

8 Generating Deployment Plans and Deploying Artifacts

This chapter discusses the approach to create Deployment Plans for SOA artifacts extended using AIA Extension mechanism. AIA Deployment Plan Generator utility helps generate Deployment Plans for extended artifacts and AIA Installation Driver (AID) helps deploy them. The chapter also outlines the approach to deploy non-native SOA artifacts. The Pre-Built Integrations or direct integrations delivered by Oracle AIA use the features outlined in this chapter to deploy both native SOA artifacts and non-native artifacts.

This chapter includes the following sections:

	
Section 8.1, "Introduction"

	
Section 8.2, "Extending Deployment Plans"

	
Section 8.3, "Generating Deployment Plans"

	
Section 8.4, "Generating Conditional Deployment Plans"

	
Section 8.5, "Deploying Artifacts"

	
Section 8.6, "Undeploying Services"

8.1 Introduction

AIA Project Lifecycle Workbench contains the integration specific details of the Pre-Built Integration or direct integrations, like the tasks involved and the service components involved in each task. Project Lifecycle Workbench supports only Oracle SOA artifacts which are created using FMW technologies such as BPEL or Mediator. These are called native artifacts and they are supported by AIA Foundation Pack tools such as Project Lifecycle Workbench, Harvester, Deployment Generator, and AID. When a composite is harvested, the annotation details of the composite are stored in the lifecycle database. The Bill of Material (BOM) of a Pre-Built Integration can be exported as BOM.xml using the Generate BOM feature in AIA Lifecycle Workbench. The existing artifacts can be modified and new natively supported artifacts can be added using AIA Lifecycle Workbench and a BOM.xml file can be generated.

The BOM.xml file consists of a list of artifacts that constitute a project and their ensuing annotations. Deployment Plan Generator reads the annotations and other information in BOM.xml file as input and generates deployment plan for the selected services. The deployment plan is used to perform the required configurations and deploy the services to the Fusion Middleware server using AID.

Figure 8-1 illustrates the flow for extending and deploying native artifacts.

Figure 8-1 Extending and Deploying Native Artifacts

[image: The image is described in the surrounding text]

You may be required to deploy artifact types that are not supported by the Project Lifecycle Workbench and AIA Harvester. For instance, your integration may require the use of Java Web Services or interaction with third-party services. In such cases, the deployment of those artifacts is supported by invoking custom scripts such as Shell scripts or ANT scripts from the Deployment plan. AID supports deployment of these supplementary artifacts. However, modify and add new non-native artifacts outside AIA Lifecycle Workbench.

Figure 8-2 illustrates the flow for extending and deploying non-native artifacts.

Figure 8-2 Extending and Deploying Non-native Artifacts

[image: The image is described in the surrounding text]

The following files are used in the deployment plan generation and deployment of AIA artifacts:

	
<PIP_Name>DP.xml: This deployment plan file orchestrates the deployment of natively supported services and the configuration required for those services. Oracle AIA delivered Pre-Built Integrations usually have their deployment plans under AIA_HOME/PIPS/<pip name>/DeploymentPlans. Oracle AIA Foundation Pack customers are also advised to save their Deployment plans under the corresponding folder in the AIA_HOME/PIPS/ folder.

	
<PIP_Name>SupplementaryDP.xml: Supplementary Deployment Plan contains configuration required for deployment of non native services. A Pre-Built Integration installation may or may not constitute the deployment of non-native artifacts. If it does, then the corresponding Pre-Built Integration supplies a Supplementary deployment plan at AIA_HOME/PIPS/<pip name>/DeploymentPlans.

	
<PIP_Name>HS.xml:HS is a Harvester Settings file that harvests the deployed services to OER for a Pre-Built Integration project from the SOA runtime. When a Pre-Built Integration is installed, the file can be located in AIA_HOME/PIPS/<pip name>/HarvesterSettings folder.

For more information about the Harvester settings file, see Chapter 5, "Harvesting Oracle AIA Content."

You can also generate deployment plans for ODI and include them in your deployment plans.

For information about generating a deployment plan for ODI, see Chapter 9, "Generating a Deployment Plan for ODI."

	
Note:

You can deploy the artifacts only after installing Foundation Pack.

For information about installing Foundation Pack, see Oracle Fusion Middleware Installation and Upgrade Guide for Oracle Application Integration Architecture Foundation Pack.

8.2 Extending Deployment Plans

Oracle AIA Foundation Pack provides a comprehensive mechanism to extend the Oracle shipped deployment plans. Most often, integration scenarios require modifications to AIA-shipped integrations or Pre-Built Integrations before they are deployed to customer environments. The modifications include changes to Pre-Built Integration functionality, and they often manifest on the changes to Pre-Built Integration deployment configurations. This section discusses how to modify or extend both native and non-native artifacts that are shipped with Oracle AIA.

8.2.1 Extending Native Artifacts

If you must modify the native artifacts or add new natively supported artifacts, modify existing annotations or add new annotations, generate a BOM.xml using Project Lifecycle Workbench. Use the BOM.xml to run Deployment Plan Generator to generate a new deployment plan. As this is the process employed by Oracle AIA, this file will be equivalent to <PIP_Name>DP.xml. However, save it at a different file path with a different name.

	
Note:

You can modify and add new native artifacts and generate a deployment plan to include both. However, Oracle AIA strongly recommends that you generate a new deployment plan on a different name so that these extensions do not get affected when upgrades are done or patches are applied. For example, <PIP_Name>CustomDP.xml

For more information about modifying AIA Artifacts or making custom extensions to AIA Artifacts and generating the BOM XML input file, seeChapter 6, "Working with Project Lifecycle Workbench Bills of Material."

8.2.2 Extending Non-Native Artifacts

To modify non-native artifacts or add new non-native artifacts, copy-paste AIA-shipped <PIP_Name>SupplementaryDP.xml with a different name, for example <PIP_Name>CustomSupplementaryDP.xml and modify the artifacts manually. This ensures that your customizations do not get overwritten during AIA upgrades or patch updates. If the Pre-Built Integration does not supply a SupplementaryDP.xml file, create one and add the artifacts to be modified manually.

As non-native artifacts cannot be harvested using the Project Lifecycle Workbench UI, you cannot generate a deployment plan using DPG. Deploy non-native artifacts in the <PIP_Name>CustomSupplementaryDP.xml using the deployment command and also undeploy the artifacts manually.

	
Note:

You cannot modify and add new non-native artifacts in the same AIA-shipped <PIP_Name>SupplemenatryDP.xml.

8.3 Generating Deployment Plans

This section discusses the input required for Deployment Plan Generator, the process for generating the deployment plan, and the output generated

8.3.1 Input for Deployment Plan Generator

Deployment Plan Generator takes the following four command line inputs.

	
BOM.xml: The BOM file is exported from the Project Lifecycle Workbench UI for the projects that are selected. BOM.xml contains the annotations to the services that are specified by users. These annotations are read by the Deployment Plan Generator to generate the deployment plan for the selected services. This deployment plan is used to configure the required configuration and deploy the services to the FMW server.

	
ODIBOM.xml: This ODIBOM file is to be generated manually. It should contain the list of artifacts to be imported to ODI along with the list of tokens to be replaced and encrypted. These annotations, in addition to some other information, are read by Deployment Plan Generator to generate the deployment plan for ODI.

	
File path for the Deployment Plan to be generated: The naming convention for the deployment plan is <projectCode>DP.xml. The Deployment Plan Generator gives a warning message if the given input argument for deployment plan does not follow the naming standards.

	
File path of the HarvesterSettings.xml to be generated: The naming convention for the HarvesterSettings is <projectCode>HS.xml. The Deployment Plan Generator gives a warning message if the given input argument for Harvester Settings does not follow the naming standards. Set the path for the file to AIA_HOME/pips/<projectCode>/HarvesterSettings as the deployment plan refers to this file during execution.

8.3.2 Executing Deployment Plan Generator

To execute Deployment Plan Generator:

	
Set environment variables by running the commands specific to your platforms:

	
For UNIX/Linux based systems, run source <AIA_HOME>/aia_instances/<instance_name>/bin/aiaenv.sh

	
For Microsoft Windows, run <AIA_HOME>/aia_instances/<instance_name>/bin/aiaenv.bat

	
Run the following command for executing the Deployment Plan Generator. This can be executed from any location.

ant –f ${AIA_HOME}/Infrastructure/Install/AID/AIADeploymentPlanGenerator.xml
–Dinput=<full file path of lifecycle BOM.xml> -DDeploymentPlan=<output file
path of the generated deploymentplan. For example ${AIA_
HOME}/PIPS/<pipName>/DeploymentPlans/<pipName>DP.xml>
-DHarvesterSettings=<output file path of the generated HarvesterSettings file.
For example ${AIA_HOME}/PIPS/<pipName>/HarvesterSettings/<pipName>HS.xml>
[-DODIinput=<ODI BOM file name along with absolute path of the file>]

	
Note:

While executing the deployment plan using automated scripts in addition to the above command line arguments, pass weblogic username and password. For example, -DUsername=<weblogic admin username> -DPassword=<weblogic admin password>.

	
Note:

AIA recommends that the output for the run-time Harvester Settings file be AIA_HOME/pips/<PIP_Name>/HarvesterSettings as deployment plan refers to this file during execution.

Provide at least BOM.xml or ODIBOM.xml as input. If you are providing both files as input, ensure that the ProjectCode is same for both the BOM files. If you are providing only ODIBOM.xml as input, then skip the HarvesterSettings.xml filepath input.

8.3.3 Output by Deployment Plan Generator

Deployment Plan Generator produces the following output:

	
Deployment Plan: The deployment plan that is generated is very specific to the BOM.xml and ODIBOM.xml which are given as input. The services which are specified in BOM.xml can be deployed and configured by using this deployment plan. The artifacts list provided in the ODIBOM.xml is processed and imported into the ODI with the deployment plan. Deployment Plan Generator generates a combined deployment plan if both the BOM and ODIBOM are provided. This deployment plan is executed by feeding it to AID.

	
Undeployment Plan: The undeployment plan is generated at the same location as the deployment plan. The naming convention for the undeployment plan is <projectCode>UndeployDP.xml. This contains undeploy tasks for all the services that are deployed and the Configurations done as part of Deployment Plan. There is no undeployment plan for ODI artifacts. The undeployment plan is also executed using the AID.

	
Harvester Settings File: A Deployment Plan Generator utility generates a HarvesterSettings.xml file for harvesting the deployed services to OER. The list of services to be harvested are taken from the BOM.xml.

8.4 Generating Conditional Deployment Plans

You can set conditions to your deployment plans for the following scenarios:

	
Choose artifacts to be deployed depending on the version of participating application.

	
Define conditional logics depending on deployments and sequences for two different projects. For example, project A may lay out certain artifacts which must be conditionally kept or removed while deploying project B.

Define the conditions in a deployment policy file. The deployment policy file supports all the artifact types in configurations and deployments except the adapter types (JmsAdapter, DbAdapter, AqAdapter, OracleAppsAdapter). However, for composites define an additional condition.

The deployment policy file is passed as an additional input to AID through -DDeploymentPolicyFile variable. When AID begins execution, it checks if -DDeploymentPolicyFile variable is passed as a command line input. When it finds the variable, AID creates a copy of the original deployment plan with the name <Original_DP_Name>-Conditional.xml. AID checks whether there are changes required to the original deployment plan based on inputs from the deployment policy file, picks up the modified deployment plan and executes them during installation.

Create the deployment policy file manually. The sample deployment plan shown in Example 8-1 helps you understand deployment policy file.

Example 8-1 Sample Deployment Plan File

<DeploymentPlan component="AIADemo" version="3.0">
 <PreInstallScript>
 </PreInstallScript>
 <Configurations>
 <Datasource name="FODDS" jndiLocation="jdbc/fodDS" wlserver="fp"

database="participatingapplications.AIADemo.db.aiademoparticipatingapp"
action="create"
 xa-enabled="true"/>
 <JMSResource wlserver="fp" jmsResourceType="ConnectionFactory"
 jmsResourceName="AIADemoCF"
 jmsresourcejndi="jms/aia/AIADemoCF"
 action="create" jmsModuleName="AIAJMSModule"
 jmsSubDeploymentName="AIASubDeployment"/>
 </Configurations>
 <Deployments>
 <Application name="WebServices_WebLogicFusionOrderDemo_
CreditCardAuthorization"
 filelocation="${AIA_
HOME}/samples/AIADemo/Services/CreditCardAuthorization/deploy/WebServices_
WebLogicFusionOrderDemo_CreditCardAuthorization.war"
 wlserver="fp" failonerror="true" action="deploy"/>
 <Composite compositeName="AIADemoUpdateSalesOrderEBS"
 compositedir="${AIA_
HOME}/samples/AIADemo/EBS/AIADemoUpdateSalesOrderEBS"
 revision="1.0" wlserver="fp" action="deploy"/>
 <Composite
compositeName="AIADemoSyncCustomerPartyListCRMProvDBAdapter"
 compositedir="${AIA_
HOME}/samples/AIADemo/Adapters/AIADemoSyncCustomerPartyListCRMProvDBAdapter"
 revision="1.0" wlserver="fp" action="deploy"/>
 </Deployments>
</DeploymentPlan>

If this is your deployment plan file, create a deployment policy file as illustrated in Example 8-2.

Example 8-2 Deployment Policy File

<DeploymentPlan component="AIADemo" version="3.0">
<Conditions component="AIADemo" version="3.0">
 <if>
 <equals arg1="${pip.foo.boo}" arg2="11.5.7"/>
 <then>
 <UpdateDP artifacttype="Datasource" name="FODDS" action="no-action" />
 <UpdateDP artifacttype="JMSResource" name="AIADemoCF"
action="no-action" />
 <UpdateDP artifacttype="Composite" name="AIADemoUpdateSalesOrderEBS"
action="no-action" />
 </then>
 </if>
</Conditions>
</DeploymentPlan>

When AID executes the policy file, the contents between <Conditions> tag are written to a temporary build file and executed. Ensure that the contents inside conditions are valid ant tasks. A policy file can have only one conditions tag and all the conditions should be written inside this tag.

8.4.1 Understanding the Deployment Policy File

UpdateDP task is implemented as a taskdef in AID. The taskdef updates the action attribute of configuration and deployment tasks. In the UpdateDP task:

	
artifactype refers to the valid task names in deployment plan.

	
name refers to the name of the artifact created in the tag.

	
action refers to the new action value to which the value in deployment plan should be updated.

For a Composite tag, create an additional attribute: dir="<new directory path>". This attribute updates the compositedir attribute in the corresponding composite tag of deployment plan. Only one of the action and dir attributes can be specified for the composite artifact type.

8.4.2 Executing the Deployment Plan

AIA executes the deployment plan for UpdateDP in the following sequence:

	
Reads the deployment plan from "DeploymentPlan" environment variable.

	
If artifacttype != 'Composite', verifies whether dir attribute is passed as an input. If it is, AID throws incompatible attributes exception and shows usage.

	
If artifacttype = 'Composite', verifies whether both 'dir' and 'action' attributes are passed as an input. If they are, AID throws incompatible attributes exception and shows usage.

	
Reads name and action attributes, and updates deployment plan tasks accordingly.

	
Writes the file back to disk.

For the Macrodef that you do not want deployed by AID, set the action attribute in the listed macros to "no-action" action. The AID then skips the macro execution and proceeds to the next task. This is like removing the corresponding task from the deploymentPlan. "no-action" value for the action attribute is supported by the following Macrodefs:

	
Configurations

	
Datasource

	
JMSResource

	
JMSConnectionFactory

	
For Deployments you can add the "no-action" attribute value for Composite macrodef.

8.5 Deploying Artifacts

	
Note:

To facilitate durability across upgrades and patch updates, place custom modified files in a different directory path from AIA-shipped <PIP_Name>DP.xml and <PIP_Name>SupplementaryDP.xml.

The deployment of the artifacts is done by AID. AID takes the deployment plan and AIAInstallProperties.xml file as input. Based on the tags specified in the deployment plan, AID configures and deploys the artifacts onto the server.

AID supports three types of deployment plans:

	
Main Deployment Plan

	
Supplementary Deployment Plan

	
Custom Deployment Plan

Main Deployment Plan is auto generated by the Deployment Plan Generator whereas Supplementary Deployment Plan and Custom Deployment Plan are handcoded. Support to add custom deployment tags to the main deployment plan is available through Pre-Install and Post-Install sections in the Deployment plan. However, the problem with using these sections is that the deployment plan may not be upgrade-safe. To mitigate the issue, supplementary and custom deployment plans are introduced. The supplementary deployment plan is used mostly by the internal Pre-Built Integration development team. Use custom deployment plan to meet the requirement of non-native artifact deployment plan.

The execution sequence of deployment plans followed by AID is Main Deployment Plan -> Supplementary Deployment Plan -> Custom Deployment Plan. Here Supplementary Deployment Plan and Custom Deployment Plan are optional.

The following sections show the deployment commands for various deployment scenarios.

8.5.1 Deploying AIA Shipped Native Artifacts and Non-native Artifacts

This scenario does not involve any customizations. The following command takes the main deployment plan and the supplementary deployment plan which are shipped with the Pre-Built Integration installer as input.

ant -f <AIA_HOME>\Infrastructure\Install\AID\AIAInstallDriver.xml
-DPropertiesFile=<AIA_HOME>\aia_instances\<AIA_Instance_
name>\config\AIAInstallProperties.xml -DDeploymentPlan=<AIA_HOME>\pips\<PIP_
name>\DeploymentPlans\<PIP_name>DP.xml -DSupplementaryDeploymentPlan =<AIA_
HOME>\pips\<PIP_name>\DeploymentPlans\<PIP_name>SupplementaryDP.xml
-DDeploymentPolicyFile=<AIA_HOME>\pips\<PIP_name>\DeploymentPlans\<PIP_
name>ConditionalPolicy.xml

8.5.2 Deploying Modified AIA-shipped Artifacts

This section discusses how to deploy modified AIA-shipped native and non-native artifacts.

8.5.2.1 Deploying Modified Native Artifacts and Original Non-native Artifacts

For modified native artifacts scenario, re-harvest the modified artifacts and regenerate the deployment plan, and name it <PIP_Name>CustomDP.xml. This has to be passed as the main deployment plan instead of the shipped deployment plan. The AID command is:

ant -f <AIA_HOME>\Infrastructure\Install\AID\AIAInstallDriver.xml
-DPropertiesFile=<AIA_HOME>\aia_instances\<AIA_Instance_
name>\config\AIAInstallProperties.xml -DDeploymentPlan=<AIA_HOME>\pips\<PIP_
name>\DeploymentPlans\<PIP_name>CustomDP.xml -DSupplementaryDeploymentPlan
=<AIA_HOME>\pips\<PIP_name>\DeploymentPlans\<PIP_name>SupplementaryDP.xml
-DDeploymentPolicyFile=<AIA_HOME>\pips\<PIP_name>\DeploymentPlans\<PIP_
name>ConditionalPolicy.xml

8.5.2.2 Deploying Original Native Artifacts and Modified Non-native Artifacts

For the original native artifacts and modified non-native artifacts scenario, copy the contents of the shipped supplementary DP to a new file, name it <PIP_Name>CustomSupplementaryDP.xml, and modify the new file with the customizations. This is passed as the supplementary deployment plan instead of the shipped supplementary DP. The AID command is:

ant -f <AIA_HOME>\Infrastructure\Install\AID\AIAInstallDriver.xml
-DPropertiesFile=<AIA_HOME>\aia_instances\<AIA_Instance_
name>\config\AIAInstallProperties.xml -DDeploymentPlan=<AIA_HOME>\pips\<PIP_
name>\DeploymentPlans\<PIP_name>DP.xml -DSupplementaryDeploymentPlan =<AIA_
HOME>\pips\<PIP_name>\DeploymentPlans\<PIP_name>CustomSupplementaryDP.xml
-DDeploymentPolicyFile=<AIA_HOME>\pips\<PIP_name>\DeploymentPlans\<PIP_
name>ConditionalPolicy.xml

8.5.3 Deploying New or Custom Built Artifacts

This section discusses how to deploy newly added native and non-native artifacts.

8.5.3.1 Deploying Newly-added Native Artifacts and Original Non-native Artifacts

If you are introducing new native artifacts, harvest the new artifacts and regenerate the deployment plan for the new artifacts along with the shipped ones, and name it <PIP_Name>CustomDP.xml. Pass this as the main deployment plan instead of the shipped deployment plan. The AID command is:

ant -f <AIA_HOME>\Infrastructure\Install\AID\AIAInstallDriver.xml
-DPropertiesFile=<AIA_HOME>\aia_instances\<AIA_Instance_
name>\config\AIAInstallProperties.xml -DDeploymentPlan=<AIA_HOME>\pips\<PIP_
name>\DeploymentPlans\<PIP_name>CustomDP.xml -DSupplementaryDeploymentPlan
=<AIA_HOME>\pips\<PIP_name>\DeploymentPlans\<PIP_name>SupplementaryDP.xml
-DDeploymentPolicyFile=<AIA_HOME>\pips\<PIP_name>\DeploymentPlans\<PIP_
name>ConditionalPolicy.xml -l <AIA_HOME>\pips\<PIP_
name>\DeploymentPlans\<PIPDeploymentPlanName>.log

8.5.3.2 Deploying Newly Added Non-native Artifacts

For new non-native artifacts scenario, add customizations to <PIP_Name>CustomDP.xml which is an empty DP shipped with the Pre-Built Integration. This Custom DP is in the same location as the main DP. Pass this as Custom Deployment Plan to AID. The AID command is:

ant -f <AIA_HOME>\Infrastructure\Install\AID\AIAInstallDriver.xml
-DPropertiesFile=<AIA_HOME>\aia_instances\<AIA_Instance_
name>\config\AIAInstallProperties.xml -DDeploymentPlan=<AIA_HOME>\pips\<PIP_
name>\DeploymentPlans\<PIP_name>DP.xml -DSupplementaryDeploymentPlan =<AIA_
HOME>\pips\<PIP_name>\DeploymentPlans\<PIP_name>SupplementaryDP.xml
-DCustomDeploymentPlan=<AIA_HOME>\pips\<PIP_name>\DeploymentPlans\<PIP_
name>CustomDP.xml> -DDeploymentPolicyFile=<AIA_HOME>\pips\<PIP_
name>\DeploymentPlans\<PIP_name>ConditionalPolicy.xml

The PropertiesFile, AIAInstallProperties.xml, contains the details of the AIA environment and is located here: <AIA_HOME>/aia_instances/<instance_name>/config.

8.6 Undeploying Services

The undeployment plan is generated at the same location as the deployment plan with the name <PIP_Name>UndeployDP.xml. The undeployment plan is generated only for native artifacts modified through the Project Lifecycle Workbench. This contains undeploy tasks for all the services deployed and the configurations done as part of Deployment Plan. The undeployment plan is executed using the AID.

The undeployment command is similar to the deployment plan command except for the Deployment Plan input argument and an additional argument "Uninstall".

For example, if you have used the following command to deploy modified native artifacts:

ant -f <AIA_HOME>\Infrastructure\Install\AID\AIAInstallDriver.xml
-DPropertiesFile=<AIA_HOME>\aia_instances\<AIA_Instance_
name>\config\AIAInstallProperties.xml -DDeploymentPlan=<AIA_HOME>\pips\<PIP_
name>\DeploymentPlans\<PIP_name>DP.xml -DSupplementaryDeploymentPlan =<AIA_
HOME>\pips\<PIP_name>\DeploymentPlans\<PIP_name>SupplementaryDP.xml
-DDeploymentPolicyFile=<AIA_HOME>\pips\<PIP_name>\DeploymentPlans\<PIP_
name>ConditionalPolicy.xml

then the undeployment command will be:

ant -f <AIA_HOME>\Infrastructure\Install\AID\AIAInstallDriver.xml
-DPropertiesFile=<AIA_HOME>\aia_instances\<AIA_Instance_
name>\config\AIAInstallProperties.xml Uninstall -DDeploymentPlan=<AIA_
HOME>\pips\<PIP_name>\DeploymentPlans\<PIP_name>UndeployDP.xml

However, for non-native artifacts, generate the undeployment plan manually. Take a copy of the supplementary deployment plan and name it <PIP_Name>UndeploySupplementaryDP.xml or <PIP_Name>UndeployCustomSupplementaryDP.xml depending on the supplementary deployment plan name. In the new deployment plan change the action attributes of all the tasks from "deploy" to "undeploy" or from "create" to "delete".

5 Harvesting Oracle AIA Content

This chapter discusses how to set up Oracle AIA content harvesting, harvest design-time composites into Project Lifecycle Workbench and Oracle Enterprise Repository (OER), harvest interfaces to Oracle Repository in bulk, harvest deployed composites into OER and introduce OER to AIA after you have finished installing AIA.

This chapter includes the following sections:

	
Section 5.1, "How to Set Up Oracle AIA Content Harvesting"

	
Section 5.2, "Harvesting Design-Time Composites into Project Lifecycle Workbench and Oracle Enterprise Repository"

	
Section 5.3, "Harvesting Interfaces to Oracle Enterprise Repository in Bulk"

	
Section 5.4, "Harvesting Deployed Composites into Oracle Enterprise Repository"

	
Section 5.5, "Introducing Oracle Enterprise Repository After AIA Installation"

	
Note:

All script execution examples provided in this chapter are Linux-specific. For Windows script execution, replace ".sh" with ".bat."

5.1 How to Set Up Oracle AIA Content Harvesting

Objective

Set up your environment to enable harvesting of Oracle Application Integration Architecture (AIA) content. This setup is a prerequisite to performing any Oracle Enterprise Repository harvesting covered in this chapter.

Actor

System administrator

To set up Oracle AIA content harvesting:

	
Import the Oracle Enterprise Repository solution pack file (<BEA_HOME>/repository111/core/tools/solutions /11.1.1.7-OER-Harvester-Solution-Pack.zip) from the Oracle Enterprise Repository installation home. This is a setup step required by Oracle Enterprise Repository.

	
Import the AIA asset definition file (AIAAssetTypeDef.zip) located in $AIA_HOME/Infrastructure/LifeCycle/config to the Oracle Enterprise Repository server. This is a setup step required by Oracle AIA.

	
Enable remote Java Database Connectivity (JDBC) in WebLogic Server. Ensure that the remote JDBC is enabled.

	
Go to the domain (for example: soadomain), and open the file setDomainEnv.sh.

	
Search for WLS_JDBC_REMOTE_ENABLED="-Dweblogic.jdbc.remoteEnabled= false" and set the value to true.

	
Restart the Admin server.

For more information about performing these imports, see "Importing Items into Oracle Enterprise Repository" in Oracle Fusion Middleware User's Guide for Oracle Enterprise Repository.

5.2 Harvesting Design-Time Composites into Project Lifecycle Workbench and Oracle Enterprise Repository

This section includes the following topics:

	
Section 5.2.1, "Introduction to Harvesting Design-Time Composites into Project Lifecycle Workspace and Oracle Enterprise Repository"

	
Section 5.2.2, "How to Set Up Environments to Enable Design-Time Harvesting"

	
Section 5.2.3, "How to Harvest Design-Time Composites into Project Lifecycle Workspace and Oracle Enterprise Repository"

5.2.1 Introduction to Harvesting Design-Time Composites into Project Lifecycle Workspace and Oracle Enterprise Repository

After you have unit-tested, source-controlled, and completed your composite implementation, you can harvest these design-time composites into the Project Lifecycle Workspace and, optionally, Oracle Enterprise Repository.

When you harvest into the Project Lifecycle Workbench, annotations in composite XML files are published to Project Lifecycle Workbench. These annotations published to Project Lifecycle Workbench are instrumental in facilitating downstream automation, such as bill of material (BOM) generation and deployment plan generation. Annotations and harvesting are required to enable this downstream automation.

If downstream automation is not required, you can choose not to annotate and harvest. When you reach a point in the lifecycle flow at which the result of annotations and harvesting are used, such as BOM and deployment plan generation, you can manually complete the BOM through the Project Lifecycle Workbench UI or manually write your own ANT script to generate a deployment plan.

For more information about BOM generation, see Chapter 6, "Working with Project Lifecycle Workbench Bills of Material."

For more information about deployment plan generation, see Chapter 8, "Generating Deployment Plans and Deploying Artifacts."

When you harvest into Oracle Enterprise Repository, annotations on Application Business Connector Service (ABCS) WSDL files, Enterprise Business Service (EBS) WSDL files, Enterprise Business Object (EBO) XSD files, and Enterprise Business Message (EBM) XSD files are published to Oracle Enterprise Repository. Harvesting to Oracle Enterprise Repository is optional.

For more information about viewing harvested AIA artifacts in Oracle Enterprise Repository, see Chapter 12, "Configuring and Using Oracle Enterprise Repository as the Oracle AIA SOA Repository."

Harvested composites may be annotated based on AIA annotation specifications or may be generic, nonannotated composites provided straight out of Oracle JDeveloper. If composites are not annotated correctly, accuracy of downstream data, BOM generation, and deployment plan generation may suffer.

For more information about AIA annotation specifications, see Chapter 13, "Annotating Composites."

Oracle AIA recommends that you harvest your composite into both Project Lifecycle Workspace and Oracle Enterprise Repository if an Oracle Enterprise Repository instance is available for your implementation.

Oracle AIA also recommends that you harvest composites upon completion of the composite implementation when the composite is in a stable and tested condition.

5.2.2 How to Set Up Environments to Enable Design-Time Harvesting

This section includes the following topics:

	
Section 5.2.2.1, "Setting Up for Design-Time Harvesting Using a Non-Foundation Pack Environment"

	
Section 5.2.2.2, "Setting Up for Design-Time Harvesting Using a Foundation Pack Environment"

Objective

Set up environments so that design-time harvesting can be done through command line. Perform this setup in preparation for harvesting design-time composites into the Project Lifecycle Workspace and Oracle Enterprise Repository.

Prerequisites and Recommendations

Oracle Meta Data Services (MDS) repository must be set up and populated with the prerequisite and dependent artifacts for the composites to be harvested, such as Enterprise Object Library and Application Object Library artifacts.

For more information about setting up and populating MDS, see Chapter 2, "Building AIA Integration Flows."

To avoid a weblogic.common.resourcepool.ResourceLimitException error when running AIAHarvester, ensure that SOA-MDS is configured according to a recommended set of minimum basic configurations.

For information about the minimum basic configurations, see Section 31.2.3, "Configuring Performance Related Database Initialization Parameters."

Actor

Individual developers

5.2.2.1 Setting Up for Design-Time Harvesting Using a Non-Foundation Pack Environment

To set up environments to enable design-time command line-based harvesting using a non-Foundation Pack environment:

	
Download AIAHarvester.zip.

AIAHarvester.zip contains all components necessary to perform a harvest against Project Lifecycle Workbench and Oracle Enterprise Repository.

AIAHarvester.zip no longer includes adf-config.xml. This file is no longer needed by AIAHarvester. If your installation was upgraded from a previous release, you may still have this file but no further action is required.

	
Unzip AIAHarvester.zip in any location but maintain the unzipped structure.

	
Note:

The following steps assume that tasks are being performed within the AIAHarvester directory.

	
Update the values shown in bold in the ./AIAInstallProperties.xml file, as shown in Example 5-1.

Foundation Pack uses Java Database Connectivity (JDBC) to determine the Project Lifecycle Workbench database. Ensure that the <jdbc-url>jdbc:oracle:thin:@localhost:1521:XE</jdbc-url> value points to the Project Lifecycle Workbench database where you want AIAHarvester results to be stored.

Example 5-1 AIAInstallProperties.xml File Adjustments

<?xml version = '1.0' encoding = 'UTF-8'?>
<properties>
 <aiainstance>
 <aiaHome>AIA_HOME</aiaHome>
 <name>AIA_INSTANCE_NAME</name>
 <javahome>JAVA_HOME</javahome>
 <remote_install>true</remote_install>
 <domain_root>SERVER_DOMAIN_ROOT</domain_root>
 <mwHome>MW_HOME</mwHome>
 <soaHome>SOA_HOME</soaHome>
 <aiainstalltype>standard</aiainstalltype>
 <isencrypted>true</isencrypted>
 </aiainstance>
 <aialifecycle>
 <jdbc-url>jdbc:oracle:thin:@localhost:1521:XE</jdbc-url>
 <username>FPINST_AIALIFECYCLE</username>
 <password>[C@8b567c</password>
 <createschema>true</createschema>
 <sysusername>sys</sysusername>
 <syspassword>[C@15b0e2c</syspassword>
 <role>SYSDBA</role>
 <defaulttablespace>SYSTEM</defaulttablespace>
 <temptablespace>TEMP</temptablespace>
 <isRac>false</isRac>
 <racCount>1</racCount>
 <racInstances>rac0</racInstances>
 <rac>
 <serviceName>RAC_DATABASE_SERVICENAME</serviceName>
 <rac0>
 <instanceName>RAC_INSTANCE_NAME</instanceName>
 <host>INSTANCE_HOST</host>
 <port>INSTANCE_PORT</port>
 </rac0>
 </rac>
 </aialifecycle>
...

	
Ensure the accuracy of information in the ./META-INF/adf-config.xml file. Under normal circumstances, you should not have to update it.

Specifically, ensure that the file includes the jdbc/mds/MDS_LocalTxDataSource value that appears in bold in Example 5-2.

Example 5-2 adf-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config" xmlns:adf="http://xmlns.
 oracle.com/adf/config/properties" xmlns:sec="http://xmlns.oracle.com/adf/
 security/config">
 <adf:adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/
 properties">
 <adf-property name="adfAppUID" value="OER.oracle.apps.aia.oer"/>
 </adf:adf-properties-child>
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 <namespace path="/soa/b2b" metadata-store-usage=
 "soa-infra-store"/>
 <namespace path="/deployed-composites" metadata-store-usage=
 "soa-infra-store"/>
 <namespace path="/soa/shared" metadata-store-usage=
 "soa-infra-store"/>
 <namespace path="/apps" metadata-store-usage=
 "soa-infra-store"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="soa-infra-store" deploy-target=
 "true">
 <metadata-store class-name="oracle.mds.persistence.
 stores.db.DBMetadataStore">
 <property value="soa-infra" name="partition-name"/>
 <property value="jdbc/mds/MDS_LocalTxDataSource" name=
 "jndi-datasource"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>

 <auto-purge seconds-to-live="300"/>
 </persistence-config>

 </mds-config>
 </adf-mds-config>
</adf-config>

	
Encode the password for the Project Lifecycle Workbench database by running AIALifeCycleEncode.sh: ./AIALifeCycleEncode.sh -user <username>

When prompted, enter the password.

	
Encode the password for the application server by running AIALifeCycleEncode.sh: ./AIALifeCycleEncode.sh -user <username> -type jndi

Replace <username> with the WebLogic username value. When prompted, enter the password.

	
Decide upon the type of harvesting:

	
Oracle Enterprise Repository and Project Lifecycle Workbench database harvesting

	
Project Lifecycle Workbench database harvesting only

	
Generate the HarvesterSettings.xml file.

If you prefer to harvest using command-line options instead of the HarvesterSettings.xml file, you can skip this step and can proceed to Section 5.2.3.3, "How to Harvest Design-Time Composites into Project Lifecycle Workspace and Oracle Enterprise Repository Using Command Line Options."

	
Adjust the harvesterSettings_prep.xml file based on the choice that you made in the previous step.

	
Run an encryption script on the harvesterSettings_prep.xml to produce the final HarvesterSettings.xml file, which you will use as the input file to the harvester script that harvests your composites: ./Harvester/encrypt.sh <source_file> <target_file>.

For example: ./Harvester/encrypt.sh harvesterSettings_prep.xml HarvesterSettings.xml.

harvesterSettings_prep.xml and HarvesterSettings.xml file names are used for illustrative purposes only. The source and target file names can be set to any file name.

5.2.2.2 Setting Up for Design-Time Harvesting Using a Foundation Pack Environment

To set up environments to enable design-time command line-based harvesting using a Foundation Pack environment:

	
Run source $AIA_INSTANCE/bin/aiaenv.sh.

	
Note:

The encrypted database access information is stored in $AIA_INSTANCE/Infrastructure/LifeCycle/AIAHarvester/config/.configuration/Properties.

If you subsequently change the database user name, for example, re-encrypt the database access information by running $AIA_HOME/Infrastructure/LifeCycle/AIAHarvester/AIALifeCycleEncode.sh.

	
Prepare HarvesterSettings.xml, which contains the file system directory path to the newly completed composite.xml.

	
If you are harvesting to Oracle Enterprise Repository, run the following encryption script to produce the final HarvesterSettings.xml file, which you will use as the input file to the harvester script that harvests your composites: $AIA_HOME/Infrastructure/LifeCycle/AIAHarvester/Harvester/encrypt.sh <source> <target>

5.2.3 How to Harvest Design-Time Composites into Project Lifecycle Workspace and Oracle Enterprise Repository

This section discusses:

	
Section 5.2.3.1, "How to Harvest Design-Time Composites into Project Lifecycle Workspace and Oracle Enterprise Repository Using HarvesterSettings.xml."

	
Section 5.2.3.2, "How to Harvest Design-Time Composites into Project Lifecycle Workbench Only Using HarvesterSettings.xml."

	
Section 5.2.3.3, "How to Harvest Design-Time Composites into Project Lifecycle Workspace and Oracle Enterprise Repository Using Command Line Options."

Objective

Harvest design-time composites into Project Lifecycle Workspace and Oracle Enterprise Repository either by using the harvester script and the HarvesterSettings.xml file or by using command-line options.

Prerequisites and Recommendations

	
Complete the steps covered in Section 5.1, "How to Set Up Oracle AIA Content Harvesting."

	
Complete the steps covered in Section 5.2.2, "How to Set Up Environments to Enable Design-Time Harvesting."

	
Ensure that the composite to be harvested is fully annotated according to AIA specifications. This is the ideal scenario.

These annotations include those in ABCS WSDL files and composite XML files. AIA EBO and EBM XSD files are delivered with annotations.

Annotations are not required, however downstream automation features will not work as designed if they are not annotated properly.

For more information about AIA annotation specifications, see Chapter 13, "Annotating Composites."

Actor

Individual developers

5.2.3.1 How to Harvest Design-Time Composites into Project Lifecycle Workspace and Oracle Enterprise Repository Using HarvesterSettings.xml

To harvest design-time composites into Project Lifecycle Workspace and Oracle Enterprise Repository using HarvesterSettings.xml:

	
Ensure that your HarvesterSettings.xml file is accurately configured. Sample file content is provided in Example 5-3.

In particular, ensure that the content shown:

	
Provides Oracle Enterprise Repository server information and credentials.

	
Uses <fileQuery>.

	
Specifies the file system path to the composite.xml for a given composite project.

Example 5-3 Sample HarvesterSettings.xml to Harvest Design-Time Composites into Project Lifecycle Workspace and Oracle Enterprise Repository

<?xml version="1.0" encoding="UTF-8"?>
<tns:harvesterSettings xmlns:tns="http://www.oracle.com/oer/integration/
 harvester" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/oer/integration/harvester
 Harvester_Settings.xsd">
 <!--Description to set on created Assets in OER.-->
 <harvesterDescription>Oracle Enterprise Repository Harvester
 </harvesterDescription>

 <!--Registration status to set on created Assets in OER. The Valid
 Registration states are 1) Unsubmitted 2)Submitted - Pending Review
 3)Submitted - Under Review 4)Registered -->
 <registrationStatus>Registered</registrationStatus>
 <!--Namespace to set on created Assets in OER. If left empty, this is set
 based on information from SOA Suite and OSB projects when available. That's
 generally the best practice, so override this with caution.-->
 <namespace/>

 <!--Connection info to OER-->
 <!-uri is the OER server-->
 <!- admin is username to login OER in cleartext-->
 <!-password is encrypted-->
 <repository>
 <uri>http://ple-jgau.xy.example.com:7101/oer</uri>
 <credentials>
 <user>admin</user>
 <password>v2_1.qRhDTl1LdPo=</password><!--run encrypt.bat to encrypt
 this-->
 </credentials>
 <timeout>30000</timeout>
 </repository>
 <!--Query: the files to harvest-->
 <query>
 <!--To specify design-time files to harvest: Uncomment the section below and
 specify the file(s) you want to harvest. Or specify on the command-line through
 the -file parameter.-->

 <!--To specify run-time files to harvest: Uncomment this and specify the
 file(s) you want to harvest. Or specify on the command-line through the -file
 parameter. The serverType must be one of: SOASuite, OSB, or WLS. Run
 encrypt.bat to encrypt the password.-->
 <fileQuery>
 <files>/slot/ems3470/oracle/AIAHOME_1022/samples/AIASamples/BaseSample
 /SamplesCreateCustomerPartyPortalProvABCSImpl/composite.xml</files>
 <fileType>.xml</fileType>

 </fileQuery>

 </query>

 <!--Predefined Policy Location: If harvesting SOA Suite projects from the
 command line, uncomment the section below and set it to point to your
 installation of JDeveloper-->
 <introspection>
 <reader>com.oracle.oer.sync.plugin.reader.file.FileReader</reader>
 <writer>com.oracle.oer.sync.plugin.writer.oer.OERWriter</writer>
 </introspection>
</tns:harvesterSettings>

	
Access a command line utility and run the AIAHarvest.sh harvester script. Oracle AIA recommends using the -partial true option most of the time.

For example, for harvesting using a non-Foundation Pack environment, run AIAHarvest.sh -partial true -settings HarvesterSettings.xml

For example, for harvesting using a Foundation Pack environment, run $AIA_HOME/Infrastructure/LifeCycle/AIAHarvester/AIAHarvest.sh -partial true -settings <file path to destHarvesterSettings.xml>

5.2.3.2 How to Harvest Design-Time Composites into Project Lifecycle Workbench Only Using HarvesterSettings.xml

To harvest design-time composites into Project Lifecycle Workspace using HarvesterSettings.xml:

	
Ensure that your HarvesterSettings.xml file is accurately configured. Sample file content is provided in Example 5-4.

In particular, ensure that the sample file content:

	
Uses <fileQuery>.

	
Uses -mode AIA as a command-line parameter.

	
Does not include Oracle Enterprise Repository server information.

Example 5-4 Sample HarvesterSettings.xml Used to Harvest Design-Time Composites into Project Lifecycle Workbench Only

<?xml version="1.0" encoding="UTF-8"?>
<tns:harvesterSettings xmlns:tns="http://www.oracle.com/oer/integration/
 harvester" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/oer/integration/harvester
 Harvester_Settings.xsd ">
 <!--Description to set on created Assets in OER.-->
 <harvesterDescription>Oracle Enterprise Repository
 Harvester</harvesterDescription>

 <!--Registration status to set on created Assets in OER. The Valid
 Registration states are 1) Unsubmitted 2)Submitted - Pending Review
 3)Submitted - Under Review 4)Registered -->
 <registrationStatus>Registered</registrationStatus>
 <!--Namespace to set on created Assets in OER. If left empty, this is set
 based on information from SOA Suite and OSB projects when available.
 That's generally the best practice, so override this with caution.-->
 <namespace/>

 <!-- comment out the OER server section since we do not perform OER
 harvesting
 <repository>
 <uri>http://<hostname>.xy.example.com:7101/oer</uri>
 <credentials>
 <user>admin</user>
 <password>v2_1.qRhDTl1LdPo=</password><!--run encrypt.bat to encrypt
 this-->
 </credentials>
 <timeout>30000</timeout>
 </repository>

 <!--Query: the files to harvest-->
 <query>
 <fileQuery>
 <files> /slot/ems3470/oracle/AIAHOME_1022/samples/AIASamples/
 BaseSample/SamplesCreateCustomerPartyPortalProvABCSImpl/composite.xml
 </files>
 <fileType>.xml</fileType>
 </fileQuery>

 </query>

 <introspection>
 <reader>com.oracle.oer.sync.plugin.reader.file.FileReader</reader>
 <writer>com.oracle.oer.sync.plugin.writer.oer.OERWriter</writer>
 </introspection>
</tns:harvesterSettings>

	
Access a command line utility and execute the harvester script: AIAHarvest.sh -mode AIA.

For example, for harvesting using a non-Foundation Pack environment: AIAHarvest.sh -partial true -mode AIA -settings HarvesterSettings.xml

For example, for harvesting using a Foundation Pack environment: $AIA_HOME/Infrastructure/LifeCycle/AIAHarvester/AIAHarvest.sh -partial true -settings <file path to harvesterSettings.xml> -mode AIA

5.2.3.3 How to Harvest Design-Time Composites into Project Lifecycle Workspace and Oracle Enterprise Repository Using Command Line Options

To harvest design-time composites into Project Lifecycle Workspace and Oracle Enterprise Repository using command line options:

	
Compose your AIAHarvest.sh script command statement using the available command line options covered in Table 5-1.

Table 5-1 Harvester Command-Line Options

	Harvester Command-Line Options	Description
	
-settings <file name>

	
Configuration settings XML file name

	
-url <URL>

	
Oracle Enterprise Repository URL

	
-user <OER user name>

	
Oracle Enterprise Repository user name

	
-password <OER password>

	
Oracle Enterprise Repository password

	
-partial <true | false>

	
Provides support for partial introspection.

To continue harvesting even if encountering errors, enter true. The default value is false.

In other words, if this option is set to true, processing continues even if an imported/included file cannot be accessed.

USE WITH CARE.

	
-artifact_store <store>

	
Name of Oracle Enterprise Repository Artifact Store to look in. If specified, the -file argument will be resolved relative to the artifact store URL

	
-file <filename or URL>

	
File or directory to be harvested. This can be a file name or URL to the file.

	
-file_type <type>

	
File type of the file to be harvested. If not specified, it is derived from the file extension.

	
-remote_url <URL>

	
Running server from which to harvest the remote project, instead of from a file.

	
-remote_username <username>

	
Username to connect to the remote server

	
-remote_password <password>

	
Password to connect to the remote server

	
-remote_server_type <type>

	
Type of remote server: SOASuite, OSB, or WLS,

	
-remote_project <type>

	
Name of remote project to harvest from the remote server. If omitted, all the projects on the server are harvested.

	
-deployment_status <status>

	
Deployment status to set on created assets: design-time or run-time.

	
-version <version>

	
Print version information.

	
-help

	
Lists Harvester command line options.

	
-mode <OER | AIA>

	
Enter AIA to run the Project Lifecycle Workbench harvest.

Enter OER to run the Oracle Enterprise Repository harvest.

Do not provide a value to run both the Project Lifecycle Workbench and Oracle Enterprise Repository harvests.

	
Access a command line utility and issue your harvester command.

For example: AIAHarvest -settings <file name>

5.3 Harvesting Interfaces to Oracle Enterprise Repository in Bulk

This section includes the following topics:

	
Section 5.3.1, "How to Set Up Environments to Harvest Interfaces to Oracle Enterprise Repository in Bulk."

	
Section 5.3.2, "How to Harvest Interfaces to Oracle Enterprise Repository in Bulk."

5.3.1 How to Set Up Environments to Harvest Interfaces to Oracle Enterprise Repository in Bulk

This section includes the following topics:

	
Section 5.3.1.1, "Setting Up to Harvest Interfaces Using a Non-Foundation Pack Environment"

	
Section 5.3.1.2, "Setting Up to Harvest Interfaces Using a Foundation Pack Environment"

Objective

Set up environments to be able to harvest release-time interfaces to Oracle Enterprise Repository.

Prerequisites and Recommendations

Oracle AIA Foundation Pack has been installed.

Actor

	
Developer

	
System administrator

5.3.1.1 Setting Up to Harvest Interfaces Using a Non-Foundation Pack Environment

If you are performing the interface harvest to Oracle Enterprise Repository using an environment other than the one on which Foundation Pack has been installed, perform the following procedure.

To set up to harvest interfaces using a non-Foundation Pack environment:

	
Download AIAHarvester.zip.

	
Unzip the AIAHarvester.zip in any location but maintain the unzipped structure.

	
Note:

The following steps assume that tasks are being performed within the AIAHarvester directory.

	
Adjust the values in bold in ./AIAInstallProperties.xml, as shown in Example 5-5.

Foundation Pack uses Java Database Connectivity (JDBC) to determine the Project Lifecycle Workbench database. Ensure that the <jdbc-url>jdbc:oracle:thin:@localhost:1521:XE</jdbc-url> value points to the Project Lifecycle Workbench database where you want AIAHarvester results to be stored.

Example 5-5 AIAInstallProperties.xml File Adjustments

<?xml version = '1.0' encoding = 'UTF-8'?>
<properties>
 <aiainstance>
 <aiaHome>AIA_HOME</aiaHome>
 <name>AIA_INSTANCE_NAME</name>
 <javahome>JAVA_HOME</javahome>
 <remote_install>true</remote_install>
 <domain_root>SERVER_DOMAIN_ROOT</domain_root>
 <mwHome>MW_HOME</mwHome>
 <soaHome>SOA_HOME</soaHome>
 <aiainstalltype>standard</aiainstalltype>
 <isencrypted>true</isencrypted>
 </aiainstance>
 <aialifecycle>
 <jdbc-url>jdbc:oracle:thin:@localhost:1521:XE</jdbc-url>
 <username>FPINST_AIALIFECYCLE</username>
 <password>[C@8b567c</password>
 <createschema>true</createschema>
 <sysusername>sys</sysusername>
 <syspassword>[C@15b0e2c</syspassword>
 <role>SYSDBA</role>
 <defaulttablespace>SYSTEM</defaulttablespace>
 <temptablespace>TEMP</temptablespace>
 <isRac>false</isRac>
 <racCount>1</racCount>
 <racInstances>rac0</racInstances>
 <rac>
 <serviceName>RAC_DATABASE_SERVICENAME</serviceName>
 <rac0>
 <instanceName>RAC_INSTANCE_NAME</instanceName>
 <host>INSTANCE_HOST</host>
 <port>INSTANCE_PORT</port>
 </rac0>
 </rac>
 </aialifecycle>
...

	
Ensure the accuracy of information in the ./META-INF/adf-config.xml file. Under normal circumstances, you should not have to update it.

Specifically, ensure that the file includes the jdbc/mds/MDS_LocalTxDataSource value shown in bold in Example 5-6.

Example 5-6 Sample adf-config.xml

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config" xmlns:adf=
 "http://xmlns.oracle.com/adf/config/properties" xmlns:sec="http://
 xmlns.oracle.com/adf/security/config">
 <adf:adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/
 properties">
 <adf-property name="adfAppUID" value="OER.oracle.apps.aia.oer"/>
 </adf:adf-properties-child>
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 <namespace path="/soa/b2b" metadata-store-usage=
 "soa-infra-store"/>
 <namespace path="/deployed-composites" metadata-store-usage=
 "soa-infra-store"/>
 <namespace path="/soa/shared" metadata-store-usage=
 "soa-infra-store"/>
 <namespace path="/apps" metadata-store-usage="soa-infra-store"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="soa-infra-store" deploy-target="true">
 <metadata-store class-name="oracle.mds.persistence.stores.db.
 DBMetadataStore">
 <property value="soa-infra" name="partition-name"/>
 <property value="jdbc/mds/MDS_LocalTxDataSource" name=
 "jndi-datasource"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>

 <auto-purge seconds-to-live="300"/>
 </persistence-config>

 </mds-config>
 </adf-mds-config>
 <sec:adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
 <CredentialStoreContext credentialStoreClass="oracle.adf.share.security.
 providers.jps.CSFCredentialStore" credentialStoreLocation="../../
 src/META-INF/jps-config.xml"/>
 </sec:adf-security-child>
</adf-config>

	
Locate the encrypted HarvesterSettings_#.xml files in the Harvester directory. One file is provided for each delivered AIA prebuilt interface. Modify each of the HarvesterSettings_#.xml files to point to the Oracle Enterprise Repository server for your particular environment and to include relevant user name and password values.

The HarvesterSettings_#.xml files always uses the oramds:// protocol, as shown in Example 5-7.

Example 5-7 oramds:// Protocol Used in HarvesterSettings_#.xml

<fileQuery>
 <files>oramds://apps/AIAMetaData/AIAComponents/EnterpriseBusinessService
 Library/Industry/BankingAndWealthManagement/EBO/SpecificationValueSet/V1/
 BankingAndWealthManagementSpecificationValueSetEBSV1.wsdl</files>
 <fileType>.wsdl</fileType>
</fileQuery>

To publish your own interface artifacts (namely, WSDL and XSD files) in bulk, compose your own HarvesterSettings_#.xml files using the delivered files as samples. Specify your artifact paths and file types in the <fileQuery> element.

Oracle AIA recommends using the MDS protocol (you must have populated MDS with interface artifacts); however, you can also use the fileSystem protocol. Depending on whether you are using MDS or fileSystem, provide the file path or oramds path to the WSDL or XSD files.

For more information about populating MDS with interface artifacts, see Chapter 2, "Building AIA Integration Flows."

	
Run an encryption script on each HarvesterSettings_#.xml file to produce the final HarvesterSettings.xml files, which you will use as the input files to the harvester script that harvests your interfaces in bulk to Oracle Enterprise Repository: ./Harvester/encrypt.sh <source_file> <target_file>

For example: ./Harvester/encrypt.sh harvesterSettings_prep.xml HarvesterSettings.xml

The harvesterSettings_prep.xml and HarvesterSettings.xml file names are used for illustrative purposes only. The source and target file names can be set to any file name.

5.3.1.2 Setting Up to Harvest Interfaces Using a Foundation Pack Environment

If you are performing the interface harvest to Oracle Enterprise Repository using the environment on which Foundation Pack has been installed, this set up has been performed by the AIA Installer.

To set up to harvest interfaces using a Foundation Pack environment:

	
Run the following script: source ${AIA_INSTANCE}/bin/aiaenv.sh

	
Ensure that the HarvesterSettings_#.xml files are located in the $AIA_INSTANCE/Infrastructure/LifeCycle/Install/FPHarvest directory. One file is provided for each delivered AIA prebuilt interface.

	
Modify each of the HarvesterSettings_#.xml files to point to the Oracle Enterprise Repository server for your particular environment and to include relevant user name and password values in clear text.

	
Encrypt the HarvesterSettings_#.xml files in the $AIA_INSTANCE/Infrastructure/LifeCycle/Install/FPHarvest directory.

For example: ${AIA_HOME}/Infrastructure/LifeCycle/AIAHarvester/Harvester/encrypt.sh <source_file> <target_file>

5.3.2 How to Harvest Interfaces to Oracle Enterprise Repository in Bulk

Objective

Harvest interfaces to Oracle Enterprise Repository in bulk.

Prerequisites and Recommendations

	
Complete the steps covered in Section 5.1, "How to Set Up Oracle AIA Content Harvesting."

	
Complete the steps covered in Section 5.3.1, "How to Set Up Environments to Harvest Interfaces to Oracle Enterprise Repository in Bulk."

Actor

	
Development

	
System administrator

To harvest interfaces to Oracle Enterprise Repository in bulk:

	
Access a command line utility and run the AIAHarvest.sh harvester script located in ${AIA_HOME}/Infrastructure/LifeCycle/AIAHarvester/. Oracle AIA recommends using the -partial true option most of the time.

For example:

	
AIAHarvest.sh -partial true -settings HarvesterSettings1.xml

	
AIAHarvest.sh -partial true -settings HarvesterSettings2.xml

	
AIAHarvest.sh -partial true -settings HarvesterSettings3.xml

	
Access Oracle Enterprise Repository to ensure that your interfaces are visible.

For more information, see Chapter 12, "Configuring and Using Oracle Enterprise Repository as the Oracle AIA SOA Repository."

5.4 Harvesting Deployed Composites into Oracle Enterprise Repository

This section includes the following topics:

	
Section 5.4.1, "How to Set Up Environments to Harvest Deployed Composites into Oracle Enterprise Repository."

	
Section 5.4.2, "How to Harvest Deployed Composites into Oracle Enterprise Repository."

Run-time publishing to Oracle Service Registry is delegated to Oracle Enterprise Repository.

For more information about publishing to Oracle Service Registry from Oracle Enterprise Repository, see "Configuring Oracle Enterprise Repository to Exchange Metadata with the Oracle Service Registry" in Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.

5.4.1 How to Set Up Environments to Harvest Deployed Composites into Oracle Enterprise Repository

Objective

Set up environments to harvest deployed composites into Oracle Enterprise Repository.

Prerequisites and Recommendations

	
The Oracle AIA Installer installation has been run and completed.

	
The composites that you want to harvest into Oracle Enterprise Repository have been deployed into the run-time SOA engine.

Actors

System administrator

Specifically, this is the actor who installs and deploys the AIA Foundation Pack and Pre-Built Integrations.

To set up environments to harvest deployed composites into Oracle Enterprise Repository:

Run an AIA command to set up the environment: Source ${AIA_INSTANCE}/bin/aiaenv.sh

5.4.2 How to Harvest Deployed Composites into Oracle Enterprise Repository

This section includes the following topics:

	
Section 5.4.2.1, "Harvesting Pre-Built Integration-Delivered Deployed Composites to Oracle Enterprise Repository"

	
Section 5.4.2.2, "Harvesting Custom-Built Deployed Composites to Oracle Enterprise Repository"

Objective

As a part of your Oracle AIA installation, you have deployed composites into the Oracle SOA engine, whether they are AIA-delivered or custom built. Post installation, you can choose to publish these deployed composites to the Oracle Enterprise Repository using a command-line script.

	
Note:

This post- installation harvest of deployed composites into Oracle Enterprise Repository is optional and is not performed by the AIA Installer.

Publishing your deployed composites to Oracle Enterprise Repository ensures that it accurately reflects your SOA run-time composite information, including end points and so forth.

Prerequisites and Recommendations

	
Complete the steps covered in Section 5.1, "How to Set Up Oracle AIA Content Harvesting."

	
Complete the steps covered in Section 5.4.1, "How to Set Up Environments to Harvest Deployed Composites into Oracle Enterprise Repository."

Actors

System administrator

Specifically, this is the actor who installs and deploys the AIA Foundation Pack and Pre-Built Integrations.

5.4.2.1 Harvesting Pre-Built Integration-Delivered Deployed Composites to Oracle Enterprise Repository

If you are harvesting deployed composites that were delivered as part of an AIA Pre-Built Integration, perform the following procedure to harvest them to Oracle Enterprise Repository.

To harvest Pre-Built Integration-delivered deployed composites into Oracle Enterprise Repository:

	
Navigate to $<AIA_HOME>/Infrastructure/LifeCycle/Install/Pre-Built IntegrationHarvest.

	
Run the following command: ant -f PIPCompositeHarvest.xml

	
Access Oracle Enterprise Repository to confirm that all expected composites are present.

For more information, see Section 12.3, "How to Access Oracle AIA Content in Oracle Enterprise Repository."

5.4.2.2 Harvesting Custom-Built Deployed Composites to Oracle Enterprise Repository

If you are harvesting custom-built deployed composites, perform the following procedure to harvest them to Oracle Enterprise Repository.

For example, if you have installed Foundation Pack and implemented and deployed your own composites, you can choose to harvest these deployed composites to Oracle Enterprise Repository.

To harvest custom-built deployed composites into Oracle Enterprise Repository:

	
Edit the HarvesterSettings.xml file, as shown in Example 5-8, to provide content in bold specific to your harvesting requirements.

	
Provide Oracle Enterprise Repository information.

	
Use <remoteQuery> and list all deployed composite names to be harvested.

	
As part of the <remoteQuery> syntax, provide and encrypt SOA server information.

Example 5-8 Sample HarvesterSettings.xml Used to Harvest Custom-Built Deployed Composites into Oracle Enterprise Repository:

<?xml version="1.0" encoding="UTF-8"?>
<tns:harvesterSettings xmlns:tns="http://www.oracle.com/oer/integration/
 harvester"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:
 schemaLocation="http://www.oracle.com/oer/integration/harvester
 Harvester_Settings.xsd">
 <!--Description to set on created Assets in OER.-->
 <harvesterDescription>Oracle Enterprise Repository Harvester
 </harvesterDescription>
 <!--Registration status to set on created Assets in OER. The Valid
 Registration states are 1) Unsubmitted 2)Submitted - Pending Review
 3)Submitted - Under Review 4)Registered -->
 <registrationStatus>Registered</registrationStatus>
 <!--Namespace to set on created Assets in OER. If left empty, this is set
 based on information from SOA Suite and OSB projects when available.
 That's generally the best practice, so override this with caution.-->
 <namespace/>

 <!--Connection info to OER-->
 <!-uri is the OER server-->
 <!- admin is username to login OER in cleartext -->
 <!-password is encrypted -->
 <repository>
 <uri>http://<hostname>.xy.example.com:7101/oer</uri>
 <credentials>
 <user>admin</user>
 <password>v2_1.qRhDTl1LdPo=</password><!--run encrypt.bat to
 encrypt this-->
 </credentials>
 <timeout>30000</timeout>
 </repository>
 <!--Query: the files to harvest-->
 <query>
 <!--To specify design-time files to harvest: Uncomment the section below and
 specify the file(s) you want to harvest. Or specify on the command-line
 through the -file parameter.-->

 <!--To specify run-time files to harvest: Uncomment this and specify the
 file(s) you want to harvest. Or specify on the command-line through the -file
 parameter. The serverType must be one of: SOASuite, OSB, or WLS. Run
 encrypt.bat to encrypt the password.-->
 <remoteQuery>
 <serverType>SOASuite</serverType>

 <!-This is the composite project deployed into the SOA server-->
 <projectName>AIADemoQueryCustomerPartyCRMProvABCSImpl
 </projectName>
 <!-another example below, we specifically give the
 deployment revision number rev1.0. It is appended after the
 composite project name. User may find out this revision number of
 browsing MDS through their jDev
 <projectName>AIADemoQueryCustomerPartyCRMProvABCSImpl_rev1.0
 </projectName>-->
 <!-uri is the SOA server information -->
 <!-user is the username to log in to the SOA server -->
 <!-password is used to log in to the SOA server, it is encrypted -->
 <uri>http://10.146.91.163:8001/</uri>
 <credentials>
 <user>weblogic</user>
 <password>v2_1.G+NTr3az8thaGGJBn0vwPg==</password>
 </credentials>
 </remoteQuery>

 </query>

 <!--Predefined Policy Location: If harvesting SOA Suite projects from
 the command line, uncomment the section below and set it to point to your
 installation of JDeveloper-->
 <introspection>
 <reader>com.oracle.oer.sync.plugin.reader.file.FileReader</reader>
 <writer>com.oracle.oer.sync.plugin.writer.oer.OERWriter</writer>
 </introspection>
</tns:harvesterSettings>

	
Access a command line utility and run the AIAHarvest.sh harvester script. Oracle AIA recommends using the -partial true option.

For example: AIAHarvest.sh -partial true -mode OER -settings HarvesterSettings.xml

5.5 Introducing Oracle Enterprise Repository After AIA Installation

Oracle Enterprise Repository is a product separate from AIA and is an optional component in the context of AIA installation and execution. Therefore, Oracle Enterprise Repository possibly may not be present at the time of AIA installation.

To adopt Oracle Enterprise Repository after AIA has been installed, perform the following procedure.

To introduce Oracle Enterprise Repository after AIA installation:

	
Install Oracle Enterprise Repository according to Oracle Enterprise Repository guidelines.

	
Import the Oracle Enterprise Repository solution pack and the AIA asset definition file.

For more information about performing these imports, see Section 5.1, "How to Set Up Oracle AIA Content Harvesting."

	
Install the AIA solution pack for your release. This AIA solution pack is made available as a post-release patchset.

For more information about the AIA solution pack, see Section 12.1, "Introduction to Using Oracle Enterprise Repository as the Oracle AIA SOA Repository."

	
Deploy the AIALifeCycleArtifactsLink.war redirect servlet to facilitate the Business Publisher-to-Oracle Enterprise Repository redirect feature.

For more information, see "Configuring the AIA Redirect Servlet" in Oracle Fusion Middleware Installation and Upgrade Guide for Oracle Application Integration Architecture Foundation Pack.

	
Run the following command line script to register Oracle Enterprise Repository with AIA: AIAOerEncode.sh -url <OER Server URL> -user <OER Username>

When prompted, enter the Oracle Enterprise Repository password.

1 Getting Started with Oracle AIA Development

This chapter provides an overview of the types and styles of integrations addressed by Oracle Application Integration Architecture (AIA) and details how to use this guide.

This chapter includes the following sections:

	
Section 1.1, "Integration Types Addressed by AIA"

	
Section 1.2, "Integration Styles Addressed by AIA"

	
Section 1.3, "How to Use this Developer's Guide"

1.1 Integration Types Addressed by AIA

AIA addresses two types of integrations:

	
Functional integration

Functional integration weaves various functionalities of different participating applications, exposed as services, as processes to accomplish tasks that span multiple applications in any enterprise.

	
Data integration

Data integration connects applications at the data level and makes the same data available to multiple applications. This type of integration relies on database technologies and is ideal when a minimum amount of business logic is reused and large amounts of data transactions are involved across applications. This type of integration is suitable for batch data uploads or bulk data sync requirements.

1.2 Integration Styles Addressed by AIA

AIA provides reference architecture for a variety of situations. Depending on the size and complexity of integration projects, the integration style adopted for implementing integration flows varies. The number of participating applications and their role in integration flows contribute to the integration style adopted.

The integration flow as shown in Figure 1-1 represents the journey of a message from a business event triggering source to one or more target milestones, after passing through possible intermediary milestones. At each milestone, the message is stored in a different state.

Figure 1-1 Illustration of the Integration Flow

[image: The image is described in the surrounding text]

The integration flow represents the run-time path of a message. It is not a design time artifact.

AIA addresses the following integration styles:

	
Integration through native application interfaces using the Oracle Applications Technology Infrastructure.

	
Integration styles with integration framework.

	
Direct integration through application web services using Oracle SOA Suite.

	
Integration through packaged canonical and standardized interfaces using Oracle Foundation Pack.

	
Integration styles for bulk data processing.

	
Real-time data integration flow.

	
Batch data integration flow.

1.3 How to Use this Developer's Guide

The sales process provides detailed information about the value of AIA offerings. The value presented is perceived in the context of a business problem for which a solution is being sought.

The detailed analysis of the business problem and documenting of related business requirements leads to a Functional Design Document, which provides:

	
Detailed description of the business case

	
Various use cases detailing the various usage scenarios including the exception cases with expected actions by various actors

	
Details about all the participating applications - commercial, off-the-shelf with versions and homegrown

	
Details about the triggering business events

	
Details about the functional flow

	
Details about business objects to be used

	
Actions to be performed on the various business objects

	
Details about performance and scalability requirements

This Developer's Guide assumes:

	
A Functional Design Document is available.

	
Access to AIA software.

	
Access to all AIA-provided documents.

	
You have read the Oracle Fusion Middleware Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation Pack.

This Developer's Guide provides:

	
An overview of all tasks required to build an AIA integration flow.

	
Details about how to develop various AIA artifacts.

	
Descriptions of interactions between AIA artifacts and external artifacts.

	
Discussion of various design patterns, best practices, and tuning for run-time performance.

Start with Chapter 2, "Building AIA Integration Flows" and proceed to relevant chapters in this Developer's Guide as needed.

[image: Oracle Corporation]

What's New in This Guide for Release 11.1.1.7

The following table lists the content that has been added or updated.

For a list of known issues (release notes), see the "Known Issues for Oracle SOA Products and Oracle AIA Foundation Pack" at http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html.

	Content	Changes Made
	
Chapter 33, "Editing Transformations Using Mapping Editor,"Section 33.2.2, "Deploying the AgileAPI.jar File as a Shared Library"

	
Refined details about how to deploy the AgileAPI.jar file as a shared library to enable Agile flexfield display and transformation editing in Mapping Editor.

23 Describing the Event Aggregation Programming Model

This chapter provides an overview of the Event Aggregation programming model and discusses how to implement it.

This chapter includes the following sections:

	
Section 23.1, "Overview"

	
Section 23.2, "Implementing the Event Aggregation Programming Model"

23.1 Overview

The Event Aggregation programming model provides a comprehensive methodology for business use cases in which event, entity, and message aggregation is necessary.

For example, Event Aggregation may be needed in a case in which multiple events are being raised before the completion of a business message, and each incomplete message triggers an event, which causes a business event in the integration layer.

The Event Aggregation programming model helps to create a coarse-grained message (event) from fine-grained messages (events) generated at discrete intervals. The messages, which are generated at certain intervals, may be incomplete or duplicates.

The Event Aggregation programming model can be used for relationship- and time-based aggregation.

The Event Aggregation programming model provides:

	
Synchronization of an entity, providing a single, holistic view of the entity.

	
Consolidation of several fine-grained events into a single coarse-grained event.

	
Merging of duplicates of the same event.

	
Increased performance.

Parallel simulations of fine-grained applications usually generate a large number of messages. The overhead for sending these messages over a network can dramatically limit the speed of a parallel simulation. In this case, event aggregation can increase the granularity of the application and reduce the communication overhead.

The Figure 23-1 illustrates how Event Aggregation can be achieved in a business integration scenario. Create Customer is a coarse-grained event and Create Contact, Create Account, and Create Address are the fine-grained events that are produced by the Event Producer. The Event Aggregator service can be used to consolidate all of them and raise a single coarse-grained event.

Figure 23-1 Event Aggregation Service Raising a Single Coarse-Grained Event from Multiple Fine-Grained Events

[image: The image is described in the surrounding text]

23.1.1 Event Producer

The Event Producer produces the messages that are aggregated. The messages produced could be incomplete and related to or dependent on other messages.

For example, the Event Producer could be a Siebel CRM system in which a new Account object is created, triggering an associated event. This Account entity may have a Contact entity as a child object, which may raise another fine-grained event when it is created along with the Account entity.

23.1.2 Event Aggregator Service

The Event Aggregator Service consolidates fine-grained events and then raises a single coarse-grained event. Implement the relationship between the Contact, Account, and Address events using Java or PL/SQL.

There are two parts to the Event Aggregator Service.

The first part implements the actual programming logic to maintain the aggregation and relationship between the entities.

The second part is the service wrapper that invokes this programming logic from the external client. If the programming logic is developed using PL/SQL, then these database objects can be exposed using a database adapter interface. If the programming logic is developed in Java, then the Java object can be exposed using the Web Services Invocation Framework (WSIF) interface.

Oracle recommends the use of BPEL to serve as the front end of the Event Aggregator Service. When the Java or PL/SQL object is invoked, it may fail for various reasons, in which case they must be handled by notifying the Event Producer. BPEL provides fault and exception handling functionality that makes it a good choice for this scenario.

Oracle recommends the use of Java to implement the programming logic that maintains the relationships between entities. This is because extensibility, modularity, and exception handling are comfortable with Java.

23.1.3 Consumer Service

The real event aggregation happens in the database. This is a time-based aggregation, which means that the Consumer Service spawns a thread to poll the table object with the help of the database adapter and looks for the messages pushed into the table. The polling occurs based on a configurable time interval. The Consumer Service fetches all messages that fall into that particular time interval and passes them to the requestor application business connector (ABC) service.

After the messages are fetched from the database, the Consumer Service deletes them.

23.2 Implementing the Event Aggregation Programming Model

Implementing the Event Aggregation programming model involves creating an Event Aggregation Service and a Consumer Service, and implementing error handling.

Using this approach, the aggregation occurs in the database layer with the help of a single self- referencing table and stored procedures. The self-referencing aggregation table structure supports multilevel relationships between entities.

The stored procedures help populate the aggregation table upon appropriate event generation. This also helps to eliminate duplicate records for first-level objects. The stored procedure obtains an optimistic lock before updating records in the aggregation table.

Use Case: Customer Master Data Management, with Siebel CRM

This implementation discussion is based on this use case.

In the Oracle Customer Master Data Management (MDM) Customer process integration flows, the Siebel CRM application has create and update triggers defined at the business layer level. Any update or create action can potentially lead to multiple events being raised for integration. Therefore, aggregate these events and process them in batches, instead of processing each fine-grained event individually.

These events may be raised on these business entities: Account, Contact, and Address.

These relationships between the Account, Contact, and Address entities must be maintained throughout the aggregation:

	
An Account can have one or more Contacts and Addresses attached to it.

	
A Contact can have one or more Addresses attached to it.

	
A Contact and Address can be shared across multiple Accounts.

23.2.1 Creating the Event Aggregation Service

This section discusses the creation of the Event Aggregation service, including how to:

	
Create the PL/SQL objects.

	
Create the database service and aggregate service.

23.2.1.1 Creating the PL/SQL objects

To create PL/SQL objects:

	
Create a table object "AIA_AGGREGATED_ENTITIES" in the database as illustrated in Figure 23-2.

Figure 23-2 Example for Creating Table Object

[image: The image is described in the surrounding text]

	
Create a stored procedure object "AIA_AGGREGATOR_PUB," which contains the programming logic to maintain the relationships between the Contact, Account, and Address events in the table object created in step 1 as illustrated in Figure 23-3.

Figure 23-3 Example for Creating a Stored Procedure Object

[image: The image is described in the surrounding text]

23.2.1.2 Create the Database Service and Aggregate Service

To create the database services and aggregate service:

	
Create a BPEL project to invoke the database services created in the previous procedure as illustrated in Figure 23-4.

Figure 23-4 BPEL Project to Invoke the Database Services

[image: The image is described in the surrounding text]

In case of an unavailable database, failure of a stored procedure, or any other error at the service level, this service should implement error handling to gracefully notify the client service.

For more information, see Section 23.2.3, "Implementing Error Handling for the Event Aggregation Programming Model."

The external client invokes this BPEL service for Event Aggregation.

Oracle recommends that external clients (Siebel CRM, for example) post messages to a persistent queue from which the Event Aggregator Service can pick up messages for event aggregation. If implementation of this recommendation is not possible, the Event Aggregator Service can be invoked directly from the external client.

23.2.2 Creating Consumer Service

To create the Consumer Service:

	
Create a consumer service with mediator composite.

Oracle recommends that you implement the Consumer Service using mediator, unless you must perform data enrichment. Use database adapter functionality to purge records from the database upon successful processing. Figure 23-5 illustrates how to implement Consumer Service using Mediator Composite.

Figure 23-5 Consumer Service with Mediator Composite

[image: The image is described in the surrounding text]

	
Configure the time interval for polling on the consumer service.

The real aggregation occurs based on this time interval set on the Consumer Service. The Consumer Service fetches messages that fall into a particular time interval and all records in the interval are processed as a batch. Figure 23-6 illustrates how to configure time interval for polling on the consumer service.

Figure 23-6 Configure the Time Interval for Polling on the Consumer Service

[image: The image is described in the surrounding text]

For information on how to configure polling interval and other configurable properties, see "Configuring PollingInterval, MaxTransactionSize, and ActivationInstances" in Oracle Fusion Middleware User's Guide for Technology Adapters.

23.2.3 Implementing Error Handling for the Event Aggregation Programming Model

Error handling for the Event Aggregation programming model should follow Oracle Application Integration Architecture (AIA) error handling recommendations.

For more information about the Error Handling framework, see "Setting Up Error Handling" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

When the Event Aggregator Service errors out, whether it is due to an unavailable resource or an application error, the error should be handled in the Event Aggregator Service layer and propagated to the Producer Service. If the event generated by the Event Producer is unable to participate in the aggregation, the Event Producer should be notified.

Oracle recommends using BPEL for the implementation of the Event Aggregator Service layer. BPEL helps that the user has greater control over error handling. Regardless of the programming language in which this layer is implemented, it must be able to handle application exceptions.

If the Event Aggregator Service is implemented in PL/SQL, it should provision to propagate the OUT parameter to the Event Producer. Defining proper OUT variables for exception handling can be as simple as providing a reply consisting of either a SUCCESS or FAILURE message to the Procedure Service.

If the Event Aggregator Service is implemented in Java, it should provision to propagate the exception using the WSIF interface. Define proper exception objects to be used in the WSIF interface.

17 Completing ABCS Development

This chapter describes how to develop Application Business Connector Services (ABCS), handle errors and faults, work with adapters, develop ABCS for CAVS enablement, secure ABCS, enable transactions, enable message delivery and version ABCS, enable resequencing in Oracle Mediator and Layered Customizations.

This chapter includes the following sections:

	
Section 17.1, "Developing Extensible ABCS"

	
Section 17.2, "Handling Errors and Faults"

	
Section 17.3, "Working with Adapters"

	
Section 17.4, "Developing ABCS for CAVS Enablement"

	
Section 17.5, "Securing the ABCS"

	
Section 17.6, "Enabling Transactions"

	
Section 17.7, "Guaranteed Message Delivery"

	
Section 17.8, "Versioning ABCS"

	
Section 17.9, "Resequencing in Oracle Mediator"

	
Section 17.10, "Developing Layered Customizations"

17.1 Developing Extensible ABCS

An ABCS, regardless of whether it is requester or provider specific, can invoke custom code a minimum of either two or four times during its execution. These serve as extensibility points.

The ABCS supporting request-response pattern in either synchronous or asynchronous mode has four extensibility points. An ABCS supporting fire-and-forget patterns has two extensibility points. You can develop "add-ins" and have them hooked to these extensibility points. These "add-ins" - customer-developed services- behave as an extension to the delivered ABCS. Each extension point allows one hook so only a single customer extension can be plugged in.

This section describes the mechanism for creating ABCSs with extensible services, which enables you to have service implementations that require no modifications to the delivered ABCS.

17.1.1 Introduction to Enabling Requester ABCS for Extension

For request/response Requester ABCS, you can hook your custom code to four extensibility points:

	
Just before the execution of transformation of application business message (ABM) to Enterprise Business Message (EBM). Use this configuration property name: ABCSExtension.PreXformABMtoEBM.

	
Just before the invocation of the enterprise business service (EBS). Use this configuration property name: ABCSExtension.PreInvokeEBS.

	
Just before the execution of transformation of EBM to ABM and after invoking the EBS. Use this configuration property name: ABCSExtension.PostInvokeEBS.

	
Just before the invocation of callback service or response return and transforming EBM to ABM. Use this configuration property name: ABCSExtension.PostXformEBMtoABM.

The third and fourth extension points are available only in ABCS implementing request-response pattern.

For Fire and Forget Requester ABCS, you can hook your custom code to two extensibility points:

	
Just before the execution of transformation of application business message (ABM) to EBM. Use this configuration property name: ABCSExtension.PreXformABMtoEBM.

	
Just before the invocation of the enterprise business service (EBS). Use this configuration property name: ABCSExtension.PreInvokeEBS.

For more information about configuration parameters, see Section 17.1.3.1, "Configuration Parameters."

Figure 17-1 depicts the high-level flow of activities in a requester-specific ABCS. The diagram assumes that the EBS with which it is interacting employs a request-response interaction style. The steps for executing the customer extension to do additional tasks are optional.

Figure 17-1 Extending the Request-Response Interaction Style

[image: The image is described in the surrounding text]

Figure 17-2 shows the high-level flow of activities in a requester-specific ABCS. The diagram assumes that the EBS with which it is interacting employs a fire-and-forget interaction style. The steps for executing the customer extension to do additional tasks are optional.

Figure 17-2 Requester-Specific ABCS Using Fire-and-Forget Interaction Style

[image: The image is described in the surrounding text]

The first extensibility point made available to the implementers of the requester ABCS can be used to perform custom message inspection. This extensibility point can be used to inject code to perform tasks such as custom validation, message alteration, message filtering and so on. The custom code has access to the ABM that is about to be transformed and can return either an enhanced ABM or raise a fault.

The second extensibility point can be used to perform custom message augmentation. The extensibility point can be used to inject code to perform tasks such as EBM enhancement, custom validation and so on. The custom code has access to EBM that is about to be used for invocation of EBS and can return either an enhanced EBM or raise a fault.

The third extensibility point can be used to inject code to perform tasks such as custom validation, message alteration, message filtering and so on. The custom code has access to EBM that is about to be transformed to ABM. The custom code can return either an altered EBM or raise a fault.

The fourth extensibility point can be used to inject code to perform tasks such as ABM enhancement, custom validation and so on. The custom code has access to ABM that is about to be used for invocation of callback services. The custom code can return either an altered ABM or raise a fault

17.1.2 Introduction to Enabling Provider ABCS for Extension

For request/response Requester ABCS, you can hook your custom code to four extensibility points:

	
Customer extension just before the execution of the EBM to ABM transformation. Use this configuration property name: ABCSExtension.PreXformEBMtoABM.

	
Customer extension just before the invocation of application service. Use this configuration property name: ABCSExtension.PreInvokeABS.

	
Customer extension just before the execution of the ABM to EBM transformation and after invoking Application Service. Use this configuration property name: ABCSExtension.PostInvokeABS.

	
Customer extension just before the invocation of Enterprise Business Service and after transforming Application Message to Enterprise Business Message. Use this configuration property name: ABCSExtension.PostXformABMtoEBM.

The third and fourth extension points are available only in the ABCS implementing request-response pattern.

For Fire and Forget Requester ABCS, you can hook your custom code to two extensibility points:

	
Customer extension just before the execution of the EBM to ABM transformation. Use this configuration property name: ABCSExtension.PreXformEBMtoABM.

	
Customer extension just before the invocation of application service. Use this configuration property name: ABCSExtension.PreInvokeABS.

For more information about configuration parameters, see Section 17.1.3.1, "Configuration Parameters."

Figure 17-3 depicts the high-level flow of activities in a provider-specific ABCS. The diagram assumes that the EBS with which it is interacting employs a request-response interaction style.

Figure 17-3 Provider-Specific ABCS Using Request-Response Interaction Style

[image: The image is described in the surrounding text]

Figure 17-4 depicts the high-level flow of activities in a provider-specific ABCS. The diagram assumes that the EBS with which it is interacting employs a fire-and-forget interaction style.

Figure 17-4 Provider-Specific ABCS Using Fire-and-Forget Interaction Style

[image: The image is described in the surrounding text]

The first extensibility point made available to the implementers of the Provider ABCS can be used to inject code to perform tasks such as custom validation, message alteration, message filtering and so on. The custom code has access to EBM that is about to be transformed. The custom code can return either an enhanced EBM or raise a fault.

The second extensibility point can be used to perform custom message augmentation. The extensibility point can be used to inject code to perform tasks such as ABM enhancement, custom validation and so on. The custom code has access to ABM that is about to be used for invocation of application service. The custom code can return either an enhanced ABM or raise a fault.

The third extensibility point can be used to inject code to perform tasks such as custom validation, message alteration, message filtering and so on. The custom code has access to ABM that is about to be transformed to EBM. The custom code can return either an altered ABM or raise a fault.

The fourth extensibility point can be used to perform custom message augmentation. The extensibility point can be used to inject code to perform tasks such as EBM enhancement, custom validation and so on. The custom code has access to EBM that is about to be used for invocation of callback services. The custom code can return either an altered EBM or raise a fault.

17.1.3 How to Design Extensions-Aware ABCS

Each of the extensibility points is modeled as a service operation having a well-defined interface. ABCS authors define these interfaces. The extensibility interfaces consist of service operations that the ABCS invokes to execute the custom message enrichment or transformation or validations specific code implemented by the customer.

Each ABCS is accompanied by a corresponding customer extension service. A request-response ABCS has four extensibility points, therefore, the ABCS extension service has four service operations. For a fire-and-forget ABCS, the corresponding ABCS extension service has two service operations.

As delivered, the implementation of these service operations for all of the ABCS extension services invokes the same piece of code that always returns the same message. This piece of code has been implemented as a Servlet.

The ABCS is developed to invoke the appropriate service operation at each of the extensibility points. To minimize overhead, a check is made to ensure that the service for the relevant extensibility interface has been implemented. Oracle AIA Configuration properties have one property for each extensibility point. Setting the property to 'Yes' indicates that there is a custom implementation for the extensibility point. The default value for these properties is No, therefore, the ABCS never invokes the implementations of these extensions as they were delivered.

Table 17-1 lists the service operations for the requester ABCS-specific extensibility points:

Table 17-1 Service Operations for Requester ABCS-Specific Extensibility Points

	Extensibility Point	Service Operation Name
	
Just before the execution of transformation of ABM to EBM

	
Pre-ProcessABM

	
Just before the invocation of the EBS

	
Pre-ProcessEBM

	
Just before the execution of transformation of EBM to ABM

	
Post-ProcessEBM

	
Just before the invocation of callback service or response return

	
Post-ProcessEBM

Table 17-2 lists the service operations for the provider ABCS-specific extensibility points:

Table 17-2 Service Operations for Provider ABCS-Specific Extensibility Points

	Extensibility Point	Service Operation Name
	
Just before the execution of transformation of EBM to ABM

	
Pre-ProcessEBM

	
Just before the invocation of Application Service

	
Pre-ProcessABM

	
Just before the execution of transformation of ABM to EBM

	
Post-ProcessABM

	
Just before the invocation of callback EBS or response return

	
Post-ProcessEBM

AIA recommends that the ABCS and that the customer extension services be co-located. In SOA 11g, when the services are deployed on the same server, the SOA 11g runtime uses native invocation.

AIA recommends that the extension service should be enlisted as part of the ABCS transaction. When the extension service is implemented using SOA 11g technology, then set the transaction property bpel.config.transaction to 'required' on the extension service to enlist itself in the ABCS transaction.

For more information, see Section 17.6.1, "How to Ensure Transactions in AIA Services."

17.1.3.1 Configuration Parameters

Operations at the extension points are invoked based on the values of the specific parameters in the file AIAConfigurationProperties.xml. Each service configuration section specific to an ABCS requires that these parameters be specified. The parameters for each of the four extension points are:

	
ABCSExtension.PreXformABMtoEBM

	
ABCSExtension.PreInvokeEBS

	
ABCSExtension.PostInvokeEBS

	
ABCSExtension.PostXformEBMtoABM

	
ABCSExtension.PreXformEBMtoABM

	
ABCSExtension.PreInvokeABS

	
ABCSExtension.PostInvokeABS

	
ABCSExtension.PostXformABMtoEBM

These parameters must be configured with value 'true' for a service invocation. When these parameters are not specified in the configuration section for an ABCS, the value considered by default is 'false'.

The intent of this section is to provide developers with a set of guidelines on how to create and leverage these configuration properties to optimize extensibility. The service operation names and extension configuration properties provided in this section are recommendations only

Also, it is not within the scope of this discussion to provide guidelines for extension points for every one of the invocations. The number of parameters for any particular ABCS could be different. Product management and engineering teams are best equipped to identify the additional extension points where additional extensibility is required.

IT organizations developing services that could potentially be extended by the departmental teams or by their partners will find a need for ABCS to made extension aware. Given this use case, if a customer has to develop ABCS with additional extension points than the recommended, they can come up with appropriate names by following the appropriate naming conventions for service operation names and configuration properties similar to the currently proposed properties.

17.1.4 Designing an ABCS Composite with Extension

When an ABCS composite is developed as an extension-enabled service:

	
The ABCS is implemented as a component (using BPEL technology) in the composite.

	
The extension service is referred to by the ABCS composite as an external Web service.

The service at the extension point is developed in a separate composite if it is developed over an Oracle Fusion Middleware platform.

When different external extension services are referred to by the ABCS composite, multiple hooks exist from the ABCS composite to the External Service. That is, when an ABCS invokes two different services at two of its extension points, the composite must be designed to have two distinct external references, as shown in Figure 17-5:

Figure 17-5 Example of Composite with Two Distinct External References

[image: The image is described in the surrounding text]

However, when an ABCS composite invokes two distinct operations that are exposed on the same external service, then the ABCS composite has only one external reference, as shown in Figure 17-6:

Figure 17-6 Example of Composite with One External Reference

[image: The image is described in the surrounding text]

17.1.5 Defining Service at Extension Points

At the extension points, partner links are defined to set up the conversational relationship between two services by specifying the roles played by each service in the conversation and specifying the port type provided by each service to receive messages within the context of the conversation.

This is accomplished with the help of a Web Services Description Language (WSDL) file that describes the services the partner link offers. The WSDL is an XML document that describes all the Service Provider contracts to the service consumers.

The WSDL separates the service contract into two distinct parts, the Abstract WSDL and the Concrete WSDL:

	
The Abstract WSDL includes elements such as types, messages that define the structure of the parameters (input and output types), fault types, and the port type, which is known as the interface.

	
The Concrete WSDL includes bindings to protocols, concrete address locations, and service elements.

17.1.6 Defining a Service Using an Abstract WSDL

An abstract WSDL defines the external reference service at design time. This WSDL provides interfaces to the operations to be invoked at the extension points. It should also include or import the schemas for the application business object (ABO) and Enterprise Business Object (EBO). It is devoid of communication transport protocols, network address locations, and so on.

The abstract WSDL used to define the extension point service should be placed in the project folder. Do not push this into MDS, unlike other abstract WSDLs of the AIA services.

Note: An abstract WSDL may be used temporarily for design-time modeling only. At the time the composite is deployed, the binding should be specified.

When AIA Service Constructor is used to construct ABCS, it creates the extension service references in the composite.xml file.

When you use JDeveloper, follow these high-level steps to design the composite:

To design the composite to extension-enable ABCS:

	
In JDeveloper, open a SOA composite project.

	
Open the composite.xml in design mode.

	
To reference an extension point service, add a Web service as an external reference service in the References swim lane. Use the Abstract WSDL for design time modeling.

	
Tip:

This abstract WDSL will not be in the MDS. It is associated with the project and is in the project folder.

	
Wire the BPEL component to the external reference component created in the previous step.

When the composite is opened in the source mode, you see code similar to the Example 17-1.

This code example was reproduced from the composite.xml, where the extension service is defined using an abstract WSDL:

Example 17-1 Wiring the BPEL Component to the External Reference Component

<reference name="SamplesCreateCustomerSiebelReqABCSImplExtExtension"
ui:wsdlLocation="SamplesCreateCustomerSiebelReqABCSImplExtExtensionAbstract.wsdl">
 <interface.wsdl
interface="http://xmlns.oracle.com/ABCSImpl/Siebel/Samples/CreateCustomerSiebelR
eqABCSImplExtExtension/V1#wsdl.interface(SamplesCreateCustomerSiebelReqABCSImpl
ExtExtensionService)"/>
 <binding.ws port="" location=""/>
 </reference>

17.1.7 How to Specify a Concrete WSDL at Deployment Time

A concrete WSDL is a copy of the abstract WSDL used for defining the extension service. The concrete WSDL also defines the binding element that provides information about the transport protocol and the service element that combines all ports and provides an endpoint for the consumer to interact with the service provider.

Initially, at the time of development, the concrete WSDL points to the sample extension service, which is a Servlet. The Servlet is named MirrorServlet and is shipped with the Foundation Pack.

You should push the concrete WSDL into the MDS repository to the folder 'ExtensionServiceLibrary'.

17.1.7.1 Populating the binding.ws Element in the composite.xml

To invoke the external reference service, a run-time WSDL with concrete bindings must be specified in the ABCS composite.xml. The Port type in the WSDL should have a concrete binding. That is, in the composite, the attributes of the element, binding.ws, cannot be empty.

	
Note:

Populating the 'location' attribute of the element binding.ws with the URL of a run-timeWSDL, does not amount to violating the principle of 'designing the service using only abstract WSDLs'. The reason is that this concrete WSDL is not accessed either at composite's design time or at composite's deploy time. This WSDL is only accessed at composite's runtime.

To deploy the composite that references an external Web service, which is defined using an abstract WSDL, the attributes of the element binding.ws must be populated, as shown below:

<binding.ws port="[namespace of the ABCS Extension Service as defined in the WSDL]/V1#wsdl.endpoint(<Name of the ABCS Service as given in the WSDL>/<Name of the Porttype as given in the WSDL>" location="[location of the concrete WSDL in the MDS]" xmlns:ns="http://xmlns.oracle.com/sca/1.0"/>

The name of the ABCS Service is the value of the attribute definitions/name in the abstract WSDL.

This follows from naming conventions for the Service name in the ABCS composite. According to naming conventions, the name of the service is <name of the composite>, which in turn is the value of the attribute 'name' of the 'definitions' element in the WSDL.

At the time when the service at the extension point is developed and deployed by the customer,

	
Customer can replace the sample concrete WSDL in the MDS with the concrete WSDL that is developed for the extension service and redeploy the ABCS.

	
Customer can change binding.ws.location to point to the concrete WSDL of the deployed service and redeploy the ABCS.

For more information, see Section 2.1.3.4, "Using MDS in AIA."

17.1.8 Designing Extension Points in the ABCS BPEL Process

The following section details the steps to be completed to provide extension points in a Requester ABCS with a one-way invocation call.

In a Requester ABCS with a request-only call to a service, two possible extension points exist. The first extension point is just before the transformation from ABM to the EBM, and second extension point is just before the invocation of the service. The service operations at these extension points are defined as Pre-ProcessABM and Pre-ProcessEBM, respectively. The service operation at the extension points is an invocation to Servlet that only returns the payload.

17.1.9 How to Set Up the Extension Point Pre-ProcessABM

When AIA Service Constructor is used to construct ABCS, the extension point is set up by the tool.

The Requester ABCS requires the following process activities in the order specified:

	
Switch

The Switch activity determines if the service invocation at the extension point is to be made or not. This is achieved by checking the value of the property variable in the file AIAConfigurationProperties.xml. The name of the configuration parameter is 'ABCSExtension.PreProcessABM '. Check this parameter for a value of 'true'. This is achieved by using an appropriate 'AIAXPathFunction' in the switch expression.

	
Assign-Invoke-Assign

The Assign-Invoke-Assign subsequence of process activities is embedded in the Switch activity.

	
Assign

The Assign activity assigns the value of the input variable of the 'receive' step to the input variable of the 'invoke' step that follows.

	
Invoke

The Invoke activity makes the service-call on the partner-link. The programming model for the ABCS extension points sets up a contract on the service to return the same payload that it receives.

	
Assign

The Assign activity assigns the value of the response payload from the service invocation to the variable of the process activity that follows.

Figure 17-7 illustrates the sequence:

Figure 17-7 Setting up the Extension Point Pre-ProcessABM

[image: The image is described in the surrounding text]

17.1.10 How to Set Up the Extension Point Pre-ProcessEBM

When AIA Service Constructor is used to construct ABCS, the extension point is set up by the tool.

The Requester ABCS requires the following process activities in the order specified:

	
Switch

The Switch activity determines if the service invocation at the extension point is to be made or not. This is achieved by checking the value of the property variable in the file AIAConfigurationProperties.xml. The name of the configuration parameter is 'ABCSExtension.PreProcessEBM'. Check the parameter for a value of 'true'. This is achieved by using an appropriate 'AIAXPathFunction' in the switch expression.

	
Assign-Invoke-Assign

The Assign-Invoke-Assign subsequence of process activities is embedded in the Switch activity.

	
Assign

The Assign activity assigns the value of EBM to the input variable of the 'invoke' step that follows.

	
Invoke

The Invoke activity makes the service-call on the partner-link. The programming model for the ABCS extension points sets up a contract on the service to return the same payload that it receives.

	
Assign

The Assign activity assigns the value of the response payload from the service invocation to variable of the process activity that follows.

Figure 17-8 illustrates the sequence:

Figure 17-8 Setting up the Extension Point Pre-process EBM

[image: The image is described in the surrounding text]

17.1.11 How to Test the Extensibility with Servlet as Sample Extension Service

The sample extension service used in the document is a java servlet that mirrors the input payload back. The Servlet (shown in Example 17-2) as the endpoint has the advantage that it can be used as a partner-link service to test any extension. This is useful when you must test any extension-aware ABCS that have PartnerLink services defined using Abstract WSDL.

Example 17-2 Servlet to Test Extension

<service name="CreateCustomerSiebelReqABCSImplExt">
<port name="CreateCustomerSiebelReqABCSImplExt"
binding="tns:CreateCustomerSiebelReqABCSImplExt_Binding">
 <soap:address
location="http://{host}:{port}/MirrorServlet/mirror"/>
 </port>
 </service>

The implementations for the methods PreProcessABM are not required; the SOAP request is treated as the Servlet payload, and the Servlet outputs back the entire payload. The SOAPAction element is also rendered a dummy since it is not used at the Servlet-side.

The test Servlet is a java file with name Mirror.java. When deployed, it is accessible at: http://[hostname].com:[portno]/Mirror/mirror

17.2 Handling Errors and Faults

To determine how faults are handled and passed by a participating application, you must make sure the application error handling capabilities are in line with the integration platform's error handling capabilities.

17.2.1 How to Handle Errors and Faults

	
In synchronous request-response message exchange patterns (MEPs), the requesting services are waiting for response.

Whenever an error occurs in the provider services, an exception is raised and the fault message is propagated back to the requesting service.

	
In asynchronous fire-and-forget MEPs, the requesting service does not expect a response.

If an error occurs in the providing service, compensation may be needed. In such situations, the compensatory operations in EBS must be used for triggering compensations.

	
In asynchronous request-delayed response MEPs, the requesting service is in a suspended mode, waiting for a response.

If an error occurs in the providing service, the response to the requesting service includes details about the error.

For details on implementing the ABCS and EBS services in this scenario, see Section 16.5, "Implementing the Asynchronous Request Delayed Response MEP."

For more information about implementing error handling in BPEL and Mediator processes in each of the MEPs, see Chapter 27, "Configuring Oracle AIA Processes for Error Handling and Trace Logging."

	
In an asynchronous MEP, the message initiated from a sender is persisted until it is successfully delivered to and acknowledged by the receiver, if an acknowledgment is expected.

The sender and receiver are not necessarily the participating applications. Rather, they can be logical milestones in an Oracle AIA integration scenario. Each persistence store represents a milestone and may be a database, file system, or JMS persistence. Multiple milestones may be configured in an integration scenario to ensure the movement of messages from one persistence point to another.

For more information about configuring milestones for Guaranteed Message Delivery in an Integration flow, see Chapter 27, "Configuring Oracle AIA Processes for Error Handling and Trace Logging."

17.3 Working with Adapters

This section discusses working with transport and version adapters.

This section includes the following topics:

	
Section 17.3.1, "Interfacing with Transport Adapters"

	
Section 17.3.2, "How to Develop Transport Adapters"

	
Section 17.3.3, "When to Put Adapters in a Single Composite"

	
Section 17.3.4, "Planning Version Adapters"

	
Section 17.3.5, "How to Configure a Version Adapter"

17.3.1 Interfacing with Transport Adapters

Use transport adapters to interface with the ABCS in these scenarios:

	
For packaged applications, such as Siebel, PeopleSoft, J.D. Edwards, and SAP, the preferred route is to use the respective packaged-application adapters. These adapters can be deployed as JCA resource adapters. This solution is better than using the conventional SOAP interface.

	
In situations for which the participating applications do not expose their business logic as Web services, interactions with these applications must occur using technology adapters such as database adapters, JMS adapters, and so forth.

Transport adapters allow connectivity to the systems/applications that were not originally developed using Web services technologies. Some examples of applications that can use adapters are:

	
Systems that use non-xml for communication

	
Packaged software

	
Database systems

	
Data sources or persistent stores such as JMS, and so on

Investigate whether the services exposed by the participating applications provide support for proprietary message formats, technologies, and standards. If the applications that implement the functionality do not have inherent support for standards and technologies such as XML, SOAP, and JMS, then the transformations must happen in the ABCS.

For example, the application might be able to receive and send messages only using files, and EDI is the only format it recognizes. In this case, the ABCS is responsible for integrating with the application using a file adapter, translating the EDI-based message into XML format, exposing the message as a SOAP message.

When to Use Adapters for Message Aggregation

In some situations, you must combine responses to a request that originated from multiple sources. For example, for convergent billing in the telecommunication solution, the Application Business Connector Service for the getBillDetails EBS might have to retrieve details from multiple participating applications.

For more information about the Message Aggregation design pattern, see Chapter 28, "Working with AIA Design Patterns."

When to Use Adapters for Event Aggregation

The Event Aggregation model provides a comprehensive methodology for the business use case in which events, entity, or message aggregation is needed. In such scenarios, multiple events are raised before the completion of a business message, and all such fine-grained message events are consolidated into a single coarse-grained event.

In such use cases, a requester ABCS is invoked by an event consumer adapter service, which feeds the requester ABCS with an aggregated event message.

For more information about the event aggregation design pattern, see Chapter 28, "Working with AIA Design Patterns."

17.3.2 How to Develop Transport Adapters

Here are the high-level steps from the ABCS perspective.

To develop JMS Consumer Adapter:

	
Add JMS adapter in the Exposed Services swim lane.

	
Configure the JMS adapter service with the help of Adapter Configuration wizard.

	
Add a BPEL component in the Components swim lane.

	
Wire the BPEL component to the JMS adapter service.

	
Wire the BPEL component to the Referenced Service.

	
Open the BPEL component in design mode and add 'invoke activity' to invoke the JMS adapter partner link.

	
Complete the coding for the BPEL process.

For more information about JMS Adapters, see Oracle Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server.

To develop Portal DB Adapter:

	
Add a BPEL component in the Components swim lane.

	
Add DB adapter as external reference service in the References swim lane.

	
Configure the adapter service with the help of Adapter Configuration wizard.

	
Wire the BPEL component to the db adapter service.

	
Open the BPEL component in design mode and add 'invoke activity' to invoke the db adapter partner link.

	
Complete the coding for the BPEL process.

17.3.3 When to Put Adapters in a Single Composite

In principle, an ABCS composite is a component implemented along with other components and wires between those components. For example, you can implement a Requester ABCS composite using:

	
A BPEL process component representing the ABCS process flow.

	
BPEL or Mediator-based adapter components representing the adapters used or required by the process component.

	
Both the process component and the adapter components promoted as Services of the composite in which they are defined.

An ABCS and a TransportAdapter service can be in the same composite and when they are, the composite name is the same as that of the ABCS. Alternatively, you can develop an ABCS service and a TransportAdapter service as separate composites.

AIA recommends that you put adapters that are interfaced with ABCS in a different composite from that of ABCS when the same transport adapter service could be used with multiple ABCSs.

17.3.4 Planning Version Adapters

When service providers release a new version of an application service, you must have multiple versions of it running concurrently when the consumer code is migrated.

The version adapter allows the client request and response to consume a different release of a service and routes requests to the appropriate service endpoint based on the content.

Examples:

	
For assets, the view definition being used in integration is different between Oracle 11.5.10 and R12.

	
For payment authorization, the API name is different in Oracle 11.5.10 and R12.

Changes such as these between different versions of applications require a new adapter service to be created for each application version.

When the changes between different versions of applications are minor, introduce a version adapter, based on a Mediator component, between the existing connector service and the provider application, as shown in Figure 17-9:

Figure 17-9 Introducing a Version Adapter

[image: The image is described in the surrounding text]

This approach ensures that the connector service remains agnostic of the version of the applications. This option should be considered when no transformations are needed or when input and output transformations in the version adapter are simple and do not involve extensive logic affecting the performance.

17.3.5 How to Configure a Version Adapter

To configure a version adapter:

The version adapter service is a mediator-based component that sits between the provider ABCS implementation service and the actual participating applications.

The mediator-based version adapter service should have references to all the application adapters:

	
Configure the routing rules in the version adapter to route to corresponding adapter services of the applications.

	
For each of the connecting application's adapters, two routing rules should exist to enable both content-based routing and property-based (from AIAConfiguration file) routing.

	
When the changes between different application versions are minor with regard to the content to be passed and the content is available in the transformed ABM, use a transformation map to transform the input of the version adapter to the corresponding adapter service of the provider application.

	
Map the response from the different adapters to the schema that the connector service is expecting.

17.4 Developing ABCS for CAVS Enablement

This section provides instructions on how to develop Oracle AIA services that are ready to work with the Composite Application Validation System (CAVS). This section includes the following topics:

	
Section 17.4.1, "How to CAVS Enable Provider ABCS"

	
Section 17.4.2, "How to CAVS Enable the Requester ABCS"

	
Section 17.4.3, "Introduction to the CAVSEndpointURL Value Designation"

	
Section 17.4.4, "Purging CAVS-Related Cross-Reference Entries to Enable Rerunning of Test Scenarios"

	
Tip:

CAVS configurations are only required when simulators are a part of the testing scenario. These configurations lay the foundation for allowing services to route messages to simulators.

For more information about using the CAVS, see "Introduction to the Composite Application Validation System" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

17.4.1 How to CAVS Enable Provider ABCS

Provider ABCSs that are asynchronous and invoke a callback to a ResponseEBS service must also CAVS-enable that invocation.

Developers must populate a value for the property: Routing.<PartnerLinkName>.<TargetSystemID>.EndpointURI as shown below.

You must provide the above property in the service configuration file if the value for the property Routing.<PartnerLink>.RouteToCAVS is given as 'false'.

To code a provider ABCS for dynamic CAVS-enabled PartnerLinks for invoking target participating application Web services:

	
Define the following service-level configuration properties for the provider ABCS as shown in Example 17-3:

Example 17-3 Defining Service-Level Configuration Properties for the Provider ABCS

<Property name="Default.SystemID">[DefaultTargetSystemID]</Property>
<Property name="Routing.[PartnerlinkName].RouteToCAVS">[true|false]</Property>
<Property
name="Routing.[PartnerlinkName].[TargetSystemID].EndpointURI">[AppEndpointURL]<
/Property>
<Property name="Routing.[PartnerlinkName].CAVS.EndpointURI">[CAVSEndpointURL]</Property>

The CAVSEndPointURL value is set at design time.

For more information about the design-time designation of the CAVSEndPointURL, see Section 17.4.3, "Introduction to the CAVSEndpointURL Value Designation."

	
Ensure that you have the following namespace prefixes defined in your BPEL process as shown in Example 17-4:

Example 17-4 Defining Namespace Prefixes in the BPEL Process

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsa=http://schemas.xmlsoap.org/ws/2003/03/addressing
xmlns:corecom=http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2

	
Add this variable to your global variables section:

<variable name="SystemID" type="xsd:string"/>

	
Add an attachment named AddTargetSystemID.xsl to your BPEL project in the 'xsl' directory. Be sure to replace the [ABCServiceNamespace] and [ABCServiceName] tokens in the file appropriately.

	
Add the assignment shown in Example 17-5 as the first step in the BPEL process. Be sure to replace the tokens appropriately:

Example 17-5 Adding an Assignment

<assign name="GetTargetSystemID">
 <copy>
 <from expression="ora:processXSLT('AddTargetSystemID.xsl',
bpws:getVariableData('[RequestEBMVariableName]', '[RequestEBMPartName]'))"/>
 <to variable="[RequestEBMVariableName]"
 part="[RequestEBMPartName]"/>
 </copy>
 <copy>
 <from variable="[RequestEBMVariableName]"
 part="[RequestEBMPartName]"
 query="/[NamespacePrefixedEBMName]/corecom:EBMHeader/corecom:
 Target/corecom:ID"/>
 <to variable="SystemID"/>
 </copy>
</assign>

	
Add the following <scope> as shown in Example 17-6 once for each PartnerLink before its invoke activity:

	
Replace the tokens in the AssignDynamicPartnerlinkVariables assignment activity to set the variables appropriately.

	
Update the PartnerLink name token in the AssignPartnerlinkEndpointReference assignment activity.

	
Updating the embedded Java code should not be necessary.

Example 17-6 Adding <scope> for Each PartnerLink

<scope name="SetDynamicPartnerlinkScope">
 <variables>
 <variable name="TargetEndpointLocation" type="xsd:string"/>
 <variable name="EndpointReference" element="wsa:EndpointReference"/>
 <variable name="ServiceName" type="xsd:string"/>
 <variable name="PartnerLinkName" type="xsd:string"/>
 <variable name="EBMMsgBpelVariableName" type="xsd:string"/>
 <variable name="EBMMsgPartName" type="xsd:string"/>
 </variables>
 <sequence name="SetDynamicPartnerlinkSequence">
 <assign name="AssignDynamicPartnerlinkVariables">
 <copy>
 <from expression="'{[ABCServiceNamespace]}[ABCServiceName]
 '"/>
 <to variable="ServiceName"/>
 </copy>
 <copy>
 <from expression="'[PartnerlinkName]'"/>
 <to variable="PartnerLinkName"/>
 </copy>
 <copy>
 <from expression="'[RequestEBMVariableName]'"/>
 <to variable="EBMMsgBpelVariableName"/>
 </copy>
 <copy>
 <from expression="'[RequestEBMPartName]'"/>
 <to variable="EBMMsgPartName"/>
 </copy>
 </assign>
 <bpelx:exec name="GetTargetEndpointLocation" language="java"
 version="1.5">
 <![CDATA[/*--
This code snippet will derive the dynamic endpoint URI for a partnerlink.
---*/

java.lang.String serviceName = (java.lang.String)getVariableData("ServiceName");
java.lang.String partnerLinkName = (java.lang.String)getVariableData("PartnerLinkName");
java.lang.String cavsEndpointPropertyName =
"Routing."+partnerLinkName+".CAVS.EndpointURI";
java.lang.String ebmMsgBpelVariableName = (java.lang.String)getVariableData("EBMMsgBpelVariableName");
java.lang.String ebmMsgPartName =
(java.lang.String)getVariableData("EBMMsgPartName");
java.lang.String systemIdBpelVariableName = "SystemID";
java.lang.String targetEndpointLocationBpelVariableName =
"TargetEndpointLocation";
java.lang.String routeToCavsPropertyName =
"Routing."+partnerLinkName+".RouteToCAVS";
java.lang.String defaultSystemIdPropertyName = "Default.SystemID";
java.lang.String targetEndpointLocation = null;
java.lang.String targetID = null;
boolean addAudits = false;

if (addAudits) addAuditTrailEntry("Partnerlink = " + partnerLinkName);

// check configuration for CAVS routing flag
try {
 boolean routeToCAVS =
java.lang.Boolean.parseBoolean(oracle.apps.aia.core.config.Configuration.
getServiceProperty(serviceName, routeToCavsPropertyName));
 if (addAudits) addAuditTrailEntry("RouteToCAVS = " + routeToCAVS);
 if (routeToCAVS) {
 targetEndpointLocation = oracle.apps.aia.core.config.Configuration.
 getServiceProperty(serviceName, cavsEndpointPropertyName);
 if (addAudits) addAuditTrailEntry("Endpoint = '" + targetEndpoint
 Location + "' selected from configuration property " +
cavsEndpointPropertyName);
 }
}
catch (oracle.apps.aia.core.config.PropertyNotFoundException e) {
 if (addAudits) addAuditTrailEntry("Configuration property " + cavs
EndpointPropertyName + " not found!");
}

if (targetEndpointLocation==null || targetEndpointLocation=="") {

 // check bpel variable for already retrieved target system Id
 try {
 targetID = (java.lang.String)getVariableData(systemIdBpel
 VariableName);
 if (addAudits && targetID!=null) addAuditTrailEntry("Using previously
stored Target System ID = '" + targetID + "'");
 }
 catch (com.oracle.bpel.client.BPELFault e) {
 }

 if (targetID==null || targetID=="") {
 // try to get Target system ID from EBM Header
 try {
oracle.xml.parser.v2.XMLElement targetIdElement =
 (oracle.xml.parser.v2.XMLElement)
getVariableData(ebmMsgBpelVariableName,
ebmMsgPartName, "/*/corecom:EBMHeader[1]/corecom:Target/corecom:ID
[text()!='']");
 targetID = targetIdElement.getText();
 if (addAudits) addAuditTrailEntry("Target System ID = '" + targetID
+ "', selected from EBM header");
 }
 catch (com.oracle.bpel.client.BPELFault e) {
 if (addAudits) addAuditTrailEntry("Unable to retrieve Target System
ID from message header");
 }
 try {
 if (targetID!=null && targetID!="")
setVariableData(systemIdBpelVariableName, targetID);
 }
 catch (com.oracle.bpel.client.BPELFault e) {
 }
 }

 if (targetID==null || targetID=="") {
 // try to get Target system ID from configuration
 try {
 targetID = oracle.apps.aia.core.config.Configuration.getService
 Property(serviceName, defaultSystemIdPropertyName);
 if (addAudits) addAuditTrailEntry("Target System ID = '" + targetID
+ "', selected from configuration property " + defaultSystemIdPropertyName);
 }
 catch (oracle.apps.aia.core.config.PropertyNotFoundException e) {
 if (addAudits) addAuditTrailEntry("Configuration property "
+ defaultSystemIdPropertyName + " not found!");
 }
 try {
 if (targetID!=null && targetID!="") setVariableData(systemIdBpel
 VariableName, targetID);
 }
 catch (com.oracle.bpel.client.BPELFault e) {
 }
 }

 if (targetID!=null || targetID!="") {
 // try to get EndpointLocation from Configuration
 java.lang.String endpointPropertyName = "Routing."+partnerLinkName+
 "."+targetID+".EndpointURI";
 try {
 targetEndpointLocation =
oracle.apps.aia.core.config.Configuration.getServiceProperty(serviceName,
endpointPropertyName);
 if (addAudits) addAuditTrailEntry("Endpoint = '" +
targetEndpointLocation + "' selected from configuration property " +
endpointPropertyName);
 }
 catch (oracle.apps.aia.core.config.PropertyNotFoundException e) {
 if (addAudits) addAuditTrailEntry("Configuration property " +
endpointPropertyName + " not found!");
 }
 }
}

try {
 setVariableData(targetEndpointLocationBpelVariableName, targetEndpoint
 Location);
}
catch (com.oracle.bpel.client.BPELFault e) {
}]]>
 </bpelx:exec>
 <switch name="Switch_SetEndpoint">
 <case condition="string-length(bpws:getVariableData('Target
 EndpointLocation'))>0">
 <assign name="AssignPartnerlinkEndpointReference">
 <copy>
 <from>
 <wsa:EndpointReference xmlns:wsa="http://schemas.
 xmlsoap.org/ws/2003/03/addressing">
 <wsa:Address/>
 </wsa:EndpointReference>
 </from>
 <to variable="EndpointReference"/>
 </copy>
 <copy>
 <from variable="TargetEndpointLocation"/>
 <to variable="EndpointReference"
 query="/wsa:EndpointReference/wsa:Address"/>
 </copy>
 <copy>
 <from variable="EndpointReference"/>
 <to partnerLink="[PartnerlinkName]"/>
 </copy>
 </assign>
 </case>
 <otherwise>
 <empty name="Empty_NoSetEndpoint"/>
 </otherwise>
 </switch>
 </sequence>
</scope>

17.4.2 How to CAVS Enable the Requester ABCS

The general programming model concept is similar to how the endpoint URI is dynamically computed in the provider ABCS to achieve dynamic target invocation.

To code a requester ABCS for CAVS-enabled invocation of an Enterprise Business Service that is implemented as mediator service:

	
In the BPEL artifact, add a switch activity.

	
The condition expression in the 'case' tests for the nonzero value in the element EBMHeader/MessageProcessingInstruction/DefinitionID.

	
Populate the wsa:EndpointReference element with the value of the element EBMHeader/MessageProcessingInstruction/DefinitionID as shown in Example 17-7.

Example 17-7 Populating the wsa:EndpointReference Element

<switch name="Switch_CAVSEnablement">
<case condition="string-length(bpws:getVariableData('CreateCustomerPartyList_
InputVariable','CreateCustomerPartyListEBM','/custpartyebo:CreateCustomerPartyLis
tEBM/corecom:EBMHeader/corecom:MessageProcessingInstruction/corecom:DefinitionID'
))>0">
 <bpelx:annotation>
 <bpelx:pattern>Is_CAVS_DefinitionID</bpelx:pattern>
 </bpelx:annotation>
 <sequence>
 <assign name="Assign_TargetEndpointLocation">
 <copy>
 <from variable="CreateCustomerPartyList_
InputVariable"
 part="CreateCustomerPartyListEBM"
 query="/
corepartyebo:CreateCustomerPartyListEBM/corecom:EBMHeader/corecom:Message
ProcessingInstruction/corecom:DefinitionID"/>
 <to variable="TargetEndpointLocation"/>
 </copy>
 </assign>
 <assign name="AssignPartnerlinkEndpointReference">
 <copy>
 <from>
 <wsa:EndpointReference>
 <wsa:Address/>
 </wsa:EndpointReference>
 </from>
 <to variable="EndpointReference"/>
 </copy>
 <copy>
 <from variable="TargetEndpointLocation"/>
 <to variable="EndpointReference"
 query="/wsa:EndpointReference/wsa:Address"/>
 </copy>
 <copy>
 <from variable="EndpointReference"/>
 <to partnerLink="SamplesCustomerPartyEBS"/>
 </copy>
 </assign>
 </sequence>
 </case>
 <otherwise> <empty name="Empty_NoSetEndpoint"/> </otherwise>
 </switch>

	
Tip:

Some requester ABCSs must communicate back directly with the calling participating application. For this type of partnerlink, the requester ABCS acts similarly to a provider ABCS because it is invoking a participating application Web service.

17.4.3 Introduction to the CAVSEndpointURL Value Designation

The CAVSEndPointURL value is set at design time as follows:

	
If the ABCS or Enterprise Business Flow (EBF) is invoking a synchronous service, then the CAVSEndPointURL value in the AIAConfigurationProperties.xml file is set to a default value of: http://<host>:<port>/AIAValidationSystemServlet/syncresponsesimulator

	
If the ABCS or EBF is invoking an asynchronous one-way service, then the CAVSEndPointURL value in the AIAConfigurationProperties.xml file is set to a default value of: http://<host>:<port>/AIAValidationSystemServlet/asyncrequestrecipient

	
If the ABCS or EBF is invoking an asynchronous request-delayed response service, then the CAVSEndPointURL value in the AIAConfigurationProperties.xml file is set to a default value of: http://<host>:<port>/AIAValidationSystemServlet/asyncresponsesimulator

	
If the ABCS or EBF is invoking a Response EBS, then the CAVSEndPointURL value in the AIAConfigurationProperties.xml file is set to a default value of: http://<host>:<port>/AIAValidationSystemServlet/asyncresponserecipient

17.4.4 Purging CAVS-Related Cross-Reference Entries to Enable Rerunning of Test Scenarios

When a participating application is involved in a CAVS testing flow, execution of tests can potentially modify data in a participating application. Therefore, consecutive running of the same test may not generate the same results. The CAVS is not designed to prevent this kind of data tampering because it supports the user's intention to include a real participating application in the flow. The CAVS has no control over modifications that are performed in participating applications.

However, this issue does not apply if your CAVS test scenario uses test definitions and simulator definitions to replace all participating applications and other dependencies. In this case, all cross-reference data is purged after the test scenario has been executed. This enables rerunning of the test scenario.

This purge is accomplished as follows:

	
Pre-Built Integrations that are delivered to work with Oracle AIA Foundation Pack are delivered with cross-reference systems in place. They are named CAVS_<XYZ>, where <XYZ> is the participating application system. For example, for systems EBIZ and SEBL, the Pre-Built Integration is delivered with cross-reference systems CAVS_EBIZ and CAVS_SEBL.

	
For every system type defined on the System - Application Registry page for which you want to make test scenarios rerunnable (<XYZ>), create a related CAVS system (CAVS_<XYZ>). The System Type field value for the CAVS-related entry should match the name of the system for which it is created. To access the System - Application Registry page, access the AIA Home Page, click Go in the Setup area, and select the System tab. Figure 17-10 illustrates the system and CAVS-related entries.

Figure 17-10 System and CAVS-related System Entries on the System-Application Registry Page

[image: The image is described in the surrounding text]

	
When testing a provider ABCS in isolation, the EBM is passed from the CAVS to the provider ABCS with the NamespacePrefixedEBMName/EBMHeader/Target/ID element set as CAVS_<XYZ>.

	
When testing a requester ABCS in isolation, the element in the Application Business Message (ABM) that normally contains the Internal ID value now contains the CAVS-specific Internal ID value set for the system on the System - Application Registry page.

	
When testing an entire flow (requester ABCS-to-EBS-to-provider ABCS), you must set the Default.SystemID property of the provider ABCS to CAVS_<XYZ>, where <XYZ> is the system.

To do this, edit the Default.SystemID property value in the AIAConfigurationProperties.xml file in the $AIA_HOME/aia_instances/$INSTANCE_NAME/AIAMetaData/config directory.

Access the Configuration page and click Reload to load the edit.

You can now begin testing the entire flow.

	
Note:

If the test scenario is an entire flow that includes multiple instances of the same system, then the approach described previously does not work. In this case, data created in the cross-reference remains, making the same test case incapable of being rerun.

17.5 Securing the ABCS

The participating applications are developed during different times with different concepts and implementation of authentication and authorization. When applications are integrated, you must pass authentication and authorization information between applications.

The information related to security is exchanged between participating applications and ABCS. The AIA application security context standardizes the exchange of participating applications' authentication and authorization information between various applications so that any application can be integrated with any other application.

17.5.1 How to Secure the ABCS

You should answer the following questions:

	
Does the application need the security credentials to authenticate?

If yes, can you use a generic account or should you use the requester's credentials, as specified in the message?

	
How are these credentials transmitted? Are they adopting a WS-Security scheme or a custom mechanism?

If a custom mechanism, is it through the header or as part of the payload?

Refer to Chapter 29, "Working with Security" for details about how to:

	
Transform application security context into standard format in ABCS.

	
Propagate the standard security context from ABCS to ABCS through EBS and EBF.

	
Transform standard security context to application security context.

17.6 Enabling Transactions

When SOA is used to encapsulate and integrate cross-enterprise workflows, multiple services may take part in transactions spanning system boundaries. End-to-end business transactions that cross application boundaries involve multiple applications. Creating robust integration solutions requires more than simply exchanging messages.

An important consideration is that the Web services participating in an end-end message flow are often asynchronous, stateless, distributed, and opaque. You must understand the mechanics of transaction management.

17.6.1 How to Ensure Transactions in AIA Services

Business requirements drive transactional requirements. Transaction considerations must start during the design phase. You cannot postpone them until construction time. You must:

	
Identify all the ABCS services and the EBFs that comprise a business activity.

	
Organize these activities into meaningful groups to have an overall unifying purpose.

	
Indicate transaction demarcation points.

The grouping of activities provides the starting point for transaction demarcation so that the relevant business operations are performed in the context of a transaction.

In the asynchronous fire-and-forget pattern, where no milestones are configured, the requester, EBS, and provider ABCS must participate in the same global transaction, including cross-references in Oracle XA.

In an asynchronous MEP, where JMS queues are set up and the participating applications interact with the queues, the JMS consumer adapters must also participate in the global transaction, as do the requester ABCS, EBS, and provider ABCS.

In such a case, when an undergoing transaction is aborted before the message is persisted at a milestone, the message is rolled back into the JMS queue.

In other words, the transaction demarcation begins with the JMS consumer adapter picking up the message from the queue and ends when the message is delivered to the consumer application or when the message is persisted at a configured milestone.

In a SOA-based integration, long-running business transactions often involve incompatible trust domains, asynchrony, and periods of inactivity, which present challenges to traditional ACID-style transaction processing. You must predefine the transaction boundaries based on technical or business criteria. Pre-Built Integration designers/architects should divide the whole transaction into parts by setting transaction boundaries using JMS interface at logical points.

Non-retryable application services must have corresponding compensatory services.

ABCS invoking non-retryable application services should invoke compensatory services in case of roll-back.

Application services implemented using JCA adapters can leverage session management to facilitate transaction coordination.

17.6.2 Transactions in Oracle Mediator

If a transaction is present, Oracle Mediator participates in that existing transaction. If a transaction is not present, Oracle Mediator starts a transaction. In the case of sequential routing rules, all rules are executed in the same transaction and, if an error occurs, a rollback is issued.

17.6.3 Transactions in BPEL

The BPEL component, by default, creates a new transaction on the basis of a request. That is, when a BPEL process is invoked, a new transaction begins by default. If a transaction exists, then it is suspended and a new one created. To chain an execution into a single global transaction, you must set the transaction flag on the provider process (callee BPEL component).

17.6.3.1 Impact of BPEL Activities on Transaction Scope

BPEL engine ends its local transaction when it reaches the end of flow or hits a breakpoint activity, for example, receive, onMessage, onWait, and Alarm.

Transaction design considerations are also governed by:

	
Invocation patterns employed across the AIA integration

ABCS -- EBS - ABCS

	
Technology pattern: BPEL -- MEDIATOR-BPEL

ABCS - EBS - EBF - EBS -- ABCS

	
Technology Pattern: BPEL - MEDIATOR- BPEL - MEDIATOR- BPEL

Based on the transaction semantics in FMW, you must design and configure transactions across ABCS, EBS and Enterprise Business Flows.

	
Participating applications

Participating applications should be able to support transactions using their application services. However, the reality is that many application services are able to do this, so compensatory services are needed in case of rollback (orchestrated by AIA layer).

Design integration logic and transaction boundaries in the AIA layer to account specifically for the peculiarities of the participating application services, SCA Composite transaction semantics, and business requirements.

17.6.4 Developing ABCS to Participate in a Global Transaction

In SOA 11g, you need not set up any configuration properties on the calling (consuming) process to chain an execution into a single global transaction.

You only must set the appropriate transaction flag on the Callee BPEL component. You can do this in the composite editor's source by adding bpel.config.transaction into a BPEL component, with value as 'required' as shown in Example 17-8:

Example 17-8 Setting the Transaction Flag on the Callee BPEL Component

<component name="SamplesCreateCustomerSiebelReqABCSImplProcess">
 <implementation.bpel
src="SamplesCreateCustomerSiebelReqABCSImplProcess.bpel"/>
 <property name="bpel.config.transaction">required</property>
</component>

With the transaction flag set as shown, BPEL inherits the transaction that is there, started by the parent process. If the parent process has not started a transaction, BPEL creates a new one. For a global transaction, the transaction is committed when the initiator commits.

If BPEL has an inbound interface with an adapter, you must set the appropriate transaction flag in the composite of the adapter.

Example 17-9 shows how transaction properties should be set on the BPEL adapter interface:

Example 17-9 Setting Transaction Properties on the BPEL Adapter Interface

<component name="SamplesCreateCustomerSiebelJMSConsumerProcess">
 <implementation.bpel
src="SamplesCreateCustomerSiebelJMSConsumerProcess.bpel"/>
 <property name="bpel.config.transaction">required</property>
</component>

In the case of BPEL invoking Mediator, the Mediator participates in the existing transaction if a transaction is present. If a transaction is not present, then Mediator starts a transaction.

17.6.5 How to Transaction-Enable AIA Services

The following sections provide details on how to transaction enable AIA services in different scenarios:

	
Section 17.6.5.1, "Synchronous Request-Response Scenarios"

	
Section 17.6.5.2, "AIA Services in Asynchronous MEP"

	
Section 17.6.5.3, "Asynchronous Operation from an ABCS in the Same Thread but in a Different Transaction"

17.6.5.1 Synchronous Request-Response Scenarios

Invoking a synchronous BPEL process results in creation of BPEL instance within its local transaction by default. This transaction can be enlisted to a global transaction given proper configurations.

Hence, the transaction settings in the ABCS services should be as shown in Example 17-10:

Example 17-10 Transaction Settings in the composite.xml of the Requester ABCS

<component name="SamplesCreateCustomerSiebelJMSConsumerProcess">
 <implementation.bpel
src="SamplesCreateCustomerSiebelReqABCSImplProcess.bpel"/>
 <property name="bpel.config.transaction">required</property>
</component>

This setting ensures that the caller's transaction is joined, if there is one, or a new transaction is created when there is not one.The EBS inherits the transaction initiated by the Requester ABCS.

A Mediator always enlists itself into the global transaction propagated through the thread that is processing the incoming message.

Figure 17-11 illustrates the transaction boundary.

Figure 17-11 Transaction Boundary

[image: The image is described in the surrounding text]

17.6.5.2 AIA Services in Asynchronous MEP

Invoking an asynchronous BPEL process results in persistence of invocation message in invoke message table within part of the caller's transaction. The Caller's transaction ends. The asynchronous BPEL executes in its own local transaction. For the Callee to be executed within the Caller's transaction, the transaction flag must be set to required, as shown below, for the BPEL component, in the Callee's composite.

bpel.config.transaction=required

To ensure a single threaded execution of the Callee, a case of a one-way operation, you must have a sync-type call. Set the property for the BPEL component in the Callee's composite as shown below:

bpel.config.oneWayDeliveryPolicy=sync

Therefore, the transaction settings in the ABCS services should be as shown in Example 17-11:

Example 17-11 Transaction Settings for Asynchronous MEP

<component name="SamplesCreateCustomerSiebelReqABCSImplProcess">
 <implementation.bpel
src="SamplesCreateCustomerSiebelReqABCSImplProcess.bpel"/>
 <property name="bpel.config.transaction">required</property>
 <property name=bpel.config.oneWayDeliveryPolicy">sync</property>

If the Requester ABCS has an inbound interface with an adapter, then in the adapter's composite, set the property at the BPEL component level, that is, bpel.config.oneWayDeliveryPolicy=sync.

Example 17-12 shows how transaction properties are set on the adapter component:

Example 17-12 Transaction Properties Set on Adapter Component

<component name="SamplesCreateCustomerSiebelJMSConsumerProcess">
 <implementation.bpel
src="SamplesCreateCustomerSiebelJMSConsumerProcess.bpel"/>
 <property name="bpel.config.transaction">required</property>
 <property name=bpel.config.oneWayDeliveryPolicy">sync</property>
</component>

Figure 17-12 illustrates the transaction boundary.

Figure 17-12 Transaction Boundary in Asynchronous MEP

[image: The image is described in the surrounding text]

17.6.5.3 Asynchronous Operation from an ABCS in the Same Thread but in a Different Transaction

When an ABCS has to invoke an asynchronous operation on a process, which must be executed in the same thread as that of ABCS but in a different transaction, set the following configuration in the called BPEL composite:

<property name="bpel.config.oneWayDeliveryPolicy">sync</property>

In this case, the transaction configuration, bpel.config.transaction, need not be set in the called BPEL composite because the called BPEL should be executed in a transaction different from that of the Caller.

17.7 Guaranteed Message Delivery

Guaranteed message delivery means that a message being sent from a producer to a consumer is not lost in the event of an error.

AIA uses queues for asynchronous and reliable delivery of messages. For example,

	
PeopleSoft CRM, upon occurrence of a business event, can either push the message directly into a queue or send a SOAP message over HTTP to a JMS message producer (a JMS transport adapter) that is responsible for entering the message in the queue.

PeopleSoft CRM can consider the message as sent as soon as the message is dropped into the queue. With this mechanism, the PeopleSoft CRM application can keep sending new messages regardless of whether the CRM on Premises is available or not.

	
A JMS consumer (another JMS transport adapter) is responsible for dequeuing the messages and invoking PeopleSoft CRM ABCSs.

Having the PeopleSoft CRM ABCSs, the EBS, the CRM on Premises ABCS and the Web services as part of the transaction initiated by JMS message producer ensures that the message is removed from the queue only after the successful completion of the task in the CRM on-premise application.

17.8 Versioning ABCS

Versioning of a service means:

	
A new service with Version suffix in the name of the Composite and name of the Service Component.

	
The target namespace of the WSDL of the Service Component indicates a new version.

For more information about AIA naming standards, see Chapter 32, "Oracle AIA Naming Standards for AIA Development."

17.8.1 Guidelines for Versioning

During the preparatory phase, be aware of the following guidelines:

	
An ABCS is used across multiple Pre-Built Integrations. It is not Pre-Built Integration specific.

For example, EBizRequesterCreateItemABCS is used by ISCM Pre-Built Integration and Agile PLM - Ebiz Integration Pre-Built Integration.

	
Use the Oracle Enterprise Repository to discover the existence of a service.

Service definition annotations are persisted in Oracle Enterprise Repository. Oracle Enterprise Repository documents the various conceptual and physical assets depicting the Pre-Built Integration and constituting services.

	
Inline changes made to ABCS without changing the version suffix should be backward compatible.

	
Multiple versions for a service with semantically and technically incompatible contracts among versions are not acceptable.

It is not permissible to version an existing ABCS when the contract is totally different, even though the operation to be performed or the verb is same.

	
ABCS is versioned independently of an application version.

ABCS is not bound to a specific application version. So, when an application undergoes a version change, it is not binding on ABCS to undergo a similar version change. Thus, ABCS is designed to be agnostic of version changes of the application.

	
Avoid concurrent multiple versions of an ABCS.

For example, Team A owns Version 1; Team B does not like the contract and creates Version 2 with a different MEP/Contract. Now Team A is creating Version 3 with a contract that contradicts the previous one.

	
The system does not allow multiple services for an application to perform a single business activity using a specific role (Requester/Provider).

	
Do not have multiple services with same logic but different names, either a different name for composite, for service, or having a different portType in the WSDL.

	
Do not have multiple services with different logic but the same names.

The operation defined on the EBS determines the implementing ABCS.

The operation defined on an EBS is dictated by the business activity/task.

Variations of business activity, task, or both are possible. These are passed in the form of context and implemented by different ABCSs.

Multiple teams involved in producing, consuming, or both producing and consuming an ABCS for a specific application and a business activity must reach consensus regarding the contracts.

17.9 Resequencing in Oracle Mediator

This section provides an overview of the Requencing feature in Oracle Mediator and discusses how to set up and use it in the Oracle AIA Asynchronous message exchange pattern.

In the Oracle AIA asynchronous message exchange pattern, participating applications push messages to the Oracle AIA layer where they are processed in a store-and-forward fashion.

In this message exchange pattern, there is a need to process messages pertaining to the same object instance in the same sequence in which they are generated. The Resequencer in Oracle Mediator helps to maintain correct processing sequence.

A Resequencer is used to rearrange a stream of related but out-of-sequence messages back into order. It sequences the incoming messages that arrive in a random order and then send them to the target services in an orderly manner.

The sequence of messages is maintained until the next persistence point. If the next persistence point is not an application, then the messages must be resequenced again.

Consider an integration scenario where in the Siebel application is sending CreateOrder/UpdateOrder messages which are enqueued in JMS queue. These messages are de-queued by a JMS consumer adapter service and sent down stream for processing. When incoming messages arrive at JMS queue, they may be in a random order owing to different reasons such as network latency, downtime of server and so on. The resequencer orders the messages based on sequential or chronological information, and then sends the message to the target services in an orderly manner.

The Figure 17-13 depicts an usecase where an incoming stream of messages from Siebel application which are persisted in a JMS destination are processed in a correct sequence.

Figure 17-13 Message Sequencing Using the Oracle Mediator's Resequencing Feature

[image: The image is described in the surrounding text]

The sequencing is done based on the sequencing strategy selected. The mediator provides us with three types of resequencers:

	
Standard Resequencer

	
FIFO Resequencer

	
BestEffort Resequencer

For more information about the Oracle Mediator Resequencer feature, see "Resequencing in Oracle Mediator" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

17.9.1 Configuring the Oracle Mediator Service to Use its Resequencer Feature

As this is a feature of the Oracle Mediator, a Mediator service must be in place for it to work as designed.

This section discusses how to configure the Oracle Mediator service to use its re-sequencing feature.

	
Open the Mplan file of the Mediator component in the design mode.

	
Select the 'Resequence Level' as 'operations'

	
Note:

Mediator allows us to select the Resequence Level as either 'operations' or 'component'. For Mediator components which only have a single operation, it does not matter whether you select Resequence Level as either 'operations' or 'component'. For a Mediator that has multiple operations defined on it, selecting the 'component' option means resequencing is applied to all operations in it.

In AIA, for the mediator, it is recommended to select the 'Resequence Level' as 'operations'. Figure 17-14 is the screen shot of a composite mplan where the Resequence level is selected at operation level.

Figure 17-14 Resequence Level is Selected at Operation Level

[image: The image is described in the surrounding text]

For the resequencer to work, have one or both of following values in the source payload depending on the resequencing strategy employed.

The first one is a sequenceID, and the next one is a groupID. The sequenceID is used as identifier for the message itself. The groupID is used to group the messages in which the resequencer rearranges the messages based on the sequenceID.

17.9.2 How to Configure the Resequencing Strategy

	
Determine and set the Resequence type from the following three options:

	
Standard: Use when the incoming message has an integer as a sequence ID with a known increment and the starting sequence number.

	
BestEffort: Use when the incoming message has a timestamp as a sequence ID.

	
First in First out (FIFO): Use in all other cases.

Figure 17-15 is the screenshot that shows Resequence types.

Figure 17-15 Resequence Types

[image: The image is described in the surrounding text]

	
Set resequence options.

	
Determine and set the Group

The group ID is a parameter (field or attribute) on the incoming message that uniquely identifies the group of messages to be sequenced.

For example, CustomerId, OrderId, ProductId, Account ID and so forth.

The group ID is configured by setting the 'Resequence Options' called 'Group' with an XPath expression that points to the field in the payload which the resequencer uses to group incoming messages. This ensures that the messages belonging to a specific group are processed in a sequential order.

For example, SyncCustomerPartyListEBM/ns0:SyncCustomerPartyListEBM/ns0:DataArea/ns0:SyncCustomerPartyList/ns0:CustomerPartyAccount/corecom:Identification/corecom:ApplicationObjectKey/corecom:ID[@schemeID='AccountId'].

Figure 17-16 is the screenshot that shows XPath expression in the Group field.

Figure 17-16 Resequence Options

[image: The image is described in the surrounding text]

	
Determine and set the ID

The ID is a parameter (field or attribute) on the incoming message that indicates the position of the message in the sequence.

The ID is declared by an XPath expression that points to the field in the incoming message on which the resequencing is done.

For example, $in.SyncCustomerPartyAccountListEBM/ns0:SyncCustomerPartyAccountListEBM/ns0:DataArea/ns0:SyncCustomerPartyAccountList/ns0:CustomerPartyAccount/corecom:Identification/corecom:ApplicationObjectKey/corecom:ID /@schemeID

Figure 17-17 is the screenshot that shows XPath expression in the ID field.

Figure 17-17 Setting the ID Parameter

[image: The image is described in the surrounding text]

	
Set the Resequence Options for Best Effort Resequence Mode. The incoming messages cannot provide information to the resequencer about the identifier to use for sequencing. Typically, the identifier used for sequencing in such scenarios is of a dateTime type or numeric type. Using the dateTime field as the sequence ID XPath enables you to control the sequencing.

Figure 17-18 is the screenshot that shows the option dateTime selected.

Figure 17-18 Resequence Options for Best Effort Resequence Mode

[image: The image is described in the surrounding text]

When a resequencer mediator service is placed between the JMS Consumer adapter service and the Requester ABCS, the message is removed from the JMS queue when it goes into resequencer so that transaction boundary is shifted to resequencer store.

17.9.3 Processing Multiple Groups Parallelly

The messages that arrive for resequencing are split into groups and the messages within a group are sequenced according to the ID selected resequencing strategy. Sequencing within a group is independent of the sequencing of messages in any other group. Groups in themselves are not dependent on each other and can be processed independently of each other.

For example, when the 'accountID' in Update Order message is used as group ID, the incoming Update Order messages that have the specific account ID are processed as a group independent of the Update Order messages that have a different account ID.

Resequencer helps maintain correct processing sequence up to the point that directly receives message from resequencer. The sequence is not guaranteed if a-synchronicity is introduced in the process that receives the re-sequenced messages. In other words, the sequence of messages is maintained till the next persistence point. After that the messages must be resequenced again.

17.9.4 Describing Oracle Mediator Resequencer Error Management

When a message for a group fails, message processing for that group is stopped and pending messages are held back. Error messages are placed in the Error Hospital for fixing and resubmission for all the errors that can be retried.

As all messages of same group id are processed by a single thread in different transactions. If a message fails to get processed, the rest of the messages for that group are suspended. So resubmit the message that has error. Processing resumes from next sequence only after you either retry or abort the message.

The processing of messages for other groups continues without interruption.

If a new message arrives for the group that has error, the messages get stored in the Resequencer store so that they not lost. When failed messages are resubmitted from the Oracle Enterprise Manager (OEM) Console or another tool, the associated group that has error is unlocked and normal processing resumes for that group.

17.9.4.1 Resubmitting Messages that have Errors

When a message cannot be delivered to a service or component in the flow of a global transaction, the message is rolled back to the appropriate source milestone. This source milestone corresponds to a Queue or topic or Resequencer. It is here that the message is persisted until it can be resubmitted for delivery to the service or component.

For Message Resubmission Utility to resubmit messages that have errors, the incoming messages must be first populated using Message resubmission parameters when they are de-queued from the source milestone using the JMS consumer.

For more details on how to populate these values in the incoming message, see Section 27.5.3.1, "Populating Message Resubmission Values."

17.9.4.2 Using the Message Resubmission Utility API

The Message Resubmission Utility API enables external programs to enable a message that is in error state to be consumed for a transaction. This utility is typically run to fix the problem that caused the message to end in error.

For more information about the Resubmission Utility, see "Resequencer Based Resubmission" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

The message that generates an error is moved to the error hospital. The group is moved to an error state and is not picked up by the worker thread. You can resubmit the error-generating message using the error hospital. After you resubmit the message, the group is moved to a normal state, so that it can be picked up by the worker thread.

17.9.5 Tuning the Resequencer

The following parameters help you with turning the resequencer.

ResequencerWorkerThreadCount: The number of threads used by resequencers.

ResequencerMaxGroupsLocked: The maximum number of groups that can be locked by a thread.

The sleep interval: If your message frequency is high, set the sleep interval to low. It is desirable to set the number of groups locked to a value greater than the worker thread count so that worker threads are not idle. By default, the value of ResequencerMaxGroupsLocked and ResequencerWorkerThreadCount are set to same.

	
Note:

You cannot turn off the resequencer at runtime after you turn it on for a composite.

17.10 Developing Layered Customizations

Oracle application composites are created for specific industry needs. Oracle also provides options to further customize these components for business specific needs of individual organizations. Customization refers to modification of delivered artifacts to produce new behavior. You can use this option to customize the out-of-box composites delivered by Oracle and also and deploy them in place of original composites. When you customize a few composites, you create a specific solution for your organization.

However, these customizations can be overwritten when you apply a patch or upgrade when there is a new version. To ensure customization at a higher layer is not lost during an upgrade the customized layer and the base process are kept in their own metadata files. This externalization of customizations away from the base composite is possible only when the base version has been enabled for customization. Only when you want to deploy a solution the layers are merged with the base process for creating a single executable process.

For more information about layered customizations, see "Customizing SOA Composite Applications" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

Can all the composites be customized?

For the services that are delivered in the certain set of Out of the Box Prebuilt Integration, customizable scopes have been added in the BPEL flow. Refer to your pre-built integration implementation guide to check whether your pre-built integration allows customization of services. You can add the custom logic in these scopes when you open the BPEL in JDeveloper using customization developer role. These customizations are kept separate from the base definition. The advantage of adding the custom logic in these scopes is that, the customization is safe when you upgrade. When you uptake the subsequent patches or new releases, they can merge these customizations on top of the new base definition and deploy the BPEL.

Pre-built integrations that do not have services containing customizable scopes cannot be customized.

Adhere to following guidelines while doing the customizations:

	
Customizations are allowed only for BPEL based AIA artifacts that have customizable scopes. Inline customizations done to any other artifacts are overwritten when you apply a patch or upgrade to a newer.

	
Do not customize a composite which is not marked as customizable because they encounter merge conflicts when the composite is patched at a later point in time.

	
Do not modify the out of the box defined variables or messages as these variables may have been used in the section following customized code resulting in adverse impact on the behavior of the BPEL flow.

17.10.1 Deploying services after customizations

To deploy a service after customization:

	
Right click the customized composite in JDeveloper tree.

	
Select Make<customized composite name>.jar to compile the changes.

	
Open the CustomizeApp folder from the Jdeveloper work location.

You can see the folder named merged that contains Out of the box code and Customized Code.

	
Copy this merged folder to your server and deploy the composite using Application Deployment Driver.

For instructions on how to deploy the changed services, see Chapter 8, "Generating Deployment Plans and Deploying Artifacts."

17.10.2 Customizing the Customer Version

If you want to customize customer version of the SOA composite application, see "Customizing the Customer Version" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

17.10.3 Applying patches after customization

To apply patches after you have customized, see "Upgrading the Composite" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. Instructions here help you to apply layers to the new base composite.

12 Configuring and Using Oracle Enterprise Repository as the Oracle AIA SOA Repository

This chapter discusses how to use Oracle Enterprise Repository (OER) as Oracle AIA SOA Repository, provide EBO and EBM documentation links in OER and access Oracle AIA content in OER.

This chapter includes the following sections:

	
Section 12.1, "Introduction to Using Oracle Enterprise Repository as the Oracle AIA SOA Repository"

	
Section 12.2, "How to Provide EBO and EBM Documentation Links in Oracle Enterprise Repository"

	
Section 12.3, "How to Access Oracle AIA Content in Oracle Enterprise Repository"

12.1 Introduction to Using Oracle Enterprise Repository as the Oracle AIA SOA Repository

Oracle Application Integration Architecture (AIA) leverages Oracle Enterprise Repository as its SOA repository solution, providing a centrally managed user interface for discovering and learning about the SOA assets in your Oracle AIA ecosystem.

Specifically, all prebuilt AIA design-time interfaces, including Enterprise Business Service (EBS) WSDL files, Application Business Connector Service (ABCS) WSDL files, Enterprise Business Object (EBO) XSD files, Enterprise Business Message (EBM) XSD files, and their underlying artifacts, relationships, and metadata are delivered through Oracle Enterprise Repository.

Beyond this, you also can publish run-time, deployed composites into Oracle Enterprise Repository. As such, Oracle Enterprise Repository can provide visibility and coverage across the span of the SOA design-time and run-time lifecycles.

Solution Packs

Solution packs are an Oracle Enterprise Repository mechanism used to deliver content in bulk. The prebuilt AIA SOA portfolio is shipped as a solution pack. You can import the solution pack into your on-premise Oracle Enterprise Repository instances to view, access, and evaluate the AIA SOA portfolio.

The importing of an AIA solution pack to Oracle Enterprise Repository is a task that is independent of the installation of AIA. If you intend to use Oracle Enterprise Repository in your enterprise, you can import an AIA solution pack before or after your AIA installation. In fact, you can even import an AIA solution pack without purchasing or installing AIA.

The importing of an AIA solution pack does require that you perform the prerequisite steps documented in Section 5.1, "How to Set Up Oracle AIA Content Harvesting."

For more information about performing these imports, see "Importing Items into Oracle Enterprise Repository" in Oracle Fusion Middleware User's Guide for Oracle Enterprise Repository.

	
Note:

While the AIA solution pack import is in progress, ensure that no other activities occur on the target Oracle Enterprise Repository instance.

After AIA design-time artifacts and deployed composites have been published into Oracle Enterprise Repository, your enterprise can search for, browse, and view them in Oracle Enterprise Repository. By keeping Oracle Enterprise Repository synchronized with your AIA ecosystem, you ensure that it can serve as the system of record for your business services and their topologies.

Potential users of Oracle Enterprise Repository as a SOA repository are active across the span of the SOA development lifecycle and include functional and business analysts, architects, developers, system integrators, and system administrators.

For example, a business analyst working on requirements for building a particular business process can use Oracle Enterprise Repository to determine which business capabilities are available in a particular integration area and then determine which additional capabilities must be built. The capabilities are delivered in the form of application-independent services and objects.

Additionally, solution architects can use Oracle Enterprise Repository during their functional analysis (using Project Lifecycle Workbench) to evaluate the potential for service reuse.

For more information about viewing Oracle AIA artifacts and composites in Oracle Enterprise Repository, see Section 12.3, "How to Access Oracle AIA Content in Oracle Enterprise Repository."

For more information about Project Lifecycle Workbench, see Chapter 3, "Working with Project Lifecycle Workbench."

12.2 How to Provide EBO and EBM Documentation Links in Oracle Enterprise Repository

Objective

AIA delivers HTML documentation for each EBO and EBM, which you can link to from respective EBO and EBM entry detail pages in Oracle Enterprise Repository.

To do this, set up an Oracle Enterprise Repository artifact store to enable Oracle Enterprise Repository to provide links to AIA EBO and EBM HTML documentation provided on an AIA web server.

If you do not perform this setup, the AIA Reference Doc link appears on EBO and EBM detail pages in the Oracle Enterprise Repository, but does not lead anywhere.

Actor

System administrator

How to provide EBO and EBM HTML documentation links in Oracle Enterprise Repository

	
Access the Oracle Enterprise Repository user interface (UI): http://<host>:<port>/oer. Click the Edit/Manage Assets link in the Assets menu to launch the Asset Editor.

	
In the Asset Editor, navigate to Actions, Configure Artifact Stores.

Click Edit to add a new AIA artifact store. The artifact store must be named AIA.

You must manually add this artifact store when setting up the Oracle Enterprise Repository for the first time.

	
In the Create a new Artifact Store dialog box, as shown in Figure 12-1, define the Hostname value for the AIA artifact store, which is the <host>:<port> value for the AIA web server installation. Define the Path value as /AIA/faces.

The Hostname and Path values express the AIA location at which EBO and EBM HTML documentation can be accessed through the HTTP protocol.

Figure 12-1 Edit Artifact Store Dialog Box

[image: This image is described in surrounding text]

	
Click OK.

12.3 How to Access Oracle AIA Content in Oracle Enterprise Repository

Objective

Access AIA content in the Oracle Enterprise Repository.

Prerequisites and Recommendations

	
Read relevant Oracle Enterprise Repository documentation and understand Oracle Enterprise Repository asset models and graphs.

For more information, see Oracle Fusion Middleware User's Guide for Oracle Enterprise Repository.

	
Complete the steps covered in Section 5.1, "How to Set Up Oracle AIA Content Harvesting."

	
For prebuilt design-time interfaces delivered by AIA, import the solution pack into the Oracle Enterprise Repository.

For more information, see Section 12.1, "Introduction to Using Oracle Enterprise Repository as the Oracle AIA SOA Repository."

	
For custom-built individual composites that have not been deployed, run the AIA Harvester to publish them into Oracle Enterprise Repository.

For more information, see Section 5.2, "Harvesting Design-Time Composites into Project Lifecycle Workbench and Oracle Enterprise Repository."

	
For custom-built interfaces, run the AIA Harvester to publish them into Oracle Enterprise Repository.

For more information, see Section 5.3, "Harvesting Interfaces to Oracle Enterprise Repository in Bulk."

	
For deployed composites (part of deployed Process Integration Packs), run the AIA post installation script to publish the run-time composite into Oracle Enterprise Repository.

For more information, see Section 5.4, "Harvesting Deployed Composites into Oracle Enterprise Repository."

	
To provide links to EBO and EBM HTML documentation from EBO and EBM detail pages, complete the steps in Section 12.2, "How to Provide EBO and EBM Documentation Links in Oracle Enterprise Repository."

Actors

	
Business analysts

	
Solution architects

	
Developers

	
Functional analysts

	
Integration architects

	
Release engineers

	
System administrators

	
System integrators

To access Oracle AIA design-time artifacts and deployed composites in Oracle Enterprise Repository:

	
Access the Oracle Enterprise Repository to which your AIA design-time artifacts and deployed composites have been published.

Use Oracle Enterprise Repository search and browse functionality to locate AIA content.

For more information about using Oracle Enterprise Repository, see Oracle Fusion Middleware User's Guide for Oracle Enterprise Repository.

	
To narrow your search to AIA asset types, select an AIA: <XYZ> value in the Type drop-down list box in the Search menu. For example, by selecting AIA: EBO, you can narrow your search to AIA EBOs only.

When viewing EBOs and EBMs in Oracle Enterprise Repository, you can click the AIA Reference Doc link as shown in Figure 12-2 to access HTML documentation about the content.

Figure 12-2 AIA Reference Doc Link

[image: This image is described in surrounding text]

For more information about providing links to EBO and EBM HTML documentation from EBO and EBM detail pages in Oracle Enterprise Repository, see Section 12.2, "How to Provide EBO and EBM Documentation Links in Oracle Enterprise Repository."

B XSL for Developing CAVS-Enabled Oracle AIA Services

This appendix provides XSL text that should be used in developing Composite Application Validation System (CAVS)-enabled Oracle Application Integration Architecture (AIA) services.

This appendix includes the following sections:

	
Section B.1, "AddTargetSystemID.xsl"

	
Section B.2, "SetCAVSEndpoint.xsl"

B.1 AddTargetSystemID.xsl

Example B-1 provides XSL text that should be used to develop CAVS-enabled provider Application Business Connector Services (ABCSs).

For more information about how to use this XSL, see Section 17.4, "Developing ABCS for CAVS Enablement."

Example B-1 AddTargetSystemID.xsl

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:ehdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.esb.server.
 headers.ESBHeaderFunctions"
 xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.
 functions.Xpath20"
 xmlns:xref="http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.
 XRefXPathFunctions"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
 xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
 xmlns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.
 functions.ExtFunc"
 xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2"
 xmlns:aia=http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.
 xpath.AIAFunctions exclude-result-prefixes="xsl plnk coresalesorder ns0 ns3
 ns5 ns1 client corecustcom ns4 corecom bpws ehdr aia hwf xp20 xref ora ids
 orcl">
 <xsl:param name="ConfigServiceName">{[ABCServiceNamespace]}[ABCServiceName]
 </xsl:param>
 <xsl:param name="ConfigPropertyName">Default.SystemID</xsl:param>

 <xsl:template match="/*">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="corecom:EBMHeader">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="corecom:EBMHeader/corecom:Sender">
 <xsl:copy-of select="."/>
 <xsl:if test="not(following-sibling::corecom:Target)">
 <corecom:Target>
 <xsl:variable name="TargetID" select="aia:getServiceProperty
 ($ConfigServiceName,$ConfigPropertyName,true())"/>
 <corecom:ID>
 <xsl:value-of select="$TargetID"/>
 </corecom:ID>
 <corecom:ApplicationTypeCode>
 <xsl:value-of select="aia:getSystemType($TargetID)"/>
 </corecom:ApplicationTypeCode>
 </corecom:Target>
 </xsl:if>
 </xsl:template>

 <xsl:template match="corecom:EBMHeader/corecom:Target">
 <corecom:Target>
 <xsl:copy-of select="@*"/>
 <xsl:variable name="TargetID">
 <xsl:choose>
 <xsl:when test="corecom:ID/text()">
 <xsl:value-of select="corecom:ID/text()"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="aia:getServiceProperty
 ($ConfigServiceName,$ConfigPropertyName,true())"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <corecom:ID>
 <xsl:copy-of select="corecom:ID/@*"/>
 <xsl:value-of select="$TargetID"/>
 </corecom:ID>
 <xsl:copy-of select="corecom:OverrideRoutingIndicator"/>
 <xsl:copy-of select="corecom:ServiceName"/>
 <corecom:ApplicationTypeCode>
 <xsl:copy-of select="corecom:ApplicationTypeCode/@*"/>
 <xsl:choose>
 <xsl:when test="corecom:ApplicationTypeCode/text()">
 <xsl:value-of select="corecom:ApplicationTypeCode/text()"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="aia:getSystemType($TargetID)"/>
 </xsl:otherwise>
 </xsl:choose>
 </corecom:ApplicationTypeCode>
 <xsl:copy-of select="corecom:EndPointURI"/>
 <xsl:copy-of select="corecom:Custom"/>
 </corecom:Target>
 </xsl:template>

 <xsl:template match="@*|node()">
 <xsl:copy-of select="."/>
 </xsl:template>

</xsl:stylesheet>

B.2 SetCAVSEndpoint.xsl

Example B-2 provides XSL text that should be used to develop CAVS-enabled requester ABCSs.

For more information about how to use this XSL, see Section 17.4, "Developing ABCS for CAVS Enablement."

Example B-2 SetCAVSEndpoint.xsl

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"xmlns:xsl=http://www.w3.org/1999/XSL/Transform
 xmlns:ehdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.esb.server.
 headers.ESBHeaderFunctions" xmlns:jhdr="http://xmlns.oracle.com/esb"
 xmlns:corecom=http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2
 exclude-result-prefixes="xsl corecom ehdr jhdr">
 <xsl:template match="/">
 <xsl:copy-of select="/*"/>
 <xsl:variablename="Endpoint"select="/*/corecom:EBMHeader/corecom:Message
 ProcessingInstruction/corecom:DefinitionID"/>
 <xsl:if test="$Endpoint!=''">
 <xsl:variable name="SetEndpoint"select="ehdr:setOutboundHeader
 ('/jhdr:ESBHeader/jhdr:location',$Endpoint,'jhdr=http://xmlns.
 oracle.com/esb;')"/>
 </xsl:if>
 </xsl:template>
</xsl:stylesheet>

18 Designing and Constructing Composite Business Processes

This chapter provides an overview of Composite Business Processes (CBP) and discusses how to define the contract for CBP, create a contract for a CBP, implement the CBP as a BPEL service.

	
Note:

Composite Business Processes (CBP) will be deprecated from next release. Oracle advises you to use BPM for modeling human/system interactions.

This chapter includes the following sections:

	
Section 18.1, "Introduction to Composite Business Processes"

	
Section 18.2, "How to Define the Contract for a CBP"

	
Section 18.3, "How to Create the Contract for a CBP"

	
Section 18.4, "How to Implement the CBP as a BPEL Service"

18.1 Introduction to Composite Business Processes

Composite Business Processes (CBPs) are the implementation of process services. Process services orchestrate a series of human and automated steps, including enterprise-wide policies captured in business rules. These services run the implementations of the business processes in the Oracle Application Integration Architecture (AIA) Reference Process Models.

AIA recommends using BPEL for implementing CBPs. CBPs are long-running processes that may run from few seconds to days. A CBP has an interface and message structure that is detailed enough to capture all of the information about the source of the triggering event. In most cases, the event is triggered by customer-facing applications.

For more information about detailed definition and high-level design and development guidelines, see The AIA Shared Service Inventory in Oracle Fusion Middleware Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation Pack.

18.2 How to Define the Contract for a CBP

The AIA methodology for designing and implementing a CBP is contract first methodology. Therefore, the contract must be defined and created before the CBP is implemented.

To define the contract for a CBP:

	
Identify the CBP.

	
Identify the pattern for the CBP.

18.2.1 How to Identify the CBP

The first task involved in designing a new service is to verify whether it is necessary. After the need for the CBP is established, review each of the services and the description of the operation and any metadata in the Oracle Enterprise Repository before deciding to create a service or an operation.

A CBP may be needed when an enterprise-wide business process is needed for a business event. This process is described in the Reference Process Model and spans multiple operational units for enterprises.

To identify a CBP:

	
From the BPA Reference Process Model, identify the business process to implement.

	
Click the link to Oracle Enterprise Repository (OER), and review the details in the OER.

	
If no link is available, create a definition for the CBP as part of the relevant AIA Project in the AIA Project Lifecycle Workbench application.

18.2.2 How to Identify the Message Pattern for a CBP

The CBP is always modeled to implement a single operation with one-way patterns. No responses to the client are made. Any error situation or response is modeled as an update operation back to the client.

18.3 How to Create the Contract for a CBP

To create the contract for a CBP:

	
Identify the message structure.

	
Construct the WSDL for the CBP.

	
Annotate the service interface.

See Chapter 13, "Annotating Composites."

	
Ensure WS-1 basic profile conformance.

18.3.1 How to Construct the WSDL for the CBP

The CBP development starts with constructing a WSDL, and the result of the technical design process is a CBP WSDL.

18.4 How to Implement the CBP as a BPEL Service

To implement the CBP:

	
Create a WSDL.

Create a WSDL for the CBP following the CBP naming standards and the WSDL templates provided.

	
Implement the CBP as a one-way BPEL process.

For more information about the details of creating BPEL projects in Oracle JDeveloper, see "Getting Started with Oracle BPEL Process Manager" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

Refer to Chapter 16, "Constructing the ABCS" for details about implementing a one-way pattern

	
Enable error handling and logging.

Enterprise Business Services (EBSs) should handle errors to allow clients or administrators to resubmit or re-trigger processes. This is accomplished using a central error handler.

For more information, see Chapter 27, "Configuring Oracle AIA Processes for Error Handling and Trace Logging."

	
Enable extensibility points in CBP.

For more information, see Section 17.1, "Developing Extensible ABCS."

13 Annotating Composites

This chapter describes annotations and discusses how to annotate Service Element and Reference Element in Requester ABCS Composite, Provider ABCS Composite, Transport Adapter Composite, Enterprise Business Flow Composite, and Composite Business Process Composite. It also discusses valid values for annotation elements.

	
Note:

Composite Business Processes (CBP) will be deprecated from next release. Oracle advises you to use BPM for modeling human/system interactions.

This chapter includes the following sections:

	
Section 13.1, "Why Annotate a SOA Composite?"

	
Section 13.2, "How to Annotate the Service Element in a Requester ABCS Composite"

	
Section 13.3, "How to Annotate the Reference Element in a Requester ABCS Composite"

	
Section 13.4, "How to Annotate the Service Element in a Provider ABCS Composite"

	
Section 13.5, "How to Annotate the Reference Element in a Provider ABCS"

	
Section 13.6, "How to Annotate the Transport Adapter Composite"

	
Section 13.7, "How to Annotate the Service Element in Enterprise Business Flow Composite"

	
Section 13.8, "How to Annotate the Reference Element in Enterprise Business Flow Composite"

	
Section 13.9, "How to Annotate the Service Element in Composite Business Process Composite"

	
Section 13.10, "How to Annotate the Reference Element in Composite Business Process Composite"

	
Section 13.11, "Valid Values for Annotation Elements"

13.1 Why Annotate a SOA Composite?

AIA recommends annotations in the composite XML file to provide detailed information about:

	
AIA artifacts and their relationships to other AIA artifacts.

	
Composite-level descriptor properties that are used to configure the component at deployment and runtime.

AIA architecture categorizes SOA composites further as adapter services, requester services, provider services, and so on based on their usage. The meta information of these AIA services is used in maintaining Oracle Enterprise Repository (OER) assets of AIA asset types and linking them to OER assets with native asset types; this is accomplished with the help of the AIA Harvester, which harvests the SOA composites.

13.1.1 What Elements of a Composite Must be Annotated?

You must provide annotations in the composites for the exposed services and for the referenced services, according to AIA guidelines, and you must insert these comments at development time.

In line with SOA modeling and development practices, these composites are expected to be harvested multiple times during the development cycle, from conception till deployment to production environment.

Embed annotations in the <svcdoc:AIA> element and place the <svcdoc:AIA> element itself inside the xml comments tags <!-- and -- > as shown below.

The first annotation element that should occur in every annotated composite.xml file is <svcdoc:ServiceSolutionComponentAssociation>. This element, shown in Example 13-1, describes the globally unique identifier (GUID) used for artifacts generation and should be placed under the root element <composite>. The value for this element is not provided by the composite developer and is left blank. The GUID is used to associate the PM-identified Solution Service Component with the implemented Application Business Connector Service (ABCS) Composite. This association enables autopopulation into the Bill Of Material user interface (UI). The GUID is first auto generated in the Solution Service Component UI and it is persisted in the AIA Project Lifecycle Workbench database.

Example 13-1 First Annotation Element for Every composite.xml File

<composite name="SamplesCreateCustomerPartyPortalProvABCSImpl">
........................
<!--<svcdoc:AIA>
 <svcdoc:ServiceSolutionComponentAssociation>
 <svcdoc:GUID></svcdoc:GUID>
 </svcdoc:ServiceSolutionComponentAssociation>
 </svcdoc:AIA>-->
.....................................
</composite>

You must annotate the Service and Reference elements of the Composite.xml in the manner presented in Example 13-2 and Example 13-3.

Example 13-2 A Skeletal Service Element in a composite.xml with Annotations

<service ui:wsdlLocation>
<interface.wsdl />
 <binding.ws />
 <!-- <svcdoc:AIA>
 <svcdoc:Service>

 </svcdoc:Service>
 </svcdoc:AIA> -->
 </service>

Example 13-3 A Skeletal Reference Element in a composite.xml with Annotations

<reference ui:wsdlLocation">
 <interface.wsdl/>
 <binding.ws/>
 <!-- <svcdoc:AIA>
 <svcdoc:Reference>

 </svcdoc:Reference>
 </svcdoc:AIA> -->

 </reference>

As shown in Example 13-2 and Example 13-3 the root of the annotation element of the composite is <svcdoc:AIA>. Provide annotations for the Service and Reference elements of the Composite under xml comment tags using the annotation elements <svcdoc:Service> and <svcdoc:Reference>, respectively.

Figure 13-1 illustrates the annotations for Reference and Service elements.

Figure 13-1 Example of Annotations

[image: The image is described in the surrounding text]

13.1.2 Understanding the Service Annotation Element

The annotation element <svcdoc:Service> describes the details of the exposed service as denoted by the Service element of the Composite.xml. At a broader level, three annotation elements provide details about a service interface, its implementation, and the transport details (only if it is a transport adapter composite or if the composite contains as an adapter component).

These annotation elements are:

	
InterfaceDetails

This element provides information about the service interface, such as the name of the service, the name of the operation defined on the service, and the type of the service artifact.

	
ImplementationsDetails

This element provides information about the application with which the ABCS is interacting.

	
TransportDetails

This element provides information about the transport adapters and their details, if the composite has any transport adapters.

Figure 13-2 illustrates the annotations for interface, implementation, and transport details.

Figure 13-2 Example Of Annotation Elements

[image: The image is described in the surrounding text]

	
Note:

Only when the Composite is that of an Adapter service are the Transport details provided.

For more information, see Section 13.1.4, "Understanding the TransportDetails Element."

13.1.2.1 InterfaceDetails

This element identifies the interface that is being implemented by the AIA service in consideration. The AIA service that implements an interface definition has these details annotated in its composite.xml. This element should provide details such as:

	
The name of the service

	
The name of the service operation

	
The type of the service artifact

The element InterfaceDetails is explained in detail in Table 13-1.

Table 13-1 Interface Details Elements

	Element	Description
	
ServiceName

	
Identifies the name of the AIA service whose interface is being implemented by the composite under consideration.

The Deployment Plan Generator uses this value.

	
Namespace

	
The namespace of the service whose interface is being implemented as defined in its WSDL.

	
ArtifactType

	
The type of service artifact, for example, an ABCS, and so on. The valid values are given here: Valid Values for Annotation Elements.

	
ServiceOperation/Name

	
The element that holds the complete service operation name in the format of verb + entity.

The name of the operation of the AIA service whose interface is being implemented by the composite under consideration.

	
AdditionalServiceInformation

	
This element can be used to provide the additional service information like the supported application versions along with the base version or any other service related information Example:- This service supports create customer or billing profile ABM coming out of Siebel 8.0.x and 8.2 versions

Example 13-4 shows a sample of the interface details annotation element.

Example 13-4 Interface Details Annotation Element Example

<svcdoc:InterfaceDetails>
<svcdoc:ServiceName>CustomerPartyEBS</svcdoc:ServiceName>

<svcdoc:Namespace>http://xmlns.oracle.com/EnterpriseServices/Core/CustomerParty
/V2</svcdoc:Namespace>
 <svcdoc:ArtifactType>EnterpriseBusinessService</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>CreateCustomerPartyList</svcdoc:Name>
 </svcdoc:ServiceOperation>
<AdditionalServiceInformation>This service supports create customer or billing
profile ABM coming out of Siebel 8.0.x and 8.2
versions</AdditionalServiceInformation>
</svcdoc:InterfaceDetails>

Service Interface details are optional. The AIA artifacts that implement an interface definition have these details annotated. For example, a provider ABCS implements an interface defined by an Enterprise Business Service (EBS) operation, whereas a requester ABCS does not. So, annotations about the service interface will only be captured in the provider ABCS to identify which interface that particular ABCS is implementing.

Therefore, specify Service Interface details in the Composite.xml only if they are applicable.

13.1.2.2 ImplementationDetails

The annotation element ImplementationDetails describes the application for which the AIA service is being implemented. Table 13-2 lists the elements and provides a description for each element.

Table 13-2 ImplementationDetails Elements

	Element	Description
	
ApplicationName

	
The name of the participating application with which the service is interacting.

	
B2BDocument

	
For requester or provider B2B Connector Services, this element contains the name of the B2B document type that is supported by the B2B Connector Service. An example of a B2B document type is an 850 (EDI ORDER). The value in this field should also match the DocumentType name in Oracle B2B.

	
B2BDocumentVersion

	
Contains the version of the B2B document type that is supported by the B2B Connector Service, for example, 4010. The value in this field should also match the DocumentRevision in Oracle B2B.

	
B2BStandard

	
Contains the name of the B2B standard/protocol that is supported by the B2B Connector Service, for example, EDI_X12, OAG, or RosettaNet.

	
B2BStandardVersion

	
Contains the version of the B2B standard/protocol that is supported by the B2B Connector Service, for example, 1.0.

	
BaseVersion

	
The version of the participating application with which the service is interacting.

	
DevelopedBy

	
The name of the Business Unit that developed the service. A possible value is ABSG.

	
OracleCertified

	
Indicates whether it is tested by Oracle or not.

	
ArtifactType

	
Describes the type of the service artifact, for example, whether it is an ABCS, and so on. The valid values are given here: Valid Values for Annotation Elements.

	
AdditionalServiceInformation

	
Provide any additional service information.

	
ServiceOperation/Name

	
Holds the complete service operation name in the format of verb + entity.

The name of the operation defined in the WSDL of the AIA service that is being implemented.

Example 13-5 shows a sample of the ImplementationDetails annotation element.

Example 13-5 ImplementationDetails Annotation Element Example

<svcdoc:ApplicationName>BRM</svcdoc:ApplicationName>
<svcdoc:ImplementationDetails>
 <svcdoc:BaseVersion>7.3</svcdoc:BaseVersion>
 <svcdoc:DevelopedBy>Oracle</svcdoc:DevelopedBy>
 <svcdoc:OracleCertified>Yes</svcdoc:OracleCertified>

<svcdoc:ArtifactType>ProviderABCSImplementation</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>CreateCustomer</svcdoc:Name>
 </svcdoc:ServiceOperation>
 </svcdoc:ImplementationDetails>

13.1.3 Understanding the Reference Annotation Element

The annotation element <svcdoc:Reference> describes the Reference element of the composite. Figure 13-3 illustrates the Reference annotation element. The child elements of this element and their purpose are described below.

Figure 13-3 Reference Annotation Element Example

[image: The image is described in the surrounding text]

These annotation elements are:

	
ArtifactType

Describes the type of AIA artifact used at the Reference service.

	
ServiceOperation/Name

Holds the complete service operation name in the format of verb + entity, as defined on the Reference service.

	
TransportDetails

Provides information about the transport adapters and their details, if the composite has any transport adapters. See Section 13.1.4, "Understanding the TransportDetails Element" for details about the TransportDetails element.

	
Note:

Only when the Composite is for an Adapter service would TransportDetails be provided.

	
AdditionalServiceInformation

This element can be used to provide the additional service information like the supported application versions along with the base version or any other service related information. This provides more information about the service in the OER. Example:- This service supports EBiz 11.x and 12.x application adapters

13.1.4 Understanding the TransportDetails Element

Use the annotation element TransportDetails to provide details about a transport adapter in a composite if a nonSOAP transport is used to interface with an application, either using inbound or outbound connectivity.

The structure of the element TransportDetails is shown in Figure 13-4.

Figure 13-4 Example of the TransportDetails Element

[image: The image is described in the surrounding text]

13.1.4.1 Annotating DBAdapter

If you give ApplicationName details for DBAdapter and set the ResourceType value to Business Event, then the deployment plan generator executes the SQL scripts on the participating application layer and the data source is created for the database in the participating application. If not, then Deployment Plan Generator executes the SQL scripts on the middleware layer, that is, on the same server where Pre-Built Integration or project is to be deployed.

Table 13-3 lists the elements found in the DBAdapter element and provides a description for each.

Table 13-3 DBAdapter Elements

	Element	Description
	
ResourceProvider

	
Holds data about the Database Provider name. Examples: Oracle 10g, Oracle 11g, MS-SQL 9, MySQL 9.

Based on this tag, the Deployment Plan Generator identifies and generate the appropriate configurations for the database.

	
ConnectionFactory

	
Holds the name of the connection factory. Using this value, the AIA installation driver creates data sources during deployment. The DB Adapter.rar file is updated during deployment.

For example: eis/DB/AIASamplesDB

	
ApplicationName

	
The name of the source or target application, depending on whether it is an inbound or outbound adapter.

For example: EBizDB, SiebelDB

	
BaseVersion

	
The version of the application database with which the service is interacting.

	
XAEnabled

	
Used by the Deployment Plan Generator to decide if data source is to be configured using XA connection or not. Possible values are true and false.

Based on the whether the tag is true or false, the AIA installation driver selects the appropriate JDBC driver and other configurations.

	
ResourceTargetIdentifier

	
Identifier that is used as the element name in the AIAInstallProperties.xml to retrieve database information while running the deployment plan. The xpath to retrieve database details is presented in DP as xpath, for example, pips.<projectCode_fromBOM>.db.<ResourceTargetIdentifier>. The AIA installation driver uses this element during deployment. Examples: EBIZ1, EBIZ2, JMSUSER1, JMSUSER2

	
Resource Type

	
Identifies what type of resource must be configured.

	
ResourceName

	
Holds data about database table name. The Deployment Plan Generator uses this element to create and configure data sources.

	
ResourceFileName

	
Holds data about SQL file name of the database table creation script. The Deployment Plan Generator uses this element to create and configure data sources.

	
AdditionalResourceInformation

	
Provide additional resource information such as the supported adapter versions or specifications or any other resource related information.

13.1.4.2 Annotating JMSAdapter

Table 13-4 lists the elements found in JMSAdapter and provides a description for each.

Table 13-4 JMSAdapter Elements

	Element	Description
	
ResourceProvider

	
Holds data about JMS Provider name. Examples: WLSJMS, AQJMS, Tibco, MQ-Series, and SonicMQ.

Based on this tag, the Deployment Plan Generator identifies whether it is AQJMS or WLSJMS and generate the appropriate configurations for AQ or WLS.

	
ConnectionFactory

	
Holds the name of the connection factory. Using this value, the AIA installation driver creates JMS modules during deployment. The JMS Adapter.rar file is updated during deployment. Example: eis/jms/ AIA<Application Name>CF.

	
XAEnabled

	
The Deployment Plan Generator uses this element to decide whether the data source should be configured using XA connection. Possible values are true and false.

Based on the whether this tag is true or false, the AIA installation driver selects the appropriate JDBC driver and other configurations.

	
ResourceTargetIdentifier

	
Can be either blank or filled in. If blank, AIAJMSModule is used to create resources on WLS. If filled in, AIAJDBCJMSModule is used to create resources on WLS.

	
ResourceType

	
Identifies what type of the JMS resource must be configured. The value can be Queue or Topic.

	
ResourceName

	
Holds data about the Queue or Topic name. The AIA installation driver uses this element to create and configure data sources.

	
ResourceFileName

	
Holds data about the SQL file name of the database table creation script. The AIA installation driver uses the SQL file to create and configure data sources.

	
AdditionalResourceInformation

	
Provide the additional resource information such as the supported adapter versions or specifications or any other resource related information. This provides more information about the service in the OER.

13.1.4.3 Annotating AQJMS Adapter

Table 13-5 lists the elements found in AQJMSAdapter and provides a description for each.

Table 13-5 AQJMSAdapter Elements

	Element	Description
	
ResourceProvider

	
Holds data about AQJMS Provider name. Examples: AQJMS.Based on this tag, the Deployment Plan Generator generates the appropriate configurations for AQJMS.

	
ConnectionFactory

	
Holds the name of the connection factory. Using this value, the AIA installation driver creates AQJMS modules during deployment. The AQ Adapter .rar file is updated during deployment. Example: eis/aqjms/ AIA<Application Name>CF.

	
XAEnabled

	
The Deployment Plan Generator uses this element to decide whether the data source should be configured using XA connection. Possible values are true and false.

Based on the whether this tag is true or false, the AIA installation driver selects the appropriate JDBC driver and other configurations.

	
JMSForeignServerName

	
Value used to create JMSForeignServer under JMSModule

	
ResourceTargetIdentifier

	
Identifier used as the element name in the AIAInstallProperties.xml to retrieve database information while running the deployment plan. The xpath to retrieve database details is presented in DP as xpath, for example, pips.<projectCode_fromBOM>.db.<ResourceTargetIdentifier>.

	
ResourceType

	
Identifies what type of the AQ resource must be configured. The value can be Queue or Topic.

	
ResourceName

	
Holds data about the Queue or Topic name. The Deployment Plan Generator uses this element to create and configure data sources.

	
ResourceFileName

	
Holds data about the SQL file name of the database table creation script. The AIA installation driver uses to create and configure data sources.

	
AdditionalResourceInformation

	
Provide additional Resource information such as the supported adapter versions or specifications or any other resource related information. This provides more information about the service in the OER.

13.1.4.4 Annotating Other Resources

To use other resources like File or FTP adapters or any other resource, you must provide the following annotations. The Deployment Plan Generator does not have support for all the resource adapters.

For more information on supported resource adapters, see the Foundation Pack release notes.

Table 13-6 lists the elements used to annotate other resources and provides a description for each.

Table 13-6 Elements for Other Resources

	Element	Description
	
ResourceProvider

	
Holds data about Resource Provider name like FILE or FTP or AQ.

	
ConnectionFactory

	
Holds the name of the connection factory. Using this value, the AIA installation driver can create JNDI reference to the target URI.

	
BaseVersion

	
The version of the application with which the service is interacting. This provides more information about the service in the OER.

	
XAEnabled

	
The Deployment Plan Generator uses this element to decide whether the data source should be configured using XA connection. Possible values are true and false.

Based on the whether this tag is true or false, the AIA installation driver selects the appropriate JDBC driver and other configurations.

	
ResourceTargetIdentifier

	
The value of the application product code name. The AIA installation driver uses this element during deployment.

If ResourceTargetIdentifier is used for AQAdapter, then it is the identifier that is used as the element name in the AIAInstallProperties.xml to retrieve database information while running the deployment plan. The xpath to retrieve database details is presented in DP as xpath, for example, pips.<projectCode_fromBOM>.db.<ResourceTargetIdentifier>.

	
ResourceName

	
Holds data about the Queue or Topic name. The AIA installation driver use this element to create and configure data sources.

	
ResourceType

	
Identifies what type of the resource must be configured.

	
ResourceFileName

	
Holds data about the SQL file name of the database table creation script or Shall scripts to create the file folders at a specified location. The AIA installation driver uses to create and configure these sources.

	
AdditionalResourceInformation

	
Provide the additional Resource information like the supported adapter versions or specifications or any other resource related information. This provides more information about the service in the OER.

	
ResourceLocation

	
Provide the information about the location or relative path of the file. This is used to create the source or target folders at appropriate local or remote locations.

13.1.4.5 Annotating Application Adapter

If you give ApplicationName details for EBiz Adapter and set the ResourceType value to Business Event, then the deployment plan generator executes the SQL scripts on the edge application layer and the data source is created for the database in the participating application. If not, then Deployment Plan Generator executes the SQL scripts on the middleware layer, that is, on the same server where Pre-Built Integration/project is to be deployed.

Table 13-7 lists the elements found in ApplicationAdapter and provides a description for each.

Table 13-7 Application Adapter Elements

	Element	Description
	
ResourceProvider

	
Holds data about EBiz Provider name.

	
ConnectionFactory

	
Holds the name of the connection factory. Using this value, the AIA installation driver creates EBiz modules during deployment. The EBiz Adapter .rar file is updated during deployment.

	
Application Name

	
The name of the source or target application, depending on whether it is an inbound or outbound adapter.

	
BaseVersion

	
The version of the application with which the service is interacting. This provides more information about the service in the OER.

	
XAEnabled

	
The Deployment Plan Generator uses this element to decide whether the data source should be configured using XA connection. Possible values are true and false.

Based on the whether this tag is true or false, the AIA installation driver selects the appropriate JDBC driver and other configurations.

	
ResourceTargetIdentifier

	
The value of the application product code name. The AIA installation driver uses this element during deployment.

If ResourceType is blank, database information is retrieved from pip.<projectCode_fromBOM>.db.ResourceTargetIdentifier element in the AIAInstallProperties.xml during execution of deployment plan. If ResourceType is BusinessEvent or Procedure, database details are retrieved from participatingapplications.<ApplicationName>.db

	
ResourceName

	
Holds data about the Queue or Topic name. The AIA installation driver uses this element to create and configure data sources.

	
ResourceType

	
Identifies what type of the AQ resource must be configured. The value can be Queue or Topic.

If values are BusinessEvent or Procedure, dp retrieves database information from under participatingapplications.<ApplicationName>.db in AIAInstallProperties.xml

	
ResourceFileName

	
Holds data about the SQL file name of the database table creation script. The AIA installation driver uses to create and configure data sources.

	
AdditionalResourceInformation

	
Provide the additional Resource information such as the supported adapter versions or specifications or any other resource related information. This provides more information about the service in the OER.

13.2 How to Annotate the Service Element in a Requester ABCS Composite

To annotate the service element in a requester ABCS composite:

The details of the source participating application must be furnished in this element.

Annotating the Service element in the composite is explained using the Example 13-6:

Example 13-6 Service Element in Requester ABCS Composite Annotation Example

<service ui:wsdlLocation………..">
 <interface.wsdl ………………./>
 <binding.ws …………./>
 <!--<svcdoc:AIA>
 <svcdoc:Service>
 <svcdoc:ImplementationDetails>

<svcdoc:ApplicationName>SampleSEBL</svcdoc:ApplicationName>
 <svcdoc:BaseVersion>1.0</svcdoc:BaseVersion>
 <svcdoc:DevelopedBy>Oracle</svcdoc:DevelopedBy>
 <svcdoc:OracleCertified>Yes</svcdoc:OracleCertified>

<svcdoc:ArtifactType>RequesterABCSImplementation</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>CreateCustomer</svcdoc:Name>
 </svcdoc:ServiceOperation>
 </svcdoc:ImplementationDetails>
 </svcdoc:Service>

 </svcdoc:AIA>-->
 </service>

In Example 13-6, the value of the element, ArtifactType, is provided as RequesterABCSImplementation because the composite represents a Requester ABCS.

The value of the element, ServiceOperation/Name, should be same as the value defined for the operation in the WSDL of the ABCS.

13.3 How to Annotate the Reference Element in a Requester ABCS Composite

To annotate the Reference Element in a requester ABCS composite:

	
Annotate the Reference Element in the composite, as shown in Example 13-7, providing the details of the Service being invoked.

Example 13-7 Reference Element in Requester ABCS Composite Annotation Example

<reference ui:wsdlLocation………………………………………….">
 <interface.wsdl ……………………………………………./>
 <binding.ws…………………………………………………../>
 <!--<svcdoc:AIA>
 <svcdoc:Reference>

<svcdoc:ArtifactType>EnterpriseBusinessService</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>CreateCustomerPartyList</svcdoc:Name>
 </svcdoc:ServiceOperation>
 </svcdoc:Reference>
 </svcdoc:AIA>-->
</reference>

	
In Example 13-7, the value of the element, ArtifactType, is provided as EnterpriseBusinessService because it references an external service in the composite.

	
In cases when the external service is an infrastructure utility, such as AIAAsyncErrorHandlingBPELProcess, then the value should be UtilityService.

	
The value of the element, ServiceOperation/Name, should be the same as the value defined for the operation in the WSDL of the service being referenced.

13.4 How to Annotate the Service Element in a Provider ABCS Composite

To annotate the Service Element in a provider ABCS composite:

	
Furnish the details of the interface that this ABCS is implementing.

	
Match the values for elements ServiceName, Namespace, and ServiceOperation/name with the corresponding values defined in the interface service's WSDL target participating application as shown in Example 13-8.

Example 13-8 Service Element in a Provider ABCS Composite Annotation Example

<service ui:wsdlLocation=………………>
 <interface………………………………/>
 <binding.ws ………………………../>
 <!--<svcdoc:AIA>
 <svcdoc:Service>
 <svcdoc:InterfaceDetails>

<svcdoc:ServiceName>CustomerPartyEBS</svcdoc:ServiceName>

<svcdoc:Namespace>http://xmlns.oracle.com/EnterpriseServices/Core/CustomerParty
/V2</svcdoc:Namespace>

<svcdoc:ArtifactType>EnterpriseBusinessService</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>CreateCustomerPartyList</svcdoc:Name>
 </svcdoc:ServiceOperation>
 </svcdoc:InterfaceDetails>
 <svcdoc:ImplementationDetails>

<svcdoc:ApplicationName>SamplePortal</svcdoc:ApplicationName>
 <svcdoc:BaseVersion>1.0</svcdoc:BaseVersion>
 <svcdoc:DevelopedBy>Oracle</svcdoc:DevelopedBy>
 <svcdoc:OracleCertified>Yes</svcdoc:OracleCertified>

<svcdoc:ArtifactType>ProviderABCSImplementation</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>CreateCustomer</svcdoc:Name>
 </svcdoc:ServiceOperation>
 </svcdoc:ImplementationDetails>
 </svcdoc:Service>

 </svcdoc:AIA>-->
 </service>

	
In Example 13-8, the value of the element, InterfaceDetails/ArtifactType, is provided as EnterpriseBusinessService because it defines the interface that is being implemented by the Provider ABCS.

	
ImplementationDetails/ArtifactType, is provided as ProviderABCSImplementation because the composite represents a provider ABCS.

	
The value of the element, ServiceOperation/Name, should be same as the value defined for the operation in the WSDL of the ABCS.

13.5 How to Annotate the Reference Element in a Provider ABCS

Annotate the Reference element in the composite, as shown in Example 13-9, Example 13-10, and Example 13-11 providing the details of the Service. The service being invoked can be a participating application, an adapter service, or a utility service.

Example 13-9 Reference Element in Provider ABCS Invoking Participating Web Service Annotation Example

 <!--<svcdoc:AIA> ;
 <svcdoc:Reference>

<svcdoc:ArtifactType>UtilityService</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>initiate</svcdoc:Name>
 </svcdoc:ServiceOperation>
 </svcdoc:Reference>
 </svcdoc:AIA>-->
<!--<svcdoc:AIA>
 <svcdoc:Reference>

<svcdoc:ArtifactType>ApplicationWebService</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>insert</svcdoc:Name>
 </svcdoc:ServiceOperation>
 </svcdoc:Reference>
 </svcdoc:AIA>-->

Example 13-10 Reference Element in Provider ABCS Invoking Utility Service Annotation Example

<!--<svcdoc:AIA>
<svcdoc:Reference>

<svcdoc:ArtifactType>UtilityService</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>initiate</svcdoc:Name>
 </svcdoc:ServiceOperation>
 </svcdoc:Reference>
 </svcdoc:AIA>-->

Example 13-11 Reference Element in Provider ABCS Invoking Non-SOAP Service Annotation Example

<!--<svcdoc:AIA>
<svcdoc:Reference>

<svcdoc:ArtifactType>TransportAdapter</svcdoc:ArtifactType>

<svcdoc:ServiceOperation>

<svcdoc:Name>process</svcdoc:Name>

</svcdoc:ServiceOperation>
 </svcdoc:Reference>
 </svcdoc:AIA>-->

13.6 How to Annotate the Transport Adapter Composite

To annotate the Transport Adapter composite:

	
For a Transport Adapter composite, populate the element, TransportDetails, under:

	
Service, if nonSOAP transport is used to interface with this service.

	
Reference, if the service uses nonSOAP transport to interface with participating applications /external systems.

	
In both cases, the values for the element ArtifactType are provided as TransportAdapter.

The artifact type TransportAdapter indicates that the service is responsible for transforming nonSOAP requests into SOAP requests and vice versa.

Example 13-12 illustrates how transport details are populated in the section Service.

Example 13-12 Transport Adapter Composite Annotation Example

<!--<svcdoc:AIA>
<svcdoc:Service>
 <svcdoc:ImplementationDetails>
<svcdoc:ApplicationName>SamplePortal</svcdoc:ApplicationName>
 <svcdoc:BaseVersion>1.0</svcdoc:BaseVersion>

<svcdoc:DevelopedBy>ABSG</svcdoc:DevelopedBy>

<svcdoc:OracleCertified>Yes</svcdoc:OracleCertified>

<svcdoc:ArtifactType>TransportAdapter</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>process</svcdoc:Name>
 </svcdoc:ServiceOperation>
 </svcdoc:ImplementationDetails>
 </svcdoc:Service>
</svcdoc:AIA>-->

Example 13-13 depicts how transport details are populated in the section Reference.

Example 13-13 Transport Details Populated in Reference Element Annotation Example

<!--<svcdoc:AIA>
<svcdoc:Reference>

<svcdoc:ArtifactType>TransportAdapter</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>insert</svcdoc:Name>
 </svcdoc:ServiceOperation>
 <svcdoc:TransportDetails>
 <svcdoc:DBAdapter>

<svcdoc:ResourceProvider>OracleDB</svcdoc:ResourceProvider>

<svcdoc:ConnectionFactory>eis/db/AIASamplesDB</svcdoc:ConnectionFactory>

<svcdoc:ApplicationName>SamplePortal</svcdoc:ApplicationName>
 <svcdoc:XAEnabled>True</svcdoc:XAEnabled>

<svcdoc:ResourceTargetIdentifier>AIASamplesDB</svcdoc:ResourceTargetIdentifier>
 <svcdoc:ResourceName>AIAS_PORTAL_ACC_CONTACT</svcdoc:ResourceName>

<svcdoc:ResourceName>AIAS_PORTAL_ACCOUNT</svcdoc:ResourceName>

<svcdoc:ResourceFileName>AIAS_PORTAL_ACCOUNT_CONTACT.sql
 </svcdoc:ResourceFileName>
 </svcdoc:DBAdapter>
 </svcdoc:TransportDetails>
 </svcdoc:Reference>
</svcdoc:AIA>-->

In Example 13-13:

	
The element <svcdoc:ResourceTargetIdentifier> denotes the database schema used for the project.

	
The element <svcdoc:ResourceName> denotes the database table used. This element may be repeated for each database table when multiple tables are used.

	
The element <svcdoc:ResourceFileName> should have all the SQLs and sequences required included in the file. Also, it should provide the correct order for the SQLs, in which SQLs must be executed.

Example 13-14 shows the code when a JMS Adapter is used.

Example 13-14 Transport Details Populated in Reference Element Using JMS Adapter Annotation Example

<!--<svcdoc:AIA>
<svcdoc:Reference>

<svcdoc:ArtifactType>TransportAdapter</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>Produce</svcdoc:Name>
 </svcdoc:ServiceOperation>
 <svcdoc:TransportDetails>
 <svcdoc:JMSAdapter>

<svcdoc:ResourceProvider>WLSJMS</svcdoc:ResourceProvider>

<svcdoc:ConnectionFactory>eis/jms/AIASamplesCF</svcdoc:ConnectionFactory>
 <svcdoc:XAEnabled>True</svcdoc:XAEnabled>

<svcdoc:ResourceTargetIdentifier>JMSUSER1</svcdoc:ResourceTargetIdentifier>
 <svcdoc:ResourceType>Queue</svcdoc:ResourceType>
 <svcdoc:ResourceName>AIA_SiebelCustomerJMSQueue</svcdoc:ResourceName>
<svcdoc:ResourceFileName>AIASiebelCustomerJMSQueue.sql</svcdoc:ResourceFileName>
 </svcdoc:JMSAdapter>
 </svcdoc:TransportDetails>
 </svcdoc:Reference>
</svcdoc:AIA>-->

13.7 How to Annotate the Service Element in Enterprise Business Flow Composite

To annotate the Service Element in Enterprise Business Flow composite:

	
Furnish the details of the EBS interface that the Enterprise Business Flow (EBF) implements.

	
Match the values for elements - ServiceName, Namespace, ServiceOperation/name with the corresponding values defined in the interface service's WSDL as shown below.

In Example 13-15 the value of the element:

	
InterfaceDetails/ArtifactType is provided as EnterpriseBusinessService because it defines the interface that is being implemented by the EBF.

	
ImplementationDetails/ArtifactType is provided as EnterpriseBusinessFlow because the composite represents an EBF.

	
ImplementationDetails/ApplicationName is provided as AIA because the composite is participating application-agnostic.

The value of the element, ServiceOperation/Name, should be same as the value defined for the operation in the EBS WSDL.

Example 13-15 Service Element in EBF Composite Annotation Example

<service ui:wsdlLocation=………………>
<interface………………………………/>
<binding.ws ………………………../>
<!--<svcdoc:AIA>
<svcdoc:Service>
<svcdoc:InterfaceDetails>

<svcdoc:ServiceName>DoCreditCheckCustomerPartyEBS</svcdoc:ServiceName>

<svcdoc:Namespace>http://xmlns.oracle.com/EnterpriseServices/Core/CustomerParty
/V2</svcdoc:Namespace>

<svcdoc:ArtifactType>EnterpriseBusinessService</svcdoc:ArtifactType>
<svcdoc:ServiceOperation>

<svcdoc:Name>DoCreditCheckCustomerParty</svcdoc:Name>
</svcdoc:ServiceOperation>
</svcdoc:InterfaceDetails>
<svcdoc:ImplementationDetails>
<svcdoc:ApplicationName>AIA</svcdoc:ApplicationName>
<svcdoc:BaseVersion>1.0</svcdoc:BaseVersion>
<svcdoc:DevelopedBy>Oracle</svcdoc:DevelopedBy>
<svcdoc:OracleCertified>Yes</svcdoc:OracleCertified>

<svcdoc:ArtifactType>EnterpriseBusinessFlow</svcdoc:ArtifactType>
<svcdoc:ServiceOperation>
<svcdoc:Name>DoCreditCheck</svcdoc:Name>
</svcdoc:ServiceOperation>
</svcdoc:ImplementationDetails>
</svcdoc:Service>

</svcdoc:AIA>-->
</service>

13.8 How to Annotate the Reference Element in Enterprise Business Flow Composite

To annotate the Reference Element in an EBF composite:

Annotate the Reference element in the composite, as shown in Example 13-16, providing the details of the Service being invoked.

Example 13-16 Reference Element in EBF Composite Annotation Example

<reference ui:wsdlLocation………………………………………….">
 <interface.wsdl ……………………………………………./>
 <binding.ws…………………………………………………../>
 <!--<svcdoc:AIA>
 <svcdoc:Reference>

<svcdoc:ArtifactType>EnterpriseBusinessService</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>

<svcdoc:Name>GetCreditScoreCustomerPartyList</svcdoc:Name>
 </svcdoc:ServiceOperation>
 </svcdoc:Reference>
 </svcdoc:AIA>-->
</reference>

	
In Example 13-16, the value of the element ArtifactType is provided as EnterpriseBusinessService because it is the referenced external service in the composite.

	
When the external service is an infrastructure utility, such as AIAAsyncErrorHandlingBPELProcess, then the value should be UtilityService.

	
The value of the element, ServiceOperation/Name, should be same as the value defined for the operation in the WSDL of the service to which it refers.

13.9 How to Annotate the Service Element in Composite Business Process Composite

To annotate the Service Element in a composite business process composite:

	
Furnish the details of the interface that the EBF is implementing.

This could be an application specific interface, a UI service interface, or canonical interface.

	
Match the values for elements ServiceName, Namespace, and ServiceOperation/name with the corresponding values defined in the WSDL of the interface service shown below.

In Example 13-17, the value of the element:

	
InterfaceDetails/ArtifactType is provided as UIService because it defines the interface that is being implemented by the Composite Business Process (CBP).

	
ImplementationDetails/ArtifactType is provided as CompositeBusinessProcess because the composite represents a CBP.

	
ImplementationDetails/ApplicationName is provided as AIA because the composite, in this case, is participating application-agnostic.

	
The value of the element, ServiceOperation/Name, should be same as the value defined for the operation in the UI service WSDL.

Example 13-17 Service Element in Composite Business Process Composite Annotation Example

<service ui:wsdlLocation=………………>
 <interface………………………………/>
 <binding.ws ………………………../>
 <!--<svcdoc:AIA>
 <svcdoc:Service>
 <svcdoc:InterfaceDetails>

<svcdoc:ServiceName>TelcoResolveCustomerComplaintCBP</svcdoc:ServiceName>

<svcdoc:Namespace>http://xmlns.oracle.com/UIServices/Industry/CustomerParty/V1
</svcdoc:Namespace>
 <svcdoc:ArtifactType>UIService</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>

<svcdoc:Name>TelcoResolveCustomerComplaint</svcdoc:Name>
 </svcdoc:ServiceOperation>
 </svcdoc:InterfaceDetails>
 <svcdoc:ImplementationDetails>
 <svcdoc:ApplicationName>AIA</svcdoc:ApplicationName>
 <svcdoc:BaseVersion>1.0</svcdoc:BaseVersion>
 <svcdoc:DevelopedBy>Oracle</svcdoc:DevelopedBy>
 <svcdoc:OracleCertified>Yes</svcdoc:OracleCertified>

<svcdoc:ArtifactType>CompositeBusinessProcess</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>

<svcdoc:Name>TelcoResolveCustomerComplaint</svcdoc:Name>
 </svcdoc:ServiceOperation>
 </svcdoc:ImplementationDetails>
 </svcdoc:Service>

 </svcdoc:AIA>-->
 </service>

13.10 How to Annotate the Reference Element in Composite Business Process Composite

To annotate the Reference Element in a Composite Business Process composite:

Annotate the Reference element in the composite, as shown in tExample 13-18 by providing the details of the Service being invoked.

Example 13-18 Reference Element in Composite Business Process Composite Annotation Example

<reference ui:wsdlLocation………………………………………….">
 <interface.wsdl ……………………………………………./>
 <binding.ws…………………………………………………../>
 <!--<svcdoc:AIA>
 <svcdoc:Reference>

<svcdoc:ArtifactType>EnterpriseBusinessService</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>GetComplaintDetails</svcdoc:Name>
 </svcdoc:ServiceOperation>
 </svcdoc:Reference>
 </svcdoc:AIA>-->
</reference>

	
In Example 13-18, the value of the element, ArtifactType, is provided as EnterpriseBusinessService because it is the referenced external service in the composite.

	
When the external service is an infrastructure utility, such as, AIAAsyncErrorHandlingBPELProcess, then the value should be UtilityService.

	
The value of the element, ServiceOperation/Name, should be same as the value defined for the operation in the WSDL of the service being referred to.

13.11 Valid Values for Annotation Elements

This section lists the valid values for the annotation elements:

	
ArtifactType

	
ApplicationName

13.11.1 Valid Values for the Element ArtifactType

	
RequesterABCSImplementation

	
RequesterABCSExtension

	
ProviderABCSImplementation

	
ProviderABCSExtension

	
EnterpriseBusinessService

	
EnterpriseBusinessFlow

	
EnterpriseBusinessFlowExtension

	
CompositeBusinessProcess

	
CompositeBusinessProcessExtension

	
ApplicationService

	
ExternalService

	
UtilityService

	
TransportAdapter

	
VersionAdapter

	
Other

13.11.2 Valid Values for the Element ApplicationName

	
AIA

	
PeopleSoft

	
BRM

	
FAH

	
UCM

	
SAP

	
PIM

	
OracleRetail

	
Logistics

	
JDEE1

	
CRMOD

	
Agile

	
Ebiz

	
Siebel

	
OUCCB - Oracle Utilities Customer Care and Billing

	
OUWAM - Oracle Utilities Work and Asset Management

	
OUMWM - Oracle Utilities Mobile Workforce Management

Oracle® Fusion Middleware

Developer's Guide for Oracle Application Integration Architecture Foundation Pack

11g Release 1 (11.1.1.7)

E17364-11

October 2013

Describes how to use Foundation Pack to conceptualize AIA projects. Describes how to use Project Lifecycle Workbench, Service Constructor, and deployment plans to implement AIA solutions. Describes how to implement new services that extend Process Integration Packs. Use the information in this guide to help ensure that the AIA solutions you develop can be upgraded and supported.

Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack, 11g Release 1 (11.1.1.7)

E17364-11

Copyright © 2001, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

27 Configuring Oracle AIA Processes for Error Handling and Trace Logging

This chapter provides an overview of Oracle BPEL and Mediator Process Error Handling and AIA Error Handler Framework and describes how to enable AIA Processes for Fault Handling, implement Error Handling for the Synchronous Message Exchange Pattern, implement Error Handling and Recovery for the Asynchronous Message Exchange Pattern to ensure guaranteed message delivery, configure AIA Services for notification, describe the FaultNotification Element, extend fault messages, extend error handling and how to configure Oracle AIA Processes for Trace Logging.

This chapter includes the following sections:

	
Section 27.1, "Overview of Oracle BPEL and Mediator Process Error Handling"

	
Section 27.2, "Overview of AIA Error Handler Framework"

	
Section 27.3, "Enabling AIA Processes for Fault Handling"

	
Section 27.4, "Implementing Error Handling for the Synchronous Message Exchange Pattern"

	
Section 27.5, "Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message Delivery"

	
Section 27.6, "How to Configure AIA Services for Notification"

	
Section 27.7, "Describing the Oracle AIA Fault Message Schema"

	
Section 27.8, "Extending Fault Messages"

	
Section 27.9, "Extending Error Handling"

	
Section 27.10, "Configuring Oracle AIA Processes for Trace Logging"

For more information about Oracle AIA B2B error handling, see Chapter 20, "Introduction to B2B Integration Using AIA."

27.1 Overview of Oracle BPEL and Mediator Process Error Handling

This section includes the following topics:

	
Section 27.1.1, "Understanding Oracle BPEL Error Handling"

	
Section 27.1.2, "Understanding Oracle Mediator Error Handling"

27.1.1 Understanding Oracle BPEL Error Handling

The Oracle Application Integration Architecture (AIA) Error Handling Framework groups BPEL process errors into two categories:

	
Run-time faults

	
Business faults

Run-time Faults

A run-time fault can occur in one of two scenarios:

	
The partner link invocation fails.

	
The partner link receives a named fault indicating that it is a run-time fault.

These faults are not user-defined and are issued by the system. Some situations in which a BPEL process can encounter a run-time fault include the following:

	
The process tries to use a value incorrectly.

	
A logic error occurs.

	
A SOAP fault occurs in a SOAP call.

	
An exception is issued by the server, and so forth.

AIA Services built as BPEL processes should be enabled and configured to catch and handle the run-time faults.

Business Faults

A business fault can occur in one of two scenarios:

	
A BPEL process runs a throw activity after evaluating a condition as a fault.

	
An Invoke activity receives a named fault indicating that it is a business fault.

Business faults are the application-specific faults that are generated when erroneous conditions take place when the message is being processed. These faults are specified by the BPEL process component and are defined in the WSDL.

AIA Services built as BPEL processes should be enabled and configured to catch and handle the run-time, and business faults.

27.1.2 Understanding Oracle Mediator Error Handling

A Mediator component can handle both run-time faults and business faults.

Run-time Faults

These are faults that occur because of some problem in the underlying system, such as the network not being available.

Business Faults

These are exceptions that are returned by called Web services. These are application-specific and are explicitly defined in the service's WSDL file.

AIA Services built as Mediator components should be configured to catch and handle the business faults.

However, fault policies are applicable to parallel routing rules only. For sequential routing rules, the fault goes back to the caller and it is the responsibility of the caller to handle the fault.

AIA recommends the usage of sequential routing rules only.

For more information about configuring the Mediator to handle business faults arising from synchronous invocations using sequential routing rules, see Section 27.4.3, "Guidelines for Configuring Mediator for Handling Business Faults."

27.2 Overview of AIA Error Handler Framework

For more information about the Error Handling Framework and its features, see "Setting Up Error Handling" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

27.3 Enabling AIA Processes for Fault Handling

This section includes the following topics:

	
Section 27.3.1, "What You Must Know About Fault Policy Files"

	
Section 27.3.2, "How to Implement Fault Handling in BPEL Processes"

27.3.1 What You Must Know About Fault Policy Files

A fault policy bindings file associates the policies defined in a fault policy file with the SOA composite application (or the service component or reference binding component). The fault policy bindings file must be named fault-bindings.xml. This conforms to the fault-bindings.xsd schema file.

Fault policy file names are not restricted to one specific name. However, AIA recommends a naming convention to be followed for the fault policy files. All fault policy files should be named using the convention <ServiceName>FaultPolicy.xml. They must conform to the fault-policy.xsd schema file.

For more information about naming conventions, see Chapter 32, "Oracle AIA Naming Standards for AIA Development."

AIA recommends that the fault policy bindings file should be defined to associate the policies defined in a fault policy file with the SOA composite application.

AIA Foundation Pack comes with a default fault policy, which is stored in Oracle Metadata Services (MDS), in the AIAMetaData/faultPolicies/V1 folder. When default fault policies are to be used, then the composite.xml file should have the elements shown in Example 27-1 added to it.

Example 27-1 Elements to be Added to composite.xml

<property name="oracle.composite.faultPolicyFile">[pointer to the fault policy
 xml file in the MDS]</property>
<property name="oracle.composite.faultBindingFile">[pointer to the fault policy
 bindings file fault-bindings.xml in the MDS]</property>

When Service Constructor is used to construct the AIA Services, and if the developer opts for using a default fault policy file, then Service Constructor automatically inserts the preceding elements in the composite.xml file.

For more information about Service Constructor, see Chapter 4, "Working with Service Constructor."

If a developer chooses to have a customized, service-specific fault policy file for her AIA Service, then, AIA recommends that the fault policy file and fault policy bindings file (fault-bindings.xml) be placed in the same directory as the composite.xml file of the SOA composite application.

When a developer is using Service Constructor to construct the AIA Services and opts for using a service-specific fault policy file and fault policy bindings file, then the tool creates a template file in the same directory as the composite.xml file of the SOA composite application. The developers must define the fault policies in those template files. In this case, the tool does not create the XML elements <property> in the composite.xml.

For more information, see "Schema Definition File for Fault-policies.xml" and "Schema Definition File for Fault-bindings.xml" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

27.3.1.1 Associating a Fault Policy File with Fault Policy Bindings File

The following example shows how to associate a fault policy defined in a sample fault-policy file with a fault-policy binding.xml file.

Consider a sample fault policy file, SamplesQueryCustomerPartyPortalProvABCSImplFaultPolicy.xml, with the fault policies defined as shown in Example 27-2.

Example 27-2 Sample Fault Policy File with Fault Policies Defined

<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">
 <faultPolicy version="2.0.1"
 id="SamplesQueryCustomerPartyPortalProvABCSImplFaultPolicy">
 </faultPolicy>
</faultPolicies>

Associate the policies defined in the preceding fault policy file with the level of fault policy binding that you are using-either a SOA composite application or a component (BPEL process or Oracle Mediator service component).

To do this, modify the template fault-bindings.xml file (created by the AIA Service Constructor when the developer chooses to have a service-specific fault policy instead of using a default fault policy).

In the fault-bindings.xml file, the association is done as shown in Example 27-3.

Example 27-3 Association in fault-bindings.xml

<faultPolicyBindings version="2.0.1"xmlns="http://schemas.oracle.com/bpel/
 faultpolicy" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <compositefaultPolicy="SamplesQueryCustomerPartyPortalProvABCSImpl
 FaultPolicy"/>
</faultPolicyBindings>

	
Note:

In this example, the association is made at the level of the SOA composite application.

AIA recommends that the fault policy binding level be a SOA composite application by default because this conforms with our recommendation that a composite must be built with a single component in it.

27.3.2 How to Implement Fault Handling in BPEL Processes

To implement fault handling in a BPEL process:

	
Define an EBM HEADER variable in the BPEL process and populate it as the first step.

The Error Handling Framework uses this variable to populate the fault message with contextual details from the Enterprise Business Message (EBM) header. If the BPEL process is an Application Business Connector Service (ABCS), then input is an Application Business Message (ABM), and the EBM HEADER variable should be populated as soon as the ABM is converted to an EBM. This way, if the error occurs on a partner link after this transformation step, the Error Handling Framework accesses and uses the EBM header details.

	
Define a fault policy for the BPEL process and bind the process with this policy in fault-bindings.xml.

When you are using a service-specific fault policy file, always use the CompositeJavaAction, oracle.apps.aia.core.eh.CompositeJavaAction, as specified in the default policy. Including this CompositeJavaAction accounts for error notifications and error logging.

For more information about how to define a fault policy XML file to handle business faults, see Section 27.4.2.1, "Handling Business Faults."

For more information about how to define a fault policy XML file to handle run-time faults in the synchronous message exchange pattern (MEP), see Section 27.4, "Implementing Error Handling for the Synchronous Message Exchange Pattern."

For more information about how to define a fault policy XML file to handle run-time faults in the asynchronous MEP, see Section 27.5, "Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message Delivery."

	
Define the catch blocks.

The default behavior of the fault policy after the CompositeJavaAction is to do a rethrow. This returns the execution control to the catch or catch-all block specified in the BPEL process.

In a way, interception of faults using a fault policy is transparent to you because the CompositeJavaAction rethrows the same fault that has been intercepted by it. So in BPEL, you must catch the fault, such as a binding or remote fault, which is expected out of the invoke activity.

Hence, define a catch block for each business fault and run-time fault that can be expected at design time.

	
Define a catch-all block.

This assists in catching any unexpected errors that may occur while you are running the process.

For more information about defining BPEL catch and catch-all blocks for the synchronous request-response MEP, see Section 27.4.2, "Guidelines for BPEL Catch and Catch-All Blocks in Synchronous Request-Response."

For more information about defining BPEL catch and catch-all blocks for the asynchronous MEP, see Section 27.5.4, "Guidelines for BPEL Catch and Catch-All Blocks."

27.4 Implementing Error Handling for the Synchronous Message Exchange Pattern

This section includes the following topics:

	
Section 27.4.1, "Guidelines for Defining Fault Policies"

	
Section 27.4.2, "Guidelines for BPEL Catch and Catch-All Blocks in Synchronous Request-Response"

	
Section 27.4.3, "Guidelines for Configuring Mediator for Handling Business Faults"

27.4.1 Guidelines for Defining Fault Policies

This section includes the following topics:

	
Section 27.4.1.1, "Defining a Fault Policy XML File for Handling Run-time Faults"

	
Section 27.4.1.2, "Defining a Fault Policy XML File for Handling Business Faults"

27.4.1.1 Defining a Fault Policy XML File for Handling Run-time Faults

Define faults in the fault policy XML file per guidelines illustrated in the following code snippet. In the fault policy, define a section under Conditions as shown in Example 27-4.

Example 27-4 Fault Definition in the Fault Policy XML File

<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"name="bpelx:
 remoteFault">
 <condition>
 <action ref="aia-ora-java"/>
 </condition>
</faultName>
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension" name="bpelx:
 bindingFault">
 <condition>
 <action ref="aia-ora-java"/>
 </condition>
</faultName>

Though AIA recommends that by default, remote and binding faults should be defined, as shown previously, other run-time faults can be handled in the same way if required per the functionality of the service.

For example, if you are required to handle the subLanguageExecutionFault fault, then define the section as shown in Example 27-5.

Example 27-5 subLanguageExecutionFault Fault Handling

<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"name="bpelx:
 subLanguageExecutionFault">
 <condition>
 <action ref="aia-ora-java"/>
 </condition>
</faultName>

However, all the run-time faults that are defined in the fault policy file must be caught in the BPEL process in a catch block, which is specific to the fault.

For more information about defining BPEL catch and catch-all blocks for the synchronous request-response MEP, see Section 27.4.2, "Guidelines for BPEL Catch and Catch-All Blocks in Synchronous Request-Response."

27.4.1.2 Defining a Fault Policy XML File for Handling Business Faults

The Fault Management Framework is used to handle the business faults that are for an invoke activity. In other words, only business faults thrown by external services and applications when invoked using the invoke activity are intercepted by the Oracle Fusion Middleware Fault Management Framework, according to the definitions specified in the fault policy file.

The business faults that are internal to the BPEL, business faults thrown by a throw activity, for example, are not intercepted by the Fault Management Framework.

To define a fault policy to intercept Oracle AIA faults:

	
Examine your partner link WSDL and check to determine whether it is throwing any Oracle AIA faults.

	
If it is throwing Oracle AIA faults, look for the partner link namespace and name of the fault in the partner link WSDL.

	
In the fault policy, define a section under Conditions as shown in Example 27-6.

Example 27-6 Conditions Element in the Fault Policy

<Conditions>
 <faultName xmlns:corecustomerpartyebs="http://xmlns.oracle.com/Enterprise
 Services/Core/CustomerParty/V2" name="corecustomerpartyebs:fault">
 <condition>
 <test>[XPath expression to be evaluated for the fault variable
 available in the fault]</test>
 <action ref="aia-ora-java"/>
 </condition>
 </faultName>
</Conditions>

	
Note:

To avoid unnecessary processing, ensure that you specify retry options only when explicitly required.

	
Configure the default condition to call the aia-ora-java action, as shown in Example 27-7.

Example 27-7 Default Condition Configuration Used to Call the aia-ora-java action

<Conditions>
 <faultName xmlns:corecustomerpartyebs="http://xmlns.oracle.com/Enterprise
 Services/Core/CustomerParty/V2" name="corecustomerpartyebs:fault">
 <condition>
 <test>[XPath expression to be evaluated for the fault variable
 available in the fault]</test>
 <action ref="aia-ora-java"/>
 </condition>
 </faultName>
 <faultName>
 <condition>
 <action ref="aia-ora-java"/>
 </condition>
 </faultName>
</Conditions>

	
All business faults defined in the fault policy file must be caught in the BPEL process in a catch-block that is specific to the business fault.

For more information, see Section 27.4.2, "Guidelines for BPEL Catch and Catch-All Blocks in Synchronous Request-Response."

27.4.2 Guidelines for BPEL Catch and Catch-All Blocks in Synchronous Request-Response

Each BPEL process should have explicit catch blocks for remote faults, binding faults, business faults (Oracle AIA faults), and any other fault expected on a partner link at design time. Use these guidelines for defining these catch blocks.

27.4.2.1 Handling Business Faults

To handle an internal business fault:

	
In the case of a BPEL process carrying out a throw activity, construct a business fault message (Oracle AIA fault message) and populate the AIA Fault message with the ECID, as shown in Example 27-8.

Example 27-8 Business Fault Message

<sequence name="SequenceBusinessFault">
 <assign name="AssignBusinessFault">
 <copy>
 <from expression="ora:processXSLT('xsl/EBM_to_Fault.xsl',bpws:
 getVariableData('EBM_HEADER'))"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault"/>
 </copy>
 <copy>
 <from expression="'invalid account id'"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultMessage/corecom:Text"/>
 </copy>
 <copy>
 <from expression="'invalid account id'"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultMessage/corecom:Stack"/>
 </copy>
 <copy>
 <from expression="ora:getCompositeInstanceId()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:
 Fault/corecom:FaultNotification/corecom:FaultingService/corecom:
 InstanceID"/>
 </copy>
 <copy>
 <from expression="'BPEL'"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultingService/corecom:
 ImplementationCode"/>
 </copy>
 <copy>
 <from expression="ora:getCompositeName()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:
 Fault/corecom:FaultNotification/corecom:FaultingService/corecom:ID"/>
 </copy>
 <copy>
 <from expression="ora:getECID()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultingService/corecom:
 ExecutionContextID"/>
 </assign>
 <throw name="Throw_custom_business_fault" faultName="client:fault"
 faultVariable="AIAFaultMessage"/>
</sequence>

	
Note:

Ensure that in EBM_to_Fault.xsl, the <corecom:ExecutionContextID/> element is injected under the <corecom:FaultingService> element.

	
Catch the preceding fault message in the catch block. In the catch block:

	
Send the AIA Fault Message as a reply.

Invoke the AIAAsyncErrorHandlingBPELProcess with this Oracle AIA fault message as input.

	
Throw the AIA Fault Message that has been caught. This rethrow enables the process to appear as faulted in the Enterprise Manager Console.

To handle an external business fault:

In the case of an Invoke activity in the BPEL receiving an AIA fault message as a response, catch the AIA fault message in the catch block. In the catch block:

	
Send the AIA Fault Message as reply.

	
Throw the AIA Fault Message that has been caught. This rethrow enables the process to appear as faulted in the Oracle Enterprise Manager Console.

	
Note:

In this case, AIA does not invoke the AIAAsyncErrorHandlingBPELProcess because the business fault is handled by the Oracle Fusion Middleware Fault Management Framework, according to the fault polices defined in the associated fault policy file.

27.4.2.2 Handling Run-time Faults Defined in the Fault Policy File

For each of the run-time faults that has been defined in the fault policy xml file, have a catch block in the BPEL.

To handle run-time faults defined in the fault policy file:

	
In the catch block, construct an Oracle AIA fault message.

	
Send this Oracle AIA fault message as the reply.

	
Rethrow the fault that has been caught. This enables the process to appear as faulted in the Oracle BPEL Console.

27.4.2.3 Handling Run-time Faults Not Defined in the Fault Policy File

Each BPEL process should also have a catch-all block to process run-time faults that are not caught in catch-blocks and not defined in the fault policy file.

To define the catch-all block:

	
Construct an Oracle AIA fault message. Populate the AIA Fault message with ECID as shown in Example 27-9.

Example 27-9 Catch-All Block Construction

<sequence name="SequenceCatchAll">
 <assign name="AssignFault">
 <copy>
 <from expression="ora:processXSLT('xsl/EBM_to_Fault.xsl',bpws:
 getVariableData('EBM_HEADER'))"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault"/>
 </copy>
 <copy>
 <from expression="ora:getFaultAsString()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultMessage/corecom:Text"/>
 </copy>
 <copy>
 <from expression="ora:getFaultAsString()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultMessage/corecom:Stack"/>
 </copy>
 <copy>
 <from expression="ora:getCompositeInstanceId()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultingService/corecom:
 InstanceID"/>
 </copy>
 <copy>
 <from expression="'BPEL'"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultingService/corecom:
 ImplementationCode"/>
 </copy>
 <copy>
 <from expression="ora:getCompositeName()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultingService/corecom:ID"/>
 </copy>
 <copy>
 <from expression="ora:getECID()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultingService/corecom:
 ExecutionContextID"/>
 </assign>
</sequence>

	
Note:

Ensure that in EBM_to_Fault.xsl, the <corecom:ExecutionContextID/> element is injected under the <corecom:FaultingService> element.

	
Invoke the AIAAsyncErrorHandlingBPELProcess with this Oracle AIA fault message as input.

	
Send this Oracle AIA fault message as the reply.

	
Throw AIA fault message. This enables the process to appear as faulted in the Oracle Enterprise Manager Console.

	
Unless otherwise required, these catch and catch-all blocks can be defined at the top-level scope and are not required to be defined at the scope for each partner link.

For more information about the Fault Management Framework, see "Using the Fault Management Framework" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

27.4.3 Guidelines for Configuring Mediator for Handling Business Faults

Oracle Mediator provides fault policy-based error handling for business faults. However, fault policies are applicable to parallel routing rules only. For sequential routing rules, the fault goes back to the caller (that has invoked the mediator) and it is the responsibility of the caller to handle the fault.

AIA recommends using only sequential routing rules.

When a service invoked by the mediator throws a business fault, this fault must be propagated up to the service that has invoked the mediator.

This section discusses how to configure the mediator to handle business exceptions returned by the services invoked by the mediator.

Here are some points to consider:

	
When the mediator invokes a service, the invoked service can throw any of the business faults that are defined in its WSDL.

	
The fault that is thrown by the invoked service is propagated back to the mediator.

To configure the mediator to handle business exceptions returned by the services invoked by the mediator:

	
Open the mediator in design-mode using Oracle JDeveloper.

	
Using the Static Routing panel, assign the inbound fault reaching the mediator to the outbound fault, which is now propagated by the mediator to the service that invoked it, as shown in Figure 27-1.

Figure 27-1 Assignment of the Faults in the Mediator

[image: This image is described in surrounding text]

	
As shown in the preceding diagram, assign the inbound fault from the target service's WSDL operation to the outbound fault that is propagated by the mediator to its invoker service.

For more information about how to assign faults, see "How to Handle Faults" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

27.5 Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message Delivery

This section includes the following topics:

	
Section 27.5.1, "Overview"

	
Section 27.5.2, "Configuring Milestones"

	
Section 27.5.3, "Configuring Services Between Milestones"

	
Section 27.5.4, "Guidelines for BPEL Catch and Catch-All Blocks"

	
Section 27.5.5, "Guidelines for Defining Fault Policies"

	
Section 27.5.6, "Configuring Fault Policies to Not Issue Rollback Messages"

	
Section 27.5.7, "Using the Message Resubmission Utility API"

27.5.1 Overview

In the context of AIA, guaranteed message delivery for the asynchronous MEP means that the message initiated from a sender is persisted until it is successfully delivered to and acknowledged by the receiver, if acknowledgment is expected.

The sender and receiver are not necessarily the participating applications. Rather, they are logical milestones in an Oracle AIA integration flow. Multiple milestones could be in an Oracle AIA integration scenario.

Temporary unavailability of any hardware or software service in an asynchronous message flow does not result in a lost message or a delivery failure. The Error Handling framework provides a way for the message to be persisted until the hardware or software service becomes available.

After an integration administrator has been notified of the unavailable resource by the Error Console, she can address the resource issue. The integration administrator can then use the Message Resubmission Utility to resubmit the persisted message into the integration scenario from the appropriate transaction milestone point, enabling its delivery to the next component or milestone.

For more information about running the Message Resubmission Utility, see "Using the Message Resubmission Utility" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

These points summarize primary aspects of an implementation of the guaranteed message delivery programming model for the asynchronous MEP.

	
Message persistence milestones

Messages are picked from a persistence store (source), processed, and pushed to the next persistence store (target). The message is not removed from the source until it has been successfully processed and delivered to the target. The source and target may be applications. Each persistence store represents a milestone and may be a database, file system, JMS queue, or JMS topic.

For more information about configuring milestones, see Section 27.5.2, "Configuring Milestones."

	
Global transaction

These tasks must be accomplished as a part of the global transaction:

	
Picking up the message from the source.

	
Processing the message by one or more services.

	
Delivering the message to the target.

	
The initiation of a service from the source with an input message initiates a transaction. All the services invoked downstream participate in this global transaction. This global transaction ends or is committed when the message is successfully delivered to the target and removed from the source.

In the case of an error, an exception is raised and the transaction initiated is rolled back with the message safe in the source. The message is either in the source or target and is not lost.

For more information about configuring the global transaction, see Section 27.5.3, "Configuring Services Between Milestones."

	
Error handling and recovery

Any exceptions due to system or business errors must generate a rollback of all preceding services and trigger a single error notification to the Integration Administrator. This requires marking the message in the source as faulted, preventing it from being processed until the error condition is removed.

For more information about configuring error rollback, see Section 27.5.6, "Configuring Fault Policies to Not Issue Rollback Messages."

In case of system errors, after the exception condition has been removed, the faulted messages in the source must be reset. This enables them to be resubmitted. The Message Resubmission Utility can be used to resubmit the messages for reprocessing by the correct source.

In case of business errors, the faulted messages in the source must be removed and sent to fallout management for further action. Fallout management is a custom implementation in which the messages encountering business errors are segregated and processed separately.

For example, suppose that orders submitted for processing encounter a business error. As a part of an Order Fallout Management implementation, the Order message and error message are routed to an application that introspects the error messages and raises a trouble ticket that provides an explanation of the error and the suggested remedial action. After the remedial action is taken, the order is reprocessed.

Error handling and recovery for the asynchronous MEP are implemented as follows to ensure guaranteed message delivery:

	
Ensure that each message has a unique message identifier.

	
Populate the EBM header with the source milestone identifier.

	
Ensure that the fault notification contains the message identifier and source milestone identifier of the faulted message.

	
Use the Message Resubmission Utility to recover and resubmit a faulted message.

For more information about how to implement these configurations, see Section 27.5.2, "Configuring Milestones" and Section 27.5.3, "Configuring Services Between Milestones."

For more information about using the Message Resubmission Utility, see "Using the Message Resubmission Utility" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

For more information about the Message Resubmission Utility API, see Section 27.5.7, "Using the Message Resubmission Utility API."

27.5.2 Configuring Milestones

As a part of implementing error handling and recovery for the asynchronous MEP to ensure guaranteed message delivery, messages must be persisted at milestones. The movement of messages between milestones must be guaranteed.

A milestone can be a JMS queue or a JMS topic.

Figure 27-2 and Figure 27-3 illustrate a few possible milestone locations across an integration flow.

Figure 27-2 Integration Flow in Which the Receiver Target Milestone is the Target Participating Application

[image: This image is described in surrounding text]

Figure 27-3 Integration Flow in Which the Receiver Target Milestone is Within the Global Transaction Space

[image: This image is described in surrounding text]

27.5.3 Configuring Services Between Milestones

This section includes the following topics:

	
Section 27.5.3.1, "Populating Message Resubmission Values"

	
Section 27.5.3.2, "Configuring All Services to Participate in a Single Global Transaction"

Completing these activities ensures that the services between milestones are configured to provide error handling and recovery for the asynchronous MEP to ensure guaranteed message delivery.

27.5.3.1 Populating Message Resubmission Values

These parameters in the EBM header must be populated in the JMS consumer service transformation:

	
SenderResourceTypeCode

Indicates the type of resource or system in which the rolled-back message is stored, whether Queue or Topic.

	
SenderResourceID

Identification of the resource/system of type SenderResourceTypeCode.

	
SenderMessageID

Identification of the message persisted in the resource/system associated with type SenderResourceTypeCode.

Scenario 1

When an ABM in the JMS Queue or Topic is triggering the JMS Consumer Service, then the preceding information must be passed to the requester ABCS as a part of the ABM header.

For more information, see Section 27.5.3.1.1, "Populating the ABM with Message Resubmission Values in JMSConsumerAdapter."

In the JMS Consumer Service, this information must be configured to be sent to the ABM header. In the requester ABCS, this information is extracted from the ABM header and sent to the EBM header in the transformation.

For more information, see Section 27.5.3.1.2, "Populating the EBM Header with Resubmission Values in the Requester ABCS."

Scenario 2

When an EBM in the JMS Queue or Topic is triggering the JMS consumer service, use an EBM-to-EBM transformation and populate (overwrite) the resubmission values in the EBM message. The following values in the EBM header fields of the inbound message should be overwritten with the new values for the ResourceType, Resource Name, and JMS Message ID pertaining to the current milestone.

	
<corecom:SenderResourceTypeCode>

	
<corecom:SenderResourceID>

	
<corecom:SenderMessageID>

Example 27-10 provides sample code snippet from the EBM-to-EBM XSL.

Example 27-10 EBM-to-EBM XSL Code Example

<corecom:IntermediateMessageHop>
 <corecom:SenderResourceTypeCode>
 <xsl:value-of select="/custebo:CreateCustomerPartyListEBM/corecom:
 EBMHeader/corecom:FaultNotification/corecom:FaultMessage/corecom:
 IntermediateMessageHop/corecom:SenderResourceTypeCode"/>
 </corecom:SenderResourceTypeCode>
 <corecom:SenderResourceID>
 <xsl:value-of select="/custebo:CreateCustomerPartyListEBM/corecom:
 EBMHeader/corecom:FaultNotification/corecom:FaultMessage/corecom:
 IntermediateMessageHop/corecom:SenderResourceID"/>
 </corecom:SenderResourceID>
 <corecom:SenderMessageID>
 <xsl:value-of select='mhdr:getProperty("in.property.jca.jms.
 JMSMessageID")'/>
 </corecom:SenderMessageID>
</corecom:IntermediateMessageHop>

27.5.3.1.1 Populating the ABM with Message Resubmission Values in JMSConsumerAdapter

Ensure that the ABM is enriched with the following content:

	
The unique Message ID. The JMSMessageID in the JMS header is used as the value.

	
The resource name. This is the JMS Queue/Topic name. This is the same as the <svcdoc: ResourceName> value in the JMSConsumerAdapter's composite.xml.

	
The type of the resource. The possible values are Queue or Topic.

Use specifically designated fields in the ABM for this purpose. These fields are identified at the time of design.

Within the mediator-based JMSConsumerAdapter:

	
Use the transformation step in the mediator routing rule.

	
In the XSL used by the transformation, assign the values of the JMS Message ID, Resource Name, and Resource Type to the specifically designated fields of the ABM.

Example 27-11 illustrates how to assign the JMS Message ID to the ABM.

Example 27-11 Example of How to Assign the JMS Message ID to the ABM

<xsl:attribute name="MessageId">
 <xsl:value-of select='mhdr:getProperty("in.property.jca.jms.JMSMessageID")'/>
</xsl:attribute>

In this example, the assumption is that the ABM has a specific attribute, MessageId, to which the JMS Message ID is assigned.

In some cases, only one designated field may be available in the ABM. In such scenarios, concatenate the values of the JMS Message ID, Resource Name, and Resource Type and assign the value to the specific designated field of the ABM. While concatenating these values, AIA recommends using :: as the separator.

For example, consider a Siebel Customer ABM, ListOfCmuAccsyncAccountIo. In this ABM, assume that the MessageId attribute of the ListOfCmuAccsyncAccountIo element is designated to hold the information about JMS Message ID, Resource Name, and Resource Type at design time. Example 27-12 illustrates how to concatenate the data and assign it to the ABM.

Example 27-12 Example of How to Concatenate Data and Assign it to the ABM

<xsl:attribute name="MessageId">
 <xsl:value-of select='concat(mhdr:getProperty("in.property.jca.jms.
 JMSMessageID"),":: SampleQueue","::Queue")'/>
</xsl:attribute>

27.5.3.1.2 Populating the EBM Header with Resubmission Values in the Requester ABCS

When the ABM arrives at the requester ABCS, it contains the JMS Message ID, Resource Name, and Resource Type values because these values were made available in the designated fields of the ABM.

	
Tip:

Ensure that the <corecom: FaultNotification/> element is inserted into the EBM header when transforming the ABM to the EBM.

Extract these values from the ABM and enter the following elements in the EBM header within the <corecom:IntermediateMessageHop> element:

	
<corecom:SenderResourceTypeCode>: Populate it with the Resource Type value

	
<corecom:SenderResourceID>: Populate it with the Resource Name value

	
<corecom:SenderMessageID>: Populate it with the JMS Message ID value

The XSL that performs the ABM-to-EBM transformation should accomplish this task. The task is straightforward when three different ABM fields are designated for holding the three resubmission values, as shown in Example 27-13.

Example 27-13 Example Illustrating Three ABM Fields Used to Hold Three Resubmission Values

<corecom:IntermediateMessageHop>
 <corecom:SenderResourceTypeCode>
 <xsl:value-of select="[xpath to the ABM field holding the ResourceType]"/>
 </corecom:SenderResourceTypeCode>
 <corecom:SenderResourceID>
 <xsl:value-of select="[xpath to the ABM field holding the
 Resource Name]"/>
 </corecom:SenderResourceID>
 <corecom:SenderMessageID>
 <xsl:value-of select="[xpath to the ABM field holding the Message Id]"/>
 </corecom:SenderMessageID>
</corecom:IntermediateMessageHop>

The following content discusses how resubmission values are extracted from the ABM and assigned to the EBM header when all three resubmission values are concatenated and assigned to a single designated field in the ABM.

For example, consider a Siebel Customer ABM, ListOfCmuAccsyncAccountIo. In this ABM, assume that the MessageId attribute of the ListOfCmuAccsyncAccountIo element has been designated to hold the information about the JMS Message ID, Resource Name, and Resource Type, concatenated using :: as a separator. See the previous section for more information.

Example 27-14 provides a code snippet that extracts the resubmission values and assign them to EBM header elements.

Example 27-14 Code Used to Extract Resubmission Values and Assign Them to EBM Header Element

<xsl:variable name="MsgId">
 <xsl:value-of select="substring-after(/seblcustabo:ListOfCmuAccsyncAccountIo/
 @MessageId,'::')"/>
</xsl:variable>
<corecom:IntermediateMessageHop>
 <corecom:SenderResourceTypeCode>
 <xsl:value-of select="substring-after($MsgId,'::')"/>
 </corecom:SenderResourceTypeCode>
 <corecom:SenderResourceID>
 <xsl:value-of select="substring-before($MsgId,':: ')"/>
 </corecom:SenderResourceID>
 <corecom:SenderMessageID>
 <xsl:value-of select="substring-before(/seblcustabo:ListOfCmuAccsync
 AccountIo/@MessageId,'::')"/>
 </corecom:SenderMessageID>
</corecom:IntermediateMessageHop>

The XSL that performs the ABM-to-EBM transformation should accomplish this task.

For more information about resubmitting messages, see "Using the Message Resubmission Utility" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

27.5.3.2 Configuring All Services to Participate in a Single Global Transaction

Configure a single global transaction as follows:

	
Ensure that no commit points are between two milestones.

	
Ensure that the work done between two milestones is one logical unit of work.

For more information about configuring the global transaction, see Chapter 14, "Designing and Developing Enterprise Business Services," Chapter 15, "Designing Application Business Connector Services," Chapter 16, "Constructing the ABCS," and Chapter 19, "Designing and Constructing Enterprise Business Flows."

27.5.4 Guidelines for BPEL Catch and Catch-All Blocks

This section includes the following topics:

	
Section 27.5.4.1, "Handling Run-time Faults Defined in the Fault Policy File"

	
Section 27.5.4.2, "Handling Run-time Faults Not Defined in the Fault Policy File"

27.5.4.1 Handling Run-time Faults Defined in the Fault Policy File

For each of the run-time faults that has been defined in the fault policy xml file, have a catch block in the BPEL. In the catch block, rethrow the fault that has been caught. This enables the process to appear as faulted in the Oracle Enterprise Manager Console.

27.5.4.2 Handling Run-time Faults Not Defined in the Fault Policy File

Each BPEL process should also have a catch-all block to process run-time faults that are not caught in catch-blocks and not defined in the fault policy file.

To define the catch-all block:

	
Construct an Oracle AIA fault message. Populate the AIA Fault message with ECID as shown in Example 27-15.

Example 27-15 AIA Fault Message with an ECID Defined

<copy>
 <from expression="ora:getECID()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/corecom:
 FaultNotification/corecom:FaultingService/corecom:ExecutionContextID"/>
</copy>

	
Invoke the AIAAsyncErrorHandlingBPELProcess with this Oracle AIA fault message as input.

	
Throw the AIA fault message. This enables the process to appear as faulted in the Oracle Enterprise Manager Console.

	
Unless otherwise required, these catch and catch-all blocks can be defined at the top-level scope and are not required to be defined at the scope for each partner link.

For more information, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

27.5.5 Guidelines for Defining Fault Policies

For more information, see Section 27.4.1.1, "Defining a Fault Policy XML File for Handling Run-time Faults."

27.5.6 Configuring Fault Policies to Not Issue Rollback Messages

According to the guaranteed message delivery programming model, when a message cannot be delivered to a service or component in the flow of a global transaction, the message is rolled back to the appropriate source milestone. This source milestone corresponds to an Oracle Advanced Queue, JMS Topic, or Mediator Resequencer Store. The message is persisted here until it can be resubmitted for delivery to the service or component.

The BPEL processes along the transaction rollback path issue fault messages and should be configured to not issue rollback messages as well. The configuration deciphers a rollback transaction so that services in the rollback path do not issue unnecessary notifications.

Without this configuration to suppress rollback messages, these processes issue unnecessary notifications. For example, in the transaction rollback flow illustrated in Figure 27-4, redundant rollback notifications would be sent out by the Requester ABCS, in addition to the one sent out by the Provider ABCS, which is the only one that should be issued.

Figure 27-4 Transaction Rollback Flow

[image: This image is described in surrounding text]

To suppress unnecessary notifications for a rollback transaction:

	
Use bpelx:rollback instead of throw in the catch blocks: <throw name="ThrowEBSFault" faultName="bpelx:rollback"/>

	
Use a Java snippet to invoke the Oracle AIA Error Handler, as shown in Example 27-16.

Example 27-16 Java Snippet to Invoke the Oracle AIA Error Handler

<bpelx:exec name="Java_Embedding_1" language="java" version="1.5">
 <![CDATA[oracle.apps.aia.core.eh.InvokeBusinessErrorHandler.process
 ((oracle.xml.parser.v2.XMLElement)getVariableData("inputVariable",
 "FaultMessage","/ns1:Fault"));]]>
</bpelx:exec>

	
Add an empty no-op action to the fault policies of Mediator and BPEL processes along the transaction rollback flow. This empty no-op action is aia-no-action.

When a Mediator or BPEL process receives a rollback message, the control is directed to the class oracle.apps.aia.core.eh.CompositeJavaNoAction, which is implemented against the aia-no-action action.

The oracle.apps.aia.core.eh.CompositeJavaNoAction class is an empty operation, meaning that it does nothing, and thus suppresses further notifications in the rollback flow.

These sample BPEL and Mediator fault policies illustrate the way in which these conditions should be defined in impacted fault policy files.

The aia-no-action fault policy contains a filter expression to perform no action in the case of the rollback fault ORABPEL-02180. An example is illustrated in Example 27-17.

Example 27-17 Sample Fault Policy Using the aia-no-action No-op Action

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicy version="2.0.1" id="SamplesCreateCustomerPartyPortal
 ProvABCSImplFaultPolicy" xmlns:env="http://schemas.xmlsoap.org/soap/
 envelope/" xmlns:xs="http://www.w3.org/2001/XMLSchema"xmlns="http://schemas.
 oracle.com/bpel/faultpolicy"xmlns:xsi="http://www.w3.org/2001/XMLSchema-
 instance">
 <Conditions>
 <faultNamexmlns:plmfault="http://xmlns.oracle.com/EnterpriseServices
 /Core/CustomerParty/V2" name="plmfault:fault">
 <condition>
 <test>$fault.summary/summary[contains(., "ORABPEL-02180")]</test>
 <action ref="aia-do-nothing"/>
 </condition>
 <condition>
 <action ref="aia-ora-java"/>
 </condition>
 </faultName>
 <faultName>
 <condition>
 <test>$fault.summary/summary[contains(., "ORABPEL-02180")]</test>
 <action ref="aia-do-nothing"/>
 </condition>
 <condition>
 <action ref="aia-ora-java"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <!-- This action will attempt 8 retries at increasing intervals of
 2, 4, 8, 16, 32, 64, 128, and 256 seconds. -->
 <Action id="aia-ora-retry">
 <retry>
 <retryCount>1</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="aia-ora-java"/>
 <retrySuccessAction ref="aia-ora-java"/>
 </retry>
 </Action>
 <!-- This is an action will cause a replay scope fault -->
 <Action id="ora-replay-scope">
 <replayScope/>
 </Action>
 <!-- This is an action will bubble up the fault -->
 <Action id="ora-rethrow-fault">
 <rethrowFault/>
 </Action>
 <!-- This is an action will mark the work item to be "pending recovery
 from console" -->
 <Action id="ora-human-intervention">
 <humanIntervention/>
 </Action>
 <!-- This action will cause the instance to terminate -->
 <Action id="ora-terminate">
 <abort/>
 </Action>
 <Action id="aia-do-nothing">
 <javaAction className="oracle.apps.aia.core.eh.CompositeJavaNo
 Action" defaultAction="ora-rethrow-fault">
 <returnValue value="REPLAY" ref="ora-terminate"/>
 <returnValue value="RETRHOW" ref="ora-rethrow-fault"/>
 <returnValue value="ABORT" ref="ora-terminate"/>
 <returnValue value="RETRY" ref="aia-ora-retry"/>
 <returnValue value="MANUAL" ref="ora-human-intervention"/>
 </javaAction>
 </Action>
 <Action id="aia-ora-java">
 <javaAction className="oracle.apps.aia.core.eh.CompositeJava
 Action" defaultAction="ora-rethrow-fault">
 <returnValue value="REPLAY" ref="ora-terminate"/>
 <returnValue value="RETRHOW" ref="ora-rethrow-fault"/>
 <returnValue value="ABORT" ref="ora-terminate"/>
 <returnValue value="RETRY" ref="aia-ora-retry"/>
 <returnValue value="MANUAL" ref="ora-human-intervention"/>
 </javaAction>
 </Action>
 </Actions>
</faultPolicy>

27.5.7 Using the Message Resubmission Utility API

The Message Resubmission Utility API enables external programs to use the functionality of enabling a message that is in error state to be ready again to be consumed for a transaction. This utility would typically be run after the associated problem that caused the message to end in error is fixed.

For more information about the Resubmission Utility, see "Using the Message Resubmission Utility" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

27.6 How to Configure AIA Services for Notification

This section discusses the standard configuration steps that must be performed when you are handling a BPEL fault.

This section includes the following topics:

	
Section 27.6.1, "Defining Corrective Action Codes"

	
Section 27.6.2, "Defining Error Message Codes"

For more information about how to define notification roles, see "Setting Up Error Handling" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

27.6.1 Defining Corrective Action Codes

For custom or business faults (business faults thrown by a throw activity), define corrective action codes by adding it to AIAMessages.properties file located under <MW_HOME>/soa/modules/oracle.soa.ext_11.1.1/classes folder and restart the server. Ensure that the translated string in the language-appropriate properties file for that language is located in the same directory.

This custom XPath function is available to get details from this resource bundle in a localized format: Signature: aia:getCorrectiveAction (String key, String locale, String delimiter)

Parameter details include:

	
Key

The corrective action code.

	
Locale

A concatenated string of language code, country code, and variant. For example, en-US.

	
Delimiter

The delimiter used in Locale parameter, such as -.

27.6.2 Defining Error Message Codes

For custom or business faults (business faults thrown by a throw activity), define corrective action codes by adding it to AIAMessages.properties file located under <MW_HOME>/soa/modules/oracle.soa.ext_11.1.1/classes folder and restart the server. Ensure that the translated string in the language-appropriate properties file for that language is located in the same directory.

This custom XPath function is available to get details from this resource bundle in a localized format: Signature: aia:getErrorMessage (String key, String locale, String delimiter)

Parameter details include:

	
Key

The corrective action code.

	
Locale

A concatenated string of language code, country code, and variant, for example, en-US.

	
Delimiter

The delimiter used in Locale parameter, such as -.

27.7 Describing the Oracle AIA Fault Message Schema

This section includes the following topics:

	
Section 27.7.1, "Describing the EBMReference Element"

	
Section 27.7.2, "Describing the B2BMReference Element"

	
Section 27.7.3, "Describing the FaultNotification Element"

The top-level element of this schema is Fault. It has three elements: EBMReference, B2BMReference, and FaultNotification, as shown in Figure 27-5 and Figure 27-6. Fault elements are described in Table 27-1.

Figure 27-5 Fault Element and Its Child Elements (1 of 2)

[image: This image is described in surrounding text]

Figure 27-6 Fault Element and Its Child Elements (2 of 2)

[image: This image is described in surrounding text]

Table 27-1 Fault Elements

	Name	Purpose	Details
	
EBMReference

	
Provides contextual information about the fault instance. All values are taken from the EBM header of the EBM in a faulted service instance.

	
For more information, see Section 27.7.1, "Describing the EBMReference Element."

	
B2BMReference

	
Provides business-to-business (B2B)-specific details when an error is in a B2B flow from Oracle AIA.

	
For more information, see Section 27.7.2, "Describing the B2BMReference Element."

	
FaultNotification

	
Provides actual details of the fault.

	
For more information, see Section 27.7.3, "Describing the FaultNotification Element."

27.7.1 Describing the EBMReference Element

This section provides details about the EBMReference element in the Oracle AIA fault message schema, as shown in Figure 27-7. EBM Reference elements are discussed in Table 27-2.

Figure 27-7 EBMReference Element and Its Child Elements

[image: This image is described in surrounding text]

Table 27-2 EBMReference Elements

	Name	Purpose
	
EBMID

	
Provides the EBMID in the message.

	
EBMName

	
Provides the EBMName in the message.

	
EBOName

	
Provides the EBOName in the message.

	
VerbCode

	
Provides the VerbCode in the message.

	
BusinessScopeReference

	
Provides the BusinessScopeReference in the message.

Provides details about the end-to-end scenario in which the faulted service instance was participating.

This is the instance of the BusinessScopeReference in which BusinessScopeTypeCode equals BusinessProcess.

	
SenderReference

	
Provides the SenderReference in the message.

For more information about these elements, see Section 26.6, "Introducing EBM Header Concepts."

27.7.2 Describing the B2BMReference Element

This section provides details about the B2BMReference element in the Oracle AIA fault message schema, as shown in Figure 27-8. B2BM reference elements are discussed in Table 27-3.

Figure 27-8 B2BMReference Element and Its Child Elements

[image: This image is described in surrounding text]

Table 27-3 B2BMReference Elements

	Name	Purpose	Details
	
B2BMID

	
Provides the message ID used to identify the transaction in Oracle B2B.

	
A user can use this message ID to query for a failed business message in Oracle B2B and retry the failed transaction.

For more information, see Chapter 20, "Introduction to B2B Integration Using AIA."

	
CollaborationID

	
Provides the collaboration ID that is common across multiple request-and-response messages related to the same business transaction.

	
For more information, see Chapter 20, "Introduction to B2B Integration Using AIA."

	
ReplyToMessageID

	
Provides the ID of the reply-to message.

	
For more information, see Chapter 20, "Introduction to B2B Integration Using AIA."

	
B2BDocumentType/TypeCode

	
Provides the document type of the failed transaction in Oracle B2B.

	
This information from the fault can be used to define document-type-specific error processing. For example, you could assign errors resulting from different document types to different users for resolution.

For more information, see Chapter 20, "Introduction to B2B Integration Using AIA."

	
B2BDocumentType/Version

	
Provides the document type version of the failed transaction in Oracle B2B.

	
For more information, see Chapter 20, "Introduction to B2B Integration Using AIA."

	
SenderTradingPartner/TradingPartnerID

	
Provides the name of the sending trading partner in the B2B flow.

	
For more information, see Chapter 20, "Introduction to B2B Integration Using AIA."

	
ReceiverTradingPartner/TradingPartnerID

	
Provides the name of the receiving trading partner in the B2B flow.

	
For more information, see Chapter 20, "Introduction to B2B Integration Using AIA."

	
GatewayID

	
Provides the name of the B2B software used to initiate the flow, for example, Oracle B2B.

	
For more information, see Chapter 20, "Introduction to B2B Integration Using AIA."

27.7.3 Describing the FaultNotification Element

This section includes the following topics:

	
Section 27.7.3.1, "FaultMessage Element"

	
Section 27.7.3.2, "IntermediateMessageHop Elements"

	
Section 27.7.3.3, "FaultingService Element"

This section provides details about the FaultNotification element in the Oracle AIA fault message schema, as shown in Figure 27-9. Fault notification elements are discussed in Table 27-4.

Figure 27-9 FaultNotification Element and Its Child Elements

[image: This image is described in surrounding text]

Table 27-4 FaultNotification Elements

	Name	Purpose	Details
	
BusinessComponentID

	
Unique key for the application.

	
Provides an agnostic representation of the object instance.

	
ReportingDateTime

	
Provides the date and time at which the service faulted.

	
The date and time at which the service faulted.

	
CorrectiveAction

	
Provides the possible corrective action for the fault.

	
The corrective action for the fault.

	
FaultMessage

	
Provides details of the actual fault message.

	
For more information see Section 27.7.3.1, "FaultMessage Element."

	
FaultingService

	
Provides details of the faulting service.

	
For more information see Section 27.7.3.1, "FaultMessage Element."

27.7.3.1 FaultMessage Element

Table 27-5 discusses fault message elements.

Table 27-5 FaultMessage Elements

	Name	Purpose	Details
	
Code

	
Provides the error code.

	
This is the fault code that was received.

	
Text

	
Provides error details.

	
This describes the details of the fault.

	
Severity

	
Provides the severity of the error.

	
This is the severity of the fault expressed as an integer.

	
Stack

	
Provides the error stack.

	
This is the complete fault stack.

	
ApplicationFaultData

	
Enables the fault message to be extended to accept any kind of XML input.

	
Enables a fault message to be extended to include any kind of XML input, as decided by the implementation scenario.

For more information about extending fault messages, see Section 27.8, "Extending Fault Messages."

	
IntermediateMessageHop

	
Captures properties specific to a message in a multi-hop transaction.

	
Properties that are captured here can be used to support use cases implementing guaranteed message delivery and message recovery.

For more information about implementing guaranteed message delivery and message recovery, see Section 27.5, "Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message Delivery."

27.7.3.2 IntermediateMessageHop Elements

Figure 27-10 illustrates IntermediateMessageHop elements. Intermediate message hop elements are discussed in Table 27-6.

Figure 27-10 IntermediateMessageHop Elements

[image: This image is described in surrounding text]

Table 27-6 IntermediateMessageHop Elements

	Name	Purpose	Details
	
SenderResourceTypeCode

	
Used for storing the type of resource or system that is the sender of this message in the multi-hopping messaging layer.

	
Example values of this element are Queue, Topic, or Resequence Store.

	
SenderResourceID

	
Provides identification of the resource or system associated with the SenderResourceTypeCode.

	
Identification of the resource or system associated with the SenderResourceTypeCode.

	
SenderMessageID

	
Provides message identification in the context of the resource or system associated with the SenderResourceTypeCode.

	
Message identification in the context of the resource or system associated with the SenderResourceTypeCode.

27.7.3.3 FaultingService Element

Table 27-7 discusses the FaultingService element.

Table 27-7 FaultingService Element

	Name	Purpose	Details
	
ID

	
Provides the date and time at which the service faulted.

	
This is the name of the faulting service.

	
ImplementationCode

	
Provides the possible corrective action for the fault.

	
This is a string describing the type of service that faulted. Possible values are BPEL, JAVA, and OTHER.

	
InstanceID

	
Provides the details of the actual fault message.

	
This is the instance ID of the faulted service. If the service is a BPEL process, this is the BPEL instance ID.

	
ExecutionContextID

	
Provides the value for the ECID.

	
This is an ID generated for a group of service invocations/executions.

27.8 Extending Fault Messages

This section includes the following topics:

	
Section 27.8.1, "Introduction to Extending Fault Messages"

	
Section 27.8.2, "Extending a Fault Message"

27.8.1 Introduction to Extending Fault Messages

When an error occurs within an integration flow, within a Mediator service or BPEL process, the Error Handling framework captures the error within a fault message. The fault message is made available in the error details within the Oracle BPM Worklist.

For information about using the Oracle BPM Worklist with Oracle AIA error handling, see "Using the Oracle BPM Worklist" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

Fault message content is defined by the FaultType message schema definition in Meta.xsd, which is located in \EnterpriseObjectLibrary\Infrastructure\V1\Meta.xsd. If your fault message requirements are not met by the default elements of the schema, you can use the ApplicationFaultMessage element included in the schema to extend the scope of the fault details captured in the message.

For more information about the fault message schema, see Section 27.7, "Describing the Oracle AIA Fault Message Schema."

Extending fault details can add functionally rich information to the fault message to help the integration flow consumer better understand the context of the fault, leading to more effective error resolution. These additional fault details can be used to enable extended error handling functionality as well.

For more information about extending error handling, see Section 27.9, "Extending Error Handling."

For example, you can enrich the fault message with Order Number and Fulfillment System values, which are required to perform extended error handling tasks that update Order tables and create new service requests in an Order Fallout Management application.

27.8.2 Extending a Fault Message

Extending a fault message uses the ApplicationFaultData element, highlighted in Figure 27-11, of type xsd:anyType in the FaultType message schema definition in Meta.xsd.

Figure 27-11 ApplicationFaultData Element Highlighted in Meta.xsd

[image: This image is described in surrounding text]

The ApplicationFaultData element is populated by a fault extension handler that you will configure to be invoked by the Error Handling Framework at runtime in the case of BPEL faults.

The input to the fault extension handler is the default fault message. The fault extension handler enriches the fault message with additional content defined by the ApplicationFaultData element. Control of the enriched fault message is passed from the fault extension handler to the Error Handling Framework, which then passes the fault message on to the Oracle AIA common error handler for further processing.

To extend a fault message:

	
Create a fault extension handler that will be invoked to enrich the fault message.

	
In the Error Extension Handler field on the Error Notifications page, enter the name of the error extension handler that will be invoked to extend the fault message. For example, enter ORDERFOEH_EXT for an Order Fallout error extension handler.

Based on the combination of error code, system code, service name, and process name parameters, the Error Handling framework checks to determine whether the error extension handler has a nondefault parameter defined.

If so, the framework locates the full classpath for the parameter in the AIAConfigurationProperties.xml file and makes a call out to that handler with the base fault message as input.

Within this error extension handler, the fault message will be enriched to accommodate custom content. It will then be sent back to the Error Handling framework for further processing.

For more information about the Error Notifications page, see "How to Set Up AIA Error Handling Configuration Details" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

	
Access the AIAConfigurationProperties.xml file in $AIA_HOME/aia_instances/$INSTANCE_NAME/AIAMetaData/config. Define a property name that matches the error extension handler name that you defined in step 2, as shown in Figure 27-12. The value for this property is the fully qualified class path of the handler.

Figure 27-12 Example Error Extension Handler Property and Value in AIAConfigurationProperties.xml

[image: This image is described in surrounding text]

It is through this class that the extension; Order Number and Fulfillment System values, for example; are added to the fault message using xsd:anyType in the ApplicationFaultData element in Meta.xsd.

	
Implement the IAIAErrorHandlerExtension interface in your error extension handler class registered in AIAConfigurationProperties.xml. Implement these methods:

	
handleCompositeSystemError for BPEL system errors

	
handleBusinessError for BPEL custom errors

Example 27-18 and Example 27-19 illustrate the interface structure.

Example 27-18 IAIAErrorHandler Interface Class

public interface IAIAErrorHandler
{
 /**
 *
 * @param ebmHeader
 * @param faultMessage
 */
 public void logErrorMessage(Element ebmHeader, String faultMessage);

 /**
 *
 * @param XMLELfaultMessage
 */
 public void logErrorMessage(XMLElement XMLELfaultMessage);

 /**
 *
 * @param ebmHeader
 * @param faultMessage
 */
 public void logErrorMessage(Node ebmHeader, String faultMessage);

 /**
 * @since FP 2.3
 * @param faultMessage
 * @param jmsCorrelationID
 */
 public void sendNotification(String faultMessage, String jmsCorrelationID,
 HashMap compositeDetailsHM);
}

Example 27-19 IAIAErrorHandlerExtension Interface Class

package oracle.apps.aia.core.eh;
public interface IAIAErrorHandlerExtension
{
 /**
 *
 * @param iFaultRecoveryContext
 * @param faultMessageConstructed
 * @param componentType
 * @return
 */
 public String handleCompositeSystemError(IFaultRecoveryContext iFaultRecoveryContext,
 String faultMessageConstructed,
 String componentType);

 /**
 *
 * @param faultMessageConstructed
 * @return
 */
 public String handleBusinessError(String faultMessageConstructed);
}

You can view extended field values in the error logs accessed in Oracle Enterprise Manager.

For more information about viewing error logs in Oracle Enterprise Manager, see "Using Trace and Error Logs" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

You should also be able to view them in email notifications if they have been configured appropriately.

For more information about customizing error notifications, see "Customizing Error Notification Emails" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

27.9 Extending Error Handling

This section includes the following topics:

	
Section 27.9.1, "Introduction to Extending Error Handling"

	
Section 27.9.2, "Implementing an Error Handling Extension"

This section provides an overview of error handling extension and discusses how to implement an error handling extension.

27.9.1 Introduction to Extending Error Handling

The default error handling behavior for BPEL and Mediator errors is to route fault messages to the Oracle AIA common error handler, which logs the error and delivers the fault messages to the Oracle AIA error topic. The default Oracle AIA error listener subscribes to this Oracle AIA error topic, picks up the fault message, and calls the error notification process, which issues a notification to the Oracle BPM Worklist if configured to do so.

For information about using the Oracle BPM Worklist with Oracle AIA error handling, see "Using the Oracle BPM Worklist" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

You can extend the Error Handling Framework to perform actions beyond these default behaviors.

For example, you may want a particular error to trigger default error-handling behavior, in addition to extended error handling behavior, such as updating a table and creating a new request in an application.

To implement an error-handling extension, extend fault messages to provide additional values.

For more information about extending fault messages, see Section 27.8, "Extending Fault Messages."

27.9.2 Implementing an Error Handling Extension

To implement an error handling extension:

	
On the Error Notifications page, enter an Error Type field value for an error code, system code, process name, and service name value combination.

For more information about the Error Notifications page, see "How to Set Up AIA Error Handling Configuration Details" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

The Error Handling Framework uses the Error Type value to stamp the JMSCorrelationID JMS header. The JMSCorrelationID is used by the custom error listener to identify fault messages that require its custom error handling.

	
Implement an error extension listener to subscribe to the Oracle AIA error topic.

Configure an error extension listener to filter fault messages based on the JMS Header - JMSCorrelationID value defined by the error type you created in step 1.

For example, you can create an Order Fallout error extension listener that picks up fault messages with the JMSCorrelationID value of ORDER_FO. For this example the Error Type field value defined on the Error Notifications page in step 1 should be ORDER_FO.

The Order Fallout error extension listener can then extract values from the fault message, extended to include Order Number and Fulfillment System values, for example. The error extension listener can then pass those values to an Order Fallout Management application, for example, which can use those values to update Order tables and create new service requests.

The extended error handling flow is illustrated in Figure 27-13.

Figure 27-13 Sample Extended Error Handling Flow Alongside a Default Error Handling Flow

[image: This image is described in surrounding text]

27.10 Configuring Oracle AIA Processes for Trace Logging

This section includes the following topics:

	
Section 27.10.1, "Describing Details of the isTraceLoggingEnabled Custom XPath Function"

	
Section 27.10.2, "Describing Details of the logTraceMessage Custom XPath Function"

	
Section 27.10.3, "Describing the Trace Logging Java API"

These custom XPath trace logging functions are available to BPEL and Mediator services operating in an Oracle AIA ecosystem.

	
aia:isTraceLoggingEnabled(String logLevel, String processName)

Determines whether trace logging is enabled for the service or at the overall system level.

	
aia:logTraceMessage(String level, Element ebmHeader, String message)

Generates the actual trace log.

When developing a BPEL or Mediator process, always call the aia:isTraceLoggingEnabled() function first. If it returns a true result, then have the process call the aia:logTraceMessage() function.

These log files are stored in the <aia.home>/logs/ directory.

In addition to these custom XPath functions, a Java API is also available so that any application developer can use it to log trace messages.

For more information about using trace logs, see "Using Trace and Error Logs" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

27.10.1 Describing Details of the isTraceLoggingEnabled Custom XPath Function

The isLoggingEnabled custom XPath function is a utility function that returns a Boolean result. The function signature is: aia:isTraceLoggingEnabled (String logLevel, String processName)

These are the parameter details:

	
logLevel

Possible values include:

	
Severe

	
Warning

	
Info

	
Config

	
Fine

	
Finer

	
Finest

	
processName

Name of the Oracle AIA service using this function.

27.10.2 Describing Details of the logTraceMessage Custom XPath Function

The logTraceMessage custom XPath function generates a trace message, which contains the details of the message to be included in the trace log.

This function accepts the EBM header and the verbose logging message as parameters. Various elements from the EBM header are used to populate supplemental attributes to the log message. If the EBM header is not passed, these supplemental attributes are set as empty strings.

The function signature is aia:logTraceMessage (String level, Element ebmHeader, String message). These are the parameter details:

	
level

Possible values include:

	
Severe

	
Warning

	
Info

	
Config

	
Fine

	
Finer

	
Finest

	
ebmHeader

EBM header.

	
message

Verbose text message to be logged.

27.10.3 Describing the Trace Logging Java API

In addition to the isTraceLoggingEnabled and logTraceMessage custom XPath functions, a trace Logging Java API is also available so that any application developer can log trace messages. These functions are available through the trace logging Java API.

One of the function signatures is AIALogger.isTraceLoggingEnabled (String logLevel, String processName). This function determines whether trace logging is enabled for the service or at the overall system level. These are the parameter details:

	
logLevel

Possible values include:

	
Severe

	
Warning

	
Info

	
Config

	
Fine

	
Finer

	
Finest

	
processName

Name of the Oracle AIA service using this function.

Another function signature is AIALogger.logTraceMessage (String level, Element ebmHeader, String message). This function generates the actual trace log. These are the parameter details:

	
level

Possible values include:

	
Severe

	
Warning

	
Info

	
Config

	
Fine

	
Finer

	
Finest

	
ebmHeader

EBM header.

	
message

Verbose text message to be logged.

2 Building AIA Integration Flows

This chapter introduces AIA integration flows and describes how to set up development and test environments. It discusses the role of the AIA Project Lifecycle Workbench and provides an overview of choosing of integration styles and AIA patterns. Finally, it provides a high-level overview of the development tasks for AIA artifacts and how to test integration flow.

	
Note:

Composite Business Processes (CBP) will be deprecated from next release. Oracle advises you to use BPM for modeling human/system interactions.

This chapter includes the following sections:

	
Section 2.1, "How to Set Up Development and Test Environments"

	
Section 2.2, "Role of AIA Project Lifecycle Workbench"

	
Section 2.3, "AIA Artifacts in Various Integration Styles"

	
Section 2.4, "Development Tasks for AIA Artifacts"

	
Section 2.5, "Testing an Oracle AIA Integration Flow"

2.1 How to Set Up Development and Test Environments

For AIA development and testing, the setup of development and test environments consists of the following activities:

	
Set up Oracle JDeveloper for AIA.

JDeveloper is the integrated development tool of choice.

For more information, see Section 2.1.1, "How to Set Up JDeveloper for AIA Development."

	
Set up Oracle Fusion Middleware for AIA.

The Oracle Fusion Middleware environment is for deploying the AIA service and artifacts and for running through all Quality Assurance test cases.

For more information, see Section 2.1.2, "How to Set Up the Oracle Fusion Middleware Environment for AIA Development."

	
Set up AIA Workstation.

AIA Workstation is the designated system where the AIA Foundation Pack is set up.

For more information, see Section 2.1.2, "How to Set Up the Oracle Fusion Middleware Environment for AIA Development."

2.1.1 How to Set Up JDeveloper for AIA Development

	
	Task 1 Set up JDeveloper for AIA development
	
	
Download and install JDeveloper 11.1.1.7 or above from http://www.oracle.com/technetwork/developer-tools/jdev/downloads/jdeveloper11117-1917330.html.

	
Install the SOA Composite Editor, AIA Code Compliance Inspector, and AIA Service Constructor JDeveloper extensions from the JDeveloper Update Center.

	
In JDeveloper, navigate to Help > Check for Updates. The Welcome screen displays. Click Next.

	
The Source screen displays. Select Search Update Centers. Select Oracle Fusion Middleware Products. Click Next.

	
The Updates screen displays. Select AIA Service Constructor, Integration Code Compliance Inspector, and Oracle SOA Composite Editor. Click Next.

	
The Updates screen displays the progress of the extension downloads. Once the downloads are complete, the Summary screen displays a confirmation of the extensions you have downloaded. Click Finish.

	
You will be prompted to restart JDeveloper to complete installation of the extensions. Click Yes. Upon restart, installation of your extensions is complete.

	
Note:

Alternatively, you can download extensions directly from http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/156082.xml and use the Install From Local File option on the Source screen to install them.

	
If you installed the AIA Service Constructor extension, download FreeMarker 2.3.16 or later. This tool is required by the AIA Service Constructor extension.

	
Download the FreeMarker template engine from http://www.freemarker.org.

	
Extract freemarker.jar from the downloaded tar.gz file and place it in your /jdeveloper/jdev/lib folder.

For more information about using Code Compliance Inspector, see Using the Code Compliance Inspector in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

For more information about using Service Constructor, see Chapter 4, "Working with Service Constructor."

	
	Task 2 Create a connection to the SOA Suite server
	
	
Create a connection to the SOA Suite server set up for AIA Development and test using these details after Oracle Fusion Middleware is set up.

For more information, see Section 2.1.2, "How to Set Up the Oracle Fusion Middleware Environment for AIA Development."

	
Connection name: <give a connection name for your application>.

	
Connection Type: use the default value - WebLogic 10.3.

	
Provide the username and password of your WebLogic server.

WebLogic Host name: <your server host name>.

	
Port: <your server port number>.

	
SSl port: <your server ssl port>.

	
WLS Domain: <provide your domain name where SOA server is installed>.

	
	Task 3 Create the database connection for SOA-MDS connection.
	
Create a connection to SOA MDS set up after Oracle Fusion Middleware is set up.

For more information, see Section 2.1.2, "How to Set Up the Oracle Fusion Middleware Environment for AIA Development."

	
From the Resource Palette, click New.

	
Select the New Connections and then select a Database.

	
Create a database connection using MDS DB credentials. Contact your administrator for details.

	
	Task 4 Create the SOA-MDS connection
	
	
From the Resource Palette, click New.

	
Select the New Connections and then select SOA-MDS.

	
Provide a connection name and select connection type as DB based MDS.

	
Select the DB connection you created in the previous step.

	
Select the MDS partition as SOA-Infra and Save.

	
	Task 5 Set up the Harvester utility
	
	
Download AIAHarvester.zip from $AIA_HOME/ Infrastructure/LifeCycle.

	
Unzip to a local folder. Use this to harvest the composites.

For more information about harvesting AIA content, see Chapter 5, "Harvesting Oracle AIA Content."

2.1.2 How to Set Up the Oracle Fusion Middleware Environment for AIA Development

The Oracle Fusion Middleware components used in the development environment depend on the topology of the development environment:

	
Oracle SOA Suite

Deploy and test AIA Services.

See Section 2.1.2.1, "Set Up Oracle SOA Suite."

	
Oracle Enterprise Repository (optional)

Test harvesting of AIA services and ensure that all required service annotations are in place.

See Section 2.1.2.2, "Set Up Oracle Enterprise Repository."

	
Oracle Service Registry (optional)

Test publishing of AIA services.

See Section 2.1.2.3, "Set Up Oracle Service Registry."

	
Oracle Business Process Publisher (optional)

Analyze the delivered AIA Reference Process Models.

See Section 2.1.2.4, "Set Up Oracle Business Process Publisher."

2.1.2.1 Set Up Oracle SOA Suite

	
Download Oracle SOA Suite 11.1.1.7 and install from http://www.oracle.com/technology/products/soa/soasuite/collateral/downloads.html.

	
Deploy AIA Foundation Pack artifacts from AIA Workstation.

For more information, see Section 2.1.3.17, "How to Deploy AIA Foundation Pack Artifacts to Oracle SOA Suite Server."

2.1.2.2 Set Up Oracle Enterprise Repository

	
Download Oracle Enterprise Repository and install from http://www.oracle.com/technetwork/middleware/repository/downloads/index.html.

	
Import AIA SOA portfolio Oracle Enterprise Repository Solution Pack.

For more information, see Chapter 12, "Configuring and Using Oracle Enterprise Repository as the Oracle AIA SOA Repository."

2.1.2.3 Set Up Oracle Service Registry

Download Oracle Service Registry and install from http://www.oracle.com/technetwork/middleware/registry/downloads/index.html.

2.1.2.4 Set Up Oracle Business Process Publisher

Oracle Business Process Publisher is installed as part of the AIA Foundation Pack install.

2.1.3 How to Set Up AIA Workstation

AIA Workstation is a dedicated system set up to drive AIA development. Install the AIA Foundation Pack on this system and set up the AIA Project Lifecycle Workbench from the AIA Foundation Pack.

This section includes the following topics:

	
Section 2.1.3.1, "Prerequisites"

	
Section 2.1.3.2, "How to Install AIA Foundation Pack"

	
Section 2.1.3.3, "Updating SOA MDS with AIA MetaData"

	
Section 2.1.3.4, "Using MDS in AIA"

	
Section 2.1.3.5, "Content of $AIA_HOME/AIAMetaData"

	
Section 2.1.3.6, "Working with AIA Components Content in $AIA_HOME/AIAMetaData"

	
Section 2.1.3.7, "How to Change an Existing File"

	
Section 2.1.3.8, "How to Create File"

	
Section 2.1.3.9, "How to Work with AIAConfigurationProperties.xml in $AIA_HOME/aia_instances/$INSTANCE_NAME/AIAMetaData/config"

	
Section 2.1.3.10, "How to Add a New Property to AIAConfigurationProperties.xml"

	
Section 2.1.3.11, "How to Work with AIAEHNotification.xml in $AIA_HOME/aia_instances/$INSTANCE_NAME/AIAMetaData/config"

	
Section 2.1.3.12, "How to Work with Domain Value Maps in $AIA_HOME/AIAMetaData/dvm"

	
Section 2.1.3.13, "How to Work with Cross Reference (Xref) in $AIA_HOME/AIAMetaData/xref"

	
Section 2.1.3.14, "How to Work with Fault Policies in $AIA_HOME/AIAMetaData/faultPolicies/V1"

	
Section 2.1.3.15, "Updating MDS"

	
Section 2.1.3.16, "How to Set Up AIA Project Lifecycle Workbench"

	
Section 2.1.3.17, "How to Deploy AIA Foundation Pack Artifacts to Oracle SOA Suite Server"

	
Section 2.1.3.18, "How to Deploy AIA Service Artifacts to Oracle SOA Suite Server"

2.1.3.1 Prerequisites

	
Install 11g WebLogic Server with Oracle Application Development Framework.

	
Install 11g Database.

	
Install JDeveloper.

Hardware should be at least 2 CPU and 4 GB of RAM with a supported Operating System.

2.1.3.2 How to Install AIA Foundation Pack

To install AIA Foundation Pack:

	
Install the AIA Foundation Pack

For more information, see "Installing and Deploying Using AIA Foundation Pack Installer" in Oracle Fusion Middleware Installation and Upgrade Guide for Oracle Application Integration Architecture Foundation Pack.

	
Select the Copy AIA Software option.

	
The system creates $AIA_HOME and copies all the software to it.

When new artifacts are created as a part of development, copy them to a relevant folder in $AIA_HOME. If a separate source control is maintained for development, then content from the builds generated is expected to be copied to $AIA_HOME.

This enables content to take advantage of the features provided in AIA Project Lifecycle Workbench.

2.1.3.3 Updating SOA MDS with AIA MetaData

The content under $AIA_HOME/AIAMetaData provided as part of AIA Foundation Pack is uploaded to SOA-MDS. This content includes all the schemas, WSDLs, XSLs, domain value map (DVM) and Cross Reference meta information, default fault policies, AIAConfigurationProperties.xml, and AIAEHNotification.xml.

	
Note:

After any extensions or customizations on the artifacts in $AIA_HOME/AIAMetaData, copy back and upload the artifacts to SOA-MDS > apps/AIAMetaData.

When new artifacts similar to the ones in $AIA_HOME/AIAMetaData, are created as part of development, copy them to a relevant folder in $AIA_HOME/AIAMetaData to facilitate their upload to SOA-MDS > apps/AIAMetaData.

If a separate source control is maintained for all development, the content from the builds generated are expected to be copied to $AIA_HOME/AIAMetaData to facilitate uploading to SOA-MDS > apps/AIAMetaData.

2.1.3.4 Using MDS in AIA

Oracle Metadata Services (MDS) repository contains metadata for deployed J2EE applications, including SOA Suite on WLS.

Under a partition SOA-MDS created specifically for SOA, all SOA Composites (including AIA composites) are also stored upon deployment.

Under the same partition, the contents of $AIA_HOME/AIAMetaData are uploaded to SOA-MDS > apps/AIAMetaData.

The content and details of each set of metadata and how it is used by AIA is provided below. Also described is the process of creating new content or changing existing content.

Uploading the $AIA_HOME/AIAMetaData content to MDS is also described in Section 2.1.3.15, "Updating MDS."

2.1.3.5 Content of $AIA_HOME/AIAMetaData

AIA MetaData ($AIA_HOME/AIAMetaData) includes the following content:

AIAComponents - Presents the various schemas and WSDLs referred to by various services. The structure is as follows:

	
ApplicationConnectorServiceLibrary: Abstract WSDLs of various Application Business Connector Services (ABCSs)

	
ApplicationObjectLibrary: WSDLs of services exposed by applications and schemas of application business objects

	
B2BObjectLibrary: Business-to-business (B2B) schemas

	
B2BServiceLibrary: Abstract WSDLs of various B2B Connector Services (B2BCSs) and B2B Infrastructure Services

	
BusinessProcessServiceLibrary: Abstract WSDLs of Enterprise Business Flows (EBFs)

	
EnterpriseBusinessServiceLibrary: Abstract WSDLs of Enterprise Business Services (EBSs)

	
EnterpriseObjectLibrary: Schemas of the Oracle AIA Canonical Model

	
ExtensionServiceLibrary: Concrete WSDLs pointing to mirror servlet

	
InfrastructureServiceLibrary: Abstract WSDLs of infrastructure services

	
Transformations: XSLs shared among various services

	
UtilityArtifacts: Utility schemas and WSDLs

config: AIAConfigurationProperties.xml and AIAEHNotification.xml

dvm: Domain Value Maps

faultPolicies: Default policies applicable to all the services

xref: Metadata for Cross References

2.1.3.6 Working with AIA Components Content in $AIA_HOME/AIAMetaData

The AIA Components consist of Schemas, WSDLs, and XSLs shared among various AIA artifacts at runtime. Usage and purpose of each of these files is dealt with in detail in AIA artifact-specific chapters of this guide.

AIA Components Folder Structure

All the abstract WSDLs of various application connector services and adapter services are stored here. The folder structure convention followed is: ApplicationConnectorServiceLibrary.

AIAMetaData\AIAComponents\ApplicationConnectorServiceLibrary\<Application Name>\<Version Number>\<Service Type>

	
Possible values for <Version Number> are V1, V2, and so on.

	
Possible values for <Service Type> are:

	
RequesterABCS

	
ProviderABCS

	
AdapterServices

	
Possible values for <Application Name> are:

	
PeopleSoft

	
BRM

	
UCM

	
SAP

	
PIM

	
OracleRetail

	
Logistics

	
JDEE1

	
CRMOD

	
Agile

	
Ebiz

	
Siebel

	
Note:

The <Application Name> specified here is used in AIA Project Lifecycle Workbench in the definition of the bill of materials for deployment. It should match the <productCode> list of values in the Workbench.

Examples:

AIAMetaData/AIAComponents/ApplicationConnectorServiceLibrary/Siebel/V1/RequestorABCS

AIAMetaData/AIAComponents/ApplicationConnectorServiceLibrary/Siebel/V1/ProviderABCS

ApplicationObjectLibrary

All the WSDLs of the services exposed by the participating applications and the referenced schemas are stored in:

$AIA_HOME/AIAMetaData/AIAComponents/ApplicationObjectLibrary

Applications consume AIA requester service WSDLs. To avoid any need for transformation in the participating applications, the AIA requester services' WSDLs are developed referencing the external facing business object schemas of the participating applications. These schemas are also stored in:

$AIA_HOME/AIAMetaData/AIAComponents/ApplicationObjectLibrary.

The folder structure convention followed is:

ApplicationObjectLibrary/<Application Name>/<Version Number>/schemas

ApplicationObjectLibrary/<Application Name>/<Version Number>/wsdls

The possible values for <Application Name> and <Version Number> are as described in the previous section.

	
Note:

The <Application Name> specified here is used in AIA Project Lifecycle Workbench in the definition of the bill of materials for deployment.

Examples:

AIAMetaData/AIAComponents/ApplicationObjectLibrary/Siebel/V1/schemas

AIAMetaData/AIAComponents/ApplicationObjectLibrary/Siebel/V1/wsdls

B2BServiceLibrary

All of the abstract WSDLs of B2B Connector Services (B2BCSs) are stored in this location.

Requester B2BCS WSDLs are stored under $AIA_HOME/AIAMetaData/AIAComponents/B2BServiceLibrary/Connectors/wsdls.

The folder structure convention followed is: B2BServiceLibrary/Connectors/wsdls/<B2BStandard>/RequesterB2BCS/<ConnectorVersion>/*.wsdl.

Provider B2BCS WSDLs are stored under $AIA_HOME/AIAMetaData/AIAComponents/B2BServiceLibrary/Connectors/wsdls.

The folder structure convention followed is: B2BServiceLibrary/Connectors/wsdls/<B2BStandard>/ProviderB2BCS/<ConnectorVersion>/*.wsdl.

Other abstract WSDLs of reusable infrastructure services are stored under $AIA_HOME/AIAMetaData/AIAComponents/B2BServiceLibrary/Infrastructure/<ServiceVersion>/.

BusinessProcessServiceLibrary

All the abstract WSDLs of Composite Business Processes and Enterprise Business Flows are stored in:

$AIA_HOME/AIAMetaData/AIAComponents/ BusinessProcessServiceLibrary

The folder structure convention followed is:

BusinessProcessServiceLibrary/<Service Type>

The possible values for <Service Type> are CBP and EBF.

Example:

AIAMetaData/AIAComponents/BusinessProcessServiceLibrary/CBP

AIAMetaData/AIAComponents/BusinessProcessServiceLibrary/EBF

EnterpriseBusinessServiceLibrary

Part of Oracle AIA Canonical Model

All the abstract WSDLs of Enterprise Business Services are stored in:

$AIA_HOME/AIAMetaData/AIAComponents/EnterpriseBusinessServiceLibrary

EnterpriseObjectLibrary

Part of Oracle AIA Canonical Model

All the schema modules of the Enterprise Object Library are stored in:

$AIA_HOME/AIAMetaData/AIAComponents/EnterpriseObjectLibrary

ExtensionServiceLibrary

All the concrete WSDLs pointing to mirror servlet are stored in:

$AIA_HOME/AIAMetaData/AIAComponents/ExtensionServiceLibrary

The folder structure convention followed is:

ExtensionServiceLibrary/<Application Name>

The possible values for <Application Name> are described in the AIA Components Folder Structure section.

	
Note:

The <Application Name> specified here is used in AIA Project Lifecycle Workbench in the definition of the bill of materials for deployment.

Examples:

AIAMetaData/AIAComponents/ExtensionServiceLibrary/Siebel

InfrastructureServiceLibrary

All the abstract WSDLs of infrastructure services are stored in:

$AIA_HOME/AIAMetaData/AIAComponents/InfrastructureServiceLibrary

The folder structure convention followed is:

InfrastructureServiceLibrary/<Version Number>

Example:

AIAMetaData/AIAComponents/InfrastructureServiceLibrary/V1

Transformations

All the XSLs shared among various AIA services are stored in:

$AIA_HOME/AIAMetaData/AIAComponents/Transformations

The folder structure convention followed is:

Transformations/<Application Name>/<Version>

The possible values for <Application Name> and <Version Number> are described in the AIA Components Folder Structure section.

	
Note:

The <Application Name> specified here is used in AIA Project Lifecycle Workbench in the definition of the bill of materials for deployment.

Example:

AIAMetaData/AIAComponents/Transformations/Siebel/V1

UtilityArtifacts

All the Utility schemas and WSDLs are stored in:

$AIA_HOME/AIAMetaData/AIAComponents/UtilityArtifacts

The folder structure convention followed is:

UtilityArtifacts/schemas

UtilityArtifacts/wsdls

2.1.3.7 How to Change an Existing File

To change an existing file:

	
From JDeveloper, open the relevant file by browsing to AIAWorkstation/$AIA_HOME/AIAMetaData/AIAComponents/<Path to file>

	
Make modifications. Review the upgrade safe extensibility guidelines provided in AIA artifact-specific chapters of the guide.

	
Save.

	
Upload to SOA-MDS > apps/AIAMetaData/AIAComponents. Refer to Section 2.1.3.15, "Updating MDS."

2.1.3.8 How to Create File

To create a file:

	
In JDeveloper, create a file following the design and development guidelines provided in AIA artifact-specific chapters of the guide.

	
Copy the file to AIAWorkstation/$AIA_HOME/AIAMetaData/AIAComponents/<Path to file>.

	
Note:

Place the file in this folder.

	
Upload to SOA-MDS > apps/AIAMetaData/AIAComponents. Refer to Section 2.1.3.15, "Updating MDS."

Accessing the Files in the AIA Components Folder

Use the following protocol to access the AIA Components content from all the AIA service artifacts at design time and runtime:

oramds:/apps/AIAMetaData/AIAComponents/<Resource Path Name>

Example:

oramds:/apps/AIAMetaData/AIAComponents/ApplicationObjectLibrary/SampleSEBL/schemas/CmuAccsyncAccountIo.xsd

	
Note:

All of the files in the AIA Components folder use relative paths to refer to other files in the AIA Components folder, if needed.

The WSDLs in the Enterprise Business Service Library use relative paths to refer to schemas in the Enterprise Object Library.

2.1.3.9 How to Work with AIAConfigurationProperties.xml in $AIA_HOME/aia_instances/$INSTANCE_NAME/AIAMetaData/config

AIA provides external configuration properties to influence the run-time behavior of system, infrastructure components, and services. These properties are provided as name-value pairs at the system, module, and service levels in AIAConfigurationProperties.xml.

The AIAConfigurationProperties.xml supports two types of configurations:

	
System level, including module level

Contains system-level configuration name-value pairs and module-level configuration name-value pairs within the system level.

	
Service level

Contains service-specific configuration name-value pairs.

The following XPath functions are provided to access the configuration name-value pairs in the AIAConfigurationProperties.xml:

	
aiacfg:getSystemProperty (propertyName as string, needAnException as boolean) returns propertyValue as string

	
aiacfg:getSystemModuleProperty (moduleName as string, propertyName as string, needAnException as boolean) returns propertyValue as string

	
aiacfg:getServiceProperty (EBOName as string, serviceName as string, propertyName as string, needAnException as boolean) returns propertyValue as string

"getSystemModuleProperty()" and "getServiceProperty()" functions first look for the appropriate module and service property and if it is not found, they then look for a system property with the same property name.

In all three functions, if a matching property is not found, the result depends upon the value of the needAnException argument. If need AnException is true, then a PropertyNotFound Exception is thrown; otherwise, an empty string is returned.

2.1.3.10 How to Add a New Property to AIAConfigurationProperties.xml

To add a new property to AIAConfigurationProperties.xml:

	
From JDeveloper, open the file AIAConfigurationProperties.xml by browsing to AIAWorkstation/$AIA_HOME/aia_instances/$INSTANCE_NAME/AIAMetaData/config.

	
Make modifications, as needed in AIA artifact development.

	
Save.

	
Upload to SOA-MDS > apps/AIAMetaData/config. Refer to Section 2.1.3.15, "Updating MDS."

	
From the AIA Home Page, click Go in the Setup area. Select the Configuration tab to access the Configuration page. Click Reload to refresh the AIA Configuration cache.

2.1.3.11 How to Work with AIAEHNotification.xml in $AIA_HOME/aia_instances/$INSTANCE_NAME/AIAMetaData/config

This file is the template of the email notification sent as a part of the Error Handling Framework.

To modify the AIAEHNotification.xml:

	
From JDeveloper, open the file AIAEHNotification.xml by browsing to AIAWorkstation/$AIA_HOME/aia_instances/$INSTANCE_NAME/AIAMetaData/config.

	
Modify as needed.

	
Save.

	
Upload to SOA-MDS > apps/AIAMetaData/config. Refer to Section 2.1.3.15, "Updating MDS."

2.1.3.12 How to Work with Domain Value Maps in $AIA_HOME/AIAMetaData/dvm

The Domain Value Maps utility is a feature of Oracle SOA Suite. It supports the creation of static value maps and provides the custom XPath function:

dvm:lookupValue("oramds:/apps/AIAMetaData/dvm/<DVM Map Name>",<Source Column>,<Source Column Value>,<Target Column>,"")

For more information about DVMs, see Section 26.4, "Working with DVMs and Cross-References."

The DVMs are used by all the AIA Pre-Built Integrations and are shipped as part of AIA Foundation Pack. They are stored in $AIA_HOME/AIAMetaData/dvm.

To modify the Domain Value Maps:

	
From JDeveloper, open the DVM file by browsing to AIAWorkstation/$AIA_HOME/AIAMetaData/dvm.

	
Modify as needed.

	
Save.

	
Upload to SOA-MDS > apps/AIAMetaData/dvm. Refer to Section 2.1.3.15, "Updating MDS."

2.1.3.13 How to Work with Cross Reference (Xref) in $AIA_HOME/AIAMetaData/xref

The Cross Reference utility is a feature of Oracle SOA Suite. It supports the creation of dynamic values.

For more information about cross references, see "Working with Cross References" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

The Cross Reference meta information as used by all the AIA Process Integration Packs are shipped as part of AIA Foundation Pack and are stored in $AIA_HOME/AIAMetaData/xref.

To modify the Cross Reference metadata:

	
From JDeveloper, open the Cross Reference file by browsing to AIAWorkstation/$AIA_HOME/AIAMetaData/xref.

	
Modify as needed.

	
Save.

	
Upload to SOA-MDS > apps/AIAMetaData/xref. Refer to Section 2.1.3.15, "Updating MDS."

2.1.3.14 How to Work with Fault Policies in $AIA_HOME/AIAMetaData/faultPolicies/V1

The default fault policy file "fault-bindings.xml" is shipped as part of AIA Foundation Pack and is stored in $AIA_HOME/AIAMetaData/faultPolicies/V1.

To modify the "fault-bindings.xml":

	
From JDeveloper, open the fault-bindings.xml file by browsing to AIAWorkstation/$AIA_HOME/AIAMetaData/faultPolicies/V1.

	
Modify as needed.

	
Save.

	
Upload to SOA-MDS > apps/AIAMetaData/faultPolicies/V1. Refer to Section 2.1.3.15, "Updating MDS."

2.1.3.15 Updating MDS

	
Note:

Repeat this procedure every time a file is added to MDS.

To update SOA-MDS > apps/AIAMetaData:

	
Browse to the folder at $AIA_HOME/aia_instances/$INSTANCE_NAME/bin.

	
Source the file aiaenv.sh by executing the following command:

source aiaenv.sh

	
Browse to the folder at $AIA_HOME/aia_instances/$INSTANCE_NAME/config and open the deployment plan file, UpdateMetaDataDP.xml.

	
Update the file UpdateMetaDataDP.xml by inserting include tags for each resource group that you want to add to the MDS:

	
To upload all the files under "AIAMetaData", add the following:

<include name ="**"/>

	
To upload the files copied to "AIAComponents/ApplicationObjectLibrary/SEBL/schemas" folder, add the following:

<include name ="AIAComponents/ApplicationObjectLibrary/SEBL/schemas/**"/>

	
Note:

In the include tag, the folder path must be relative to the folder AIAMetaData.

	
Browse to AIA_HOME/Infrastructure/Install/config. Execute the script UpdateMetaData.xml by typing the command:

ant -f UpdateMetaData.xml

	
Note:

MetaData gets deleted when you uninstall Foundation Pack. For specific instruction on how to clean the MDS after you uninstall Foundation Pack, see "Cleaning the MDS" in Oracle Fusion Middleware Installation and Upgrade Guide for Oracle Application Integration Architecture Foundation Pack.

2.1.3.16 How to Set Up AIA Project Lifecycle Workbench

The AIA Project Lifecycle Workbench application is set up on the AIA Workstation. All the members of the AIA implementation team developing services use the AIA Project Lifecycle Workbench.

For more information about setting up AIA Project Lifecycle Workbench, see "Setting up AIA Roles" in Oracle Fusion Middleware Installation and Upgrade Guide for Oracle Application Integration Architecture Foundation Pack.

2.1.3.17 How to Deploy AIA Foundation Pack Artifacts to Oracle SOA Suite Server

For more information about deploying AIA Foundation Pack artifacts to the Oracle Fusion Middleware-SOA server set up for AIA development, see "Installing and Deploying Using AIA Foundation Pack Installer" in Oracle Fusion Middleware Installation and Upgrade Guide for Oracle Application Integration Architecture Foundation Pack.

2.1.3.18 How to Deploy AIA Service Artifacts to Oracle SOA Suite Server

Define an AIA project in the AIA Project Lifecycle Workbench and capture meta information for all of the AIA service artifacts to be developed. The system uses this information to generate a deployment plan specific to the AIA project.

For more information about deploying all the AIA Project artifacts using a deployment plan generated from AIA Project Lifecycle Workbench to the Oracle Fusion Middleware-SOA server set up for AIA development, see Chapter 8, "Generating Deployment Plans and Deploying Artifacts."

2.2 Role of AIA Project Lifecycle Workbench

An AIA project is about engineering service-oriented business processes. The outcome of business process analysis and reengineering is taken as input, leading to conceptualization of service, planning, development, deployment and support paradigms of a typical SOA project.

The AIA Project Lifecycle flow consists of the following phases:

	
Business Process Modeling and Analysis

	
Business Process Decomposition and Service Conception

	
Service Design and Construction

	
Installation and Deployment

Figure 2-1 illustrates the AIA project lifecycle flow showing the six phases and the actors involved in each phase.

Figure 2-1 AIA Project Lifecycle Flow: Phases and Actors

[image: The image is described in the surrounding text]

2.2.1 Introduction to the Tools Used

The following tools support the entire lifecycle of the an AIA project:

	
Oracle Business Process Publisher

	
Oracle Enterprise Repository

	
AIA Service Constructor plugin in JDeveloper

	
Oracle Enterprise Repository and AIA Harvester

	
AIA Deployment Plan Generator

	
AIA Project Lifecycle Workbench

Oracle Business Process Publisher

Use the Oracle Business Process Publisher to analyze the Reference Process Models delivered as part of Foundation Pack.

For more information about Reference Process Models, see Oracle Fusion Middleware Reference Process Models User's Guide for Oracle Application Integration Architecture Foundation Pack.

Oracle Enterprise Repository

Oracle Enterprise Repository is the design-time repository for governing design-time and run-time assets to achieve reuse and sharing across the distributed development community. Oracle Enterprise Repository provides:

	
Visibility - From design time to runtime, captures and maintains metadata, relationships, categories, and so on.

	
Control - Manages development lifecycle transition from concept, through implementation, to release.

	
Evolution - Empowers customers to evolve their business and integration processes.

For more information about Oracle Enterprise Repository, see Chapter 12, "Configuring and Using Oracle Enterprise Repository as the Oracle AIA SOA Repository."

AIA Service Constructor

The AIA Service Constructor is an Oracle JDeveloper plug-in to generate composites conforming to AIA guidelines and naming standards. It also provides guidance for annotating the artifacts to support governance.

For more information about the AIA Service Constructor, see Chapter 4, "Working with Service Constructor."

AIA Harvester Tool

The AIA Harvester parses the AIA service artifacts and captures metadata into the AIA Project Lifecycle Workbench database and the Oracle Enterprise Repository, if used. The system uses this information to generate deployment plans.

AIA leverages Oracle Enterprise Repository to achieve SOA visibility. Oracle Enterprise Repository is an optional component to AIA installation and execution.

AIA Harvester is built on top of the Oracle Enterprise Repository Harvester Extension Framework. It introspects SOA artifacts and publishes their ensuing metadata into the Project Lifecycle Workbench back end or Oracle Enterprise Repository (optional), or both, to aid governance and downstream automation. In AIA, the AIA Harvester is provided in the form of command-line utility. Users may download and set up on their local development environment.

For more information about AIA Harvester, see Chapter 5, "Harvesting Oracle AIA Content."

AIA Project Lifecycle Workbench

The AIA Project Lifecycle Workbench is installed on the AIA Workstation and helps drive the AIA Project Lifecycle flow.

For more information about the AIA Project Lifecycle Workbench, see Chapter 3, "Working with Project Lifecycle Workbench."

Deployment Plan Generator

The deployment plan has all the details for the artifacts in an AIA project to be deployed. The AIA Deployment Driver takes the deployment plan as input and deploys all the artifacts on Oracle Fusion Middleware servers and updates the end point information back into Oracle Enterprise Repository.

It also facilitates publishing this information into Oracle Service Registry.

For more information about the Deployment Plan Generator, see Chapter 8, "Generating Deployment Plans and Deploying Artifacts."

2.2.2 Introduction to the Business Process Modeling and Analysis Phase

Business Process Models are blueprints of the work accomplished in an enterprise to add value and deliver to customers. The models represent the ideal way work should be carried out with optimal cost at highest possible efficiencies.

The analysis of these models and categorizing them into business processes, business activities, and tasks is done by Business Analysts. The result of this analysis is a set of reusable business activities and tasks, which can be woven into different business processes.

In this phase, Business Analysts identify and catalog the set of reusable business activities and tasks for the business processes. Business Analysts also establish the Key Performance Indicators (KPIs) that are to be met. They use the Oracle BPA Suite to analyze the AIA Reference Process Models and identify the business processes, business activities, and tasks to be implemented.

Business Analysts define the project and provide details of solutions needed.

For more information about reference process models in Oracle AIA, see the Oracle Fusion Middleware Reference Process Models User's Guide for Oracle Application Integration Architecture Foundation Pack.

For more information about the AIA Project Lifecycle Workbench, see Chapter 3, "Working with Project Lifecycle Workbench."

2.2.3 Introduction to the Business Process Decomposition and Service Conception Phase

Each of the business activities and tasks can be described in terms of business entities involved and the action being performed with them. The origins of the service definition are in the categorization of reusable business activities and tasks.

	
Examples of business entities are Customer, Product, Order, and so on.

	
Examples of tasks are Create Customer, Update Order, Enter Service Request, Request Account Balance, and so on.

	
Examples of business activities are Do Customer Credit Check, Fulfill Order, Process Trouble Ticket, and so on.

The EBSs defined as AIA artifacts represent the business activities and tasks. The metadata about the EBSs are available in Oracle Enterprise Repository after loading the AIA Solution Pack.

Various business activities and tasks defined in AIA Reference Process Models provide links to the corresponding EBSs in the Oracle Enterprise Repository.

Solution Architects refine the projects defined by business analysts, identify the services available, create definitions for new services to be developed, and engage with developers to drive the design of new services.

For more information about the Project Lifecycle Workbench, see Chapter 3, "Working with Project Lifecycle Workbench."

2.2.4 Introduction to the Service Design and Construction Phase

During the service construction phase, Developers extend available AIA services, if needed, or design and develop new services.

The tasks of this phase are supported by the following tools:

	
The service solution components defined in the Project Lifecycle Workbench provide guidance to developers about the fine-grained services they must create to fulfill the functionality of a task.

For more information about Project Lifecycle Workbench, see Chapter 3, "Working with Project Lifecycle Workbench."

	
The Service Constructor enables developers to automatically generate AIA-compliant SCA composites for ABCSs.

For more information about Service Constructor, see Chapter 4, "Working with Service Constructor."

	
The Composite Application Validation System (CAVS) supports process and service testing.

For more information about CAVS, see "Preparing to Use the Composite Application Validation System" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

	
The error handling framework augments SCA exception management and retries.

For more information about error handling, see "Setting Up Error Handling" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

2.2.5 Introduction to the Deployment Plan Generation Phase

After composites are constructed, installation developers select desired composites that collectively perform a required functionality. An AIA project is a collection of functionally related composites. Each composite is self-contained in that its deployment information (such as adapters, queues, schemas, and JDNI resources) is fully specified by its developer during the preceding service construction stage.

The installation developer creates an AIA project specific deployment plan by aggregating deployment information from all composites that form an AIA project. The developer may choose to use the Deployment Plan Generator to automatically generate process deployment plans.

For more information about error handling and logging, see Chapter 8, "Generating Deployment Plans and Deploying Artifacts."

2.2.6 Introduction to the Install and Deploy Phase

The AIA Installer helps to deploy an AIA project release into your development environment. The AIA Installer makes all AIA composites and other artifacts available to target environments. It deploys the composites and other artifacts specified in your selected deployment plan. It also publishes assets to a SOA repository and registry, respectively.

For more information about the AIA Installer, see the Oracle Fusion Middleware Installation and Upgrade Guide for Oracle Application Integration Architecture Foundation Pack.

2.3 AIA Artifacts in Various Integration Styles

AIA Architecture recommends variety of integration styles and AIA patterns to enable the flight of a message in an Integration Flow.

AIA implementation teams should evaluate the following points to choose an integration style and methodology to follow when creating various AIA artifacts.

Business Scenario - The Functional Design Document (FDD) describes the Business Scenario and provides:

	
A detailed description of the business case.

	
Various use cases detailing the various usage scenarios, including exception cases with expected actions by various actors.

	
Details about all the participating applications - commercial, off-the-shelf with versions and homegrown.

	
Details about the triggering business events.

	
Details about the functional flow.

	
Details about performance and scalability requirements.

	
Details about business objects to be used.

	
Actions to be performed on the various business objects.

	
Oracle tools and technologies to be leveraged.

The AIA artifacts that are required for the collaboration between the applications or functions are dependent on the integration style adopted for an integration flow. These artifacts include ABCSs, EBSs, EBFs, CBPs, and various adapter services.

The AIA Project Lifecycle Workbench is used to define an AIA Project, which contains definitions of all the artifacts to be designed, developed, tested, packaged, and delivered.

2.3.1 Integration Through Native Application Interfaces Using the Oracle Applications Technology Infrastructure

In this style, messages flow from the requester application to the providing application. The mode of connectivity could be SOAP/HTTP, queues, topics, or native adapters.

No middleware is involved in this integration.

The requester application must establish the connectivity with the provider applications. The requester application is responsible for sending the request in the format mandated by provider's API and interpreting the response sent by the provider. Requester and provider applications are responsible for the authentication and authorization of requests.

The integration flow consists of individual application functions interacting directly. All capabilities required to make this interaction possible must be available or made available in the individual applications.

Figure 2-2 illustrates how a requester application interacts directly with a provider application.

Figure 2-2 Example of a Requester Application Interacting Directly with a Provider Application

[image: The image is described in the surrounding text]

In more complex situations, when the integration flow consists of multiple steps involving interactions with multiple applications, leverage the workflow-like capability in one or more applications.

No AIA artifacts are built in this case. Establish direct connectivity between applications.

For more information about different modes of connectivity, see Chapter 24, "Establishing Resource Connectivity."

2.3.2 Understanding Integration Styles with Integration Framework

In all the integration styles with integration framework, middleware technologies are leveraged. The applications push the messages to the middleware, and the middleware pushes the messages to the target applications.

These integration styles have integration framework:

	
Integration flow leveraging provider services

	
Integration flow leveraging provider services with canonical model-based virtualization

The AIA service artifacts needed for implementing an integration flow in any of the integration styles with integration framework depends on:

	
Complexity of data exchange

	
No processing logic

	
With processing logic

	
Message exchange pattern

	
Synchronous request-response

	
Asynchronous one-way (fire-and-forget) - Need for guaranteed delivery assumed

	
Asynchronous request-delayed response - Need for guaranteed delivery and correlation of response assumed

These AIA service artifacts are defined in AIA Architecture:

	
CBP

	
EBSs

	
EBFs

	
ABCSs

	
Adapter Services

	
JMS Producer and JMS Consumer

	
JCA Adapter Service

For more information about different message exchange patterns, see Chapter 14, "Designing and Developing Enterprise Business Services" and Chapter 28, "Working with AIA Design Patterns."

For more information about different AIA service artifacts and Oracle SOA Suite components used to implement them, see Oracle Fusion Middleware Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation Pack.

	
Note:

In the following sections, for each integration style with integration framework, the AIA artifacts to be developed are recommended for a combination of situations.

2.3.2.1 Integration Flow with Requester Application Services

The requester application invokes a single AIA service on the middleware. The request presented by the requester application is fulfilled by the AIA service by invoking suitable APIs in the provider applications. The AIA service can accept a message in the requester application format. The AIA service presents the request to the provider applications in the format mandated by the provider's API. The AIA service accepts the response in the provider application format, if needed. The AIA service is responsible for the authentication and authorization of the requests.

The integration flow consists of this single AIA service artifact deployed on the middleware managing all interactions with all participating applications.

Figure 2-3 illustrates how a service deployed on the middleware enables integration between the requester and the provider application.

Figure 2-3 Example of Integration Flow with Native Application Services

[image: The image is described in the surrounding text]

For more complex situations in which the integration flow consists of multiple steps involving interactions with multiple applications, the AIA service implements a workflow-like capability and manages all interactions with all the participating applications.

The AIA service artifacts to be developed depend on the complexity of data exchange and various message exchange patterns.

Table 2-1 lists suitable AIA artifacts for a combination of situations.

Table 2-1 AIA Artifacts for Integration Flows with Requester Application Services

	Message Pattern	No Processing Logic	With Processing Logic
	
Synchronous Request Response

	
EBS

	
EBF

	
Asynchronous One-Way

	
EBS

	
EBF

	
Asynchronous Request-Delayed Response

	
EBS - Request

EBS - Response

	
EBF

2.3.2.2 Direct Integration Through Application Web Services

A provider application-specific AIA service, exposing a coarse-grained functionality of the provider application leveraging one or more APIs, is created with a suitable provider application-specific interface. Several business initiators can invoke this AIA service. If the business initiators cannot present the request in the format understood by the provider application-specific AIA service, a requester application-specific AIA service is used to transform the business initiator request to the provider application format. The requester application-specific AIA service is responsible for authenticating and authorizing the requests. The provider application-specific AIA service propagates the authentication and authorization information of the requests to the provider application.

The integration flow would consist of a requester application-specific AIA service artifact deployed on the middleware managing all interactions with all provider application-specific AIA services.

Figure 2-4 illustrates how a service deployed on the middleware enables the integration between the requester and the provider application.

Figure 2-4 Example of Integration Flow Leveraging Provider Services

[image: The image is described in the surrounding text]

For more complex situations in which the integration flow involves interactions with multiple applications, the requester application-specific AIA service implements a workflow-like capability and manages all interactions with all the provider application-specific AIA services.

The AIA service artifacts to be developed depend on the complexity of data exchange and various message exchange patterns.

Table 2-2 lists suitable AIA artifacts for a combination of situations.

Table 2-2 AIA Artifacts for Leveraging Provider Services

	Message Pattern	No Processing Logic	With Processing Logic
	
Synchronous Request Response

	
Requester ABCS

Provider ABCS

	
Requester ABCS

Provider ABCS

	
Asynchronous One-Way

	
Requester ABCS

Provider ABCS

	
Requester ABCS

Provider ABCS

	
Asynchronous Request-Delayed Response

	
Requester ABCS

Provider ABCS

	
Requester ABCS

Provider ABCS

2.3.2.3 Integration Through Packaged Canonical and Standardized Interfaces

Loose coupling through a canonical (application-independent) model is a sign of a true SOA. Participating applications in loosely coupled integrations communicate through a virtualization layer. Instead of direct mappings between data models, transformations are used to map to the canonical data model. While this allows for greater reusability, the transformations both increase the message size and consume more computing resources. For functional integrations, this integration pattern is ideal since the reusability gained is worth the slight overhead cost.

In this case, an EBS based on the Enterprise Business Objects (EBOs) and Enterprise Business Messages (EBMs) is created as a mediator service.

A provider service, exposing a coarse-grained functionality of the provider application leveraging one or more APIs, is created with the same EBM interface as the EBS operation interface.

If the business initiators cannot present the request in the format understood by the EBS operation interface, a requester service is used to transform the business initiator request into the provider service format.

Figure 2-5 illustrates how the request sent by the source application is processed by the target application with the help of the EBS and a set of intermediary services. The request and provider transport services are optional and are needed only in case of non-SOAP-based transports.

Figure 2-5 Example Showing Canonical Model-based Virtualization

[image: The image is described in the surrounding text]

For more complex situations in which the integration flow involves interactions with multiple applications, the requester application-specific AIA service presents its request to the mediator AIA service. The mediator AIA service triggers an AIA service, which implements a workflow-like capability and manages all interactions with all the provider application-specific AIA services through mediator AIA services. In this case, the mediator AIA service interface chosen is assumed to be accepted as the common interface. Thus, all requester application-specific AIA services invoke this mediator AIA service, and all the provider application-specific AIA services implement this common interface. The AIA service artifacts to be developed depend on the complexity of data exchange and various message exchange patterns.

Table 2-3 lists suitable AIA artifacts for a combination of situations.

Table 2-3 AIA Artifacts for Integration Flows with Multiple Application Interactions

	Message Pattern	No Processing Logic	With Processing Logic
	
Synchronous Request Response

	
Requester ABCS

EBS

Provider ABCS

	
Requester ABCS

EBS

Provider ABCS

	
Asynchronous One-Way

	
Requester ABCS

EBS

Provider ABCS

	
CBP

Requester ABCS

EBS

EBF

Provider ABCS

	
Asynchronous Request-Delayed Response

	
Requester ABCS

EBS

Provider ABCS

	
CBP

Requester ABCS

EBS

EBF

Provider ABCS

2.3.3 Bulk Data Processing

Bulk data processing involves a large batch of discrete records or records with very large data. The methodology is point-to-point integration specializing in the high-performance movement of data with a trade-off of reusability.

Bulk data processing is about persistent data replicated across multiple applications. The integrations fall into four styles:

	
Initial data loads

	
High-volume transactions with Xref table

	
Intermittent high-volume transactions

	
High-volume transactions without Xref table

For complete details about using bulk data processing with AIA, see Chapter 25, "Using Oracle Data Integrator for Bulk Processing."

2.3.4 Integration Style Choice Matrix

In any AIA implementation, a variety of integration flows conforming to different integration styles coexist. Integration flows represent processing of messages by AIA services deployed to deliver the business functionality desired.

The choice of an integration style influences the design of AIA services. Conversely, decisions about the design of AIA services lead to a particular integration style.

Various aspects of AIA service design are:

	
Service Granularity

Decide on the functionality to be implemented in a service either based on the business logic needed for a business activity or task (the result of business process analysis) or based on the functions exposed by a provider application.

Service granularity is Coarse-Grained if the business logic conforms to the requirements of a business activity or task (result of business process analysis of AIA Reference Process Models). In this case, the service is implemented by invoking multiple low APIs of the provider application.

Service granularity is Granular if the business logic conforms to the low-level functions exposed by the provider application.

	
Service Reusability

Service reuse is High for different Integration Flows if its design is modular and built for the requirements of various business use cases. Conformance to the requirements of a business activity or task (the result of business process analysis of AIA Reference Process Models) leads to modular design.

If the service is built to meet the requirements of a particular business use case, then the logic is monolithic and reuse is Low.

	
Service Virtualization

This aspect provides for separation of concerns and independence of requester applications and provider applications from changes. The choices are Yes or No.

	
Service Interoperability

The capability of diverse service implementations to interoperate is dependent on their conformance to WS-I standards, a common message meta model, and a robust versioning strategy. The AIA EBS WSDLs and AIA EBOs and EBMs provide this capability as delivered. For others, special effort is needed to ensure interoperability.

Table 2-4 summarizes the granularity, reusability, virtualization, and interoperability for the various integration styles.

Table 2-4 AIA Service Design Summary

	Integration Styles	Granularity	Reusability	Virtualization	Interoperability
	
Integration Flow with Native Application APIs

	
No AIA services on middleware; direct Application to Application interaction

	
No AIA services on middleware; direct Application to Application interaction

	
No AIA services on middleware; direct Application to Application interaction

	
No AIA services on middleware; direct Application to Application interaction

	
Integration Flow with Requester Application Services

	
Coarse Grained with High Performance overhead

	
Low

	
No

	
Special Effort

	
Integration Flow leveraging Provider Services

	
Granular

	
High

	
No

	
Special Effort

	
Integration Flow leveraging Provider Services with Canonical-Model based Virtualization

	
Coarse Grained

	
High

	
Yes

	
As Delivered

2.4 Development Tasks for AIA Artifacts

This section discusses the development tasks for AIA artifacts and describes how to:

	
Identify the EBO

	
Design an integration flow

	
Identify and create the EBS

	
Construct the ABCS

	
Enable the participating applications

	
Identify and create the EBF

2.4.1 Identifying the EBO

The FDD should discuss:

	
The conceptual canonical model or EBOs to be used and the actions that must be performed on this entity.

	
Identification of the EBO from the Foundation Pack or construction of EBO. The EBO should incorporate all of the requirements needed by this integration.

	
Identification of the EBM from the Foundation Pack or construction of EBM, if required.

For more information, see the Enterprise Object Library Extensibility Guide on My Oracle Support in article ID 983958.1.

2.4.2 Designing an Oracle AIA Integration Flow

The design of an Integration Flow is detailed in a technical design document (TDD). The criteria for completion of a TDD are dependent on the project and the accompanying deliverables.

The TDD lays out complete details on the flow logic, integration artifacts, object/element mapping, DVM types and values, error handling, and installation specifics. It also includes an outline of the unit test plans that a developer uses to validate run-time operation.

The Integration Flow is not a run-time executable artifact, so a message exchange pattern cannot be attributed to the Integration Flow. The design of the AIA service artifacts listed previously must include a careful analysis of the business scenario, which leads to a decision on the message exchange patterns for each AIA service artifact.

For more information about message exchange pattern decisions, see Section 14.2.3, "Establishing the MEP of a New Process EBS", Section 15.3, "Identifying the MEP", and Section 19.2.2, "How to Identify the Message Pattern for an EBF."

The tasks needed to enable the Oracle AIA service artifacts to participate in various message exchange patterns are discussed in the chapters detailing the development of these artifacts.

To design an Integration Flow:

	
Analyze the participating Application Business Messages (ABMs) and map them to the EBM.

For more information, see "Understanding EBOs and EBMs" in Oracle Fusion Middleware Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation Pack.

	
Identify the EBSs.

See Chapter 14, "Designing and Developing Enterprise Business Services."

	
Identify the EBFs.

See Chapter 19, "Designing and Constructing Enterprise Business Flows."

	
Identify the ABCSs.

See Chapter 15, "Designing Application Business Connector Services."

	
Identify and decide on the participating application connectivity methodology.

See Chapter 14, "Designing and Developing Enterprise Business Services."

For more information, see "Understanding Interaction Patterns" in Oracle Fusion Middleware Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation Pack.

	
Identify and decide on the security model.

See Chapter 29, "Working with Security."

For more information, see "Understanding Security" in Oracle Fusion Middleware Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation Pack.

	
Identify and decide on the performance and scalability needs.

	
Identify and decide on the deployment strategy.

An Oracle AIA Integrating Scenario is a logical collection of AIA service artifacts, including:

	
EBSs

	
EBFs

	
ABCSs

Since an AIA service artifact can be part of multiple AIA integration flows, go through the Oracle Enterprise Repository and identify any service artifact that can be reused. The AIA service artifacts are built with reusability in mind.

For each of the artifacts, follow these reusability guidelines:

	
Reusability guidelines for EBSs

	
Reusability guidelines for EBFs

	
Reusability guidelines for ABCSs

To develop an AIA Integration Flow:

	
Identify and create the EBS, if needed.

See Chapter 14, "Designing and Developing Enterprise Business Services."

	
Enable the participating applications.

See Section 2.4.5, "Enabling and Registering Participating Applications."

	
Construct the ABCS.

See Chapter 16, "Constructing the ABCS."

	
Construct the EBF.

See Chapter 19, "Designing and Constructing Enterprise Business Flows."

For more information about standard naming conventions, see Chapter 32, "Oracle AIA Naming Standards for AIA Development."

2.4.3 Identifying and Creating the EBS

Each EBO has an EBS to expose the "Create, Read, Update, Delete" (CRUD) operations and any other supporting operations. Each action present in the associated EBM is implemented as a service operation in EBS. Creation of the EBS and the implementation of all of the service operations is a critical task in the implementation of the end-to-end integration flow.

	
Note:

The operations in the entity EBS should only act on the relevant business object and not any other business object. Operations that act on multiple business object should reside in the process EBS.

When the EBS exists, check whether all of the actions necessary for acting on the EBO pertaining to this Integration Flow were implemented as service operations. If they were not, change the existing EBS to add the additional service operations.

This procedure lists the high-level tasks to construct an entity based EBS. Chapter 14, "Designing and Developing Enterprise Business Services" provides complete information on how to complete each of these tasks:

To construct an entity-based EBS:

	
Define and create the contract for the EBS.

	
Construct the EBS.

	
Register relevant provider services for each of the operations.

	
Add routing rules for new or existing operations.

	
Enable each of the service operations for the CAVS.

For more information, see Chapter 14, "Designing and Developing Enterprise Business Services"

2.4.4 Constructing the ABCSs

For more information, see Chapter 16, "Constructing the ABCS" and Chapter 17, "Completing ABCS Development."

2.4.5 Enabling and Registering Participating Applications

This section discusses the steps required to enable the participating applications in your AIA Foundation Pack ecosystem. It also discusses the options available for managing participating applications to the AIA registry.

2.4.5.1 Enabling Participating Applications

To enable participating applications:

	
Identify the service APIs that must be invoked.

	
Provide the WSDL to the participating applications.

	
Construct adapter services, if required.

2.4.5.2 Managing the Oracle AIA System Registry

This section discusses how to manage the Oracle Application Integration Architecture (AIA) system registry.

2.4.5.2.1 Understanding the Oracle AIA System Registry

The purpose of the system registry is to identify and capture information about the requester and provider systems that are participating in your Oracle AIA ecosystem. The system registry captures system attributes that are relatively static.

While the system registry for your Oracle AIA ecosystem is initially loaded during the Oracle AIA installation process, you can use the user interface to manage information in the registry.

A benefit of storing a system registry is that certain system attributes can be easily defaulted to enterprise business message headers. Requester and target systems may have multiple instances, each with different attributes. The system registry enables you to capture attributes for each instance so that they can be identified in subsequent processing.

Foundation Pack provides two ways to manage data in your system registry:

	
Systems page

	
SystemRegistration.xml configuration file

2.4.5.2.2 How to Manage the System Registry Using the Systems Page

Goal:

Use the Systems page to manage the participating applications stored in the Oracle AIA system registry.

Actor:

System administrator (AIAApplicationUser role)

To manage your Oracle AIA system registry using the System page:

	
Access the AIA Home Page. Click Go in the Setup area.

	
Select the Systems tab as shown in Figure 2-6 and Figure 2-7.

Figure 2-6 Systems Page (1 of 2)

[image: Systems tab (1 of 2)]

Figure 2-7 Systems Page (2 of 2)

[image: Systems tab (2 of 2)]

	
Enter your search criteria and click Search to execute a search for a particular participating application system.

	
Use the page elements listed in Table 2-5 to define participating application system registry entries.

Table 2-5 Systems Page Elements

	Page Element	Description
	
Delete

	
Select a system row and click Delete to execute the deletion.

	
Create

	
Click to add a system row that you can use to add a participating application to the system registry.

	
Save

	
Click to save all entries on the page.

	
Internal Id

	
System instance name assigned by an implementer, for example ORCL 01. This value would be used in transformation and domain value map column names to indicate a system instance. For example, the value can be used in transformations to identify the requester or provider system.

	
System Code

	
This is a required value. This value populated to the Enterprise Business Message (EBM) header.

	
System Description

	
Long description of the requester or provider system instance identified in the System Code field. This value populated to the EBM header.

	
IP Address

	
IP address of the participating application by which one can access the participating application endpoint. This value is populated to the EBM Header.

	
URL

	
This is the host name and port combination specified in the URL format by which one can access the participating application. Typically, this is in the form of http://hostname:port/. This value is populated to the EBM Header. This URL is not used by process integrations to access the participating application's web services, but rather this value is stored for informational purposes. Process integration developers determine which URL to use as the entry point for a participating application.

	
System Type

	
Provides the system type. For example, Oracle EBIZ. This is a required value.

	
Application Type

	
Application being run within the specified system. For example, a system type of Oracle EBIZ may have an application type value of FMS. This value populated to the EBM header.

	
Version

	
Provides the version of the application being run by the system. This value populated to the EBM header.

	
Contact Name

	
Provides the name of the contact responsible for the system. This value populated to the EBM header.

	
Contact Phone

	
Provides the phone number of the contact responsible for the system. This value populated to the EBM header

	
Contact E-Mail

	
Provides the email address of the contact responsible for the system. This value is populated to the EBM header.

2.4.5.2.3 How to Manage the System Registry Using the SystemRegistration.xml Configuration File

Goal:

Create a systemRegistration.xml configuration file for a Project Lifecycle Workbench process integration project. Create one systemRegistration.xml file per project. The systemRegistration.xml file is used by the Deployment Plan Generator and AIA Deployment Driver to populate the participating applications used by the process integration to the Oracle AIA system registry.

This is a progammatic approach to completing the same task that can be completed using the Systems page.

For more information about the Systems page, see Section 2.4.5.2.2, "How to Manage the System Registry Using the Systems Page."

Figure 2-8 illustrates how the values defined in systemRegistration.xml files for each process integration are used to populate the Oracle AIA system registry.

Figure 2-8 Flow of System Registration Data

[image: Flow of system registration data]

Role:

Integration developer

To manage your Oracle AIA system registry using the SystemRegistration.xml configuration file:

	
Create a systemRegistration.xml file for your process integration project.

	
To add participating application values to the system registry, use the <create> element provided in the sample XML structure shown in Example 2-1.

Example 2-1 AIASystemRegistration.xml

<AIASystemRegistration>
 <create>
 MERGE INTO AIA_SYSTEMS sysreg USING dual on (dual.dummy is
 not null and sysreg.SYSTEM_CODE='SampleSEBLDPT003') WHEN NOT
 MATCHED THEN INSERT (SYSTEM_ID,SYSTEM_INTERNAL_ID,SYSTEM_CODE,
SYSTEM_DESC,SYSTEM_IP_ADDR,SYSTEM_URL,SYSTEM_TYPE,APPLICATION_
TYPE,APPLICATION_VERSION,CONTACT_NAME,CONTACT_PHONE,CONTACT_
EMAIL) VALUES (AIA_SYSTEMS_S.nextval,'SampleSEBLDPT003','SampleSEBLDPT003',
'Sample Siebel Instance01','10.0.0.1','http://
${participatingapplications.SampleSiebel.server.
soaserverhostname}:${participatingapplications.SampleSiebel.
server.soaserverport}
/ecommunications_enu'
,'Sample SIEBEL','CRM','${pips.BaseSample.version}
','Siebel contact','1234567891','aiasamples_contact@aia.com')
 /
 MERGE INTO AIA_SYSTEMS sysreg USING dual on (dual.dummy is
 not null and sysreg.SYSTEM_CODE='SamplePortalDPT003')
WHEN NOT MATCHED THEN INSERT (SYSTEM_ID,SYSTEM_INTERNAL_
ID,SYSTEM_CODE,SYSTEM_DESC,SYSTEM_IP_ADDR,SYSTEM_URL,SYSTEM_
TYPE,APPLICATION_TYPE,APPLICATION_VERSION,CONTACT_NAME,CONTACT_
PHONE,CONTACT_EMAIL) VALUES (AIA_SYSTEMSS.nextval,
'SamplePortalDPT003','SamplePortalDPT003',
'Sample Portal Instance 01','10.0.0.1',
'http://${participatingapplications.SamplePortal.server.
soaserverhostname}:${participatingapplications.SamplePortal.
server.soaserverport}
','Sample Portal','BILLING','${pips.BaseSample.version}'
,'Portal contact','1234567892','aiasamples_contact@aia.com')
 /
 </create>
</AIASystemRegistration>

The tokens you create in the <create> element should be based on the structure of the AIAInstallProperties.xml file.

For example, the following token, ${participatingapplications.SamplePortal.server.soaserverhostname}, was derived from the structure in the AIAInstallProperties.xml file shown in Example 2-2:

Example 2-2 AIAInstallProperties.xml

<properties>
 <participatingapplications>
 <SamplePortal>
 <server>
 <soaserverhostname>adc2180948.xy.example.com
 </soaserverhostname>
 </server>
 ...
 </participatingapplications>
</properties>

Actual values for the tokens in bold are derived from $AIA_INSTANCE/config/AIAInstallProperties.xml during process integration installation using a deployment plan.

	
To delete participating application values from the AIA application registry, use the <delete> element provided in the sample XML structure shown in Example 2-3 and replace the system code values in bold with the system codes of the participating applications.

Example 2-3 <delete> Element in AIASystemRegistration.xml

<AIASystemRegistration>
 <delete>
 delete from AIA_SYSTEMS where SYSTEM_CODE='SampleSEBLDPT005'
 /
 delete from AIA_SYSTEMS where SYSTEM_CODE='SamplePortalDPT005'
 /
 </delete>
</AIASystemRegistration>

	
Save the systemRegistration.xml file to $AIA_HOME/pips/<projectCode>/DatabaseObjects/.

If you are using the Project Lifecycle Workbench in your development methodology, the <projectCode> folder name is the project code value assigned to your project in Project Lifecycle Workbench.

If you are not using the Project Lifecycle Workbench, assign your own project code value to the folder name.

The Deployment Plan Generator always generates the system registration task in the deployment plan. The system registration task extracts configuration information from systemRegistration.xml, replaces tokens with actual values from AIAInstallProperties.xml, and executes an SQL statement to populate the system registry.

If no systemRegistration.xml file is present for the Deployment Plan Generator to leverage, manually remove the system registration task from the deployment plan, or the deployment fails.

Example 2-4 shows a generated deployment plan that includes the system registration task to register systems for projectCode ABCProcessInt:

Example 2-4 System Registration Task in Generated Deployment Plan

<DeploymentPlan>
 <Configurations>
 ...
 <SystemRegistration database="fp.db.aia" resourceFileName="$AIA_
HOME/pips/ABCProcessInt/DatabaseObjects/systemRegistration.xml" delimiter="/"
action="create"/>
 ...
 </Configurations>
</DeploymentPlan>

The AIA Deployment Driver reads the deployment plan, replaces the tokens from the systemRegistration.xml with actual values from AIAInstallProperties.xml, and executes the system registration SQL statement to populate the system registry.

Example 2-5 shows the SQL content extracted by the AIA Deployment Driver:

Example 2-5 SQL Content Extracted by AIA Deployment Driver

MERGE INTO AIA_SYSTEMS sysreg
USING dual
on (dual.dummy is not null and sysreg.SYSTEM_CODE='SampleSEBL')
WHEN NOT MATCHED THEN INSERT
(SYSTEM_ID,SYSTEM_INTERNAL_ID,SYSTEM_CODE,SYSTEM_DESC,SYSTEM_IP_ADDR,SYSTEM_
URL,SYSTEM_TYPE,APPLICATION_TYPE,APPLICATION_VERSION,CONTACT_NAME,CONTACT_
PHONE,CONTACT_EMAIL)
VALUES (AIA_SYSTEMS_S.nextval,'Siebel','SampleSEBL','Sample Siebel Instance
01','10.0.0.1','http://siebel.xy.example.com:7001/ecommunications_enu',
SIEBEL','CRM','1.0, 'Siebel contact','1234567891','Siebelcontact@Siebel.com')
/

If you are deploying multiple Project Lifecycle Workbench process integration projects, multiple systemRegistration.xml files get added. Check whether participating applications are added to system registry entries before deploying them. Duplicate requests cause an SQL exception due to primary key and unique value constraints enabled on the system registry table.

Check them by including the text in bold in the SQL content above. If a participating application value is found to be a duplicate, it is not created. If it is unique, it is created.

The AIA Deployment Driver extracted this example SQL content based on replacing tokens from systemRegistration.xml with Example 2-6 data provided in $AIA_INSTANCE/config/AIAInstallProperties.xml:

Example 2-6 Sample SQL Content Extracted by AIA Deployment Driver

<?xml version="1.0" encoding="UTF-8"?>
 <properties>
 <participatingapplications>
 <siebel>
 <http>
 <host>siebel.xy.example.com</host>
 <port>7001</port>
 </http>
 <internal>
 <id>Siebel</id>
 </internal>
 <version>1.0</version>
 <siebel>
 ...
 </participatingapplications>
 </properties>

2.4.6 Identifying and Creating the EBF

Each identified EBF has a corresponding business process EBS. The operations within this EBS are the entry points to EBFs.

For more information, see Chapter 19, "Designing and Constructing Enterprise Business Flows."

2.5 Testing an Oracle AIA Integration Flow

The CAVS supports end-to-end testing by stubbing out the applications.

For more information about CAVS, see "Introduction to the Composite Application Validation System" in Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack.

List of Examples

	2-1 AIASystemRegistration.xml
	2-2 AIAInstallProperties.xml
	2-3 <delete> Element in AIASystemRegistration.xml
	2-4 System Registration Task in Generated Deployment Plan
	2-5 SQL Content Extracted by AIA Deployment Driver
	2-6 Sample SQL Content Extracted by AIA Deployment Driver
	3-1 SQL Statement Used to Insert Lookup Values into AIA_LOOKUPS_B
	3-2 SQL Statement Used to Insert Lookup Values into AIA_LOOKUPS_TL
	3-3 SQL Statement to Insert Internationalized Text for Lookup Values into AIA_LOOKUPS_TL
	4-1 Reference Element for AIAAsyncErrorHandlingBPELProcess
	5-1 AIAInstallProperties.xml File Adjustments
	5-2 adf-config.xml File
	5-3 Sample HarvesterSettings.xml to Harvest Design-Time Composites into Project Lifecycle Workspace and Oracle Enterprise Repository
	5-4 Sample HarvesterSettings.xml Used to Harvest Design-Time Composites into Project Lifecycle Workbench Only
	5-5 AIAInstallProperties.xml File Adjustments
	5-6 Sample adf-config.xml
	5-7 oramds:// Protocol Used in HarvesterSettings_#.xml
	5-8 Sample HarvesterSettings.xml Used to Harvest Custom-Built Deployed Composites into Oracle Enterprise Repository:
	7-1 Project Lifecycle Workbench Seed Data Schema
	8-1 Sample Deployment Plan File
	8-2 Deployment Policy File
	9-1 Sample ODI BOM
	9-2 Structure of a Property in AIAInstallProperties.xml
	9-3 Structure of a Password Field in AIAInstallProperties.xml
	9-4 Sample Deployment Plan
	9-5 Sample Syntax of OdiImportObject
	10-1 Setting the transaction flag on the BPEL component
	10-2 First Annotation Element for Every composite.xml File
	10-3 A Skeletal Service Element in composite.xml with Annotations
	10-4 A Skeletal Reference Element in composite.xml with Annotations
	10-5 An Example of Service Annotation Element
	10-6 An Example of Service Annotation Element When It Has a Transport Adapter
	10-7 An Example of Reference Annotation Element
	10-8 An Example of Reference Annotation Element when it has a Transport Adapter
	10-9 A Sample WSDL Annotation
	10-10 Transformation Enabled to Accommodate Transformations for Custom Element
	11-1 Custom Function Implementation to Get the Current Date
	11-2 User Defined Extension Functions Config File
	13-1 First Annotation Element for Every composite.xml File
	13-2 A Skeletal Service Element in a composite.xml with Annotations
	13-3 A Skeletal Reference Element in a composite.xml with Annotations
	13-4 Interface Details Annotation Element Example
	13-5 ImplementationDetails Annotation Element Example
	13-6 Service Element in Requester ABCS Composite Annotation Example
	13-7 Reference Element in Requester ABCS Composite Annotation Example
	13-8 Service Element in a Provider ABCS Composite Annotation Example
	13-9 Reference Element in Provider ABCS Invoking Participating Web Service Annotation Example
	13-10 Reference Element in Provider ABCS Invoking Utility Service Annotation Example
	13-11 Reference Element in Provider ABCS Invoking Non-SOAP Service Annotation Example
	13-12 Transport Adapter Composite Annotation Example
	13-13 Transport Details Populated in Reference Element Annotation Example
	13-14 Transport Details Populated in Reference Element Using JMS Adapter Annotation Example
	13-15 Service Element in EBF Composite Annotation Example
	13-16 Reference Element in EBF Composite Annotation Example
	13-17 Service Element in Composite Business Process Composite Annotation Example
	13-18 Reference Element in Composite Business Process Composite Annotation Example
	16-1 Binding.ws Element for BPEL-Based Service
	16-2 URL of the Concrete WSDL for BPEL-Based Service
	16-3 Binding.ws Element for Mediator-Based Service
	16-4 URL of the Concrete WSDL for Mediator-Based Service
	16-5 Service Configuration Properties File
	16-6 Example of Configuration File for Service-Specific Properties
	16-7 Componenttype File Pointing to Abstract WSDLs in the MDS
	16-8 Componenttype File for a Composite with a Reference
	16-9 Composite.xml Pointing to Abstract WSDLs in the MDS
	16-10 Example of composite.xml Pointing to Abstract WSDLs in the MDS
	16-11 Referenced Service WSDLs with No partnerLinkType Elements Pointing to Abstract WSDLs in the MDS
	16-12 DataArea Business Payload in the Instance XML Document
	16-13 Content Payload of a Single Object Query
	16-14 Defining SortElements for Single QueryCriteria
	16-15 Defining SortElements for Multiple QueryCriteria
	16-16 Example of Query with Single QueryCriteria Element and Single QueryExpression
	16-17 Example of Query with Multiple QueryCriteria
	16-18 Requesting a Single Return to QueryInvoice Message
	16-19 Requesting Specific Message Return to QueryInvoice Message
	17-1 Wiring the BPEL Component to the External Reference Component
	17-2 Servlet to Test Extension
	17-3 Defining Service-Level Configuration Properties for the Provider ABCS
	17-4 Defining Namespace Prefixes in the BPEL Process
	17-5 Adding an Assignment
	17-6 Adding <scope> for Each PartnerLink
	17-7 Populating the wsa:EndpointReference Element
	17-8 Setting the Transaction Flag on the Callee BPEL Component
	17-9 Setting Transaction Properties on the BPEL Adapter Interface
	17-10 Transaction Settings in the composite.xml of the Requester ABCS
	17-11 Transaction Settings for Asynchronous MEP
	17-12 Transaction Properties Set on Adapter Component
	19-1 Example of Message Exchange Pattern Identification for EBF
	21-1 Condition Expression on the GatewayID Element
	24-1 URL for Calling the Siebel Application and Passing Login Information in the SOAP Header
	24-2 SOAP Header
	24-3 Response to SOAP Header
	24-4 Example of a Version 1 TargetNameSpace
	24-5 Required Custom Attributes
	24-6 Sample Custom Attributes
	24-7 Example of a Version 0 TargetNameSpace
	24-8 Example of a Version 1 TargetNameSpace
	25-1 Creation of an XREF View in the XREF Database
	25-2 XML Request Input for AIAAsyncErrorHandlingBPELProcess
	25-3 Update application.xml in ORACLE_HOME\j2ee\home\applications\axis2\META-INF
	25-4 Sample SOAP Request for the OdiInvoke Web Service
	25-5 SOAP Response Returned by the Scenario Execution
	26-1 Domain Value Map Lookup Call to Fetch Currency Code
	26-2 Sample Code Illustrating Logic Designed to Handle Missing or Empty Elements
	26-3 Statement Without xsl:If
	26-4 Statement With xsl:If
	26-5 Sample Code Showing Hard-Coded System IDs - Not Recommended
	26-6 Sample Code Showing Use of Variables Instead of Hard-Coded System IDs - Recommended
	26-7 Transformation Enabled to Accommodate Transformations for Custom Element
	26-8 Industry Extensible Transformation Template
	26-9 BusinessComponentID Populated by the EBM
	26-10 EBMID
	26-11 EBOName
	26-12 RequestEBMID
	26-13 CreationDateTime
	26-14 VerbCode
	26-15 Message Processing Instruction Population
	26-16 Sender Element Code Sample
	26-17 Target Element Code Sample
	26-18 Request EBM for Request-Response Use Case
	26-19 Response EBM for Request-Response Use Case
	26-20 Request EBM for Asynchronous Use Case
	26-21 Create Account Request EBM
	26-22 Create Account Response EBM
	26-23 Create Customer Request EBM
	26-24 Create Customer Response EBM
	26-25 ProcessOrder Request EBM
	26-26 Process Order Response EBM
	26-27 Populating EBM Tracking Information
	27-1 Elements to be Added to composite.xml
	27-2 Sample Fault Policy File with Fault Policies Defined
	27-3 Association in fault-bindings.xml
	27-4 Fault Definition in the Fault Policy XML File
	27-5 subLanguageExecutionFault Fault Handling
	27-6 Conditions Element in the Fault Policy
	27-7 Default Condition Configuration Used to Call the aia-ora-java action
	27-8 Business Fault Message
	27-9 Catch-All Block Construction
	27-10 EBM-to-EBM XSL Code Example
	27-11 Example of How to Assign the JMS Message ID to the ABM
	27-12 Example of How to Concatenate Data and Assign it to the ABM
	27-13 Example Illustrating Three ABM Fields Used to Hold Three Resubmission Values
	27-14 Code Used to Extract Resubmission Values and Assign Them to EBM Header Element
	27-15 AIA Fault Message with an ECID Defined
	27-16 Java Snippet to Invoke the Oracle AIA Error Handler
	27-17 Sample Fault Policy Using the aia-no-action No-op Action
	27-18 IAIAErrorHandler Interface Class
	27-19 IAIAErrorHandlerExtension Interface Class
	28-1 Custom Element Acting as Placeholder
	28-2 Adding an Extension to EBO or EBM Schemas
	28-3 Adding New Transformations for Customer-defined Custom Elements
	28-4 Custom XSL Template Definition
	29-1 <soap:Envelope> Content
	29-2 Security Header for Authentication
	29-3 Sample AIASecurityConfigurationProperties.xml
	29-4 Example of AppContext Mapping Service
	29-5 Example of SEBL AppContext information Sent to the Security Service
	30-1 ABM -> EBM Transformation
	30-2 ABM -> EBM transformation
	30-3 EBM -> ABM Transformation
	30-4 Using Local Variables
	30-5 Setting the bpel.config.auditLevel Property in the composite.xml
	31-1 soaDataSource-jdbc.xml file
	31-2 Configuring the Polling Interval in the adf-config.xml
	31-3 Manually Updating the cache-config in adf-config.xml
	31-4 Tuning JMS Adapters Using the composite.xml Property File
	31-5 Tuning AQ Adapters Using the composite.xml Property File
	31-6 Binding Property in the composite.xml
	31-7 Sample JVM Configurations
	A-1 Node Set Returned for aia:getEBMHeaderSenderSystemNode()
	A-2 XSLT Example for aia:getEBMHeaderSenderSystemNode()
	A-3 Module Configuration Properties
	A-4 BPEL Usage Example for aia:getAIALocalizedString()
	B-1 AddTargetSystemID.xsl
	B-2 SetCAVSEndpoint.xsl

10 Implementing Direct Integrations

This chapter provides an overview of direct integrations and describes the procedure for implementing direct integrations.

This chapter includes the following sections:

	
Section 10.1, "Understanding Direct Integrations"

	
Section 10.2, "Using the Application Business Flow Design Pattern for Direct Integrations"

	
Section 10.3, "Finding the Correct Granularity"

	
Section 10.4, "Handling Transactions"

	
Section 10.5, "Enabling Outbound Interaction with Applications"

	
Section 10.6, "Invoking an ABF"

	
Section 10.7, "Handling Errors"

	
Section 10.8, "Implementing a Direct Integration"

	
Section 10.9, "Securing the Service"

	
Section 10.10, "Using Cross References"

	
Section 10.11, "Naming Conventions and Standards"

	
Section 10.12, "Annotating Composites"

	
Section 10.13, "Service Configuration"

	
Section 10.14, "Extending Direct Integrations"

10.1 Understanding Direct Integrations

Oracle Foundation Pack helps organizations integrate their applications using common information model known as canonical model. Canonical Enterprise Business Objects (EBOs) work best in the integrations where integration flows involve connectivity with multiple source and destination systems. Canonical-based interfaces minimize close coupling between participating applications. This allows re-usability and increases the speed of deployment when new applications are added to the ecosystem.

However, every integration scenario does not require a canonical integration model. Foundation Pack components also provide support for application-to-application (direct) integration.

You must consider direct integration when:

	
There is only one application on each end of the integration.

	
There is requirement for fewer mappings.

	
The integration requires very low latency.

	
The integration is transformation-intensive and requires very high throughput (peaks at over 10,000 messages per hour - or 30 messages per second).

	
The integration is process-centric rather than data-centric.

	
The requester and the provider applications are not expected to change.

10.2 Using the Application Business Flow Design Pattern for Direct Integrations

A simple mode of communication between a consumer and a provider application or services is allowing them to interact directly with each other using the XML-based data structures, as specified by the provider or service.

The Application Business Flow (ABF) manages the integration flow and implements the following tasks necessary for integration:

	
The service receives the request from the client application and does data enrichment, if required.

Data Enrichment can be described as retrieving additional details from the client application.

	
The service makes calls to the provider using connectivity protocols.

The response received from the provider application is transformed into the client application format before returning the response to the client application.

The interface for the integration service is defined by requester / client application.

	
Note:

If you introduce any additional provider at a later time, you must add another ABF.

10.3 Finding the Correct Granularity

You can implement end-to-end integration flows either using a single ABF composite or multiple ABF composites, depending on your integration requirement. Consider the following when you design your integration flow.

	
Define and design reusable services if the functionality of the service could potentially be reused multiple times.

	
When some functionality, embedded in a service, is needed in multiple integration scenarios, re-factor it a separate ABF and create a service to reference it.

	
Optionally, use an ABF to invoke another ABF, as shown in Figure 10-1, if functionality is available as a separate service.

Figure 10-1 ABF Invoking ABF

[image: The image is described in the surrounding text]

10.4 Handling Transactions

When an operation defined on an ABF service interface involves destructive writes to two or more resources then Oracle advises you to perform these tasks in a single transaction.

10.4.1 Building an ABF as a Transactional Composite

Design an ABF composite with transactional attributes set on it in the following scenarios:

	
Two different applications need to be updated and you want to avoid problems that occur when only one update is successful leading to inconsistency.

	
There is an existing global transaction context and the operations performed by your integration process service must be part of the global transaction.

	
An application has to send/receive a message and also has to do an update.

	
A group of related messages have to be processed in a batch mode.

10.4.2 Achieving Transactionality in the ABF

Create a common transaction context using two-phase commit to achieve transactionality.

The BPEL component creates a new transaction when a BPEL process is invoked. If a transaction already exists, BPEL suspends it and creates a new one. Set the transaction flag on the BPEL component to chain an execution into a single global transaction by adding bpel.config.transaction in the source of composite editor with value as required as shown inExample 10-1.

Example 10-1 Setting the transaction flag on the BPEL component

<component name="<BPELProcessName">
 <implementation.bpel src="<BPELProcessName" >.bpel"/>
 <property name="bpel.config.transaction">required</property>
</component>

When the transaction flag is set, BPEL inherits the existing transaction. It creates a new transaction only when no similar transaction exists.

When an ABF service is invoked by another SOA composite ensure a single-threaded execution of the composite. You must implement this only when a one-way operation is being exposed by your service. To accomplish a single threaded execution of the composite, set a sync-type invocation of your composite by the caller composite by setting the property for the BPEL component in your composite as shown below:

bpel.config.oneWayDeliveryPolicy=sync

	
Note:

Both the settings can be set while designing your service in JDeveloper.

10.5 Enabling Outbound Interaction with Applications

This section describes how to enable outbound interactions with participating applications.

10.5.1 Using JCA Adapters

If JCA Adapters are available, they should be your first choice to connect to applications as they provide support for tasks associated with connection management, transaction management, and scalability in combination with the runtime environment.

10.5.2 Using Standard Web Service Interfaces (SOAP/HTTP, XML/HTTP)

Most applications expose functionality in the form of a web service. The most common transport used is SOAP over HTTP. However, some applications may expose direct XML over HTTP. Participating applications making an outbound interaction in a synchronous mode alone should send the requests using SOAP/HTTP.

10.5.3 Using JMS Queues

Use queues when the message submission is decoupled from processing of the message. When JMS queues are used, access them using JMS Adapter. The message is enqueued to the JMS queue by the ABF artifact and the application dequeues the message

10.5.4 Using Adapters in a Composite or as a Separate Composite

Develop the adapter as separate service composite only when the same transport adapter service could be used with multiple ABFs. If you do not foresee such reusability include ABF and transport adapter in the same composite.

10.6 Invoking an ABF

Communication between an ABF and the application is governed by the application capabilities. You can invoke an ABF in the following ways:

	
Using standard web service interface where the client application makes a web service call to the ABF.

	
Using another ABF, when the required functionality is available as a separate ABF.

	
Using appropriate bindings such as JCA/JMS inside the composite for service endpoints if requester cannot make a web service call.

An ABF is built by including an adapter that can be invoked by the client application.

	
Using JMS queues when message submission needs to be decoupled from processing of the message. JMS queues must be accessed using JMS Adapter. The message is en-queued to the JMS queue by the application and ABF de-queues the message. The JMS helps exchange of messages in a persistent manner for guaranteed message delivery.

	
Exposing a JMS producer composite if the requester application does not have a capability to drop messages into a queue. Build a JMS consumer adapter into the ABF composite. The JMS consumer adapter dequeues the message and invokes the service provider application. The Asynchronous Queuing design pattern establishes a central queue to allow services to overcome availability issues and increase the overall robustness of asynchronous data exchange.

10.7 Handling Errors

This section describes how you can catch errors when implementing direct integration.

10.7.1 Using Direct Integration Services

Enable and configure direct integration services to catch and handle the runtime and business faults. Include all the business faults that you can envisage while deciding WSDL contracts and enable services to return the business fault to the caller of the ABF service.

Oracle recommends that you create a separate catch block for all possible errors and ensure that only unexpected errors go to catchAll block.

The best practice is to invoke a one-way error notification service for sending error notification and error logging.

10.7.2 Using the Fault Management Framework

You can leverage Error Handling framework that comes with the AIA Foundation Pack for exception capture and exception processing. Oracle recommends that you define a service-specific fault policy file and define both runtime and business faults in it and associate fault policies at composite level.

Use AIAAsyncErrorHandlerBPELProcess of AIA Error Handler framework with direct integration but pass the input in the format that is required by it. Construct an XML element representing an AIAFault element as string before you invoke the AIAAsyncErrorHandlerBPELProcess for business fault handling and error notification/logging.

To invoke the AIAAsyncErrorHanlderBPELProcess, follow the guidelines described in Section 27.4.2, "Guidelines for BPEL Catch and Catch-All Blocks in Synchronous Request-Response", except for the step where you apply XSLT EBM_to_Fault.xsl. However, the input message should have the following elements populated with data.

	
Fault/FaultNotification/FaultMessage/Text

	
Fault/FaultNotification/FaultingService/InstanceID

	
Fault/FaultNotification/FaultingService/ECID

	
Fault/FaultNotification/FaultingService/ImplementationCode

	
Fault/FaultNotification/FaultingService/ID

You can get all the necessary framework behavior including email notifications, and also drill down into it using the EM console.

You cannot access the information that is part of the Fault Message which is derived from the EBM_HEADER. However, the following elements can be derived by the AIA fault handling framework for remote, binding and other faults that are configured in the fault policy xml files.

	
Fault Message Code

	
Fault Message Text

	
Severity

	
Stack

	
Faulting Service ID

	
Faulting Service Implementation Code

	
Faulting Service Instance ID

	
Corrective Action

	
Reporting Date Time

Enable routing of error information through the Notification Setup screen using error code and service name.

	
Note:

Creation of EBM_Header variable in the BPEL process, which you use for fault handing in canonical integrations, is not relevant in direct integrations.

There is no default support for message resubmission for this release.

10.8 Implementing a Direct Integration

This section describes the various stages in implementing a direct integration.

	
Add a project in the Project Lifecycle Workbench.

For information on Project Lifecycle Workbench, see Chapter 3, "Working with Project Lifecycle Workbench."

	
Use Service Constructor to create new service solution components. Select the service type as ABF when you create a new service type.

A new folder is created with suffix ABF.

For information on Service Constructor, see Chapter 4, "Working with Service Constructor."

	
Asset Type AIA: ABF supports direct integration. This asset type enables Foundation Pack to provide harvester support into OER.

For information about AIA Harvester, see Chapter 5, "Harvesting Oracle AIA Content."

	
Go to Project Lifecycle Workbench and generate Bill of Materials.

For information on generation of bills of material, see Chapter 6, "Working with Project Lifecycle Workbench Bills of Material."

	
Run Deployment Generation Plan and deploy using AIA Deployment Driver.

For information about deployment plan generation, see Chapter 8, "Generating Deployment Plans and Deploying Artifacts."

10.9 Securing the Service

The processes for securing the direct integration services is similar to the way AIA services are secured. The processes are:

	
All the web service end points should be secured.

	
Individual service components do not have to be secured.

	
All services should be provided with authentication credentials.

	
Applications invoking secured ABF services need to send required credentials.

10.9.1 Security Recommendations for OWSM Policies for Authentication

The Table 10-1 lists security recommendations for OWSM policies.

Table 10-1 Security Recommendations for OWSM Policies

	Policy	Recommendations
	
oracle/aia_wss_saml_or_username_token_service_policy_OPT_ON

	
This is a clone of oracle/wss_saml_or_username_token_service_policy with Local Optimization set to ON. Attach this OWSM security policy to the Service end point(s) of a composite. This policy is applied when authenticating the incoming requests using credentials provided in SAML tokens in the WS-Security SOAP header OR UsernameToken WS-Security SOAP header.

	
oracle/aia_wss10_saml_token_client_policy_OPT_ON

	
This is a clone of oracle/wss10_saml_token_client_policy with Local Optimization set to ON. Attach this OWSM security policy to the Reference end point(s) of a composite. This policy inserts SAML tokens in outbound SOAP request messages.

	
Note:

The two custom OWSM policies are made available on the server when Foundation Pack is installed.

Further recommendations:

	
Use appropriate client-specific policies for composites that invoke protected application services.

	
Use no_authentication_client_policy when invoking application services with no protection.

	
Do not have to attach policies for composites calling JCA based application services.

10.9.2 Attaching OWSM Policies to the Composites

Services in direct integration can leverage global policy attachment support provided by the Foundation Pack. After deployment, Foundation Pack tools automatically attach global policies to services that have naming pattern ending with ABF.

Services that do not use Foundation Pack have to attach OWSM policy directly (locally). Attach the policies in the composite.xml file at design time to Service and Reference endpoints. You can also attach OWSM policies to SOA composites, after deployment using EM console.

10.10 Using Cross References

Generate a custom database table for each cross reference entity. Oracle recommends that you configure the XREF entity to store the cross references in the custom cross reference table. This does not change the programming model. Wherever the cross reference data is stored, whether it is in SOA infra – XREF_DATA or custom database table, XREF look up and population are done using a single set of APIs.

The Cross Reference editor enables you to specify whether the custom database table needs to be used. (Use the optimize option while defining cross reference artifact.) It also generates the required DDL script. However, SOA does not create the table automatically.

For more information about using custom cross reference tables, see http://www.oracle.com/technetwork/middleware/foundation-pack/learnmore/aiaxref-524690.html.

	
Note:

The population of cross reference rows in the integration layer can be avoided in situations where the source or target applications have capabilities to manage cross references.

10.11 Naming Conventions and Standards

The ABF is modeled as a task-oriented service to capture the process logic. A practical approach is to name services based on the processing and the entity context. Oracle recommends that you use verbs and the entity in service names.

Because ABF is designed to integrate specific applications, use the names of applications as part of the service name.

The template for the name of the ABF is [Verb][Entity][App1][App2] ABF[Vn if version > 1], where App1 is source and App2 is target application.

For example, ProcessFulfillmentOrderEbizFusionABF.

You can also add the word To between participating source and target applications, if required. For example, ProcessFulfillmentOrderEbizToFusionABF.

10.11.1 Additional Guidelines for Naming Services

	
Naming an ABF when invocations to enrichment services are involved

If integration interacts with an intermediary/utility application such as GOP, Tax Computation and so on to get values to be used for integrating with target application, include the names of these intermediary/utility applications in the service names.

	
Naming an overarching ABF

An overarching orchestration process contains multiple tasks, wherein each task may involve integration with another application. In such cases do not include all the application names in the service name. Use only the source application name.

For example, ProcessFulfillmentOrderEbizABF creates an entry in FusionCRM, updates BRM for billing and sends a shipment notification to an external TP through B2BGateway and interface. Because the overarching process may be dictated by source application, use only the source application name.

	
Operation name

Since the service name covers the broad context, you can have the verb followed by entity in the service operation name.

	
Message name

The message name should be [name of the operation]Request/[name of the operation]Response

	
Composite Namespace

Composite namespace standard is http://xmlns.oracle.com/ApplicationBusinessFlow/[Functional area or pre-built integration]/[composite name minus the version]/V[n]

For example http://xmlns.oracle.com/ApplicationBusinessFlow/OrderToCash/ProcessFulfillmentOrderFusionDOOToEbiz/V1

	
Namespaces for Messages

All namespaces must start with http://xmlns.oracle.com/followed by an entity specific and domain specific identifier. For example core, Industry. If there are sub-domains, specify them.

For example, http://xmlns.oracle.com/ABFMessage/Core/Invoice/V1

	
Namespaces for ABF (WSDL) Interface

http://xmlns.oracle.com/ApplicationBusinessFlow/\[Functional area or PIP]/[composite name]/V[n]

For example, http://xmlns.oracle.com/ApplicationBusinessFlow/OrderToCash/ProcessFulfillmentOrderFusionDOOEbizABF/V1

10.12 Annotating Composites

The meta information of ABF services is used in maintaining Oracle Enterprise Repository (OER) assets. These composites are expected to be harvested multiple times during the development cycle; from conception till deployment to production environment. Oracle advises you to provide annotations in the composites for the exposed services and for the referenced services. Adhere to the proposed guidelines and insert these comments at development time.

Embed the annotations in the <svcdoc:AIA> element and place the <svcdoc:AIA> element inside the xml comments tags <!-- and -- > as shown in the examples in this section.

<svcdoc:ServiceSolutionComponentAssociation> must be the first annotation element in every annotated composite.xml file as shown in Example 10-2

Example 10-2 First Annotation Element for Every composite.xml File

<composite name="SamplesCreateCustomerPartyPortalBusinessService">
........................
<!--<svcdoc:AIA>
<svcdoc:ServiceSolutionComponentAssociation>
<svcdoc:GUID></svcdoc:GUID>
</svcdoc:ServiceSolutionComponentAssociation>
</svcdoc:AIA>-->
.....................................
</composite>

This element describes a globally unique identifier (GUID) used for artifacts generation and must be placed under the root element <composite>. The value for this element should be left blank. The GUID associates the solution service component with the implemented business service composite. This association enables auto-population into the Bill Of Material. The GUID is generated in the solution service component and is moved to the AIA Project Lifecycle Workbench database.

Annotate the Service and Reference elements of the composite.xml as shown in Example 10-3 and Example 10-4.

Example 10-3 A Skeletal Service Element in composite.xml with Annotations

<service ui:wsdlLocation>
<interface.wsdl />
<binding.ws />
<!-- <svcdoc:AIA>
<svcdoc:Service>
.
</svcdoc:Service>
</svcdoc:AIA> -->
</service>

Example 10-4 A Skeletal Reference Element in composite.xml with Annotations

<reference ui:wsdlLocation">
<interface.wsdl/>
<binding.ws/>
<!-- <svcdoc:AIA>
<svcdoc:Reference>
.................
</svcdoc:Reference>
</svcdoc:AIA> -->
</reference>

In the previous examples the root of the annotation element of the composite is <svcdoc:AIA>. Provide annotations for the Service and Reference elements of the composite under xml comment tags using the annotation elements <svcdoc:Service> and <svcdoc:Reference>, respectively as shown in Example 10-5 and Example 10-7.

Example 10-5 An Example of Service Annotation Element

<svcdoc:Service>
 <svcdoc:InterfaceDetails>
 <svcdoc:ServiceName>.....</svcdoc:ServiceName>
 <svcdoc:Namespace>.......</svcdoc:Namespace>
 <svcdoc:ArtifactType>ApplicationBusinessFlow</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>

 </svcdoc:ServiceOperation>
 </svcdoc:InterfaceDetails>
 <svcdoc:ImplementationDetails>
 <svcdoc:ApplicationName>Source Application</svcdoc:ApplicationName>

 <svcdoc:ArtifactType>ApplicationBusinessFlow</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
..........
 </svcdoc:ServiceOperation>
 </svcdoc:ImplementationDetails>
 </svcdoc:Service>

Example 10-6 An Example of Service Annotation Element When It Has a Transport Adapter

<svcdoc:Service>
 <svcdoc:ImplementationDetails>
 <svcdoc:ApplicationName>Source Application</svcdoc:ApplicationName>
 ...
 <svcdoc:ArtifactType>ApplicationBusinessFlow</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 ..
 </svcdoc:ServiceOperation>
 </svcdoc:ImplementationDetails>
 <svcdoc:TransportDetails>
 <svcdoc:JMSAdapter>
 <svcdoc:ResourceProvider>WLSJMS</svcdoc:ResourceProvider>
 <svcdoc:ConnectionFactory>JNDINameOfConnectionFactory</svcdoc:ConnectionFactory>
 <svcdoc:XAEnabled>true</svcdoc:XAEnabled>
 <svcdoc:ResourceTargetIdentifier>JMSUSER1</svcdoc:ResourceTargetIdentifier>
 <svcdoc:ResourceType>Queue</svcdoc:ResourceType>
 <svcdoc:ResourceName>JMSQueueName</svcdoc:ResourceName>
 <svcdoc:ResourceFileName></svcdoc:ResourceFileName>
 </svcdoc:JMSAdapter>
 </svcdoc:TransportDetails>
 </svcdoc:Service>

Example 10-7 An Example of Reference Annotation Element

<svcdoc:Reference>
 <svcdoc:ArtifactType>UtilityService</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>initiate</svcdoc:Name>
 </svcdoc:ServiceOperation>
</svcdoc:Reference>

Example 10-8 An Example of Reference Annotation Element when it has a Transport Adapter

<svcdoc:Reference>
 <svcdoc:ArtifactType>TransportAdapter</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>GetSalesOrderLineShippingDetailsEbizAdapter</svcdoc:Name>
 </svcdoc:ServiceOperation>
 <svcdoc:TransportDetails>
 <svcdoc:ApplicationAdapter>
 <svcdoc:ResourceProvider>OracleDB</svcdoc:ResourceProvider>
 <svcdoc:BaseVersion>12.1.3</svcdoc:BaseVersion>
 <svcdoc:ConnectionFactory>eis/Apps/OracleAppsDataSource</svcdoc:ConnectionFactory>
 <svcdoc:ApplicationName>ebiz</svcdoc:ApplicationName>
 <svcdoc:XAEnabled>true</svcdoc:XAEnabled>
 <svcdoc:ResourceTargetIdentifier></svcdoc:ResourceTargetIdentifier>
 <svcdoc:ResourceType>Procedure</svcdoc:ResourceType>
 <svcdoc:ResourceName></svcdoc:ResourceName>
 <svcdoc:ResourceFileName>XX_BPEL_GETSALESORDERLINESHIPP.sql</svcdoc:ResourceFileName>
 </svcdoc:ApplicationAdapter>
 </svcdoc:TransportDetails>
</svcdoc:Reference>

10.12.1 Annotating WSDLs

WSDL annotations are similar to an existing AIA service annotations. Look at Example 10-9.

Example 10-9 A Sample WSDL Annotation

<documentation>
<svcdoc:Service>
<svcdoc:Description></svcdoc:Description>
<svcdoc:ServiceType>ApplicationBusinessFlow</svcdoc:ServiceType>
<svcdoc:Version>2</svcdoc:Version>
</svcdoc:Service>
</documentation>

10.13 Service Configuration

Direct integrations services that use AIA Foundation Pack tools can use the existing approach for setting up service level configuration properties in an XML file. However, Oracle recommends that you use BPEL preferences by leveraging BPEL preferences/properties feature of SOA for freshly built direct integration flows. In the composite use the property and define the configurable preferences.

<property name="bpel.preference.myProperty">myValue</property>

Configuration updates to the defined properties such as add/delete/modify can be made directly through EM console. If you use SOA BPEL preferences for service configuration you do not require a separate UI for updating the properties.

There are limitations with this approach. This approach:

	
Does not have support in XSL transformations

	
Can be used only from BPEL. Does not have support in Mediator

	
Has no support for Domain level configurations

	
Has non-intuitive navigation in the EM console to the preferences

The AIA Service Configuration file can be used to configure runtime behavior of services by the direct integration flow when AIA Foundation Pack is installed.

10.14 Extending Direct Integrations

This section discusses the extensibility patterns for Direct Integrations. This section includes the following topics:

10.14.1 Extending XSLs

Develop the base transformation XSL file to provide extension capabilities using the following guidelines.

	
To make transformation maps extension aware, create an extension XSL file for every transformation.

An example of a core transformation XSL file: PurchaseOrder_to_PurchaseOrder.xsl

Every core XSL file name has one extension XSL file, for example: PurchaseOrder_to_PurchaseOrder_Custom.xsl.

	
Define empty named templates in the extension file for every component in the message.

	
Include the extension file in the core transformation file.

	
Add a call-template for each component in core transformation.

	
Enable the transformation to accommodate transformations for custom element as shown in Example 10-10.

Example 10-10 Transformation Enabled to Accommodate Transformations for Custom Element

<!-XSL template to transform Address-->
<xsl: template name="Core_AddressTemplate">
<xsl:param name = "context" select ="."/>
<xsl:param name = "contextType" select ="'CORE'"/>
<address1><xsl:value-of select="$context/address1"><address1>
<address2><xsl:value-of select="$context/address1"></address2>
<city><xsl:value-of select="$context/city"></city>
<state><xsl:value-of select="$context/state"></state>
<zip><xsl:value-of select="$context/zip"></zip>

 <xsl:if test="$contextType!='CORE'">
<xsl:call-template name="Vertical_AddressTemplate">
<xsl:with-param name="context" select="$context"/>
<xsl:with-param name="contextType" select="$contextType">
 </xsl:call-template>
</xsl:if>
</xsl: template>

10.14.2 Extending Services

	
Mark your composite as customizable only if you have a specific customization use case.

	
Mark specific scopes in your BPEL process as customizable only if there is a specific customization use case.

For information about how to mark your composites and BPEL processes as customizable, see Chapter 4, "Working with Service Constructor."

10.14.3 Guidelines for Enabling Customizations

The section discusses general guidelines for identifying the BPEL scope to be marked as customizable.

The scope of the customizable scope activity should be made as narrow as possible. For example, rather than marking the top level scope of the BPEL flow as customizable, identify a specific scope where the logic can be added to meet customization requirements.

	
Avoid marking complex logic which could be partially deleted later as customizable.

	
If a composite is marked as customizable, do not unmark it once it is released. If you unmark it, the customization will not survive patching.

	
Do not make changes to the base version which, in a way, could cause conflict when the customized composite is patched. For example, deleting components, routing rules and activities in the customizable BPEL scope requires the customer to manually resolve the merge conflict when customized item is deleted.

	
Do not delete any component or routing rule from a customizable composite and do not delete any activities in a BPEL scope marked as customizable once the composite is released.

33 Editing Transformations Using Mapping Editor

This chapter discusses the process for editing transformations using the Mapping Editor.

This chapter includes the following sections:

	
Section 33.1, "Overview of Mapping Editor"

	
Section 33.2, "Administering the Mapping Editor"

	
Section 33.3, "Working with the Search For Mapping Page"

	
Section 33.4, "Editing Transformations"

	
Section 33.5, "Editing Rules for Mapping Editor"

	
Section 33.6, "Understanding Customization Layer"

	
Section 33.7, "Deploying Edited Transformations"

	
Section 33.8, "Removing Customizations"

33.1 Overview of Mapping Editor

The Mapping Editor is a browser-based application that enables you to customize prebuilt integration mappings. Changes are saved as layered customizations, which protects them from being overridden when applying patches or upgrades. The application also enables you to merge the customizations and deploy the impacted composite services to the runtime environment.

33.2 Administering the Mapping Editor

This section discusses the following Mapping Editor administration tasks:

	
Section 33.2.1, "Enabling the Mapping Editor"

	
Section 33.2.2, "Deploying the AgileAPI.jar File as a Shared Library"

33.2.1 Enabling the Mapping Editor

To enable the Mapping Editor, the AIAMappingCustomizer Enterprise Role must be assigned to the appropriate user(s).

The Oracle WebLogic Administrator must enable the role to the users.

The AIAMappingCustomizer Enterprise Role becomes available in the Oracle WebLogic console after the AIAHome application is deployed.

To assign the AIAMappingCustomizer Enterprise Role to a user:

	
Open Oracle WebLogic Server Administration Console.

	
Navigate to Security Realms, myrealm, Users and Groups and select the user.

	
In the Settings for <User> screen, select Groups tab.

	
Move AIAMappingCustomizer from Available to Chosen.

	
Click the Save button.

The Mapping Editor panel becomes available in the Oracle AIA Foundation Pack console for that user.

33.2.2 Deploying the AgileAPI.jar File as a Shared Library

Deploy the AgileAPI.jar as a shared library to enable users to retrieve user-defined names for Agile flexfields and display them for editing on the Mapping Editor page as described in Show Flexfield Names in Table 33-2.

The Mapping Editor uses the AgileAPI.jar file to retrieve the flexfield names for transformations whose source or target system is Agile.

Out-of-the-box, a stub version of the AgileAPI.jar file is deployed on the SOA server under the AgileAPI 1.0, 0.0 shared library. However, at this point, if you try to edit an Agile XSLT file in Mapping Editor, the Warning on Flexfield Names error displays, as shown in Figure 33-1.

Figure 33-1 Warning on Flexfield Names Error

[image: Warning on flexfields]

Select the Don't display this warning again option if you don't want this error to display again during the current session for the system(s) listed in the Warning on Flexfield Names dialog.

To enable flexfield name functionality, you must deploy the AgileAPI.jar file as a shared library to the WebLogic server. The AgileAPI.jar file uses the wlsauth.jar and crypto.jar files. These three JAR files must be available at runtime. In addition, the wlsauth.jar and crypto.jar files must be a part of the classpath when you start the SOA server.

You can access the AgileAPI.jar, wlsauth.jar, and crypto.jar files from the following locations on the Agile server:

	
<AGILE_HOME>/integration/sdk/lib/AgileAPI.jar

	
<AGILE_HOME>/<AGILE_DOMAIN>/lib/wlsauth.jar

	
<AGILE_HOME>/<AGILE_DOMAIN>/lib/crypto.jar

The location of <AGILE_HOME> depends on your installation.

The Mapping Editor supports only AgileAPI.jar file versions that are binary-compatible with Agile 9.3.1.2, 9.3.2, and 9.3.3 versions.

For more information about using Agile APIs, see the SDK Developer Guide - Using Agile APIs available in the Agile PLM 9 Documentation library.

To deploy the AgileAPI.jar file as a shared library:

	
Deploy the AgileAPI.jar file as a shared library in the WebLogic server.

The deployment sequence can be 370. The deployment sequence must be prior to 505.

For information about how to deploy a shared library, see "Deploying Shared Java EE Libraries and Dependent Applications" in Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server.

	
Redeploy the AIAHomeApp.ear file.

	
To make the wlsauth.jar and crypto.jar a part of the classpath used by the SOA server at runtime, access the setDomainEnv.sh file located in your Fusion Middleware domain: <FMW_HOME>/user_projects/domains/soainfa/bin.

Search for the declaration of the PRE_CLASSPATH variable. Append the absolute paths to the wslauth.jar and crypto.jar files to the PRE_CLASSPATH.

For your reference, this is the default PRE_CLASSPATH configuration: PRE_CLASSPATH="${SOA_ORACLE_HOME}/soa/modules/user-patch.jar${CLASSPATHSEP}${SOA_ORACLE_HOME}/soa/modules/soa-startup.jar${CLASSPATHSEP}${PRE_CLASSPATH}"

	
Save the setDomainEnv.sh file.

	
Restart the SOA server.

Users can now view user-defined flexfield names for Agile transformations on the Search For Mapping Page, as well as edit Agile transformations on the Mapping Editor page.

33.3 Working with the Search For Mapping Page

To launch the Search For Mapping page, navigate to the Oracle AIA Foundation Pack console and click the Go button in AIA Mapping Editor section.

The Search For Mapping page is displayed as illustrated in Figure 33-2. This page has two sections. The top section enables you to enter search criteria. The bottom section lists transformation files (.xsl) that are available to customize. Transformation files contain the individual mappings that convert data from the source to target in the integration. The list shown is derived from the MapperConfiguration.xml file.

Figure 33-2 Search For Mapping Page

[image: This image is described in surrounding text.]

Use the filters provided in the Filter area to help you locate the transformation file you want to customize. Table 33-1 lists the filters and their descriptions.

Table 33-1 Filters Area on the Search For Mapping Page

	Field	Description
	
Match

	
Enables you to retrieve transformations based on All or Any of the search parameters.

	
Transformation Name

	
Name of the transformation file (.xsl) in the file system.

	
Service Solution Component

	
Name of the Service Solution Component in Project Lifecycle Workbench.

	
Source System

	
The originating application system.

	
Business Task

	
Name of the Business Task in Project Lifecycle Workbench.

	
Target System

	
The receiving application system.

	
PIP

	
Name of the Process Integration Pack (prebuilt integration provided by Oracle) in Project Lifecycle Workbench.

	
Customized

	
Filters transformations based on whether they have been customized or not.

Enter search parameters in any of the Filter fields and click Search.

Use the controls describes in Table 33-2 to act upon mapping search results.

Table 33-2 Controls on the Search For Mapping Page

	Control	Description
	
Edit

	
Click to edit the selected transformation to apply custom mappings.

	
Show Flexfield Names

	
Used in combination with the Edit button. When selected, the system dynamically queries the source or target application metadata to retrieve user-defined names for flexfields and display them as the business alias on the Mapping Editor page.

Note: E-Business Suite and Agile are the supported applications in this release.

If you get a Warning on Flexfield Names message when editing Agile mappings, see Section 33.2.2, "Deploying the AgileAPI.jar File as a Shared Library".

If you get a warning message when editing E-Business Suite mappings, then you should troubleshoot using the warning message content and SOA server logs.

	
Deploy

	
After you customize the mappings, click to merge the customization layer with the base file and deploy the impacted composite services to the runtime server.

	
Remove Customizations

	
Click to remove all customized mappings from the selected transformation.

33.4 Editing Transformations

To edit the transformations:

	
Select a transformation.

	
Optionally, if the source or target system is E-Business Suite or Agile, check the Show Flexfield Names option to view user-defined names for flexfields.

	
Note:

When you select this option, loading the mappings may take longer.

	
Click the Edit button.

The Mapping Editor page is displayed.

33.4.1 Mapping Editor Page

The Mapping Editor page, as shown in Figure 33-3, enables you to view existing mappings and extend them. The Mapping Editor is preloaded with existing mappings from the selected Transformation. It enables you to add, change, and delete individual mappings. The Mapping Editor page is divided into multiple frames.

Figure 33-3 Mapping Editor Page

[image: This image is described in surrounding text.]

33.4.1.1 Page Header

	
Displays the name of the transformation file (.xsl) being edited.

	
Save and Close: This button saves mapping changes to the customization layer, and returns to the Search for Mapping page.

	
Cancel: This button returns you to the Search for Mapping page without saving mapping changes.

33.4.1.2 Target Frame

The first frame you see on the top left is the Target frame. It has target schema name and displays target schema elements. The Mapping Editor is designed to enable you to build the output document. The page is arranged this way so that you select target elements on the left and drag and drop elements to build the mapping from the right.

	
Target elements are displayed in tree structure. Elements whose children are only attributes are not initially expanded. Expand them to view attribute elements. The tree is initially expanded up to the sixth child. If the sixth child has children underneath it, those children are no longer expanded. The MaxDepth value can be configured in the MapperConfiguration.xml file.

	
Search for Element enables you to search for an element in the tree. Type the name of the element to search and press Enter or click the icon to initiate the search. The next element that contains the entered text is retrieved. Keep pressing Enter or click the icon multiple times to find the next matching elements.

	
All Items, Mapped and Not Mapped options enable you to filter elements.

	
All Items: Displays all the elements of the Target schema.

	
Mapped: Filters the tree to display only those Target elements that are mapped. When a child element is mapped, its parent is displayed to keep the Target schema structure intact.

	
Not Mapped: Filters the tree to display only those Target elements that are not currently mapped. When a child element is unmapped, its parent is displayed to keep the Target schema structure intact even if the parent is mapped.

	
Right click on any element to Show as Top, Collapse All, or Expand All.

	
This frame is divided into two columns. They are Node Name and Mapping Summary.

	
Mapping Summary column is the summary of what has been mapped to the target element. It displays Source elements, Variables, Text and Functions. When a Function is used in mapping, it normally contains a few parameters which involve a combination of Source elements, Variables, Texts, Operators and so on. Since the Mapping Summary column has a limited length which cannot accommodate all the different combinations used in a function, an abbreviated format is displayed to convey that a function was used and the parameters passed to it.

	
Target Elements with customized mappings are marked with a blue dot indicator.

	
When you select the target element, the complete expression is displayed in Mapping section of Mapping Builder frame.

33.4.1.3 Source Frame

This frame on the right displays three sections inside an accordion control: Source Schema, Mapping Components and Variables. All the three sections in the frame have search fields.

	
Source Schema

	
Source elements are displayed in tree structure. Elements whose children are only attributes are not initially expanded. You can expand to view attribute elements under them. The tree is initially expanded up to the sixth child. If the sixth child has children underneath it, those children are no longer expanded. The MaxDepth value can be configured in the MapperConfiguration.xml file.

	
Source elements have check marks to indicate that those elements have already been mapped to target.

	
Search for Element enables you to search for an element in the tree. After typing the name of the element to search, press Enter or click on the icon to initiate the search. The next element which contains the entered text is retrieved. Keep pressing Enter or click the icon multiple times to find the next matching elements.

	
You can drag and drop Source elements to an unmapped Target element or into the Mapping builder. Alternatively, you can click the Add To Mapping button to insert the selected source element into the Mapping builder.

	
Note:

When Source elements are inserted into a mapping, the appropriate relative or absolute path is automatically calculated for you based on the current execution context.

	
Mapping Components: Mapping Components consist of XSL Elements, Functions and Operators.

	
XSL Elements are a subset of the most frequently used elements in the XSL language. All Mapping Statements must start with an XSL Element. The following elements are supported:

	
Attribute: Use this when an attribute is needed to complete the mapping. For example while setting the nil attribute to true.

	
Choose: Use this to specify a condition with multiple cases. The When element is automatically inserted along with Choose.

	
For-each: Use this to map a repeating source element to a repeating target element. For-each statements change the execution context, which may result in automatic adjustment of the relative paths of Source and Variables inside child statements.

	
If: Use this to specify a condition with a single case.

	
Otherwise: Use this statement to specify the final condition under a Choose statement.

	
Text: Use this to specify literal values.

	
Value-of: Use this primary statement to perform the actual mapping assignment.

	
When: Use this to specify a condition under a Choose statement. If Choose is not already a parent statement, than it is automatically inserted along with When.

	
Functions consist of standard XPATH functions such as Date functions, advanced functions, string functions, and so on. There are also frequently used AIA functions such as DVM, XREF and so on.

	
Operators consist of Addition, And, Division, Greater Than, Less Than and so on.

	
The Mapping Component section also supports Search and Add To Mapping.

	
Variables: Displays variables that can be used for a selected Target element. Variables are context sensitive.

	
When a Target element is first selected, any applicable variable is displayed only if the Target element has not been mapped. It can be dragged and dropped to the Target element as a value-of select statement.

	
Variables are also displayed when a row has been selected in the Mapping panel. As long as the variable is applicable for the selected Mapping row, it is displayed.

	
Certain Variables can have a tree structure. You can expand these Variables to see its children and continue expanding until it reaches a leaf node.

	
Note:

When variables elements are inserted into a mapping, the appropriate relative or absolute path is automatically calculated for you based on the current execution context.

	
The Variables section also supports Search and Add To Mapping.

33.4.1.4 Mapping Builder Frame

This frame provides a mapping building utility that enables users to create and edit complex mappings. This frame is on the bottom left. This frame has the following sections.

Mapping Builder Header

	
Target Element: Displays the full path to the selected target element (above in the target frame).

	
Save: Saves the changes made in the Mapping Builder to an internal document in memory. Changes must be saved in one target element before selecting another target element.

	
Cancel: Discards the changes made in the Mapping Builder. The target mapping reverts back to its previous state.

Clear Mapping: Erases all the mappings made on the Target element.

Context:

Displays relevant contextual information to help the user understand under which conditions and code paths the currently selected target element shall be mapped. Context is not editable. The execution context may include apply templates, match templates, call templates, for-each, choose/when/otherwise and if statements that must be satisfied for the mapping to be executed. This pane is initially collapsed. Click the Restore Pane icon for it to display its content.

Mapping

Displays the complete collection of statements used in the mapping of a Target element. The mapping includes the mapping assignment itself as well as conditional statements which affect the target. Users can insert, edit or delete statements using the following toolbar options:

	
Insert: Provides options to Insert Parent, Insert Sibling Before, Insert Sibling After and Insert Child statements in the Mapping pane. These options are also available in a context menu when a user right clicks on a statement in the pane.

	
Edit: Enables the user to expand the selected statement to display subcomponents that make up the statement. Once expanded, these subcomponents can then be edited. This button and the Edit option in the context menu are only enabled for statements that can be edited. For example value-of select, if, when and so on. Editable statements in the pane are preceded with the pencil icon.

	
Done Editing: This option is enabled after the Edit button is clicked and the selected statement is expanded. After you complete making changes to any of the subcomponents, click this button to complete the change and collapse the statement. Clicking the Save button automatically clicks the Done Editing button.

	
Input Literal: This option is enabled when an expanded subcomponent contains an expression that can be modified to a literal.

	
Delete: This option is enabled when a selected statement or expression is eligible for deletion.

33.4.2 Building Mappings (Examples)

This section, using simple examples, shows you how to use the Mapping Editor page.

33.4.2.1 Building Simple Mappings

You can do simple mapping when no complex conditions are required. For example, you need to map a product ID in source system to a product ID in target system and no conditions are involved, do the simple mapping.

Figure 33-4 Mapping Expression Builder Screen

[image: This image is described in surrounding text.]

To do a simple mapping of elements:

	
Select the element in target frame that need to be mapped.

	
Select the element you want to map in the source frame.

	
Drag the source element into the target element row that needs to be mapped.

Mapping summary column of that row gets refreshed with the source element and the row is highlighted with a blue dot indicating that the element is customized.

Mapping Builder frame is refreshed with the complete mapping statement for the simple mapping just created. The value-of statement, which is the XSL equivalent of a simple assignment, is automatically added for you.

You can also map a Variable into the target this way. However, Mapping Components can only be mapped using the Mapping builder.

	
Note:

To remove the mapping that you have just made, select the element in the target frame and click the Clear Mappings button.

33.4.2.2 Building Complex Mappings

To do more complex mapping that requires conditions, functions, and so on, use Mapping builder.

To create mapping using Mapping Builder:

	
Select the element in the Target frame.

	
If the selected element is unmapped, an empty row in the Mapping section is added with the text Drag and Drop or Type here.

	
If the selected element is mapped, the complete set of mapping statements for that target is displayed in the Mapping section. You can create an empty row and add a new statement or edit an existing statement before continuing. For more information, see To add a new mapping statement row below.

	
Select and drag the source element and drop it into the empty row in the Mapping section.

	
The value-of statement, which is the XSL equivalent of a simple assignment, is added for you.

	
Alternatively you can select a source element and click the Add to Mapping Expression button.

	
Click the Done Editing button once you are done with changes.

	
Click Save.

To add a new mapping statement row:

	
Click the Insert button and choose either a parent, sibling before, sibling after, or child row.

An empty row is inserted in the desired position with the text Drag and Drop or Type here.

	
From the Mapping Components section, drag and drop an XSL Element onto the new row. For example, select if.

	
This statement is expanded to display the following required subcomponents.

	
A child row for Test which is a required attribute of the if XSL Element.

	
A new empty child row under Test has been defaulted for you with the text Drag and Drop or Type here… for Test.

	
Complete the new XSL Element by inserting a valid Source, Function, Operator, or Variable onto the new empty child row. If a Function/Operator is inserted, it is once again expanded to display its required subcomponents. Complete them too.

	
Click the Done Editing button once you are done with changes.

	
Click Save.

To edit a mapping statement row:

	
Select the row you want to edit in the Mapping section.

	
Click Edit and make necessary changes.

This statement is expanded to display its subcomponents. Edit existing subcomponents by inserting Source, Function, Operator, or Variables onto the existing subcomponent row.

	
Click Done Editing button once you are done with changes.

	
Click Save.

To save all mapping changes:

Once you are done with all the edits, click Save and Close button. This takes you back to Transformations search page. This page helps you deploy the customized transformations.

To discard all mapping changes, click the Cancel button.

Refer to Section 33.5, "Editing Rules for Mapping Editor" section before you proceed with editing expressions.

33.5 Editing Rules for Mapping Editor

This section discusses rules for editing transformations. This section also discusses in detail editing rules for “for-each”.

33.5.1 Definitions

	
Empty Row: A row without a Target Tag, Source element, Mapping Component, Variable or Literal in it. Empty row says “-- Available for D&D or Type ...”

	
Target tag: XML sentence defining the tag for a Target Element.

	
Attribute-Value Template Mapping: The expressions shown in the Expression Builder window for an Attribute-Value Template.

	
Regular Mapping: A mapping that is not for Attribute-Value Template.

	
Mapping Component: A component listed under Mapping Components accordion panel.

	
Sentence: An XML Element or an XML complete sentence.

	
Ancestor Sentence: Parent, grand parent or grand-grand parent or so on sentence excluding shared sentences.

	
Sub-component: Part of a sentence or part of a subcomponent.

	
Shared Sentence: An XSLT sentence which has two or more sibling target elements under its scope.

	
OOTB: Out Of The Box.

33.5.2 Read-only Sentences

The following sentences are read-only:

	
xsl:copy

	
xsl:copy-of

	
xsl:element

	
xsl:attribute

	
xsl:for-each

	
Target tag with attribute-value template

	
An OOTB sentence with a function or operation not listed on the Mapping Components panel

33.5.3 Drag and Drop or Typing

Table 33-3 lists various Drag and Drop (D & D) or typing activities that you can do while editing transformations.

Table 33-3 Drag and Drop or Typing

	
	
	
	D&D	D&D	D&D	D&D	D&D	D&D	Type
	Mapping Type	Parent	Destination	Source Element	XSLT Element	XSLT Attribute	Function	Operator	Variable	Literal
	
N/A

	
N/A

	
Unmapped Target Element In Target Tree

	
Yes

	
No

	
No

	
No

	
No

	
Yes

	
No

	
N/A

	
N/A

	
Mapped Target Element In Target Tree

	
No

	
No

	
No

	
No

	
No

	
No

	
No

	
Regular

	
Target tag

	
Empty Row

	
Yes

	
Yes

	
No

	
No

	
No

	
Yes

	
Yes

	
Regular

	
XSLT Element

	
Empty Row

	
No

	
Yes

	
Yes

	
No

	
No

	
No

	
(1) Yes

	
Regular

	
XSLT Attribute

	
Empty Row

	
Yes

	
No

	
No

	
Yes

	
Yes

	
Yes

	
Yes

	
Regular

	
Function

	
Empty Row

	
Yes

	
No

	
No

	
Yes

	
Yes

	
Yes

	
Yes

	
Regular

	
Operator

	
Empty Row

	
Yes

	
No

	
No

	
Yes

	
Yes

	
Yes

	
Yes

	
Regular

	
Literal

	
Empty Row

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
Attribute-Value Template

	
Any

	
Empty Row

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
Any

	
Any

	
Target Tag

	
No

	
No

	
No

	
No

	
No

	
No

	
No

	
Regular

	
Any

	
Source Element

	
Yes

	
No

	
No

	
Yes

	
Yes

	
Yes

	
Yes

	
Attribute-Value-Template

	
Attribute

	
Source Element

	
Yes

	
No

	
No

	
No

	
No

	
Yes

	
Yes

	
Regular

	
Any

	
Variable

	
Yes

	
No

	
No

	
Yes

	
Yes

	
Yes

	
Yes

	
Attribute-Value-Template

	
Attribute

	
Variable

	
Yes

	
No

	
No

	
No

	
No

	
Yes

	
Yes

	
Regular

	
Any

	
XSLT Element

	
No

	
No

	
No

	
No

	
No

	
No

	
No

	
Regular

	
Any

	
XSLT Attribute

	
No

	
No

	
No

	
No

	
No

	
No

	
No

	
Regular

	
Any

	
Function

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	
Regular

	
Any

	
Operator

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	
Yes

	
Regular

	
Target

	
Literal

	
No

	
No

	
No

	
No

	
No

	
No

	
Yes

	
Regular

	
Text XSL Element

	
Literal

	
No

	
No

	
No

	
No

	
No

	
No

	
Yes

	
Regular

	
Select attribute of value-of XSL Element

	
Literal

	
Yes

	
No

	
No

	
Yes

	
Yes

	
Yes

	
Yes

	
Attribute-Value-Template

	
Any

	
Function

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
Attribute-Value-Template

	
Any

	
Operator

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
Attribute-Value-Template

	
Any

	
Literal

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
(2)Not possible

	
Any

	
Any

	
Any Read Only

	
No

	
No

	
No

	
No

	
No

	
No

	
No

(1) Yes: Valid for <xsl:text>. Other xslt sentences will error at runtime

(2) Not Possible: User cannot create an empty row for that parent

	
Note:

When you add more than one child element with different attributes, the Mapping Editor saves both the child elements. When you add two child elements with the same attribute, the Mapping Editor saves only one attribute. This is the expected behavior.

33.5.4 Inserting a Row

The Table 33-4 discusses situations when a new row can be inserted.

Table 33-4 Rules while Inserting a Row

	
	
	
	Insert as	Insert as	Insert as	Insert as
	Mapping Type	Parent of a Selected Row	Selected Row	Parent	Child	Sibling Before	Sibling After
	
Regular

	
None

	
Any

	
Yes

	
Yes

	
No

	
No

	
Regular

	
Any

	
Target tag

	
Yes

	
Yes

	
Yes

	
Yes

	
Regular

	
Any

	
XSLT Element

	
Yes

	
Yes

	
Yes

	
Yes

	
Regular

	
XSLT Element

	
XSLT Attribute

	
No

	
(1) Yes

	
Yes

	
Yes

	
Regular

	
Any

	
Function

	
No

	
Yes

	
No

	
No

	
Regular

	
Any

	
Operator

	
No

	
Yes

	
No

	
No

	
Regular

	
Sub-component

	
Literal as subcomponent

	
No

	
No

	
No

	
No

	
Regular

	
XML Sentence

	
Literal as value of a XML Sentence

	
Yes

	
No

	
No

	
No

	
Regular

	
Any

	
Source Element

	
No

	
No

	
No

	
No

	
Regular

	
Any

	
Variable

	
No

	
No

	
No

	
No

	
Attribute-Value Template

	
Any

	
Any

	
No

	
No

	
No

	
No

(1) Yes: Valid for <xsl:text>. Other xslt sentences will error at runtime

33.5.5 Deleting

This section discusses rules while deleting transformations.

33.5.5.1 Deleting all Mapping rules (Remove All)

	
When the target element is a leaf element, target tag and all child sentences are deleted including variable declarations.

	
When the target element is a parent element, mapping editor does not allow the parent to be deleted until all child target mappings are deleted. You must delete child first and then parent.

	
When the Expressions UI shows sentences which are ancestors of the target element tag, the ancestor sentences are not shared with other target and that is the reason they are shown. These ancestor sentences are along with ancestor variables are deleted too.

33.5.5.2 Deleting an individual saved sentence

	
Individual saved sentences excludes sentences for “Attribute-Value Template sentences”.

	
Deleting whole mappings have precedence over deleting individual sentences.

	
A sentence that is created but not saved can be deleted. No rules apply for these.

	
If a sentence to be deleted defines the source execution context (for example, for each), it will be temporally flagged read only, so cannot be deleted.

33.5.5.3 Deleting Sentences in Target Element Tag

	
If the target tag sentence is a Parent Target tag, and the Child Target(s) have mapping(s) then it cannot be deleted.

	
If the target tag sentence has children sentences it cannot be deleted.

	
If the target tag has ancestor sentences, it cannot be deleted.

Target tag should be the only sentences without any child, parent or ancestor to be deleted.

33.5.5.4 Deleting Attribute-Value Templates

Example of a Attribute-Value template: deleting action="CREATE" of <changeEBO:CreateEngineeringChangeOrderList actionCode="CREATE"> sentence.

Attribute-Value template can be deleted as a whole mapping. Individual rows cannot be deleted.

33.5.5.5 Deleting Sub-Components

	
Deleting an Attribute, Parameter, Operand: Only optional sub-components can be deleted. Required subcomponents cannot be deleted.

	
Deleting a Function, Operator, Literal, Source Xpath, Variable Xpath: They can be deleted.

33.5.6 Editing Rules for For-Each

This section discusses editing rules for for-each.

33.5.6.1 Definitions

	
Execution Content: Execution context is a scope concept. When an execution context is defined, each child XSL sentence inherits the execution context. The execution context is mainly defined by the following XSLT sentences:

	
<xsl:template match='xxxx'>

	
<xsl:apply-template select='xxx'/>

	
<xsl:for-each select='xxx'/>

“xxx” is the XPath expression defining the execution context.

	
Execution Context Definer: An XSL sentence that defines an execution context.

	
Execution context based on the Payload or a Variable: An execution context can be defined with a path (relative/absolute) to the payload (source) or to a Variable. The XPath expressions with relative paths access the information from the current execution context. In other words, when the execution context is based on a variable, the relative paths access the variable content and not the payload content.

	
Execution Context Dependent (ECD) sentence: An ECD sentence is a sentence with an XPath which has any relative paths.

Attribute-Value Template is not XSLT. However, for this document they are considered as ECD sentence if the value assigned to the attribute uses a relative path.

	
Unknown Execution Context: It happens when a sentence which defines the Execution Context (for-each, apply-template and so on.) has an invalid XPath or a valid XPath but is using a complex XPath which the mapper cannot decipher. The Execution Context is flagged as Unknown for that sentence and its scope.

	
Not Editable Sentence: A sentence which is either not displayed on the Expression builder, like:

	
Variable declarations

	
Template invocations

	
Template declarations

	
A ReadOnly sentence

	
A sentence with wildcard XPath (//xxx)

33.5.7 Allowing Changing Execution Context

	
Out of the Box (OOTB) for-each: If the OOTB for-each scope involves Not Editable ECD sentences, the <xsl:for-each> sentence is set as ReadOnly.

If the OOTB for-each has an Unknown Execution Context, the <xsl:for-each> sentence is set as ReadOnly.

	
OOTB Unknown Execution Context: When a context definer sentence defines an Unknown Execution Context, all ECD child sentences are set as Read Only.

	
Drag and Drop <xsl:for-each> or Editing an existing <xsl:for-each>: A <xsl:for-each> can be dragged and dropped or edited as long as:

	
There is no Not Editable ECD sentence under the scope of the new for each. If there is any Not Editable ECD sentence, an error pops-up.

When inserting a <xsl:for-each> as an ancestor sentence of the tag sentence of a Parent Target, then the mapping sentences for the target's child mappings are within the scope of the new for-each. Those sentences are also evaluated as Not Editable ECD sentence.

	
There is no child sentence in edit mode. If a child sentence is in edit mode, an error pops-up.

	
Removing< xsl:for-each>: An xsl:for-each can be removed except when:

	
It is Read Only.

	
The <xsl-for-each> scope involves Not Editable ECD sentences.

33.5.8 Adjusting Relative Paths when Execution Context Changes

When a <xsl:for-each> is added, changed or deleted the execution context is changed.

When the Execution Context changes the ECD child sentences (sentences under the new <xsl:for-each> scope> are adjusted to keep accessing the same data as before the new context was introduced. Mapper will try to keep relative paths as much as possible.

When the new execution context changes from payload to a variable (or backwards) or from a variable to another variable, the ECD child sentences are adjusted to use absolute paths in order to keep them accessing the same data as before the execution context change.

When the new execution context changes from one location to another within the same payload or variable, the ECD child sentences are adjusted keeping relativity paths. This is done by using the XPath navigation commands (“../”, “.”, “/”)

Sentences with absolute paths are not adjusted on an execution context change.

For ECD sentences displayed on the Expression Builder, a user sees the relative paths adjusted immediately. The ECD child sentences for child target mappings are auto-adjusted when the Save button is clicked.

The Table 33-5 lists a few examples of relative path getting adjusted when execution context changes.

Table 33-5 Examples of Relative Path Getting Adjusted when Execution Context Changes

	
Execution Context changed from -> to (next row)

	
XPath to employee first name is adjusted from -> to (next row)

	
/company/employee/employee/name

	
first_name

	
/company/employees/employee

	
name/first_name

	
$department

	
/company/employee/employee/name/first_name

	
/company/employees/employee

	
/company/employee/employee/name/first_name

	
Execution Context changed from -> to (next row)

	
XPath to Company's phone number name is adjusted from -> to (next row)

	
/company/employee/employee/name

	
../../../phone_number

	
/company/employees/employee

	
../../phone_number

	
$department

	
/company/phone_number

	
/company

	
/company/phone_number

	
Execution Context changed from -> to (next row)

	
Absolute XPath to Company's city address. It is not adjusted.

	
/company/employee/employee/name

	
/company/address/city

	
/company/employees/employee

	
/company/address/city

	
$department

	
/company/address/city

	
Execution Context changed from -> to (next row)

	
XPath to Department Name from the variable $department. It is not adjusted because it is an absolute path.

	
/company/employee/employee/name

	
$department/name

	
/company/employees/employee

	
$department/name

	
$department

	
$department/name

33.6 Understanding Customization Layer

	
There is no need to put custom code in the _Custom.xsl which was recommended previously as the Mapping Editor leverages MDS Layered Customizations.

	
Using the Mapping Editor, you can now modify the existing transformation and changes are saved in the new mdssys folder.

	
The mdssys folder contains subfolders with mapperui. This subfolder contains an xml file whose name matches the xsl that was modified. For example, AgileCreateEngineeringChangeOrderListABM_to_CreateEngineeringChangeOrderListEBM.xsl.xml.

	
The xml file contains the mapping changes made to the original xsl file. These mapping changes are marked with unique xml:id=”mapperui_xxx. The mappings in this file are merged with the out-of-the-box and displayed accordingly in the Mapping Editor.

	
The mappings in the Customized Layer are not affected during pre-built integration upgrade or while applying patches.

33.7 Deploying Edited Transformations

The transformations that are customized have a mark in the customized column. To deploy the customized transformation, select the transformation and click the Deploy button.

The system does the following when you click the Deploy button:

	
Merges the Customization Layer with the base XSL file to create a Merged file.

	
Generates a custom Deployment Plan for the selected composite services.

	
Runs the custom Deployment Plan using the Foundation Pack AID utility, which redeploys the selected composite(s) to the runtime server.

33.8 Removing Customizations

To undo the customization that you have done to the transformation, select the customized transformation and click the Remove Customizations button.

9 Generating a Deployment Plan for ODI

This chapter discusses the approach to create Deployment Plans for Oracle Data Integrator (ODI) artifacts extended using AIA Extension mechanism. AIA Deployment Plan Generator utility helps generate Deployment Plans for extended artifacts and AIA Installation Driver (AID) helps deploy them.

This chapter includes the following sections:

	
Section 9.1, "Introduction to Generating a Deployment Plan for ODI"

	
Section 9.2, "Generating the BOM for ODI"

	
Section 9.3, "Generating a Deployment Plan for ODI"

9.1 Introduction to Generating a Deployment Plan for ODI

The deployment plan is used to perform the required configurations and deploy the services to the Fusion Middleware server using the AIA Installation Driver. Figure 9-1 illustrates the flow for generating deployment plans for ODI.

Figure 9-1 Generate Deployment Plans for ODI

[image: The image is described in surrounding text]

For more information about deployment plans, see Chapter 8, "Generating Deployment Plans and Deploying Artifacts."

9.2 Generating the BOM for ODI

ODI BOM is a hand-coded xml file with the list of artifacts to be imported to ODI along with the list of tokens to be replaced and encrypted. This ODI BOM is provided as input to the Deployment Plan Generator to generate the ODI deployment plan.

9.2.1 Understanding the ODIBOM.xml File

The ODIBOM.xml file consists of the following information:

	
Passwords to be encrypted in the ODI artifacts.

	
Tokens to be replaced during deployment time in the ODI artifacts.

	
The path elements of the master and work repository files to be imported into ODI.

Example 9-1 shows the structure of a sample ODI BOM.

Example 9-1 Sample ODI BOM

<?xml version="1.0" encoding="UTF-8"?>

<PipOdi xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
projectCode="ODISample">
<!-- WORK & MASTER REPOSITORIES -->
 <Repositories>
 <MasterRepositoryLocation>${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/master</MasterRepositoryLocation>
 <WorkRepositoryLocation>${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/work</WorkRepositoryLocation>
</Repositories>

<CopyDvmstoODIPath>
 <fileset dir="${AIA_
HOME}/PIPS/Industry/Communications/DIS/Collections/setupxmls/">
 <include name="COLLECTION_ACTIONNAME.xml"/>
 </fileset>
</CopyDvmstoODIPath>
<ODIReplaceTokens>
 <property>siebel.db.username</property>
 <property>brm.username</property>
 <property>ebiz.db.username</property>
</ODIReplaceTokens>
<ODIEncryptPasswords>
 <property>siebel.db.password</property>
 <property>brm.password</property>
 <property>ebiz.db.pwd</property>
</ODIEncryptPasswords>
<!-- Exported ODI files -->
 <!-- Master Repository objects -->
 <MSTREP_Grp>
<path id="masterFiles" >
 <pathelement location="${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/master/CONT_Global.xml"/>
 <pathelement location="${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/master/CONT_RETL_TO_PSFT.xml"/>
 <pathelement location="${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/master/CONT_RETL_TO_PSFT_DB2.xml"/>
 <pathelement location="${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/master/CONN_PEOPLESOFTDS.xml"/>
 <pathelement location="${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/master/CONN_PSFT_DB2_DS.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/master
/LSC_Peoplesoft.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/master
/LSC_PSFT_DB2_LogicalSchema.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/master
/LSC_Retail.xml"/>
</path>
 </MSTREP_Grp>

 <!-- Work Repository files-->
 <WRKREP_Grp>
<path id="workFiles" >
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work/MFOL_
OracleRetailToPeopleSoft.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work/MFOL_
ReIMToPeopleSoftAccountingEntry.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work/MFOL_
ReIMToPSFTInvoice.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work/MFOL_
RMSToPeopleSoftAccountingEntry.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work/CONN_
PSFT_DB2_DS.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work/PROJ_
ReIMToPeopleSoftInvoiceProject.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work/PROJ_
ReIMToPSFTAcctEntryProject.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work/PROJ_
RMSToPSFTAcctEntryProject.xml"/>
</path>
 </WRKREP_Grp>
</PipOdi>

9.2.2 Understanding the Sections in the BOM.xml

This section discusses how to use the sections in the BOM.xml.

9.2.2.1 ODIReplaceTokens

The ODIReplaceTokens section lists the tokens that are to be replaced in ODI artifacts. In AIA 2.x versions, all tokens for artifacts are available as $<token name>$. Change this to <token name>. Token name should be same as the xpath of the property in AIAInstallProperties.xml. Example 9-2 shows an example for a property.

Example 9-2 Structure of a Property in AIAInstallProperties.xml

<pips>
 <siebel>
 <db>
 <jdbc-url>xyz</jdbc-url>
 </db>
 </siebel>
</pips>

The above property value in the ODI artifacts should be tokenized with the xpath of the property in AIAInstallProperties.xml, which is, pips.siebel.db.jdbc-url.

9.2.2.2 ODIEncryptPasswords

The ODIEncryptPasswords section lists the passwords that are to be encrypted in ODI artifacts. The password property should be same as the xpath of the corresponding property in AIAInstallProperties.xml. Example 9-3 shows an example for the structure of a password field.

Example 9-3 Structure of a Password Field in AIAInstallProperties.xml

<pips>
 <siebel>
 <db>
 <password>xyz</password>
 </db>
 </siebel>
</pips>

9.2.2.3 CopyDvmstoODIPath

The CopyDvmstoODIPath section lists the DVMs that are to be copied to the odi.dvm.path location. List all of the files using the filename tag within the fileset tag. You can have multiple fileset tags within the CopyDvmstoODIPath element.

9.2.2.4 MSTREP_Grp

The MSTREP_Grp section lists the files that are to be imported to the master repository. List all the files using the pathelements inside path tag. They should be listed in the same order in which they must be imported to ODI.

9.2.2.5 WRKREP_Grp

The WRKREP_Grp section lists the files that are to be imported to the work repository. List all the files using the pathelements inside path tag. They should be listed in the same order in which they must be imported to ODI.

9.3 Generating a Deployment Plan for ODI

The command to generate a deployment plan for ODI is similar to the command to generate a deployment plan for the Project Lifecycle Workbench BOM. You must add -DODIinput variable.

To generate a deployment plan for ODI, execute the following steps:

	
Set environment variables running the command specific to your platform.

	
source <AIA_HOME>/aia_instances/<instance_name>/bin/aiaenv.sh for Linux or UNIX based systems.

	
<AIA_HOME>/aia_instances/<instance_name>/bin/aiaenv.bat for Microsoft Windows.

	
Run the following command for executing Deployment Plan Generator. This can be executed from any location:

ant –f <AIA_HOME>/Infrastructure/Install/AID/AIADeploymentPlanGenerator.xml -DODIinput=<ODI BOM file name along with absolute path of the file> -DDeploymentPlan=<Destination path of the generated DeploymentPlan>

To generate a combined Deployment Plan for Project Lifecycle Workbench BOM and ODI BOM, execute the following command:

ant –f <AIA_HOME>/Infrastructure/Install/AID/AIADeploymentPlanGenerator.xml -Dinput=<BOM file name along with absolute path of the file> -DODIinput=<ODI BOM file name along with absolute path of the file> -DDeploymentPlan=<output path for the Deployment plan along with file name> -DHarvesterSettings=<output path for the runtime Harvester setting file along with file name>

	
Note:

While generating a combined Deployment Plan, ensure that the <PIP_Name> attribute in the root tags of both BOMs is the same. The Deployment Plan Generator generates a single deployment plan for both the Project Lifecycle Workbench BOM and ODI BOM.

9.3.1 Understanding the ODI Deployment Plan

When you generate a deployment plan for the sample ODIBOM.xml file discussed in Section 9.2, "Generating the BOM for ODI" the deployment plan shown in Example 9-4 is generated.

Example 9-4 Sample Deployment Plan

<DeploymentPlan component="ODISample" version="3.0">
<Configurations>
 <replace token="siebel.db.username" value="${siebel.db.username}"
dir="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/master" />
 <replace token="siebel.db.username" value="${siebel.db.username}"
dir="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work" />
 <replace token="brm.username" value="${brm.username}" dir="${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/master" />
 <replace token="brm.username" value="${brm.username}" dir="${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/work" />
 <replace token="ebiz.db.username" value="${ebiz.db.username}" dir"${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/master" />
 <replace token="ebiz.db.username" value="${ebiz.db.username}" dir"${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/work" />
<UpdateOdiParams projectCode="ODISample" />
 <OdiEncrypt property="siebel.db.password"
masterRepositoryLoc="${AIAHome}/PIPS/Core/DIS/RetailToPSFTFin/master"
workRepositoryLoc="${AIAHome}/PIPS/Core/DIS/RetailToPSFTFin/work" />
 <OdiEncrypt property="ebiz.db.password"
masterRepositoryLoc="${AIAHome}/PIPS/Core/DIS/RetailToPSFTFin/master"
workRepositoryLoc="${AIAHome}/PIPS/Core/DIS/RetailToPSFTFin/work" />
 <OdiEncrypt property="brm.password"
masterRepositoryLoc="${AIAHome}/PIPS/Core/DIS/RetailToPSFTFin/master"
workRepositoryLoc="${AIAHome}/PIPS/Core/DIS/RetailToPSFTFin/work" />
<copy todir="${odi.dvm.path}">
 <fileset dir="${AIA_
HOME}/PIPS/Industry/Communications/DIS/Collections/setupxmls/">
 <include name="COLLECTION_ACTIONNAME.xml"/>
 </fileset>
</copy>

</Configurations>
<Deployments>
<OdiImportObject import_mode="SYNONYM_INSERT_UPDATE" />
 <path id="masterFiles" >
 <pathelement location="${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/master/CONT_Global.xml"/>
 <pathelement location="${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/master/CONT_RETL_TO_PSFT.xml"/>
 <pathelement location="${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/master/CONT_RETL_TO_PSFT_DB2.xml"/>
 <pathelement location="${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/master/CONN_PEOPLESOFTDS.xml"/>
 <pathelement location="${AIA_
HOME}/PIPS/Core/DIS/RetailToPSFTFin/master/CONN_PSFT_DB2_DS.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/master
/LSC_Peoplesoft.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/master
/LSC_PSFT_DB2_LogicalSchema.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/master
/LSC_Retail.xml"/>
 </path>
</OdiImportObject>
<OdiImportObject workrepname="${pips.ODISample.odi.workrep.name}" import_
mode="SYNONYM_INSERT_UPDATE" />
 <path id="workFiles" >
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work
/MFOL_OracleRetailToPeopleSoft.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work
/MFOL_ReIMToPeopleSoftAccountingEntry.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work
/MFOL_ReIMToPSFTInvoice.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work
/MFOL_RMSToPeopleSoftAccountingEntry.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work
/CONN_PSFT_DB2_DS.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work
/PROJ_ReIMToPeopleSoftInvoiceProject.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work
/PROJ_ReIMToPSFTAcctEntryProject.xml"/>
 <pathelement location="${AIA_HOME}/PIPS/Core/DIS/RetailToPSFTFin/work
/PROJ_RMSToPSFTAcctEntryProject.xml"/>
 </path>
</OdiImportObject>
</Deployments>

The macros in the generated deployment plan handle the following tasks.

9.3.1.1 OdiImportObject

The OdiImportObject macrodef shown in Example 9-5 imports the contents of an export file into a repository. This macrodef internally invokes the OdiImportObject utility provided as a part of Oracle Data Integrator tools.

Example 9-5 Sample Syntax of OdiImportObject

<OdiImportObject workrepname="<work_rep_name>" import_mode="SYNONYM_INSERT_
UPDATE" >
 <path id="workFiles" >
 <pathelement location="${AIAHome]/PIPS/Core/DIS/RetailToPSFTFin/src/work/MFOL_
OracleRetailToPeopleSoft.xml"/>
 <pathelement location="${AIAHome]/PIPS/Core/DIS/RetailToPSFTFin/src/work/MFOL_
ReIMToPeopleSoftAccountingEntry.xml"/>
 </path>
</OdiImportObject>

import_mode is optional. If you do not include import_mode, the value is set to SYNONYM_INSERT_UPDATE. Include all the names to be listed using the pathelement tags. For the master repository files, workrepname attribute should not be present.

9.3.1.2 OdiEncrypt

The OdiEncrypt macrodef encrypts the passwords and replaces the password tokens in the ODI artifacts with the encrypted values. When AIA Install Driver is launched it decrypts all of the values in AIAInstallProperties.xml and loads them into memory. Using OdiEncrypt macrodef, the values in memory are encrypted and the files in master and work repository directories are updated with the new values.

Syntax of OdiEncrypt:

<OdiEncrypt property="<property name in AIAInstallProperties.xml>" masterRepositoryLoc="" workRepositoryLoc="" />

9.3.1.3 UpdateOdiParams

UpdateOdiParams macrodef updates the odiparams.sh(bat) script under $ODI_HOME/agent/bin with the current ODI server details. It picks up the required properties from AIAInstallProperties.xml. The password fields are encrypted using the $ODI_HOME/agent/bin/encode.sh(bat) script. The syntax of UpdateOdiParams will be as below:

<UpdateOdiParams projectCode="ODISample"/>

The replace tokens, UpdateOdiParams, ODIEncrypt and Dvm Copy tags are generated in the Configurations section. The ODIImportObject tags that are used for ODI artifacts import are generated in the Deployments section.

After the deployment plan is generated, deploy the services using commands specified in Section 8.5, "Deploying Artifacts"

A Delivered Oracle AIA XPath Functions

This appendix provides details about the XPath functions that are delivered with the Oracle Application Integration Architecture (AIA) Foundation Pack for use in your integration flows.

This appendix includes the following sections:

	
Section A.1, "aia:getSystemProperty()"

	
Section A.2, "aia:getSystemModuleProperty()"

	
Section A.3, "aia:getServiceProperty()"

	
Section A.4, "aia:getEBMHeaderSenderSystemNode()"

	
Section A.5, "aia:getSystemType()"

	
Section A.6, "aia:getErrorMessage()"

	
Section A.7, "aia:getCorrectiveAction()"

	
Section A.8, "aia:isTraceLoggingEnabled()"

	
Section A.9, "aia:logErrorMessage()"

	
Section A.10, "aia:logTraceMessage()"

	
Section A.11, "aia:getNotificationRoles()"

	
Section A.12, "aia:getAIALocalizedString()"

	
Section A.13, "aia:getConvertedDate()"

	
Section A.14, "aia:getConvertedDateWithTZ()"

	
Note:

These functions can be called from BPEL and XSLT, and Mediator routing rule filters.

A.1 aia:getSystemProperty()

namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.
 xpath.AIAFunctions"
string aia:getSystemProperty (string propertyName, boolean needAnException)

A.1.1 Parameters

	
propertyName

Name of the system property for which to retrieve the value.

	
needAnException

Used to specify whether to throw an exception if the property is not found, otherwise return empty string.

A.1.2 Returns

Returns the string value of the system property identified by propertyName. If the property is not found, either an exception is thrown or an empty string is returned, depending on the value of the needAnException parameter.

A.1.3 Usage

	
XSLT example:

<xsl:variable name="activeRuleset" select="aia:getSystemProperty('Routing.
 ActiveRuleset',true())"/>

	
BPEL example:

<assign name="AssignVar">
 <copy>
 <from expression="aia:getSystemProperty('Routing. ActiveRuleset',
 true())"/>
 <to variable="ActiveRuleset"/>
 </copy>
</assign>

A.2 aia:getSystemModuleProperty()

namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.
 xpath.AIAFunctions"
string aia:getSystemModuleProperty (string moduleName, string propertyName,
 boolean needAnException)

A.2.1 Parameters

	
moduleName

Module for which to retrieve the property.

	
propertyName

Name of the property for which to retrieve the value.

	
needAnException

Used to specify whether to throw an exception if the property is not found, otherwise return empty string.

A.2.2 Returns

Returns the string value of the module property identified by moduleName and propertyName. If the module property is not found, then the system property of the same name is returned. If the system property with the same name is not found, then either an exception is thrown or an empty string is returned, depending on the value of the needAnException parameter.

A.2.3 Usage

	
XSLT example:

<xsl:variable name="errHdlrImpl" select="aia:getSystemModuleProperty
 ('ErrorHandler','COMMON.ERRORHANDLER.IMPL',true())"/>

	
BPEL example:

<assign name="AssignVar">
 <copy>
 <from expression="aia:getSystemModuleProperty('ErrorHandler',
 'COMMON.ERRORHANDLER.IMPL',true())"/>
 <to variable="ErrorHandler"/>
 </copy>
</assign>

A.3 aia:getServiceProperty()

namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.
 xpath.AIAFunctions"
string aia:getServiceProperty (string serviceName, string propertyName,
 boolean needAnException)

A.3.1 Parameters

	
serviceName

Service for which to retrieve the property.

	
propertyName

Name of the property for which to retrieve the value.

	
needAnException

Used to specify whether to throw an exception if the property is not found, otherwise return empty string.

A.3.2 Returns

Returns the string value of the service property identified by serviceName and propertyName. If the service property is not found, then the system property of the same name is returned. If the system property with the same name is not found, then either an exception is thrown or an empty string is returned, depending on the value of the needAnException parameter.

A.3.3 Usage

	
XSLT example:

<xsl:variable name="defaultSystemID" select="aia:getServiceProperty
 ('{http://xmlns.oracle.com/ABCSImpl/Siebel/Core/UpdateCustomerParty
 SiebelReqABCSImpl/V2}UpdateCustomerPartySiebelReqABCSImplV2','Default.
 SystemID',true())"/>

	
BPEL example:

<assign name="AssignVar">
 <copy>
 <from expression= "aia:getServiceProperty('{http://xmlns.oracle.com
 /ABCSImpl/Siebel/Core/UpdateCustomerPartySiebelReqABCSImpl/V2}
 UpdateCustomerPartySiebelReqABCSImplV2','Default.SystemID',true())"/>
 <to variable="DefaultSystemID"/>
 </copy>
</assign>

A.4 aia:getEBMHeaderSenderSystemNode()

namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.
 xpath.AIAFunctions"
node-set aia:getEBMHeaderSenderSystemNode (string senderSystemCode, string
 senderSystemID)

A.4.1 Parameters

	
senderSystemCode

System Code as defined in the Oracle AIA system registry.

	
senderSystemID

System Internal ID as defined in the Oracle AIA system registry.

For information about maintaining the Oracle AIA system registry, see Section 2.4.5.2, "Managing the Oracle AIA System Registry."

A.4.2 Returns

Returns a node set of system information, entered in the Oracle AIA system registry for the given System Code or Internal ID.

A.4.3 Usage

Given the set up on the Systems page shown in Figure A-1, both aia:getEBMHeaderSenderSystemNode('SEBL_01', '') and aia:getEBMHeaderSenderSystemNode('', 'siebel') would return the node set provided in Example A-1.

Figure A-1 Systems Page Entry and aia:getEBMHeaderSenderSystemNode()

[image: This image is described in surrouding text]

Example A-1 Node Set Returned for aia:getEBMHeaderSenderSystemNode()

 <ID xmlns="">SEBL_01</ID>
 <Description xmlns="">Siebel Instance 01</Description>
 <IPAddress xmlns="">xxxxx.siebel.com</IPAddress>
 <ContactName xmlns="">Siebel contact</ContactName>
 <ContactPhone xmlns="">1234567891</ContactPhone>
 <ContactEmail xmlns="">Siebelcontact@Siebel.com</ContactEmail>
 <Url xmlns="">http://xxxxx.siebel.com:80/ecommunications_enu</Url>
 <Application xmlns="">
 <ID>CRM</ID>
 <Version>8.0</Version>
</Application>

An XSLT example for aia:getEBMHeaderSenderSystemNode() is provided in Example A-2.

	
Tip:

This example requires <xsl:stylesheet version="2.0" ...>

Example A-2 XSLT Example for aia:getEBMHeaderSenderSystemNode()

<xsl:variable name="senderNodeVariable">
</xsl:variable>

<corecom:Sender>
 <corecom:ID>
 <xsl:value-of select="$RequestTargetSystemID"/>
 </corecom:ID>
 <corecom:Description>
 <xsl:value-of select="$senderNodeVariable/Description"/>
 </corecom:Description>
 <corecom:IPAddress>
 <xsl:value-of select="$senderNodeVariable/IPAddress"/>
 </corecom:IPAddress>
 <corecom:CallingServiceName> ...
 </corecom:CallingServiceName>
 <corecom:Application>
 <corecom:ID>
 <xsl:value-of select="$senderNodeVariable/Application/ID"/>
 </corecom:ID>
 <corecom:Version>
 <xsl:value-of select="$senderNodeVariable/Application/Version"/>
 </corecom:Version>
 </corecom:Application>
 <corecom:ContactName>
 <xsl:value-of select="$senderNodeVariable/ContactName"/>
 </corecom:ContactName>
 <corecom:ContactEmail>
 <xsl:value-of select="$senderNodeVariable/ContactEmail"/>
 </corecom:ContactEmail>
 <corecom:ContactPhoneNumber>
 <xsl:value-of select="$senderNodeVariable/ContactPhone"/>
 </corecom:ContactPhoneNumber>
...
</corecom:Sender>

A.5 aia:getSystemType()

namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"
string aia:getSystemType (string systemCode)

A.5.1 Parameters

systemCode: System code as entered in the Oracle AIA system registry.

For information about maintaining the Oracle AIA system registry, see Section 2.4.5.2, "Managing the Oracle AIA System Registry."

A.5.2 Returns

Returns the System Type associated with a System Code as entered in the Oracle AIA system registry.

A.5.3 Usage

Given the set up on the Systems page shown in Figure A-2, the result of aia:getSystemType('SEBL_01') would be the string SIEBEL.

Figure A-2 Systems Page Entry and aia:getSystemType()

[image: This image is described in surrouding text]

	
XSLT example:

<xsl:variable name="systemType" select="aia:getSystemType('SEBL_01')"/>

	
BPEL example:

<assign name="AssignVar">
 <copy>
 <from expression= "aia:getSystemType('SEBL_01')"/>
 <to variable="SystemType"/>
 </copy>
</assign>

A.6 aia:getErrorMessage()

namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.
 xpath.AIAFunctions"
string aia:getErrorMessage (string errorCode, string localeString, string
 delimiter)

A.6.1 Parameters

	
errorCode

Error code.

	
localeString

Delimited locale string.

	
Delimiter

Delimiter used in the localeString.

A.6.2 Returns

This function looks up the error message resource bundle and return a localized string for the input errorCode. The localeString is a concatenated string of LanguageCode, CountryCode, and Variant delimited by the delimiter specified. If no locale is found with the input parameters, the system default locale is used.

For more information, see java.util.Locale documentation: http://download.oracle.com/javase/1.5.0/docs/api/java/util/class-use/Locale.html.

A.6.3 Usage

	
XSLT example:

<xsl:variable name="errMsg" select="aia:getErrorMessage('AIA_ERR_AIAO2C2_
 1007','','')"/>

	
BPEL example:

<assign name="Assign_Fault">
 <copy>
 <from expression="'AIA_ERR_AIAO2C2_1007'"/>
 <to variable="AIAFaultMsg" part="AIAFault"query="/corecom:
 Fault/corecom:FaultNotification/corecom:FaultMessage/corecom:Code"/>
 </copy>
 <copy>
 <from expression="aia:getErrorMessage('AIA_ERR_AIAO2C2_1007','','')"/>
 <to variable="AIAFaultMsg" part="AIAFault"query="/corecom:
 Fault/corecom:FaultNotification/corecom:FaultMessage/corecom:Text"/>
 </copy>
</assign>

A.7 aia:getCorrectiveAction()

namespace aia="g aia:getCorrectiveAction (string correctiveActionCode,
 string localeString, string delimiter)

A.7.1 Parameters

	
correctiveActionCode

Corrective action code.

	
localeString

Delimited locale string.

	
Delimiter

Delimiter used in the localeString.

A.7.2 Returns

This function looks up the Corrective Action Code resource bundle and returns a localized string for the input correctiveActionCode.

The localeString is a concatenated string of LanguageCode, CountryCode, and Variant delimited by the delimiter specified. If no locale is found with the input parameters, the system default locale is used.

For more information, see java.util.Locale documentation: http://download.oracle.com/javase/1.5.0/docs/api/java/util/class-use/Locale.html.

A.7.3 Usage

	
XSLT example:

<xsl:variable name="corrAction" select="aia:getCorrectiveAction('SAMPLECODE'
 ,'','')"/>

	
BPEL example:

<assign name="Assign_Fault">
 <copy>
 <from expression="aia:getCorrectiveAction('SAMPLECODE','','')"/>
 <to variable="AIAFaultMsg" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:CorrectiveAction"/>
 </copy>
</assign>

A.8 aia:isTraceLoggingEnabled()

namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"
string aia:isTraceLoggingEnabled (string logLevel, string processName)

A.8.1 Parameters

	
logLevel

Log level that you wish to log.

	
processName

Name of the process.

A.8.2 Returns

Boolean indicating whether the specified logLevel is enabled for the specified process.

This function does two things:

	
Checks whether logging is enabled or disabled for the input process name from the AIAConfigurationProperties.xml file.

	
Checks if the trace logger log level is set to log the input log level.

This function returns true only when both the above conditions return true, otherwise it returns false. If the logLevel parameter is null or if it is incorrectly specified, this function returns false. If processName is null or empty strings, this function returns null.

A.8.3 Usage

	
XSLT example:

<xsl:variable name="testVal" select="aia:isTraceLoggingEnabled('INFO',
 'SamplesCreateCustomerSiebelReqABCSImpl')" />

	
BPEL example:

<assign name="Assign_Fault">
 <copy>
 <from expression="aia:isTraceLoggingEnabled('INFO',
 'SamplesCreateCustomerSiebelReqABCSImpl')"/>
 <to variable="isTraceLoggingEnabledVal"/>
 </copy>
</assign>

A.9 aia:logErrorMessage()

namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"
string aia:logErrorMessage (node-set ebmHeader, string message)

This function logs an error message. If the ebmHeader parameter is null or not passed, the message is logged without any supplemental attributes. An error message is always logged with the level SEVERE.

A.9.1 Parameters

	
ebmHeader

The Enterprise Business Message (EBM) header providing context for the error message.

	
Message

Message to log.

A.9.2 Returns

Returns an empty string.

A.9.3 Usage

	
XSLT example:

<xsl:variable name="testVal" select="aia:logErrorMessage
 (oraext:parseEscapedXML('<test></test>'),'LogError:: Your Error message
 goes here................................')"/>

	
BPEL example:

<assign name="Assign_Fault">
 <copy>
 <from expression="aia:logErrorMessage(oraext:parseEscapedXML
 ('<test></test>'),'LogError from XSL::Your Error Message goes
 here...........')"/>
 <to variable="testXpathVal"/>
 </copy>
</assign>

A.10 aia:logTraceMessage()

namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"
string aia:logTraceMessage (string level, node-set ebmHeader, string message)

This function logs a trace message.

If the ebmHeader parameter is null or not passed, the message is logged without any supplemental attributes.

If the level parameter is null or if it is incorrectly specified, a message is logged with level INFO. The level should be java.util.logging.Level.

The levels in descending order are:

	
SEVERE (highest value)

	
WARNING

	
INFO

	
CONFIG

	
FINE

	
FINER

	
FINEST (lowest value)

A.10.1 Parameters

	
Level

Level of the trace message.

	
ebmHeader

The EBM Header providing context for the trace message.

	
Message

Message to log.

A.10.2 Returns

Returns an empty string.

A.10.3 Usage

	
XSLT example:

<xsl:variable name="testVal" select="aia:logTraceMessage('ERROR',
 oraext:parseEscapedXML('<test></test>'),'LogTrace :: Your Trace message
 goes her................')" />

	
BPEL example:

<assign name="Assign_Fault">
 <copy>
 <from expression="aia:logTraceMessage
 ('ERROR',ora:parseEscapedXML('<test></test>'),'LogTraceError::
 Your trace message goes here..........')"/>
 <to variable="testXpathVal"/>
 </copy>
</assign>

A.11 aia:getNotificationRoles()

namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"
node-set aia:getNotificationRoles (string systemId, string errorCode,
 string serviceName, string processName)

A.11.1 Parameters

	
systemId

System ID.

	
errorCode

Error code.

	
serviceName

Name of the errored service.

	
processName

Name of end-to-end process.

A.11.2 Returns

This function queries the Oracle AIA system registry with input values and returns a node-set containing the actor role and the FYI role corresponding to the input errorCode.

For example:

<actor>seblAdmin</actor>
<fyi>seblCSR</fyi>

If serviceName is null or empty strings or if no value is found from in Oracle AIA system registry, this function returns the default roles specified in the AIAConfigurationProperties.xml file.

For information about maintaining the Oracle AIA system registry, see Section 2.4.5.2, "Managing the Oracle AIA System Registry."

A.11.3 Usage

	
XSLT example:

<xsl:variable name="testVal" select="aia:getNotificationRoles
 ('AIADEMO','AIADEMO_ORDER_FALLOUT','AIADemoProcessSalesOrderCBP',
 'AIADemoProcessSalesOrderCBP')" />

	
BPEL example:

<assign name="Assign_Fault">
 <copy>
 <from expression="aia:getNotificationRoles('AIADEMO','AIADEMO_ORDER_
 FALLOUT','AIADemoProcessSalesOrderCBP','AIADemoProcessSalesOrderCBP')
 "/>
 <to variable="testXpathVal"/><to variable="NotificationRole"/>
 </copy>
</assign>

A.12 aia:getAIALocalizedString()

namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"
string aia:getAIALocalizedString (string resourceBundleId, string key,
 node params)
string aia:getAIALocalizedString (string resourceBundleId, string key,
 string language, string country, node params)

A.12.1 Parameters

	
resourceBundleId

Identifies the AIA resource bundle from which to retrieve the localized string.

	
key

The key whose value has to be picked up from the resource bundle.

	
language

Language, according to java.util.Locale, for which to retrieve the localized string.

	
Country

Country, according to java.util.Locale, for which to retrieve the localized string.

	
Params

Node supplying the values for any bind variables within the localized string.

The AIAConfigurationProperties.xml file contains a set of module configuration properties that provide the mapping of resourceBundleId values to resource bundle class names, as shown in Example A-3.

This mapping is used at runtime to determine which resource bundle class to use for looking up the localized string.

Example A-3 Module Configuration Properties

<ModuleConfiguration moduleName="ResourceBundle">
 <property name="Telco/BillingManagement">oracle.apps.aia.core.
 i18n.AIAListResourceBundle</property>
 <property name="Telco/ProductLifeCycle">oracle.apps.aia.core.
 i18n.AIAListResourceBundle</property>
 <property name="Telco/SalesOrder">oracle.apps.aia.core.i18n.
 AIAListResourceBundle</property>
 <property name="Telco/CustomerParty">oracle.apps.aia.core.i18n.
 AIAListResourceBundle</property>
</ModuleConfiguration>

A.12.2 Returns

This function returns the localized string for the passed key from an AIA resource bundle, identified by resourceBundleId. If language and country are omitted, the default locale is assumed.

A.12.3 Usage

Example A-4 provides a BPEL usage example for aia:getAIALocalizedString().

Example A-4 BPEL Usage Example for aia:getAIALocalizedString()

<assign name="Assign_1">
 <copy>
 <from variable="inputVariable" part="payload" query="/sordabo:
 ListOfSWIOrderIO/sordabo:SWIOrder/sordabo:OrderNumber"/>
 <to variable="localizedStringParams" query="/bpelcom:parameters/
 bpelcom:item/bpelcom:value"/>
 </copy>
 <copy>
 <from expression="aia:getAIALocalizedString ('Telco/SalesOrder','ORDER_
 NUMBER_MESSAGE',bpws:getVariableData("localizedStringParams"))
 "/>
 <to variable="internationalizedstring"/>
 </copy>
</assign>

A.13 aia:getConvertedDate()

namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"
string getConvertedDate(String dateTimeTz, String timeZone, boolean
 needAnException)

A.13.1 Parameters

	
dateTimeTz

DateTime as String, in standard W3C and RFC date format. For example: yyyy-MM-dd'T'HH:mm:ss.SSSZ.

	
timeZone

Target time zone, as 3 characters code. For example, IST or as GMT offset +05:30.

	
needAnException

Boolean flag: true throws exception for any Parse error and false returns the input date.

A.13.2 Returns

This function returns the converted date as string without time zone in yyyy-MM-dd'T'HH:mm:ss.SSS format.

A.13.3 Usage

	
XSLT example:

<xsl:value-of select="aia:getConvertedDate(ns0:
 CreateEngineeringChangeOrderList/ns0:ImplementationDate,$ebizTimeZone,false
 ())"/>

	
BPEL example:

<copy>
 <from expression="aia:getConvertedDate("2010-04-26T16:25:00+05:30",
 "-08:00", false()) "/>
 <to variable="getConvertedDateVal"/>
</copy>

A.14 aia:getConvertedDateWithTZ()

namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"
string getConvertedDateWithTZ(String dateTimeTz, String timeZone,
 boolean needAnException)

A.14.1 Parameters

	
dateTimeTz

DateTime as String, in standard W3C and RFC date format. For example: yyyy-MM-dd'T'HH:mm:ss.SSSZ

	
timeZone

Target time zone, as 3 characters code. For example, IST or as GMT offset +05:30.

	
needAnException

Boolean flag: true throws exception for any Parse error and false returns the input date.

A.14.2 Returns

This function returns the converted date as string without time zone in the input date format.

A.14.3 Usage

	
XSLT example:

<xsl:value-of select="aia:getConvertedDateWithTZ(ns0:
 CreateEngineeringChangeOrderList/ns0:ImplementationDate,$ebizTimeZone,
 false())"/>

	
BPEL example:

<copy>
 <from expression="aia:getConvertedDateWithTZ('2010-04-26T14:30:00
 +00:00','+05:30', false())"/>
 <to variable="getConvertedDateWithTZVal"/>
</copy>

14 Designing and Developing Enterprise Business Services

This chapter provides an overview of Enterprise Business Services (EBS) and describes how to design EBS, construct the WSDL for the process EBS, work with message routing, build EBS using Oracle Mediator, implement the Fire-and Forget Message Exchange Pattern, implement Synchronous Request-Response Message Exchange Pattern, and implement the Asynchronous Request-Delayed Response Message Exchange Pattern.

This chapter includes the following sections:

	
Section 14.1, "Introduction to Enterprise Business Services"

	
Section 14.2, "Designing the EBS"

	
Section 14.3, "Constructing the WSDL for the Process EBS"

	
Section 14.4, "Working with Message Routing"

	
Section 14.5, "Building EBS Using Oracle Mediator"

	
Section 14.6, "Implementing the Fire-and-Forget Message Exchange Pattern"

	
Section 14.7, "Implementing the Synchronous Request-Response Message Exchange Pattern"

	
Section 14.8, "Implementing the Asynchronous Request-Delayed Response Message Exchange Pattern"

14.1 Introduction to Enterprise Business Services

EBSs are the foundation blocks in Oracle Application Integration Architecture (AIA). An EBS represents the application or implementation-independent Web service definition for performing a task, and the architecture facilitates distributed processing using EBS. Since an EBS is self-contained, it can be used independently of any other services. In addition, it can be used within another EBS.

For more information about EBS, see "Understanding Enterprise Business Services" in the Oracle Fusion Middleware Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation Pack.

You must construct an EBS when the business process integration is between multiple source applications and target applications using the canonical model.

The purpose of the EBS is to:

	
Provide the mediation between the requesting services and providing services.

	
Provide different operations invoked from a requester Application Business Connector Service (ABCS), an EBS, or an Enterprise Business Flow (EBF).

	
Route an operation to a suitable EBS, EBF, or provider ABCS based on the evaluation of the various routing rules for an operation.

Oracle AIA leverages Mediator technology available in Oracle SOA Suite to build the EBS.

The EBS is implemented as a Mediator routing service. A Mediator service has an elaborate mechanism to hold multiple operations of the EBS, create routing rules for each operation, perform XSLT transformation, and define endpoints for each routing rule.

For more information about using Oracle Mediator, see "Using the Oracle Mediator Service Component" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

You can model EBS operations either as synchronous or asynchronous message exchange patterns (MEPs).

14.1.1 Understanding EBS Types

The types of EBS are:

	
Business Activities

They represent an atomic business unit of work that has a set of steps involving system-to-system interaction. They are exposed as mediator services with implementations through ABCSs or EBFs.

	
Tasks

They provide an aggregated, real-time view of enterprise data. They are primarily Create, Read, Update, Delete (CRUD) operations acting on the Enterprise Business Object (EBO) and its business components. They are exposed as mediator services with implementations through ABCS. They eliminate point-to-point links at the data level and direct dependency on data models of data sources.

For more information about EBS types, see "Understanding Enterprise Business Services" in Oracle Fusion Middleware Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation Pack.

14.1.2 Working with the Enterprise Business Service Library

AIA Foundation Pack is shipped with an EBS library. The EBS library consists of the service definitions delivered for the all of the EBOs present in the Enterprise Object Library. These are shipped as WSDL files. The service operations present in the EBS typically are the CRUD operations and some operations specific to entities.

All the operations of the EBS WSDLs, of type Data Services, in the Enterprise Business Service Library are modeled as asynchronous one-way services. The only exceptions are the Query operations and Validate operations. These are modeled as synchronous request-response operations with a named fault.

	
You can review the sample WSDLs provided in the AIA Foundation Pack under the AIAComponents/EnterpriseServiceLibrary folder.

	
Review each of the WSDLs, the operation's description, and the metadata before deciding to create either a new service or an operation.

	
Any new EBS that you create must be of type Activity Service, with operations put in to meet the requirements of integration solution being developed.

	
The new EBS should be put in a different WSDL and not added to the entity EBS WSDLs.

14.2 Designing the EBS

This section includes the following topics:

	
Section 14.2.1, "Understanding Design Guidelines"

	
Section 14.2.2, "Understanding Design Considerations"

	
Section 14.2.3, "Establishing the MEP of a New Process EBS"

	
Section 14.2.4, "How to Establish the MEP for a New Process EBS"

	
Section 14.2.5, "How to Handle Errors"

	
Section 14.2.6, "How to Secure the EBS"

	
Section 14.2.7, "How to Configure Transactions"

	
Section 14.2.8, "How to Guarantee Delivery"

	
Section 14.2.9, "How to Define the EBS Service Contract"

14.2.1 Understanding Design Guidelines

The methodology for designing and implementing an EBS is a contract-first methodology, that is, the contract is defined and created before the EBS is implemented. The contract for an EBS is defined as a WSDL document.

For the task EBS, use the WSDLs from the Enterprise Service Library of the Foundation Pack.

For the business activity EBS, use the TemplateEBS.wsdl available in the Foundation Pack and create a process EBS WSDL. Customers wanting to create an EBS for an EBO that was not delivered as part of Enterprise Object Library can use TemplateEBS.wsdl as a model to create the new WSDL.

Service operations supporting the synchronous request-response MEP are defined in one port type. The operation should have input, output, and fault message defined.

Service operations supporting fire-and-forget MEP should be defined in one port type and the operation must have an input message defined.

Service operations supporting an asynchronous request-delayed response pattern should have two operations, one for sending the request message and another for processing the response message. Each of these two operations must have an input message. Two different portTypes exist, one for each operation. The service operation for processing the response message should reside in a port type that has Response as the suffix.

The EBS WSDLs should have two kinds of portTypes:

	
A portType for all operations used for modeling synchronous request-response operations and request-only operations. The name does not specify the Request.

	
A portType for asynchronous response operations. The name specifies Response.

You should create two Mediator routing services for each of the portTypes.

14.2.2 Understanding Design Considerations

When designing EBS, consider the following:

	
What is the service for?

	
Your enterprise should have only one EBS for a particular business function, and it should be independent of any application.

	
The service can implement multiple business operations defined in EBS WSDL.

	
It should have implementations for all the business operations for a business object.

	
The service should also contain response operations, which are required for the asynchronous request-response pattern.

	
How will the service be invoked?

	
The service is invoked using HTTP transport as a Web service.

	
When the calling client is co-located with this service, then the call can be configured to be a local invocation using optimized binding to improve performance and propagate transactions.

	
What invokes the service?

	
The service can be invoked by an application if the application can send an Enterprise Business Message (EBM) and can perform all the functions of requester ABCS.

	
When the application does not have the capability to invoke this service directly, then the requester ABCS invokes this service.

	
An EBF flow that orchestrates across multiple business objects can also invoke this service.

	
How do you interact with the application?

	
If the application can receive the EBM message, the EBS can call the application using HTTP as Web service call.

	
If not, then you must create and call a provider ABCS.

	
What type of interaction is between client and EBS?

	
The client can call EBS using any of the three MEPs.

14.2.3 Establishing the MEP of a New Process EBS

Since the MEPs for the entity EBS WSDLs in the EBS library are predefined, you must design the process EBS WSDLs. The EBS is modeled to have multiple operations. Each operation leads to the execution of the EBS for a particular business scenario requirement and is granular in nature. Thus, each operation can be modeled to support a different interaction style or pattern.

Figure 14-1 illustrates the decision points in establishing the EBS pattern.

Figure 14-1 Identifying the Interaction Pattern for EBS Operations

[image: The image is described in the surrounding text]

For more information about EBS types, see "Understanding Enterprise Business Services" in Oracle Fusion Middleware Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation Pack.

14.2.4 How to Establish the MEP for a New Process EBS

To establish the MEP for a new process EBS:

	
Identify the triggering event for the EBS operation based on the understanding of the business process requirement from the functional design.

	
If the control is to be blocked until a response is returned to the point of invocation, then choose the EBS request-reply pattern.

This is a synchronous call. In this case, the EBS operation has input and output messages with a named fault.

	
If, after the EBS is invoked, the triggering point does not wait for the response and continues, this invocation of the EBS would be an asynchronous call.

	
Next, check whether the execution of the EBS results in a response.

Should the request and the response be correlated? If the answer is yes, then this is a delayed response. Use the EBS request-delayed response pattern. In this case, the EBS has two portTypes, each of which accepts an input message only and each of them belongs to a different port.

If the answer is no, then choose the EBS fire-and-forget pattern. In this case, the EBS operation has an input message only.

14.2.5 How to Handle Errors

The EBS should be configured to rethrow the errors back to the invoking client. Ensure that the application error handling capabilities are in line with the integration platform error handling capabilities.

For more information about error handling, see Chapter 27, "Configuring Oracle AIA Processes for Error Handling and Trace Logging."

14.2.6 How to Secure the EBS

When the invoking client (requester ABCS or application) is remote, the EBS must be enabled with security as described in the security chapter.

For more information about security, see Chapter 29, "Working with Security."

For more information about EBS, see "Understanding Enterprise Business Services" in Oracle Fusion Middleware Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation Pack.

14.2.7 How to Configure Transactions

Based on the SOA transaction semantics in Oracle Fusion Middleware, you can design and configure transactions across ABCS, EBS, and EBF.

For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

14.2.8 How to Guarantee Delivery

For details about how to guarantee message delivery, see Section 17.7, "Guaranteed Message Delivery."

14.2.9 How to Define the EBS Service Contract

To define the EBS service contract:

	
Identify the EBS and the operations it must support.

	
Identify the interaction patterns for each of the operations in EBS.

	
Identify the EBMs to be used for the requests and responses (if any) pertaining to each of the operations.

14.3 Constructing the WSDL for the Process EBS

This section includes the following topics:

	
Section 14.3.1, "Introduction to WSDL Construction for the Activity Service EBS"

	
Section 14.3.2, "How to Complete the <definitions> Section"

	
Section 14.3.3, "How to Define Message Structures"

	
Section 14.3.4, "How to Check for WS-I Basic Profile Conformance"

These sections describe how to fill in sections of the WSDL.

14.3.1 Introduction to WSDL Construction for the Activity Service EBS

When constructing the WSDL, consider that:

	
Oracle's JDeveloper and text editing tools can be used to create the WSDL.

	
The EBM schema module for the EBO must be referenced in the WSDL.

	
The WSDL should reference the schema modules hosted on the central location.

	
Annotations should be done based on the recommendations provided in Chapter 13, "Annotating Composites."

	
You should adhere to the naming conventions for creating service, target namespace, messages, operations, port type, and so on as described in Chapter 32, "Oracle AIA Naming Standards for AIA Development."

14.3.2 How to Complete the <definitions> Section

To complete the <definitions> section:

	
Name

The service contains operations related to creation and maintenance, and actions to be performed on an EBO.

	
Namespace

Mark this namespace as the target namespace.

	
Namespace prefixes

Define a namespace prefix for the newly identified namespace:

	
wsdl is the namespace prefix for the default namespace.

	
xsd is the namespace prefix for XMLSchema.

	
soap is the namespace prefix for the SOAP namespace.

A namespace prefix must be defined for the EBO. The namespace prefix should be the same as the EBS WSDL in the delivered EBOs.

14.3.3 How to Define Message Structures

To define message structures in the WSDL types section:

	
Import the appropriate schema that has all of the relevant EBMs defined.

	
Use xsd:import to import the elements from a schema.

Ensure that the namespace attribute for the xsd:import element is the same as the target namespace for the schema document you import.

Also, ensure that the namespace prefix is declared for that namespace so that the elements in the imported schema can be referenced using the namespace prefix.

	
The attribute targetNamespace for the xsd:schema element should be the same as the targetNamespace for this WSDL.

Message Definitions

For every operation, you must create a message for sending requests and another message (optionally) for receiving responses, depending on the pattern you selected.

	
The message for sending the requests should be the same as the operation followed by ReqMsg.

	
The response message should be the same as the operation followed by RespMsg.

PortType Definition

You should define a portType name for each operation, and it should be the same as the service name. You defined the message names specified for input and output elements in the message definitions section based on the pattern. When services are deployed, Mediator appends Service to the port type to form the service name that goes under the service section in the concrete WSDL.

Annotating Service Interface

Sections of the WSDL allow documentation where the details of the sections can be annotated. WSDL authors must annotate the sections thoroughly, and in a manner similar to the way existing EBS WSDLs are annotated. The annotations serve as the source of truth for populating the metadata in the Oracle Enterprise Repository.

14.3.4 How to Check for WS-I Basic Profile Conformance

The WS-I Basic Profile consists of a set of nonproprietary Web services specifications, along with clarifications, refinements, interpretations, and amplifications of those specifications that promote interoperability.

Conformance to the Profile is defined by adherence to the set of requirements for a specific target, within the scope of the Profile.

14.4 Working with Message Routing

This section includes the following topics:

	
Section 14.4.1, "Creating Routing Rules"

	
Section 14.4.2, "Routing at the EBS"

	
Section 14.4.3, "Guidelines for EBS Routing Rules"

	
Section 14.4.4, "How to Identify the Target System at EBS"

14.4.1 Creating Routing Rules

The routing rules in the EBS routing service operations are used to decide to which target end point the incoming message should be routed.

Follow these guidelines when creating routing rules:

	
Routing rules must first be defined functionally and always with a specific integration topology in mind.

	
In most cases, routing logic should be performed in the routing rules of the EBS.

However, all routing rules in the EBS should check for and respect existing target system IDs that are stamped in the header. EBS rules should not assume the target system ID is populated.

	
Requester ABCS should not determine target systems or stamp target system IDs in the EBM header.

	
For any EBS operation, each possible target application system instance requires a routing rule.

For example, if two Siebel provider application system instances exist, SEBL_01 and SEBL_02, then each must have a routing rule even though both rules target the same Siebel provider ABCS.

Alternatively, if functional requirements dictate that only a single instance of the application type can receive the message at runtime, then a single rule could be used and an XSLT would be invoked to stamp the ID of the one instance to be used at runtime.

When an EBS operation has multiple provider application system instances of the same application type (such as SEBL_01 and SEBL_02), the routing rules for each instance must have an XSLT to stamp the appropriate system instance ID in the EBM header so that the provider ABCS that is shared between the multiple instances can identify which instance to invoke and cross-reference.

	
If an EBS operation is a synchronous request-reply pattern or asynchronous request-delayed response pattern, then the routing rules must be mutually exclusive given the actual topology of the Oracle AIA system.

	
Routing rules are delivered with Pre-Built Integrations as part of Mediator routing services.

These rules are designed to work for the delivered topology. If you implement any changes to the delivered topology, such as adding an additional system instance, then you must implement your own complete set of routing rules.

The standard routing rule clause structure is:

(cavs_check) and (ruleset_check) and ((target_system_identified_check) or ((target_system_absent_check) and (topology_specific_clauses))

Table 14-1 lists the routing rule clauses and the related XPath expressions.

Table 14-1 Routing Rule Clauses

	Clause	XPath expression
	

cavs_check) =

	

MessageProcessingInstruction/EnvironmentCode='PRODUCTION' or
 not(MessageProcessingInstruction/EnvironmentCode/text()))

	

ruleset_check) =

	

TBD

	

target_system_identified_check) =

	

EBMHeader/Target/ApplicationTypeCode='SIEBEL'

	

target_system_absent_check) =

	

not(EBMHeader/Target/ID/text())

	

O2C2 OOTB (topology_specific_clauses) =

	

aia:getSystemType(EBMHeader/Sender/ID)!='SIEBEL'

Table 14-2 shows some routing rules delivered as part of the Integrated Supply Chain Management Pre-Built Integration.

Table 14-2 Delivered Routing Rules

	Target	Siebel provider ABCS
	

XPath Filter:

	

(MessageProcessingInstruction/EnvironmentCode='PRODUCTION' or
not(MessageProcessingInstruction/EnvironmentCode/text(
)))and (EBMHeader/Target/ApplicationTypeCode='SIEBEL'
or (not(EBMHeader/Target/ID/text()) and
aia:getSystemType(EBMHeader/Sender/ID)!='SIEBEL'))

	
Transformation:

	
None

	
Explanation:

	
MessageProcessingInstruction/EnvironmentCode='PRODUCTION' or is missing entirely and either Target application type is specified as Siebel, or else no Target is specified and the Sender application type is not Siebel.

	
Target:

	
Oracle EBusiness provider ABCS

	

XPath Filter:

	

(MessageProcessingInstruction/EnvironmentCode='PRODUCTION' or
not(MessageProcessingInstruction/EnvironmentCode/
text())) and (EBMHeader/Target/
ApplicationTypeCode='EBIZ' or (
not(EBMHeader/Target/ID/text()) and
aia:getSystemType(EBMHeader/Sender/ID)!='EBIZ'))

	
Transformation:

	
None

	
Explanation:

	
MessageProcessingInstruction/EnvironmentCode='PRODUCTION' or is missing entirely and either Target application type is specified as EBiz, or else no Target is specified and the Sender application type is not EBiz.

	
Target:

	
CAVS

	

XPath Filter:

	

MessageProcessingInstruction/EnvironmentCode='CAVS'

	
Transformation:

	
None

	
Explanation:

	
MessageProcessingInstruction/EnvironmentCode='CAVS'

14.4.2 Routing at the EBS

Routing rules are specified for each operation defined on EBS services. The system uses routing rules to determine where to route the incoming EBM, either to an EBF, EBS, ABCS, or the Composite Application Validation System (CAVS). Routing rules are specified as XPath expressions in the filter of the Mediator routing rule.

Routing rules must be mutually exclusive since all the rules are evaluated and messages are routed to an end point based on the rule evaluation.

14.4.3 Guidelines for EBS Routing Rules

At a minimum, each EBS operation should have these rules:

	
One routing rule for CAVS enabling.

This rule should check whether the EBM Header > MessageProcessingInstruction > EnvironmentCode is set to CAVS.

	
One or more routing rules to connect to the provider ABCS or EBF.

The filter expression specified in these routing rules must ensure that the message is not a test message.

For each ABCS or EBF, one routing rule exists. The conditions can be one of these:

	
Target system ABCS populated in the EBM header

Example of a filter expression for a SalesOrderEBS routing rule for determining the target system ABCS:

In this case, the filter has an expression to check whether the target system ABCS in the EBM header was prepopulated and the Override Routing Indicator is set to False.

/sordebo:QuerySalesOrderEBM/ns5:EBMHeader/ns5:Target/ns5:ID = "SEBL78_01" and
/sordebo: Query SalesOrderEBM/ns5:EBMHeader/ns5:Target/ns5: Override
RoutingIndicator = "false"

	
Content-based routing

In this case, the content of the EBM is evaluated to determine the target system ABCS. The filter expression should ensure that the target system information was not prepopulated in the EBM header.

Example expression:

starts-with(/sordebo: CreateSalesOrderEBM
/sordebo: DataArea/sordebo: CreateSalesOrder/sordebo: SalesOrderLine
/sordebo:SalesOrderLineSchedule/ns5:ShipToPartyReference
/ns5:LocationReference
/ns5:Address/ns5:CountrySubDivisionCode,'9') and
/sordebo:CreateSalesOrderEBM/ns5:EBMHeader /ns5:Target/ns5:ID = ""

	
Parallel Routing

EBS should use parallel routing when you want each target service to invoke in its own transaction and retry the target service.

For more information, see Chapter 15, "Designing Application Business Connector Services."

	
Enable error handling and logging

EBS should handle errors to allow clients or administrators to resubmit or retrigger processes through a central error handler.

For more information, see Chapter 27, "Configuring Oracle AIA Processes for Error Handling and Trace Logging."

14.4.4 How to Identify the Target System at EBS

The EBS can route the request from the Requester ABCS, an EBF, or another EBS to one of the many provider ABCS available. The target system must be identified only for Create operations. For all other operations, the Xref function lookupPopulatedColumns is used to identify the systems in which the data synchronization of entity has been done. A combination of steps listed below leads to the correct ABCS.

To identify the target system at EBS:

	
Using content-based routing.

The routing rule in the EBS is based on the content of the message and is used to decide the target ABCS. This is used only for the Create operation. This is the case when the target system information in the EBM header is empty and has not been set as yet.

After the target system is determined, it is set in the EBM header. This information is used for all subsequent services - like other EBS or ABCS.

	
Using the target system information in the EBM header.

If the target system information is set in the EBM, this is used for routing to the correct ABCS.

	
From the XREF for operations other than Create.

For all operations other than Create, the target system has been determined and the cross-reference IDs have been set. In this case, use the XREF function lookupPopulatedColumns to identify the systems in which the data synchronization of the entity has been done.

14.5 Building EBS Using Oracle Mediator

You can use the Oracle Mediator component to build a component in an EBS composite.

Although Oracle AIA allows any technology to be used for developing an EBS service, use Mediator in most situations.

14.5.1 How to Develop the Oracle Mediator Service

To develop the Oracle Mediator Service:

	
In JDeveloper, create an SOA composite project.

	
Open the composite.xml in Design mode.

	
Add a Mediator component in the components swim lane.

	
Add a Web service as external reference service in the references swim lane.

This reference service could represent a provider ABCS.

You should use a concrete WSDL of the provider ABCS. That is, you should pre-deploy the service that is being referred to as an external reference.

	
Wire the Mediator component to the external reference component created in step 4.

	
Open the Mediator component and configure routing rules.

	
Create an assign by copying the input variable to the output variable as shown in Figure 14-2.

Figure 14-2 Creating an Assign

[image: The image is described in the surrounding text]

14.6 Implementing the Fire-and-Forget Message Exchange Pattern

To implement both asynchronous MEPs (fire-and-forget and request-delayed response), you must create EBS WSDLs and then create one or two Mediator routing services, depending upon the MEP. Next, implement the requester and provider services, adhering to the guidelines laid out for the respective MEPs.

The requesting service can be a requester ABCS (BPEL process), EBF (BPEL process), or a participating application.

The providing service can be a provider ABCS (BPEL Process), EBF (BPEL process), or a participating application.

This section includes the following topics:

	
Section 14.6.1, "How to Implement Fire-and-Forget Pattern with EBS One-Way Calls"

	
Section 14.6.2, "Creating EBS WSDLs"

	
Section 14.6.3, "Creating Mediator Routing Services for Asynchronous Fire-and-Forget Patterns with a One-Way Call EBS"

	
Section 14.6.4, "Asynchronous Fire-and-Forget MEP Error Handling Using Compensatory Operations"

	
Section 14.6.5, "How to Invoke the Compensate Operation of EBS"

	
Section 14.6.6, "How to Enable Routing Rules in Compensate Operation Routing Service"

14.6.1 How to Implement Fire-and-Forget Pattern with EBS One-Way Calls

The initiator for a fire-and-forget pattern is a requesting service not waiting for or expecting a response. The requesting service can be a participating application, a requester ABCS Impl, or an EBF. In each of these cases, the request payload must be an EBM request.

For more information about enabling the ABCS (both requester and provider), see Chapter 15, "Designing Application Business Connector Services," Chapter 16, "Constructing the ABCS,", and Chapter 17, "Completing ABCS Development."

For more information about enabling the EBF, see Chapter 19, "Designing and Constructing Enterprise Business Flows."

To implement fire-and-forget pattern with EBS one-way calls:

	
Create EBS WSDLs.

	
Create a Mediator routing service for asynchronous fire-and-forget patterns with one-way call EBS.

	
Route the request from the requesting service to correct providing service in the routing service of the one-way call operation of the request EBS.

	
Implement error handling for logging and notification based on fault policies.

	
Note:

These steps are in addition to the regular steps required for the requesting service and the providing service.

14.6.2 Creating EBS WSDLs

For the entity EBS, use the WSDLs from the Enterprise Service Library of the Foundation Pack.

For the process EBS, use the TemplateEBS.wsdl available in the Foundation Pack and create a Process EBS wsdl.

	
Service operations supporting a synchronous request-response MEP must be defined in one port type and the operation must have input, output, and fault message defined.

	
Service operations supporting a fire-and-forget MEP must be defined in one port type and the operation must have an input message.

	
Service operations supporting asynchronous request-response pattern must have two operations, one operation for sending the request message and another operation for processing the response message.

Each of these two operations must have an input message alone. You should have two different portTypes, one for each operation. The service operation for processing the response message must reside in a portType having Response as the suffix.

	
The EBS WSDLs must have two portTypes:

	
PortType for all operations used for modeling synchronous request, response operations and request-only operations. The name must not specify Request.

	
PortType for asynchronous response operations. The name must specify Response.

	
Two Mediator routing services must be created for each of the portTypes.

14.6.3 Creating Mediator Routing Services for Asynchronous Fire-and-Forget Patterns with a One-Way Call EBS

To create Mediator routing services for asynchronous fire-and-forget patterns with a one-way call EBS:

	
Create Mediator projects.

	
Create routing services.

	
Create routing rules.

	
Implement error handling.

14.6.3.1 How to Create Mediator Projects for the Asynchronous Fire-and-Forget MEP

To create Mediator projects for the asynchronous fire-and-forget MEP:

	
Create two Mediator projects, one for each of the portTypes in the EBS WSDL.

If all of the service operations for an EBS have either a synchronous request-response or fire-and-forget pattern, then all of these operations must reside in only one portType so there would be only one Mediator routing service.

If the EBS has at least one asynchronous request-response operation, then there should be two port types - two Mediator Routing Services and two Mediator projects (one for each of the routing services).

	
Follow the naming conventions detailed in Appendix: Oracle AIA Naming Standards.

Examples of typical names for the Mediator projects:

	
CustomerPartyEBSV2 (This has a routing service with all operations for synchronous request-response and request-only.)

	
CustomerPartyEBSResponseV2 (This has a routing service with all operations for asynchronous request-response.)

14.6.3.2 How to Create Routing Services for Asynchronous Fire-and-Forget MEP

To create routing services for asynchronous fire-and-forget MEP:

	
Put the EBS WSDL in the Mediator project folder.

	
Create a routing service and name according to the naming convention detailed in Chapter 32, "Oracle AIA Naming Standards for AIA Development."

	
Select the WSDL.

The WSDL must be parsed and the portType name filled in the portType field of the routing service.

	
Select the portType matching with the routing service. Save the routing service.

The routing service created for a portType must have all the operations specified in that portType in the EBS WSDL.

14.6.3.3 How to Create Routing Rules for Asynchronous Fire-and-Forget MEP

The routing rules for the request EBS are the same as those for the synchronous request-response section.

For more information, see Section 14.7.3, "How to Create Routing Services for the Synchronous Request-Response MEP."

14.6.3.4 How to Implement Error Handling for Asynchronous Fire-and-Forget MEP

For more information, see Chapter 27, "Configuring Oracle AIA Processes for Error Handling and Trace Logging."

14.6.4 Asynchronous Fire-and-Forget MEP Error Handling Using Compensatory Operations

To offset the effects of errors in the provider services, operations can be added to the EBS to trigger compensation in the requesting services for one-way calls. This can be achieved by having compensatory operations in the EBS.

Compensatory operations, modeled as one-way calls are separate operations. For each request-only operation in the request portType, there must be an operation for triggering compensation.

For example: CompensateCreateCustomer, CompensateCreateOrder.

Compensatory operations are invoked in cases where a business exception is likely to result in a irrecoverable error. The conventional retry and resubmit is not possible and the correction is required to be made in the requesting service.

In this situation, you must implement suitable compensatory taking advantage of the participating applications compensatory action web services or APIs.

14.6.5 How to Invoke the Compensate Operation of EBS

In error handling, you must ensure that compensatory actions are taken for some errors so the compensate operation of the EBS is invoked from the providing service. The compensate operation of the EBS routes to the correct compensating service.

To invoke the compensate operation of the EBS:

	
For an error in the providing service, raise an exception and catch it in the catch block.

	
In the catch block, construct the request EBM along with the fault component in the EBM header.

	
Create a transform step and select the input variable representing the request EBM and the compensate variable, also representing the request EBM.

	
When an exception is generated, put the exception details in a variable and pass that as input to the compensation XSLT.

	
Map the following to the compensate variable:

	
Standard EBM header content from the request EBM

	
Data area from the request EBM

	
Fault message

	
Set the InvokeCompensate step to invoke the corresponding compensate operation in the request EBS routing service.

	
Route the compensate request to a suitable compensating service.

Figure 14-3 illustrates the fire-and-forget pattern with the compensation operation.

Figure 14-3 Fire-and-Forget Pattern with Compensation Operation

[image: The image is described in the surrounding text]

14.6.6 How to Enable Routing Rules in Compensate Operation Routing Service

There must be two routing rules.

To enable routing rules in compensate operation routing service:

	
Routing rule for the compensate operation of EBS.

The information populated in the <EBO Name>ResponseEBM\corecom:EBMHeader\Sender\ WSAddress/ WSAddress/wsa:FaultTo/wsa:ServiceName in the requesting service is used to route the request for compensation to the correct compensating service in the compensate operation of the EBS.

Put this routing rule in the compensate operation of the EBS:

<EBO Name>ResponseEBM\corecom:EBMHeader\Sender\ WSAddress/
WSAddress/wsa:FaultTo/wsa:ServiceName = <Compensating Service Name>

	
Routing rule for CAVS.

If the test case created in CAVS is of type asynchronous delayed-response, then the response message can come to the CAVS endpoint and be correlated back to make the test pass/fail. For this to happen, an explicit invoke to the CAVS system endpoint must exist: http://host:port/AIAValidationSystemServlet/asyncresponserecipient

14.7 Implementing the Synchronous Request-Response Message Exchange Pattern

The initiator for a synchronous request-reply pattern is a requesting service waiting for and expecting a response. The requesting service can be a participating application, requester ABCS Impl, or an EBF. In each of these cases, the request payload would be an EBM request and the response payload would be an EBM response.

This section includes the following topics:

	
Section 14.7.1, "How to Implement Synchronous Request-Reply Message Exchange Patterns in EBS"

	
Section 14.7.2, "How to Create Mediator Projects for the Synchronous Request-Response MEP"

	
Section 14.7.3, "How to Create Routing Services for the Synchronous Request-Response MEP"

	
Section 14.7.4, "How to Implement Error Handling for the Synchronous Request-Response MEP"

For more information about enabling the ABCS (both requester and provider), see Chapter 15, "Designing Application Business Connector Services," Chapter 16, "Constructing the ABCS," and Chapter 17, "Completing ABCS Development."

For more information about enabling the EBF, see Chapter 19, "Designing and Constructing Enterprise Business Flows."

14.7.1 How to Implement Synchronous Request-Reply Message Exchange Patterns in EBS

To implement synchronous request-reply MEP in EBS:

	
Create Mediator projects with routing services.

	
Create routing rules to route the request from the requesting service to the correct providing service in the routing service of the EBS.

	
Implement error handling for logging and notification based on fault policies.

14.7.2 How to Create Mediator Projects for the Synchronous Request-Response MEP

To create Mediator projects for the synchronous request-response MEP:

Follow these guidelines when creating Mediator projects:

	
Create two Mediator projects, one for each of the portTypes in the EBS WSDL.

If all of the services operations for an EBS have either synchronous request-response or fire-and-forget pattern, then all of these operations must reside in only one portType, so only one Mediator Routing Service should exist.

If the EBS has at least one asynchronous request-response operation, then two portTypes should exist, two Mediator routing services and two Mediator projects (one for each routing service).

	
Follow the naming convention detailed in Chapter 32, "Oracle AIA Naming Standards for AIA Development."

Examples of typical names for the Mediator projects are:

	
CustomerPartyEBSV2 (This example has a routing service with all operations for synchronous request-response and request-only.)

	
CustomerPartyEBSResponseV2 (This example has a routing service with all operations for asynchronous request-response.)

14.7.3 How to Create Routing Services for the Synchronous Request-Response MEP

To create routing services for the synchronous request-response MEP:

	
In JDeveloper, put the EBS WSDL in the Mediator project folder.

	
Create a routing service and name according to the naming convention detailed in Chapter 32, "Oracle AIA Naming Standards for AIA Development."

	
Select the WSDL. The WSDL must be parsed and the portType name filled in the portType field of the routing service.

	
Select the portType matching with the routing service. Save the routing service.

The routing service created for a portType must have all the operations specified in that portType in the EBS WSDL.

14.7.4 How to Implement Error Handling for the Synchronous Request-Response MEP

For more information, see Chapter 27, "Configuring Oracle AIA Processes for Error Handling and Trace Logging."

14.8 Implementing the Asynchronous Request-Delayed Response Message Exchange Pattern

The initiator of the request-delayed response pattern is a requesting service that invokes the request EBS and waits for a response. The requesting service can be a participating application, requester ABCS Impl, or an EBF. In each of these cases, the request payload is an EBM request and the response payload is an EBM response.

For an error in the providing service, a response message with error information is constructed and returned to the requesting service for action.

This section includes the following topics:

	
Section 14.8.1, "How to Implement the Request-Delayed Response Pattern with the Two One-Way Calls of the EBS"

	
Section 14.8.2, "Creating Mediator Routing Services for Asynchronous Request-Delayed Response Patterns with Two One-Way Call EBS"

	
Section 14.8.3, "Asynchronous Request-Delayed Response MEP Error Handling"

For more information about enabling the ABCS (both requester and provider), see Chapter 15, "Designing Application Business Connector Services," Chapter 16, "Constructing the ABCS," and Chapter 17, "Completing ABCS Development."

For more information about enabling the EBF, see Chapter 19, "Designing and Constructing Enterprise Business Flows."

14.8.1 How to Implement the Request-Delayed Response Pattern with the Two One-Way Calls of the EBS

To implement the request-delayed response pattern with the two one-way calls of the EBS:

	
Note:

Perform these steps in addition to the regular steps required for the requesting service and the providing service.

	
Create EBS WSDLs.

	
Create Mediator routing services for asynchronous request-delayed response patterns with two one-way call EBSs.

	
Route the request from the requesting service to the correct providing service in the routing service of the one-way call operation of the request EBS.

	
Implement error handling for logging and notification based on fault policies.

	
Route the response message in the EBS response to the correct requesting service.

Figure 14-4 illustrates the request-delayed response pattern:

Figure 14-4 Request-Delayed Response Pattern

[image: The image is described in the surrounding text]

14.8.1.1 How to Create the EBS WSDLs for the Request-Delayed Response MEP

To create the EBS WSDLs for the request-delayed response MEP:

	
For the entity EBS, use the WSDLs from the Enterprise Service Library of the Foundation Pack.

	
For the process EBS, use the TemplateEBS.wsdl available in the Foundation Pack and create a Process EBS WSDL.

	
The EBS WSDLs must have two portTypes:

	
PortType for all operations used for modeling synchronous request-response operations and request-only operations.

The name must not specify the Request. Service operations supporting the synchronous request-response MEP must be defined in one portType, and the operation must have input, output, and fault message defined.

	
PortType for asynchronous response operations.

The name must specify Response. Service operations supporting asynchronous request-response pattern must have two operations, one operation for sending the request message and another for processing the response message.

	
Two Mediator routing services must be created for each of the portTypes.

14.8.2 Creating Mediator Routing Services for Asynchronous Request-Delayed Response Patterns with Two One-Way Call EBS

To create Mediator routing services:

	
Create Mediator projects.

	
Create routing services.

	
Create routing rules.

14.8.2.1 How to Create Mediator Projects for the Request-Delayed Response MEP

To create Mediator projects for the request-delayed response MEP:

	
Create two Mediator projects, one for each of the portTypes in the EBS WSDL.

If all of the services operations for an EBS have either synchronous request-response or fire-and-forget pattern, then all of these operations must reside in only one portType, so only one Mediator routing service is used.

If the EBS has at least one asynchronous request-response operation, then two portTypes must exist, two Mediator Routing Services and two Mediator Projects (one for each routing service).

	
Follow the naming convention detailed in Chapter 32, "Oracle AIA Naming Standards for AIA Development."

Examples of typical names for the Mediator projects are:

	
CustomerPartyEBSV2 (This example has a routing service with all operations for synchronous request-response and request-only.)

	
CustomerPartyEBSResponseV2 (This example has a routing service with all operations for asynchronous request-response.)

14.8.2.2 How to Create Routing Services

To create routing services for the request-delayed response MEP:

	
Put the EBS WSDL created into the Mediator project folder.

	
Create a routing service and name according to the naming convention detailed in Chapter 32, "Oracle AIA Naming Standards for AIA Development."

	
Select the WSDL.

The WSDL must be parsed and the portType name filled in the portType field of the routing service.

	
Select the portType matching with the routing service. Save the routing service.

The routing service created for a portType must have all the operations, including compensate operations, specified in that portType in the EBS WSDL.

	
Note:

These guidelines are in addition to the implementation of asynchronous message exchanging patterns.

14.8.2.3 How to Create Routing Rules

For the asynchronous request-delayed response EBS, routing rules must be created for both request and response.

Routing Rules for Request EBS

The routing rules for request EBS are the same as those explained in the synchronous request-response section.

For more information, see Section 14.7.3, "How to Create Routing Services for the Synchronous Request-Response MEP."

Routing Rules for Response EBS

There must be two routing rules.

To create routing rules for the response EBS:

	
Routing to the correct requesting service.

When multiple requesting services from multiple participating applications are invoking a request EBS and are waiting for a delayed response, then you must route the response to the correct requesting service.

As illustrated in Figure 14-5, set the EBMHeader/Sender/WSAddress/wsa:ReplyTo/wsa:ServiceName to the name of the requesting service name in the requesting service-Application Business Message (ABM) to EBM transformation-before invoking the request EBS.

Figure 14-5 Structure of the WSAddress Type Element

[image: The image is described in the surrounding text]

In the providing service, this information is transferred from the request EBM to the response EBM. This information is used in the response EBS by putting a routing rule in the filter as:

<EBO Name>ResponseEBM\corecom:EBMHeader\Sender\
WSAddress/wsa:ReplyTo/wsa:ServiceName = <Requesting Service Name>

The target endpoint for the evaluation of this rule should be set to the requesting service.

For every requesting service of the request EBS that is waiting for a response EBS to send back a response, specify a routing rule as shown above.

	
CAVS routing rule.

The CAVS routing rules are the same as that explained in the Sync Request-Response section.

For more information about enabling the ABCS (both requester and provider), see Chapter 15, "Designing Application Business Connector Services," Chapter 16, "Constructing the ABCS," and Chapter 17, "Completing ABCS Development."

Error Handling Implementation

For more information, see Section 27.5, "Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message Delivery."

14.8.3 Asynchronous Request-Delayed Response MEP Error Handling

In the asynchronous request-delayed response MEP, the requesting service is in a suspended mode, waiting for a response. If there is an error in the providing service, the response to the requesting service includes the details of the error.

To handle errors in the asynchronous request-delayed response MEP:

	
In case of an error in the providing service, raise an exception and catch it in the catch block.

	
In the catch block, construct the response EBM along with fault component in the EBM header.

	
Create a transform step and select the input variable representing the request EBM and the output variable representing the response EBM.

	
Pass the fault message generated from the exception as a variable into the 'input variable to fault variable' XSLT.

	
Map to the output variable:

	
Standard EBM header content from the request EBM including the correlation information

	
Fault message

	
Set the Invoke step to invoke the response operation in the response EBS routing service.

	
Route the response from the providing service to the correct requesting service.

For more information about enabling the ABCS (both requester and provider), see Chapter 15, "Designing Application Business Connector Services," Chapter 16, "Constructing the ABCS," and Chapter 17, "Completing ABCS Development."

Preface

Welcome to Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack. This document describes how to use Foundation Pack to conceptualize AIA projects. Describes how to use Project Lifecycle Workbench, Service Constructor, and deployment plans to implement AIA solutions. Describes how to implement new services that extend Process Integration Packs. Use the information in this guide to help ensure that the AIA solutions you develop can be upgraded and supported.

Audience

This guide is intended for developers and provides information to help conceptualize Oracle Application Integration Architecture (AIA) projects.

This guide also describes how to use the Project Lifecycle Workbench and Service Constructor to implement AIA solutions, as well as new services that extend the functionality of AIA Pre-Built Integrations.

Following the guidance provided here helps ensure that your AIA solutions can follow optimal upgrade, support, and maintenance paths.

Oracle AIA Guides

In addition to this Developer's Guide, we provide the following Oracle AIA guides for this 11.1.1.7 release:

	
Oracle Fusion Middleware Installation and Upgrade Guide for Oracle Application Integration Architecture Foundation Pack

	
Oracle Fusion Middleware Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation Pack

	
Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack

	
Oracle Fusion Middleware Reference Process Models User's Guide for Oracle Application Integration Architecture Foundation Pack

	
Oracle Fusion Middleware Migration Guide for Oracle Application Integration Architecture

	
Oracle Fusion Middleware Product-to-Guide Index for Oracle Application Integration Architecture Foundation Pack

Related Guides

The following guides are relevant to Oracle AIA development activities and are provided as a part of the overall Oracle Fusion Middleware 11.1.1.7 documentation library:

	
Oracle Fusion Middleware Installation Guide for Oracle SOA Suite and Oracle Business Process Management Suite

	
Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite

	
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

	
Oracle Fusion Middleware Security and Administrator's Guide for Web Services

	
Oracle Fusion Middleware User's Guide for Oracle Enterprise Repository

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	
monospace

	
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Index

A B C D E F G H I J L M N O P Q R S T U V W X

A

	ABCS
	
	analyzing the participating application integration capabilities, 15.2.3
	as a composite application, 16.1.2
	completing ABCS development for AIA Service Constructor, 16.2.2
	composite as extension-enabled service, 17.1.4
	configuration parameters, 17.1.3.1
	constructing, 16
	constructing ABCS composite using JDeveloper, 16.3
	constructing ABM schemas, 15.2.2
	contract, 15.2
	defining the contract, 15.2
	defining the role, 15.2.1
	designing extensions-aware, 17.1.3
	designing the composite to extension-enable ABCS, 17.1.6
	developing extensible, 17.1
	enabling for a requester role, 15.2.1.1
	enabling provider ABCS for extension, 17.1.2
	enabling requester ABCS for extension, 17.1.1
	in a provider role, 15.2.1.2
	introduction, 15.1
	invoked by an EBS, 16.9.3
	invoking, 16.9
	invoking an EBS from an ABCS, 16.8
	invoking directly from an application, 16.9.1
	invoking using transport adapters, 16.9.2
	key tasks for design, 15.1.2
	prerequisites for constructing, 16.1.1
	provider, 15.1.1.2
	requester, 15.1.1.1
	requester ABCS-specific extensibility points, 17.1.3
	SCA building blocks, 16.1.2
	service operations for the provider ABCS-specific extensibility points, 17.1.3
	setting up extension point pre-processABM, 17.1.9
	task summary for constructing, 16.1
	types, 15.1.1
	using AIA Service Constructor, 16.2

	ABM enhancement, 17.1.1
	ABM schemas, 15.2.2
	ABM to EBM transformation, 30.1.1
	abstract service WSDLs in MDS, moving, 16.3.4
	abstract WSDL
	
	defining a service, 17.1.6
	definition, 17.1.5

	ActionCode property, 16.8.2
	ActivityDateTime, 26.6.8.5
	adding a new property to AIAConfigurationProperties.xml, 2.1.3.10
	AdditionalServiceInformation, 13.1.3
	AddTargetSystemID.xsl, B.1
	aia
	
	getAIALocalizedString(), A.12
	getConvertedDate(), A.13
	getConvertedDateWithTZ(), A.14
	getCorrectiveAction(), A.7
	getEBMHeaderSenderSystemNode(), A.4
	getErrorMessage(), A.6
	getNotificationRoles(), A.11
	getServiceProperty(), A.3
	getSystemModuleProperty(), A.2
	getSystemProperty(), A.1
	getSystemType(), A.5
	isTraceLoggingEnabled(), A.8
	logErrorMessage(), A.9
	logTraceMessage(), A.10

	AIA Components folder structure, 2.1.3.6
	AIA Foundation Pack artifacts, deploying, 2.1.3.17
	AIA Foundation Pack, installation, 2.1.3.2
	AIA Governance, 30.1.8
	AIA Harvester Tool, 2.2.1
	AIA message processing patterns, 28.1
	AIA Project artifacts, deploying, 2.1.3.18
	AIA Service Constructor, 16.2
	
	completing ABCS development, 16.2.2

	AIA Workstation
	
	setting up, 2.1.3

	AIA_LOOKUPS_B, 3.2.1
	aiacfg
	
	getServiceProperty, 2.1.3.9
	getSystemProperty, 2.1.3.9

	AIAConfigurationProperties.xml, 2.1.3.9
	
	adding a new property, 2.1.3.10

	AIAEHNotification.xml, 2.1.3.11
	analyzing the participating application integration capabilities, 15.2.3
	annotating DBAdapter, 13.1.4.1
	annotations
	
	annotating the Reference Element in a Composite Business Process composite, 13.10
	annotating the Reference Element in a provider ABCS, 13.5
	annotating the Reference Element in a requester ABCS composite, 13.3
	annotating the Reference Element in an EBF composite, 13.8
	annotating the Service Element in a composite business process composite, 13.9
	annotating the Service Element in a provider ABCS composite, 13.4
	annotating the service element in a requester ABCS composite, 13.2
	annotating the Service Element in Enterprise Business Flow composite, 13.7
	annotating the Transport Adapter composite, 13.6
	Application Adapter, 13.1.4.5
	AQJMS Adapter, 13.1.4.3
	elements to be annotated, 13.1.1
	first annotation element for every composite.xml file, 13.1.1
	ImplementationDetails, 13.1.2.2
	interface details, 13.1.2.1
	JMSAdapter, 13.1.4.2
	other resources, 13.1.4.4
	reference annotation element, 13.1.3
	service annotation element, 13.1.2
	valid values for the annotation elements, 13.11

	Application Adapter Elements, 13.1.4.5
	Application Business Connector Service
	
	See ABCS, 15.1

	ApplicationConnectorServiceLibrary, 2.1.3.5
	ApplicationObjectLibrary, 2.1.3.5, 2.1.3.6
	ApplicationTypeCode, 26.6.3.2
	AQJMSAdapter Elements, 13.1.4.3
	archiving composite instances, 30.1.2
	artifacts centralization, 30.1.5
	ArtifactType, 13.1.3
	ASSM, 31.2.5
	asynchronous fire-and-forget MEP
	
	creating Mediator projects, 14.6.3.1
	creating Mediator routing services, 14.6.3
	creating routing rules, 14.6.3.3
	creating routing services, 14.6.3.2
	error handling using compensatory operations, 14.6.4
	implementing error handling, 14.6.3.4

	asynchronous MEP in the provider ABCS
	
	implementing, 16.6

	asynchronous request-delayed response MEP
	
	creating Mediator routing services, 14.8.2
	creating the EBS WSDLs, 14.8.1.1
	error handling, 14.8.3
	implementing, 14.8, 16.5
	implementing with two one-way calls of the EBS, 14.8.1
	Mediator projects, 14.8.2.1
	populating the EBM header, 16.5.1
	programming models for handling error response, 16.5.3
	routing services, 14.8.2.2
	setting correlation, 16.5.2
	using a parallel routing rule in the EBS, 16.5.3
	using a separate service for error handling, 16.5.3
	using JMS queue as milestone between Requester ABCS and the EBS, 16.5.3

	auditDetailThreshold, 31.4.1
	auditLevel, 30.2.7, 31.3.1, 31.4.1, 31.5.1
	auditLevel property, 16.7.3
	automatic segment-space management, 31.2.5
	Automatic Workload Repository
	
	reports, 31.2.1

	Automatic Workload Repository (AWR), 31.2.2

B

	B2B integrations
	
	See Business-to-Business integrations, 20

	B2BMReference, 27.7.2
	B2BObjectLibrary, 2.1.3.5
	B2BServiceLibrary, 2.1.3.5, 2.1.3.6
	baselines for tuning, 31.1.1
	benefits of SCA, 30.1.7
	best practices
	
	ABM to EBM transformation, 30.1.1
	adapters inside ABCS composite, 30.1.7
	AIA governance, 30.1.8
	artifacts centralization, 30.1.5
	avoiding global variables, 30.2.2
	avoiding large FlowN, 30.2.3
	controlling persistence of audit details, 30.2.4
	data/functional validation, 30.1.3.2
	defining the scope of the transaction, 30.2.6
	disabling the audit for synchronous BPEL-based services, 30.2.7
	empty element tags in XML instance document, 30.1.1
	keeping BPEL activities minimal, 30.2.1.1
	no break-point activity, 30.2.8
	purging, 30.1.2
	separation of concerns, 30.1.6
	syntactic validation, 30.1.3.1
	throttling capability, 30.1.4
	using AIA Service Constructor, 30.1.9
	using BPEL as "Glue", 30.2.1
	using large While loop, 30.2.1.2
	using MDS as storage for abstract WSDLs, 30.1.6.1
	using non-idempotent services only when necessary, 30.2.5

	bills of material
	
	editing, 6.3
	generating, 6.2
	overview, 6.1
	seed data, 7.1
	viewing, 6.4

	binding property in the composite.xml, 31.6.4
	binding.ws element, 16.2.2, 17.1.7.1
	
	for BPEL-based Service, 16.2.2
	for Mediator-based Service, 16.2.2

	bitmap segment space management, 31.2.5
	bitmap tablespaces, 31.2.5
	BOM
	
	generating, 8.1
	See bills of material, 6

	BOM.xml, 8.1
	BPEL for building ABCS, 15.4.2
	BPEL Process Manager performance tuning properties, 31.4.1
	building EBS using Oracle Mediator, 14.5
	business activities, 14.1.1
	Business Analysts, 2.2.2
	Business Component ID, 26.5
	business payload transformation, 16.2.2
	Business Process decomposition, 2.2.3
	business process information
	
	adding, 26.6.4.7

	Business Process Models, 2.2.2
	BusinessProcessServiceLibrary, 2.1.3.5, 2.1.3.6
	BusinessScope, 26.6.4
	BusinessScopeTypeCode, 26.6.4.3
	Business-to-Business integrations
	
	developing inbound flows, 22
	developing outbound flows, 21
	document flows in AIA, 20.2
	Foundation Pack infrastructure for, 20.4
	overview in AIA, 20.1
	overview of inbound flows, 22.1
	overview of Oracle B2B and AIA, 20.3
	overview of outbound flows, 21.1
	using AIA error handling, 20.4.1

C

	canonical patterns, 26.1.1.1
	captureCompositeInstanceState, 31.3.1
	CAVS
	
	enabling for ABCSs, B

	CBP
	
	constructing the WSDL, 18.3.1
	creating the contract, 18.3
	defining the contract, 18.2
	identifying the CBP, 18.2.1
	identifying the message pattern, 18.2.2
	implementing as a BPEL service, 18.4
	introduction, 18.1

	common init.ora parameters, guidelines for tuning, 31.2.3
	compensate operation, 14.6.5
	compensating services, 16.4.1
	
	invoking, 16.4.2

	compensatory operations, 14.6.4
	completing the "definitions" section, 14.3.2
	completionPersistPolicy, 31.4.2
	componenttype file, 16.2.2
	
	for a composite with a reference, 16.2.2
	pointing to abstract WSDLs in the MDS, 16.2.2

	composite business processes
	
	See CBP, 18.1

	composites
	
	harvesting deployed into Oracle Enterprise Repository, 5.4
	reusing in Project Lifecycle Workbench, 3.4.1

	composite.xml
	
	changes needed, 16.2.2
	first annotation element, 13.1.1
	skeletal reference element, 13.1.1
	skeletal service element, 13.1.1

	concrete WSDL, 17.1.5
	config, 2.1.3.5
	config properties of the deployment descriptor, 31.4.2
	configuring BPEL Properties inside a composite, 31.4.2
	configuring Mediator Service Engine properties, 31.5.1
	configuring SOA infrastructure properties, 31.3.1
	connecting applications, 26.1.1
	connection pool attributes, configuring, 31.2.12
	connection pool, MaxCapacity attribute, 31.2.12.1
	connectivity
	
	inbound, 24.1.1
	modes, 24.2
	outbound, 24.1.2
	Web Services with SOAP/HTTP, 24.2.1

	constructing ABCS, prerequisites, 16.1.1
	constructing ABM schemas, 15.2.2
	constructing an ABCS, tasks, 16.1
	constructing an entity-based EBS, 2.4.3
	Construction phase, 2.2.4
	ContactEmail, 26.6.2.6
	ContactName, 26.6.2.5
	ContactPhoneNumber, 26.6.2.7
	contract for ABCS, 15.2
	contract-first methodology, 14.2.1
	corecom
	
	Identification, 26.5.1

	correlation for asynchronous request-delayed response MEP, 16.5.2
	correlation properties for asynchronous application service invocation, 16.2.2
	Create, 16.8.1
	
	content payload, 16.8.1
	response verb, 16.8.1
	verb attributes, 16.8.1
	when to use, 16.8.1

	CREATE_REPLACE, 16.8.4
	CREATE_UPDATE, 16.8.4
	CreateResponse verb, 16.8.1
	creating a connection to SOA MDS set up, 2.1.1
	creating a connection to SOA Suite server, 2.1.1
	creating EBS WSDLs, 14.6.2
	creating Mediator routing services for asynchronous fire-and-forget patterns with a one-way call EBS, 14.6.3
	CreationDateTime, 26.6.1.4
	Cross Reference metadata, modifying, 2.1.3.13
	cross-references, 26.4
	
	API, 26.4.3
	hierarchical, 26.4.3
	setting up, 26.4.4
	using, 26.4.3

	Custom Deployment Plan, 8.5
	custom message augmentation, 17.1.1
	custom message inspection, 17.1.1
	custom validation, 17.1.1

D

	data integration, 1.1
	data transformations using XSLT Mapper, 26.1.2
	database connections, configuring, 31.2.12
	database I/O load balancing, 31.2.4
	data/functional validation, 30.1.3.2
	datasource statement caching, 31.2.12
	db_block_size, 31.2.3
	DBAdapter elements, 13.1.4.1
	default fault policy file, 2.1.3.14
	DeferredLockerThreadSleep, 31.5.1
	DeferredMaxRowsRetrieved, 31.5.1
	DeferredWorkerThreadCount, 31.5.1
	defining the EBS service contract, 14.2.9
	dehydration store specific parameters, 31.2.3
	dehydration store, basic configurations, 31.2.3
	Delete, 16.8.3
	
	content payload, 16.8.3
	response verb, 16.8.3
	verb attributes, 16.8.3
	when to use, 16.8.3

	DeleteResponse verb, 16.8.3
	Deployment Plan generation phase, 2.2.5
	Deployment Plan Generator, 2.2.1
	deployment plans
	
	BOM.xm, 8.3.1
	conditional, 8.4
	Custom Deployment Plan, 8.5
	deploying AIA shipped native and non-native artifacts, 8.5.1
	deploying artifacts, 8.5
	deploying modified AIA-shipped native and non-native artifacts, 8.5.2
	deploying new or custom built artifacts, 8.5.3
	Deployment Policy File, 8.4.1
	executing, 8.3.2
	executing the deployment plan for UpdateDP, 8.4.2
	extending, 8.2
	extending and deploying native artifacts, 8.1
	extending and deploying non-native artifacts, 8.1
	extending native artifacts, 8.2.1
	extending non-native artifacts, 8.2.2
	file path for the deployment plan, 8.3.1
	file path of the HarvesterSettings.xml, 8.3.1
	HarvesterSettings.xml, 8.3.3
	input for Deployment Plan Generator, 8.3.1
	introduction, 8.1
	Main Deployment Plan, 8.5
	ODIBOM.xml, 8.3.1
	output, 8.3.3
	PIP_NameDP.xml, 8.1
	PIP_NameHS.xm, 8.1
	PIP_NameSupplementaryDP.xml, 8.1, 8.2.2
	Supplementary Deployment Plan, 8.5
	types, 8.5
	undeployment plan, 8.3.3, 8.6

	deployment plans for ODI
	
	CopyDvmstoODIPath section, 9.2.2.3
	flow, 9.1
	generating, 9.3
	introduction, 9.1
	MSTREP_Grp section, 9.2.2.4
	ODIBOM.xml file, 9.2.1
	OdiEncrypt macrodef, 9.3.1.2
	ODIEncryptPasswords section, 9.2.2.2
	OdiImportObject macrodef, 9.3.1.1
	ODIReplaceTokens section, 9.2.2.1
	understanding, 9.3.1
	UpdateOdiParams macrodef, 9.3.1.3
	WRKREP_Grp section, 9.2.2.5

	designing an integration flow, 2.4.2
	designing the EBS, 14.2
	detailed analysis of the business problem, 1.3
	developing an AIA Integration Flow, 2.4.2
	development environments, 2
	development tasks for AIA artifacts, 2.4
	Disable BPEL Monitors and Sensors, 31.4.1
	disabling HTTP logging, 31.3.2
	DispatcherEngineThreads, 31.4.1
	DispatcherInvokeThreads, 31.4.1
	DispatcherSystemThreads, 31.4.1
	documenting related business requirements, 1.3
	Domain Value Maps utility, 2.1.3.12
	domain values
	
	See DVM, 26.4.1

	dspMaxThreadDepth property, 30.2.6
	DVM, 26.4
	
	at runtime, 26.4.1
	storage, 26.4.1
	using, 26.4.2

E

	EBF
	
	constructing the WSDL, 19.3.1
	creating the contract, 19.3
	defining the contract, 19.2
	identifying the message pattern, 19.2.2
	identifying the message structure, 19.2.3
	identifying the need, 19.2.1
	implementing as a BPEL service, 19.4
	introduction, 19.1

	EBM header, 26.6
	
	components, 26.6
	CreationDateTime, 26.6.1.4
	EBMID, 26.6.1.1
	EBOName, 26.6.1.2
	MessageProcessingInstruction, 26.6.1.6
	RequestEBMID, 26.6.1.3
	Sender, 26.6.2
	standard elements, 26.6.1
	use case for asynchronous process, 26.6.6
	use case for request-response, 26.6.5
	use case for synchronous process with spawning child processes, 26.6.7
	VerbCode, 26.6.1.5
	when to populate, 26.6.1.7

	EBM header for asynchronous request-delayed response MEP, 16.5.1
	EBMID, 26.6.1.1
	EBMReference, 27.7.1
	EBMTracking, 26.6.8
	EBO object identification, 26.5
	EBOName, 26.6.1.2
	EBS
	
	business activities, 14.1.1
	compensate operation, 14.6.5
	configuring transactions, 14.2.7
	contract-first methodology, 14.2.1
	defining the EBS service contract, 14.2.9
	design considerations, 14.2.2
	design guidelines, 14.2.1
	establishing the MEP, 14.2.3
	establishing the MEP for a new process EBS, 14.2.4
	guaranteeing delivery, 14.2.8
	handling errors, 14.2.5
	implementing synchronous request-reply MEP, 14.7.1
	invoking an EBS from an ABCS, 16.8
	invoking the compensate operation, 14.6.5
	library, 14.1.2
	overview, 14.1
	portTypes, 14.2.1
	purpose, 14.1
	security, 14.2.6
	tasks, 14.1.1
	types, 14.1.1
	WSDL construction for the activity service EBS, 14.3.1

	EBS service contract,defining, 14.2.9
	EBS WSDLs, 14.6.2
	
	asynchronous request-delayed response MEP, 14.8.1.1
	portTypes, 14.6.2

	elements for other resources, annotating, 13.1.4.4
	empty element tags in XML instance document, 30.1.1
	enabling participating applications, 2.4.5.1
	enabling provider ABCS for extension, 17.1.2
	enabling requester ABCS for extension, 17.1.1
	enabling the ABCS to participate in a provider role, 15.2.1.2
	enabling the ABCS to participate in a requester role, 15.2.1.1
	Enterprise ARchive (EAR) file, 31.2.13.1
	Enterprise Business Flow
	
	See EBF, 19.1

	Enterprise Business Messages
	
	documentation in Oracle Enterprise Repository, 12.2

	Enterprise Business Objects
	
	documentation in Oracle Enterprise Repository, 12.2

	Enterprise Business Service Library, 14.1.2
	enterprise business services
	
	See EBS, 14

	EnterpriseBusinessServiceLibrary, 2.1.3.5, 2.1.3.6
	EnterpriseObjectLibrary, 2.1.3.5, 2.1.3.6
	EnterpriseServiceName, 26.6.4.4
	EnterpriseServiceOperationName, 26.6.4.5
	environments, setting up, 2
	error handling
	
	AIA fault message schema, 27.7
	B2BMReference element, 27.7.2
	BPEL overview, 27.1
	defining corrective action codes, 27.6.1
	defining error message codes, 27.6.2
	EBMReference element, 27.7.1
	enabling for AIA processes, 27.3
	extending, 27.9
	fault message extension, 27.8
	FaultNotification element, 27.7.3
	for AIA Business-to-Business integrations, 20.4.1
	framework overview, 27.2
	implementing for asynchronous MEP, 27.5
	implementing for synchronous MEP, 27.4
	mediator overview, 27.1
	Web Services with SOAP/HTTP, 24.2.4

	ESBHeaderExtension, 26.6.2.8
	event notification without payloads, 24.2.6.1
	ExecutionUnitID, 26.6.8.2
	ExecutionUnitName, 26.6.8.3
	export
	
	Project Lifecycle Workbench seed data, 7.3
	set up for Project Lifecycle Workbench seed data, 7.2

	extensibility
	
	ABM enhancement, 17.1.1
	custom message augmentation, 17.1.1
	custom message inspection, 17.1.1
	custom validation, 17.1.1
	extensibility points, 17.1
	message alteration, 17.1.1
	message filtering, 17.1.1

	extension
	
	provider ABCS, 17.1.2
	requester ABCS, 17.1.1

	extension-enabled service, 17.1.4
	ExtensionServiceLibrary, 2.1.3.5, 2.1.3.6

F

	fault message schema, 27.7
	fault messages
	
	extending, 27.8

	fault tolerance, 31.2.12.2
	fault-bindings.xml, modifying, 2.1.3.14
	FaultNotification, 27.7.3
	FDD, 1.3
	fire-and-forget MEP
	
	implementing, 16.4
	using compensating services, 16.4.1

	FlowN, 30.2.3
	Freemarker, 2.1.1
	functional decompositions
	
	seed data, 7.1

	Functional Design Document, 1.3
	Functional Design Document (FDD), 2.3
	functional integration, 1.1

G

	getAllTranslationsIndicator, 16.8.7
	guaranteed delivery, ensuring, 28.1.3
	guaranteed message delivery, 24.2.7

H

	harvester
	
	setting up, 5.1

	harvesting
	
	design-time composites into Oracle Enterprise Repository, 5.2
	design-time composites into Project Lifecycle Workbench, 5.2
	interfaces in bulk into Oracle Enterprise Repository, 5.3, 5.4

	heap size values, 31.8.1

I

	idempotent property, 30.2.5
	identification theme, 26.5
	Identification Type structure, 26.5
	identifying keys, 26.5
	identifying the EBO in the FDD, 2.4.1
	identifying the target system at EBS, 14.4.4
	ImplementationCode, 26.6.8.4
	ImplementationDetails, 13.1.2.2
	implementing asynchronous MEPs, 14.6
	implementing fire-and-forget pattern with EBS one-way calls, 14.6.1
	import
	
	Project Lifecycle Workbench seed data, 7.4
	set up for Project Lifecycle Workbench seed data, 7.2

	inbound connectivity, 24.1.1
	Inbound Interaction, 24.2.1
	INDUSTRY, 3.2.1
	industry code
	
	add to Project Lifecycle Workbench, 3.2.1

	InfrastructureServiceLibrary, 2.1.3.5, 2.1.3.6
	init.ora parameters, 31.2.3
	inMemoryOptimization, 31.4.2
	installation
	
	introducing Oracle Enterprise Repository after AIA, 5.5

	installing AIA Foundation Pack, 2.1.3.2
	InstanceID, 26.6.4.2
	instanceKeyBlockSize, 31.4.1
	Integration style choice matrix, 2.3.4
	InterfaceDetails, 13.1.2.1
	interfaces
	
	harvesting in bulk into Oracle Enterprise Repository, 5.3

	internationalization
	
	Project Lifecycle Workbench lookup values, 3.2.1

J

	Java performance analysis tool, 31.8.1.1
	JCA Adapters
	
	using for outbound interactions, 15.4.1.1
	when to use, 24.2.8

	JCA Adapters, (Database, File, JMS, or AQJMS) for outbound interactions, 15.4.1.3
	JDBC datasource connection pool settings, 31.2.12.1
	JDeveloper
	
	constructing an ABCS composite, 16.3
	creating references, services, and components, 16.3.3
	developing the BPEL process, 16.3.2
	moving abstract service WSDLs in MDS, 16.3.4

	JMS consumers to consume Siebel messages, 24.3.3
	JMSAdapter Elements, 13.1.4.2
	job_queue_processes, 31.2.3
	JProbe Profiler with Memory Debugger, 31.8.1.1
	JVM garbage collection, 31.8.1
	JVM heap size, 31.8.1

L

	LanguageCode Attribute, 26.2.6
	LargeDocumentThreshold, 31.4.1
	loading System IDs Dynamically, 26.2.4
	log_buffer, 31.2.3
	logicalOperatorCode attribute, 16.8.7
	lookup-dvm XSL function, 26.4.1
	lookupPopulatedColumns, 14.4.4

M

	Main Deployment Plan, 8.5
	managing the Oracle AIA system registry, 2.4.5.2.3
	managing the System Registry, 2.4.5.2, 2.4.5.2.2
	manual post-ABCS construction tasks, 16.2.2
	mapping an optional source node, 26.2.3
	maxItems, 16.8.7
	MaxTransactionSize, 31.6.3, 31.6.3
	MDS
	
	creating the database connection, 2.1.1
	performance tuning, 31.2.13
	pointing to, 30.1.6.1
	updating, 2.1.3.15
	updating SOA-MDS > apps/AIAMetaData, 2.1.3.15
	updating with AIA MetaData, 2.1.3.3
	using in AIA, 2.1.3.4

	Mediator projects
	
	asynchronous request-delayed response MEP, 14.8.2.1

	MEMORY_MAX_TARGET, 31.2.3
	MEMORY_TARGET, 31.2.3
	MEP
	
	asynchronous request - delayed response, 15.3.1
	asynchronous request only, 15.3.1
	choosing, 15.3.2
	identifying, 15.3
	introduction, 15.3.1
	process EBS, 14.2.3
	synchronous request-response pattern, 15.3.1
	when to use asynchronous request only (fire-and forget) MEP, 15.3.2.2
	when to use the asynchronous request delayed response MEP, 15.3.2.3
	when to use the synchronous request-response MEP, 15.3.2.1

	message alteration, 17.1.1
	message delivery, guaranteed, 24.2.7
	message exchange pattern
	
	See MEP, 15.3

	message filtering, 17.1.1
	message processing instruction, populating, 26.6.1.8
	message propagation using queues/topics, 24.2.6
	Message Resubmission Utility API, 27.5.7
	message routing, 14.4
	message transformations
	
	tools and technologies, 26.1.2

	MessageProcessingInstruction, 26.6.1.6
	
	how to populate, 26.6.1.8

	metricsLevel, 31.5.1
	milestone, 28.1.3
	
	ensuring guaranteed delivery, 28.1.3
	introducing milestones, 28.1.3

	missing elements
	
	transformation maps, 26.2.2

	monitoring the BPEL service engine, 31.4.3
	monitoring the Mediator service engine, 31.5.2

N

	naming standards
	
	adapter services, 32.7.2
	AQ JMS additional attributes, 32.7.1
	Assign, 32.9.1.2
	BPEL activities, 32.9.1
	BPEL artifacts, 32.9.2
	Case, 32.9.1.13
	Compensate, 32.9.1.3
	composite business processes, 32.3
	cross references, 32.8.2
	custom Java classes, 32.10
	Deployment Plans, 32.12
	DVMs, 32.8.1
	EBF, 32.5
	EBS, 32.4
	Flow, 32.9.1.4
	FlowN, 32.9.1.5
	general guidelines, 32.1
	Invoke, 32.9.1.6
	Java Embedding, 32.9.1.7
	JMS and Adapters, 32.7
	map column names, 32.8.1.2
	map names, 32.8.1.1
	namespace, 32.1.1.2
	namespace prefixes, 32.1.1.2
	participating application names, 32.1.1.3
	participating application services, 32.7.3
	Pick, 32.9.1.8
	Provider ABCS, 32.6.2
	Receive, 32.9.1.9
	Requester ABCS, 32.6.1
	Scope, 32.9.1.10
	Sequence, 32.9.1.11
	Switch, 32.9.1.12
	Terminate, 32.9.1.14
	Throw, 32.9.1.15
	Transform, 32.9.1.16
	Wait, 32.9.1.17
	While, 32.9.1.18
	XML, 32.1.1

	Native application interfaces, integration through, 2.3.1
	Network I/O, 31.9.3
	NumberOfThreads, 31.6.3

O

	ObjectCrossReference, 26.6.2.9
	
	adding a cross-reference entry, 26.6.2.10

	OER
	
	See Oracle Enterprise Repository, 5

	open_cursors, 31.2.3
	optimal cache size, 31.2.13.2
	OptimizeIt Java Performance Profiler, 31.8.1.1
	optimizing the JVM heap, 31.8
	optional source node, mapping, 26.2.3
	Oracle AIA System Registry, 2.4.5.2.1
	Oracle Business Process Publisher, 2.2.1
	
	setting up, 2.1.2.4

	Oracle Database Performance Tuning, 31.2
	
	Automatic Workload Repository, 31.2.2
	common init.ora parameters, 31.2.3
	database initialization parameters, 31.2.3
	dehydration store, 31.2.3
	tuning the database, 31.2.1

	Oracle E-Business Suite
	
	business event subscription, 24.4.3
	concurrent program executable, 24.4.2
	connectivity guidelines, 24.4
	design guidelines, 24.5
	inbound interaction with AIA services, 24.4.1
	outbound interaction with AIA services, 24.4.4

	Oracle Enterprise Repository, 2.2.1
	
	accessing AIA content, 12.3
	accessing from Project Lifecycle Workbench, 3.4.1
	AIA artifact documentation link, 12.2
	harvesting AIA content into, 5
	harvesting deployed composites into, 5.4
	harvesting design-time composites into, 5.2
	harvesting interfaces in bulk into, 5.3
	introducing after AIA installation, 5.5
	setting up, 2.1.2.2
	setting up to harvest AIA content into, 5.1
	using as AIA SOA repository, 12.1

	Oracle Mediator, 14.5
	
	developing the Oracle Mediator Service, 14.5.1
	synchronous request-reply MEP, 14.7.2

	Oracle Metadata Services
	
	See MDS, 2.1.3.4

	Oracle Service Registry, setting up, 2.1.2.3
	Oracle SOA Suite, setting up, 2.1.2.1
	outbound connectivity, 24.1.2
	Outbound Interaction, 24.2.1
	outbound interaction with the application, 15.4.1
	outbound interactions
	
	JCA Adapters, 15.4.1.1
	JCA Adapters, (Database, File, JMS, or AQJMS), 15.4.1.3
	Standard Web Service Interfaces (SOAP/HTTP, XML/HTTP), 15.4.1.2

P

	PayloadValidation, 31.3.1, 31.4.1, 31.4.2
	polling interval, 31.2.13.1
	portTypes, 14.2.1
	proactive monitoring, 31.1.3
	proactive tuning, 31.1.3
	Process, 16.8.6
	
	content payload, 16.8.6
	response verb, 16.8.6
	when to use, 16.8.6

	ProcessResponse verb, 16.8.6
	product code
	
	add to Project Lifecycle Workbench, 3.2.1

	PRODUCT_CODE., 3.2.1
	project
	
	definition of, 3.1

	Project Lifecycle Workbench, 2.2.1
	
	accessing Oracle Enterprise Repository from, 3.4.1
	accessing projects, 3.3.3
	accessing service solution components, 3.4.3
	add industry code, 3.2.1
	add product code, 3.2.1
	add scope code, 3.2.1
	add service type, 3.2.1
	add status code, 3.2.1
	adding lookup values, 3.2.1
	copying projects, 3.3.3
	defining projects, 3.3.1
	defining service solution components, 3.4.1
	deleting projects, 3.3.5
	editing bills of material, 6.3
	exporting seed data, 7.3
	generating bills of material, 6.2
	harvesting AIA content into, 5
	harvesting design-time composites into, 5.2
	importing seed data, 7.4
	internationalize lookup values, 3.2.1
	non-native artifacts, 7.1
	overview, 3.1
	reusing composites, 3.4.1
	role, 2.2
	seed data, 7.1
	seed data schema, 7.1
	seed data usage flow, 7.1
	set up seed data export and import, 7.2
	setting up, 2.1.3.16
	setting up to harvest AIA content into, 5.1
	updating a locked project, 3.3.4
	updating projects, 3.3.2
	updating service solution components, 3.4.2
	viewing bills of material, 6.4

	PROJECT_STATUS, 3.2.1
	projects
	
	accessing in Project Lifecycle Workbench, 3.3.3
	copying in Project Lifecycle Workbench, 3.3.3
	defining in Project Lifecycle Workbench, 3.3.1
	deleting in Project Lifecycle Workbench, 3.3.5
	editing locked in Project Lifecycle Workbench, 3.3.4
	updating in Project Lifecycle Workbench, 3.3.2

	provider ABCS, 15.1.1.2
	purging completed composite instances, 30.1.2
	purging the completed composite instances, 31.7

Q

	QualifiedElementPath, 16.8.7
	Query, 16.8.7
	
	content payload, 16.8.7
	list query to return multiple instances, 16.8.7
	QueryCode, 16.8.7
	QueryCriteria (1 to n instances), 16.8.7
	QueryCriteria examples, 16.8.7
	response verb, 16.8.7
	ResponseCode, 16.8.7
	single object query to return one instance, 16.8.7
	verb attributes, 16.8.7, 16.8.7
	when to use, 16.8.7

	Query with a single QueryCriteria and nested QueryExpressions, 16.8.7
	QueryCode, 16.8.7
	QueryCriteria (1 to n instances), 16.8.7
	QueryExpression, 16.8.7
	queryOperatorCode, 16.8.7
	QueryResponse verb, 16.8.7
	queues
	
	types, 24.2.6.4
	using, 24.2.6.4

R

	reactive tuning, 31.1.3
	recordSetCount, 16.8.7
	recordSetStart, 16.8.7
	redo logs, tuning, 31.2.4
	reference annotation element, 13.1.3
	request-delayed response MEP
	
	using a parallel routing rule in the EBS, 16.6.2
	using a separate service for error handling, 16.6.2
	using JMS Queue as a milestone between the Requester ABCS and the EBS, 16.6.2
	using programming models, 16.6.2

	RequestEBMID, 26.6.1.3
	requester ABCS, 15.1.1.1
	requester ABCS-specific extensibility points, 17.1.3
	resource connectivity, 24.1
	resource saturation, 31.1.2
	ResponseCode, 16.8.7
	ResponseCode attribute, 16.8.4
	routing rules
	
	asynchronous fire-and-forget MEP, 14.6.3.3
	at the EBS, 14.4.2
	creating, 14.4.1
	enabling in compensate operation routing service, 14.6.6
	guidelines, 14.4.3
	identifying the target system, 14.4.4
	parallel routing, 14.4.3

	routing services
	
	asynchronous request-delayed response MEP, 14.8.2, 14.8.2.2
	synchronous request-reply MEP, 14.7.3

	routing services for asynchronous fire-and-forget MEP, 14.6.3.2

S

	SCA building blocks, 16.1.2
	SCA elements, 16.1.2
	scope code
	
	add to Project Lifecycle Workbench, 3.2.1

	security
	
	AIA service enabled for WS-security, 29.3.2
	App Context, 29.7.2
	AppContext mapping service, 29.7.4
	application attributes, 29.7.6
	application neutral attributes, 29.7.6
	attribute names, 29.7.6
	eliminating point-to-point security, 29.7.1
	enabling in application services, 29.3.1
	enabling security in AIA services, 29.2.1
	exchanging security context between participating applications and ABCS, 29.7.2
	for requester applications, 29.7.2.1
	functional flow, 29.7.1
	header for authentication, 29.3.2
	high-level security structure, 29.1.1
	implementing application security context, 29.7.8
	implementing provider-side application security context, 29.7.8.2
	implementing requester-side application security context, 29.7.8.1
	invoking secured application services, 29.2.2
	participating application information attributes, 29.7.6
	policies, 29.1.3
	propagating standard security context, 29.7.7
	provider application flow, 29.7.2.2
	SEBL AppContext for security service, 29.7.5
	security context structure, 29.7.5
	service information attributes, 29.7.6
	service to service interaction, 29.1.1
	TransformAppContextService, 29.7.4
	Web Service security, 29.1.3
	XACML Action, 29.7.5
	XACML context request, 29.7.2
	XACML Environment, 29.7.5
	XACML Request, 29.7.5
	XACML Request element, security, 29.7.5
	XACML Resource, 29.7.5
	XACML Subject, 29.7.5

	seed data
	
	exporting from Project Lifecycle Workbench seed data, 7.3
	importing from Project Lifecycle Workbench seed data, 7.4
	overview of for Project Lifecycle Workbench, 7.1
	Project Lifecycle Workbench usage flow, 7.1
	schema in Project Lifecycle Workbench, 7.1
	set up export and import, 7.2

	Sender, 26.6.2
	sender system information, populating, 26.6.2.3
	SenderMessageID, 26.6.2.1
	separation of concerns, 30.1.6
	SequenceNumber, 26.6.8.1
	service annotation element, 13.1.2
	Service conception phase, 2.2.3
	service configuration properties file, 16.2.2
	Service Constructor, 2.2.1
	
	creating a new service, 4.2
	overview, 4.1
	software requirements, 4.1.1
	usage flow, 4.1
	usage flow in AIA project lifecycle, 4.1

	service contract, 14.2.9
	Service design phase, 2.2.4
	service design summary, 2.3.4
	service granularity, 2.3.4
	
	coarse-grained, 2.3.4
	granular, 2.3.4

	service interoperability, 2.3.4
	service invocations, 16.2.2
	service level configuration, 2.1.3.9
	service operations for the provider ABCS-specific extensibility points, 17.1.3
	service reusability, 2.3.4
	service solution components
	
	accessing in Project Lifecycle Workbench, 3.4.3
	defining in Project Lifecycle Workbench, 3.4.1
	definition of, 3.1
	updating in Project Lifecycle Workbench, 3.4.2

	service type
	
	add to Project Lifecycle Workbench, 3.2.1

	service virtualization, 2.3.4
	SERVICE_TYPE, 3.2.1
	ServiceOperation/Name, 13.1.3
	services
	
	constructing with Service Constructor, 4.1
	creating new with the Service Constructor, 4.2
	creation flow, 4.1

	session pool manager, 24.2.3.3
	session token, 24.2.3.2
	session types, 24.2.3.1
	Session_cached_cursors, 31.2.3
	SetCAVSEndpoint.xsl, B.2
	setting up
	
	AIA Workstation, 2.1.3
	development and test environments, 2
	Oracle Business Process Publisher, 2.1.2.4
	Oracle Enterprise Repository, 2.1.2.2
	Oracle Service Registry, 2.1.2.3
	Oracle SOA Suite, 2.1.2.1

	Sga_target, 31.2.3
	shared_pool_size, 31.2.3
	Siebel
	
	application interaction with AIA services, 24.3.1
	creating JMS consumers, 24.3.3
	outbound interaction with AIA services, 24.3.4
	web services with SOAP/HTTP, 24.3.2

	Siebel outbound web services with SOAP/HTTP, 24.3.5
	Simple Query with just ID, 16.8.7
	Simple Query with QueryCode, 16.8.7
	SOA Suite server, connecting to, 2.1.1
	soaDataSource-jdbc.xml file, 31.2.11.2
	software requirements
	
	Service Constructor, 4.1.1

	Standard Web Service Interfaces (SOAP/HTTP, XML/HTTP), using for outbound interactions, 15.4.1.2
	statement cache size, 31.2.12.1
	statement cache type, 31.2.12.1
	static lookups, 26.4.1
	StatsLastN, 31.4.1
	status code
	
	add to Project Lifecycle Workbench, 3.2.1

	Supplementary Deployment Plan, 8.5
	Sync, 16.8.4
	
	content payload, 16.8.4
	response verb, 16.8.4
	verb attributes, 16.8.4
	when to use, 16.8.4

	syncActionCode attribute, 16.8.4
	synchronous request-reply MEP
	
	creating Mediator projects, 14.7.2
	implementing, 14.7
	implementing error handling, 14.7.4
	implementing in EBS, 14.7.1
	routing services, 14.7.3

	synchronous request-response MEP
	
	ensuring transactions in services, 16.7.1
	implementing, 16.7
	optimizing the services to improve response time, 16.7.3

	SyncMaxWaitTime, 31.5.1
	syncMaxWaittime, 31.4.1
	SyncResponse verb, 16.8.4
	syntactic validation, 30.1.3.1
	System IDs, loading, 26.2.4
	system level configuration, 2.1.3.9
	system test guidelines for tuning, 31.1.4
	SystemRegistration.xml, 2.4.5.2.3
	SystemRegistration.xml configuration file, 2.4.5.2.3
	Systems page, 2.4.5.2.2

T

	Target, 26.6.3
	task, 14.1.1
	
	definition of, 3.1

	TASK_SCOPE, 3.2.1
	technology options for interactions, 15.4
	test environments, 2
	throttling capability, 30.1.4
	throttling inbound message flows, 31.6.4
	topics, 24.2.6.4
	trace logging
	
	configuring for AIA processes, 27.10

	TRACE_ENABLED, 31.2.3
	transaction boundaries, 24.2.7.1
	TransactionCode, 26.6.2.4
	transformation maps, 26.1
	
	creating, 26.2
	empty elements, 26.2.2
	guidelines, 26.2.1
	making extension aware, 26.3
	missing elements, 26.2.2

	transformation template
	
	industry extensible, 26.3.2

	transformations, 2.1.3.6
	
	making the transformation template industry extensible, 26.3.2
	making transformation maps extension aware, 26.3.1
	naming, 26.2.7

	TransportDetails, 13.1.3, 13.1.4
	tuning
	
	baseline data collection, 31.1.4
	bottlenecks, 31.1.4
	connection pool in a JDBC data source, 31.2.12
	critical performance areas, 31.1.5
	data gathering, 31.1.1
	db_block_size, 31.2.3
	identifying peak periods, 31.1.1
	introduction, 31.1
	job_queue_processes, 31.2.3
	KPI, 31.1.4
	log_buffer, 31.2.3
	MEMORY_MAX_TARGET, 31.2.3
	MEMORY_TARGET, 31.2.3
	multiple concurrent users, 31.1.4
	open_cursors, 31.2.3
	pga_aggregate_target, 31.2.3, 31.2.3
	proactive monitoring, 31.1.3
	redo logs, 31.2.4
	Remove Infected Connections Enabled, 31.2.12.2
	resource saturation, 31.1.2
	Session_cached_cursors, 31.2.3
	sga_max_size, 31.2.3
	Sga_target, 31.2.3
	shared_pool_size, 31.2.3
	system test, 31.1.4
	tablespace segment-space management, 31.2.5
	test frequency, 31.2.12.2
	test reserved connections, 31.2.12.2
	TRACE_ENABLED, 31.2.3
	UNDO_MANAGEMENT, 31.2.3
	using baselines, 31.1.1

	tuning AQ Adapters, 31.6.2
	tuning cache configuration, 31.2.13.2
	tuning Database Adapters, 31.6.3
	tuning Java Virtual Machines (JVMs), 31.8
	tuning JMS Adapters, 31.6.1
	tuning Oracle Adapters, 31.6
	tuning Oracle Mediator, 31.5
	tuning WebLogic application server, 31.9
	tuning your heap size, 31.8.1

U

	undeployment plan, 8.6
	UNDO_MANAGEMENT, 31.2.3
	Update, 16.8.2
	
	content payload, 16.8.2
	response verb, 16.8.2
	verb attributes, 16.8.2
	when to use, 16.8.2

	UpdateResponse verb, 16.8.2
	updating MDS, 2.1.3.15
	updating SOA MDS with AIA MetaData, 2.1.3.3
	UseBatchDestroy, 31.6.3
	using direct integrations, 26.1.1.2
	using MDS as storage for abstract WSDLs, 30.1.6.1
	UtilityArtifacts, 2.1.3.6

V

	valid values for the element ApplicationName, 13.11.2
	valid values for the element ArtifactType, 13.11.1
	Validate, 16.8.5
	
	content payload, 16.8.5
	response verb, 16.8.5
	when to use, 16.8.5

	ValidateResponse verb, 16.8.5
	ValueExpression, 16.8.7
	VerbCode, 26.6.1.5
	verbs
	
	Create, 16.8.1
	Delete, 16.8.3
	Process, 16.8.6
	Query, 16.8.7
	Sync, 16.8.4
	Update, 16.8.2
	Validate, 16.8.5

W

	Web Services with SOAP/HTTP
	
	advantages, 24.2.2.3
	connectivity, 24.2.1
	considerations, 24.2.2.5
	disadvantages, 24.2.2.4
	error handling, 24.2.4
	error handling for inbound connectivity, 24.2.4.1
	error handling for outbound connectivity, 24.2.4.2
	error handling for request-response and request-only system errors, 24.2.4.3
	error handling for request-response business errors, 24.2.4.4
	request only, 24.2.2.2
	request-response, 24.2.2.1
	security, 24.2.5
	session management, 24.2.3
	session pool manager, 24.2.3.3
	session token, 24.2.3.2
	session types, 24.2.3.1
	when to use, 24.2.2

	Work Manager, 31.9.2
	WS Address, 26.6.2.11
	WSAddress type element, 14.8.2.3
	WSDL construction
	
	annotating service interface, 14.3.3
	completing the "definitions" section, 14.3.2
	defining message structures, 14.3.1, 14.3.3
	message definitions, 14.3.3
	portType definition, 14.3.3

	WSDL construction for the activity service EBS, 14.3.1
	WS-I Basic Profile, checking for conformance, 14.3.4

X

	XA Drivers, changing the driver name, 31.2.11
	XPath functions, A
	XSL for CAVS enablement, B
	XSLT Mapper for data transformations, 26.1.2
	XSLT Transformations, using on large payloads, 26.2.5
	XSLT vocabulary, 26.1.2

16 Constructing the ABCS

This chapter describes how to construct an Application Business Connector Service (ABCS). It lists the prerequisites that are necessary before you set out to construct an ABCS and briefly introduces you to the concepts of SOA composite application. It provides information about constructing an ABCS using AIA Service Constructor and constructing one using Oracle JDeveloper and lists the tasks that a developer should manually complete after creating an ABCS composite using AIA Service Constructor. Regardless of whether the ABCS is developed either using AIA Service Constructor or entirely using JDeveloper, you should review the relevant sections depending upon the capabilities to be implemented in the ABCS.

	
Note:

Composite Business Processes (CBP) will be deprecated from next release. Oracle advises you to use BPM for modeling human/system interactions.

This chapter includes the following sections:

	
Section 16.1, "Constructing an ABCS"

	
Section 16.2, "Constructing an ABCS Using Service Constructor"

	
Section 16.3, "Constructing an ABCS Composite Using JDeveloper"

	
Section 16.4, "Implementing the Fire-and-Forget MEP"

	
Section 16.5, "Implementing the Asynchronous Request Delayed Response MEP"

	
Section 16.6, "Implementing Provider ABCS in an Asynchronous Message Exchange Scenario"

	
Section 16.7, "Implementing Synchronous Request-Response Message Exchange Scenario"

	
Section 16.8, "Invoking Enterprise Business Services"

	
Section 16.9, "Invoking the ABCS"

16.1 Constructing an ABCS

Table 16-1 lists the common tasks for constructing an ABCS and provides links to detailed information:

Table 16-1 Summary of Tasks for Constructing an ABCS

	If	Refer to
	
You are implementing the Fire-and-Forget Message Exchange Pattern (MEP)

	
Section 15.3.2.2, "When to Use the Asynchronous Request Only (Fire-and Forget) MEP"

Section 16.4, "Implementing the Fire-and-Forget MEP"

To implement the MEP in EBS, see Section 14.6, "Implementing the Fire-and-Forget Message Exchange Pattern."

	
You are implementing the Asynchronous Request Delayed Response MEP

	
Section 15.3.2.3, "When to Use the Asynchronous Request Delayed Response MEP"

Section 16.5, "Implementing the Asynchronous Request Delayed Response MEP"

To implement the MEP in EBS, see Section 14.8, "Implementing the Asynchronous Request-Delayed Response Message Exchange Pattern."

	
You are implementing the Synchronous Request - Response MEP

	
Section 15.3.2.1, "When to Use the Synchronous Request-Response MEP"

Section 16.7, "Implementing Synchronous Request-Response Message Exchange Scenario"

To implement the MEP in EBS, see Section 14.7, "Implementing the Synchronous Request-Response Message Exchange Pattern."

	
Your ABCS is invoking an Enterprise Business Service (EBS) operation

	
Chapter 14, "Designing and Developing Enterprise Business Services," for the guidelines for working with operations of an EBS

	
You need details about transforming a message from one format to another

	
Chapter 26, "Working with Message Transformations."

	
You need information about how ABCS can be connected with the participating applications both inbound and outbound

	
Chapter 24, "Establishing Resource Connectivity."

	
You must know how clients such as applications and other services can invoke the ABCS you are developing

	
Section 16.9, "Invoking the ABCS"

	
You are securing an ABCS

	
Section 17.5, "Securing the ABCS"

	
You are enabling ABCS to handle errors and faults

	
Section 17.2, "Handling Errors and Faults"

	
You want to allow ABCS to be extended by customers

	
Section 17.1, "Developing Extensible ABCS"

	
You need guidelines on Composite Application Validation System (CAVS)-enabling the ABCS

	
Section 17.4, "Developing ABCS for CAVS Enablement"

	
You need guidelines on how to annotate the SOA composites to facilitate the harvesting of metadata into Oracle Enterprise Repository and for deployment of the service

	
Chapter 13, "Annotating Composites."

	
You want to harvest design-time composites into Oracle Enterprise Repository

	
Section 5.2, "Harvesting Design-Time Composites into Project Lifecycle Workbench and Oracle Enterprise Repository"

	
You want to deploy the ABCS you are developing using AIA Installation Driver

	
Chapter 2, "Building AIA Integration Flows."

Chapter 3, "Working with Project Lifecycle Workbench."

	
You want to access AIA Configuration Properties from within an ABCS

	
Section 2.1.3.9, "How to Work with AIAConfigurationProperties.xml in $AIA_HOME/aia_instances/$INSTANCE_NAME/AIAMetaData/config."

16.1.1 Prerequisites

Before you begin constructing an ABCS, ensure that:

	
The relevant AIA Workstation with Oracle AIA Foundation Pack is installed and the development SOA server is up and running.

Refer to Section 2.1.3, "How to Set Up AIA Workstation."

	
The application entities' schemas (Application Business Message [ABM] schemas) are accessible from Metadata Service (MDS) repository. They should not be part of each ABCS project.

Refer to Section 2.1.3.4, "Using MDS in AIA."

	
Enterprise Object Library containing Enterprise Business Objects (EBOs) and Enterprise Business Messages (EBMs) are accessible in the MDS Repository. EBOs and EBMs should not be part of each ABCS project.

Refer to Section 2.1.3.4, "Using MDS in AIA."

	
All the abstract WSDLs of EBS or participating applications should be accessible from the MDS Repository.

	
Tip:

The abstract WSDL of an ABCS that is being developed should be accessed from MDS. The exceptions to this rule are:

	
The EBS references WSDLs that define PartnerLink types

	
Participating applications reference WSDLs that define PartnerLink types

	
The adapter WSDLs that are generated by JDeveloper

	
Abstract WSDLs of the services defined at ABCS extension points

When AIA Service Constructor is used for constructing ABCS, abstract WSDLs of the ABCS generated by AIA Service Constructor must be pushed into MDS.

For more information, see Section 2.1.3.4, "Using MDS in AIA."

	
Requester and provider participating applications have been identified.

	
EBOs and EBMs have been identified.

	
Functionality mapping between EBS and participating applications is complete. This mapping should include:

	
Data element spreadsheet mapping between the EBO and participating application messages.

	
Operations mapping between the EBS and participating applications.

	
The style of interaction (MEP: request-response, fire and forget, asynchronous request, and delayed response) is defined.

See Section 15.3.2, "Choosing the Appropriate MEP."

	
The communication protocols with the participating applications are identified.

For more information about how an ABCS interacts with participating applications, see Chapter 24, "Establishing Resource Connectivity."

	
Any participating application-specific requirements such as error handling or security have been identified.

16.1.2 ABCS as a Composite Application

AIA services (ABCSs and EBSs) can be developed as a composite application built using SCA building blocks. Four SCA elements apply to these services:

	
Service

Represents an entry point into the SCA component or a composite.

	
Reference

Represents a pointer to an external service outside the scope of the given SCA component.

	
Implementation type

Defines the type of implementation code for a given SCA component that is used for coding the business logic. Example implementation types include BPEL and Mediator.

	
Wire

Represents the mechanism by which two components can be connected to each other. Usually a reference of one component is connected to a service exposed by another component.

An SCA component may expose one or more services, may use one or more references, may have one or more properties defining some specific characteristics, and may be connected to one or more components using SCA wiring.

The building blocks of SCA can be combined and assembled to create composite applications. A composite application can be thought of as a composition of related SCA components that