Mobile Browser Developer's Guide for Oracle Application Development Framework
11g Release 1 (11.1.1.7.0)
E10140-06
March 2013
Documentation for Oracle Application Development Framework (Oracle ADF) developers that describes how to use Oracle JDeveloper to create mobile browser-based applications comprised of Apache MyFaces Trinidad web-client components.
Oracle Fusion Middleware Mobile Browser Developer's Guide for Oracle Application Development Framework 11g Release 1 (11.1.1.7.0)
E10140-06
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.
Primary Author: John Bassett
Contributing Author: Mamallan Uthaman
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Welcome to Mobile Browser Developer's Guide for Oracle Application Development Framework.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
This document is intended for developers of browser applications for mobile devices.
For more information, see the following:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
This chapter provides an overview of Oracle Application Development Framework Mobile (ADF Mobile) browser.	
This chapter includes the following sections:	
Oracle Application Development Framework Mobile (ADF Mobile) browser is a standards-based framework that enables the rapid development of enterprise mobile applications. Because ADF Mobile browser is built upon the component model of Java Server Faces (JSF), you can quickly develop applications for mobile browsers. Its mobile-specific extensions to JSF enable you to develop mobile applications with the same methodologies used for developing JSF applications for the desktop.	
When developing an ADF Mobile browser application, you need not focus on the limitations (or capabilities) of different browsers, as ADF Mobile browser enables you to develop applications that function properly on different browser types. The ADF Mobile browser renderer ensures that contents can be consumed correctly by the target browser. It not only handles variations in browser-specific implementations of HTML, JavaScript, CSS, DOM, and XMLHttpRequest	
, but variations in system performance as well. For example, if a browser does not support XMLHttpRequest	
and cannot post a partial-page request to a server, ADF Mobile browser's support for AJAX (Asynchronous JavaScript and XML) enables the application to revert automatically to a full-page submit so that the page functions properly.	
Note: For Oracle Fusion Middleware 11g release 1, ADF Mobile browser requires HTML and JavaScript support.	
Java Server Faces (JSF) is a standard specified by JSR-127 that enables you to create applications using pre-built components that define functionality and behavior. JSF provides a Model-View-Controller (MVC) mechanism that simplifies the development of web applications through its renderkit, which converts components both to, and from, a specific markup language. The kit's renderers generate markup that represents components and how they interpret browser requests.	
JSF development focuses on components, not markup. Using JSF, you create a JSP page containing JSF component tags. When a user visits this page (through the FacesServlet), JSF uses the renderkit specified by the user's device to encode the markup to the appropriate output. For example, if the user's device specifies HTML for a desktop browser, then the renderkit's markup encoding results in an HTML page. In addition to rendering appropriate content, JSF supports user interaction.	
Application Development Framework (ADF) is built on the standard JSF technology and provides the following:	
ADF Mobile browser application development is almost identical to ADF web application development, except that ADF Mobile browser application development uses only mobile JSF pages that consist of Apache MyFaces Trinidad components. Otherwise, you use the programming model for developing desktop browser applications. For more information on developing ADF web applications, see Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.	
Note: You cannot use ADF Faces components to develop an ADF Mobile browser application. You must use Apache MyFaces Trinidad components.	
Developing mobile browser applications for mobile devices with ADF Mobile browser leverages the same methodologies used in developing JSF applications for the desktop, but with a few specific mobile extensions. With support for over 60 Apache MyFaces Trinidad components, you can build applications with a rich component set. Each component renders appropriately for small-screen mobile devices. You can reuse the desktop browser application's model and controller layers to assemble a new view layer for mobile devices by using similar Apache MyFaces Trinidad components.	
In mobile environments with high-latency and low-bandwidth wireless networks, Partial Page Rendering (PPR) is essential to providing end users with an efficient application. For mobile browsers supporting AJAX, ADF Mobile browser supports PPR for certain components, which minimizes the amount of data requested from the server and thereby improves the responsiveness of the applications. See also Section 3.1.2, "Partial Page Rendering."	
ADF Mobile browser supports Apache MyFaces Trinidad components on the browsers listed in Table 1-1. Later versions of Trinidad can be integrated into Oracle JDeveloper and used with Oracle Fusion Middleware 11g release 1 of ADF Mobile browser.	
Table 1-1 Supported Browsers and Supported Mobile Features	
Browser	JavaScript Support
---	---
BlackBerry version 4.6 and later	Yes
Blackberry versions 4.2 through 4.5	No
Microsoft Windows Mobile 5	Yes
Microsoft Windows Mobile 6	Yes
Apple iPhone Safari	Yes
Nokia s60 series	Yes
Plain HTML (such as Opera Mini, Opera Mobile and Skyfire)	No
This chapter describes how to configure the development environment for ADF Mobile browser applications and how to build and test mobile browser applications.	
This chapter includes the following sections:	
ADF Mobile browser application development is almost identical to ADF web application development, except that ADF Mobile browser application development uses only mobile JSF pages that consist of Apache MyFaces Trinidad components.	
To create an ADF Mobile browser application:	
ADF Mobile browser application development differs only from ADF web application development for desktop browsers in the creation of the mobile-optimized view controller project. For more information, see Section 2.3, "Developing an ADF Mobile Browser Application."	
To configure the environment, first create an ADF Mobile browser application that includes a project with the ADF Mobile browser technology.	
Before you begin:	
If needed, create an ADF model project. The ADF Mobile browser application can share a model project with an existing ADF application.	
To create the ADF Mobile Browser Application and the ADF Mobile Browser Project:	
Figure 2-1 The New Gallery	
Selecting Fusion Web Application (ADF) creates the model project used by the mobile view project. Figure 2-3 shows the application's generated model and view controller projects that appear in the Application Navigator when you complete the wizard.	
Note: Although you can define the business logic for the model project, do not use the generated view controller project. Instead, create a mobile view controller project as described in the following steps.	
Figure 2-4 shows the ADF Mobile Browser technology in the Available list. After you move the ADF Mobile Browser technology to the Selected list, the following technologies are made available to the project and also appear in the Selected list, as shown in Figure 2-5:	
As shown in Figure 2-6, the mobile view controller project (mvc) appears in the Application Navigator within the Fusion web application (adfm).	
Because you added the mobile browser technology scope, the Apache MyFaces Trinidad library is automatically loaded to the workspace and the Trinidad component palette is loaded when you create mobile JSF pages, shown in Figure 2-10.	
ADF Mobile browser application development is nearly identical to ADF web application development for desktop browsers; the two only differ in how you create the web project. For mobile browser applications, you develop an application by creating web pages within the web project. Otherwise, you develop a mobile browser application in the same way that you develop an ADF web application for a desktop browser. Typically, you create a web project within the application to implement a user interface and ADF Business Components to implement a business layer.	
Figure 2-7 shows a mobile application (adfm) that contains model, a business components project.	
You develop an ADF Mobile browser application by first creating a JSP page and then by populating it with the Apache My Faces Trinidad components.	
To create a mobile JSF page:	
Note: Project Technologies (the default) must be selected from the Filter By list.	
Figure 2-8 The New Gallery for JSF Pages	
Note: Because you added the Mobile Browser technology scope for the application, the Render in Mobile Device option is selected by default, as shown in Figure 2-9.	
Because the Render in Mobile Device option is selected by default, the page designer in the visual editor reflects the size of a mobile device, as illustrated in Figure 2-10.	
Tip: You change the size of the page in the visual editor or by clicking Tools, then Preferences, then Mobile.	
In addition, JDeveloper populates the ADF Mobile browser view project with a trinidad-config.xml	
file, which you use to set the default skin for the application. For more information, see Chapter 4, "Skinning."	
You can test an ADF Mobile browser application on a mobile device, a mobile device emulator, or a desktop browser. Testing on an actual mobile device or mobile device emulator provides more accurate results than does testing on a desktop browser.	
Testing an ADF Mobile browser application with a desktop browser produces only approximate results because it provides a fairly uniform testing environment; in desktop browsers, web pages appear and behave similarly and business logic executes identically. Testing an application on an actual mobile device, however, produces more accurate results, because the capabilities of mobile browsers may cause controls to behave differently than they do on a desktop browser. In addition, mobile browsers are usually smaller than desktop browsers. They also render pages differently than desktop browsers because web servers optimize the look and feel by generating pages that are specific to the mobile browser.	
Testing ADF Mobile browser applications directly on mobile devices has limitations as well, in that you may not have access to all of the devices that you must test. Furthermore, firewalls can complicate testing. Many mobile devices can only access the Internet and therefore cannot reach development environments behind a firewall. In such cases, mobile device emulators provide an alternative testing method. For example, to test applications on BlackBerry or Windows Mobile emulators (shown in Figure 2-11 and Figure 2-13, respectively), first download device emulators from the RIM developer site (http://us.blackberry.com	
) and the Microsoft developer site (http://www.microsoft.com	
). Before you test applications on the emulator, you must first configure the emulator and connect it to the web server. The Oracle Technology Network (http://www.oracle.com/technetwork/index.html	
) provides information on downloading and configuring simulators for ADF Mobile browser.	
After you test an application on a desktop browser, you can then test it on an emulator. You can use the URL displayed in the desktop browser, but if it uses the localhost IP address (127.0.0.1), you must change it to the network IP address of your computer.	
Tip: To obtain the network IP address, use the	
For example, to test an application using a Windows Mobile 6 emulator, change the address from the desktop's localhost IP address (127.0.0.1, shown in Figure 2-12) to that of the computer's network IP address (192.0.2.253, shown in Figure 2-13).	
In addition, you must remove the session specification that follows the page name. The page name is typically appended with either .jspx	
or .jsp	
. In Figure 2-12, the page name, home, is appended with .jspx	
.	
In general, you debug an application by repeating cycles of code and then by testing the application. When you test an application that has been modified, you must do one, or both, of the following:	
Tip: Because the URL does not change if you develop the same application, you are not required to enter it again.	
Viewing ADF Mobile browser applications properly requires adjustments to the browser settings for Windows Mobile and BlackBerry browsers.	
Microsoft Windows Mobile 5 and 6, Microsoft Pocket Internet Explorer	
For optimal viewing, select the Fit to Screen view (accessed by selecting Menu, View and then Fit to Screen).	
Note: Selecting the One Column view option results in layout problems. Do not select this option.	
BlackBerry Browser 4.n	
ADF Mobile browser only works if JavaScript support is enabled. To ensure that JavaScript support is enabled:	
This chapter describes the Apache MyFaces Trinidad components that are supported by ADF Mobile browser.	
This chapter includes the following sections:	
ADF Mobile browser supports more than 60 of Apache MyFaces Trinidad components, enabling you to build applications with a rich component set that renders appropriately to the screens of mobile devices. For more information, refer to the Apache MyFaces Trinidad site (http://myfaces.apache.org/trinidad	
/).	
The high-latency and low-bandwidth of networks in mobile environments decrease application responsiveness for mobile users. Screens refresh slowly, diminishing the mobile user experience. ADF Mobile browser's support of Partial Page Rendering (PPR) compensates for the negative impact that slow connections have on screen updates by minimizing the amount of data requested from the server; using PPR, mobile device screen updates do not require a full refresh. Browsers that do not support AJAX (Asynchronous JavaScript and XML) use full page rendering instead of PPR. For example, a page submission on basic HTML browsers (which do not support JavaScript) results in the refresh of a full page.	
Note: Browsers for BlackBerry 4.5 (and earlier versions) do not support PPR. Specifying the	
ADF Mobile browser supports dialogs, pages used by applications to obtain user input. Because mobile browsers cannot open a new window that contains a dialog (a pop-up window), they present dialogs as new pages within the main browser window after they automatically preserve the state of the current page.	
On browsers for BlackBerry 4.5 and earlier versions, the bullets in a list sublevel (such as those in a tr:panelList	
component) appear large and are not indented. The BlackBerry browser's table handling may affect complex layouts; the BlackBerry browser does not allow horizontal scrolling. Instead, it wraps a table row onto multiple display lines which may disturb the layout. For more information, see Chapter 6, "Design Guidelines for BlackBerry 4.2 to 4.5."	
ADF Mobile browser supports input text fields and lists, core components that support user input.	
You can create input fields using the following components:	
tr:inputColor	
Note: Mobile browsers do not support an inline	
tr:inputDate	
tr:inputHidden	
tr:inputText	
Note: Basic HTML browsers do not support the	
Note: Trinidad optimizes the	
You can create lists using the following components:	
tr:panelChoice	
tr:panelList	
tr:selectBooleanCheckBox	
tr:selectBooleanRadio	
tr:selectItem	
Note: Mobile browsers do not support the	
tr:selectManyCheckBox	
tr:selectManyListBox	
tr:selectOneChoice	
tr:selectOneListBox	
tr:selectOneRadio	
tr:resetButton	
Note: Basic HTML browsers do not support the	
ADF Mobile browser uses the Apache MyFacesTrinidad core components that support output on mobile device applications. These components include those for displaying text and images and also components for displaying, or hiding, text.	
The following components enable you to display text:	
tr:iterator	
tr:message	
tr:messages	
Note: Component-specific messages do not display on a mobile browser in the same manner as they do in a desktop browser. Instead, they display in the region where the message component (
tr:outputDocument	
tr:outputForwarded	
tr:outputLabel	
tr:outputText	
The following components enable you to display images:	
tr:icon	
tr:image	
tr:panelTip	
The following components enable showing or hiding items:	
tr:panelAccordion	
Note: Mobile browsers only support a full-page update; they do not support the	
tr:panelTabbed	
Note: To conserve space on mobile devices, the renderer intentionally prevents the display of tab bars on both the top and bottom of the	
tr:showDetail	
Note: For the	
tr:showDetailHeader	
Note: For the	
tr:showDetailItem	
Note: For the	
The layout components supported by ADF Mobile browser include those for managing the page itself (such as tr:document	
and tr:form	
) as well as components for laying out the sections of a page, such as tr:group	
, tr:panelFormLayout	
, and tr:panelGroupLayout	
.	
The following components enable you to manage the page:	
tr:document	
tr:form	
Note: Mobile browsers do not support the	
tr:page	
Note: Mobile browsers do not support the	
The following ADF Faces core tags support page layout for mobile device applications:	
tr:group	
tr:panelBorderLayout	
Note: Only the	
The	
tr:panelBox	
tr:panelFormLayout	
tr:panelGroupLayout	
tr:panelHeader	
tr:panelHorizontalLayout	
Note: Mobile devices do not support the	
tr:panelLabelAndMessage	
Note: Trinidad optimizes the	
tr:panelPage	
tr:panelPageHeader	
Note: Mobile devices only support the following facets of the	
tr:panelRadio	
Note: Trinidad optimizes the	
tr:panelCaptionGroup	
The following components control the space allocation on pages:	
tr:separator	
tr:spacer	
tr:subform	
ADF Mobile browser supports such components as buttons, links, and breadcrumbs that enable users to navigate to other pages of the application, or to external locations.	
ADF Mobile browser supports the following button types:	
tr:commandButton	
Note: Because the	
tr:goButton	
See Chapter 8, " Extending ADF Mobile Browser Applications" for information on how to use the tr:goButton	
component to integrate e-mail, telephony, and Google maps into an application.	
ADF Mobile browser supports the following components for creating hyperlinks:	
tr:commandLink	
Note: Because the	
tr:goLink	
See Chapter 8, " Extending ADF Mobile Browser Applications" for information on how to use the tr:goLink	
component to integrate e-mail, telephony, and Google maps into an application.	
ADF Mobile browser supports the following navigation components:	
tr:breadcrumbs	
Note: Trinidad optimizes the	
tr:commandNavigationItem	
Note:	
tr:navigationPane	
Note:	
Note: Trinidad optimizes the	
tr:train	
Note: The	
tr:processChoiceBar	
Note: Trinidad optimizes the	
tr:selectRangeChoiceBar	
Note: Trinidad optimizes the	
ADF Mobile browser supports data visualization tools (DVTs), described in the "Creating Databound ADF Data Visualization Components" section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
ADF Mobile browser supports the following types of graphs:	
ADF Mobile browser supports the following types of gauges:	
To add these components to an application, first move a data control into the source editor using a drag-and-drop operation and then select Trinidad Gauges or Trinidad Graphs from the context menu. For example, Figure 3-1 illustrates the context menu when you drag a collection into a component in the source editor.	
After you select either the Trinidad Graphs or Trinidad Gauges options, the DVT wizard appears and opens to the Component Gallery page, shown in Figure 3-2. You select the DVT type from this page.	
Note: For Oracle Fusion Middleware 11g release 1, ADF Mobile browser supports only static graphs and gauges, both of which are rendered as PNG images. Any mobile device that supports this image format can display graphs and gauges.	
ADF Mobile browser applications can display structured data in the rows and columns of a table or hierarchically as trees.	
ADF Mobile browser supports tables comprised of the following components:	
tr:table	
Note: ADF Mobile browser does not support the	
tr:column	
Note: When you nest	
Creating a single-column table optimizes how tables display on mobile devices.	
ADF Mobile browser supports the tr:tree	
component.	
Note:	
Release 11g of ADF Mobile browser does not support some components or attributes.	
Release 11g of ADF Mobile browser does not support the following components:	
tr:chart	
tr:chooseColor	
tr:chooseDate	
tr:inputFile	
tr:inputListOFVariables	
tr:inputNumberSpinbox	
tr:legend	
tr:media	
tr:navigationTree	
tr:panelButtonBar	
tr:panelPopup	
tr:panelSideBar	
tr:poll	
tr:progressIndicator	
tr:selectManyShuttle	
tr:selectOrderShuttle	
tr:singleStepButtonBar	
tr:statusIndicator	
tr:switcher	
tr:treeTable	
Release 11g of ADF Mobile browser does not support the following component attributes on any component.	
accessKey	
shortDesc (tooltip)	
This chapter describes skinning for ADF Mobile browser applications.	
This chapter includes the following sections:	
Skinning enables a page to display consistently on a variety of devices through the automatic delivery of device-dependent style sheets. These style sheets enable the optimal display of pages that share the same page definitions on various mobile browsers. Within these style sheets, which enable you to set the look and feel of an application, you not only tailor a component to a specific browser by setting its size, location, and appearance, but you also specify the types of browsers on which components can be displayed (or hidden). For more information, see Section 4.2, "Implementing ADF Mobile Browser Skinning." For examples of how to use skinning, see Section 4.3, "Example iPhone Components," which includes an example of an iPhone skin. You can apply a similar style sheet to other mobile browsers, such as BlackBerry, Windows Mobile 6, and Nokia S60. Sample implementations are available from Oracle Technology Network (http://www.oracle.com/technetwork/index.html	
).	
Note: Browsers must support the Cascading Style Sheet (CSS) syntax. Also, styling features that are specific to certain browsers may require methods other than style sheet customization.	
To create a skin, refer to Apache Trinidad Skinning in the Development Guidelines for Apache MyFaces Trinidad (http://myfaces.apache.org/trinidad/devguide/skinning.html	
) which includes descriptions on how to:	
trinidad-skins.xml	
file within the WEB-INF node of the ADF Mobile browser view project, as shown in Figure 4-1. .css	
files). trinidad-config.xml	
file (located in the WEB-INF node). For ADF Mobile browser, you implement skinning by performing the following tasks:	
trinidad-config.xml	
file, define the <skin-family>	
tag with the EL (Expression Language) expression, #{requestContext.agent.skinFamilyType}	
, that returns the skin family type of the browser. See Section 7.2.1.1, "Determining the Skin Type." trinidad-skins.xml	
file. public_html	
directory, such as JDeveloper\mywork\	
Application	
\	
ADF Mobile Application view project	
\public_html\css.	
Example 4-1 illustrates adding the <skin-family>	
tag within the <trinidad-config>	
element. This element includes an EL expression that evaluates to the string that returns the skin family type of the browser.	
After you create the skin, you can switch between the default skin and another skin (such as an iPhone skin, as illustrated in Example 4-2), using the <skin-family>	
element in the trinidad-config.xml	
file. As shown in Figure 4-1, this file, which results from the creation of the JSP page, is located within the WEB-INF node. Use this file to set the default skins for an application. To switch between the default skin and an alternate skin, use Expression Language (EL).	
To enable switching between skins:	
Trinidad-config.xml	
file. <skin-family>	
element as illustrated in Example 4-2, which shows switching between the default (minimal	
) and the iPhone skins (iPhoneWebkit	
). Define the <skin>	
tags that specify the render-kit ID and style-sheet-name (which are org.apache.myfaces.trinidad.desktop	
and iPhone/iPhone.css	
, respectively, in Example 4-3) for browser types identified in the <family>	
element. The value defined for this element is the string resulting from the EL expression in the <skin-family>	
tag in trinidad-config.xml	
(illustrated in Example 4-1). See also Section 7.2.1.1, "Determining the Skin Type."	
Example 4-3 Defining the Skins	
CSS 3.0 features enable an ADF Mobile browser application to have the same look and feel as a native iPhone application. By creating a new skin in Trinidad for iPhone, you can include iPhone-specific components. Examples of these components include:	
These components illustrate how to apply the style classes using the styleClass	
attribute.	
The backButton	
, toolBar	
, toolBar > h1	
, and button	
style classes used with the <tr:panelHeader>	
and <tr:commandLink>	
components set the appearance of the Header, as illustrated in Figure 4-2.	
Table 4-1 lists the tags used to build headers, the style classes defined for them, and the layout effects of these classes.	
Table 4-1 Header Component Classes	
Tag	Style Class
---	---
Sets the height, width, border, and background of the header.	
	Sets the width, height, color, and position of the back button in the header.
	Sets the width, height, color, and position of the button in the header.
toolbar	
Example 4-4 illustrates the toolbar	
style class selector, which sets the height, width, border, and background for the header.	
Example 4-4 The toolbar Style Class Selector	
toolbar > h1	
Example 4-5 illustrates the toolbar > h1	
style class selector, which sets the height, width, font size, and style of the toolbar title.	
Example 4-5 The toolbar > h1 Style Class Selector	
button	
Example 4-6 illustrates the button	
style class selector, which sets the width, height, color, and position of a button in the header.	
Example 4-6 The button Style Class Selector	
backButton	
Example 4-7 illustrates the backbutton	
style class selector, which sets the width, height, color, and position of the back button in the header.	
Example 4-7 The backbutton Style Class Selector	
Example 4-8 illustrates how to define the styleClass	
attribute to create the header components.	
There are two style classes that define the navigation panel:	
Panel List	
style class. This style class displays a simple list of navigation items. It sets the width, position, and height of this list. Table List	
style class. You define the Panel List	
style class within a <tr:panelList>	
component, using <tr:commandLink>	
tags for each navigation item as illustrated in Example 4-9.	
Example 4-9 Defining a Static List of Navigation Items	
Many CSS features are applied by default on this component when using expressions similar to the ones listed in Table 4-2.	
Table 4-2 CSS Expressions	
CSS Expression	Layout Effect
---	---
Sets the width, position, and height of the list.	
Sets the position and border at the bottom for each item in the list.	
Sets the margin, font size, height, and background for each navigation item defined within the	
Figure 4-3 illustrates the expressions described in Table 4-2.	
panelList ul	
Example 4-10 illustrates the panelList ul	
style class selector, which sets the width, position, and height of the list.	
Example 4-10 The panelList ul Style Class Selector	
panelList ul > li	
Example 4-11 illustrates the panelList ul > li	
style class selector, which sets the position and border at the bottom for each item in the list.	
Example 4-11 The panelList ul > li Style Class Selector	
panelList ul > li > a	
Example 4-12 illustrates the panelList ul > li > a	
style class selector, which sets the margin, font size, height, and background for each navigation item.	
Example 4-12 The panelList ul > li > a Style Class Selector	
The Table List	
component enables you to build dynamic tables, such as a table that includes a list of dynamic links, as illustrated by Example 4-13. Because the Table List	
component is, in fact, a table, it includes built-in navigation. Unlike Panel List	
, the Table List	
includes style classes for including images and detailed descriptions below the navigation items, as shown in Figure 4-4.	
Example 4-13 Building a List of Dynamic Links	
To create a table of dynamic links:	
styleClass	
attribute for the table as iphoneTable	
. The expressions listed in Table 4-3 apply the iPhone-related CSS properties when you set the styleClass	
as iPhoneTable	
.	
Table 4-3 CSS Expression	
Expression	Layout Effects
---	---
Sets the background color for the table content. It overrides the table's default outer-border style to none.	
Sets the background color for the table controller (pagination).	
Sets the background color of the column.	
horizontalGridVisible	
attribute to false	
. Note: There must be only one column within the	
Table 4-4 lists the style classes for the subelements of the <column>	
tag.	
Table 4-4 Table Listing Style Classes	
Element	Style Class
---	---
	Sets the position and the border for each row.
	Sets the width, position, and height of the image.
	Sets the position, height, font size, text alignment, background image, and color of the navigation item.
	Sets the position, height, font size, text alignment, background image, and color of the navigation description.
listing
Example 4-14 illustrates the listing
style class selector, which sets the position and the border for each row.
Example 4-14 The listing Style Class Selector
listingLink
Example 4-15 illustrates the listingLink
style class selector, which sets the width, position, and height of the image.
Example 4-15 The listingLink Style Class Selector
listingDetails
Example 4-16 illustrates the listingDetails
style class selector, which sets the position, height, font size, text alignment, background image, and color of the navigation item.
Example 4-16 The listingDetails Style Class Selector
listingImage
Example 4-17 illustrates the listingImage
style class selector, which sets the position, height, font size, text alignment, background image, and color of the navigation description.
On the destination page, this component displays the detail of an item selected through panel navigation. As illustrated in Figure 4-5, these details include salary, phone numbers, and a hire date for a selected employee.
This destination page (comprised of field set components) contains one or more rows, where each row contains a label or a message (which can be either simple text or another navigation item). As illustrated in Example 4-18, you use the <div>
tags to create these rows. The <div>
tags are subelements of a <tr:panelCaptionGroup>
component.
Example 4-18 Creating a Field Set
To create field set components:
<div>
tags as needed within a <tr:panelCaptionGroup>
component, as illustrated in Example 4-18. <div>
tag with the row class attribute. For example: The row
attribute sets the position, height, and border for each row.
<div>
tag, create a label element as follows: <tr:outputText>
tag. StyleClass
as labeltext. For example:
<tr:outputText>
tag or the <tr:commandLink>
component as follows: <tr:outputText>
component with styleClass
set as messageText
. For example: The messageText style class sets the position, width, font, and color for the label element.
<tr:commandLink>
component with styleClass
set as messageLink
. Example 4-19 Setting the styleClass Attribute as messageLink
The messageLink element sets the position, width, font, height, and color for the message element.
<div>
tags with the panelBase class attribute (illustrated in Example 4-18). Note: The panelBase fieldset class sets rounded edges. The |
This section lists the style classes for field set components and their layout properties.
labeltext
Example 4-19 illustrates the labeltext
style class selector, which sets the position, width, font, and color of the label element.
Example 4-20 The labeltext Style Class Selector
messageText
Example 4-21 illustrates the messageText
style class selector, which sets the position, width, font, and color for the message element.
Example 4-21 The messageText Style Class Selector
messageLink
Example 4-22 illustrates the messageLink
style class selector, which sets the position, width, font, and color for of the message link element.
Example 4-22 The messageLink Style Class Selector
panelBase
Example 4-23 illustrates the panelBase
style class selector, which sets the background of the panel base.
Example 4-23 The panelBase Style Class Selector
panelBase fieldset
Example 4-24 illustrates the panelBase fieldset
style class selector, which sets rounded edges. The <fieldSet>
element is rendered by the renderer for the <tr:panelCaptionGroup>
component.
Example 4-24 The panelBase fieldset Style Class Selector
row
Example 4-25 illustrates the row
style class selector, which sets the position, height, and border for each row.
Example 4-25 The row Style Class Selector
row:first-child
Example 4-26 illustrates the row:first-child
style class selector.
Although you apply most of the CSS classes to specific components using the styleClass
attribute (as illustrated in Example 4-8) manually, some CSS features are applied by default when you use the iPhone skin.
This chapter describes ADF Mobile browser's support for basic HTML mobile browsers.
This chapter includes the following sections:
ADF Mobile browser supports basic HTML mobile browsers that have no JavaScript support. This lack of JavaScript support makes these browsers less robust than their counterparts used on the BlackBerry smartphone or the Apple iPhone. Aside from the browsers listed in Section 1.2, "Supported Mobile Browsers," ADF Mobile browser considers most common browsers as basic HTML mobile browsers. ADF Mobile browser may not recognize certain mobile browsers, however.
The minimum requirement for ADF Mobile browser's support is XHTML Basic or the XHTML Mobile Profile that includes WAP2.n browsers.
Note: ADF Mobile browser does not support the WAP1.n browsers that cannot support either XHTML Basic or the XHTML Mobile Profile. |
Because ADF Mobile browser serves pages to mobile browsers that are appropriate to a browser's capabilities or limitations, you do not have to create user interfaces that are specific to basic HTML mobile browsers. However, the absence of JavaScript support by these browsers limits the functionality of certain HTML elements.
autosubmit
attribute. Add a submit button to a form only if the form submission responds to a component's autosubmit feature. For composite components with built-in autosubmit features, ADF Mobile browser adds a submit button to enable users to submit the form. tr:commandLink
component cannot render in a basic HTML mobile browser. For more information on tr:commandLink
, see Section 3.5.2, "Creating Links." ADF Mobile browser provides CSS support for basic HTML mobile browsers. Although most of these browsers support CSS, ADF Mobile browser applications can even run on the browsers that do not support CSS. In these cases, however, the user interface may be difficult to use. As a precaution, you should test the ADF Mobile browser application on as many browsers as possible.
This chapter describes how to accommodate the behavior of BlackBerry browsers 4.2 to 4.5.
This chapter includes the following sections:
The BlackBerry browser behaves differently than other browsers in that it does not display pages using horizontal scrolling. Instead, it fits a page to the width of the screen.
Browsers wrap long words between fields. When formatting tables, avoid placing such words on lines that contain multiple fields.
Note: Within this chapter, a word refers to a series of characters. In this context, a word does not include white space. |
Because the default mode of the BlackBerry browser limits the browser width to that of the physical screen, any field that cannot fit within a line is displayed on the next line. If the intent of an application is to display multiple elements on one line, then you must ensure that the total width of the fields are within the width of the browser. Like other browsers, the BlackBerry browser wraps multiple lines when needed. The column width cannot be reduced beyond the size of the longest word in the field.
To prevent fields from wrapping, ensure that the total of the size attribute values in a table's row satisfies the following formula when all of the fields in a row are input fields.
In general, field sizes in table columns should satisfy the following formula:
If the field still wraps, decrease the value of X
until the field fits the row.
To preserve the intended programming flexibility, ADF Mobile supports nowrap
attributes in Trinidad components. You may encounter problems if you add nowrap
to a component definition if you program an application to support paging.
When formatting columns, set the percentage of the width for both the LabelWidth
and the FieldWidth
attributes in the tr:panelFormLayout
component at 100%.
The same application may display differently on different devices. The following circumstances can contribute to such discrepancies:
Changing the minimum font size through user preferences affects the formatting ability of the ADF Mobile browser renderer. For example, input fields and their corresponding labels align properly when the font is set to its default size of 6 pt., as shown in Figure 6-1.
However, increasing the font size to 10 pt. disrupts the display by shifting the input fields beneath their corresponding labels. As a result, the page is difficult to read.
Figure 6-2 shows a page that is too large for the display screen.
Differing screen sizes can affect display. Even if the font size is at the default size of 6 pt. (illustrated in Figure 6-1), the same application appears differently on other devices. In Figure 6-3, the input fields barely fit the device's screen, even though they are easily accommodated on other devices running the same application, as shown in Figure 6-1.
In addition, input fields may display properly on the screen of one device, but may appear crowded on the screen of another type of device.
Figure 6-4 shows an application whose table cells are not wide enough to accommodate the text, causing it to wrap.
This chapter describes how the Trinidad infrastructure determines narrow screen support and how it uses EL (Expression Language) expressions to expose user agent details.
This chapter includes the following sections:
Mobile devices have a wide range of screen widths. As a result, the UI components of a web application may render properly on a device with a screen width measuring 240 pixels, but not align correctly when the application runs on a device that has a screen width of only 100 pixels. In such a situation, Trinidad optimizes application rendering for narrow-screen devices. Trinidad considers any device with a screen width of less than 240 pixels as a narrow screen and optimizes the rendering for the following components accordingly:
tr:breadcrumbs
tr:inputText
tr:navigationPane
tr:panelFormLayout
tr:panelLabelAndMessage
tr:panelRadio
tr:processChoiceBar
tr:selectRangeChoiceBar
Because Trinidad only considers a device with a screen width that measures less than 240 pixels as a narrow screen, it does not consider iPhones (Safari browsers) or BlackBerry smartphones (BlackBerry browsers), which usually have screens that are greater than 240 pixels, as such. For a Windows Mobile browser, Trinidad determines the screen width from the UA-pixels
definition in the request header and only applies narrow screen optimization if the screen width is less than 240 pixels. For all other user agents, however, Trinidad optimizes its rendering for a narrow screen device.
Trinidad exposes a requesting user agent's details using the EL expression, #{requestContext.agent}
, which returns an agent
object that describes the requesting user agent. By adding the detail name or capability name properties to this expression, you enable Trinidad to return details that include the user agent's name, version, platform, the version of the platform, the model (which is applicable only to BlackBerry), and the browser's support for JavaScript and PPR (Partial Page Rendering). For information on exposing user agent details, see Section 7.2.1, "How To Determine User Agent Details." For information on determining browser capabilities, see Section 7.2.2, "How to Determine Browser Capabilities."
When Trinidad receives a request, it parses user agent strings for a variety of user agent details (listed in Table 7-1) that include the type, the name and version of the agent, and the agent's platform name and platform version. Trinidad uses the EL expression #{requestContext.agent.<detail-name>}
to expose these details. For example, to enable you to retrieve the category appropriate to the user agent type (that is, desktop for a desktop browser, or PDA for mobile browsers), Trinidad uses the type
detail in the EL expression as follows:
#{requestContext.agent.type}
Note: Trinidad may return a null value for such details as |
Table 7-1 Browser Details Exposed through EL Expressions
Detail Name | Description |
---|---|
| Identifies a user agent type. For desktop and mobile browsers, the values are desktop and PDA, respectively. Because Safari provides all desktop browser features when it runs in a mobile device, the agent object exposes this detail as a desktop type. |
| The name of the agent |
| The version of the agent |
| The platform on which the agent runs |
| The version of the platform on which the agent runs |
| The model of the mobile device |
| Trinidad categorizes the mobile browsers into different skin types based on their CSS capabilities. For more information, see Section 7.2.1.1, "Determining the Skin Type." |
Trinidad categorizes incoming user agents into different skin family types based on CSS support. It exposes the skin family type using the #{requestContext.agent.skinFamilyType}
EL expression. For example, Trinidad uses this EL expression to derive the value of windowswebkit
for a Safari user agent running in a Windows platform. For Safari browsers running on Symbian devices, this expression returns the Nokia Webkit (nokiawebkit
). Table 7-2 lists the skin family types returned by #{requestContext.agent.skinFamilyType}
according to user agent, platform, and platform version.
Table 7-2 Skin Family Types Returned by the SkinFamilyType Attribute
User Agent | Platform | Skin Family Type |
---|---|---|
Windows mobile |
| |
Safari | iPhone/iPod |
|
Safari | Linux |
|
Safari | Macintosh |
|
Safari | Symbian |
|
Safari | Windows |
|
Safari | Unknown platforms |
|
Blackberry |
| |
Blackberry (versions 4.5 and later) |
| |
All other mobile browsers |
|
Trinidad sends its response to a user agent's request based on the capabilities that it assigns to a user agent. These capabilities include a user agent's support for JavaScript and PPR (partial-page rendering). Some of these capabilities (listed in Table 7-3) are exposed through the EL expression #{requestContext.agent.capabilities}
.
Use the EL expression #{requestContext.agent.capabilities.<capability-name>}
to determine the specific capability assigned to a user agent by Trinidad. For example, to determine whether Trinidad assigns JavaScript capability to a user agent, use the following EL expression:
{requestContext.agent.capabilities.scriptingSpeed!='none'}
.
Table 7-3 Browser Capabilities Exposed through EL Expressions
Capability Name | Detail |
---|---|
| Indicates whether Trinidad optimizes its rendering for a narrow-screen device. It returns |
| Indicates JavaScript support for a user agent. Returns |
| Indicates PPR support for a user agent. Returns |
This chapter describes how to add e-mail, telephony, and Google Maps to ADF Mobile browser applications.
This chapter includes the following sections:
In addition to using style sheets described in Chapter 4, "Skinning", you can further tailor an ADF Mobile browser application to include support for e-mail, telephony, and Google Maps by defining the tr:goButton
and tr:goLink
components with EL (Expression Language) expressions.
To invoke an e-mail application from a web application:
tr:goButton
or the tr:goLink
component. mailto:
protocol in an HTML link. destination
property to the HTML link (represented as the EL expression, #{sessionScope.empDetails.Email}
in Example 8-1). Example 8-1 Integrating the iPhone E-Mail Client using the mailto: Protocol
The mailto:
protocol enables you to add the mail properties that are listed in Table 8-1.
Table 8-1 Mail Properties
Property | Syntax |
---|---|
Multiple Recipients | A comma (,) separates each e-mail address |
Message Subject |
|
cc Recipients |
|
bcc Recipients |
|
Message Text |
|
To specify these properties, append the e-mail address with question mark (?
) as illustrated by #{sessionScope.empDetails.Email}?subject=hello
in Example 8-2 and then add the properties, separating each with an ampersand (&
).
To invoke a call dialog box for a phone number:
tr:goButton
or the tr:goLink
component. tel:
protocol. Note: The phone number must support the portion of the RFC 2806 protocol (|
destination
property to the telephone number (represented as the EL expression, #{sessionScope.empDetails.PhoneNumber}
in Example 8-3). To create a link that displays a map that shows the data available in the application, specify the destination
property of the tr:goLink
component as follows:
tr:goButton
or the tr:goLink
component. destination=
as the URL of Google Maps. (destination=http://maps.google.com/maps
, as illustrated in Example 8-4.) ?q=
. q=
using the address string of the target location. This value can be a full street address, a city, landmark, or any item that Google Maps can search and locate. If multiple items are found, Google Maps drops multiple pins automatically. Note: The address described in the |
Example 8-4 illustrates how to define the tr:goLink
component to invoke a Google Maps application and then drop a pin on 200 Oracle Parkway.
Example 8-4 Specifying Locations in Google Maps
Example 8-5 illustrates specifying a location using an address represented by EL expressions.
Example 8-5 Specifying Locations in Google Maps Using EL Expressions
You must join each EL expression in the address string with a plus sign (+
), as illustrated in Example 8-4. Do not include spaces between the EL expressions.
To enable ADF Mobile applications to leverage the driving instructions provided by Google Maps, modify the string following the question mark (?
) in the Google Maps URL with the starting and destination addresses (saddr=<starting address>&daddr=<destination address>
). Using this format, the directions from Oracle headquarters at 200 Oracle Parkway in Redwood City, California, to 1 Telegraph Hill in San Francisco, California, are as follows:
Note: Apple and Google have not yet published other APIs. |
iPhone Safari supports both Google Maps and YouTube applications in that it automatically intercepts certain URL calls and invokes a native application rather than opening the URL for the target website. For example, when a user clicks an HTML link to Google Maps (http://maps.google.com
), Safari invokes a native Google Maps application rather than navigating to the Google Maps website. Because the native Google maps application accepts some URL parameters supported by maps.google.com
, end users can specify a location and drop a pin.
To retain the correct zoom ratio, add a viewport
meta tag in the header of a page. The viewport
is a device-specific meta tag used to ensure that a page displays at the correct scale. Example 8-6 illustrates setting the viewports for both iPhones and BlackBerry smartphones. For more information on the viewport, see iOS Human Interface Guidelines, available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/
).
Example 8-6 Setting Viewports
Note: Versions 4.6 and later of BlackBerry support the
|
While some mobile browser applications may display correctly on desktop Safari browsers, they may not scale correctly for the smaller screen of the iPhone and may appear too large. As a result, the iPhone shrinks pages until they are too small to read. The following line from Example 8-6 illustrates how to set the iPhone viewport specifications in the <head>
element to ensure that applications display properly on iPhones.
 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. |