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Preface

This preface describes the document accessibility features and conventions used in this guide—Programming Resource Adapters for Oracle WebLogic Server.


Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.


Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.


Conventions

The following text conventions are used in this document:


	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.











1 Introduction and Roadmap

The following sections describe the contents and organization of this guide—Oracle Fusion Middleware Programming Resource Adapters for Oracle WebLogic Server.

	
Document Scope and Audience


	
Guide to This Document


	
Related Documentation


	
Examples for the Resource Adapter Developer


	
New and Changed Features in This Release






Document Scope and Audience

This document is written for resource adapter users, deployers, and software developers who develop applications that include Java EE resource adapters to be deployed to WebLogic Server. This document also contains information that is useful for business analysts and system architects who are evaluating WebLogic Server or considering the use of WebLogic Server resource adapters for a particular application.

The topics in this document are relevant during the design and development phases of a software project. The document also includes topics that are useful in solving application problems that are discovered during test and pre-production phases of a project.

This document does not address production phase administration, monitoring, or performance tuning topics. For links to WebLogic Server documentation and resources for these topics, see Related Documentation.

It is assumed that the reader is familiar with Java EE and resource adapter concepts. The foundation document for resource adapter development is Java EE Connector Architecture Specification, Version 1.5 Final Release (referred to in this guide as the J2CA 1.5 Specification). See http://java.sun.com/j2ee/connector/. Resource adapter developers should become familiar with the J2CA 1.5 Specification. This document emphasizes the value-added features provided by WebLogic Server resource adapters and key information about how to use WebLogic Server features and facilities to get a resource adapter up and running.






Guide to This Document

	
This section, Chapter 1, "Introduction and Roadmap," introduces the organization of this guide.


	
Chapter 2, "Understanding Resource Adapters," introduces you to the Oracle WebLogic Server implementation of the Java EE Connector Architecture as well as the resource adapter types and XML schema.


	
Chapter 3, "Creating and Configuring Resource Adapters," describes how to create resource adapters using the Oracle WebLogic Server implementation of the Java EE Connector Architecture.


	
Chapter 4, "Programming Tasks," describes programming tasks for resource adapters.


	
Chapter 5, "Connection Management," introduces you to resource adapter connection management.


	
Chapter 6, "Transaction Management," introduces you to the resource adapter transaction management.


	
Chapter 7, "Message and Transactional Inflow," describes resource adapter messaging inflow and transactional inflow.


	
Chapter 8, "Security," describes how to configure security for resource adapters.


	
Chapter 9, "Packaging and Deploying Resource Adapters," discusses packaging and deploying requirements for resource adapters and provides instructions for performing these tasks.


	
Appendix A, "weblogic-ra.xml Schema," provides a complete reference for the schema for the WebLogic Server-specific deployment descriptor, weblogic-ra.xml.


	
Appendix B, "Resource Adapter Best Practices," provides best practices for resource adapter developers.









Related Documentation

The foundation document for resource adapter development is Java EE Connector Architecture Specification, Version 1.5 Final Release (referred to in this guide as the "J2CA 1.5 Specification"). See http://java.sun.com/j2ee/connector/. This document assumes you are familiar with the J2CA 1.5 Specification and contains design and development information that is specific to developing WebLogic Server resource adapters.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server applications, see the following documents:

	
Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic Server applications.


	
Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server is the primary source of information about deploying WebLogic Server applications.


	
Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server contains information on monitoring and improving the performance of WebLogic Server applications.









Examples for the Resource Adapter Developer

In addition to this document, Oracle provides resource adapter examples for software developers. WebLogic Server optionally installs API code examples in WL_HOME\samples\server\examples\src\examples, where WL_HOME is the top-level directory of your WebLogic Server installation. You can start the examples server, and obtain information about the samples and how to run them from the WebLogic Server Start menu.

The resource adapter examples provided with this release of WebLogic Server are compliant with the J2CA 1.5 Specification. Oracle recommends that you examine, run, and understand these resource adapter examples before developing your own resource adapters.






New and Changed Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this release, see Oracle Fusion Middleware What's New in Oracle WebLogic Server.









2 Understanding Resource Adapters

The following sections introduce WebLogic resource adapters, the Oracle WebLogic Server implementation of the Java EE Connector Architecture:

	
Overview of Resource Adapters


	
Java EE Connector Architecture


	
Resource Adapter Deployment Descriptors






Overview of Resource Adapters

A resource adapter is a system library specific to an Enterprise Information System (EIS) and provides connectivity to an EIS. A resource adapter is analogous to a JDBC driver, which provides connectivity to a database management system. The interface between a resource adapter and the EIS is specific to the underlying EIS; it can be a native interface. The resource adapter plugs into an application server, such as WebLogic Server, and provides seamless connectivity between the EIS, application server, and enterprise application.

Multiple resource adapters can plug in to an application server. This capability enables application components deployed on the application server to access the underlying EISes. An application server and an EIS collaborate to keep all system-level mechanisms - transactions, security, and connection management - transparent to the application components. As a result, an application component provider can focus on the development of business and presentation logic for application components and need not get involved in the system-level issues related to EIS integration. This leads to an easier and faster cycle for the development of scalable, secure, and transactional enterprise applications that require connectivity with multiple EISes.



Comparing WebLogic Server and WebLogic Integration Resource Adapters

It is important to note the difference between WebLogic Integration (WLI) resource adapters and WebLogic Server resource adapters. WebLogic Integration resource adapters are written to be specific to WebLogic Server and, in general, are not deployable to other application servers. However, WebLogic Server resource adapters written without WLI extensions are deployable in any Java EE-compliant application server. This document discusses the design and implementation of non-WLI resource adapters.






Inbound, Outbound, and Bidirectional Resource Adapters

WebLogic Server supports three types of resource adapters:

	
Outbound resource adapter (supported by Java EE 1.0 and 1.5 Connector Architecture) - Allows an application to connect to an EIS system and perform work. All communication is initiated by the application. In this case, the resource adapter serves as a passive library for connecting to an EIS and executes in the context of the application threads.

Outbound resource adapters based on the Java EE 1.5 Connector Architecture can be configured to have more than one simultaneous outbound connection. You can configure each outbound connection to have its own WebLogic Server-specific authentication and transaction support. See Configuring Outbound Connections.

Outbound resource adapters based on the Java EE 1.0 Connector Architecture are also supported. These resource adapters can have only one outbound connection.


	
Inbound resource adapter (1.5 only) - Allows an EIS to call application components and perform work. All communication is initiated by the EIS. The resource adapter may request threads from WebLogic Server or create its own threads; however, this is not the Oracle-recommended approach. Oracle recommends that the resource adapter submit work by way of the WorkManager. See Chapter 7, "Message and Transactional Inflow."



	
Note:

The WebLogic Server thin-client JAR also supports the WorkManager contracts and thus can be used by non-managed resource adapters (resource adapters not running in WebLogic Server.).






	
Bi-directional resource adapter (1.5 only) - Supports both outbound and inbound communication.









Comparing 1.0 and 1.5 Resource Adapters

WebLogic Server supports resource adapters developed under either the Java EE 1.0 Connector Architecture or the Java EE 1.5 Connector Architecture. The Java EE 1.0 Connector Architecture restricts resource adapter communication to a single external system using one-way outbound communication. The Java EE 1.5 Connector Architecture lifts this restriction. Other capabilities provided by and for a 1.5 resource adapter that do not apply to 1.0 resource adapters include:

	
Outbound communication from the application to multiple systems, such as Enterprise Information Systems (EISes) and databases. See Inbound, Outbound, and Bidirectional Resource Adapters.


	
Inbound communication from one or more external systems such as an EIS to the resource adapter. See Handling Inbound Messages.


	
Transactional inflow to enable a Java EE application server to participate in an XA transaction controlled by an external Transaction Manager by way of a resource adapter. See Transactional Inflow.


	
An application server-provided Work Manager to enable resource adapters to create threads through Work instances. See work-manager.


	
A life cycle contract for calling start() and stop() methods of the resource adapter by the application server. See Programming a Resource Adapter to Perform as a Startup Class.




Another important difference between 1.0 resource adapters and 1.5 resource adapters has to do with connection pools. For 1.5 resource adapters, you do not automatically get one connection pool per connection factory; you must configure a connection instance. You do so by setting the connection-instance element in the weblogic-ra.xml deployment descriptor.

Although WebLogic Server is now compliant with the Java EE 1.5 Connector Architecture, it continues to fully support the Java EE 1.0 Connector Architecture. In accordance with the Java EE 1.5 Connector Architecture, WebLogic Server now supports schema-based deployment descriptors. Resource adapters that have been developed based on the Java EE 1.0 Connector Architecture use Document Type Definition (DTD)-based deployment descriptors. Resource adapters that are built on DTD-based deployment descriptors are still supported.

This document describes the development and use of 1.5 resource adapters.








Java EE Connector Architecture

The Java EE Connector Architecture defines a standard architecture for connecting the Java EE platform to heterogeneous Enterprise Information Systems (EISes), such as Enterprise Resource Planning (ERP) systems, mainframe transaction processing (TP), and database systems

The resource adapter serves as a protocol adapter that allows any arbitrary EIS communication protocol to be used for connectivity. An application server vendor extends its system once to support the Java EE Connector Architecture and is then assured of seamless connectivity to multiple EISes. Likewise, an EIS vendor provides one standard resource adapter that can plug in to any application server that supports the Java EE Connector Architecture.

For a more detailed overview of the Java EE Connector Architecture, see Section 3 "The Connector Architecture" of the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/).



Java EE Architecture Diagram and Components

Figure 2-1 and the discussion that follows describe a WebLogic Server implementation of the Java EE 1.5 Connector Architecture.


Figure 2-1 Connector Architecture Overview

[image: Description of Figure 2-1 follows]





The connector architecture shown in Figure 2-1 demonstrates a bi-directional resource adapter. The following components are used in outbound connection operations:

	
A client application that connects to WebLogic Server, but also needs to interact with the EIS.


	
An application component (an EJB or servlet) that the client application uses to submit outbound requests to the EIS through the resource adapter


	
The WebLogic Server Connector container in which the resource adapter is deployed. The container in this example holds the following:

	
A deployed resource adapter that provides bi-directional (inbound and outbound) communication to and from the EIS.


	
One or more connection pools maintained by the container for the management of outbound managed connections for a given ManagedConnectionFactory (in this case, MCF-2 - there may be more corresponding to different types of connections to a single EIS or even different EISes)


	
Multiple managed connections (MC1, MCn), which are objects representing the outbound physical connections from the resource adapter to the EIS.


	
Connection handles (C-handle) returned to the application component from the connection factory of the resource adapter and used by the application component for communicating with the EIS.







The following components are used for inbound connection operations:

	
One or more external message sources (MS1, MS2), which could be an Enterprise Information System (EIS) or Message Provider, and which send messages inbound to WebLogic Server.


	
One or more ActivationSpecs (Act Spec), each of which corresponds to a single MessageListener type (MLT-i).


	
A MessageEndpointFactory created by the EJB container and used by the resource adapter for inbound messaging to create proxies to MessageEndpoint instances (MDB instances from the MDB pool).


	
A message endpoint application (a message-driven bean (MDB) and possibly other Java EE components) that receives and handles inbound messages from the EIS through the resource adapter.









System-Level Contracts

To achieve a standard system-level pluggability between WebLogic Server and an EIS, WebLogic Server has implemented the standard set of system-level contracts defined by the Java EE Connector Architecture. These contracts consist of SPI classes and interfaces that are required to be implemented in the application server and the EIS, so that the two systems can work cooperatively. The EIS side of these system-level contracts are implemented in the resource adapter's Java classes. The following standard contracts are supported:

	
Connection management contract - Enables WebLogic Server to pool connections to an underlying EIS and enables application components to connect to an EIS. Also allows efficient use of connection resources through resource sharing and provides controls for associating and disassociating connection handles with EIS connections.


	
Transaction management contract - A contract between the transaction manager and an EIS that supports transactional access to EIS resource managers. Enables WebLogic Server to use its transaction manager to manage transactions across multiple resource managers.


	
Transaction inflow contract - Allows a resource adapter to propagate an imported transaction to WebLogic Server. Allows a resource adapter to flow-in transaction completion and crash recovery calls initiated by an EIS. Transaction inflow involves the use of an external transaction manager to coordinate transactions.


	
Security contract - Provides secure access to an EIS and support for a secure application environment that reduces security threats to the EIS and protects valuable information resources managed by the EIS.


	
Life cycle management contract - Enables WebLogic Server to manage the life cycle of a resource adapter. This allows bootstrapping a resource adapter instance during its deployment or application server startup, and notification to the resource adapter instance when it is undeployed or when the application server is being shut down.


	
Work management contract - Allows a resource adapter to do work (monitor network endpoints, call application components, and so on) by submitting Work instances to WebLogic Server for execution.


	
Message inflow contract - Allows a resource adapter to asynchronously or synchronously deliver messages to message endpoints residing in WebLogic Server independent of the specific messaging style, messaging semantics, and messaging infrastructure used to deliver messages. Also serves as the standard message provider pluggability contract that enables a wide range of message providers (Java Message Service, Java API for XML Messaging, and so on) to be plugged into WebLogic Server through a resource adapter.




These system-level contracts are described in detail in the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/).








Resource Adapter Deployment Descriptors

The structure of a resource adapter and its run-time behavior are defined in deployment descriptors. Programmers create the deployment descriptors during the packaging process, and these become part of the application deployment when the application is compiled.

WebLogic Server resource adapters have two deployment descriptors, each of which has its own XML schema:

	
ra.xml - The standard Java EE deployment descriptor. All resource adapters must be specified in an ra.xml deployment descriptor file. The schema for ra.xml is http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd.


	
weblogic-ra.xml - This WebLogic Server-specific deployment descriptor contains elements related to WebLogic Server features such as transaction management, connection management, and security. This file is required for the resource adapter to be deployed to WebLogic Server. The schema for the weblogic-ra.xml deployment descriptor file is http://xmlns.oracle.com/weblogic/weblogic-connector/1.2/weblogic-connector.xsd. For a reference to the weblogic-ra.xml deployment descriptor, see Appendix A, "weblogic-ra.xml Schema."












3 Creating and Configuring Resource Adapters

The following sections describe how to create and configure a WebLogic Server resource adapter:

	
Creating and Configuring Resource Adapters: Main Steps


	
Modifying an Existing Resource Adapter


	
Configuring the ra.xml File


	
Configuring the weblogic-ra.xml File






Creating and Configuring Resource Adapters: Main Steps

This section describes how to create a new WebLogic resource adapter. The next section, Modifying an Existing Resource Adapter, describes how to take an existing resource adapter and prepare it for deployment on WebLogic Server.

To create a new WebLogic resource adapter, you must create the classes for the particular resource adapter (ConnectionFactory, Connection, and so on), write the resource adapter's deployment descriptors, and then package everything into an archive file to be deployed to WebLogic Server.

The following are the main steps for creating a resource adapter:

	
Write the Java code for the various classes required by resource adapter (ConnectionFactory, Connection, and so on) in accordance with the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/). You will specify these classes in the ra.xml file. For example:


<managedconnectionfactory-class>
com.sun.connector.blackbox.LocalTxManagedConnectionFactory
</managedconnectionfactory-class>

<connectionfactory-interface>
javax.sql.DataSource
</connectionfactory-interface>

<connectionfactory-impl-class>
com.sun.connector.blackbox.JdbcDataSource
</connectionfactory-impl-class>

<connection-interface>
java.sql.Connection
</connection-interface>

<connection-impl-class>
com.sun.connector.blackbox.JdbcConnection
</connection-impl-class>


For more information, see Chapter 4, "Programming Tasks."


	
Compile the Java code for the interfaces and implementation into class files, using a standard compiler.


	
Create the resource adapter's deployment descriptors. A WebLogic resource adapter uses two deployment descriptor files:

	
ra.xml describes the resource adapter-related attributes type and its deployment properties using the standard XML schema specified by the J2CA 1.5 Specification.


	
weblogic-ra.xml adds additional WebLogic Server-specific deployment information, including connection and connection pool properties, security identities, Work Manager properties, and logging.




For detailed information about creating WebLogic Server-specific deployment descriptors for resource adapters, refer to Configuring the weblogic-ra.xml File, and Appendix A, "weblogic-ra.xml Schema."


	
Package the Java classes into a Java archive (JAR) file with a .rar extension.

Create a staging directory anywhere on your hard drive. Place the JAR file in the staging directory and the deployment descriptors in a subdirectory called META-INF.

Then create the resource adapter archive by executing a jar command similar to the following in the staging directory:


jar cvf myRAR.rar * 


	
Deploy the resource adapter archive (RAR) file on WebLogic Server in a test environment and test it.

During testing, you may need to edit the resource adapter deployment descriptors. You can do this using the WebLogic Server Administration Console or manually using an XML editor or a text editor. For more information about editing deployment descriptors, see Configuring the weblogic-ra.xml File, and "Configure resource adapter properties" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help. See also Appendix A, "weblogic-ra.xml Schema," for detailed information on the elements in the deployment descriptor.


	
Deploy the RAR resource adapter archive file on WebLogic Server or include it in an enterprise archive (EAR) file to be deployed as part of an enterprise application.

For information about these steps, see Chapter 9, "Packaging and Deploying Resource Adapters." See also Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Serverfor detailed information about deploying components and applications in general.









Modifying an Existing Resource Adapter

In some cases, you may already have a resource adapter available for deployment to WebLogic Server. This section describes how to take an existing resource adapter that is packaged in a RAR file and modify it for deployment to WebLogic Server. This involves adding the weblogic-ra.xml deployment descriptor and repackaging the resource adapter. The following procedure supposes you have an existing resource adapter packaged in a RAR file named blackbox-notx.rar.

	
Create a temporary directory anywhere on your hard drive to stage the resource adapter:


mkdir c:/stagedir


	
Extract the contents of the resource adapter archive:


cd c:/stagedir
jar xf blackbox-notx.rar


The staging directory should now contain the following:

	
A JAR file containing Java classes that implement the resource adapter


	
A META-INF directory containing the Manifest.mf and ra.xml files




Execute these commands to see these files:


c:/stagedir> ls
   blackbox-notx.rar 
   META-INF
c:/stagedir> ls META-INF
   Manifest.mf
   ra.xml


	
Create the weblogic-ra.xml file. This file is the WebLogic-specific deployment descriptor for resource adapters. In this file, you specify parameters for connection factories, connection pools, and security settings.

For more information, see Configuring the weblogic-ra.xml File, and also refer to Appendix A, "weblogic-ra.xml Schema," for information on the XML schema that applies to weblogic-ra.xml.


	
Copy the weblogic-ra.xml file into the temporary directory's META-INF subdirectory. The META-INF directory is located in the temporary directory where you extracted the RAR file or in the directory containing a resource adapter in exploded directory format. Use the following command:


cp weblogic-ra.xml c:/stagedir/META-INF
c:/stagedir> ls META-INF
   Manifest.mf
   ra.xml
   weblogic-ra.xml


	
Create the resource adapter archive:


jar cvf blackbox-notx.rar -C c:/stagedir


	
Deploy the resource adapter to WebLogic Server. For more information about packaging and deploying the resource adapter, see Chapter 9, "Packaging and Deploying Resource Adapters," and Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.









Configuring the ra.xml File

If your resource adapter does not already contain a ra.xml file, you must manually create or edit an existing one to set the necessary deployment properties for the resource adapter. You can use a text editor or XML editor to edit the properties. For information on creating a ra.xml file, refer to the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/).






Configuring the weblogic-ra.xml File

In addition to supporting features of the standard resource adapter configuration ra.xml file, WebLogic Server defines an additional deployment descriptor file, the weblogic-ra.xml file. This file contains parameters that are specific to configuring and deploying resource adapters in WebLogic Server. This functionality is consistent with the equivalent weblogic-*.xml extensions for EJBs and Web applications in WebLogic Server, which also add WebLogic-specific deployment descriptors to the deployable archive. The basic RAR or deployment directory can be deployed to WebLogic Server without a weblogic-ra.xml file. If a resource adapter is deployed in WebLogic Server without a weblogic-ra.xml file, a template weblogic-ra.xml file populated with default element values is automatically added to the resource adapter archive. However, this automatically generated weblogic-ra.xml file is not persisted to the RAR; the RAR remains unchanged.

The following summarizes the most significant features you can configure in the weblogic-ra.xml deployment descriptor file.

	
Descriptive text about the connection factory.


	
JNDI name bound to a connection factory. (Resource adapters developed based on the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/) are bound in the JNDI as objects independently of their ConnectionFactory objects.)


	
Reference to a separately deployed connection factory that contains resource adapter components that can be shared with the current resource adapter.


	
Connection pool parameters that set the following behavior:

	
Initial number of ManagedConnections that WebLogic Server attempts to allocate at deployment time.


	
Maximum number of ManagedConnections that WebLogic Server allows to be allocated at any one time.


	
Number of ManagedConnections that WebLogic Server attempts to allocate when filling a request for a new connection.


	
Whether WebLogic Server attempts to reclaim unused ManagedConnections to save system resources.


	
The time WebLogic Server waits between attempts to reclaim unused ManagedConnections.





	
Logging properties to configure WebLogic Server logging for the ManagedConnectionFactory or ManagedConnection.


	
Transaction support levels (XA, local, or no transaction support).


	
Principal names to use as security identities.




For detailed information about configuring the weblogic-ra.xml deployment descriptor file, see the reference information in Appendix A, "weblogic-ra.xml Schema." See also the configuration information in the following sections:

	
Chapter 5, "Connection Management"


	
Chapter 6, "Transaction Management"


	
Chapter 7, "Message and Transactional Inflow"


	
Chapter 8, "Security"






Editing Resource Adapter Deployment Descriptors

To define or make changes to the XML descriptors used in the WebLogic Server resource adapter archive, you must define or edit the XML elements in the weblogic-ra.xml and ra.xml deployment descriptor files. You can edit the deployment descriptor files with any plain text editor. However, to avoid introducing errors, use a tool designed for XML editing.You can also edit most elements of the files using the WebLogic Administration Console.



Editing Considerations

To edit XML elements manually:

	
If you use an ASCII text editor, make sure that it does not reformat the XML or insert additional characters that could invalidate the file.


	
Use the correct case for file and directory names, even if your operating system ignores the case.


	
To use the default value for an optional element, you can either omit the entire element definition or specify a blank value. For example: <max-config-property></max-config-property>









Schema Header Information

When editing or creating XML deployment files, it is critical to include the correct schema header for each deployment file. The header refers to the location and version of the schema for the deployment descriptor.

Although this header references an external URL at java.sun.com, WebLogic Server contains its own copy of the schema, so your host server need not have access to the Internet. However, you must still include this <?xml version...> element in your ra.xml file, and have it reference the external URL because the version of the schema contained in this element is used to identify the version of this deployment descriptor.

Table 3-1 shows the entire schema headers for the ra.xml and weblogic-ra.xml files.


Table 3-1 Schema Header

	XML File	Schema Header
	

ra.xml

	

<?xml version="1.0" encoding="UTF-8"?>
<connector xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd"
version="1.5">


	

weblogic-ra.xml

	

<?xml version = "1.0">
<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector">








XML files with incorrect header information may yield error messages similar to the following, when used with a utility that parses the XML (such as ejbc):


SAXException: This document may not have the identifier 'identifier_name'






Conforming Deployment Descriptor Files to Schema

The contents and arrangement of elements in your deployment descriptor files must conform to the schema for each file you use. The following links provide the public schema locations for deployment descriptor files used with WebLogic Server:

	
connector_1_5.xsd contains the schema for the standard ra.xml deployment file, required for all resource adapters. This schema is maintained as part of the J2CA 1.5 Specification and is located at http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd.


	
weblogic-ra.xsd contains the schema used for creating weblogic-ra.xml, which defines resource adapter properties used for deployment to WebLogic Server. This schema is located at http://xmlns.oracle.com/weblogic/weblogic-connector/1.2/weblogic-connector.xsd.



	
Note:

Your browser might not display the contents of files having the .xsd extension. In that case, to view the schema contents in your browser, save the links as text files and view them with a text editor.















Dynamic Descriptor Updates: Console Configuration Tabs

You can use the Administration Console to view, modify, and (when necessary) persist deployment descriptor elements. Some descriptor element changes take place dynamically at runtime without requiring the resource adapter to be redeployed. Other descriptor elements require redeployment after changes are made. To use the Administration Console to configure a resource adapter, open Deployments and click the name of the deployed resource adapter. Use the Configuration tab to change the configuration of the resource adapter and the other tabs to control, test, or monitor the resource adapter. For information about using the Administration Console, see "Configure resource adapter properties" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.


Dynamic Configuration Parameters

Using the Administration Console, you can modify the following configuration parameters dynamically, without requiring the resource adapter to be redeployed:

	
Edit the adapter JNDI name


	
Create and delete outbound connection pools


	
Edit the connection pool JNDI name


	
Create and delete admin objects


	
Edit admin object JNDI names.









Dynamic Pool Parameters

Using the Administration Console, you can modify the following weblogic-ra.xml pool parameters dynamically, without requiring the resource adapter to be redeployed:

	
initial-capacity


	
max-capacity


	
capacity-increment


	
shrink-frequency-seconds


	
highest-num-waiters


	
highest-num-unavailable


	
connection-creation-retry-frequency-seconds


	
connection-reserve-timeout-seconds


	
test-frequency-seconds









Dynamic Logging Parameters

Using the Administration Console, you can modify the following weblogic-ra.xml logging parameters dynamically, without requiring the resource adapter to be redeployed:

	
log-filename


	
file-count


	
file-size-limit


	
log-file-rotation-dir


	
rotation-time


	
file-time-span











Automatic Generation of the weblogic-ra.xml File

A resource adapter archive (RAR) deployed on WebLogic Server must include a weblogic-ra.xml deployment descriptor file in addition to the ra.xml deployment descriptor file specified in the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/).

If a resource adapter is deployed in WebLogic Server without a weblogic-ra.xml file, a template weblogic-ra.xml file populated with default element values is automatically added to the resource adapter archive. However, this automatically generated weblogic-ra.xml file is not persisted to the RAR; the RAR remains unchanged. WebLogic Server instead generates internal data structures that correspond to default information in the weblogic-ra.xml file.

For a 1.0 resource adapter that is a single connection factory definition, the JNDI name will be eis/ModuleName. For example, if the RAR is named MySpecialRA.rar, the JNDI name of the connection factory will be eis/MySpecialRA.

For a 1.5 resource adapter with a ResourceAdapter bean class specified, the JNDI name of the bean would be MySpecialRA. Each connection factory would also have a corresponding instance created with a JNDI name of eis/ModuleName, eis/ModuleName_1, eis/ModuleName_2, and so on.






(Deprecated) Configuring the Link-Ref Mechanism

The Link-Ref mechanism was introduced in the 8.1 release of WebLogic Server to enable the deployment of a single base adapter whose code could be shared by multiple logical adapters with various configuration properties. For 1.5 resource adapters in the current release, the Link-Ref mechanism is deprecated and is replaced by the new Java EE libraries feature. However, the Link-Ref mechanism is still supported in this release for 1.0 resource adapters. For more information on Java EE libraries, see "Creating Shared J2EE Libraries and Optional Packages" in Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server. To use the Link-Ref mechanism, use the <ra-link-ref> element in your resource adapter's weblogic-ra.xml file.

The deprecated and optional <ra-link-ref> element allows you to associate multiple deployed resource adapters with a single deployed resource adapter. In other words, it allows you to link (reuse) resources already configured in a base resource adapter to another resource adapter, modifying only a subset of attributes. The <ra-link-ref> element enables you to avoid - where possible - duplicating resources (such as classes, JARs, image files, and so on). Any values defined in the base resource adapter deployment are inherited by the linked resource adapter, unless otherwise specified in the <ra-link-ref> element.

If you use the optional <ra-link-ref> element, you must provide either all or none of the values in the <pool-params> element. The <pool-params> element values are not partially inherited by the linked resource adapter from the base resource adapter.

Do one of the following:

	
Assign the <max-capacity> element the value of 0 (zero). This allows the linked resource adapter to inherit its <pool-params> element values from the base resource adapter.


	
Assign the <max-capacity> element any value other than 0 (zero). The linked resource adapter will inherit no values from the base resource adapter. If you choose this option, you must specify all of the <pool-params> element values for the linked resource adapter.




For further instructions on editing the weblogic-ra.xml file, see Appendix A, "weblogic-ra.xml Schema."











4 Programming Tasks

The following sections discuss programming tasks for WebLogic Server resource adapters:

	
Required Classes for Resource Adapters


	
Programming a Resource Adapter to Perform as a Startup Class


	
Suspending and Resuming Resource Adapter Activity


	
Extended BootstrapContext






Required Classes for Resource Adapters

A resource adapter requires the following Java classes, in accordance with the J2CA 1.5 Specification:

	
ManagedConnectionFactory


	
ConnectionFactory interface


	
ConnectionFactory implementation


	
Connection interface


	
Connection implementation




These classes are specified in the ra.xml file. For example:


<managedconnectionfactory-class>
com.sun.connector.blackbox.LocalTxManagedConnectionFactory
</managedconnectionfactory-class>

<connectionfactory-interface>
javax.sql.DataSource
</connectionfactory-interface>

<connectionfactory-impl-class>
com.sun.connector.blackbox.JdbcDataSource
</connectionfactory-impl-class>

<connection-interface>
java.sql.Connection
</connection-interface>

<connection-impl-class>
com.sun.connector.blackbox.JdbcConnection
</connection-impl-class>


In addition, if the resource adapter supports inbound messaging, the resource adapter will require an ActivationSpec class for each supported inbound message type. See Chapter 7, "Message and Transactional Inflow."

The specifics of these resource adapter classes depend on the nature of the resource adapter you are developing.






Programming a Resource Adapter to Perform as a Startup Class

As an alternative to using a WebLogic Server startup class, you can program a resource adapter with a minimal resource adapter class that implements javax.resource.ResourceAdapter, which defines a start() and stop() method.




	
Note:

Because of the definition of the ResourceAdapter interface, you must also define the endpointActivation(), Deactivation() and getXAResource() methods.







When the resource adapter is deployed, the start() method is invoked. When it is undeployed, the stop() method is called. Any work that the resource adapter initiates can be performed in the start() method as with a WebLogic Server startup class.

Because resource adapters have access to the Work Manager through the BootstrapContext in the start() method, they should submit Work instances instead of using direct thread management. This enables WebLogic Server to manage threads effectively through its self-tuning Work Manager.

Once a Work instance is submitted for execution, the start() method should return promptly so as not to interfere with the full deployment of the resource adapter. Thus, a scheduleWork() or startWork() method should be invoked on the Work Manager rather than the doWork() method.

The following is an example of a resource adapter having a minimum resource adapter class. It is the absolute minimum resource adapter that you can develop (other than removing the println statements). In this example, the only work performed by the start() method is to print a message to stdout (standard out).


Example 4-1 Minimum Resource Adapter


import javax.resource.spi.ResourceAdapter;
import javax.resource.spi.endpoint.MessageEndpointFactory;
import javax.resource.spi.ActivationSpec;
import javax.resource.ResourceException;
import javax.transaction.xa.XAResource;
import javax.resource.NotSupportedException;
import javax.resource.spi.BootstrapContext;
/**
* This resource adapter is the absolute minimal resource adapter that anyone can build (other than removing the println's.)
*/
public class ResourceAdapterImpl implements ResourceAdapter
{
   public void start( BootstrapContext bsCtx )
   {   
      System.out.println( "ResourceAdapterImpl started" );
   }
   public void stop()
   {
      System.out.println( "ResourceAdapterImpl stopped" );
   }
   public void endpointActivation(MessageEndpointFactory messageendpointfactory, ActivationSpec activationspec)
      throws ResourceException
   {
      throw new NotSupportedException();
   }
   public void endpointDeactivation(MessageEndpointFactory messageendpointfactory, ActivationSpec activationspec)
   {
   }
   public XAResource[] getXAResources(ActivationSpec aactivationspec[])
      throws ResourceException
   {
      throw new NotSupportedException();
   }
}


The following is an example of a resource adapter that submits work instances to the Work Manager. The resource adapter starts some work in the start() method, thus serving as a Java EE-compliant startup class.





Example 4-2 Resource Adapter Using the Work Manager and Submitting Work Instances


import javax.resource.NotSupportedException;
import javax.resource.ResourceException;
import javax.resource.spi.ActivationSpec;
import javax.resource.spi.BootstrapContext;
import javax.resource.spi.ResourceAdapter;
import javax.resource.spi.endpoint.MessageEndpointFactory;
import javax.resource.spi.work.Work;
import javax.resource.spi.work.WorkException;
import javax.resource.spi.work.WorkManager;
import javax.transaction.xa.XAResource;
/**
* This Resource Adapter starts some work in the start() method, 
* thus serving as a J2EE compliant "startup class" 
*/
public class ResourceAdapterWorker implements ResourceAdapter
{
   private WorkManager wm;
   private MyWork someWork;
   public void start( BootstrapContext bsCtx )
   {
      System.out.println( "ResourceAdapterWorker started" );
      wm = bsCtx.getWorkManager();
      try
      {
         someWork = new MyWork();
         wm.startWork( someWork );
      }
      catch (WorkException ex)
      {
         System.err.println( "Unable to start work: " + ex );
      }
   }
   public void stop()
   {
   // stop work that was started in the start() method
   someWork.release();
      System.out.println( "ResourceAdapterImpl stopped" );
   }
   public void endpointActivation(MessageEndpointFactory messageendpointfactory,
             ActivationSpec activationspec)
      throws ResourceException
   {
      throw new NotSupportedException();
   }
   public void endpointDeactivation(MessageEndpointFactory
             messageendpointfactory, ActivationSpec activationspec)
   {
   }
   public XAResource[] getXAResources(ActivationSpec activationspec[]) 
      throws ResourceException
   {
      throw new NotSupportedException();
   }
   // Work class
   private class MyWork implements Work
   {
      private boolean isRunning;
      public void run()
      {
         isRunning = true;
         while (isRunning)
         {
         // do a unit of work (e.g. listen on a socket, wait for an inbound msg, 
         // check the status of something)
         System.out.println( "Doing some work" );
         // perhaps wait some amount of time or for some event
         try
         {
            Thread.sleep( 60000 ); // wait a minute
         }
         catch (InterruptedException ex)
         {}
      }
   }
   public void release()
   {
         // signal the run() loop to stop
         isRunning = false;
      }
   }
}








Suspending and Resuming Resource Adapter Activity

You can program your resource adapter to use the suspend() method, which provides custom behavior for suspending activity. For example, using the suspend() method, you can queue up all incoming messages while allowing in-flight transactions to complete, or you can notify the Enterprise Information System (EIS) that reception of messages is temporarily blocked.

You then invoke the resume() method to signal that the inbound queue be drained and messages be delivered, or notify the EIS that message receipt was re-enabled. Basically, the resume() method allows the resource adapter to continue normal operations.

You initiate the suspend() and resume() methods by making a call on the resource adapter runtime MBeans programmatically, using WebLogic Scripting Tool, or from the WebLogic Server Administration Console. See "Start and stop a resource adapter" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help for more information.

The Suspendable.supportsSuspend() method determines whether a resource adapter supports a particular type of suspension. The Suspendable.isSuspended() method determines whether or not a resource adapter is presently suspended.

A resource adapter that supports suspend(), resume(), or production redeployment must implement the Suspendable interface to inform WebLogic Server that these operations are supported. These operations are invoked by WebLogic Server when the following occurs:

	
Suspend is called by the suspend() method on the connector component MBean.


	
The production redeployment sequence of calls is invoked (when a new version of the application is deployed that contains the resource adapter). See Suspendable Interface and Production Redeployment.




Example 4-3 contains the Suspendable interface for resource adapters:


Example 4-3 Suspendable Interface


package weblogic.connector.extensions;
import java.util.Properties;
import javax.resource.ResourceException;
import javax.resource.spi.ResourceAdapter;
/**
* Suspendable may be implemented by a ResourceAdapter JavaBean if it
* supports suspend, resume or side-by-side versioning
* @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
* @since November 14, 2003
*/
public interface Suspendable
{
/**
* Used to indicate that inbound communication is to be suspended/resumed
*/
int INBOUND = 1;
/**
* Used to indicate that outbound communication is to be suspended/resumed
*/
int OUTBOUND = 2;
/**
* Used to indicate that submission of Work is to be suspended/resumed
*/
int WORK = 4;
/**
* Used to indicate that INBOUND, OUTBOUND & WORK are to be suspended/resumed
*/
int ALL = 7;
/**
* May be used to indicate a suspend() operation
*/
int SUSPEND = 1;
/**
* May be used to indicate a resume() operation
*/
int RESUME = 2;
/**
* Request to suspend the activity specified. The properties may be null or
* specified according to RA-specific needs 
* @param type An int from 1 to 7 specifying the type of suspension being 
* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of one
* or more of these, or the value Suspendable.ALL )
* @param props Optional Properties (or null) to be used for ResourceAdapter
* specific purposes
* @exception ResourceException If the resource adapter can't complete the
* request
*/
void suspend( int type, Properties props ) throws ResourceException;
/**
* Request to resume the activity specified. The Properties may be null or
* specified according to RA-specific needs
*
* @param type An int from 1 to 7 specifying the type of resume being
* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of
* one or more of these, or the value Suspendable.ALL )
* @param props Optional Properties (or null) to be used for ResourceAdapter
* specific purposes
* @exception ResourceException If the resource adapter can't complete the
* request
*/
void resume( int type, Properties props ) throws ResourceException;
/**
*
* @param type An int from 1 to 7 specifying the type of suspend this inquiry
* is about (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of
* one or more of these, or the value Suspendable.ALL )
* @return true iff the specified type of suspend is supported
*/
boolean supportsSuspend( int type );
/**
* 
* Used to determine whether the specified type of activity is 
* currently suspended.
*
* @param type An int from 1 to 7 specifying the type of activity
* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of
* one or more of these, or the value Suspendable.ALL )
* @return true iff the specified type of activity is suspened by this 
* resource adapter
*/
boolean isSuspended( int type );
/**
* Used to determine if this resource adapter supports the init() method used for
* resource adapter versioning (side-by-side deployment)
*
* @return true iff this resource adapter supports the init() method
*/
boolean supportsInit();
/**
* Used to determine if this resource adapter supports the startVersioning()
* method used for
* resource adapter versioning (side-by-side deployment)
*
* @return true iff this resource adapter supports the startVersioning() method
*/
boolean supportsVersioning();
/**
* Used by WLS to indicate to the current version of this resource adapter that 
* a new version of the resource adapter is being deployed. This method can
* be used by the old RA to communicate with the new RA and migrate services 
* from the old to the new.
* After being called, the ResourceAdapter is responsible for notifying the 
* Connector container via the ExtendedBootstrapContext.complete() method, that 
* it is safe to be undeployed.
*
* @param ra The new ResourceAdapter JavaBean
* @param props Properties associated with the versioning
* when it can be undeployed
* @exception ResourceException If something goes wrong
*/
void startVersioning( ResourceAdapter ra, 
Properties props ) throws ResourceException;
/**
* Used by WLS to inform a ResourceAdapter that it is a new version of an already
* deployed resource adapter. This method is called prior to start() so that
* the new resource adapter may coordinate its startup with the resource adapter
* it is replacing.
* @param ra The old version of the resource adapter that is currently running
* @param props Properties associated with the versioning operation
* @exception ResourceException If the init() fails.
*/
void init( ResourceAdapter ra, Properties props ) throws ResourceException;
}








Extended BootstrapContext

If, when a resource adapter is deployed, it has a resource adapter JavaBean specified in the <resource-adapter-class> element of its ra.xml descriptor, the WebLogic Server connector container calls the start() method on the resource adapter bean as required by the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/). The resource adapter code can use the BootstrapContext object that is passed in by the start() method to:

	
Obtain a WorkManager object for submitting Work instances


	
Create a Timer


	
Obtain an XATerminator for use in transaction inflow




These capabilities are all prescribed by the J2CA 1.5 Specification.

In addition to implementing the required javax.resource.spi.BootstrapContext, the BootstrapContext object passed to the resource adapter start() method also implements weblogic.connector.extensions.ExtendedBootstrapContext, which gives the resource adapter access to some additional WebLogic Server-specific extensions that enhance diagnostic capabilities. These extensions are described in the following sections.



Diagnostic Context ID

In the WebLogic Server diagnostic framework, a thread may have an associated diagnostic context. A request on the thread carries its diagnostic context throughout its lifetime, as it proceeds along its path of execution. The ExtendedBootstrapContext allows the resource adapter developer to set a diagnostic context payload consisting of a String that can be used, for example, to trace the execution of a request from an EIS all the way to a message endpoint.

This capability can serve a variety of diagnostic purposes. For example, you can set the String to the client ID or session ID on an inbound message from an EIS. During message dispatch, various diagnostics can be gathered to show the request flow through the system. As you develop your resource adapter classes, you can make use of the setDiagnosticContextID() and getDiagnosticContextID() methods for this purpose.

Note the following regarding the contents of the diagnostic context payload:

	
The payload can be viewed by other code in the same execution context, and it can also flow out of the process along with the Work instance. Therefore, you should ensure that the application does not include any sensitive data in the payload that, for example, could be returned by the getDiagnosticContextID() method.


	
The payload can be overwritten by other code in the same execution context. Therefore, the application must never have a dependency on a specific context ID being available in the payload. In addition, the application should also verify that the context ID in the payload matches what is expected before using it.




For more information about the diagnostic context, see Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.






Dye Bits

The WebLogic Server diagnostic framework also provides the ability to dye a request. The ExtendedBootstrapContext allows you to set and retrieve four dye bits on the current thread for whatever diagnostic purpose the resource adapter developer chooses. For example, you might set priority of a request using the dye bits. For more information about request dyeing, see Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server






Callback Capabilities

You can use the ExtendedBootstrapContext.complete() method as a callback to the connector container. For detailed information on this feature, see "Redeploying Applications in a Production Environment" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.











5 Connection Management

	
The following sections describe connection management in WebLogic Server resource adapters. For more information on connection management, see Chapter 6, "Connection Management," of the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/).


	
Connection Management Contract


	
Configuring Outbound Connections


	
Configuring Inbound Connections


	
Configuring Connection Pool Parameters


	
Connection Proxy Wrapper - 1.0 Resource Adapters


	
Reset a Connection Pool


	
Testing Connections






Connection Management Contract

One of the requirements of the J2CA 1.5 Specification is the connection management contract. The connection management contract between WebLogic Server and a resource adapter:

	
Provides a consistent application programming model for connection acquisition for both managed and non-managed (two-tier) applications.


	
Enables a resource adapter to provide a connection factory and connection interfaces based on the common client interface (CCI) specific to the type of resource adapter and EIS. This enables JDBC drivers to be aligned with the Java EE 1.5 Connector Architecture with minimum impact on the existing JDBC APIs.


	
Enables an application server to provide various services - transactions, security, advanced pooling, error tracing/logging - for its configured set of resource adapters.


	
Supports connection pooling.




The resource adapter's side of the connection management contract is embodied in the resource adapter's Connection, ConnectionFactory, ManagedConnection, and ManagedConnectionFactory classes.



Connection Factory and Connection

A Java EE application component uses a public interface called a connection factory to access a connection instance, which the component then uses to connect to the underlying EIS. Examples of connections include database connections and JMS (Java Message Service) connections.

A resource adapter provides connection and connection factory interfaces, acting as a connection factory for EIS connections. For example, the javax.sql.DataSource and java.sql.Connection interfaces are JDBC-based interfaces for connecting to a relational database.

An application looks up a connection factory instance in the Java Naming and Directory Interface (JNDI) namespace and uses it to obtain EIS connections. See Obtaining the ConnectionFactory (Client-JNDI Interaction).






Resource Adapters Bound in JNDI Tree

Version 1.5 resource adapters can be bound in the JNDI tree as independent objects, making them available as system resources in their own right or as message sources for message-driven beans (MDBs). In contrast, version 1.0 resource adapters are identified by their ConnectionFactory objects bound in the JNDI tree.

In a version 1.5 resource adapter, at deployment time, the ResourceAdapter Bean (if it exists) is bound into the JNDI tree using the value of the jndi-name element, shown in the weblogic-ra.xml file. As a result, administrators can view resource adapters as single deployable entities, and they can interact with resource adapter capabilities publicly exposed by the resource adapter provider. For more information, see jndi-name in Appendix A, "weblogic-ra.xml Schema."






Obtaining the ConnectionFactory (Client-JNDI Interaction)

The application assembler or component provider configures the Connection Factory requirements for an application component in the application's deployment descriptor. For example:


res-ref-name: eis/myEIS
res-type: javax.resource.cci.ConnectionFactory
res-auth: Application or Container


The resource adapter deployer provides the configuration information for the resource adapter.

An application looks up a ConnectionFactory instance in the Java Naming and Directory Interface (JNDI) namespace and uses it to obtain EIS connections. The following events occur when an application in a managed environment obtains a connection to an EIS instance from a Connection Factory, as specified in the res-type variable.




	
Note:

A managed application environment defines an operational environment for a Java EE-based, multi-tier, Web-enabled application that accesses EISes.







	
The application server uses a configured resource adapter to create physical connections to the underlying EIS.


	
The application component looks up a ConnectionFactory instance in the component's environment by using the JNDI interface, as shown in Example 5-1.


Example 5-1 JNDI Lookup


//obtain the initial JNDI Naming context
Context initctx = new InitialContext();

// perform JNDI lookup to obtain the connection factory
javax.resource.cci.ConnectionFactory cxf = 
    (javax.resource.cci.ConnectionFactory)
        initctx.lookup("java:comp/env/eis/MyEIS");


The JNDI name passed in the method NamingContext.lookup is the same as that specified in the res-ref-name element of the deployment descriptor. The JNDI lookup results in an instance of type java.resource.cci.ConnectionFactory as specified in the res-type element.




	
The application component uses the returned connection to access the underlying EIS.


	
The application component invokes the getConnection method on the ConnectionFactory to obtain an EIS connection. The returned connection instance represents an application level handle to an underlying physical connection. An application component obtains multiple connections by calling the method getConnection on the connection factory multiple times:


javax.resource.cci.Connection cx = cxf.getConnection();


	
After the component finishes with the connection, it closes the connection using the close method on the Connection interface:


cx.close();


If an application component fails to close an allocated connection after its use, that connection is considered an unused connection. The application server manages the cleanup of unused connections.








Specifying an Unshareable ManagedConnectionFactory

In most cases, an adapter's ManagedConnectionFactory supports connection sharing, as defined in section 7.9 of the "Java EE Connector Architecture Specification 1.5" (see http://java.sun.com/j2ee/connector/). The specification also says that a connection can be made unshareable by setting res-sharing-scope to Unshareable in the caller application's deployment descriptor or annotation.

However, it can be inconvenient to define an unshareable resource reference in the caller application. For example, the caller application may perform a look up to a ConnectionFactory pool from WebLogic's global JNDI directly, but the application does not define unshareble resource references to this pool. WebLogic Server treats such use of the pools as shareable by default. As a result, if an adapter does not support connection sharing, the adapter will not work.

To circumvent this problem, WebLogic Server supports the public annotation weblogic.connector.extensions.Unshareable. This annotation can be used on a ManagedConnectionFactory class if the ManagedConnectionFactory does not support sharing. When such an adapter is deployed, WebLogic Server checks the ManagedConnectionFactory class and treats the ManagedConnectionFactory and related pools as unshareable. If you configure a sharable resource reference to this unshareable pool in a Web application or an Enterprise Java Bean, WebLogic Server issues a warning message—but the Web application or the EJB nevertheless treats the pool as unshareable. There is no need to configure anything in weblogic-ra.xml or in the Administration Console.

If a ManagedConnectionFactory is shareable, nothing needs to be changed in the adapter's code. All ManagedConnectionFactorys and pools are considered shareable by default, unless the ManagedConnectionFactory contains an Unshareable annotation.








Configuring Outbound Connections

Outbound resource adapters based on the J2CA 1.5 Specification can be configured to have one or more outbound connections, each having its own WebLogic Server-specific authentication and transaction support. You configure outbound connection properties in the ra.xml and weblogic-ra.xml deployment descriptor files.



Connection Pool Configuration Levels

You use the outbound-resource-adapter element and its subelements in the weblogic-ra.xml deployment descriptor to describe the outbound components of a resource adapter.

You can define outbound connection pools at three levels:

	
Global - Specify parameters that apply to all outbound connection groups in the resource adapter using the default-connection-properties element. See default-connection-properties.


	
Group - Specify parameters that apply to all outbound connection instances belonging to a particular connection factory specified in the ra.xml deployment descriptor using the connection-definition-group element. A one-to-one correspondence exists from a connection factory in ra.xml to a connection definition group in weblogic-ra.xml. The properties specified in a group override any parameters specified at the global level. See connection-definition-group.

The connection-factory-interface element (a subelement of the connection-definition-group element) serves as a required unique element (a key) to each connection-definition-group. There must be a one-to-one relationship between the connection-definition-interface element in weblogic-ra.xml and the connectiondefinition-interface element in ra.xml.


	
Instance - Under each connection definition group, you can specify connection instances using the connection-instance element of the weblogic-ra.xml deployment descriptor. These correspond to the individual connection pools for the resource adapter. You can use the connection-properties subelement to specify properties at the instance level too; properties specified at the instance level override those provided at the group and global levels. See connection-instance.









Multiple Outbound Connections Example

Example 5-2 is an example of a weblogic-ra.xml deployment descriptor that configures multiple outbound connections:


Example 5-2 weblogic-ra.xml Deployment Descriptor: Multiple Outbound Connections


<?xml version="1.0" ?> 
<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector">
<jndi-name>900eisaNameOfBlackBoxXATx</jndi-name>
   <outbound-resource-adapter> 
      <connection-definition-group>
         <connection-factory-interface>javax.sql.DataSource
         </connection-factory-interface> 
            <connection-instance>
               <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME1
               </jndi-name>
               <connection-properties>
                  <pool-params> 
                     <initial-capacity>2</initial-capacity> 
                     <max-capacity>10</max-capacity> 
                     <capacity-increment>1</capacity-increment>
                     <shrinking-enabled>true</shrinking-enabled>
                     <shrink-frequency-seconds>60</shrink-frequency-seconds>
                  </pool-params>
                  <properties> 
                     <property> 
                        <name>ConnectionURL</name>
                        <value>
                  jdbc:oracle:thin:@bcpdb:1531:bay920;create=true;autocommit=false
                        </value> 
                     </property> 
                     <property>
                        <name>XADataSourceName</name> 
                        <value>OracleXAPool</value> 
                     </property> 
                     <property> 
                        <name>TestClassPath</name> 
                        <value>HelloFromsetTestClassPathGoodDay</value> 
                     </property> 
                     <property> 
                        <name>unique_ra_id</name> 
                        <value>eisablackbox-xa.oracle.900</value> 
                     </property> 
                  </properties> 
               </connection-properties> 
            </connection-instance> 
            <connection-instance>
                  <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME2
                  </jndi-name>
                  <connection-properties> 
                     <pool-params> 
                        <initial-capacity>2</initial-capacity> 
                        <max-capacity>10</max-capacity> 
                        <capacity-increment>1</capacity-increment>
                        <shrinking-enabled>true</shrinking-enabled>
                        <shrink-frequency-seconds>60
                        </shrink-frequency-seconds>
                     </pool-params>
                  <properties>
                     <property>
                        <name>ConnectionURL</name>
                        <value>
                  jdbc:oracle:thin:@bcpdb:1531:bay920;create=true;autocommit=false
                        </value>
                     </property>
                     <property> 
                        <name>XADataSourceName</name> 
                        <value>OracleXAPool</value> 
                     </property> 
                     <property> 
                        <name>TestClassPath</name> 
                        <value>HelloFromsetTestClassPathGoodDay</value> 
                     </property> 
                     <property> 
                        <name>unique_ra_id</name> 
                        <value>eisablackbox-xa.oracle.900</value> 
                     </property> 
                  </properties> 
               </connection-properties> 
            </connection-instance> 
      </connection-definition-group> 
     <connection-definition-group>
         <connection-factory-interface>javax.sql.DataSourceCopy
         </connection-factory-interface> 
         <connection-instance>
            <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME3</jndi-name>
            <connection-properties> 
                  <pool-params>
                        <initial-capacity>2</initial-capacity>
                        <max-capacity>10</max-capacity>
                        <capacity-increment>1</capacity-increment>
                        <shrinking-enabled>true</shrinking-enabled>
                        <shrink-frequency-seconds>60</shrink-frequency-seconds>
                  </pool-params>
                  <properties>
                     <property>
                        <name>ConnectionURL</name>
                        <value>jdbc:oracle:thin:@bcpdb:1531:bay920;create=true;autocommit=false</value>
                     </property>
                     <property>
                        <name>XADataSourceName</name>
                        <value>OracleXAPoolB</value>
                     </property>
                     <property>
                        <name>TestClassPath</name>
                        <value>HelloFromsetTestClassPathGoodDay</value>
                     </property>
                     <property>
                        <name>unique_ra_id</name>
                        <value>eisablackbox-xa-two.oracle.900</value>
                     </property>
                  </properties>
               </connection-properties>
         </connection-instance>
     </connection-definition-group>
   </outbound-resource-adapter>
</weblogic-connector>










Configuring Inbound Connections

The J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/) permits you to configure a resource adapter to support inbound message connections. The following are the main steps for configuring an inbound connection:

	
Provide a JNDI name for the resource adapter in the weblogic-ra.xml deployment descriptor. See jndi-name in Table A-1, "weblogic-connector subelements"


	
Configure a message listener and ActivationSpec for each supported inbound message type in the ra.xml deployment descriptor. For information about requirements for an ActivationSpec class, see Chapter 12, "Message Inflow" in the J2CA 1.5 Specification.


	
Within the packaged enterprise application, include a configured EJB message-driven bean (MDB). In the resource-adapter-jndi-name element of the weblogic-ejb-jar.xml deployment descriptor, provide the same JNDI name assigned to the resource adapter in the previous step. Setting this value enables the MDB and resource adapter to communicate with each other.


	
Configure the security identity to be used by the resource adapter for inbound connections. When messages are received by the resource adapter, work must be performed under a particular security identity. See Configuring Security Identities for Resource Adapters.


	
Deploy the resource adapter as discussed in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.


	
Deploy the MDB. For more information, see "Message-Driven EJBs" in Oracle Fusion Middleware Programming Enterprise JavaBeans for Oracle WebLogic Server and Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.




Example 5-3 shows how an inbound connection with two message listener/activation specs could be configured in the ra.xml deployment descriptor:


Example 5-3 Example of Configuring an Inbound Connection


<inbound-resourceadapter>
   <messageadapter>
      <messagelistener>
         <messagelistener-type>
         weblogic.qa.tests.connector.adapters.flex.InboundMsgListener
         </messagelistener-type>
         <activationspec>
            <activationspec-class>
            weblogic.qa.tests.connector.adapters.flex.ActivationSpecImpl
            </activationspec-class>
         </activationspec>
      </messagelistener>
      <messagelistener> 
         <messagelistener-type>
         weblogic.qa.tests.connector.adapters.flex.ServiceRequestMsgListener
         </messagelistener-type> 
         <activationspec> 
            <activationspec-class>
            weblogic.qa.tests.connector.adapters.flex.ServiceRequestActivationSpec
            </activationspec-class>
            </activationspec>
      </messagelistener>
   </messageadapter>
</inbound-resourceadapter>








Configuring Connection Pool Parameters

This section explains how to configure WebLogic Server resource adapter connection pool parameters in the weblogic-ra.xml deployment descriptor. For more details, see Appendix A, "weblogic-ra.xml Schema."



initial-capacity: Setting the Initial Number of ManagedConnections

Depending on the complexity of the Enterprise Information System (EIS) that the ManagedConnection is representing, creating ManagedConnections can be expensive. You may decide to populate the connection pool with an initial number of ManagedConnections upon startup of WebLogic Server and therefore avoid creating them at run time. You can configure this setting using the initial-capacity element in the weblogic-ra.xml descriptor file. The default value for this element is 1 ManagedConnection.

Because no initiating security principal or request context information is known at WebLogic Server startup, a server instance creates initial connections using a security subject by looking up special credential mappings for the initial connection. See Initial Connection: Requires a ManagedConnection from Adapter Without Application's Request.




	
Note:

WebLogic Server uses null as Subject if a mapping is not found.












max-capacity: Setting the Maximum Number of ManagedConnections

As more ManagedConnections are created, they consume more system resources - such as memory and disk space. Depending on the Enterprise Information System (EIS), this consumption may affect the performance of the overall system. To control the effects of ManagedConnections on system resources, you can specify a maximum number of allocated ManagedConnections in the max-capacity element of the weblogic-ra.xml descriptor file.

If a new ManagedConnection (or more than one ManagedConnection in the case of capacity-increment being greater than one) needs to be created during a connection request, WebLogic Server ensures that no more than the maximum number of allowed ManagedConnections are created. Requests for newly allocated ManagedConnections beyond this limit results in a ResourceAllocationException being returned to the caller.






capacity-increment: Controlling the Number of ManagedConnections

In compliance with the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/), when an application component requests a connection to an EIS through the resource adapter, WebLogic Server first tries to match the type of connection being requested with an existing and available ManagedConnection in the connection pool. However, if a match is not found, a new ManagedConnection may be created to satisfy the connection request.

Using the capacity-increment element in the weblogic-ra.xml descriptor file, you can specify a number of additional ManagedConnections to be created automatically when a match is not found. This feature provides give you the flexibility to control connection pool growth over time and the performance hit on the server each time this growth occurs.






shrinking-enabled: Controlling System Resource Usage

Although setting the maximum number of ManagedConnections prevents the server from becoming overloaded by more allocated ManagedConnections than it can handle, it does not control the efficient amount of system resources needed at any given time. WebLogic Server provides a service that monitors the activity of ManagedConnections in the connection pool of a resource adapter. If the usage decreases and remains at this level over a period of time, the size of the connection pool is reduced to the initial capacity or as close to this as possible to adequately satisfy ongoing connection requests.

This system resource usage service is turned on by default. However, to turn off this service, you can set the shrinking-enabled element in the weblogic-ra.xml descriptor file to false.






shrink-frequency-seconds: Setting the Wait Time Between Attempts to Reclaim Unused ManagedConnections

Use the shrink-frequency-seconds element in the weblogic-ra.xml descriptor file to identify the amount of time (in seconds) the Connection Pool Manager will wait between attempts to reclaim unused ManagedConnections. The default value of this element is 900 seconds.






highest-num-waiters: Controlling the Number of Clients Waiting for a Connection

If the maximum number of connections has been reached and there are no available connections, WebLogic Server retries until the call times out. The highest-num-waiters element controls the number of clients that can be waiting at any given time for a connection.






highest-num-unavailable: Controlling the Number of Unavailable Connections

When a connection is created and fails, the connection is placed on an unavailable list. WebLogic Server attempts to recreate failed connections on the unavailable list. The highest-num-unavailable element controls the number of unavailable connections that can exist on the unavailable list at one time.






connection-creation-retry-frequency-seconds: Recreating Connections

To configure WebLogic Server to attempt to recreate a connection that fails while creating additional ManagedConnections, enable the connection-creation-retry-frequency-seconds element. By default, this feature is disabled.






match-connections-supported: Matching Connections

A connection request contains parameter information. By default, the connector container calls the matchManagedConnections() method on the ManagedConnectionFactory to match the available connection in the pool to the parameters in the request. The connection that is successfully matched is returned.

It may be that the ManagedConnectionFactory does not support the call to matchManagedConnections(). If so, the matchManagedConnections() method call throws a javax.resource.NotSupportedException. If the exception is caught, the connector container automatically stops calling the matchManagedConnections() method on the ManagedConnectionFactory.

You can set the match-connections-supported element to specify whether the resource adapter supports connection matching. By default, this element is set to true and the matchManagedConnections() method is called at least once. If it is set to false, the method call is never made.

If connection matching is not supported, a new resource is created and returned if the maximum number of resources has not been reached; otherwise, the oldest unavailable resource is refreshed and returned.






test-frequency-seconds: Testing the Viability of Connections

The test-frequency-seconds element allows you to specify how frequently (in seconds) connections in the pool are tested for viability.






test-connections-on-create: Testing Connections upon Creation

You can set the test-connections-on-create element to enable the testing of connections as they are created. The default value is false.






test-connections-on-release: Testing Connections upon Release to Connection Pool

You can set the test-connections-on-release element to enable the testing of connections as they are released back into the connection pool. The default value is false.






test-connections-on-reserve: Testing Connections upon Reservation

You can set the test-connections-on-reserve element to enable the testing of connections as they are reserved from the connection pool. The default value is false.








Connection Proxy Wrapper - 1.0 Resource Adapters

The connection proxy wrapper feature is valid only for resource adapters that are created based on the Java EE 1.0 Connector Architecture. When a connection request is made, WebLogic Server returns to the client (by way of the resource adapter) a proxy object that wraps the connection object. WebLogic Server uses this proxy to provide the following features:

	
Connection leak detection capabilities


	
Late XAResource enlistment when a connection request is made before starting a global transaction that uses that connection






Possible ClassCastException

If the connection object returned from a connection request is cast as a Connection implementation class (rather than an interface implemented by the Connection class), a ClassCastException can occur. This exception is caused by one of the following:

	
The resource adapter performing the cast


	
The client performing the cast during a connection request




An attempt is made by WebLogic Server to detect the ClassCastException caused by the resource adapter. If the server detects that this cast is failing, it turns off the proxy wrapper feature and proceeds by returning the unwrapped connection object during a connection request. The server logs a warning message to indicate that proxy generation has been turned off. When this occurs, connection leak detection and late XAResource enlistment features are also turned off.

WebLogic Server attempts to detect the ClassCastException by performing a test at resource adapter deployment time by acting as a client using container-managed security. This requires the resource adapter to be deployed with security credentials defined.

If the client is performing the cast and receiving a ClassCastException, the client code can be modified, as in the following example.

Assume the client is casting the connection object to MyConnection.

	
Rather than having MyConnection be a class that implements the resource adapter's Connection interface, modify MyConnection to be an interface that extends Connection.


	
Implement a MyConnectionImpl class that implements the MyConnection interface.









Turning Proxy Generation On and Off

If you know for sure whether or not a connection proxy can be used in the resource adapter, you can avoid a proxy test by explicitly setting the use-connection-proxies element in the WebLogic Server 8.1 version of weblogic-ra.xml to true or false.




	
Note:

WebLogic Server still supports J2CA 1.0 resource adapters. For 1.0 resource adapters, continue to use the WebLogic Server 8.1 deployment descriptors found in weblogic-ra.xml. It contains elements that continue to accommodate 1.0 resource adapters.







If set to true, the proxy test is not performed and connection properties are generated.

If set to false, the proxy test is not performed and connection proxies are generated.

If use-connection-proxies is unspecified, the proxy test is performed and proxies are generated if the test passes. (The test passes if a ClassCastException is not thrown by the resource adapter).




	
Note:

The test cannot detect a ClassCastException caused by the client code.














Reset a Connection Pool

You may need to reset a connection pool to:

	
Recover a connection pool in an unhealthy state without interfering other running connection pools.


	
Make non-dynamic configuration changes that could not take effect through an update operation. For example: changing properties on a ManagedConnectionFactory or changing transaction support for connection.




You can reset a connection pool in one of two ways:

	
Reset—If no connections in the pool are in use, the pool is recreated. The new pool includes any configuration changes you may have made prior to the reset. If a connection is in use, the pool is not reset.


	
Force Reset—Immediately discards all used and unused connections and the pool is recreated. The new pool includes any configuration changes you may have made prior to the reset.




Use the following steps to reset a connection pool from the administration console:

	
Select your resource adapter from the Summary of Deployments table.


	
Select Control > Outbound Connection Pools


	
Select the connection pools to reset.


	
Click Reset or Force Reset.









Testing Connections

If a resource adapter's ManagedConnectionFactory implements the ValidatingManagedConnectionFactory interface, then the application server can test the validity of existing connections. You can test either a specific outbound connection or the entire pool of outbound connections for a particular ManagedConnectionFactory. Testing the entire pool results in testing each connection in the pool individually. For more information on this feature, see section 6.5.3.4 "Detecting Invalid Connections" in the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/).



Configuring Connection Testing

The following optional elements in the weblogic-ra.xml deployment descriptor allow you to control the testing of connections in the pool.

	
test-frequency-seconds - The connector container periodically tests all the free connections in the pool. Use this element to specify the frequency with which the connections are tested. The default is 0, which means the connections will not be tested.


	
test-connections-on-create - Determines whether the connection should be tested upon its creation. By default it is false.


	
test-connections-on-release - Determines whether the connection should be tested upon its release. By default it is false.


	
test-connections-on-reserve - Determines whether the connection should be tested upon its reservation. By default it is false.









Testing Connections in the Administration Console

To test a resource adapter's connection pools:

	
In the Administration Console, open the Deployments page and select the resource adapter in the Deployments table.


	
Select the Test tab.

You will see a table of connection pools for the resource adapter and the test status of each pool.


	
Select the connection pool you want to test and click Test.




See "Test outbound connections" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.











6 Transaction Management

The following sections discuss the system-level transaction management contract that is used for outbound communication from WebLogic Server to Enterprise Information Systems (EISes):

	
Supported Transaction Levels


	
Configuring Transaction Levels




For more information on transaction management, see Chapter 7 "Transaction Management" of the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/). For information about transaction management for inbound communication from EISes to WebLogic Server, see Transactional Inflow.



Supported Transaction Levels

A transaction is a set of operations that must be committed together or not at all for the data to remain consistent and to maintain data integrity. Transactional access to EISes is an important requirement for business applications. The Java EE 1.5 Connector Architecture supports the use of transactions.

WebLogic Server utilizes the WebLogic Server Transaction Manager implementation and supports resource adapters having XA, local, or no transaction support. You define the type of transaction support in the transaction-support element in the ra.xml file; a resource adapter can support only one type. You can use the transaction-support element in the weblogic-ra.xml deployment descriptor to override the value specified in ra.xml. See Configuring Transaction Levels, and transaction-support in Table A-13, "default-connection-properties subelements"for details.



XA Transaction Support

XA transaction support allows a transaction to be managed by a transaction manager external to a resource adapter (and therefore external to an EIS). When an application component demarcates an EIS connection request as part of a transaction, the application server is responsible for enlisting the XA resource with the transaction manager. When the application component closes that connection, the application server cleans up the EIS connection once the transaction has completed.






Local Transaction Support

Local transaction support allows WebLogic Server to manage resources that are local to the resource adapter. Unlike XA transaction, local transaction generally cannot participate in a two-phase commit protocol (2PC). The only way a local transaction resource adapter can be involved in a 2PC transaction is if it is the only local transaction resource involved in the transaction and if the WebLogic Server Connector container uses a Last Resource Commit Optimization whereby the outcome of the transaction is governed by the resource adapter's local transaction.

A local transaction is normally started by using the API that is specific to that resource adapter, or the CCI interface if it is supported for that adapter. When a resource adapter connection that is configured to use local transaction support is created and used within the context of an XA transaction, WebLogic Server automatically starts a local transaction to be used for this connection. When the XA transaction completes and is ready to commit, prepare is first called on the XA resources that are part of the XA transaction. Next, the local transaction is committed.

If the commit fails on the local transaction, the XA transaction and all the XA resources are rolled back. If the commit succeeds, all the XA resources for the XA transaction are committed. When an application component closes the connection, WebLogic Server cleans up the connection once the transaction has completed.






No Transaction Support

If a resource adapter is configured to use no transaction support, the resource adapter can still be used in the context of a transaction. However, in this case, the connections used for that resource adapter are never enlisted in a transaction and behave as if no transaction was present. In other words, operations performed using these connections are made to the underlying EIS immediately, and if the transaction is rolled back, the changes are not undone for these connections.








Configuring Transaction Levels

You specify a transaction support level for a resource adapter in the Java EE standard resource adapter deployment descriptor, ra.xml. To specify the transaction support level:

	
For No Transaction, add the following entry to the ra.xml deployment descriptor file: <transaction-support>NoTransaction</transaction-support>


	
For XA Transaction, add the following entry to the ra.xml deployment descriptor file: <transaction-support>XATransaction</transaction-support>


	
For Local Transaction, add the following entry to the ra.xml deployment descriptor file: <transaction-support>LocalTransaction</transaction-support>




The transaction support value specified in the ra.xml deployment descriptor is the default value for all Connection Factories of the resource adapter. You can override this value for a particular Connection Factory by specifying a value in the transaction-support element of the weblogic-ra.xml deployment descriptor.

The value of transaction-support must be one of the following:

	
NoTransaction


	
LocalTransaction


	
XATransaction





For more information on specifying the transaction level in the ra.xml deployment descriptor, see Section 17.6 "Resource Adapter XML Schema Definition" of the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/). For more information on specifying the transaction level in the weblogic-ra.xml deployment descriptor, see Appendix A, "weblogic-ra.xml Schema."



Configure XA Transaction Recovery Credential Mapping

For pools which support XA Transactions, WLS may try to perform transaction recovery for the JCA connection pool if WLS finds pending transactions in the pool during a server startup. If pending transactions are found, WLS gets a ManagedConnection to EIS during recovery using ManagedConnectionFactory.createManagedConnection(javax.security.auth.Subject subject, ConnectionRequestInfo cxRequestInfo).

If EIS requires explicit credentials (such as user name and password) to sign-on, the you need to configure WLS with appropriate credentials by configuring a special credential mapping for the initial connection. See Initial Connection: Requires a ManagedConnection from Adapter Without Application's Request. WLS uses null as Subject if a mapping is not found.




	
Note:

You don't need to configure this special credential mapping if the EIS doesn't require explicit credentials.

















7 Message and Transactional Inflow

This section discusses how WebLogic resource adapters use inbound connections to handle message inflow and transactional inflow.

	
Overview of Message and Transactional Inflow


	
How Message Inflow Works


	
Message Inflow to Message Endpoints (Message-driven Beans)


	
Transactional Inflow






Overview of Message and Transactional Inflow

Message inflow refers to inbound communication from an EIS to the application server, using a resource adapter. Inbound messages can be part of a transaction that is governed by a Transaction Manager that is external to WebLogic Server and the resource adapter, as described in Transactional Inflow.

The following diagram provides an overview of how messaging and transaction inflow occurs within a resource adapter and the role played by the Work Manager.


Figure 7-1 Messaging and Transactional Inflow Architecture

[image: Description of Figure 7-1 follows]







Architecture Components

Figure 7-1 contains the following components:

	
A client application, which connects to an application running on WebLogic Server, but which also needs to connect to an EIS


	
An external system (in this case, an EIS or Enterprise Information System)


	
An application component (an EJB) that the client application uses to submit outbound requests to the EIS through the resource adapter


	
A message endpoint application (a message-driven bean and possibly other Java EE components) used for the receipt of inbound messages from the EIS through the resource adapter


	
The WebLogic Server Work Manager and an associated thread (or threads) to which the resource adapter submits Work instances to process inbound messages and possibly process other actions.


	
An external Transaction Manager, to which the WebLogic Server Transaction Manager is subordinate for transactional inflow of messages from the EIS


	
The WebLogic Server Connector container in which the resource adapter is deployed. The container manages the following:

	
A deployed resource adapter that provides bi-directional (inbound and outbound) communication to and from the EIS.


	
An active Work instance.


	
Multiple managed connections (MC1, ..., MCn), which are objects representing the outbound physical connections from the resource adapter to the EIS.


	
Connection handles (C-handle) returned to the application component from the connection factory of the resource adapter and used by the application component for communicating with the EIS.


	
One of perhaps many activation specifications. There is an activation specification (ActivationSpec) that corresponds to each specific message listener type, MLT-j. For information about requirements for an ActivationSpec class, see Chapter 12, "Message Inflow" in the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/).


	
One of the connection pools maintained by the container for the management of managed connections for a given ManagedConnectionFactory (in this case, MCF-2. A Connector container could include multiple connection pools, each corresponding to a different type of connections to a single EIS or even different EISes).


	
A MessageEndpointFactory created by the EJB container and used by the resource adapter to create proxies to MessageEndpoint instances (MDB instances from the MDB pool).





	
An external message source, which could be an EIS or Message Provider









Inbound Communication Scenario

This section describes a basic inbound communication scenario that may be described using the diagram, showing how inbound messages originate in an EIS, flow into the resource adapter, and are handled by a Message-driven Bean. For related information, see Figure 2-1.

A typical simplified inbound sequence involves the following steps:

	
The EIS sends a message to the resource adapter.


	
The resource adapter inspects the message and determines what type of message it is.


	
The resource adapter may create a Work object and submit it to the Work Manager. The Work Manager performs the succeeding work in a separate Thread, while the resource adapter can continue waiting for other incoming messages.


	
Based on the message type, the resource adapter (either directly or as part of a Work instance) looks up the correct message endpoint to which it will send the message.


	
Using the message endpoint factory corresponding to the type of message endpoint it needs, the resource adapter creates a message endpoint (which is a proxy to a message-driven bean instance from the MDB pool).


	
The resource adapter invokes the message listener method on the endpoint, passing it message content based on the message it received from the EIS.


	
The message is handled by the MDB in one of several possible ways:

	
the MDB may handle the message directly and possibly return a result to the EIS through the resource adapter


	
the MDB may distribute the message to some other application component


	
the MDB may place the message on a queue to be picked up by the client


	
the MDB may directly communicate with the client application.














How Message Inflow Works

A resource adapter that supports inbound communication from an EIS to the application server typically includes the following:

	
A proprietary communications channel and protocol for connecting to and communicating with an EIS. The communications channel and protocol are not visible to the application server in which the resource adapter is deployed. See Appendix 7, "Proprietary Communications Channel and Protocol."


	
One or more message types recognized by the resource adapter.


	
A dispatching mechanism to dispatch a message of a given type to another component in the application server.






Handling Inbound Messages

A resource adapter may handle an inbound message in a variety of ways. For example, it may:

	
Handle the message locally, that is, within the ResourceAdapter bean, without involving other components.


	
Pass the message off to another application component. For example, it may look up an EJB and invoke a method on it.


	
Send the message to a message endpoint. Typically, a message endpoint is a message-driven bean (MDB). For more information, see Appendix 7, "Message Inflow to Message Endpoints (Message-driven Beans)."




Inbound messages may return a result to the EIS that is sending the message. A message requiring an immediate response is referred to as synchronous (the sending system waits for a response). This is also referred to as request-response messaging. A message that does not expect a response as part of the same exchange with the resource adapter is referred to as asynchronous or event notification-based communication. A resource adapter can support asynchronous or synchronous communications for all three destinations listed above.

Depending upon the transactional capabilities of the resource adapter and the EIS, inbound messages can be either part of a transaction (XA) or not (non-transactional). If the messages are XA, the controlling transaction may be coordinated by an external Transaction Manager (transaction inflow) or by the application server's Transaction Manager. See Appendix 7, "Transactional Inflow."

In most cases, inbound messages in a resource adapter are dispatched through a Work instance in a separate thread. The resource adapter wraps the work to be done in a Work instance and submits it to the application server's Work Manager for execution and management. A resource adapter can submit a Work instance using the doWork(), startWork(), or scheduleWork() methods depending upon the scheduling requirements of the work.






Proprietary Communications Channel and Protocol

The resource adapter can expose connection configuration information to the deployer by various means; for example, as properties on the ResourceAdapter bean or properties on the ActivationSpec object. An alternative is to use the same communication channel for inbound as well as outbound traffic. Thus you can also set configuration information on the outbound connection pool.








Message Inflow to Message Endpoints (Message-driven Beans)

Prior to EJB 2.1, a message-driven bean (MDB) supported only Java Message Service (JMS) messaging. That is, an MDB had to implement the javax.jms.MessageListener interface, including the onMessage(javax.jms.Message) message listener method. MDBs were bound to JMS components and the JMS subsystem delivered the messages to MDBs by invoking the onMessage() method on an instance of the MDB.

With EJB 2.1, the JMS-only MDB restriction has been lifted to accommodate the delivery of messages from inbound resource adapters. The main ingredients for message delivery to an MDB by way of a resource adapter are:

	
An inbound message of a certain type (determined by the resource adapter/EIS contract)


	
An ActivationSpec object implemented by the resource adapter


	
A mapping between message types and message listener interfaces


	
An MDB that implements a given message listener interface


	
A deployment-time binding between an MDB and a resource adapter




For more information about message-driven Beans, see "Message-Driven EJBs" in Oracle Fusion Middleware Programming Enterprise JavaBeans for Oracle WebLogic Server.



Deployment-Time Binding Between an MDB and a Resource Adapter

A resource adapter can be deployed independently (as a standalone RAR) or as part of an enterprise application (EAR). An MDB can also be deployed independently (as a standalone JAR) or as part of an enterprise application (EAR). In either case, an MDB whose messages are derived from a resource adapter must be bound to the resource adapter. The following sections describe binding the MDB and resource adapter and subsequent messaging operations.



Binding an MDB and a Resource Adapter

To bind an MDB and a resource adapter, you must:

	
Set the jndi-name element in the weblogic-ra.xml deployment descriptor for the resource adapter. See jndi-name in Appendix A, "weblogic-ra.xml Schema."


	
Set the adapter-jndi-name element in the weblogic-ejb-jar.xml deployment descriptor to match the value set in the corresponding jndi-name element in the resource adapter.


	
Assume that the resource adapter is deployed prior to the MDB. (The MDB could be deployed before the resource adapter is deployed; in that case, the deployed MDB polls until the resource adapter is deployed.) When the resource adapter is deployed, the ResourceAdapter bean is bound into JNDI using the name specified.


	
The MDB is deployed, and the MDB container invokes an application server-specific API that looks up the resource adapter by its JNDI name and invokes the specification-mandated endpointActivation(MessageEndpointFactory, ActivationSpec) method on the resource adapter.


	
The MDB container provides the resource adapter with a configured ActivationSpec (containing configuration information) and a factory for the creation of message endpoint instances.


	
The resource adapter saves this information for later use in message delivery. The resource adapter thereby knows what message listener interface the MDB implements. This information is important for determining what kind of messages to deliver to the MDB.











Dispatching a Message

When a message arrives from the EIS to the resource adapter, the resource adapter determines where to dispatch it. The following is a possible sequence of events:

	
A message arrives from the EIS to the resource adapter.


	
The resource adapter examines the message and determines its type by looking it up in an internal table. The resource adapter determines the message type corresponds to a particular pair (MessageEndpointFactory, ActivationSpec).


	
The resource adapter determines the message should be dispatched to an MDB.


	
Using the MessageEndpointFactory for that type of message endpoint (one to be dispatched to an MDB), the resource adapter creates an MDB instance by invoking createEndpoint() on the factory.


	
The resource adapter then invokes the message listener method on the MDB instance, passing any required information (such as the body of the incoming message) to the MDB.


	
If the message listener does not return a value, the message dispatching process is complete.


	
If the message listener returns a value, the resource adapter determines how to handle that value. This may or may not result in further communication with the EIS, depending upon the contract with the EIS.









Activation Specifications

A resource adapter is configured with a mapping of message types and activation specifications. The activation specification is a JavaBean that implements javax.resource.spi.ActivationSpec. The resource adapter has an ActivationSpec class for each supported message type. The mapping of message types and activation specifications is configured in the ra.xml deployment descriptor, as described in Configuring Inbound Connections, For more information about ActivationSpecs, see Chapter 12, "Message Inflow" in the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/).






Administered Objects

As described in section 12.4.2.3 of the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/), a resource adapter may provide the Java class name and the interface type of an optional set of JavaBean classes representing administered objects that are specific to a messaging style or message provider. You configure administered objects in the admin-objects elements of the ra.xml and weblogic-ra.xml deployment descriptor files. As with outbound connections and other WebLogic resource adapter configuration elements, you can define administered objects at three configuration scope levels:

	
Global - Specify parameters that apply to all administered objects in the resource adapter using the default-properties element. See default-properties in Table A-10, "admin-object-group"


	
Group - Specify parameters that apply to all administered objects belonging to a particular administered object group specified in the ra.xml deployment descriptor using the admin-object-group element. The properties specified in a group override any parameters specified at the global level. See admin-object-group.

The admin-object-interface element (a subelement of the admin-object-group element) serves as a required unique element (a key) to each admin-object-group. There must be a one-to-one relationship between the admin-object-interface element in weblogic-ra.xml and the admin-object-interface element in ra.xml.


	
Instance - Under each admin object group, you can specify administered object instances using the admin-object-instance element of the weblogic-ra.xml deployment descriptor. These correspond to the individual administered objects for the resource adapter. You can use the admin-object-properties subelement to specify properties at the instance level too; properties specified at the instance level override those provided at the group and global levels. See admin-object-instance.











Transactional Inflow

This section discusses how transactions flow into WebLogic Server from an EIS and a resource adapter. A transaction inflow contract allows the resource adapter to handle transaction completion and crash recovery calls initiated by an EIS. It also ensures that ACID properties of the imported transaction are preserved. For more information on transaction inflow, see Chapter 14, "Transaction Inflow" of the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/).

When an EIS passes a message through a resource adapter to the application server, it may pass a transactional context under which messages are delivered or work is performed. The inbound transaction will be controlled by a transaction manager external to the resource adapter and application server. See Message Inflow to Message Endpoints (Message-driven Beans).

A resource adapter may act as a bridge between the EIS and the application server for transactional control. That is, the resource adapter receives messages that it interprets as XA callbacks for participating in a transaction with a external Transaction Manager.

WebLogic Server can function as an XA resource to a external Transaction Manager through its interposed Transaction Manager. The WebLogic Server Transaction Manager maps external transaction IDs to WebLogic Server-specific transaction IDs for such transactions.

The WebLogic Server Transaction Manager is subordinate to the external Transaction Manager, which means that the external Transaction Manager ultimately determines whether the transaction succeeds or is rolled back. See "Participating in Transactions Managed by a Third-Party Transaction Manager" in Oracle Fusion Middleware Programming JTA for Oracle WebLogic Server. As part of the Java EE 1.5 Connector Architecture, the ability for a resource adapter to participate in such a transaction is now exposed through a Java EE standard API.

The following illustrates how a resource adapter would participate in a external transaction. For more information, see section 14.4, "Transaction Inflow Model" of the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/).

	
The resource adapter receives an inbound message with a new external transaction ID.


	
The resource adapter decodes the external transaction ID and constructs an Xid (javax.transaction.xa.Xid).


	
The resource adapter creates an instance of an ExecutionContext (javax.resource.spi.work.ExecutionContext), setting the Xid it created and also setting a transaction timeout value.


	
The resource adapter creates a new Work object to process the incoming message and deliver it to a message endpoint.


	
The resource adapter submits the Work object and the ExecutionContext to the Work Manager for processing. At this point, the Work Manager performs the necessary work to enlist the transaction and start it with the WebLogic Server Transaction Manager.


	
Subsequent XA calls from the external Transaction Manager are sent through the resource adapter and communicated to the WebLogic Server Transaction Manager. In this way, the resource adapter acts as a bridge for the XA calls between the external Transaction Manager and the WebLogic Server Transaction Manager, which is acting as a resource manager.






Using the Transactional Inflow Model for Locally Managed Transactions

When the resource adapter receives requests from application components running in the same server instance as the resource adapter that need to be delivered to an MDB as part of the same transaction as the resource adapter request, the transaction ID must be obtained from the transaction on the current thread and placed in an ExecutionContext.

In this case, WebLogic Server does not use the Interposed Transaction Manager but simply passes the transaction on to the Work Thread used for message delivery to the MDB.








@LongRunning

This release introduces the WLS extension annotation @LongRunning. Apply this annotation to the work class if the work is a long running work item. When used, the WLS JCA work manager schedules this work in a daemon thread, not in a Work Thread.

Try to minimize the number of long running works executing concurrently since each long running work runs in its own daemon thread. Too many concurrent long running works may exhaust thread resources of application server and have negative impact on server performance and stability. WLS may introduce restrictions on maximum concurrent long running works allowed in a future release.

See "Annotation Type LongRunning" in "Oracle Fusion Middleware Oracle WebLogic Server 10.3.1 API Reference."









8 Security

Since a resource adapter needs to be able to establish connections with external systems, it needs to be configured with authentication and other security information necessary to make the connections. The following sections discuss WebLogic Server resource adapter security for outbound communication:

	
Container-Managed and Application-Managed Sign-on


	
Password Credential Mapping


	
Security Policy Processing


	
Configuring Security Identities for Resource Adapters


	
Configuring Connection Factory-Specific Authentication and Re-authentication Mechanisms




For more information about WebLogic security, see Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server and Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.



Container-Managed and Application-Managed Sign-on

When a resource adapter makes an outbound connection to an Enterprise Information System (EIS), it needs to sign on with valid security credentials. In accordance with the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/), WebLogic Server supports both container-managed and application-managed sign-on for outbound connections. At runtime, WebLogic Server determines the chosen sign-on mechanism, based on the information specified in either the invoking client component's deployment descriptor or the res-auth element of the resource adapter deployment descriptor. A sign-on mechanism specified in a resource adapter's deployment descriptor takes precedence over one specified in the calling component's deployment descriptor. Even when using container-managed sign-on, any security information explicitly specified by the client component is presented on the call to obtain the connection.

If the WebLogic Server Java EE 1.5 Connector Architecture implementation cannot determine which sign-on mechanism is being requested by the client component, the connector container attempts container-managed sign-on.



Application-Managed Sign-on

With application-managed sign-on, the client component supplies the necessary security credentials (typically a user name and password) when making the call to obtain a connection to an EIS. In this scenario, the application server provides no additional security processing other than to pass along this information in the request for the connection.






Container-Managed Sign-on

WebLogic Server and an EIS each maintain independent security realms. A goal of container-managed sign-on is to permit a user to sign on to WebLogic Server and be able to use applications that access an EIS through a resource adapter without having to sign on separately to the EIS. Container-managed sign-on in WebLogic Server uses credential mappings, which map credentials (either username/password pairs or security tokens) of WebLogic security principals (which may be either authenticated individual users or client applications) to the corresponding credentials required to access the EIS. For any deployed resource adapter, you can configure credential mappings for applicable security principals. For related information, see Credential Mappings.








Password Credential Mapping

The J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/) requires storage of credentials in a javax.security.auth.Subject. The credentials are passed to either the createManagedConnection() or the matchManagedConnection() methods of the ManagedConnectionFactory object. Credential mapping information is stored in the WebLogic Server embedded LDAP server. Credential mappings are specific to outbound resource adapters.

When creating credential mappings of WebLogic Server users to usernames in an Enterprise Information System (EIS) to which you want to connect using a resource adapter, note the following:

	
WebLogic Server supports creating credential mappings for WebLogic Server users who are defined in the default security realm only. If you are using a security realm that you have customized, you need to define it as the default security realm before configuring credential mappings for resource adapters. For more information, see "Customizing the Default Security Configuration" in Oracle Fusion Middleware Securing Oracle WebLogic Server and "Change the default security realm" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.


	
You must define the authentication-mechanism element for the connection pool in either of the following deployment descriptor files:

	
ra.xml, which works for all connection pools of the resource adapter


	
weblogic-ra.xml for each individual connection pool




If there is no valid authentication-mechanism element defined, the credential mapping will not take effect, as explained in Authentication Mechanisms. The following is a sample ra.xml file snippet:


<authentication-mechanism>
<authentication-mechanism-type>BasicPassword</authentication-mechanism-type>
<credential-interface>javax.resource.spi.security.PasswordCredential</credential-interface>
</authentication-mechanism>






Authentication Mechanisms

WebLogic Server users must be authenticated whenever they request access to a protected WebLogic Server resource. For this reason, each user is required to provide a credential (a username/password pair or a digital certificate) to WebLogic Server.

Password authentication is the only authentication mechanism supported by WebLogic Server out of the box. Password authentication consists of a user ID and password. Based on the configured mappings, when a user requests connection to a resource adapter, the appropriate credentials for that user are supplied to the resource adapter.

The SSL (or HTTPS) protocol can be used to provide an additional level of security to password authentication. Because the SSL protocol encrypts the data transferred between the client and WebLogic Server, the user ID and password of the user do not flow in clear text. Using SSL, WebLogic Server can authenticate the user without compromising the confidentiality of the user's ID and password. For more information, see "Configuring SSL" in Oracle Fusion Middleware Securing Oracle WebLogic Server.






Credential Mappings

Credential mappings are specific to outbound resource adapters. You configure credential mappings using the WebLogic Server Administration Console. Before you can configure credential mappings, you must successfully deploy the resource adapter.




	
Note:

The first time you deploy a resource adapter, it has no configured credential mappings and the initial connections will fail until they are configured.







If the resource adapter requires credentials and is configured to create connections at deployment time (meaning the initial-capacity element in the weblogic-ra.xml is set to greater than 0), the initial connection may fail. To prevent initial connection failure, Oracle recommends you set the initial-capacity element the connection pool to 0 for its connection pool for the initial installation and deployment of a resource adapter. Once the resource adapter is deployed for the first time, you can change the value of the initial-capacity element. For more information, see initial-capacity: Setting the Initial Number of ManagedConnections.

You can configure credential mappings for individual outbound connection pools or globally for all the connection pools in the resource adapter. When the resource adapter receives a request for a connection, WebLogic Server searches for credential mappings configured for a specific connection pool and then checks the mappings configured globally for the resource adapter.

Review the following situations:

	
Non-initial Connection: Requires ManagedConnection from Adapter Upon Application's Request


	
Initial Connection: Requires a ManagedConnection from Adapter Without Application's Request


	
Special Users






Non-initial Connection: Requires ManagedConnection from Adapter Upon Application's Request

WebLogic Server requires a ManagedConnection from the adapter upon an application's request. For example, an application wants to get a connection from a pool but there is no available ManagedConnection in the pool so WebLogic Server needs to make a request to the adapter to create a new ManagedConnection.




	
Note:

Applies only to Container-Managed sign-on.







The server searches for mappings in the following order:

	
Specific mappings (or anonymous mapping if unauthenticated) at the connection factory level.


	
Specific mappings (or anonymous mapping if unauthenticated) at the global level.


	
Default mappings at the connection factory level.


	
Default mappings at the global level.




For example, in Example 8-1, consider two connection pools with the following credential mappings:


Example 8-1 Credential Mapping Examples


poolA
   system user name: admin
   system password: adminpw
   default user name: guest1
   default password: guest1pw1

poolB
   wlsjoe user name: harry
   wlsjoe password: harrypw

global
   system user name: sysman
   system password: sysmanpw
   wlsjoe user name: scott
   wlsjoe password: tiger
   default user name: viewer
   default password: viewerpw
   anonymous user name: foo
   anonymous password: bar


Referring to the example provided in Example 8-1, consider an application authenticated as system that makes a connection request against poolA. Because a specific credential mapping is defined for system for poolA, the resource adapter uses this mapping (admin/adminpw).

If the application makes the same request against poolB as system, there is no corresponding specific credential mapping for system. Therefore, the server searches for the credential mapping at the global level where it finds a mapping (sysman/sysmanpw).

If another application authenticates as wlsjoe and makes a request against poolA, it finds no mapping for wlsjoe defined for poolA. It then searches at the global level and finds a mapping for wlsjoe (scott/tiger). Against poolB, the application would find the mapping defined for poolB (harry/harrypw).

If an application authenticated as user1 makes a request against poolA, it finds no mapping for user1 for poolA. The following sequence occurs:

	
The application searches at the global level, which also has no mapping for user1.


	
The application searches the poolA mappings for a default mapping and finds a default mapping.




If an application doesn't authenticate to WLS and makes a request against poolA, it finds no mapping for anonymous user for poolA. It then searches at the global level and finds a mapping for the anonymous user (foo/bar).








Initial Connection: Requires a ManagedConnection from Adapter Without Application's Request

WebLogic Server requires a ManagedConnection from adapter without application's request. This can either be when WebLogic Server creates initial connections at deployment time (meaning the initial-capacity element in the weblogic-ra.xml is set to greater than 0), or when WebLogic needs to get a ManagedConnection specifically for XA recovery.




	
Note:

Applies to both Container-Managed sign-on and Application-Managed sign-on.







The server searches for mappings in the following order:

	
Initial mappings at the connection factory level.


	
Initial mappings at the global level.


	
Default mappings at the connection factory level.


	
Default mappings at the global level.




If neither initial nor default mapping is defined, WebLogic Server uses null as Subject when calls to adapter to create a ManagedConnection.

For example, consider two connection pools with the following credential mappings:


Example 8-2 Credential Mapping Examples


poolA
   initial user name: admin
   initial password: adminpw

poolB
   default user name: harry
   default password: harrypw

global
   initial user name: sysman
   initial password: sysmanpw


Referring to the example provided in Example 8-2, WebLogic Server needs to perform XA Recovery for poolA and so makes a connection request against poolA. Because the initial credential mapping is defined for system for poolA, the resource adapter uses this mapping (admin/adminpw).

If WebLogic Server makes the same request against poolB, there is no corresponding initial credential mapping for poolB. WebLogic Server then searches for the initial credential mapping at the global level where it finds a mapping (sysman/sysmanpw).








Special Users

Three special users are provided for use by resource adapters:

	
Initial User (User for creating initial connections)—If you define a mapping for this user, the specified credentials are used for the initial connections created when:

	
Starting the connection pool for this resource adapter


	
Doing XA transaction recovery for the connection pool




The InitialCapacity parameter on the pool specifies the number of initial connections. If you do not define a mapping for this user the default mapping (if provided) is used. Otherwise, no credentials are provided for the initial connections.


	
Anonymous User (Unauthenticated WLS User)—If you define a mapping for this user, the specified credentials are used when no user is authenticated for the connection request on the resource adapter.


	
Default User—If you define a mapping for this user, the specified credentials are used when:

	
No other mapping applies for the current user


	
No anonymous mapping is provided in the case where there is no authenticated user.














Creating Credential Mappings Using the Console

You can create credential maps with the WebLogic Server Administration Console. If you are using the WebLogic Credential Mapping provider, the credential maps are stored in the embedded LDAP server. For information about how to create a credential map, see "Create credential mappings" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.








Security Policy Processing

A security policy is an association between a WebLogic resource and one or more users, groups, or security roles and is designed to protect the WebLogic resource against unauthorized access. The J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/) defines default security policies for resource adapters running in an application server. It also defines how resource adapters can provide their own specific security policies overriding the default. The weblogic.policy file that ships with WebLogic Server establishes the default security policies as specified in the J2CA 1.5 Specification.

If the resource adapter does not have a specific security policy defined, WebLogic Server establishes the runtime environment for the resource adapter with the default security policies specified in the weblogic.policy file, which conforms to the defaults specified by the J2CA 1.5 Specification. If the resource adapter has defined specific security policies, WebLogic Server establishes the runtime environment for the resource adapter with a combination of the default security policies for resource adapters and the specific policies defined for the resource adapter. You define specific security policies for resource adapters using the security-permission-spec element in the ra.xml deployment descriptor file.

For more information on security policy processing requirements, see the "Security Permissions" section of Chapter 18, "Runtime Environment" in the J2CA 1.5 Specification. For more information about security policies and the WebLogic security framework, see "Security Policies" in Securing WebLogic Resources Using Roles and Policies.






Configuring Security Identities for Resource Adapters

This section describes how to configure various security identities for WebLogic Server resource adapters in the weblogic-ra.xml deployment descriptor. Security identities determine which security principals can perform particular resource adapter functions. In a WebLogic resource adapter, you can either have a single security identity that can perform all functions, or use separate identities for separate classes of functions. You can define the following four types of security identities in the weblogic-ra.xml deployment descriptor:

	
default principal - a security principal that can perform all resource adapter tasks.


	
run-as principal - a security principal used by calls from the connector container into the resource adapter code during connection requests.


	
run-work-as principal - a security principal used for Work instances launched by the resource adapter.


	
manage-as principal - a security principal used for resource adapter management tasks, such as startup, shutdown, testing, and transaction management.




Example 8-3 is an excerpt from a weblogic-ra.xml deployment descriptor that illustrates how you would configure all four of these available security identities for performing different resource adapter tasks.


Example 8-3 Configuring All Security Identities for Resource Adapters


<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector">
   <jndi-name>900blackbox-notx</jndi-name> 
   <security>
      <default-principal-name>
         <principal-name>system</principal-name>
      </default-principal-name>
      <run-as-principal-name>
         <principal-name>raruser</principal-name>
      </run-as-principal-name>
      <run-work-as-principal-name>
         <principal-name>workuser</principal-name>
      </run-work-as-principal-name> 
      <manage-as-principal-name>
         <principal-name>raruser</principal-name>
      </manage-as-principal-name>
   </security> 
</weblogic-connector>


Example 8-4 illustrates how you could use the <default-principal-name> element to configure a single default principal security identity for performing all resource adapter tasks.





Example 8-4 Configuring a Single Default Principal Identity for a Resource Adapter


<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector"> 
   <jndi-name>900blackbox-notx</jndi-name> 
   <security>
      <default-principal-name>
         <principal-name>system</principal-name>
      </default-principal-name>
   </security> 
</weblogic-connector>


For more information on setting security identity properties, see security.






default-principal-name: Default Identity

You can define a single security identity that can be used for all resource adapter purposes using the default-principal-name element. If values are not specified for run-as-principal-name, manage-as-principal-name, and run-work-as-principal-name, they default to the value set for default-principal-name.

The value of default-principal-name can be set to a defined WebLogic Server user name such as system or to use an anonymous identity (which is the equivalent of having no security identity).

For example, you can create a single security identity that makes all calls from WebLogic Server into the resource adapter and manages all resource adapter management tasks with a default system identity as shown in Example 8-6:


Example 8-5 Using a Defined WebLogic Server Name


<security>
   <default-principal-name>
      <principal-name>system</principal-name>
   </default-principal-name>
</security>


You can set the default-principal-name element to anonymous as follows:





Example 8-6 Setting Up an Anonymous Identity


<security>
   <default-principal-name>
      <use-anonymous-identity>true</use-anonymous-identity>
   </default-principal-name>
</security>








manage-as-principal-name: Identity for Running Management Tasks

You can define a management identity that is used for running various resource adapter management tasks such as startup, shutdown, testing, shrinking, and transaction management using the manage-as-principal-name element.

As with default-principal-name, the value of manage-as-principal-name can be set to a defined WebLogic Server user name such as system or to use an anonymous identity (which is the equivalent of having no security identity). If you do not set up a value for the manage-as-principal-name element, it defaults to the value set up for default-principal-name. If no value is set up for default-principal-name, it defaults to the anonymous identity.

Example 8-7 illustrates how you can configure a resource adapter to run management calls using the WebLogic Server-defined user name system.


Example 8-7 Using a Defined WebLogic Server Name


<security>
   <manage-as-principal-name>
      <principal-name>system</principal-name>
   </manage-as-principal-name>
</security>


Example 8-8 illustrates how you can configure a resource adapter to run management calls using an anonymous identity.





Example 8-8 Setting Up an Anonymous Identity


<security>
   <manage-as-principal-name>
      <use-anonymous-identity>true</use-anonymous-identity>
   </manage-as-principal-name>
</security>








run-as-principal-name: Identity Used for Connection Calls from the Connector Container into the Resource Adapter

You define the principal name that should be used by all calls from the connector container into the resource adapter code during connection requests in the run-as-principal-name element. This principal name is used, for example, when resource adapter objects such as the ManagedConnectionFactory are instantiated - in other words, when the WebLogic Server connector container makes calls to the resource adapter, the identity defined in the run-as-principal-name element is used. This may include calls as part of either inbound or outbound requests or setup, or as part of initialization not specific to either inbound or outbound resource adapters (for example, ResourceAdapter.start()).

The value of the run-as-principal-name element can be set in one of three ways:

	
To a defined WebLogic Server name


	
To use an anonymous identity


	
To use the security identity of the calling code.




If the value of the run-as-principal-name element is not defined, it defaults to the value of the default-principal-name element. If the default-principal-name element is not defined, it defaults to the identity of the requesting caller.






run-work-as-principal-name: Identity Used for Performing Resource Adapter Management Tasks

For inbound resource adapters, Oracle recommends that you use Work instances to execute inbound requests. To establish the security identity for Work instances launched by a resource adapter, you specify this value using the run-work-as-principal-name element. However, Work instances can also be created as part of outbound resource adapters to execute outbound requests. If an adapter does not use Work instances to handle inbound requests, then inbound requests are either run with no security context established (anonymous) or the resource adapter can make WebLogic Server-specific calls to authenticate as a WebLogic Server user. In this case, the WebLogic Server user security context is used.

The value of the run-work-as-principal-name element can be set in one of three ways:

	
To a defined WebLogic Server name


	
To use an anonymous identity


	
To use the security identity of the calling code




If the value of the run-work-as-principal-name element is not defined, it defaults to the value of the default-principal-name element. If the default-principal-name element is not defined, it defaults to the identity of the requesting caller.

To run work using the requesting caller's identity, you specify the run-work-as-principal-name element as shown in Example 8-9:


Example 8-9 Using the Requesting Caller's Identity


<security>
   <run-work-as-principal-name>
      <use-caller-identity>true</use-caller-identity>
   </run-work-as-principal-name>
</security>










Configuring Connection Factory-Specific Authentication and Re-authentication Mechanisms

You specify authentication and re-authentication mechanisms for a resource adapter in the Java EE standard resource adapter deployment descriptor, ra.xml. These settings apply to all outbound connection factories.

	
The authentication-mechanism element specifies an authentication mechanism to be used by all outbound connection factories.


	
The reauthentication-support element specifies whether outbound connection factories support re-authentication of existing Managed-Connection instances. This is intended to be the default value for all connection factories of the resource adapter.




You can override the authentication-mechanism and reauthentication-support values in the ra.xml deployment descriptor by specifying them in the weblogic-ra.xml deployment descriptor. Doing so allows you to apply these settings to a specific connection factory rather than to all connection factories. See authentication-mechanism and reauthentication-support in Table A-13, "default-connection-properties subelements".









9 Packaging and Deploying Resource Adapters

The following sections describe how to package and deploy resource adapters:

	
Packaging Resource Adapters,


	
Deploying Resource Adapters,




Deploying applications on WebLogic Server is covered in more detail in "Deploying and Packaging from a Split Development Directory" in Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server.



Packaging Resource Adapters

For production and development purposes, Oracle recommends packaging your assembled resource adapter (RAR) as part of an enterprise application (EAR).



Packaging Directory Structure

A resource adapter is a WebLogic Server component contained in a resource adapter archive (RAR) within the applications/ directory. The deployment process begins with the RAR or a deployment directory, both of which contain the compiled resource adapter interfaces and implementation classes created by the resource adapter provider. Regardless of whether the compiled classes are stored in a RAR or a deployment directory, they must reside in subdirectories that match their Java package structures.

Resource adapters use the same directory format, whether the resource adapter is packaged in an exploded directory format or as a RAR. A typical directory structure of a resource adapter is shown in Example 9-1:


Example 9-1 Resource Adapter Directory Structure


/META-INF/ra.xml
/META-INF/weblogic-ra.xml
/META-INF/MANIFEST.MF (optional)
/images/ra.jpg
/readme.html
/eis.jar
/utilities.jar
/windows.dll
/unix.so








Packaging Considerations

The following are packaging requirements for resource adapters:

	
Deployment descriptors (ra.xml and weblogic-ra.xml) must be in a directory called META-INF.


	
An optional MANIFEST.MF also resides in META-INF. A manifest file is automatically generated by the JAR tool and is always the first entry in the JAR file. By default, it is named META-INF/MANIFEST.MF. The manifest file is the place where any meta-information about the archive is stored.


	
A resource adapter deployed in WebLogic Server supports the class-path entry in MANIFEST.MF to reference a class or resource such as a property.


	
The resource adapter can contain multiple JARs that contain the Java classes and interfaces used by the resource adapter. (For example, eis.jar and utilities.jar.) Ensure that any dependencies of a resource adapter on platform-specific native libraries are resolved.


	
The resource adapter can contain native libraries required by the resource adapter for interacting with the EIS. (For example, windows.dll and unix.so.)


	
The resource adapter can include documentation and related files not directly used by the resource adapter. (For example, readme.html and /images/ra.jpg.)


	
When a standalone resource adapter RAR is deployed, the resource adapter must be made available to all Java EE applications in the application server.


	
When a resource adapter RAR packaged within a Java EE application EAR is deployed, the resource adapter must be made available only to the Java EE application with which it is packaged. This specification-compliant behavior may be overridden if required.









Packaging Limitation

If you reload a standalone resource adapter without reloading the client that is using it, the client may cease to function properly. This limitation is due to the J2CA 1.5 Specification (http://java.sun.com/j2ee/connector/) limitation of not providing a remotable interface.






Packaging Resource Adapter Archives (RARs)

After you stage one or more resource adapters in a directory, you package them in a Java Archive (JAR) with a .rar file extension.




	
Note:

Once you have assembled the resource adapter, Oracle recommends that you package it as part of an enterprise application. This allows you to take advantage of the split development directory structure, which provides a number of benefits over the traditional single directory structure. See "Creating a Split Development Directory Environment" in Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server.







To stage and package a resource adapter:

	
Create a temporary staging directory anywhere on your hard drive.


	
Compile or copy the resource adapter Java classes into the staging directory.


	
Create a JAR to store the resource adapter Java classes. Add this JAR to the top level of the staging directory.


	
Create a META-INF subdirectory in the staging directory.


	
Create an ra.xml deployment descriptor in the META-INF subdirectory and add entries for the resource adapter.



	
Note:

Refer to the following documentation for information on the ra.xml document type definition at http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd.






	
Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory and add entries for the resource adapter.



	
Note:

Refer to Appendix A, "weblogic-ra.xml Schema" for information on the contents of the weblogic-ra.xml file.






	
When the resource adapter classes and deployment descriptors are set up in the staging directory, you can create the RAR with a JAR command such as:


jar cvf jar-file.rar -C staging-dir


This command creates a RAR that you can deploy on a WebLogic Server or package in an enterprise application archive (EAR).

The -C staging-dir option instructs the JAR command to change to the staging-dir directory so that the directory paths recorded in the JAR are relative to the directory where you staged the resource adapters.




For more information on this topic, see Creating and Configuring Resource Adapters: Main Steps.








Deploying Resource Adapters

Deployment of a resource adapter is similar to deployment of Web Applications, EJBs, and Enterprise Applications. Like these deployment units, you can deploy a resource adapter in an exploded directory format or as an archive file.



Deployment Options

You can deploy a stand-alone resource adapter (or a resource adapter packaged as part of an enterprise application) using any one of these tools:

	
WebLogic Server Administration Console


	
weblogic.Deployer tool


	
wldeploy Ant task


	
WebLogic Scripting Tool (WLST)




For information about these application deployment techniques, see "Deploying Applications and Modules with weblogic.deployer" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

You can use a deployment plan to deploy a resource adapter deployment. For a resource adapter, a WebLogic Server deployment plan is an optional XML document that resides outside of the RAR and configures the resource adapter for deployment to a specific WebLogic Server environment. A deployment plan works by setting deployment property values that would normally be defined in the resource adapter's deployment descriptors, or by overriding property values that are already defined in the deployment descriptors. For information on deployment plans, see "Configuring Applications for Production Deployment" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

You can also deploy a resource adapter using auto-deployment. This may be useful during development and early testing. For more information, see "Auto-Deploying Applications in Development Domains" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server






Resource Adapter Deployment Names

When you deploy a resource adapter archive (RAR) or deployment directory, you must specify a name for the deployment unit, for example, myResourceAdapter. This name provides a shorthand reference to the resource adapter deployment that you can later use to undeploy or update the resource adapter.

When you deploy a resource adapter, WebLogic Server implicitly assigns a deployment name that matches the path and filename of the RAR or deployment directory. You can use this assigned name to undeploy or update the resource adapter after the server has started.

The resource adapter deployment name remains active in WebLogic Server until the server is rebooted. Undeploying a resource adapter does not remove the associated deployment name; you can use the same deployment name to redeploy the resource adapter at a later time.






Production Redeployment

Using WebLogic Server's production redeployment feature, you can redeploy a new version of a WebLogic Server application alongside an older version of the same application. By default, WebLogic Server immediately routes new client requests to the new version of the application, while routing existing client connections to the older version. After all clients using the older application version complete their work, WebLogic Server retires the older application so that only the new application version is active.



Suspendable Interface and Production Redeployment

Typically, a resource adapter bean implements the javax.resource.spi.ResourceAdapter interface. This interface defines start() and stop() methods. This type of resource adapter is not eligible for production redeployment. Resource adapters connect to one or more EISes for incoming/outgoing communication. All communication is performed in a resource adapter-proprietary way with no knowledge of the application server. If on-the-fly production redeployment is attempted, the application server can only provide notifications to the resource adapter to manage the migration of connections from the existing resource adapter to a new instance. However, the resource adapter can implement the Suspendable interface, which provides the capability to allow resource adapters to participate in production redeployment. For information about implementing the Suspendable interface, see Suspending and Resuming Resource Adapter Activity.






Production Redeployment Requirements

All of the following requirements must be met by both the old and new version of the resource adapter in order for production redeployment to work; otherwise, the redeployment fails.

	
The resource adapter must be based on the J2CA 1.5 Specification. (Support for production redeployment of 1.0 resource adapters is not available.)


	
The resource adapter must implement the Suspendable interface (see Example 4-3).


	
The resource adapter must be packaged inside an enterprise application (EAR file). Production redeployment of standalone resource adapters is not supported.


	
The Suspendable.supportsVersioning() method must return true when invoked by WebLogic Server.


	
The enable-access-outside-app element in the weblogic-ra.xml descriptor must be set to false.









Production Redeployment Process

The following process assumes the older version of the resource adapter is deployed and running. It also assumes that the older version (named old) as well as the newer version (named new) of the resource adapter meet all of the requirements mentioned in Production Redeployment Requirements, as well as the application requirements described in "Redeploying Applications in a Production Environment" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

The following calls are made into the resource adapters during production redeployment:

	
WebLogic Server calls new.init(old, null) to inform the new resource adapter that it is replacing the old resource adapter.


	
WebLogic Server calls old.startVersioning(new, null) to inform the old resource adapter to start its production redeployment operation with the new resource adapter.


	
WebLogic Server calls new.start(extendedBootstrapContext). See Extended BootstrapContext.


	
When the old resource adapter is "finished" (meaning it has succeeded in migrating all clients and inbound connections to the new resource adapter), it calls (ExtendedBootstrapContext)bsCtx.complete(). This informs WebLogic Server that it is safe to undeploy the old resource adapter.


	
When undeployment occurs, WebLogic Server calls old.stop() and production redeployment is complete.




The calls to new.init() and old.startVersioning() give the old and new resource adapters an opportunity to migrate inbound or outbound communications from the old to the new resource adapter. How this is done is up to the individual resource adapter developer.













A weblogic-ra.xml Schema

The following sections in this appendix describe the deployment descriptor elements that can be defined in the WebLogic Server-specific deployment descriptor weblogic-ra.xml. The schema for weblogic-ra.xml is http://xmlns.oracle.com/weblogic/weblogic-connector/1.2/weblogic-connector.xsd. If your resource adapter archive (RAR) does not contain a weblogic-ra.xml deployment descriptor, WebLogic Server automatically selects the default values of the deployment descriptor elements.

	
weblogic-connector


	
work-manager


	
security


	
properties


	
admin-objects


	
outbound-resource-adapter






weblogic-connector

The weblogic-connector element is the root element of the WebLogic-specific deployment descriptor for the deployed resource adapter. You can define the following elements within the weblogic-connector element.


Table A-1 weblogic-connector subelements

	Element	Required/Optional	Description
	

native-libdir

	
Required if native libraries are present.

	
Specifies the directory where all the native libraries exist that are required by the resource adapter.


	

jndi-name

	
Required only if a resource adapter bean is specified.

	
Specifies the JNDI name for the resource adapter. The resource adapter bean is registered into the JNDI tree with this name. It is not a required element if no resource adapter bean is specified. It is not a functional element if a JNDI name is specified for a resource adapter without a resource adapter bean.


	

enable-access-outside-app

	
Optional

	
As stated by the J2CA 1.5 Specification, if the resource adapter is packaged within an application (in other words, within an EAR), only components within the application should have access to the resource adapter. This element allows you to override this functionality.

Note: This element does not apply for stand-alone resource adapters.

Default Value: false

Note: When set to false, the resource adapter can only be accessed by clients that reside within the same application in which the resource adapter resides.

For version 1.0 resource adapters (supported in this release), the default value for this element is set to true.


	

enable-global-access-to-
classes

	
Optional

	
When set to true, the resource adapter allows global access to its classes, and the adapter's classes are loaded by the WebLogic Server system classpath classloader directly so that these classes can be accessed by all applications.

The default value is false, in which case the adapter's classes are loaded by a classloader that is a child of the EAR's application classloader.

This value normally should be set to true for standalone adapters.

When set to true, you must to restart WebLogic Server if you change the adapter's classes and want to redeploy the adapter.


	

work-manager

	
Optional

	
This complex element is used to specify all the configurable elements for creating the Work Manager that will be used by the resource adapter bean. The work-manager element is imported from the weblogic-j2ee.xsd schema.

The Work Manager dynamically adjusts the number of work threads to avoid deadlocks and achieve optimal throughput subject to concurrency constraints. It also meets objectives for response time goals, shares, and priorities.

For subelements of work-manager, see work-manager.


	

security

	
Optional

	
This complex element is used to specify all the security parameters for the operation of the resource adapter.

See security, for information on the security defaults that will be taken by the connector container.


	

properties

	
Optional

	
This complex element is used to override any properties that have been specified for the resource adapter bean in the ra.xml file.

For subelements of properties, see properties.


	

admin-objects

	
Optional

	
This complex element defines all of the admin objects in a resource adapter. As with the outbound-resource-adapter complex element (see outbound-resource-adapter), the admin-objects complex element has three hierarchical property levels that specify the configuration scope:

	
Global level - at this level, you specify parameters that apply to all admin objects in the resource adapter; you do so using the default-properties element. See default-properties in Table A-9, "admin-objects subelements"


	
Group level - at this level, you specify parameters that apply to all admin objects belonging to a particular admin object group specified in the ra.xml deployment descriptor; you do so using the admin-object-group element. The properties specified in the group override any parameters that are specified at the global level. See admin-object-group


	
Instance level - Under each admin object group, you can use the admin-object-instance element to specify admin object instances. These correspond to the admin object instances for the resource adapter. You can specify properties at the instance level and override those properties provided in the group and global levels. See admin-object-instance.




For admin-objects subelements, see admin-objects..


	

outbound-resource-adapter 

	
Optional

	
This complex element is used to describe the outbound components of a resource adapter. As with the admin-objects complex element, this element has three hierarchical property levels that specify the configuration scope for defining outbound connection pools:

	
Global level - at this level, you specify parameters that apply to all outbound connection pools in the resource adapter using the default-connection-properties element. See default-connection-properties.


	
Group level - at this level, you specify parameters that apply to all outbound connections belonging to a particular connection factory specified in the ra.xml deployment descriptor using the connection-definition-group element. A one-to-one correspondence exists from a connection factory in ra.xml to a connection definition group in weblogic-ra.xml. The properties specified in a group override any parameters specified at the global level. See connection-definition-group.


	
The instance level - Under each connection definition group, you can specify connection instances. These correspond to the individual connection pools for the resource adapter. Parameters can be specified at this level too and these override those provided at the group and global levels. See connection-instance.




For outbound-resource-adapter subelements, see outbound-resource-adapter..












work-manager

The work-manager element is a complex element that is used to specify all the configurable elements for creating the Work Manager that will be used by the resource adapter bean. The work-manager element is imported from the weblogic-j2ee.xsd schema. The following subelements can be configured in the work-manager element.


Table A-2 work-manager subelements

	Element	Required/Optional	Description
	

name

	
Required

	
Specifies the name of the Work Manager.

The J2CA 1.5 Specification describes how a resource adapter can submit work threads to the application server. These work threads are managed by the WebLogic Server Work Manager. The Work Manager dynamically adjusts the number of work threads to avoid deadlocks and achieve optimal throughput subject to concurrency constraints. It also meets objectives for response time goals, shares, and priorities.


	

response-time-request-class
fair-share-request-class
context-request-class
request-class-name

	
Optional

	
A work-manager element can include one and only one of the following four elements:

response-time-request-class - Defines the response time request class for the application. Response time is defined with attribute goal-ms in milliseconds. The increment is ((goal - T) Cr)/R, where T is the average thread use time, R the arrival rate, and Cr a coefficient to prioritize response time goals over fair shares.

fair-share-request-class - Defines the fair share request class. Fair share is defined with attribute percentage of default share. Therefore, the default is 100. The increment is Cf/(P R T), where P is the percentage, R the arrival rate, T the average thread use time, and Cf a coefficient for fair shares to prioritize them lower than response time goals.

context-request-class - Defines the context class. Context is defined with multiple cases mapping contextual information, like current user or its role, cookie, or work area fields to named service classes.

request-class-name - Defines the request class name.


	

min-threads-constraint
min-threads-constraint-name

	
Optional

	
You can choose between the following two elements:

min-threads-constraint - Used to guarantee a number of threads the server allocates to requests of the constrained work set to avoid deadlocks. The default is zero. A min-threads value of one is useful, for example, for a replication update request, which is called synchronously from a peer.

min-threads-constraint-name - Defines a name for the min-threads-constraint element.


	

max-threads-constraint
max-threads-constraint-name

	
Optional

	
You can choose between the following two elements:

max-threads-constraint - Limits the number of concurrent threads executing requests from the constrained work set. The default is unlimited. For example, consider a constraint defined with maximum threads of 10 and shared by 3 entry points. The scheduling logic ensures that not more than 10 threads are executing requests from the three entry points combined.

max-threads-constraint-name - Defines a name for the max-threads-constraint element.


	

capacity
capacity-name

	
Optional

	
You can choose between the following two elements:

capacity - Constraints can be defined and applied to sets of entry points, called constrained work sets. The server starts rejecting requests only when the capacity is reached. The default is zero. Note that the capacity includes all requests, queued or executing, from the constrained work set. This constraint is primarily intended for subsystems like JMS, which do their own flow control. This constraint is independent of the global queue threshold.

capacity-name - Defines a name for the capacity element.












security

The security complex element contains default security information that can be configured for the connector container. For more information, see Configuring Security Identities for Resource Adapters.


Table A-3 security subelements

	Element	Required/Optional	Description
	

default-principal-name

	
Optional

	
Specifies the default secure ID to be used for calls into the resource adapter.

If this value is not specified, the default is the anonymous identity, which is the same as no security identity.

See default-principal-name for subelements of this element.


	

manage-as-principal-name

	
Optional

	
Specifies the secure ID to be used for running various resource adapter management tasks, including startup, shutdown, testing, shrinking, and transaction management.

If not specified, it defaults to the default-principal-name value. If default-principal-name is not specified, it defaults to the anonymous identity.

See manage-as-principal-name for subelements of this element.


	

run-as-principal-name

	
Optional

	
Specifies the secure ID to be used by all calls from the connector container into the resource adapter code during connection requests. (This element currently applies only to outbound functions.)

If not specified, it defaults to the default-principal-name value. If default-principal-name is not specified, it uses the identity of the requesting caller.

See run-as-principal-name for subelements of this element.


	

run-work-as-principal-name

	
Optional

	
Specifies the secure ID to be used to run all work instances started by the resource adapter.

If not specified, it defaults to the default-principal-name value. If default-principal-name is not specified, it uses the identity that was used to start the work.

See run-work-as-principal-name for subelements of this element.










default-principal-name

The default-principal-name element contains the following subelements.


Table A-4 default-principal-name subelements

	Element	Required/Optional	Description
	

use-anonymous-identity

	
Required

	
Specifies that the anonymous identity should be used.


	

principal-name

	
Required

	
Specifies that the principal name should be used. This should match a defined WebLogic Server user name.












manage-as-principal-name

The manage-as-principal-name element contains the following subelements.


Table A-5 manage-as-principal-name subelements

	Element	Required/Optional	Description
	

use-anonymous-identity

	
Required

	
Specifies that the anonymous identity should be used.


	

principal-name

	
Required

	
Specifies that the principal name should be used. This should match a defined WebLogic Server user name.












run-as-principal-name

The run-as-principal-name element contains the following subelements.


Table A-6 run-as-principal-name subelements

	Element	Required/Optional	Description
	

use-anonymous-identity

	
Required

	
Specifies that the anonymous identity should be used.


	

principal-name

	
Required

	
Specifies that the principal name should be used. This should match a defined WebLogic Server user name.


	

use-caller-identity

	
Required

	
Specifies that the caller's identity should be used.












run-work-as-principal-name

The run-work-as-principal-name element contains the following subelements.


Table A-7 run-work-as-principal-name subelements

	Element	Required/Optional	Description
	

use-anonymous-identity

	
Required

	
Specifies that the anonymous identity should be used.


	

principal-name

	
Required

	
Specifies that the principal name should be used. This should match a defined WebLogic Server user name.


	

use-caller-identity

	
Required

	
Specifies that the caller's identity should be used.














properties

The properties element, a subelement of weblogic-connector, is a container for properties specified for the resource adapter bean in ra.xml. It holds one more or more property elements.

You define property elements within the properties element as follows.


Table A-8 properties subelements

	Element	Required/Optional	Description
	

property

	
Required

	
The property element is used to override a property that has been specified for the resource adapter bean in the ra.xml file.

It holds two subelements:

name - Specifies the same name as the config-property-name element (a subelement of config-property in the ra.xml deployment descriptor). Setting this parameter causes the associated config-property-value element in ra.xml to be overridden. This is a required element.

value - Specifies the value that overrides config-property-value element (a subelement of config-property in the ra.xml deployment descriptor). This is an optional element.












admin-objects

The admin-objects complex element defines all of the admin objects in the resource adapter. As with the outbound-resource-adapter complex element, the admin-objects complex element has three hierarchical property levels that you can specify.

The admin-objects element is a sub-element of the weblogic-connector element. You can define the following elements within the admin-objects element.


Table A-9 admin-objects subelements

	Element	Required/Optional	Description
	

default-properties

	
Optional

	
Specifies the default properties that apply to all admin objects (at the global level) in the resource adapter.

The default-properties element can contain one or more property elements, each holding a name and value pair. See properties..


	

admin-object-group

	
One or more

	
Specifies the default parameters that apply to all admin objects belonging to a particular admin object group specified in the ra.xml deployment descriptor. The properties specified in the group override any parameters that are specified at the global level.

For admin-object-group subelements, see admin-object-group.










admin-object-group

The admin-object-group element is used to define an admin object group. At the group level, you specify parameters that apply to all admin objects belonging to a particular admin object group specified in the ra.xml deployment descriptor. The properties specified in the group override any parameters that are specified at the global level.

The admin-object-interface element (a subelement of the admin-object-group element) serves as a required unique element (a key) to each admin-object-group. There must be a one-to-one relationship between the weblogic-ra.xml admin-object-interface element and the ra.xml adminobject-interface element.

The admin-object-group element is a sub-element of the weblogic-connector element. You can define the following elements within the admin-object-group element


Table A-10 admin-object-group

	Element	Required/Optional	Description
	

admin-object-interface

	
Required

	
The admin-object-interface element serves as a required unique element (a key) to each admin-object-group. There must be a one-to-one relationship between the weblogic-ra.xml admin-object-interface element and the ra.xml adminobject-interface element.


	

default-properties

	
Optional

	
Specifies all the default properties that apply to all admin objects in this admin object group.

The default-properties element can contain one or more property elements, each holding a name and value pair. See properties..


	

admin-object-instance

	
One or more

	
Specifies one or more admin object instances within the admin object group, corresponding to the admin object instances for the resource adapter. You can specify properties at the instance level and override those provided in the group and global levels. For subelements, see admin-object-instance.










admin-object-instance

You can define the following subelements under admin-object-instance.


Table A-11 admin-object-instance subelements

	Element	Required/Optional	Description
	

jndi-name / resource-link

	
Required

	
The admin object group that defines the reference name for the admin object instance. You can specify the reference name to be the JNDI name or resource link of the connection instance.

If the JNDI name is specified (by specifying the jndi-name element), the connection pool is bound into a JNDI that clients outside the application can see.

Note: In order for this to work, the enable-access-outside-app element must be set to true.

For resource adapters that do not need to be externally visible to other applications, you would specify the resource-link value.


	

admin-object-properties

	
Optional

	
Defines all the properties that apply to the admin object instance.

The admin-object-properties element can contain one or more property elements, each holding a name and value pair. See properties..
















outbound-resource-adapter

The outbound-resource-adapter element is a sub-element of the weblogic-connector element. You can define the following elements within the outbound-resource-adapter element.


Table A-12 outbound-resource-adapter subelements

	Element	Required/Optional	Description
	

default-connection-properties

	
Optional

	
This complex element is used to specify the properties at an global level. At this level, the user is able to specify parameters that apply to all outbound connection pools in the resource adapter.

For subelements, see default-connection-properties.


	

connection-definition-group

	
One or more

	
This element is used to specify all the connection definition groups. There must be a one-to-one correspondence relationship between the connection factories in the ra.xml deployment descriptor and the groups in the weblogic-ra.xml deployment descriptor. A group does not have to exist in the weblogic-ra.xml deployment descriptor for every connection factory in ra.xml. However, if a group exists, there must be at least one connection instance in the group.

The properties specified in the group override any parameters that are specified at the global level using default-connection-properties.

For subelements, see connection-definition-group.










default-connection-properties

The default-connection-properties element is a sub-element of the outbound-resource-adapter element. You can define the following elements within the default-connection-properties element.


Table A-13 default-connection-properties subelements

	Element	Required/Optional	Description
	

pool-params

	
Optional

	
Serves as the root element for providing connection pool-specific parameters for this connection factory. WebLogic Server uses these specifications to control the behavior of the maintained pool of ManagedConnections.

This is an optional element. Failure to specify this element or any of its specific element items results in default values being assigned. Refer to the description of each individual element for the designated default value.

For subelements, see pool-params.


	

logging

	
Optional

	
Contains parameters for configuring logging of the ManagedConnectionFactory and ManagedConnection objects of the resource adapter.

For subelements, see logging.


	

transaction-support

	
Optional

	
Specifies the level of transaction support for a particular Connection Factory. It provides the ability to override the transaction-support value specified in the ra.xml deployment descriptor that is intended to be the default value for all Connection Factories of the resource adapter.

The value of transaction-support must be one of the following:


NoTransaction
LocalTransaction
XATransaction


For related information, see Chapter 5, "Connection Management."


	

authentication-mechanism

	
Optional

	
The authentication-mechanism element specifies an authentication mechanism supported by a particular Connection Factory in the resource adapter. It provides the ability to override the authentication-mechanism value specified in the ra.xml deployment descriptor that is intended to be the default value for all Connection Factories of the resource adapter.

Note that BasicPassword mechanism type should support the javax.resource.spi.security.PasswordCredential interface.


	

reauthentication-support

	
Optional

	
A Boolean that specifies whether a particular connection factory supports re-authentication of an existing ManagedConnection instance. It provides the ability to override the reauthentication-support value specified in the ra.xml deployment descriptor that is intended to be the default value for all Connection Factories of the resource adapter.


	

properties

	
Optional

	
The properties element includes one or more property elements, which define name and value subelements that apply to the default connections.


	

res-auth

	
Optional

	
Specifies whether to use container- or application-managed security. The values for this element can be one of Application or Container. The default value is Container.










pool-params

The pool-params element is a sub-element of the default-connection-properties element. You can define the following elements within the pool-params element.


Table A-14 pool-params subelements

	Element	Required/Optional	Description
	

initial-capacity

	
Optional

	
Specifies the initial number of ManagedConnections, which WebLogic Server attempts to create during deployment.

Default Value: 1


	

max-capacity

	
Optional

	
Specifies the maximum number of ManagedConnections, which WebLogic Server will allow. Requests for newly allocated ManagedConnections beyond this limit results in a ResourceAllocationException being returned to the caller.

Default Value: 10


	

capacity-increment

	
Optional

	
Specifies the maximum number of additional ManagedConnections that WebLogic Server attempts to create during resizing of the maintained connection pool.

Default Value: 1


	

shrinking-enabled

	
Optional

	
Specifies whether unused ManagedConnections will be destroyed and removed from the connection pool as a means to control system resources.

Default Value: true


	

shrink-frequency-seconds

	
Optional

	
Specifies the amount of time (in seconds) the Connection Pool Management waits between attempts to destroy unused ManagedConnections.

Default Value: 900 seconds


	

highest-num-waiters

	
Optional

	
Specifies the maximum number of threads that can concurrently block waiting to reserve a connection from the pool.

Default Value: 0


	

highest-num-unavailable

	
Optional

	
Specifies the maximum number of ManagedConnections in the pool that can be made unavailable to the application for purposes such as refreshing the connection.

Note that in cases like the backend system being unavailable, this specified value could be exceeded due to factors outside the pool's control.

Default Value: 0


	

connection-creation-retry-
frequency-seconds

	
Optional

	
The periodicity of retry attempts by the pool to create connections.

Default Value: 0


	

connection-reserve-timeout-seconds

	
Optional

	
Sets the number of seconds after which the call to reserve a connection from the pool will timeout.

Default Value: -1 (do not block when reserving resources)


	

test-frequency-seconds

	
Optional

	
The frequency with which connections in the pool are tested.

Default Value: 0


	

test-connections-on-create

	
Optional

	
Enables the testing of newly created connections.

Default Value: false


	

test-connections-on-release

	
Optional

	
Enables testing of connections when they are being released back into the pool.

Default Value: false


	

test-connections-on-reserve

	
Optional

	
Enables testing of connections when they are being reserved.

Default Value: false


	

profile-harvest-frequency-seconds

	
Optional

	
Specifies how frequently the profile for the connection pool is being harvested.


	

ignore-in-use-connections-enabled

	
Optional

	
When the connection pool is being shut down, this element is used to specify whether it is acceptable to ignore connections that are in use at that time.


	

match-connections-supported

	
Optional

	
Indicates whether the resource adapter supports the ManagedConnectionFactory.matchManagedConnections() method. If the resource adapter does not support this method (always returns null for this method), then WebLogic Server bypasses this method call during a connection request.

Default Value: true












logging

The logging element is a sub-element of the default-connection-properties element. You can define the following elements within the logging element.


Table A-15 logging subelements

	Element	Required/Optional	Description
	

log-filename

	
Optional

	
Specifies the name of the log file from which output generated from the ManagedConnectionFactory or a ManagedConnection is sent.

The full address of the filename is required.


	

logging-enabled

	
Optional

	
Indicates whether or not the log writer is set for either the ManagedConnectionFactory or ManagedConnection. If this element is set to true, output generated from either the ManagedConnectionFactory or ManagedConnection will be sent to the file specified by the log-filename element.

Default Value: false


	

rotation-type

	
Optional

	
Sets the file rotation type.

Possible values are bySize, byName, none

bySize - When the log file reaches the size that you specify in file-size-limit, the server renames the file as FileName.n.

byName - At each time interval that you specify in file-time-span, the server renames the file as FileName.n. After the server renames a file, subsequent messages accumulate in a new file with the name that you specified in log-filename.

none - Messages accumulate in a single file. You must erase the contents of the file if the log size becomes unwieldy.

Default Value: bySize


	

number-of-files-limited

	
Optional

	
Specifies whether to limit the number of files that this server instance creates to store old log messages. (Requires that you specify a rotation-type of bySize). After the server reaches this limit, it overwrites the oldest file. If you do not enable this option, the server creates new files indefinitely and you must clean up these files as you require.

If you enable number-of-files-limited by setting it to true, the server refers to your rotationType variable to determine how to rotate the log file. Rotate means that you override your existing file instead of creating a new file. If you specify false for number-of-files-limited, the server creates numerous log files rather than overriding the same one.

Default Value: false


	

file-count

	
Optional

	
The maximum number of log files that the server creates when it rotates the log. This number does not include the file that the server uses to store current messages. (Requires that you enable number-of-files-limited.)

Default Value: 7


	

file-size-limit

	
Optional

	
The size that triggers the server to move log messages to a separate file. (Requires that you specify a rotation-type of bySize.) After the log file reaches the specified minimum size, the next time the server checks the file size, it will rename the current log file as FileName.n and create a new one to store subsequent messages.

Default Value: 500


	

rotate-log-on-startup

	
Optional

	
Specifies whether a server rotates its log file during its startup cycle.

Default Value: true


	

log-file-rotation-dir

	
Optional

	
Specifies the directory path where the rotated log files will be stored.


	

rotation-time

	
Optional

	
The start time for a time-based rotation sequence of the log file, in the format k:mm, where k is 1-24. (Requires that you specify a rotation-type of byTime.) At the specified time, the server renames the current log file. Thereafter, the server renames the log file at an interval that you specify in file-time-span.

If the specified time has already past, then the server starts its file rotation immediately.

By default, the rotation cycle begins immediately.


	

file-time-span

	
Optional

	
The interval (in hours) at which the server saves old log messages to another file. (Requires that you specify a rotation-type of byTime.)

Default Value: 24














connection-definition-group

The connection-definition-group element is used to define a connection definition group. At the group level, you specify parameters that apply to all outbound connections belonging to a particular connection factory specified in the ra.xml deployment descriptor using the connection-definition-group element. A one-to-one correspondence exists from a connection factory in ra.xml to a connection definition group in weblogic-ra.xml. The properties specified in a group override any parameters specified at the global level.

The connection-factory-interface element (a subelement of the connection-definition-group element) serves as a required unique element (a key) to each connection-definition-group. There must be a one-to-one relationship between the weblogic-ra.xml connection-definition-interface element and the ra.xml connectiondefinition-interface element.

The connection-definition-group element is a sub-element of the outbound-resource-adapter element. You can define the following elements within the connection-definition-group element.


Table A-16 connection-definition-group subelements

	Element	Description
	

connection-factory-interface

	
Every connection definition group has a key (a required unique element). This key is the connection-factory-interface.

The value specified for connection-factory-interface must be equal to the value specified for connection-factory-interface in ra.xml.


	

default-connection-properties

	
This complex element is used to define properties for outbound connections at the group level.

See default-connection-properties.


	

connection-instance

	
Under each connection definition group, the user can specify connection instances. These correspond to the individual connection pools for the resource adapter. Parameters can be specified at this level too and these override those provided in the group and global levels.

This element specifies a description of the connection pool. (A connection instance is equivalent to a connection pool.) It is used to document the connection pool.

See connection-instance.










connection-instance

You can define the following subelements under connection-instance.


Table A-17 connection-instance subelements

	Element	Required/Optional	Description
	

description

	
Optional

	
Specifies a description of the connection instance.


	

jndi-name
resource-link

	
Required

	
The connection definition group that defines the reference name for the connection instance. The reference name can be a JNDI name or a resource link.


	

connection-properties

	
Optional

	
Defines all the properties that apply to the connection instance.

The connection-properties element can contain one or more property elements, each holding a name and value pair. See properties..



















B Resource Adapter Best Practices

This appendix describes some best practices for resource adapter developers.

	
Classloading Optimizations for Resource Adapters


	
Connection Optimizations


	
Thread Management


	
InteractionSpec Interface






Classloading Optimizations for Resource Adapters

You can package resource adapter classes in one or more JAR files, and then place the JAR files in the RAR file. These are called nested JARs. When you nest JAR files in the RAR file, and classes need to be loaded by the classloader, the JARs within the RAR file must be opened and closed and iterated through for each class that must be loaded.

If there are very few JARs in the RAR file and if the JARs are relatively small in size, there will be no significant performance impact. On the other hand, if there are many JARs and the JARs are large in size, the performance impact can be great.

To avoid such performance issues, you can do either of the following:

	
Deploy the resource adapter in an exploded format. This eliminates the nesting of JARs and hence reduces the performance hit involved in looking for classes.


	
If deploying the resource adapter in exploded format is not an option, the JARs can be exploded within the RAR file. This also eliminates the nesting of JARs and thus improves the performance of classloading significantly.









Connection Optimizations

Oracle recommends that resource adapters implement the optional enhancements described in sections 7.14.2 and 7.14.2 of the J2CA 1.5 Specification. Implementing these interfaces allows WebLogic Server to provide several features that will not be available without them.

Lazy Connection Association, as described in section 7.14.1, allows the server to automatically clean up unused connections and prevent applications from hogging resources. Lazy Transaction Enlistment, as described in 7.14.2, allows applications to start a transaction after a connection is already opened.






Thread Management

Resource adapter implementations should use the WorkManager (as described in Chapter 10, "Work Management" in the J2CA 1.5 Specification, at http://java.sun.com/j2ee/connector/) to launch operations that need to run in a new thread, rather than creating new threads directly. This allows WebLogic Server to manage and monitor these threads.






InteractionSpec Interface

WebLogic Server supports the Common Client Interface (CCI) for EIS access, as defined in Chapter 15, "Common Client Interface" in the J2CA 1.5 Specification, at http://java.sun.com/j2ee/connector/. The CCI defines a standard client API for application components that enables application components and EAI frameworks to drive interactions across heterogeneous EISes.

As a best practice, you should not store the InteractionSpec class that the CCI resource adapter is required to implement in the RAR file. Instead, you should package it in a separate JAR file outside of the RAR file, so that the client can access it without having to put the InteractionSpec interface class in the generic CLASSPATH.

With respect to the InteractionSpec interface, it is important to note that when all application components (EJBs, resource adapters, Web applications) are packaged in an EAR file, all common classes can be placed in the APP-INF/lib directory. This is the easiest possible scenario.

This is not the case for standalone resource adapters (packaged as RAR files). If the interface is serializable (as is the case with InteractionSpec), then both the client and the resource adapter need access to the InteractionSpec interface as well as the implementation classes. However, if the interface extends java.io.Remote, then the client only needs access to the interface class.
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