

[image: This image is described in surrounding text]

Description of "Figure 10-7 The Console Window"

10.2.2 Configure the Oracle Enterprise Repository Plug-ins

This section describes the steps to configure the Oracle Enterprise Repository Plug-ins for repository access and the prerequisites to enable this configuration. This section contains the following topics:

	
Section 10.2.2.1, "Configuring the Oracle Enterprise Repository Plug-ins for Repository Access"

	
Section 10.2.2.2, "Prerequisites for Using the Oracle Enterprise Repository Plug-ins for Eclipse"

10.2.2.1 Configuring the Oracle Enterprise Repository Plug-ins for Repository Access

For instructions on installing the Oracle Enterprise Repository plug-ins for repository access within the Eclipse-based Enterprise Repository Plug-in for Eclipse, see Oracle Fusion Middleware Installation Guide for Oracle Enterprise Repository.

Prerequisites for Using the Oracle Enterprise Repository Plug-in for Eclipse

Perform the following steps to install the Oracle Enterprise Repository plug-in for repository access:

	
Open Eclipse. The Eclipse window is displayed.

	
Click Help, Install New Software. The Install dialog is displayed.

	
Click the Add button that is found at the end of the Work With field. The Add Site dialog is displayed.

	
Enter Oracle Enterprise Repository in the Name field and http(s)://<hostname>:<port>/<context>-web/eclipse in the Location field.

	
Click OK.

	
Select Oracle Enterprise Repository and Click Next.

	
Review the items that must be installed.

	
Click Next and accept the agreement.

	
Click Finish.

	
In the Confirmation dialog, click Yes to restart Eclipse.

Click Windows, Preferences to verify if the Oracle Enterprise Repository plug-in was installed.

Uninstalling the Oracle Enterprise Repository Plug-ins

The Oracle Enterprise Repository plug-in for Eclipse can be uninstalled the same as any other Eclipse plug-in through the Eclipse software update menu.

Installing Products After Installing Oracle Enterprise Repository

If Oracle Service Bus applications are installed after the Oracle Enterprise Repository plug-in is installed, then Eclipse must be launched using the -clean flag.

10.2.2.2 Prerequisites for Using the Oracle Enterprise Repository Plug-ins for Eclipse

You should complete the prerequisites described in this section before using the Oracle Enterprise Repository plug-ins for Eclipse:

	
Section 10.2.2.2.1, "Assign Users to an Oracle Enterprise Repository Project"

	
Section 10.2.2.2.2, "Enabling the Assets-in-Progress Properties"

	
Section 10.2.2.2.3, "SiteMinder"

	
Section 10.2.2.2.4, "Java JDK"

	
Section 10.2.2.2.5, "XML Parsing"

10.2.2.2.1 Assign Users to an Oracle Enterprise Repository Project

To download assets from the repository, users must be assigned to at least one Oracle Enterprise Repository project. An Oracle Enterprise Repository project administrator can assign users to projects using the Oracle Enterprise Repository Projects page.

Obtain the Eclipse integration path from the Oracle Enterprise Repository administrator. (For example, http://appserver.example.com/oer-web/eclipse).

10.2.2.2.2 Enabling the Assets-in-Progress Properties

Two system settings must be enabled to activate Assets-in-Progress when using the Oracle Enterprise Repository Plug-in for Eclipse.

This procedure is performed on the Oracle Enterprise Repository Admin screen.

	
Click System Settings.

	
Click General Settings in the System Settings section.

	
Enter the cmee.asset.in-progress property in the Enable New System Setting box and click Enable to reveal this hidden property.

	
Ensure the Asset in Progress property is set to True.

	
Click Save.

	
Enter the cmee.asset.in-progress.visible property in the Enable New System Setting box and click Enable to reveal this hidden property.

	
Ensure the Asset in Progress property is set to True.

	
Click Save.

The Registration Status list now appears in the Search section on the Oracle Enterprise Repository Assets screen. For more information about Assets-in-Progress, see Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.

10.2.2.2.3 SiteMinder

If Oracle Enterprise Repository is or will be configured to be secured by Siteminder, the policy server must be configured to ignore (or unprotect) the following URL:

http://appserver.example.com:8080/oer-web/eclipse/

10.2.2.2.4 Java JDK

The Java Cryptography Extension (JCE) is required. It is provided in JDK v1.4, and is available as an optional package in JDK 1.2.x through 1.5.x. Note that Oracle Enterprise Repository plug-ins for use with Eclipse 3.x require JDK v 1.5.x or later.

10.2.2.2.5 XML Parsing

Since Editor and Viewer metadata is represented as CDATA-escaped XML, some XML parsers may exceed their entity expansion limit when communicating with Oracle Enterprise Repository. For example, if you have defined a large number of Asset Types in Oracle Enterprise Repository, then you may must increase the Entity Expansion Limit of your XML parser.

On some popular parsers, the default entity expansion limit is set to 64,000. This limit can be increased on JAXP-compliant processors by passing a command-line parameter called entityExpansionLimit. The entityExpansionLimit can be increased by passing a VM argument on the Eclipse command-line (modify the Eclipse desktop shortcut). For example, set the target of the shortcut to the following:

c:\eclipse\eclipse.exe -debug -consolelog -vmargs -DentityExpansionLimit=1048576

10.2.3 Configure the Oracle Enterprise Repository Preferences

This section describes the steps to configure the Oracle Enterprise Repository connection.

When you invoke an action on a repository, such as querying or publishing assets, before repository connectivity has been established, then the Connect to Enterprise Repository wizard is either automatically displayed (in the case of querying the repository), or is launched by an explicit user gesture.

	
Note:

If credential information had been specified in a previous session, the wizard is displays this persisted information when it is launched.

	
In the Credentials area, as shown in Figure 10-8, enter the server location and login credentials, as follows:

	
Repository URL: the URL of the repository server. The URL must include the host, port, and Oracle Enterprise Repository server name, for example, http://localhost:7001/oer.

	
User Name: user name to gain access to the repository.

	
Password: password to gain access to the repository.

Figure 10-8 Establish Enterprise Repository Connection

[image: This image is described in surrounding text]

Description of "Figure 10-8 Establish Enterprise Repository Connection"

	
Click the Establish Connection button to ensure enterprise repository connectivity.

If a connection cannot be established, then an appropriate error message is displayed.

	
In Figure 10-9, after connectivity is established, you can either:

	
Click Finish to exit.

	
Click Next to select your workspace preferences (skip to Step 4).

Figure 10-9 Specify Workspace Preferences

[image: This image is described in surrounding text]

Description of "Figure 10-9 Specify Workspace Preferences "

	
After connectivity is established, you can specify your workspace preferences:

	
Select a Repository project in Oracle Enterprise Repository that the submitted model is associated with. Asset usage is tracked in the repository and attributed to repository projects, which typically represent software development programs, business initiatives, and so on.

	
Enable usage detection: If you selected an Oracle Enterprise Repository project as the workspace default, usage detection is enabled for the default Oracle Enterprise Repository project. For more information about workspace preferences, see Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.

	
Click Finish to exit.

10.2.4 Enable Automatic Usage Detection

Oracle Enterprise Repository can automatically detect asset reuse within the development environment. This enables development teams to ensure that they get asset reuse credit, regardless of whether the assets have been downloaded through Oracle Enterprise Repository or pulled from another source, such as the developer's desktop. Automated Usage Detection relies on a fingerprinting process, called Software File Identification (SFID), which tags selected files within an asset with a unique ID. This SFID is then used to detect when and where an asset is used, even if the asset was acquired through means other than the Oracle Enterprise Repository Use - Download process. An instance of usage is recorded by Oracle Enterprise Repository when tagged files within the asset are brought into the developer's IDE, and a new build or build clean occurs.

For more information, see Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.

	
Note:

Automated Usage Detection requires the installation of the Oracle Enterprise Repository Plug-in for Eclipse, and is currently compatible only with Eclipse and Eclipse-based IDEs.

	
On the Window menu, click Preferences.

	
Select Oracle Enterprise Repository.

	
Select Workspace Automatic Usage Detection. The Workspace Automatic Usage Detection screen is displayed, as shown in Figure 10-10.

Figure 10-10 Preferences - Workspace Automatic Usage Detection

[image: This image is described in surrounding text]

Description of "Figure 10-10 Preferences - Workspace Automatic Usage Detection "

	
Click the Detect usage in workspace projects option, and then activate the desired usage detection features, as appropriate:

	
Enable usage detection in new workspace projects by default - monitors new projects

	
Detect usage of files on classpath - monitors files on classpath.

	
Detect usage of Java Run-time JARs - monitors Java run-time JARs

	
Cache calculated SFIDs (recommended) - caches calculated SFIDs (enhances performance)

	
Detect usage of files matching pattern - monitors files matching specified patterns

	
Enter the appropriate information in the File Pattern text boxes:

	
Include File Pattern - Includes indicated file pattern

	
Exclude File Pattern - Excludes the indicated file pattern

	
Specify which project directories are targets for automatic usage detection by using the individual check boxes or by using the Select All and/or Unselect All buttons.

	
Click OK when finished.

10.3 Configuring VS .NET

Oracle Enterprise Repository integration with Visual Studio .NET provides users with the ability to easily search for and use assets from the repository without leaving the VS .NET IDE environment. Assets and any associated artifacts are downloaded directly to your VS .NET solution. Repository Access within the VS .NET solution also provides a view into Oracle Enterprise Repository that enables you to download artifacts and assets from the repository, query the repository, and view the contents of the repository.

This section contains the following topics:

	
Section 10.3.1, "Enable Harvesting in VS .NET"

	
Section 10.3.2, "Configure the Oracle Enterprise Repository Plug-ins"

	
Section 10.3.3, "Configure the Connection to Oracle Enterprise Repository"

	
Section 10.3.4, "Assign an Oracle Enterprise Repository Project to a .NET Solution"

	
Section 10.3.5, "Enable Automatic Usage Detection"

10.3.1 Enable Harvesting in VS .NET

	
In Microsoft Visual Studio, click Tools, External Tools. The External Tools dialog is displayed.

	
Click Add. A entry is added to the Menu Contents pane.

	
Enter the following details in the External Tools dialog, as shown in Figure 10-11:

	
In the Title field, type OER - Harvest.

	
In the Command field, click the Browse button at the end of the field and select the harvest.bat file in the harvester directory.

	
In the Arguments field, type the -dir parameter. Click the right-arrow at the end of this field and select ItemPath from the menu.

	
In the Initial Directory field, type the location of the harvester directory.

	
Select the Use Output Window option. This option enables you to monitor progress.

Figure 10-11 External Tools Dialog

[image: This image is described in surrounding text]

Description of "Figure 10-11 External Tools Dialog"

	
Click OK.

	
Select the WSDL file in the Microsoft Visual Studio and click Tools, OER - Harvest. The Output window is displayed with the Shutdown and Clean up messages indicating that the introspection is complete.

	
Open the Oracle Enterprise Repository home page with your username/password credentials.

	
In Assets pane, enter the name of the WSDL as the search criteria in the Enter Search String field, and then click Search. The search results are displayed in the right pane.

	
Select the service in the search results section, the details of the service are displayed in the bottom pane.

	
Click the Navigator button to view the relationships.

	
In the Oracle Enterprise Repository main page, click Admin, and then System Settings. The System Settings page is displayed.

	
Enter Show in the Search field, and set the Show System-Supplied Relationships option to True.

	
Click Save at the bottom of the page.

	
In the Oracle Enterprise Repository main page, click Assets and repeat the same search that you performed in step 7. The automatic relationships that were not imported earlier are now imported.

10.3.2 Configure the Oracle Enterprise Repository Plug-ins

Oracle Enterprise Repository can automatically detect asset reuse within the development environment. This enables development teams to ensure that they get asset reuse credit, regardless of whether the assets have been downloaded through Oracle Enterprise Repository. For more information, see Section 10.3.5, "Enable Automatic Usage Detection".

10.3.2.1 Prerequisites

To configure the Oracle Enterprise Repository plug-ins, you need the following prerequisites:

	
Microsoft Visual Studio 2008.

	
Microsoft Visual J# 2005 runtime. (If J# is not installed on your computer, the installer prompts you to download the correct version from Microsoft.)

	
The VS .NET Always show solution option should be selected (Tools -> Options -> Projects and Solutions -> General).

	
Users must be assigned to at least one Oracle Enterprise Repository project. A Project Administrator can assign users to projects using the Oracle Enterprise Repository Projects page.

	
If your Oracle Enterprise Repository is or will be secured by Siteminder, then you must configure the policy server to ignore (or unprotect) the following URL to allow the OpenAPI integration to function properly:

	
http://appserver.example.com:8080/OER/services/

10.3.2.2 Installation

To install VS .NET plug-in, perform the following steps:

	
Download the VS .NET plug-in Zip file from your Oracle Enterprise Repository instance at the following URL:

http://appserver.example.com/oer-web/integration/dotnet/OER103-VisualStudioAddin.zip

	
Unzip the OER103-VisualStudioAddin.zip file.

	
Locate and run the setup.exe program.

	
Follow the prompts, as shown in Figure 10-12, to select installation parameters.

Figure 10-12 Oracle Enterprise Repository Adapter Add-in for Visual Studio

[image: This image is described in surrounding text]

Description of "Figure 10-12 Oracle Enterprise Repository Adapter Add-in for Visual Studio"

	
Click Finish to complete the installation.

	
Follow the instructions in Section 10.3.3, "Configure the Connection to Oracle Enterprise Repository" to configure and establish a connection to an Oracle Enterprise Repository instance from VS. NET.

10.3.3 Configure the Connection to Oracle Enterprise Repository

Follow these steps to configure and establish a connection to an Oracle Enterprise Repository instance from VS. NET.

	
Launch Visual Studio .NET.

	
Open the Tools menu and click Options.

	
On the list of options, click the OER Add-in for Visual Studio .NET option, as shown in Figure 10-13, and provide the required login information.

Figure 10-13 The Options Dialog

[image: This image is described in surrounding text]

Description of "Figure 10-13 The Options Dialog"

	
OER URL: The URL of the Oracle Enterprise Repository instance, for example, http://appserver.example.com/OER.

	

	
Note:

Do not include index.jsp used in the default home page as part of the URL.

	
User Name: The user name to connect as.

	
User Password: The password to connect with. Passwords are case-sensitive.

	
Establish Connection: Click to verify a valid connection.

	
Automatically register downloaded Asset files: If selected, downloaded asset files are registered with the Windows Registry, as appropriate. This may be overridden on an case-by-case basis for each asset download.

	
Click the Establish Connection button to connect to the Oracle Enterprise Repository instance you specified.

	
Optionally, click the Advanced button to enable additional Oracle Enterprise Repository options:

	
Usage detection for VS .NET Solution Projects

	
Automated usage detection of referenced DLLs, WSDLs, and allow local caching of SFIDs (if SFID is enabled at your installation)

	
File name patterns to include and exclude

	
Click OK when finished.

10.3.4 Assign an Oracle Enterprise Repository Project to a .NET Solution

To track the usage of downloaded assets, an Oracle Enterprise Repository project must be assigned to a .NET solution.

	
Note:

Before using this feature, you must be assigned to at least one Oracle Enterprise Repository Project by a Project Administrator.

	
Open the .NET Solution Explorer.

	
Right-click a solution in the file tree and select the Oracle Enterprise Repository Add-in for Visual Studio .NET option from the context menu.

	
Click Assign OER Project from the submenu, as shown in Figure 10-14.

Figure 10-14 The Solution Explorer Window

[image: This image is described in surrounding text]

Description of "Figure 10-14 The Solution Explorer Window"

	
In the Project Selection window, use the Select the Oracle Enterprise Repository Project list to view the Oracle Enterprise Repository projects that you are assigned to, as shown in Figure 10-15.

Figure 10-15 Oracle Enterprise Repository Project Selection Dialog

[image: This image is described in surrounding text]

Description of "Figure 10-15 Oracle Enterprise Repository Project Selection Dialog"

	
Note:

If the list is empty, you have not been assigned to any projects and the procedure must be canceled.

	
Select an Oracle Enterprise Repository project from the list.

	
Click Finish to save your changes.

10.3.5 Enable Automatic Usage Detection

Follow these steps to enable advanced configuration options, such as enabling automatic usage detection of DLLs, WSDLs, local caching of SFIDs, and file pattern detection.

10.3.5.1 Overview of SFID

If SFID is enabled at your installation, Oracle Enterprise Repository can automatically detect asset reuse within the development environment. This enables development teams to ensure that they get asset reuse credit, regardless of whether the assets have been downloaded through Oracle Enterprise Repository. Automated Usage Detection relies on a fingerprinting process, called Software File Identification (SFID), which tags selected files within an asset with a unique ID. This SFID is then used to detect when and where an asset is used, even if the asset was acquired through means other than the Oracle Enterprise Repository Use - Download process. An instance of usage is recorded by Oracle Enterprise Repository when tagged files within the asset are brought into the developer's IDE, and a new build or build clean occurs.

10.3.5.2 Configuring Automatic Usage Detection

	
Launch Visual Studio .NET.

	
Open the Tools menu and click Options.

	
In the list of options, click Oracle Enterprise Repository Add-in for Visual Studio .NET to reopen the Login window.

	
Click the Advanced Options button to open the Advanced Settings window. Use the Detect Usage tab to enable usage detection for VS .NET Solution Projects, as shown in Figure 10-16.

Figure 10-16 The Advanced Settings Dialog - Detect Usage Tab

[image: This image is described in surrounding text]

Description of "Figure 10-16 The Advanced Settings Dialog - Detect Usage Tab"

	
Click the Automated Usage Detection tab to enable usage detection of referenced DLLs, WSDLs, and allow local caching of SFIDs, as shown in Figure 10-17.

Figure 10-17 The Advanced Settings Dialog - Automated Usage Detection Tab

[image: This image is described in surrounding text]

Description of "Figure 10-17 The Advanced Settings Dialog - Automated Usage Detection Tab"

	
Click the File Pattern Detection tab to specify include and exclude file name patterns, as shown in Figure 10-18.

Figure 10-18 The Advanced Settings Dialog - File Pattern Detection Tab

[image: This image is described in surrounding text]

Description of "Figure 10-18 The Advanced Settings Dialog - File Pattern Detection Tab"

	
Click Done to save your settings.

7 Integration with Amberpoint

This chapter describes how to get started with the integration of Oracle Enterprise Repository with Amberpoint.

	
Note:

Integration of Oracle Enterprise Repository with Amberpoint, which is now rebranded to Oracle Business Transaction Manager (OBTM), is supported only to product versions prior to OBTM 11. This integration support with Oracle Enterprise Repository is not supported for OBTM 11.

Oracle Exchange Utility updates the endpoint asset with the performance metrics deposited by Amberpoint. The UDDIMappings.xml file contains the mapping between the performance metrics t-models and the keys to Oracle Enterprise Repository custom fields where these metrics are populated. You can also customize the UDDI Mapping file so that the metrics can appear on any tab mapped to any field in the tabs of any custom asset type. Example 7-1 describes the metrics part in the UDDIMappings.xml file:

Example 7-1 Metrics Part of UDDIMappings.xml File

<metrics>
 <keyedReference metricsName="DailyAvailability"
alerName="availability---year----"
tModelKey="uddi:amberpoint.com:management:metrics:availability" keyName="Last 24
hours - Availability (percentage value)"/>
 <keyedReference metricsName="WeeklyAvailability"
alerName="availability---week----"
tModelKey="uddi:amberpoint.com:management:metrics:availability" keyName="Last
week - Availability (percentage value)"/>
 <keyedReference metricsName="MonthlyAvailability"
alerName="availability---month----"
tModelKey="uddi:amberpoint.com:management:metrics:availability" keyName="Last
month - Availability (percentage value)"/>
 <keyedReference metricsName="DailyAvgResponseTime"
alerName="average-response-time--seconds-"
tModelKey="uddi:amberpoint.com:management:metrics:avgResponseTime" keyName="Last
24 hours - Response Time (average value in milliseconds)"/>
 <keyedReference metricsName="WeeklyAvgResponseTime"
alerName="weekly-average-response-time--milliseconds-"
tModelKey="uddi:amberpoint.com:management:metrics:avgResponseTime" keyName="Last
week - Response Time (average value in milliseconds)"/>
 <keyedReference metricsName="MonthlyAvgResponseTime"
alerName="monthly-average-response-time--milliseconds-"
tModelKey="uddi:amberpoint.com:management:metrics:avgResponseTime" keyName="Last
month - Response Time (average value in milliseconds)"/>
 <keyedReference metricsName="DailyFaults" alerName="daily-faults"
tModelKey="uddi:amberpoint.com:management:metrics:faults" keyName="Last 24 hours
- Faults (number)"/>
 <keyedReference metricsName="WeeklyFaults" alerName="weekly-faults"
tModelKey="uddi:amberpoint.com:management:metrics:faults" keyName="Last week -
Faults (number)"/>
 <keyedReference metricsName="MonthlyFaults" alerName="monthly-faults"
tModelKey="uddi:amberpoint.com:management:metrics:faults" keyName="Last month -
Faults (number)"/>
 <keyedReference metricsName="DailyRequests" alerName="daily-requests"
tModelKey="uddi:amberpoint.com:management:metrics:requests" keyName="Last 24
hours - Requests (number)"/>
 <keyedReference metricsName="WeeklyRequests" alerName="weekly-requests"
tModelKey="uddi:amberpoint.com:management:metrics:requests" keyName="Last week -
Requests (number)"/>
 <keyedReference metricsName="MonthlyRequests" alerName="monthly-requests"
tModelKey="uddi:amberpoint.com:management:metrics:requests" keyName="Last month -
Requests (number)"/>
 <keyedReference metricsName="Timestamp" alerName="last-updated"
tModelKey="uddi:amberpoint.com:management:metrics:timeStamp" keyName=""/>
 <keyedReference metricsName="RegisteredDate"
alerName="endpoint-publication-date"
tModelKey="uddi:amberpoint.com:management:registeredDate" keyName=""/>
 </metrics>

Figure 7-1 illustrates how the performance metrics deposited by Amberpoint appears in Oracle Enterprise Repository after the endpoint is synchronized by the Exchange Utility.

Figure 7-1 Oracle Enterprise Repository Operation Information

[image: This image is described in surrounding text]

Description of "Figure 7-1 Oracle Enterprise Repository Operation Information"

Figure 7-2 illustrates how the performance metrics deposited by Amberpoint appear in Oracle Service Registry.

Figure 7-2 Oracle Service Registry Performance Metrics for an Amberpoint WSDL Service

[image: This image is described in surrounding text]

Description of "Figure 7-2 Oracle Service Registry Performance Metrics for an Amberpoint WSDL Service"

13 Repository Extensibility Framework

This chapter describes the Repository Extensibility Framework (REX) architecture and discusses how to enable the OpenAPI and consume the WSDL.

This chapter includes the following sections:

	
Section 13.1, "Introduction to REX"

	
Section 13.2, "REX Architecture"

	
Section 13.3, "Basic Concepts"

13.1 Introduction to REX

REX is a web services API for programmatic integration into Oracle Enterprise Repository. It is based on accepted industry standards, and designed with a focus on interoperability and platform independence. REX uses Remote Procedure Call (RPC) web services described by the Web Services Description Language (WSDL v1.1). This enables clients to interact with Oracle Enterprise Repository using any platform and any implementation language that supports web services. For example, while Oracle Enterprise Repository is a J2EE application, REX enables programmatic interaction with a .NET client.

	
Note:

Instances of "flashline" and "registry" appear in this documentation, particularly in the java package structure and in the REX class names.

If your Oracle Enterprise Repository is or will be configured to be secured by Siteminder, you must configure the policy server to ignore (or unprotect) the following URL to allow OpenAPI integration to function properly:

http://appserver.example.com/oer/services/

	
Note:

The examples provided in the documentation are for illustrative purposes and will not necessarily compile due to package structure differences between versions of the Oracle Enterprise Repository WSDL. You must change the package structure to appropriately target your version of Oracle Enterprise Repository.

For more information about REX, see the REX Javadoc at Oracle Fusion Middleware Extensibility Framework (REX) for Oracle Enterprise Repository.

13.2 REX Architecture

Figure 13-1 describes the REX architecture.

Figure 13-1 REX Architecture

[image: This image is described in surrounding text]

Description of "Figure 13-1 REX Architecture"

The high-level architecture of Oracle Enterprise Repository and REX is designed with several high-level goals in mind:

	
Flexibility

Any client platform that conforms to accepted industry standards, such as SOAP, WSDL, and HTTP, can interact with Oracle Enterprise Repository through the REX interface. Proper functioning of the API with the most common client platforms has been validated.

	
Extensibility

Oracle Enterprise Repository's layered architecture simplifies the process of adding subsystems to provide access to new features as they are added to Oracle Enterprise Repository. For more information, see Section 13.2.4, "Versioning Considerations for the Oracle Enterprise Repository REX".

	
Simplicity

End users find it easy to take advantage of the extensive feature set available in REX.

This section contains the following topics:

	
Section 13.2.1, "Subsystems Overview"

	
Section 13.2.2, "CRUD-Q Naming Convention"

	
Section 13.2.3, "Fundamental WSDL Data Types"

	
Section 13.2.4, "Versioning Considerations for the Oracle Enterprise Repository REX"

13.2.1 Subsystems Overview

Oracle Enterprise Repository's REX provides access to a variety of subsystems. These subsystems loosely group system functionality into logical categories roughly equivalent to the type of entity on which they operate. Much of this document is organized into sections related to these subsystems.

REX methods are named using a scheme based on the various subsystems. For more information about the description of the algorithm used in this process, see Section 13.2.2, "CRUD-Q Naming Convention". The subsystems defined in REX include:

	
acceptableValue

	
asset

	
assetType

	
authToken

	
categorization

	
catergorizationType

	
department

	
extraction

	
import/export

	
project

	
relationship

	
role

	
user

	
vendor

13.2.2 CRUD-Q Naming Convention

The scheme used in naming the Open API methods is based on the CRUD-Q mnemonic. CRUD-Q represents five operations:

	
C - Create

	
R - Read

	
U - Update

	
D - Delete

	
Q - Query

Each method starts with the name of the subsystem to which it belongs, followed by a description of the operation to be performed within that subsystem, as in the following example:

<subsystem><Operation>

For example, the method to perform a create operation in the asset subsystem would be:

assetCreate(...)

This naming convention would also produce:

assetRead(...)
assetUpdate(...)
assetDelete(...)
assetQuery(...)

Subsystems are likely to have operations beyond the CRUD-Q set, and may not include all of CRUD-Q. For example, since it is impossible to delete a user, there is no userDelete method. There is, however, a userDeactivate method. Table 13-1 provides a detailed list of the detailed operations that the subsystem can have apart from the CRUD-Q operations.

Table 13-1 Subsystems and CRUD-Q Convention Relationship

	
	Create	Read	Update	Delete	Query	Other Features
	
Acceptable Value List

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	
Accept, Activate, Assign, Deactivate, Register, Retire, Submit, Unaccept, Unassign, Unregister, Unsubmit, Modify Custom Access Settings

	
Asset

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	

	
Asset Type

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	

	
Categorization Type

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	

	
Department

	
Yes

	
Yes

	
Yes

	
No

	
Yes

	

	
Extraction

	
Yes

	
Yes

	
Yes

	
No

	
Yes

	

	
Project

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	
Close, Open, Reassign extractions, Remove user

	
Relationship

	
Yes

	
Yes

	
Yes

	
No

	
Yes

	

	
Role

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	

	
User

	
Yes

	
Yes

	
Yes

	
No

	
Yes

	
Activate, Deactivate, Lockout, Unapprove

	
Vendor

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	

	
Contact

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	

13.2.2.1 Atomicity of Method Calls

Unless otherwise noted, every call to REX is atomic. That is, each call either succeeds completely, or fails completely.

For example, one version of the categorizationUpdate method takes as an argument an array of categorization updates. In this case, if one categorization update fails, all categorization updates fail.

13.2.2.2 No Inter-call Transaction Support

REX does not currently support inter-call transactions. For example, in the event of an error it is impossible to roll back operations associated with a series of REX calls.

13.2.3 Fundamental WSDL Data Types

REX uses the following fundamental WSDL data types, in addition to the complex types defined in the WSDL.

Arrays of any of these types can be returned:

	
xsd:int

	
xsd:long

	
xsd:string

	
xsd:boolean

	
xsd:dateTime

You can dynamically generate API Stubs by consuming the REX WSDL by pointing its IDEs or web services toolkits at the following URL:

http://appserver/oer/services/FlashlineRegistry?WSDL

If you are creating custom integrations with OER from Oracle BPM 11g, use the following URL instead:

http://appserver/oer/services/RexAPI?wsdl

Java stubs for the Oracle Enterprise Repository REX WSDL can be created using the AXIS WSDL2java utility:

java -cp .;axis.jar; xerces.jar; commons-discovery.jar; commons-logging.jar; jaxen-full.jar; jaxrpc.jar; saaj.jar;wsdl4j.jar; xalan.jar org.apache.axis.wsdl.WSDL2Java

The JAR files required to complete this conversion process are:

	
axis.jar

	
xerces.jar

	
commons-discovery.jar

	
commons-logging.jar

	
jaxen-full.jar

	
jaxrpc.jar

	
saaj.jar

	
wsdl4j.jar

	
xalan.jar

	
Note:

Replace "appserver" in the URL with the name of the server on which Oracle Enterprise Repository is installed.

13.2.4 Versioning Considerations for the Oracle Enterprise Repository REX

The evolution of the Oracle Enterprise Repository REX parallels the evolution of Oracle Enterprise Repository. As a result of this process, incompatibilities may emerge between older and newer versions of REX. While full version compatibility is our goal, backward compatibility is subject to unpredictable and therefore potentially unavoidable limitations. Oracle Enterprise Repository REX includes the following backward compatible enhancements:

	
Addition of new methods to the Oracle Enterprise Repository web service.

	
Definition of new complex types in the WSDL.

With regard to these backward compatible changes, the regeneration of client proxies is necessary only when the need arises to take advantage of new features and functionality.

The namespace of the service changes only when incompatible changes are unavoidable. Examples of such a change would include the modification of an existing complex type, or a change in the signature of a method in the service. In this event, client proxy regeneration is necessary, as are the minimal code changes. Client proxies generated from prior versions of REX are unable to connect to the new service.

The namespace of complex types never changes.

13.3 Basic Concepts

This section describes the basic concepts of REX such as getting started with enabling the OpenAPI and consuming the WSDL. This section contains the following topics:

	
Section 13.3.1, "Enabling the OpenAPI within the Oracle Enterprise Repository"

	
Section 13.3.2, "Consuming WSDL"

13.3.1 Enabling the OpenAPI within the Oracle Enterprise Repository

The procedure is performed on the Oracle Enterprise Repository Admin screen.

	
Click System Settings.

	
Enter the property cmee.extframework.enabled in the Enable New System Setting text box.

	
Click Enable. The Open API section is displayed.

	
Ensure the cmee.extframework.enabled property is set to True.

	
Click Save. REX is now enabled within your instance of Oracle Enterprise Repository.

13.3.2 Consuming WSDL

The first step in using REX is to generate the client-side stubs necessary to communicate with the Oracle Enterprise Repository server. This is generally accomplished using the automated tools provided by the specific Web services toolkit in use. This section describes how to generate client stubs using a variety of integrated development environments and toolkits.

This section contains the following topics:

	
"Visual Studio .NET"

	
"Eclipse - Lomboz plugin"

	
"Authentication and Authorization"

	
"Exception Handling"

	
"Java and AXIS"

	
".NET"

	
"Validation"

	
"Query Considerations in REX"

	
"Sending Binary Data (Attachments)"

	
"Using DIME attachments with .NET and the Microsoft Web Services Enhancement (WSE) Kit"

	
"Using SOAP with Attachments and Java AXIS clients"

Visual Studio .NET

	
Right-click the Web References node in the Solution Explorer tree and then select Add Web Reference, as shown in Figure 13-2. The Add Web Reference dialog is displayed.

Figure 13-2 Solution Explorer Window

[image: This image is described in surrounding text]

Description of "Figure 13-2 Solution Explorer Window"

	
Specify the name of the Web reference, as shown in Figure 13-3.

Figure 13-3 Add Web Reference Dialog

[image: This image is described in surrounding text]

Description of "Figure 13-3 Add Web Reference Dialog"

You may load the Oracle Enterprise Repository WSDL file directly from the application server (if it is running) by specifying the proper URL, or from a static file local to your Eclipse project. If you want to use a URL, it can be found in the following location (replace "yourserver" and "appname" with the appropriate values):

http://yourserver:port/appname/services/FlashlineRegistry?wsdl

	
Connect to the service endpoint. After the Web reference has been created, your application can use it by establishing an instance of the client service proxy:

flashline.FlashlineRegistryService registry = new flashline.FlashlineRegistryService();

	
If the default URL of the service (as contained in the WSDL file used to establish the Web reference) is not the actual address of the Web service, the endpoint address can be changed as follows:

registry.Url = "http://appserver/oer/services/FlashlineRegistry";

Your application is ready to interact with Oracle Enterprise Repository through REX.

Eclipse - Lomboz plugin

The Lomboz plugin works with Eclipse but any type of Eclipse plugin that provides support for Web Services should work. Most of these tools/plugins usually ask for:

	
The location of the WSDL file

	
The source directory from your project in which generated code should live

	
The WSDL version with which the WSDL file complies.

The Oracle Enterprise Repository WSDL file can be loaded directly from the application server (if it is running) by specifying the proper URL, or from a static file local to your Eclipse project. The WSDL URL can be found in the following location (replace "www.example.com" and "appname" with the appropriate values):

http://www.example.com/appname/services/FlashlineRegistry?wsdl

Choose a source directory on your project's build path as the target of the generated client proxy classes.

Oracle Enterprise Repository WSDL conforms to version 1.1 of the WSDL standard.

Authentication and Authorization

The first step in using REX is authenticating with the server. Authentication is performed using the authTokenCreate method. This method takes a user ID and password as arguments to be used in authenticating with Oracle Enterprise Repository. If the ID and password are successfully authenticated, an authentication token is returned. This token must be used in every subsequent call to REX.

If a valid AuthToken is not included for every REX method, an OpenAPIException is thrown. The applies to all methods except authTokenCreate and authTokenDelete.

The following example shows how to retrieve an AuthToken and use it in subsequent REX calls.

Example 13-1 How to Retrieve an AuthToken and use in REX Calls

package com.example.flashlineclient;
//The imports below are assumed for any of the included examples
import javax.xml.rpc.ServiceException;
import java.net.MalformedURLException;
import java.net.URL;
import java.rmi.RemoteException;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
import com.flashline.registry.openapi.base.OpenAPIException;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.entity.Asset;
public class FlexTest {
public FlexTest () {
}
public static void main(String[] pArgs)throws OpenAPIException, RemoteException, ServiceException {
try {
FlashlineRegistry lRegistry = null;
AuthToken lAuthToken = null;
URL lURL = null;
lURL = new URL("http://www.example.com/appname/services/FlashlineRegistry");
//"www.example.com" should be your server address
//"appname" is the application name of the location that the Registry is running
 on
//These two things must be changed to the proper values in every example
lRegistry = new FlashlineRegistryServiceLocator().getFlashlineRegistry(lURL);
lAuthToken = lRegistry.authTokenCreate("username", "password");
System.out.println(lAuthToken.getToken());
//displaying the authtoken as a string to the screen
Asset lAsset = lRegistry.assetRead(lAuthToken, 559);
//reading asset number 559
System.out.println(lAsset.getName());
//displaying the name of asset 559 to the screen
} catch(OpenAPIException lEx) {
System.out.println("ServerCode = "+ lEx.getServerErrorCode());
System.out.println("Message = "+ lEx.getMessage());
System.out.println("StackTrace:");
lEx.printStackTrace();
} catch (RemoteException lEx) {
lEx.printStackTrace();
} catch (ServiceException lEx) {
lEx.printStackTrace();
} catch (MalformedURLException lEx) {
lEx.printStackTrace();
}
System.out.println("execution completed");
System.exit(0);
}
}

Authorization

REX enforces the same authorization rules as the Oracle Enterprise Repository application. The user ID and password used to authenticate determines the privileges available to the user through REX. For example, if the authenticated user does not have EDIT privileges assigned for projects, and attempts to create a project using the projectCreate REX method, an OpenAPIException is thrown.

Exception Handling

Open API communicates server errors to the client through a SOAP Fault. The manner in which SOAP Faults are handled varies according the language and SOAP toolkit in use.

This section suggests ways to detect and deal with exceptions generated by the Open API within client code, using the most common platform/toolkit combinations.

Java and AXIS

Exceptions thrown by the Open API are transferred as SOAP Faults, and then deserialized by the AXIS client toolkit as Java Exceptions. That is, AXIS makes an attempt to map the SOAP Fault to a corresponding client-side OpenAPIException class. Server-side errors are represented to the client as com.flashline.registry.openapi.OpenAPIException instances. Consequently, client code can catch exceptions with the code listed below which is from the code above:

try {
lAsset = lRegistry.assetCreate(..);
} catch(OpenAPIException lEx) {
System.out.println("ServerCode = "+ lEx.getServerErrorCode());
System.out.println("Message = "+ lEx.getMessage());
System.out.println("StackTrace:");
lEx.printStackTrace();
} catch (RemoteException lEx) {
lEx.printStackTrace();
} catch (ServiceException lEx) {
lEx.printStackTrace();
} catch (MalformedURLException lEx) {
lEx.printStackTrace();
}

.NET

Using a consumed Web service in .NET is a bit more complicated. All service exceptions are caught on the client side as exceptions of type System.Web.Services.Protocols.SoapException. This makes it somewhat tricky to retrieve the extended information available in the OpenAPIException thrown by the Open API.The .NET SoapException property represents the SOAP Fault message. However, the additional fields provided by the OpenAPIException, beyond what is explicitly mapped to the standard SOAP Fault, must be obtained by manually parsing the XML Detail property of the .NET SoapException. For example, code similar to the following could be used to view the server-side error code and stack trace returned with an OpenAPIException:

try
{
registry.testException();
}
catch(SoapException exc)
{
XmlNode lNode = null;
lNode = exc.Detail.SelectSingleNode("*/serverErrorCode");
if(lNode != null)
Console.Out.WriteLine("Error Code: "+lNode.InnerText);
lNode = exc.Detail.SelectSingleNode("*/serverStackTrace");
if(lNode != null)
Console.Out.WriteLine("Server Stack Trace: \n"+lNode.InnerText);
}

It is a good idea to use a more explicit XPath expression than */serverErrorCode to eliminate the chance that the returned SOAP Fault includes more than one XML Element with the name serverErrorCode.

The following SOAP response illustrates an OpenAPIException represented as a SOAP Fault message:

Example 13-2 OpenAPIException Represented as a SOAP Fault Message

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<soapenv:Fault>
<faultcode>soapenv:Server.userException</faultcode>
<faultstring>Error [100], Severity [SEVERE]:An unkown server-side error occured.
Please record stack trace (if available) and contact technical
 support.</faultstring>
<detail>
<com.flashline.cmee.openapi.OpenAPIException xsi:type="ns1:OpenAPIException"
xmlns:ns1="http://base.openapi.registry.flashline.com">
<message xsi:type="xsd:string">Error [100],
Severity [SEVERE]:An unkown server-side error occured.
Please record stack trace (if available) and contact technical support.</message>
<serverErrorCode xsi:type="xsd:int">100</serverErrorCode>
<serverStackTrace xsi:type="xsd:string">java.lang.NullPointerException
at java.util.HashMap.<init>(HashMap.java:214)
...
at java.lang.Thread.run(Thread.java:534)
</serverStackTrace>
<severity xsi:type="xsd:string">SEVERE</severity>
</com.flashline.cmee.openapi.OpenAPIException>
</detail>
</soapenv:Fault>
</soapenv:Body>
</soapenv:Envelope>

Validation

When attempting to save an entity in Oracle Enterprise Repository, the system attempts to validate the input. Any missing or invalid data causes the server to throw an OpenAPIException containing a list of fields and their respective errors.

For more information, see "Exception Handling".

Query Considerations in REX

The criteria object model is currently moving to a more flexible representation of terms and grouping. As they occur, these changes affects the availability of certain API features when executing a query using a criteria object. The subsystems only directly evaluate their corresponding criteria objects, and do not make use of the extended capabilities of the underlying SearchTermGroup, unless otherwise noted in this documentation.

Sending Binary Data (Attachments)

Various REX methods require sending or receiving potentially large sets of binary data between the client and server. For example, the import/export subsystem provides methods for sending a payload from which to import, and methods for retrieving a payload representing a set of exported assets.

Typically, binary data is transferred through Web services RPC invocations through Dynamic Internet Message Exchange (DIME); SOAP with Attachments (SwA); or Base-64 Encoding. Each has its advantages and disadvantages, but few client toolkits directly support all three.

The Oracle Enterprise Repository OpenAPI supports all three mechanisms for transferring binary data. Details are provided in the following sections. Any method that provides for the binary transfer of data has three versions, each one supporting a different transfer mechanism. For example, to retrieve the results of an export, a user can select any one of the following methods:

	
importGetResultsB64

Retrieve results of export in base-64 encoded format. This is the lowest common denominator, and can be used on any platform, provided that the client can encode/decode base-64 data.

	
importGetResultsDIME

Retrieve export results as an attached file, using the DIME protocol. This is the preferred option for most .NET clients.

	
importGetResultsSwA

Retrieve export results as an attached file, using the SOAP with Attachments (SwA) protocol (MIME-based)

Using DIME attachments with .NET and the Microsoft Web Services Enhancement (WSE) Kit

Microsoft provides an extension to the standard .Net Web service toolkit. The Microsoft Web Services Enhancement (WSE) kit provides advanced functionality, such as sending and receiving attachments through Web services using the Dynamic Internet Messaging Exchange (DIME) protocol.

The following code snippet gives an example of sending data through a DIME attachment:

Example 13-3 Example of Sending Data Through a DIME Attachment

// relax the requirement for the server to understand ALL headers. This MUST be
// done, or the call with the attachment fails. After the call, if you wish,
// you can set this back to "true"
registry.RequestSoapContext.Path.EncodedMustUnderstand= "false";
// clear the attachments queue
registry.RequestSoapContext.Attachments.Clear();
registry.RequestSoapContext.Attachments.Add(
new Microsoft.Web.Services.Dime.DimeAttachment("0", "application/zip",
Microsoft.Web.Services.Dime.TypeFormatEnum.MediaType, "c:\\tmp\\import.zip"));
// start an import running on the server
registry.importExecute(lAuthToken, "flashline", null, "FEA Flashpack Import",
null);
// do some polling (calls to importStatus) to monitor the import progress,
// if you wish

The following code snippet gives an example of receiving data through a DIME attachment:

Example 13-4 Example of Receiving Data Through a DIME Attachment

// relax the requirement for the server to understand ALL headers. This MUST be
// done, or the call with the attachment fails. After the call, if you wish,
// you can set this back to "true"
registry.RequestSoapContext.Path.EncodedMustUnderstand= "false";
// clear the attachments queue
registry.RequestSoapContext.Attachments.Clear();
// start an export
flashline.ImpExpJob lJob =
registry.exportExecute(lAuthToken, "flashline", null, "Complete Export",
 "flashline",
"<entitytypes>
<entitytype type=\"acceptableValueList\">
<entities>
<entity id=\"100\"/>
</entities>
</entitytype>
</entitytypes>");
// do some polling (calls to exportStatus) to watch the progress of the
// export, if you wish...
// this call blocks until either the method returns (or an exception is
 thrown),
// or the call times out.
registry.exportGetResultsDIME(lAuthToken, lJob);
// check to see if the call resulted in attachments being returned...
if(registry.ResponseSoapContext.Attachments.Count > 0)
{
Stream lStream = registry.ResponseSoapContext.Attachments[0].Stream;
// write the data out somewhere...
}

Using SOAP with Attachments and Java AXIS clients

The Axis client provides functions to handle SOAP attachments in Java. For more information, see http://www-106.ibm.com/developerworks/webservices/library/ws-soapatt/

The following code snippet gives an example of receiving data:

byte[] lResults = null;
ImpExpJob lExportJob =
mFlashlineRegistrySrc.exportExecute(mAuthTokenSrc,"flashline",null,
"Export Assets","default", createAssetQuery().toString());
lExportJob =
mFlashlineRegistrySrc.exportStatus(mAuthTokenSrc, lExportJob);
lResults =
mFlashlineRegistrySrc.exportGetResultsB64(mAuthTokenSrc, lExportJob);
// write the results out to disk in a temp file
File lFile = null;
String lTempDirectory =
System.getProperty("java.io.tmpdir");
lFile = new File(lTempDirectory + File.separator + "impexp.zip");
FileOutputStream lOS = new FileOutputStream(lFile);
BufferedOutputStream lBOS = new BufferedOutputStream(lOS);
lBOS.write(lResults);
lBOS.flush();
lBOS.close();
lOS.close();

The following code snippet gives an example of sending data through a DIME attachment:

// open file and attach as data source
InputStream lIS = new FileInputStream(lFile);
((Stub)mFlashlineRegistryDest)._setProperty
(Call.ATTACHMENT_ENCAPSULATION_FORMAT, Call.ATTACHMENT_ENCAPSULATION_FORMAT_DIME);
ByteArrayDataSource lDataSource = new ByteArrayDataSource(lIS,
 "application/x-zip-compressed");
DataHandler lDH = new DataHandler(lDataSource);
// add the attachment
((Stub)mFlashlineRegistryDest).addAttachment(lDH);
ImpExpJob lJob =
mFlashlineRegistryDest.importExecute(mAuthTokenDest, "flashline", null, "Import
 Assets Test", null);

Oracle® Fusion Middleware

Integration Guide for Oracle Enterprise Repository

11g Release 1 (11.1.1.7)

E15754-15

July 2013

Describes how to configure Enterprise Manager, Oracle JDeveloper, VS .NET with Oracle Enterprise Repository. This guide also describes the Oracle Enterprise Repository connectors.

Oracle Fusion Middleware Integration Guide for Oracle Enterprise Repository, 11g Release 1 (11.1.1.7)

E15754-15

Copyright © 2001, 2013 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

15 AcceptableValueLists API

This chapter provides use cases for the AcceptableValueLists API that describe how to create a new acceptable value list and enter it into Oracle Enterprise Repository and populate an asset's single or multiple selection lists with acceptable values.

This chapter includes the following sections:

	
Section 15.1, "Overview"

	
Section 15.2, "Use Cases"

15.1 Overview

Acceptable Value Lists are used in single- and multiple-selection drop-down box metadata elements.

When creating or editing an asset type, Acceptable Value Lists are used as metadata elements. These metadata elements are referenced by ID in the editor and viewer XML for the asset type/compliance template.

When creating or editing assets, values contained in Acceptable Value Lists are used as options for the metadata elements defined for the particular asset type/compliance template. To use the acceptable values for an Acceptable Value List, the custom data for the asset (Asset.GetCustomData()) is modified to reference the ID of the acceptable value.

15.2 Use Cases

This section describes the use cases using the AcceptableValueLists API. It contains the following topics:

	
Section 15.2.1, "Use Case: Create and Edit an Acceptable Value List"

	
Section 15.2.2, "Use Case: Find an Acceptable Value List and Use it in an Asset"

15.2.1 Use Case: Create and Edit an Acceptable Value List

Description

Create a new acceptable value list and enter it into Oracle Enterprise Repository.

Sample Code

Example 15-1 Use Case: Create and Edit an Acceptable Value List

package com.flashline.sample.acceptablevaluelists;
import java.net.MalformedURLException;
import java.net.URL;
import java.rmi.RemoteException;
import java.util.Calendar;
import javax.xml.rpc.ServiceException;
import com.flashline.registry.openapi.base.OpenAPIException;
import com.flashline.registry.openapi.entity.AcceptableValue;
import com.flashline.registry.openapi.entity.AcceptableValueList;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class CreateAndEditAcceptableValueList {
 public static void main(String pArgs[]) throws OpenAPIException,
 RemoteException,
 ServiceException {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 FlashlineRegistry repository = new FlashlineRegistryServiceLocator()
 .getFlashlineRegistry(lURL);
 // //////////////////////////////
 // Authenticate with OER
 // //////////////////////////////
 AuthToken authToken = repository.authTokenCreate(pArgs[1],
 pArgs[2]);
 // //////////////////////////////
 // Build an array of acceptable values for the list.
 // //////////////////////////////
 String newAcceptableValueListName = "My AcceptableValueList
 "+Calendar.getInstance().getTimeInMillis();
 AcceptableValue[] acceptableValues = new AcceptableValue[3];
 acceptableValues[0] = new AcceptableValue();
 acceptableValues[0].setValue("My Value");
 acceptableValues[1] = new AcceptableValue();
 acceptableValues[1].setValue("My Next Value");
 acceptableValues[2] = new AcceptableValue();
 acceptableValues[2].setValue("My Last Value");
 // //////////////////////////////
 // Create the AcceptableValueList in Repository
 // //////////////////////////////
 AcceptableValueList newAcceptableValueList = repository
 .acceptableValueListCreate(authToken, newAcceptableValueListName,
 acceptableValues);
 System.out.println("The new acceptableValueList id =\""
 + newAcceptableValueList.getID() + "\"");
 } catch (OpenAPIException lEx) {
 System.out.println("ServerCode = " + lEx.getServerErrorCode());
 System.out.println("Message = " + lEx.getMessage());
 System.out.println("StackTrace:");
 lEx.printStackTrace();
 } catch (RemoteException lEx) {
 lEx.printStackTrace();
 } catch (ServiceException lEx) {
 lEx.printStackTrace();
 } catch (MalformedURLException lEx) {
 lEx.printStackTrace();
 }
 }
}

15.2.2 Use Case: Find an Acceptable Value List and Use it in an Asset

Description

Populate an asset's single or multiple selection lists with acceptable values.

Sample Code

Example 15-2 Use Case: Populate Lists with Acceptable Values

package com.flashline.sample.acceptablevaluelists;
import java.net.MalformedURLException;
import java.net.URL;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import com.flashline.registry.openapi.base.OpenAPIException;
import com.flashline.registry.openapi.entity.AcceptableValue;
import com.flashline.registry.openapi.entity.AcceptableValueList;
import com.flashline.registry.openapi.entity.Asset;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.query.AcceptableValueListCriteria;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class FindAcceptableValueListAndUseInAsset {
 public static void main(String pArgs[]) throws OpenAPIException,
 RemoteException,
 ServiceException {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 FlashlineRegistry repository = new FlashlineRegistryServiceLocator()
 .getFlashlineRegistry(lURL);
 // //////////////////////////////
 // Authenticate with OER
 // //////////////////////////////
 AuthToken authToken = repository.authTokenCreate(pArgs[1],
 pArgs[2]);
 // //////////////////////////////
 // Find the AcceptableValueList
 // //////////////////////////////
 AcceptableValueListCriteria criteria = new AcceptableValueListCriteria();
 criteria.setNameCriteria("My AcceptableValueList");
 AcceptableValueList[] acceptableValueLists = repository
 .acceptableValueListQuery(authToken, criteria);
 AcceptableValueList myAcceptableValueList = acceptableValueLists[0];
 AcceptableValue[] acceptableValues = myAcceptableValueList
 .getAcceptableValues();
 // //////////////////////////////
 // Find one value within the AcceptableValueList
 // //////////////////////////////
 AcceptableValue myAcceptableValue = null;
 for (int i = 0; i < acceptableValues.length; i++) {
 if (acceptableValues[i].getValue().equals("My Value")) {
 myAcceptableValue = acceptableValues[i];
 break;
 }
 }
 long myAcceptableValueID = myAcceptableValue.getID();
 Asset myAsset = repository.assetRead(authToken, 561);
 String customData = myAsset.getCustomData();
 // //////////////////////////////
 // Modify customData to use myAcceptableValueID.
 // //////////////////////////////
 String modifiedCustomData = customData;
 // ...
 // //////////////////////////////
 // save modified custom data
 // //////////////////////////////
 myAsset.setCustomData(modifiedCustomData);
 repository.assetUpdate(authToken, myAsset);
 } catch (OpenAPIException lEx) {
 System.out.println("ServerCode = " + lEx.getServerErrorCode());
 System.out.println("Message = " + lEx.getMessage());
 System.out.println("StackTrace:");
 lEx.printStackTrace();
 } catch (RemoteException lEx) {
 lEx.printStackTrace();
 } catch (ServiceException lEx) {
 lEx.printStackTrace();
 } catch (MalformedURLException lEx) {
 lEx.printStackTrace();
 }
 }
}

24 Notification API

This chapter provides a use case for the Notification API that describes how to create a new read notification substitution list and how to create an Oracle Enterprise Repository notification.

This chapter includes the following sections:

	
Section 24.1, "Overview"

	
Section 24.2, "Use Case"

24.1 Overview

The Notification subsystem provides a web services-based mechanism that is used to create Oracle Enterprise Repository notifications.

24.2 Use Case

This section describes the use case using the Notification API. It includes the following topic:

	
Section 24.2.1, "Use Case: Create a Read Notification Substitution List and Create a Notification"

24.2.1 Use Case: Create a Read Notification Substitution List and Create a Notification

Description

To create a read notification substitution list and create an Oracle Enterprise Repository notification.

Sample Code

Example 24-1 Use Case: Create a Read Notification Substitution List and Create a Notification

 String[] lSubstitutions = null;
 String[] lRecipients = null;
 String lTemplateType = "asset_registered";
 NameValue[] lNameValues = null;

 lRecipients = new String[] {"recipient@xyz.com"};

 try {
 //////////////////////////
 // read the existing substitutions based on the given template
 lSubstitutions = mFlashlineRegistry.notificationSubstitutionsRead(mAuthToken, lTemplateType);

 //////////////////////////
 // create an array of namevalue pairs; a namevalue pair for each required substitution
 lNameValues = new NameValue[lSubstitutions.length];

 // populate the namevalues
 for(int i=0; i<lSubstitutions.length; i++) {
 lNameValues[i] = new NameValue();
 lNameValues[i].setName(lSubstitutions[i]);
 lNameValues[i].setValue("valueof-"+lSubstitutions[i]);
 }

 //
 // create the notification
 mFlashlineRegistry.notificationCreate(mAuthToken, lTemplateType, lRecipients, lNameValues);

 } catch(Exception e) {
 fail(e.getMessage());
 }

1 Configuring an Artifact Store

This chapter describes how to create, configure, and select an artifact store that is used to store all files relevant to assets in Oracle Enterprise Repository.

This chapter includes the following sections:

	
Section 1.1, "Overview"

	
Section 1.2, "Creating and Configuring an Artifact Store"

	
Section 1.3, "Selecting a New Artifact Store"

1.1 Overview

An artifact store is where the files relevant to assets in Oracle Enterprise Repository are stored. Launch the Asset Editor window from the Oracle Enterprise Repository home page.

1.2 Creating and Configuring an Artifact Store

This section describes the steps to create and configure an artifact store.

	
Click Edit/Manage Assets. The Asset Editor is displayed, as shown in Figure 1-1.

Figure 1-1 Asset Editor

[image: This image is described in surrounding text]

Description of "Figure 1-1 Asset Editor"

	
Select Configure Artifact Stores in the Actions menu. The Configure Artifact Stores dialog is displayed, as shown in Figure 1-2.

Figure 1-2 Configure Artifact Stores Dialog

[image: This image is described in surrounding text]

Description of "Figure 1-2 Configure Artifact Stores Dialog"

	
Click Add. The Create a New Artifact Store dialog is displayed, as shown in Figure 1-3.

Figure 1-3 Create a New Artifact Store Dialog

[image: This image is described in surrounding text]

Description of "Figure 1-3 Create a New Artifact Store Dialog"

	
Enter a unique name for the artifact store in the Name text box.

	
Select the type of artifact store from the Type list (this example uses UNC).

	
Enter the host name of the application server in the Hostname box.

	
Enter the rest of the path in the Path text box.

A file link, appended with the host name and path, appears in the URL text box. This link can be cut/pasted into a file explorer/browser window to view the file.

	
If necessary, enter the appropriate information in the Username and Password text boxes.

	
Click OK.

	
Enable the artifact store using Submission Upload Artifact Store system setting, as described in Section 1.3, "Selecting a New Artifact Store".

1.3 Selecting a New Artifact Store

After configuring an artifact store as described in Section 1.2, "Creating and Configuring an Artifact Store", you must select it using the Submission Upload Artifact Store system setting on the Oracle Enterprise Repository Admin page.

	
Open the Oracle Enterprise Repository Admin page.

	
In the left panel, click System Settings.

	
Locate the Upload Area section in the Server Settings group of system settings, as shown in Figure 1-3.

	
Use the Submission Upload Artifact Store list to select the newly created artifact store.

	
Click Save.

List of Examples

	6-1 Setting the Repository and Enterprise Manager Connection Information in em-integration-settings.xml
	7-1 Metrics Part of UDDIMappings.xml File
	13-1 How to Retrieve an AuthToken and use in REX Calls
	13-2 OpenAPIException Represented as a SOAP Fault Message
	13-3 Example of Sending Data Through a DIME Attachment
	13-4 Example of Receiving Data Through a DIME Attachment
	14-1 Use Case: Create Missing ArtifactStore
	15-1 Use Case: Create and Edit an Acceptable Value List
	15-2 Use Case: Populate Lists with Acceptable Values
	16-1 Sample Code for Custom Data Methods
	16-2 Use Case: Creating a New Asset
	16-3 Use Case: Creating a New Asset from XML
	16-4 Use Case: Modifying an Asset
	16-5 Use Case: Assigning Users to an Asset
	16-6 Use Case: Building an Asset Search
	16-7 Use Case: Upgrading Asset Status
	16-8 Use Case: Downgrading Asset Status
	16-9 Use Case: Applying and Removing Compliance Templates from a Project
	16-10 Use Case: Creating a New Version of an Asset
	16-11 Use Case: Deleting Unneeded Assets from the Repository
	16-12 Use Case: Finding Assets and Updating Common-Data
	16-13 Use Case: Reading an Asset's Tabs
	16-14 Use Case: Retrieving an Asset's Tab Based on Tab Type
	16-15 Use Case: Approving and Unapproving a Tab
	16-16 Use Case: Reading an Asset's Metadata for a Given Tab
	17-1 Use Case: Create and Edit a New Type
	17-2 Use Case: Create a Compliance Template Type
	17-3 Use Case: Locate a Type
	17-4 Use Case: Retrieve a List of Tabs for an Asset Type
	17-5 Use Case: Retrieve All Asset Type Tabs
	18-1 Use Case: Create a Categorization Type
	18-2 Use Case: Manipulate Categorization Types
	18-3 Use Case: Manipulate Categorizations
	19-1 Use Case: Manipulate CMF Entry Types
	20-1 Example of Custom Access Settings Code
	21-1 Use Case: Manipulate Departments
	22-1 Use Case: Extract an Asset
	22-2 Use Case: Read an Extraction
	22-3 Use Case: Update an Extraction
	23-1 Use Case: Creating Localized Messages from REX Exceptions
	23-2 Use Case: Creating Localized Messages from REX Audit Messages
	24-1 Use Case: Create a Read Notification Substitution List and Create a Notification
	25-1 Use Case: Create a Policy
	25-2 Use Case: Get All Policies
	25-3 Use Case: Get/Set Policy Assertions
	25-4 Use Case: Get Policies That Have Been Applied to an Asset
	25-5 Use Case: Update Policies Applied to an Asset
	25-6 Use Case: Evaluate Asset Compliance
	26-1 Use Case: Create a New Project
	26-2 Use Case: Read a Project
	26-3 Use Case: Validate a Project
	26-4 Use Case: Update a Project
	26-5 Use Case: Update a Project's Produced Assets
	26-6 Use Case: Remove Produced Assets from a Project
	26-7 Use Case: Update a Project's Asset Usage
	26-8 Use Case: Closing a Project with Hidden Assets
	26-9 Use Case: Add Users and Related Projects to a Project
	26-10 Use Case: Add and Remove Users for a Project
	26-11 Use Case: Remove Related Projects and Users from a Project
	26-12 Use Case: Keep Specific Users and Projects in a Project
	26-13 Use Case: Update a Project's Extractions
	26-14 Use Case: Reassign Project User and User's Extraction to Another Project
	26-15 Use Case: Reassign User Only to Another Project
	26-16 Use Case: Read the Value-Provided for a Project and Asset
	26-17 Use Case: Update the Value Provided for a Project and Asset - Use Predicted Value
	26-18 Use Case: Update the Value Provided for a Project and Asset - Use Consumer Value
	26-19 Use Case: Update the Value Provided for a Project and Asset - Use Project Lead Value
	27-1 Use Case: Create a New Relationship Type
	27-2 Use Case: Modify Related Assets
	27-3 Use Case: Query Related Assets
	28-1 Use Case: Manipulate Roles
	29-1 Use Case: Create a Subscription to Assets
	29-2 Use Case: Delete a Subscription to Assets
	29-3 Use Case: Read Subscriptions for Assets
	29-4 Use Case: Read Users Subscribed to an Asset
	30-1 Use Case: Query for System Settings
	31-1 Use Case: Manipulate User
	32-1 Use Case: Add or Assign Vendors

8 Integration with Development Environments

This chapter describes the asset production and asset consumption processes and how to integrate Oracle Enterprise Repository with development environments.

This chapter includes the following sections:

	
Section 8.1, "Overview"

	
Section 8.2, "Best Practices"

	
Section 8.3, "High Level Use Cases"

8.1 Overview

The Oracle Enterprise Repository provides integration within development environments so developers can easily search for and use assets from the repository without leaving their development environment. Assets and any associated artifacts are downloaded directly to the developer's workspace. Integration also provides a convenient way to submit or harvest assets from the development environment into the Oracle Enterprise Repository for use throughout the enterprise.

Repository Access within the developer's workspace also provides a view into Oracle Enterprise Repository that enables developers to download artifacts and assets from the repository, query the repository, and view the contents of the repository.

The goal of this integration is to ensure that SOA Governance becomes part of the fabric of every day development.

This section includes the following topics:

	
Section 8.2, "Best Practices"

	
Section 8.3, "High Level Use Cases"

8.2 Best Practices

This section describes the following best practice processes:

	
Section 8.2.1, "Asset Production Process"

	
Section 8.2.2, "Asset Consumption Process"

8.2.1 Asset Production Process

Oracle Enterprise Repository is used to track new assets and asset enhancements from the time they are proposed through the retirement of the assets, which also includes the time when the assets are being developed and when the assets are completed. Through Oracle Enterprise Repository, assets are used to produce and consume projects, to provide traceability and support impact analysis, and to point out project-level impacts of changes to the asset release plans.

Initially, a business analyst provides a description of the functionality that must be produced. If determined that the proposed functionality does not already exist, then an architect provides the functional designs and non-functional requirements. The development team then produces, harvests, or enhances an asset that meets the functional and non-functional requirements.

Figure 8-1 describes a sample asset production process.

Figure 8-1 The Asset Production Process

[image: This image is described in surrounding text]

Description of "Figure 8-1 The Asset Production Process"

This means that the development team needs visibility into the assets that they are to produce such as the requirements, use cases and so on. Oracle Enterprise Repository provides that visibility by allowing developers to view the details of an asset directly from the development environment. The development team builds the specified asset and then harvests the asset into the Oracle Enterprise Repository, where it goes through a review and approval process.

This section includes the following topics:

	
Section 8.2.1.1, "Policies"

	
Section 8.2.1.2, "Propose/Submit Assets"

8.2.1.1 Policies

The production and enhancement of assets can be governed through design-time policies. Policies are applied to assets to communicate asset requirements that must be considered during design and development, and to provide administrators with the means to enforce and monitor asset compliance with governance, architecture, and other organizational standards. For example, a policy might articulate corporate quality standards, or identify the platforms that an asset should run on, or identify acceptable defect density rates.

	
A policy can be applied to multiple assets.

	
Multiple policies can be applied to any asset.

	
Each policy consists of at least one assertion statement. Each assertion has a name and description and includes a technical definition. The technical definition accommodates additional metadata that may be required to automatically validate the assertion using third-party testing and validation tools. This metadata may be web service-specific policy information, XML, or any other format that can be read by an external system. For example, an assertion statement for defect density might state that defect density must be less than .1%.

Policy information in Oracle Enterprise Repository can be accessed through the development environment. After the development team harvests an asset into Oracle Enterprise Repository, then the policies can be automatically validated through tooling or manually validated by subject matter experts.

8.2.1.2 Propose/Submit Assets

Assets may be proposed or submitted to the Oracle Enterprise Repository in multiple ways, depending on the role and situation, some of the methods are as follows:

	
The general Oracle Enterprise Repository user community can submit asset requests or completed assets from the console.

	
Business analysts and architects can create assets to be built using the Asset Editor.

	
Development teams can submit or harvest assets from their development environments.

	
Existing assets stored in files or directories can be harvested by Competency Centers or Portfolio Managers.

	
QA or IT Operations can harvest assets from the build environment or from the run-time environment.

8.2.2 Asset Consumption Process

There are two primary design-time consumption models within a standard Software Development Lifecycle (SDLC) process:

Model 1: Assets are identified early in the lifecycle (also known as Prescriptive Reuse)

	
Business analysts and/or project architects identify assets that fulfill the functional and non-functional requirements of the project.

	
Development teams then receive a "kit" of relevant assets.

Model 2: Development-driven discovery

	
Developers identify assets that might fulfill the functional and non-functional requirements of the project.

Model 1 is the most-preferred design-time consumption model because it results in a higher level of reuse, but requires the organization to have a mature SDLC process and well-defined roles.

This section includes the following topics:

	
Section 8.2.2.1, "Prescriptive Reuse"

	
Section 8.2.2.2, "Developer-Driven Discovery"

	
Section 8.2.2.3, "Automated Usage Detection"

8.2.2.1 Prescriptive Reuse

Within the Oracle Enterprise Repository web console, business analysts and/or project architects identify assets that fulfill the functional and non-functional requirements of the project. They package these assets into a "kit" called a Compliance Template. A Compliance Template communicates asset requirements or asset solution sets to internal or outsourced project teams. Two types of Compliance Templates included in Oracle Enterprise Repository are:

	
Project Profiles

	
Architecture Blueprints

Project profiles are usually created for individual projects, whereas architecture blueprints are reusable solution sets that can be leveraged by multiple projects. Some of the common use cases include:

	
Project planners generate a project profile for each project in the portfolio, identifying the reusable assets that factored into the project's planning and estimating assumptions.

	
Business analysts generate a project profile to identify assets that fulfill a project's business requirements.

	
Project architects generate a project profile to identify assets that fulfill a project's technical requirements.

	
Enterprise architects generate an architecture blueprint that specifies the standard frameworks and assets that are to be used to fulfill project-level security requirements.

	
Those responsible for Service-Oriented Architecture(s) (SOA) generate an architecture blueprint to identify the services that orchestrate a particular business function.

	
Product line architects generate an architecture blueprint that specifies the assets that are to be used to build a specific product line (similar to a Bill of Material).

Figure 8-2 describes a sample prescriptive reuse process.

Figure 8-2 Prescriptive Reuse

[image: This image is described in surrounding text]

Description of "Figure 8-2 Prescriptive Reuse"

Compliance Templates are applied to projects through the Oracle Enterprise Repository web console and the assets identified in the compliance template are automatically displayed in the project's development environment. In this way, development teams get a jump-start on their development efforts.

For more information about Compliance Templates, see Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.

8.2.2.2 Developer-Driven Discovery

There are two ways that developers can get assets from the Oracle Enterprise Repository:

	
Through the Oracle Enterprise Repository web console

	
Through their IDE (Note that this functionality is currently available for Eclipse and VS .NET. Developers are able to download assets from JDeveloper in a future release.)

Developers can come to the Oracle Enterprise Repository to obtain the assets that they would like to use on their projects. The Use-Download function in the Oracle Enterprise Repository provides access to the asset artifacts. In addition, developers can select and download all assets related to the primary asset, ensuring that they have all necessary dependencies. The repository tracks usage and generates usage-based reports.

Developers can also access Oracle Enterprise Repository from their development environment. This means that developers never have to leave their IDE's to get access to the assets that they need.

8.2.2.3 Automated Usage Detection

Oracle Enterprise Repository tracks and reports on the design-time use of assets. The automated usage detection is tracked through two methods:

	
Through the manual asset Use - Download process within Oracle Enterprise Repository or through the development environment

	
Automatic usage detection leveraging Software File Identification (SFID)

Software File Identification (SFID) provides the ability to determine asset usage independent of the manual asset Use - Download process. The SFID process tags selected files and asset artifacts with a unique SFID fingerprint. This tag is then used to detect when and where an asset is used, even if the asset was acquired through means other than the Use - Download process. An instance of usage is recorded by Oracle Enterprise Repository when tagged files within the asset are opened in a developer's IDE. For more information about SFID, see Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.

8.3 High Level Use Cases

The Section 8.2, "Best Practices" provides an overview of the production and consumption processes, and encompasses the development environment use cases. The individual use cases are described below. Each development environment includes a subset of these use cases.

	
Section 8.3.1, "Submit Files"

	
Section 8.3.2, "Harvest Files"

	
Section 8.3.3, "Search Oracle Enterprise Repository"

	
Section 8.3.4, "View Asset Details"

	
Section 8.3.5, "Download Artifacts"

	
Section 8.3.6, "Prescriptive Reuse"

	
Section 8.3.7, "Automatic Usage Detection"

8.3.1 Submit Files

Using the development environment, developers can select files to submit to the Enterprise Repository. The files are bundled into a .zip format for submission. The developer can submit single and/or compound-payload assets to Oracle Enterprise Repository.

8.3.2 Harvest Files

Oracle Enterprise Repository can harvest from Oracle products and standards based files. This includes Oracle SOA Suite, Oracle Service Bus, and standard BPEL, WSDL, XSD and XSLT files and file directories. When harvested, Oracle Enterprise Repository automatically creates assets, populates asset metadata, and generates relationship links based on the information in the artifact files. The harvesting function is available from the command line, and can be integrated into the IDE, or into the build process.

For more information, see Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.

8.3.3 Search Oracle Enterprise Repository

Access to assets and artifacts in the Enterprise Repository is available through the development environment. Through the IDE, developers can search for assets matching various criteria or view assets that may be of interest to a development project.

8.3.4 View Asset Details

For selected assets, developer can view asset details, such as description, usage history, expected savings, relationships, and so on. Within the asset metadata, links to supporting documentation, user guides, test cases, and so on, are provided to better enable developers to reuse existing functionality.

8.3.5 Download Artifacts

Developers can download an asset's artifacts (payload) into their project. Typically an asset payload is the functionality that a developer must use a service (such as a WSDL file) or incorporate into their code base (such as a binary or a BPEL file).

8.3.6 Prescriptive Reuse

Using the Oracle Enterprise Repository, analysts, architects, technical leads, and others who are involved in the design stages of a project can create a list of assets that fulfills a project's requirements. The list of assets are captured in compliance templates in the repository and the compliance templates are associated with an Oracle Enterprise Repository project.

From within the IDE, you can view a list of assets appearing in all of the Compliance Templates assigned to your project. You can see which of the assets have been used and/or other project members. For more information about compliance templates, see Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.

8.3.7 Automatic Usage Detection

Oracle Enterprise Repository can automatically detect asset reuse within the development environment. This enables development teams to ensure that they get asset reuse credit, regardless of whether the assets have been downloaded through Oracle Enterprise Repository or pulled from another source, such as the developer's desktop.

For more information about each of these use cases for various IDEs, see Chapter 11, "Using the IDE to Interact with Oracle Enterprise Repository".

Table 8-1 describes the specific use cases supported for each development environment.

Table 8-1 Use Cases and Supported Development Environments

	Use Case	JDeveloper	Eclipse	VS .NET
	
Submit Files

	
	
Yes

	

	
Harvest (BPEL, WSDL, XSD, XSLT)

	
Yes

	
Yes

	
Yes

	
Harvest (SCA)

	
11g

	
	

	
Search Oracle Enterprise Repository

	
11g

	
Yes

	
Yes

	
View Asset Details

	
11g

	
Yes

	
Yes

	
Download Artifacts

	
11g

	
Yes

	
Yes

	
Prescriptive Reuse

	
	
Yes

	
Yes

	
Automatic Usage Detection

	
	
Yes

	
Yes

Table 8-2 describes the supported versions and target audience for each IDE.

Table 8-2 Supported Versions for the IDEs

	IDE	Target Audience	Supported Versions
	
JDeveloper

	
Oracle Customers

	
10gR3, 11gR1

	
Eclipse

	
Java Developers

	
3.4

3.3 with Sun JDK 5.0

2.0.3 with Sun JDK 5.0

	
VS .NET

	
.Net Developers

	
2008

2005

2 ClearCase Integration

This chapter describes how to set up a ClearCase repository, add File Stores, and integrate ClearQuest with Oracle Enterprise Repository.

This chapter includes the following sections:

	
Section 2.1, "ClearCase Web Interface"

	
Section 2.2, "File Stores"

	
Section 2.3, "ClearQuest Integration"

2.1 ClearCase Web Interface

This section explains the procedure to follow to set up a ClearCase repository, which enables ClearCase files to be linked to assets for future use/download. This section includes the following topics:

	
Section 2.1.1, "Overview"

	
Section 2.1.2, "Prerequisites"

	
Section 2.1.3, "Creating and Configuring Repository and Assets"

2.1.1 Overview

This section includes the following topics:

	
"WebSphere 5.x Apache Plug-In"

	
"WebLogic 8.1 Tuxedo Plug-In"

WebSphere 5.x Apache Plug-In

When using an HTTP server (such as Apache, IIS, IBM HTTP Server) to connect to a Websphere 5.x server using the mod_was_ap20_http.so or mod_was_ap20_http.dll plug-in, a configuration change must be applied to the plugin-cfg.xml document used with this connector:

Each time the crtplugininst application is run to regenerate the plugin-cfg.xml document for use on the HTTP server(s) the Config element contains a value of AcceptAllContent=false, by default. This parameter must be changed to true to allow deltaV requests to be passed between the HTTP Server and the Websphere application server hosting the Oracle Enterprise Repository. This restriction only applies to an HTTP server using the Websphere plug-in to connect the two servers.

WebLogic 8.1 Tuxedo Plug-In

When using the Weblogic Tuxedo Plugin, there is a requirement of 8.1 SP3 being applied to both the application server as well as the Tuxedo Plug-In on the Apache server.

2.1.2 Prerequisites

Before using ClearCase, you must perform the following prerequisites:

	
The application server must support the UTF-8 character set to allow ClearCase and Oracle Enterprise Repository to function properly together.

	
Ensure the application server has access to the ClearCase server.

	
CCWeb and/or ClearTool must be installed and enabled on the application server computer. For more information, see the ClearCase documentation.

Enabling UTF-8 Support

Enabling the UTF-8 character set is accomplished in the following manners based on the server employed.

	
Weblogic 7.x/8.x

You can specify the character set for all deployed Weblogic web applications deployed on a Weblogic Server instance by setting the system properties client.encoding.override and file.encoding equal to the name of the character set. Set this system property in the environment variable called JAVA_OPTIONS, for example, JAVA_OPTIONS=-Dclient.encoding.override=UTF-8 -Dfile.encoding=UTF-8.

These values can also be supplied as part of the startup options for the domain.

	
Websphere 5.x

Change the Generic JVM Arguments for the server to include the following parameter: -Dclient.encoding.override=UTF-8

	
Tomcat 5.0.25

Change the URIEncoding value in the Connector element within the server.xml file in the CATALINA_HOME/conf directory:

<Connector port="8080" URIEncoding="UTF-8" ...

	
Note:

The ability to browse into the ClearCase server and view the files/directory structure from within the Oracle Enterprise Repository application is provided through Files Stores integration.

Important Notes

	
Construct a view in CCWeb.

	
Create the link based on the view constructed in CCWeb.

	
Add the link within the File Information section of the asset within the Asset Editor.

	
Click the Test button to verify that the link is valid.

	
It should also be possible to access the link by pasting the URL into a browser address window. If this is not possible the link itself may be in error, or there may be a problem with the network connection to the ClearCase server.

2.1.3 Creating and Configuring Repository and Assets

You can create and configure repository and assets in Oracle Enterprise Repository. This section contains the following topics:

	
"Configure an Artifact Store"

	
"Set the artifact store from which to extract files"

	
"Create an asset for the ClearCase file(s)"

	
"Link the ClearCase file to the asset"

	
"Extract the asset and the ClearCase file(s)"

Configure an Artifact Store

This procedure is performed in the Oracle Enterprise Repository Asset Editor screen.

	
Open the Actions menu.

	
Click Configure Artifact Store.

	
Click Add. The Create a New Artifact Store dialog is displayed, as shown in Figure 2-1.

	
Fill in the appropriate information, as shown in Figure 2-1.

Figure 2-1 Create a New Artifact Store Dialog

[image: This image is described in surrounding text]

Description of "Figure 2-1 Create a New Artifact Store Dialog"

	
Click OK.

Set the artifact store from which to extract files

This procedure is performed on the Oracle Enterprise Repository Admin screen.

	
Click System Settings.

	
Enter cmee.server.paths.upload-repository in the Search box, as shown in Figure 2-2.

Figure 2-2 Search Box

[image: This image is described in surrounding text]

Description of "Figure 2-2 Search Box"

The Upload Area section within the Server Settings section is displayed, as shown in Figure 2-3.

Figure 2-3 Upload Area Section

[image: This image is described in surrounding text]

Description of "Figure 2-3 Upload Area Section"

	
Use the Submission Upload Artifact Store list to select the ClearCase repository.

	
Click Save when finished.

Create an asset for the ClearCase file(s)

	
Click Submit an Asset in the Oracle Enterprise Repository Assets screen.

New assets may also be created through the File menu in the Asset Editor.

	
Select an Asset Type from the drop-down menu.

	
Enter a name for the new asset in the Name text box.

	
Enter a brief description in the Description field.

	
Note:

The asset detail does not appear on Oracle Enterprise Repository Assets screen until the registration process is completed.

Link the ClearCase file to the asset

	
Open the asset in the Asset Editor.

	
Locate the File Information section (typically on the General tab).

	
Click Add.

	
Create a name and/or description.

	
Click Edit.

	
Select the Repository File option.

Figure 2-4 Edit URL Dialog

[image: This image is described in surrounding text]

Description of "Figure 2-4 Edit URL Dialog"

	
Select ClearCase in the Host list.

	
The path should populate with information configured in artifact store section:

	
http://clearcase.example.com/ccaseweb/bin/ccweb/test.txt?dir=//usr/vobs/geneva&elem=test.txt&cmd=view&user=ccuser&password=<password>

	
Populate the file name field with the path of the view from CCWeb and the file name.

	
Click View to test the file.

Extract the asset and the ClearCase file(s)

	
In the Oracle Enterprise Repository Assets screen, use Search to locate the newly created asset.

	
Click the asset to open its Asset Detail Display.

	
Click Use/Download. The Use - Download page is displayed, as shown in Figure 2-5.

Figure 2-5 Use - Download Page

[image: This image is described in surrounding text]

Description of "Figure 2-5 Use - Download Page"

ClearCase files should be available for download along with the asset.

2.2 File Stores

File Stores allow Oracle Enterprise Repository to integrate with underlying proprietary repositories. File Stores allow integration with Rational ClearCase.

This section contains the following topics:

	
Section 2.2.1, "Overview"

	
Section 2.2.2, "Adding the File Stores Feature to Oracle Enterprise Repository"

	
Section 2.2.3, "Creating a File Store"

	
Section 2.2.4, "Configuring an Artifact Store For a File Store"

	
Section 2.2.5, "Adding a File to an Asset Using the File Store's Artifact Store"

	
Section 2.2.6, "Using File Stores"

2.2.1 Overview

The File Store integration with Rational ClearCase enables an asset registrar to browse the ClearCase Repository. The registrar can select a specific branch and version of a file to be used when the asset is extracted. In addition, the config spec for a file can be made available for use with WSAD or XDE.

The Rational ClearCase client must be installed and configured on the application server to use File Stores with Rational ClearCase. All connections to ClearCase use the ClearTool application in the ClearCase client and share a common set of ClearCase authentication credentials.

2.2.2 Adding the File Stores Feature to Oracle Enterprise Repository

To add the file stores feature to Oracle Enterprise Repository, perform the following steps:

	
Download the Oracle Enterprise Repository installation package from the Oracle download website.

	
Unzip the downloaded file to a temporary directory.

	
Download the SQL scripts from the following location to a temporary directory:

https://support.oracle.com/oip/faces/secure/km/DownloadAttachment.jspx?attachid=825973.1:SCMIntegration

	
Using a SQL tool appropriate for your database, run the SQL script located in the temporary directory to add the File Store Artifact Store to your Oracle Enterprise Repository database.

	
Click the Admin link on the Oracle Enterprise Repository menu bar.

	
On the Admin screen, click System Settings.

	
Enable the property registry.advanced.filestores.enabled. A new section called File Store appears, to which the application automatically navigates.

	
Set Advanced Access File Stores to true.

	
Click Save.

	
Refresh the Admin screen to make the File Store section appear in the list on the left, before Basic Access Settings.

2.2.3 Creating a File Store

	
Install the Rational ClearCase client on the application server hosting Oracle Enterprise Repository.

	
Locate the cleartool.exe file on the application server. The entire file path to cleartool.exe is necessary. It is used with a File Store parameter called cleartool.path.

	
In the ClearCase client on the application server, create a view to be used by Oracle Enterprise Repository. A recommended practice is to include the word Flashline in the name of the view. The access path for the view is used with a File Store parameter called view.dir.

	
Mount all desired ClearCase VOBs to the created view. Each VOB requires the creation of a different File Store. The name of the VOB is the beginning of a File Store parameter called vob.path.

	
Locate a temporary directory on the application server. The full path to the temporary directory is used with a File Store parameter called tmp.dir.

	
Click the Admin link in the Oracle Enterprise Repository menu bar.

	
In the Admin screen, locate the File Stores section.

	
Click Create New to create a new File Store. The Create New File Store dialog is displayed, as shown in Figure 2-6.

Figure 2-6 Create New File Store Dialog

[image: This image is described in surrounding text]

Description of "Figure 2-6 Create New File Store Dialog"

	
Populate the fields with the following parameters:

	
Name: specify a representative name for the ClearCase VOB referenced by the File Store. The CC prefix is recommended to indicate that the File Store is of type ClearCase. Recommended protocol for the File Store name is CC_VOBNAME.

	
Store Path: enter /cc/store01 for the first ClearCase File Store, /cc/store02 for the second ClearCase File Store, and so on. The Store Path field is a symbolic path in Oracle Enterprise Repository. All File Stores use a common URL for file extraction. The Store Path appears in the URL, indicating which File Store hosts the integration to the actual content. The Store Path must be unique across all File Stores. The construction /cc/store01 is recommended.

	
Store Type: select ClearCase from the list.

	
cleartool.path: enter the entire file path to the cleartool.exe file on the application server.

	
vob.path: enter the name of the ClearCase VOB mounted in the view on the application server.

	
view.dir: enter the access path for the ClearCase view on the application server.

	
tmp.dir: enter the temporary directory on the application server.

	
Click the Test Connection button to test the connection to the ClearCase client. If the connection is properly configured, then the message Test Succeeded appears.

	
Click the Save button to save the File Store for use with Artifact Stores.

2.2.4 Configuring an Artifact Store For a File Store

This procedure is performed in the Asset Editor screen.

	
Select Configure Artifact Stores on the Actions menu. The Configure Artifact Stores dialog is displayed.

	
Click Add. The Create a New Artifact Store dialog is displayed, as shown in Figure 2-7.

Figure 2-7 Create a New Artifact Store Dialog

[image: This image is described in surrounding text]

Description of "Figure 2-7 Create a New Artifact Store Dialog"

	
Enter a name for the artifact store. CC_VOBNAME is the recommended protocol.

	
In the Type list, select FileStore as the Artifact Store type.

	
FileStore accesses the list of File Stores created on the Oracle Enterprise Repository Admin screen.

	
Enter a Store Path. Click the Ellipses button (next to the Store Path field) and select the name of the File Store to be used by this Artifact Store.

	
When finished, click OK. A separate Artifact Store must be created for each File Store.

2.2.5 Adding a File to an Asset Using the File Store's Artifact Store

This procedure is performed in the Asset Editor.

	
Select the asset to which the file is to be added.

	
Click the Add button in the File Information section on the Overview tab.

	
In the dialog enter a name (and description, if necessary).

	
Click Edit. The Edit URL dialog is displayed.

	
Click the Artifact Store File option.

	
From the Store list, select the repository for the File Store (CC_VOBNAME).

	
Next to the File Name box, browse the ClearCase repository.

	
When browsing, the top-level branches in the VOB. Select a branch. The branchname format is Branchname/Version. The version LATEST refers to the information that is currently checked in. Generally the highest number before LATEST is the desired version. In Figure 2-8 /main/server_preed_release/6 is version six of the branch /main/server_preed_release. The name in the folder area (store01) refers to the Store Path for the designated File Store.

Figure 2-8 Open Dialog

[image: This image is described in surrounding text]

Description of "Figure 2-8 Open Dialog"

	
The second level displays the folders within the selected Branchname/Version pair.

	
The third level displays the versions of the selected folder.

	
Subsequently, every selected folder is followed by a desired version. The last two browsed levels are:

	
The selected file name

	
The version of that file

	
The Select button populates the File Name field on the Edit URL window.

	
Click View to test the URL.

2.2.6 Using File Stores

A File Store enables the user to see all versions of all files contained in the store. At this time File Stores work only with ClearCase.

To view a file in a store, perform the following steps in the Asset Editor screen:

	
Select an asset.

	
Click the Overview tab.

Figure 2-9 Overview Tab

[image: This image is described in surrounding text]

Description of "Figure 2-9 Overview Tab"

	
Click Add in the File Information section. The Edit dialog is displayed, as shown in Figure 2-10.

Figure 2-10 Edit Dialog

[image: This image is described in surrounding text]

Description of "Figure 2-10 Edit Dialog"

	
Click the Edit button. The Edit URL dialog is displayed, as shown in Figure 2-11.

Figure 2-11 Edit URL Dialog

[image: This image is described in surrounding text]

Description of "Figure 2-11 Edit URL Dialog"

	
In the Edit URL dialog, select Repository File.

	
Select a file store from the Host list.

	
Click Browse to locate a file, or enter the file name in the File Name text box.

	
Click View to view the file.

	
Click OK when finished.

2.3 ClearQuest Integration

Integrating ClearQuest with your system enables you to use a ClearQuest store in Oracle Enterprise Repository. Typically, an URL used to reach a file in ClearQuest resembles the following:

http://server.host.com:port/clearcasePath/fileName?dir=vobStructure&elem=fileName&cmd=view&user=username&password=<password>

This section contains the following topics:

	
Section 2.3.1, "Adding ClearQuest"

	
Section 2.3.2, "Configuring a ClearQuest Artifact Store"

	
Section 2.3.3, "Adding a File to an Asset Using the ClearQuest Artifact Store"

2.3.1 Adding ClearQuest

To add ClearQuest to your instance of Oracle Enterprise Repository:

	
Download the Oracle Enterprise Repository installation package (clearquest.zip) from the Oracle download site.

	
Unzip the download file to a temporary directory.

	
Using a SQL tool appropriate for your database, run the SQL script located in the temporary directory to add ClearQuest to your Oracle Enterprise Repository database.

	
Restart the application server.

2.3.2 Configuring a ClearQuest Artifact Store

To configure a ClearQuest artifact store in Oracle Enterprise Repository:

	
Click the Assets link in the Oracle Enterprise Repository menu bar. The Oracle Enterprise Repository Assets page is displayed.

	
Click Edit/Manage Assets to launch the Asset Editor.

	
Open the Actions menu.

	
Click Configure Artifact Stores. The Configure Artifact Stores dialog is displayed.

	
Click Add.

	
On the Create a new Artifact Store screen, enter a name for the artifact store file.

	
(Recommended: ClearQuest.)

	
In the Type list, select ClearQuest.

	
Accesses the ClearQuest web interface.

	
Enter a host name for the server.

	
For the Path, enter: logon/url/default.asp.

	
(Optional) Enter a username.

	
(Optional) Enter a password.

	
When finished, click OK.

2.3.3 Adding a File to an Asset Using the ClearQuest Artifact Store

To add a file to an asset using a ClearQuest artifact store:

	
Launch the Asset Editor.

	
Select the appropriate asset.

	
Navigate to the File Information section on the asset's Overview tab.

	
Click Add.

	
In the dialog, enter a name and description, if necessary.

	
Click Edit. The Edit URL dialog is displayed.

	
Select the Artifact Store File option.

	
From the Store list, select ClearQuest Repository.

	
Click the Browse button (next to the File Name box) to edit a ClearQuest shortcut.

	
Click the button to Launch ClearQuest Web interface and create a shortcut to a ClearQuest resource.

	
In the ClearQuest Web interface use the Operation -> Create a Shortcut link to run the wizard to generate a shortcut in ClearQuest.

	
Copy and paste everything following the question mark (?) in the resulting shortcut to the Launch ClearQuest Web shortcut screen.

	
Click OK to populate the File Name with the shortcut portion.

	
Click View to test the URL.

	
This should open the ClearQuest interface to the resource to which the shortcut was assigned.

31 User API

This chapter provides a use case for the User API that describes how to create, retrieve, update, and deactivate users or query for users.

This chapter includes the following sections:

	
Section 31.1, "Overview"

	
Section 31.2, "Use Case"

31.1 Overview

The User Subsystem provides a web services-based mechanism that is used to create, read, update, query, and otherwise manipulate Oracle Enterprise Repository User accounts.

Related Subsystem

For more information, see Chapter 28, "Role API".

Additional Import(s) Required

import com.flashline.registry.openapi.entity.RegistryUser;
import com.flashline.registry.openapi.query.UserCriteria;

31.2 Use Case

This section describes the use cases using the User API. It contains the following topics:

	
Section 31.2.1, "Use Case: Manipulating Users"

31.2.1 Use Case: Manipulating Users

Description

	
Create a new user.

	
Retrieve an existing user.

	
Update a user.

	
Deactivate a user.

	
Query for users.

Sample Code

Example 31-1 Use Case: Manipulate User

package com.flashline.sample.userapi;
import java.net.MalformedURLException;
import java.net.URL;
import java.rmi.RemoteException;
import java.util.Calendar;
import javax.xml.rpc.ServiceException;
import com.flashline.registry.openapi.base.OpenAPIException;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.entity.RegistryUser;
import com.flashline.registry.openapi.query.UserCriteria;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class Users {
 public static void main(String pArgs[]) throws OpenAPIException,
 RemoteException,
 ServiceException {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 FlashlineRegistry repository = new FlashlineRegistryServiceLocator()
 .getFlashlineRegistry(lURL);
 // //////////////////////////////
 // Authenticate with OER
 // //////////////////////////////
 AuthToken authToken = repository.authTokenCreate(pArgs[1],
 pArgs[2]);
 // ---
 // Create a new user
 String lUserName = "testUserCreate
_"+Calendar.getInstance().getTimeInMillis();
 String lFirstName = "testUserCreate_FirstName";
 String lLastName = "testUserCreate_LastName";
 String lEmail = lUserName+"@example.com";
 String lPassword = "testUserCreate_Password";
 boolean lMustChangePassword = false;
 boolean lPasswordNeverExpires = false;
 boolean lAssignDefafultRoles = true;
 RegistryUser RbacRegistrySecUser = repository.userCreate(
 authToken, lUserName, lFirstName, lLastName, lEmail, lPassword,
 lMustChangePassword, lPasswordNeverExpires, lAssignDefafultRoles);
 // ---
 // Read a User
 long lId = 50000; // user id must exist in OER
 RegistryUser lUser1 = repository.userRead(authToken,
 lId);
 // ---
 // Update a User
 lUser1.setActiveStatus(10);
 lUser1.setUserName("xxx");
 lUser1.setPhoneNumber("412-521-4914");
 lUser1.setMustChangePassword(true);
 lUser1.setPasswordNeverExpires(false);
 lUser1.setPassword("changed_password");
 lUser1.setEmail("newaddress@bea.com");
 try {
 lUser1 = repository.userUpdate(authToken,
 lUser1);
 } catch (OpenAPIException e) {
 e.printStackTrace();
 }
 // ---
 // Deactivate a User
 RegistryUser lUser2 = null;
 try {
 lUser2 = repository.userDeactivate(authToken, lId);
 } catch (OpenAPIException e) {
 e.printStackTrace();
 }
 // ---
 // Query for Users
 RegistryUser lUsers[] = null;
 UserCriteria lUserCriteria = null;
 lUserCriteria = new UserCriteria();
 lUserCriteria.setNameCriteria("testname");
 lUsers = repository.userQuery(authToken,
 lUserCriteria);
 } catch (OpenAPIException lEx) {
 System.out.println("ServerCode = " + lEx.getServerErrorCode());
 System.out.println("Message = " + lEx.getMessage());
 System.out.println("StackTrace:");
 lEx.printStackTrace();
 } catch (RemoteException lEx) {
 lEx.printStackTrace();
 } catch (ServiceException lEx) {
 lEx.printStackTrace();
 } catch (MalformedURLException lEx) {
 lEx.printStackTrace();
 }
 }
}

25 Policy API

This chapter provides use cases for the Policy API that describe how to create a new policy, get all policies, get or set policy assertions, obtain policies applied to an asset, and determine an asset's compliance against all applied policies or specific policies.

This chapter includes the following sections:

	
Section 25.1, "Overview"

	
Section 25.2, "Use Cases"

25.1 Overview

REX now supports the following functions against Policies

	
Query Policy:

	
Status of the Policy (pass/fail) on an Asset

	
Status of the collection of Policies on an Asset

	
Obtain XML from the Policy Assertion Technical Description Field

	
Assets that the Policy is applied too

	
Viewer

	
Maintain list of individual Policy Assertions on a Policy

	
Set status of individual Policy Assertions for an Asset.

	
Apply and remove Policy from assets

Additional Import(s) Required (Some may not be used in all examples.)

import com.flashline.registry.openapi.entity.Asset;
import com.flashline.registry.openapi.entity.PolicyAssertion;
import com.flashline.registry.openapi.entity.PolicyAssertionResult;

	
Note:

	
Policies in Oracle Enterprise Repository are a specific type of asset, based on the Policy Type. Refer to the Asset API use cases for information related to the creation, modification and removal of a Policy.

Definitions

	
Assertions

An assertion is a policy statement added to a policy asset.

	
AssertionResult

When a Policy has been applied to an asset, each assertion within the policy can be evaluated for the asset. The Assertion Result is pass, fail or unknown for any asset and assertion pair.

Methods

There are four new methods available with the FlashlineRegistry service

	
assetReadAppliedPolicies()

	
assetUpdateAppliedPolicies()

	
assetEvaluateAgainstPolicy()

	
assetEvaluateAgainstAllPolicies()

25.2 Use Cases

This section describes the use cases using the Policy API. It contains the following topics:

	
Section 25.2.1, "Use Case: Create a Policy"

	
Section 25.2.2, "Use Case: Get All Policies"

	
Section 25.2.3, "Use Case: Get/Set Policy Assertions"

	
Section 25.2.4, "Use Case: Get Policies That Have Been Applied To An Asset"

	
Section 25.2.5, "Use Case: Set Which Policies Are Applied To An Asset"

	
Section 25.2.6, "Use Case: Evaluate Asset Compliance"

25.2.1 Use Case: Create a Policy

Description

To create a new policy, create a new asset based on the Policy Type (102).

Sample Code

Example 25-1 Use Case: Create a Policy

package com.flashline.sample.policies;
import java.net.URL;
import java.rmi.RemoteException;
import com.flashline.registry.openapi.entity.Asset;
import com.flashline.registry.openapi.entity.AssetType;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.entity.PolicyAssertion;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class CreatePolicySample {
 private static final String POLICY_TYPE_NAME_PREFIX = "Policies-Test Policy
 Type";
 private static final long ASSET_POLICY_ARCHETYPE = 102;
 private static final String POLICY_NAME_PREFIX = "Policies-Test Policy";
 private static final String POLICY_VERSION = "1.0";
 private static FlashlineRegistry mRepository = null;
 private static AssetType mPolicyAssetType = null;
 private AuthToken mAuthToken = null;
 public CreatePolicySample(String[] pArgs) {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 mRepository = new
 FlashlineRegistryServiceLocator().getFlashlineRegistry(lURL);
 // //////////////////////////////
 // Authenticate with OER
 // //////////////////////////////
 mAuthToken = mRepository.authTokenCreate(pArgs[1], pArgs[2]);
 mPolicyAssetType = createPolicyAssetType();
 } catch(Exception e) {
 }
 }
 public static void main(String[] pArgs) {
 try {
 CreatePolicySample lCreatePolicySample = new CreatePolicySample(pArgs);
 // ---------------------------
 // create a new policy object
 Asset lPolicy = lCreatePolicySample.createPolicy();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 /**
 * Creates an asset policy with a unique name
 */
 private Asset createPolicy() throws RemoteException {
 String lPolicyName = POLICY_NAME_PREFIX + " " + System.currentTimeMillis();
 // ---------------------------
 // create a policy (an asset whose assettype's archtype is "102" (policy)
 Asset lPolicy = mRepository.assetCreate(mAuthToken, lPolicyName, POLICY
_VERSION, mPolicyAssetType.getID());
 lPolicy.setCustomData("<custom-data></custom-data>");
 // ---------------------------
 // set some polcy assertions
 lPolicy.setPolicyAssertions(generateSampleAssertions());
 return mRepository.assetUpdate(mAuthToken, lPolicy);
 }
 /**
 * Returns several sample policy assertions for use in testing.
 * Located in a function to be shared between test calls.
 *
 * @return Array of policy assertions
 */
 private PolicyAssertion[] generateSampleAssertions() {
 PolicyAssertion[] lPolicyAssertions = new PolicyAssertion[3];
 String[] lPolicyAssertionNames = {"First", "Second", "Third"};
 for (int i=0; i<lPolicyAssertionNames.length; i++) {
 String lPolicyAssertionName = "My " + lPolicyAssertionNames[i] + "
 Assertion";
 lPolicyAssertions[i] = new PolicyAssertion();
 lPolicyAssertions[i].setName(lPolicyAssertionName);
 lPolicyAssertions[i].setDescription(lPolicyAssertionName + " Description");
 lPolicyAssertions[i].setTechnicalDefinition(lPolicyAssertionName + "
 Technical Definition");
 }
 return lPolicyAssertions;
 }
 /**
 * Creates an asset policy asset type with a unique name
 */
 private AssetType createPolicyAssetType() throws RemoteException {
 String lPolicyTypeName = POLICY_TYPE_NAME_PREFIX + " " +
 System.currentTimeMillis();
 // ---------------------------
 // create a new asset type
 AssetType lPolicyType = mRepository.assetTypeCreate(mAuthToken,
 lPolicyTypeName);
 // ---------------------------
 // update the asset type to be a policy asset type by settings the archtype =
 102
 lPolicyType.setArcheTypeIDs(new long[] {ASSET_POLICY_ARCHETYPE});
 return mRepository.assetTypeUpdate(mAuthToken, lPolicyType);
 }
}

25.2.2 Use Case: Get All Policies

Description

To get all policies, find all assets whose asset type's archetype is a policy archetype (102).

Sample Code

Example 25-2 Use Case: Get All Policies

package com.flashline.sample.policies;
import java.net.URL;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import com.flashline.registry.openapi.entity.Asset;
import com.flashline.registry.openapi.entity.AssetType;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.query.AssetCriteria;
import com.flashline.registry.openapi.query.AssetTypeCriteria;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class FindPoliciesSample {
 private static FlashlineRegistry mRepository = null;
 private static AuthToken mAuthToken = null;
 public FindPoliciesSample(String[] pArgs) {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 mRepository = new
 FlashlineRegistryServiceLocator().getFlashlineRegistry(lURL);
 // //////////////////////////////
 // Authenticate with OER
 // //////////////////////////////
 mAuthToken = mRepository.authTokenCreate(pArgs[1], pArgs[2]);
 } catch(Exception e) {
 }
 }
 public static void main(String[] pArgs) {
 try {
 FindPoliciesSample lFindPoliciesSample = new FindPoliciesSample(pArgs);
 AssetType[] lPolicyAssetTypes = null;
 Asset[] lPolicies = null;
 AssetTypeCriteria lAssetTypeCriteria = null;
 AssetCriteria lAssetCritera = null;
 List lListPolicies = new LinkedList();
 // -----------------------
 // search for all asset types that have the policy (102) archetype
 lAssetTypeCriteria = new AssetTypeCriteria();
 lAssetTypeCriteria.setArcheTypeCriteria("102");
 lPolicyAssetTypes = mRepository.assetTypeQuery(mAuthToken,
 lAssetTypeCriteria);
 for(int i=0; i<lPolicyAssetTypes.length; i++) {
 // -----------------------
 // for each policy assettype, search for all assets that are of policy
 assettype
 lAssetCritera = new AssetCriteria();
 lAssetCritera.setAssetTypeCriteria(lPolicyAssetTypes[i].getID());
 lPolicies = mRepository.assetQuery(mAuthToken, lAssetCritera);
 // -----------------------
 // add polices to list
 lListPolicies.addAll(Arrays.asList(lPolicies));
 }
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

25.2.3 Use Case: Get/Set Policy Assertions

Description

To get policy assertions, call getPolicyAssertions. To set policy assertions, call setPolicyAssertions, then update the policy.

Sample Code

Example 25-3 Use Case: Get/Set Policy Assertions

package com.flashline.sample.policies;
import java.net.URL;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import com.flashline.registry.openapi.entity.Asset;
import com.flashline.registry.openapi.entity.AssetType;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.entity.PolicyAssertion;
import com.flashline.registry.openapi.query.AssetCriteria;
import com.flashline.registry.openapi.query.AssetTypeCriteria;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class GetSetPolicyAssertionsSample {
 private static FlashlineRegistry mRepository = null;
 private static AuthToken mAuthToken = null;
 public GetSetPolicyAssertionsSample(String[] pArgs) {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 mRepository = new
 FlashlineRegistryServiceLocator().getFlashlineRegistry(lURL);
 // //////////////////////////////
 // Authenticate with OER
 // //////////////////////////////
 mAuthToken = mRepository.authTokenCreate(pArgs[1], pArgs[2]);
 } catch(Exception e) {
 }
 }
 public static void main(String[] pArgs) {
 try {
 GetSetPolicyAssertionsSample lGetSetPolicyAssertionsSample = new
 GetSetPolicyAssertionsSample(pArgs);
 AssetType[] lPolicyAssetTypes = null;
 Asset[] lPolicies = null;
 AssetTypeCriteria lAssetTypeCriteria = null;
 AssetCriteria lAssetCritera = null;
 List lListPolicies = new LinkedList();
 // -----------------------
 // search for all asset types that have the policy (102) archetype
 lAssetTypeCriteria = new AssetTypeCriteria();
 lAssetTypeCriteria.setArcheTypeCriteria("102");
 lPolicyAssetTypes = mRepository.assetTypeQuery(mAuthToken,
 lAssetTypeCriteria);
 for(int i=0; i<lPolicyAssetTypes.length; i++) {
 // -----------------------
 // for each policy assettype, search for all assets that are of policy
 assettype
 lAssetCritera = new AssetCriteria();
 lAssetCritera.setAssetTypeCriteria(lPolicyAssetTypes[i].getID());
 lPolicies = mRepository.assetQuery(mAuthToken, lAssetCritera);
 // -----------------------
 // add polices to list
 lListPolicies.addAll(Arrays.asList(lPolicies));
 }
 if(lListPolicies.size() > 0) {
 // -----------------------
 // get the first policy
 Asset lPolicy = (Asset)lListPolicies.get(0);
 // -----------------------
 // get the policy assertions
 PolicyAssertion[] lPolicyAssetions = lPolicy.getPolicyAssertions();
 // -----------------------
 // print out the policy assertions
 for(int i=0; i<lPolicyAssetions.length; i++) {
 lPolicyAssetions[i].toString();
 }
 // -----------------------
 // set different policy assertions
 lPolicy.setPolicyAssertions(generateNewAssertions());
 // -----------------------
 // update the asset with new assertions
 mRepository.assetUpdate(mAuthToken, lPolicy);
 } else {
 System.out.println("No policies were found in OER.");
 }
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 /**
 * Returns several sample policy assertions for use in testing.
 * Located in a function to be shared between test calls.
 *
 * @return Array of policy assertions
 */
 private static PolicyAssertion[] generateNewAssertions() {
 PolicyAssertion[] lPolicyAssertions = new PolicyAssertion[3];
 String[] lPolicyAssertionNames = {"NEW-First", "NEW-Second", "NEW-Third"};
 for (int i=0; i<lPolicyAssertionNames.length; i++) {
 String lPolicyAssertionName = "My " + lPolicyAssertionNames[i] + "
 Assertion";
 lPolicyAssertions[i] = new PolicyAssertion();
 lPolicyAssertions[i].setName(lPolicyAssertionName);
 lPolicyAssertions[i].setDescription(lPolicyAssertionName + " Description");
 lPolicyAssertions[i].setTechnicalDefinition(lPolicyAssertionName + "
 Technical Definition");
 }
 return lPolicyAssertions;
 }
}

25.2.4 Use Case: Get Policies That Have Been Applied To An Asset

Description

Call assetReadAppliedPolicies to obtain policies applied to an asset.

Sample Code

Example 25-4 Use Case: Get Policies That Have Been Applied to an Asset

package com.flashline.sample.policies;
import java.net.URL;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import com.flashline.registry.openapi.entity.Asset;
import com.flashline.registry.openapi.entity.AssetType;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.entity.PolicyAssertion;
import com.flashline.registry.openapi.query.AssetCriteria;
import com.flashline.registry.openapi.query.AssetTypeCriteria;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class GetAppliedPoliciesSample {
 private static FlashlineRegistry mRepository = null;
 private static AuthToken mAuthToken = null;
 public GetAppliedPoliciesSample(String[] pArgs) {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 mRepository = new
 FlashlineRegistryServiceLocator().getFlashlineRegistry(lURL);
 // //////////////////////////////
 // Authenticate with OER
 // //////////////////////////////
 mAuthToken = mRepository.authTokenCreate(pArgs[1], pArgs[2]);
 } catch(Exception e) {
 }
 }
 public static void main(String[] pArgs) {
 try {
 GetAppliedPoliciesSample lGetAppliedPoliciesSample = new
 GetAppliedPoliciesSample(pArgs);
 long lAssetId = 50000;
 // ---------------
 // read the policed appled to asset 50000
 Asset[] lAppliedPolicies = mRepository.assetReadAppliedPolicies(mAuthToken,
 lAssetId);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

25.2.5 Use Case: Set Which Policies Are Applied To An Asset

Description

Call assetUpdateAppliedPolicies to update policies that have been applied to an asset.

Sample Code

Example 25-5 Use Case: Update Policies Applied to an Asset

package com.flashline.sample.policies;
import java.net.URL;
import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import com.flashline.registry.openapi.entity.Asset;
import com.flashline.registry.openapi.entity.AssetType;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.entity.PolicyAssertion;
import com.flashline.registry.openapi.query.AssetCriteria;
import com.flashline.registry.openapi.query.AssetTypeCriteria;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class ApplyPoliciesSample {
 private static FlashlineRegistry mRepository = null;
 private static AuthToken mAuthToken = null;
 public ApplyPoliciesSample(String pArgs[]) {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 mRepository = new
 FlashlineRegistryServiceLocator().getFlashlineRegistry(lURL);
 // //////////////////////////////
 // Authenticate with OER
 // //////////////////////////////
 mAuthToken = mRepository.authTokenCreate(pArgs[1], pArgs[2]);
 } catch(Exception e) {
 }
 }
 public static void main(String[] pArgs) {
 try {
 ApplyPoliciesSample lApplyPoliciesSample = new ApplyPoliciesSample(pArgs);
 long lAssetId = 50000;
 long[] lPolicyIds = {50000, 50001, 50002};
 mRepository.assetUpdateAppliedPolicies(mAuthToken, lAssetId, lPolicyIds);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

25.2.6 Use Case: Evaluate Asset Compliance

Description

Use assetEvaluateAgainstPolicy to determine an asset's compliance with a specified policy. Use assetEvaluateAgainstAllPolicies to determine an asset's compliance against all applied policies.

Sample Code

Example 25-6 Use Case: Evaluate Asset Compliance

package com.flashline.sample.policies;
import java.net.URL;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class PolicyEvaluationSample {
 private static FlashlineRegistry mRepository = null;
 private static AuthToken mAuthToken = null;
 public PolicyEvaluationSample(String[] pArgs) {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 mRepository = new
 FlashlineRegistryServiceLocator().getFlashlineRegistry(lURL);
 // //////////////////////////////
 // Authenticate with OER
 // //////////////////////////////
 mAuthToken = mRepository.authTokenCreate(pArgs[1], pArgs[2]);
 } catch(Exception e) {
 }
 }
 public static void main(String[] pArgs) {
 try {
 PolicyEvaluationSample lPolicyEvalSamp = new PolicyEvaluationSample(pArgs);
 long lAssetId = 50000;
 long lPolicyId = 50001;
 String lEvaluationResult = null;
 // --------------------
 // evaluate asset id 50000 against policy id 50001
 // the return is one of the following values "pass", "fail", "unknown"
 lEvaluationResult = mRepository.assetEvaluateAgainstPolicy(mAuthToken,
 lAssetId, lPolicyId);
 // --------------------
 // evaluate asset id 50000 against all polices applied to the asset
 // the return is one of the following values "pass", "fail", "unknown"
 lEvaluationResult = mRepository.assetEvaluateAgainstAllPolicies(mAuthToken,
 lAssetId);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Part II

Oracle Enterprise Repository Integration with Runtime Tools

This part describes how to collect and publish Code Compliance Inspector reports in OER. This part also describes how to use the Enterprise Manager Integration utility to integrate Enterprise Manager with Oracle Enterprise Repository, and it describes the integration with Amberpoint.

This part contains the following chapters:

	
Chapter 5, "Integration with Code Compliance Inspector"

	
Chapter 6, "Enterprise Manager Integration Utility"

	
Chapter 7, "Integration with Amberpoint"

Preface

Oracle Fusion Middleware Integration Guide for Oracle Enterprise Repository describes how to configure Enterprise Manager, Oracle JDeveloper, VS .NET with Oracle Enterprise Repository. This guide also describes the Oracle Enterprise Repository connectors.

Audience

This document is intended for all Oracle Enterprise Repository users who want configure the development environments to easily produce or consume files from Oracle Enterprise Repository. This document is also intended for all Oracle Enterprise Repository users who want to use REX and the REX APIs.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Enterprise Repository 11g Release 1 (11.1.1.7) documentation set:

	
Oracle Enterprise Repository on OTN - The home page for Oracle Enterprise Repository on Oracle Technology Network (OTN) is:

http://www.oracle.com/technetwork/middleware/repository/overview/index-100687.html

	
SOA Blog - Keep on top of the latest SOA blogs at:

http://blogs.oracle.com/governance

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	
monospace

	
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

14 ArtifactStore API

This chapter provides a use case for the ArtifactStore API that describes how to create a missing ArtifactStore in Oracle Enterprise Repository.

This chapter includes the following sections:

	
Section 14.1, "Overview"

	
Section 14.2, "Use Case"

14.1 Overview

The ArtifactStore subsystem provides a web services-based mechanism that is used to query and create Oracle Enterprise Repository ArtifactStores.

14.2 Use Case

This section describes the use case using the Artifact Store API. It contains the following topics:

	
Section 14.2.1, "Use Case: Create Missing ArtifactStore"

14.2.1 Use Case: Create Missing ArtifactStore

Description

This use case describes how to create a missing artifactstore.

Sample Code

Example 14-1 Use Case: Create Missing ArtifactStore

package com.flashline.sample.artifactstoreapi;
import java.net.URL;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import com.flashline.registry.openapi.base.OpenAPIException;
import com.flashline.registry.openapi.entity.ArtifactStoreBean;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.query.ArtifactStoreCriteria;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class ArtifactStores {
 public static void main(String pArgs[]) throws OpenAPIException,
 RemoteException,
 ServiceException {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 FlashlineRegistry repository = new
 FlashlineRegistryServiceLocator().getFlashlineRegistry(lURL);
 // //////////////////////////////
 // Authenticate with OER
 // //////////////////////////////
 AuthToken authToken = repository.authTokenCreate(pArgs[1], pArgs[2]);
 // ---
 // query for an artifact store
 ArtifactStoreCriteria lArtifactStoreCriteria = null;
 ArtifactStoreBean[] lArtifactStoreBeans = null;
 ArtifactStoreBean lArtifactStoreBean = null;
 lArtifactStoreCriteria = new ArtifactStoreCriteria();
 lArtifactStoreCriteria.setHostCriteria("existing-artifact-store.com");
 lArtifactStoreCriteria.setBasepathCriteria("/");
 lArtifactStoreBeans = repository.artifactStoreQuery(authToken,
 lArtifactStoreCriteria, false);
 // create a missing artifact store if missing and based on the criteria
 lArtifactStoreCriteria = new ArtifactStoreCriteria();
 lArtifactStoreCriteria.setHostCriteria("missing-artifact-store.com");
 lArtifactStoreCriteria.setBasepathCriteria("/");
 // a new artifact store is created
 lArtifactStoreBeans = repository.artifactStoreQuery(authToken,
 lArtifactStoreCriteria, true);
 lArtifactStoreBean = lArtifactStoreBeans[0];
 } catch(Exception e) {
 throw new RuntimeException(e.getMessage());
 }
 }
}

Index

A B C D E F H I J K L M N O P Q R S T U V W X

A

	AcceptableValueLists API, 15
	
	seeOverview
	seeUse Cases

	Accessing the Repository Assets Pane, 11.3.4.1
	Accessing the Repository Assets View, 11.3.4.1.2
	Add a File to an Asset Using a PVCS Repository, 4.4
	Add the Harvest Artifact Store to an Asset, 3.4
	Adding a File to an Asset Using the ClearQuest Artifact Store, 2.3.3
	Adding a File to an Asset Using the File Store's Artifact Store, 2.2.5
	Adding ClearQuest, 2.3.1
	Adding Serena Changeman Plug-ins, 4.1
	Adding the File Stores Feature to Oracle Enterprise Repository, 2.2.2
	Advanced Configuration, 6.3.2
	Amberpoint, 7
	Artifact Store, 1.2
	
	seeOverview

	Artifacts Creation, 6.2.3.5
	ArtifactStore API, 14
	
	seeOverview
	seeUse Cases

	Asset API, 16
	
	seeOverview
	seeSample Code
	seeUse Cases

	Asset Consumption Process, 8.2.2
	Asset Production Process, 8.2.1
	AssetType API, 17
	
	seeOverview
	seeUse Cases

	Assign an Oracle Enterprise Repository Project to a .NET Solution, 10.3.4
	Assign IDE Users to Oracle Enterprise Repository Projects, 9.2
	Assign Users to an Oracle Enterprise Repository Project, 10.2.2.2.1
	Associating JDeveloper Application with Oracle Enterprise Repository, 11.1.4.1
	Atomicity of Method Calls, 13.2.2.1
	Authentication and Authorization, 13.3.2
	Automated Usage Detection, 8.2.2.3
	Automatic Usage Detection, 8.3.7, 11.2.7, 11.3.6

B

	Basic Concepts, 13.3
	Best Practices, 8.2
	BPEL PM, 6.2.3.2

C

	Categorization Types and Categorizations API, 18
	
	seeOverview
	seeUse Cases

	ClearCase Integration, 2
	ClearCase Web Interface, 2.1
	
	see Overview
	see Prerequisites

	ClearQuest Integration, 2.3
	CMF Entry Type API, 19
	
	seeOverview
	seeUse Cases

	Command Line Options for the EM Integration, 6.2.1
	Configure an Artifact Store, 2.1.3, 3.3
	Configure the Connection to Oracle Enterprise Repository, 10.3.3
	Configure the Oracle Enterprise Repository Plug-ins, 10.2.2, 10.3.2
	
	seeInstallation
	seePrerequisites

	Configure the Oracle Enterprise Repository Preferences, 10.2.3
	Configuring a ClearQuest Artifact Store, 2.3.2
	Configuring a PVCS Artifact Store, 4.3
	Configuring an Artifact Store, 1
	Configuring an Artifact Store For a File Store, 2.2.4
	Configuring Automatic Usage Detection, 10.3.5.2
	Configuring Eclipse, 10.2
	Configuring Oracle Enterprise Repository, 9
	Configuring Oracle JDeveloper, 10.1
	Configuring the Enterprise Manager Integration Utility, 6.3
	Configuring VS .NET, 10.3
	Configuring Your IDE, 10
	Consuming WSDL/Service from Oracle Enterprise Repository, 11.1.4.2
	Create an asset for the ClearCase file(s), 2.1.3
	Creating a File Store, 2.2.3
	Creating and Configuring an Artifact Store
	
	see

	Creating and Configuring Repository and Assets, 2.1.3
	CRUD-Q Naming Convention, 13.2.2
	Custom Access Settings API, 20
	
	seeOverview
	seeUse Cases

D

	Department API, 21
	
	seeOverview
	seeUse Cases

	Developer-Driven Discovery, 8.2.2.2
	Download Artifacts, 8.3.5, 11.1.4, 11.2.5, 11.3.5

E

	Enable Automatic Usage Detection, 10.2.4, 10.3.5
	Enable Harvesting in Eclipse, 10.2.1
	Enable Harvesting in VS .NET, 10.3.1
	Enabling the Assets-in-Progress Properties, 10.2.2.2.2
	Enabling UTF-8 Support, 2.1.2
	Encrypting the Configuration File Passwords, 6.4
	Endpoint Creation, 6.2.3.6
	Enterprise Manager Integration Utility, 6
	
	seeHigh Level Use Cases
	seeOverview
	seePrerequisites

	Establish Compliance Templates, 9.3
	Exception Handling, 13.3.2
	Extract the asset and the ClearCase file(s), 2.1.3
	Extraction API, 22
	
	seeOverview
	seeUse Cases

F

	File Stores, 2.2
	
	see Adding the File Stores Feature to Oracle Enterprise Repository
	see Creating a File Store
	see Overview

	Fundamental WSDL Data Types, 13.2.3

H

	Harvest Artifacts, 11.1.1, 11.2.2, 11.3.2
	Harvest Files, 8.3.2
	Harvest-HTTP Repository Host Integraion
	
	seeInstallation
	seeOverview

	Harvest-HTTP Repository Host Integration, 3
	Harvesting in Eclipse Environment using ANT, 10.2.1.2
	High Level Use Cases, 6.1.3, 8.3

I

	Install the Harvester, 9.1
	Installation, 3.2, 10.3.2.2
	Integrating with Oracle JDeveloper 10g, 10.1.3
	Integrating with Oracle JDeveloper 11g R1, 10.1.2
	Integrating with Oracle JDeveloper 11g R2, 10.1.1
	Integration with Amberpoint, 7
	Integration with Development Environments, 8
	
	seeBest Practices
	seeHigh Level Use Cases
	seeOverview

	Introduction to REX, 13.1

J

	Java JDK, 10.2.2.2.4

K

	Known Issues, 6.5

L

	Link the ClearCase file to the asset, 2.1.3
	Localization of REX Clients, 23
	Localization of REX Clients API
	
	seeOverview
	seeUse Cases

	Logging, 6.3.2.3

M

	Metric Mappings, 6.3.2.1, 6.3.2.1
	Metric Publishing, 6.2.3
	Metrics to Update, 6.2.3.7

N

	No Inter-call Transaction Support, 13.2.2.2
	Notification API, 24
	
	seeOverview
	seeUse Cases

O

	Obtaining the Enterprise Manager Integration Utility, 6.1.2
	Oracle Enterprise Repository Connectors, 0
	Oracle Enterprise Repository Projects, 11.3.4.1.1
	Oracle Service Bus, 6.2.3.1
	Overview, 1.1, 2.1.1, 2.2.1, 3.1, 6.1, 8.1, 14.1, 15.1, 16.1, 17.1, 18.1, 19.1, 20.1, 21.1, 22.1, 23.1, 24.1, 25.1, 26.1, 27.1, 28.1, 29.1, 30.1, 31.1, 32.1
	Overview of SFID, 10.3.5.1

P

	Policies, 8.2.1.1
	Policy API, 25
	
	seeOverview
	seeUse Cases

	Prerequisites, 2.1.2, 6.1.1
	Prerequisities, 10.3.2.1
	Prescription Reuse, 8.2.2.1
	Prescriptive Reuse, 8.3.6, 11.2.6
	Projects API, 26
	
	seeOverview
	seeUse Cases

	Propose/Submit Assets, 8.2.1.2

Q

	Query Considerations in REX, 13.3.2

R

	Relationship Types API, 27
	
	seeOverview
	seeUse Cases

	Repository Extensibility Framework, 13
	REX, 13
	REX Architecture, 13.2
	Role API, 28
	Running from Command Line, 6.2.1

S

	Sample Code, 16.1.2
	Scheduling from Enterprise Manager, 6.2.2
	Search Oracle Enterprise Repository, 8.3.3, 11.1.2, 11.2.3, 11.3.3
	Security Considerations, 4.5
	Selecting a New Artifact Store, 1.3
	Serena ChangeMan Integration, 4
	Set the artifact store from which to extract files, 2.1.3
	Set up Automatic Usage Detection, 9.4
	Setting the Repository and Enterprise Manager Connection Information for the Command-line Utility, 6.3.1
	Setting up Eclipse Environment to use Harvester using ANT, 10.2.1.1
	SiteMinder, 10.2.2.2.3
	Submit Files, 8.3.1, 11.2.1, 11.3.1
	Subscriptions API, 29
	
	seeOverview
	seeUse Cases

	Subsystems Overview, 13.2.1
	Subsytems and CRUD-Q Convention Relationship, 13.2.2
	Supported Versions for the IDEs, 8.3.7
	System Settings API, 30
	
	seeOverview
	seeUse Cases

T

	Target Finders, 6.3.2.2

U

	UDDIMappings.xml, 7
	Use Cases, 14.2, 15.2, 16.2, 17.2, 18.2, 19.2, 20.2, 21.2, 22.2, 23.2, 24.2, 25.2, 26.2, 27.2, 28.2, 29.2, 30.2, 31.2, 32.2
	Use Cases and Supported Development Environments, 8.3.7
	User API, 31
	
	seeOverview
	seeUse Cases

	Using DIME attachments with .NET and the Microsoft Web Services Enhancement (WSE) Kit, 13.3.2
	Using Eclipse, 11.2
	
	seeAutomatic Usage Detection
	seeDownload Artifacts
	seeHarvest Artifacts
	seePrescriptive Reuse
	seeSearch Oracle Enterprise Repository
	seeSubmit Files
	seeView Asset Details

	Using File Stores, 2.2.6
	Using Oracle JDeveloper, 11.1
	Using SOAP with Attachments and Java AXIS clients, 13.3.2
	Using the Enterprise Manager Integration Utility, 6.2
	Using the IDE to Interact with Oracle Enterprise Repository, 11
	Using the JDeveloper
	
	seeDownload Artifacts
	seeHarvest Artifacts
	seeSearch Oracle Enterprise Repository
	seeView Asset Details

	Using VS .NET, 11.3
	
	seeAutomatic Usage Detection
	seeDownload Artifacts
	seeHarvest Artifacts
	seeSearch Oracle Enterprise Repository
	seeSubmit Files
	seeView Asset Details

V

	Vendor API, 32
	
	seeUse Cases

	Versioning Considerations for the Oracle Enterprise Repository REX, 13.2.4
	View Asset Details, 8.3.4, 11.1.3, 11.2.4, 11.3.4

W

	Web Services, 6.2.3.3
	WebLogic 8.1 Tuxedo Plug-In, 2.1.1
	Webshpere 5.x Apache Plug-In, 2.1.1

X

	XML Parsing, 10.2.2.2.5

30 System Settings API

This chapter provides a use case for the System Settings API that describes how to query for system settings in Oracle Enterprise Repository.

This chapter includes the following sections:

	
Section 30.1, "Overview"

	
Section 30.2, "Use Case"

30.1 Overview

Within the Oracle Enterprise Repository's System Settings section administrators can configure the basic operations and enable/disable specific features. The System Settings API provides a mechanism to query these system settings.

	
Note:

Users are allowed only to query the system settings for values, the system settings cannot be set or modified through REX.

To query the system settings, the following package import(s) are required:

import com.flashline.registry.openapi.entity.SettingValue;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.query.SystemSettingsCriteria;

Reserved Methods

The systemSettingsAddBundle method is reserved for future use and is not intended for general use.

30.2 Use Case

This section describes a use case using the System Settings API. It includes the following topic:

	
Section 30.2.1, "Use Case: Query for System Settings"

30.2.1 Use Case: Query for System Settings

Description

Query for system settings in REX.

Sample Code

Example 30-1 Use Case: Query for System Settings

package com.flashline.sample.systemsettingsapi;
import java.net.MalformedURLException;
import java.net.URL;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import com.flashline.registry.openapi.base.OpenAPIException;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.entity.SettingValue;
import com.flashline.registry.openapi.query.SystemSettingsCriteria;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import
 com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
public class SystemSettings {
 public static void main(String pArgs[]) throws OpenAPIException,
 RemoteException,
 ServiceException {
 try {
 ///
 // Connect to Oracle Enterprise Repository
 ///
 URL lURL = null;
 lURL = new URL(pArgs[0]);
 FlashlineRegistry repository = new
 FlashlineRegistryServiceLocator().getFlashlineRegistry(lURL);
 // //////////////////////////////
 // Authenticate with OER
 // //////////////////////////////
 AuthToken authToken = repository.authTokenCreate(pArgs[1],pArgs[2]);
 // //////////////////////////////
 // Set Application Token on AuthToken object. This is supplied by OER
 //authToken.setApplicationToken("TokenString");
 // //////////////////////////////////////
 //Read all available system settings
 //Create an empty Criteria object. No criteria returns all settings.
 SystemSettingsCriteria lCriteria = new SystemSettingsCriteria();
 lCriteria.setNameCriteria("enterprise.defaults.displayname.field");
 SettingValue[] lValues = repository.systemSettingsQuery(authToken,
 lCriteria);
 for (int i=0;i<lValues.length;i++) {
 SettingValue lValue = lValues[i];
 System.out.println("Setting Name: " + lValue.getDescriptor().getName());
 System.out.println("Setting Value: " + lValue.getValue());
 }
 // /////////////////////////////////////
 //Read a specific setting
 lCriteria.setNameCriteria("cmee.server.companyname");
 lValues = repository.systemSettingsQuery(authToken, lCriteria);
 for (int i=0;i<lValues.length;i++) {
 SettingValue lValue = lValues[i];
 System.out.println("Setting Name: " + lValue.getDescriptor().getName());
 System.out.println("Setting Value: " + lValue.getValue());
 }
 // /////////////////////////////////////
 //Read a specific section
 lCriteria.setSectionCriteria("general");
 lValues = repository.systemSettingsQuery(authToken, lCriteria);
 for (int i=0;i<lValues.length;i++) {
 SettingValue lValue = lValues[i];
 System.out.println("Setting Name: " + lValue.getDescriptor().getName());
 System.out.println("Setting Value: " + lValue.getValue());
 }
 } catch (OpenAPIException lEx) {
 System.out.println("ServerCode = " + lEx.getServerErrorCode());
 System.out.println("Message = " + lEx.getMessage());
 System.out.println("StackTrace:");
 lEx.printStackTrace();
 } catch (RemoteException lEx) {
 lEx.printStackTrace();
 } catch (ServiceException lEx) {
 lEx.printStackTrace();
 } catch (MalformedURLException lEx) {
 lEx.printStackTrace();
 }
 }
}

