Administrator's Guide for Oracle Web Cache
11g Release 1 (11.1.1)
E10143-04
January 2011
Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache, 11g Release 1 (11.1.1)
E10143-04
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Deborah Steiner
Contributor: Rick Anderson, Fang Chen, Joseph Errede, Patrick Fry, Hideaki Hayashi, Kurt Heiss, Suresh Kotha, Gary Ling, Rabah Mediouni, Mohamed Sharfudeen, Raymond Pfau, Michael Skarpelos, Parthiban Thilager, Bill Wright, Zhong Xu, Rama Vijjapurapu, Jean Zeng, Naveen Zulpuri
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache describes how to use Oracle Web Cache to cache both static and dynamically generated content for at least one origin server.
Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache is intended for Web site administrators who perform the following tasks:
To use this guide, become familiar with release 1.0 and 1.1 of the HTTP protocol, as well as application server and DNS administration.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
For more information, see the following documents:
The following text conventions are used in this document:
Convention	Meaning
boldface | Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary. |
italic | Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values. |
monospace | Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter. |
This preface introduces the new and changed administrative features of Oracle Web Cache that are described in this guide, and provides pointers to additional information.
11g Release 1 (11.1.1) includes many new features:
Content-Type
response header of objects. This feature simplifies the definition of caching rules, reduces the overall number of caching rules, and improves Oracle Web Cache performance. For more information, see Section 6.4 and Section 6.8.1. This part presents introductory and conceptual information about Oracle Web Cache. It contains the following chapter:
This chapter provides a general introduction to Oracle Web Cache and its role in providing secure reverse proxying.
This chapter includes the following topics:
The Web tier of a J2EE application server is responsible for interacting with the end users, such as Web browsers primarily in the form of HTTP requests and responses. It is the outermost tier in the HTTP stack, closest to the end user. At the highest level, the Web tier performs four basic tasks:
The Web tier receives each incoming HTTP request and invokes the requested business logic operation in the application. Based on the results of the operation and state of the model, the next view is selected to display. The selected view is transmitted to the client for presentation.
Oracle Web Cache is a content-aware server accelerator, or reverse proxy, for the Web tier that improves the performance, scalability, and availability of Web sites that run on any Web server or application server, such as Oracle HTTP Server and Oracle WebLogic Server.
Oracle Web Cache is the primary caching mechanism provided with Oracle Fusion Middleware. Caching improves the performance, scalability, and availability of Web sites that run on Oracle Fusion Middleware by storing frequently accessed URLs in memory.
By storing frequently accessed URLs in memory, Oracle Web Cache eliminates the need to repeatedly process requests for those URLs on the application Web server and database tiers. Unlike legacy proxies that handle only static objects, Oracle Web Cache caches both static and dynamically generated content from one or more application Web servers. Because Oracle Web Cache can cache more content than legacy proxies, it provides optimal performance by greatly reducing the load on application Web server and database tiers. As an external cache, Oracle Web Cache is also an order of magnitude faster than object caches that run within the application tier.
Because Web Cache is fully compliant with HTTP 1.0 and 1.1 specifications, it can accelerate Web sites that are hosted by any standard Web servers, such as Apache Tomcat and Microsoft IIS. In Oracle Fusion Middleware, Oracle Web Cache resides in front of one or more instances of Oracle HTTP Server. Responses to browser based HTTP requests are directed to the Oracle HTTP Server instance and transmitted through Oracle Web Cache. The Oracle Web Cache instance can handle any Web content transmitted with the standard HTTP protocol.
You can configure Oracle Web Cache as a reverse proxy to origin servers, such as Oracle HTTP Server.
A reverse proxy appears to be the content server to clients but internally retrieves its objects from other back-end origin servers as a proxy. A reverse proxy acts as a gateway to the origin servers. It relays requests from outside the firewall to origin servers behind the firewall, and delivers retrieved content back to the client.
Figure 1-1 shows an overview of how reverse proxy Web caching works. Oracle Web Cache has an IP address of 144.25.190.241 and the application Web server has an IP address of 144.25.190.242.
The steps for browser interaction with Oracle Web Cache are as follows:
www.company.com:80
. This request in turn generates a request to Domain Name System (DNS) for the IP address of the Web site.
A page stored in the cache is removed when it becomes invalid or outdated.
Figure 1-2 shows further details of the request flow within the Web tier.
As shown in Figure 1-2, the following occurs within the Web tier:
If the request is present in the cache, a cache hit, the request is compressed and the content is sent directly to the browser.
If the request is not present in the cache, a cache miss, then either:
Each load balanced origin server pings each Oracle Web Cache server on a periodic basis to check the status of the cache. The load balancer distributes any incoming requests among cache cluster members. If Oracle Web Cache does not have the requested content or the content is stale or invalid, it hands the request off to the application Web server. The application Web server sends the content to Oracle Web Cache. Oracle Web Cache sends the content to the client and stores a copy of the page in cache.
The proxy server is placed in a less secure zone, the Demilitarized Zone (DMZ), instead of the origin server.
Caching rules determine which objects to cache. When you establish a caching rule for a particular URL, those objects contained within the URL are not cached until there is a client request for them. When a client first requests an object, Oracle Web Cache sends the request to the origin server. This request is a cache miss. Because this URL has an associated caching rule, Oracle Web Cache caches the object for subsequent requests. When Oracle Web Cache receives a second request for the same object, Oracle Web Cache serves the object from its cache to the client. This request is a cache hit.
When you stop Oracle Web Cache, the cache clears all objects. In addition, Oracle Web Cache clears and resets statistics.
You can deploy Oracle Web Cache inside or outside a firewall. Deploying Oracle Web Cache inside a firewall ensures that HTTP traffic enters the DMZ, but only authorized traffic from the application Web servers can directly interact with the database. When deploying Oracle Web Cache outside a firewall, the throughput burden is placed on Oracle Web Cache rather than the firewall. The firewall receives only requests that must go to the application Web servers. This topology requires securing Oracle Web Cache from intruders.
Security experts disagree about whether caches should be placed outside the DMZ. Oracle recommends that you check your company's policy before deploying Oracle Web Cache outside the DMZ.
Request filtering checks either the normalized request (for most filter types) or the original raw un-normalized request (for the following format filter rules: null byte, strict encoding, and double encoding). If a match is found on a rule and it is a deny rule, then the request is denied. If the match is for an allow rule, then the request is allowed. For a deny rule, if the rule is in monitor only mode, then the request is logged (to the audit log and the event log), but the request is not denied.
For more information about request filtering, see Chapter 4, "Configuring Request Filtering."
Origin server load balancing is a feature in which HTTP requests are distributed among origin servers so that no single origin server is overloaded.
Oracle Web Cache supports load balancing and failover detection for application Web servers.
Oracle Web Cache ensures that cache misses are directed to the most available, highest-performing Web server in the server farm. A capacity heuristic guarantees performance and provides surge protection when the application Web server load increases.
For more information about load balancing and failover, see Section 3.1.
Caching improves the performance, scalability, and availability of Web sites that run on Oracle Fusion Middleware by storing frequently accessed URLs in memory, Oracle Web Cache eliminates the need to repeatedly process requests for those URLs on the application Web server and database tiers. Unlike legacy proxies that handle only static objects, Oracle Web Cache caches both static and dynamically generated content from one or more application Web servers. Because Oracle Web Cache can cache more content than legacy proxies, it provides optimal performance by greatly reducing the load on application Web server and database tiers. As an external cache, Oracle Web Cache is also an order of magnitude faster than object caches that run within the application tier.
Oracle Web Cache sits in front of application Web servers, caching their content, and providing their content to clients that request it. When Web browsers access the Web site, they send HTTP protocol or HTTPS protocol requests to Oracle Web Cache. Oracle Web Cache, in turn, acts as a virtual server on behalf of the application Web servers. If the requested content has changed, Oracle Web Cache retrieves the new content from the application Web servers. The application Web servers may retrieve their content from an Oracle database. Oracle Web Cache can be deployed on its own dedicated tier of computers or on the same computer as the application Web servers.
Web caching provides the following benefits for Web-based applications:
For more information about caching, see Chapter 6, "Caching and Compressing Content."
Oracle Web Cache can compress both cacheable and non-cacheable objects. You can specify compression settings from either Oracle Enterprise Manager Fusion Middleware Control or the compress
control directive of the Surrogate-Control
response-header field. Oracle Web Cache provides compression configuration at both the site and caching-rule level. If you enable compression for a site, then Oracle Web Cache performs automatic compression for that site. Fine tuning of compression settings can be done by configuring individual caching rules.
Oracle Web Cache correctly handles compression of different types of content and different types of browsers. It enables compression automatically for common compressible content types such as HTML, Javascript, or cascading style sheets (CSS). It disables compression automatically where compression either breaks the application in browsers, or does not provide any gain. These files types include GIF, JPEG, and PNG images, or files that are already compressed with utilities like WinZip or GZIP. Similarly, Oracle Web Cache disables compression for Netscape 4 browsers and for some file types for Internet Explorer 5.5 browsers due to known bugs with these browsers.
Because compressed objects are smaller, they are delivered faster to browsers with fewer round-trips, reducing overall latency. Compressed content is then expanded by browsers that support the GZIP compression in the Accept-Encoding
request-header field.
On average, Oracle Web Cache can compress text files by a factor of 4. For example, 300 KB files are compressed down to 75 KB.
For more information about compression, see:
Surrogate-Control
response-header field Oracle Web Cache supports sites that use a session ID or session cookie to bind user sessions to a given origin server to maintain state for a period. To use the session binding feature, the origin server itself must maintain state, that is, it must be stateful. A site binds user sessions by including session data in the HTTP header or body it sends to a client in such a way that the client is forced to include it with its next request. This data is transferred between the origin server and the client through Oracle Web Cache either with an embedded URL parameter or through a cookie, which is a text string that is sent to and stored on the client. Oracle Web Cache does not process the value of the parameter or cookie; it simply passes the information back and forth between the origin server and the client.
For more information about session binding, see Section 3.2.
Note: If an origin server cannot accept any more connections because of the load, Oracle Web Cache disables session binding to that origin server and attempts to connect to another origin server. |
Table 1-1 describes Oracle Web Cache compatibility with several Oracle Fusion Middleware components. It is not an exhaustive list.
Table 1-1 Compatibility with Other Oracle Fusion Middleware Components
Component | Description |
---|---|
Oracle HTTP Server | In Oracle Fusion Middleware, Oracle Web Cache resides in front of one or more instances of Oracle HTTP Server. Responses to browser based HTTP requests are directed to the Oracle HTTP Server instance and transmitted through Oracle Web Cache. The Oracle Web Cache instance can handle any Web content transmitted with the standard HTTP protocol. See Also: Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server |
Oracle BI Discoverer is closely integrated with Oracle Web Cache to improve Discoverer Viewer's overall scalability, performance, and availability. Oracle BI Discoverer uses ESI See Also: Oracle Business Intelligence Discoverer Configuration Guide | |
You can deploy Oracle Web Cache as a load balancer with Oracle Forms Services applications. See Also: Oracle Fusion Middleware Forms Services Deployment Guide | |
Oracle Web Cache has been closely integrated with Oracle Portal to improve its overall scalability, performance, and availability. Oracle Portal ships with several pre-defined caching and invalidation policies that ensure optimal use of Oracle Web Cache. Oracle Web Cache controls have been built into the Oracle Portal administrative user interface and can also be specified by content providers through the Portal Developer Kit (PDK). See Also: Oracle Fusion Middleware Administrator's Guide for Oracle Portal |
This part presents information about performing basic administration tasks for Oracle Web Cache. It contains the following chapters:
This chapter describes how to get started with administering Oracle Web Cache. It discusses the main administration tasks.
This chapter includes the following topics:
Oracle stores configuration for Oracle Web Cache in the webcache.xml
file, located in the following directories:
Oracle offers two tools for managing Oracle Web Cache:
Use these tools rather than edit the webcache.xml
configuration file, to perform all administrative tasks unless a specific procedure requires you to edit a file. Editing a file may cause the settings to be inconsistent and generate problems.
Oracle Web Cache caches and assembles dynamic content for one or more Web sites. When you configure the following properties for Oracle Web Cache, you apply them to all sites or to a particular site:
You must create site definition for any named sites. A site definition consists of a host name, port information, and optional URL path prefix about the site and its aliases. Alias information is essential, because many sites are represented by one or more aliases. Oracle Web Cache recognizes and caches requests for a site and its aliases. For example, site www.company.com:80
may have an alias of company.com:80
. By specifying this alias, Oracle Web Cache caches the same content from either company.com:80
or www.company.com:80
.
When configuring a named site, you can enable compression for a site, permitting Oracle Web Cache to perform automatic compression for that site. You can also configure compression for undefined sites. Oracle Web Cache uses the compression setting for undefined sites for client requests that do not match a defined site. If you prefer to disable compression for all requests, see Section 2.11.3.1.
In addition to configuration for named sites and undefined sites, Oracle Web Cache provides configuration for a default site for client requests without host information. When you install Oracle Web Cache, the default site uses the host name and listening port of the computer on which Oracle HTTP Server was installed.
Because Oracle Web Cache resolves a request first to a site definition, and then to the first matching site-to-origin server mapping, the order in which you configure the site definitions is important.
For example, consider site definitions configured in this order:
Because www.company.com:80
is a superset of www.company.com:80/sales
, Oracle Web Cache matches requests for www.company.com:80/sales
to site definition www.company.com:80
rather than www.company.com:80/sales
. In addition, Oracle Web Cache uses the site-to-server mapping for www.company.com:80
.
To avoid this problem, you would have to configure the site definitions in the following order:
After you create site definitions, create ordered mappings of sites to origin servers. To avoid requests being mapped to the wrong site, you must be careful in how you order these mappings:
*
encompass a broader scope, give these mappings a lower priority than other mappings. For example, you should order the following mappings as follows:
If you instead reorder the mappings as follows, the request for URLs http://www.company.com/portal/page?_pageid=33,4232&_dad=portal
and http://www.company.com/um/traffic_cop?mailid=inbox
do not resolve as expected. Requests for these URLs instead resolve to http://www.company.com
because it is listed first:
For instructions on creating site definitions and site-to-server mappings, see Section 2.11.3 and Section 2.11.4.
As a part of configuration, specify caching and network thresholds to ensure Oracle Web Cache runs efficiently.
Oracle Web Cache provides the following types of configurable thresholds:
When the maximum cache memory limit is reached, Oracle Web Cache performs garbage collection. During garbage collection, Oracle Web Cache removes stale objects based on popularity and validity. In a cache cluster environment, Oracle Web Cache removes on-demand objects before it removes owned objects.
To avoid swapping objects in and out of the cache, it is crucial to configure enough memory for the cache. Generally, the amount of memory (maximum cache size) for Oracle Web Cache should be set to at least 512 MB.
Your application's memory requirements vary based upon factors, such as object size, number of objects, the number of HTTP headers returned, and whether ESI is present. To get a close approximation on the maximum amount of memory required, you may apply the formula provided below.
Most customers leave this setting to the default which is 500 MB. If want to change the default, perform the following steps to determine the maximum amount of memory required:
In the formula:
.25
accounts for the run time memory overhead. TotalDocs
is the total number of objects you intend to store in the cache. AvgDocSize
is the average size of objects, in bytes, you intend to store in the cache. You can determine the average size by viewing the following metrics on the Performance Summary page. See Section 8.4 for further information about the Performance Summary page.
Note: Even though you specify that certain objects should be cached, not all of the objects are cached at the same time. Only those objects that have been requested and are valid are stored in the cache. As a result, only a certain percentage of your objects are stored in the cache at any given time. That means that you may not need the maximum memory derived from the preceding formula. |
Remember that the cache is empty when Oracle Web Cache starts. For monitoring to be valid, ensure that the cache is fully populated. That is, ensure that the cache has received enough requests so that a representative number of objects are cached.
The Performance Summary page of Fusion Middleware Control provides information about the current memory use and the maximum memory use. To access this page:
In addition to the cache size, it is important to specify a reasonable number for the maximum connection limit for the Oracle Web Cache server. The default is 500. If you set a number that is too high, performance can be affected, resulting in slower response time. If you set a number that is too low, Oracle Web Cache serves fewer fewer concurrent requests. You must strike a balance between response time and the number of requests processed concurrently.
To help determine a reasonable number, consider the following factors:
ttcp
or LoadRunner, to determine how quickly your system processes a page. Use various tools, such as those available with the operating system and with Oracle Web Cache, to help you determine the maximum number of connections. For example, the netstat
-a
command on UNIX and Windows operating systems enables you to determine the number of established connections; the ttcp
utility enables you to determine how fast a page is processed. The Web Cache Home page and the Performance Summary page in Fusion Middleware Control provide statistics on hits and misses. From Web Cache menu, select Home and Monitoring > Performance Summary to access these page.
Do not set the value to an arbitrarily high value, because Oracle Web Cache sets aside some resources for each connection, which could adversely affect performance. For many UNIX systems, 5000 is usually a reasonable number.
To specify the maximum number of incoming connections, see Section 2.11.5.
Connections on UNIX
On most UNIX platforms, each client connection requires a separate file descriptor. Oracle Web Cache tries to reserve the maximum number of file descriptors (Max_File_Desc
) when it starts. If the Oracle Web Cache webcached
executable is run as root, you can increase this number. For example, on Sun Solaris, you can increase the maximum number of file descriptors by setting the rlim_fd_max
parameter. If the webcached
executable is not run with the root privilege, Oracle Web Cache fails to start.
On most UNIX platforms, each client connection requires a separate file descriptor. The Oracle Web Cache server attempts to reserve the maximum number of file descriptors when it starts. If you have root privileges, you can increase this number. For example, for the LINUX Red Hat Operating System you can increase the maximum number of file descriptors by modifying Oracle Web Cache users file descriptors limits in /etc/security/limits.conf
.
For example to allow the user WC_USER
to have 4092 connections, in the /etc/security/limits.conf
file add the following entries:
Make sure the parameter fs.file-max
is set to 65k in the /etc/sysctl.conf.
On Solaris Operating System you can increase the maximum number of file descriptors by setting the rlim_fd_max
parameter. If webcached
is not run as root, the Oracle Web Cache server logs an error message and fails to start.
For instructions on changing the webcached
executable to run with the root privilege, see Section 5.9.
For more information, see:
Connections on Windows
On Windows operating systems, the number of file handles as well as socket handles is limited only by available kernel resources, more precisely, by the size of paged and non-paged pools. However, the number of active TCP/IP connections is restricted by the number of TCP ports the system can open.
The default maximum number of TCP ports is set to 5000 by the operating system. Of those, 1024 are reserved by the kernel. You can modify the maximum number of ports by editing the Windows registry. Windows operating systems allow up to 65534 ports.
To change the default, you must add a new value to the following registry key:
Add a new value, specifying the following:
MaxUserPort
DWORD
On Windows operating systems, Oracle Web Cache does not attempt to reserve file handles or to check that the number of current maximum incoming connections is less than the number of TCP ports.
To conserve system resources, you can limit the size of objects that are cached, even if the objects meet other caching rules.
If you specify a maximum cached object size, the cache only stores objects that are not larger than a specified size and that match the caching rules. Oracle Web Cache does not cache objects larger than the specified size, even if they match caching rules. The default is 100 KB. For upgraded caches, the default is that no limit is specified.
If you have objects that are larger than the maximum cached object size and those objects are requested frequently, consider increasing the limit. When you specify a value of 0, Oracle Web Cache does not cache any objects, effectively turning off caching.
To specify the size of single cached object, see Section 2.11.5.
Oracle Web Cache enables you to specify settings for the following timeouts:
To specify the timeouts, see Section 2.11.5.
Ports are dynamically assigned to many components when they are provisioned. The port numbers stay the same after the provisioning unless they are manually changed.
Oracle Web Cache uses a HTTP or a HTTPS listening port to receive requests. In addition to a listening port, Oracle Web Cache also receives administration, invalidation, and statistics monitoring requests on specific HTTP or HTTPS listening ports.
web_cache_hostname
:http_port
web_cache_hostname
:https_port
To configure port settings, see Section 2.11.1.
Oracle Web Cache supports both IP version 4 and version 6 addresses.
The following examples show IP version 4 addresses:
You must use the wildcard for an entire field. Therefore, you cannot use a wildcard to specify something like 138.128.0.0/255.128.0.0. In this example, the high 9 bits need to be checked. 138.128*.*.* is not allowed. 138.*.*.* would check only the high 8 bits, and the other 3 8-bit fields could have any value.
The following examples show IP version 6 addresses:
You must use the wildcard for an entire field.
Oracle Enterprise Manager Fusion Middleware Control enables you to manage Oracle Fusion Middleware components in a farm, including Oracle Web Cache.
A farm is a collection of components managed by Fusion Middleware Control. It can contain Oracle WebLogic Server domains, one Administration Server, one or more Managed Servers, and the Oracle Fusion Middleware components that are installed, configured, and running in the domain.
From Fusion Middleware Control, you can configure the following:
Oracle Web Cache Manager provides additional configuration areas. See Section 2.7 for more information about using Oracle Web Cache Manager.
You can also monitor performance statistics and perform operational tasks, such as starting and stopping a cache, synchronizing configuration among cache cluster members using Fusion Middleware Control.
This section covers the following topics:
For general information about Fusion Middleware Control, see the Oracle Fusion Middleware Administrator's Guide.
To view the Oracle Web Cache pages:
The port number is the number of the Administration Server of Oracle WebLogic Server. By default, the port number is 7001.
The default user name for the administrator user is weblogic
. The password is the one you supplied during the installation of Oracle Fusion Middleware.
To navigate to Oracle Web Cache administration tasks:
The Web Cache home page displays. See Section 2.6.3 for further information about the contents of the home page.
The Web Cache menu displays the following options described in Table 2-1
Table 2-1 Web Cache Menu Options
Element	Description
Home	This option displays the Web Cache Home page. See Section 2.6.3 for further information about the contents of this page.
Monitoring	This option displays the following options:
Control	This option provides options for starting, stopping, and restarting Oracle Web Cache. See Section 2.13.2 for further information.
Logs	The View Log Message option displays the Log Messages page for viewing the contents of event log files. See Section 9.7 for further information.
Port Usage	This option display the ports in use. See Section 2.11.1 for more information.
This option displays the following options:	
This option displays the following options:	
This option displays general details about the instance.	
The Web Cache Home page provides general information about the selected cache system component, as well as the supported sites and origin server.	
You can also use this page as a starting point for monitoring and administering Oracle Web Cache. Figure 2-1 shows a portion of the Web Cache Home page.	
This page contains the following statistical regions:	
Response and Load Region	
Table 2-2 describes the performance-monitoring statistics in the Response and Load region.	
Table 2-2 Response and Load Statistics	
Statistic	Description
---	---
Request Processing Time	This metric specifies the average number of milliseconds used to process requests.
Request Throughput	This metric specifies the average number of requests served for each second.
CPU and Memory Usage Region	
Table 2-3 describes the performance-monitoring statistics in the Response and Load region.	
Table 2-3 CPU and Memory Usage Statistics	
Statistic	Description
---	---
CPU Usage	This metric specifies the percentage of the CPU that is being used for Oracle Web Cache. As traffic increases, CPU utilization increases.
Memory Usage	This metric specifies the total memory used by the Oracle Web Cache component.
Performance Region	
Table 2-4 describes the performance-monitoring statistics in the Origin Servers region.	
Table 2-4 Performance Statistics	
Statistic	Description
---	---
Open Connections	This metric specifies the current number of incoming open connections to the Oracle Web Cache server.
Requests Served	This metric specifies the accumulated number of requests that Oracle Web Cache has served since it was started.
Hit Rate	This metric specifies the percentage of requests resolved by cache content.
Cached Objects	This metric specifies the total number of objects stored in the cache.
Cache Size	This metric specifies the size, in megabytes, of the objects currently stored in the cache. For a cache cluster member, this number is an aggregate of the owned and on-demand objects.
Requests Denied by Request Filtering	This metric specifies the accumulated number of requests denied by request filters. Any nonzero number may be an indication of an attack on the site or an issue with the configuration of request filters.
Bytes Saved by Compression	This metric specifies the accumulated number of bytes that would be sent to clients if in-cache compression is disabled.
Error Pages Served	This metric specifies the accumulated number of error pages that Oracle Web Cache served to Web browsers since the cache was started.
Origin Servers Region	
Table 2-5 describes the performance-monitoring statistics in the Origin Servers region.	
Table 2-5 Origin Server Statistics	
Statistic	Description
---	---
Server	This metric displays the name of the origin server.
Current Status	This metric displays the status of the origin server when Oracle Web Cache last attempted to communicate with that origin server. (Oracle Web Cache attempts to reach the origin server only for specific purposes, such as retrieving responses for a cache miss.)
Up Time (%)	This metric is the up time is from the perspective of Oracle Web Cache. It is an approximation of the origin server's uptime. The accuracy is based on how long Web Cache has been up and how often Oracle Web Cache sends requests to that origin server.
Requests	This metric category provides the following metrics:
Capacity	This metric category provides the following metrics:
Note: If the value for the Maximum Load metric is close to the Configured metric, then increase the capacity in the Origin Servers page. See Section 2.11.2.	
The Oracle Enterprise Manager Help command on the Help menu provides users with access to task-related or conceptual information relating to the current Fusion Middleware Control page. In addition, you can click a Help icon on some pages, where further explanation of page elements is necessary.	
There is also a search feature, allowing you to search the help and selected Oracle Fusion Middleware documents that are included with the online help system. The help guides you to specific, context-sensitive information in these documents.	
Oracle Web Cache Manager is a graphical user interface tool that provides configuration capabilities for the following areas not provided by Fusion Middleware Control:	
This section introduces you to the features of Oracle Web Cache Manager. This section contains these topics:	
To start Oracle Web Cache Manager:	
Configure a secure password for the Oracle Web Cache administrator with the monitor account. You use the password for the monitor account to log in to Oracle Web Cache Manager. See Section 5.2 to set a secure password.	
WebCache-admin	
represents the admin	
server process.	
admin	
server process. See Section 2.11.1. See Section 2.11.1.2 to determine the port.	
administrator	
and the password you set in Step 1. The Oracle Web Cache Manager interface includes:	
Figure 2-2 shows the Oracle Web Cache Manager interface.	
The interface contains the following features:	
webcache.xml	
, but Oracle Web Cache was not restarted. The navigator frame contains the following major categories described in Table 2-1. Additional categories and options are available, but Fusion Middleware Control provides the preferred functionality in these areas.	
Table 2-6 Web Cache Manager Navigation Pane Options	
Category	Description
---	---
This category contains the following options:	
The preferred method for configuring request filters is using Fusion Middleware Control, as described in Chapter 4, "Configuring Request Filtering." Use the Request Filters option in Oracle Web Cache Manager to copy rules and revert configuration settings, as described in Section 4.14.	
This category contains the following options:	
This category contains the following option:	
The Cache Operations page of Oracle Web Cache Manager (Operations > Cache Operations) provides information about the status of a cache and what operations are needed. From this page, you can start, stop, or restart a cache.	
If the cache is part of a cache cluster, all caches in the cluster are listed on the Cache Operations page. In addition to starting, stopping, and restarting a cache, you can propagate the configuration to other cluster members from this page. You can perform the operations on a selected cache or on all caches in the cluster. To minimize disruption in your Web site, you can specify an interval to stagger the times that the operations begin on the caches.	
Oracle Process Manager and Notification (OPMN) Server manages Oracle Web Cache processes, including the admin server process and cache server process:	
admin	
server process transfers the contents of the webcache.xml	
configuration file between the Oracle Web Cache instance and the Oracle WebLogic Server environment where Fusion Middleware Control is running. cache	
server process manages the cache. OPMN provides the opmnctl	
command. The command is located in the following directory:	
To get started with OPMN, use the opmnctl	
command to query the status of the components in your installation and obtain a list of all the ports in use:	
Then, you use OPMN to control Oracle Web Cache. The following shows the format of the opmnctl	
commands:	
Table 2-7 shows the commands of the opmnctl	
utility that are applicable to Oracle Web Cache.	
Table 2-7 Commands of the opmnctl Utility	
Command	Description
---	---
Starts the specified process or component.	
Stops the specified process or component. If used to stop the cache server process, this command also clears the cache of all content and all statistics. It waits for all currently accepted requests to be served, or until the user-specified timeout, before stopping the cache. To stop the specified process immediately, use the	
Stops, then restarts the specified process or component.	
Starts all processes controlled by OPMN.	
Stops all processes controlled by OPMN.	
Shows the status of the processes controlled by OPMN. For more information about the options for the status command, at the command line, enter: opmnctl status -help	
Table 2-8 shows the parameters for the opmnctl	
utility. It also shows the valid values that are applicable for Oracle Web Cache. Unless otherwise noted, you can use any parameter with any command, except for status	
, listed in Table 2-7.	
Table 2-8 Parameters for the opmnctl Utility	
Parameter	Valid Values
---	---
Oracle Web Cache instance name	Takes the specified action for the Oracle Web Cache
You must always specify this parameter to administer any Oracle Web Cache process.	
Takes the specified action for the process specified in the value:	
The parameter	
Used only with the During an normal shutdown, Oracle Web Cache does not accept any new connections, but it satisfies the request for connections that were made before receiving the During an abort shutdown, Oracle Web Cache does not accept any new connections. In addition, it drops all existing connections, even if the requests have not been satisfied. Then, the cache shuts down. The parameter	
For additional information about using OPMN and its supported commands, see Oracle Fusion Middleware Oracle Process Manager and Notification Server Administrator's Guide.	
When you configure an environment with Oracle Web Cache, you first ensure the Oracle Web Cache component is added to the installation. If it is not, add the Oracle Web Cache component to the configuration.	
The following provides a summary of the steps to configure and manage a basic Oracle Web Cache:	
To create a cache cluster, see Section 3.6.	
For an Oracle Web Tier or an Oracle Portal, Forms, Reports and Discoverer installation in which Oracle Web Cache was not selected, you can easily add an Oracle Web Cache system component, because the Oracle Universal Installer installs the necessary software.	
To add an Oracle Web Cache system component to an installation:	
For example to create an Oracle Web Cache system component named webcache2	
, you would enter syntax similar to the following:	
To establish properties for an Oracle Web Cache system component, perform the following tasks:	
Oracle Web Cache uses a HTTP or HTTPS listening port to received requests. You can add listening ports, if necessary. For example, it may be necessary to add a listening port to assign Oracle Web Cache a port that an origin server was previously listening on.	
In addition to a listening port, Oracle Web Cache also receives requests for the admin server process, invalidation, and statistics monitoring requests on specific HTTP or HTTPS listening ports. You can modify these operation ports.	
This section contains the following topics related to port configuration for Oracle Web Cache:	
To determine ports in use by Oracle Web Cache with Fusion Middleware Control:	
The Ports Usage page displays.	
In this example:	
admin	
server process. To determine ports in use by Oracle Web Cache with OPMN:	
In this example:	
http_listen	
. admin	
server process, represented by WebCache-admin	
http_stat	
. http_invalidation	
. https_listen	
. You can add listening ports, if necessary. For example, it may be necessary to add listening port to assign Oracle Web Cache a port that an origin server was previously listening on. If want to configure an HTTPS port, see Section 5.4.2.	
To add an HTTP listening port:	
The Ports Configuration page displays.	
The Create Port page appears.	
etc/hosts	
file. ANY	
to represent any IP address Ensure that this port number is not already in use.	
Port numbers less than 1024 are reserved for use by privileged processes on UNIX. To configure Oracle Web Cache to listen on a port less than 1024, such as on port 80, run the Oracle Web Cache webcached	
executable with the root privilege. If the webcached	
executable is not run as root, Oracle Web Cache fails to start.	
See Section 5.9 for instructions on changing the webcached	
executable to run as root.	
To modify ports from which Oracle Web Cache receives administration, invalidation, or statistics monitoring requests:	
The Ports Configuration page displays.	
The Edit Port page appears.	
etc/hosts	
file. ANY	
to represent any IP address Ensure that this port number is not already in use.	
Port numbers less than 1024 are reserved for use by privileged processes on UNIX. To configure Oracle Web Cache to listen on a port less than 1024, such as on port 80, run the Oracle Web Cache webcached	
executable with the root privilege. If the webcached	
executable is not run as root, Oracle Web Cache fails to start.	
See Section 5.9 for instructions on changing the webcached	
executable to run as root.	
Configure Oracle Web Cache with the application Web servers or proxy servers to which it sends cache misses. Typically, Oracle Web Cache uses application Web servers for internal sites and proxy servers for external sites outside a firewall.	
If Oracle HTTP Server was installed, the installation process creates a default origin server based on the host name and listening port of Oracle HTTP Server.	
Oracle Web Cache only forwards requests to a configured origin server if the origin server is mapped to a Web site.	
When you configure multiple origin servers, ensure the host and port settings are not identical. If you configure origin servers with duplicate host and port settings, both the cache	
server and admin	
server processes fail to start.	
To configure Oracle Web Cache with origin server information:	
The Origin Servers page displays.	
Click Create.	
The Create Origin Server page displays.	
Table 2-9 Create Origin Server	
Element	Description
---	---
Host	Enter the host name of the origin server.
Port	Enter the listening port from which the origin server receives Oracle Web Cache requests. Note: Oracle Web Cache must listen on the same port as the application Web server being proxied. When configuring proxy servers, ensure there is a corresponding listening port for every proxied port.
Capacity	Enter the maximum number of concurrent connections that the origin server can accept. You determine this number by load testing the origin server until it runs out of CPU, responds slowly, or until a back-end database reaches full capacity. In a cache cluster, Oracle Web Cache ensures that the total number of connections from all cluster members to the origin server does not exceed the capacity. Each cluster member is allowed a percentage of the maximum connections, using the following formula: connections_from_each_cluster_member = capacity / number_of_cluster_members
Protocol	Select either HTTP to send HTTP requests on the port or HTTPS to send HTTPS requests on the port.
Routing Enabled	Click to permit Oracle Web Cache to route requests to the origin server or leave unchecked to only serve requests from cache. Oracle recommends not selecting this option if temporary maintenance of an origin server is needed. Oracle Web Cache tries to route a request matching a particular site to all origin servers mapped to that site. If all of the origin servers have Routing Enabled not selected, Oracle Web Cache serves a network error page to clients. See Section 2.11.6 for further information about configuring error pages.
Failover Threshold	Enter the number of allowed continuous read and write failures with an origin server on established connections. The default is five request and response failures. If any connection failure occurs, Oracle Web Cache immediately considers an origin server down. When the threshold is met, Oracle Web Cache considers the origin server down and performs automatic failover of the origin servers. If an origin server fails at any time after Oracle Web Cache has started to send a request, then Oracle Web Cache increments the failure counter. The failure counter is reset if there is a successful server response. A request is considered failed if:
After the threshold is met, Oracle Web Cache considers the server down and uses other servers for future requests. Oracle Web Cache starts polling the down server, by sending requests to the URL specified in the Ping URL field. When Oracle Web Cache receives a successful response from the server without any network errors and the HTTP response code is not less than 100, or not equal to 500, 502, 503, 504, Oracle Web Cache considers the server up again and uses it for future requests. Notes:	
Ping URL | Enter the URL that Oracle Web Cache uses to poll an origin server that has reached its failover threshold:
The default value is: / Rather than using a static URL, Oracle recommends using a URL that checks the health of the application logic on the origin server and returns the appropriate HTTP 200 or 500 status codes. |
Ping Frequency (seconds) | Enter the time, in seconds, that Oracle Web Cache uses to poll an origin server that has reached its failover threshold. |
Proxy Web Server | Click to treat this origin server as a proxy server. |
Username | Enter the user name for the proxy server administrator. |
Password | Enter the password of the proxy server administrator |
Confirm Password | Reenter the password for the proxy server administrator. |
For Oracle Web Cache to act as a virtual server for one or more Web sites, configure Oracle Web Cache with information about the named Web sites. For an overview of site configuration, see Section 2.2.
The Sites page displays.
From the Site Definitions section, click Create.
The Create Site page displays.
Click OK to apply changes and return to the Sites page. It is not necessary to click Apply in the Sites page to apply this change.
Oracle Web Cache resolves an incoming request first to a site definition, and then to the first matching site-to-origin server mapping. See Section 2.2 for more information about how Oracle Web Cache uses the order of site definitions and site-to-server mappings to match requests.
Table 2-10 Create Site Page
Element | Description |
---|---|
Host | In the Create Site section, enter the site pattern, such as In the Aliases section, enter the alias name for the site, such as Note: Do not use the wildcard |
Port | Enter the HTTP or HTTPS port number from which Oracle Web Cache is listening for incoming requests. |
URL Prefix | To distinguish sites that share the same host name, enter the path prefix of the URLs. Ensure the prefix starts with " For example, the following URLs share the same site name, but belong to two entirely differently applications potentially hosted on entirely different computers: http://www.company.com/portal/page?_pageid=33,4232&_dad=portal http://www.company.com/um/traffic_cop?mailid=inbox These URLs are from completely different applications hosted on the same or different origin server. While the first URL shows an mail user a front page after login, the second URL displays an inbox. If the site host name is defined as |
Default Site | Click this option to make this site the default site Oracle Web Cache uses to forward requests without host information. |
Compression | Click to instruct Oracle Web Cache to serve cacheable and non-cacheable content compressed to browsers. Not selecting this option means you are instructing Oracle Web Cache to not serve compressed content for this site. See Section 1.2.5 to understand when Oracle Web Cache automatically disables compression. You can disable compression for requests that do not match any site using Oracle Web Cache Manager. See Section 2.11.3.1. |
You can disable Oracle Web Cache from compressing all responses.
The Site Definitions page displays.
The Show/Edit Undefined Sites Definition dialog displays.
After you specify site definitions, you create ordered mappings of sites to origin servers. For an overview of site configuration, see Section 2.2.
If Oracle HTTP Server was installed, the installation process creates a default site-to-server mapping based on the host name and listening port of Oracle HTTP Server.
If you configured multiple origin servers in Section 2.11.2 for load balancing, then create one site-to-server mapping that maps all the applicable origin servers to the site. In that site-to-server mapping, select all the origin servers that apply for the site. If you split the origin servers among multiple site-to-server mappings, load balancing for the site does not occur in the intended manner.
To map sites to origin servers:
The Sites page displays.
From the Site-to-Server Mapping section, click Create.
The Create Site-to-Server Mapping page displays.
www.company.com
. To enable Oracle Web Cache to match requests to this site, do not add protocol information (http://
or https://
) to the host name. You can use the wildcard *
in the Host Pattern field in the following ways:
- Map multiple site names to one or more application Web server or proxy servers. For example, *.company.com
can be used to match sites site1.company.com
and site2.company.com
.
- Route cache misses to sites outside a firewall and accessible by a proxy server. For example, *
can be used to map to proxy server proxy-host
.
You can use the wildcard *
in the Port Pattern field to map the same site name with different port numbers to the same origin servers. If the origin servers are proxy servers, ensure they were configured to listen on the same port as the application Web server being proxied, as described in Section 2.11.2.
If you select multiple origin servers, the servers must be of the same type and use the same protocol on their listening port (HTTP or HTTPS). For example, you cannot have a mix of application Web servers and proxy servers.
Click OK to apply changes and return to the Sites page. It is not necessary to click Apply in the Sites page to apply this change.
Oracle Web Cache resolves an incoming request first to a site definition, and then to the first matching site-to-origin server mapping. See Section 2.2 for more information about how Oracle Web Cache uses the order of site definitions and site-to-server mappings to match requests..
For more information about resource limits, see Section 2.3.
To specify caching and network thresholds for Oracle Web Cache:
The Resource Limits page displays.
For more information about the value to enter, see Section 2.3.3
For more information about the value to enter, see Section 2.3.1.
For more information about the value to enter, see Section 2.3.2.
For the keep-alive timeout, if you set the value to 0, the connection to the client is not kept open. In addition, Oracle Web Cache sends the following response-header field in the response:
For more information about the value to enter, see Section 2.3.4.
You can always revert to the default values. In the Network Timeouts page, click Use Defaults, and then click Apply Changes to apply changes.
For situations in which there is a network communication error, site busy error, or ESI <esi:include>
error, applications serve error pages. Rather than burden the origin server with this task, you can configure these pages to be served from Oracle Web Cache.
To configure Oracle Web Cache to serve error pages for a site:
The default settings are as follows:
network_error.html
. This error page is served when there is a network problem while connecting, sending, or receiving a response from an origin server for a cache-miss request. busy_error.html
. This page is served when origin server capacity is reached. esi_fragment_error.txt
. This page is served when Oracle Web Cache cannot fetch the src
specified in an <esi:include>
tag and the alt
attribute, onerror
attribute, or the try
|attempt
|except
block are either not present or fail. For a production environment, modify the defaults or create entirely new error pages to be consistent with other error pages for the site.
The Error Pages page appears.
Select either Default Pages or a site name in the table, and then click Edit.
The Edit Error Pages dialog box appears.
If you are using the default network_error.html
page, leave the field as is.
If you are using the default busy_error.html
page, leave the field as is.
<esi:include>
tag. If you are not using <esi:include>
tags for partial page caching or you want to use only ESI language elements for exceptions, do not enter a value.
If you selected Default Pages, Oracle Web Cache applies the new settings to all defined sites with the default page setting. However, Oracle Web Cache does not apply the new setting to undefined sites. If you selected a specific site in Step 3, Oracle Web Cache applies the new settings to the specific site.
See Section 2.13 for instructions on restarting Oracle Web Cache.
You create session definitions for the following features:
When you enable these features, you must select a session definition.
To create a session definition:
The Session Configuration page displays.
See Section 2.11.3 to specify additional sites.
A new row in the table appears.
If you enter both a cookie name and an embedded URL parameter, keep in mind that both must be used to support the same session. If they support different sessions, create separate session definitions.
Note: When a cookie expires, the client browser removes the cookie and subsequent requests for the object are directed to the origin server. To avoid pages from being served past the client session expiration time, ensure that the session cookie expires before the application Web server expires the client session. |
default
. For more information about Oracle Web Cache properties requiring session definitions, see:
Most configuration changes are static. When you apply static changes, you must restart Oracle Web Cache to apply changes.
However, Oracle Web Cache recognizes some changes as dynamic. Oracle Web Cache Manager provides dynamic configuration for the following features:
Anytime the Oracle Web Cache configuration is statically modified, you must stop and restart Oracle Web Cache processes:
admin
server process manages the administrative interface. cache
server process manages the cache. The cache
server binary is managed by the webcached
executable, and the admin
server binary webcachea
. These executable reside in the following directories:
When you stop Oracle Web Cache, all objects are cleared from the cache. In addition, all statistics are cleared.
After you configure Oracle Web Cache, restart Oracle Web Cache. To restart Oracle Web Cache, use these tools:
opmnctl
command-line tool to restart the cache
or admin
server processes. cache
server process. You must restart both the cache
server and admin
server processes if you modified any of these configuration settings:
To start, stop, or restart the Oracle Web Cache processes with opmnctl
:
opmnctl status
opmnctl status
OPMN generates a list of the running processes. The following message indicates that the Oracle Web Cache admin
server (WebCache-admin
) and the cache
server (WebCache
) are already running:
admin
server (WebCache-admin
) and the cache
server (WebCache
) processes, from the command line, enter: To individually start, stop, or restart the admin
server (WebCache-admin
) and the cache
server (WebCache
) processes, from the command line, enter:
opmnctl startproc|stopproc|restartproc ias-component=
component_name process-type=WebCache
-adminopmnctl startproc|stopproc|restartproc ias-component=
component_name process-type=WebCache
For more information about opmnctl
for Oracle Web Cache, see the following:
opmnctl
commands for Oracle Web Cache opmnctl
To start, stop, or restart Oracle Web Cache from Fusion Middleware Control:
The arrow reflects the up or down status of the cache
server process, not the admin
server process.
A green up arrow means the following:
cache
server is running, but the admin
server process is not running. cache
server and admin
server process are running. A red down arrow means the following:
cache
server is not running, but the admin
server process is running. cache
server and admin
server process are not running. If the admin
server process is down, the context pane for the configuration pages displays an error, indicating that configuration is unavailable because the admin
server process is down.
These commands start, stop, or restart both processes, if they have the same up or down status. If the two processes have different up and down statuses, then Fusion Middleware Control starts, stops, or restarts the appropriate process. For example, if the cache
server process is running, but the admin
server process is not and you choose Start Up, then only the admin
server is started.
Oracle Web Cache Manager enables you to start and stop the cache
server process. You must use Fusion Middleware Control or opmnctl
to start, stop, or restart the admin
server process.
To start, stop, or restart the cache
server process with Oracle Web Cache Manager:
The Cache Operations page appears in the right pane.
To perform the operation on one cache in a cache cluster:
Select one cache, choose Selected Cache from the Operate On field, and then click Start, Stop, or Restart.
To perform the operation on all caches in a cache cluster:
Choose All Caches from the Operate On field, and then click Start, Stop, or Restart.
This chapter describes how to configure and implement high availability solutions using Oracle Web Cache.
This chapter includes the following topics:
You can configure Oracle Web Cache with the application Web servers or proxy servers to which it sends cache misses. Typically, Oracle Web Cache uses application Web servers for internal sites and proxy servers for external sites outside a firewall.
This section covers the following concepts:
For instructions on configuring origin servers, see Section 2.11.2.
Oracle Web Cache passes requests for non-cacheable, stale, or missing objects to origin servers. To prevent an overload of requests on the origin servers, Oracle Web Cache has a surge protection feature that enables you to set a limit on the number of concurrent requests that the origin servers can handle. When the limit is reached, subsequent requests are queued. If the queue is full, then Oracle Web Cache rejects the request and serves a site busy error page to the client that initiated the request.
Most Web sites are served by multiple origin servers running on multiple computers that share the load of HTTP and HTTPS requests. All requests that Oracle Web Cache cannot serve are passed to the origin servers. Oracle Web Cache balances the load among origin servers by determining the percentage of the available capacity, the weighted available capacity of each origin server. Oracle Web Cache sends a request to the origin server with the most weighted available capacity. The weighted available capacity is determined by the following formula:
where:
Capacity
is the maximum number of concurrent connections that the origin server can accept Load
is the number of connections currently in use If the weighted available capacity is equal for multiple origin servers, Oracle Web Cache sends requests to the origin servers using round robin. With round robin, the first origin server in the list of configured servers receives the request, then the second origin server receives the second request. If the weighted available capacity is not equal, Oracle Web Cache sends the request to the origin server with the most available capacity.
If the load of origin servers is equivalent, Oracle Web Cache continues to use round robin, even when capacity is not equal for origin servers. Therefore, it is possible to see an even distribution of requests to origin server when the capacities are not configured to be the same.
To configure load balancing for a site, set the capacity of each origin server, and create one site-to-server mapping that maps all the applicable origin servers to the site.
For further information about configuration, see:
Figure 3-1 shows two sites, www.company.com:80
and www.server.com:80
. The site www.company.com:80
is supported by application servers company-host1
and company-host2
with capacities of 50 each. The site www.server.com:80
is supported by application servers server-host1
, server-host2
, and server-host3
with capacities of 150, 50, and 50, respectively.
Assuming all application Web servers have an initial load of 0, Oracle Web Cache distributes the requests to www.company.com:80
and www.server.com:80
in the following manner:
www.company.com:80
between the two application servers using round robin. Oracle Web Cache distributes the requests to company-host1
and company-host2
between the two application servers so that they maintain an equal load. The first request is sent to company-host1
. The second request is sent to company-host2
if company-host1
is still processing the first request. The third and subsequent requests are sent to the application server that has the highest weighted available capacity.
When the capacities are equal, Oracle Web Cache uses round robin to distribute requests.
www.server.com:80
between three origin servers using the weighted available capacity percentage. The first request to www.server.com:80
is sent to server-host1
, because it is the first in the configured list. The second request is sent to server2-host
, because server-host1
is still processing the first request and has a weighted available capacity of 99.3 percent and server-host2
has a weighted available capacity of 100 percent. The third request is sent to server-host3
because server2-host
is still processing a request and has a weighted available capacity of 98 percent and server3-host
has a weighted available capacity of 100 percent. The fourth request is sent to server-host1
because server-host2
and server3-host
are still processing requests and have weighted available capacities of 98 percent. The fifth request is sent to server-host1
because its weighted available capacity is 98.6 percent, which is still greater than server-host2
and server-host
3, respectively.
When the capacities and loads are not equal, Oracle Web Cache uses the weighted available capacity to distribute requests. If requests were processed before new requests came in, then it is possible for all three origin servers to have loads of 0. In this case, Oracle Web Cache uses round robin.
If you do not require caching support and need a low-cost solution to a hardware load balancer, you can configure Oracle Web Cache solely as a software load balancer. This configuration mode is useful for managing traffic to a low-volume, departmental, or test Web site. See Section 3.4 for further information.
After a specified number of continuous request failures, Oracle Web Cache considers an origin server as failed. When an origin server fails, Oracle Web Cache automatically distributes the load over the remaining origin servers and polls the failed origin server for its current up or down status until it is back online. Existing requests to the failed origin server result in errors. However, new requests are directed to the other origin servers. When the failed server returns to operation, Oracle Web Cache includes it in its weighted available capacity to load balance requests.
For further information about configuring the number of request failures, see Section 2.11.2.
The failover feature is shown in Figure 3-2. An outage of server-host3
, which had a capacity of 50, results in 75 percent of requests being distributed to server-host1
and 25 percent request being distributed to server-host2
.
You can configure Oracle Web Cache to support session binding, whereby a user session for a particular site is bound to an origin server to maintain state for a period. To use this feature, the origin server itself must maintain state; that is, it must be stateful.
If a request is forwarded to an origin server for an object requiring session binding, the origin server creates the user session by including the session information to clients through Oracle Web Cache in the form of a session cookie or an embedded URL parameter. Oracle Web Cache does not process the value of the parameter or cookie; it simply passes the information back to the client browser. When a client includes the session information in a subsequent request, Oracle Web Cache forwards the request to the origin server that created the user session. Oracle Web Cache binds the user session to that particular origin server.
Figure 3-3 shows how Oracle Web Cache supports objects that use session binding.
The steps for how session binding works for requests are as follows:
www.server2.com
is selected. www.server2.com
handles the subsequent requests. For instructions on configuring origin servers, see Section 2.12.
If you configure a cache cluster, when you configure session binding, do not select the Internal-Tracking mechanism option, as it does not work for cache clusters. The other mechanisms work for cache clusters. See Section 3.6.4 for further information.
Notes:
|
In a cache cluster, multiple system components of Oracle Web Cache operate as one logical cache. This one logical cache is referred to as the cache cluster member. The cache cluster members communicate with one another to request cacheable content that is cached by another cache cluster member and to detect when a cache cluster member fails.
Figure 3-4 shows an Oracle Web Cache cluster that contains three cache cluster members. As the figure shows, the cluster members communicate with one another as well as with the application Web servers and with the clients.
Oracle Web Cache uses the relative capacity of each cache instance to distribute the cached content among the cache cluster members. In effect, it assigns a cache cluster member to be the owner of a particular object. This content is called owned content.
In addition to the owned content, Oracle Web Cache stores popular objects in the cache of each cluster member. These objects are known as on-demand content. By storing the on-demand content, Oracle Web Cache responds to requests for those objects quickly and decreases the number of cache misses. Fewer requests are sent to the application Web server. The result is improved performance.
A cache cluster uses one configuration that is synchronized with all cluster members. The configuration contains general information, such as security, session information, and caching rules, which is the same for all cluster members. It also contains cache-specific information, such as capacity, administration and other ports, resource limits, and log files, for each cluster member.
Each member must be authenticated before it is added to the cache cluster. The authentication requires that the administration username and password of the Oracle Web Cache instance to be added be the same as the administration username and password of the cluster.
When you add a cache to the cluster, the cache-specific information of the new cluster member is added to the configuration of the cache cluster. Then, Oracle Web Cache synchronizes the configuration to all members of the cluster. Because adding a new member changes the relative capacity of each Web cache, Oracle Web Cache uses the information about capacity to recalculate which cluster member owns which content.
When cache cluster members detect the failure of another cluster member, the remaining cache cluster members automatically take over ownership of the content of the failing member. When the cache cluster member is reachable again, Oracle Web Cache again reassigns the ownership of the content.
When you remove a Web cache from a cache cluster, the remaining cache cluster members take over ownership of the content of the removed member. In addition, the configuration information about the removed member is deleted from the configuration and the revised configuration is synchronized with the remaining cache cluster members.
In a cache cluster, administrators can decide whether to propagate invalidation messages to all cache cluster members or to send invalidation messages individually to cache cluster members.
Cache clusters provide the following benefits:
With or without cache clusters, Oracle Web Cache ensures that cache misses are directed to the most available, highest-performing Web server. With cache clusters, Oracle Web Cache supports failure detection and failover of caches. If a Web cache fails, other members of the cache cluster detect the failure and take over ownership of the cacheable content of the failed cluster member.
By distributing the site's content across multiple caches, more content can be cached and more client connections can be supported, expanding the capacity of your Web site.
By deploying multiples caches in a cache cluster, you make use of the processing power of more CPUs. Because multiple requests are executed in parallel, you increase the number of requests that are served concurrently.
Network bottlenecks often limit the number of requests that can be processed. Even on a node with multiple network cards, you can encounter operating system limitations. By deploying caches on separate nodes, more network bandwidth is available. Response time is improved because of the distribution of requests.
In a cache cluster, fewer requests are routed to the application Web server. Retrieving content from a cache (even if that request is routed to another cache in the cluster) is more efficient than materializing the content from the application Web server.
In a cache cluster environment, popular objects are stored in multiple caches. If a cache fails, requested cacheable objects are likely to be stored in the cache of surviving cluster members. As a result, fewer requests for cacheable objects require routing to the application Web server even when a cache fails.
When a failed cache returns to operation, it has no objects cached. In a noncluster environment with multiple independent caches, that cache must route cache misses to the application Web server. In a cache cluster environment, that cache can route cache misses to other caches in the cluster, reducing the load on the application Web server.
Cache clusters maximize system resource utilization. When each cache in a cache cluster resides on a separate node, more memory is available than for one cache on a single node. With more memory, Oracle Web Cache can cache more content, resulting in fewer requests to the application Web server.
Because Oracle Web Cache uses one set of invalidation rules for all cache cluster members and because it makes it easy to propagate invalidation requests to all cache cluster members, the cached data is more likely to be consistent across all caches in a cluster.
You can configure a cache cluster that does not support requests between cache cluster members, but allows propagating invalidation requests, as well as synchronizing configuration changes. See Section 3.6.7 for more information.
Cache clusters are easy to manage because they use one configuration for all cache cluster members. For example, you specify one set of caching rules and one set of invalidation rules. Oracle Web Cache distributes those rules throughout the cluster by synchronizing the configuration to each cluster member.
For environments in which a hardware load balancer is not available, you can select to configure the following options:
You can configure a special mode of Oracle Web Cache that enables you to use Oracle Web Cache solely as a software load balancer of HTTP traffic or reverse proxy to origin servers. This configuration mode is useful to:
This mode does not cache any content or provide support for the following features:
You can deploy a single Oracle Web Cache server as a load balancer. However, this deployment makes the Oracle Web Cache server a single point of failure for your application. You can instead configure a cache cluster using multiple Oracle Web Cache servers with operating system load balancing capabilities. Take note of the capacity changes mentioned earlier in this section.
In this mode, you can configure Oracle Web Cache to load balance HTTP traffic in front of an application using ESI or in front of another Oracle Web Cache. The Oracle Web Cache load balancer does not process ESI content or participate in hierarchical caching. For example, a typical Oracle Portal deployment has a built-in Oracle Web Cache used for ESI assembly. For these configurations, do not configure the Oracle Web Cache used for ESI assembly as a load balancer.
If you require other Oracle Web Cache features, such as caching or compression support, do not configure this mode. Instead, configure a hardware load balancer or operating system load balancing support, and use the load balancing feature to manage requests to origin servers.
For more information, see:
Certain operating systems provide load balancing support, which can increase the availability of Oracle Web Cache, particularly in cache clusters.
When the operating system detects a failure of one cache, automatic IP takeover is used to distribute the load to the remaining caches in the cluster configuration. Because requests are sent to the virtual IP address, not to a specific host, requests can be served even if one hosts is unreachable.
In addition, some operating systems provide load balancing for incoming requests. You can configure the operating system to balance the load of incoming requests across caches on multiple nodes.
A network load balancer does not provide all the features, such as firewall or ping URL mechanisms, that a hardware load balancer may provide, but if those needs are met, you could consider using a network load balancer.
Section 3.9 describes how to configure a network load balancer on one operating system.
For more information about session binding, see Section 3.2.
To configure session binding, you specify a set of session binding rules, and then apply them to the sites. By default, sites are configured to use a default rule. You can use the default rule or select another rule customized for the site.
If you decide to change the value of the default session binding rule, ensure all named sites currently configured with this rule require session binding. If some sites do not require session binding, leave the value of default rule, and instead specify session binding settings for the site.
To configure session binding:
The Session Configuration page displays.
Select Global to specify default settings for requests which do not match any defined site. If you do not specify customized session-binding settings for a site, then you can click the Use global settings option to apply the settings you specify for Global. The default selection for the Global selection is the Disable session binding. You change the default setting by selecting Global from the Site list and selecting on of the other session-binding selections.
Create a session definition in the Session Definitions table. See Section 2.12.
- Use global settings: Select this option to apply the session-binding settings you configured for the Global selection from the Site list.
By default, Oracle Web Cache disables session binding for all requests. The default selection for Global is the Disable session binding option. When you first create a site, it is set by default to use the global session binding settings
- Disable session binding: Select this option to disable session binding. This selection is the default for the Global site. You change the default setting by selecting Global from the Site list and selecting on of the other session-binding selections.
- Cookie based session binding with any Set-Cookie: Select this option if the client supports cookies and your origin server uses one or more cookies for session state. Oracle Web Cache uses its own cookie to track a session. This cookie, which contains routing information, is maintained between Oracle Web Cache and the client browser. The client/server binding is initiated by the first cookie that the application server sends to the client.
- Bind using a session: Select this option to enable binding for a specific session, and then perform the following steps:
- Cookie Based: Select if the client supports cookies. Oracle Web Cache uses its own cookie to track a session. This cookie, which contains routing information, is maintained between Oracle Web Cache and the client browser.
- Session Binding IAS: Select if the application is based on OC4J. Oracle Web Cache forwards routing information with each request to OC4J through Oracle HTTP Server.
- Internal-Tracking: Select if the client does not support cookies and the application is not based on Oracle HTTP Server and OC4J. This option is intended for backward compatibility with earlier releases of Oracle Web Cache. Oracle Web Cache maintains an in-memory routing table, of which each entry maps a session ID to an origin server. The routing table is not shared among cluster nodes. If you select this option and you have a cache cluster configuration, then you must also bind at the load balancer layer.
To increase the availability and scalability of your Web site, you can configure multiple instances of Oracle Web Cache to run as members of a cache cluster. For more information about cache clusters, see Section 3.3.
To configure a cache cluster, you configure two or more Oracle Web Cache instances as cache cluster members, and specify properties for the cluster.
A cache cluster uses one configuration that is synchronized from the current cache (the cache to which your client browser is connected) to all cluster members. The configuration contains settings that are the same for all cluster members as well as cache-specific settings for each cluster member.
This section contains the following topics to aid you in configuring a cache cluster in a environment in which all the caches are associated with the same Oracle WebLogic Server. These instruction explain how to configure a cluster using Fusion Middleware Control, which requires all the cache members to use the same Oracle WebLogic Server:
In addition, see the following information about configuring clusters:
If you have want to configure a cache cluster for a configuration in which the caches are associated with different Oracle WebLogic Servers, follow the instructions in Section 3.7 to use Oracle Web Cache Manager to configure the cluster.
Because a cache cluster contains two or more instances of Oracle Web Cache, you must have two or more instances of Oracle Web Cache installed on one or more nodes before you configure a cache cluster. The instances must be the same version of Oracle Web Cache. In addition, the respective passwords for the Oracle Web Cache administrator, and the invalidator user, invalidator
, must be the same across the cluster members. If they are different, you must connect to the cache's admin
server and modify the administration password, as described in Section 5.2.
To ease with configuration, take the time to understand the following key configuration settings for a cache cluster and its members:
You set the failover threshold when you configure cache cluster properties. This setting reflects the number of allowed consecutive request failures before Oracle Web Cache considers another cache cluster member to have failed. In other words, Oracle Web Cache consecutively retries a failed member for certain number of times, before considering the cache-member as down. The number of times Oracle Web Cache is allowed to retry is termed as failover threshold.
Oracle Web Cache considers a request to another cache cluster member to have failed if:
For each failed request, Oracle Web Cache increments the failure counter for that cluster member. This counter is kept separately by each cluster member. When a request is successfully processed by a cluster member, Oracle Web Cache resets the failure counter.
When the failover threshold is met, Oracle Web Cache considers the cache cluster member to have failed. Oracle Web Cache recalculates the relative capacity of the remaining cache cluster members. It then reassigns ownership of cache content.
When a cache cluster member is down, Oracle Web Cache starts polling the cache cluster member. It does this by sending requests to the ping URL you specify. When Oracle Web Cache receives a success response from the cache cluster member, it considers that cache cluster member to be up again. It recalculates the relative capacity of the cache cluster members and it reassigns ownership of cache content.
When you configure a cache cluster member, you specify capacity for that member.
Oracle Web Cache uses capacity in two different ways:
The connections are used to receive requests for owned content from other cache cluster members. The number of connections are divided among the other cluster members. For example, in a three-cache cluster, if the capacity of Cache_A is 50, Cache_B can open 25 connections to Cache_A and Cache_C can open 25 connections to Cache_A.
More connections are used when another cache cluster member contains little or no data in its cache, such as when it is initially started, when it recovers from a failure, or after invalidation. During this time, the cluster member sends many of the requests to its peers, the owners of the content. In most cases, these requests are served more quickly than requests to the origin server. Having a higher number of connections increases performance during this time and shortens the time it takes to fully load the cache. After a cache is fully loaded, fewer of the connections are used. There is no overhead for unused connections.
The capacity of a cache cluster member is weighted against the total capacity of all active cache cluster members. When you set the capacity, Oracle Web Cache assigns a percentage of the ownership array to the cluster member, indicating how much of the cached content is to be owned by the cluster member. The percentage is calculated using the following formula:
cluster_member_capacity
/
total_capacity_of_all_active_cluster_members
For example, if cache cluster member Cache_A has a capacity of 100 and cache cluster member Cache_B has a capacity of 300, for a total capacity of 400, Cache_A is assigned 25 percent of the ownership array and Cache_B is assigned 75 percent of the ownership array. That means that Cache_A owns 25 percent of the cached content.
Note that in calculating the relative capacity, Oracle Web Cache considers the capacity of active cluster members; it does not consider the capacity of cluster members that it has determined to have failed.
Set the initial capacity for each cache cluster member to 10 percent of the Maximum Incoming Connections setting.
After you have a better idea of an application's capacity needs and hit rates, fine tune the capacity. If these two assumptions apply to your cache cluster, then apply the following formula to determine the capacity for each cluster member:
In the following formula, pick the highest value between the default value or the max_incoming_connections
formula:
In the formula:
default_value
is: When the capacity increases, the number of file descriptors needed by Oracle Web Cache also increases.
See Section 3.6.7 for further information about invalidation-only clusters.
max_incoming_connections
is the Maximum Incoming Connections setting from the Resource Limits page of Fusion Middleware Control. cacheable_misses%
is the percentage of requests for cacheable objects that were not served directly by Oracle Web Cache, but were served by Oracle Web Cache after it fetched the content from the origin server. You can find the Cacheable Misses setting in the Web Cache Statistics page of Fusion Middleware Control.
For example, assume a cache cluster with four members. If Oracle Web Cache is operating at 1500 maximum incoming connections, with a 30 percent cacheable miss rate, then the equation to calculate capacity for this configuration looks like the following:
The equation calculates to 337.5. You would round up to 338, which is the capacity you would then enter for each cache cluster member.
If you assign a capacity of 0 to a cluster member, that cluster member does not receive requests from other cluster members. However, that cluster member does forward requests to other cluster members, the owners of the content. If you assign a capacity of 0 to all cluster members, Oracle Web Cache does not forward requests between cluster members. Even when capacity is set to 0, you can still synchronize the configuration and Oracle Web Cache can automatically propagate invalidation requests to cluster members.
Before you add a cache to the cluster, ensure the conditions described in Section 3.6.1 are met.
To add cache members to a cluster with Fusion Middleware Control:
The Cluster page displays.
The Capacity field is auto-filled with a default value. You can modify this value. See Section 3.6.2 for more information about capacity.
The default is five failures.
See Section 3.6.2 for further information about this field.
Use a URL that is cacheable and that you can guarantee is stored in each cache. The default is _oracle_http_server_webcache_static_.html
, which is stored in the cache.
The default, 10 seconds, is a reasonable interval for most situations.
In a cache cluster, all cache cluster members must be able to determine which origin server established the session, although the request was routed originally through only one cache cluster member.
For the Oracle Web Cache you established properties for in Section 3.6.3, configure session binding with a session binding mechanism of Cookie Based or Session Binding IAS. Do not use the Internal-Tracking option, as it does not work for cache clusters.
To configure session binding with the Cookie-based mechanism, see Section 3.5.
When you modify the cluster and apply changes, Oracle Web Cache adds the cache-specific information from the new cache cluster members to the configuration. For those changes to take affect in all cluster members, you must synchronize the configuration and restart the cluster members.
To synchronize configuration from a newly-added cache member to the other caches in the cluster with Fusion Middleware Control:
The Cluster page displays.
The cache cluster is ready to use.
To remove a cache-member from a cluster, you must not only ensure that remaining cluster members no longer include that cache in cluster, but that the removed cache no longer considers itself to be part of the cluster.
To remove a cache from a cluster with Fusion Middleware Control:
The Cluster page displays.
All remaining caches in the cluster no longer consider the removed cache to be part of the cluster. However, the removed cache still considers itself to be part of the cluster. You remedy this situation in the next steps.
The Cluster page displays with all the member of the cache.
You can configure a cluster that supports synchronizing the configuration and invalidation requests across all cache cluster members, but that does not forward requests between cache cluster members. That is, in processing requests, each cluster member acts as an individual cache and does not request objects from its peer cluster members. However, configuration changes and invalidation requests can be synchronized among cluster members.
You can use this configuration to simplify administration of many caches. It may be needed in a cluster where members are separated by a firewall. For example, you can have a cluster where two caches are located on either side of a firewall that separates the intranet from Internet. (The network settings of such a setup—of sending Internet traffic to one cache and intranet traffic to another—is beyond the scope of this document.)
To manage these caches as a cluster and avoid sharing contents between the caches, take the following steps:
This section contains the following topics to help you in configuring a cache cluster in a configuration in which all unassociated caches are using different Oracle WebLogic Servers. These instruction explain how to configure a cluster using Oracle Web Cache Manager.
In addition, see the following information about configuring clusters:
To configure a cache cluster for a configuration in which the caches are associated with same Oracle WebLogic Server, follow the instructions in Section 3.6 to use Fusion Middleware Control to configure the cluster.
To configure settings for a cache cluster with Oracle Web Cache Manager:
The Clustering page appears. The General Cluster Information section displays the default clusterwide values for failover and invalidation synchronization. The Cluster Members table displays the current cache (the cache to which you are connected) as the only cluster member. Oracle Web Cache ignores the cluster information if there is only one cluster member.
The Edit General Cluster Information dialog box appears.
The default is five failures.
See Section 3.6.2 for further information about this field.
Use a URL that is cacheable and that you can guarantee is stored in each cache. The default is _oracle_http_server_webcache_static_.html
, which is stored in the cache.
The default, 10 seconds, is a reasonable interval for most situations.
The Edit Cluster Member dialog box appears.
See Section 3.6.2 for further information about this field.
You now have one cache, the current cache, in the cluster. However, the cluster information is ignored until you have multiple Oracle Web Cache system components in the cluster.
Before you add a cache to the cluster, ensure the conditions described in Section 3.6.1 are met.
To add another cache to the cluster with Oracle Web Cache Manager:
The Clustering page appears.
The Add Cache to Cluster dialog box appears.
The administration port is the listening port for administrative requests.
See Section 3.6.2 for further information about this field.
The cache is now part of the cluster and is listed in the Cluster Member table.
Oracle Web Cache adds the cache-specific information from the new cache cluster members to the cluster configuration.
You can add more Oracle Web Cache instances to the cluster at any time by choosing Add. You can modify the settings for a cache cluster member by choosing Edit Selected. You can delete a cache cluster member, other than the current cache, by choosing Delete Selected.
In a cache cluster, all cache cluster members must be able to determine which origin server established the session, although the request was routed originally through only one cache cluster member. To configure session binding in a cache cluster, you select a session binding mechanism of Cookie-based. Setting this mechanism adds a cookie that tracks session information so that it can be read by all cluster members. Oracle Web Cache includes a Set-Cookie
response-header in the response so that subsequent requests from the client include the cookie. The cookie provides information so that any of the cluster members can resolve the binding regardless of which cache handled the initial request.
To configure session binding with the Cookie-based mechanism, see Section 3.5.
When you modify the cluster and apply changes, Oracle Web Cache adds the cache-specific information from the new cache cluster members to the configuration. For those changes to take affect in all cluster members, you must synchronize the configuration and restart the cache server process of the cluster members.
To synchronize the configuration to new cluster members with Oracle Web Cache Manager:
The Cache Operations page appears. The Operation Needed column indicates the caches to which the configuration should be synchronized.
(Alternatively, you can synchronize the configuration to one cluster member at a time. Click Selected cache in the Operate On field, and then click Propagate.)
When the operation completes, the Operation Needed column in the Cache Operations page indicates the cluster members that must be restarted.
(Alternatively, you can restart one cluster member at a time.) Choose Selected cache in the Operate On field and then click Restart.)
When the operation completes, the Operation Needed column in the Cache Operations page indicates that no operations are needed. The cache cluster is ready to use.
To remove a cache from a cluster, you must not only ensure that remaining cluster members no longer include that cache in cluster, but that the removed cache no longer considers itself to be part of the cluster.
To remove a cache from a cluster with Oracle Web Cache Manager:
The change is synchronized with all the remaining cluster members, but not to the removed cluster member.
All remaining caches in the cluster no longer consider the removed cache to be part of the cluster. However, the removed cache still considers itself to be part of the cluster. To remedy that situation, take the next steps.
The Clustering page appears. The Cluster Members section still shows all members of the cluster.
You can configure a cluster that supports synchronizing the configuration and invalidation requests across all cache cluster members, but that does not forward requests between cache cluster members. That is, in processing requests, each cluster member acts as an individual cache and does not request objects from its peer cluster members. However, configuration changes and invalidation requests can be synchronized among cluster members.
You can use this configuration to simplify administration of many caches. It may be needed in a cluster where members are separated by a firewall. For example, you can have a cluster where two caches are located on either side of a firewall that separates the intranet from Internet. (The network settings of such a setup—of sending Internet traffic to one cache and intranet traffic to another—is beyond the scope of this document.)
To manage these caches as a cluster and avoid sharing contents between the caches, take the following steps:
For an overview of high availability without a hardware load balancer, see Section 3.4.
To configure a single Oracle Web Cache server as a software load balancer:
webcache.xml
, located in: CACHE
element. ROUTINGONLY
attribute to the CACHE
element. For example: webcache.xml
. This executable is found in the following directory:
Fusion Middleware Control does not provide an equivalent verification status.
Consider the topology depicted in Figure 3-5.
To configure this topology:
webche-host
with www.app1.company.com
. app1-host1
and app1-host2
on designated listening ports. www.app1.company.com
mapped to app1-host1
and app1-host2
. For an overview of high availability without a hardware load balancer, see Section 3.4.
On certain Microsoft Windows platforms, you can use the Microsoft Network Load Balancing (NLB) component of the operating system instead of a hardware load balancer. NLB is part of the Microsoft clustering offerings and is available on the following platforms:
You configure the hosts as a cluster and you configure the operating system to provide load balancing. Then, you configure NLB for hosts running Oracle Web Cache in a cache cluster, taking the following steps for each host:
Select the Port Rules tab, and take the following steps:
Note that Port Rules must be identical for all hosts in the cluster.
For more information about Microsoft Network Load Balancing, see the Microsoft documentation at:
This chapter introduces the request filters provided by Oracle Web Cache and explains how you can enable them to protect against common HTTP request attacks.
This chapter includes the following topics:
Oracle Web Cache provides request filters to filter incoming HTTP or HTTPS requests to configured sites on the origin server.
Request filtering aids administrators in controlling access to Web sites:
In addition, request filtering controls which clients and requests are allowed to access to a Web site or certain parts of a Web site.
To defend against Web site attacks, you can enable a series of filters that each request must pass through before being processed. Each filter is composed of customizable rules that can either identify the requests to allow or deny.
You can configure filters and filter rules for specific sites or undefined sites. Oracle Web Cache directs client requests that do not match a defined site to the request filters configured for Undefined Sites.
The requests filters are processed in the order presented in the Request Filter Summary page. To access this page:
The Request Filters Summary page displays.
You select an individual filter from the Filter column, and specify individual rules for the filter. When configuring rules, you order the rules based on the order you want Oracle Web Cache to match requests. When ordering caching rules, give allow rules a higher priority than deny rules.
After configuring rules for a filter and enabling or disabling the rules, you return to the Request Filters Summary page to enable the filters. If you do not click Enable for a filter, then you are disabling the rule, which means Oracle Web Cache ignores any configured rules for that filter.
Oracle Web Cache provides the following filters, each designed to focus on a particular type of HTTP request vulnerability.
The privileged IP filter permits allow-only rule; the header, query string, and format filters permit deny-only rules; and the client IP, method, and URL filters permit both allow and deny rules. Because the list of rules in the header, query string, and format filters are independent of each other, permitting allow rules could result in the skipping of other deny rules. Therefore, these filters only permit deny rules.
Privileged IP
The privileged IP filter enables Oracle Web Cache to bypass the other request filters. You use this filter to allow specified privileged IP addresses access.
Client IP
The client IP filter allows or denies site access to specific IP addresses.
It enables Oracle Web Cache to restrict access to a site URL prefix within the site to only certain IP addresses. This filter restricts clients from certain IP addresses from launching attacks on a system. Not restricting access could allow clients access to the application or to areas of the site that contain sensitive information. An attacker from a certain IP address can continue making malicious attacks if Oracle Web Cache does not deny access.
You can configure a black list by denying requests if the IP address and URL match or a white list if the IP address and URL match.
Method
The method filter allows or denies site access based on the HTTP request method. For example, if only GET and POST methods are allowed, Oracle Web Cache would refuse all other requests.
This filter protects against clients attempting to read restricted files or modifying files using various HTTP methods. In addition to the HTTP request method, you can configure a URL to limit the rule to only requests that match the method and the specified URL.
URL
The URL filter allows or denies site access based on a URL.
This filter protects against Internet attacks to an application server through a specific URL.
Header
The header filter denies site access based on HTTP header values. In addition to the HTTP header value, you can configure a URL to limit the rule to only requests that match the header value and the specified URL.
Incoming requests matching the HTTP header and URL are compared to the expression in the rule. The expression can be either a substring or a regular expression. For both substring and regular expression comparisons, a rule can deny requests in which the request's header value matches the rule's value expression.
This filter protects against clients attempting to break into an application by manually creating header values and clients submitting unwanted content in header values.
Query String
The query string filters denies site access based on query string parameters. For a POST request, Oracle Web Cache checks both the query string, if is present, and the POST body. In addition to the query string, you can configure a URL to limit the rule to only requests that match the query string and the specified URL.
Incoming requests matching the query string and URL are compared to the expression in the rule. The expression can be either a substring or a regular expression. For both substring and regular expression comparisons, a rule can deny requests in which the request's query string matches the rule's value expression.
This filter protects against clients attempting to break into a site by manually manipulating the query string parameters and values and clients submitting unwanted content within parameter values.
Format
The format filter denies site access based on the format of the HTTP request. This filter checks for embedded null byte characters, strict encoding and valid Unicode, and double URL encoding. Oracle Web Cache checks the format for each enabled type and denies the request if the format is invalid.
This filter checks the components of the URL, including the path, filename, query string, and for POST requests, the request entity body. It protects against hackers attempting to disrupt a Web application by either sending a request which is not well formed or sending characters not expected to be in the URL.
Oracle Web Cache automatically creates learned rules for the method and URL filters. You can then choose to activate these learned rules.
Client requests that match the filter's Catch All rule are evaluated to see if there is some commonality to them that might warrant a new rule. These common patterns are shown as learned rules. You can then chose to activate or ignore these learned rules. After a rule is activated in the configuration, you can select to enable or disable it just like any other rule. Even if you select not to activate learned rules, Oracle Web Cache continues to collect and evaluate all common patterns for requests that fall into the Catch All rule.
See Section 4.7.1 and Section 4.8.1 to enable learned rules.
When you configure rules for the filters, you can select the Monitor Only option. When you enable this option for a rule, Oracle Web Cache treats the rule as if it was disabled. However, Oracle Web Cache tracks matches in the statistics and writes them to the event log (if verbosity is set to TRACE or higher) and to the audit log if audit logging is enabled for the match action.
When monitoring is enabled, requests are allowed, so you can examine results in the Request Statistics section. When you disable Monitor Only for a deny rule, the deny action is enforced. You typically set Monitor Only on to see the match activity of the rule. When results are expected, then disable Monitor Only to enforce the rule's action.
The privileged IP request filter enables Oracle Web Cache to bypass all request filters for certain privileged IP addresses. Any request from a privileged IP address does not pass through the other request filters.
See Section 4.2 for further information about the privileged IP request filter.
To configure the privileged IP request filter:
The Request Filters Summary page displays.
You can configure filters and filter rules for specific sites or Undefined Sites. Oracle Web Cache directs client requests that do not match a defined site to the request filters configured for Undefined Sites.
The Privileged IP Request Filter page displays.
Create a new rule:
See Section 2.5 for examples of IP addresses.
When results are expected, then disable Monitor Only to enforce the rule. See Section 4.4 for further information about the Monitor Only option.
The order of the rules is important. Oracle Web Cache matches higher priority rules first.
If you do not click Enable, Oracle Web Cache ignores any configured filter rules for this filter.
This client IP request filter restricts application access to specific IP addresses or range of IP addresses. Not restricting access enables access to restricted information and potential attackers from particular IP addresses.
See Section 4.2 for further information about the client IP request filter.
To configure rules for the client IP request filter:
The Request Filters Summary page displays.
You can configure filters and filter rules for specific sites or Undefined Sites. Oracle Web Cache directs client requests that do not match a defined site to the request filters configured for Undefined Sites.
The Client IP Request Filter page displays.
The Close Connection option does not return any HTTP responses. It just closes the connection.
See Section 2.5 for examples of IP addresses.
- Path Prefix: Enter the path prefix of the objects. Start the path with /
; do not start the path with http://
host_name
:
port
/
. The prefix is interpreted literally, including reserved regular expression characters. These characters include periods (.), question marks (?), asterisks (*), brackets ([]), curly braces ({}), carets (^), dollar signs ($), and backslashes (\).
- File Extension: Enter the file extension. Because Oracle Web Cache internally starts the file extension with a period (.), it is not necessary to enter it.
- Regular Expression: Enter the regular expression of the objects. Remember to use "^" to denote the start of the URL and "$" to denote the end of the URL.
- Path Prefix: Select to allow or deny access to requests matching a path prefix.
- File Extension: Select to allow or deny access to requests matching a particular file extension.
- Regular Expression: Select to allow or deny access to requests matching regular expression syntax.
When results are expected, then disable Monitor Only to enforce the rule. See Section 4.4 for further information about the Monitor Only option.
Oracle recommends creating allow rules, followed by a Catch All deny rule.
The order of the rules is important. Oracle Web Cache matches higher priority rules first.
If you do not click Enable, Oracle Web Cache ignores any configured filter rules for this filter.
The method request filter enables Oracle Web Cache to restrict access based on the HTTP request method.
See Section 4.2 for further information about the method request filter.
To configure rules for the method request filter:
The Request Filters Summary page displays.
You can configure filters and filter rules for specific sites or Undefined Sites. Oracle Web Cache directs client requests that do not match a defined site to the request filters configured for Undefined Sites.
The Method Request Filter page displays.
The Close Connection option does not return any HTTP responses. It just closes the connection.
- Path Prefix: Enter the path prefix of the objects. Start the path with /
; do not start the path with http://
host_name
:
port
/
. The prefix is interpreted literally, including reserved regular expression characters. These characters include periods (.), question marks (?), asterisks (*), brackets ([]), curly braces ({}), carets (^), dollar signs ($), and backslashes (\).
- File Extension: Enter the file extension. Because Oracle Web Cache internally starts the file extension with a period (.), it is not necessary to enter it.
- Regular Expression: Enter the regular expression of the objects. Remember to use "^" to denote the start of the URL and "$" to denote the end of the URL.
- Path Prefix: Select to allow or deny access to requests matching a path prefix.
- File Extension: Select to allow or deny access to requests matching a particular file extension.
- Regular Expression: Select to allow or deny access to requests matching regular expression syntax.
When results are expected, then disable Monitor Only to enforce the rule. See Section 4.4 for further information about the Monitor Only option.
Oracle recommends creating allow rules, followed by a Catch All deny rule.
The order of the rules is important. Oracle Web Cache matches higher priority rules first.
If you do not click Enable, Oracle Web Cache ignores any configured filter rules for this filter.
See Section 4.3 for further information about how learned rules are collected from the Catch All rule. You can add learned rules to the method request filter.
To enable learned rules for the method request filter:
If no learned rules display under Catch All Rule, then there are no learned rules.
The URL request filter enables Oracle Web Cache to allow or deny access to a specific site URL.
See Section 4.2 for further information about the URL request filter.
To configure rules for the URL request filter:
The Request Filters Summary page displays.
You can configure filters and filter rules for specific sites or Undefined Sites. Oracle Web Cache directs client requests that do not match a defined site to the request filters configured for Undefined Sites.
The URL Request Filter page displays.
The Close Connection option does not return any HTTP responses. It just closes the connection.
- Path Prefix: Enter the path prefix of the objects. Start the path with /
; do not start the path with http://
host_name
:
port
/
. The prefix is interpreted literally, including reserved regular expression characters. These characters include periods (.), question marks (?), asterisks (*), brackets ([]), curly braces ({}), carets (^), dollar signs ($), and backslashes (\).
- File Extension: Enter the file extension. Because Oracle Web Cache internally starts the file extension with a period (.), it is not necessary to enter it.
- Regular Expression: Enter the regular expression of the objects. Remember to use "^" to denote the start of the URL and "$" to denote the end of the URL.
- Path Prefix: Select to allow or deny access to requests matching a path prefix.
- File Extension: Select to allow or deny access to requests matching a particular file extension.
- Regular Expression: Select to allow or deny access to requests matching regular expression syntax.
When results are expected, then disable Monitor Only to enforce the rule. See Section 4.4 for further information about the Monitor Only option.
Oracle recommends creating allow rules, followed by a Catch All deny rule.
The order of the rules is important. Oracle Web Cache matches higher priority rules first.
If you do not click Enable, Oracle Web Cache ignores any configured filter rules for this filter.
See Section 4.3 for further information about how learned rules are collected from the Catch All rule. You can add learned rules to the URL request filter.
To enable learned rules for the URL request filter:
If no learned rules display under Catch All Rule, then there are no learned rules.
The header request filter enables Oracle Web Cache to deny access based on HTTP header values. Rules for the header request filter are most effective for white box lists.
See Section 4.2 for further information about the header request filter.
To configure rules for the header request filter:
The Request Filters Summary page displays.
You can configure filters and filter rules for specific sites or Undefined Sites. Oracle Web Cache directs client requests that do not match a defined site to the request filters configured for Undefined Sites.
The Header Request Filter page displays.
The Close Connection option does not return any HTTP responses. It just closes the connection.
Cookie
. - Path Prefix: Enter the path prefix of the objects. Start the path with /
; do not start the path with http://
host_name
:
port
/
. The prefix is interpreted literally, including reserved regular expression characters. These characters include periods (.), question marks (?), asterisks (*), brackets ([]), curly braces ({}), carets (^), dollar signs ($), and backslashes (\).
- File Extension: Enter the file extension. Because Oracle Web Cache internally starts the file extension with a period (.), it is not necessary to enter it.
- Regular Expression: Enter the regular expression of the objects. Remember to use "^" to denote the start of the URL and "$" to denote the end of the URL.
- Path Prefix: Select to allow or deny access to requests matching a path prefix.
- File Extension: Select to allow or deny access to requests matching a particular file extension.
- Regular Expression: Select to allow or deny access to requests matching regular expression syntax.
Do not select the Match If Found check box for Oracle Web Cache to match incoming requests in which the header value does not match the substring or regular expression specified in the Value Expression field. Oracle Web Cache denies the request only if the string or expression is not found, meaning that the request is allowed if the string is found.
Create a rule with the Match If Found check box selected, followed by rules without the check box selected.
When results are expected, then disable Monitor Only to enforce the rule. See Section 4.4 for further information about the Monitor Only option.
The order of the rules is important. Oracle Web Cache matches higher priority rules first.
If you do not click Enable, Oracle Web Cache ignores any configured filter rules for this filter.
The query string request filter enables Oracle Web Cache to deny access based on query string parameter values.
See Section 4.2 for further information about the query-string request filter.
To configure rules for the query string request filter:
The Request Filters Summary page displays.
You can configure filters and filter rules for specific sites or Undefined Sites. Oracle Web Cache directs client requests that do not match a defined site to the request filters configured for Undefined Sites.
The Query String Request Filter page displays.
The Close Connection option does not return any HTTP responses. It just closes the connection.
Do not select the Match If Found check box for Oracle Web Cache to match incoming requests in which the query string does not match the substring or regular expression specified in the Value Expression field. Oracle Web Cache denies the request only if the string or expression is not found, meaning that the request is allowed if the string is found.
For example, if you specify a rule with a Query String Expression of abc
, Type of substring, and do not select the Match If Found check box, the filter would deny a request which did not contain the string abc
in the query string (or POST body). It would allow a request which contains the string abc
.
You can create multiple rules to allow requests with a certain string and deny requests with another string. For example, if you specify a second rule with a Query String Expression of def
, Type of substring, and click the Match If Found check box, the filter would allow a request with abc
in the query string but would deny a request with def
in the query string.
- Path Prefix: Enter the path prefix of the objects. Start the path with /
; do not start the path with http://
host_name
:
port
/
. The prefix is interpreted literally, including reserved regular expression characters. These characters include periods (.), question marks (?), asterisks (*), brackets ([]), curly braces ({}), carets (^), dollar signs ($), and backslashes (\).
- File Extension: Enter the file extension. Because Oracle Web Cache internally starts the file extension with a period (.), it is not necessary to enter it.
- Regular Expression: Enter the regular expression of the objects. Remember to use "^" to denote the start of the URL and "$" to denote the end of the URL.
- Path Prefix: Select to allow or deny access to requests matching a path prefix.
- File Extension: Select to allow or deny access to requests matching a particular file extension.
- Regular Expression: Select to allow or deny access to requests matching regular expression syntax.
When results are expected, then disable Monitor Only to enforce the rule. See Section 4.4 for further information about the Monitor Only option.
The order of the rules is important. Oracle Web Cache matches higher priority rules first.
If you do not click Enable, Oracle Web Cache ignores any configured filter rules for this filter.
The format request filter enables Oracle Web Cache to deny access based on well-formed and valid URLs.
See Section 4.2 for further information about the format request filter.
To configure rules for the format request filter:
The Request Filters Summary page displays.
You can configure filters and filter rules for specific sites or Undefined Sites. Oracle Web Cache directs client requests that do not match a defined site to the request filters configured for Undefined Sites.
The Query String Request Filter page displays.
The Close Connection option does not return any HTTP responses. It just closes the connection.
- Null Byte: This validation checks for encoding as a null byte as %00
. Most applications do not expect null bytes in the URL. This may cause a string which contains tricks after a null byte to pass an application check because the application stops checking when it hits the null byte, thinking that it is the end of string marker.
- Valid Unicode: This validation checks for Unicode characters, either encoded or raw in the URL for an application that is not set up to handle Unicode.
- Strict Encoding: This validation checks for unencoded characters, such as a space, backslash (\), or non-printable characters.
- Double Encoding: This validation checks for %XY
sequences using %XY
encoding, in an attempt to get the %XY
sequence to be passed to the application. This could allow the hacker to specify a character that would otherwise be rejected.
- Uencoded Unicode Characters: This validation checks for Unicode characters, either encoded or raw in the URL for an application that is not set up to handle Unicode.
When results are expected, then disable Monitor Only to enforce the rule. See Section 4.4 for further information about the Monitor Only option.
If you do not click Enable, Oracle Web Cache ignores any configured filter rules for this filter.
To delete a rule for a request filter:
The Request Filters Summary page displays.
Fusion Middleware Control provides statistics for assessing the effectiveness of configured request filters and rules. By analyzing the rules, you can determine if you prioritized the rules incorrectly. For example, if the you notice a deny rule is matched but configured allow rules are never matched, then prioritize the allow rules first.
If you make changes to the configuration settings for Oracle Web Cache, Oracle Web Cache disables the request-filter statistics and labels them as NA.
To view request-filter statistics:
The Request Filters Summary page displays.
If there are few requests matching the filter, then consider changing the rules for the filter to improve its effectiveness.
The Post Allow Statistics display the statistics for allowed requests:
This section covers the following configuration tasks for easing configuration work. These features are only available in Oracle Web Cache Manager.
You can reduce the time spent configuring filters and associated rules by completing the configuration for one site and applying the configuration to other sites. You can copy the complete configuration for all filters, or you can copy the configuration for the rules for a specific filter.
To copy the complete configuration for all the filters from a source site to a target site:
The Request Filters Summary page displays.
To copy the rule configuration for a specific filter from a source site to a target site:
The Request Filters Summary page displays.
The configuration page for the selected filter displays.
You can revert to the original configuration settings provided by Oracle Web Cache for all filters or a specific filter.
To revert the configuration settings for all filters:
The Request Filters Summary page displays.
To revert the configuration settings for a specific filter:
The Request Filters Summary page displays.
The configuration page for the selected filter displays.
The ability to control user access to Web content and to protect against intrusion is the critical issue affecting enterprise deployment. This chapter describes how to configure security for Oracle Web Cache.
For general information about security, see the Oracle Fusion Middleware Security Guide.
This chapter includes the following topics:
This section describes the Oracle Web Cache security model. It contains the following topics:
Oracle Web Cache provides the following security-related features:
Note: Oracle Web Cache does not cache pages that support basic HTTP authentication. These pages result in cache misses. |
Oracle Web Cache restricts administration with the following features:
The HTTPS protocol (HTTP over SSL) is used to encrypt network traffic. Oracle Web Cache supports HTTPS for all of its network traffic, including HTTP clients, administration, invalidation, and statistics requests, and to communicate with its origin servers and cache cluster peers.
As shown in Figure 5-1, you can configure Oracle Web Cache to receive HTTPS client requests and send HTTPS requests to origin servers.
When sending requests to origin servers, note that HTTPS traffic can be processor intensive. If traffic from Oracle Web Cache to an origin server must travel over the open Internet, configure Oracle Web Cache to send HTTPS requests to the origin servers. If traffic only travels through a LAN in a data center, then consider using HTTP to reduce load on the origin servers.
Oracle Web Cache supports both server-side and client-side certificates. SSL server certificates can be used to verify the authenticity of the server, and SSL client certificates can be used to restrict access to certain clients. SSL however is generally not used alone for user verification.
This section interacts with the following entities:
A certificate authority (CA) is a trusted third party that certifies the identity of third parties and other entities, such as users, databases, administrators, clients, and servers. The certificate authority verifies the party identity and grants a certificate, signing it with its private key. The certificate you use in Oracle Web Cache must be signed by a CA.
Different CAs may have different identification requirements when issuing certificates. One may require the presentation of a user's driver's license, while another may require notarization of the certificate request form, or fingerprints of the requesting party.
The CA publishes its own certificate, which includes its public key. Each network entity has a list of certificates of the CAs it trusts. Before communicating with another entity, a given entity uses this list to verify that the signature on the other entity's certificate is from a known, trusted CA.
Network entities can obtain their certificates from the same or different CAs. By default, Oracle Wallet Manager automatically installs with trusted certificates from VeriSign, RSA, Entrust, and GTE CyberTrust.
A certificate is a digital data record used for authenticating network entities such as a server or a client. It is created when a party's public key is signed by a trusted CA. A certificate ensures that a party's identification information is correct, and that the public key actually belongs to that party.
A certificate contains the party's name, public key, and an expiration date—as well as a serial number and certificate chain information. It can also contain information about the privileges associated with the certificate.
When a network entity receives a certificate, it verifies that it is a trusted certificate—one issued and signed by a trusted certificate authority. A certificate remains valid until it expires or is terminated.
Oracle Web Cache supports the following:
For server-side certificates, Oracle Web Cache sends the server certificate to the client browser during the SSL handshake, then processes the request for the object. If the requested object is not stored in the cache, the cache forwards the request to the application Web server, a peer cache (in a cluster), or a subordinate cache (in a hierarchy).
One server-side certificate is required for each unique site configuration. HTTPS does not support multiple virtual hosts on a single port. For example, an environment with 20 site IP address and port number configurations requires 20 separate certificates.
For client-side certificates, the client browser sends the certificate to the cache during the SSL handshake, then the cache processes the request for the object. If the requested object is not stored in the cache, the cache forwards the request to the application Web server, a peer cache (in a cluster), or another cache (in a hierarchy). To transfer information about the client-side certificate to another cache or to the application Web server, Oracle Web Cache adds HTTP headers to the request. These headers begin with the string SSL-Client-Cert
.
In addition, depending on your deployment, you configure caches to accept the certificate information in HTTP headers from peer caches or from any entities (such as a provider or remote cache) or to not accept the certificate information in headers.
Note the following about client-side certificates:
A wallet is a repository used to manage authentication data such as keys, certificates, and trusted certificates needed by SSL. A wallet has an X.509 version 3 certificate, private key, and list of trusted certificates.
Security administrators use Oracle Wallet Manager to manage security credentials on the Oracle Web Cache server. Wallet owners use it to manage security credentials on clients. Specifically, Oracle Wallet Manager is used to do the following:
To configure HTTPS for Oracle Web Cache, create a wallet on the Oracle Web Cache server for each supported site. You specify the location of the wallet for each of the Oracle Web Cache HTTPS listening and operations ports (to support incoming HTTPS requests), and the origin server (to support outgoing HTTPS requests). You can share one wallet, or you can create separate wallets. If you use the same wallet, keep in mind that it can support only one server-side certificate.
Note that Oracle Web Cache installs a default wallet with a default certificate, but this wallet should only be used for testing purposes, not in production environments. The SSL connection is not considered secure when using the default wallet. In a production environment, create a new wallet and create a new certificate or import a trusted certificate into the wallet.
See Oracle Fusion Middleware Administrator's Guide for further information about Oracle Wallet Manager.
To describe how SSL works in an HTTPS connection, the word client is used to describe either a browser or Oracle Web Cache, and the word server is used to describe either Oracle Web Cache or an origin server. For example, when a browser is the client, the server can be Oracle Web Cache or an origin server; when Oracle Web Cache is the client, the server can be an origin server.
The authentication process between the client and server consists of the steps that follow:
An SSL handshake includes the following actions:
Oracle Web Cache provides SSL acceleration by moving the SSL processing to the Web tier.
In addition to off-board SSL acceleration solutions, Oracle Fusion Middleware supports both software-only SSL operations and nCipher's BHAPI-compliant hardware for deployment on servers running Oracle Web Cache and Oracle HTTP Server. When executed in software, SSL operations place a strain on server CPU resources, causing a reduction in throughput and slower overall performance. The nCipher hardware off loads the SSL key exchange processing from a server's CPUs, increasing the number of concurrent SSL connections and improving response times for SSL-protected content.
See http://www.ncipher.com
for more information about nCipher.
By default, the user that performed the installation is the owner of Oracle Web Cache files. Most files are readable by the user ID specified in the Process Identity page of Oracle Web Cache Manager (Properties > Process Identity).
If you change the process identity user, you must manually change the ownership of Oracle Web Cache files and directories to the new user ID and group ID with the chown
command.
The mod_access
module of Oracle HTTP Server controls access to the URLs based on characteristics of a request, such as host name or IP address. Oracle Web Cache does not restrict IP address restrictions on a URL basis. If you are using mod_access
with Oracle Web Cache, ensure that the protected resources are not cached either by not specifying a caching rule or by explicitly setting a caching rule not to cache the content.
To pass the client IP directly to the Oracle HTTP Server, configure the Order
directive in the httpd.conf
file. For more information, see the Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.
The Oracle Identity Management infrastructure centralizes management of security across the enterprise
For security reasons, you should not cache content from Oracle Single Sign-On servers
You can configure Oracle Web Cache to cache content for Oracle HTTP Servers running Single Sign-On partner applications. By default, mod_osso
protected pages are configured as non-cacheable with a Surrogate-Control
: no-store
response header.
To override mod_osso
default behavior, set OssoSendCacheHeaders
to off
in the httpd.conf
file. For example:
This example disables the setting by mod_osso
of any cache headers for any URL that starts with /foo
. For these URLs, the application is responsible for setting the cache control headers, including Surrogate-Control
as appropriate.
If Oracle Web Cache is load balancing requests for identical Single Sign-On partner applications, configure the Oracle HTTP Servers as a cluster, so the applications act as a single partner application. You can then configure Oracle Web Cache to perform stateless load balancing of requests to the servers. If the application mid-tier is not clustered, stateful load balancing is necessary.
You can configure Oracle Web Cache to require authentication through Oracle Single Sign-On. Incoming requests must have a valid Oracle Single Sign-On cookie to be served by Oracle Web Cache. See Section 5.8 for configuration details.
Before submitting invalidation and statistics monitoring requests, establish secure passwords for sending the requests.
The invalidator
account is an administrator authorized to send invalidation requests. The invalidator
account sends HTTP POST requests to invalidate objects in the cache.
The administrator
account is the Oracle Web Cache administrator authorized to log in to Oracle Web Cache Manager and make configuration changes through that interface. This administrator is also authorized to send statistic monitoring requests to the Oracle Web Cache statistics monitoring port. If after monitoring metrics from Fusion Middleware Control you need additional performance metrics, you can access the statistic monitoring port with the administrator
account to view detailed performance metrics. See Section 8.4.
The default password for these accounts is the password you supplied in the Web Cache Administrator page of the Oracle Universal Installer. Before you begin configuration, change the passwords for these accounts to a secure password. You must perform this configuration in Fusion Middleware Control.
To establish secure passwords for the invalidator
and monitor
accounts:
The Passwords page displays.
If Oracle Web Cache is not restarted, you may encounter an error when accessing some Fusion Middleware Control pages.
By default, the computer on which you installed Oracle Web Cache is the trusted host. You can change the trusted subnet or trusted host from which administration, invalidation, and statistics monitoring requests can take place.
To specify if some or all of the traffic to an application is restricted to use HTTPS:
The Security page appears.
The Change Trusted Subnets dialog box appears.
All subnets: Allows requests from all computers in all the subnets in the network.
This machine only: Allows requests from only this computer.
Enter list of IP addresses: Allows requests from all IP addresses you enter in a comma-delimited list. You can enter IP addresses in using these format:
Example: 10.1.0.0
Example: 10.1.0.0/255.255.0.0 allows all the hosts in the 10.1 subnet access.
Example: 10.1.0.0/16 allows all the hosts in the 10.1 subnet access. This example is similar to the network/netmask example, except the netmask consists of nnn high-order 1 bits.
opmnctl
. See Section 2.13.1. To provide more security for your Web site, you can configure Oracle Web Cache to receive HTTPS protocol client requests and send HTTPS requests to the origin server. HTTPS uses SSL to encrypt and decrypt user page requests as well as the pages that are returned by the Oracle Web Cache and origin servers. You can also configure Oracle Web Cache to send traffic to the origin server through an HTTPS listening port.
To configure HTTPS support for Oracle Web Cache, perform these tasks:
To support HTTPS for Oracle Web Cache, you must create a wallet on the Oracle Web Cache server for each supported site. You need wallets to support the following HTTPS requests:
admin
server process requests for requests to invalidation and statistics monitoring ports enabled for SSL For each site that Oracle Web Cache supports, configure at least one wallet. You specify the location of the wallet for each of the Oracle Web Cache HTTPS listening and operations ports (to support incoming HTTPS requests), and the origin server (to support outgoing HTTPS requests). You can share one wallet, or you can create separate wallets. If you use the same wallet, keep in mind that it can support only one server-side certificate.
To create a wallet:
The Wallets page displays.
To configure HTTPS protocol support between client and Oracle Web Cache, you must configure an HTTPS listening port for Oracle Web Cache.
To add an HTTPS listening port:
The Ports Configuration page displays.
The Create Port page appears.
- IP version 4 address written in a 32-bit dotted decimal notation or an IP version 6 address written in a 128-bit notation. See Section 2.5.
- A host name that resolves to an IP address of the computer running Oracle Web Cache. If you do not want to rely on Domain Name System (DNS) to resolve the host name, use a different name resolution mechanism, such as the UNIX etc/hosts
file.
- ANY
to represent any IP address
Ensure that this port number is not in use.
Port numbers less than 1024 are reserved for use by privileged processes on UNIX. To configure Oracle Web Cache to listen on a port less than 1024, such as on port 80, run the Oracle Web Cache webcached
executable with the root privilege. If the webcached
executable is not run as root, Oracle Web Cache fails to start.
See Section 5.9 for instructions on changing the webcached
executable to run as root.
The SSL Configuration page displays.
The Edit Port page displays.
- Server Authentication: A server authenticates itself to a client.
- Mutual Authentication: A client authenticates itself to a server and that server authenticates itself to the client.
- No Authentication: Neither server nor client are required to authenticate.
- Optional Client Authentication: The server authenticates itself to the client, but the client may or may not authenticate itself to the server. Even if the client does not authenticate itself, the SSL session still goes through.
- All: This selection enables the v1, v3, and v3-v2Hello options.
- v1: This selection supports TLS version 1 traffic.
- v3: This selection provides SSL version 3 traffic.
- v3_v2Hello: This selection combines the SSL version 2 hello message format with SSL version 3 handling to support SSL version upgrade during handshake operations.
In this task, specify which SSL wallet to use for Oracle Web Cache connections to origin servers. This wallet must contain a certificate that matches the wallet used by the origin servers.
To specify which SSL wallet to use for Web Cache connections to origin servers:
The SSL Configuration page displays.
If your environment has a mix of HTTP and HTTPS traffic, follow these instructions to restrict traffic for a specific site (or URL prefix subset of the site), so that the requests must be received by Oracle Web Cache over SSL connections only.
To configure the site settings, use a combination of Fusion Middleware Control and Oracle Web Cache Manager:
By default, Oracle HTTP Server does not maintain keep-alive connection for HTTPS client requests from Microsoft Internet Explorer 5.5 and later releases. Internet Explorer has known issues with trying to reuse SSL connections after they have timed out. In order for Oracle HTTP Server to maintain keep-alive connections from Oracle Web Cache, you must remove the following entry from the ssl.conf
file in $ORACLE_HOME/Apache/Apache/conf
directory on UNIX or ORACLE_HOME
\Apache\Apache\conf
directory on Windows.
The ssl.conf
file specifies the SSL definitions for Oracle HTTP Server. If this entry is not removed, then keep-alive connections are disabled. See Section 2.11.5 for further information about configuring the keep-alive timeout in Oracle Web Cache.
See Section 2.13.
If the orgin server is an Oracle WebLogic Server, you need to specify an extra attribute for Oracle Web Cache to process SSL requests correctly:
To configure Oracle Web Cache for a configuration in which the origin server is an Oracle WebLogic Server:
webcache.xml
, located in: HOST ID
element. SERVERTYPE
attribute to the CACHE
element. For example: webcache.xml
. This executable is found in the following directory:
After performing the tasks in Section 5.4, you can perform the following optional configuration:
To configure HTTPS ports to listen for administration, invalidation, or statistics monitoring requests in Fusion Middleware Control:
The Ports Configuration page displays.
The Create Port page appears.
- IP version 4 address written in a 32-bit dotted decimal notation or an IP version 6 address written in a 128-bit notation. See Section 2.5.
- A host name that resolves to an IP address of the computer running Oracle Web Cache. If you do not want to rely on Domain Name System (DNS) to resolve the host name, use a different name resolution mechanism, such as the UNIX /etc/hosts
file.
- ANY
to represent any IP address
Ensure that this port number is not in use.
Port numbers less than 1024 are reserved for use by privileged processes on UNIX. To configure Oracle Web Cache to listen on a port less than 1024, such as on port 80, run the Oracle Web Cache webcached
executable with the root privilege. If the webcached
executable is not run as root, Oracle Web Cache fails to start.
See Section 5.9 for instructions on changing the webcached
executable to run as root.
The SSL Configuration page displays.
The Edit Port page displays.
- Server Authentication: A server authenticates itself to a client.
- Mutual Authentication: A client authenticates itself to a server and that server authenticates itself to the client.
- No Authentication: Neither server nor client are required to authenticate.
- Optional Client Authentication: The server authenticates itself to the client, but the client may or may not authenticate itself to the server. Even if the client does not authenticate itself, the SSL session still goes through.
You can require that clients send certificates (client-side certificates) to the cache to verify the identity of the client.
With client-side certificates, the client browser sends the certificate to the cache during the SSL handshake. Then, the server processes the request for the object. If the requested object is not stored in the cache, the cache forwards the request to the application Web server, a peer cache (in a cluster), or a subordinate cache (in a hierarchy). To transfer information about the client-side certificate to another cache or to the application Web server, Oracle Web Cache adds HTTP headers to the request. The headers begin with the string SSL-Client-Cert
.
Note the following points about using client-side certificates:
403 Forbidden
error returns if a client certificate is not provided. If a listen port requires client certificates, then the SSL handshake fails if a client certificate is not provided. Note: Oracle Web Cache supports the use of client-side certificates with Oracle HTTP Server only.Oracle Web Cache does not support client-side certificates with a distributed cache hierarchy because the security of the certificates cannot be guaranteed. |
The following topics describe how to configure client-side certificate settings:
To use client-side certificates, you must enable an HTTPS listening port, as described in Section 5.4.2. If you have a cache cluster, you must enable HTTPS listening ports for all cluster members. In addition, you must configure Oracle Web Cache to require client browsers to provide SSL certificates.
After configuring the client-side certificate, to enable Oracle Web Cache to transfer certificate information to Oracle HTTP Server, add the AddCertHeader
directive to httpd.conf
. See the Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server for information about adding the AddCertHeader
directive.
If you have a cache cluster, you must prevent a cache from accepting the certificate information in HTTP headers from any source other than a peer cluster member. In addition, each cache must be able to pass the client-side certificate information in headers to the peer cluster member, and the peer must be able to pass them to the application Web server.
To configure this behavior in Oracle Web Cache Manager:
You can also specify that an entire site require client-side certificates. If a site requires client certificates, then a 403 Forbidden
error returns if a client certificate is not provided.
To configure a site to use client-side certificates:
Fusion Middleware Control or Oracle Web Cache Manager do not provide support for client certificate validation with Certificate Revocation Lists (CRLs). You can configure this support by manually editing the webcache.xml
file.
Client certificate revocation status is checked against CRLs that are located in a file system directory. Typically, CRL definitions are valid for a few days, and must be updated on a regular basis. Whenever the CRL definitions are modified, you must restart Oracle Web Cache.
When CRL validation is enabled and available, Oracle Web Cache performs certificate revocation status checking for client certificates. The SSL connection is rejected if a certificate is revoked. SSL connections are accepted if no CRL is found, or if the certificate has not been revoked.
To configure certificate validation with CRL
webcache.xml
, located in: webcache.xml
for which CRL checking needs to be enabled, and add the SSLCRLENABLE="YES"
parameter to the LISTEN
directive. For example: SSLCRLPATH
and SSLCRLFILE
parameters to the HTTPS LISTEN
directive. SSLCRLPATH
: Enter the path to the directory where CRLs are stored. Ensure that the path is correct; otherwise CRL checking will not work. This parameter has no default value. SSLCRLFILE
: Enter the path to a comprehensive CRL file where PEM-encoded (BASE64 CRLs are concatenated in order of preference in one file. If this parameter is set, then the file must be present at the specified location. Otherwise CRL checking will not work. For example:
Use the command line utility orapki
to rename CRLs in your file system. See section "Certificate Revocation List Management" in the Oracle Database Advanced Security Administrator's Guide from the Oracle Database documentation library for information about using orapki
.
webcache.xml
. This executable is found in the following directory:
In a cluster configuration, when configuration changes are made directly to a cluster member's webcache.xml
file, use Fusion Middleware Control or Oracle Web Cache Manager to propagate the change to other cluster members. See Section 3.6 and Section 3.7.
By default, Oracle Web Cache provides the following limits for HTTP request header field:
Oracle recommends setting the header size to a lower value than the default to ensure security and prevent denial-of-service attacks from malicious clients.
If the length of the request is larger than the allowed limit,Oracle Web Cache sends an error to the client and reports the error 11356 to the event log:
Oracle recommends setting the individual header size based on how large an application sets HTTP requests header fields.
If the length of the request is larger than the allowed limit, Oracle Web Cache sends an error to the client and reports the error 11355 to the event log:
To modify the default header limits:
The Security page appears.
The HTTP Request Header Limits dialog box appears.
A client, such as a browser, can send information about its IP address in a header in a request. However, because a client could use a false IP address in the header, allowing a cache to forward that information to another cache or to the origin server can be a potential security problem. By default, Oracle Web Cache removes any IP header information forwarded from a client and replaces it with a header that contains the correct IP address of the client. (In this case, a client can be a browser or another cache in a hierarchy.)
In a cache hierarchy, Oracle Web Cache must be able to preserve the information that is forwarded from one cache to another in the hierarchy or from a cache to the origin server.
To configure these settings:
If the value is NO, Oracle Web Cache removes any ClientIP request-header forwarded from the client and replaces it with a header that contains the correct IP address.
If the value is YES, Oracle Web Cache accepts the header received from the client and can forward it to another cache or the origin server.
If the central cache receives requests from both browsers and other caches in the hierarchy, Oracle Web Cache cannot distinguish which is a browser and which is another cache. In this case, if you specify YES, a false IP address could potentially be forwarded from a browser. However, correct information would be forwarded from another cache. If you specify NO, a false IP address could not be forwarded from a browser. However, the information forwarded from another cache would contain the IP address of the cache, not of the original client.
You can configure Oracle Web Cache to support caching content that is secured by Oracle Single Sign-On authentication with no other authorization requirements.
To enable this setting in Oracle Web Cache Manager:
On UNIX, you must configure webcached
to run with root privilege in the following cases:
opmnctl
user does not match the configured process identity user in the Process Identity page (Properties > Process Identity) of Oracle Web Cache Manager. This section contains the following topics:
By default, the user that performed the installation is the owner of Oracle Web Cache processes. This user can execute opmnctl
commands. Users that belong to the same group ID of the user that performed installation can also execute opmnctl
commands.
If the current opmnctl
user does not match the configured user in the Process Identity page of Oracle Web Cache Manager, the Oracle Web Cache webcached
executable must run as root. If the webcached
executable is not able to run as root, error events are reported to the event log file, and Oracle Web Cache fails to start.
To change the user ID and group ID for the Oracle Web Cache processes on UNIX:
The Process Identity page appears.
The Change Process Identity dialog box appears.
Use the webcache_setuser.sh
script as follows to change file and directory ownership:
user_ID
> where <
user_ID
>
is the user you specified in the User ID field of the Process Identity page.
The setidentity
command changes the ownership of the following files and directories to the new user ID:
webcache.xml
configuration file in: opmnctl
. See Section 2.13.1. For a configuration with privileged ports or to increase the file descriptor limit for Oracle Web Cache, you have two options:
setroot
command of webcache_setuser.sh
to provide Oracle Web Cache with root privilege without requiring changing the process identity settings Every time you upgrade Oracle Web Cache or apply a patch, the Oracle Web Cache binaries are relinked implicitly. Therefore, you must rerun the setroot
command, as specified in the following procedure.
To use the setroot
command of webcache_setuser.sh
:
$ORACLE_HOME/webcache/bin
, execute: where user_ID
is the user that performed installation. See Section 5.10 for further information about the webcache_setuser.sh
script.
opmnctl
. See Section 2.13.1. For a configuration in which the current user does not match the configured user settings, change the process identity of the Oracle Web Cache processes and use the setidentity
command of webcache_setuser.sh
to provide Oracle Web Cache with root privilege:
Oracle recommends running Oracle Web Cache using a restricted user. See Section 5.9.1 for instructions on setting the group ID and user ID to establish process identity.
Use the webcache_setuser.sh
script as follows to run Oracle Web Cache as a different user and add set-user ID permission to the webcached
executable:
where user_ID
is the user ID you specified in Step 2. See Section 5.10 for further information about the webcache_setuser.sh
script.
opmnctl
. See Section 2.13.1. You can revert permissions back to the installation state with the revert
command of webcache_setuser.sh
. It is necessary to revert permissions if you used the setidentity
command and plan to install a patch release. Otherwise, you cannot write to files in the $ORACLE_HOME/webcache
directory. After the patch installation is complete, you can choose to change the process identity again with the setidentity
command.
To revert file permissions:
webcache_setuser.sh
script as follows to revert file permissions back to the installed state: where user_ID
is the user that performed installation. See Section 5.10 for further information about the webcache_setuser.sh
script.
opmnctl
. See Section 2.13.1. For UNIX operating systems, use the webcache_setuser.sh
script to set the file permissions according to the mode in which to run Oracle Web Cache. The file webcache_setuser.sh
is located in the directory $ORACLE_HOME/webcache/bin
.
Prior to running the webcache_setuser.sh
script, stop both the cache
and admin
server processes, using the OPMN utility command:
The following shows the format of the webcache_setuser.sh
syntax:
Table 5-1 describes the commands.
Table 5-1 Commands of the webcache_setuser.sh Script
Command	Description
Sets the ownership of the	
Changes the ownership of the run time Oracle Web Cache user. This command adds set-user ID permission to the	
Reverts the file permissions back to the installation state. It is necessary to revert permissions if you used the	
The parameter user_ID	
is the user ID associated with the Oracle Web Cache processes. (By default, that user ID is the ID of the user that performed the installation.) For setroot	
and revert	
modes, the user ID must be the ID of the user that performed the installation. The user ID must match the user ID specified in the Process Identity page (Properties > Process Identity) of Oracle Web Cache Manager. See the Section 5.9 for further information about when running the webcache_setuser.sh	
script is necessary.	
This chapter introduces techniques to cache and compress content using Oracle Web Cache. It discusses cache population, consistency, and rules. The chapter describes the properties for configuring caching rules and expiration policies.	
This chapter includes the following topics:	
You define caching rules to determine which objects to cache. When you establish a caching rule, objects matching the rule are not cached until there is a client request for them. When a client first requests an object, Oracle Web Cache sends the request to the origin server. This request is a cache miss. Because this URL has an associated caching rule, Oracle Web Cache caches the object for subsequent requests. When Oracle Web Cache receives a second request for the same object, Oracle Web Cache serves the object from its cache to the client. This request is a cache hit.	
When you stop Oracle Web Cache, the cache clears all objects. In addition, Oracle Web Cache clears and resets statistics.	
See Section 6.3 for a description of how Oracle Web Cache determines cache population through caching rules.	
Consistency is crucial for the reliability of Oracle Web Cache. The following features ensure consistency between the cache and origin servers:	
With expiration, Oracle Web Cache marks objects as invalid after a certain amount of time in the cache. Expirations are useful if you can accurately predict when content changes on an origin server or database. To prevent objects from remaining in the cache indefinitely, Oracle recommends creating expiration policies for all cached objects.	
For instructions on creating expiration policies, see Section 6.7.	
Oracle Web Cache uses HTTP/1.1 validation models to determine how to best serve a response to clients. Validation works by the comparing two validators to determine if they represent the same or different entities. Specifically, Oracle Web Cache uses the If-Modified-Since	
and If-None-Match	
headers to determine the following validity:	
Note: Oracle Web Cache does not support weak validators for theIf-None-Match validator. Oracle Web Cache supports all other If-None-Match request-header field formatting.	
For further information about validation, see:	
http://www.ietf.org/rfc/rfc2616.txt	
for further information about the validation caching You use invalidation for content that does not have predictable expiration times. With invalidation, Oracle Web Cache marks objects as invalid. When objects are marked as invalid and a client requests them, they are removed and then refreshed with new content from the origin servers. You can choose to remove and refresh invalid objects immediately, or base the removal and refresh on the current load of the origin servers.	
For further information about invalidation, see Chapter 7, "Invalidating Content."	
You can choose to cache or not to cache content for static objects, multiple-version objects, personalized pages, pages that support a session cookie, embedded URL parameter, or POST body parameter, and dynamic pages with caching rules.	
You configure a caching rule by specifying caching attributes based on the URL or the Content-Type	
response header with Fusion Middleware Control, or you set the caching attributes for a specific object within a Surrogate-Control	
response-header field. Those objects matching the rule are not cached until there is a client request for them.	
Oracle Web Cache uses the following priority to determine object cacheability:	
Surrogate-Control	
response header Authorization	
request header Proxy-Authorization	
request header Pragma: no-cache	
response header Warning	
response header If any of these headers are present, then Oracle Web Cache does not cache the object.	
Cookie	
request header and Set-Cookie	
response header Cache-Control	
response header Expires	
response header The Surrogate-Control	
response-header field enables the origin server to override the caching rules configured through Fusion Middleware Control. When both a Surrogate-Control	
response header and a caching rule for the same object are present, Oracle Web Cache merges the two. For example, if there is a caching rule for an non-cacheable object set in Fusion Middleware Control with compression enabled, and the response header contains Surrogate-Control: max-age=30+60	
, then Oracle Web Cache respects both settings. Oracle Web Cache uses the max-age	
control directive from the Surrogate-Control	
response-header to cache the object and the compression setting from the caching rule. If there is a conflict between the Surrogate-Control	
response header and a caching rule, then Oracle Web Cache uses the settings from the Surrogate-Control	
response header.	
If no caching rules or the Surrogate-Control	
response header are specified, then Oracle Web Cache behaves just as HTTP proxy cache does, that is, it relies on HTTP header information to determine what is cacheable. Generally, HTTP proxy caches store only pages with static content.	
Notes:	
For a description of how Oracle Web Cache determines cache population, see Section 6.1.	
When you decide to create a caching rule for an object, determine first whether the rule for the object is for a specific site or global to all sites. Oracle Web Cache gives site-specific caching rules a higher priority than the global rules. After you determine that choice, you configure general attributes for the rule:	
Select to base the match evaluation on the request URL expression, the response MIME	
type, or both criteria. If you do not select a match criteria, Oracle Web Cache matches the rule to all URLs and all MIME	
types.	
Matching the evaluation on the MIME	
type makes sense when entering URL expressions becomes cumbersome. For example, the following shows a complicated URL expression for various image types:	
\.(gif	jpe?g
Instead, you can select the MIME Type option, select Starts with, and enter the following string in the expression field:	
For most match evaluations, select the Starts with option, because the Content-Type	
response header typically has additional content parameter values.	
You can also enter a list in the expression field, separated by commas. Continuing with the same example, if you want to match only GIF or JPEG responses, enter the following string in the expression field:	
After you create caching rules, you order the priority of caching rules. Higher priority rules are matched first. Oracle Web Cache gives site-specific caching rules a higher priority than the global caching rules. When ordering caching rules for cacheable and non-cacheable objects, give the non-cacheable objects a higher priority than the cacheable objects.	
In the rules shown in Table 6-1, rule 2 caches objects of the URL that use the GET and GET with query string methods, and rule 3 caches objects of the URL that use the POST method and a POST body matching action=search	
. If the order were reversed, all objects starting with /cec/cstage?ecaction=ecpassthru	
would be cached, including /cec/cstage?ecaction=ecpassthru2	
.	
Table 6-1 Example of Priority for Different HTTP Methods	
Priority	Match Criteria
---	---
1	URL Expression: Regular Expression: Path Prefix:
2	URL Expression: Regular Expression: Path Prefix:
3	URL Expression: Regular Expression: Path Prefix:
Cache	
4	MIME Type:
GET and GET with query string	N/A
For more information about specifying general attributes for caching rules and specifying priority, see Section 6.8.1	
In addition to general attributes, you can configure advanced settings, as described in the following topics:	
Some pages have multiple versions, enabling categorization. Figure 6-1 shows the same object, https://oraclestore.oracle.com/OA_HTML/ibeCCtpItmDspRte.jsp?item=293017§ion=11538	
, with different prices for customers and internal Oracle employees. While customers pass a cookie name and value of ec-400-id-acctcat=WALKIN	
, employees pass a cookie name and value of ec-400-id-acctcat=INTERNAL	
.	
You can configure Oracle Web Cache to recognize and cache multiple-version pages by using the:	
For those objects that use a cookie (sometimes referred to as a category cookie), configure caching rules that specify the cookie name and whether to cache versions of the object that do not use the cookie.	
When a client sends an initial request for a multiple-version object, Oracle Web Cache passes the request to the origin server. In its response, the origin server includes a Set-Cookie	
response-header with the category cookie and its value:	
Oracle Web Cache does not cache this initial response. Upon receiving the Set-Cookie	
response-header field, the client stores the cookie in memory. With its next request to the same origin server, the client includes the Cookie	
request-header field with the category cookie name and value that was received in the last response:	
Oracle Web Cache still forwards the request to the origin server, which responds with or without the Set-Cookie	
header. Oracle Web Cache then evaluates whether the cookie and its value set in the Set-Cookie	
response-header matches the cookie and its value set in the Cookie	
request-header. If the cookie and value match, then the response is cached. Oracle Web Cache consider the absence of the Set-Cookie	
header a match. If cookie and its value do not match, then the response is not cached. After versions of the object are cached, Oracle Web Cache uses the value of the cookie in the client's request to serve the appropriate version of the object to the client browser.	
Note: Oracle Web Cache does not cache theSet-Cookie response header field.	
Table 6-2 shows four different versions of same URL, http://www.dot.com/page1.htm	
. The URL uses a cookie named user_type	
, which supports client requests that contain cookie values of Customer	
, Internal	
, and Promotional	
. You can configure Oracle Web Cache to recognize the user_type	
cookie, enabling Oracle Web Cache to cache three different objects. In addition, you can configure Oracle Web Cache to cache a fourth object for those requests that do not use a cookie.	
Table 6-2 Multiple-Version Object with Different Cookie Values	
Version	URL
---	---
1	
2	
3	
4	
No cookie	
For those objects that have different versions based on HTTP request headers, configure caching rules that specify the HTTP request header. HTTP request headers enable clients to pass additional information about the request and about themselves. Oracle Web Cache uses the header to serve the appropriate version of the URL to clients.	
Oracle Web Cache supports all valid HTTP request headers. Table 6-3 lists the HTTP request-header fields supported by Fusion Middleware Control. You can specify any of the standard or other HTTP request-header fields with the Surrogate-Control	
response-header field.	
Table 6-3 HTTP Request-Header Field	
Header Field	Description
---	---
Specifies which media types are acceptable for the response Example:	
Specifies which character sets are acceptable for the response Example:	
Restricts the content-encodings that are acceptable in the response Example:	
Specifies the set of languages that are preferred as a response Example:	
Contains information about the client that initiated the request Example:	
Note: By default, Oracle Web Cache does not interpret the values of these HTTP request headers. If the values for two pages are different, Oracle Web Cache caches both pages separately.This issue is especially problematic with the You can override this behavior for the	
For configuration details, see Section 6.8.2.	
By default, Oracle Web Cache distinguishes origin server responses by the request URLs. However, if the request contains an embedded URL or POST body parameter, the request URL to the same page content is distinct for each session. Therefore, Oracle Web Cache caches responses for each of the distinct URLs. This can result in low cache hit rates and redundantly cached objects.	
By configuring Oracle Web Cache to ignore the value of embedded URL or POST body parameters, you enable Oracle Web Cache to serve one cached object to multiple sessions requesting the same page. Oracle Web Cache caches the response to the first request and serves subsequent requests for the page from its cache.	
Consider user Jane Doe accessing a page with a request URL of:	
User John Doe accesses the same page with a request URL of:	
In addition, this page contains the following POST body for Jane Doe and John Doe, respectively:	
The only distinct part to the request URL and the POST body is the value of the session_ID	
parameter. Rather than caching and serving two versions of the same object, you can configure Oracle Web Cache to ignore the value of session_ID	
so that one cached object can be served to both users.	
To configure parameters to ignore, establish global parameters to be applied to all caching rules or site-specific parameters to be applied to caching rules for a specific site. See Section 6.8.3.	
If there is a problem on the origin server that does not result in a 200 OK HTTP response status for a request that matches this rule, then Oracle Web Cache does not attempt to send the request to the origin server again. Instead, it serves the cached HTTP error, saving origin server resources for known bad responses.	
By default, Oracle Web Cache does not cache any non-200 OK HTTP responses. If you want these errors to be cached, then you must configure caching rules to specifically cache error responses. Oracle Web Cache caches the error pages according to the expiration policy of the rule. After the problem is resolved, invalidate the HTTP error responses.	
For configuration details, see Section 6.8.5.	
You can specify how Oracle Web Cache serves requests with the existence or nonexistence of session cookies, embedded URL parameters, or POST body parameters. You can choose to:	
For example, if you want the first request of a new user to establish a session from the origin server, then choose to serve cached objects to requests that have the session cookie or parameter, but do not serve cached objects to requests that do not have the session cookie or parameter.	
When you choose to serve for both, you can then specify if requests with or without the session cookie or parameter can share the same cached object. Oracle Web Cache uses a default string for those requests without the cookie or parameter.	
For configuration details, see Section 6.8.6.	
The section Section 6.5.2 describes how you can ignore the value of embedded URL or POST body parameters for objects with identical content for all sessions. However, in some cases, the HTML content of objects is programmed with hyperlink tags, such as 	
, that contain embedded session information to distinguish users. These links are called session-encoded URLs. The use of session-encoded URLs results in responses that vary slightly from session to session.	
You can configure Oracle Web Cache to substitute sessions within HTML hyperlink tags with the session values obtained from a session cookie, embedded URL parameter, or POST body parameter. By configuring session value substitution in combination with ignoring the value of embedded URL parameters, you can configure Oracle Web Cache to cache one object for multiple sessions, even if the session parameter values in session-encoded URLs vary.	
Note: Oracle Web Cache does not cache theSet-Cookie response header field.	
Continuing with the example from Section 6.5.2, assume that Jane Doe and John Doe are again assigned an embedded URL parameters of session_ID=33436	
and session_ID=33437	
by the origin server. The page shown in Figure 6-2 has several 	
links that include the session_ID	
parameter. The Oracle Database Standard Edition link under the Oracle Database heading for Jane Doe uses the following HTML code:	
The same link for John Doe uses the following HTML code:	
By using the value of the session_ID	
embedded URL parameter, Oracle Web Cache substitutes the correct session information for Jane Doe and John Doe.	
After the cache is populated with a page that contains session-encoded URLs, other requests for the page are served from the cache, regardless of whether the request has a session cookie, embedded URL parameter, or POST body parameter. If the request does not contain a session cookie or embedded URL parameter, you can configure Oracle Web Cache to substitute the session information in the session-encoded URLs with a configurable default string.	
For configuration details, see Section 6.8.7.	
The following provides a summary of the steps required to cache and monitor objects:	
Prior to creating a caching rule, you create expiration policies. Later, when you create caching rules, you specify an expiration policy to apply with the caching rule.	
You can create expiration policies that specify when to expire objects in the cache. In addition, you can specify how long objects can reside in the cache after they have expired. When an object expires, Oracle Web Cache removes it either immediately or as permitted by origin server capacity up to a maximum time limit.	
To create an expiration policy:	
The Expiration Policies page displays.	
The Create Expiration Policy dialog displays.	
Cache-Control	
or Expires	
response-header fields. This is the default. This section describes how to configure caching rules for Oracle Web Cache. It includes the following topics:	
Before you create a caching rule, determine first whether the rule for the object is for a specific site or global to all sites. Oracle Web Cache gives site-specific caching rules a higher priority than the global rules.	
For more information about caching decisions, see Section 6.3.	
To create a caching rule:	
The Caching Rules page displays.	
Create a new rule.	
From Site Specific Caching Rules or Global Caching Rules section, click Create.	
The Create Caching Rule page displays with the General tab in view.	
Complete the elements using the descriptions in Table 6-4.	
When completing the elements, in the Match Criteria section, select to base match evaluation on the request URL expression, the response MIME	
type, or both criteria. If you do not select a match criteria, Oracle Web Cache matches the rule to all URLs and all MIME	
types.	
If you find entering URL expressions is cumbersome for your rules, select the MIME Type option in the Match Criteria section. See Section 6.4 for further information about using the MIME Type option in place of complicated URL expressions.	
Click OK to apply changes and return to the Caching Rules page. It is not necessary to click Apply in the Create Caching Rule page to apply this change.	
Notice the caching rule is added to the Site Specific Caching Rules or Global Caching Rules table.	
The order of the rules is important. Oracle Web Cache matches higher priority rules first.	
If you do not click Enable, Oracle Web Cache ignores any the settings for the rule.	
Table 6-4 Caching Rules - General Page	
Element	Description
---	---
Name	Enter a string that uniquely identifies the caching rule.
Description	Enter a descriptive comment about the caching rule.
Enabled	Select to enable the caching rule; deselect to disable the caching rule temporarily without losing the rule definition.
Site	Displays the site for which to apply this rule. If you do not see the site required, create one, following the procedure in Section 2.11.3.
Cache	Select this option to instruct Oracle Web Cache to cache content; deslect this option to instruct Oracle Web Cache to forward requests to the origin server and to not cache the content.
Expiration	From the list, select an expiration policy to apply to the objects. If you do not see an expiration policy suitable for the objects, click the Expiration Policies link.
Compress	Select this option to instruct Oracle Web Cache to serve compressed cacheable and non-cacheable objects to browsers. To enable compression for this rule, you must also enable compression for the site. To set the compression property for a site, see Section 2.11.3. Oracle Web Cache automatically disables compression for some common file types which are known to be already compressed. Oracle recommends not compressing content for these file type, including GIF, JPEG, and PNG images, or files that are already compressed with utilities like WinZip or GZIP. Compressing these files incurs additional overhead without gaining any compression benefit. See Section 1.2.5 to better understand when Oracle Web Cache automatically disables compression.
Match URL By	Select to base the match evaluation on the URL expression:
MIME Type	Select to base the match evaluation on the
HTTP Methods	Select one or more of the following HTTP request methods:
Note: If your Web site's GET with query string or POST methods are used for forms that make changes to the origin server or database, do not select GET with query string or POST Body Expression. Select these options only if the forms are used in search forms.	
Required Request Parameters	Click Add to enter an embedded URL parameter or POST body parameter and its value in the corresponding Parameter Name and optional Value fields. Notes:
The request URL that client browsers send to Oracle Web Cache and the internal URL expression that Oracle Web Cache uses for that request are different. When Oracle Web Cache serves a page request, it alphabetically sorts any embedded URL parameters of the URL. However, the caching rules are matched against only the internal representation of the URL in which any embedded URL parameters are sorted. To ensure caching rules are matched correctly, you either use the Required Request Parameters section or manually enter the embedded URL parameters alphabetically in regular expression syntax in the Match URL By field. When you use the Required Request Parameters section, the Oracle Web Cache automatically sorts the embedded URL parameters.	
For example, consider the following URL:	
If you enter the regular expression without manually sorting the embedded URL parameters in the Match URL By expression field, ^/servlet/page\?_pageid=53&_dad=moc&_schema=MOC$	
, then the caching rule does not match the internal representation of the URL used by Oracle Web Cache. To ensure matching, you must enter the regular expression in the URL Expression field as:	
For more information about caching multiple-version objects, see Section 6.5.1.	
To specify a caching rule for multiple-version objects:	
The Multi-Version Cookie page displays.	
The Create Caching Rule page displays.	
For multiple-version objects with cookies, select the cookie you created in Step 1.	
For multiple-version objects with HTTP headers, from the By HTTP Request Headers section, select one or more of the headers from the Available Headers and click Move or Move All to move them to the Selected Headers list.	
By configuring Oracle Web Cache to ignore the value of embedded URL or POST body parameters, you enable Oracle Web Cache to serve one cached object to multiple sessions requesting the same page. Oracle Web Cache caches the response to the first request and serves subsequent requests for the page from its cache.	
For more information about configuring Oracle Web Cache to ignore the value of parameters can enable Oracle Web Cache to serve one cached object to multiple sessions, see Section 6.5.2.	
You have two configuration options for specifying parameters to ignore. You can:	
To establish global parameters:	
The Site Definitions page displays.	
The Global URL Parameters to Ignore dialog displays.	
To establish site-specific parameters:	
The Site Definitions page displays.	
The Show/Edit Site Definition dialog displays.	
By default, Oracle Web Cache does not interpret the values of the HTTP request headers. When the Multiple Objects with the Same Selector by Other Headers for the User-Agent	
request-header field is selected in Fusion Middleware Control and the value of the User-Agent	
request header of the same URL differ, then Oracle Web Cache caches both pages separately. For example, if one request sends an HTTP request header of User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows)	
and another request sends an HTTP request header of User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows; DigExt)	
for different versions of Internet Explorer, Oracle Web Cache caches two separate pages.	
You can override this default behavior by configuring Oracle Web Cache with a User-Agent	
pattern string for a particular client. For the affected multiple-version objects, Oracle Web Cache adds an x-Oracle-Mapped-User	
request-header field, and uses the value of the string rather than the entire User-Agent	
value:	
To configure Oracle Web Cache to cache and serve the same page for each browser type:	
User-Agent	
request header, as described in Section 6.8.2, ensuring you select the User-Agent	
header. webcache.xml	
, located in: GLOBALCACHINGRULES	
element. GLOBALCACHINGRULES	
element: browser	
" MAPPEDUSERAGENT="x-Oracle-Mapped-User-Agent_value	
" MAPTYPE="USERAGENT"/>If you enter multiple entries, order them according to how you want Oracle Web Cache to match. The order of these rules work in the same fashion as priority works for caching rules.	
Table 6-5 describes how to enter values for the subelements.	
Table 6-5 GLOBALCACHINGRULES Subelements	
Subelement	Description
---	---
Enter the pattern that used to match the incoming request header. Note: You can use the wildcard	
Enter a unique value of the	
Enter	
The following webcache.xml	
fragment shows the User-Agent	
remapping:	
If an incoming request does not match any of the rules, Oracle Web Cache appends a default mapping to the request. The default value of the x-Oracle-Mapped-User-Agent	
header is DEFAULT_USER_AGENT	
.	
These mapping rules are executed for every incoming request. If you create several mapping rules, you may experience a performance degradation.	
<MULTIVERSIONHEADERSRULE>	
subelement of CACHEABILITYRULE	
for the caching rule created in Step 1. MAPPEDUSERAGENT	
string rather than the entire User-Agent	
value, change the User-Agent	
header to x-Oracle-Mapped-User-Agent	
in the HTTPHEADER	
attribute of the rule: webcache.xml	
. opmnctl	
. See Section 2.13.1. To understand how you can cache HTTP error responses to save origin server resources, see Section 6.5.3.	
To create a caching rule for an error response:	
The Create Caching Rule page displays.	
Ensure the origin server generates the HTTP error itself.	
To understand how Oracle Web Cache serves requests with the existence or nonexistence of session cookies, embedded URL parameters, or POST body parameters, see Section 6.5.4.	
To specify how session-related pages are served by Oracle Web Cache:	
The Session Definitions page displays.	
Create a session definition in the Session Definitions table. See Section 2.12.	
Specify session policy settings:	
A new row in the table appears.	
The Edit Caching Rules page displays.	
You can configure Oracle Web Cache to substitute sessions within HTML hyperlink tags with the session values obtained from a session cookie, embedded URL parameter, or POST body parameter. To understand how Oracle Web Cache can cache one object for multiple sessions, even if the session parameter values in session-encoded URLs vary, see Section 6.5.5.	
To substitute session values in session-encoded URLs:	
The Session Definitions page displays.	
When entering data for the Default Value field, enter a default string for the value of the embedded URL parameter.	
Oracle Web Cache uses the value you enter in the Default Value field for those requests without the value for an embedded URL parameter. For these requests, Oracle Web Cache substitutes the value with a default string. The string defaults to default. For example, the following 	
contains a session_ID	
parameter without a value:	
If the string is set to default, Oracle Web Cache substitutes the value with default	
.	
The Create Caching Rule page displays.	
Some Web sites require users to have sessions while surfing most pages. To preserve the session requirement, create a session caching rule for those pages. This way, Oracle Web Cache always forwards a request without a session to the origin server.	
For some popular site entry pages, such as "/	
", that typically require session establishment, session establishment effectively makes the page non-cacheable to all new users without a session. To cache these pages while preserving session establishment, make the following minor modifications to your application:	
/	
", that redirects to the real entry page. With this configuration, all initial user requests to the entry URL first go to the blank page, which requires minimal resources to generate. The clients receive the response and session establishment from the application Web server. Subsequent redirected requests to the entry page carry the session, enabling the entry page to be served out of the cache.	
Another solution is to use a Javascript that sets a session cookie for the pages requiring sessions:	
Note: Using the Javascript solution, it is not necessary to create a session caching rule for the pages requiring sessions.	
Fusion Middleware Control provides statistics for assessing the effectiveness of configured caching rules.	
To view caching-rule statistics:	
The Caching Rules page displays.	
See Section 8.2 to view the objects cached by Oracle Web Cache	
In addition to, or as an alternative to, creating caching rules with Fusion Middleware Control, application developers can choose to store many of the caching attributes in the header of an HTTP response message. This feature enables the application Web server to override the settings configured through Fusion Middleware Control interface, as well as allow other third-party caches to use Oracle Web Cache caching attributes. All except the following attributes described in Section 6.8 are supported:	
To enable this feature, set the HTTP response with the Surrogate-Control	
response-header field as described in the following section.	
For a description of how Oracle Web Cache uses caching attributes from the Surrogate-Control	
response header and Oracle Web Cache Manager to determine cache population, see Section 6.1.	
The Surrogate-Control	
response-header field enables application developers to specify caching attributes of an object. This response-header field enables the application Web server to override the caching rules configured through administrative interfaces Fusion Middleware Control or Oracle Web Cache Manager.	
The Surrogate-Control	
response-header field supports the following syntax:	
expiration_time	
[+	
removal_time	
]	
]header	
header	
...)][cookie(cookie_name	
cookie_name	
...)]Table 6-6 describes the supported control directives.	
Table 6-6 Control Directives for Surrogate-Control	
Control Directive	Description
---	---
Specify what kind of processing is required:	
For further information about the ESI tags supported for each processing version, see Chapter 11, "Caching Dynamic Content with ESI Language Tags."	
Specify for Oracle Web Cache to not cache the object.	
Specify the HTTP request headers or cookies to instruct Oracle Web Cache to cache and identify multiple-version objects. Use the following format:	
Specify /f to instruct Oracle Web Cache to only cache versions of the object based on the existence of the HTTP request headers or cookies. Exclude Usage notes:	
Specify This control directive does not enable you to specify browser types. If you specify To understand what Oracle Web Cache automatically compressed and does not compress, see Section 1.2.5.	
Specify for Oracle Web Cache to cache the object. Specify the time, in seconds, to expire the object after it enters the cache. Optionally, specify the time, in seconds, to remove the object from the cache after the expiration time. Use the following format:	
Usage notes:	
Usage Notes
content="ORAESI/9.0.4"
, content="ESI-Inline/1.0"
, content="ESI-INV/1.0"
, content="ESI/1.0"
are mutually exclusive with content="webcache/1.0"
Refer to http://www.esi.org/spec.html
for the Edge Architecture Specification, which contains specification information about the Surrogate-Control
response header.
In the following example, the Surrogate-Control
response-header field specifies that the object is to expire 30 seconds after it enters the cache and be removed 60 seconds after expiration. It also specifies that the object contains ESI tags that require processing:
In the following example, the Surrogate-Control
response-header field specifies that the object is not to be cached:
In the following example, the Surrogate-Control
response-header field specifies ESI processing with the content
control directive. The vary
control directive specifies to cache versions of the multiple-version object based on the HTTP Accept
request header value, regardless of whether the request contains the HTTP Accept
request header.
In the following similar example, the Surrogate-Control
response-header field specifies ESI processing with the content
control directive. The vary
control directive specifies to cache versions of the multiple-version object only if the request contains the Accept
and MyCustomHeader
headers and news
and sports
cookies.
This chapter explains how to send invalidation requests to Oracle Web Cache.
This chapter includes the following topics:
As described in Section 6.7, you create expiration policies and associate them with caching rules to refresh content from the origin server. Even with expiration policies, it is often difficult to predict when exactly content becomes stale. As an alternative, Oracle Web Cache provides mechanisms for explicitly invalidating content when an administrator or application knows that such content has become stale.
With invalidation, Oracle Web Cache marks objects as invalid. When objects are marked as invalid and a client requests them, they are removed and then refreshed with new content from the origin servers. You can choose to remove and refresh invalid objects immediately, or base the removal and refresh on the current load of the origin servers.
Oracle Web Cache supports the following forms of invalidation:
To invalidate objects in the cache, you can send an HTTP POST request from the invalidator
account through the invalidation listening port. The invalidator
account is authorized to send invalidation requests. As shown in Figure 7-1, you send invalidation requests using these methods:
telnet
The following sections describe the specific methods you can use:
Inline invalidation is implemented as part of Edge Side Includes (ESI) and provides a useful way for origin servers to "piggyback" invalidation messages on HTTP responses sent to Oracle Web Cache. Specifically, origin servers embed an XML invalidation document within the HTML of the response body using ESI tags.
For instance, when a customer purchases a vegetarian cookbook on an e-commerce site, the confirmation response could contain instructions for invalidating all catalog pages related to the book, its author and vegetables. The ability to send invalidation message inline reduces the connection overhead associated with sending out-of-band invalidations and is a useful tool for ESI developers.
For more information about using ESI invalidation, see Section 11.3.
Response header invalidation is Oracle Web Cache functionality that enables an origin server to return a transactional response whose response body contains something other than HTML. This is a circumstance in which ESI inline invalidation does not work; Oracle Web Cache can only use ESI invalidation tags in conjunction with a response body that contains HTML. With response header invalidation, origin servers can send invalidation directives in a proprietary invalidation response header.
In addition to its greater flexibility in terms of response body content returned, response header invalidation requires less coding effort on the part of the Web applications since building an invalidation header is a fairly lightweight task.
Response header invalidation functions similarly to inline invalidation; origin servers "piggyback" invalidation directives on responses sent to Oracle Web Cache. However, the response header invalidation enables invalidation when the response body contains something other than HTML.
The origin server adds a special invalidation header to its response. Oracle Web Cache extracts the invalidation header, invalidates the corresponding content and forwards the response to its client but without the invalidation header in the response.
Origin Servers can piggyback an invalidation response header on any random response. For example, an origin server may delay the sending of an invalidation directive and then send it later in a response to a request that has nothing to do with the request that caused the invalidation in the first place.
Oracle Web Cache strips out the invalidation response header when returning the response to a Web client. Oracle Web Cache even strips out the invalidation response header when returning the response to another member of an cache cluster, since cluster propagation forwards the invalidation to other peers in the cluster.
For more information about enabling response header invalidation, see Section 7.8.
The out-of-band mechanisms send out-of-band HTTP POST invalidation requests in Extensible Markup Language (XML) syntax. The ESI inline mechanism also uses the same syntax within the <esi:invalidate>
tag. The contents of the XML request body instructs the cache which URLs to mark as invalid.
The following sections describe invalidation request syntax:
Use the following syntax to invalidate objects contained within an exact URL that includes the complete path and file name:
Use the following syntax to invalidate objects based on more advanced invalidation selectors:
The body of a valid invalidation request must begin with the following:
The first line denotes version 1.0 of XML. The second line denotes that the request is an invalidation request using the WCSinvalidation.dtd
file as the XML document type. WCSinvalidation.dtd
is the Document Type Definition (DTD) that defines the grammar of invalidation requests and responses.
Note the following:
<?xml
". "internal:///WCSinvalidation.dtd"
with the following path: "http://www.oracle.com/webcache/90400/WCSinvalidation.dtd"
The root element INVALIDATION
contains one or more of the attributes and elements described in Table 7-1.
Table 7-1 INVALIDATION Elements and Attributes
Invalidation Element/Attribute | Description |
---|---|
Required attribute in the Denote the version of the For versions 9.0. | |
Optional element in the | |
Required element in the The possible
| |
Required element in the invalidation request. You can specify multiple | |
| |
The prefix is interpreted literally, including reserved regular expression characters. These characters include periods (| |
|
Regular expression characters are permitted. To interpret these characters literally, escape them with a backslash (See Notes:
|
|
|
|
|
|
Note: When the invalidation request is sent, Oracle Web Cache performs a regular expression match of |
| Optional element in the invalidation request. Use the following attributes:
If you specify a cookie that was mistakenly specified for both a multiple-version object and a session caching policy, invalidation is based on any occurrence of the cookie. To avoid excessive invalidation, configure distinct cookies for multiple-version objects and session caching policies. For more information, see:
|
| Optional element in the invalidation request. Use the following attributes:
See Section 6.8.2 to create caching rules for multiple-version objects. |
| Optional element in the invalidation request. Use the following attributes:
For more information, see:
|
Required element in the invalidation request Optional attribute of the | |
Optional element in the invalidation request Required attribute of the [15/Oct/2008:19:26:46 +0000] [notification 11748] [invalidation] [ecid: 21085932167,0] Invalidation with INFO 'INFO_comment' has returned with status 'status'; number of objects invalidated: 'number'. |
Invalidation responses are returned in the following format for BASICSELECTOR
invalidation requests:
value
"/>Invalidation responses are returned in the following format for ADVANCEDSELECTOR
invalidation requests:
The body of a valid invalidation response begins with the following:
The first line denotes version 1.0 of XML. The second line denotes the response is an invalidation response using the WCSinvalidation.dtd
file as the XML document type.
The root element INVALIDATIONRESULT
contains one or more of the attributes and elements described in Table 7-2. BASICSELECTOR
and ADVANCEDSELECTOR
are described in Table 7-1.
Table 7-2 INVALIDATIONRESULT Elements and Attributes
To test invalidation, use the following syntax to preview the list of BASICSELECTOR
objects to be invalidated:
Use the following syntax to preview the list of ADVANCEDSELECTOR
objects to be invalidated:
The body of a valid invalidation preview request must begin with the following:
The first line denotes version 1.0 of XML. The second line denotes the request is an invalidation preview request using the WCSinvalidation.dtd
file as the XML document type.
The root element INVALIDATIONPREVIEW
contains one or more of the attributes described in Table 7-3. BASICSELECTOR
and ADVANCEDSELECTOR
are described in Table 7-1.
Table 7-3 INVALIDATIONPREVIEW Attributes
Invalidation Element/Attribute | Description |
---|---|
Required attribute in the invalidation preview Use | |
Required attribute in the invalidation preview Enter the number representing the first object to be listed. Oracle Web Cache begins the count of objects with the number 0. | |
Required attribute in the invalidation preview Enter the number of objects to be listed. If fewer objects than the number specified meet the invalidation criteria, Oracle Web Cache lists only the URLs for those objects that meet the criteria. If more objects than the number specified meet the invalidation criteria, Oracle Web Cache lists the URLs for the number of objects requested. It also returns the total number of objects that meet the invalidation criteria. To obtain the list of URLs for addition objects, send another preview request with a different |
Invalidation preview responses for preview requests are returned in the following format:
The body of a valid invalidation preview response begins with the following:
The first line denotes version 1.0 of XML. The second line denotes that the response is an invalidation preview response using the WCSinvalidation.dtd
file as the XML document type.
Note the following:
<?xml
". "internal:///WCSinvalidation.dtd"
with the following path: "http://www.oracle.com/webcache/90400/WCSinvalidation.dtd"
The root element INVALIDATIONPREVIEWRESULT
contains one or more of the attributes and elements described in Table 7-4. BASICSELECTOR
and ADVANCEDSELECTOR
are described in Table 7-1.
Table 7-4 INVALIDATIONPREVIEWRESULT Elements and Attributes
Invalidation Element/Attribute | Description |
---|---|
Version number of the | |
Status of the preview:
| |
Number representing the first object to be listed | |
Number of URLs returned in this preview result | |
Number of URLs matching the | |
URLs matching the |
This section contains the following invalidation request examples:
The examples in this section require using the POST method which also requires sending the number of bytes (or characters) in the content_length:
#bytes
portion of the header. Please note that one carriage return is required after the content_length:
#bytes
line and before the XML request or BODY
information.
The following request invalidates the file /images/logo.gif
:
Invalidation response:
The following request invalidates an object exactly matching /contacts/contacts.html
using the BASICSELECTOR
element:
This request is equivalent to the following request using the ADVANCEDSELECTOR
element. This request specifies the site information in the HOST
attribute.
The second request specifies the site information in the URIPREFIX
attribute:
The ADVANCEDSELECTOR
element uses the URIPREFIX
attribute. This attribute is used to traverse the directory structure. The quicker invalidation reaches the right tree level, the quicker the invalidation process is done. The request with the BASICSELECTOR
element is the more efficient of the two examples because there is no directory structure traversal involved.
The following request invalidates two different objects, summary.jsp
and summary.gif
. In addition, the request provides the comments "summary.jsp"
and "summary.gif"
to be included in the invalidation result and event log.
Invalidation response:
The following messages are written to the event log:
The following request invalidates all objects under the /images/
directory:
Invalidation response:
The following request invalidates all objects under the /contacts/
directory whose file names end in .html
and uses cookie name cust
with a value of oracle
:
Invalidation response:
The following request invalidates all objects under /
.
Invalidation response:
To better understand the relationship of the URIPREFIX
and URIEXP
attributes, consider the examples that follow.
The following syntax invalidates sample.gif
files within the /cec/cstage/graphic*
directories:
<ADVANCEDSELECTOR URIPREFIX="/cec/cstage/"
URIEXP="graphic.*/sample\.gif">
Note that ".*" in "graphic.*/sample\.gif
" are regular expression characters that match all directories starting with graphic
. The ".
" in "sample\.gif
" is escaped for a literal interpretation.
The following syntax instructs Oracle Web Cache to locate a directory named graphic*
:
<ADVANCEDSELECTOR URIPREFIX="/cec/cstage/graphic*/" URIEXP="sample\.gif"
HOST="www.company.com:80"/>The following syntax invalidates objects with a URI containing /cec/cstage?ecaction=viewitem
:
<ADVANCEDSELECTOR URIPREFIX="/cec/" URIEXP="c
stage\?ecaction=viewitem" HOST="www.company.com:80"/>Note that "?
" is escaped with a backslash.
URLs such as /cec/cstage?ecaction=viewitem&zip=94405
and /cec/cstage?ecaction=viewitem&zip=94305
match and are invalidated, but /usa/cec/cstage?ecaction=viewitem&zip=94209
does not match and is not invalidated.
The following request invalidates all objects under /
matching the substrings /post/
and htm
. In addition, the request provides the comment "remove-htm-under-all-post-dir"
to be included in the invalidation result and event log.
Invalidation response:
The following message writes to the event log:
The following request invalidates all objects under /corporate/asp/
, matching the substring /view_building.asp
and the embedded URL parameter value pairs of building=8
and floor=10
. In addition, the request provides the comment "remove-view-building8-10th-floor"
to be included in the invalidation result and event log.
Invalidation response:
The following message writes to the event log:
See Section 7.7.2.2 to optimize invalidations using QUERYSTRING_PARAMETER
.
The following request invalidates all objects under /pls/publicuser/
, matching the following:
/pls/publicuser/!MODULE.wwpob_page.show
x-oracle-cache-user
and value PUBLICUSER
Surrogate-Key
response-header field containing a search key of template_id=33,31345.
Invalidation response:
In a cache cluster, you can enable or disable the propagation of invalidation requests to all cluster members in Fusion Middleware Control and Oracle Web Cache Manager, as described in Section 3.6.5 and Section 3.7.4, respectively.
You can override the setting by using a pair of name/value attributes of the SYSTEMINFO
element. If NAME
is set to WCS_PROPAGATE
and VALUE
is set to TRUE
, it overrides the setting specified in Fusion Middleware Control or Oracle Web Cache Manager. If NAME
is set to WCS_PROPAGATE
and VALUE
is set to FALSE
, it reads the setting specified in Fusion Middleware Control or Oracle Web Cache Manager.
The following request invalidates the file /images/logo.gif
and propagates the request to all cluster members. In this example, there are three cluster members:
Invalidation response:
The following request previews up to 50 objects ending in *.htm
:
Invalidation response:
You can base invalidation on one or more search keys used in the Surrogate-Key
response-header field of objects in the cache.
The Surrogate-Key
response-header field enables application developers to identify search key strings for a given response object. Search keys are strings that may not appear in the URL, cookies, or HTTP request headers of objects. The intent of the search keys is to provide another criteria for invalidation. In addition to the URL of objects, Oracle Web Cache administrators can base invalidation on one or more search keys used in the Surrogate-Key
response-header field of objects in the cache.
The Surrogate-Key
response-header field supports the following syntax:
key
" "key
" "key
" ...)Usage Notes
search-key
is specified in this header, then at least one search key value must be present. "
). "key_value"
or "key_name
=
key_value"
. The following examples show valid Surrogate-Key
fields. The first example shows one search key of template_id=33,31345
, and the second example shows search keys of template_id=33,31345
and category
.
The following examples show invalid Surrogate-Key
fields. The first example shows one search key of 348
without an ending quote ("
), and the second example shows search-key
without any search key values.
For more information about enabling search-key invalidation, see Section 7.9.
The following topics describe how to initiate out-of-band invalidations:
When you send an invalidation request with an HTTP POST request, you specify the host name of Oracle Web Cache, the invalidation listening port number, and the invalidation request.
For example, if you are using telnet
, you send an invalidation request using the following procedure:
invalidator
account using Base64 encoding string with the following syntax: The following shows an example of the Authorization
line:
In this example, aW52YWxpZGF0b3I6aW52YWxpZGF0b3I=
is the invalidator user name and password (invalidator:invalidator
) encoded.
For more information, see:
http://www.rfc-editor.org/
for information about password Base64 encoding readme.examples.html
for further information about using the EncodeBase64.java
script to generate the Base64 string for invalidator:
invalidator_password
. This file is located in the following directories: Oracle Web Cache Manager provides an easy-to-use interface for invalidating cached objects. The advantage of using this interface is that the administrator is isolated from the intricacies of the HTTP and XML formats, and consequently, there is less chance for error. The administrator need only specify which objects to invalidate and how how quickly those objects should be invalidated.
Oracle Web Cache Manager enables you to send either basic invalidation request for invalidation one object, or an advanced invalidation request for multiple objects, as described in the following topics:
Note: If you receive the following error when you submit invalidation requests from the Basic Content Invalidation or Advanced Content Invalidation pages, restart thecache or admin server processes.
If you change the property of an invalidation port, restart the See Section 2.13 for restart instructions. |
To send a basic invalidation request using Oracle Web Cache Manager:
The Basic Content Invalidation page appears in the right pane.
Note: Because Oracle Web Cache escapes the following characters, you can enter them in this field: ampersand (&
), greater than sign (>
), less than sign (<
), double quotes ("
), and single quotes ('
).
Optionally, you can preview the list of objects to be invalidated to ensure that you are removing only the objects you want to remove. To preview the list of objects:
If fewer objects than the number specified meet the invalidation criteria, Oracle Web Cache lists the URLs for only those objects that meet the criteria.
If more objects than the number specified meet the invalidation criteria, Oracle Web Cache lists the URLs for the number of objects requested. It also returns the total number of objects that meet the invalidation criteria. To obtain the list of URLs for additional objects, send another preview request with a different From number that specifies the start of the next set of objects.
Oracle Web Cache displays the Invalidation Preview Results message box, which lists the objects that meet the invalidation criteria. Oracle Web Cache Manager lists only those objects that are valid. Although the cache may contain objects that are expired or that have been invalidated, those objects are not listed.
If the listed objects are for those to invalidate, continue with the next step. If they are not, modify the invalidation criteria and preview the list again.
Oracle Web Cache processes the invalidation request, and returns the Cache Cleanup Result dialog box which shows the invalidation status. The following figure shows the dialog box:
In a cache cluster environment, if Invalidation requests sent to any cluster member will be propagated to all cluster members is enabled, Oracle Web Cache sends the invalidation request to one cluster member who acts as the invalidation coordinator. The coordinator propagates the invalidation request to other cluster members. When the invalidation has been completed for all cluster members, Oracle Web Cache returns a Cache Cleanup box that lists, for each cluster member, the cache name, the status of the invalidation request, and the number of objects invalidated.
For more information, see Section 3.6.5 for information about enabling invalidation propagation.
To send an advanced invalidation request using Oracle Web Cache Manager:
The Advanced Content Invalidation page appears in the right pane.
http|https://
host_name
:
port
/
path
/
filename
or with "/
" and end with "/
". host_name
:
port
is optional. You can also specify the site host name and port in the Host Name field.
The prefix is interpreted literally, including reserved regular expression characters. These characters include periods (.
), question marks (?
), asterisks (*
), brackets ([]
), curly braces ({}
), carets (^
), dollar signs ($
), and backslashes (\
).
host_name
:
port
). Port 80 is the default port for HTTP. This field is required if the URL Path Prefix does not include http|https://
host_name
:
port
/
path
/
filename
.
If no value is entered, everything under the URL Path Prefix is matched.
Note: If you specify a cookie that was mistakenly specified for both a multiple-version object and a session caching policy, invalidation is based on any occurrence of the cookie. To avoid excessive invalidation, configure distinct cookies for multiple-version objects (Rules for Caching, Personalization, and Compression > Cookie Definitions) and session caching policies (Rules for Caching, Personalization, and Compression > Session Definitions). |
See Section 6.5.1 to create caching rules for multiple-version objects.
Surrogate-Key
response-header field used by the objects to be invalidated in the Key field. See Section 7.6 and Section 7.9. Optionally, you can preview the list of objects to be invalidated to ensure that you are removing only the objects you want to remove. To preview the list of objects:
If fewer objects than the number specified meet the invalidation criteria, Oracle Web Cache lists the URLs for only those objects that meet the criteria.
If more objects than the number specified meet the invalidation criteria, Oracle Web Cache lists the URLs for the number of objects requested. It also returns the total number of objects that meet the invalidation criteria. To obtain the list of URLs for additional objects, send another preview request with a different From number that specifies the start of the next set of objects.
Oracle Web Cache displays the Invalidation Preview Results message box, which lists the objects that meet the invalidation criteria. Oracle Web Cache Manager lists only those objects that are valid. Although the cache may contain objects that are expired or that have been invalidated, those objects are not listed.
If the listed objects are for those to invalidate, continue with the next step. If they are not, modify the invalidation criteria and preview the list again.
Oracle Web Cache processes the invalidation request, and returns a Cache Cleanup dialog box which shows the invalidation status.
Note: For prefix-based invalidations that require Oracle Web Cache to traverse a complex directory structure, invalidation can take some time. Therefore, do not click Submit again until the Cache Cleanup Result dialog box appears. Creating a queue of invalidation requests can degrade the performance of Oracle Web Cache. |
Invalidation requests can originate from a Web site's underlying application logic or from the content management application used to design Web pages.
Oracle Web Cache ships with the following Application Program Interfaces (APIs) that you can implement:
These APIs are located in the following directories:
For more information about these APIs, see readme.toolkit.html
in the following directories for further information about the APIs:
Database triggers are procedures that are stored in the database and activated ("fired") when specific conditions occur, such as adding a row to a table. You can use triggers to send invalidation requests. Use the UTL_TCP
Oracle supplied package to send invalidation requests through database triggers.
For more information, see Oracle PL/SQL documentation.
Many Web sites use scripts for uploading new content to databases and file systems. A large online book retailer, for instance, might run a PERL script once a day to bulk load new book listings and price changes into its catalog database. The retailer would want the price changes and availability listings to be reflected in the item views and search results currently cached in Oracle Web Cache. To achieve this result, you can modify the PERL script such that when the bulk loading operation has completed, the script sends an invalidation request to the cache invalidating all catalog views and search results. (Note that the invalidation request need not list every individual search page or item view that might be effected by the data change.) The performance assurance feature of Oracle Web Cache enables administrators to use broad brush strokes when invalidating content, making it safe to invalidate all catalog content even if only a fraction of that content has changed.
Response header invalidation is an Oracle Web Cache feature that enables an origin server to invalidate cached content through an HTTP response header.
The response-header field supports the following syntax:
Table 7-5 describes the control directives for response header invalidation.
Table 7-5 Control Directives for Oracle-WebCache-Invalidate
Control Directive | Description |
---|---|
| The If an origin server appends an invalidation response header to a random request, the client sending the request should not have to wait for the invalidation to complete. In this case, the origin server should direct Oracle Web Cache to return the response before proceeding with the invalidation (|
| An invalidation specification with the URI option directive enables Oracle Web Cache to invalidate the entry with the specified URI; this corresponds to basic invalidation. |
| An invalidation specification with the URI_DIR option directive enables Oracle Web Cache to interpret the specified URI as a directory and to invalidate all entries stored in the specified directory; this corresponds to URI prefix invalidation, a small but often used subset of advanced invalidation. Note that the directory URI strings must end in a slash (/) to make the URI_DIR option directive consistent with current URI prefix invalidation. |
| An invalidation specification with the When a |
Conjoined Multiple Directives | An invalidation response header may contain a URI directory followed by one or more search keys. In this situation, a semicolon (;) delimiter separates each directive. When this occurs, a Oracle Web Cache entry must match all the directives to qualify for invalidation. |
Multiple Invalidation Directives | When an invalidation response header contains multiple invalidation directives with each consecutive pair of invalidation directives separated by a comma, an Oracle Web Cache entry must match at least one invalidation directive to qualify for invalidation. In other words, Oracle Web Cache treats each comma-delimited invalidation directive as an independent invalidation operation. |
Mixing Commas and Semicolons | When an invalidation response header contains both kinds of separators, commas and semicolons, semicolons take precedence. In other words, the consecutive directives separated by semicolons must be examined; then consecutive directives separated by commas are examined. |
Multiple Invalidation Response Headers | An origin server can store multiple invalidation response headers in its response to Oracle Web Cache. When this happens, an Oracle Web Cache entry only needs to match one header to qualify for invalidation. In other words, the content of multiple invalidation response headers in the same response are treated as if they were part of a single response header joined by commas. If a response contains at least one invalid invalidation response header, no invalidation takes place even if the response contains other valid invalidation response headers. |
Usage Notes
"Oracle-WebCache-Invalidate"
followed by a colon (:), followed by one or more invalidation directives with consecutive pairs of invalidation directives separated by a comma (,). Optional synchronicity directives may appear before or after any directive. SYNCHRONOUS
" followed by an equal sign (=) followed by either the keyword "ON
"or the keyword "OFF
". URI
. URI_DIR
. S_KEY
. http://
or https://
, and a valid host name (for example, www.host1.com
). The following sections provide examples of invalidation response headers.
The examples are based on the fictional Web application for Harry's Hardware store with the Web site:
At this site, Harry publishes descriptions (including the retail price) for all the popular items he sells. Harry improves the response time for his on-line customers by deploying a Oracle Web Cache in front of the Web server hosting his site, but to ensure his on-line customers see fresh content, he wants the application to invalidate relevant Oracle Web Cache entries whenever it updates descriptions or prices for items in the store. The examples below indicate how to use response header invalidation for various scenarios that Harry has identified.
The sections include:
Harry sells one particularly popular item called the Thor hammer, and the corresponding description page has the following URI:
If Harry decides to put the Thor on sale, his Web application could invalidate the appropriate Web Cache entry with an invalidation response header containing a fully specified URI:
If the original request specified the host name (www.harryshardware.com
) explicitly, the application could return an invalidation response header with a path-only URI:
If Harry decides to put all the hammers in his store on sale, his Web application could invalidate all Web Cache entries for hammers with an invalidation response header containing a fully specified URI directory:
If the original request specified the host name (www.harryshardware.com
) explicitly, the application could return an invalidation response header with a path-only URI directory:
In the examples so far, we have not specified a synchronicity directive, so by default Oracle Web Cache would complete the invalidation before returning the response to the client.
If Harry wanted the example from Section 7.8.1.2 to proceed asynchronously, that is, if he did not want Oracle Web Cache to wait for the invalidation to complete before returning the response, his Web application could send an invalidation response header that looks like this:
Notice that the response header above contained a fully qualified URI directory. If the original request specified the host name (www.harryshardware.com
) explicitly, the application could return an invalidation response header with a path-only URI directory:
Suppose that Harry wants to reduce the price of all TrueSaw saws but not the handsaws, just the power saws (for example, skill saws and chainsaws). His Web application could invalidate all the necessary entries with an invalidation response header that looks like this:
Notice the addition of the S_KEY
directives to ensure the invalidation of only TrueSaw power saws.
Remember, when an invalidation response header contains multiple directives separated by semicolons, an Oracle Web Cache entry must match all directives for the invalidation to take place.
Notice also that the response header above contained a fully qualified URI directory. If the original request specified the host name (www.harryshardware.com
) explicitly, the application could return an invalidation response header with a path-only URI directory:
Suppose that Harry sets up an additional site for selling large appliances (dishwashers, refrigerators, etc.). Suppose also that he defines this site using a path prefix of /products/appliances
. The following Table 7-6 are the site definitions for the Web site:
Table 7-6 Web Site Definitions
Scheme | Host | Port Number | Path Prefix |
---|---|---|---|
|
|
|
|
|
|
| / |
The first site pertains strictly to large appliances; the second site applies to everything else in Harry's store.
Suppose further that Harry changes the price for all KeepCold refrigerators and that the site definition for an incoming request pertains to Harry's appliance site; scheme http, host name www.harryshardware.com
, (optional) port 80 and path prefix of /products/appliances
. His Web application could invalidate all the necessary entries with an invalidation response header that looks like this:
Notice that the invalidation response header contains only search key directives; it does not contain a URI directory directive. When this happens, Oracle Web Cache forms an implicit URI directory from the site definition associated with the incoming request. In this case the implicit directory corresponds to:
As before, with multiple directives separated by semicolons, an Oracle Web Cache entry must match all directives for the invalidation to take place.
The equivalent invalidation response header with an explicit, fully qualified URI directory would look like this:
The equivalent invalidation response header with an explicit, path-only URI directory would look like this:
Suppose that Harry wants to upgrade his entire inventory of drills and wrenches. His Web application could invalidate all the necessary entries with a response containing the following invalidation response header:
Remember, when an invalidation response header contains two consecutive invalidation specifications separated by a comma, an Oracle Web Cache entry only needs to match one invalidation specification for the invalidation to take place.
Notice that the response header above contained fully qualified URI directories. If the original request specified the host name (www.harryshardware.com
) explicitly, the application could return an invalidation response header with path-only URI directories:
Suppose that Harry wants to put both the Thor hammer and all TrueSaw power saws on sale. His Web application could invalidate all the necessary entries with a response containing the following invalidation response header:
Notice the use of both the comma and semicolon as separators. In this instance, the first directive consists of only the URI for the Thor hammer. The second directive consists of three invalidation specifications: the URI directory for saws and the search keys for Power Tools and TrueSaw tools. Semicolons take precedence over commas.
Notice also that the response header above contained a fully qualified URI and a fully qualified URI directory.
If the original request specified the host name (www.harryshardware.com
) explicitly, the application could return an invalidation response header with a path-only URI and a path-only URI directory:
Returning to the example of Section 7.8.1.6, a Web application, alternatively, could invalidate all the necessary entries with a response containing two separate invalidation response headers:
The directives from two different invalidation response headers in the same response are treated as if they were separate directives in a single response header—that is, they are treated as if they were separated by commas in a single invalidation response header. Notice, too, the response headers contained a fully qualified URI directory. If the original request specified the host name (www.harryshardware.com
) explicitly, the application could return invalidation response headers with path-only URI directories:
To enable this feature:
Surrogate-Key
response-header field as follows: See Section 7.6 for a complete description of the Surrogate-Key
response-header field.
By default, Oracle Web Cache supports up to 20 search keys. To increase the limit:
webcache.xml
file. MAXSEARCHKEYSPERDOC
attribute in the SEARCHKEYOPTIONS
element: The following example shows a search key limit of 35.
webcache.xml
. OTHER
element in a manual XML invalidation request to use the ADVANCEDSELECTOR
element, and specify the NAME
and VALUE
attributes to use SEARCHKEY
and the search key value, respectively. See Section 7.5.1. <esi:invalidate>
tag with the OTHER
element to use the ADVANCEDSELECTOR
element, and specify the NAME
and VALUE
attributes to use SEARCHKEY
and the search key value, respectively. See Section 11.4.6. S_KEY
option directive. See Section 7.8. This section covers the following topics:
To invalidate objects in the cache, send an HTTP POST request from the invalidator
account through an invalidation listening port.
The invalidator
account is an administrator authorized to send invalidation requests. See Section 5.2 for further information about configuring password security.
Propagation of invalidation messages from one Oracle Web Cache server to another occurs in the following deployments:
In a cache cluster, administrators can decide whether to propagate invalidation messages to all cache cluster members or to send invalidation messages individually to cache cluster members.
When Oracle Web Cache propagates invalidation messages, the cache that received the invalidation request acts as the invalidation coordinator for that request. The coordinator propagates the invalidation messages to the other cluster members. The coordinator waits for responses from all cluster members. When the propagation completes, the coordinator returns a message to the sender that lists, for each cluster member, the cluster member name, the status of the invalidation request, and the number of objects invalidated.
If any cluster member cannot be reached, Oracle Web Cache returns an error message and does not propagate the invalidation messages.
During a cache cluster upgrade, you upgrade one cache cluster member at a time. The caches continue to respond to requests. However, because other cluster members have a different version of the configuration, the caches do not forward invalidation messages to those cache cluster members operating with a different version. Instead, if the requested object is not cached by that cache or by cluster members with the same version of the configuration, Oracle Web Cache forwards the request to the origin server.
When the cache cluster members are not running the same version of Oracle Web Cache, you can still invalidate objects, and you can propagate the invalidation to other cluster members, but the invalidation message must originate from the cache that is operating with the earlier version of Oracle Web Cache.
See the Oracle Fusion Middleware Upgrade Planning Guide for more information about upgrading Oracle Web Cache to 11g Release 1 (11.1.1), including information about upgrading cache cluster members
In a configuration with a hierarchy of Oracle Web Cache servers, a cache hierarchy, it is likely that content is cached on multiple servers.
Figure 7-2 depicts a distributed cache hierarchy. A central cache is located in the United States office, and a remote cache is located in the Japan office. While the central cache stores content from an application Web server, the remote cache stores content from the central cache. In other words, the central cache acts as an origin server to the remote cache in Japan.
The central cache uses the invalidator
account name and password of the remote or subscriber Oracle Web Cache server. The invalidation request specifies the objects to invalidate, as well as the site host name of the objects. The site host name is compared with the IP address of the cache from which the invalidation request was propagated. If there is a match, the cache processes the invalidation request. Otherwise, the request is rejected.
For automatic propagation of invalidation messages, Oracle Web Cache passes the encoded invalidator
password in the page request between the central and remote cache during the hierarchy registration process. This HTTP traffic is susceptible to network sniffing. If the network is unprotected and insecure, configure HTTPS ports as follows:
When an invalidation message is sent to the central cache to refresh content, the central cache automatically propagates the invalidation message to the remote cache in Japan to ensure consistency.
To ensure that the central cache only invalidates its content, the remote cache checks the site host name specified in the invalidation message with the IP address of the central cache from which the invalidation message was propagated. If there is a match, the remote cache processes the invalidation request. Otherwise, the request is rejected. The site host name for the central and remote caches should be configured to be identical, making a mismatch unlikely.
See Section 10.2 for instructions on configuring a cache hierarchy.
This chapter describes the diagnostic features available with Oracle Web Cache.
This chapter includes the following topics:
Oracle Web Cache provides a number diagnostic tools to enable to you evaluate performance and optimal configuration settings. These tools include:
Server
response-header field or as a textual string in the HTML response body of an object. See Section 8.3. You can view a list of the most popular requests and a list of the contents of the cache, as well as requests that were not cache, generating the following types of lists:
Popularity is calculated using two factors: how many times the request was made and how recently the requests were made. You can specify: only objects stored in the cache, only objects not stored in the cache, or all requests received by the cache. See Section 8.6.
You can use this list to verify that the caching rules are caching the correct objects. See Section 8.6.
Oracle Web Cache can write a list of content of the cache to a file. See Section 8.7.
By default, Oracle Web Cache adds diagnostics information to the Server
response-header field. For diagnostics purposes, it can be useful to also display this information as a textual string in the HTML response body of an object. When enabled, you simply append a string to the URL of the object into the browser to see the diagnostic information string embedded in the response body:
You can also select to display event log information, with a verbosity level of TRACE, in the HTML response.
You can additionally configure the diagnostic information to be within HTML comment tags for pages having a Content-Type: text/html
response-header field. When enabled, the diagnostic information appears within HTML comment tags:
For objects sent to browsers, Oracle Web Cache adds diagnostic information to the Server
response-header field of the HTTP response message:
The Server
response-header field specifies name/value pairs for Oracle HTTP Server and Oracle Web Cache. The information for Oracle Web Cache includes version and diagnostic information.
where diagnostic_information
has the following format:
Table 8-1 describes the diagnostic fields.
Table 8-1 Control Directives for Server
Control Directive | Description |
---|---|
|
|
|
|
| Specifies the time, in seconds, to expire the object, and optionally, the time, in seconds, to remove the object from the cache after the expiration time. |
| Shows how long, in seconds, the object has been in the cache. |
| Specifies the request ID and sequence number specified in |
Using the Server
response header information, you can determine whether a request was served from the cache or the origin server. In the following example, the Server
field specifies that the object was a cache hit:
(TH;max-age=60+30;age=55;ecid=23248098121,0)
is the diagnostic information.
T
means this page is composed by ESI H
means this request resulted in cache hit max-age=60+30
means that the object is to expire in 60 seconds from population and to be removed from the cache 30 seconds from the expiration. This provides a total of 90 seconds from population. age=55
in age means that 55 seconds have passed since population of the cache, meaning there are 5 seconds to expiration and 35 seconds to removal ecid=23248098121,0
specifies the request ID and sequence number from the Oracle-ECID
request header. To display the Server
response header in the access logs, you select the sc(Server)
field. You must configure the sc(Server)
field as a user-defined access log format.
For more information, see:
sc(Server)
field To view general statistics, navigate to the Web Cache Home page. See Section 2.6.3 for further information about the statistics provided in the Web Cache Home page.
You can also view detailed statistics about a specific cache instance:
The Performance Summary page displays with performance metrics.
The following figure show the Performance Summary page with the Metric Palette displayed:
To obtain a definition of a performance metric, and information about the actions you should take when the metric is out of range, right-click the name of the metric and select Help from the context menu.
If after monitoring metrics, you need additional performance metrics, point your browser to the following URL:
This URL takes you to the Oracle Web Cache Internal Diagnosability Monitor page, which provides additional information about cache hits and misses. See Section 2.11.1 for further information about determining the statistics monitoring port.
Table 8-2 explains where to find information for evaluating the effectiveness of configuring rules.
To understand how evaluating the most popular requests can help determine if the caching rules are caching the correct objects, see Section 8.2.
To view the list of URLs of the most popular requests:
The Popular Request page displays.
The table updates with the list of URLs of requests since the cache was last started. The table contains the following columns for each request:
X-Oracle-Cache
response header. compress
control header in the Surrogate-Control
response header or a MIME type. compress
control directive in the Surrogate-Control
response header. compress
control header in the Surrogate-Control
response header or a MIME type. See Section 1.2.5 to better understand when Oracle Web Cache automatically disables compression. compress
control directive in the Surrogate-Control
response header. ROUTINGONLY
attribute is set to YES
in the webcache.xml
file. See Section 3.8 for further information about this attribute. To generate a list of the URLs of all of the objects currently stored in the cache to a file named webache_contents.txt
:
The Popular Request page displays.
Oracle Web Cache writes the list of URLs to webcache_contents.txt
in this directories:
Each time you generate the list, Oracle Web Cache appends the data to the existing file. It lists the date that the data was appended to the file, followed by the URLs of the objects currently cached. The following example shows an excerpt of the webcache_contents.txt
file:
To understand how Oracle Web Cache can add diagnostic information to the Server
response-header field or as a textual string in the HTML response body of an object, see Section 8.3.
To configure diagnostic information in the Server
response-header field or the HTML response body:
The Edit Global Page Body Diagnostics Configuration dialog box displays.
Server
response header, from the Global Server Header Diagnostics table, click Enable or Disable. The logging feature of Oracle Web Cache enables you to troubleshoot difficulties you might have in execution and use of Oracle Web Cache and associated processes.
This chapter includes the following topics:
Oracle Web Cache records event and error information in event logs. An event log entry can help you determine what objects have been inserted in the cache and alert you to any cache-related issues. By default, Oracle Web Cache collects all event log messages associated with each request in memory. If the most severe message in the request is at or above the selected verbosity level, Oracle Web Cache writes all the messages related to the request to the event log at once. Oracle Web Cache groups the messages for the request together in the log file for easier diagnosis.
By default, the event log has a file name of event_log
for the Oracle Web Cache and Oracle Diagnostic Logging (ODL) text formats and log.xml
for the ODL XML format. Oracle Web Cache stores logs files in the following directories:
This section includes the following topics:
When you configure settings for event logs, select the logging format:
The Oracle Diagnostic Logging (ODL) format provides a common format for all diagnostic messages and log files, and a mechanism for correlating the diagnostic messages from various components across Oracle Fusion Middleware.
You can select ODL Text to create a text file or ODL XML to create an XML file.
The format of the ODL Text format follows:
Table 9-4 describes the fields for the ODL Text format.
Table 9-1 ODL Text Message Fields
Fields | Description |
---|---|
| The date and time when the message was generated. Time is either displayed in local or Greenwich Mean Time. |
| The type of message. Possible values are NOTIFICATION, WARNING, TRACE, and DEBUG. |
| The message level, represented by an integer value that qualifies the message type. Possible values are from 1 (highest severity) through 32 (lowest severity). |
| The ID that uniquely identifies the message within the component. The ID consists of a prefix that represents the component, followed by a dash, then a 5-digit number. For example: The Oracle Fusion Middleware Error Messages Reference describes the messages in further detail. |
| The ID of the module that originated the message. If the component is a single module, the component ID is listed for this attribute. |
| The Execution Context ID (ECID), which is a global unique identifier of the execution of a particular request in which the originating component participates. You can use the ECID to correlate error messages from different components. See Also: Section 9.1.1.4 for more information about the |
| The text of the error message. |
The following shows an event log excerpt with the ODL Text format:
Table 9-2 describes the fields for the ODL XML format.
Table 9-2 ODL XML Message Fields
Fields | Description |
---|---|
| The date and time when the message was generated. Time is either displayed in local or Greenwich Mean Time. |
| The ID of the component that originated the message. |
| The ID that uniquely identifies the message within the component. The ID consists of a prefix that represents the component, followed by a dash, then a 5-digit number. For example: |
| The type of message. Possible values are NOTIFICATION, WARNING, TRACE, and DEBUG. |
| The message level, represented by an integer value that qualifies the message type. Possible values are from 1 (highest severity) through 32 (lowest severity). |
| The name of the host where the message originated. |
| T he network address of the host where the message originated. |
| The ID of the module that originated the message. If the component is a single module, the component ID is listed for this attribute. |
| The Execution Context ID (ECID), which is a global unique identifier of the execution of a particular request in which the originating component participates. You can use the ECID to correlate error messages from different components. See Also: Section 9.1.1.4 for more information about the |
| The text of the error message. |
The ODL XML Format provides additional fields, such as the following shows an event log excerpt for the ODL XML format:
For more information about the ODL format, see:
The Oracle Web Cache log format is intended for customers who prefer the traditional log format provided by Oracle Web Cache in previous releases.
The format of the Oracle Web Cache format follows:
Table 9-3 describes the fields for Oracle Web Cache format.
Table 9-3 Oracle Web Cache Message Fields
Fields | Description |
---|---|
| The date and time when the message was generated. Time is either displayed in local or Greenwich Mean Time. |
| The type of message. Possible values are NOTIFICATION, WARNING, TRACE, and DEBUG. |
| The ID that uniquely identifies the message within the component. The ID consists of a 5-digit number. For example: |
| The Execution Context ID (ECID), which is a global unique identifier of the execution of a particular request in which the originating component participates. You can use the ECID to correlate error messages from different components. See Also: Section 9.1.1.4 for more information about the |
| The text of the error message. |
For example:
Oracle Web Cache displays the request detail format in message 09720 when you enable option Include Request Details in the event log messages. This message is logged the first time an event is logged for a request with the following additional request details, including the client IP address, site name of the request and URL of the request.
Table 9-4 describes the fields for the request detail format.
Table 9-4 Request Details
Fields | Description |
---|---|
| Request detail event |
| IP address of the client that made the request |
| Site name of the request |
| URL of the request |
For example:
In addition to the IP address, site name, and URL of the request, the ID and sequence number of the Oracle-ECID
request header is logged. The Oracle-ECID
request header is used to track requests.
The Oracle-ECID
request header is used to track requests as they move through the Oracle Fusion Middleware architecture. This information is especially useful for diagnostic purposes. Because Oracle Web Cache is the initial receiver of client requests, it sets the request header before forwarding a cache miss to an origin server. The Oracle-ECID
request header takes the following format:
In the format, request_id
is a 64-bit unique integer for the request, and sequence_number
is the hop number of the request as it passes through Oracle Fusion Middleware. Oracle Web Cache typically assigns an initial sequence number of 0 to a request. As a request passes from Oracle Web Cache to other Oracle Fusion Middleware components, the request ID remains constant, but the sequence number increments with each hop.
You can configure Oracle Web Cache to log the request ID and sequence number from the Oracle-ECID
request header in the event and access logs. To display the Oracle-ECID
request header in the event logs, you enable the Include Request Details option, and select the x-ecid
field for the access logs. The x-ecid
field is provided by default with the Enhanced CLF (ECLF), Enhanced Combined Log Format, and End-User Performance Monitoring Format. Additionally, you can configure Oracle HTTP Server to log the Oracle-ECID
request header information, enabling you to correlate events at different Oracle Fusion Middleware stops for the same request.
Oracle Web Cache also includes Oracle-ECID
request header information whenever you configure to display diagnostic information in the Server
response-header field or the HTML response body.
See Section 8.8 or further information about configuring diagnostic output in the Server
response-header field or the HTTP response message that includes Oracle-ECID
information
This section contains the following event log examples:
The following shows an event log excerpt with unsuccessful startup events. Oracle Web Cache cannot listen on port 7777, because it is in use. These errors can occur if Oracle Web Cache is running and listening on that port or another application is using that port.
The following shows an event log excerpt with typical shutdown entries:
The following shows an event log excerpt containing events for a cache-miss request:
The following shows an event log excerpt containing events for a subsequent cache-hit request:
The following shows an event log excerpt with an event associated with an invalidation request for the removal of object /invalidation1/tcal_fct_invalidate_basic_5.html
.
The following provides an example of the messages in the event log for an ESI fragment for a cache miss. The messages in the event log report information about:
In the following examples, TRACE:1
messages are for the verbosity=TRACE
level and TRACE:32
messages are for the verbosity=DEBUG
level. Setting verbosity to DEBUG
includes TRACE
, NOTIFICATION
, WARNING
, and ERROR
level messages. TRAC
E includes NOTIFICATION
, WARNING
, and ERROR
, but not DEBUG
.
You do not see the following log messages shown in the following example unless you have the set the event_log
verbosity level to DEBUG
:
Oracle Web Cache records information about the received HTTP and HTTPS requests in access logs. Each Web site Web site defined in Oracle Web Cache can have its own access log. By default, the access log has a file name of access_log
and is stored in the following directories:
This section includes the following topics:
You can configure the content of the access log files by defining the fields to appear for each HTTP request event. These fields are based on the standard Extended LogFile Format (XLF). By default, Oracle Web Cache provides support for the following access log formats:
This format is the default format applied to access logs. This format is appropriate for most configurations. The CLF format provides support for the following fields:
c-ip
x-log-id
x-auth-id
x-clf-date
x-req-line
sc-status
bytes
This format uses many of the CLF fields and includes the x-ecid
field for tracking the request ID and sequence number specified in Oracle-ECID
request header:
c-ip
x-log-id
x-auth-id
x-clf-date
x-req-line
sc-status
bytes
x-ecid
This format provides support for the CLF fields with the addition of the cs(Referer)
and cs(User-Agent)
fields:
c-ip
x-log-id
x-auth-id
x-clf-date
x-req-line
sc-status
bytes
cs(Referer)
cs(User-Agent)
Select this format when you must determine what kind of browser is sending the request, and where the browser was visiting before the request was forwarded to Oracle Web Cache.
This format uses many of the Combined Log Format fields and includes the x-ecid
field for tracking the ID of the specified in Oracle-ECID
request header:
c-ip
x-log-id
x-auth-id
x-clf-date
x-req-line
sc-status
bytes
cs(Referer)
cs(User-Agent)
x-ecid
This format provides support for the following fields intended for end-user performance monitoring of 10g features:
x-req-type
x-date-start
x-time-start
c-ip
s-ip
x-auth-id
cs(Host)
cs-method
cs-uri
x-protocol
sc-status
bytes
cs-bytes
x-cache
time-taken
r-time-taken
x-time-delay
x-os-timeout
x-ecid
x-cookie(ORACLE_SMP_CHRONOS_ST)
x-cookie(ORACLE_SMP_CHRONOS_LT)
x-cookie(ORACLE_SMP_CHRONOS_GL)
x-glcookie-set
cs(Referer)
cs(User-Agent)
x-esi-info
x-conn-abrt
sc(Content-Type)
If the default formats are not suitable for your environment, you can create custom log formats by specifying the fields that you require. Table 9-5 describes the supported fields. Fields prefixed with x
or r
are proprietary to Oracle Web Cache.
Table 9-5 Access Log Fields
Field | Description |
---|---|
Content length of the request | |
IP address of the client | |
| Integer that specifies cache status. Cache status is reported as the following:
|
HTTP request header sent from the client See Also: "cs(header_name) and sc(header_name) Access Log Fields" | |
Bytes received from the client | |
Client-to-Oracle Web Cache HTTP request method | |
Client-to-Oracle Web Cache URI | |
Client-to-Oracle Web Cache query portion of URI, omitting the stem | |
Client-to-Oracle Web Cache stem portion of URI, omitting the query | |
Date the transaction completed, in the following format:
| |
IP address and port number of origin server. For a cache cluster, this field displays the IP and port number of a peer cache in the cache cluster. The information is displayed in the following format:
| |
Time, in seconds (including microseconds), that Oracle Web Cache spent communicating with the origin server or peer cache. The time is the duration between the following two points of time:
This field is particularly helpful in providing time information for end-user performance monitoring. | |
IP address of Oracle Web Cache computer | |
HTTP response header sent from Oracle Web Cache to the client See Also: "cs(header_name) and sc(header_name) Access Log Fields" | |
Oracle Web Cache-to-client HTTP status code:
See Also: | |
Time at which the response from Oracle Web Cache completed. The time is displayed in the following format:
| |
Amount of time taken, in seconds (including microseconds), for the transaction to complete | |
User name of a basic HTTP authentication request | |
Cache status. Cache status is reported as the following:
| |
Diagnostic information, in the following format:
Example:
| |
| Cache key value, in the following format: " |
Date that the response from Oracle Web Cache completed, in the following format:
| |
Single character that specifies the status of a cache cluster. The character is reported as the following:
| |
Cookie value from client browser request. | |
Single character that specifies the whether a connection was terminated before a response was completed. This field is intended for end-user performance monitoring.
| |
Date before Oracle Web Cache received the first byte of the request, in the following format:
| |
Date when Oracle Web Cache sent the last byte of the response, in the following format:
| |
ID of the specified in
See Also: Section 9.1.1.4 for further information about the | |
ESI fragment log message from the
The log message only displays for requested ESI fragments in the | |
Boolean character that specifies whether Oracle Web Cache created the
| |
Login user name of the client. Oracle Web Cache cannot obtain the value for this field. Therefore, Oracle Web Cache displays a hyphen (| |
Origin server or cache cluster member that Oracle Web Cache is forwarding the request, in the following format:
| |
Single character that specifies if the origin server timed out on a request. The character is reported as the following:
| |
Protocol and version from client request, in the following format:
| |
Request line, in the following format:
Example: | |
Request type. Request type is reported as the following:
| |
Time, in seconds (including microseconds), that Oracle Web Cache spent communicating with the origin server or peer cache. The time is the duration between the following two points of time:
This field is particularly helpful in providing time information for End-User Performance Monitoring. | |
Time that Oracle Web Cache sent the last byte of the response, in the following format:
| |
The difference between the times the client initiates a new connection and the time at which Oracle Web Cache receives the first byte of the HTTP request. Note: Select this field only if instructed by Oracle Support Services. | |
The difference between the times Oracle Web Cache receives the first and last byte of the HTTP request. This field indicates the time in reading the browser requests. Note: Select this field only if instructed by Oracle Support Services. | |
The difference between the times Oracle Web Cache sends the first and last byte of the HTTP request to the origin server. This field indicates the time taken in sending the request to the origin server. Note: Select this field only if instructed by Oracle Support Services. | |
The difference between the times Oracle Web Cache receives the first and last byte of the HTTP response from the origin server. This field indicates the time taken in receiving the response from the origin server. Note: Select this field only if instructed by Oracle Support Services. | |
The difference between the times Oracle Web Cache sends the first and last byte of the HTTP response to the browser. This field indicates the time taken in sending the response to the client. Note: Select this field only if instructed by Oracle Support Services. | |
The difference between when a request was blocked and unblocked due to a cache update. If a request has been sent to the origin server by Oracle Web Cache to update an existing object, Oracle Web Cache blocks all subsequent requests. Note: Select this field only if instructed by Oracle Support. | |
The difference between when a request is queued and dequeued for the origin server. This field indicates the time a request spends in Oracle Web Cache back-end queue for an origin server (due to the maximum origin server capacity being reached) before the request is sent to the origin server for processing. Note: Select this field only if instructed by Oracle Support. | |
Time before Oracle Web Cache received the first byte of the request, in the following format:
|
Table 9-6 lists examples of HTTP/1.1 headers that can be used for the cs(
header_name
)
and sc(
header_name
)
fields. This table lists only some possible headers. It is not an exhaustive list.
Table 9-7 lists examples of cookie-related headers that can be used for the cs(
header_name
)
and sc(
header_name
)
fields.
Table 9-8 lists examples of Oracle Web Cache headers that can be used for the cs(
header_name
)
and sc(
header_name
)
fields.
The following code shows an excerpt of an access log file:
In the first line of the output, the fields have the following meaning:
10.10.150.35
is the browser's IP address (c-ip
) [25/Jul/2005:10:27:42 -0500]
is the date ([x-clf-date]
) "GET /~user/personal.htm HTTP/1.1
"
is the request line ("x-req-line"
) 200
is the HTTP status code (sc-status
) 2438
is the size of the object sent (bytes
) In addition, this section contains the following access log examples:
Except where noted otherwise, the access log examples use the CLF format:
The following shows an access log excerpt in which there are two Web browser reloads, followed by two shift reloads, and two more reloads:
The third and forth entries return an HTTP status code of 304, indicating that object has not been modified and does not need to be returned again.
The following shows an access log excerpt in which Oracle Web Cache cannot find any objects matching the requested URL /ows-img/chalk.jpg
. This error is indicated by HTTP status code 404.
The following shows an access log excerpt in which the combined format is specified:
The following shows an access log excerpt in which the following fields are specified:
cs(Host)
displays the output of Host
request-header field, which specifies the site information. In this example, requests are sent to Oracle Web Cache for site www.company.com:80
.
The following shows an access log excerpt in which the following fields are specified:
c-ip x-clf-date x-req-line sc-status bytes
x-cache-detailx-cache-detail
displays diagnostic information. In the following example:
T
means that this request is for an ESI template H
means that this request resulted in cache hit max-age=10+15
means that the object is to expire in 10 seconds from population and to be removed from the cache 15 seconds from the expiration. This provides a total of 25 seconds from population. age=0
means that 0 seconds have passed since population of the cache, meaning there is 10 seconds to expiration and 15 seconds to removal The following shows an access log excerpt in which the following fields are specified:
x-esi-info
displays log information from the log
element of <esi:environment>
or <esi:include
> tags.
To configure event log settings:
The Event Log Configuration page displays.
Specify the following settings for each cache in the Cache-Specific Settings table:
By default, the event log is stored in the following directories:
With buffered logging, Oracle Web Cache stores log messages in memory. Oracle Web Cache writes them out in bulk to the event log when the buffer size or the flush interval is reached. Buffered logging increases performance by reducing the number of disk I/O operations.
If the Oracle Web Cache server shuts down unexpectedly, buffered log messages may be lost.
Oracle recommends disabling buffering to see the event log results immediately.
The default is 10 seconds. When the interval is reached, Oracle Web Cache writes buffered information to the event log file. Even if the buffer is not full, Oracle Web Cache updates the event log. Oracle recommends not changing the default, unless you want to lower the interval to see results more frequently.
A value of 0 specifies that Oracle Web Cache will only flush the buffered event log when the specified buffer size has been exceeded.
The default is 2048 characters. You can specify a maximum value of 32,768 characters.
Table 9-9 Verbosity Levels
Level | Description |
---|---|
Warning | Provides abnormal-operation events. |
Notification | Provides normal-operation events, such as startup and shutdown. This is the default. |
Trace | Provides events for debugging configuration.
|
Debug | Provides detailed events for troubleshooting. This level is intended for Oracle Support Services. |
The default file name is event_log
.
See Section 9.1.1 for further information about the formats.
With request-based logging, Oracle Web Cache collects all event log messages associated with each request in memory. If the most severe message in the request is at or above the selected verbosity level, Oracle Web Cache writes all the messages related to the request to the event log at once. Oracle Web Cache groups the messages for the request together in the log file for easier diagnosis. For example, if verbosity is set to Notification, and Oracle Web Cache encounters an error at the Trace or Debug level, Oracle Web Cache writes all of the event log messages for the request to the event log.
Select Disabled to view results as they happen, especially when the verbosity is set to a level higher than Notification.
Oracle-ECID
request header, or select No to not write request information to the event log. See Section 9.1.1.2 for further information about how request details are logged. Select No if either of the following conditions apply:
The Edit Rollover Policy dialog displays.
You can use the rollover options in combination. For example, you can use both Rollover by Time and Rollover by Size or both Retention by Size and Retention by Time. Oracle Web Cache performs rollover based on whichever is reached first.
event_log_file.yyyymmddhhmm
and write future log information to a new log file with the configured log file name. If you have a high-volume site, select Daily or Hourly.
Table 9-10 Configuring Rollover By Time
Policy | To configure: |
---|---|
Hourly |
|
Daily |
|
Weekly |
|
To remove a time from the schedule list, select the time, and then click Remove. The value moves to the left list, where you can modify it.
See Section 9.8 for instructions on immediately rolling over log files.
In the Every field, enter the quantity and from the list of Hours, Days, Weeks, Months, Years, select the duration. A quantity of 0 means unlimited time, which means Oracle Web Cache does not retain files based on time.
This value must be larger than the value you specify for the Rollover Size field.
If neither Retention by Time or Retention by Size is set, then log files can grow without limits. The log files could end up consuming all available space on the disk where this file is located.
To configure access log settings:
The Access Log Configuration page displays.
Specify the following settings for each cache in the Cache-Specific Settings table:
By default, the event log is stored in the following directories:
Click Enable Logging? to enable logging; deselect to disable logging.
With buffered logging, Oracle Web Cache stores log messages in memory. Oracle Web Cache writes them out in bulk to the access log when the buffer size or the flush interval is reached. The buffer size is set to 2048 bytes. Buffered logging increases performance by reducing the number of disk I/O operations.
If the Oracle Web Cache server shuts down unexpectedly, buffered log messages may be lost.
Oracle recommends disabling buffering to view access log results immediately.
The default is 10 seconds. When the interval is reached, Oracle Web Cache writes buffered information to the access log file. Even if the buffer is not full, Oracle Web Cache updates the access log. Oracle recommends not changing the default, unless you want to lower the interval to see results more frequently.
A value of 0 specifies that Oracle Web Cache will only flush the buffered access log when the specified buffer size has been exceeded.
The default file name is access_log
.
Site-specific logging only takes effect if logging is enabled for the cache. If you enable this option, ensure that it is also selected for the cache in Step 3b.
log
element of <esi:environment>
or <esi:include
> in the access_log_file
.fragment
file. If the x-esi-info
field is selected, select to log the events to the access_log_file
.fragment
file. The x-esi-info
field is automatically selected if the Format Style is End-User Performance Monitoring Format. If the x-esi-info
field is not selected, select Don't Log.
See Section 9.2.1 for a description of the default formats and Section 9.5 to create a customized style for your environment.
access_log_file.
yyyymmddhhmm
and writes future log information to a new log file with the configured log file name. For high-volume sites, select a policy with a high frequency.
See Section 9.6 to modify an existing policy or create a new rollover policy.
If the default formats described in Section 9.2.1 are not suitable for your environment, create a new log format:
The Access Log Configuration page displays.
The Create Log Format dialog box displays.
_
). Directive information typically consists of version, date, and field information. For example:
See http://www.w3.org/TR/WD-logfile.html
for further information about XLF directives.
In the XLF Fields section, select an access log field name from the Field Name list.
See Table 9-5 for a listing of the supported access logs fields
If you select cs(header_name or sc cs(
header_name
)
, sc(
header_name
)
, or x-cookie(
cookie_name
)
, then enter the header or cookie name in the Header/Cookie name field.
See Table 9-6, Table 9-7, and Table 9-8 for a description of the headers allowed for cs(
header_name
)
and sc(
header_name
)
Click Add.
To modify an existing rollover policy or create a new rollover policy:
The Access Log Configuration page displays.
The Create Rollover Policy dialog box displays.
You can use the rollover options in combination. For example, you can use both Rollover by Time and Rollover by Size or both Retention by Size and Retention by Time. Oracle Web Cache performs rollover based on whichever is reached first.
_
). access_log_file.
yyyymmddhhmm
and write future log information to a new log file with the configured log file name. If you have a high-volume site, select Daily or Hourly.
access_log_file.
yyyymmddhhmm
and write future log information to a new log file with the configured log file name. If you have a high-volume site, select Daily or Hourly.
For Hourly, Daily, and Weekly, enter a new time in the left-hand side fields and menus and add it to the schedule by clicking Add. Table 9-11 describes specific configuration instructions for Hourly, Daily, and Weekly.
Table 9-11 Configuring Rollover By Time
Policy | To configure: |
---|---|
Hourly |
|
Daily |
|
Weekly |
|
To remove a time from the schedule list, select the time, and then click Remove. The value moves to the left list, where you can modify it.
See Section 9.8 for instructions on immediately rolling over log files.
In the Every field, enter the quantity and from the list of Hours, Days, Weeks, Months, Years, select the duration. A quantity of 0 means unlimited time, which means Oracle Web Cache does not retain files based on time.
This value must be larger than the value you specify for the Rollover Size field.
If neither Retention by Time or Retention by Size is set, then log files can grow without limits. The log files could end up consuming all available space on the disk where this file is located.
To view events logs, use either the Fusion Middleware Control or the WLST listLogs
command. See the following documentation resources:
To view access logs, use any text editor.
In addition to configuring event and access log rollover frequency, you can immediately roll over event and access logs. During the rollover process, Oracle Web Cache saves current information to lot file and writes future log information to a new log file with the configured log file name.
To immediately roll over log files:
Oracle Web Cache supports the Common Audit Framework for providing a uniform system for administering audits across Oracle Fusion Middleware components. The audit log files generated by Oracle Web Cache processes provide important information that can help you identify and diagnose potential security performance and configuration issues.
Oracle Web Cache records the following events in the audit log:
For more information, see Oracle Fusion Middleware Security Guide for further information about using audit logs.
This chapter describes how to configure common deployment scenarios using Oracle Web Cache. It includes the following topics:
Figure 10-1 shows Oracle Web Cache in a common Oracle Application Server configuration. A tier of Oracle Web Cache servers cache content for a tier of application Web servers. The application Web servers app1-host1
and app1-host2
provide content for site www.app1.company.com
, and app2-host
provides content for www.app2.company.com
. The two Oracle Web Cache servers reside on dedicated, fast one or two-CPU computers. To increase the availability and capacity of a Web site, these servers are configured as either a cache cluster or a failover pair.
Oracle recommends a hardware load balancer to ping each Oracle Web Cache server on a periodic basis to check the status of the cache.
As a cache cluster, the two Oracle Web Cache servers provide failure detection and failover. If an Oracle Web Cache server fails, other members of the cache cluster detect the failure and take over ownership of the cached content of the failed cluster member and masks any cache failure. Oracle Web Cache maintains a virtual single cache of content despite a cache failure. The load balancer distributes the incoming requests among cache cluster members. The cache cluster members process the incoming requests. For requests that are not stored in the cache, Oracle Web Cache distributes the requests to an application Web server respective to the site.
As a failover pair, both Oracle Web Cache servers are configured to cache the same content. When both Oracle Web Cache servers are running, a load balancer distributes the load among both servers. If one server fails, the other server receives and processes all incoming requests.
To configure this topology:
www.app1.company.com
and www.app2.company.com
. webche1-host
and webche2-host
and configure it to ping each cache server periodically to check the status of the cache. /_oracle_http_server_webcache_static_.html
, which is stored in the cache. webche1-host
and webche2-host
as cluster members. See Section 3.6 for more information on configuring a cache cluster.
app1-host1
, app1-host2
, and app2-host
on designated listening ports www.app1.company.com
mapped to app1-host1
and app1-host2
www.app2.company.com
mapped to app2-host
For more information, see:
Many Web sites have several data centers. For networks with a distributed topology, you can deploy Oracle Web Cache at each of the data centers in a distributed cache hierarchy. Figure 10-2 shows a distributed topology in which Oracle Web Cache servers are distributed in offices in the United States and Japan. The application Web servers are located in the United States office, centralizing the data source to one geographic location. The central caches in the United States cache content for application Web servers app1-host1
, app2-host2
, and app2-host
, and the remote cache in Japan caches content from the central caches.
Clients make requests to local DNS servers to resolve www.app1.company.com
and www.app2.company.com
. The local DNS servers are routed to the authoritative DNS server for the respective sites. The authoritative DNS server uses the IP address of the client to pick the closest Oracle Web Cache server to satisfy the request. Then, it returns the IP address of the appropriate Oracle Web Cache server to the client.
To configure this topology:
www.app1.company.com
and www.app2.company.com
. us.webche1-host
and us.webche2-host
and configure it to ping each cache server periodically to check the status of the cache. us.webche1-host
and us.webche1-host
with the following: app1-host1
, app1-host2
, and app2-host
on designated listening ports www.app1.company.com
mapped to app1-host1
and app1-host2
www.app2.company.com
mapped to app2-host
jp.webche-host
with the following: us.webche1-host
and us.webche2-host
on designated listening ports www.app1.company.com
mapped to app1-host1
and app1-host2
www.app2.company.com
mapped to app2-host
webcache.xml
, located in: INTERCACHE>
element, a sub-element of the <SECURITY>
element. ENABLEINBOUNDICC
and ENABLEOUTBOUNDICC
attributes to YES
. For example: webcache.xml
. This executable is found in the following directory:
For more information, see:
You can make Oracle Web Cache highly available without a hardware load balancer by configuring:
With this option, you configure one or more caches solely to provide load balancing or reverse proxy support.
With this option, you configure the operating system to load-balance incoming requests across multiple caches. When the operating system detects a failure of one caches, automatic IP takeover is used to distribute the load to the remaining caches in the cluster configuration. This feature is supported on many operating systems, including Linux, Windows 2000 Advanced Server, Windows 2000 Datacenter Server, and Windows 2003 (all editions).
For more information, see Section 3.8 and Section 3.9 for configuration details.
This part presents information about performing advanced administration tasks for Oracle Web Cache. It contains the following chapters:
This chapter describes the Edge Side Includes (ESI) tags provided for content assembly of dynamic fragments.
ESI is an open specification co-authored by Oracle. Its purpose is to develop a uniform programming model to assemble dynamic pages in a dynamic content cache deployed as a surrogate or proxy between clients and origin servers.
ESI is an XML-like markup language that enables dynamic content assembly of fragments by Oracle Web Cache. A template page is configured with ESI markup tags that fetch and include dynamic HTML fragments. The fragments themselves can also contain ESI markup. You can assign caching rules to the template page and HTML fragments. By enabling page assembly in Oracle Web Cache rather than in the origin server, you can increase cache hit rates and improve performance.
This chapter includes the following topics:
See http://www.esi.org
for the ESI language release 1.0 specification.
Oracle Web Cache provides dynamic assembly of Web pages with both cacheable and non-cacheable page fragments. It provides for assembly by enabling Web pages to be divided into fragments of differing caching profiles. These fragments are maintained as separate elements in the cache. The fragments are assembled into HTML pages as appropriate when requested by end users.
By enabling dynamic assembly of Web pages on Oracle Web Cache rather than on the origin servers, you can choose to cache some fragments of assembled pages. With partial page caching, much more HTML content can be cached, and then assembled and delivered by Oracle Web Cache when requested. Furthermore, page assembly can be conditional, based on information provided in HTTP request headers or end-user cookies.
The basic structure that an application developer uses to create content for partial-page caching is a template page containing fragments. As depicted in Figure 11-1, the template consists of common elements, such as a logo, navigation bars, framework, and other "look and feel" elements of the page. The fragments represent dynamic subsections of the page.
The template page is associated with the URL that end users request. To include the fragments, the template page is configured with ESI markup tags that instruct Oracle Web Cache to fetch and include the HTML fragments. The fragments themselves are HTML files containing discrete text or other objects.
Each included fragment is a separate object with its own caching policy. Content providers may want to cache the template for several days, but only cache a particular fragment, such as an advertisement or stock quote, for a matter of seconds or minutes. Other fragments (such as a user's bank account total) may be declared non-cacheable.
Table 11-1 provides a summary of the main ESI tags.
Table 11-1 Summary of ESI Tags
Tag | Description |
---|---|
| Performs conditional processing based on Boolean expressions |
| Specifies comments not be included in the output |
| Allows variable access from an HTTP response |
| Includes an HTML fragment |
| Marks a fragment as a separately cacheable fragment, embedded in the HTTP response of another object |
| Specifies an invalidation request within the response of a browser page |
| Specifies non-ESI markup if ESI processing is not enabled |
| Specifies alternate processing when a request fails because the origin server is not accessible |
| Permits variable substitution for environment variables |
Example 11-1 shows the ESI markup language for the template page shown in Figure 11-1.
Example 11-1 ESI Markup
Example 11-2 shows the XML response of GetProfile.jsp
, which provides access to profile environment variables.
Example 11-2 GetProfile.jsp XML Response
ESI can be used with HTML, XML, JSP, ASP, and any Web programming technology. The ESI language includes the following features:
An ESI processor assembles HTTP or HTTPS fragments of dynamic content, retrieved from the network, into aggregate pages to output to the user. Each fragment can have its own caching rules.
ESI supports the use of variables based on HTTP request attributes, as well as custom variables from included HTML fragments. Variables can be used by ESI statements during processing or can be output directly into the processed markup.
ESI allows use of Boolean comparisons for conditional logic in determining how pages are processed.
Some ESI tags support specification of a default resource or an alternative resource, such as an alternate Web page, if the primary resource cannot be found. Further, it provides an explicit exception-handling statement block.
ESI fragments in different character sets are converted to one character set. This way, all partial pages are assembled in a fixed character set. Character set conversion works in the following manner:
Oracle Web Cache does not perform character set conversion for non-ESI pages.
Oracle Web Cache uses XSL Transformations (XSLT) to transform XML fragments into HTML.
Oracle Web Cache provides the JESI tag library as a convenient interface to ESI tags and functionality. In addition, you can deploy the JESI tag library on Oracle WebLogic Server. Developers have the option of using ESI tags directly in any Web application, but JESI tags provide additional convenience in a JSP environment.
Because ESI and JESI are open standards, you can use the JESI tag library in any standard JSP environment if an ESI processor, such as Oracle Web Cache, is available.
Even though JSP developers can always use ESI, JESI provides an even easier way for JSP developers to express the modularity of pages and the cacheability of those modules, without requiring developers to learn a new syntax.
For further information about using JESI with Oracle WebLogic Server, see:
http://www.oracle.com/technology/sample_code/tech/java/codesnippet/webcache/index.html
Oracle Web Cache supports the ESI language tags, elements, and attributes listed in Table 11-2. The rightmost column specifies, for each ESI tag, attribute, or element, all the feature sets that support it. For example, the <esi:invalidate>
tag is only supported by the "ESI-INV/1.0"
feature set. To enable the correct processing in Oracle Web Cache, specify all the feature sets that an ESI template uses in the content
control directive of the Surrogate-Control
response header. However, you do have to specify features sets used within an ESI fragment directly or indirectly included in the template. For example, if an ESI template uses an <esi:invalidate>
and an <esi:environment>
tag with an <esi:log>
element, the content
control directive must include "ESI-INV/1.0"
and "ORAESI/9.0.4"
, as follows:
See Section 6.10 for further information about configuring the Surrogate-Control
response header.
Table 11-2 ESI Language Features
ESI Language Feature | See Also | content="value" Control Directive in Surrogate-Control Response Header Supporting Feature |
---|---|---|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
See http://www.esi.org/spec.html
for the ESI Language Specification 1.0 and the Edge Architecture Specification.
To enable Oracle Web Cache to process ESI tags, you set an HTTP Surrogate-Control
response-header field in the HTTP response message of the pages that use ESI tags.
For each requested object from the cache, Oracle Web Cache appends a Surrogate-Capability
request-header field to an object's HTTP request message. The Surrogate-Capability
request-header serves the following purposes:
The Surrogate-Capability
request-header enables Oracle Web Cache to identify the operations it can perform to origin servers acting as caches. The Surrogate-Capability
request-header field supports the following syntax:
where "operation_value
" is one or more of the following:
"ORAESI/9.0.4"
to process ESI tags with Oracle-proprietary additions for content assembly and partial page caching. "ORAESI/9.0.4"
supports all the ESI tags provided by Oracle Web Cache in 10g (9.0.4) and later releases. "ORAESI/9.0.2"
to process ESI tags with Oracle proprietary additions for content assembly and partial page caching. "ORAESI/9.0.2"
supports all the ESI tags provided by Oracle Web Cache in Release 2 (9.0.2 and 9.0.3). "ESI/1.0"
to process standard ESI tags for content assembly and partial page caching "ESI-Inline/1.0"
to process <esi:inline>
tags "ESI-INV/1.0"
to process <esi:invalidate>
tags "webcache/1.0"
to process the <!-- WEBCACHETAG-->
and <!-- WEBCACHEEND-->
tags for personalized attributes The values "ORAESI/9.0.2"
, "ESI/1.0"
, and "ESI-Inline/1.0"
are subsets of "ORAESI/9.0.4"
. For this release, you specify only "ORAESI/9.0.4"
for ESI assembly, "ESI-INV/1.0"
for inline invalidation, or "webcache/1.0"
for personalized attributes.
See Table 11-3 or further information about the ESI tags supported for each operation_value
.
ESI elements and attributes adhere to XML syntax but can be embedded in other objects, such as HTML or XML objects. When Oracle Web Cache processes the page, the ESI elements themselves are stripped from the output.
ESI syntax generally adheres to XML syntax rules. Keep the following in mind when using the tags:
They are generally lowercase.
They are generally uppercase.
=
) or between the "<
" and "esi:
" The following shows an invalid construction:
The following shows the correct form:
As shown in Example 11-3, an ESI tag can contain nested ESI elements and other HTML markup.
Example 11-3 Nested ESI Elements
ESI supports the HTTP request variables and environment variables used with the <esi:environment>
tag.
This section contains the following topics:
See Section 11.4.3 for instructions on including custom variables
To refer to a variable, prefix it with a dollar sign and surround the variable name with parentheses:
For example:
Variables are accessed by a key as follows:
To access a variable's substructure, append the variable name with braces containing the key which is being accessed. For example:
The key is case sensitive and optional. If a key is not specified, the environment variable returns the whole content of the environment fragment. Oracle advises specifying an environment variable without a key only for testing whether the environment is empty. In the following ESI markup, $(logindata)
is a variable that is evaluated against a null
value:
You can use the logical OR (|
) operator to specify a default value in the following form:
A variable takes the default value only when the variable or its key does not exist. If it evaluates to an empty string, the empty string is returned, not the default value.
The following example results in Oracle Web Cache fetching http://example.com/default.html
if the cookie id
is not in the request:
As with other literals, if whitespace must be specified, the default value must be single-quoted. For example:
Note: HTTP_HOST and HTTP_REFERER do not support default values. |
Table 11-3 lists the HTTP request variables supported by ESI. Note the following:
QUERY_STRING
, the values for the variables are taken from HTTP request-header fields. In the case of QUERY_STRING
, the value is taken from either the HTTP request body or the URL. Table 11-3 HTTP Request Variables Supported by ESI
Variable Name | HTTP Header Field | Substructure Type/Variable Type | Description | Example |
---|---|---|---|---|
Specifies the set of languages that are preferred as a response. The language is used as the key. | List/Boolean | Specifies the language to use as the key and evaluates to the language specified in the HTTP request header | Variable Setting:
HTTP Request Header Contains:
Result: Returns | |
Specifies cookie name and value pairs. A cookie name is used as the key. If the | Dictionary/String | Specifies the cookie name to use as the key and returns that cookie's value | Variable Setting:
HTTP Request Header Contains:
Result: Returns | |
Any HTTP request header | Dictionary/String | Specifies an HTTP request header name to use as the key and returns that header's value | Variable Setting:
HTTP Request Header Contains:
Result: Returns
| |
Specifies the host name and port number of the resource. Port 80 is the default port number. | Not Applicable/String | Returns the value of the | Variable Setting:
HTTP Request Header Contains:
Result: Returns
| |
Specifies the URL of the reference resource | Not Applicable/String | Returns the value of the | Variable Setting:
HTTP Request Header Contains:
Result: Returns
| |
|
Specifies the Web browser type, browser version, or operating system that initiated the request. | Dictionary/String | Specifies one of three keys: | Variable Setting:
HTTP Request Header Contains:
Result: Returns
Result: Returns
Result: Returns |
| Not Applicable | Dictionary/String | Given a parameter name in a query string, returns the value of the parameter without URL encoding. The query string can be in an URL or a request body. See Also: | Variable Setting:
Query Request Contains:
Result: Returns the value of |
| Not Applicable | Not Applicable/String | Specifies to return the entire query string encoded | Variable Setting:
Query Request Contains:
Result: Returns the entire query string encoded:
|
| Not Applicable | Dictionary/String | Given a parameter name in a query string, returns the value of the parameter with URL encoding. The query string can be in an URL or a request body. | Variable Setting:
Query Request Contains:
Result: Returns the value of
|
| Not Applicable | Not Applicable/String | The same as | Variable Setting:
Query Request Contains:
Result: Returns the entire query string encoded:
|
Not Applicable | Dictionary/String | The same as | Variable Setting:
Query Request Contains:
Result: Returns the value of |
ESI uses several mechanisms to handle exceptions encountered during an ESI fragment request. In a given situation, you can make use of all mechanisms simultaneously, or use one at a time, depending on the business logic you are developing.
The first mechanism is found in the ESI language, which provides three specific elements for fine-grain control over content assembly in error scenarios:
alt
attribute of the <esi:include>
tag onerror
attribute of the <esi:include>
tag try
|attempt
|except
block When the fragment specified for the src
attribute of the <esi:include>
tag cannot be fetched, the fragment specified with the alt
attribute is used as an alternative. If the alt
attribute is not used or the fragment cannot be fetched, the onerror
attribute is used. The onerror
attribute is used before the try
|attempt
|except
block. If the try
|attempt
|except
block does not exist, the exception handling is propagated to the parent or template page. If all the ESI language controls fail, Oracle Web Cache displays a default page for the fragment.
See the following sections:
The <esi:inline>
and <esi:include>
tags enable applications to adopt ESI page fragmentation and assembly. The following sections describe the tags and explain when the tags are appropriate to use.
Most existing applications are only designed to output an entire Web page to HTTP requests. These fragments and templates are non-fetchable, meaning they are not to be fetched independently from the origin server. If a cache needs any of these fragments or templates, the corresponding full Web page must be requested. To use ESI page assembly for non-fetchable fragments, an application can output the full page response just as it does normally, with the exception that at the beginning and the end of each fragment, an <esi:inline>
tag is inserted with a fragment name to demarcate the fragment. Oracle Web Cache stores the enclosed portions as separate fragments and the original page as a page template without the enclosed fragments. Fragments are shared among templates if their names are identical and they are from the same site.
Example 11-4 shows a simple <esi:inline>
example. The HTML table enclosed by the <esi:inline>
tag is the fragment content. The area preceding <esi:inline name="/news101">
and the area following </esi:inline>
form the page template. If another page contains an <esi:inline>
tag with the same name "/news101"
, the two fragments logically share the same content.
Example 11-4 Inline Non-Fetchable Example
When an application uses non-fetchable <esi:inline>
fragments, the full page must be requested for every cache miss. At first, it can appear that there is no apparent cache benefit for cache misses. However, non-fetchable <esi:inline>
fragments improves overall caching by:
Because shared fragments can be extracted into separate fragments, the size of the dynamic portion is reduced. A reduced space requirement results in a higher cache hit ratio than full page caching.
Dynamic shared fragments require only one update. For example, a shared stock market fragment may expire much more frequently than any other parts of the page. With <esi:inline>
fragmentation, only one cache update of any full page containing this fragment is enough to bring all full pages sharing this fragment current. Therefore, even non-fetchable <esi:inline>
fragments can significantly reduce cache update frequency. The cost reduction is proportional to the degree of sharing.
To invalidate non-fetchable fragments, you must invalidate both the template object and the non-fetchable fragments to ensure the fragments are invalidated.
<esi:inline>
fragments are by default non-fetchable. If an application supports independently fetchable fragments, it is possible to use the <esi:inline>
for fetchable fragments by setting the fetchable
attribute to yes
.
Example 11-5 shows an <esi:inline>
example with a fetchable fragment named /news101
. A request for the page returns the template page and the fetchable fragment.
Example 11-5 Inline Fetchable Example
See Section 11.1.8.2 for further information about the fetchable
attribute.
The <esi:include>
tag is another way to define fragments and templates in an HTTP output for dynamic content caching and assembly. It is in many ways similar to the <esi:inline>
tag. It defines a name for the defined fragment. The page including an <esi:include>
tag is a template that references the defined fragment. However, it also has some key differences which make its applicable scenarios very different from those of <esi:inline>
:
<esi:include>
tag in a template only defines the reference to a fragment. It does not enclose an embedded fragment directly in the template. As a result, a template with <esi:include>
tags can be applied to multiple users. In contrast, a template with embedded <esi:inline>
tags must be unique to each user.
<esi:include>
tag must always be independently fetchable by HTTP or HTTPS. The requested URL equals the fragment name. In contrast, an <esi:inline>
tag's name only identifies the uniqueness of the fragment and is not used to fetch the actual content. The attribute defining the fragment name in <esi:include>
fragment is src
instead of name
.
There are at least two scenarios where using <esi:include>
tags is beneficial:
<esi:include>
tags fetch and assemble directly, reducing one layer of redundancy. <esi:inline>
tags. If <esi:include>
is used for page fragmentation and assembly, Oracle Web Cache can miss only on the templates when most or all fragments are already cached, saving effective cache miss cost. In many cases, it is also valuable to cache the personalized templates because these seldom change. Example 11-1 shows ESI markup with <esi:include>
tags.
Although both <esi:include>
and <esi:inline>
enable Oracle Web Cache to fetch fragments for the client browser, <esi:include>
is more robust for performing this task and provides an easy way in which to manage fragments. Because <esi:include>
affects the application flow, it is best to incorporate <esi:include>
early in the design phase of an application. For an existing application, <esi:inline>
is better mechanism because it requires minimal change to your application.
When Oracle Web Cache receives a client request for a template page with a Referer
request-header field, it forwards the request with the Referer
request header to the origin server. In turn, the origin server returns fragments to Oracle Web Cache with the URL of the template as the value for the Referer
header. This functionality associates the fragment request with the template request.
Session cookie establishment for ESI templates and fragments works much the same way as typical Oracle Web Cache objects with the following additional features:
Cookie
request-header field inheritance When a client requests an ESI template page that includes fragments, requests for fragment pages are generated in Oracle Web Cache. A fragment request inherits the Cookie
request-header field from the template request if the value of the Host
request-header field matches the value of Host
request-header field in the template request.
Set-Cookie
response-header field accumulation When assembly of fragments is complete, Oracle Web Cache includes a Set-Cookie
response-header field in the response with the cookie information from the template. For those fragments with a Host
request-header field that matches the Host
request-header field in the template, Oracle Web Cache also accumulates the Set-Cookie
response-header fields with that of the template. For those fragments with a Host
request-header field that does not match the Host
request-header field in the template, Oracle Web Cache does not accumulate the Set-Cookie
response-header field with that of the template and other matching fragments.
See Section 11.1.6 for a description of how you can use the HTTP_COOKIE
variable in ESI markup.
For an overview of partial page caching, see Section 11.1.
This section describes how to enable dynamic assembly of Web pages with fragments and how to create rules for the cacheable and non-cacheable page fragments. It contains the following topics:
To enable partial page caching:
Important: ESI tags cannot be used on a page that contains<!-- WEBCACHETAG--> and <!-- WEBCACHEEND--> tags. If you require simple personalization and are using ESI, see Section 11.2.2, "Using ESI for Simple Personalization". |
Surrogate-Control
response-header field. For example: Surrogate-Control
response-header field does not include all the caching attributes required for the template page, create a caching rule for the page. Surrogate-Control
response-header field in the HTTP response message. Surrogate-Control
response-header field does not include all the caching attributes required for the fragment, create a caching rule for the fragment. For more information, see:
Surrogate-Control
response-header field You can use variable expressions for simple personalization.
For example, the following HTML substitutes a user's name based on the value the client browser passes with username
cookie. In addition, the session information contained within the sessionID
cookie is used to replace session information for one user with another user.
The same effect is achieved with the following ESI markup:
The <esi:vars>
tag enables you to use an ESI environment variable outside of an ESI tag. You can also use variables with other ESI tags.
See the following sections:
This section provides examples of ESI usage in the following topics:
Figure 11-2 shows a portal site response page, http:
//www.company.com/servlet/oportal?username=Mark
, for a registered user named Mark.
This page is assembled by Oracle Web Cache. A template page configured with ESI markup tags for a personalized greeting, weather, stocks, promotional advertisement, news, and sports fragments is assembled based on Mark's preferences. For example, because Mark chose San Francisco weather, the application looks up San Francisco weather information and puts it into the final full HTML page output. Because of its dynamic content, this page would not be cacheable. On the other hand, with ESI markup tags, Oracle Web Cache assembles and caches most of the content.
The following sections describe how the template page and its fragments are implemented using <esi:inline>
and <esi:include>
tags:
This section describes how <esi:inline>
tag fragmentation and assembly can drastically increase the value of dynamic content caching for pages that do not contain real-time elements. It shows how to apply the <esi:inline>
tag for an existing application that supports non-fetchable fragments. The <esi:inline>
tag helps reduce space consumption and improves cache hit ratios by isolating the dynamic content.
Note: If an application supports independently fetchable fragments, it is possible to use the<esi:inline> for fetchable fragments by setting the fetchable attribute to yes . See Section 11.4.5 for further information about the fetchable attribute. |
To use the <esi:inline>
tag, the logical fragments in portal.esi
are marked with the <esi:inline>
tags. The personalized greeting, Weather Forecast, My Stocks, Promotion campaign, Latest News, and Latest Sports News naturally become fragments because they have individual caching properties and can be shared. The My Stock fragment is further broken down into five sub-fragments, one for each stock quote. In addition, to achieve the maximum fragment sharing, the common HTML code sections between each two personalized fragments are also enclosed as ESI fragments and are given constant names, so that the varying template contains as little common data as possible.
Example 11-6 shows portal.esi
with <esi:inline>
tags.
Example 11-6 portal.esi with inline Tags
Example 11-7 shows the markup for the personalized greeting. The fragment is common to all personalized pages belonging to different users. Because the <esi:inline>
tag assigns this fragment a constant name, a different user, such as John, would have the same fragment in his template with the same fragment name. Two fragments are shared if and only if their names are identical. This way, the same shared fragment in all templates only need a single update when it expires or is invalidated. $(QUERY_STRING{username})
is an ESI environment variable that provide access to value of the username
. This variable is used here because this application uses the username
query string parameter to pass along the user's name. By using this variable, the first fragment becomes common to all users.
Example 11-7 portal.esi Example with inline Tags: Personalized Greeting
Example 11-8 shows the markup for Weather Forecast. The fragment is unique to each city. Every template selecting the same city would share this fragment with Mark's page due to the fragment naming.
Example 11-8 portal.esi Example with inline Tags: Weather Forecast
Example 11-9 shows the markup for My Stocks. The stock quotes fragment encloses all stock picks in Mark's page. It is further divided into five sub-fragments, one for each stock pick, using nested <esi:inline>
tags. Thus, Mark's ESI template references his stock selection fragment, which in turn references five particular stock pick fragments. While the stock picks are shared by many user's stock selection fragment, the stock selection fragment itself is also a template uniquely owned by Mark. This markup separates the unique information from the shared information, maximizing the reduction of cache updates and space consumption of personal stock selection.
Example 11-9 portal.esi Example: My Stocks Fragment
Example 11-10 shows the markup for referencing an advertisement in the Promotion section. promotionID
is the based on the user's identification.
Example 11-10 portal.esi Example with inline Tags: Promotion
Rotating advertisements that change in every response is an example of real- time content that renders little value in non-fetchable ESI <esi:inline>
caching. Even the smallest portion of real-time content embedded as a non-fetchable ESI inline fragment would require the entire response to be regenerated and fetched, effectively creating cache misses all the time. To use ESI and dynamic content caching for these real-time fragments, use the <esi:include>
tag.
See Section 11.2.3.1.2 for an example of using <esi:include>
tag for real-time advertisements
The Latest News and Latest Sports News fragments are similar to the weather fragment. All the common areas are also defined as fragments. Although it is possible to leave them as part of the template, that would consume unnecessary storage space. Example 11-11 shows the markup.
Example 11-11 portal.esi Example with inline Tags: Latest News and Latest Sports News
This section shows how the <esi:include>
tag can be used for fragmentation and assembly of fetchable fragments whose content are not embedded in the template.
Example 11-12 shows portal.esi
with <esi:include>
tags.
Example 11-12 portal.esi with include Tags
<!-- Personalized Weather Forecast -->
Example 11-13 specifies Profile
to refer to the environment variables stored in GetProfile
. GetProfile
enables access to user profile variables, which are used as parameters in the included fragments:
Example 11-13 portal.esi Example: Custom Profile Environment Variable Setting
Example 11-14 shows GetProfile
, which provides access to the city
, state
, news
, and sports
environment variables.
Example 11-14 portal.esi Example: GetProfile File with Environment Variables
Example 11-15 shows the markup for the personalized greeting Welcome, Mark!
. The personalized greeting is achieved by the <esi:vars>
tag, which bases the greeting on the username
parameter embedded in the URL. The parameter username
is the registered user's name. This markup enables the personalized greeting to be included in the cacheable template page.
Example 11-15 portal.esi Example with vars tag: Personalized Greeting
Example 11-16 shows the markup for Weather Forecast. Weather Forecast includes a servlet fragment name Weather
, which uses the value of the user's city
and state
environment variables in GetProfile
to display the correct weather forecast for the user. Because GetProfile
has a value of San Francisco
for the city
environment variable and California
for the state
environment variable, the weather forecast is for San Francisco, California.
Example 11-16 portal.esi Example with include Tags: Weather Forecast
The markup for My Stocks is depicted in Example 11-17. My Stocks includes a servlet fragment named PersonalizedStockSelection
. The displayed stocks are based on the userID
parameter encoded in the URL. userID
is the registered user's unique ID.
Example 11-17 portal.esi Example with include Tags: My Stocks Fragment
The markup for the included fragment PersonalizedStockSelection
is depicted in Example 11-18. It includes fragments for three stock quotes: IBM, ORCL, and YHOO.
Example 11-18 portal.esi Example: PersonalizedStockSelection Fragment for Mark
Because the output is different for each user, the PersonalizedStockSelection
fragment is not cacheable. However, the response to each of the included quotes is cacheable, enabling stock quotes to be shared by multiple users. Even when many users share quotes, only one browser reload is needed when the quotes are updated. For example, the PersonalizedStockSelection
fragment for another user named Scott is depicted in Example 11-19. It includes fragments for three stock quotes: IBM, ORCL, and SCO. As described, IBM and ORCL are also shared by Mark. If Mark reloads the page first and caches the quotes, then the IBM and ORCL quotes for Scott are automatically refreshed.
Example 11-19 portal.esi Example: PersonalizedStockSelection Fragment for Scott
Example 11-20 shows the markup for rotating advertisements in the Promotion section. The advertisements rotates in the sense that the advertisement changes for each response. By separating the generation of the included image fragment response from the template page, Oracle Web Cache can cache the template and integrate the dynamic advertisement into the template.
Example 11-20 portal.esi Example with include Tags: Promotion
As shown in Example 11-21, the response to the included image fragment for the banner is not cacheable. When a user requests this page, Oracle Web Cache sends the request to the application Web server to generate the banner. From the application Web server, Advert
generates the banner for the request.
Example 11-21 portal.esi Example: Rotating Banner Output
As shown in Example 11-22, the next time the user reloads the page, Advert
generates another banner for the request.
Example 11-22 portal.esi Example: Rotating Banner Reload
The banner relies on alternate processing with the <esi:try>
tag. If the servlet cannot run Advert
, a link to www.oracle.com
appears in the banner's place.
Example 11-23 shows the markup for Latest News and Latest Sports News:
news
category, internet
, finance
, or technology
, by using conditional processing with the <esi:choose>
tag. Because GetProfile
has a value of finance
for the news
environment variable, the headlines displayed relate to finance, /servlet/News?type=Top&topic=business
. sports
category, golf
, soccer
, basketball
, baseball
, or soccer
, by using conditional processing. Because GetProfile
has a value of soccer
for the sports
environment variable, the output includes headlines relating to soccer, /servlet/News?type=Sports&topic=soccer
. Example 11-23 portal.esi Example with include Tags: Latest News and Sports Sections
ESI variables can be used within an HTML tag. For example, consider Example 11-24. Its HTML code uses PL/SQL for an HTML form with a text box in it.
Example 11-24 PL/SQL Code without Personalization
Example 11-25 shows how the $HTTP_COOKIE
variable is used with the <esi:vars>
tag to replace the value of p_name
with the user's name.
Example 11-25 PL/SQL Code with Personalization through ESI
Inline invalidation is implemented as part of Edge Side Includes (ESI) and provides a useful way for origin servers to "piggyback" invalidation messages on transactional responses sent to Web Cache. For instance, when a customer purchases a vegetarian cookbook on an e-commerce site, the confirmation response could contain instructions for invalidating all catalog pages related to the book, its author and vegetables. The ability to send invalidation message inline reduces the connection overhead associated with sending out-of-band invalidations and is a useful tool for ESI developers.
To configure inline invalidation:
Surrogate-Control
response-header field that includes content="ESI-INV/1.0"
: <esi:invalidate>
tag to insert either a basic or advanced inline invalidation request. You can insert an inline invalidation request anywhere in the ESI template. You can insert multiple requests, but only the first one processes. The execution of the inline invalidation is blocking. That is, if the ESI template contains other ESI features, inline invalidation is executed first.
Basic invalidation syntax:
Advanced invalidation syntax:
For more information, see:
<esi:invalidate>
tag Following is an example about an online bike shop using inline invalidation in their simple Web application. It has two CGI scripts written in Perl. show_bike.pl
displays how many bikes of a certain model are in stock. Since it involves database query and its result remains the same until a purchase occurs, show_bike.pl
is cached. buy_bike.pl
is used by customers to buy a bike. When this page is requested, show_bike.pl
is no longer valid—an invalidation is needed.
Example 11-26 shows the code for show_bike.pl
.
Example 11-26 show_bike.pl Code
Note that max-age=3600
informs Oracle Web Cache to only cache this page for up to an hour.
Example 11-27 shows the code for buy_bike.pl
with an inline invalidation request.
Example 11-27 buy_bike.pl Code with an Inline Invalidation Request
<esi:invalidate>
</esi:invalidate>
The ESI-INV/1.0
token in Surrogate-Control
instructs Oracle Web Cache to process the <esi:invalidate>
tag.
Example 11-28 shows the browser response for buy_bike.pl
. Because Oracle Web Cache has already processed the inline invalidation request, the inline invalidation is not present in the response.
Example 11-28 Browser Response of buy_bike.pl
Debugging Tips
To facilitate debugging, the application developer can perform the following:
Surrogate-Capability
request header that includes "ESI-INV/1.0"
: When the Surrogate-Capability
request header is added for inline invalidation, Oracle Web Cache includes the invalidation request in the response.
output
attribute of the <esi:invalidate>
tag. When the output
attribute is enabled, Oracle Web Cache includes the invalidation result in the response enclosed within comments <!--
result
-->
.
Example 11-29 shows the browser response of buy_bike.pl
when both the Surrogate-Capability
request header is enabled for the inline invalidation and the output
attribute of the <esi:invalidate>
tag is enabled.
Example 11-29 Browser Response of show_bike.pl with Diagnostic Inline Invalidation Information
<esi:invalidate output="yes">
</esi:invalidate>
<!--
-->
This section describes the following ESI tags, which are used for partial page caching operations:
The <esi:choose>
, <esi:when>
, and <esi:otherwise>
conditional tags provide the ability to perform logic based on Boolean expressions.
Perform this action
<esi:choose>
tag must have a least one <esi:when>
tag, and may optionally contain exactly one <esi:otherwise>
tag. <esi:when>
tag whose test attribute evaluates truthfully, and then exit the <esi:choose>
tag. If no <esi:when>
tag evaluates to true and an <esi:otherwise>
tag is present, that element's content executes. <esi:when>
or <esi:otherwise>
elements. The test
attribute uses Boolean expressions to determine how to evaluate true or false logic. ESI supports the following Boolean operators:
==
(equal to) !=
(not equal to) >
(greater than) <
(less than) >=
(greater than or equal to) <=
(less than or equal to) &
(and) |
(or) !
(not) Note the following about the use of Boolean expressions:
Sub-expressions can be grouped with parentheses to explicitly specify association.
'
a
'
==3
evaluates to '
a
'
==
'
3
'
, where 3
is evaluated as a string. (&
, !
, and|
) are used to qualify expressions, but cannot be used to make comparisons. '
) for constant strings. For example, the following string is a valid construction: \
'
) are not permitted. For example, the following is not supported: When a number is compared with null, that number is converted into an equivalent string and compared against an empty string. In the following ESI markup, $(logindata{name})
is a variable that provides access to the value of the name
. If name
is empty and evaluates to null, then the expression evaluates to true; if name
is not empty and does not evaluate to null, then the expression evaluates to false.
Note: If a variable exists but evaluates to an empty string, then the value is not considered null. |
The following expressions show correct usage of Boolean operators:
The following expressions show incorrect usage of Boolean operators:
Statements must be placed inside a <esi:when>
or <esi:otherwise>
subtag. Statements outside the subtags cannot be evaluated as conditions. Example 11-30 shows invalid placement of statements.
Example 11-30 Statement Placement
The following ESI markup includes advanced.html
for requests that use the cookie Advanced
and basic.html
for requests that use the cookie Basic
:
The <esi:comment>
tag enables you to comment ESI instructions, without making the comments available in the output.
<esi:comment>
is an empty element, and does not have an end tag.
The <esi:environment>
tag enables you to include custom environment variables from included fragments. When included, these variables can then be used with the other ESI tags.
There are two forms of this tag. In the first form, <esi:environment>
does not have a closing </esi:environment>
tag:
[+
removal_time]]
" [method="GET|POST"] [onerror="continue"] [timeout="fetch_time"]/>In the second form with elements, <esi:environment>
has a closing </esi:environment>
tag:
[+
removal_time]
"] [method="GET|POST"]src
—Specifies the URL from which to obtain environment variables and their values. The URL can be either an absolute or relative URL. When specifying an absolute URL, use the following formats:
"http://
host_name
:
port
/
path
/
filename
"
"https://
host_name
:
port
/
path
/
filename
"
If you specify the host name for an absolute URL, you must prefix it with http://
or https://
. An HTML parser treats the host:80
in the following URL as a folder name rather than a host name:
src="host:80/index.htm"
To make this URL valid, you specify the following:
src="http://host:80/index.htm"
Relative URLs are resolved relative to the template page. The result sets the ESI environment for the current template.
The source code of the URL requires the following XML format:
name
—Specifies the name to use to refer to the environment variable. method
—Specifies the HTTP request method of the environment fragment. Valid values are GET
or POST
. max-age
—Specifies the time, in seconds, to expire the XML file, and optionally, specifies the time, in seconds, to remove the XML file after the expiration time. timeout
—Specifies the time, in seconds, for the fragment to be fetched. If the fragment has not been fetched within the time interval, the fetch is aborted. onerror
—Specifies that if the fetch failed on the src
object, to ignore the ESI tag and serve the page. request_body
—Specifies the HTTP request body of the fragment. request_header
—Specifies an HTTP request header field and value for Oracle Web Cache to use. log
—Specifies a log message of the fragment to be included in the access_log_file
.fragment
file when the x-esi-info
log field is set. You can provide a descriptive text string that identifies the fragment and the application that generated the fragment. By providing descriptive text, you can easily identify the fragment in the log file, enabling you to determine how often the fragment is requested. See Table 9-5 for further information about the x-esi-info
log field.
<esi:environment>
tag for each template page, before other ESI tags. request_body
elements. request_header
elements. Use multiple request_header
elements to specify multiple HTTP request header fields:
[+
removal_time]
"][method="GET|POST"]request_header
elements are specified, Oracle Web Cache uses other request headers from the parent page. log
elements. For more information, see:
max-age
, method
, onerror
, request_body
, and request_header
onerror
The following ESI output specifies logindata
to refer to the environment variables stored in catalog.xml
. The file catalog.xml
enables access to the value of the vendorID
environment variable, which is used as a parameter in the included URL:
The file catalog.xml
has the following content:
The following ESI output specifies logindata
to refer to the environment variables stored in env.dat
. The file env.dat
enables access to the value of the env
environment variable, which is used as a parameter in the included log message for dir1.txt
. The log messages for dir1.txt
and esi-log2.html
are written to the access_log
.fragment
file when the x-esi-info
log field is set and the fragments are requested.
The <esi:include>
tag provides syntax for including fragments.
See Section 11.1.8 for a comparison of <esi:inline>
and <esi:include>
usage.
There are two forms of this tag. In the first form, <esi:include>
does not have a closing </esi:include>
tag:
[+
removal_time]]
" [method="GET|POST"] [onerror="continue"] [redirect=yes|no] [timeout="fetch_time"]/>In the second form, with elements, <esi:include>
has a closing </esi:include>
tag:
[+
removal_time]
"] [method="GET|POST"]src
—Specifies the URL of the fragment to fetch. The URL can be a literal string or it can include variables. The URL can either be an absolute or relative URL. When specifying an absolute URL, use the following formats:
"http://
host_name
:
port
/
path
/
filename
"
"https://
host_name
:
port
/
path
/
filename
"
If you specify the host name for an absolute URL, you must prefix it with http://
or https://
. An HTML parser treats the host:80
in the following URL as a folder name rather than a host name:
src="host:80/index.htm"
To make this URL valid, you specify the following:
src="http://host:80/index.htm"
Relative URLs are resolved relative to the template page. The included result replaces the element in the markup served to the browser.
You can specify an XML fragment if the XML file fragment is valid XML. For example, the following specifies that Oracle Web Cache use XSL Transformations (XSLT) to transform the XML into HTML using a style sheet. The style sheet maps XML formats to HTML formats:
Ensure that both the XML fragment and the XSL style sheet response pages are configured with a Content-Type
response-header field that includes text and XML media types. For example:
For more information about XSLT, see http://www.w3.org/TR/xslt
.
alt
—Specifies an alternative resource if the src
is not found. The requirements for the value are the same as those for src
. max-age
—Specifies the time, in seconds, to expire the fragment, and optionally, specifies the time, in seconds, to remove the fragment after expiration time. Use this attribute if the template page has a higher tolerance for stale fragments than specified by the time-to-live parameters in fragment responses. method
—Specifies the HTTP request method of the fragment. Valid values are GET
or POST
. onerror
—Specifies that if the fetch failed on the src
object to ignore the ESI tag and serve the page. redirect
—Specifies how to serve the fragment when the src
fragment resides temporarily under a different URL. yes
specifies that the URL be redirected and displayed; no
specifies that the fragment URL not be redirected and an HTTP 302 Found
status code be served for the fragment. yes
is the default. timeout
—Specifies the time, in seconds, for the fragment to be fetched. If the fragment has not been fetched within the time interval, the fetch is aborted. See Section 11.1.7 for usage notes on alt
and onerror
.
request_body
—Specifies the HTTP request body of the fragment. request_header
—Specifies an HTTP request header field and value for Oracle Web Cache to use. You can specify multiple HTTP request headers. When this attribute is specified, all request headers from the parent fragment or template page are ignored. log
—Specifies a log message of the fragment to be included in the access_log
.fragment
file when the x-esi-info
log field is set. You can provide a descriptive text string that identifies the fragment and the application that generated the fragment. By providing descriptive text, you can easily identify the fragment in the log file, enabling you to determine how often the fragment is requested. See Table 9-5 for further information about the x-esi-info
log field.
<esi:include>
supports up to three levels of nesting. <esi:include>
does not support escaped double quotes (\"
). For example, the following is not supported: src
attribute supports both HTTP and HTTPS. Oracle Web Cache permits the template and fragments to use different protocols. Note the following: src
attribute specifies a fragment's relative path, such as src="/PersonalizedGreeting"
, the template's protocol is used. src
attribute does not match the protocol specified in the Site-to-Server Mapping page (Origin Servers, Sites, and Load Balancing > Site-to-Server Mapping) of Oracle Web Cache Manager, then Oracle Web Cache uses the protocol configured for the origin server in the Site-to-Server Mapping page. Oracle Web Cache also reports the following warning message to the event log: URL
For example, if the template page is configured with <esi:include> src="https://www.company.com:80/gifs/frag1.gif"/>
and the site-to-server mapping specifies HTTP for the origin server, then http://www.company.com:80/gifs/frag1.gif
is used and the following message appears in the event log:
request_body
elements. request_header
elements. request_header
elements to specify multiple HTTP request header fields: [+
removal_time]
"] [method="GET|POST"]log
elements. The <esi:include>
tag instructs Oracle Web Cache to fetch the fragment specified by the src
attribute.
If the include is successful, the contents of the fetched src
URL are displayed. The included object is included exactly at the point of the include tag. For example, if the include tag is in a table cell, the fetched object is displayed in the table cell.
The max-age
control directive in the Surrogate-Control
response-header field applies to the response; the max-age
attribute applies only to that particular usage of the fragment response through the <esi:include>
tag. If both the max-age
control directive in the Surrogate-Control
response-header field and the max-age
attribute are set, then the effective expiration and removal time-to-live for this particular inclusion are the longest maximum age of the expiration and the removal time-to-live, respectively. If a particular page has a greater tolerance for staleness of a fragment, then set the max-age
attribute to a longer time than the max-age
control directive. Use the max-age
attribute to increase cache hits by serving fragments stale until the removal time. max-age=infinity
specifies that the object never expires.
If method
is not set, then GET
is assumed. However, if the request_body
element is set, then POST
is assumed.
Oracle Web Cache generates the following HTTP request headers for all fragment requests:
Host
Content-Length
Surrogate-Capability
Connection
The request_header
element enables you to control HTTP headers other than these. Do not specify these HTTP request headers as request_header
attributes, as a conflict can affect the operation of Oracle Web Cache.
If no request_header
elements are specified, Oracle Web Cache uses other request headers from the parent page.
See Section 11.1.8 for a comparison of <esi:inline>
and <esi:include>
usage.
The following ESI markup includes a file named frag1.htm
. The fragment must be fetched within 60 seconds. If the fetch fails, Oracle Web Cache ignores the includes and serves the page. If the fetch succeeds, Oracle Web Cache includes the fragment. Oracle Web Cache expires the fragment after five minutes, and removes it after another eight minutes.
The following ESI output includes the result of a dynamic query:
The following ESI output includes a personalized greeting, a Cookie
HTTP request header, and an HTTP request body that includes the date. Log message "Fragment: /Personalized Greeting is included"
writes to the access_log
.fragment
file when the x-esi-info
log field is set and the fragment is requested.
For more information, see Section 11.2.3.1 for an extended example of <esi:include>
usage.
The <esi:inline>
tag marks a fragment as a separately cacheable fragment, embedded in the HTTP response of another object. Oracle Web Cache stores and assembles these fragments independently as <esi:include>
fragments.
See Section 11.1.8 for a comparison of <esi:inline>
and <esi:include>
usage.
[+
removal_time]
"] [timeout="fetch_time"]name
—Specifies a unique name for the fragment in URL format. fetchable
—yes
instructs Oracle Web Cache to fetch a fragment from the origin server when it expires. The template for the fragment is not included during this fetching process. no
instructs Oracle Web Cache to fetch the entire template from the origin server when there is a cache miss, and then try to extract all the fragments from the template. max-age
—Specifies the time, in seconds, to expire the fragment, and optionally, specifies the time, in seconds, to remove the fragment after the expiration time. Use this attribute if the template page has a higher tolerance for stale fragments than specified by the time-to-live parameters in fragment responses. timeout
—Specifies the time, in seconds, for the fragment to be fetched. If the fragment has not been fetched within the time interval, the fetch is aborted. Some inline fragments are only delivered as part of an HTTP response for another object. These are not independently fetchable by Oracle Web Cache the way <esi:include>
fragments are. When a non-fetchable fragment is needed by Oracle Web Cache, it must request the object from which the inline fragment was extracted.
When a non-fetchable <esi:inline>
fragment is not found in the cache, Oracle Web Cache re-fetches the fragment's parent template. This behavior implies that the parent cannot be another non-fetchable <esi:inline>
fragment. If the parent is an <esi:inline>
non-fetchable fragment, the response returned to the browser is undefined.
For more information, see:
The following ESI output embeds financial headlines:
See Section 11.2.3.1 for an extended example of <esi:inline>
usage.
The <esi:invalidate>
tag enables you to configure an invalidation request within the response of a browser page.
Basic invalidation syntax:
value
"/>Advanced invalidation syntax:
host_name
:
port
"HTTP_body
"/>output
—yes
specifies that the invalidation result be included in the browser response, enclosed within comments <!--
result
-->
. no
specifies that the invalidation result not be displayed in the output. Specify a value of yes
for a test environment; specify a value of no
for a production environment. The <esi:remove>
tag allows for specification of non-ESI markup output if ESI processing is not enabled with the Surrogate-Control
header or there is not an ESI-enabled cache.
Any HTML or ESI elements can be included within this tag, except other <esi:remove>
tags. Note that nested ESI tags are not processed.
The following ESI markup includes http://www.company.com
if the <esi:include>
content cannot be included:
Normally, when Oracle Web Cache processes this example block, it fetches the ad.html
file and includes it into the template page while silently discarding the <esi:remove>
tag and its contents. If ESI processing is not enabled, all of the elements are passed through to the browser, which ignores ESI markup. However, the browser displays the <A HREF=...
> HTML link.
The <esi:try>
tag provides for exception handling. The <esi:try>
tag must contain exactly one instance of an <esi:attempt>
tag and one or more <esi:except>
tags. See Section 11.1.7 for usage notes on alt
and onerror
.
In the following form, only one <esi:except>
tag is supported:
In the following form, multiple <esi:except>
tags with different types are supported:
type
"]>type
"]>Oracle Web Cache first processes the contents of <esi:attempt>
. A failed <esi:attempt>
triggers an error and causes Oracle Web Cache to process the contents of the <esi:except>
tag.
Specify an <esi:except>
tag without a type for general errors; specify an <esi:except>
tag with a type for specific errors. The <esi:except>
tag accepts the following case-insensitive types:
nestingtoodeep
: An error occurs because the fragment include depth has exceeded the maximum include depth. originserverbusy
: An error occurs because the origin server for this fragment is busy and cannot accept new requests now. This is caused by Oracle Web Cache-to-origin server request queue limit being reached. noconnection
: An error occurs because the cache cannot connect to the origin server serving this fragment. networktimeout
: An error occurs because a fragment request to the origin server has timed out in the network connection. httpclienterror
: An error occurs because the origin server returns an HTTP 4xx status code, a client error, such as a malformed HTTP request or an unauthorized access. httpservererror
: An error occurs because the origin server returns an HTTP 5xx status code, a server error. incompatiblefragmentversio
n: An error occurs because a fragment's processing requirement is not supported or not compatible with the template. <!-- WEBCACHETAG-->
and <!-- WEBCACHEEND-->
processing in an ESI fragment is not compatible with ESI processing. A fragment may be plain data that does not need any processing in the cache, or it may be an ESI template itself that requires processing of ESI features supported in this release. The ESI features in use are specified by the Surrogate-Control
content
control directive. incorrectresponseheader
: An error occurs because the response headers for a fragment causes the error. incorrectesifragment
: An error occurs when Oracle Web Cache tries to parse or process the ESI fragment response body due to errors in the body. incorrectxmlfragment
: An error occurs because there is an error in XSLT retrieval, parsing, or processing by Oracle Web Cache. The following ESI markup attempts to fetch an advertisement. If the advertisement cannot be included, Oracle Web Cache includes a static link instead.
The following ESI markup attempts to fetch a fragment. If the fragment cannot be included because of httpclienterror
, then Oracle Web Cache includes /cgi-bin/esi-fetch?/esi/tryNestL1.html
instead.
The following <esi:try>
attempts to include the fragment http://server.portal.com/pls/ppcdemo/!PCDEMO.wwpro_app_provider.execute_portlet/513104940/26
containing several HTTP request headers. If the fragment cannot be included because of various type
errors, Oracle Web Cache returns an Unknown ESI Exception
error.
The <esi:vars>
tag enables you to use variables outside of ESI tags. For example, instead of specifying a variable inside a <esi:include>
or <esi:choose>
block, you can use the <esi:vars>
tag to specify a variable inside HTML code.
$(
VARIABLE_NAME
{
key
})
format, Oracle Web Cache reports the following error message to the event log: Date
] [error 12086] [ecid: request_id
, serial_number
]ESI syntax error. Unrecognized keyword keyword
is at line line
.<esi:vars>
tag within an HTML code line. The following is an example of incorrect syntax: HTML code
<esi:vars>$(VARIABLE_NAME
{key
})</esi:vars>HTML code
For example, the following is invalid:
Section 11.1.6 and Section 11.4.3 for usage of HTTP request variables and custom variables
The following ESI markup includes the cookie type
and its value as part of the included URL:
The following ESI output refers to logindata
as part of the
link for the Welcome page. logindata
refers to an XML file that contains custom environment variables. The output also includes the user's sessionID
and category type
cookie values as part of the other
links.
The <!--esi...--->
tag enables HTML marked up with ESI tags to display to the browser without processing the ESI tags. When a page is processed with this tag, Oracle Web Cache removes the starting <!--esi
and ending -->
elements, while still processing the contents of the page. When the markup cannot be processed, this tag assures that the ESI markup does not interfere with the final HTML output.
Any ESI or HTML elements can be included within this tag, except other <!--esi...-->
tags.
If the ESI markup cannot be processed, then the <p><esi:vars>Hello, $(HTTP_COOKIE{name})!</esi:vars></p>
is displayed in the HTML output.
This chapter discusses how to configure Oracle Web Cache with third-party application Web servers.
This chapter includes the following topics:
Notes:
|
Because Oracle Web Cache is transparent to the application Web server, the application Web server treats HTTP requests from Oracle Web Cache as any other HTTP request coming directly from the browser. In turn, the application Web server generates the response and sends it back to Oracle Web Cache as an HTTP message.
Because Oracle Web Cache fully supports HTTP, it can work with any HTTP-compliant application Web server. How the application Web servers choose to generate HTTP responses is irrelevant to Oracle Web Cache.
The type of application Web server that a site uses depends mainly on the types of applications that site is running. For example, if customers want to run Active Server Pages (ASP), then they may prefer to use Microsoft Internet Information Server (IIS) as the application Web server.
You configure Oracle Web Cache to communicate with a third-party application Web server the same way you do with Oracle HTTP Server, by providing the host name and the listening port number. Table 12-1 shows the default values for the listening ports for the products discussed in this appendix.
Table 12-1 Third-Party Application Web Server Default Listening Ports
Application Web Server | Port |
---|---|
IBM WebSphere Application Server, Version 6.0 | |
Apache Tomcat, Version 4.1 | |
Microsoft IIS 6.0 | 80 |
To configure Oracle Web Cache to communicate with a third-party application Web server, perform the following tasks:
You assign caching rules and expiration rules when using third-party application Web servers in the same way as when using Oracle HTTP Server. You can choose to cache or not to cache content for the following:
You can also assign an expiration time limit to objects or invalidate objects at any time. See Chapter 6, "Caching and Compressing Content," and Chapter 7, "Invalidating Content."
When Oracle Web Cache fetches static content from IBM Websphere Application server, the IBM Websphere Application Server sends a content="ESI/1.0+"
directive in the Surrogate-Control
response header in the response to the Oracle Web Cache Surrogate-Capability: orcl="ESI/1.0"
request. Oracle Web Cache ignores the ESI/1.0+ features to get rid of page rendering issues and errors. If Oracle Web Cache is deployed as a caching solution, this difference in the control directive value may result in undefined Web application behavior.
Follow these steps to force IBM Websphere Application Server to send ESI/1.0 instead of ESI/1.0 or later:
The Application servers page appears.
server1
application server. server1
is the server name when IBM Websphere Application Server is installed with default options. If you specified a different name, select that name instead.
com.ibm.servlet.file.esi.control
. max-age=300, cacheid="URL", content="ESI/1.0"
. The WebSphere Application Server installation includes several JSP, Java servlets, and EJB examples. This section explains how to configure Oracle Web Cache to cache the following content:
The snoop
servlet shows getting and using request information, headers, and parameters sent by the browser. Use it to demonstrate how Oracle Web Cache caches full-page dynamic content.
To cache the snoop
servlet:
Notice that request information, headers, and parameters sent by your browser display.
snoop
output, as described in Section 6.8. When creating the caching rule for the snoop
output, ensure you configure the following in the Create Caching Rule page:
/snoop
. See Section 2.11.1.1 to determine the port.
The output is the same when you accessed snoop
directly from the WebSphere Application Server. This time, Oracle Web Cache caches the snoop
output and serves the response to the browser.
snoop
is cached. When you reload the page, you should notice that the cached response appears faster than when you access the WebSphere Application Server directly.
The Calendar
JSP generates a calendar based on user input. The example is not a pre-deployed WebSphere example like the snoop
servlet. To find this example, install Technology Samples, as mentioned in the documentation under IBM WebSphere Application Server samples gallery. Use this JSP to demonstrate how Oracle Web Cache caches pages with session cookies.
To cache SimpleTag.jsp
for session-encoded URLs:
Notice that the page displays a form asking for inputs on month, year, and other preferences to create a calendar. To use the application:
In the Create Expiration Policy dialog box, perform the following steps:
60
seconds in the Time Limit field. When configuring a session caching rule, perform the following steps:
IBMSession
. JSESSIONID
. jsessionid
. IBMSession
: Calendar
. When creating the caching rule for the Calendar
output, configure the following in the General tab of the Create Caching Rule page:
/TechnologySamples/Calendar
. In the Sessions tab of Create Caching Rule page, select both the IBMSession sessions, one using setting Without Session and the other using setting With Session.
See Section 2.11.1.1 to determine the port.
The output is the same when you accessed Calendar
directly from WebSphere Application Server. This time, Oracle Web Cache caches the Calendar
output.
Calendar
is cached. When you reload the page, notice that the cached response appears faster than when you access the WebSphere server directly.
Because the expiration rule for this URL is set to 60 seconds, Oracle Web Cache expires the cached content after 60 seconds and reflects the content the next time the user requests the page.
After deploying Oracle Web Cache, if the browser displays a HTTP 404 Page not found error
, perform the following steps:
WAS_home
/config/cells/plugin-cfg.xml
file, add <VirtualHost Name="*:WebCache-admin_port"/>
. Apache Tomcat, Version 4.1 is a servlet container. It is included with the Apache Jakarta Project. The Apache Tomcat installation includes several JSP and Java servlet examples. This section explains how to configure Oracle Web Cache to cache the following content:
Follow the instructions enclosed within the Apache Tomcat binary for installation. Apache Tomcat requires the Java Development Kit (JDK).
For more information, see:
http://jakarta.apache.org/tomcat/
for further information about Apache Tomcat http://java.sun.com
for further information about downloading and installing JDK snoop.jsp
shows getting and using request information, headers, and parameters sent by the browser. Use it to demonstrate how Oracle Web Cache caches full-page dynamic content.
To start, perform the following steps:
Notice that request information, headers, and parameters sent by your browser display.
To cache this content:
snoop
output, as described in Section 6.8. When creating the caching rule for the snoop
output, ensure you configure the following in the Create Caching Rule page:
/examples/jsp/snp/snoop.jsp
. See Section 2.11.1.1 to determine the port.
The output is the same when you accessed snoop
directly from Apache Tomcat. This time, Oracle Web Cache caches the snoop
output and serves the response to the browser.
snoop
is cached. When you reload the page, you should notice that the cached response appears faster than when you access Apache Tomcat directly.
The SessionServlet
provides a simple example of an HTTP servlet that uses the HttpSession
class to track the number of times that a browser has visited the servlet. Use it to demonstrate how Oracle Web Cache caches pages with session-encoded URLs.
This servlet may not be included in the Apache Tomcat binary. You can find this example on the Web, or you can use code for the servlet from Example 12-1.
Example 12-1 Apache Tomcat Binary
To start, perform the following steps:
SessionServlet.java
file in the Apache Tomcat environment. SessionServlet.class
to the /examples/servlets/
directory where other servlet examples may reside. This is required to use session-encoded URLs in this example.
Notice that the page displays how many times a browser has visited it. When you click the link labeled here, notice that the session ID is encoded in the URL. Every time you refresh or reload the page, the counter increases by one.
To cache the content:
In the Create Expiration Policy dialog, perform the following steps:
60
in the Time Limit field. When configuring a session caching rule, perform the following steps:
ApacheSession
. JSESSION
. jsessionid
. ApacheSession
: Session
. When creating the caching rule for the SessionServlet
servlet output, configure the following in the General tab of the Create Caching Rule page:
/examples/servlets/SessionServlet
. In the Sessions tab of Create Caching Rule page, select both the ApacheSession sessions, one using setting Without Session and the other using setting With Session.
See Section 2.11.1.1 to determine the port.
The output is the same when you accessed Session
servlet directly from Apache Tomcat. This time Oracle Web Cache caches the Session
servlet output. When the page is refreshed or reloaded, notice that the counter does not increment by one. This is because Oracle Web Cache serves the content, and the request never goes to the Apache Tomcat.
Session
servlet is cached. When you reload the page, notice that the cached response appears faster than when you access the Apache Tomcat server directly.
Because the expiration rule for this URL is set to 60 seconds, Oracle Web Cache expires the cached content after 60 seconds and reflects the content the next time the user requests the page.
The Microsoft IIS installation includes several ASP examples. This section explains how to configure Oracle Web Cache to cache the following content:
ServerVariables_JScript.asp
demonstrates techniques you can use to access server variable information from an ASP script. Use it to demonstrate how Oracle Web Cache caches full-page dynamic content.
To start, perform the following steps:
Notice that request information, headers, and parameters sent by the browser display.
To cache this content:
ServerVariables_JScript.asp
, as described in Section 6.8, using the following information:, configure the following in the Create Caching Rule page: When creating the caching rule for the ServerVariables_JScript.asp output, configure the following in the Create Caching Rule page:
See Section 2.11.1.1 to determine the port.
The output is the same when you accessed ServerVariables_JScript.asp
directly from IIS. This time, Oracle Web Cache caches the ServerVariables_JScript.asp
output and serves the request to the browser.
ServerVariables_JScript.asp
is cached. When you reload the page, you should notice that the cached response appears faster than when you access IIS directly.
Cookie_JScript.asp
illustrates how your script can set and read cookies by using the Response.Cookies
collection. Use it to demonstrate how Oracle Web Cache caches pages with session cookies.
To start, perform the following steps:
When you access the URL, notice that the page displays the date and time you last visited this page. When you click "Revisit this page," the date and time is updated.
To cache this content:
In the Create Expiration Policy dialog, perform the following steps:
60
in the Time Limit field. When configuring a session caching rule, perform the following steps:
MSSession
. CookieJSCript
. jsessionid
. MSSession
: Cookie_JScript.asp
. When creating the caching rule for the Cookie_JScript.asp
output, configure the following in the General tab of the Create Caching Rule page:
/IISSamples/sdk/asp/interaction/Cookie_JScript.asp
. In the Sessions tab of Create Caching Rule page, select both the MSSSession sessions, one using setting Without Session and the other using setting With Session.
See Section 2.11.1.1 to determine the port.
The output is the same when you accessed Cookie_JScript.asp
directly from IIS. This time, Oracle Web Cache caches the Cookie_JScript.asp
output. To verify that the cache serves the content, click "Revisit this page." Notice that the date and time are not updated. This is because Oracle Web Cache serves the cached content, and the request never goes to IIS.
Cookie_JScript.asp
is cached. When you reload the page, notice that the cached response appears faster than when you access IIS server directly.
Because the expiration rule for this URL is set to 60 seconds, Oracle Web Cache expires the cached content after 60 seconds and reflects the content the next time the user requests the page.
This appendix describes common problems that you might encounter when using Oracle Web Cache and explains how to solve them. It contains the following topics:
This section describes common problems and solutions. It contains the following topics:
Problem
If an 11g Release 1 (11.1.1) Oracle Web Cache is reverse proxying 10g components, such as Oracle Portal, Oracle Forms Services, or Oracle Business Intelligence Discoverer, and SSL is enabled, the following browser error may return:
In addition, messages similar to the following appear in the event log:
This error indicates that the wallet you selected for Oracle Web Cache contains a certificate that does not match the wallet used by the 10g components.
Solution
To resolve this problem, modify the wallet you specify for Oracle Web Cache to use the wallet you are using for the 10g components. See Section 5.4.3.
On UNIX operating systems, the top
and uptime
utilities report a higher than expected average load when the Oracle Web Cache computer is idle.
Problem
This effect occurs because Oracle Web Cache performs light maintenance work, even when it is idle. One operation Oracle Web Cache performs is garbage collection. During idle mode, the following effect occurs:
Because Oracle Web Cache is an in-memory cache, it is best to deploy Oracle Web Cache on a dedicated computer to minimize paging. Unless the computer is dedicated to run Oracle Web Cache, ensure the maximum cache size does not exceed 20 percent of the total memory.
This section describes workarounds to invalidation timeouts:
Problem 1: Paging
If the time taken to cache or invalidate objects increases, the computer may be paging. Paging can severely degrade performance.
Solution 1
To configure Oracle Web Cache to work efficiently on a computer with paging, either deploy Oracle Web Cache on a dedicated computer or reduce the maximum cache size and maximum cached object size. See Section 2.11.5 to configure these settings.
Problem 2: Oracle Web Cache Using Memory than the Maximum Cache Size
If Oracle Web Cache uses more memory than the maximum cache size, the increase may be caused by numerous simultaneous requests for objects that are larger than the maximum cached object size. In this situation, because the objects are not cached, Oracle Web Cache uses more memory processing the requests and forwarding them to the origin server than it would to cache the objects.
Solution 2
Review access logs to determine if many simultaneous requests for large objects have been made and adjust the size of the maximum cached object size so that those objects are cached. In addition, check that a caching rule or response header specifies that the objects are to be cached.
To modify the maximum cache size or the maximum cached object size, set new limits. See Section 2.11.5 to configure these settings.
Invalidation has a default timeout of 300 seconds for the propagation of invalidation requests in the cache hierarchy or cache cluster deployments. See Section 7.10.2 for an overview of invalidation propagation.
Problem
When the timeout is exceeded in a cache cluster, a message similar to the following is displayed in the response to the invalidation request:
Solution
To resolve this error:
webcache.xml
file. CALYPSONETINFO
element: INV_PEER_TIMEOUT
attribute. In a cache cluster, it is likely that cache cluster members run in a LAN environment. Therefore, decreasing the value of INV_PEER_TIMEOUT
typically improves efficiency.
webcache.xml
. This executable is found in the following directory:
Problem
If an application Web server has reached capacity, the following error message appears when accessing pages of a Web site:
In addition, messages similar to the following appear in the event log:
These errors indicate that the application Web server has exceeded the maximum number of concurrent connections.
Solution
To resolve this problem, you can either:
The client browser is not receiving the complete response.
Problem
If the actual length of a page is less than value of the Content-Length
response-header field set by the origin server and sent to a client browser by Oracle Web Cache, the browser expects more data to arrive and the connection does eventually time out. If the actual length of the page is greater than the Content-Length
, the browser does not receive the complete page. This problem does not occur for cache hits because Oracle Web Cache correctly calculates the content length itself for pages stored in the cache.
Messages similar to the following appear in the event log:
Solution
For cache misses, there are two workarounds for the improper content-length problem:
Content-Length
response-header field is correct. Connection:
keep-alive
request-header field. Client browsers return an error saying that a page cannot be displayed.
Problem
Microsoft Internet Explorer has known issues with trying to reuse SSL connections after they have timed out. Due to this limitation, users connecting to a Web site using Internet Explorer 5.5 or later release with the following Oracle Web Cache configuration conditions, may receive an error saying that the page cannot be displayed:
Please see the following related sections:
When Oracle Web Cache is configured with these settings, Internet Explorer may send HTTPS requests after Oracle Web Cache has already tried to close the connection. Then, the browser returns an error saying that the page cannot be displayed.
Solution
To correct his problem, you can upgrade all clients to use the correct Microsoft patches. For information about the Internet Explorer problem, its workarounds, and links to updates to Internet Explorer, see the following:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q305217
http://support.microsoft.com/default.aspx?kbid=831167
In configurations with public Web sites, this option may not feasible. For these configurations, the Web site administrator can either enable or disable keep-alive timeouts on HTTPS connections from Internet Explorer in the webcache.xml
file. By default, Oracle Web Cache disables keep-alive for HTTPS connections from Internet Explorer.
To re-enable keep-alive connection for HTTPS requests from Internet Explorer, perform the following steps. In a cache cluster, you must perform this procedure for each cluster member:
webcache.xml
file. CALYPSONETINFO
element: KEEPALIVE4MSIE_SSL
attribute to YES
. webcache.xml
. This executable is found in the following directory:
Due to an incompatibility with the ESI capability token between IBM Websphere Application server and Oracle Web Cache, you may see errors.
Problem
If Oracle Web Cache is deployed to cache content for an IBM Websphere Application server, the following errors may result:
Solution
To resolve this issue
server1
is the server name when IBM Websphere Application Server is installed with default options. If you specified a different name, select that name instead.
com.ibm.servlet.file.esi.control
. Common configuration mistakes include:
When sites are not mapped, Oracle Web Cache directs requests to the default Oracle HTTP Server. Browsers may receive an HTTP 500 error code.
Other site configuration errors include:
*
See Section 2.11.3 for further information about configuring sites.
When configuring the ping URL, how you enter the URL depends on the origin server. For an application Web Server, enter either a relative or fully qualified URL that includes the domain name, or site name, representing the virtual host of the application Web server. For a proxy server, enter a fully qualified URL that includes the domain name, or site name, representing the virtual host of the origin server behind the proxy server. Ensure the URL is cached.
See Section 2.11.2 for further information about configuring origin servers.
On UNIX, you must configure Oracle Web Cache to run with root privilege in the following cases:
opmnctl
user does not match the configured process identity user. See Section 5.9 for further information about configuring origin servers.
The TRACE verbosity event-logging level can help you validate Oracle Web Cache configuration settings, such as:
See Section 9.3 to configure TRACE verbosity in the event logs.
To diagnose if caching rules are set up to serve wrong or outdated content:
Trace level logging shows whether an object is cached and which caching rule it matches.
See Section 9.3 for further information about enabling event logging.
Adjust caching rules by adding or removing rules, adjusting expression type syntax, or changing the precedence of rules.
See Section 6.6 for further information about configuring caching rules.
By analyzing the access log determine, you can determine if Oracle Web Cache is serving the object from its cache or is forwarding the request to the origin server.
See Section 9.4 for further information about enabling access logging.
The majority of ESI errors are the result of syntax errors in either the template or fragment pages. By analyzing the ESI output in the event log, you can easily diagnose most ESI syntax errors. To avoid unnecessary reporting in the event log, use a verbosity level of WARNING, as described in Section 9.3. It is also useful to display the diagnostic information and event log information in the HTML response body, as described in Section 8.3.
The following topics describe using the event log and HTML response body to diagnose template and fragment syntax errors:
Consider a template named exlusion.html
that contains syntax for a nonexistent ESI tag named <esi:exclude>
:
The response returned to the browser follows:
The following shows an event log excerpt that indicates a problem with the <esi:exlude>
keyword:
Consider a template named inclusion_exclusion.html
that contains the following syntax for including fragment exlusion1.html
. Notice that HTML does not contain any ESI exception handling tags or attributes.
Fragment frag_exclusion.html
contains syntax for a nonexistent ESI tag named <esi:exclude>
:
The response returned to the browser follows:
The following shows an event log excerpt that indicates a problem with the <esi:exlude>
keyword. As a result of this error and the fact that the ESI in the template does not specify any alternative fragment to serve, the browser is served an ESI exception.
Consider the same inclusion_exclusion.html
template that contains the following syntax for including fragment frag_exclusion.html
or alternative fragment fragment1.html
. When the exlusion1.html
fragment specified cannot be fetched, the fragment1.html
fragment specified with the alt
attribute is served in its place.
Fragment frag_exclusion.html
contains syntax for a nonexistent ESI tag named <esi:exclude>
:
Therefore, fragment fragment1.html
is used instead of frag_exclusion.html
as the fragment:
The response returned to the browser follows:
The following shows an event log excerpt that indicates a problem with the <esi:exlude>
keyword. Because of the exception handling, the browser is served the alternative fragment instead of an ESI exception.
In addition to analyzing the event log for the sequence of events, you can also view the diagnostic and event log results in the HTML response. The following shows the HTML response when the string +wcdebug
is appended is the URL. The template diagnostic information, TU;max-age=30+60;age=0
, means the following:
T
means this page is composed an ESI template. U
means this request resulted in an update of stale object. max-age=30+60
means that the object is to expire in 30 seconds from population and to be removed from the cache 60 seconds from the expiration. This provides a total of 90 seconds from population. age=0
in age means that 0 seconds have passed since population of the cache, meaning there are 30 seconds to expiration and 60 seconds to removal. The fragment diagnostic information, FM;max-age=30+0;age=0
, means the following:
F
means this page is an ESI fragment. U
means this request resulted in a cache miss. max-age=30+0
means that the object is to expire in 30 seconds from population and to be removed from the cache 0 seconds from the expiration. This provides a total of 30 seconds from population. age=0
in age means that 0 seconds have passed since population of the cache, meaning there are 30 seconds to expiration and removal. When Oracle Web Cache is added to an existing application Web server environment, HTTP traffic changes effect the following aspects of the application:
To ensure traffic is directed through Oracle Web Cache, configure all absolute URLs to use the protocol, host name, and port number of Oracle Web Cache. Also, ensure the Port
directive in the Oracle HTTP Server httpd.conf
file specifies the Oracle Web Cache listening port.
Add certificate management to Oracle Web Cache, if the connection between the client and Oracle Web Cache is HTTPS, but the connection between Oracle Web Cache and the origin server is HTTP.
For compressed pages or pages that requires processing, Oracle Web Cache waits for an entire page from the origin server before it sends it to the browser.
Oracle Web Cache transparently performs the following:
Content-Length
response header instead of chunked encoding for the initial request. Content-Length
response-header field whenever it is different from what the origin server sent. This feature ensures browsers receive full page content. You can find more solutions at the following locations:
http://metalink.oracle.com
. If you do not find a solution for your problem, log a service request. access log
A log file that contains information about the HTTP requests sent to Oracle Web Cache for a Web site. The access log has a file name of access_log
and is stored by default in the following directories:
admin server process
An Oracle Web Cache process that provides administration, configuration, and monitoring capabilities.
application Web server
An origin server that manages data for a Web site, controls access to that data, and responds to clients requests. The application on the Web server interfaces with the database and performs the job requested by the Web server.
cache cluster
A loosely coupled collection of cooperating Oracle Web Cache cache instances to provide a single logical cache. Cache clusters provide failure detection and failover of caches, increasing the availability of your Web site.
cache cluster member
An instance of Oracle Web Cache configured with other instances of Oracle Web Cache to operate as one logical cache. The cache cluster members communicate with one another to request cacheable content that is cached by another cache cluster member and to detect when a cache cluster member fails.
cache hierarchy
A deployment in which an Oracle Web Cache caches content from another Oracle Web Cache to a local market. Oracle Web Cache provides support for a distributed cache hierarchy in a distributed network and an ESI cache hierarchy in an ESI provider site configuration.
cache hit
An HTTP or HTTPS request that can be served from objects stored in the Oracle Web Cache cache without going to the origin server.
cache miss
An HTTP or HTTPS request that cannot be served from the cache and must be forwarded to an origin server.
cache server process
An Oracle Web Cache process that manages the cache by providing connection management and request processing.
capacity
For origin servers, the maximum number of concurrent connections that the origin server can accept.
For cache clusters, the absolute capacity for the number of concurrent incoming connections to this cache cluster member from all other cache cluster members, and the relative capacity of the cache cluster member.
category cookie
A cookie that enables the multiple version of the same page to served to different categories of users.
central cache
In a distributed cache hierarchy, an Oracle Web Cache server that acts as an origin server to at least one remote cache. When content becomes invalid, the central cache propagates the invalidation request to the remote caches to ensure consistency.
CLF
Common Log Format (CLF)
An industry-standard format for Web transaction log files.
cookie
A packet of state information sent by an origin server to a Web browser during an HTTP request. During subsequent HTTP requests, the cookie is passed back to the origin server, enabling the origin server to remember the state of the last transaction.
distributed cache hierarchy
A cache hierarchy in which a central cache acts as an origin server to a remote cache.
DMZ
A demilitarized zone (DMZ) or perimeter network is a network area (a subnetwork) that sits between an organization's internal network and an external network, usually the Internet. The point of a DMZ is that connections from the internal and the external network to the DMZ are permitted, whereas connections from the DMZ are only permitted to the external network; hosts in the DMZ may not connect to the internal network. This allows the DMZ's hosts to provide services to both the internal and external network while protecting the internal network in case intruders compromise a host in the DMZ.
DNS
Domain Name System (DNS)
A system for naming computers and network services that is organized into a hierarchy of domains. DNS is used in TCP/IP networks to locate computers through user-friendly names. DNS resolves a friendly name into an IP address, which is understood by computers.
Document Type Definition (DTD)
Markup declarations that provide a grammar for a class of objects.
embedded URL parameter
Parameter information embedded in the URL of objects. Oracle Web Cache accepts requests that use the following characters as delimiters: question mark (?
), ampersand (&
), dollar sign ($
), or semicolon (;
).
ESI
ESI cache hierarchy
A cache hierarchy in which a provider cache acts as an origin server to a subscriber cache.
ESI provider site
A site that Oracle Web Cache contacts for Edge Side Includes (ESI) assembly only. Browsers are not allowed to request content from these sites.
event log
A log file that contains Oracle Web Cache event and error information. The event log has a file name of event_log
and is stored in the following directories:
expiration
A function that marks objects as invalid after a certain amount of time in the cache. When objects are marked as invalid and a client requests them, they are either immediately removed and refreshed or refreshed based on when the origin server can refresh them.
Extended Log Format (XLF)
An improved format for HTTP server logins since it is extensible, permitting a wider range of data to be captured. XLF enables you to configure the logger to generate different statistics of HTTP requests such as the IP address of clients, methods of the HTTP requests and response headers such as user agent and accept.
Extensible Markup Language (XML)
A language that offers a flexible way to create common information formats. XML is used for invalidation messages and responses.
farm
A collection of components managed by Fusion Middleware Control. It can contain zero or one managed server domains and the Oracle Fusion Middleware system components that are installed, configured, and running on the domain.
failover
When an origin server fails, Oracle Web Cache automatically distributes the load over the remaining origin servers and polls the failed origin server for its current up/down status until it is back online. In a cache cluster environment, Oracle Web Cache transfers ownership of the content of the failing member to the remaining cluster members.
failure detection
In a cache cluster environment, Oracle Web Cache detects when a cache cluster member is unavailable.
GET method
An HTTP request method used for simple requests for Web pages. A GET
method is made up of a URL. Requests for pages that use the GET
method are typically cached.
GET method with query string
An HTTP request method made up of a URL and a query string containing parameters and values. An example of an HTTP GET
with query string follows.
This request executes a script named navframe
in the /setup/config
directory of the www.myserver.com
server and passes the script a value of default
for the frame variable.
Note: You should not cache pages withGET with query strings forms that make changes to the origin server or database. You should only cache pages that use GET with query strings if they are used in searches. |
garbage collection
An Oracle Web Cache process that removes stale objects based on popularity and validity.
HTTP protocol
Hypertext Transfer Protocol. A protocol that provides the language that enables browsers and the origin server to communicate.
HTTP request header
A header that enables Web browsers to pass additional information about the request and about itself to the origin server.
HTTP request method
A method included in the HTTP request that specifies the purpose of the client's request. HTTP supports many methods, but the ones that concern caching are GET, GET with query string, and POST methods.
HTTPS protocol
Secure Hypertext Transfer Protocol. A protocol that uses the Secure Sockets Layer (SSL) to encrypt and decrypt user page requests as well as the pages that are returned by the origin server.
invalidation
An Oracle Web Cache function that marks objects as invalid. When objects are marked as invalid and a client requests them, they are removed and then refreshed with new content from the origin server. Invalidation keeps the Oracle Web Cache cache consistent with the content on the origin servers.
invalidation coordinator
In a cache cluster environment, Oracle Web Cache propagates invalidation messages to other cache cluster members. It sends the invalidation messages to one cache cluster member who acts as the coordinator. The coordinator propagates the invalidation messages to the other cluster members.
IP address
Used to identify a node on a network. Each computer on the network is assigned a unique IP address, which is made up of the network ID, and a unique host ID. This address is typically represented in dotted-decimal notation, with the decimal value of each octet separated by a period, for example 144.45.9.22.
latency
Networking round-trip time.
load balancing
A feature in which HTTP requests are distributed among origin servers so that no single server is overloaded.
Layer 7 (L7) switch
A networking switch that provides load balancing functionality at Layer 7 of the Open Systems Interconnection (OSI) model—the Application layer. L7 switches base their load balancing decisions on URL content.
load balancer
A mechanism for balancing the load of incoming requests. This mechanism is typically a hardware load balancer in the form of a network switch, such asLayer 7 (L7) switch. A hardware load balancer is typically positioned in front of the Oracle Web Cache server. Oracle Web Cache can act as a software load balancer for environments where a hardware load balancer is not available.
on-demand content
In a cache cluster environment, on-demand content consists of popular objects that are stored in the cache of each cluster member.
Open Systems Interconnection (OSI)
A model of network architecture developed by ISO as a framework for international standards in heterogeneous computer network architecture.
The OSI architecture is split among seven layers, from lowest to highest:
1. Physical layer
2. Data link layer
3. Network layer
4. Transport layer
5. Session layer
6. Presentation layer
7. Application layer
Each layer uses the layer immediately following it and provides a service to the preceding layer.
Oracle Enterprise Manager
A tool for administering Oracle Application Server. It is a complete management solution for administering, configuring, and monitoring the application server and its components. Using it, you can:
Oracle Web Cache Manager
A tool that combines configuration abilities with component control to provide an integrated environment for configuring and managing Oracle Web Cache.
origin server
A server that is either an application Web server for internal sites or a proxy server for external sites outside a firewall.
OSI
owned content
In a cache cluster environment, content that is owned by a particular cache cluster member. Oracle Web Cache distributes the cached content among the cache cluster members. In effect, it assigns content to be owned by a particular cache cluster member.
partial page caching
A feature that enables Oracle Web Cache to independently cache and manage fragments of HTML objects. A template page is configured with Edge Side Includes (ESI) markup tags that tell Oracle Web Cache to fetch and include the HTML fragments. The fragments themselves are HTML files containing discrete text or other objects.
performance assurance heuristics
Heuristics that enable Oracle Web Cache to assign a queue order to objects. These heuristics determine which objects can be served stale and which objects must be retrieve immediately. While objects with a higher priority are retrieved first, objects with a lower priority are retrieved at a later time.
The queue order of objects is based on the popularity of objects and the validity of objects assigned during invalidation. If the current load and capacity of the origin server is not exceeded, then the most popular and least valid objects are refreshed first.
personalized attribute
Pages that contain personalized attributes, such as personalized greetings like "Hello, Name," icons, addresses, or shopping cart snippets, on an otherwise generic page. You can configure Oracle Web Cache to substitute values for personalized attributes based on the information contained within a cookie or an embedded URL parameter.
popularity
The number of requests for an object since entering the cache and the number of recent requests for the object.
POST body parameter
Parameter information embedded in the POST body of objects.
POST method
An HTTP request method used for requests that modify the contents of the data store on the origin server, such as posting a message to a mailing list, submitting forms for registration purposes, or adding entries to the database.
Note: You should not cache pages with POST forms that make changes to the origin server or database. You should only cache pages that use POST forms if they are used in searches. |
proxy server
An origin server that substitutes for the real server, forwarding client connection requests to the real server or to other proxy servers. Proxy servers provide access control, data and system security, monitoring, and caching.
provider
Set of content—content areas, pages, applications, even data from outside sources—brought in one central location and accessed through a common interface, called a page.
provider cache
In an ESI cache hierarchy, an Oracle Web Cache server that locally caches content for a provider site. A subscriber cache then contacts the provider caches for assembly of HTML fragments. When content becomes invalid, the provider cache propagates the invalidation request to the subscriber cache to ensure consistency.
provider site
A site that provides a source of content for a provider cache and a subscriber cache.
regular expression
Oracle Web Cache supports the POSIX 1003 extended regular expressions for URLs, as supported by Netscape Proxy Server 2.5.
See http://www.cs.utah.edu/dept/old/texinfo/regex/regex_toc.html
for regular expression syntax
remote cache
In a distributed cache hierarchy, an Oracle Web Cache server that caches content from a central cache to serve local requests. When an invalidation request is sent to the central cache, the central cache propagates the request to the remote cache, ensuring consistent content.
reverse proxy
A server that appears to be the content server to clients but internally retrieves its objects from other back-end origin servers as a proxy. A reverse proxy acts a gateway to the origin servers. It relays requests from outside the firewall to origin servers behind the firewall, and delivers retrieved content back to the client.
round robin
A method of managing server congestion by distributing connection loads across multiple servers. Round robin works on a rotating basis in that the first origin server in the list of configured servers receives the request, then the second origin server receives the second request, and so on.
Secure Sockets Layer (SSL)
A protocol developed by Netscape Corporation. SSL is an industry-accepted standard for network transport layer security. SSL provides authentication, encryption, and data integrity, in a public key infrastructure (PKI). By supporting SSL, Oracle Web Cache can cache pages for HTTPS protocol requests.
selectors
Oracle Web Cache uses selectors to filter through the caching rules to locate the appropriate rule for the request. Cacheability can be evaluated against the following selectors:
session binding
The process of binding a user session to a given origin server to maintain state for a period.
session-encoded URLs
HTML hyperlink tags, such as
, that contain embedded session information to distinguish users. You can configure Oracle Web Cache to substitute the values of session parameters in HTML hyperlink tags with the session information contained within a session cookie or an embedded URL parameter.
subscriber cache
In an ESI cache hierarchy, an Oracle Web Cache server that assembles ESI content by contacting a provider cache for the template's HTML fragments. The HTML fragments are then assembled. When provider site content becomes invalid, the provider site propagates the invalidation request to the subscriber cache to ensure consistency.
Uniform Resource Identifier (URI)
The address syntax that is used to create a URL.
Uniform Resource Locator (URL)
A standard for specifying the location and route to a file on the Internet. URLs are used by browsers to navigate the World Wide Web and consist of a protocol, domain name, directory path, and the file name. For example, http://www.oracle.com/technology/index.html
specifies the location and path a browser travels to find the main page of the Oracle Technology Network site on the World Wide Web.
URI
URL
virtual host site
A site hosted by Oracle Web Cache. Browsers can request cached content from these sites through Oracle Web Cache. In addition to caching content, Oracle Web Cache can also assemble ESI fragments from these sites.
wallet
A transparent database used to manage authentication data such as keys, certificates, and trusted certificates needed by SSL. A wallet has an X.509 version 3 certificate, private key, and list of trusted certificates.
weighted available capacity
The percentage of the available capacity that the origin server can accept.
webcachectl utility
A utility used to start, stop, and restart the admin server process, the cache server process, and the auto-restart process, if Oracle Web Cache is running in a standalone environment (that is, you installed Oracle Web Cache from a kit that included only this product; you did not install Oracle Web Cache as part of an Oracle Application Server installation).
XLF
XML
Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.