

1 What's New in Oracle Forms Services

This chapter describes the features and improvements in 11g Release 1 of Oracle Fusion Middleware Forms Services.

	
Section 1.1, "JavaScript Integration"

	
Section 1.2, "Enhanced Java Support"

	
Section 1.3, "Support for Server-Side Events"

	
Section 1.4, "Proxy User Support"

	
Section 1.5, "PL/SQL Tracing"

	
Section 1.6, "Integration with Oracle Diagnostics and Logging (ODL)"

1.1 JavaScript Integration

Use JavaScript integration that is now available in Oracle Forms 11g to have JavaScript call into your Forms applet, or have your Forms applet execute JavaScript.

For more information, see Chapter 6, "Oracle Forms and JavaScript Integration."

1.2 Enhanced Java Support

You can extend Pluggable Java Components (PJC) to raise events in Oracle Forms Services.

For more information, see Section 7, "Enhanced Java Support."

1.3 Support for Server-Side Events

Oracle Forms Services supports external events from outside of Forms Services. An event can be raised by the database or by BPEL through Oracle Advanced Queueing.

For more information, see Chapter 8, "Working with Server Events."

1.4 Proxy User Support

In this release of Oracle Forms, Forms developers can choose to have users connect to the database as a proxy user, a single database user is a user with connection privileges only, adding security and simplifying user management in the process while maintaining automatic database auditing.

For more information, see Section 9.6, "Enabling and Configuring Proxy Users."

1.5 PL/SQL Tracing

In Oracle Forms Services 11g, you can enable logging of the names and parameters for called PL/SQL Procedures and functions, then view the output in Forms Trace.

For more information, see Chapter 12, "Tracing and Diagnostics."

1.6 Integration with Oracle Diagnostics and Logging (ODL)

Oracle Diagnostic logging (ODL) is a feature of Oracle Fusion Middleware that extends the J2SE logging framework. ODL makes it easier to diagnose problems and manage log files in Oracle Fusion Middleware.

For more information, see Section 12.6, "Taking Advantage of Oracle Diagnostics and Logging Tools."

2 Introduction to Oracle Forms Services

This chapter introduces Oracle Forms. It provides an overview of the development and deployment environment for Oracle Forms, and provides references where you can find more information on associated components in Oracle Fusion Middleware.

This chapter contains the following sections:

	
Section 2.1, "Oracle Forms"

	
Section 2.2, "Oracle Database"

	
Section 2.3, "Oracle WebLogic Server"

	
Section 2.4, "Oracle Fusion Middleware"

	
Section 2.5, "About Installing or Upgrading Oracle Forms"

	
Section 2.6, "Oracle Forms Services Architecture"

2.1 Oracle Forms

Oracle Forms is a component of Oracle Fusion Middleware. Oracle Forms is used to develop and deploy Forms applications. The Forms applications provide a user interface to access Oracle Database in an efficient and tightly-coupled way. The applications can be integrated with Java and web services to take advantage of service oriented architectures (SOA).

Oracle Forms includes the following:

	
Oracle Forms Developer, used to develop and compile Forms applications.

	
Oracle Forms Services, a server component, used to deploy the applications.

2.1.1 Oracle Forms Developer

Oracle Forms Developer is used to develop a form that can access an Oracle database and present the data. Wizards and utilities are provided to speed up application development. The source form (*.fmb) is created and compiled into an "executable" (*.fmx). The Forms application is run (interpreted) by the Forms Runtime process.

For more information about the Oracle Forms Developer, refer to the following documentation:

	
Oracle Forms Builder Online Help, which is accessible from Oracle Forms Builder, provides information on how to use Oracle Forms Developer to develop and compile Forms applications.

	
Upgrading Oracle Forms 6i to Oracle Forms 11g: describes obsolete features of Oracle Forms Developer and instructions for upgrading your Forms applications.

2.1.2 Oracle Forms Services

Oracle Forms Services is a comprehensive application framework optimized to deploy Forms applications in a multitiered environment. It takes advantage of the ease and accessibility of the Web and elevates it from a static information-publishing mechanism to an environment capable of supporting complex applications.

The Form applications that you design and develop in Oracle Forms Developer are deployed on Oracle Fusion Middleware. These applications run on the middle tier (see Figure 2-2). The user interface is presented on the client tier as a Java applet in the client's browser.

This guide describes the configuration files, and environment variables that can be used to customize deployment of Forms applications. It also provides information on performance, logging and monitoring your deployment. You can use Oracle Fusion Middleware Enterprise Manager Control to manage the configuration files, and environment variables, and monitor the deployment.

2.1.3 How Oracle Forms Services Launches a Forms Application

When a user first starts an Oracle Forms application by clicking a link to the application's URL, the baseHTML file is read by the Forms servlet. Any variables (%variablename%) in the baseHTML file are replaced with the appropriate parameter values specified in the formsweb.cfg file, and from query parameters in the URL request (if any).

You can easily modify the configuration files with Oracle Enterprise Manager Fusion Middleware Control as your needs change. Section 2.6, "Oracle Forms Services Architecture" describes the processes that are involved in deploying and running a typical Forms application.

2.2 Oracle Database

Oracle Database is the latest generation of RDBMS. Among the numerous capabilities are unlimited scalability and industry-leading reliability with Oracle Real Application Clusters; high availability technology including advancements in standby database technology (Oracle Data Guard); and built-in OLAP, data mining and Extract, Transform and Load (ETL) functions.

For more information on Oracle Database, refer to http://www.oracle.com/technology/documentation/index.html.

2.3 Oracle WebLogic Server

Oracle WebLogic Server 11g Release 1 is an application server for building and deploying enterprise Java EE applications with support for new features for lowering cost of operations, improving performance and supporting the Oracle applications portfolio.

Regardless of whether you want to create a staging, production, or testing environment, you begin by creating a WebLogic domain. A WebLogic domain includes instances of WebLogic Server, of which one is configured as an Administration Server. The Administration Server maintains configuration data for a domain. You can deploy your application on Administration Server but it is recommended to create a managed server and deploy your application in managed server. For more information on Oracle WebLogic Server, refer to Oracle Fusion Middleware Introduction to Oracle WebLogic Server.

During configuration, a managed server for Forms is created (WLS_FORMS). For more information on WLS_FORMS, refer to Section 5.1, "About the Oracle WebLogic Managed Server."

2.4 Oracle Fusion Middleware

Oracle Fusion Middleware includes Web servers, application servers, content management systems, and developer tools that provide complete support for development, deployment, and management of software applications. Among the components are Oracle Forms Services, Oracle WebLogic Server, and Oracle Enterprise Manager Fusion Middleware Control, which together provide the technology to fully realize the benefits of Internet computing.

You can manage and monitor Oracle Forms using Oracle Enterprise Manager Fusion Middleware Control.

For a complete overview, list of components, and conceptual information about Oracle Fusion Middleware, refer to the following manuals:

	
Oracle Fusion Middleware Concepts

	
Oracle Fusion Middleware Administrator's Guide

2.5 About Installing or Upgrading Oracle Forms

Oracle Forms is installed from the Oracle Portal, Forms, Reports and Discoverer 11g (11.1.1.4.0) DVD. In the installer, you can selectively configure any one of these products or all of them. For more information on installing Oracle Forms, refer to the following guides:

	
Oracle Fusion Middleware Installation Planning Guide

	
Oracle Fusion Middleware Installation Guide for Oracle Portal, Forms, Reports and Discoverer

	
Oracle Fusion Middleware Quick Installation Guide for Oracle Portal, Forms, Reports, and Discoverer

For upgrade information, refer to the following documents:

	
Oracle Fusion Middleware Upgrade Planning Guide

	
Oracle Fusion Middleware Upgrade Guide for Oracle Portal, Forms, Reports, and Discoverer

For information on upgrading Forms 6i to Oracle Forms 11g, see Chapter 13, "Upgrading to Oracle Forms Services 11g."

For information about changed or obsolete features, see the Oracle Forms Upgrading Oracle Forms 6i to Oracle Forms 11g Guide.

	
Note:

After you have installed Oracle Forms, you can use the following options to save RAM in a development-only environment:

	
You can choose to stop WLS_REPORTS (or other managed servers that may be running). To test Forms applications, only WLS_FORMS is required.

	
By default, formsapp and formsconfigmbeans run on WLS_FORMS. You can retarget these applications to run on the Administration Server and stop the Forms managed server (WLS_FORMS).

2.6 Oracle Forms Services Architecture

Figure 2-1 shows the three-tier architecture that makes up Forms Services:

	
The client tier, at the top of the image, contains the Web browser, where the application is displayed. In addition to the browser, Java Runtime Environment (JRE) and Java Plug-In (JPI) are required. For more information, see Appendix B, "Configuring Java Plug-ins" and http://java.sun.com/reference/docs/.

	
The middle tier, in the center of the image, is the application server, where application logic and server software are stored.

	
The database tier, in the lower portion of the image, is the database server, where database server software is stored.

Figure 2-1 Oracle Forms Services Architecture

[image: This image describes the 3 tier Forms Services architecture.]

2.6.1 Oracle Forms Services Components

Oracle Forms Services is a middle-tier application framework for deploying complex, transactional forms applications to a network such as an intranet or the Internet. Developers build Forms applications with Forms Developer and deploy them with Forms Services. Developers can also take current applications that were previously deployed in client/server and move them to a three-tier architecture. Some minor changes in application code may be required when moving to a three-tier architecture.

As shown in Figure 2-2, the three-tier configuration for running a form consists of:

	
The Client, at the top of the image, resides on the client tier

	
The Forms Listener servlet, in the center of the image, resides on the middle tier

	
The Forms Runtime process, also resides on the middle tier

Figure 2-2 Three-tier configuration for running a form

[image: A 3 tier configuration running Forms Services.]

2.6.1.1 Forms Listener Servlet

The Forms Listener servlet is a broker between the Java client and the Forms Runtime process. It takes connection requests from Java client processes and initiates a Forms Runtime process on their behalf.

Figure 2-3 illustrates how the client sends HTTP requests and receives HTTP responses from Forms Services. Oracle Forms Services uses the Forms Listener servlet to start, stop, and communicate with the Forms Runtime process. In this image, the client is to the left. In the center of the image, the HTTP Listener acts as the network endpoint for the client, keeping the other server computers and ports from being exposed at the firewall.

The Forms Runtime process, in the right side of the image, executes the code contained in a particular Forms application. The Forms Listener servlet manages the creation of a Forms Runtime process for each client and manages the network communications between the client and its associated Forms Runtime process.

	
Note:

The Forms Listener servlet is configured for you during the Oracle Fusion Middleware installation process.

Figure 2-3 Architecture using the Forms Listener Servlet

[image: Image shows a flow of HTTP calls to the Listener Servlet.]

2.6.1.2 Forms Runtime Process

The Forms Runtime process plays two roles: when it communicates with the client browser, it acts as a server by managing requests from client browsers and it sends metadata to the client to describe the user interface; when it is communicating with the database server, it acts as a client by querying the database server for requested data.

For each Oracle Forms session, there is one Oracle Forms Runtime process on the application server. This process is where Oracle Forms actually runs, and manages application logic and processing. It also manages the database connection; queries and updates data; runs any PL/SQL in the Form; executes triggers; and so on. It uses the same forms, menus, and library files that were used for running in client/server mode.

The Forms Runtime process also contains the Java Virtual Machine (JVM) to run Java in your application. As an optimization feature, the JVM is started if the Forms application uses the Java Importer. In 10g, the JVM pooling feature is used only by the Java Importer. In 11g, Forms Runtime Process no longer creates a separate JVM when it calls Reports. Instead, if a JVM controller is configured for a form, the form can use the shared JVM when calling Reports. This results in a reduction of memory consumption, freeing more resources on the server. For more information about managing JVM usage and pooling, see Chapter 10, "Configuring and Managing Java Virtual Machines."

3 Basics of Deploying Oracle Forms Applications

This chapter describes how Forms Services run in Oracle Fusion Middleware, and describes the steps to deploy Forms applications. This chapter also describes the basic configuration files. After installation is completed, you can use the information in this chapter to change your initial configuration or make modifications as your needs change.

This chapter contains the following sections:

	
Section 3.1, "Oracle Forms Services in Action"

	
Section 3.2, "Configuration Files"

	
Section 3.3, "Application Deployment"

	
Section 3.4, "Client Browser Support"

3.1 Oracle Forms Services in Action

This section describes how Forms Services run in Oracle Fusion Middleware, and how the configuration files are used, with the assumption that the Forms servlet is used to generate the initial HTML page. For example, assume the Web server is running on port 8888 on a computer called "example.com". Also assume no modifications have been made to the standard configuration created during the Oracle Fusion Middleware installation process.

When a user runs an Oracle Forms Services application, the following sequence of events occur:

	
The user starts the Web browser and goes to a URL such as:

http://example.com:8888/forms/frmservlet?config=myapp&form=hrapp

In this example, the top level form module to be run is called "hrapp" using the configuration section called "myapp".

	
Oracle HTTP Server listener receives the request. It finds /forms path in the URL and forwards the request to the correct Oracle WebLogic Managed Server based on the WebLogic handler mappings. The mapping is defined in forms.conf.

	
Oracle WebLogic Managed Server maps the request to the Oracle Forms Services application that has a context root named /forms. It maps the request to the Forms servlet using the frmservlet mapping specified in the web.xml file.

	
The Forms servlet running on the Oracle WebLogic Managed Server processes the request. The Forms servlet:

	
Opens the servlet configuration file (formsweb.cfg by default), which is located in $DOMAIN_HOME/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_11.1.1/config.

	
Determines which configuration section to use in the formsweb.cfg file. In this example, the URL contains the query parameter config=myapp, therefore, the [myapp] section is used.

	
Determines which baseHTML file to use, based on (a) what browser (user-agent) made the request, (b) what platform the browser is running on, and (c) the settings of various parameters in the formsweb.cfg file (specifically, basejpi.htm, and base.htm).

	
Reads the baseHTML file, and returns the contents as an HTML page to the user's Web browser, after performing variable substitutions as follows:

Whenever a variable (like %myParam%) is encountered, the Forms servlet looks for a matching URL query parameter (for example, &myParam=xxx), or, failing that, looks for a matching parameter in the formsweb.cfg file. If a matching parameter is found, the variable (%myParam%) is replaced with the parameter value.

In this example, the baseHTML file contains the text %form%. This is replaced with the value "hrapp".

	
Depending on which baseHTML file the Forms servlet selected, the HTML page returned to the Web browser contains an applet, object or embed tag to start the Forms applet (thin client). The Forms client runs in the JVM environment provided by Sun's Java plug-in.

	
In order to start the Forms applet, its Java code must first be loaded. The location of the applet is specified by the applet codebase and archive parameters.

The virtual path definition in the weblogic.xml file for /forms/java allows the applet code to be loaded from the Web server.

Note: The Forms applet code is only loaded over the network the first time the user runs an Oracle Forms Services application or if a newer version of Oracle Forms Services is installed on the Web server. Otherwise, it is loaded from the cache of the Java plug-in on the local disk.

	
Once the Oracle Forms Services applet is running, it starts a Forms session by contacting the Forms Listener servlet at URL http://example.com:8888/forms/lservlet.

	
The Oracle HTTP Server listener receives the request. It forwards the request to Oracle WebLogic Managed Server, since the path /forms/lservlet matches a servlet mapping in the web.xml file (the one for the Forms Listener servlet).

	
The Forms Listener servlet (lservlet) starts a Forms run-time process (frmweb.exe or frmweb) for the Forms session.

	
Communication continues between the Forms applet and the Forms run-time process, through the Listener Servlet, until the Forms session ends.

	
The attribute value in a URL (such as the name of the form to run) is passed to the Forms run-time process. Part of the serverArgs value in the baseHTML file is %form%, which is replaced by "hrapp". Therefore, the run-time process runs the form in the file "hrapp.fmx".

This file must be present in any of the directories named in the FORMS_PATH environment setting, which is defined in the environment file (default.env by default). You can also specify the directory in formsweb.cfg (for example, form=c:\<path>\myform).

	
The Forms sessions end when either of the following occurs:

	
The top-level form is exited (for example, by the PL/SQL trigger code which calls the "exit_form" built-in function). The user is prompted to save changes if there are unsaved changes. exit_form(no_validate) exits the form without prompting.

	
If the user quits the Web browser, any pending updates are lost.

3.2 Configuration Files

This section introduces the basic files used to configure Forms applications. For more advanced configuration topics, see Chapter 4, "Configuring and Managing Forms Services."

This section contains the following:

	
Section 3.2.1, "Oracle Forms Configuration Files"

	
Section 3.2.2, "Forms Java EE Application Deployment Descriptors"

	
Section 3.2.3, "Oracle HTTP Listener Configuration File"

	
Section 3.2.4, "Standard Fonts and Icons File"

	
Section 3.2.5, "baseHTML Files"

	
Section 3.2.6, "WebUtil Configuration Files"

	
Note:

Location of files are given relative to the DOMAIN_HOME and ORACLE_INSTANCE directory. Forward slashes should be replaced by back slashes on Windows. For more information on terminology used such as Middleware home, Oracle home, Oracle instance, and so on, see the Oracle Fusion Middleware Administrator's Guide.

3.2.1 Oracle Forms Configuration Files

Oracle Forms configuration files allow you to specify parameters for your Forms. You can manage these files through the Oracle Enterprise Manager Fusion Middleware Control. These configuration files include:

	
default.env

	
formsweb.cfg

	
ftrace.cfg

	
Note:

For a list of Forms configuration files and their respective locations, refer to Table C-1.

3.2.1.1 default.env

Location: $DOMAIN_HOME/config/fmwconfig/servers/<MANAGED_SERVER>/applications/<appname>_<appversion>/config

Typically, this location is $DOMAIN_HOME/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_11.1.1/config

This file contains environment settings for Forms run time. On UNIX and Linux, default.env includes the PATH and LD_LIBRARY_PATH.

For a sample default.env file, see Appendix C, "Platform Specific default.env Files."

For more information about default.env, see Chapter 4, "Managing Environment Variables."

3.2.1.2 formsweb.cfg

Location: $DOMAIN_HOME/config/fmwconfig/servers/<MANAGED_SERVER>/applications/<appname>_<appversion>/config

Typically, this location is $DOMAIN_HOME/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_11.1.1/config

This Forms configuration file contains the following:

	
Values for Forms run-time command line parameters, and the name of the environment file to use (envFile setting).

	
Most of the servlet configuration parameter settings that you set during installation. You can modify these parameters, if needed.

Variables (%variablename%) in the base.htm file are replaced with the appropriate parameter values specified in the formsweb.cfg file and from query parameters in the URL request (if any).

For a sample formsweb.cfg file, see Appendix C, "Default formsweb.cfg."

For more information about formsweb.cfg, see Chapter 4, "Configuring Parameters with Fusion Middleware Control."

3.2.1.3 ftrace.cfg

Location: $ORACLE_INSTANCE/config/FormsComponent/forms/server

This file is used to configure Forms Trace. Forms Trace replaces the functionality that was provided with Forms Runtime Diagnostics (FRD) and Performance Event Collection Services (PECS), which were available in earlier releases of Oracle Forms. Forms Trace traces the execution path through a form (for example, steps the user took while using the form).

For more information about ftrace.cfg, see Chapter 12, "Tracing and Diagnostics."

3.2.2 Forms Java EE Application Deployment Descriptors

The Forms Services Java EE application EAR (Enterprise Archive) file formsapp.ear is deployed to the WLS_FORMS (Oracle WebLogic Managed Server) when you configure Oracle Forms.

This results in the creation of a directory structure under $DOMAIN_HOME /servers/WLS_FORMS/tmp/_WL_user/formsapp_11.1.1/<random_string1>/APP-INF directory that is similar to the following:

./APP-INF
./APP-INF/lib
./APP-INF/lib/frmconfig.jar
./APP-INF/lib/frmconfigmbeans.jar
./META-INF
./META-INF/application.xml
./META-INF/jazn-data.xml
./META-INF/jps-config.xml
./META-INF/mbeans.xml
./META-INF/weblogic-application.xml

This following directory structure is created under $DOMAIN_HOME/servers/WLS_FORMS/tmp/_WL_user/formsapp_11.1.1/<random_string2>/war/WEB-INF directory.

./WEB-INF
./WEB-INF/lib
./WEB-INF/lib/frmsrv.jar
./WEB-INF/web.xml
./WEB-INF/weblogic.xml

	
Note:

The sub-directories in $DOMAIN_HOME/servers/WLS_FORMS/tmp/_WL_user/formsapp_11.1.1 are created by the nostage deployment process of Oracle WebLogic Server. They are named with a random string. For example, e18uoi, wb1h9e and so on.

Deployment descriptors:

	
application.xml and weblogic-application.xml define the structure of the EAR file.

	
web.xml defines the aliases frmservlet and lservlet for the Forms servlet and the Forms Listener servlet.

	
weblogic.xml defines the context parameters and any user defined virtual directory mappings.

For a sample web.xml file, see Appendix C, "web.xml."

3.2.3 Oracle HTTP Listener Configuration File

This section describes the file used to configure Oracle HTTP Listener for Oracle Forms Services.

Location: $ORACLE_INSTANCE/config/OHS/<OHS INSTANCE NAME>/moduleconf

forms.conf is the Oracle HTTP listener configuration file for Oracle Forms Services. forms.conf defines WebLogic handler mappings for the Managed Server where the Forms Services applications are deployed.

3.2.3.1 About Editing forms.conf

forms.conf is an Oracle HTTP Server directives file. In Oracle Fusion Middleware, the forms.conf file is included in the Oracle HTTP Server configuration directory at $ORACLE_INSTANCE/config/OHS/<OHS INSTANCE NAME>/moduleconf.

If you add any custom Oracle HTTP Server directives to forms.conf, you must restart the Oracle HTTP Server node where it resides.

For more information about forms.conf, see Appendix C, "forms.conf."

3.2.3.2 Configuring OHS on a Separate Host

If you choose to configure Oracle HTTP Server on a separate host, then perform the following tasks:

	
Copy the Forms OHS directives file, forms.conf.backup from the tier hosting Forms to the tier hosting OHS and rename it to forms.conf.

Source location (on Forms tier):

$ORACLE_INSTANCE/config/FormsComponent/forms/server/forms.conf.backup

Destination location (on OHS tier):

$ORACLE_INSTANCE/config/OHS/<OHS Component Instance>/moduleconf/forms.conf

	
Specify the appropriate managed server cluster or the managed server for the default forms Java EE application context root (/forms).

Example of cluster entry:

<Location /forms>
 SetHandler weblogic-handler
 WebLogicCluster <HOSTNAME>:<WLS_PORT>
 DynamicServerList OFF
</Location>

Example of non-cluster entry:

<Location /forms>
 SetHandler weblogic-handler
 WebLogicHost = <HOSTNAME>
 WebLogicPort = <PORT>
</Location>

	
Make sure that any directories referenced in user-added directives are accessible on the OHS tier.

	
Restart OHS instance on the OHS tier.

3.2.4 Standard Fonts and Icons File

Registry.dat is the file that contains the default font, font mappings, and icon information that Forms Services uses.

Location: $DOMAIN_HOME/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_11.1.1/config/forms/registry/oracle/forms/registry

For a sample of the default Registry.dat, see Appendix C, "Registry.dat."

For more information about Registry.dat, see Chapter 4, "Deploying Fonts, Icons, and Images Used by Forms Services."

3.2.5 baseHTML Files

Location: $ORACLE_INSTANCE/config/FormsComponent/forms/server/

The base.htm and basejpi.htm are used as templates by the Forms servlet when generating the HTML page used to start an Oracle Forms application.

Oracle recommends that you make configuration changes in the formsweb.cfg file using Enterprise Manager and avoid editing these files. To change the baseHTML files, create your own versions and reference them from the formsweb.cfg file by changing the appropriate settings.

For a sample baseHTML file, see Appendix C, "base.htm and basejpi.htm Files."

3.2.6 WebUtil Configuration Files

This section describes the files used to configure WebUtil at run time. For information about using WebUtil at design time, see the Oracle Forms Developer Online Help. WebUtil configuration files include:

	
Default webutil.cfg

	
Default webutilbase.htm

	
Default webutiljpi.htm

3.2.6.1 Default webutil.cfg

Location: $ORACLE_INSTANCE/config/FormsComponent/forms/server.

This file provides all of the configuration settings for WebUtil, including:

	
Logging Options

	
Installation Options

	
File Upload and Download Options

	
Server Side Logging Options for logging errors and log messages

For a sample of the webutil.cfg file, see Appendix C, "Default webutil.cfg."

3.2.6.2 Default webutilbase.htm

Location: $ORACLE_INSTANCE/config/FormsComponent/forms/server/

This is the default baseHTML file for running a form on the Web using a generic APPLET tag to include a Forms applet with a certificate registration for WebUtil.

For a sample of the webutilbase.htm file, , see Appendix C, "Default webutilbase.htm."

3.2.6.3 Default webutiljpi.htm

Location: $ORACLE_INSTANCE/config/FormsComponent/forms/server/

This is the default baseHTML file for running a form on the Web using the JDK Java Plugin. For example, this file can be used when running a form on the Web with Firefox on UNIX and a certificate registration for WebUtil.

For a sample of the webutiljpi.htm file, , see Appendix C, "Default webutiljpi.htm."

3.3 Application Deployment

Once you have created your application in Forms Developer, you are ready for application Web deployment. Oracle Forms Services accesses an application in Oracle Fusion Middleware through a specified URL. The URL then accesses the HTTP Listener, which communicates with the Listener Servlet. The Listener Servlet starts a Forms run-time process (frmweb.exe on Windows or frmweb on UNIX and Linux) for each Forms Services session.

For more information about how Forms Services run, see Section 3.1, "Oracle Forms Services in Action."

3.3.1 Deploying Your Application

To deploy a basic form with the default parameters set up by the installer:

	
Create your application in Forms Developer and save it.

The .fmb file is a design time file that can only be opened in Forms Developer. The .fmx file is the run-time file created when you compile the .fmb and is used for Web deployment.

For more information about Forms Developer, see the Help menu in Forms Developer.

	
Modify the formsweb.cfg file so that Oracle Forms Services can access your application module. You edit this file in the Web Configuration page of Fusion Middleware Control. For more information, see Section 4.2, "Configuring Forms Services".

Table 3-1 shows the configuration of an application called "my_application" with a form module called "form=hrapp.fmx":

Table 3-1 Example of Configuration Section Parameter Values

	Configuration Section Name	Forms Module Name Value
	
my_application

	
hrapp.fmx

When configured, the Oracle Forms Services module hrapp.fmx is accessible on the Web by entering "...?config=my_application" in the browser URL (the name of the Web Configuration section in formsweb.cfg).

	
Note:

The name of the configuration section must not include spaces and must contain only alphanumeric characters.

	
Make sure the .fmx file location is specified in the FORMS_PATH environment variable.

For example, in Windows, if your .fmx file is located in d:\my_files\applications, in the FORMS_PATH, include d:\my_files\applications. On Windows, use semi-colons to separate directory locations if specifying multiple locations. On UNIX/Linux, use colons for separators. Specify this information in the Environment Configuration page for the environment file.

	
To modify an environment file, select the file in the Environment Configuration page of Fusion Middleware Control and add or edit environment variables as needed by your application. For example, you can add the environment variable shown in Table 3-2.

Table 3-2 Example of Environment Variable Values

	Environment Variable Name	Environment Variable Value
	
NLS_LANG

	
NLS_LANG=GERMAN_GERMANY.WE8ISO8859P1

If you specified these environment variables in an environment file, specify this environment file in the respective configuration section of the formsweb.cfg in the Web Configuration page.

	
Enter the name of your application in the URL as shown:

http://example.com:8888/forms/frmservlet?

where "example" is the hostname of your computer and "8888" is the port used by your HTTP Listener.

Once you have created a configuration section, add "config=" and the name of the configuration section. In this example, the URL to access hrapp.fmx is:

http://example.com:8888/forms/frmservlet?config=my_application

3.3.2 Specifying Parameters

There are two ways to predefine parameter values for your Oracle Forms Services applications. You can define parameters by:

	
Editing your application settings in the default section of the Web Configuration page of Fusion Middleware Control. The default configuration section displays the default values that are used by Oracle Forms Services.

	
Managing (adding, editing, copying, deleting) other system and user parameter values in the named application configuration section (see Section 3.3.3, "Creating Configuration Sections in Fusion Middleware Control"). For example, in the configuration section you create for myApp, you can add or change these parameters and their values, as shown in Table 3-3.

Table 3-3 Example Configuration Section: Parameter Values for myApp

	Parameter Name	Parameter Value
	
baseHTML

	
mybase.htm

	
baseHTMLjpi

	
mybasejpi.htm

	
form

	
hrapp.fmx

	
userid

	
scott/tiger@orcl

	
Note:

Parameters specified in the named configuration section of a Web Configuration override the settings in the default section.

	
Note:

System Parameters cannot be overridden in the URL, while user parameters can.

3.3.3 Creating Configuration Sections in Fusion Middleware Control

Under the configuration sections you created in step 2 of Section 3.3.1, "Deploying Your Application", you can specify parameters for your Oracle Forms Services applications. You can specify any application and system parameters that are available in the default section for Web Configuration page.

For example, you can set the look and feel of the application to the Oracle look and feel by setting the lookAndFeel parameter to the value of oracle and clicking Apply.

You can also override the default parameter values in the named configuration section. For example, to predefine the connect information of an application to scott/tiger@orcl, the parameter value for userid must be set in the named configuration section by changing the parameter value of userid to scott/tiger@orcl.

For other parameters that you can edit, see Chapter 4, "Forms Configuration Parameters."

3.3.3.1 Editing the URL to Access Oracle Forms Services Applications

You can directly type parameters in the URL that accesses your Oracle Forms Services application. Using the previous example, instead of specifying the form parameter in your configuration file, you could also type it into the URL as follows:

http://example.com:8888/forms/frmservlet?config=my_application&form=hrapp

You can use the ampersand (&) to call a combination of a form and named configuration parameters. In the above example, you are calling the form "hrapp" with the parameter settings you specified in "my_application".

	
Note:

Parameters specified in the URL override the parameters set in the configuration section. See Chapter 4, "Managing URL Security for Applications" for more information.

3.3.4 Specifying Special Characters in Values of Runform Parameters

Certain considerations apply if values passed to runform parameters contain special characters. This section describes these considerations, and compares the default behavior in this release with the behavior in prior releases.

Runform parameters are those that are specified in the serverArgs applet parameter of the template HTML file. The value specified for the serverArgs parameter in the template HTML file, after variable substitution, is sometimes referred to as the command-line parameters string. It consists of a series of blank-separated name=value pairs. The name must consist solely of alphanumeric or underscore characters. The value portion of a name=value pair can be an arbitrary string.

3.3.4.1 Default Behavior in the Current Release

The value of a runform parameter can be specified in one of three places:

	
In the value of the serverArgs parameter in the template HTML file (for example, base.htm).

	
In the value of a variable specified in the configuration file (for example, formsweb.cfg), which is substituted (directly or recursively) for a variable reference in (1). Such values are typically maintained using Fusion Middleware Control; see Chapter 4, "Configuring Forms Services."

	
As an attribute value in a URL, which is substituted directly for a variable reference in (1) or (2).

For case (3), URL syntax rules (as enforced by the browser and the application server) require that certain characters be entered as URL escape sequences ('%' followed by 2 hexadecimal digits representing the ASCII value of the character, for a total of three characters).

This requirement includes the % character itself (which must be entered as %25). In addition, Oracle Forms Services currently requires that the quote character ('"') be entered as %22, even if the browser and the application server allow a quote to be entered without escaping.

URL syntax rules also allow a space to be entered as a + (as an alternative to the URL escape sequence %20). However in the value of the otherparams configuration parameter, a + is treated specially; it separates name=value pairs as opposed to indicating a space embedded in the value of a runform parameter.

For example, if a runform application has user parameters param1 and param2, and you want to assign them the values 'a b' and 'c d', you do so by incorporating the following into a URL:

&otherparams=param1=a%20b+param2=c%20d

When specifying runform parameters in the template HTML files or in the configuration files (cases (1) and (2)), Forms requires URL escape sequences in some circumstances, allows them in others, and forbids them in still others.

Outside of the values of runform parameters, URL escape sequences must not be used. For example, the = in a name=value pair must always be specified simply as =, and the space that separates two adjacent name=value pairs must always be specified simply as " " (a single space character).

Within the value of a runform parameter, space (' ') must be specified as a URL escape sequence (%20). The HTML delimiter character (specified in the configuration file) must also be specified as a URL escape sequence. And when the runform parameter is specified in the template HTML file (case (1)), quote ('"') must also be specified as a URL escape sequence (%22).

Any other 7-bit ASCII character may also be specified as a URL escape sequence, although this is not required (except possibly for %, as noted below). Certain additional restrictions apply to the % character. These include:

	
If the HTML delimiter is % (the default), then an occurrence of % within the value of a runform parameter must be escaped (specified as %25). (This actually follows from the requirement stated above, that the HTML delimiter character be escaped). Furthermore, variable names must never begin with two hexadecimal digits that represent a 7-bit ASCII value (that is, two hexadecimal digits, the first of which is in the range 0-7).

	
If the HTML delimiter is not %, then an occurrence of % must be escaped if it is immediately followed by an octal digit and then a hexadecimal digit. It is recommended that other occurrences of '%' also be escaped; but this is not a requirement.

(You might choose to ignore this recommendation if you have existing template HTML files or configuration files created in prior releases, which use an HTML delimiter other than '%', and which contain '%' in runform parameter values).

3.3.4.2 Behavior in Previous Releases

Release 9.0.4 and later behave the same as the current release except that a quote must be escaped (%22) within the value of a runform parameter in a configuration file, and in the template HTML file.

Releases before 9.0.4 did not allow URL escape sequences in runform parameter values specified in the template HTML file or the configuration file (cases (1) and (2) above). In all three cases, it was difficult or impossible to specify certain special characters, notably space, quote, and apostrophe. Also, certain transformations were applied to the parameter value before passing it to runform. Most notably, if a value began and ended with an apostrophe, these were typically stripped off. However, these transformations were not well-defined, and they differed between the Web and client/server environments.

3.3.4.3 Obtaining the Behavior of Prior Releases in the Current Release

If your applications are dependent on the behavior of prior releases, you can obtain that behavior in the current release, by simply setting the value of the escapeparams variable to False in the configuration file (this can be accomplished using Fusion Middleware Control).

If you want to obtain the old behavior only for selected applications, you can specify different values for the escapeparams variable in different configuration sections. Applications that require the old behavior can specify a configuration section in which the escapeparams variable is set to False; applications that require (or tolerate) the behavior in the current release can specify a configuration section in which the escapeparams variable is set to True.

3.3.4.4 Considerations for Template HTML Files

If you are creating your own template HTML files, then bear in mind the following:

It is recommended that a reference to the escapeparams variable (the string %escapeparams%, if '%' is the HTML delimiter character) appear at the beginning of the value of the serverArgs applet parameter, followed by a space. See the shipped base.htm file for an example.

References to the escapeparams variable must appear nowhere else in the template HTML file. If you choose to enclose the value of the serverArgs applet parameter in apostrophes instead of quotes, then within the value of a runform parameter in your template HTML file, apostrophes must be escaped (%27). Quotes do not require escape sequences.

It is permissible to omit the reference to the escapeparams variable from the beginning of the value of the serverArgs applet parameter. This results in the behavior of prior releases, regardless of the value specified in the configuration file for the escapeparams variable.

3.3.4.5 Considerations for Static HTML Pages

If you are invoking the runform engine using static HTML, and you want to obtain the behavior in the current release, then you must take certain steps.

The basic rule is that your static HTML must look like the HTML generated by the Forms servlet. Specifically, the value of the serverArgs applet parameter must begin with the string escapeparams=true (case-insensitive).

Also, in the value portion of each name=value pair, in the value of the serverArgs applet parameter, certain characters must be specified by a URL escape sequence, as listed in Table 3-4:

Table 3-4 URL Escape Sequences for Static HTML pages

	Characters that must be escaped	URL Escape Sequence
	
newline ' \n '

	
%0a

	
space ' '

	
%20

	
quote ' " '

	
%22

	
percent ' % '

	
%25

	
apostrophe ' ' '

	
%27

	
left parenthesis ' ('

	
%28

	
right parenthesis ') '

	
%29

It is also permissible to escape other 7-bit ASCII characters in the value portion of a name=value pair.

Here's an example of what the serverArgs applet parameter might look like in static HTML. This is for a form named "my form" (quotes not included), which is being passed the value "foo'bar" (quotes again not included) to the user-defined parameter named myparam.

<PARAM NAME="serverArgs" VALUE="escapeparams=true module=my%20form userid=scott/tiger@mydb myparam=foo%27bar">

3.3.5 Accessing the Listener Servlet Administration Page

You can display a test page for the Listener Servlet by accessing the following URL:

http://<hostname>:<port>/forms/frmservlet/admin

The information displayed depends on the value of the initialization parameter TestMode. This parameter is set in the $DOMAIN_HOME/servers/WLS_FORMS/tmp/_WL_user/formsapp_11.1.1/<random_string>/war/WEB-INF /web.xml file. An example is shown below:

<init-param>
<!-- Display sensitive options on the /admin page ? -->
 <param-name>TestMode</param-name>
 <param-value>true</param-value>
</init-param>

3.4 Client Browser Support

Users can view Oracle Forms applications on the Web using Sun's Java Plug-in. In future patch releases other virtual machines may be supported.

For more information about client browser support, including the latest supported platforms, go to the Forms Developer menu and choose Help | Forms on OTN... to locate the Client Platform Statement of Direction.

You can also find information on certification on OTN at http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html

3.4.1 How Configuration Parameters and BaseHTML Files are Tied to Client Browsers

When a user starts a Web-enabled application (by clicking a link to the application's URL), the Forms servlet:

	
Detects which browser is being used.

	
Selects the appropriate baseHTML file using Table 3-5:

Table 3-5 baseHTML file descriptions

	Detected Browser	Base HTML file used
	
Internet Explorer

	
basejpi.htm

	
Mozilla FireFox 3.0

	
basejpi.htm

	
All other browsers and Macintosh clients

	
base.htm

	
Replaces variables (%variablename%) in the baseHTML file with the appropriate parameter values specified in the Forms servlet.initArgs file, formsweb.cfg file, and from query parameters in the URL request (if any).

	
Sends the HTML file to the user's browser.

3.4.2 Forms Single Sign-On on Mozilla 3.x

Ensure that you have enabled cookies from Oracle site when using Forms and Single Sign-On on Mozilla 3.x. To enable the cookies, perform the following steps:

	
Open Mozilla Firefox, select Tools.

	
Select Options and then Privacy.

	
Select the Accept Cookies from site box.

These steps are not required for other browsers.

For more information on default browser settings in Mozilla, refer to http://www.mozilla.com.

4 Configuring and Managing Forms Services

This chapter contains the following sections:

	
Section 4.1, "Fusion Middleware Control and Oracle Forms"

	
Section 4.2, "Configuring Forms Services"

	
Section 4.3, "Managing Environment Variables"

	
Section 4.4, "Managing User Sessions"

	
Section 4.5, "Managing URL Security for Applications"

	
Section 4.6, "Creating Your Own Template HTML Files"

	
Section 4.7, "Deploying Fonts, Icons, and Images Used by Forms Services"

	
Section 4.8, "Enabling Language Detection"

	
Section 4.9, "Enabling Key Mappings"

4.1 Fusion Middleware Control and Oracle Forms

The Fusion Middleware Control is a Web-based tool that you launch from your default browser. The default URL is:

http://<example.com>:7001/em

Use the Web-based Oracle Enterprise Manager Fusion Middleware Control to:

	
Monitor metrics for a Forms Services instance. See Section 14.1.1.1, "Monitoring Forms Services Instances" for more information.

	
Manage user sessions. See Section 4.4, "Managing User Sessions" for more information.

	
Configure parameters for a Forms Services instance. See Section 4.2.2, "Configuring Parameters with Fusion Middleware Control" for more information.

	
Configure Forms Trace and monitor trace metrics. See Section 12.2, "Enabling and Configuring Forms Trace" and Section 12.6, "Taking Advantage of Oracle Diagnostics and Logging Tools" for more information.

	
Configure multiple environment files. See Section 4.3, "Managing Environment Variables" for more information.

	
Configure and use JVM pooling. See Section 10.8, "Managing JVM Pooling from Fusion Middleware Control" for more information.

4.1.1 Accessing Forms Services with Fusion Middleware Control

To perform most management tasks for a Forms instance using Fusion Middleware Control, you start by navigating to the Forms home page in Fusion Middleware Control.

To navigate to the Forms Home page in Fusion Middleware Control:

	
Navigate to the home page for the Fusion Middleware Control that contains the Forms instance you want to manage.

For introductory information about using the Enterprise Manager Fusion Middleware Control, see "Overview of Oracle Fusion Middleware Administration Tools" in the Oracle Fusion Middleware Administrator's Guide.

	
In the Farm pane, click the Fusion Middleware folder, then click the link for the Forms instance. This displays the Forms Home page (Figure 4-1) in the Fusion Middleware Control.

Figure 4-1 Forms Home page

[image: Forms Home Page]

	
The Forms Home page provides information on the Forms applications that are deployed on the Oracle instance. Table 4-1 describes the information displayed on the Forms Home page.

Table 4-1 Forms Deployment Fields

	Field	Description
	
Forms Application

	
Lists the names of the Forms applications that are deployed on the Oracle WebLogic Server instance. Click the name to view the Forms application home page.

	
WLS Instance

	
Name of Oracle WebLogic Server instance where the application is deployed.

	
Status

	
Indicates the status of the forms application. A green up arrow indicates the application is running. A red down arrow indicates the application is not started.

	
Number of Forms Sessions

	
Displays the number of active forms sessions.

	
Servlet URL

	
Displays the URL for the Forms servlet.

	
New Connections

	
Indicates whether new connections are enabled or not.

	
Web Configuration

	
Link to the Web Configuration page.

	
Environment Configuration

	
Link to the Environment Configuration page.

	
Servlet Logs

	
Link to the Servlet Logs.

To access the Forms Menu in Fusion Middleware Control:

	
Navigate to the Forms home page in Fusion Middleware Control.

	
Click Forms on the top left. This displays the Forms Menu. Table 4-2 lists the Menu Selections that are available in the Forms Menu.

Table 4-2 Forms Menu Options

	Select	To Display
	
Home

	
Forms Home page. This page displays a list of the Forms deployments and their details. This page also displays the Response and Load statistics and a set of useful links in the Resource Center.

	
Monitoring - Performance Summary

	
Performance Summary page. This page displays a set of default performance charts that show the values of specific performance metrics.

For more information, see the Oracle Fusion Middleware Performance Guide.

	
Monitoring - Servlet Log

	
Log Messages page. Oracle Fusion Middleware components generate log files containing messages that record all types of events.

	
JVM Controllers

	
JVM Controllers page. This page is used to manage the JVM controller for the Forms instance.

	
User Sessions

	
User Sessions page. This page is used to monitor and trace User Sessions within a Forms instance.

	
Web Configuration

	
Web Configuration page. This page is used to configure deployment of Forms applications and manage configuration sections and parameters in formsweb.cfg.

	
Trace Configuration

	
Trace Configuration page. This page is used to manage the settings used for tracing of user sessions.

	
Fonts and Icons Mapping

	
Fonts and Icons Mapping page. This page is used to change, add, or delete parameters in the Registry.dat file.

	
JVM Configuration

	
JVM Configuration page. This page is used to modify the JVM controllers that can be subsequently spawned for the Forms instance.

	
Environment Configuration

	
Environment Configuration page. This page is used to manage environment variables that define environment settings for Forms run time.

	
Associate/Disassociate OID

	
Associate/Disassociate OID page. This page is used to associate and disassociate a forms deployment with an Oracle Internet Directory host to enable Single Sign-On functionality.

	
General Information

	
Displays information about the Target Name, Version, Oracle Home, Oracle Instance, and Host.

	
Note:

For the pages that include a Help icon, click the Help icon to access the page-level help. The page-level help describes each element in the page.

4.2 Configuring Forms Services

Use the Web Configuration page in Fusion Middleware Control to configure deployment of Forms applications by modifying formsweb.cfg.

To access Web Configuration page:

	
Start Fusion Middleware Control.

	
From the Fusion Middleware Control main page, click the link to the Oracle Forms Services instance that you want to configure.

	
From the Forms menu list, select Web Configuration.

The Web Configuration page (Figure 4-2) is displayed.

Figure 4-2 Web Configuration Page

[image: Web Configuration page]

	
See Table 4-3 and Table 4-4 for the tasks that you can do.

	
Note:

As with most Web applications, it is easy to lose unsaved changes by switching pages. Be sure to save any changes you make through Fusion Middleware Control to Forms configuration or environment files before proceeding to other pages.

The length of time it takes for changes to be saved is affected by the number of lines you have changed. For example, an additional fifty lines of comments takes longer to save than just the deletion of a single entry.

4.2.1 Common Tasks in the Web Configuration Page

Table 4-3 describes the common tasks that you can do to edit configuration with the sections of a configuration file and their parameters.

Table 4-3 Common Tasks for Working with Configuration Sections

	Task	Description	Comment
	
Create Like

	
Creates a copy of a configuration section.

	
Use to create a configuration section based on the parameters of an existing configuration section.

	
Edit

	
Opens the Edit Description dialog.

	
Allows editing of the text description of a configuration section.

	
Delete

	
Opens the Confirmation dialog when deleting a configuration section.

	
Irrevocably deletes a configuration section and its contents when you click Delete in the Confirmation dialog.

	
Create

	
Opens the Create Section dialog.

	
Creates a configuration section. You must supply a required name and an optional description for it.

Table 4-4 describes the tasks that you can do to modify the parameters within a named configuration section:

Table 4-4 Common Tasks for Working with Parameters

	Task	Description	Comment
	
Show

	
Drop down list for selecting named groups of parameters in a configuration section.

	
Use for viewing and editing groups of parameters. The groups of parameters include:

	
basic

	
sso

	
trace

	
plugin

	
HTML

	
applet

	
advanced

	
all

For more information, see Section 4.2.5, "Forms Configuration Parameters".

	
Revert

	
Enables you to revert all changes made to parameters in a configuration section since the last apply.

	
Does not allow you to revert individual changes in a configuration section.

	
Apply

	
Applies and activates all changes made to parameters in a configuration section.

	
Once applied, you cannot revert changes to individual parameters.

	
Hide Inherited

	
Enables you to hide or display parameters that are inherited from a parent configuration section.

	
Use this to view parameters that have been explicitly added to a configuration section or to view all parameters (including those that are inherited from the default section).

	
Add

	
Displays the Add Parameter dialog.

	
Add a parameter to a configuration section based on a mandatory name and an optional value and description.

	
Delete

	
Deletes a parameter.

	
There is no Confirmation dialog. Once applied, you cannot revert changes to individual parameters.

	
Override

	
Allows overriding and editing of a parameter which is inherited from the default section.

	
Click Apply to save and activate your changes.

4.2.2 Configuring Parameters with Fusion Middleware Control

For a description and the location of the Forms servlet configuration file (formsweb.cfg), see Section 3.2.1.2, "formsweb.cfg".

4.2.2.1 Parameters that Specify Files

Three configuration parameters specify files. Of these, two baseHTML parameters must point to appropriate .htm files. Typically, the following values and their parameters should appear in the default configuration section, as shown in Table 4-5.

Table 4-5 Default Configuration Parameters that Specify Files

	Parameter	Value
	
baseHTML

	
base.htm

	
baseHTMLjpi

	
basejpi.htm

	
envFile

	
default.env

All of these parameters specify file names. If no paths are given (as in this example), the files are assumed to be in the same directory as the Forms servlet configuration file (formsweb.cfg), that is $DOMAIN_HOME/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_11.1.1/config

4.2.3 Managing Configuration Sections

This section describes creating, editing, duplicating, and deleting named configuration sections.

4.2.3.1 Creating a Configuration Section

You can create a configuration section in formsweb.cfg from the Web Configuration page of Fusion Middleware Control. These configurations can be requested in the end-user's query string of the URL that is used to run a form.

To create a configuration section:

	
Start the Enterprise Manager Fusion Middleware Control.

	
From the Fusion Middleware Control main page, click the link to the Forms Services instance that you want to configure.

	
From the Forms menu list, select the Web Configuration.

	
Click Create at the top of the Web Configuration region.

The Create Section dialog appears.

	
Enter a name and description for the configuration section and click Create.

	
Note:

The name must not contain any special characters such as #, *.

The configuration section is added.

For example, to create a configuration to run Forms in a separate browser window with the Oracle look and feel, create a section called sepwin and add the following parameters from Table 4-6:

Table 4-6 Sample Parameters to Add to a Configuration Section

	Parameter	Value
	
form

	
<module>

	
separateFrame

	
True

	
lookandfeel

	
Oracle

Your users would type the following URL to launch a form that uses the "sepwin" (or the name you applied) configuration:

http://server:port/forms/frmservlet?config=sepwin

4.2.3.2 Editing a Named Configuration Description

You can edit the description (comments) for a named configuration from the Web Configuration page.

	
Note:

You can make a backup of the configuration section you are about to edit by duplicating it first. For more information, see Section 4.2.3.3, "Duplicating a Named Configuration"

To edit a named configuration description:

	
In the Web Configuration region, select the row containing the configuration section you want to edit.

	
Click Edit.

	
The Edit Description dialog appears.

	
Enter the text for the comment.

	
Click Save.

The Edit Description dialog box is dismissed, and your changes are saved.

4.2.3.3 Duplicating a Named Configuration

You can make a copy of a named configuration for backup purposes, or create configuration sections from existing configurations or other duplicates.

To duplicate a named configuration:

	
In the Web Configuration region, select Create Like.

	
In the Create Like dialog, from the Section to Duplicate menu list, select the name of an existing configuration section you want to duplicate.

	
In the New Section Name field, enter a name for the configuration section. The name for the configuration section must be unique.

	
Click Create.

A section with the same parameters, parameter values and comments of the section you are duplicating is created.

4.2.3.4 Deleting a Named Configuration

When you delete a named configuration, you delete all the information within it. If you only want to delete specific parameters, see Section 4.2.4, "Managing Parameters".

To delete a named configuration:

	
From the Web Configuration region, select the row of the configuration section you want to delete.

	
Click Delete.

The Confirmation dialog appears.

	
Click Delete.

The configuration section is deleted.

Oracle Enterprise Manager returns to the Web Configuration page and displays the remaining configurations.

	
Note:

You cannot delete the Default configuration section.

4.2.4 Managing Parameters

Use Fusion Middleware Control to manage parameters within a named configuration. You can add, edit, or delete parameters from the Section pane of Fusion Middleware Control.

To edit a new or overridden parameter in a configuration section:

	
From the Web Configuration region, select the row of the configuration section that contains the parameter(s) you want to edit.

	
In the Section region, select the parameter group from the Show menu list. The parameters of the group are displayed.

	
Select the row of the parameter you want to edit. Enter the Value and Comments.

	
Note:

You can edit new or overridden parameters. Inherited parameters must first be overridden so they can be edited. In Figure 4-3, test1 is an example of a new parameter and lookandfeel is an example of an overridden parameter.

	
Click Apply to save the changes or Revert to discard them.

To add a parameter to a configuration:

	
In Fusion Middleware Control, from the Web Configuration region, select the configuration section row to which you want to add a parameter.

	
Click Add to add a parameter.

The Add dialog box is displayed.

	
Enter the Name, Value and Comments for the parameter.

	
Click Create to add the parameter.

	
Click Apply to save the changes or Revert to discard them.

To delete a parameter in a configuration:

	
In Fusion Middleware Control, from the Web Configuration region, select the configuration section row that contains the parameter you want to delete.

	
In the Sections region, from the Show menu list, select the parameter group that contains the parameter you want to delete.

	
Select the row that contains the parameter you want to delete.

	
Click Delete.

	
Click Apply to save the changes or Revert to discard them.

	
Note:

You can delete/edit multiple parameters at a time.

	
Note:

You can only delete user-defined parameters. Inherited parameters (such as enableJavascriptEvent in Figure 4-3) cannot be deleted.

	
Note:

When you delete an overridden parameter, the parameter is not deleted but instead regains its inherited status.

Figure 4-3 Parameter States

[image: Parameter states]

4.2.5 Forms Configuration Parameters

The section provide information about Forms configuration parameters. These parameters can be specified in the Forms configuration file (formsweb.cfg), as described in preceding sections. Many of these parameters can also be specified in the URL. Parameters that cannot be specified in the URL are listed in Section 4.2.5.8. A value in the URL overrides a value from formsweb.cfg. The following notes apply to all the parameter tables from Section 4.2.5.1 to Section 4.2.5.7:

	
Required/Optional: A parameter is required if the Forms Services requires a non-null value (from formsweb.cfg or, where allowed, from the URL) to function correctly.

	
Default values: For required parameters, the parameter description lists the default value from the default section of the formsweb.cfg that is shipped with the Forms product (or at least indicates that it specifies an appropriate value).

For optional parameters, the parameter description may show a non-null default value from the default section of the formsweb.cfg that is shipped with the Forms product. In addition, the parameter description may show the default value that is assumed if no value is specified. (This is the non-null value that produces the same behavior as a null value). When the description for an optional parameter simply shows an unqualified default value, the implication is that this value is both the default value from the default section of the formsweb.cfg that is shipped with the Forms product, and also the default value that is assumed if no value is specified.When the description for an optional parameter does not explicitly specify a default value, the implication is that the default value is null.

	
Runform parameters: The descriptions for some parameters indicate that they are runform parameters. They are passed to the frmweb process using the serverArgs applet parameter. For such a parameter, the syntax rules documented in Section 3.3.4 must be adhered to when specifying a value that contains special characters.

	
Sub-arguments for otherparams: The descriptions for some parameters indicate that they are sub-arguments for otherparams. That means that in order for the parameter to take effect (when specified in formsweb.cfg or the URL), it must appear in the form "name=%name%" within the value of the otherparams parameter. So, for example, if you are adding the parameter "array" (with a value of "no") to a configuration section, you must also add "array=%array%" to the value of the otherparams parameter.

Note that these parameters are all runform parameters (since the otherparams parameter is itself a runform parameter), and so the syntax rules documented in Section 3.3.4 must be adhered to when specifying a value that contains special characters.

This section includes:

	
Section 4.2.5.1, "Basic Configuration Parameters"

	
Section 4.2.5.2, "Single Sign-On Configuration Parameters"

	
Section 4.2.5.3, "Trace Configuration Parameters"

	
Section 4.2.5.4, "Plug-in Configuration Parameters"

	
Section 4.2.5.5, "HTML Page Configuration Parameters"

	
Section 4.2.5.6, "Applet Configuration Parameters"

	
Section 4.2.5.7, "Advanced Configuration Parameters"

	
Section 4.2.5.8, "List of Parameters that Cannot be Specified in the URL"

4.2.5.1 Basic Configuration Parameters

These basic parameters control the behavior of the Forms servlet. These parameters are described in Table 4-7:

Table 4-7 Basic Configuration Parameters

	Parameter	Required/

Optional	Parameter Value and Description
	
envFile

	
Required

	
Specifies the name of the environment configuration file.

Default value from formsweb.cfg is default.env.

	
form

	
Required

	
Specifies the name of the top level Forms module (fmx file) to run.

Default value from formsweb.cfg is test.fmx. This parameter is a runform parameter.

	
height

	
Required

	
Specifies the height of the form applet, in pixels.

Default value from formsweb.cfg is 600.

	
userid

	
Optional

	
Login string. For example: scott/tiger@ORADB. This parameter is a runform parameter.

	
width

	
Required

	
Specifies the width of the form applet, in pixels.

Default value from formsweb.cfg is 750.

4.2.5.2 Single Sign-On Configuration Parameters

Table 4-8 Single Sign-On Configuration Parameters

	Parameter	Required /

Optional	Parameter Value and Description
	
ssoCancelUrl

	
Optional

	
Specifies the Cancel URL for the dynamic resource creation DAS page.

	
ssoDynamicResourceCreate

	
Optional

	
Specifies whether dynamic resource creation is enabled if the resource is not yet created in the OID.

Default value is true.

	
ssoErrorUrl

	
Optional

	
Specifies the URL to redirect to if ssoDynamicResourceCreate is set to false.

	
ssoMode

	
Optional

	
Specifies whether the URL is protected in which case, mod_osso is given control for authentication or continue in the FormsServlet if not. Set it to true in an application-specific section to enable Single Sign-On for that application.

Default value is false.

	
ssoProxyConnect

	
Optional

	
Specifies whether session should operate in proxy user support or not. Set ssoProxyConnect to yes to enable for particular application.

Default value is no. This parameter is a sub-argument for otherparams.

4.2.5.3 Trace Configuration Parameters

Table 4-9 Trace Configuration Parameters

	Parameter	Required/

Optional	Parameter Value and Description
	
debug

	
Optional

	
Allows running in debug mode.

Default value is No. This parameter is a runform parameter.

	
EndUserMonitoringEnabled

	
Optional

	
Indicates whether End User Monitoring integration is enabled. Default value is false.

	
EndUserMonitoringURL

	
Optional

	
Indicates where to record End User Monitoring data.

	
host

	
Optional

	
For internal use only.

Specifies the host for the debugging session. This parameter should be used for debugging purposes only. It identifies the host on which the forms engine process is started.

This parameter is a runform parameter.

	
log

	
Optional

	
Supports tracing and logging. The value of this parameter, if set, is the file name of the trace log file.

This parameter is a sub-argument for otherparams.

	
port

	
Optional

	
For internal use only.

Port to use for debugging. This parameter should be used for debugging purposes only. The value of this parameter identifies the port on which the forms engine process is listening. If not specified, the default value is 9000. This parameter is ignored if serverURL has been specified.

This parameter is a runform parameter.

	
record

	
Optional

	
Supports tracing and logging.

This parameter is a sub-argument for otherparams.

	
tracegroup

	
Optional

	
Supports tracing and logging.

This parameter is a sub-argument for otherparams.

	
Note:

The parameters host and port must not be modified by the users. If the values of the host or port parameters is set to any value other than null, then it will result in FRM errors.

4.2.5.4 Plug-in Configuration Parameters

These parameters are for use with Sun Java Plug-in.

Table 4-10 Sun Java Plug-in Configuration Parameters

	Parameter	Required/

Optional	Parameter Value and Description
	
archive

	
Optional

	
Comma-delimited list of archive files that are used or downloaded to the client. For each file, include the file name if the file is in the codebase directory, or include the virtual path and file name.

Default value for formsweb.cfg is frmall.jar.

	
codebase

	
Required

	
Virtual directory you define to point to the physical directory ORACLE_HOME/forms/java, where, by default, the applet JAR files are downloaded from.

Default value from formsweb.cfg is /forms/java.

	
imageBase

	
Optional

	
Indicates where icon files are stored. Legal values:

	
codeBase, which indicates that the icon search path is relative to the directory that contains the Java classes. Use this value if you store your icons in a JAR file (recommended).

	
documentBase, which is the URL pointing to the HTML file.

Default value from formsweb.cfg is codeBase. If no value is specified, then the value of documentBase is used.

	
jpi_classid

	
Required

	
Sun's Java Plug-in class ID. formsweb.cfg specifies an appropriate value.

	
jpi_codebase

	
Required

	
Sun's Java Plug-in codebase setting. formsweb.cfg specifies an appropriate value.

	
jpi_download_page

	
Required

	
Sun's Java Plug-in download page. formsweb.cfg specifies an appropriate value.

	
jpi_mimetype

	
Required

	
Parameter related to version of Java Plug-in. formsweb.cfg specifies an appropriate value.

4.2.5.5 HTML Page Configuration Parameters

Table 4-11 HTML Page Configuration Parameters

	Parameter	Required/

Optional	Parameter Value and Description
	
baseHTML

	
Required

	
The default base HTML file.

Default value from formsweb.cfg is base.htm.

	
baseHTMLjpi

	
Required

	
Physical path to HTML file that contains Java Plug-in tags. Used as the baseHTML file if the client browser is not on Windows and the client browser is either Firefox or IE without the IE native settings.

Default value from formsweb.cfg is basejpi.htm.

	
HTMLafterForm

	
Optional

	
HTML content to add to the page below the area where the Forms application is displayed.

	
HTMLbeforeForm

	
Optional

	
HTML content to add to the page above the area where the Forms application is displayed.

	
HTMLbodyAttrs

	
Optional

	
Attributes for the <BODY> tag of the HTML page.

	
pageTitle

	
Optional

	
HTML page title, attributes for the BODY tag, and HTML to add before and after the form.

Default value fromformsweb.cfg is Oracle Fusion Middleware Forms Services.

4.2.5.6 Applet Configuration Parameters

These parameters are specified in the baseHTML file as values for object or applet parameters. They describe the visual behavior and appearance of the applet.

Table 4-12 Applet or Object Configuration Parameters

	Parameter	Required/

Optional	Parameter Value and Description
	
background

	
Optional

	
Specifies the .GIF file that should appear in the background. Set to NO for no background. Leave empty to use the default background.

	
colorScheme

	
Optional

	
Determines the application's color scheme. Legal values: Teal, Titanium, Red, Khaki, Blue, BLAF, SWAN, Olive, or Purple. Default value from formsweb.cfg is teal.

Note: colorScheme is ignored if LookAndFeel is set to Generic.

	
logo

	
Optional

	
Specifies the .GIF file that should appear at the Forms menu bar. Set to NO for no logo. Leave empty to use the default Oracle logo.

	
lookAndFeel

	
Optional

	
Determines the applications look-and-feel. Legal values: Oracle or Generic (Windows look-and-feel).

Default value from formsweb.cfg is Oracle.

	
separateFrame

	
Optional

	
Determines whether the applet appears within a separate window. Legal values: true or false (default).

	
splashScreen

	
Optional

	
Specifies the .GIF file that should appear before the applet appears. Set to NO for no splash. Leave empty to use the default splash image.

To set the parameter include the file name (for example, myfile.gif) or the virtual path and file name (for example, images/myfile.gif).

4.2.5.7 Advanced Configuration Parameters

Table 4-13 Advanced Configuration Parameters

	Parameter	Required/

Optional	Parameter Value and Description
	
allowAlertClipboard

	
Optional

	
Forms applet parameter.

Default value is true.

	
allowNewConnections

	
Optional

	
Determines whether new Forms sessions are allowed. This is also used by the Forms Home page in Fusion Middleware Control to show the current Forms status.

Default value is true.

	
applet_name

	
Optional

	
Configuration for JavaScript integration. This is name of the Forms applet that can be used to refer to it from a JavaScript code.

	
array

	
Optional

	
Set this parameter to no to suppress array processing. This causes Forms to send only a single row at a time to the database for an INSERT, UPDATE, or DELETE, and it causes the database to return only a single row of query results at a time. This usually results in the first retrieved record displaying faster, but the total time to display all rows in the query result is longer.

Default value if not specified is yes. This parameter is a sub-argument for otherparams.

	
buffer_records

	
Optional

	
Set this parameter to yes to set the number of records buffered in memory to the number of rows displayed, plus 3 (for each block). This saves Forms Runtime memory, but may slow down processing because of increased disk I/O. Sub argument for otherparams.

Default value if not specified is no. This parameter is a sub-argument for otherparams.

	
clientDPI

	
Optional

	
Specifies the dots per inch (DPI) and overrides the DPI setting returned by the JVM, allowing you to manage varying DPI settings per platform. Oracle recommends that you use an integer between 50 and 200.

	
connectionDisallowedURL

	
Optional

	
This is the URL shown in the HTML page that is not allowed to start a session.

	
cursorBlinkRate

	
Optional

	
To modify the cursor blink rate, or disable blinking, set the client parameter cursorBlinkRate as follows: <PARAM NAME="cursorBlinkRate" VALUE="1000">.The default is 600 milliseconds: the cursor completes one full blink every 1.2 seconds (1200 ms). A value of zero disables the blinking and the cursor remains visible all the time.

	
debug_messages

	
Optional

	
Set this parameter to yes to cause Forms to display ongoing messages about trigger execution while the form runs.

Default value if not specified is no. This parameter is a sub-argument for otherparams.

	
defaultcharset

	
Optional

	
Specifies the character set to be used in servlet requests and responses. Defaults to ISO-8859-1 (also known as Latin-1). Ignored if the servlet request specifies a character set (for example, in the content-type header of a POST). The values of this parameter may be specified either as an IANA character set name (for example, SHIFT_JIS) or as an Oracle character set name (for example, JA16SJIS). It should match the character set specified in the NLS_LANG environment variable, and it should also be a character set that the browser can display. Also, if the browser allows multibyte characters to be entered directly into a URL, for example, using the IME, as opposed to URL escape sequences, and to allow end users to do this, then the value of this parameter should match the character set that the browser uses to convert the entered characters into byte sequences.

Note: If your configuration file contains configuration sections with names that contain characters other than 7-bit ASCII characters, then the following rules apply. If a config parameter is specified in a URL or in the body of a POST request with no specified character set, and the value contains non-7-bit ASCII characters, then the value is interpreted using a character set named in the defaultcharset parameter. However, only the language-dependent default section and the language-independent default section of the configuration file is searched for the defaultcharset parameter. No other configuration section is searched because the name is not yet known.

	
digitSubstitution

	
Optional

	
Determines the BIDI digitSubstitution. Permissible values are none, national, and context. Default value is context.

	
disableMDIScrollbars

	
Optional

	
Set this parameter to true to disable horizontal and vertical scrollbars in the Forms main applet window.

You can also add this parameter in basejpi.html, in the OBJECT tag:

<PARAM NAME="disableMDIscrollbars"

VALUE="%disableMDIScrollbars%">.

In the tag <EMBED SRC> add

disableMDIScrollbars="%disableMDIScrollbars%".

Default value if not specified is false.

	
disableValidateClipboard

	
Optional

	
Forms applet parameter.

Default value is false.

	
enableJavascriptEvent

	
Optional

	
Configuration for JavaScript integration.

Default value is true.

	
escapeparams

	
Optional

	
Set this parameter to false for runform to treat special characters in runform parameters as it did in releases before 9.0.4. This parameter is a Forms run-time argument and specifies whether to escape certain special characters in values extracted from the URL for other run-time arguments.

Default value is false.

	
formsMessageListener

	
Optional

	
Forms applet parameter that specifies the class that the Forms client uses to enable recording of Forms messages for Tool Vendor Interface (TVI) / Intercept Server.

	
heartBeat

	
Optional

	
Use this parameter to set the frequency at which a client sends a packet to the server to indicate that it is still running. Define this integer value in minutes or in fractions of minutes, for example, 0.5 for 30 seconds. Default value, if not specified, is 2 minutes.

If the heartBeat is less than FORMS_TIMEOUT, the user's session is kept active, even if they are not actively using the form.

Note: If heartBeat is higher than the parameter session-timeout, then the value of session-timeout takes precedence over heartBeat. To increase the value of heartBeat, the value of session-timeout must be greater than heartBeat. For more information on this parameter, see "Session-timeout" in Oracle Fusion Middleware Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

	
highContrast

	
Optional

	
When highContrast is set to true, frame labels are black if foreground and background colors are not specified. Default value is false.

	
HTMLdelimiter

	
Optional

	
This parameter defines the delimiter for parameters in the base HTML files.

Default delimiter is %.

	
JavaScriptBlocksHeartBeat

	
Optional

	
Configuration variable that indicates if HeartBeat is blocked when a JavaScript call is a blocking call.

Default value is false.

	
legacy_lifecycle

	
Optional

	
Applet parameter for Sun's Java Plug-in. A value of true causes a running applet to be reused when requested. This parameter also affects the contents of the initial page that is generated as the response from the Forms servlet, to ensure the reusability of the applet when legacy_lifecycle is set to true. When set to true, JavaScript must be enabled on the Java client.

Default value is false.

	
maxRuntimeProcesses

	
Optional

	
This specifies the maximum allowable number of concurrent Forms run-time processes. It should be set a value that reflects the customer's hardware configuration (and the portion that can be used by Forms applications). A value of 0 (the default) indicates that there is no explicit limit. This default is not recommended, because it leaves the system vulnerable to Denial of Service attacks.

Default value if not specified is 0.

	
networkRetries

	
Optional

	
Number of times client should retry if a network failure occurs.

Default value is 0.

	
obr

	
Optional

	
For internal use only.

Default value is no. This parameter is a sub-argument for otherparams.

	
otherparams

	
Optional

	
This setting specifies command line parameters to pass to the Forms run-time process in addition to form and userid. This parameter is a runform parameter. Default value from formsweb.cfg is obr=%obr% record=%record% tracegroup=%tracegroup% log=%log% term=%term% ssoProxyConnect=%ssoProxyConnect%

Note: Special syntax rules apply to this parameter when it is specified in a URL: a + may be used to separate multiple name=value pairs (see Section 3.3.4, "Specifying Special Characters in Values of Runform Parameters" for more information). For production environments, to provide better control over which runform parameters, end users can specify in a URL, include the otherparams parameter in the value of the restrictedURLparams parameter.

	
prestartIncrement

	
Optional

	
The number of run-time processes to be created when the number of prestarted run-time processes is less than minRuntimes.

Default value if not specified is 1.

	
prestartInit

	
Optional

	
Number of the run-time processes that should be spawned initially.

Default value if not specified is 1.

	
prestartMin

	
Optional

	
Minimum number of run-time processes to exist in the pool. Default value if not specified is 0.

	
prestartRuntimes

	
Optional

	
Run-time prestarting or pooling is enabled only if true.

Default value if not specified is false.

	
prestartTimeout

	
Optional

	
Time in minutes after which all the prestarted processes of this pool (configuration section) is stopped. A run-time process is removed from the prestart pool after the client connection is made and thus is not stopped.

Default value if not specified is 0.

	
query_only

	
Optional

	
Set this parameter to yes to prevent the end user from inserting, updating, or deleting records.

Default value if not specified is no. This parameter is a sub-argument for otherparams.

	
quiet

	
Optional

	
Set this parameter to yes to prevent messages from producing an audible beep.

Default value if not specified is no. This parameter is a sub-argument for otherparams.

	
recordFileName

	
Optional

	
Forms applet parameter that specifies the name of file (for example, d:\temp\is) that stores the recorded Forms messages.

Default value if not specified is 'is' (without the quotes).

	
restrictedURLparams

	
Optional

	
Forms applet parameter. Specifies a comma-delimited list of parameters which is rejected if specified in a URL.

Default value from formsweb.cfg is "pageTitle,HTMLbodyAttrs,HTMLbeforeForm,HTMLafterForm,log".

	
restrictedURLchars

	
Optional

	
Forms applet parameter. Specifies a comma-delimited characters that is restricted for use in the request URL's query string.

	
serverApp

	
Optional

	
Forms applet parameter.

Default value is default.

	
serverURL

	
Required

	
Determines the URL path to Forms Listener Servlet.

Default value is /forms/lservlet.

	
term

	
Optional

	
The full path of a custom key binding file (to be used instead of the standard fmrweb or fmrweb_utf8 files).

This parameter is a sub-argument for otherparams.

4.2.5.8 List of Parameters that Cannot be Specified in the URL

This section lists the parameters that can be specified only in the servlet configuration file (formsweb.cfg). If any are specified in the URL, the value is ignored. In addition, any parameter that is listed in the value of the restrictedURLparams parameter is rejected if specified in the URL.

	
allowNewConnections

	
baseHTML

	
baseHTMLjpi

	
connectionDisallowedURL

	
defaultCharset

	
envFile

	
escapeparams

	
HTMLdelimiter

	
maxRuntimeProcesses

	
prestartIncrement

	
prestartInit

	
prestartMin

	
prestartRuntimes

	
prestartTimeout

	
restrictedURLparams

	
restrictedURLchars

	
serverURL

	
ssoCancelURL

	
ssoDynamicResourceCreate

	
ssoErrorURL

	
ssoMode

	
workingDirectory

4.3 Managing Environment Variables

Use the Environment Configuration page of Fusion Middleware Control to manage environment variables. From this page, you can add, edit, or delete environment variables as necessary.

The environment variables such as PATH, ORACLE_INSTANCE, ORACLE_HOME, and FORMS_PATH for the Forms run-time executable (frmweb.exe on Windows and frmweb on UNIX) are defined in default.env. The Forms listener servlet calls the executable and initializes it with the variable values provided in the environment file, which is found in the $DOMAIN_HOME/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_11.1.1/config directory by default.

Any environment variable that is not defined in default.env is inherited from the Oracle WebLogic Managed Server. The environment file must be named in the envFile parameter in the Default section of the Web Configuration page.

A few things to keep in mind when customizing environment variables are:

	
Environment variables may also be specified in the Windows registry. Values in the environment file override settings in the registry. If a variable is not set in the environment file, the registry value is used.

	
You need administrator privileges to alter registry values.

	
The server does not require restarting for configuration changes to take effect.

	
Existing Forms processes are not affected by environment variables that were defined after they were started.

	
Environment variables not set in the environment file or Windows registry are inherited from the environment of the parent process, which is the Oracle WebLogic Managed Server.

Table 4-14, "Default Environment Variables" describes important environment variables that are specified in default.env.

4.3.1 Managing Environment Configuration Files

To access the Environment Configuration page:

	
Start Fusion Middleware Control.

	
From the Fusion Middleware Control main page, click the link to the Oracle Forms Services instance that you want to configure.

	
From the Forms menu list, select Environment Configuration. The Environment Configuration page (Figure 4-4) is displayed.

Figure 4-4 Environment Configuration page

[image: Environment Configuration page]

To duplicate an environment configuration file:

	
From the Environment Configuration page, click Duplicate File.

The Duplicate File dialog is displayed.

	
Select the file which you want to duplicate and enter a unique name for the file.

	
Click Duplicate to create the file.

To delete an environment configuration file:

	
In the Environment Configuration page, from the Show menu list, select the environment configuration file you want to delete.

	
Click Delete File.

The Confirmation dialog is displayed.

	
Click Yes to confirm the deletion.

	
Note:

You cannot delete default.env. You can delete only user-defined environment configuration files.

To view an environment configuration file:

	
In the Environment Configuration page, from the Show menu list, select the environment configuration file that you want to view.

	
The parameters and their values are displayed.

4.3.2 Configuring Environment Variables

To edit an environment variable:

	
In the Environment Configuration page, select the row of the parameter that contains the environment variable you want to edit.

	
Enter the Value and Comments.

	
Click Apply to save the changes or Revert to discard them.

To add an environment variable:

	
From the Show menu list, select the environment configuration file to which you want to add the variable.

	
Click Add to add a parameter.

The Add dialog box is displayed.

	
Enter the Name, Value and Comments.

	
Click Create.

	
Click Apply to save the changes or Revert to discard them.

To delete an environment variable:

	
From the Show menu list, select the environment configuration file where you want to delete an environment variable.

	
Select the rows of the parameters you want to delete. You can delete more than one parameter at a time.

	
Click Delete.

	
Click Apply to save the changes or Revert to discard them.

4.3.3 Default Environment Variables

Table 4-14 provides the valid values and a description of some of the environment variables.

Table 4-14 Default Environment Variables

	Parameter	Valid Values	Description
	
ORACLE_HOME

	
ORACLE_HOME (default)

	
Points to the base installation directory of any Oracle product.

	
ORACLE_INSTANCE

	
ORACLE_INSTANCE (default)

	
Contains all configuration files, repositories, log files, deployed applications, and temporary files.

	
PATH

	
ORACLE_HOME/bin (default)

	
Contains the executables for Oracle products.

	
FORMS_PATH

	
ORACLE_HOME/forms:ORACLE_INSTANCE/FormsComponent/forms (default)

	
Specifies the path that Oracle Forms searches when looking for a form, menu, or library to run.

For Windows, separate paths with a semi-colon (;).

For UNIX, separate paths with a colon (:).

	
FORMS_RESTRICT_ENTER_QUERY

	
TRUE (default)

	
Disable or remove this variable for end-users who need access to the query-where functionality which potentially allows them to enter arbitrary SQL statements when in enter-query mode.

	
TNS_ADMIN

	
ORACLE_INSTANCE/config

	
Specifies the path name to the TNS files such as TNSNAMES.ORA, SQLNET.ORA and so on.

	
CLASSPATH

	
ORACLE_HOME/jdk/bin/java

	
Specifies the Java class path, which is required for the Forms debugger.

	
LD_LIBRARY_PATH

	
Set the LD_LIBRARY_PATH environment variable for the first time to

ORACLE_HOME/lib.

You can reset LD_LIBRARY_PATH in the Bourne shell by entering:

$ set LD_LIBRARY_PATH=ORACLE_HOME/lib:${LD_LIBRARY_PATH}

$ export LD_LIBRARY_PATH

or in the C shell by entering:

% setenv LD_LIBRARY_PATH ORACLE_HOME/lib:${LD_LIBRARY_PATH}

	
Oracle Forms Developer and Reports Developer products use dynamic, or shared, libraries. Therefore, you must set LD_LIBRARY_PATH so that the dynamic linker can find the libraries.

	
WEBUTIL_CONFIG

	
ORACLE_INSTANCE/config/FormsComponent/forms/server/webutil.cfg

	

	
FORMS_MESSAGE_ENCRYPTION

	
TRUE

	
Possible values are TRUE or FALSE. Use this environment variable to turn off or on the proprietary obfuscation applied to Forms messages when using HTTP mode. By default, communication is obfuscated.

	
LD_PRELOAD

	
<JDK_HOME>/jre/lib/i386/libjsig.so

	
Specifies the location of the library libjsig.so. This library is used for the signal-chaining facility offered by JVM 1.5. The signal-chaining facility enables an application to link and load the shared library libjsig.so before the system libraries. Ensure this is set for Forms and Reports integration on UNIX/Linux.

Note: If there are multiple environment files, ensure that LD_PRELOAD has the same settings as in default.env.

	
FORMS_PLSQL_BHVR_COMMON_SQL

	
Set the value of FORMS_PLSQL_BHVR_COMMON_SQL to true or 1 to enable the feature.

Set the value of to false or 0 to disable the feature.

	
If this variable is set, then PL/SQL uses a common SQL parser (that is, the one in RDBMS SQL engine) for compiling SQL code rather than the separate one built in to PL/SQL used for compiling static SQL.

	
Note:

On Windows, Oracle Forms Services reads Oracle environment settings from the Windows Registry unless they are set as environment variables.

4.4 Managing User Sessions

Administrators can manage user sessions, and related features such as monitoring, debugging and tracing using Fusion Middleware Control.

A user session starts when the frmweb process starts. Use the Forms User Sessions pages to monitor and trace the Forms sessions within a Forms Instance. The Forms User Sessions page is accessed from the Forms menu list by selecting User Sessions.

To view Forms user sessions:

	
Start Fusion Middleware Control.

	
From the Forms menu list, select User Sessions.

The User Sessions page (Figure 4-5) is displayed.

Figure 4-5 User Sessions page

[image: User Sessions page]

	
Table 4-15 describes the fields on the User Sessions page.

Table 4-15 User Sessions Page

	Field	Description
	
Process ID

	
The process ID of the user session.

	
Database

	
The database name used by the Forms application for the user session. Click the Database name to view the Database Sessions page.

	
CPU Usage

	
The percentage of CPU used by the run-time process.

	
Private Memory (KB)

	
The memory used by the run-time process. On Linux platforms, private memory is not the actual private memory but indicates the Resident Set Size (RSS).

	
IP Address

	
The IP address of the client computer used to connect to Forms Services.

	
Username

	
Database user name.

	
Connect Time

	
The time when the user connected to Forms Services. If the client connection time and client IP are empty, the session is a prestarted session, which is not yet connected to any client.

	
Trace Group

	
The trace group used for tracing the user session. When tracing is enabled, this column shows the trace group name or the events being traced. The events are displayed if the events of the trace group that was enabled for the session have been later modified in the trace configuration.

Note that the Trace group name that is displayed may not be indicate the accurate events being traced if built-ins are used to control the tracing.

	
Trace Log

	
Displays the trace log if one exists for the user session.

	
Configuration Section

	
Indicates the configuration section used by the Forms application.

	
Form Name

	
Indicates the module name of the form application.

	
CPU Time

	
Indicates total CPU time used by forms sessions since Connect time.

To enable new Forms user sessions:

By default, new Forms user sessions are enabled. You can disable them by using Fusion Middleware Control to set the allowNewConnections parameter to false.

	
Start Fusion Middleware Control.

	
From the Forms menu, select Web Configuration.

	
Select the default configuration section. allowNewConnections cannot be overridden in named sections.

	
In the Sections region, find and edit the value for the allowNewConnections parameter. A value of true (default) enables new user sessions, whereas false disables them.

	
Click Apply to save the changes.

To disable new Forms user sessions:

	
Start Fusion Middleware Control.

	
From the Forms menu, select Web Configuration.

	
Select the default configuration section. allowNewConnections cannot be overridden in named sections.

	
In the Sections region, find and edit the value for the allowNewConnections parameter. A value of true (default) enables new user sessions, whereas false disables them.

	
Click Apply to save the changes.

When new user sessions are disabled, attempted connections are directed to a URL identified by the formsweb.cfg parameter connectionDisallowedURL (in the default section). You must specify a complete and valid URL as the value.

If connectionDisallowedURL is not specified, then the following message is displayed in the browser:

The Forms servlet will not allow new connections. Please contact your System Administrator.

When you disable new user sessions, existing forms sessions are unaffected and the Oracle WebLogic Managed Server instance remains up.

To enable tracing for a Forms user sessions:

	
Start Fusion Middleware Control.

	
In the User Sessions page, select the row that has the user session for which you want to enable tracing.

	
Select Enable Tracing.

	
From the Select Trace Group list, select an available trace group and click OK.

To disable tracing for a Forms user sessions:

	
In the User Sessions page, select the row that has the user session for which you want to disable tracing.

	
Click Disable Tracing.

	
Click OK. The Disable Tracing dialog is dismissed and tracing is now stopped for the selected Forms user session.

To terminate a Forms user session:

	
Select the link to the Forms Services instance that has the user session to be terminated.

	
From the Forms menu, select User Sessions.

	
Click the row of the user session to be deleted.

	
Click Stop.

	
The Confirmation dialog is displayed.

	
Click Yes.

The user session is deleted and the Runform instance is terminated.

To view trace logs of a Forms user sessions:

	
From the Forms menu, select User Sessions.

	
For a user session that is active, click View Trace Log in the Trace Log column. Log in to view the trace file.

To search for a Forms user sessions:

	
From the Forms menu, select User Sessions.

	
Select the column name in which you want to search.

	
Enter the search string.

	
Click the blue arrow to search. The search results are displayed.

To sort the list of Forms user sessions:

	
From the Forms menu, select User Sessions.

	
Move the mouse over the column.

	
Click the up or down arrow to sort in ascending or descending order. The page is refreshed showing the sorted user sessions. You can sort in order of all columns except Trace Logs.

To customize your view of Forms user sessions:

	
From the User Sessions page, click View.

	
From the View menu, you can:

	
Select Show All to view all columns.

	
Select specific columns you want displayed.

	
Select Reorder Columns to organize the order of display of the columns.

	
Select Show More Columns to hide or display specific columns.

To view database sessions for a Forms user session:

	
From the Forms menu, select User Sessions.

	
Click the Database name in the Database column.

Log in to view the Database Sessions page (Figure 4-6). You need Database Administrator privileges to log in to Database Sessions page.

Figure 4-6 Database Sessions Page

[image: Database Sessions page]

	
Table 4-16, Table 4-17, and Table 4-18 describe the information displayed in the Database Sessions page.

Table 4-16 Database Sessions Page

	Field	Description
	
Username

	
Database username used for connection to the database.

	
Session ID

	
Database session identifier.

	
Logon Time

	
Date and time when user logged on to the session.

	
Serial #

	
Session serial number. Used to uniquely identify a session's objects. Guarantees that session-level commands are applied to the correct session objects if the session ends and another session begins with the same session ID.

	
Status

	
Indicates whether the session is active or not.

	
SQL HASH

	
Used to identify the SQL statement executed

	
CPU Usage (%)

	
CPU Usage (in percentage) on the Database system for the given session.

	
Logical Reads

	
Number of Logical Reads for the given session.

	
Physical Reads

	
Number of Physical Reads for the given session.

	
PGA (Program Global Area) Memory

	
Size of PGA (Program Global Area) Memory after an interval.

Table 4-17 Details of Selected Database Session

	Field	Description
	
SQL Statement for the selected Database Session

	
Displays the most recent SQL statement.

Table 4-18 Execution Plan for the Selected Database Session

	Field	Description
	
Operation

	
Name of the internal operation performed in the execution step (for example, TABLE ACCESS).

	
Object

	
Name of the table or index.

	
Object Type

	
Type of the object.

	
ID

	
A number assigned to each step in the execution plan.

	
Parent ID

	
ID of the next execution step that operates on the output of the current step.

	
Depth

	
Depth (or level) of the operation in the tree. It is not necessary to issue a CONNECT BY statement to get the level information, which is generally used to indent the rows from the PLAN_TABLE table. The root operation (statement) is level 0.

	
Position

	
Order of processing for all operations that have the same PARENT_ID.

	
Rows

	
Estimate, by the cost-based optimizer, of the number of rows produced by the operation.

	
Size (KB)

	
Estimate, by the cost-based optimizer, of the number of bytes produced by the operation.

	
Cost

	
Cost of the operation as estimated by the optimizer's cost-based approach. For statements that use the rule-based approach, this column is null.

	
Time (sec)

	
Elapsed time (in seconds) of the operation as estimated by the optimizer's cost-based approach. For statements that use the rule-based approach, this column is null.

	
CPU Cost

	
CPU cost of the operation as estimated by the optimizer's cost-based approach. For statements that use the rule-based approach, this column is null.

	
I/O Cost

	
I/O cost of the operation as estimated by the optimizer's cost-based approach. For statements that use the rule-based approach, this column is null.

4.5 Managing URL Security for Applications

Oracle Forms applications are web-deployed solutions that users access through a browser. Oracle Forms architecture allows Forms developers two ways to choose and configure how a Forms application runs. One option is to set the parameter and the value in the URL. The second option is to set the parameter and its value(s) in the configuration file, that is, formsweb.cfg. The parameter that is set in the formsweb.cfg can be overridden by the parameter set in the URL.

A Forms administrator can override this default behavior, and give the Forms administrator full control over what parameter can be used in the URL.

Here are two scenarios to consider when deciding which parameters to allow or not allow in a URL. The first scenario is when an administrator just wants to restrict the usage of the USERID parameter in the URL that forces the end-user to always log in using the default login window. The second scenario is when an administrator disables all parameters except a few, such as CONFIG=MyApp in a URL.

The parameter restrictedURLparams allows flexibility for the Forms administrator to consider any URL-accessible parameter in the formsweb.cfg file as restricted to a user. An administrator can specify this parameter in a named configuration section to override the one specified in the default configuration section. The restrictedURLparams parameter itself cannot be set in the URL.

By design, command line arguments passed in a URL always override similar definitions in the formsweb.cfg.

In this example, the userid is defined as scott/tiger and debug is set to false. An application that is configured to connect to the database as scott/tiger can connect as a different user with the userid parameter added as a URL parameter. To prevent this, the userid parameter is defined in the restrictedURLparams as shown in Figure 4-7, "Defining the restrictedURLparams Parameter".

Figure 4-7 Defining the restrictedURLparams Parameter

[image: restrictedURLparams parameter]

Similarly, an administrator can use the restrictedURLparams parameter to redirect a user to a page which lists the restricted parameters that were used.

4.5.1 Securing the Oracle Forms Test Form

The test form runs when you access an Oracle Forms URL but do not specify an application to run. For example, normally you call an Oracle Forms application with the following syntax:

http://<host>:<port>/forms/frmservlet?config=myApp

The Forms servlet locates [myApp] in the formsweb.cfg file and launches that application. However, when no application is specified, for example:

http://<host>:<port>/forms/frmservlet

The Forms servlet uses the settings in the default section of the formsweb.cfg file. These settings are located under [default] in the Forms Configuration file (anytime an application does not override any of these settings, the defaults are used). The default section has the following setting:

form=test.fmx

This is the test form which enables you to test your Oracle Forms Services installation and configuration. Thus if you do not specify an application, Forms launches the test.fmx file. You could change this to:

form=

And the form does not run. However, this is not optimal; the Forms servlet still sends the dynamically generated HTML file to the client, from which a curious user could obtain information. The optimally secure solution is to redirect requests to an informational HTML page that is presented to the client instead. Some parameters in the formsweb.cfg file must be changed.

Here are the parameters to change, along with their default values when you install Oracle Forms Services:

 # System parameter: default base HTML file
 baseHTML=base.htm
 # System parameter: base HTML file for use with Sun's Java Plug-In
 baseHTMLjpi=basejpi.htm

These parameters are templates for the HTML information that are sent to the client. Create an informational HTML page and have these variables point to that instead. For example, in the $ORACLE_INSTANCE/config/FormsComponent/forms/server directory, create a simple HTML page called forbidden.html with the following content:

 <html>
 <head>
 <title>Forbidden</title>
 </head>
 <body>
 <h1>Forbidden!</h1>
 <h2>You may not access this Forms application.</h2>
 </body>
 </html>

	
Note:

This message page displayed as a result of redirecting of client information is different from the page that the Web server returns when the requested content has restricted permissions on it.

Next, modify the formsweb.cfg parameters by commenting out or modifying the original parameters:

 # System parameter: default base HTML file
 #baseHTML=base.htm
 baseHTML=forbidden.html
 # System parameter: base HTML file for use with Sun's Java Plug-In
 #baseHTMLjpi=basejpi.htm
 baseHTMLjpi=forbidden.html
 # System parameter: base HTML file for use with Microsoft Internet Explorer
 # (when using the native JVM)

When a user enters the URL

http://<host>:<port>/forms/frmservlet

the customized Web page is presented. Of course, you can customize forbidden.html, including its contents, its filename, and its location if you make the corresponding changes to these parameters in the formsweb.cfg file. Administrators can put any information, such as warnings, errors, time stamps, IP logging, or contact information in this information Web page with minimal impact on the server configuration.

	
Note:

Overriding the base HTML template entries in the default section of formsweb.cfg requires that you add the same entries pointing to the original values (or some other valid HTML file) in your application-specific named configuration:

[myApp]
form=myApplication.fmx
lookandfeel=oracle
baseHTML=base.htm
baseHTMLjpi=basejpi.htm

If you do not specify these base HTML values, and when a user runs an application, the forbidden.html page is displayed because the application-specific configuration section has not overridden the default values.

4.6 Creating Your Own Template HTML Files

Consider creating your own HTML file templates (by modifying the templates provided by Oracle). By doing this, you can hard-code standard Forms parameters and parameter values into the template. Your template can include standard text, a browser window title, or images (such as a company logo) that would appear on the first Web page users see when they run Web-enabled forms. Adding standard parameters, values, and additional text or images reduces the amount of work required to customize the template for a specific application. To add text, images, or a window title, you must include the appropriate tags in the template HTML file.

See Chapter 3, "Specifying Special Characters in Values of Runform Parameters" for information about coding the serverArgs applet parameter.

Any user-added customized configuration files (such as user client registry files or user key binding files or multiple environment files) must be copied to the same directory as the corresponding default configuration file.

For example, if the user has created a French environment configuration file default_fr.env, then it must be placed in the $DOMAIN_HOME/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_11.1.1/config directory.

4.6.1 Variable References in Template HTML Files

When a variable reference occurs within a string delimited by quotes or apostrophes (for example, the value of an applet parameter), then when the value of the variable is substituted for the variable reference, HTML metacharacters ('&', '<', '>', quote, and apostrophe) are replaced by HTML escape sequences.

This sequence is not done for variable references outside delimited strings. Therefore, such variables should be specified in the restrictedURLparams system default configuration parameter, for security reasons.

	
Note:

To modify the cursor blink rate, or disable blinking, set the client parameter cursorBlinkRate as follows. <PARAM NAME="cursorBlinkRate" VALUE="1000">

The default is 600 milliseconds: the cursor completes one full blink every 1.2 seconds (1200 ms). A value of zero disables the blinking and the cursor remains visible all the time.

4.7 Deploying Fonts, Icons, and Images Used by Forms Services

This section explains how to specify the default location and search paths for fonts, icons, and images in Registry.dat. To look at a sample of the default Registry.dat file, see Section C.8.1, "Registry.dat".

4.7.1 Managing Registry.dat with Fusion Middleware Control

Use Fusion Middleware Control to change, add, or delete parameters from Registry.dat.

To access the Fonts and Icon Mapping page:

	
Start Fusion Middleware Control.

	
From the Forms menu list, select Font and Icon Mapping.

The Font and Icon Mapping page (Figure 4-8) is displayed.

Figure 4-8 Font and Icon Mapping Page

[image: Font and Icon Mapping page]

To edit a Registry.dat parameter value:

	
Start Fusion Middleware Control.

	
From the Forms menu list, select Font and Icon Mapping.

	
Select the row containing the parameter to modify and change the value(s) for it in the Value text field.

	
Click Apply to save the changes.

To add a Registry.dat parameter and its value:

	
From the Forms menu list, select Font and Icon Mapping.

	
Click Add.

The Add dialog appears.

	
Enter the name, value, and comments for this parameter.

	
Click Create.

	
Click Apply to save or Revert to discard the changes.

To delete a Registry.dat parameter and its value:

	
From the Forms menu list, select Font and Icon Mapping.

	
Select the row containing the parameter to delete and click Delete.

	
The parameter is deleted.

	
Click Apply to save or Revert to discard the changes.

4.7.2 Managing Application Fonts

Using Fusion Middleware Control, you can also change the default font and font settings by the Registry.dat file. All font names are Java Font names. Each of these parameters represents the default property to use when none is specified.

To change the font settings for a deployed application:

	
Start Fusion Middleware Control.

	
From the Forms menu list, select Font and Icon Mapping.

	
Change any of the settings to reflect your desired font setting, based on Table 4-19:

Table 4-19 Default Font Values

	Font Name	Default Value
	
default.fontMap.defaultFontname

	
Dialog

Represents the default Java fontName.

	
default.fontMap.defaultSize

	
900

Represents the default fontSize. Note that the size is multiplied by 100 (for example, a 10pt font has a size of 1000).

	
default.fontMap.defaultStyle

	
PLAIN

Represents the default fontStyle, PLAIN or ITALIC.

	
default.fontMap.defaultWeight

	
PLAIN

Represents the default fontWeight, PLAIN or BOLD.

	
default.fontMap.appFontnames

	
Courier New,Courier,courier,System,Terminal,Fixedsys,Times,Times New Roman,MS Sans Serif,Arial

Default Font Face mapping. Represents a comma delimited list of application font names.

The number of entries in the appFontname list should match the number in the javaFontname list. The elements of the list are comma separated and all characters are taken literally; leading and trailing spaces are stripped from Face names.

Note that this file uses the Java 1.1 font names to handle the NLS Plane.

	
default.fontMap.javaFontnames

	
MonoSpaced,MonoSpaced,MonoSpaced,Dialog,MonoSpaced,Dialog,Dialog,Serif,Serif,Dialog,SansSerif

Represents a comma delimited list of Java font names.

For example, to change your default font to Times New Roman, replace Dialog with Times New Roman.

You can change the default font face mappings:

default.fontMap.appFontnames=Courier New,Courier,
courier,System,Terminal,Fixed,Fixedsys,Times,Times New Roman,
MS Sans Serif,Arial
default.fontMap.javaFontnames=MonoSpaced,MonoSpaced,MonoSpaced,Dialog,
MonoSpaced,Dialog,Dialog,Serif,Serif,Dialog,SansSerif

	
Click Apply to save the changes.

Some fonts on Windows are not supported in Java. For this reason you can specify (map) Java-supported fonts that appear when a non-supported font is encountered. In the previous sample, each font in default.fontMap.appFontnames corresponds to a font in default.fontMap.javaFontnames.

4.7.3 Deploying Application Icons

When deploying an Oracle Forms application, the icon files used must be in a Web-enabled format, such as JPG or GIF (GIF is the default format).

By default, the icons are found relative to the DocumentBase directory. That is, DocumentBase looks for images in the directory relative to the base directory of the application start HTML file. As the start HTML file is dynamically rendered by the Forms servlet, the forms directory becomes the document base.

For example, if an application defines the icon location for a button with myapp/<iconname>, then the icon is looked up in the directory forms/myapp.

To change the default location, set the imageBase parameter to codebase in the Web Configuration page of Enterprise Manager Fusion Middleware Control. Alternatively, you can change the default.icons.iconpath value of the Registry.dat file in the $DOMAIN_HOME/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_11.1.1/config/forms/registry/oracle/forms/registry directory.

Setting the imageBase parameter to codebase enables Oracle Forms to search the forms/java directory for the icon files. Use this setting if your images are stored in a Java archive file. Changing the image location in the Registry.dat configuration file is useful to store images in a central location independent of any application and independent of the Oracle Forms installation.

4.7.3.1 Storing Icons in a Java Archive File

If an application uses a lot of custom icon images, it is recommended you store icons in a Java archive file and set the imageBase value to codebase. The icon files can be zipped to a Java archive using the Jar command of any Java Software Development Kit (Java SDK).

For example, the command jar -cvf myico.jar *.gif packages all files with the extension .gif into an archive file with the name myico.jar.

In order for Oracle Forms to access the icon files stored in this archive, the archive must be stored into the forms/java directory. Also, the name of the archive file must be part of the archive tag used in the custom application section of the formsweb.cfg file. Now, when the initial application starts, the icon files are downloaded and permanently stored on the client until the archive file is changed.

	
Note:

Oracle Forms default icons (for example, icons present in the default smart icon bar) do not require deployment, as they are part of the frmall.jar file.

4.7.3.2 Adding, Modifying, and Deleting Icon Mappings

Use Fusion Middleware Control to add icon changes to the Registry.dat file used by your application.

To add icon mappings:

	
Start Fusion Middleware Control.

	
From the Forms menu, select Font and Icon Mapping.

	
Click Add.

The Add dialog appears.

	
Enter the name, value, and an optional comment.

	
Click Create to create the mapping.

The mapping is added to the list.

	
Click Apply to save the changes.

To modify icon mappings:

	
From the Font and Icon Mapping region, select the mapping you want to modify.

	
Change the name and value of the mapping. For example,

	
Modify the iconpath parameter specifying your icon location:

default.icons.iconpath=/mydir

(for an absolute path)

or

default.icons.iconpath=mydir

(for a relative path, starting from the DocumentBase Directory)

	
Modify the iconextension parameter:

default.icons.iconextension=gif

or

default.icons.iconextension=jpg

	
Click Apply to save and activate the changes.

To delete an icon mapping:

	
From the Font and Icon Mapping region, select the mapping you want to delete.

	
Click Delete.

	
The selected icon mapping is deleted.

	
Click Apply to save or Revert to discard the changes.

To reference the application file:

	
In a specific named configuration section in the formsweb.cfg file, modify the value of the serverApp parameter and set the value to the location and name of your application file.

For example:

[my_app]

ServerApp=/appfile/myapp

(for an absolute path)

or

[my_app]

ServerApp=appfile/myapp

(for a relative path, relative to the CodeBase directory)

Table 4-20 describes the correct locations where to place your application icons:

Table 4-20 Icon Location Guide

	Icon Location	When	How
	
DocumentBase

	
Default. Applications with few or no custom icons.

	
Store icons in forms directory or in a directory relative to forms.

	
Java Archives

	
Applications that use many custom icons.

	
Set ImageBase to codebase, create Java archive file for icons, and add archive file to the archive parameter in formsweb.cfg.

	
Registry.dat

	
Applications with custom icons that are stored in a different location as the Oracle Forms install (can be another server).

Useful to make other changes to the Registry.dat file such as font mapping.

	
Copy Registry.dat and change ServerApp parameter in formsweb.cfg.

4.7.4 Splash screen and Background Images

When you deploy your applications, you have the ability to specify a splash screen image (displayed during the connection) and a background image file.

Those images are defined in the HTML file or you can use the Web Configuration page in Enterprise Manager:

<PARAM NAME="splashScreen" VALUE="splash.gif">

<PARAM NAME="background" VALUE="back.gif">

The default location for the splash screen and background image files is in the DocumentBase directory containing the baseHTML file.

	
Note:

Image formats for splash screens and icons are the standard formats that are supported by java.awt.Image. For more information on java.awt.Image, refer to the Java Advanced Imaging (JAI) API at http://java.sun.com.

4.7.5 Custom Jar Files Containing Icons and Images

Each time you use an icon or an image (for a splash screen or background), an HTTP request is sent to the Web server. To reduce the HTTP round-trips between the client and the server, you have the ability to store your icons and images in a Java archive (Jar) file. Using this technique, only one HTTP round-trip is necessary to download the Jar file.

4.7.5.1 Creating a Jar File for Images

The Java SDK comes with an executable called jar. This utility enables you to store files inside a Java archive. For more information, see http://java.sun.com/.

For example:

jar -cvf myico.jar Splash.gif Back.gif icon1.gif

This command stores three files (Splash.gif, Back.gif, icon1.gif) in a single Jar file called myico.jar.

4.7.5.2 Using Files Within the Jar File

The default search path for the icons and images is relative to the documentBase. However, when you want to use a Jar file to store those files, the search path must be relative to the codebase directory, the directory which contains the Java applet.

To use a Jar file to store icons and images, you must specify that the search path is relative to codebase using the imageBase parameter in the formsweb.cfg file or HTML file.

This parameter accepts two different values:

	
documentBase The search path is relative to the documentBase directory. If no value is specified for imageBase, then the value of documentBase is used.

	
codeBase The search path is relative to the codeBase directory, which gives the ability to use Jar files.

In this example, we use a JAR file containing the icons and we specify that the search should be relative to codeBase. If the parameter imageBase is not set, the search is relative to documentBase and the icons are not retrieved from the Jar file.

For example (formsweb.cfg):

archive=frmall.jar, icons.jar

imageBase=codeBase

4.7.6 Search Path for Icons and Images

The icons and images search path depends on:

	
What you specify in your custom application file (for the icons).

	
What you specified in the splashScreen and background parameters of your default Forms configuration file or HTML file (for the images).

	
What you specify in the imageBase parameter in the Web Configuration page of Fusion Middleware Control for the file or HTML file (for both icons and images).

Forms Services searches for the icons depending on what you specify. This example assumes:

	
host is the computer name.

	
DocumentBase is the URL pointing to the HTML file.

	
codebase is the URL pointing to the location of the starting class file (as specified in the formsweb.cfg file or HTML file).

	
mydir is the URL pointing to your icons or images directory.

4.7.6.1 DocumentBase

The default search paths for icons and images are relative to the DocumentBase. In this case, do not specify the imageBase parameter:

Table 4-21 Search Paths for Icons

	Location Specified	Search path used by Forms Services
	
default

	
http://host/documentbase

	
iconpath=mydir

(specified in your application file)

	
http://host/documentbase/mydir

(relative path)

	
iconpath=/mydir

(specified in your application file)

	
http://host/mydir

(absolute path)

Table 4-22 Search Paths for Images

	Location Specified	Search Path Used by Forms Services
	
file.gif (specified, for example, in formsweb.cfg as splashscreen=file.cfg)

	
http://host/documentbase/file.gif

	
mydir/file.gif

	
http://host/documentbase/mydir/file.gif

(relative path)

	
/mydir/file.gif

	
http://host/mydir/file.gif

(absolute path)

4.7.6.2 codebase

Use the imageBase=codebase parameter to enable the search of the icons (Table 4-23) and images (Table 4-24) in a Jar file:

Table 4-23 Icon Search Paths Used by Forms Services

	Location Specified	Search Path Used by Forms Services
	
default

	
http://host/codebase or root of the Jar file

	
iconpath=mydir

(specified in your application file)

	
http://host/codebase/mydir or in the mydir directory in the Jar file

(relative path)

	
iconpath=/mydir

(specified in your application file)

	
http://host/mydir

(absolute path)

No Jar file is used.

Table 4-24 Image Search Paths Used by Forms Services

	Location Specified	Search Path Used by Forms Services
	
file.gif

	
http://host/codebase/file.gif or root of the Jar file

	
mydir/file.gif

(specified in your HTML file)

	
http://host/codebase/mydir/file.gif or in the mydir directory in the Jar file

(relative path)

	
/mydir/file.gif

(specified in your HTML file)

	
http://host/mydir/file.gif

(absolute path)

No Jar file is used.

4.8 Enabling Language Detection

Oracle Forms architecture supports deployment in multiple languages. The purpose of this feature is to automatically select the appropriate configuration to match a user's preferred language. In this way, all users can run Oracle Forms applications using the same URL, yet have the application run in their preferred language. As Oracle Forms Services do not provide an integrated translation tool, you must have translated application source files.

4.8.1 Specifying Language Detection

For each configuration section in the Web Configuration page, you can create language-specific sections with names like <config_name>.<language-code>. For example, if you created a configuration section "hr", and wanted to create French and Chinese languages, your configuration section might look like the following:

[hr]
lookAndFeel=oracle
width=600
height=500
envFile=default.env
workingDirectory=/private/apps/hr
[hr.fr]
envFile=french.env
workingDirectory=/private/apps/hr/french
[hr.zh]
envFile=chinese.env
workingDirectory=/private/apps/hr/chinese

4.8.2 Inline IME Support

Inline IME support enables Forms Web applications to properly display the composing text in which each character may not be directly represented by a single keystroke (for example, Asian characters) near the insertion cursor (so called inline, or on-the-spot). It is enabled by default. To disable, set the applet parameter "inlineIME" to "false" in the baseHTML file:

<HTML>
<!-- FILE: base.htm (Oracle Forms) -->
 <BODY>
 ...
 <OBJECT classid=...
>
<PARAM NAME="inlineIME" VALUE="false">
<EMBED SRC="" ...
inlineIME="false"
>
...
.
</BODY>
</HTML>

For more information about using baseHTML, see Appendix C, "base.htm and basejpi.htm Files".

4.8.3 How Language Detection Works

When the Forms servlet receives a request for a particular configuration (for example, http://myserv/servlet/frmservlet?config=hr) it gets the client language setting from the request header "accept-language". This gives a list of languages in order of preference. For example, accept-language: de, fr, en_us means the order of preference is German, French, then US English. The servlet looks for a language-specific configuration section matching the first language. If one is not found, it looks for the next and so on. If no language-specific configuration is found, it uses the base configuration.

When the Forms servlet receives a request with no particular configuration specified (with no "config=" URL parameter, for example, http://myserv/servlet/frmservlet), it looks for a language-specific section in the default section matching the first language (for example, [.fr]).

4.8.3.1 Multi-Level Inheritance

For ease of use, to avoid duplication of common values across all language-specific variants of a given base configuration, only parameters which are language-specific to be defined in the language-specific sections are allowed. Four levels of inheritance are now supported:

	
If a particular configuration is requested, using a URL query parameter like config=myconfig, the value for each parameter is looked for in the langage-specific configuration section which best matches the user's browser language settings (for example in section [myconfig.fr]),

	
Then, if not found, the value is looked for in the base configuration section ([myconfig],

	
Then, failing that, in the language-specific default section (for example, [.fr]),

	
And finally in the default section.

Typically, the parameters which are most likely to vary from one language to another are "workingDirectory" and "envFile". Using a different envFile setting for each language lets you have different values of NLS_LANG (to allow for different character sets, date and number formats) and FORMS_PATH (to pick up language-specific fmx files). Using different workingDirectory settings provides another way to pick up language-specific .fmx files.

4.9 Enabling Key Mappings

A key binding connects a key to an application function. When you bind a key to a function, the program performs that function when you type that keystroke. You define key bindings in the fmrweb.res file in the $ORACLE_INSTANCE/config/FormsComponent/forms/admin/resource/<lang> directory in UNIX, for example $ORACLE_INSTANCE/config/FormsComponent/forms/admin/resource/US. For Windows, the location is ORACLE_INSTANCE\config\FormsComponent\forms.

By defining key bindings, you can integrate a variety of keyboards to make an application feel similar on each of them. On some platforms not all keys are able to be re-mapped. For example, on Microsoft Windows, because keys are defined in the Windows keyboard device driver, certain keys cannot be re-mapped. Key combinations integral to Windows, such as Alt-F4 (Close Window) and F1 (Help) cannot be re-mapped. As a general rule, keys which are part of the "extended" keyboard also cannot be re-mapped. These keys include the number pad, gray arrow and editing keys, Print Screen, Scroll Lock, and Pause.

	
Note:

If running with different NLS_LANG settings, for example, NLS_LANG=GERMAN_GERMANY=WE8ISO8859P1, a different resource file, fmrwebd.res, is used. There is a resource file for each supported language. To override this, pass parameter term=fullpath\filename.res to the Oracle Forms Runtime process.

It is possible to pass this parameter directly within the URL. For example:

http://hostname:port/forms/frmservlet?Form=test.fmx&term=fullpath/filename.res

You can also set this parameter in the formsweb.cfg file, for example:

otherParams=term=fullpath\filename.res

4.9.1 Customizing fmrweb.res

fmrweb.res is a text file which can edited with a text editor such as vi in UNIX or Notepad or Wordpad on Windows. Unlike Oracle 6i Forms, Oracle Terminal editor is no longer required. The text file is self-documented.

	
Note:

The customization is limited, particularly compared to character mode forms. You cannot edit fmrweb.res with Oracle Enterprise Manager Fusion Middleware Control.

4.9.1.1 Example change: Swapping Enter and Execute Mappings

In the section marked USER-READABLE STRINGS, find the entries with

122 : 0 : "F11" : 76 : "Enter Query"
122 : 2 : "Ctrl+F11" : 77 : "Execute Query"

and change them to:

122 : 2 : "Ctrl+F11" : 76 : "Enter Query"
122 : 0 : "F11" : 77 : "Execute Query"

	
Note:

By default fmrweb.res does not reflect the Microsoft Windows client/server keyboard mappings. It reflects the key mapping if running client/server on UNIX X-Windows/Motif.

A file called fmrpcweb.res has also been provided which gives the Microsoft Windows client/server keyboard mappings. To use this file, rename fmrpcweb.res to fmrweb_orig.res, and copy fmrpcweb.res to fmrweb.res. Alternatively, use the term parameter as described above.

4.9.1.2 Exceptions/ Special Key Mappings

The following examples show special key mappings:

	
Section 4.9.1.2.1, "Mapping F2"

	
Section 4.9.1.2.2, "Mapping for ENTER to Fire KEY-ENTER-TRIGGER"

	
Section 4.9.1.2.3, "Mapping Number Keys"

	
Section 4.9.1.2.4, "Mapping for ESC Key to exit out of a Web Form"

4.9.1.2.1 Mapping F2

To map F2, change the default entry for F2, "List Tab Pages", to another key. Here is an example of the default entry:

113: 0 : "F2" : 95 : "List Tab Pages"

This must be explicitly changed to another key mapping such as the following:

113: 8 : "F2" : 95 : "List Tab Pages"

To map the F2 function to the F2 key, comment out the lines that begin with "113 : 0" and "113 : 8" with a # symbol and add the following lines to the bottom of the resource file:

113: 0 : "F2" : 84 : "Function 2"
113: 8 : " " : 95 : " "

Since a new function has been added which uses F2 by default, it is necessary to explicitly map this new function to something else to map the F2 key. This function was added to allow for keyboard navigation between the tab canvas pages and it defaults to F2. Even if it is commented out and not assigned to F2, the F2 key cannot be mapped unless this function, Forms Function Number 95, is mapped to another key.

4.9.1.2.2 Mapping for ENTER to Fire KEY-ENTER-TRIGGER

By default, whether deploying client/server or over the Web pressing the ENTER key takes the cursor to the next navigable item in the block. To override this default behavior it is necessary to modify the forms resource file to revise the key mapping details.

Modify fmrweb.res and change the Forms Function Number (FFN) from 27 to 75 for the Return Key. The line should be changed to the following:

10 : 0 : "Return" : 75 : "Return"

By default, the line is displayed with an FFN of 27 and looks as follows:

10 : 0 : "Return" : 27 : "Return"

This line should NOT fire the Key-Enter trigger since the Return or Enter key is actually returning the Return function represented by the FFN of 27. The FFN of 75 represents the Enter function and fires the Key-Enter trigger.

4.9.1.2.3 Mapping Number Keys

The objective is to map CTRL+<number> keys in fmrweb.res for numbers 0 to 9 and there are no Java Function keys mentioned for the numbers in fmrweb.res. The steps to be performed along with an example that shows the steps needed to map CTRL+1 to 'Next Record' are:

	
List the Java function key numbers that could be implemented in fmrweb.res file for the Key Mapping. For example:

public static final int VK_1 = 0x31;

	
The hexadecimal values have to be converted to their decimal equivalents before their use in fmrweb.res.

In step (1), 0x31 is a hexadecimal value that has to be converted to its decimal equivalent. (Note:1019580.6). For example,

SQL> select hextodec('31') from dual;
HEXTODEC('31')

49

	
Use this decimal value for mapping the number key 1 in fmrweb.res. For example, CTRL+1 can be mapped to 'Next Record' as:

49 : 2 : "CTRL+1" : 67 : "Next Record"

4.9.1.2.4 Mapping for ESC Key to exit out of a Web Form

	
Make a backup copy of fmrweb.res.

	
Open the fmrweb.res file present in the path ORACLE_HOME/FORMS and add the following entry in it:

27 : 0 : "Esc" : 32 : "Exit"

	
Ensure that you comment or delete the old entry

#115 : 0 : "F4" : 32 : "Exit"

The first number (115) might differ on different versions or platforms. When you run the Web Form and press the ESC key, then the Form exits.

5 Using Oracle Forms Services with the HTTP Listener and Oracle WebLogic Server

Oracle WebLogic Server is a scalable, enterprise-ready Java EE application server. It implements the full range of Java EE technologies, and provides many more additional features such as advanced management, clustering, and Web services. It forms the core of the Oracle Fusion Middleware platform, and provides a stable framework for building scalable, highly available, and secure applications.

This chapter contains the following sections:

	
Section 5.1, "About the Oracle WebLogic Managed Server"

	
Section 5.2, "Working with Forms Managed Server"

	
Section 5.3, "Performance/Scalability Tuning"

	
Section 5.4, "Load Balancing Oracle WebLogic Server"

	
Section 5.5, "Using HTTPS with the Forms Listener Servlet"

	
Section 5.6, "Using an Authenticating Proxy to Run Oracle Forms Applications"

	
Section 5.7, "Oracle Forms Services and SSL"

	
Section 5.8, "Enabling SSL with a Load Balancing Router"

5.1 About the Oracle WebLogic Managed Server

Managed Servers host business applications, application components, Web services, and their associated resources. To optimize performance, managed servers maintain a read-only copy of the domain's configuration document. When a managed server starts up, it connects to the domain's administration server to synchronize its configuration document with the document that the administration server maintains. Oracle Fusion Middleware system components (such as SOA, WebCenter Portal, and Identity Management components), as well as customer-deployed applications, are deployed to managed servers in the domain. During configuration, some managed servers are created specifically to host the Oracle Fusion Middleware system components (for example, wls_soa, wls_portal, and wls_forms).

Figure 5-1 shows a simple scenario of the Oracle WebLogic Managed Server. In the left side of the image, the Forms servlet renders the start HTML file and provides the information about the Forms Listener servlet to the client. An HTTP request is then received by the Oracle HTTP Server Listener, which passes it off to the Forms Listener servlet running inside Oracle WebLogic Managed Server, in the right side of the image. The Forms Listener servlet establishes a runtime process and is responsible for on-going communication between the client browser and the runtime process. As more users request Oracle Forms sessions, the requests are received by the Oracle HTTP Server Listener. The HTTP Listener again passes them off to the Forms Listener servlet, which establishes more runtime processes. The Forms Listener servlet can handle many Forms runtime sessions simultaneously. While there is, of course, a limit to the number of concurrent users, the architecture presents a number of opportunities for tuning and configuration to achieve better performance (see the next section).

Figure 5-1 Oracle WebLogic Managed Server and Forms Services

[image: HTTP request flow]

5.2 Working with Forms Managed Server

By default (out-of-the-box installation), the Forms Services Java EE application (formsapp.ear) is deployed on Forms Managed Server (WLS_FORMS). You can manage WLS_FORMS and formsapp.ear using Oracle WebLogic Administration Console or Oracle Enterprise Manager Fusion Middleware Control. Refer to the following topics for more information:

	
Starting and Stopping Forms Managed Server: For more information, refer to "Overview of Starting and Stopping Procedures" in Oracle Fusion Middleware Administrator's Guide.

	
Deploying Forms Application to Forms Managed Server: For more information, refer to "Install an Enterprise application" in WebLogic Administration Console Online Help. For information on deploying, undeploying, and redeploying applications, see "Deploying Applications" in Oracle Fusion Middleware Administrator's Guide.

	
Custom deployment of Forms Java EE application: For more information, refer to Section 5.2.1, "Custom Deployment of Forms Java EE Application".

	
Expanding Forms Managed Server Clusters: For more information, refer to Section 5.2.2, "Expanding Forms Managed Server Clusters".

	
Managing Cloned Managed Servers: For more information on using Fusion Middleware Control to manage cloned managed servers, see Section 5.2.3, "Registering Forms Java EE Applications."

	
Modifying weblogic.xml, web.xml, application.xml and weblogic-application.xml post deployment: For more information, refer to Section 5.2.4, "Modification of Forms J2EE Application Deployment Descriptors".

	
Starting Forms Managed Server as a Windows Service: For more information, refer to "Setting Up a WebLogic Server Instance as a Windows Service" in Oracle Fusion Middleware Managing Server Startup and Shutdown for Oracle WebLogic Server.

5.2.1 Custom Deployment of Forms Java EE Application

To create a custom managed server and deploy Forms application on it, perform the following steps:

5.2.1.1 Prerequisite Steps

	
Set the following environment variables to the paths specified:

	
MW_HOME: Set this variable to point to the Oracle Middleware Home location (for more information, see "A.9 Specify Installation Location Screen" in Oracle Fusion Middleware Installation Guide for Oracle Portal, Forms, Reports and Discoverer).

	
ORACLE_HOME: Set this variable with the absolute path of the Oracle Home directory. For more information, see "A.9 Specify Installation Location Screen" in Oracle Fusion Middleware Installation Guide for Oracle Portal, Forms, Reports and Discoverer.

	
DOMAIN_HOME: Set this variable with the location of the folder created by Oracle WebLogic Server for the domain specified in "A.7 Select Domain Screen" in Oracle Fusion Middleware Installation Guide for Oracle Portal, Forms, Reports and Discoverer.

	
Specify the JDK path in the system path.

Enter the path to the Java executable. For example on UNIX operating systems, enter$MW_HOME/jdk<version>/bin in the system path (on Windows operating systems, the path is %MW_HOME%\jdk<version>\bin).

	
Create a managed server, for example, WLS_FORMS_CUSTOM_APP, as part of the same cluster as the default managed server (WLS_FORMS).

For more information on adding a managed server, refer to "Adding Additional Managed Servers to a Domain" in Oracle Fusion Middleware Administrator's Guide.

	
Specify the following properties of the managed server using the WebLogic Administration Console.

	
Classpath: Specify the value: <ORACLE_HOME>/opmn/lib/optic.jar (on Windows operating systems: <ORACLE_HOME>\opmn\lib\optic.jar). Replace <ORACLE_HOME> with the absolute path.

	
Arguments: Specify the following values:

-Dclassic.oracle.home=<ORACLE_HOME> -Doracle.instance=<ORACLE_INSTANCE> -
Doracle.instance.name=<ORACLE_INSTANCE_NAME> -Doracle.forms.weblogic=1

Make sure all the entries are in a single line (without any carriage returns). Replace <ORACLE_HOME>, <ORACLE_INSTANCE> with the absolute paths. Replace <ORACLE_INSTANCE_NAME> with the name of the Oracle Instance (default name asinst_1).

For more information, refer to "Server Start" in Oracle WebLogic Administration Console Help.

	
Perform the following steps to create a folder structure in ORACLE_HOME:

	
On UNIX operating systems, create a new folder for the custom application.

For example, create customapp as follows:

mkdir -p $ORACLE_HOME/customapp

Create a Java folder in customapp and create a symbolic link for the folder as follows:

For example:

cd $ORACLE_HOME/customapp

ln -s $ORACLE_HOME/forms/java $ORACLE_HOME/customapp/java

Copy the application files to the new folder.

For example:

cp -rpf $ORACLE_HOME/forms/j2ee $ORACLE_HOME/customapp/

	
On Windows operating systems, use the following commands to create a folder structure under ORACLE_HOME directory:

mkdir %ORACLE_HOME%\customapp\java

mkdir %ORACLE_HOME%\customapp\j2ee

cd %ORACLE_HOME%\customapp

xcopy /S /E %ORACLE_HOME%\forms\java %ORACLE_HOME%\customapp\java

xcopy /S /E %ORACLE_HOME%\forms\j2ee %ORACLE_HOME%\customapp\j2ee

5.2.1.2 Override the Default Servlet Alias and the Context Root

	
Extract the EAR file.

For example, on UNIX operating systems:

cd $ORACLE_HOME/customapp/j2ee

jar xvf formsapp.ear

On Windows operating systems:

cd %ORACLE_HOME%\customapp\j2ee

jar xvf formsapp.ear

	
Extract the WAR file.

For example, on UNIX operating systems:

mkdir -p $ORACLE_HOME/customapp/j2ee/warfile

cd $ORACLE_HOME/customapp/j2ee/warfile

jar xvf $ORACLE_HOME/customapp/j2ee/formsweb.war

On Windows operating systems:

mkdir %ORACLE_HOME%\customapp\j2ee\warfile

cd %ORACLE_HOME%\customapp\j2ee\warfile

jar xvf %ORACLE_HOME%\customapp\j2ee\formsweb.war

	
Override the servlet alias in web.xml deployment descriptor that is located in the WEB-INF folder.

For example, on UNIX operating systems:

cd $ORACLE_HOME/customapp/j2ee/warfile/WEB-INF

On Windows operating systems:

cd %ORACLE_HOME%\customapp\j2ee\warfile\WEB-INF

Edit web.xml in an editor and replace frmservlet with customservlet (entries under tags <Servlet-Name>, <url-pattern>, <welcome-file>).

	
Repackage the WAR file.

For example, on UNIX operating systems:

cd $ORACLE_HOME/customapp/j2ee/warfile

jar cvfM formsweb.war ./*

mv formsweb.war $ORACLE_HOME/customapp/j2ee/

On Windows operating systems:

cd %ORACLE_HOME%\customapp\j2ee\warfile

jar cvfM formsweb.war .*

copy formsweb.war %ORACLE_HOME%\customapp\j2ee\

del formsweb.war

	
Override the application context root in application.xml deployment descriptor that is located in the META-INF folder.

For example, on UNIX operating systems:

cd $ORACLE_HOME/customapp/j2ee/META-INF

On Windows operating systems:

cd %ORACLE_HOME%\customapp\j2ee\META-INF

Edit application.xml, change context-root to customapp.

	
Modify the codebase and serverURL entries in formsweb.cfg.

For example, on UNIX operating systems:

cd $ORACLE_HOME/customapp/j2ee/config

On Windows operating systems:

cd %ORACLE_HOME%\customapp\j2ee\config

Edit formsweb.cfg and change the context-root entries in serverURL and codebase parameters.

For example, Change serverURL=/forms/lservlet to serverURL=/customapp/lservlet.Change codebase from /forms/java to customapp/java.

	
Repackage the EAR file.

For example, on UNIX operating systems:

cd $ORACLE_HOME/customapp/j2ee

jar cvfM customapp.ear META-INF/MANIFEST.MF APP-INF/* config/* formsweb.war META-INF/*

On Windows operating systems:

cd %ORACLE_HOME%\customapp\j2ee

jar cvfM customapp.ear META-INF\MANIFEST.MF APP-INF* config* formsweb.war META-INF*

	
Clean the extracted EAR file contents. On UNIX operating systems:

rm -rf META-INF APP-INF config META-INF formsweb.war

On Windows operating systems:

RMDIR META-INF APP-INF config META-INF /s /q

DEL formsweb.war

5.2.1.3 Create the Deployment Plan

	
Create a folder in customapp named 11.1.1.

For example, on UNIX operating systems:

mkdir -p $DOMAIN_HOME/deploymentplans/customapp/11.1.1

On Windows operating systems,

mkdir %DOMAIN_HOME%\deploymentplans\customapp\11.1.1

	
Copy the following entries to a file $DOMAIN_HOME/deploymentplans/customapp/11.1.1/plan.xml (on Windows operating systems, %DOMAIN_HOME%\deploymentplans\customapp\11.1.1\plan.xml). Example 5-1 describes a deployment plan with application name of customapp and managed server name of WLS_FORMS_CUSTOM_APP. Ensure you make the following changes:

	
Replace the custom application name, location of EAR file, and managed server with the names and locations in your environment.

	
Replace <DOMAIN_HOME>, <ORACLE_HOME> with the absolute paths.

Example 5-1 Example of Deployment Plan

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/deployment-plan
 http://xmlns.oracle.com/weblogic/deployment-plan/1.0/deployment-plan.xsd"
 global-variables="false">
 <application-name>customapp</application-name>
 <variable-definition>
 <variable>
 <name>vd-<ORACLE_HOME>/customapp</name>
 <value><ORACLE_HOME>/customapp</value>
 </variable>
 <variable>
 <name>vd-<DOMAIN_HOME>/config/fmwconfig/servers/WLS_FORMS_CUSTOM_APP/applications/customapp_11.1.1/config/customapp</name>
 <value><DOMAIN_HOME>/config/fmwconfig/servers/WLS_FORMS_CUSTOM_APP/applications/customapp_11.1.1/config/customapp</value>
 </variable>
 </variable-definition>
 <module-override>
 <module-name>customapp.ear</module-name>
 <module-type>ear</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-application</root-element>
 <uri>META-INF/weblogic-application.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>application</root-element>
 <uri>META-INF/application.xml</uri>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>wldf-resource</root-element>
 <uri>META-INF/weblogic-diagnostics.xml</uri>
 </module-descriptor>
 </module-override>
 <module-override>
 <module-name>formsweb.war</module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 <variable-assignment>
 <name>vd-<ORACLE_HOME>/customapp</name>
 <xpath>/weblogic-web-app/virtual-directory-mapping/[url-pattern="java/*"]/local-path</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>vd-<ORACLE_HOME>/customapp</name>
 <xpath>/weblogic-web-app/virtual-directory-mapping/[url-pattern="webutil/*"]/local-path</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>vd-<DOMAIN_HOME>/config/fmwconfig/servers/WLS_FORMS_CUSTOM_APP/applications/customapp_11.1.1/config/customapp</name>
 <xpath>/weblogic-web-app/virtual-directory-mapping/[url-pattern="registry/*"]/local-path</xpath>
 </variable-assignment>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 </module-descriptor>
 </module-override>
</deployment-plan>

5.2.1.4 Deploy the Custom EAR file

Deploy the custom EAR file using WebLogic Scripting Tool (WLST) commands. For example, on UNIX operating systems:

$MW_HOME/oracle_common/common/bin/wlst.sh

On Windows operating systems: %MW_HOME%\oracle_common\common\bin\wlst.cmd

Use the WLST deploy command to deploy the application:

wls:/offline> connect('weblogic','welcome1')

wls:/ClassicDomain/serverConfig> deploy('customapp', '<ORACLE_HOME>/customapp/j2ee/customapp.ear', 'WLS_FORMS_CUSTOM_APP', 'nostage','<DOMAIN_HOME>/deploymentplans/customapp/11.1.1/plan.xml')

Be sure to make the following changes in the command:

	
Replace customapp with actual context root.

	
Replace <DOMAIN_HOME>, <ORACLE_HOME> with the absolute paths.

5.2.1.5 Register the Custom deployed Forms Java EE Applications

Perform the steps in Section 5.2.3, "Registering Forms Java EE Applications" to register the newly deployed custom application. Enter values for managedserver, formsappName, and asinstName based on the custom application as shown in the following example:

$FMW_HOME/oracle_common/common/bin/wlst.sh formsappRegistration.py
--adminServerName=AdminServer --asinstName=asinst_1
--managedServer=WLS_FORMS_CUSTOM_APP --formsappName=customapp name -o registerApp

5.2.1.6 Post-Patching Tasks

If you have patched your existing Oracle Fusion Middleware 11g Patch Set 1 (Release 11.1.1.2.0) or Patch Set 2 (Release 11.1.1.3.0) environment to consume the latest patch set, perform the following steps:

	
Copy the Forms J2EE application files to the customapp directory. On Unix operating systems:

cp -rpf $ORACLE_HOME/forms/j2ee/* $ORACLE_HOME/customapp/j2ee/*

On Windows operating systems:

xcopy /S /E %ORACLE_HOME%\forms\java %ORACLE_HOME%\customapp\java

xcopy /S /E %ORACLE_HOME%\forms\j2ee %ORACLE_HOME%\customapp\j2ee

	
Repeat the steps in "Override the Default Servlet Alias and the Context Root".

	
Restart the custom managed server.

5.2.1.7 Test the Custom Deployment

Test the deployment using the URL: http://<Host>:<Port Number>/<context root>/<servlet name>.

For the example in this section, the URL would be http://<Host>:<Port Number>/customapp/customservlet.

5.2.2 Expanding Forms Managed Server Clusters

To improve the scalability and performance of Forms deployments on high-end machines (multiprocessor and high-memory configuration machines), expand the Forms Managed Server cluster (cluster_forms). Perform the following manual steps to expand the Forms Managed Server cluster:

	
Perform the following steps to add a new Managed Server to the cluster (cluster_forms):

	
Using the Oracle WebLogic Server Administration Console, you can choose to either clone the default Forms Managed Server (WLS_FORMS) or create a new Managed Server (for example, WLS_FORMS_1, with port number 9010).

For more information on using Fusion Middleware Control to manage the new or cloned managed server, see Section 5.2.3, "Registering Forms Java EE Applications".

	
In the Server Properties page, add the newly created Managed Server to the Forms cluster cluster_forms.

	
In the General Tab, assign a port number to the Managed Server.

	
Assign a machine to the Managed Server.

	
Perform the following steps to edit the configuration of the new managed server:

	
Using the Oracle WebLogic Server Administration Console, in the Server Start Tab, set the following Server Start properties.

	
Add the following system properties without any carriage returns to the arguments:

-Dclassic.oracle.home=<ORACLE_HOME location>-Doracle.instance=<ORACLE_INSTANCE location>-Doracle.instance.name=<ORACLE_INSTANCE Name>

-Doracle.forms.weblogic=1

	
Add the following to the CLASSPATH: <ORACLE_HOME>/opmn/lib/optic.jar:<FMW_HOME>/oracle_common/modules/oracle.ldap_11.1.1/ldapjclnt11.jar:<FMW_HOME>/oracle_common/jlib/rcucommon.jar

	
Activate the changes and start the new Managed Server.

	
Add the new Managed Server's host and port information to the WebLogicCluster entry in forms.conf.

<Location /forms>

SetHandler weblogic-handler

WebLogicCluster <HostName>:9001, <HostName>:9010

DynamicServerList OFF

</Location>

	
Restart OHS.

5.2.3 Registering Forms Java EE Applications

To use Fusion Middleware Control to manage the new or cloned managed servers under the default Forms WLS cluster, you register the Forms Java EE applications.

Perform the following steps to register the Forms Java EE applications:

	
Create a sample WLST script as shown in Example 5-2. In this example, the script is named formsappRegistration.py.

Example 5-2 Sample WLST Script

#
formsappRegistration.py
Workaround script to register/unregister Forms J2EE application Mbean
as a member of Forms System Component Mbean
#
from javax.management import ObjectName, Attribute
from jarray import array
import getopt, sys
#
function prints the usage
#
def usage():
 message = "--\n" \
 + "Usage : " + \
 " $FMW_HOME/oracle_common/common/bin/wlst.sh " + sys.argv[0] +" \
--adminServerName=<admin server name> --asinstName=<Oracle Instance name> \
--managedServer=<newly added Forms managed server name> --formsappName=<forms \
 J2EE application name> -o <option> " + \
 "\n \nvalid option - registerApp or unregisterApp" + \
 "\n \n examples:" + \
 "\n$FMW_HOME/oracle_common/common/bin/wlst.sh " + sys.argv[0] +"\ --adminServerName=AdminServer --asinstName=asinst_1 --managedServer=WLS_FORMS1 \ --formsappName=formsapp -o registerApp " + \
 "\n$FMW_HOME/oracle_common/common/bin/wlst.sh " + sys.argv[0] + "\
--adminServerName=AdminServer --asinstName=asinst_1 --managedServer=WLS_FORMS1 \
--formsappName=formsapp -o unregisterApp " + \
"\n--"
 print message
#
getFormsCompMbeanObjectName - function to generate the Forms System Component
Mbean ObjectName.
#
def getFormsCompMbeanObjectName(asInstName, adminServerName):
 frmCompONameString = "oracle.as.management.mbeans.register:" \
 + "Location="+ adminServerName + ",type=SystemComponent,name=/" \
 + asinstName +"/forms,instance=" + asinstName \
 + ",component=forms,EMTargetType=oracle_forms";
 print frmCompONameString
 frmCompOName = ObjectName(frmCompONameString)
 return frmCompOName
#
getFormsAppMbeanObjectName - function to generate the Forms J2EE application
ObjectName.
#
def getFormsAppMbeanObjectName(appName, managedServer):
 frmappONameString = "com.bea:Name="+formsappName+ "#11.1.1,Location=" +\
 managedServer+ ",Type=AppDeployment"
 frmappOName = ObjectName(frmappONameString)
 return frmappOName
#
doesMemberExist - utility function to check if app is already registered as a member
#
def doesMemberExist(member, list):
 for item in list:
 if item == member:
 return 1
 return None
#
registerFormsApp - registers Forms J2EE application Mbean as a member of
Forms System Component Mbean
#
def registerFormsApp(formsCompMbean, frmappMbean):
 domainRuntime()
 membersArray = mbs.getAttribute(formsCompMbean,"Members")
 membersList = membersArray.tolist()

 if membersList == []:
 print "Members list is empty"
 else:
 print "Members list is not empty"

 if doesMemberExist(frmappMbean, membersList):
 print "Member already registered, skipping registration"
 else:
 print "Member is not found, append it to the members list"
 membersList.append(frmappMbean)
 membersArray = array(membersList, ObjectName)
 membersAttrib = Attribute("Members",membersArray)
 mbs.setAttribute(formsCompMbean, membersAttrib)
#
unregisterFormsApp - unregisters Forms J2EE application Mbean as a member of
Forms System Component Mbean
#
def unregisterFormsApp(formsCompMbean, frmappMbean):
 domainRuntime()
 membersArray = mbs.getAttribute(formsCompMbean,"Members")
 membersList = membersArray.tolist()

 if membersList == []:
 print "Members list is empty"
 else:
 print "Members list is not empty"

 if doesMemberExist(frmappMbean, membersList):
 print "Found the Member, removing it."
 membersList.remove(frmappMbean)
 membersArray = array(membersList, ObjectName)
 membersAttrib = Attribute("Members",membersArray)
 mbs.setAttribute(formsCompMbean, membersAttrib)
 else:
 print "Member not found, skipping unregister"
#
execution starts here
#

if len(sys.argv) != 7 :
 print "invalid arguments passed to the script"
 usage()
 sys.exit(0)

trim the first argument which is the name of the script

args = sys.argv[1:7]
optlist, args = getopt.getopt(args,'o', ['adminServerName=','asinstName=','managedServer=','formsappName='])
options = dict(optlist)

adminServerName = options["--adminServerName"]
asinstName = options["--asinstName"]
managedServer = options["--managedServer"]
formsappName = options["--formsappName"]

if adminServerName == [] or \
 managedServer == [] or formsappName == [] or not args:
 print "invalid arguments passed to the script "
 usage()
 sys.exit(0)

argument = args[0]
print "enter the WLST connection paramters ..."
connect()

frmcompMbean = getFormsCompMbeanObjectName(asinstName,adminServerName)
print frmcompMbean

frmappMbean = getFormsAppMbeanObjectName(formsappName,managedServer)
print frmappMbean

if argument == "registerApp":
 print "registering Forms J2EE application " + formsappName
 registerFormsApp(frmcompMbean,frmappMbean)
elif argument == "unregisterApp":
 print "unregistering Forms J2EE application " + formsappName
 unregisterFormsApp(frmcompMbean,frmappMbean)

else:
 print "invalid option passed to the scripts ..."
 usage()

disconnect()
print "done... "

	
Execute the script. You can use the help argument for more information as shown in Example 5-3.

Example 5-3 Sample Script Execution

$FMW_HOME/oracle_common/common/bin/wlst.sh formsappRegistration.py help

--
Usage :
 $FMW_HOME/oracle_common/common/bin/wlst.sh formsappRegistration.py
 --adminServerName=<admin server name> --asinstName=<Oracle Instance name>
 --managedServer=<newly added Forms managed server name> --formsappName=<forms
 J2EE application name> -o <option>

 valid options - registerApp or unregisterApp

examples:
 $FMW_HOME/oracle_common/common/bin/wlst.sh formsappRegistration.py
 --adminServerName=AdminServer --asinstName=asinst_1 --managedServer=WLS_FORMS1
 --formsappName=formsapp -o registerApp

 $FMW_HOME/oracle_common/common/bin/wlst.sh formsappRegistration.py
 --adminServerName=AdminServer --asinstName=asinst_1 --managedServer=WLS_FORMS1
 --formsappName=formsapp -o unregisterApp

 $FMW_HOME/oracle_common/common/bin/wlst.sh formsappRegistration.py
--adminServerName=AdminServer --asinstName=asinst_1 --managedServer=WLS_FORMS1
--formsappName=formsapp -o unregisterApp
--

	
When prompted, enter the administration server username, password, and connection information.

	
Accept the default server URL.

	
Example 5-4 shows a sample of the execution and results of server registration.

Example 5-4 Sample Execution and Results

$FMW_HOME/oracle_common/common/bin () -> ./wlst.sh formsappRegistration.py –
adminServerName=AdminServer --asinstName=asinst_1 --managedServer=WLS_FORMS1 –
formsappName=formsapp -o registerApp

CLASSPATH=.
.
.
Your environment has been set.

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

enter the WLST connection paramters ...
Please enter your username :weblogic
Please enter your password :
Please enter your server URL [t3://localhost:7001] :
Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server 'AdminServer' that belongs to domain
'ClassicDomain'.

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admin port should be used instead.

registering Forms J2EE application formsapp
Location changed to domainRuntime tree. This is a read-only tree with DomainMBean
as the root.
For more help, use help(domainRuntime)

Members list is not empty
Member is not found, append it to the members list
Disconnected from weblogic server: AdminServer
done...

5.2.4 Modification of Forms J2EE Application Deployment Descriptors

Post-deployment, Forms J2EE application deployment descriptors (weblogic.xml, web.xml, application.xml and weblogic-application.xml) cannot be modified in Oracle WebLogic Server.

As a workaround, perform the following steps to customize the Forms J2EE application deployment descriptors and redeploy the application:

	
Back up the default formsapp deployment plan, $DOMAIN_HOME/deploymentplans/formsapp/11.1.1/plan.xml.

	
Add the deployment descriptors customizations to the Forms J2EE application's deployment plan. See the "Modifying the Deployment Plan" for an example.

	
Note:

For more information on updating the deployment plan, refer to the Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

	
Using the WebLogic Administration Console, update the forms application (redeploy) and select the option Update this application in place with new deployment plan changes.

	
Restart the Forms J2EE application using the WebLogic Administration Console.

Modifying the Deployment Plan

In this example, the deployment plan is modified to override the Forms Servlet testMode parameter and set it to true. To modify the deployment plan, perform the following steps:

	
Enter the following commands:

mkdir –p $CLASSIC_ORACLE_HOME/forms/j2ee/backup
cd $CLASSIC_ORACLE_HOME/forms/j2ee
cp $DOMAIN_HOME/deploymentplans/formsapp/11.1.1/plan.xml backup/
vi $DOMAIN_HOME/deploymentplans/formsapp/11.1.1/plan.xml

	
Modify the deployment plan. The following is a sample of the deployment plan with the added entries highlighted in bold:

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/weblogic/deployment-plan http://xmlns.oracle.com/weblogic/deployment-plan/1.0/deployment-plan.xsd" global-variables="false">
 <application-name>formsapp</application-name>
 <variable-definition>
 <variable>
 <name>vd-/scratch/t_work/Oracle/Middleware/as_1/forms</name>
 <value>/scratch/t_work/Oracle/Middleware/as_1/forms</value>
 </variable>
 <variable>
 <name>vd-/scratch/t_work/Oracle/Middleware/user_projects/domains/ClassicDomain/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_11.1.1/config/forms</name>
 <value>/scratch/t_work/Oracle/Middleware/user_projects/domains/ClassicDomain/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_11.1.1/config/forms</value>
 </variable>
 <variable>
 <name>FormsServlet_InitParam_testMode</name>
 <value>true</value>
 </variable>
 </variable-definition>
 <module-override>
 <module-name>formsapp.ear</module-name>
 <module-type>ear</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-application</root-element>
 <uri>META-INF/weblogic-application.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>application</root-element>
 <uri>META-INF/application.xml</uri>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>wldf-resource</root-element>
 <uri>META-INF/weblogic-diagnostics.xml</uri>
 </module-descriptor>
 </module-override>
 <module-override>
 <module-name>formsweb.war</module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 <variable-assignment>
 <name>vd-/scratch/t_work/Oracle/Middleware/as_1/forms</name>
<xpath>/weblogic-web-app/virtual-directory-mapping/[url-pattern="java/*"]/local-path</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>vd-/scratch/t_work/Oracle/Middleware/as_1/forms</name>
<xpath>/weblogic-web-app/virtual-directory-mapping/[url-pattern="webutil/*"]/local-path</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>vd-/scratch/t_work/Oracle/Middleware/user_projects/domains/ClassicDomain/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_11.1.1/config/forms</name>
<xpath>/weblogic-web-app/virtual-directory-mapping/[url-pattern="registry/*"]/local-path</xpath>
 </variable-assignment>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 <variable-assignment>
 <name>FormsServlet_InitParam_testMode</name>
<xpath>/web-app/servlet/[servlet-name="frmservlet"]/init-param/[param-name="testMode"]/param-value</xpath>
 </variable-assignment>
 </module-descriptor>
 </module-override>
</deployment-plan>

	
Using the WebLogic Administration Console, update the Forms J2EE application deployment (formsapp (11.1.1)). For more information on redeploying Forms J2EE application, refer to Oracle Fusion Middleware Administrator's Guide.

	
Restart the Forms J2EE application using the WebLogic Administration Console.

5.3 Performance/Scalability Tuning

The steps for tuning the Forms Listener servlet are similar to steps for tuning any high throughput servlet application. You have to take into account resource management and user needs for optimal tuning of your particular Forms Services configuration. For more information, see Oracle Fusion Middleware Performance Guide available on OTN at http://www.oracle.com/technology/documentation/.

5.3.1 Limit the number of HTTPD processes

To control spawning HTTPD processes (which is memory consuming) set the KeepAlive directive in the Oracle HTTP Listener configuration file (httpd.conf): KeepAlive Off

KeepAlive specifies whether or not to allow persistent connections (more than one request per connection). If you must use KeepAlive On, for example, for another application, make sure that KeepAliveTimeout is set to a low number for example, 15 seconds, which is the default. The KeepAlive setting is used to maintain a persistent connection between the client (Browser) and the OHS server. It does not have anything to do with the OHS to Oracle WebLogic Server connection.

5.3.2 Set the MaxClients Directive to a High value

You can let the HTTP Listener determine when to create more HTTPD processes. Therefore, set the MaxClients directive to a high value in the configuration file (httpd.conf). However, you need to consider the memory available on the system when setting this parameter.

MaxClients=256 indicates that the listener can create up to 256 HTTPD processes to handle concurrent requests.

If your HTTP requests come in bursts, and you want to reduce the time to start the necessary HTTPD processes, you can set MinSpareServers and MaxSpareServers (in httpd.conf) to have an appropriate number of processes ready. However, the default values of 5 and 10 respectively are sufficient for most sites.

5.4 Load Balancing Oracle WebLogic Server

The Forms Listener servlet architecture allows you to load balance the system using any of the standard HTTP load balancing techniques available.

The Oracle HTTP Server Listener provides a load balancing mechanism that allows you to run multiple WebLogic instances on the same host as the HTTP process, on multiple, different hosts, or on any combination of hosts. The HTTP Listener then routes HTTP requests to Oracle WebLogic Managed Server instances.

The following scenarios are just a few of the possible combinations available and are intended to show you some of the possibilities. The best choice for your site will depend on many factors.

For a complete description of this feature, refer to the Oracle Fusion Middleware Performance Guide (available on OTN at http://www.oracle.com/technology/documentation/index.html).

The following images illustrate four possible deployment scenarios:

	
Figure 5-2 shows the Oracle HTTP Server balancing incoming requests between multiple Oracle WebLogic Managed Servers on the same host as the Oracle HTTP Listener.

	
Figure 5-3 shows the Oracle HTTP Server balancing incoming requests between multiple Oracle WebLogic Managed Servers on a different host to the Oracle HTTP Listener.

	
Figure 5-4: shows the Oracle HTTP Server balancing incoming requests between multiple Oracle WebLogic Managed Servers on multiple different hosts and multiple different hosts each running an Oracle HTTP Listener.

	
Figure 5-5: shows the Oracle HTTP Server balancing incoming requests between multiple Oracle WebLogic Managed Servers on a single host but with multiple different hosts each running an Oracle HTTP Listener.

Figure 5-2 Multiple Oracle WebLogic Servers on the same host as the Oracle HTTP Listener

[image: Multiple OC4J instances and HTTP listener on the same host.]

Figure 5-3 Multiple Oracle WebLogic Servers on a different host to the Oracle HTTP Listener

[image: Many OC4J instances on different hosts from HTTP listener.]

Figure 5-4 Multiple Oracle WebLogic Servers and multiple Oracle HTTP Listeners on different hosts

[image: Many hosted OC4J instances, many hosted HTTP listeners.]

Figure 5-5 Multiple Oracle HTTP Listeners on different hosts with multiple Oracle WebLogic Servers on one host

[image: HTTP listeners, different hosts; OC4J instances same host.]

For more information about tuning and optimizing Forms Services with the HTTP Listener and Oracle WebLogic Server, see Oracle Fusion Middleware Performance Guide, available on Oracle Technology Network (OTN) at http://www.oracle.com/technology/documentation/index.html.

5.5 Using HTTPS with the Forms Listener Servlet

Using HTTPS with Oracle Forms is no different than using HTTPS with any other Web-based application. HTTPS requires the use of digital certificates (for example, VeriSign). Because Forms Services servlets are accessed via your Web server, you do not need to purchase special certificates for communications between the Oracle Forms client and the server. You only need to purchase a certificate for your Web server from a recognized certificate authority.

5.6 Using an Authenticating Proxy to Run Oracle Forms Applications

The default configuration as set up by the Oracle Fusion Middleware installation process supports authenticating proxies. An authenticating proxy is one that requires the user to supply a username and password in order to access the destination server where the application is running. Typically, authenticating proxies set a cookie to detect whether the user has logged on (or been authenticated). The cookie is sent in all subsequent network requests to avoid further logon prompts.

The codebase and server URL values that are set up by the Oracle WebLogic Server installation process include $ORACLE_HOME/forms/java and /forms/lservlet. As these are under the document base of the page ($ORACLE_HOME/forms), authenticating proxies will work.

5.7 Oracle Forms Services and SSL

To run Oracle Forms Services applications in SSL mode:

	
Create a Wallet to manage certificates.

	
Enable the HTTPS port in Oracle HTTP Server. By default, Oracle HTTP Server has one SSL Port enabled (8890).

	
Enable Web Cache to accept HTTPS connections from Oracle HTTP Server.

For more information on the above topics, see the section "SSL Configuration in Oracle Fusion Middleware" in the Oracle Fusion Middleware Administrator's Guide.

	
Note:

When you change the Oracle Web Cache port using Enterprise Manager, regenerate the osso.conf and copy the generated osso.conf file to $ORACLE_INSTANCE/config/OHS/<OHS_INSTANCE>/moduleconf directory. Restart the Oracle HTTP Server and Oracle Web Cache for the changes to take effect.

5.8 Enabling SSL with a Load Balancing Router

Running a Forms application that uses an HTTPS port requires a certificate to be imported. If Oracle Forms is behind a load balancing router, and SSL terminates at it, you need to import the certificate from the load balancing router.

To enable SSL with your Forms applications over a load balancing router:

	
Start a Web browser and enter the Forms application HTTPS URL containing the fully qualified host name (including port number if required) used by your own Oracle installation. For example: https://example.com:443/forms/frmservlet

The Security Alert dialog box is displayed.

	
Click View Certificate.

	
Click the Details tab in the Certificate dialog.

	
Click Copy to File...

	
In the Welcome page of the Certificate Export Wizard, click Next.

	
In the Export File Format page, select Base-64 encoded X.509 (.CER), then click Next.

	
Enter a file name such as c:\temp\forms, then click Next.

	
Click Finish.

A message appears saying that the export was successful.

	
Click OK.

	
Close the Certificate Export Wizard, but keep the Security Alert dialog open.

	
Import the security certificate file that you saved earlier into the certificate store of the JVM you are using. For more information, see the next section.

	
At the Security Alert dialog, click Yes to accept the security certificate and start the Forms application.

Importing the certificate into Java Plugin

	
On the client machine, open the Control Panel.

	
Open Java.

	
Navigate to Securities tab.

	
Click Certificate.

	
Import the certificate that was exported in the previous section.

	
Click Apply.

10 Configuring and Managing Java Virtual Machines

This chapter contains the following sections:

	
Section 10.1, "Why Use Java Virtual Machine Pooling?"

	
Section 10.2, "About Child Java Virtual Machine Processes"

	
Section 10.3, "About Multiple JVM Controllers"

	
Section 10.4, "JVM Pooling Usage Examples"

	
Section 10.5, "Design-time Considerations"

	
Section 10.6, "Overview of JVM Configuration"

	
Section 10.7, "Managing JVM Controllers from the Command Line"

	
Section 10.8, "Managing JVM Pooling from Fusion Middleware Control"

	
Section 10.9, "JVM Controller Logging"

	
Section 10.10, "Integrating Forms and Reports"

	
Section 10.11, "JVM Pooling Error Messages"

10.1 Why Use Java Virtual Machine Pooling?

When a Forms application calls out to Java, a JVM is attached to each Forms process the first time the process makes a call. This JVM remains attached to each process for the remainder of the processes' lives, even though any individual process may never call out to Java again, potentially causing resource contention. JVM pooling makes provisions for sharing a limited number of JVMs among all participating Forms processes. Even though all Forms processes might at one point call out to Java, if only a subset of these call out to Java at any given point in time, only as many JVMs as are necessary at peak usage, need be started. Using JVM pooling brings the potential to significantly reduce resource usage for a Forms installation that calls out to Java.

When a Forms runtime process needs to execute Java, it sends a message to the Java Virtual Machine (JVM) that is contained in the JVM controller. The JVM creates a new thread for that Forms runtime process. The JVM then continues to listen for the next new request from a different Forms runtime process while the newly created thread processes the request and sends the results back to the Forms runtime process. For the life of this Forms session, the Forms runtime process communicates directly with that thread.

Java Virtual Machine pooling is a separate process that contains the JVM controller. With JVM pooling, the JVM runs outside of the Forms runtime process. The JVM can also be shared by multiple Forms runtime processes. The JVM controller process is not a JVM itself, but a container that contains a JVM in a similar way that the Forms Runtime process contains an in-process JVM. Using JVM pooling is optional. Administrators can choose to not use JVM pooling and have the JVM contained in the Forms runtime process.

Java Virtual Machine (JVM) pooling works in conjunction with the Java Importer. It also works with Forms' ability to call out to Reports. The Java Importer allows developers at design time to reference Java classes from PL/SQL within the Forms Builder. At runtime, Forms uses a Java Virtual Machine (JVM) to execute Java code. In earlier versions of Oracle Forms, each Forms session that used the Java Importer had its own JVM instance to execute Java code. In this model, each JVM consumes memory on the server, and if there are many concurrent users, the amount of memory consumed by the multiple JVM processes becomes significant.

For more information on the Java Importer, see the Oracle Forms Developer online help.

When you enable JVM pooling, administrators can consolidate the number of running JVM instances so that the Forms sessions can share JVMs rather than each one having its own instance. The result is a large reduction in memory consumption, thus freeing up more resources on your server.

You also need to consider JVM pooling in application design and deployment. For more information, see Chapter 10, "Design-time Considerations".

10.1.1 JVM Pooling in Forms and Reports Integration

In 10g, Forms Runtime process creates a separate JVM before calling Reports and Reports uses this JVM to execute the java methods. This JVM is part of the Forms Runtime process. In 10g, the JVM pooling feature is used only by the Java Importer. However, in 11g, with JVM pooling enabled, Oracle Forms Services uses a shared JVM controller for Oracle Reports requests.

Instead of each Forms Runtime process having its own instance of the JVM, JVMs can be shared by multiple Forms Runtime processes. With JVM pooling, a process called JVM controller is available which houses the JVM. Forms Runtime processes can share this JVM. This would result in a large reduction of memory consumption, freeing more resources on the server.

A form can be configured to use a specific JVM controller using the jvmcontroller parameter. The jvmcontroller parameter indicates to the Forms Runtime process which JVM controller to use. This can be set in the Forms Configuration File, formsweb.cfg. Alternatively, this information can also be passed as a parameter in the URL for invoking the Forms Application. The parameters that need to be used during startup of the jvmcontroller have to be specified in the JVM controller's configuration file, jvmcontrollers.cfg.

For more information on using JVM pooling for Reports integration, see Section 10.10, "Integrating Forms and Reports".

10.2 About Child Java Virtual Machine Processes

Since each Forms runtime process has its own thread within the JVM, there is concurrency. If the JVM reaches a specified number of concurrent requests, it will spawn a child JVM to share the load. Moreover, it's possible to have multiple JVM controllers, each of which may have multiple child JVMs.

For example, different Forms applications may want to use different JVMs with different options or classpaths. You can specify which JVM controller and Forms application should be used in the named sections of the Forms configuration file (formsweb.cfg). See Section 10.8.6, "Forms Configuration File Settings" for more information.

Figure 10-1 shows an example of what an environment might look like using JVM pooling. There are two JVM controllers: the first one is using only its in-process JVM, the second one is using three JVMs.

Figure 10-1 Multiple JVM Controllers with Child Processes

[image: This image illustrates an environment with JVM pooling.]

Although it's not shown in Figure 10-1, each JVM controller has a unique name which is used in starting and stopping, or for referencing in the Forms configuration file.

Figure 10-1 is conceptual only in that it shows different Forms applications using different JVM controllers. However, the Forms runtime process does not communicate with the JVM controller, but directly with one of the available JVMs. Therefore, the first two clients in the diagram can only use the in-process JVM; the rest have three available JVMs to work with.

When the performance of a JVM degrades significantly, it probably means it is servicing too many requests. In that case, it is possible to have multiple "child" JVMs for the same JVM controller which get created dynamically as needed.

The JVM parameter maxsessions specifies how many Forms runtime processes are allowed to attach to a JVM before a new child JVM is created. When a child JVM is started, it inherits the same parameters as the JVM controller.

If any JVM has maxsessions connections, it does not take any request from new Forms runtime processes. When a new Forms runtime process first attempts to execute Java code, it attaches to a JVM that is available, that is, has fewer than maxsessions connections. The method of choosing the JVM is entirely arbitrary; there is no load balancing or round-robin algorithm.

If a JVM reaches maxsessions connections, but another JVM has not, no new JVM is created. If all JVMs have simultaneously reached maxsessions connections, another child JVM is created, and so on.

Child JVMs are not automatically removed when the load is reduced. So if you want to remove some child JVMs, the JVM controller must be stopped, which also stops all child JVMs. Then the JVM controller can be restarted.

The scope of a child JVM is within the context of a JVM controller namespace. For example, if you have two JVM controllers, ordersJVM and hrJVM, ordersJVM and its child JVMs do not affect – nor are affected by – hrJVM or its child JVMs.

10.2.1 Child JVM Example

Suppose the JVM controller called ordersJVM has maxsessions=50. Each Orders application that runs sends requests to ordersJVM. Each time a new Forms runtime process sends a request to ordersJVM, a new thread is created that communicates with the Forms runtime process. The JVM controller then returns to listening for new requests. As users end their sessions, the threads in the JVM are also terminated.

When the ordersJVM controller receives the 50th concurrent request (not necessarily the first 50 users because some of them may have quit before the later users started) it will spawn a child JVM. Since it inherits its parent's settings, maxsessions for this child JVM will also be 50. At this stage, the JVM controller has 50 connections, and the child JVM has none.

As new users start this Oracle Forms application and execute Java code, the Forms runtime process attaches to a JVM that is listening within the JVM controller namespace. Since the JVM controller has 50 connections, it is unavailable and the child JVM receives the request. Later, when the parent JVM controller has fewer connections because some users have quit their applications, it is available to receive new requests as long as it has not reached maxsessions connections.

While all this is going on, the hrJVM is operating independently. Overflow connections from ordersJVM will not connect to hrJVM, only to child JVMs of ordersJVM.

10.3 About Multiple JVM Controllers

The JVM pooling architecture allows you to have multiple JVM controllers, each of which may have child JVMs. You would use multiple JVM controllers if:

	
You want each application to have its own JVM controller so that it can be started and stopped independently of others.

	
Different applications require different settings. For example, you may not want to mix classpaths or JVM settings between different controllers.

	
You want to monitor resource usage of the JVM controllers from Fusion Middleware Control. If different JVM controllers are used by different applications and/or groups of users, you can determine how resources are being consumed by your Java Importer code.

	
You have multiple development, test, or production environments on the same computer.

	
You do not want different applications to share static data.

10.4 JVM Pooling Usage Examples

Consider, for example, an Oracle Forms application that has a user interface button. When a user presses the button, Oracle Forms takes the value from a field on the screen, and passes it to Java (using the Java Importer feature) to do some complex calculation which cannot be done in PL/SQL. The result is then returned and displayed in a field in the Form. One JVM process is running to execute this Forms session.

Figure 10-2 shows how this Oracle Forms session has its own in-process JVM because JVM pooling is not enabled. In the left side of the image, there are multiple clients running their own Forms session. In the center of the image, each client makes a call to its own Forms Runtime process, which contains its own JVM process.

Figure 10-2 Forms Runtime with no JVM Pooling

[image: This image illustrates shows the in-process JVM.]

Figure 10-3 shows the Forms Runtime processes sharing a single JVM process when JVM pooling is enabled, as shown in the right side of the image.

Figure 10-3 Forms Runtime with JVM Pooling Enabled

[image: JVM pooling]

In this example, five clients working in the same application through their own runtime processes are using a pooled JVM process instead of each Forms Runtime process spawning its own JVM instance. This can be a significant savings in memory usage and system resources.

10.5 Design-time Considerations

This section contains the following:

	
Section 10.5.1, "Re-importing Your Java Code"

	
Section 10.5.2, "About Sharing Static Variables Across Multiple JVMs"

10.5.1 Re-importing Your Java Code

If you used the Java Importer feature of Oracle Forms prior to the availability of JVM Pooling, you will need to reimport your Java classes before using JVM pooling. When you originally imported your Java classes, PL/SQL wrappers for the Java classes were generated, which you can see in the Program Units that were created in your Form. However, the PL/SQL wrappers that are generated by the Java Importer to utilize JVM pooling are different.

From Oracle Forms Services 10g and later, the Java Importer generates the "new" PL/SQL wrappers. If you want to use the Java Importer, but do not wish to take advantage of JVM pooling, the in-process JVM will work with the new PL/SQL wrappers. It will also continue to work with the older-style PL/SQL wrappers.

10.5.2 About Sharing Static Variables Across Multiple JVMs

One advantage of JVM pooling is the ability to share data between instances of a class by using static variables. However, static variables will be shared between instances of the same class within a JVM, but not across JVMs. You will need to plan accordingly.

For example, suppose your loan class has a static variable called interestRate because all instances use the same interest rate in calculations. If you are using only one JVM, and one of the instances of your loan class changes interestRate, all of the other instances will be affected (which is what you want).

However, if the JVM controller has one or more child JVMs, there may be at least two JVMs. If interestRate changes in one JVM, the loan instances in the other JVMs won't see this new value. For more information about managing child JVMs, see Section 10.2, "About Child Java Virtual Machine Processes". Prior to JVM pooling, if you changed interestRate it would not affect any other instances because each Oracle Forms Runtime process had its own in-process JVM.

If you rely on static variables to share information between instances of your class, ensure that no child JVM is spawned by setting maxsessions to 65535.

10.6 Overview of JVM Configuration

To configure JVM using Fusion Middleware Control, perform the following steps:

	
Using Fusion Middleware Control, add a new configuration section or modify an existing section in formsweb.cfg to enable or disable use of JVM controller for applications. For more information, refer to Section 10.8.6, "Forms Configuration File Settings".

	
Ensure CLASSPATH is updated in default.env or in jvmcontrollers.cfg.

	
Using Fusion Middleware Control, configure the JVM parameters. For more information, refer to Section 10.8.3, "Managing Parameters".

	
Start the JVM controller. For more information, refer to Section 10.8.5, "Starting and Stopping JVM Controllers with Fusion Middleware Control".

10.7 Managing JVM Controllers from the Command Line

If you manage JVM controllers from the command line, you must know the options to start and stop them, as well as specify the environment. You can only access the JVM controllers on the same computer from which they are running.

	
Note:

The mechanics for controlling the JVM controller as described in this chapter are mostly relevant at the command line. It is easier to use Fusion Middleware Control with its user-friendly screens and online help. Fusion Middleware Control users are still urged to read through the following information, however, to understand what the different fields and options mean, and how the JVM controller works.

10.7.1 JVM Controller Command Examples

This section describes examples of JVM controller commands. For a detailed explanation on the example, see Section 10.8.7, "Startup Example."

	
dejvm -start jvmcontroller=hrJVM

Starts a JVM controller with ID hrJVM. The controller name hrJVM is defined as a named section in the configuration file. Therefore, JVM options and classpath parameters are taken from the configuration file. maxsessions is 50 as defined in the Default section, and other parameters take their default values.

	
dejvm -start jvmcontroller=myJVM

Starts a JVM controller with ID is myJVM. Since no option was specified, and there is no named section in jvmcontrollers.cfg, the JVM options parameter is "-Xms512m -Xmx1024m" and maxsessions=50 as set in the Default section. The other parameters take on their default values. For instance, the CLASSPATH value is the system CLASSPATH.

	
dejvm -start jvmcontroller=hrJVM jvmoptions="-Xms128m -Xmx256m" maxsessions=75

Sets the classpath to /myJava/hrClasses as defined in the named section. JVM options are "-Xms128m -Xmx256m" because the command line overrides the jvmcontrollers.cfg file. Similarly, maxsessions is 75. All other parameters take on their default values.

	
dejvm -start jvmcontroller=myJVM maxsessions=100 classpath=/myJava/myClasses;/moreJava/moreClasses

The controller has jvmoptions="-Xms512m -Xmx1024m" as defined in the default section of jvmcontrollers.cfg. maxsessions is 100 which overrides the default section, and classpath is /myJava/myClasses;/moreJava/moreClasses. All other parameters take on their default values.

	
dejvm -stop jvmcontroller=hrJVM

Stops the hrJVM controller. It must already be started for you to issue this command successfully.

10.7.2 Command Restrictions

Keep these command restrictions in mind:

	
The commands are case sensitive.

	
You can only issue one command at a time to a JVM controller.

	
You can only issue a command to one JVM controller at a time.

The available commands for the JVM controller (or the dejvm process) are specified in Table 10-1. If you are using Enterprise Manager, there are screens that have an interface for issuing these commands. If you are using the command line, you may not be able to manage the JVM controller using the Enterprise Manager.

10.7.3 Start Command Parameters

Table 10-1 describes the JVM parameters used to start the JVM from the command line.

Table 10-1 JVM Parameters

	Parameter	Description
	
jvmcontroller

	
Enter a name for this JVM. This name must contain a legal Oracle identifier that starts with a letter and contains an alphanumeric character, '_', '$' or '#' . An Oracle identifier has a maximum length of 30 bytes.

Hint: You may want to enter a name based on the application that will be accessing it. You cannot change the name of this JVM controller later.

	
maxsessions

	
Specifies the maximum number of concurrent Oracle Forms sessions this JVM will serve before a new JVM is spawned. This value will override any set for the default JVM controller.

	
classpath

	
When you specify a classpath, it will override the system classpath or any classpath specified in your environment or any classpath set for the default JVM controller.

	
jvmoptions

	
Enter any valid options to pass to the JVM. This value will override any set for the default JVM controller. Refer to the Sun Java documentation for a list of valid JVM startup options.

	
logdir

	
Leave Log Directory blank to use the log location for the default JVM controller. If any other directory is set, the log file may not be accessible through Enterprise Manager.

	
logging

	
On, or Off.

10.8 Managing JVM Pooling from Fusion Middleware Control

Fusion Middleware Control provides a Web-based environment to manage all available JVM pooling options. It also lists all JVM controllers in your environment and allows you to (remotely) manage them. For example, you can start and stop JVM controllers; add new ones; or reconfigure existing ones. In addition, Fusion Middleware Control also provides metric information such as resources (memory and CPU) that are consumed by JVM controllers, number of Forms connected, total JVMs, and so on.

While the Forms runtime process interacts directly with a JVMs, the JVM controller manages the JVM, such as starting and stopping a JVM, or getting the state of one, etc. For example, when an administrator stops the JVM controller, the JVM controller ensures that all child JVMs are terminated. You use Fusion Middleware Control to manage the JVM controller.

The JVM controller can be started in three ways:

	
From Fusion Middleware Control

	
When a Forms application that is bound to an existing JVM controller requests that the controller start up

	
From the command line

Fusion Middleware Control reads the JVM controller configuration file. It works in a similar way to the Forms configuration file (formsweb.cfg) in that it contains name-value pairs, has a default section, and has named sections. The parameters contained in jvmcontrollers.cfg correspond to the start parameters of the JVM controller.

	
Note:

You cannot change the location or name of the JVM controllers configuration file.

When you start a JVM controller, it takes its settings from the configuration file. You may specify none, some, or all options in this file, both in the default section and in named sections.

Use the JVM Configuration and JVM Controller pages in Fusion Middleware Control to manage JVM pooling tasks:

	
Section 10.8.1, "Common Tasks in the JVM Configuration Page"

	
Section 10.8.2, "Managing JVM Configuration Sections"

	
Section 10.8.3, "Managing Parameters"

	
Section 10.8.4, "JVM Configuration Parameters and Default Values"

	
Section 10.8.5, "Starting and Stopping JVM Controllers with Fusion Middleware Control"

	
Section 10.8.6, "Forms Configuration File Settings"

	
Section 10.8.7, "Startup Example"

10.8.1 Common Tasks in the JVM Configuration Page

This section describes the common tasks that you can do to edit configuration with the sections of a JVM configuration file and their parameters.

Table 10-2 describes the tasks you can do with the configuration sections within a JVM configuration file:

Table 10-2 Tasks for Working with Configuration Sections

	Task	Description	Comment
	
Create Like

	
Creates a copy of a configuration section.

	
Use to create a configuration section based on the parameters of an existing configuration section.

	
Edit

	
Opens the Edit Description dialog.

	
Allows editing the text description of a configuration section.

	
Delete

	
Opens the Confirmation dialog when deleting a configuration section.

	
Irrevocably deletes a configuration section and its contents when you press Delete in the Confirmation dialog.

	
Create

	
Opens the Create Section dialog.

	
Creates a new configuration section. You must supply a required name and an optional description for it.

Table 10-3 describes the tasks that you can do to modify the parameters within a named configuration section:

Table 10-3 Tasks for Working with Parameters in a Named Configuration Section

	Task	Description	Comment
	
Revert

	
Allows you to revert back to the previous version of the configuration section.

	
Does not allow you to revert individual changes in a configuration section.

	
Apply

	
Applies and activates all changes made to parameters in a configuration section.

	
Once applied, you cannot revert changes to individual parameters.

	
Add

	
Opens the Add Parameter dialog.

	
Add a parameter to a configuration section based on a mandatory name and an optional value and description.

	
Delete

	
Deletes a parameter.

	
Use Apply to save changes or Revert to discard them. Once applied, you cannot revert changes to individual parameters.

10.8.2 Managing JVM Configuration Sections

This section describes creating, editing, duplicating, and deleting named JVM configuration sections.

10.8.2.1 Accessing the JVM Configuration Page

To access the JVM configuration page:

	
Start the Enterprise Manager Fusion Middleware Control.

	
From the Fusion Middleware Control main page, click the link to the Forms Services instance that you want to configure.

	
From the Forms menu list, select the JVM Configuration menu item.

The JVM Configuration page (Figure 10-4) is displayed.

Figure 10-4 JVM Configuration Page

[image: JVM Configuration page]

10.8.2.2 Creating a New Configuration Section

You can create new configuration sections in jvmcontrollers.cfg from the JVM Configuration page of Fusion Middleware Control. These configurations can be requested in the end-user's query string of the URL that is used to run a form.

To create a new configuration section:

	
From the Fusion Middleware Control main page, click the link to the Forms Services instance that you want to configure.

	
From the Forms menu list, select JVM Configuration.

	
Click Create.

The Create dialog appears.

	
Enter a name and description for your new configuration section and click Create.

The new configuration section is added.

10.8.2.3 Editing a Named Configuration Description

You can edit the description (comments) for a named configuration from the JVM Configuration page.

To edit a named configuration description:

	
In the JVM Configuration region, select the row containing the named configuration for which you want to edit the description.

	
Click Edit.

	
The Edit Description dialog appears.

	
Enter the description in the Comments field.

	
Click Save.

The Edit Description dialog box is dismissed, and your changes are saved and displayed.

10.8.2.4 Duplicating a Named Configuration

You can make a copy of a named configuration for backup purposes, or create new configuration sections from existing configuration sections.

To duplicate a named configuration:

	
In the JVM Configuration region, select Create Like.

	
In the Create Like dialog, from the Section to Duplicate menu, select the name of an existing configuration section you want to duplicate.

	
In the New Section Name field, enter a name for the new configuration section. The name for the new configuration section must be unique.

	
Click Create.

A new section with exactly the same parameters, parameter values and comments of the section you are duplicating is created.

10.8.2.5 Deleting a Named Configuration

When you delete a named configuration section, you delete all the information within it. If you only want to delete specific parameters, see Section 10.8.3, "Managing Parameters".

To delete a named configuration:

	
From the JVM Configuration region, select the row of the configuration section you want to delete.

	
Click Delete.

The Confirmation dialog appears.

	
Click Delete.

The configuration section is deleted.

Oracle Enterprise Manager returns to the JVM Configuration page and displays the remaining configurations.

	
Note:

You cannot delete the Default configuration section.

10.8.3 Managing Parameters

Use Fusion Middleware Control to manage parameters within a named configuration. You can add, edit, or delete parameters using Fusion Middleware Control.

To edit a parameter in a configuration section:

	
From the JVM Configuration region, select the row of the configuration section that contains the parameter(s) you want to edit.

	
Select the row of the parameter you want to edit. Enter the Value and Comments.

	
Click Apply to save the changes or Revert to discard them.

To add a parameter to a configuration section:

	
In Fusion Middleware Control, from the JVM Configuration region, select the configuration section row for which you want to add a parameter.

	
Click Add to add a new parameter.

The Add dialog box is displayed.

	
Enter the Name, Value and Comments for the parameter.

	
Click Create to add the parameter.

	
Click Apply to save the changes or Revert to discard them.

To delete a parameter in a configuration section:

	
In Fusion Middleware Control, from the JVM Configuration region, select the configuration section from which you want to delete a parameter.

	
Select the row that contains the parameter you want to delete.

	
Click Delete.

	
Click Apply to save the changes or Revert to discard them.

10.8.4 JVM Configuration Parameters and Default Values

Table 10-4 describes the JVM configuration parameters and their default values.

Table 10-4 JVM Configuration Parameters

	Parameter	Description	Default Value
	
Maximum Sessions per JVM

	
Specifies the maximum number of concurrent Oracle Forms sessions the default JVM will serve before a new JVM is spawned.

	
65535

	
Classpath

	
When you specify a classpath, it will override the system classpath or any classpath specified in your environment.

	
$ORACLE_HOME/jdk/bin/java

	
JVM Options

	
Enter any valid options to pass to the JVM. Refer to the Sun Java documentation for a list of valid JVM startup parameters.

	
Null

	
Log Directory

	
Leave Log Directory blank to use the log location for the default JVM controller. If any other directory is set, the log file cannot be viewed through Enterprise Manager.

	
$ORACLE_INSTANCE/FRComponent/frcommon/tools/jvm/log

	
Logging

	
Specifies whether logging is enabled or not. Valid values: On, Off.

	
On

	
Comment

	
Add any comments about this default JVM in this text area.

	
Null

10.8.5 Starting and Stopping JVM Controllers with Fusion Middleware Control

Fusion Middleware Control is the recommended tool for managing Oracle Forms Services, such as starting, stopping, and restarting a JVM controller.

If a JVM controller is down, you can start it. If a JVM controller is already running, you can restart it without first having to manually stop it. Fusion Middleware Control does this step for you.

	
Note:

Ensure that users have stopped the forms sessions that are using the JVM controller before you stop or restart the JVM. Users may want to restart sessions when the JVM is restarted.

To access the JVM Controller page:

	
Start the Enterprise Manager Fusion Middleware Control.

	
From the Forms home page, select JVM Controllers.

The JVM Controllers page (Figure 10-5) is displayed.

Figure 10-5 JVM Controller Page

[image: JVM Controller Page]

To start a JVM controller that is not running:

	
From the Forms menu, select JVM Controllers.

The JVM Controllers page is displayed.

	
Select the JVM controller that you want to start. A JVM that is not running is indicated by a red, down arrow.

	
Click Start.

When the JVM controller has started, a green, up arrow (Figure 10-5) is displayed in the Status.

To restart a running JVM controller:

	
From the Forms menu, select JVM Controllers.

The JVM Controllers page is displayed.

	
Select the JVM controller to be restarted.

	
Click Restart.

	
Click Yes on the Confirmation dialog.

The JVM Controller page reappears.

When the JVM controller has restarted, a green, up arrow is displayed in the Status.

To stop a JVM Controller

	
From the Forms menu, select JVM Controllers.

The JVM Controllers page is displayed.

	
Select the running JVM controller that you want to stop, indicated by a green, up arrow.

	
Click Stop.

	
Click Yes on the Confirmation dialog.

When the JVM controller has been stopped, a red, down arrow (Figure 10-5) is displayed in the Status.

To view additional details of a JVM Controller

	
From the Forms menu, select JVM Controllers.

The JVM Controllers page is displayed.

	
Click the plus symbol next to the JVM controller. The row is expanded to display additional details (Figure 10-5) of the JVM controller.

10.8.6 Forms Configuration File Settings

This section describes the JVM pooling parameters that are used in the Forms configuration file (formsweb.cfg) to enable or disable use of JVM controller for applications. The parameter names are not case-sensitive. You can use Fusion Middleware Control to administer the Forms configuration file.

Table 10-5, "Oracle Forms JVM Controller Startup Parameters" describes the startup options that you specify in the formsweb.cfg file.

For more information on modifying the parameters in formsweb.cfg, see Section 4.2.4, "Managing Parameters".

Table 10-5 Oracle Forms JVM Controller Startup Parameters

	Parameter	Description
	
jvmcontroller

	
Valid values: name of jvmcontroller. In addition, you can specify no JVM by leaving it blank.

Default value: none

Note: In order to specify this parameter in formsweb.cfg, you must first specify this parameter in otherparams in the form jvmcontroller=%jvmcontroller%. For more information on otherparams, see Table 4-13, "Advanced Configuration Parameters".

This parameter can be set globally in the default section, or any application section can choose to override it. This tells the Forms runtime process which JVM controller to use. It corresponds to the jvmcontroller parameter for the dejvm executable.

If jvmcontroller does not have a value (jvmcontroller=), then the Forms runtime process will start its own in-process JVM, which means that the Java Importer uses pre-10g behavior.

	
allowJVMControllerAutoStart

	
Valid values: true, false

Default value: true

This parameter enables Oracle Forms to run the JVM controller if Forms is configured to use the JVM controller which is not already running.

10.8.7 Startup Example

This example illustrates an environment of multiple JVMs for multiple applications.

As shown in Table 10-6, formsweb.cfg is configured with four configuration sections.

Table 10-6 Multiple JVMs for Multiple Applications

	Named Configuration Section	JVM Configuration
	
default

	
jvmcontroller=commonJVM

	
ordersApp

	
None

	
hrApp

	
jvmcontroller=hrJVM

	
salesApp

	
jvmcontroller=

If a user starts an ordersApp application, and the application executes Java code, the Forms runtime process will route the request to the JVM controller named commonJVM. Because the [ordersApp] application section does not specify which JVM controller to use, the Forms runtime process uses the global one. If the JVM controller is not started, it will be dynamically started. If a second user starts the same application, it too will attach to commonJVM.

When a user starts an hrApp application and it executes Java code, the Forms runtime process sends the request to the JVM controller named hrJVM because the [hrApp] application section overrides the global setting. If the JVM controller is not started, it will be dynamically started. When a second user starts the same application, it too will attach to hrJVM.

When a user starts a salesApp application and it executes Java code, the Forms runtime process starts an in-process JVM in the same way the Java Importer works without JVM pooling. When a second user starts the same application, the application will get their own in-process JVM, thus consuming more memory, as shown in Figure 10-6:

Figure 10-6 Multiple JVMs for multiple applications

[image: multiple JVMs for multiple applications]

10.9 JVM Controller Logging

When logging is enabled, the JVM controller logs certain information to the log file:

	
The values of the JVM parameters (maxsessions, classpath, and so on);

	
When a JVM controller starts and stops;

	
When a child JVM is spawned;

	
When an Forms runtime process starts a new connection, along with its process ID

This is useful for knowing which Forms runtime processes are connected to which JVM controller for diagnostics or administration;

	
When an Forms runtime process session ends and disconnects from the JVM.

This section contains the following:

	
Section 10.9.1, "Specifying JVM Default Logging Properties"

	
Section 10.9.2, "Specifying the JVM Log Directory Location"

	
Section 10.9.3, "Accessing Log Files"

	
Section 10.9.4, "Deleting a Log File for a JVM Controller"

10.9.1 Specifying JVM Default Logging Properties

Use Fusion Middleware Control to manage the properties for JVM controller logging.

	
In the JVM Configuration page, select the the JVM configuration section.

	
For the Logging parameter, enter On or Off.

	
Click Apply.

10.9.2 Specifying the JVM Log Directory Location

You can specify the log file directory in the JVM controller. You can also specify the default JVM controller log file location for other JVM controllers to use.

To specify the log file directory location:

	
Create a JVM controller. For more information, see Section 10.8.2.2, "Creating a New Configuration Section" or Section 10.8.2.4, "Duplicating a Named Configuration".

	
Add the Log Directory parameter. For more information, see Section 10.8.3, "Managing Parameters."

If you have duplicated a named configuration section that has Log Directory parameter defined in it, you can edit the existing parameter as given in the Section 10.8.3, "Managing Parameters."

	
Click Apply to save the changes.

The JVM Configuration page reappears.

10.9.3 Accessing Log Files

When the log file exists, an icon is displayed in the Logfile column.

To access a log file:

	
Click the Log File link in the Logfile column that is available for that JVM controller.

The Log File page appears and displays the log information.

10.9.4 Deleting a Log File for a JVM Controller

Use Fusion Middleware Control to delete log files.

To delete a log file for a JVM controller:

	
From the JVM Controllers page, select the the target JVM.

	
Click Delete Logfile.

The Delete Confirmation dialog appears.

	
Click Delete.

The logfile is deleted and the JVM Controllers page reappears.

	
Note:

If you delete a log file of a JVM that is running, the log file will be available again when the JVM is restarted. Logging is possible only when the JVM is restarted.

10.10 Integrating Forms and Reports

JVM Controller (dejvm) is used for Reports integration in Forms. All requests related to Reports such as running a report on Reports Server, getting the status of a Report, getting Reports output, or cancelling the job submitted to Reports Server are routed to the dejvm for dejvm-enabled runform to make calls to Reports.

To use dejvm for reports integration, perform the following steps. These settings are not required when Oracle Forms makes Reports call directly.

To use dejvm for Reports integration:

	
Enable JVM pooling in formsweb.cfg. For more information, see Section 10.8.6, "Forms Configuration File Settings".

	
Two additional .jar files are required by dejvm for Reports integration. Set the classpath in jvmcontrollers.cfg to include these jars: zrcclient.jar ($ORACLE_HOME/jlib/zrclient.jar) and rwrun.jar ($ORACLE_HOME/reports/jlib/rwrun.jar).

	
Note:

If you want the Reports Server name to be returned when running a report using JVM controller, then the REPORTS_SERVERMAP environment variable must be defined in jvmcontrollers.cfg as shown below:

[myjvm]
jvmoptions=-DREPORTS_SERVERMAP=<value> <other-jvmoption-parameters>

10.11 JVM Pooling Error Messages

PDE-JM001: Unable to communicate with the JVM Controller: <jvm_name>.

Cause: Failed to start the JVM controller or connect to an existing JVM controller.

Action: Notify your administrator.

A Troubleshooting Oracle Forms Services

This chapter contains the following:

	
Section A.1, "Verifying The Installation"

	
Section A.2, "Diagnosing FRM-XXXXX Errors"

	
Section A.3, "Diagnosing Server Crashes with Stack Traces"

	
Section A.4, "Diagnosing Client Crashes"

	
Section A.5, "Forms Trace and Servlet Logging Tools"

	
Section A.6, "Resolving Memory Problems"

	
Section A.7, "Troubleshooting Tips"

	
Section A.8, "Need More Help?"

This chapter provides information to help you resolve problems that might occur when you run an application over the Web using Oracle Forms. It contains an outline of common causes for errors, the method you can use to verify your installation, and the tools and techniques provided to diagnose problems.

This chapter is also a subset of the whitepaper Oracle Forms Diagnostic Techniques that can be found at http://www.oracle.com/technology/products/forms/.

A.1 Verifying The Installation

If there is something wrong with the installation, then it will result in faulty configuration and Oracle Forms will not run correctly. After the Oracle Universal Installer indicates that Fusion Middleware Control was successfully installed, you can verify whether Oracle Forms Services is correctly configured or not. You can use these tools:

Section A.1.1, "Use The Web Form Tester"

Section A.1.2, "Find Port Information"

A.1.1 Use The Web Form Tester

The Web Form Tester is available with your Oracle Fusion Middleware installation. To verify whether the Oracle installation and configuration of Forms Services is correct, run the Web Form Tester on the middle tier. The following is an example of how this can be done on a Windows computer.

	
Start the Admin server for the WebLogic Server domain by selecting Start | Program Files |Oracle WebLogic Server | User Projects | Domain | Start Admin Server for WLS Domain, if it is not already started.

	
If the managed server is not up, perform the following steps:

	
Start the node manager by selecting Start | Program Files |Oracle WebLogic | WebLogic Server 11gR1 | Tools | Node Manager, if it is not already started.

	
Start Forms Services from the WebLogic Administrator Console.

	
Open an instance of the browser by typing <ORACLE_HOME>/tools/web/html/runform.htm for the URL and press ENTER. Replace ORACLE_HOME with your actual Oracle home for Oracle Fusion Middleware.

	
Alternatively, you can run the Web Form Tester by selecting Start | Program Files | <Oracle_Home> | Forms Services | Run a Form on the Web from the Windows Start menu for Oracle Fusion Middleware.

	
Enter the Web port and click the Run Form button. See Section A.1.2, "Find Port Information" to learn how to find out the Web port.

	
If the installation of Oracle Fusion Middleware is correct, you will see a success message in the Web browser. Also, it can be tested from a client computer whether the basic Forms setup in Oracle Fusion Middleware on the middle tier is installed correctly or not by the installer. You can run the test form from any client computer by running it from the browser with the URL http://example.com:NNNN/forms/frmservlet?form=test.fmx.

A.1.2 Find Port Information

When in doubt or you need to know what port numbers to use to run Forms after installation, you can look at port information in the file <ORACLE_HOME>/install/portlist.ini. Use the appropriate port numbers for your installation.

A.2 Diagnosing FRM-XXXXX Errors

Use these tools to diagnose and resolve FRM-XXXXX errors:

	
Section A.2.1, "The Oracle Forms Applet"

A.2.1 The Oracle Forms Applet

The brief message about the FRM error should help in identifying the basic cause of the problem. Often, everything required to identify the cause an FRM error is contained in the error reported by the Forms applet. When a FRM error is raised, the error dialog will have a Details button. Pressing the 'Details' button will show the current Java stack. The exact stack is tied to the root cause and the version of Oracle Forms. This is due to the differing package structure used for the applet class files in the different releases.

A.3 Diagnosing Server Crashes with Stack Traces

This section contains the following:

	
Section A.3.1, "About Stack Traces"

	
Section A.3.2, "Configuring and Using Stack Traces"

If the Forms web runtime terminates unexpectedly, then it writes a stack trace to the directory $ORACLE_INSTANCE/FormsComponent/forms/trace. The filename will have the format <forms_runtime_process>_dump_<process id>.The dump file contains a stack trace of the running process, and shows the last successful operation performed by Forms. This core file can be used to assemble a stack trace with symbol names using GNU Debugger, dbx or similar debugging tool on the machine where the dump occurred.

A.3.1 About Stack Traces

A stack trace is useful for two reasons:

	
The information in the stack can be used to identify a known issue. It is not 100% reliable, but an identical stack trace is a good indicator of a matching problem. Even if it is not the same, there may be a workaround or patch for an existing bug that can be tested.

	
If the problem is not a known bug, then the stack may provide valuable information to assist development efforts to pinpoint the cause.

A.3.2 Configuring and Using Stack Traces

This section contains the following:

	
Section A.3.2.1, "Verifying the Environment"

	
Section A.3.2.2, "Understanding UNIX Stack Traces"

	
Section A.3.2.3, "Understanding Windows Stack Traces"

A.3.2.1 Verifying the Environment

In order to test stack tracing on UNIX or Windows you can set the environment variable FORMS_DELIBERATECRASH. As the name suggests, setting this will cause the forms runtime process to crash. Oracle Forms currently recognizes two settings: 1 and 2. If FORMS_DELIBERATECRASH is set to 1 then forms will crash at runtime whenever the BELL Built-in is executed. If it is set to 2 then forms will crash at runtime whenever a when-button-pressed trigger is fired. This environment variable can be set in the environment (for example, default.env) file.

A.3.2.2 Understanding UNIX Stack Traces

In a UNIX stack trace, the top two functions siehjmpterm() and sigacthandler() are the signal handling code - these functions will often be present in the stack trace. To see the function the program was in when the error occurred you need to read further down the stack.

If you set FORMS_CATCHTERM=0 the two functions do not show up in the dump file. The stack trace is displayed without the crash handling symbols.

A.3.2.3 Understanding Windows Stack Traces

Stack tracing works differently on UNIX and on Windows. The symbol information is contained inside the executable files and shared libraries on Unix. On Windows this information is stripped out at link time and is in the form of binary .sym files. There should be one .sym file for every Oracle Forms executable or DLL. The .sym files are installed by default. On Windows the files are located in the ORACLE_HOME\bin directory. The mechanism on Windows platforms is such that in the event of a crash the Forms runtime process reads all the .sym files that correspond to the forms executable files loaded into memory. It then uses the information in the .sym files to lookup the symbol name.

A.4 Diagnosing Client Crashes

This section contains the following:

	
Section A.4.1, "About Diagnosing Client Crashes"

	
Section A.4.2, "Diagnosing Hanging Applications"

A.4.1 About Diagnosing Client Crashes

If the Forms applet disappears unexpectedly, accompanied by a dialog indicating a fatal error, then the Forms applet has crashed. On Windows, a crash will result in the operating system raising an 'illegal operation' dialog, or may cause the "Not responding" flag in Task Manager.To verify the crash, check for a stack trace file on the client. If the client has crashed then a file with the .rpt extension will be created in the same directory as the executable. The root of the filename will be the name of the executable.

Sometimes the applet may appear to have crashed, but no corresponding .rpt file can be found. In this case it is likely that the Oracle Forms has unexpectedly disconnected from the client. The applet will still be running, but it has shutdown all the Forms windows, giving the appearance of a client crash.

A.4.2 Diagnosing Hanging Applications

If the client appears to hang then it is important to verify that the server process is still alive. If the server process has not crashed, but the client no longer appears to respond to user interaction then the application is said to be hanging.

In such cases a thread dump can point to the deadlock. A thread dump can be obtained by pressing t in the Java console. This displays a list of all the threads running in the client JVM.

The information contained in the dump file is extremely useful to Oracle development, and should be included in any bug filed to report the problem.

A.4.2.1 Causes of Hanging Applications

One cause could be a mismatch between the Java class files and the Oracle Forms version. Communication between the applet and the Forms runtime process is based on message ID. If these message ID's are out of sync, then the applet may not understand an instruction from the server, and vice versa. If you are using Jar files, then try with the <ARCHIVE> tag removed. If the problem persists then pull the correct class files off the installation/patch CD by hand.

Another cause is that the Forms Runtime process may have died. Check if the Forms Runtime process on the server is still alive. Check that the FORMS_TIMEOUT parameter is set. It defines how long the server should wait for a ping from the Oracle Forms client, only cleaning up the runtime process when there has been no activity from the Forms client for the specified time. The client sends out a HEARTBEAT every two minutes by default. If FORMS_TIMEOUT is set to two minutes or longer, the server will stay up as long as it hears a HEARTBEAT from the client. Set to shorter than the HEARTBEAT interval, it will shut down after the interval specified in FORMS_TIMEOUT. You can set the interval by setting the HEARTBEAT applet parameter in formsweb.cfg. For more information, see Section 8.6.3, "Configuring Asynchronous Communication." Although this is primarily intended to prevent orphaned server processes, it can also prevent the unwanted premature cleanup of server processes.

A.5 Forms Trace and Servlet Logging Tools

Forms Trace and Servlet Logging are two more tools to use in troubleshooting your Oracle Forms Environment. For more information on configuring and using Forms Trace, see Chapter 12, "About Forms Trace" and Chapter 12, "Taking Advantage of Oracle Diagnostics and Logging Tools".

A.6 Resolving Memory Problems

This section contains the following:

	
Section A.6.1, "How Java Uses Memory"

	
Section A.6.2, "Setting the Initial Java Heap"

	
Section A.6.3, "About Memory Leaks"

	
Section A.6.4, "Improving Performance with Caching"

A.6.1 How Java Uses Memory

Like all software programs, a Java applet uses memory. For Java, the language specification requires a 'garbage collector', which is in an internal memory manager for the Java Virtual Machine (JVM). When a Java program needs memory, it requests this memory from the JVM. If there is no memory left, then the JVM will attempt to free some memory by using the garbage collector. The garbage collector will try to release memory that is no longer required to run the program back to the JVM. If there is still insufficient memory to perform the required task then the JVM will attempt to get more memory from the operating system. If that memory allocation fails, then the Java program will be unable to continue.

A.6.2 Setting the Initial Java Heap

You can specify the initial Java Heap (the memory used by the JVM) for your application through Fusion Middleware Control. For the client, you can change the setting in the Java control panel after you've installed the Oracle Java Plug-in.

	
Note:

The JVM will only use the memory it is told it is allowed to use. Even if you have memory available with the operating system, the JVM will not use it if told not to.

A.6.3 About Memory Leaks

A memory leak is an error in a program's dynamic-store allocation logic that causes it to fail to reclaim discarded memory, leading to eventual collapse due to memory exhaustion.

For example, when a program runs it may need to allocate some memory to perform a particular task. If the program has finished with that memory and no longer has any use for it, but fails to make that memory available to other programs running on the computer, then it is said to have leaked the memory.

A typical method used to spot memory leaks is to repeat a series of steps, and observe the memory in use by the application - if the memory usage continues to rise with each iteration, then the assumption is often that the program has a memory leak.

However, some complex applications may choose to retain control of memory it has previously allocated so that it can reuse it at a later point - memory allocation can be an expensive operation, and if the program expects that it will need more memory later it may be more efficient to keep the unused memory available for reuse.

A.6.3.1 Memory Leaks in Java

The Java language specification demands that the JVM has a garbage collector. In Java, the programmer allocates memory by creating a new object. There is no way to de-allocate that memory. Periodically the garbage collector sweeps through the memory allocated to the program, and determines which objects it can safely destroy, therefore releasing the memory. To determine which objects it can safely destroy, the garbage collector uses a 'mark and sweep' algorithm. The garbage collector scans the dynamically allocated memory for objects, marking those which still have active references to them.

After all possible paths to objects have been investigated, unmarked objects that are known to be no longer needed can be garbage collected. A common myth with Java programming is that the presence of a garbage collector means that there can be no memory leaks. This is not true because the garbage collector simply marks those objects, which have active references, and destroys those that do not. It is possible to have an active reference to an object that is no longer needed. This is a memory leak in Java. The solution to the leak is to destroy the references to the object once it is no longer needed so that the garbage collector can identify it as safe to destroy. If a memory leak exists in a Java program, then calling the garbage collector more frequently will not help.

To complicate matters further, the JVM may choose not to release unused memory back to the operating system. In the real world this seldom matters, as most programs will typically require more memory at some point in the near future and can reuse the free memory in the JVM. However, it is worth bearing in mind that not all the memory allocated to the JVM will be in use by the program running in the JVM.

A.6.3.2 Identifying Memory Leaks

Typically, if a growth in memory usage is observed each time a particular series of operations is performed, then it is a memory leak. The ideal proof is to:

	
Get the form into an initial base state, and record the memory usage,

	
Perform a series of steps to illustrate the problem,

	
Return to the initial base state, and record the memory usage.

By repeating steps 2 and 3, it is possible to determine whether there is a steady memory leak or not. If the growth in memory is small over a large number of iterations, then it may not be a leak at all; it could be that the JVM is retaining unused memory, or the garbage collector is not activating as frequently as expected.

A.6.4 Improving Performance with Caching

When any Java program runs, the Java Virtual Machine needs to load class files. When running over the Internet, the time taken to download a class file each time the program runs can lead to performance problems. In order to solve this download problem, the JDK supports Java Archive (Jar) files. A Jar file is simply a collection of class files bundled into one compressed file. Typically, the size of the Jar file will be much smaller than the combined size of the class files it contains.

When the JVM first references a class, it checks the local computer to see if any of the previously cached Jar files contain this class. If the class does exist in one of the pre-cached Jar files, then the JVM checks to see if there is a newer version of this Jar file on the application server. If there is a newer Jar file available then the new copy of the Jar file is downloaded to the client cache. If the cached Jar file is up to date, then the class file is loaded from the cached Jar file rather than from over the network.

Caching is important because if the application Jar files do not change, then after the application has run once, and all the Jar files required have been cached on the client, then subsequent invocations of the application will always load the classes from the local cached copies. This can lead to significant performance improvements in the startup time for the application. If new classes are needed to run a specific part of the application, these will be downloaded as required.

A.7 Troubleshooting Tips

The following troubleshooting list will help you deal with complex issues, but it is not a definitive guide to problem solving or a guaranteed set of solutions to your Oracle Forms environment.

Be methodical

Do not immediately leap to the area you believe to be the cause based on a hunch, or a guess - make sure you eliminate the other possibilities first. An easy trap to fall into is that of spending long periods of time trying to find evidence to support your theory, rather than concentrating on what the evidence shows. Do not overlook the trivial or the obvious.

Divide the problem into sections

	
Chop the problem into manageable sections - this helps eliminate whole areas from investigation. As you investigate an area and satisfy yourself that the problem does not lie there, you can proceed to the next section. An approach to diagnosing a problem that is often successful is to reduce it to its essential parts. This will be important if you need to discuss the problem with Oracle Support Services to obtain a solution.

	
Define what happens, when it happens, how often it happens. Of equal importance is, understanding what does not happen, when it does not happen etc. For example, if a group of users in the same building all get the problem, and it always happens between 9 and 10am, it is just as important to know that it never reproduces in another building, or after 10pm. Perhaps the users only use a particular Form between 9 and 10, or the load on the system is highest between 9 and 10am.

Read the error messages.

It sounds obvious, but often the solution information is within the error text. This document will help you understand the error messages, and help identify what action to take.

Make sure you can reproduce the problem, if possible

If you can reproduce the problem yourself, you may notice some behavior that the end user never spotted - perhaps it had always happened, so they simply assumed it was meant to happen. If you can reproduce the problem then you have already started the first step to resolve it.

Make sure you understand the tools you are trying to use

If you decide to use a diagnostic tool, make sure you know how to use it, and how to interpret the data it produces. Time spent in investigating the usage of a tool before the problem happens is time well invested. Make time to learn the tool as well.

A.8 Need More Help?

You can find more solutions on My Oracle Support (formerly OracleMetaLink) at http://support.oracle.com. If you do not find a solution for your problem, log a service request.

	
See Also:

	
Oracle Fusion Middleware Release Notes, available on the Oracle Technology Network: http://www.oracle.com/technology/products/forms/index.html

B Configuring Java Plug-ins

This section describes the use of Oracle's Java Plug-in as a Web browser plug-in. Oracle Java Plug-in enables users to run Oracle Forms applications using Mozilla Firefox or Internet Explorer. It provides the ability to specify the use of a specific Java Virtual Machine (JVM) on the client. For more information, see the white paper "Using Sun's Java Plug-in" at http://www.oracle.com/technology/products/forms/index.html.

B.1 Supported Configurations

Oracle supports the Java Plug-in. For more information, see the Java Plug-in Documentation at http://java.sun.com/products/plugin/reference/docs/index.html.

B.2 Legacy Lifecycle Behavior And Configuration Requirements

In JDK 1.4.1 and later, the Java Plug-in supports the LEGACY_LIFECYCLE applet parameter. When this parameter is set to true, a running applet is not destroyed when the user navigates away from a page. Furthermore, when the user navigates back to the page, the running applet is resumed unless:

	
The browser must re-issue the request for the applet definition, and

	
The response to that request produces an applet definition that differs from the applet definition that was returned by the original request.

B.2.1 Configuration Requirements

To use the LEGACY_LIFECYCLE feature for certain configurations, add LEGACY_LIFECYCLE=true parameter to the relevant configuration sections, such as in formsweb.cfg.

Alternatively, legacy_lifecycle=true can be specified on the URL that is used to launch a Forms application. This technique is useful primarily during application development.

In addition, JavaScript must be enabled in the browser from which the Forms application (that specifies legacy_lifecycle=true) is launched.

The HTML files must also adhere to certain guidelines. The base HTML files that are shipped with the product already adhere to the required guidelines. However, users who write their own base HTML files must ensure that such files adhere to the following guidelines:

	
The base HTML file must define the serverURL attribute to the value of the serverURL variable (serverURL="%serverURL%"), in the COMMENT node that has the ID forms_plugin_info.

	
The base HTML file must define the serverURL applet parameter, and its value must be the value of the appletServerURL variable. (Prior to Forms 11g, it was set to the value of the serverURL variable). This can be accomplished by including

<PARAM NAME="serverURL" VALUE="%appletServerURL%">

and

serverURL="%appletServerURL%"

in the OBJECT definition and the EMBED comment in user-written base HTML files. Note that the appletServerURL variable should not be set in a configuration file. (If it is, the value is ignored.) Instead, Forms computes its value automatically: if legacy_lifecycle=true (in the configuration file or in the initial URL), then the appletServerURL variable evaluates to "?", which causes Forms to look for the serverURL attribute of the COMMENT node (see above). Otherwise, the appletServerURL evaluates to the value of the serverURL variable.

	
The base HTML file must define the legacy_lifecycle applet parameter, and the value must not be hard-coded: it must match the value of the legacy_lifecycle variable. That is because in Forms 11g, the variable also affects the value of the appletServerURL variable (as explained above). This can be accomplished by including

<PARAM NAME="legacy_lifecycle" VALUE="%legacy_lifecycle%">

and

legacy_lifecycle="%legacy_lifecycle%"

in the OBJECT definition and the EMBED comment in user-written base HTML files.

Index

A B C D E F H I J K L M N O P R S T U V W Z

A

	alias, Forms servlet and, 13.2.8.3
	aliases, Forms servlet, web.xml file and, 13.1
	applet
	
	parameters, 4.2.5.6

	application
	
	environment file, Oracle Forms Services, 13.2.3
	server, 2.6

	application deployment
	
	overview, 3.3
	steps, 3.3.1

	Authorization and Access Enforcement, 11.1.3

B

	Background, 4.7.4
	background parameter, 4.2.5.6
	base HTML file
	
	creating, C.4

	base.htm, C.4
	
	description, C.4
	example, C.4.2

	baseHTML files
	
	creating, C.4
	list of, 3.2.5
	parameters and variables, C.4.1
	selecting, 3.4.1

	basejpi.htm
	
	description, C.4

	basejpi.htm File
	
	sample default, C.4.3

	basejpi.htm file, Oracle Forms and, 13.2.3
	boilerplate objects/images, 14.1.4
	built-in event, 12.5

C

	CGI, Forms upgrade and, 13.2.3
	client browser support
	
	about, 3.4

	client resource requirements, 14.1.3
	client tier, 2.6
	CodeBase, 4.7.6.2
	codebase parameter, 4.2.5.4
	codebase parameter, Oracle Forms and, 13.2.8.1
	colorScheme parameter, 4.2.5.6
	configuration files, 3.2, 3.2.1
	
	6iserver.conf, 13.1

	configuration parameters
	
	BaseHTML files and client browsers, 3.4.1

	customized HTML template files, Oracle Forms, 13.2.5
	customized HTML template files, Oracle Forms Services, 13.2.6

D

	data segments, 14.1.4
	data stream compression, 14.2.3
	database tier
	
	description, 2.6

	default behavior, 3.3.4
	default configuration parameters
	
	allowAlertClipboard, 4.2.5.7
	allowNewConnections, 4.2.5.7
	applet_name, 4.2.5.7
	archive, 4.2.5.4
	array, 4.2.5.7
	baseHTML, 4.2.5.5
	baseHTMLjpi, 4.2.5.5
	buffer_records, 4.2.5.7
	clientDPI, 4.2.5.7
	connectionDisallowedURL, 4.2.5.7
	debug, 4.2.5.3
	debug_messages, 4.2.5.7
	defaultcharset, 4.2.5.7
	digitSubstitution, 4.2.5.7
	disableMDIScrollbars, 4.2.5.7
	disableValidateClipboard, 4.2.5.7
	enableJavascriptEvent, 4.2.5.7
	EndUserMonitoringEnabled, 4.2.5.3
	EndUserMonitoringURL, 4.2.5.3
	envFile, 4.2.5.1
	escapeparams, 4.2.5.7
	form, 4.2.5.1
	formsMessageListener, 4.2.5.7
	heartBeat, 4.2.5.7
	highContrast, 4.2.5.7
	host, 4.2.5.3
	HTMLafterForm, 4.2.5.5
	HTMLbeforeForm, 4.2.5.5
	HTMLbodyAttrs, 4.2.5.5
	HTMLdelimiter, 4.2.5.7
	JavaScriptBlocksHeartBeat, 4.2.5.7
	jpi_mimetype, 4.2.5.4
	legacy_lifecycle, 4.2.5.7
	log, 4.2.5.3
	maxRuntimeProcesses, 4.2.5.7
	networkRetries, 4.2.5.7
	obr, 4.2.5.7
	otherparams, 4.2.5.7
	pageTitle, 4.2.5.5
	port, 4.2.5.3
	prestartIncrement, 4.2.5.7
	prestartInit, 4.2.5.7
	prestartMin, 4.2.5.7
	prestartRuntimes, 4.2.5.7
	prestartTimeout, 4.2.5.7
	query_only, 4.2.5.7
	quiet, 4.2.5.7
	record, 4.2.5.3
	recordFileName, 4.2.5.7
	restrictedURLchars, 4.2.5.7
	restrictedURLparams, 4.2.5.7
	serverApp, 4.2.5.7
	ssoCancelUrl, 4.2.5.2
	ssoDynamicResourceCreate, 4.2.5.2
	ssoErrorUrl, 4.2.5.2
	ssoMode, 4.2.5.2
	ssoProxyConnect, 4.2.5.2
	term, 4.2.5.7
	tracegroup, 4.2.5.3
	USERID, 4.2.5.1

	default environment variable
	
	CLASSPATH, 4.3.3
	FORM_PATH, 4.3.3
	FORMS_MESSAGE_ENCRYPTION, 4.3.3
	FORMS_RESTRICT_ENTER_QUERY, 4.3.3
	LD_LIBRARY_PATH, 4.3.3
	LD_PRELOAD, 4.3.3
	ORACLE_HOME, 4.3.3
	ORACLE_INSTANCE, 4.3.3
	PATH, 4.3.3
	TNS_ADMIN, 4.3.3
	WEBUTIL_CONFIG, 4.3.3

	Default formsweb.cfg File
	
	sample, C.2

	Default jvmcontroller.cfg
	
	sample file, C.9

	Default webutilbase.htm
	
	sample file, C.11

	default webutilbase.htm
	
	description, 3.2.6.2

	Default webutil.cfg
	
	sample file, C.10

	default webutil.cfg
	
	description, 3.2.6.1

	Default webutiljpi.htm
	
	sample file, C.12

	default webutiljpi.htm
	
	description, 3.2.6.3

	default.env
	
	Solaris sample, C.3.2
	Windows sample default, C.3.1

	default.env file, Oracle Forms Services, 13.1, 13.2.3
	Deploying Icons and Images Used by Forms Services, 4.7
	deployment
	
	Forms to the Web, 3

	disable MENU_BUFFERING, 14.2.3
	duration event, 12.5

E

	encoded program units, 14.1.4
	Enterprise Manager
	
	Fusion Middleware Control, 4.1

	Environment Configuration page
	
	accessing, 4.3.1
	default environment variables, 4.3.3
	deleting an environment configuration file, 4.3.1
	duplicating an environment configuration file, 4.3.1
	managing environment variables, 4.3.2
	viewing an environment configuration file, 4.3.1

	environment file, Oracle Forms Services application, 13.2.3
	event bundling, 14.1.6
	event details, tracing, 12.5.1
	events, tracing, 12.5

F

	Feature Restrictions for Forms Applications on the Web, 4.8
	file
	
	basejpi.htm, 13.2.3
	default.env, 13.2.3
	default.env, Oracle Forms Services, 13.1
	forms.conf, 13.1
	formsweb.cfg, 13.2.3
	ifcgi60.exe, Oracle9iAS Forms, 13.2.3
	jserv.properties
	
	Oracle Forms Services and, 13.1

	Forms CGI
	
	description, 13.2.3
	upgrading, 13.2.3

	Forms Home Page
	
	accessing, 4.1.1
	Forms Menu Options, 4.1.1

	Forms Integration
	
	Web Cache, 14.3

	Forms Java EE Application Deployment Descriptors, 3.2.2
	Forms Listener, 2.6.1, 2.6.1.1
	Forms Listener Servlet, 2.6.1.1, 2.6.1.1
	
	HTTPS, 5.5
	server requirements, 5.5

	Forms Runtime Diagnostics, 12.1
	Forms Runtime Engine, 2.6.1, 2.6.1.2
	Forms Services
	
	monitoring events, 14.1.1.2
	monitoring instances, 14.1.1.1
	Web Runtime Pooling, 14.1.2

	Forms Services resource requirements, 14.1.4
	Forms Servlet, 5.1
	Forms servlet aliases, web.xml file and, 13.1
	Forms Trace, 3.2.1.3
	forms.conf, C.7
	
	default sample, C.7.1

	forms.conf file, 13.1
	FormsServlet.initArgs, 4.2.2
	formsweb.cfg, 3.2.1.2
	
	example, C.2

	formsweb.cfg file
	
	Forms CGI and, 13.2.3

	FRD, 12.1
	frmservlet, Oracle Forms and, 13.2.6
	ftrace.cfg, 3.2.1.3

H

	height parameter, 4.2.5.1
	HTML-based Enterprise Manager, 4.1
	HTTP Listener, 5.1
	
	Configuration Files, 3.2.3

	HTTPD, 5.3.1
	HTTPS
	
	Forms Listener Servlet, 5.5

I

	Icons
	
	deploying, 4.7.3

	icons
	
	creating Jar files for, 4.7.5
	search path, 4.7.6

	ifcgi60.exe file, 13.2.3
	imageBase, 4.2.5.4
	Images, 4.7
	
	Background, 4.7.4
	SplashScreen, 4.7.4

	images
	
	creating Jar files for, 4.7.5
	search paths, 4.7.6

	images, deploying, Oracle Forms and, 13.2.8.1
	Inline IME Support, 4.8.2
	in-process JVM, definition, 10.4
	integrated calls, Oracle Forms to Reports, 13.2.8.2
	integration
	
	Forms and Reports information, 9.5

J

	JAR files, caching, 14.2.2.3
	Java client resource requirements, 14.1.3
	Java plug-in, 14.2.2.2, B
	Java plug-ins, Oracle Forms and, 13.2.3
	JavaScript Integration, Oracle Forms and, 6.1
	
	applet parameter, 6.4, 6.4
	JavaScript calls, 6.1, 6.1

	jpi_classid, 4.2.5.4
	jpi_codebase, 4.2.5.4
	jpi_download_page, 4.2.5.4
	jserv.properties file
	
	Oracle Forms and, 13.1
	Oracle Forms Listener Servlet and, 13.2.6

	JVM controllers
	
	about multiple, 10.3
	accessing log files, 10.9.3
	default logging properties, 10.9.1
	deleting a log file for a JVM controller, 10.9.4
	JVM pooling error messages, 10.11
	logging management, 10.9
	specifying log file directory location, 10.9.2

	JVM Pooling
	
	configuration file settings, 10.8.6
	design-time considerations, 10.5
	examples, 10.4
	managing JVM controller, 10.8
	managing JVM Controller with EM
	
	Starting and Stopping JVM Controllers, 10.8.5

	managing JVM Controllers from the command line, 10.7
	overview, 10.1
	re-importing Java Code, 10.5.1
	sharing static variables, 10.5.2
	thread handling, 10.1

K

	key mapping
	
	enabling, 4.9
	fmrweb.res, 4.9

L

	Language Detection, 4.8
	language detection
	
	multi-level inheritance, 4.8.3.1
	overview, 4.8.3

	launching, 4.1
	leveraging, 11.1.4
	listener servlet, Oracle Forms entry in web.xml, 13.2.4.1
	Listener, Forms6i, description, 13.2.5
	load balancing
	
	Oracle Forms and, 13.2.7

	Load Balancing WebLogic Server, 5
	log parameter for tracing, 12.2.2
	logging capabilities, 12.6.1
	logo, 4.2.5.6
	lookAndFeel parameter, 4.2.5.6
	lservlet, Oracle Forms and, 13.2.6

M

	metrics logging
	
	enabling, 12.6.1

	middle tier, 2.6

N

	network
	
	reducing bandwidth, 14.2.3

	network latency, 14.1.6
	network packets, 14.1.6
	network usage, 14.1.5

O

	ODL, 12.6
	optimizing Forms Services, 14.1
	Oracle Forms Services, Components, 2.6.1
	Oracle Forms Services, image, 2.6
	Oracle Forms Services,Architecture, 2.6
	Oracle Fusion Middleware, 2.4
	Oracle HTTP Listener Configuration Files, 3.2.3
	Oracle Identity Management Infrastructure, 11.1.4
	Oracle Internet Directory, 9.1, 11.1.1
	
	dynamic resource creation, 11.1.2.2
	options for configuring, 11.2.1

	Oracle Portal, Forms, Reports and Discoverer 11g, 2.5
	Oracle Real Application Clusters, 2.2
	Oracle Single Sign On
	
	accessing from Forms, 9.4.6

	Oracle Single Sign-On
	
	authentication flow, 9.1.1
	database password expiration, 9.2.3, 11.1.2.3
	dynamic directives, 9.2.2
	enabling for an application, 9.2.3

	Oracle Single Sign-On Server, 9.1
	oracle.forms.servlet.ListenerServlet, Oracle9iAS Forms and, 13.2.6

P

	parameter options
	
	specifying in URL, 12.2.2

	parameters, 3.3.2, 3.3.2
	Performance Event Collection Services (PECS), 12.1
	performance tools, 12.1
	Performance/Scalability Tuning, 5
	point event, 12.5
	privileges
	
	for classes of users, 11.1.1

	protected, 11.1.2

R

	RAD entries, 11.1.1
	Registry.dat
	
	adding a parameter value, 4.7.1
	changing parameter value, 4.7.1
	deleting a parameter value, 4.7.1

	registry.dat, C.8
	
	sample default, C.8.1

	Registry.dat, managing, 4.7.1
	resources, 11.1.2
	
	dynamic directives, 11.1.2.1

	resources, minimizing
	
	boilerplate objects, 14.1.4
	data segments, 14.1.4
	encoded program units, 14.1.4
	network usage, 14.1.5
	rendering displays, 14.1.7
	sending packets, 14.1.6

	RUN_REPORT_OBJECT Built-in, Oracle Forms Services and, 13.2.8.2
	runform parameters, 3.3.4, 3.3.4.1
	
	default behavior, 3.3.4.1
	default behavior, prior releases, 3.3.4.2
	definition, 3.3.4
	special character values, 3.3.4

	Runtime Pooling
	
	configuring prestart parameters, 14.1.2.1

S

	sample file
	
	base.htm, C.4.2

	sample values, 3.3.2
	ScriptAlias directive, Oracle9iAS Forms and, 13.2.3
	separateFrame parameter, 4.2.5.6
	serverHost parameter, Oracle Forms Services and, 13.2.4.1
	serverPort parameter, Oracle Forms Services and, 13.2.4.1
	serverURL, 4.2.5.7
	serverURL parameter
	
	application deployment in Oracle Forms Services, 13.2.5
	static HTML files in Oracle Forms Services, 13.2.4.1

	servlet aliases, Forms, web.xml file and, 13.1
	servlet log file
	
	location, 12.6.1.3
	sample output, 12.6.5

	servlet log file location, 12.6.4
	single sign-on, 9.1
	Special Key Mappings, 4.9.1.2
	specifying, 3.3.2
	SplashScreen, 4.7.4
	splashScreen parameter, 4.2.5.6
	SSL
	
	configuring Forms Services, 5.7
	configuring with a load balancing router, 5.8

	ssoCancelUrl, 9.4.5
	ssoDynamicResourceCreate
	
	about, 9.4.3

	ssoErrorURL, 9.4.4
	ssoMode
	
	about, 9.4.1, 9.4.2

	ssoMode parameter
	
	example for enabling a particular application, 9.4.1, 9.4.2

	startup time, 14.2.2
	Sun Java Plug-In
	
	supported configurations, B.1

	Sun's Java Plug-in, 14.2.2.2

T

	template HTML
	
	considerations for static, 3.3.4.5

	template HTML files
	
	considerations, 3.3.4.4
	creating, 4.6

	Test Form
	
	securing, 4.5.1

	thread handling
	
	Forms Runtime Process and JVM, 10.1

	timers, tuning, 14.2.4
	trace data
	
	converting to XML, 12.4.1

	trace event details, 12.5.1
	traceable events, 12.5
	tracegroup parameter for tracing, 12.2.2
	translate utility for tracing, 12.4.1
	tuning
	
	application size, 14.2.4
	boilerplate items, 14.2.3
	disable MENU_BUFFERING, 14.2.3
	MENU_BUFFERING, 14.2.3
	promote similarities, 14.2.3
	reduce boilerplate objects, 14.2.3
	reduce navigation, 14.2.3
	reducing network bandwidth, 14.2.3
	screen draws, 14.2.3
	timers, 14.2.4
	using Jar files, 14.2.2.1

U

	upgrading
	
	application modules, 13.2.2
	CGI to Forms Servlet, 13.2.3
	Forms 6i Listener to Forms Listener Servlet, 13.2.5
	items, 13.1
	load balancing, 13.2.7
	recommendations, 13.2.1
	static HTML start files, 13.2.4
	tasks, 13.2
	validating Forms Services, 13.3

	Upload/Translate Utility
	
	starting, 12.4.1

	URL escape sequences, 3.3.4.1
	URL parameter option for tracing, 12.2.2
	User Sessions page
	
	accessing, 4.4
	customizing your view, 4.4
	disabling new Forms user sessions, 4.4
	disabling tracing, 4.4
	enabling new Forms user sessions, 4.4
	enabling tracing, 4.4
	field descriptions, 4.4
	searching for user sessions, 4.4
	sorting list of sessions, 4.4
	terminating Forms user sessions, 4.4
	viewing database sessions, 4.4
	viewing trace logs, 4.4

V

	Virtual Graphics System (VGS) tree, 14.1.7, 14.1.7

W

	Web Cache
	
	configuring session binding, 14.3
	Forms integration, 14.3
	testing setup, 14.3

	Web Configuration Page
	
	accessing, 4.2
	common tasks, 4.2.1
	creating a configuration section, 4.2.3.1
	deleting a configuration section, 4.2.3.4
	duplicating a named configuration, 4.2.3.3
	editing a configuration description, 4.2.3.2
	managing parameters, 4.2.4
	parameter descriptions, 4.2.5

	WebLogic Managed Server Process, 5
	WebUtil Configuration Files, 3.2.6
	web.xml, C.5
	
	Oracle Forms Services and, 13.1, 13.1

	web.xml File
	
	default sample, C.5.1

	width parameter, 4.2.5.1

Z

	zone.properties
	
	file, Oracle Forms Listener Servlet and, 13.2.6

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/javascript.gif
HTML Page

Forms Applet

Forms Server

OEBPS/img/ha.gif
Host B

Host A

OHS | | Managed Forms
Server application D
Host C
OHS | | Managed Forms
Server application D

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware
Forms Services
Deployment Guide, 11g
Release 1 (11.1.1)

OEBPS/img/webcfg.gif
ORACLE Enterprise Manager 11g Fusion Middleware Control

EiFarm v | & Topology
=R
) 5 dor_Classcpomaint

Aoplcstion Desloymerts
WebLogi Damain
Forms

(&) Forms

Reports
Web Tir

{ forms @
[ElForms

Setup v Help v Log Out

Logged in a5 weblogic| Host stepj42.us.oracle.com

Page Refreshed Feb 3, 2009 10:10:13 PM PST {0

Home > Web Canfiguration

Web Configuration
Forms Web Coniiguration provides the abiy to modfy the formse. fg n us for this deployment:

Create Like

Sei | Rosez | Rorese

Section Name.
W cefaut

sepuin
webul

debug

Commerts

$10: Formsweb.cg fmain/161 2009/01{22 11:55:19 shousing Exp §
Formsweb.cfq defines parameter values used by the FormsServist (Frmserviet)
Example Named Configuration Section

Example 1 canfiquration ta run Fors n a separate browser window with
‘Sample configuration For deploying WebLl, Note that WebLti is

only nstalled with the Forms Bulder an is lso avalable for dowrload
Example Named Configuration Section

Example 2: configuration running the Forms ListenerServiet n dbug mods

Section:default
show [basc v
dpadd 9 Delete
view v

Name
envFie

apply | | Revert

Overrde. Hie Inheried

value Commerts

defaulteny System parameter: il setting environment varisbls for the Forms runtime processes

I3

OEBPS/img/jvmcfg.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control
Hiram+ | &Topoboy

Setup v Hep v LogOut
ERd 0 forms @
= B dor_Classcpomaint [Eloms -
Aeplcation Deploymerts
Weblogi Damain

Home > M Configuration

Logged in as weblogic | Host stapj42.us.oracle.com
Paga Refrshed Feb 3, 2003 1:11:5 P P 0
UM Configuration)
Forms Forms J¥M Configuration provides the ability to modify the jvmcontrollers.cfg in use For this Forms instance.
@
Reports Gestelke PEdt R oelete | [Create
Web Tier Section Name: Comments.
default ymcantrclers.cfq definesparameter vaues used by the 9 Controller(defvm)
Defaul M Conraler
7 example Example: Named VM Controller

This secton shows example values for a jvm controler. These

Section:example

dadd 9 Delete

apply || Revert
View s
Name value
fumaptions

Commerts
-imsS12m xmx1024m

I3

OEBPS/img/maxeventwait2.gif
External Events

OEBPS/dcommon/oracle.gif

OEBPS/img/case4.gif
Oracle HTTP
Listener

Host3

Host2

Oracle WebLogic Forms Server

Managed Server Runtime
Forms Server

Oracle WebLogic Runtime

Managed Server

Oracio HTTP.
Uistoner

OEBPS/img/fontandicon.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control Setupv Helpv Log Out
EiFam v | & Topoloay
- 4 forms ® Logged n as weblogic| Host stapj42.us.oracle.com
= B4 doc_ClasscDomaint @roms + Page Rfreshed Feb , 2003 s11110 P psT 8
Applcation Deployments
‘ebLogic Domain

Home > Fank and Ican Mapping

. Font and Icon Mapping Apply | Revert
] forms Forms Font and Icon Mapping provides the abilt to moify the Regsry fle inuse for ths Forms nstence
Reports
add 3 Delete
eb Tier Foat R
view v
Neme. value Conments
defauit fonthap,defaltFontname Dialog Thisisthe Registry i o I

|| defaultfontMep.defaultice £
defaul forktap. defauitstyle PLAIN
defaul forktap. defauitieight PLAIN
defaul forkMap.appFontnames Courier New,Courier courierSystem,Terminal FixedFix
Default Fonk Face mapping.
default forkap.javaFontnames Monospaced Monospaced, MonoSpaced, Didog, Monost

OEBPS/img/tracecfg.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control

Setup v Hep v LogOut
[iFam + | & Topology

=5 T Logoed in as weblogic Hoststapi42.us.crack. com

= doc_ClasscDomaint (5] Forms ~

Applcation Deployments

Page Refreshed Feb 3, 2009 10:10:46 PM PST {0
£2 Weblogic Domain

Home > Trace Configuration
Trace Configuration

apply | Revert
Forms Trace Confguraionprovides the iy to mdfy the Trace il nusefor tis Forms stence
dpadd 3 Dekte
view v
Hame value Comments
debug 0199

example firace.cfafie 8
This Fl s used to speciy event roups for use with Forms Trace =
ermars (%)
4
customt 32-46,65,66,96, 194
em_trace

03 # For nternal uss only

OEBPS/img/oidhost.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control
Hiram | &Topoboy

ERd @ forms @

) dor_Classcpomaint [Eloms -
Aeplcation Deploymerts

3 WebLogicDomain

Horme > Assoriate/Disassotiate OID

Associate /Disassociate 01D
This page provides the abilty to associte a forms deployment with an OID for 550 support

Assadiate | Disassociate

Forms Deployment Server Name oI Host oI Part
formsapp WLS_FORMS stahtog.us.orade.co 3060

Setup v Help v Log Out

Logged in a5 weblogic| Host stepj42.us.oracle.com
Page Refreshed Feb 3, 2009 10:12:3 PM PST {0

OEBPS/img/ofsarch.gif
Clientside Server side

Firowall

Firewall

HTTP Listener

Intormet

HTTR/HTTPS

Oracle WebLogic
Managed Sorver

Forms Listener
Serviet

OEBPS/img/formserv.gif
ClientTier Client

Application Server

Forms Listener Serviet
Forms Runtime Process

Middle Tier

Database Server

Database Tier

OEBPS/img/image05.gif
Application Server

Forms Runtime

Olent Process
[~ JVM Controller | “In-process”JVM
Forms Runtime
Clent Process
Forms Runtime
Client e
Clent Forms Runtime
Process
Forms Runtime E N
i M tlor | “in-
Client e JVM Controller | “In-process” JVM
Glent Forms Runtime
Process Child JVM Child JVM
Clent Forms Runtime

Process

OEBPS/img/usersessions.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control

FiFam | & Topclogy

3 0 forms ®

= 83 doc_Clsscoomant Elroms~
Aoplction Desloymerts I P——

£ Weblogc poman e

View | Stop | Enable Tracing

Process ID Database.

[| 1045

Rows Selected

Disable Tradng

CPUUsage

0

Private.
emory (ce) 1 =2

772 10.477.242.72

Username

Forms User Sessions provides the sbilty to monior and trace the Forms Sessions belonging to ths Forms Instance

Connect Time.

Setup v Help v Log Out

Logged in a5 weblogic| Host stepj42.us.oracle.com
Page Refreshed Feb 3, 2009 10:08:46 PM PST {0

Search |Username.] =
Configuration

Trace Group Trace Log oyt
default

Number of sessions: 1

OEBPS/img/resurl.gif
background
lookindFee!
colorScheme
logo

restrctedURLparams

formshessagelistener

Orade

teal

userid,debug

Forms applet parameter
Forms apple parameter
Forms apple parameter
Farms apple parameter

Forms applet parameter

Forms applet parameter

OEBPS/img/paramtypes.gif
ehapislavastiipevert
JavaSeriptelocksHeartBeat

lookandfee!

separateFrame

test

fake

Generic

fabe

true

Config varisbl that wil indicate i heartbeat wil
be blacked when a avascrit cal i a blacking cal.

Forms applet parameter

new parameter

OEBPS/img/case1.gif
Host1

Oracle HTTP
Listenor

|Oracle WebLogic Forms Server

Managed Server ‘Runime
Forms Server

|Oracle WebLogic i

Managed Server

OEBPS/img/mod_wls.gif
Web Container

Forms Listener Serviel

=
Forms Client

OEBPS/img/image04.gif
Application Server

Forms Runtime
ordersipp Ciiont s Runt
! commonsva
Forms Runtime
‘ordersApp Client Process
. Forms Runtime
hrApp Client e Punt
VM
" Forms Runtime
hrhpp Ciiont s Rt
Forms Runtime -
salesApp Client e Rt “In-process” JVM
‘salesApp Client Forms Runtime “In-process” JVM

Process.

OEBPS/img/proxy2.gif
Have select/update
permissions only.

0
i

Forms Cllent

Forms Serviet
authentication
and Forms Server

Database

Proxy
User

OEBPS/img/odsarch.gif
Middle Tier

Database Tier

Database Server

OEBPS/img/datactr-2.gif
Data Center

1" Cliont Connection

==]| High Speed

LAN

(internet, intranet,
| modem, satelite, etc.

Desktop Client

=
Forms Servicos

Database

OEBPS/img/envcfg.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control Setupv Helpv LogOut
[EiFam | & Topoloay
B G forms ® Looged n as weblogic| Host stapii2.us.oracle.com

= 5 dor_Classcpomaint Elroms~ Page Refshed Feb 3, 2008102207 1 5T 0
Aoplction Desloymerts
WebLogi Damain

Home > Environmert. Configuration

. Environment Configuration Delete e | | Duplcate Fie | | | apply | Revert
) e Forms Envirorment Configuration povides the abilty to modify the environment ils in use or tis deployment
Show | defalteny
Reports
el Ter o | 9 Dekte |
view v
Hame value Comments
ORACLE_HOME JsratchisupadhyaWis._Shas_t cefault.env - default Forms envranment Fe, Linux version F]
Thi le i used ko set he Forms runtine environment parameters. v
{ oRacE msTANCE JsratchisupadhyafLs._stasinst_t
TH5_ADMIN Jseratchjsupadhyal¥iL5_SHjasinst_tconiig F]
THS Entry to lcate the database v
FORMS_PATH JsratchfsupadhyafWLS.Sh{as_forms:fscratchjs F]
Search pathfor Forms applcations fm Fles, PLISQL lbraries) v
WEBLTIL_CONFIG JsratchfsupadhyafLS._Shjasist_iconfigiFormst F]
‘iebLt confi le path, WebUt s avalabl Fo cowrioad from OTH v
FORMS_RESTRICT_ENTER_QUERY | FaLoE

=

Disablefremave this variabl end-users need access ta the query-where

3

OEBPS/img/image03.gif
Application Server

Forms Runtime

- Process M
Client Fu"r':s m::::ms -
Client Ferrr-;s m::sl:ima o
Ciient Fcn;m m:::shma ™
Client Forms Runtime. o

Process.

OEBPS/img/sso2.gif
mod_osso

Forms Serviet

oD
(LDAP Server)

OEBPS/img/case2.gif
Host 1 Host2
| Oracle WebLogic| Forms Server
Vanaged Sonr Funime
Oraco TP
e
Forms Sarver
o WobLogil
oracio webLog Runim

Managed Server

OEBPS/img/sso.gif

OEBPS/img/formshomepage.gif
ORACLE Enterprise Manager 11g Fusion Middieware Control

Firam | & Topoloay
B~
= B Farm _Clssscoomsint
Aoplcstion Desloymerts
WebLogi Damain
& 3 Forms
@ o]

Reports

{ forms @
[Bloms

E) Forms Deployments

Setpw Helpv LogOut

Logged in as weblogic

Page Refreshed Sep 23, 2009 11,2812 AM 15T €

Forms gl wisTnstance status o P OF corvar UL New Comnecions Web Confguaton_ Envyonment Cofiguratin 521
formsapp. wisForms | 0 hitpfbangdoct st-ide.de.orack.com:3001 formsifrmsers v Web Configuration Environment Configuration Log
] &
4
& Response And Load & Resource Center
A1 Before YouBegin]
08 2 about oracke Forms
04 @ rntroduction to Managing Oracle Forms
-~ Typical Administration Tasks
o0 .. @ Modyng Confguraton Parameters o th Orade Forms Instance
(@) Modifying Oracle Forms Environment ariables
04 (@) Moifying Oracle Forms Trace Yarisbles
o (@) iy Oade Forts o And Fort Hoppn Vs
B I T I T B T T T @ Madfying 3 Controler Varables
September 23 2009 9 @ =
Managing Forms Liser Sessions
‘ i Other Resources.

OEBPS/img/image02.gif
Application Server

Client

Forms Runtime

Process
Client e e
Client o s ™
Client Forms Runtime.

Process.
Client Forms Runtime.

Process.

